Add missing ChangeLog entry for previous commit.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
32d0add0 3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
53ce3c39 58#include <sys/stat.h>
96d19272 59#include "completer.h"
34eaf542 60#include "vec.h"
98bfdba5 61#include "c-lang.h"
a766d390 62#include "go-lang.h"
98bfdba5 63#include "valprint.h"
3019eac3 64#include "gdbcore.h" /* for gnutarget */
156942c7 65#include "gdb/gdb-index.h"
60d5a603 66#include <ctype.h>
cbb099e8 67#include "gdb_bfd.h"
4357ac6c 68#include "f-lang.h"
05cba821 69#include "source.h"
614c279d 70#include "filestuff.h"
dc294be5 71#include "build-id.h"
22cee43f 72#include "namespace.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
c906108c 75#include <sys/types.h>
d8151005 76
34eaf542
TT
77typedef struct symbol *symbolp;
78DEF_VEC_P (symbolp);
79
73be47f5
DE
80/* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
b4f54984
DE
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83static unsigned int dwarf_read_debug = 0;
45cfd468 84
d97bc12b 85/* When non-zero, dump DIEs after they are read in. */
b4f54984 86static unsigned int dwarf_die_debug = 0;
d97bc12b 87
27e0867f
DE
88/* When non-zero, dump line number entries as they are read in. */
89static unsigned int dwarf_line_debug = 0;
90
900e11f9
JK
91/* When non-zero, cross-check physname against demangler. */
92static int check_physname = 0;
93
481860b3 94/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 95static int use_deprecated_index_sections = 0;
481860b3 96
6502dd73
DJ
97static const struct objfile_data *dwarf2_objfile_data_key;
98
f1e6e072
TT
99/* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101static int dwarf2_locexpr_index;
102static int dwarf2_loclist_index;
103static int dwarf2_locexpr_block_index;
104static int dwarf2_loclist_block_index;
105
73869dc2
DE
106/* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
dce234bc
PP
122struct dwarf2_section_info
123{
73869dc2
DE
124 union
125 {
e5aa3347 126 /* If this is a real section, the bfd section. */
73869dc2
DE
127 asection *asection;
128 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 129 section. */
73869dc2
DE
130 struct dwarf2_section_info *containing_section;
131 } s;
19ac8c2e 132 /* Pointer to section data, only valid if readin. */
d521ce57 133 const gdb_byte *buffer;
73869dc2 134 /* The size of the section, real or virtual. */
dce234bc 135 bfd_size_type size;
73869dc2
DE
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
be391dca 139 /* True if we have tried to read this section. */
73869dc2
DE
140 char readin;
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.asection and s.containing_section to use. */
143 char is_virtual;
dce234bc
PP
144};
145
8b70b953
TT
146typedef struct dwarf2_section_info dwarf2_section_info_def;
147DEF_VEC_O (dwarf2_section_info_def);
148
9291a0cd
TT
149/* All offsets in the index are of this type. It must be
150 architecture-independent. */
151typedef uint32_t offset_type;
152
153DEF_VEC_I (offset_type);
154
156942c7
DE
155/* Ensure only legit values are used. */
156#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162/* Ensure only legit values are used. */
163#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170/* Ensure we don't use more than the alloted nuber of bits for the CU. */
171#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
9291a0cd
TT
177/* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179struct mapped_index
180{
559a7a62
JK
181 /* Index data format version. */
182 int version;
183
9291a0cd
TT
184 /* The total length of the buffer. */
185 off_t total_size;
b11b1f88 186
9291a0cd
TT
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
b11b1f88 189
9291a0cd
TT
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
b11b1f88 192
3876f04e
DE
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
b11b1f88 195
9291a0cd 196 /* Size in slots, each slot is 2 offset_types. */
3876f04e 197 offset_type symbol_table_slots;
b11b1f88 198
9291a0cd
TT
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201};
202
95554aad
TT
203typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204DEF_VEC_P (dwarf2_per_cu_ptr);
205
52059ffd
TT
206struct tu_stats
207{
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213};
214
9cdd5dbd
DE
215/* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
6502dd73
DJ
218struct dwarf2_per_objfile
219{
dce234bc
PP
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
dce234bc
PP
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
cf2c3c16 225 struct dwarf2_section_info macro;
dce234bc
PP
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
3019eac3 228 struct dwarf2_section_info addr;
dce234bc
PP
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
9291a0cd 231 struct dwarf2_section_info gdb_index;
ae038cb0 232
8b70b953
TT
233 VEC (dwarf2_section_info_def) *types;
234
be391dca
TT
235 /* Back link. */
236 struct objfile *objfile;
237
d467dd73 238 /* Table of all the compilation units. This is used to locate
10b3939b 239 the target compilation unit of a particular reference. */
ae038cb0
DJ
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
1fd400ff 245 /* The number of .debug_types-related CUs. */
d467dd73 246 int n_type_units;
1fd400ff 247
6aa5f3a6
DE
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
a2ce51a0
DE
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
b4dd5633 254 struct signatured_type **all_type_units;
1fd400ff 255
f4dc4d17
DE
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
72dca2f5 259
348e048f
DE
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
f4dc4d17
DE
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
52059ffd 266 struct tu_stats tu_stats;
f4dc4d17
DE
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
3019eac3
DE
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
80626a55
DE
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
36586728
TT
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
72dca2f5
FR
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
9291a0cd 289
ae2de4f8
DE
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
292 unsigned char using_index;
293
ae2de4f8 294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 295 struct mapped_index *index_table;
98bfdba5 296
7b9f3c50 297 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
7b9f3c50
DE
304 htab_t quick_file_names_table;
305
98bfdba5
PA
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
673bfd45 309
dee91e82 310 /* Table mapping type DIEs to their struct type *.
673bfd45 311 This is NULL if not allocated yet.
02142a6c 312 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 313 htab_t die_type_hash;
95554aad
TT
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
527f3840
JK
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
6502dd73
DJ
320};
321
322static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 323
251d32d9 324/* Default names of the debugging sections. */
c906108c 325
233a11ab
CS
326/* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
9cdd5dbd
DE
329static const struct dwarf2_debug_sections dwarf2_elf_names =
330{
251d32d9
TG
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 336 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
3019eac3 340 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
24d3216f
TT
343 { ".gdb_index", ".zgdb_index" },
344 23
251d32d9 345};
c906108c 346
80626a55 347/* List of DWO/DWP sections. */
3019eac3 348
80626a55 349static const struct dwop_section_names
3019eac3
DE
350{
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
09262596
DE
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
3019eac3
DE
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
80626a55
DE
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
3019eac3 362}
80626a55 363dwop_section_names =
3019eac3
DE
364{
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
376};
377
c906108c
SS
378/* local data types */
379
107d2387
AC
380/* The data in a compilation unit header, after target2host
381 translation, looks like this. */
c906108c 382struct comp_unit_head
a738430d 383{
c764a876 384 unsigned int length;
a738430d 385 short version;
a738430d
MK
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
b64f50a1 388 sect_offset abbrev_offset;
57349743 389
a738430d
MK
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
57349743 392
a738430d
MK
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
57349743 395
a738430d
MK
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
b64f50a1 398 sect_offset offset;
57349743 399
d00adf39
DE
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
b64f50a1 402 cu_offset first_die_offset;
a738430d 403};
c906108c 404
3da10d80
KS
405/* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407struct delayed_method_info
408{
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423};
424
425typedef struct delayed_method_info delayed_method_info;
426DEF_VEC_O (delayed_method_info);
427
e7c27a73
DJ
428/* Internal state when decoding a particular compilation unit. */
429struct dwarf2_cu
430{
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
d00adf39 434 /* The header of the compilation unit. */
e7c27a73 435 struct comp_unit_head header;
e142c38c 436
d00adf39
DE
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
e142c38c
DJ
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
b0f35d58
DL
447 const char *producer;
448
e142c38c
DJ
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
433df2d4
DE
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
72bf9492 464
b64f50a1
JK
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
ae038cb0
DJ
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
69d751e3 479 /* Backlink to our per_cu entry. */
ae038cb0
DJ
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
b64f50a1
JK
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
51545339 487 htab_t die_hash;
10b3939b
DJ
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
cb1df416
DJ
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
3da10d80
KS
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
96408a79
SA
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
034e5797
DE
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
3019eac3
DE
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
1dbab08b 520 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
521 ULONGEST addr_base;
522
2e3cf129
DE
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
1dbab08b 525 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 526 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
533 ULONGEST ranges_base;
534
ae038cb0
DJ
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
8be455d7
JK
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 542 unsigned int has_loclist : 1;
ba919b58 543
1b80a9fa
JK
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
ba919b58
TT
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 550 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 551 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
558};
559
10b3939b
DJ
560/* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
28dee7f5 562 read_symtab_private field of the psymtab. */
10b3939b 563
ae038cb0
DJ
564struct dwarf2_per_cu_data
565{
36586728 566 /* The start offset and length of this compilation unit.
45452591 567 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
b64f50a1 571 sect_offset offset;
36586728 572 unsigned int length;
ae038cb0
DJ
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
c764a876 576 unsigned int queued : 1;
ae038cb0 577
0d99eb77
DE
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
0186c6a7
DE
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
3019eac3
DE
587 unsigned int is_debug_types : 1;
588
36586728
TT
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
a2ce51a0
DE
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
7ee85ab1
DE
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
3019eac3
DE
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
8a0459fd 611 struct dwarf2_section_info *section;
348e048f 612
17ea53c3 613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
ae038cb0 616 struct dwarf2_cu *cu;
1c379e20 617
9cdd5dbd
DE
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
621 struct objfile *objfile;
622
fffbe6a8
YQ
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
95554aad 628 or NULL for unread partial units. */
9291a0cd
TT
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
95554aad 634
796a7ff8
DE
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
654};
655
348e048f
DE
656/* Entry in the signatured_types hash table. */
657
658struct signatured_type
659{
42e7ad6c 660 /* The "per_cu" object of this type.
ac9ec31b 661 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
3019eac3 666 /* The type's signature. */
348e048f
DE
667 ULONGEST signature;
668
3019eac3 669 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
0186c6a7
DE
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
ac9ec31b
DE
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
a2ce51a0
DE
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
348e048f
DE
693};
694
0186c6a7
DE
695typedef struct signatured_type *sig_type_ptr;
696DEF_VEC_P (sig_type_ptr);
697
094b34ac
DE
698/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701struct stmt_list_hash
702{
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708};
709
f4dc4d17
DE
710/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713struct type_unit_group
714{
0186c6a7 715 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
8a0459fd 720#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
721 struct dwarf2_per_cu_data per_cu;
722
0186c6a7
DE
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
f4dc4d17 727
43f3e411 728 /* The compunit symtab.
094b34ac 729 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
f4dc4d17 732
094b34ac
DE
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
f4dc4d17
DE
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749};
750
73869dc2 751/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
752
753struct dwo_sections
754{
755 struct dwarf2_section_info abbrev;
3019eac3
DE
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
09262596
DE
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
3019eac3
DE
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
80626a55
DE
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
3019eac3
DE
764 VEC (dwarf2_section_info_def) *types;
765};
766
c88ee1f0 767/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
768
769struct dwo_unit
770{
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 780 struct dwarf2_section_info *section;
3019eac3 781
19ac8c2e 782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788};
789
73869dc2
DE
790/* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794enum dwp_v2_section_ids
795{
796 DW_SECT_MIN = 1
797};
798
80626a55 799/* Data for one DWO file.
57d63ce2
DE
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
3019eac3
DE
809
810struct dwo_file
811{
0ac5b59e 812 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
0ac5b59e
DE
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
3019eac3 820
80626a55
DE
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
3019eac3 824
73869dc2
DE
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
3019eac3
DE
828 struct dwo_sections sections;
829
19c3d4c9
DE
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
3019eac3
DE
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840};
841
80626a55
DE
842/* These sections are what may appear in a DWP file. */
843
844struct dwp_sections
845{
73869dc2 846 /* These are used by both DWP version 1 and 2. */
80626a55
DE
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
73869dc2
DE
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
80626a55
DE
867};
868
73869dc2
DE
869/* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 871
73869dc2 872struct virtual_v1_dwo_sections
80626a55
DE
873{
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 881 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
882 struct dwarf2_section_info info_or_types;
883};
884
73869dc2
DE
885/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890struct virtual_v2_dwo_sections
891{
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914};
915
80626a55
DE
916/* Contents of DWP hash tables. */
917
918struct dwp_hash_table
919{
73869dc2 920 uint32_t version, nr_columns;
80626a55 921 uint32_t nr_units, nr_slots;
73869dc2
DE
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933#define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
80626a55
DE
945};
946
947/* Data for one DWP file. */
948
949struct dwp_file
950{
951 /* Name of the file. */
952 const char *name;
953
73869dc2
DE
954 /* File format version. */
955 int version;
956
93417882 957 /* The bfd. */
80626a55
DE
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
57d63ce2 963 /* Table of CUs in the file. */
80626a55
DE
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
19ac8c2e
DE
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
80626a55 972
73869dc2
DE
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
80626a55
DE
975 unsigned int num_sections;
976 asection **elf_sections;
977};
978
36586728
TT
979/* This represents a '.dwz' file. */
980
981struct dwz_file
982{
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
2ec9a5e0 989 struct dwarf2_section_info gdb_index;
36586728
TT
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993};
994
0963b4bd
MS
995/* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
dee91e82 998 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
999
1000struct die_reader_specs
1001{
a32a8923 1002 /* The bfd of die_section. */
93311388
DE
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
80626a55 1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1009 struct dwo_file *dwo_file;
1010
dee91e82 1011 /* The section the die comes from.
3019eac3 1012 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
d521ce57 1016 const gdb_byte *buffer;
f664829e
DE
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
a2ce51a0
DE
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
93311388
DE
1023};
1024
fd820528 1025/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1026typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1027 const gdb_byte *info_ptr,
dee91e82
DE
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
52059ffd
TT
1032struct file_entry
1033{
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
83769d0b
DE
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
52059ffd
TT
1042};
1043
debd256d
JB
1044/* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047struct line_header
1048{
527f3840
JK
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
debd256d
JB
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
2dc7f7b3 1059 unsigned char maximum_ops_per_instruction;
debd256d
JB
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1076 const char **include_dirs;
debd256d
JB
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
52059ffd 1082 struct file_entry *file_names;
debd256d
JB
1083
1084 /* The start and end of the statement program following this
6502dd73 1085 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1086 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1087};
c906108c
SS
1088
1089/* When we construct a partial symbol table entry we only
0963b4bd 1090 need this much information. */
c906108c
SS
1091struct partial_die_info
1092 {
72bf9492 1093 /* Offset of this DIE. */
b64f50a1 1094 sect_offset offset;
72bf9492
DJ
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
72bf9492
DJ
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
481860b3 1106 unsigned int may_be_inlined : 1;
72bf9492
DJ
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
fa4028e9
JB
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
ff908ebf
AW
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
98bfdba5
PA
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
abc72ce4
DE
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
36586728
TT
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
72bf9492 1130 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1131 sometimes a default name for unnamed DIEs. */
15d034d0 1132 const char *name;
72bf9492 1133
abc72ce4
DE
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
72bf9492
DJ
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
15d034d0 1140 const char *scope;
72bf9492 1141
95554aad
TT
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
72bf9492
DJ
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
72bf9492 1155
93311388 1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1157 DW_AT_sibling, if any. */
abc72ce4
DE
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1160 const gdb_byte *sibling;
72bf9492
DJ
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
b64f50a1 1165 sect_offset spec_offset;
72bf9492
DJ
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1170 };
1171
0963b4bd 1172/* This data structure holds the information of an abbrev. */
c906108c
SS
1173struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183struct attr_abbrev
1184 {
9d25dd43
DE
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1187 };
1188
433df2d4
DE
1189/* Size of abbrev_table.abbrev_hash_table. */
1190#define ABBREV_HASH_SIZE 121
1191
1192/* Top level data structure to contain an abbreviation table. */
1193
1194struct abbrev_table
1195{
f4dc4d17
DE
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
433df2d4
DE
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208};
1209
0963b4bd 1210/* Attributes have a name and a value. */
b60c80d6
DJ
1211struct attribute
1212 {
9d25dd43 1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
b60c80d6
DJ
1221 union
1222 {
15d034d0 1223 const char *str;
b60c80d6 1224 struct dwarf_block *blk;
43bbcdc2
PH
1225 ULONGEST unsnd;
1226 LONGEST snd;
b60c80d6 1227 CORE_ADDR addr;
ac9ec31b 1228 ULONGEST signature;
b60c80d6
DJ
1229 }
1230 u;
1231 };
1232
0963b4bd 1233/* This data structure holds a complete die structure. */
c906108c
SS
1234struct die_info
1235 {
76815b17
DE
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
98bfdba5
PA
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
76815b17 1245
adde2bff
DE
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
76815b17
DE
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
93311388 1252 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1253 sect_offset offset;
78ba4af6
JB
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
4950bc1c 1258 together via their SIBLING fields. */
639d11d3
DC
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
c906108c 1262
b60c80d6
DJ
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
c906108c
SS
1267 };
1268
0963b4bd 1269/* Get at parts of an attribute structure. */
c906108c
SS
1270
1271#define DW_STRING(attr) ((attr)->u.str)
8285870a 1272#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1273#define DW_UNSND(attr) ((attr)->u.unsnd)
1274#define DW_BLOCK(attr) ((attr)->u.blk)
1275#define DW_SND(attr) ((attr)->u.snd)
1276#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1277#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1278
0963b4bd 1279/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1280struct dwarf_block
1281 {
56eb65bd 1282 size_t size;
1d6edc3c
JK
1283
1284 /* Valid only if SIZE is not zero. */
d521ce57 1285 const gdb_byte *data;
c906108c
SS
1286 };
1287
c906108c
SS
1288#ifndef ATTR_ALLOC_CHUNK
1289#define ATTR_ALLOC_CHUNK 4
1290#endif
1291
c906108c
SS
1292/* Allocate fields for structs, unions and enums in this size. */
1293#ifndef DW_FIELD_ALLOC_CHUNK
1294#define DW_FIELD_ALLOC_CHUNK 4
1295#endif
1296
c906108c
SS
1297/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300static int bits_per_byte = 8;
1301
52059ffd
TT
1302struct nextfield
1303{
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308};
1309
1310struct nextfnfield
1311{
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314};
1315
1316struct fnfieldlist
1317{
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321};
1322
1323struct typedef_field_list
1324{
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327};
1328
c906108c
SS
1329/* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332struct field_info
c5aa993b 1333 {
0963b4bd 1334 /* List of data member and baseclasses fields. */
52059ffd 1335 struct nextfield *fields, *baseclasses;
c906108c 1336
7d0ccb61 1337 /* Number of fields (including baseclasses). */
c5aa993b 1338 int nfields;
c906108c 1339
c5aa993b
JM
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
c906108c 1342
c5aa993b
JM
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
c906108c 1345
c5aa993b
JM
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
52059ffd 1348 struct nextfnfield *fnfields;
c906108c 1349
c5aa993b
JM
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
52059ffd 1353 struct fnfieldlist *fnfieldlists;
c906108c 1354
c5aa993b
JM
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
98751a41
JK
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1360 struct typedef_field_list *typedef_field_list;
98751a41 1361 unsigned typedef_field_list_count;
c5aa993b 1362 };
c906108c 1363
10b3939b
DJ
1364/* One item on the queue of compilation units to read in full symbols
1365 for. */
1366struct dwarf2_queue_item
1367{
1368 struct dwarf2_per_cu_data *per_cu;
95554aad 1369 enum language pretend_language;
10b3939b
DJ
1370 struct dwarf2_queue_item *next;
1371};
1372
1373/* The current queue. */
1374static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
ae038cb0
DJ
1376/* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1381static int dwarf_max_cache_age = 5;
920d2a44 1382static void
b4f54984
DE
1383show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
920d2a44 1385{
3e43a32a 1386 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1387 "DWARF compilation units is %s.\n"),
920d2a44
AC
1388 value);
1389}
4390d890 1390\f
c906108c
SS
1391/* local function prototypes */
1392
a32a8923
DE
1393static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
4efb68b1 1397static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1398
918dd910
JK
1399static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
0018ea6f
DE
1402static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
c67a9c90 1405static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1406
72bf9492
DJ
1407static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1409 int, struct dwarf2_cu *);
c906108c 1410
72bf9492
DJ
1411static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
63d06c5c 1413
72bf9492
DJ
1414static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1416 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1417
5d7cb8df 1418static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1419 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1420 struct dwarf2_cu *cu);
1421
72bf9492
DJ
1422static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
91c24f0a 1424
bc30ff58
JB
1425static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1427 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1428
257e7a09
YQ
1429static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
c906108c 1431
a14ed312 1432static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1433
433df2d4
DE
1434static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440static void abbrev_table_free (struct abbrev_table *);
1441
f4dc4d17
DE
1442static void abbrev_table_free_cleanup (void *);
1443
dee91e82
DE
1444static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
c906108c 1446
f3dd6933 1447static void dwarf2_free_abbrev_table (void *);
c906108c 1448
d521ce57 1449static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1450
dee91e82 1451static struct partial_die_info *load_partial_dies
d521ce57 1452 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1453
d521ce57
TT
1454static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
c906108c 1459
36586728 1460static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1461 struct dwarf2_cu *);
72bf9492
DJ
1462
1463static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
d521ce57
TT
1466static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
a8329558 1469
a1855c1d 1470static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1471
a1855c1d 1472static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1473
a1855c1d 1474static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1475
a1855c1d 1476static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1477
a1855c1d 1478static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1479
d521ce57 1480static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1481 unsigned int *);
c906108c 1482
d521ce57 1483static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1484
1485static LONGEST read_checked_initial_length_and_offset
d521ce57 1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1487 unsigned int *, unsigned int *);
613e1657 1488
d521ce57
TT
1489static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
c764a876
DE
1491 unsigned int *);
1492
d521ce57 1493static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1494
f4dc4d17
DE
1495static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
d521ce57 1498static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1499
d521ce57 1500static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1501
d521ce57
TT
1502static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
4bdf3d34 1505
d521ce57 1506static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1507
d521ce57 1508static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1509
d521ce57 1510static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1511
d521ce57
TT
1512static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
3019eac3
DE
1514 unsigned int *);
1515
d521ce57 1516static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1517 ULONGEST str_index);
3019eac3 1518
e142c38c 1519static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1520
e142c38c
DJ
1521static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
c906108c 1523
348e048f 1524static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1525 unsigned int);
348e048f 1526
05cf31d1
JB
1527static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1528 struct dwarf2_cu *cu);
1529
e142c38c 1530static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1531
e142c38c 1532static struct die_info *die_specification (struct die_info *die,
f2f0e013 1533 struct dwarf2_cu **);
63d06c5c 1534
debd256d
JB
1535static void free_line_header (struct line_header *lh);
1536
3019eac3
DE
1537static struct line_header *dwarf_decode_line_header (unsigned int offset,
1538 struct dwarf2_cu *cu);
debd256d 1539
f3f5162e 1540static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1541 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1542 CORE_ADDR, int decode_mapping);
c906108c 1543
4d663531 1544static void dwarf2_start_subfile (const char *, const char *);
c906108c 1545
43f3e411
DE
1546static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1547 const char *, const char *,
1548 CORE_ADDR);
f4dc4d17 1549
a14ed312 1550static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1551 struct dwarf2_cu *);
c906108c 1552
34eaf542
TT
1553static struct symbol *new_symbol_full (struct die_info *, struct type *,
1554 struct dwarf2_cu *, struct symbol *);
1555
ff39bb5e 1556static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1557 struct dwarf2_cu *);
c906108c 1558
ff39bb5e 1559static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1560 struct type *type,
1561 const char *name,
1562 struct obstack *obstack,
12df843f 1563 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1564 const gdb_byte **bytes,
98bfdba5 1565 struct dwarf2_locexpr_baton **baton);
2df3850c 1566
e7c27a73 1567static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1568
b4ba55a1
JB
1569static int need_gnat_info (struct dwarf2_cu *);
1570
3e43a32a
MS
1571static struct type *die_descriptive_type (struct die_info *,
1572 struct dwarf2_cu *);
b4ba55a1
JB
1573
1574static void set_descriptive_type (struct type *, struct die_info *,
1575 struct dwarf2_cu *);
1576
e7c27a73
DJ
1577static struct type *die_containing_type (struct die_info *,
1578 struct dwarf2_cu *);
c906108c 1579
ff39bb5e 1580static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1581 struct dwarf2_cu *);
c906108c 1582
f792889a 1583static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1584
673bfd45
DE
1585static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1586
0d5cff50 1587static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1588
6e70227d 1589static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1590 const char *suffix, int physname,
1591 struct dwarf2_cu *cu);
63d06c5c 1592
e7c27a73 1593static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1594
348e048f
DE
1595static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1596
e7c27a73 1597static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1598
e7c27a73 1599static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1600
96408a79
SA
1601static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1602
ff013f42
JK
1603static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1604 struct dwarf2_cu *, struct partial_symtab *);
1605
a14ed312 1606static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1607 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1608 struct partial_symtab *);
c906108c 1609
fae299cd
DC
1610static void get_scope_pc_bounds (struct die_info *,
1611 CORE_ADDR *, CORE_ADDR *,
1612 struct dwarf2_cu *);
1613
801e3a5b
JB
1614static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1615 CORE_ADDR, struct dwarf2_cu *);
1616
a14ed312 1617static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1618 struct dwarf2_cu *);
c906108c 1619
a14ed312 1620static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1621 struct type *, struct dwarf2_cu *);
c906108c 1622
a14ed312 1623static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1624 struct die_info *, struct type *,
e7c27a73 1625 struct dwarf2_cu *);
c906108c 1626
a14ed312 1627static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1628 struct type *,
1629 struct dwarf2_cu *);
c906108c 1630
134d01f1 1631static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1632
e7c27a73 1633static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1634
e7c27a73 1635static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1636
5d7cb8df
JK
1637static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1638
22cee43f
PMR
1639static struct using_direct **using_directives (enum language);
1640
27aa8d6a
SW
1641static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1642
74921315
KS
1643static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1644
f55ee35c
JK
1645static struct type *read_module_type (struct die_info *die,
1646 struct dwarf2_cu *cu);
1647
38d518c9 1648static const char *namespace_name (struct die_info *die,
e142c38c 1649 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1650
134d01f1 1651static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1652
e7c27a73 1653static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1654
6e70227d 1655static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1656 struct dwarf2_cu *);
1657
bf6af496 1658static struct die_info *read_die_and_siblings_1
d521ce57 1659 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1660 struct die_info *);
639d11d3 1661
dee91e82 1662static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1663 const gdb_byte *info_ptr,
1664 const gdb_byte **new_info_ptr,
639d11d3
DC
1665 struct die_info *parent);
1666
d521ce57
TT
1667static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1668 struct die_info **, const gdb_byte *,
1669 int *, int);
3019eac3 1670
d521ce57
TT
1671static const gdb_byte *read_full_die (const struct die_reader_specs *,
1672 struct die_info **, const gdb_byte *,
1673 int *);
93311388 1674
e7c27a73 1675static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1676
15d034d0
TT
1677static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1678 struct obstack *);
71c25dea 1679
15d034d0 1680static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1681
15d034d0 1682static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1683 struct die_info *die,
1684 struct dwarf2_cu *cu);
1685
ca69b9e6
DE
1686static const char *dwarf2_physname (const char *name, struct die_info *die,
1687 struct dwarf2_cu *cu);
1688
e142c38c 1689static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1690 struct dwarf2_cu **);
9219021c 1691
f39c6ffd 1692static const char *dwarf_tag_name (unsigned int);
c906108c 1693
f39c6ffd 1694static const char *dwarf_attr_name (unsigned int);
c906108c 1695
f39c6ffd 1696static const char *dwarf_form_name (unsigned int);
c906108c 1697
a14ed312 1698static char *dwarf_bool_name (unsigned int);
c906108c 1699
f39c6ffd 1700static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1701
f9aca02d 1702static struct die_info *sibling_die (struct die_info *);
c906108c 1703
d97bc12b
DE
1704static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1705
1706static void dump_die_for_error (struct die_info *);
1707
1708static void dump_die_1 (struct ui_file *, int level, int max_level,
1709 struct die_info *);
c906108c 1710
d97bc12b 1711/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1712
51545339 1713static void store_in_ref_table (struct die_info *,
10b3939b 1714 struct dwarf2_cu *);
c906108c 1715
ff39bb5e 1716static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1717
ff39bb5e 1718static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1719
348e048f 1720static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1721 const struct attribute *,
348e048f
DE
1722 struct dwarf2_cu **);
1723
10b3939b 1724static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1725 const struct attribute *,
f2f0e013 1726 struct dwarf2_cu **);
c906108c 1727
348e048f 1728static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1729 const struct attribute *,
348e048f
DE
1730 struct dwarf2_cu **);
1731
ac9ec31b
DE
1732static struct type *get_signatured_type (struct die_info *, ULONGEST,
1733 struct dwarf2_cu *);
1734
1735static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1736 const struct attribute *,
ac9ec31b
DE
1737 struct dwarf2_cu *);
1738
e5fe5e75 1739static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1740
52dc124a 1741static void read_signatured_type (struct signatured_type *);
348e048f 1742
c906108c
SS
1743/* memory allocation interface */
1744
7b5a2f43 1745static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1746
b60c80d6 1747static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1748
43f3e411 1749static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1750
6e5a29e1 1751static int attr_form_is_block (const struct attribute *);
8e19ed76 1752
6e5a29e1 1753static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1754
6e5a29e1 1755static int attr_form_is_constant (const struct attribute *);
3690dd37 1756
6e5a29e1 1757static int attr_form_is_ref (const struct attribute *);
7771576e 1758
8cf6f0b1
TT
1759static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1760 struct dwarf2_loclist_baton *baton,
ff39bb5e 1761 const struct attribute *attr);
8cf6f0b1 1762
ff39bb5e 1763static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1764 struct symbol *sym,
f1e6e072
TT
1765 struct dwarf2_cu *cu,
1766 int is_block);
4c2df51b 1767
d521ce57
TT
1768static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1769 const gdb_byte *info_ptr,
1770 struct abbrev_info *abbrev);
4bb7a0a7 1771
72bf9492
DJ
1772static void free_stack_comp_unit (void *);
1773
72bf9492
DJ
1774static hashval_t partial_die_hash (const void *item);
1775
1776static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1777
ae038cb0 1778static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1779 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1780
9816fde3 1781static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1782 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1783
1784static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1785 struct die_info *comp_unit_die,
1786 enum language pretend_language);
93311388 1787
68dc6402 1788static void free_heap_comp_unit (void *);
ae038cb0
DJ
1789
1790static void free_cached_comp_units (void *);
1791
1792static void age_cached_comp_units (void);
1793
dee91e82 1794static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1795
f792889a
DJ
1796static struct type *set_die_type (struct die_info *, struct type *,
1797 struct dwarf2_cu *);
1c379e20 1798
ae038cb0
DJ
1799static void create_all_comp_units (struct objfile *);
1800
0e50663e 1801static int create_all_type_units (struct objfile *);
1fd400ff 1802
95554aad
TT
1803static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1804 enum language);
10b3939b 1805
95554aad
TT
1806static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1807 enum language);
10b3939b 1808
f4dc4d17
DE
1809static void process_full_type_unit (struct dwarf2_per_cu_data *,
1810 enum language);
1811
10b3939b
DJ
1812static void dwarf2_add_dependence (struct dwarf2_cu *,
1813 struct dwarf2_per_cu_data *);
1814
ae038cb0
DJ
1815static void dwarf2_mark (struct dwarf2_cu *);
1816
1817static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1818
b64f50a1 1819static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1820 struct dwarf2_per_cu_data *);
673bfd45 1821
f792889a 1822static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1823
9291a0cd
TT
1824static void dwarf2_release_queue (void *dummy);
1825
95554aad
TT
1826static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1827 enum language pretend_language);
1828
a0f42c21 1829static void process_queue (void);
9291a0cd
TT
1830
1831static void find_file_and_directory (struct die_info *die,
1832 struct dwarf2_cu *cu,
15d034d0 1833 const char **name, const char **comp_dir);
9291a0cd
TT
1834
1835static char *file_full_name (int file, struct line_header *lh,
1836 const char *comp_dir);
1837
d521ce57 1838static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1839 (struct comp_unit_head *header,
1840 struct dwarf2_section_info *section,
d521ce57 1841 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1842 int is_debug_types_section);
1843
fd820528 1844static void init_cutu_and_read_dies
f4dc4d17
DE
1845 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1846 int use_existing_cu, int keep,
3019eac3
DE
1847 die_reader_func_ftype *die_reader_func, void *data);
1848
dee91e82
DE
1849static void init_cutu_and_read_dies_simple
1850 (struct dwarf2_per_cu_data *this_cu,
1851 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1852
673bfd45 1853static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1854
3019eac3
DE
1855static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1856
57d63ce2
DE
1857static struct dwo_unit *lookup_dwo_unit_in_dwp
1858 (struct dwp_file *dwp_file, const char *comp_dir,
1859 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1860
1861static struct dwp_file *get_dwp_file (void);
1862
3019eac3 1863static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1864 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1865
1866static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1867 (struct signatured_type *, const char *, const char *);
3019eac3 1868
89e63ee4
DE
1869static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1870
3019eac3
DE
1871static void free_dwo_file_cleanup (void *);
1872
95554aad
TT
1873static void process_cu_includes (void);
1874
1b80a9fa 1875static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
1876
1877static void free_line_header_voidp (void *arg);
4390d890
DE
1878\f
1879/* Various complaints about symbol reading that don't abort the process. */
1880
1881static void
1882dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1883{
1884 complaint (&symfile_complaints,
1885 _("statement list doesn't fit in .debug_line section"));
1886}
1887
1888static void
1889dwarf2_debug_line_missing_file_complaint (void)
1890{
1891 complaint (&symfile_complaints,
1892 _(".debug_line section has line data without a file"));
1893}
1894
1895static void
1896dwarf2_debug_line_missing_end_sequence_complaint (void)
1897{
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line "
1900 "program sequence without an end"));
1901}
1902
1903static void
1904dwarf2_complex_location_expr_complaint (void)
1905{
1906 complaint (&symfile_complaints, _("location expression too complex"));
1907}
1908
1909static void
1910dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1911 int arg3)
1912{
1913 complaint (&symfile_complaints,
1914 _("const value length mismatch for '%s', got %d, expected %d"),
1915 arg1, arg2, arg3);
1916}
1917
1918static void
1919dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1920{
1921 complaint (&symfile_complaints,
1922 _("debug info runs off end of %s section"
1923 " [in module %s]"),
a32a8923
DE
1924 get_section_name (section),
1925 get_section_file_name (section));
4390d890 1926}
1b80a9fa 1927
4390d890
DE
1928static void
1929dwarf2_macro_malformed_definition_complaint (const char *arg1)
1930{
1931 complaint (&symfile_complaints,
1932 _("macro debug info contains a "
1933 "malformed macro definition:\n`%s'"),
1934 arg1);
1935}
1936
1937static void
1938dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1939{
1940 complaint (&symfile_complaints,
1941 _("invalid attribute class or form for '%s' in '%s'"),
1942 arg1, arg2);
1943}
527f3840
JK
1944
1945/* Hash function for line_header_hash. */
1946
1947static hashval_t
1948line_header_hash (const struct line_header *ofs)
1949{
1950 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1951}
1952
1953/* Hash function for htab_create_alloc_ex for line_header_hash. */
1954
1955static hashval_t
1956line_header_hash_voidp (const void *item)
1957{
1958 const struct line_header *ofs = item;
1959
1960 return line_header_hash (ofs);
1961}
1962
1963/* Equality function for line_header_hash. */
1964
1965static int
1966line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1967{
1968 const struct line_header *ofs_lhs = item_lhs;
1969 const struct line_header *ofs_rhs = item_rhs;
1970
1971 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1972 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1973}
1974
4390d890 1975\f
9291a0cd
TT
1976#if WORDS_BIGENDIAN
1977
1978/* Convert VALUE between big- and little-endian. */
1979static offset_type
1980byte_swap (offset_type value)
1981{
1982 offset_type result;
1983
1984 result = (value & 0xff) << 24;
1985 result |= (value & 0xff00) << 8;
1986 result |= (value & 0xff0000) >> 8;
1987 result |= (value & 0xff000000) >> 24;
1988 return result;
1989}
1990
1991#define MAYBE_SWAP(V) byte_swap (V)
1992
1993#else
1994#define MAYBE_SWAP(V) (V)
1995#endif /* WORDS_BIGENDIAN */
1996
31aa7e4e
JB
1997/* Read the given attribute value as an address, taking the attribute's
1998 form into account. */
1999
2000static CORE_ADDR
2001attr_value_as_address (struct attribute *attr)
2002{
2003 CORE_ADDR addr;
2004
2005 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2006 {
2007 /* Aside from a few clearly defined exceptions, attributes that
2008 contain an address must always be in DW_FORM_addr form.
2009 Unfortunately, some compilers happen to be violating this
2010 requirement by encoding addresses using other forms, such
2011 as DW_FORM_data4 for example. For those broken compilers,
2012 we try to do our best, without any guarantee of success,
2013 to interpret the address correctly. It would also be nice
2014 to generate a complaint, but that would require us to maintain
2015 a list of legitimate cases where a non-address form is allowed,
2016 as well as update callers to pass in at least the CU's DWARF
2017 version. This is more overhead than what we're willing to
2018 expand for a pretty rare case. */
2019 addr = DW_UNSND (attr);
2020 }
2021 else
2022 addr = DW_ADDR (attr);
2023
2024 return addr;
2025}
2026
9291a0cd
TT
2027/* The suffix for an index file. */
2028#define INDEX_SUFFIX ".gdb-index"
2029
c906108c 2030/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2031 information and return true if we have enough to do something.
2032 NAMES points to the dwarf2 section names, or is NULL if the standard
2033 ELF names are used. */
c906108c
SS
2034
2035int
251d32d9
TG
2036dwarf2_has_info (struct objfile *objfile,
2037 const struct dwarf2_debug_sections *names)
c906108c 2038{
be391dca
TT
2039 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2040 if (!dwarf2_per_objfile)
2041 {
2042 /* Initialize per-objfile state. */
2043 struct dwarf2_per_objfile *data
2044 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 2045
be391dca
TT
2046 memset (data, 0, sizeof (*data));
2047 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2048 dwarf2_per_objfile = data;
6502dd73 2049
251d32d9
TG
2050 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2051 (void *) names);
be391dca
TT
2052 dwarf2_per_objfile->objfile = objfile;
2053 }
73869dc2
DE
2054 return (!dwarf2_per_objfile->info.is_virtual
2055 && dwarf2_per_objfile->info.s.asection != NULL
2056 && !dwarf2_per_objfile->abbrev.is_virtual
2057 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2058}
2059
2060/* Return the containing section of virtual section SECTION. */
2061
2062static struct dwarf2_section_info *
2063get_containing_section (const struct dwarf2_section_info *section)
2064{
2065 gdb_assert (section->is_virtual);
2066 return section->s.containing_section;
c906108c
SS
2067}
2068
a32a8923
DE
2069/* Return the bfd owner of SECTION. */
2070
2071static struct bfd *
2072get_section_bfd_owner (const struct dwarf2_section_info *section)
2073{
73869dc2
DE
2074 if (section->is_virtual)
2075 {
2076 section = get_containing_section (section);
2077 gdb_assert (!section->is_virtual);
2078 }
2079 return section->s.asection->owner;
a32a8923
DE
2080}
2081
2082/* Return the bfd section of SECTION.
2083 Returns NULL if the section is not present. */
2084
2085static asection *
2086get_section_bfd_section (const struct dwarf2_section_info *section)
2087{
73869dc2
DE
2088 if (section->is_virtual)
2089 {
2090 section = get_containing_section (section);
2091 gdb_assert (!section->is_virtual);
2092 }
2093 return section->s.asection;
a32a8923
DE
2094}
2095
2096/* Return the name of SECTION. */
2097
2098static const char *
2099get_section_name (const struct dwarf2_section_info *section)
2100{
2101 asection *sectp = get_section_bfd_section (section);
2102
2103 gdb_assert (sectp != NULL);
2104 return bfd_section_name (get_section_bfd_owner (section), sectp);
2105}
2106
2107/* Return the name of the file SECTION is in. */
2108
2109static const char *
2110get_section_file_name (const struct dwarf2_section_info *section)
2111{
2112 bfd *abfd = get_section_bfd_owner (section);
2113
2114 return bfd_get_filename (abfd);
2115}
2116
2117/* Return the id of SECTION.
2118 Returns 0 if SECTION doesn't exist. */
2119
2120static int
2121get_section_id (const struct dwarf2_section_info *section)
2122{
2123 asection *sectp = get_section_bfd_section (section);
2124
2125 if (sectp == NULL)
2126 return 0;
2127 return sectp->id;
2128}
2129
2130/* Return the flags of SECTION.
73869dc2 2131 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2132
2133static int
2134get_section_flags (const struct dwarf2_section_info *section)
2135{
2136 asection *sectp = get_section_bfd_section (section);
2137
2138 gdb_assert (sectp != NULL);
2139 return bfd_get_section_flags (sectp->owner, sectp);
2140}
2141
251d32d9
TG
2142/* When loading sections, we look either for uncompressed section or for
2143 compressed section names. */
233a11ab
CS
2144
2145static int
251d32d9
TG
2146section_is_p (const char *section_name,
2147 const struct dwarf2_section_names *names)
233a11ab 2148{
251d32d9
TG
2149 if (names->normal != NULL
2150 && strcmp (section_name, names->normal) == 0)
2151 return 1;
2152 if (names->compressed != NULL
2153 && strcmp (section_name, names->compressed) == 0)
2154 return 1;
2155 return 0;
233a11ab
CS
2156}
2157
c906108c
SS
2158/* This function is mapped across the sections and remembers the
2159 offset and size of each of the debugging sections we are interested
2160 in. */
2161
2162static void
251d32d9 2163dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2164{
251d32d9 2165 const struct dwarf2_debug_sections *names;
dc7650b8 2166 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2167
2168 if (vnames == NULL)
2169 names = &dwarf2_elf_names;
2170 else
2171 names = (const struct dwarf2_debug_sections *) vnames;
2172
dc7650b8
JK
2173 if ((aflag & SEC_HAS_CONTENTS) == 0)
2174 {
2175 }
2176 else if (section_is_p (sectp->name, &names->info))
c906108c 2177 {
73869dc2 2178 dwarf2_per_objfile->info.s.asection = sectp;
dce234bc 2179 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2180 }
251d32d9 2181 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2182 {
73869dc2 2183 dwarf2_per_objfile->abbrev.s.asection = sectp;
dce234bc 2184 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2185 }
251d32d9 2186 else if (section_is_p (sectp->name, &names->line))
c906108c 2187 {
73869dc2 2188 dwarf2_per_objfile->line.s.asection = sectp;
dce234bc 2189 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2190 }
251d32d9 2191 else if (section_is_p (sectp->name, &names->loc))
c906108c 2192 {
73869dc2 2193 dwarf2_per_objfile->loc.s.asection = sectp;
dce234bc 2194 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2195 }
251d32d9 2196 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2197 {
73869dc2 2198 dwarf2_per_objfile->macinfo.s.asection = sectp;
dce234bc 2199 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2200 }
cf2c3c16
TT
2201 else if (section_is_p (sectp->name, &names->macro))
2202 {
73869dc2 2203 dwarf2_per_objfile->macro.s.asection = sectp;
cf2c3c16
TT
2204 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2205 }
251d32d9 2206 else if (section_is_p (sectp->name, &names->str))
c906108c 2207 {
73869dc2 2208 dwarf2_per_objfile->str.s.asection = sectp;
dce234bc 2209 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2210 }
3019eac3
DE
2211 else if (section_is_p (sectp->name, &names->addr))
2212 {
73869dc2 2213 dwarf2_per_objfile->addr.s.asection = sectp;
3019eac3
DE
2214 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2215 }
251d32d9 2216 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2217 {
73869dc2 2218 dwarf2_per_objfile->frame.s.asection = sectp;
dce234bc 2219 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2220 }
251d32d9 2221 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2222 {
73869dc2 2223 dwarf2_per_objfile->eh_frame.s.asection = sectp;
dc7650b8 2224 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2225 }
251d32d9 2226 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2227 {
73869dc2 2228 dwarf2_per_objfile->ranges.s.asection = sectp;
dce234bc 2229 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2230 }
251d32d9 2231 else if (section_is_p (sectp->name, &names->types))
348e048f 2232 {
8b70b953
TT
2233 struct dwarf2_section_info type_section;
2234
2235 memset (&type_section, 0, sizeof (type_section));
73869dc2 2236 type_section.s.asection = sectp;
8b70b953
TT
2237 type_section.size = bfd_get_section_size (sectp);
2238
2239 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2240 &type_section);
348e048f 2241 }
251d32d9 2242 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2243 {
73869dc2 2244 dwarf2_per_objfile->gdb_index.s.asection = sectp;
9291a0cd
TT
2245 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2246 }
dce234bc 2247
b4e1fd61 2248 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5
FR
2249 && bfd_section_vma (abfd, sectp) == 0)
2250 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2251}
2252
fceca515
DE
2253/* A helper function that decides whether a section is empty,
2254 or not present. */
9e0ac564
TT
2255
2256static int
19ac8c2e 2257dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2258{
73869dc2
DE
2259 if (section->is_virtual)
2260 return section->size == 0;
2261 return section->s.asection == NULL || section->size == 0;
9e0ac564
TT
2262}
2263
3019eac3
DE
2264/* Read the contents of the section INFO.
2265 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2266 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2267 of the DWO file.
dce234bc 2268 If the section is compressed, uncompress it before returning. */
c906108c 2269
dce234bc
PP
2270static void
2271dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2272{
a32a8923 2273 asection *sectp;
3019eac3 2274 bfd *abfd;
dce234bc 2275 gdb_byte *buf, *retbuf;
c906108c 2276
be391dca
TT
2277 if (info->readin)
2278 return;
dce234bc 2279 info->buffer = NULL;
be391dca 2280 info->readin = 1;
188dd5d6 2281
9e0ac564 2282 if (dwarf2_section_empty_p (info))
dce234bc 2283 return;
c906108c 2284
a32a8923 2285 sectp = get_section_bfd_section (info);
3019eac3 2286
73869dc2
DE
2287 /* If this is a virtual section we need to read in the real one first. */
2288 if (info->is_virtual)
2289 {
2290 struct dwarf2_section_info *containing_section =
2291 get_containing_section (info);
2292
2293 gdb_assert (sectp != NULL);
2294 if ((sectp->flags & SEC_RELOC) != 0)
2295 {
2296 error (_("Dwarf Error: DWP format V2 with relocations is not"
2297 " supported in section %s [in module %s]"),
2298 get_section_name (info), get_section_file_name (info));
2299 }
2300 dwarf2_read_section (objfile, containing_section);
2301 /* Other code should have already caught virtual sections that don't
2302 fit. */
2303 gdb_assert (info->virtual_offset + info->size
2304 <= containing_section->size);
2305 /* If the real section is empty or there was a problem reading the
2306 section we shouldn't get here. */
2307 gdb_assert (containing_section->buffer != NULL);
2308 info->buffer = containing_section->buffer + info->virtual_offset;
2309 return;
2310 }
2311
4bf44c1c
TT
2312 /* If the section has relocations, we must read it ourselves.
2313 Otherwise we attach it to the BFD. */
2314 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2315 {
d521ce57 2316 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2317 return;
dce234bc 2318 }
dce234bc 2319
4bf44c1c
TT
2320 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2321 info->buffer = buf;
dce234bc
PP
2322
2323 /* When debugging .o files, we may need to apply relocations; see
2324 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2325 We never compress sections in .o files, so we only need to
2326 try this when the section is not compressed. */
ac8035ab 2327 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2328 if (retbuf != NULL)
2329 {
2330 info->buffer = retbuf;
2331 return;
2332 }
2333
a32a8923
DE
2334 abfd = get_section_bfd_owner (info);
2335 gdb_assert (abfd != NULL);
2336
dce234bc
PP
2337 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2338 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2339 {
2340 error (_("Dwarf Error: Can't read DWARF data"
2341 " in section %s [in module %s]"),
2342 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2343 }
dce234bc
PP
2344}
2345
9e0ac564
TT
2346/* A helper function that returns the size of a section in a safe way.
2347 If you are positive that the section has been read before using the
2348 size, then it is safe to refer to the dwarf2_section_info object's
2349 "size" field directly. In other cases, you must call this
2350 function, because for compressed sections the size field is not set
2351 correctly until the section has been read. */
2352
2353static bfd_size_type
2354dwarf2_section_size (struct objfile *objfile,
2355 struct dwarf2_section_info *info)
2356{
2357 if (!info->readin)
2358 dwarf2_read_section (objfile, info);
2359 return info->size;
2360}
2361
dce234bc 2362/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2363 SECTION_NAME. */
af34e669 2364
dce234bc 2365void
3017a003
TG
2366dwarf2_get_section_info (struct objfile *objfile,
2367 enum dwarf2_section_enum sect,
d521ce57 2368 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2369 bfd_size_type *sizep)
2370{
2371 struct dwarf2_per_objfile *data
2372 = objfile_data (objfile, dwarf2_objfile_data_key);
2373 struct dwarf2_section_info *info;
a3b2a86b
TT
2374
2375 /* We may see an objfile without any DWARF, in which case we just
2376 return nothing. */
2377 if (data == NULL)
2378 {
2379 *sectp = NULL;
2380 *bufp = NULL;
2381 *sizep = 0;
2382 return;
2383 }
3017a003
TG
2384 switch (sect)
2385 {
2386 case DWARF2_DEBUG_FRAME:
2387 info = &data->frame;
2388 break;
2389 case DWARF2_EH_FRAME:
2390 info = &data->eh_frame;
2391 break;
2392 default:
2393 gdb_assert_not_reached ("unexpected section");
2394 }
dce234bc 2395
9e0ac564 2396 dwarf2_read_section (objfile, info);
dce234bc 2397
a32a8923 2398 *sectp = get_section_bfd_section (info);
dce234bc
PP
2399 *bufp = info->buffer;
2400 *sizep = info->size;
2401}
2402
36586728
TT
2403/* A helper function to find the sections for a .dwz file. */
2404
2405static void
2406locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2407{
2408 struct dwz_file *dwz_file = arg;
2409
2410 /* Note that we only support the standard ELF names, because .dwz
2411 is ELF-only (at the time of writing). */
2412 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2413 {
73869dc2 2414 dwz_file->abbrev.s.asection = sectp;
36586728
TT
2415 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2416 }
2417 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2418 {
73869dc2 2419 dwz_file->info.s.asection = sectp;
36586728
TT
2420 dwz_file->info.size = bfd_get_section_size (sectp);
2421 }
2422 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2423 {
73869dc2 2424 dwz_file->str.s.asection = sectp;
36586728
TT
2425 dwz_file->str.size = bfd_get_section_size (sectp);
2426 }
2427 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2428 {
73869dc2 2429 dwz_file->line.s.asection = sectp;
36586728
TT
2430 dwz_file->line.size = bfd_get_section_size (sectp);
2431 }
2432 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2433 {
73869dc2 2434 dwz_file->macro.s.asection = sectp;
36586728
TT
2435 dwz_file->macro.size = bfd_get_section_size (sectp);
2436 }
2ec9a5e0
TT
2437 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2438 {
73869dc2 2439 dwz_file->gdb_index.s.asection = sectp;
2ec9a5e0
TT
2440 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2441 }
36586728
TT
2442}
2443
4db1a1dc
TT
2444/* Open the separate '.dwz' debug file, if needed. Return NULL if
2445 there is no .gnu_debugaltlink section in the file. Error if there
2446 is such a section but the file cannot be found. */
36586728
TT
2447
2448static struct dwz_file *
2449dwarf2_get_dwz_file (void)
2450{
4db1a1dc
TT
2451 bfd *dwz_bfd;
2452 char *data;
36586728
TT
2453 struct cleanup *cleanup;
2454 const char *filename;
2455 struct dwz_file *result;
acd13123 2456 bfd_size_type buildid_len_arg;
dc294be5
TT
2457 size_t buildid_len;
2458 bfd_byte *buildid;
36586728
TT
2459
2460 if (dwarf2_per_objfile->dwz_file != NULL)
2461 return dwarf2_per_objfile->dwz_file;
2462
4db1a1dc
TT
2463 bfd_set_error (bfd_error_no_error);
2464 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2465 &buildid_len_arg, &buildid);
4db1a1dc
TT
2466 if (data == NULL)
2467 {
2468 if (bfd_get_error () == bfd_error_no_error)
2469 return NULL;
2470 error (_("could not read '.gnu_debugaltlink' section: %s"),
2471 bfd_errmsg (bfd_get_error ()));
2472 }
36586728 2473 cleanup = make_cleanup (xfree, data);
dc294be5 2474 make_cleanup (xfree, buildid);
36586728 2475
acd13123
TT
2476 buildid_len = (size_t) buildid_len_arg;
2477
f9d83a0b 2478 filename = (const char *) data;
36586728
TT
2479 if (!IS_ABSOLUTE_PATH (filename))
2480 {
4262abfb 2481 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2482 char *rel;
2483
2484 make_cleanup (xfree, abs);
2485 abs = ldirname (abs);
2486 make_cleanup (xfree, abs);
2487
2488 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2489 make_cleanup (xfree, rel);
2490 filename = rel;
2491 }
2492
dc294be5
TT
2493 /* First try the file name given in the section. If that doesn't
2494 work, try to use the build-id instead. */
36586728 2495 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2496 if (dwz_bfd != NULL)
36586728 2497 {
dc294be5
TT
2498 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2499 {
2500 gdb_bfd_unref (dwz_bfd);
2501 dwz_bfd = NULL;
2502 }
36586728
TT
2503 }
2504
dc294be5
TT
2505 if (dwz_bfd == NULL)
2506 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2507
2508 if (dwz_bfd == NULL)
2509 error (_("could not find '.gnu_debugaltlink' file for %s"),
2510 objfile_name (dwarf2_per_objfile->objfile));
2511
36586728
TT
2512 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2513 struct dwz_file);
2514 result->dwz_bfd = dwz_bfd;
2515
2516 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2517
2518 do_cleanups (cleanup);
2519
13aaf454 2520 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2521 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2522 return result;
2523}
9291a0cd 2524\f
7b9f3c50
DE
2525/* DWARF quick_symbols_functions support. */
2526
2527/* TUs can share .debug_line entries, and there can be a lot more TUs than
2528 unique line tables, so we maintain a separate table of all .debug_line
2529 derived entries to support the sharing.
2530 All the quick functions need is the list of file names. We discard the
2531 line_header when we're done and don't need to record it here. */
2532struct quick_file_names
2533{
094b34ac
DE
2534 /* The data used to construct the hash key. */
2535 struct stmt_list_hash hash;
7b9f3c50
DE
2536
2537 /* The number of entries in file_names, real_names. */
2538 unsigned int num_file_names;
2539
2540 /* The file names from the line table, after being run through
2541 file_full_name. */
2542 const char **file_names;
2543
2544 /* The file names from the line table after being run through
2545 gdb_realpath. These are computed lazily. */
2546 const char **real_names;
2547};
2548
2549/* When using the index (and thus not using psymtabs), each CU has an
2550 object of this type. This is used to hold information needed by
2551 the various "quick" methods. */
2552struct dwarf2_per_cu_quick_data
2553{
2554 /* The file table. This can be NULL if there was no file table
2555 or it's currently not read in.
2556 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2557 struct quick_file_names *file_names;
2558
2559 /* The corresponding symbol table. This is NULL if symbols for this
2560 CU have not yet been read. */
43f3e411 2561 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2562
2563 /* A temporary mark bit used when iterating over all CUs in
2564 expand_symtabs_matching. */
2565 unsigned int mark : 1;
2566
2567 /* True if we've tried to read the file table and found there isn't one.
2568 There will be no point in trying to read it again next time. */
2569 unsigned int no_file_data : 1;
2570};
2571
094b34ac
DE
2572/* Utility hash function for a stmt_list_hash. */
2573
2574static hashval_t
2575hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2576{
2577 hashval_t v = 0;
2578
2579 if (stmt_list_hash->dwo_unit != NULL)
2580 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2581 v += stmt_list_hash->line_offset.sect_off;
2582 return v;
2583}
2584
2585/* Utility equality function for a stmt_list_hash. */
2586
2587static int
2588eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2589 const struct stmt_list_hash *rhs)
2590{
2591 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2592 return 0;
2593 if (lhs->dwo_unit != NULL
2594 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2595 return 0;
2596
2597 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2598}
2599
7b9f3c50
DE
2600/* Hash function for a quick_file_names. */
2601
2602static hashval_t
2603hash_file_name_entry (const void *e)
2604{
2605 const struct quick_file_names *file_data = e;
2606
094b34ac 2607 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2608}
2609
2610/* Equality function for a quick_file_names. */
2611
2612static int
2613eq_file_name_entry (const void *a, const void *b)
2614{
2615 const struct quick_file_names *ea = a;
2616 const struct quick_file_names *eb = b;
2617
094b34ac 2618 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2619}
2620
2621/* Delete function for a quick_file_names. */
2622
2623static void
2624delete_file_name_entry (void *e)
2625{
2626 struct quick_file_names *file_data = e;
2627 int i;
2628
2629 for (i = 0; i < file_data->num_file_names; ++i)
2630 {
2631 xfree ((void*) file_data->file_names[i]);
2632 if (file_data->real_names)
2633 xfree ((void*) file_data->real_names[i]);
2634 }
2635
2636 /* The space for the struct itself lives on objfile_obstack,
2637 so we don't free it here. */
2638}
2639
2640/* Create a quick_file_names hash table. */
2641
2642static htab_t
2643create_quick_file_names_table (unsigned int nr_initial_entries)
2644{
2645 return htab_create_alloc (nr_initial_entries,
2646 hash_file_name_entry, eq_file_name_entry,
2647 delete_file_name_entry, xcalloc, xfree);
2648}
9291a0cd 2649
918dd910
JK
2650/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2651 have to be created afterwards. You should call age_cached_comp_units after
2652 processing PER_CU->CU. dw2_setup must have been already called. */
2653
2654static void
2655load_cu (struct dwarf2_per_cu_data *per_cu)
2656{
3019eac3 2657 if (per_cu->is_debug_types)
e5fe5e75 2658 load_full_type_unit (per_cu);
918dd910 2659 else
95554aad 2660 load_full_comp_unit (per_cu, language_minimal);
918dd910 2661
cc12ce38
DE
2662 if (per_cu->cu == NULL)
2663 return; /* Dummy CU. */
2dc860c0
DE
2664
2665 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2666}
2667
a0f42c21 2668/* Read in the symbols for PER_CU. */
2fdf6df6 2669
9291a0cd 2670static void
a0f42c21 2671dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2672{
2673 struct cleanup *back_to;
2674
f4dc4d17
DE
2675 /* Skip type_unit_groups, reading the type units they contain
2676 is handled elsewhere. */
2677 if (IS_TYPE_UNIT_GROUP (per_cu))
2678 return;
2679
9291a0cd
TT
2680 back_to = make_cleanup (dwarf2_release_queue, NULL);
2681
95554aad 2682 if (dwarf2_per_objfile->using_index
43f3e411 2683 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2684 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2685 {
2686 queue_comp_unit (per_cu, language_minimal);
2687 load_cu (per_cu);
89e63ee4
DE
2688
2689 /* If we just loaded a CU from a DWO, and we're working with an index
2690 that may badly handle TUs, load all the TUs in that DWO as well.
2691 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2692 if (!per_cu->is_debug_types
cc12ce38 2693 && per_cu->cu != NULL
89e63ee4
DE
2694 && per_cu->cu->dwo_unit != NULL
2695 && dwarf2_per_objfile->index_table != NULL
2696 && dwarf2_per_objfile->index_table->version <= 7
2697 /* DWP files aren't supported yet. */
2698 && get_dwp_file () == NULL)
2699 queue_and_load_all_dwo_tus (per_cu);
95554aad 2700 }
9291a0cd 2701
a0f42c21 2702 process_queue ();
9291a0cd
TT
2703
2704 /* Age the cache, releasing compilation units that have not
2705 been used recently. */
2706 age_cached_comp_units ();
2707
2708 do_cleanups (back_to);
2709}
2710
2711/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2712 the objfile from which this CU came. Returns the resulting symbol
2713 table. */
2fdf6df6 2714
43f3e411 2715static struct compunit_symtab *
a0f42c21 2716dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2717{
95554aad 2718 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2719 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2720 {
2721 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2722 increment_reading_symtab ();
a0f42c21 2723 dw2_do_instantiate_symtab (per_cu);
95554aad 2724 process_cu_includes ();
9291a0cd
TT
2725 do_cleanups (back_to);
2726 }
f194fefb 2727
43f3e411 2728 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2729}
2730
8832e7e3 2731/* Return the CU/TU given its index.
f4dc4d17
DE
2732
2733 This is intended for loops like:
2734
2735 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2736 + dwarf2_per_objfile->n_type_units); ++i)
2737 {
8832e7e3 2738 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2739
2740 ...;
2741 }
2742*/
2fdf6df6 2743
1fd400ff 2744static struct dwarf2_per_cu_data *
8832e7e3 2745dw2_get_cutu (int index)
1fd400ff
TT
2746{
2747 if (index >= dwarf2_per_objfile->n_comp_units)
2748 {
f4dc4d17 2749 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2750 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2751 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2752 }
2753
2754 return dwarf2_per_objfile->all_comp_units[index];
2755}
2756
8832e7e3
DE
2757/* Return the CU given its index.
2758 This differs from dw2_get_cutu in that it's for when you know INDEX
2759 refers to a CU. */
f4dc4d17
DE
2760
2761static struct dwarf2_per_cu_data *
8832e7e3 2762dw2_get_cu (int index)
f4dc4d17 2763{
8832e7e3 2764 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2765
1fd400ff
TT
2766 return dwarf2_per_objfile->all_comp_units[index];
2767}
2768
2ec9a5e0
TT
2769/* A helper for create_cus_from_index that handles a given list of
2770 CUs. */
2fdf6df6 2771
74a0d9f6 2772static void
2ec9a5e0
TT
2773create_cus_from_index_list (struct objfile *objfile,
2774 const gdb_byte *cu_list, offset_type n_elements,
2775 struct dwarf2_section_info *section,
2776 int is_dwz,
2777 int base_offset)
9291a0cd
TT
2778{
2779 offset_type i;
9291a0cd 2780
2ec9a5e0 2781 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2782 {
2783 struct dwarf2_per_cu_data *the_cu;
2784 ULONGEST offset, length;
2785
74a0d9f6
JK
2786 gdb_static_assert (sizeof (ULONGEST) >= 8);
2787 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2788 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2789 cu_list += 2 * 8;
2790
2791 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2792 struct dwarf2_per_cu_data);
b64f50a1 2793 the_cu->offset.sect_off = offset;
9291a0cd
TT
2794 the_cu->length = length;
2795 the_cu->objfile = objfile;
8a0459fd 2796 the_cu->section = section;
9291a0cd
TT
2797 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2798 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2799 the_cu->is_dwz = is_dwz;
2800 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2801 }
9291a0cd
TT
2802}
2803
2ec9a5e0 2804/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2805 the CU objects for this objfile. */
2ec9a5e0 2806
74a0d9f6 2807static void
2ec9a5e0
TT
2808create_cus_from_index (struct objfile *objfile,
2809 const gdb_byte *cu_list, offset_type cu_list_elements,
2810 const gdb_byte *dwz_list, offset_type dwz_elements)
2811{
2812 struct dwz_file *dwz;
2813
2814 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2815 dwarf2_per_objfile->all_comp_units
2816 = obstack_alloc (&objfile->objfile_obstack,
2817 dwarf2_per_objfile->n_comp_units
2818 * sizeof (struct dwarf2_per_cu_data *));
2819
74a0d9f6
JK
2820 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2821 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2822
2823 if (dwz_elements == 0)
74a0d9f6 2824 return;
2ec9a5e0
TT
2825
2826 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2827 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2828 cu_list_elements / 2);
2ec9a5e0
TT
2829}
2830
1fd400ff 2831/* Create the signatured type hash table from the index. */
673bfd45 2832
74a0d9f6 2833static void
673bfd45 2834create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2835 struct dwarf2_section_info *section,
673bfd45
DE
2836 const gdb_byte *bytes,
2837 offset_type elements)
1fd400ff
TT
2838{
2839 offset_type i;
673bfd45 2840 htab_t sig_types_hash;
1fd400ff 2841
6aa5f3a6
DE
2842 dwarf2_per_objfile->n_type_units
2843 = dwarf2_per_objfile->n_allocated_type_units
2844 = elements / 3;
d467dd73 2845 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
2846 = xmalloc (dwarf2_per_objfile->n_type_units
2847 * sizeof (struct signatured_type *));
1fd400ff 2848
673bfd45 2849 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2850
2851 for (i = 0; i < elements; i += 3)
2852 {
52dc124a
DE
2853 struct signatured_type *sig_type;
2854 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2855 void **slot;
2856
74a0d9f6
JK
2857 gdb_static_assert (sizeof (ULONGEST) >= 8);
2858 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2859 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2860 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2861 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2862 bytes += 3 * 8;
2863
52dc124a 2864 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2865 struct signatured_type);
52dc124a 2866 sig_type->signature = signature;
3019eac3
DE
2867 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2868 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2869 sig_type->per_cu.section = section;
52dc124a
DE
2870 sig_type->per_cu.offset.sect_off = offset;
2871 sig_type->per_cu.objfile = objfile;
2872 sig_type->per_cu.v.quick
1fd400ff
TT
2873 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2874 struct dwarf2_per_cu_quick_data);
2875
52dc124a
DE
2876 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2877 *slot = sig_type;
1fd400ff 2878
b4dd5633 2879 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2880 }
2881
673bfd45 2882 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2883}
2884
9291a0cd
TT
2885/* Read the address map data from the mapped index, and use it to
2886 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2887
9291a0cd
TT
2888static void
2889create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2890{
3e29f34a 2891 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd
TT
2892 const gdb_byte *iter, *end;
2893 struct obstack temp_obstack;
2894 struct addrmap *mutable_map;
2895 struct cleanup *cleanup;
2896 CORE_ADDR baseaddr;
2897
2898 obstack_init (&temp_obstack);
2899 cleanup = make_cleanup_obstack_free (&temp_obstack);
2900 mutable_map = addrmap_create_mutable (&temp_obstack);
2901
2902 iter = index->address_table;
2903 end = iter + index->address_table_size;
2904
2905 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2906
2907 while (iter < end)
2908 {
2909 ULONGEST hi, lo, cu_index;
2910 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2911 iter += 8;
2912 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2913 iter += 8;
2914 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2915 iter += 4;
f652bce2 2916
24a55014 2917 if (lo > hi)
f652bce2 2918 {
24a55014
DE
2919 complaint (&symfile_complaints,
2920 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2921 hex_string (lo), hex_string (hi));
24a55014 2922 continue;
f652bce2 2923 }
24a55014
DE
2924
2925 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2926 {
2927 complaint (&symfile_complaints,
2928 _(".gdb_index address table has invalid CU number %u"),
2929 (unsigned) cu_index);
24a55014 2930 continue;
f652bce2 2931 }
24a55014 2932
3e29f34a
MR
2933 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2934 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2935 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
2936 }
2937
2938 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2939 &objfile->objfile_obstack);
2940 do_cleanups (cleanup);
2941}
2942
59d7bcaf
JK
2943/* The hash function for strings in the mapped index. This is the same as
2944 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2945 implementation. This is necessary because the hash function is tied to the
2946 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2947 SYMBOL_HASH_NEXT.
2948
2949 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2950
9291a0cd 2951static hashval_t
559a7a62 2952mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2953{
2954 const unsigned char *str = (const unsigned char *) p;
2955 hashval_t r = 0;
2956 unsigned char c;
2957
2958 while ((c = *str++) != 0)
559a7a62
JK
2959 {
2960 if (index_version >= 5)
2961 c = tolower (c);
2962 r = r * 67 + c - 113;
2963 }
9291a0cd
TT
2964
2965 return r;
2966}
2967
2968/* Find a slot in the mapped index INDEX for the object named NAME.
2969 If NAME is found, set *VEC_OUT to point to the CU vector in the
2970 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2971
9291a0cd
TT
2972static int
2973find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2974 offset_type **vec_out)
2975{
0cf03b49
JK
2976 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2977 offset_type hash;
9291a0cd 2978 offset_type slot, step;
559a7a62 2979 int (*cmp) (const char *, const char *);
9291a0cd 2980
0cf03b49
JK
2981 if (current_language->la_language == language_cplus
2982 || current_language->la_language == language_java
45280282
IB
2983 || current_language->la_language == language_fortran
2984 || current_language->la_language == language_d)
0cf03b49
JK
2985 {
2986 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2987 not contain any. */
a8719064 2988
72998fb3 2989 if (strchr (name, '(') != NULL)
0cf03b49 2990 {
72998fb3 2991 char *without_params = cp_remove_params (name);
0cf03b49 2992
72998fb3
DE
2993 if (without_params != NULL)
2994 {
2995 make_cleanup (xfree, without_params);
2996 name = without_params;
2997 }
0cf03b49
JK
2998 }
2999 }
3000
559a7a62 3001 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3002 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3003 simulate our NAME being searched is also lowercased. */
3004 hash = mapped_index_string_hash ((index->version == 4
3005 && case_sensitivity == case_sensitive_off
3006 ? 5 : index->version),
3007 name);
3008
3876f04e
DE
3009 slot = hash & (index->symbol_table_slots - 1);
3010 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3011 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3012
3013 for (;;)
3014 {
3015 /* Convert a slot number to an offset into the table. */
3016 offset_type i = 2 * slot;
3017 const char *str;
3876f04e 3018 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3019 {
3020 do_cleanups (back_to);
3021 return 0;
3022 }
9291a0cd 3023
3876f04e 3024 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3025 if (!cmp (name, str))
9291a0cd
TT
3026 {
3027 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3028 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3029 do_cleanups (back_to);
9291a0cd
TT
3030 return 1;
3031 }
3032
3876f04e 3033 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3034 }
3035}
3036
2ec9a5e0
TT
3037/* A helper function that reads the .gdb_index from SECTION and fills
3038 in MAP. FILENAME is the name of the file containing the section;
3039 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3040 ok to use deprecated sections.
3041
3042 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3043 out parameters that are filled in with information about the CU and
3044 TU lists in the section.
3045
3046 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3047
9291a0cd 3048static int
2ec9a5e0
TT
3049read_index_from_section (struct objfile *objfile,
3050 const char *filename,
3051 int deprecated_ok,
3052 struct dwarf2_section_info *section,
3053 struct mapped_index *map,
3054 const gdb_byte **cu_list,
3055 offset_type *cu_list_elements,
3056 const gdb_byte **types_list,
3057 offset_type *types_list_elements)
9291a0cd 3058{
948f8e3d 3059 const gdb_byte *addr;
2ec9a5e0 3060 offset_type version;
b3b272e1 3061 offset_type *metadata;
1fd400ff 3062 int i;
9291a0cd 3063
2ec9a5e0 3064 if (dwarf2_section_empty_p (section))
9291a0cd 3065 return 0;
82430852
JK
3066
3067 /* Older elfutils strip versions could keep the section in the main
3068 executable while splitting it for the separate debug info file. */
a32a8923 3069 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3070 return 0;
3071
2ec9a5e0 3072 dwarf2_read_section (objfile, section);
9291a0cd 3073
2ec9a5e0 3074 addr = section->buffer;
9291a0cd 3075 /* Version check. */
1fd400ff 3076 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3077 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3078 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3079 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3080 indices. */
831adc1f 3081 if (version < 4)
481860b3
GB
3082 {
3083 static int warning_printed = 0;
3084 if (!warning_printed)
3085 {
3086 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3087 filename);
481860b3
GB
3088 warning_printed = 1;
3089 }
3090 return 0;
3091 }
3092 /* Index version 4 uses a different hash function than index version
3093 5 and later.
3094
3095 Versions earlier than 6 did not emit psymbols for inlined
3096 functions. Using these files will cause GDB not to be able to
3097 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3098 indices unless the user has done
3099 "set use-deprecated-index-sections on". */
2ec9a5e0 3100 if (version < 6 && !deprecated_ok)
481860b3
GB
3101 {
3102 static int warning_printed = 0;
3103 if (!warning_printed)
3104 {
e615022a
DE
3105 warning (_("\
3106Skipping deprecated .gdb_index section in %s.\n\
3107Do \"set use-deprecated-index-sections on\" before the file is read\n\
3108to use the section anyway."),
2ec9a5e0 3109 filename);
481860b3
GB
3110 warning_printed = 1;
3111 }
3112 return 0;
3113 }
796a7ff8 3114 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3115 of the TU (for symbols coming from TUs),
3116 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3117 Plus gold-generated indices can have duplicate entries for global symbols,
3118 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3119 These are just performance bugs, and we can't distinguish gdb-generated
3120 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3121
481860b3 3122 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3123 longer backward compatible. */
796a7ff8 3124 if (version > 8)
594e8718 3125 return 0;
9291a0cd 3126
559a7a62 3127 map->version = version;
2ec9a5e0 3128 map->total_size = section->size;
9291a0cd
TT
3129
3130 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3131
3132 i = 0;
2ec9a5e0
TT
3133 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3134 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3135 / 8);
1fd400ff
TT
3136 ++i;
3137
2ec9a5e0
TT
3138 *types_list = addr + MAYBE_SWAP (metadata[i]);
3139 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3140 - MAYBE_SWAP (metadata[i]))
3141 / 8);
987d643c 3142 ++i;
1fd400ff
TT
3143
3144 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3145 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3146 - MAYBE_SWAP (metadata[i]));
3147 ++i;
3148
3876f04e
DE
3149 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3150 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3151 - MAYBE_SWAP (metadata[i]))
3152 / (2 * sizeof (offset_type)));
1fd400ff 3153 ++i;
9291a0cd 3154
f9d83a0b 3155 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3156
2ec9a5e0
TT
3157 return 1;
3158}
3159
3160
3161/* Read the index file. If everything went ok, initialize the "quick"
3162 elements of all the CUs and return 1. Otherwise, return 0. */
3163
3164static int
3165dwarf2_read_index (struct objfile *objfile)
3166{
3167 struct mapped_index local_map, *map;
3168 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3169 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3170 struct dwz_file *dwz;
2ec9a5e0 3171
4262abfb 3172 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3173 use_deprecated_index_sections,
3174 &dwarf2_per_objfile->gdb_index, &local_map,
3175 &cu_list, &cu_list_elements,
3176 &types_list, &types_list_elements))
3177 return 0;
3178
0fefef59 3179 /* Don't use the index if it's empty. */
2ec9a5e0 3180 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3181 return 0;
3182
2ec9a5e0
TT
3183 /* If there is a .dwz file, read it so we can get its CU list as
3184 well. */
4db1a1dc
TT
3185 dwz = dwarf2_get_dwz_file ();
3186 if (dwz != NULL)
2ec9a5e0 3187 {
2ec9a5e0
TT
3188 struct mapped_index dwz_map;
3189 const gdb_byte *dwz_types_ignore;
3190 offset_type dwz_types_elements_ignore;
3191
3192 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3193 1,
3194 &dwz->gdb_index, &dwz_map,
3195 &dwz_list, &dwz_list_elements,
3196 &dwz_types_ignore,
3197 &dwz_types_elements_ignore))
3198 {
3199 warning (_("could not read '.gdb_index' section from %s; skipping"),
3200 bfd_get_filename (dwz->dwz_bfd));
3201 return 0;
3202 }
3203 }
3204
74a0d9f6
JK
3205 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3206 dwz_list_elements);
1fd400ff 3207
8b70b953
TT
3208 if (types_list_elements)
3209 {
3210 struct dwarf2_section_info *section;
3211
3212 /* We can only handle a single .debug_types when we have an
3213 index. */
3214 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3215 return 0;
3216
3217 section = VEC_index (dwarf2_section_info_def,
3218 dwarf2_per_objfile->types, 0);
3219
74a0d9f6
JK
3220 create_signatured_type_table_from_index (objfile, section, types_list,
3221 types_list_elements);
8b70b953 3222 }
9291a0cd 3223
2ec9a5e0
TT
3224 create_addrmap_from_index (objfile, &local_map);
3225
3226 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3227 *map = local_map;
9291a0cd
TT
3228
3229 dwarf2_per_objfile->index_table = map;
3230 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3231 dwarf2_per_objfile->quick_file_names_table =
3232 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3233
3234 return 1;
3235}
3236
3237/* A helper for the "quick" functions which sets the global
3238 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3239
9291a0cd
TT
3240static void
3241dw2_setup (struct objfile *objfile)
3242{
3243 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3244 gdb_assert (dwarf2_per_objfile);
3245}
3246
dee91e82 3247/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3248
dee91e82
DE
3249static void
3250dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3251 const gdb_byte *info_ptr,
dee91e82
DE
3252 struct die_info *comp_unit_die,
3253 int has_children,
3254 void *data)
9291a0cd 3255{
dee91e82
DE
3256 struct dwarf2_cu *cu = reader->cu;
3257 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3258 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3259 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3260 struct line_header *lh;
9291a0cd 3261 struct attribute *attr;
dee91e82 3262 int i;
15d034d0 3263 const char *name, *comp_dir;
7b9f3c50
DE
3264 void **slot;
3265 struct quick_file_names *qfn;
3266 unsigned int line_offset;
9291a0cd 3267
0186c6a7
DE
3268 gdb_assert (! this_cu->is_debug_types);
3269
07261596
TT
3270 /* Our callers never want to match partial units -- instead they
3271 will match the enclosing full CU. */
3272 if (comp_unit_die->tag == DW_TAG_partial_unit)
3273 {
3274 this_cu->v.quick->no_file_data = 1;
3275 return;
3276 }
3277
0186c6a7 3278 lh_cu = this_cu;
7b9f3c50
DE
3279 lh = NULL;
3280 slot = NULL;
3281 line_offset = 0;
dee91e82
DE
3282
3283 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3284 if (attr)
3285 {
7b9f3c50
DE
3286 struct quick_file_names find_entry;
3287
3288 line_offset = DW_UNSND (attr);
3289
3290 /* We may have already read in this line header (TU line header sharing).
3291 If we have we're done. */
094b34ac
DE
3292 find_entry.hash.dwo_unit = cu->dwo_unit;
3293 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3294 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3295 &find_entry, INSERT);
3296 if (*slot != NULL)
3297 {
094b34ac 3298 lh_cu->v.quick->file_names = *slot;
dee91e82 3299 return;
7b9f3c50
DE
3300 }
3301
3019eac3 3302 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3303 }
3304 if (lh == NULL)
3305 {
094b34ac 3306 lh_cu->v.quick->no_file_data = 1;
dee91e82 3307 return;
9291a0cd
TT
3308 }
3309
7b9f3c50 3310 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
3311 qfn->hash.dwo_unit = cu->dwo_unit;
3312 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3313 gdb_assert (slot != NULL);
3314 *slot = qfn;
9291a0cd 3315
dee91e82 3316 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3317
7b9f3c50
DE
3318 qfn->num_file_names = lh->num_file_names;
3319 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3320 lh->num_file_names * sizeof (char *));
9291a0cd 3321 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3322 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3323 qfn->real_names = NULL;
9291a0cd 3324
7b9f3c50 3325 free_line_header (lh);
7b9f3c50 3326
094b34ac 3327 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3328}
3329
3330/* A helper for the "quick" functions which attempts to read the line
3331 table for THIS_CU. */
3332
3333static struct quick_file_names *
e4a48d9d 3334dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3335{
0186c6a7
DE
3336 /* This should never be called for TUs. */
3337 gdb_assert (! this_cu->is_debug_types);
3338 /* Nor type unit groups. */
3339 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3340
dee91e82
DE
3341 if (this_cu->v.quick->file_names != NULL)
3342 return this_cu->v.quick->file_names;
3343 /* If we know there is no line data, no point in looking again. */
3344 if (this_cu->v.quick->no_file_data)
3345 return NULL;
3346
0186c6a7 3347 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3348
3349 if (this_cu->v.quick->no_file_data)
3350 return NULL;
3351 return this_cu->v.quick->file_names;
9291a0cd
TT
3352}
3353
3354/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3355 real path for a given file name from the line table. */
2fdf6df6 3356
9291a0cd 3357static const char *
7b9f3c50
DE
3358dw2_get_real_path (struct objfile *objfile,
3359 struct quick_file_names *qfn, int index)
9291a0cd 3360{
7b9f3c50
DE
3361 if (qfn->real_names == NULL)
3362 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3363 qfn->num_file_names, const char *);
9291a0cd 3364
7b9f3c50
DE
3365 if (qfn->real_names[index] == NULL)
3366 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3367
7b9f3c50 3368 return qfn->real_names[index];
9291a0cd
TT
3369}
3370
3371static struct symtab *
3372dw2_find_last_source_symtab (struct objfile *objfile)
3373{
43f3e411 3374 struct compunit_symtab *cust;
9291a0cd 3375 int index;
ae2de4f8 3376
9291a0cd
TT
3377 dw2_setup (objfile);
3378 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3379 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3380 if (cust == NULL)
3381 return NULL;
3382 return compunit_primary_filetab (cust);
9291a0cd
TT
3383}
3384
7b9f3c50
DE
3385/* Traversal function for dw2_forget_cached_source_info. */
3386
3387static int
3388dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3389{
7b9f3c50 3390 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3391
7b9f3c50 3392 if (file_data->real_names)
9291a0cd 3393 {
7b9f3c50 3394 int i;
9291a0cd 3395
7b9f3c50 3396 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3397 {
7b9f3c50
DE
3398 xfree ((void*) file_data->real_names[i]);
3399 file_data->real_names[i] = NULL;
9291a0cd
TT
3400 }
3401 }
7b9f3c50
DE
3402
3403 return 1;
3404}
3405
3406static void
3407dw2_forget_cached_source_info (struct objfile *objfile)
3408{
3409 dw2_setup (objfile);
3410
3411 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3412 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3413}
3414
f8eba3c6
TT
3415/* Helper function for dw2_map_symtabs_matching_filename that expands
3416 the symtabs and calls the iterator. */
3417
3418static int
3419dw2_map_expand_apply (struct objfile *objfile,
3420 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3421 const char *name, const char *real_path,
f8eba3c6
TT
3422 int (*callback) (struct symtab *, void *),
3423 void *data)
3424{
43f3e411 3425 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3426
3427 /* Don't visit already-expanded CUs. */
43f3e411 3428 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3429 return 0;
3430
3431 /* This may expand more than one symtab, and we want to iterate over
3432 all of them. */
a0f42c21 3433 dw2_instantiate_symtab (per_cu);
f8eba3c6 3434
f5b95b50 3435 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3436 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3437}
3438
3439/* Implementation of the map_symtabs_matching_filename method. */
3440
9291a0cd 3441static int
f8eba3c6 3442dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3443 const char *real_path,
f8eba3c6
TT
3444 int (*callback) (struct symtab *, void *),
3445 void *data)
9291a0cd
TT
3446{
3447 int i;
c011a4f4 3448 const char *name_basename = lbasename (name);
9291a0cd
TT
3449
3450 dw2_setup (objfile);
ae2de4f8 3451
848e3e78
DE
3452 /* The rule is CUs specify all the files, including those used by
3453 any TU, so there's no need to scan TUs here. */
f4dc4d17 3454
848e3e78 3455 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3456 {
3457 int j;
8832e7e3 3458 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3459 struct quick_file_names *file_data;
9291a0cd 3460
3d7bb9d9 3461 /* We only need to look at symtabs not already expanded. */
43f3e411 3462 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3463 continue;
3464
e4a48d9d 3465 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3466 if (file_data == NULL)
9291a0cd
TT
3467 continue;
3468
7b9f3c50 3469 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3470 {
7b9f3c50 3471 const char *this_name = file_data->file_names[j];
da235a7c 3472 const char *this_real_name;
9291a0cd 3473
af529f8f 3474 if (compare_filenames_for_search (this_name, name))
9291a0cd 3475 {
f5b95b50 3476 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3477 callback, data))
3478 return 1;
288e77a7 3479 continue;
4aac40c8 3480 }
9291a0cd 3481
c011a4f4
DE
3482 /* Before we invoke realpath, which can get expensive when many
3483 files are involved, do a quick comparison of the basenames. */
3484 if (! basenames_may_differ
3485 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3486 continue;
3487
da235a7c
JK
3488 this_real_name = dw2_get_real_path (objfile, file_data, j);
3489 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3490 {
da235a7c
JK
3491 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3492 callback, data))
3493 return 1;
288e77a7 3494 continue;
da235a7c 3495 }
9291a0cd 3496
da235a7c
JK
3497 if (real_path != NULL)
3498 {
af529f8f
JK
3499 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3500 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3501 if (this_real_name != NULL
af529f8f 3502 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3503 {
f5b95b50 3504 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3505 callback, data))
3506 return 1;
288e77a7 3507 continue;
9291a0cd
TT
3508 }
3509 }
3510 }
3511 }
3512
9291a0cd
TT
3513 return 0;
3514}
3515
da51c347
DE
3516/* Struct used to manage iterating over all CUs looking for a symbol. */
3517
3518struct dw2_symtab_iterator
9291a0cd 3519{
da51c347
DE
3520 /* The internalized form of .gdb_index. */
3521 struct mapped_index *index;
3522 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3523 int want_specific_block;
3524 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3525 Unused if !WANT_SPECIFIC_BLOCK. */
3526 int block_index;
3527 /* The kind of symbol we're looking for. */
3528 domain_enum domain;
3529 /* The list of CUs from the index entry of the symbol,
3530 or NULL if not found. */
3531 offset_type *vec;
3532 /* The next element in VEC to look at. */
3533 int next;
3534 /* The number of elements in VEC, or zero if there is no match. */
3535 int length;
8943b874
DE
3536 /* Have we seen a global version of the symbol?
3537 If so we can ignore all further global instances.
3538 This is to work around gold/15646, inefficient gold-generated
3539 indices. */
3540 int global_seen;
da51c347 3541};
9291a0cd 3542
da51c347
DE
3543/* Initialize the index symtab iterator ITER.
3544 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3545 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3546
9291a0cd 3547static void
da51c347
DE
3548dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3549 struct mapped_index *index,
3550 int want_specific_block,
3551 int block_index,
3552 domain_enum domain,
3553 const char *name)
3554{
3555 iter->index = index;
3556 iter->want_specific_block = want_specific_block;
3557 iter->block_index = block_index;
3558 iter->domain = domain;
3559 iter->next = 0;
8943b874 3560 iter->global_seen = 0;
da51c347
DE
3561
3562 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3563 iter->length = MAYBE_SWAP (*iter->vec);
3564 else
3565 {
3566 iter->vec = NULL;
3567 iter->length = 0;
3568 }
3569}
3570
3571/* Return the next matching CU or NULL if there are no more. */
3572
3573static struct dwarf2_per_cu_data *
3574dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3575{
3576 for ( ; iter->next < iter->length; ++iter->next)
3577 {
3578 offset_type cu_index_and_attrs =
3579 MAYBE_SWAP (iter->vec[iter->next + 1]);
3580 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3581 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3582 int want_static = iter->block_index != GLOBAL_BLOCK;
3583 /* This value is only valid for index versions >= 7. */
3584 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3585 gdb_index_symbol_kind symbol_kind =
3586 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3587 /* Only check the symbol attributes if they're present.
3588 Indices prior to version 7 don't record them,
3589 and indices >= 7 may elide them for certain symbols
3590 (gold does this). */
3591 int attrs_valid =
3592 (iter->index->version >= 7
3593 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3594
3190f0c6
DE
3595 /* Don't crash on bad data. */
3596 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3597 + dwarf2_per_objfile->n_type_units))
3598 {
3599 complaint (&symfile_complaints,
3600 _(".gdb_index entry has bad CU index"
4262abfb
JK
3601 " [in module %s]"),
3602 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3603 continue;
3604 }
3605
8832e7e3 3606 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3607
da51c347 3608 /* Skip if already read in. */
43f3e411 3609 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3610 continue;
3611
8943b874
DE
3612 /* Check static vs global. */
3613 if (attrs_valid)
3614 {
3615 if (iter->want_specific_block
3616 && want_static != is_static)
3617 continue;
3618 /* Work around gold/15646. */
3619 if (!is_static && iter->global_seen)
3620 continue;
3621 if (!is_static)
3622 iter->global_seen = 1;
3623 }
da51c347
DE
3624
3625 /* Only check the symbol's kind if it has one. */
3626 if (attrs_valid)
3627 {
3628 switch (iter->domain)
3629 {
3630 case VAR_DOMAIN:
3631 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3632 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3633 /* Some types are also in VAR_DOMAIN. */
3634 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3635 continue;
3636 break;
3637 case STRUCT_DOMAIN:
3638 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3639 continue;
3640 break;
3641 case LABEL_DOMAIN:
3642 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3643 continue;
3644 break;
3645 default:
3646 break;
3647 }
3648 }
3649
3650 ++iter->next;
3651 return per_cu;
3652 }
3653
3654 return NULL;
3655}
3656
43f3e411 3657static struct compunit_symtab *
da51c347
DE
3658dw2_lookup_symbol (struct objfile *objfile, int block_index,
3659 const char *name, domain_enum domain)
9291a0cd 3660{
43f3e411 3661 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3662 struct mapped_index *index;
3663
9291a0cd
TT
3664 dw2_setup (objfile);
3665
156942c7
DE
3666 index = dwarf2_per_objfile->index_table;
3667
da51c347 3668 /* index is NULL if OBJF_READNOW. */
156942c7 3669 if (index)
9291a0cd 3670 {
da51c347
DE
3671 struct dw2_symtab_iterator iter;
3672 struct dwarf2_per_cu_data *per_cu;
3673
3674 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3675
da51c347 3676 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3677 {
b2e2f908 3678 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3679 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3680 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3681 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3682
b2e2f908
DE
3683 sym = block_find_symbol (block, name, domain,
3684 block_find_non_opaque_type_preferred,
3685 &with_opaque);
3686
da51c347
DE
3687 /* Some caution must be observed with overloaded functions
3688 and methods, since the index will not contain any overload
3689 information (but NAME might contain it). */
da51c347 3690
b2e2f908
DE
3691 if (sym != NULL
3692 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3693 return stab;
3694 if (with_opaque != NULL
3695 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3696 stab_best = stab;
da51c347
DE
3697
3698 /* Keep looking through other CUs. */
9291a0cd
TT
3699 }
3700 }
9291a0cd 3701
da51c347 3702 return stab_best;
9291a0cd
TT
3703}
3704
3705static void
3706dw2_print_stats (struct objfile *objfile)
3707{
e4a48d9d 3708 int i, total, count;
9291a0cd
TT
3709
3710 dw2_setup (objfile);
e4a48d9d 3711 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3712 count = 0;
e4a48d9d 3713 for (i = 0; i < total; ++i)
9291a0cd 3714 {
8832e7e3 3715 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3716
43f3e411 3717 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3718 ++count;
3719 }
e4a48d9d 3720 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3721 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3722}
3723
779bd270
DE
3724/* This dumps minimal information about the index.
3725 It is called via "mt print objfiles".
3726 One use is to verify .gdb_index has been loaded by the
3727 gdb.dwarf2/gdb-index.exp testcase. */
3728
9291a0cd
TT
3729static void
3730dw2_dump (struct objfile *objfile)
3731{
779bd270
DE
3732 dw2_setup (objfile);
3733 gdb_assert (dwarf2_per_objfile->using_index);
3734 printf_filtered (".gdb_index:");
3735 if (dwarf2_per_objfile->index_table != NULL)
3736 {
3737 printf_filtered (" version %d\n",
3738 dwarf2_per_objfile->index_table->version);
3739 }
3740 else
3741 printf_filtered (" faked for \"readnow\"\n");
3742 printf_filtered ("\n");
9291a0cd
TT
3743}
3744
3745static void
3189cb12
DE
3746dw2_relocate (struct objfile *objfile,
3747 const struct section_offsets *new_offsets,
3748 const struct section_offsets *delta)
9291a0cd
TT
3749{
3750 /* There's nothing to relocate here. */
3751}
3752
3753static void
3754dw2_expand_symtabs_for_function (struct objfile *objfile,
3755 const char *func_name)
3756{
da51c347
DE
3757 struct mapped_index *index;
3758
3759 dw2_setup (objfile);
3760
3761 index = dwarf2_per_objfile->index_table;
3762
3763 /* index is NULL if OBJF_READNOW. */
3764 if (index)
3765 {
3766 struct dw2_symtab_iterator iter;
3767 struct dwarf2_per_cu_data *per_cu;
3768
3769 /* Note: It doesn't matter what we pass for block_index here. */
3770 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3771 func_name);
3772
3773 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3774 dw2_instantiate_symtab (per_cu);
3775 }
9291a0cd
TT
3776}
3777
3778static void
3779dw2_expand_all_symtabs (struct objfile *objfile)
3780{
3781 int i;
3782
3783 dw2_setup (objfile);
1fd400ff
TT
3784
3785 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3786 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3787 {
8832e7e3 3788 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3789
a0f42c21 3790 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3791 }
3792}
3793
3794static void
652a8996
JK
3795dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3796 const char *fullname)
9291a0cd
TT
3797{
3798 int i;
3799
3800 dw2_setup (objfile);
d4637a04
DE
3801
3802 /* We don't need to consider type units here.
3803 This is only called for examining code, e.g. expand_line_sal.
3804 There can be an order of magnitude (or more) more type units
3805 than comp units, and we avoid them if we can. */
3806
3807 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3808 {
3809 int j;
8832e7e3 3810 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3811 struct quick_file_names *file_data;
9291a0cd 3812
3d7bb9d9 3813 /* We only need to look at symtabs not already expanded. */
43f3e411 3814 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3815 continue;
3816
e4a48d9d 3817 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3818 if (file_data == NULL)
9291a0cd
TT
3819 continue;
3820
7b9f3c50 3821 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3822 {
652a8996
JK
3823 const char *this_fullname = file_data->file_names[j];
3824
3825 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3826 {
a0f42c21 3827 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3828 break;
3829 }
3830 }
3831 }
3832}
3833
9291a0cd 3834static void
ade7ed9e 3835dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 3836 const char * name, domain_enum domain,
ade7ed9e 3837 int global,
40658b94
PH
3838 int (*callback) (struct block *,
3839 struct symbol *, void *),
2edb89d3
JK
3840 void *data, symbol_compare_ftype *match,
3841 symbol_compare_ftype *ordered_compare)
9291a0cd 3842{
40658b94 3843 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3844 current language is Ada for a non-Ada objfile using GNU index. As Ada
3845 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3846}
3847
3848static void
f8eba3c6
TT
3849dw2_expand_symtabs_matching
3850 (struct objfile *objfile,
206f2a57
DE
3851 expand_symtabs_file_matcher_ftype *file_matcher,
3852 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3853 expand_symtabs_exp_notify_ftype *expansion_notify,
f8eba3c6
TT
3854 enum search_domain kind,
3855 void *data)
9291a0cd
TT
3856{
3857 int i;
3858 offset_type iter;
4b5246aa 3859 struct mapped_index *index;
9291a0cd
TT
3860
3861 dw2_setup (objfile);
ae2de4f8
DE
3862
3863 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3864 if (!dwarf2_per_objfile->index_table)
3865 return;
4b5246aa 3866 index = dwarf2_per_objfile->index_table;
9291a0cd 3867
7b08b9eb 3868 if (file_matcher != NULL)
24c79950
TT
3869 {
3870 struct cleanup *cleanup;
3871 htab_t visited_found, visited_not_found;
3872
3873 visited_found = htab_create_alloc (10,
3874 htab_hash_pointer, htab_eq_pointer,
3875 NULL, xcalloc, xfree);
3876 cleanup = make_cleanup_htab_delete (visited_found);
3877 visited_not_found = htab_create_alloc (10,
3878 htab_hash_pointer, htab_eq_pointer,
3879 NULL, xcalloc, xfree);
3880 make_cleanup_htab_delete (visited_not_found);
3881
848e3e78
DE
3882 /* The rule is CUs specify all the files, including those used by
3883 any TU, so there's no need to scan TUs here. */
3884
3885 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3886 {
3887 int j;
8832e7e3 3888 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3889 struct quick_file_names *file_data;
3890 void **slot;
7b08b9eb 3891
61d96d7e
DE
3892 QUIT;
3893
24c79950 3894 per_cu->v.quick->mark = 0;
3d7bb9d9 3895
24c79950 3896 /* We only need to look at symtabs not already expanded. */
43f3e411 3897 if (per_cu->v.quick->compunit_symtab)
24c79950 3898 continue;
7b08b9eb 3899
e4a48d9d 3900 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3901 if (file_data == NULL)
3902 continue;
7b08b9eb 3903
24c79950
TT
3904 if (htab_find (visited_not_found, file_data) != NULL)
3905 continue;
3906 else if (htab_find (visited_found, file_data) != NULL)
3907 {
3908 per_cu->v.quick->mark = 1;
3909 continue;
3910 }
3911
3912 for (j = 0; j < file_data->num_file_names; ++j)
3913 {
da235a7c
JK
3914 const char *this_real_name;
3915
fbd9ab74 3916 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3917 {
3918 per_cu->v.quick->mark = 1;
3919 break;
3920 }
da235a7c
JK
3921
3922 /* Before we invoke realpath, which can get expensive when many
3923 files are involved, do a quick comparison of the basenames. */
3924 if (!basenames_may_differ
3925 && !file_matcher (lbasename (file_data->file_names[j]),
3926 data, 1))
3927 continue;
3928
3929 this_real_name = dw2_get_real_path (objfile, file_data, j);
3930 if (file_matcher (this_real_name, data, 0))
3931 {
3932 per_cu->v.quick->mark = 1;
3933 break;
3934 }
24c79950
TT
3935 }
3936
3937 slot = htab_find_slot (per_cu->v.quick->mark
3938 ? visited_found
3939 : visited_not_found,
3940 file_data, INSERT);
3941 *slot = file_data;
3942 }
3943
3944 do_cleanups (cleanup);
3945 }
9291a0cd 3946
3876f04e 3947 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3948 {
3949 offset_type idx = 2 * iter;
3950 const char *name;
3951 offset_type *vec, vec_len, vec_idx;
8943b874 3952 int global_seen = 0;
9291a0cd 3953
61d96d7e
DE
3954 QUIT;
3955
3876f04e 3956 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3957 continue;
3958
3876f04e 3959 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3960
206f2a57 3961 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3962 continue;
3963
3964 /* The name was matched, now expand corresponding CUs that were
3965 marked. */
4b5246aa 3966 vec = (offset_type *) (index->constant_pool
3876f04e 3967 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3968 vec_len = MAYBE_SWAP (vec[0]);
3969 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3970 {
e254ef6a 3971 struct dwarf2_per_cu_data *per_cu;
156942c7 3972 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3973 /* This value is only valid for index versions >= 7. */
3974 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3975 gdb_index_symbol_kind symbol_kind =
3976 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3977 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3978 /* Only check the symbol attributes if they're present.
3979 Indices prior to version 7 don't record them,
3980 and indices >= 7 may elide them for certain symbols
3981 (gold does this). */
3982 int attrs_valid =
3983 (index->version >= 7
3984 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3985
8943b874
DE
3986 /* Work around gold/15646. */
3987 if (attrs_valid)
3988 {
3989 if (!is_static && global_seen)
3990 continue;
3991 if (!is_static)
3992 global_seen = 1;
3993 }
3994
3190f0c6
DE
3995 /* Only check the symbol's kind if it has one. */
3996 if (attrs_valid)
156942c7
DE
3997 {
3998 switch (kind)
3999 {
4000 case VARIABLES_DOMAIN:
4001 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4002 continue;
4003 break;
4004 case FUNCTIONS_DOMAIN:
4005 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4006 continue;
4007 break;
4008 case TYPES_DOMAIN:
4009 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4010 continue;
4011 break;
4012 default:
4013 break;
4014 }
4015 }
4016
3190f0c6
DE
4017 /* Don't crash on bad data. */
4018 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4019 + dwarf2_per_objfile->n_type_units))
4020 {
4021 complaint (&symfile_complaints,
4022 _(".gdb_index entry has bad CU index"
4262abfb 4023 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4024 continue;
4025 }
4026
8832e7e3 4027 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4028 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4029 {
4030 int symtab_was_null =
4031 (per_cu->v.quick->compunit_symtab == NULL);
4032
4033 dw2_instantiate_symtab (per_cu);
4034
4035 if (expansion_notify != NULL
4036 && symtab_was_null
4037 && per_cu->v.quick->compunit_symtab != NULL)
4038 {
4039 expansion_notify (per_cu->v.quick->compunit_symtab,
4040 data);
4041 }
4042 }
9291a0cd
TT
4043 }
4044 }
4045}
4046
43f3e411 4047/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4048 symtab. */
4049
43f3e411
DE
4050static struct compunit_symtab *
4051recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4052 CORE_ADDR pc)
9703b513
TT
4053{
4054 int i;
4055
43f3e411
DE
4056 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4057 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4058 return cust;
9703b513 4059
43f3e411 4060 if (cust->includes == NULL)
a3ec0bb1
DE
4061 return NULL;
4062
43f3e411 4063 for (i = 0; cust->includes[i]; ++i)
9703b513 4064 {
43f3e411 4065 struct compunit_symtab *s = cust->includes[i];
9703b513 4066
43f3e411 4067 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4068 if (s != NULL)
4069 return s;
4070 }
4071
4072 return NULL;
4073}
4074
43f3e411
DE
4075static struct compunit_symtab *
4076dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4077 struct bound_minimal_symbol msymbol,
4078 CORE_ADDR pc,
4079 struct obj_section *section,
4080 int warn_if_readin)
9291a0cd
TT
4081{
4082 struct dwarf2_per_cu_data *data;
43f3e411 4083 struct compunit_symtab *result;
9291a0cd
TT
4084
4085 dw2_setup (objfile);
4086
4087 if (!objfile->psymtabs_addrmap)
4088 return NULL;
4089
4090 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4091 if (!data)
4092 return NULL;
4093
43f3e411 4094 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4095 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4096 paddress (get_objfile_arch (objfile), pc));
4097
43f3e411
DE
4098 result
4099 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4100 pc);
9703b513
TT
4101 gdb_assert (result != NULL);
4102 return result;
9291a0cd
TT
4103}
4104
9291a0cd 4105static void
44b13c5a 4106dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4107 void *data, int need_fullname)
9291a0cd
TT
4108{
4109 int i;
24c79950
TT
4110 struct cleanup *cleanup;
4111 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4112 NULL, xcalloc, xfree);
9291a0cd 4113
24c79950 4114 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4115 dw2_setup (objfile);
ae2de4f8 4116
848e3e78
DE
4117 /* The rule is CUs specify all the files, including those used by
4118 any TU, so there's no need to scan TUs here.
4119 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4120
848e3e78 4121 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4122 {
8832e7e3 4123 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4124
43f3e411 4125 if (per_cu->v.quick->compunit_symtab)
24c79950
TT
4126 {
4127 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4128 INSERT);
4129
4130 *slot = per_cu->v.quick->file_names;
4131 }
4132 }
4133
848e3e78 4134 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4135 {
4136 int j;
8832e7e3 4137 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4138 struct quick_file_names *file_data;
24c79950 4139 void **slot;
9291a0cd 4140
3d7bb9d9 4141 /* We only need to look at symtabs not already expanded. */
43f3e411 4142 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4143 continue;
4144
e4a48d9d 4145 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4146 if (file_data == NULL)
9291a0cd
TT
4147 continue;
4148
24c79950
TT
4149 slot = htab_find_slot (visited, file_data, INSERT);
4150 if (*slot)
4151 {
4152 /* Already visited. */
4153 continue;
4154 }
4155 *slot = file_data;
4156
7b9f3c50 4157 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4158 {
74e2f255
DE
4159 const char *this_real_name;
4160
4161 if (need_fullname)
4162 this_real_name = dw2_get_real_path (objfile, file_data, j);
4163 else
4164 this_real_name = NULL;
7b9f3c50 4165 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4166 }
4167 }
24c79950
TT
4168
4169 do_cleanups (cleanup);
9291a0cd
TT
4170}
4171
4172static int
4173dw2_has_symbols (struct objfile *objfile)
4174{
4175 return 1;
4176}
4177
4178const struct quick_symbol_functions dwarf2_gdb_index_functions =
4179{
4180 dw2_has_symbols,
4181 dw2_find_last_source_symtab,
4182 dw2_forget_cached_source_info,
f8eba3c6 4183 dw2_map_symtabs_matching_filename,
9291a0cd 4184 dw2_lookup_symbol,
9291a0cd
TT
4185 dw2_print_stats,
4186 dw2_dump,
4187 dw2_relocate,
4188 dw2_expand_symtabs_for_function,
4189 dw2_expand_all_symtabs,
652a8996 4190 dw2_expand_symtabs_with_fullname,
40658b94 4191 dw2_map_matching_symbols,
9291a0cd 4192 dw2_expand_symtabs_matching,
43f3e411 4193 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4194 dw2_map_symbol_filenames
4195};
4196
4197/* Initialize for reading DWARF for this objfile. Return 0 if this
4198 file will use psymtabs, or 1 if using the GNU index. */
4199
4200int
4201dwarf2_initialize_objfile (struct objfile *objfile)
4202{
4203 /* If we're about to read full symbols, don't bother with the
4204 indices. In this case we also don't care if some other debug
4205 format is making psymtabs, because they are all about to be
4206 expanded anyway. */
4207 if ((objfile->flags & OBJF_READNOW))
4208 {
4209 int i;
4210
4211 dwarf2_per_objfile->using_index = 1;
4212 create_all_comp_units (objfile);
0e50663e 4213 create_all_type_units (objfile);
7b9f3c50
DE
4214 dwarf2_per_objfile->quick_file_names_table =
4215 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4216
1fd400ff 4217 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4218 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4219 {
8832e7e3 4220 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4221
e254ef6a
DE
4222 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4223 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4224 }
4225
4226 /* Return 1 so that gdb sees the "quick" functions. However,
4227 these functions will be no-ops because we will have expanded
4228 all symtabs. */
4229 return 1;
4230 }
4231
4232 if (dwarf2_read_index (objfile))
4233 return 1;
4234
9291a0cd
TT
4235 return 0;
4236}
4237
4238\f
4239
dce234bc
PP
4240/* Build a partial symbol table. */
4241
4242void
f29dff0a 4243dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4244{
c9bf0622 4245
f29dff0a 4246 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4247 {
4248 init_psymbol_list (objfile, 1024);
4249 }
4250
492d29ea 4251 TRY
c9bf0622
TT
4252 {
4253 /* This isn't really ideal: all the data we allocate on the
4254 objfile's obstack is still uselessly kept around. However,
4255 freeing it seems unsafe. */
4256 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4257
4258 dwarf2_build_psymtabs_hard (objfile);
4259 discard_cleanups (cleanups);
4260 }
492d29ea
PA
4261 CATCH (except, RETURN_MASK_ERROR)
4262 {
4263 exception_print (gdb_stderr, except);
4264 }
4265 END_CATCH
c906108c 4266}
c906108c 4267
1ce1cefd
DE
4268/* Return the total length of the CU described by HEADER. */
4269
4270static unsigned int
4271get_cu_length (const struct comp_unit_head *header)
4272{
4273 return header->initial_length_size + header->length;
4274}
4275
45452591
DE
4276/* Return TRUE if OFFSET is within CU_HEADER. */
4277
4278static inline int
b64f50a1 4279offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4280{
b64f50a1 4281 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4282 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4283
b64f50a1 4284 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4285}
4286
3b80fe9b
DE
4287/* Find the base address of the compilation unit for range lists and
4288 location lists. It will normally be specified by DW_AT_low_pc.
4289 In DWARF-3 draft 4, the base address could be overridden by
4290 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4291 compilation units with discontinuous ranges. */
4292
4293static void
4294dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4295{
4296 struct attribute *attr;
4297
4298 cu->base_known = 0;
4299 cu->base_address = 0;
4300
4301 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4302 if (attr)
4303 {
31aa7e4e 4304 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4305 cu->base_known = 1;
4306 }
4307 else
4308 {
4309 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4310 if (attr)
4311 {
31aa7e4e 4312 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4313 cu->base_known = 1;
4314 }
4315 }
4316}
4317
93311388
DE
4318/* Read in the comp unit header information from the debug_info at info_ptr.
4319 NOTE: This leaves members offset, first_die_offset to be filled in
4320 by the caller. */
107d2387 4321
d521ce57 4322static const gdb_byte *
107d2387 4323read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4324 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4325{
4326 int signed_addr;
891d2f0b 4327 unsigned int bytes_read;
c764a876
DE
4328
4329 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4330 cu_header->initial_length_size = bytes_read;
4331 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4332 info_ptr += bytes_read;
107d2387
AC
4333 cu_header->version = read_2_bytes (abfd, info_ptr);
4334 info_ptr += 2;
b64f50a1
JK
4335 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4336 &bytes_read);
613e1657 4337 info_ptr += bytes_read;
107d2387
AC
4338 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4339 info_ptr += 1;
4340 signed_addr = bfd_get_sign_extend_vma (abfd);
4341 if (signed_addr < 0)
8e65ff28 4342 internal_error (__FILE__, __LINE__,
e2e0b3e5 4343 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4344 cu_header->signed_addr_p = signed_addr;
c764a876 4345
107d2387
AC
4346 return info_ptr;
4347}
4348
36586728
TT
4349/* Helper function that returns the proper abbrev section for
4350 THIS_CU. */
4351
4352static struct dwarf2_section_info *
4353get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4354{
4355 struct dwarf2_section_info *abbrev;
4356
4357 if (this_cu->is_dwz)
4358 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4359 else
4360 abbrev = &dwarf2_per_objfile->abbrev;
4361
4362 return abbrev;
4363}
4364
9ff913ba
DE
4365/* Subroutine of read_and_check_comp_unit_head and
4366 read_and_check_type_unit_head to simplify them.
4367 Perform various error checking on the header. */
4368
4369static void
4370error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4371 struct dwarf2_section_info *section,
4372 struct dwarf2_section_info *abbrev_section)
9ff913ba 4373{
a32a8923
DE
4374 bfd *abfd = get_section_bfd_owner (section);
4375 const char *filename = get_section_file_name (section);
9ff913ba
DE
4376
4377 if (header->version != 2 && header->version != 3 && header->version != 4)
4378 error (_("Dwarf Error: wrong version in compilation unit header "
4379 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4380 filename);
4381
b64f50a1 4382 if (header->abbrev_offset.sect_off
36586728 4383 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4384 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4385 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4386 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4387 filename);
4388
4389 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4390 avoid potential 32-bit overflow. */
1ce1cefd 4391 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4392 > section->size)
4393 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4394 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4395 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4396 filename);
4397}
4398
4399/* Read in a CU/TU header and perform some basic error checking.
4400 The contents of the header are stored in HEADER.
4401 The result is a pointer to the start of the first DIE. */
adabb602 4402
d521ce57 4403static const gdb_byte *
9ff913ba
DE
4404read_and_check_comp_unit_head (struct comp_unit_head *header,
4405 struct dwarf2_section_info *section,
4bdcc0c1 4406 struct dwarf2_section_info *abbrev_section,
d521ce57 4407 const gdb_byte *info_ptr,
9ff913ba 4408 int is_debug_types_section)
72bf9492 4409{
d521ce57 4410 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4411 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4412
b64f50a1 4413 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4414
72bf9492
DJ
4415 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4416
460c1c54
CC
4417 /* If we're reading a type unit, skip over the signature and
4418 type_offset fields. */
b0df02fd 4419 if (is_debug_types_section)
460c1c54
CC
4420 info_ptr += 8 /*signature*/ + header->offset_size;
4421
b64f50a1 4422 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4423
4bdcc0c1 4424 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4425
4426 return info_ptr;
4427}
4428
348e048f
DE
4429/* Read in the types comp unit header information from .debug_types entry at
4430 types_ptr. The result is a pointer to one past the end of the header. */
4431
d521ce57 4432static const gdb_byte *
9ff913ba
DE
4433read_and_check_type_unit_head (struct comp_unit_head *header,
4434 struct dwarf2_section_info *section,
4bdcc0c1 4435 struct dwarf2_section_info *abbrev_section,
d521ce57 4436 const gdb_byte *info_ptr,
dee91e82
DE
4437 ULONGEST *signature,
4438 cu_offset *type_offset_in_tu)
348e048f 4439{
d521ce57 4440 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4441 bfd *abfd = get_section_bfd_owner (section);
348e048f 4442
b64f50a1 4443 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4444
9ff913ba 4445 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4446
9ff913ba
DE
4447 /* If we're reading a type unit, skip over the signature and
4448 type_offset fields. */
4449 if (signature != NULL)
4450 *signature = read_8_bytes (abfd, info_ptr);
4451 info_ptr += 8;
dee91e82
DE
4452 if (type_offset_in_tu != NULL)
4453 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4454 header->offset_size);
9ff913ba
DE
4455 info_ptr += header->offset_size;
4456
b64f50a1 4457 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4458
4bdcc0c1 4459 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4460
4461 return info_ptr;
348e048f
DE
4462}
4463
f4dc4d17
DE
4464/* Fetch the abbreviation table offset from a comp or type unit header. */
4465
4466static sect_offset
4467read_abbrev_offset (struct dwarf2_section_info *section,
4468 sect_offset offset)
4469{
a32a8923 4470 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4471 const gdb_byte *info_ptr;
f4dc4d17
DE
4472 unsigned int length, initial_length_size, offset_size;
4473 sect_offset abbrev_offset;
4474
4475 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4476 info_ptr = section->buffer + offset.sect_off;
4477 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4478 offset_size = initial_length_size == 4 ? 4 : 8;
4479 info_ptr += initial_length_size + 2 /*version*/;
4480 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4481 return abbrev_offset;
4482}
4483
aaa75496
JB
4484/* Allocate a new partial symtab for file named NAME and mark this new
4485 partial symtab as being an include of PST. */
4486
4487static void
d521ce57 4488dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4489 struct objfile *objfile)
4490{
4491 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4492
fbd9ab74
JK
4493 if (!IS_ABSOLUTE_PATH (subpst->filename))
4494 {
4495 /* It shares objfile->objfile_obstack. */
4496 subpst->dirname = pst->dirname;
4497 }
4498
aaa75496
JB
4499 subpst->textlow = 0;
4500 subpst->texthigh = 0;
4501
4502 subpst->dependencies = (struct partial_symtab **)
4503 obstack_alloc (&objfile->objfile_obstack,
4504 sizeof (struct partial_symtab *));
4505 subpst->dependencies[0] = pst;
4506 subpst->number_of_dependencies = 1;
4507
4508 subpst->globals_offset = 0;
4509 subpst->n_global_syms = 0;
4510 subpst->statics_offset = 0;
4511 subpst->n_static_syms = 0;
43f3e411 4512 subpst->compunit_symtab = NULL;
aaa75496
JB
4513 subpst->read_symtab = pst->read_symtab;
4514 subpst->readin = 0;
4515
4516 /* No private part is necessary for include psymtabs. This property
4517 can be used to differentiate between such include psymtabs and
10b3939b 4518 the regular ones. */
58a9656e 4519 subpst->read_symtab_private = NULL;
aaa75496
JB
4520}
4521
4522/* Read the Line Number Program data and extract the list of files
4523 included by the source file represented by PST. Build an include
d85a05f0 4524 partial symtab for each of these included files. */
aaa75496
JB
4525
4526static void
4527dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4528 struct die_info *die,
4529 struct partial_symtab *pst)
aaa75496 4530{
d85a05f0
DJ
4531 struct line_header *lh = NULL;
4532 struct attribute *attr;
aaa75496 4533
d85a05f0
DJ
4534 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4535 if (attr)
3019eac3 4536 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4537 if (lh == NULL)
4538 return; /* No linetable, so no includes. */
4539
c6da4cef 4540 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
527f3840 4541 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4542
4543 free_line_header (lh);
4544}
4545
348e048f 4546static hashval_t
52dc124a 4547hash_signatured_type (const void *item)
348e048f 4548{
52dc124a 4549 const struct signatured_type *sig_type = item;
9a619af0 4550
348e048f 4551 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4552 return sig_type->signature;
348e048f
DE
4553}
4554
4555static int
52dc124a 4556eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4557{
4558 const struct signatured_type *lhs = item_lhs;
4559 const struct signatured_type *rhs = item_rhs;
9a619af0 4560
348e048f
DE
4561 return lhs->signature == rhs->signature;
4562}
4563
1fd400ff
TT
4564/* Allocate a hash table for signatured types. */
4565
4566static htab_t
673bfd45 4567allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4568{
4569 return htab_create_alloc_ex (41,
52dc124a
DE
4570 hash_signatured_type,
4571 eq_signatured_type,
1fd400ff
TT
4572 NULL,
4573 &objfile->objfile_obstack,
4574 hashtab_obstack_allocate,
4575 dummy_obstack_deallocate);
4576}
4577
d467dd73 4578/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4579
4580static int
d467dd73 4581add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4582{
4583 struct signatured_type *sigt = *slot;
b4dd5633 4584 struct signatured_type ***datap = datum;
1fd400ff 4585
b4dd5633 4586 **datap = sigt;
1fd400ff
TT
4587 ++*datap;
4588
4589 return 1;
4590}
4591
c88ee1f0
DE
4592/* Create the hash table of all entries in the .debug_types
4593 (or .debug_types.dwo) section(s).
4594 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4595 otherwise it is NULL.
4596
4597 The result is a pointer to the hash table or NULL if there are no types.
4598
4599 Note: This function processes DWO files only, not DWP files. */
348e048f 4600
3019eac3
DE
4601static htab_t
4602create_debug_types_hash_table (struct dwo_file *dwo_file,
4603 VEC (dwarf2_section_info_def) *types)
348e048f 4604{
3019eac3 4605 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4606 htab_t types_htab = NULL;
8b70b953
TT
4607 int ix;
4608 struct dwarf2_section_info *section;
4bdcc0c1 4609 struct dwarf2_section_info *abbrev_section;
348e048f 4610
3019eac3
DE
4611 if (VEC_empty (dwarf2_section_info_def, types))
4612 return NULL;
348e048f 4613
4bdcc0c1
DE
4614 abbrev_section = (dwo_file != NULL
4615 ? &dwo_file->sections.abbrev
4616 : &dwarf2_per_objfile->abbrev);
4617
b4f54984 4618 if (dwarf_read_debug)
09406207
DE
4619 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4620 dwo_file ? ".dwo" : "",
a32a8923 4621 get_section_file_name (abbrev_section));
09406207 4622
8b70b953 4623 for (ix = 0;
3019eac3 4624 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4625 ++ix)
4626 {
3019eac3 4627 bfd *abfd;
d521ce57 4628 const gdb_byte *info_ptr, *end_ptr;
348e048f 4629
8b70b953
TT
4630 dwarf2_read_section (objfile, section);
4631 info_ptr = section->buffer;
348e048f 4632
8b70b953
TT
4633 if (info_ptr == NULL)
4634 continue;
348e048f 4635
3019eac3 4636 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4637 not present, in which case the bfd is unknown. */
4638 abfd = get_section_bfd_owner (section);
3019eac3 4639
dee91e82
DE
4640 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4641 because we don't need to read any dies: the signature is in the
4642 header. */
8b70b953
TT
4643
4644 end_ptr = info_ptr + section->size;
4645 while (info_ptr < end_ptr)
4646 {
b64f50a1 4647 sect_offset offset;
3019eac3 4648 cu_offset type_offset_in_tu;
8b70b953 4649 ULONGEST signature;
52dc124a 4650 struct signatured_type *sig_type;
3019eac3 4651 struct dwo_unit *dwo_tu;
8b70b953 4652 void **slot;
d521ce57 4653 const gdb_byte *ptr = info_ptr;
9ff913ba 4654 struct comp_unit_head header;
dee91e82 4655 unsigned int length;
348e048f 4656
b64f50a1 4657 offset.sect_off = ptr - section->buffer;
348e048f 4658
8b70b953 4659 /* We need to read the type's signature in order to build the hash
9ff913ba 4660 table, but we don't need anything else just yet. */
348e048f 4661
4bdcc0c1
DE
4662 ptr = read_and_check_type_unit_head (&header, section,
4663 abbrev_section, ptr,
3019eac3 4664 &signature, &type_offset_in_tu);
6caca83c 4665
1ce1cefd 4666 length = get_cu_length (&header);
dee91e82 4667
6caca83c 4668 /* Skip dummy type units. */
dee91e82
DE
4669 if (ptr >= info_ptr + length
4670 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4671 {
1ce1cefd 4672 info_ptr += length;
6caca83c
CC
4673 continue;
4674 }
8b70b953 4675
0349ea22
DE
4676 if (types_htab == NULL)
4677 {
4678 if (dwo_file)
4679 types_htab = allocate_dwo_unit_table (objfile);
4680 else
4681 types_htab = allocate_signatured_type_table (objfile);
4682 }
4683
3019eac3
DE
4684 if (dwo_file)
4685 {
4686 sig_type = NULL;
4687 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4688 struct dwo_unit);
4689 dwo_tu->dwo_file = dwo_file;
4690 dwo_tu->signature = signature;
4691 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4692 dwo_tu->section = section;
3019eac3
DE
4693 dwo_tu->offset = offset;
4694 dwo_tu->length = length;
4695 }
4696 else
4697 {
4698 /* N.B.: type_offset is not usable if this type uses a DWO file.
4699 The real type_offset is in the DWO file. */
4700 dwo_tu = NULL;
4701 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4702 struct signatured_type);
4703 sig_type->signature = signature;
4704 sig_type->type_offset_in_tu = type_offset_in_tu;
4705 sig_type->per_cu.objfile = objfile;
4706 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4707 sig_type->per_cu.section = section;
3019eac3
DE
4708 sig_type->per_cu.offset = offset;
4709 sig_type->per_cu.length = length;
4710 }
8b70b953 4711
3019eac3
DE
4712 slot = htab_find_slot (types_htab,
4713 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4714 INSERT);
8b70b953
TT
4715 gdb_assert (slot != NULL);
4716 if (*slot != NULL)
4717 {
3019eac3
DE
4718 sect_offset dup_offset;
4719
4720 if (dwo_file)
4721 {
4722 const struct dwo_unit *dup_tu = *slot;
4723
4724 dup_offset = dup_tu->offset;
4725 }
4726 else
4727 {
4728 const struct signatured_type *dup_tu = *slot;
4729
4730 dup_offset = dup_tu->per_cu.offset;
4731 }
b3c8eb43 4732
8b70b953 4733 complaint (&symfile_complaints,
c88ee1f0 4734 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4735 " the entry at offset 0x%x, signature %s"),
3019eac3 4736 offset.sect_off, dup_offset.sect_off,
4031ecc5 4737 hex_string (signature));
8b70b953 4738 }
3019eac3 4739 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4740
b4f54984 4741 if (dwarf_read_debug > 1)
4031ecc5 4742 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4743 offset.sect_off,
4031ecc5 4744 hex_string (signature));
348e048f 4745
dee91e82 4746 info_ptr += length;
8b70b953 4747 }
348e048f
DE
4748 }
4749
3019eac3
DE
4750 return types_htab;
4751}
4752
4753/* Create the hash table of all entries in the .debug_types section,
4754 and initialize all_type_units.
4755 The result is zero if there is an error (e.g. missing .debug_types section),
4756 otherwise non-zero. */
4757
4758static int
4759create_all_type_units (struct objfile *objfile)
4760{
4761 htab_t types_htab;
b4dd5633 4762 struct signatured_type **iter;
3019eac3
DE
4763
4764 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4765 if (types_htab == NULL)
4766 {
4767 dwarf2_per_objfile->signatured_types = NULL;
4768 return 0;
4769 }
4770
348e048f
DE
4771 dwarf2_per_objfile->signatured_types = types_htab;
4772
6aa5f3a6
DE
4773 dwarf2_per_objfile->n_type_units
4774 = dwarf2_per_objfile->n_allocated_type_units
4775 = htab_elements (types_htab);
d467dd73 4776 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
4777 = xmalloc (dwarf2_per_objfile->n_type_units
4778 * sizeof (struct signatured_type *));
d467dd73
DE
4779 iter = &dwarf2_per_objfile->all_type_units[0];
4780 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4781 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4782 == dwarf2_per_objfile->n_type_units);
1fd400ff 4783
348e048f
DE
4784 return 1;
4785}
4786
6aa5f3a6
DE
4787/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4788 If SLOT is non-NULL, it is the entry to use in the hash table.
4789 Otherwise we find one. */
4790
4791static struct signatured_type *
4792add_type_unit (ULONGEST sig, void **slot)
4793{
4794 struct objfile *objfile = dwarf2_per_objfile->objfile;
4795 int n_type_units = dwarf2_per_objfile->n_type_units;
4796 struct signatured_type *sig_type;
4797
4798 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4799 ++n_type_units;
4800 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4801 {
4802 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4803 dwarf2_per_objfile->n_allocated_type_units = 1;
4804 dwarf2_per_objfile->n_allocated_type_units *= 2;
4805 dwarf2_per_objfile->all_type_units
4806 = xrealloc (dwarf2_per_objfile->all_type_units,
4807 dwarf2_per_objfile->n_allocated_type_units
4808 * sizeof (struct signatured_type *));
4809 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4810 }
4811 dwarf2_per_objfile->n_type_units = n_type_units;
4812
4813 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4814 struct signatured_type);
4815 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4816 sig_type->signature = sig;
4817 sig_type->per_cu.is_debug_types = 1;
4818 if (dwarf2_per_objfile->using_index)
4819 {
4820 sig_type->per_cu.v.quick =
4821 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4822 struct dwarf2_per_cu_quick_data);
4823 }
4824
4825 if (slot == NULL)
4826 {
4827 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4828 sig_type, INSERT);
4829 }
4830 gdb_assert (*slot == NULL);
4831 *slot = sig_type;
4832 /* The rest of sig_type must be filled in by the caller. */
4833 return sig_type;
4834}
4835
a2ce51a0
DE
4836/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4837 Fill in SIG_ENTRY with DWO_ENTRY. */
4838
4839static void
4840fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4841 struct signatured_type *sig_entry,
4842 struct dwo_unit *dwo_entry)
4843{
7ee85ab1 4844 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4845 gdb_assert (! sig_entry->per_cu.queued);
4846 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4847 if (dwarf2_per_objfile->using_index)
4848 {
4849 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4850 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4851 }
4852 else
4853 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4854 gdb_assert (sig_entry->signature == dwo_entry->signature);
4855 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4856 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4857 gdb_assert (sig_entry->dwo_unit == NULL);
4858
4859 sig_entry->per_cu.section = dwo_entry->section;
4860 sig_entry->per_cu.offset = dwo_entry->offset;
4861 sig_entry->per_cu.length = dwo_entry->length;
4862 sig_entry->per_cu.reading_dwo_directly = 1;
4863 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4864 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4865 sig_entry->dwo_unit = dwo_entry;
4866}
4867
4868/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4869 If we haven't read the TU yet, create the signatured_type data structure
4870 for a TU to be read in directly from a DWO file, bypassing the stub.
4871 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4872 using .gdb_index, then when reading a CU we want to stay in the DWO file
4873 containing that CU. Otherwise we could end up reading several other DWO
4874 files (due to comdat folding) to process the transitive closure of all the
4875 mentioned TUs, and that can be slow. The current DWO file will have every
4876 type signature that it needs.
a2ce51a0
DE
4877 We only do this for .gdb_index because in the psymtab case we already have
4878 to read all the DWOs to build the type unit groups. */
4879
4880static struct signatured_type *
4881lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4882{
4883 struct objfile *objfile = dwarf2_per_objfile->objfile;
4884 struct dwo_file *dwo_file;
4885 struct dwo_unit find_dwo_entry, *dwo_entry;
4886 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4887 void **slot;
a2ce51a0
DE
4888
4889 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4890
6aa5f3a6
DE
4891 /* If TU skeletons have been removed then we may not have read in any
4892 TUs yet. */
4893 if (dwarf2_per_objfile->signatured_types == NULL)
4894 {
4895 dwarf2_per_objfile->signatured_types
4896 = allocate_signatured_type_table (objfile);
4897 }
a2ce51a0
DE
4898
4899 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4900 Use the global signatured_types array to do our own comdat-folding
4901 of types. If this is the first time we're reading this TU, and
4902 the TU has an entry in .gdb_index, replace the recorded data from
4903 .gdb_index with this TU. */
a2ce51a0 4904
a2ce51a0 4905 find_sig_entry.signature = sig;
6aa5f3a6
DE
4906 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4907 &find_sig_entry, INSERT);
4908 sig_entry = *slot;
7ee85ab1
DE
4909
4910 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4911 read. Don't reassign the global entry to point to this DWO if that's
4912 the case. Also note that if the TU is already being read, it may not
4913 have come from a DWO, the program may be a mix of Fission-compiled
4914 code and non-Fission-compiled code. */
4915
4916 /* Have we already tried to read this TU?
4917 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4918 needn't exist in the global table yet). */
4919 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4920 return sig_entry;
4921
6aa5f3a6
DE
4922 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4923 dwo_unit of the TU itself. */
4924 dwo_file = cu->dwo_unit->dwo_file;
4925
a2ce51a0
DE
4926 /* Ok, this is the first time we're reading this TU. */
4927 if (dwo_file->tus == NULL)
4928 return NULL;
4929 find_dwo_entry.signature = sig;
4930 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4931 if (dwo_entry == NULL)
4932 return NULL;
4933
6aa5f3a6
DE
4934 /* If the global table doesn't have an entry for this TU, add one. */
4935 if (sig_entry == NULL)
4936 sig_entry = add_type_unit (sig, slot);
4937
a2ce51a0 4938 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4939 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4940 return sig_entry;
4941}
4942
a2ce51a0
DE
4943/* Subroutine of lookup_signatured_type.
4944 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4945 then try the DWP file. If the TU stub (skeleton) has been removed then
4946 it won't be in .gdb_index. */
a2ce51a0
DE
4947
4948static struct signatured_type *
4949lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4950{
4951 struct objfile *objfile = dwarf2_per_objfile->objfile;
4952 struct dwp_file *dwp_file = get_dwp_file ();
4953 struct dwo_unit *dwo_entry;
4954 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4955 void **slot;
a2ce51a0
DE
4956
4957 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4958 gdb_assert (dwp_file != NULL);
4959
6aa5f3a6
DE
4960 /* If TU skeletons have been removed then we may not have read in any
4961 TUs yet. */
4962 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4963 {
6aa5f3a6
DE
4964 dwarf2_per_objfile->signatured_types
4965 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4966 }
4967
6aa5f3a6
DE
4968 find_sig_entry.signature = sig;
4969 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4970 &find_sig_entry, INSERT);
4971 sig_entry = *slot;
4972
4973 /* Have we already tried to read this TU?
4974 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4975 needn't exist in the global table yet). */
4976 if (sig_entry != NULL)
4977 return sig_entry;
4978
a2ce51a0
DE
4979 if (dwp_file->tus == NULL)
4980 return NULL;
57d63ce2
DE
4981 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4982 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4983 if (dwo_entry == NULL)
4984 return NULL;
4985
6aa5f3a6 4986 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
4987 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4988
a2ce51a0
DE
4989 return sig_entry;
4990}
4991
380bca97 4992/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4993 Returns NULL if signature SIG is not present in the table.
4994 It is up to the caller to complain about this. */
348e048f
DE
4995
4996static struct signatured_type *
a2ce51a0 4997lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 4998{
a2ce51a0
DE
4999 if (cu->dwo_unit
5000 && dwarf2_per_objfile->using_index)
5001 {
5002 /* We're in a DWO/DWP file, and we're using .gdb_index.
5003 These cases require special processing. */
5004 if (get_dwp_file () == NULL)
5005 return lookup_dwo_signatured_type (cu, sig);
5006 else
5007 return lookup_dwp_signatured_type (cu, sig);
5008 }
5009 else
5010 {
5011 struct signatured_type find_entry, *entry;
348e048f 5012
a2ce51a0
DE
5013 if (dwarf2_per_objfile->signatured_types == NULL)
5014 return NULL;
5015 find_entry.signature = sig;
5016 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
5017 return entry;
5018 }
348e048f 5019}
42e7ad6c
DE
5020\f
5021/* Low level DIE reading support. */
348e048f 5022
d85a05f0
DJ
5023/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5024
5025static void
5026init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5027 struct dwarf2_cu *cu,
3019eac3
DE
5028 struct dwarf2_section_info *section,
5029 struct dwo_file *dwo_file)
d85a05f0 5030{
fceca515 5031 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5032 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5033 reader->cu = cu;
3019eac3 5034 reader->dwo_file = dwo_file;
dee91e82
DE
5035 reader->die_section = section;
5036 reader->buffer = section->buffer;
f664829e 5037 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5038 reader->comp_dir = NULL;
d85a05f0
DJ
5039}
5040
b0c7bfa9
DE
5041/* Subroutine of init_cutu_and_read_dies to simplify it.
5042 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5043 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5044 already.
5045
5046 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5047 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5048 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5049 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5050 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5051 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5052 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5053 are filled in with the info of the DIE from the DWO file.
5054 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5055 provided an abbrev table to use.
5056 The result is non-zero if a valid (non-dummy) DIE was found. */
5057
5058static int
5059read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5060 struct dwo_unit *dwo_unit,
5061 int abbrev_table_provided,
5062 struct die_info *stub_comp_unit_die,
a2ce51a0 5063 const char *stub_comp_dir,
b0c7bfa9 5064 struct die_reader_specs *result_reader,
d521ce57 5065 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5066 struct die_info **result_comp_unit_die,
5067 int *result_has_children)
5068{
5069 struct objfile *objfile = dwarf2_per_objfile->objfile;
5070 struct dwarf2_cu *cu = this_cu->cu;
5071 struct dwarf2_section_info *section;
5072 bfd *abfd;
d521ce57 5073 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5074 ULONGEST signature; /* Or dwo_id. */
5075 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5076 int i,num_extra_attrs;
5077 struct dwarf2_section_info *dwo_abbrev_section;
5078 struct attribute *attr;
5079 struct die_info *comp_unit_die;
5080
b0aeadb3
DE
5081 /* At most one of these may be provided. */
5082 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5083
b0c7bfa9
DE
5084 /* These attributes aren't processed until later:
5085 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5086 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5087 referenced later. However, these attributes are found in the stub
5088 which we won't have later. In order to not impose this complication
5089 on the rest of the code, we read them here and copy them to the
5090 DWO CU/TU die. */
b0c7bfa9
DE
5091
5092 stmt_list = NULL;
5093 low_pc = NULL;
5094 high_pc = NULL;
5095 ranges = NULL;
5096 comp_dir = NULL;
5097
5098 if (stub_comp_unit_die != NULL)
5099 {
5100 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5101 DWO file. */
5102 if (! this_cu->is_debug_types)
5103 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5104 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5105 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5106 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5107 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5108
5109 /* There should be a DW_AT_addr_base attribute here (if needed).
5110 We need the value before we can process DW_FORM_GNU_addr_index. */
5111 cu->addr_base = 0;
5112 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5113 if (attr)
5114 cu->addr_base = DW_UNSND (attr);
5115
5116 /* There should be a DW_AT_ranges_base attribute here (if needed).
5117 We need the value before we can process DW_AT_ranges. */
5118 cu->ranges_base = 0;
5119 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5120 if (attr)
5121 cu->ranges_base = DW_UNSND (attr);
5122 }
a2ce51a0
DE
5123 else if (stub_comp_dir != NULL)
5124 {
5125 /* Reconstruct the comp_dir attribute to simplify the code below. */
5126 comp_dir = (struct attribute *)
5127 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5128 comp_dir->name = DW_AT_comp_dir;
5129 comp_dir->form = DW_FORM_string;
5130 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5131 DW_STRING (comp_dir) = stub_comp_dir;
5132 }
b0c7bfa9
DE
5133
5134 /* Set up for reading the DWO CU/TU. */
5135 cu->dwo_unit = dwo_unit;
5136 section = dwo_unit->section;
5137 dwarf2_read_section (objfile, section);
a32a8923 5138 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5139 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5140 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5141 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5142
5143 if (this_cu->is_debug_types)
5144 {
5145 ULONGEST header_signature;
5146 cu_offset type_offset_in_tu;
5147 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5148
5149 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5150 dwo_abbrev_section,
5151 info_ptr,
5152 &header_signature,
5153 &type_offset_in_tu);
a2ce51a0
DE
5154 /* This is not an assert because it can be caused by bad debug info. */
5155 if (sig_type->signature != header_signature)
5156 {
5157 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5158 " TU at offset 0x%x [in module %s]"),
5159 hex_string (sig_type->signature),
5160 hex_string (header_signature),
5161 dwo_unit->offset.sect_off,
5162 bfd_get_filename (abfd));
5163 }
b0c7bfa9
DE
5164 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5165 /* For DWOs coming from DWP files, we don't know the CU length
5166 nor the type's offset in the TU until now. */
5167 dwo_unit->length = get_cu_length (&cu->header);
5168 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5169
5170 /* Establish the type offset that can be used to lookup the type.
5171 For DWO files, we don't know it until now. */
5172 sig_type->type_offset_in_section.sect_off =
5173 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5174 }
5175 else
5176 {
5177 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5178 dwo_abbrev_section,
5179 info_ptr, 0);
5180 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5181 /* For DWOs coming from DWP files, we don't know the CU length
5182 until now. */
5183 dwo_unit->length = get_cu_length (&cu->header);
5184 }
5185
02142a6c
DE
5186 /* Replace the CU's original abbrev table with the DWO's.
5187 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5188 if (abbrev_table_provided)
5189 {
5190 /* Don't free the provided abbrev table, the caller of
5191 init_cutu_and_read_dies owns it. */
5192 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5193 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5194 make_cleanup (dwarf2_free_abbrev_table, cu);
5195 }
5196 else
5197 {
5198 dwarf2_free_abbrev_table (cu);
5199 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5200 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5201 }
5202
5203 /* Read in the die, but leave space to copy over the attributes
5204 from the stub. This has the benefit of simplifying the rest of
5205 the code - all the work to maintain the illusion of a single
5206 DW_TAG_{compile,type}_unit DIE is done here. */
5207 num_extra_attrs = ((stmt_list != NULL)
5208 + (low_pc != NULL)
5209 + (high_pc != NULL)
5210 + (ranges != NULL)
5211 + (comp_dir != NULL));
5212 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5213 result_has_children, num_extra_attrs);
5214
5215 /* Copy over the attributes from the stub to the DIE we just read in. */
5216 comp_unit_die = *result_comp_unit_die;
5217 i = comp_unit_die->num_attrs;
5218 if (stmt_list != NULL)
5219 comp_unit_die->attrs[i++] = *stmt_list;
5220 if (low_pc != NULL)
5221 comp_unit_die->attrs[i++] = *low_pc;
5222 if (high_pc != NULL)
5223 comp_unit_die->attrs[i++] = *high_pc;
5224 if (ranges != NULL)
5225 comp_unit_die->attrs[i++] = *ranges;
5226 if (comp_dir != NULL)
5227 comp_unit_die->attrs[i++] = *comp_dir;
5228 comp_unit_die->num_attrs += num_extra_attrs;
5229
b4f54984 5230 if (dwarf_die_debug)
bf6af496
DE
5231 {
5232 fprintf_unfiltered (gdb_stdlog,
5233 "Read die from %s@0x%x of %s:\n",
a32a8923 5234 get_section_name (section),
bf6af496
DE
5235 (unsigned) (begin_info_ptr - section->buffer),
5236 bfd_get_filename (abfd));
b4f54984 5237 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5238 }
5239
a2ce51a0
DE
5240 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5241 TUs by skipping the stub and going directly to the entry in the DWO file.
5242 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5243 to get it via circuitous means. Blech. */
5244 if (comp_dir != NULL)
5245 result_reader->comp_dir = DW_STRING (comp_dir);
5246
b0c7bfa9
DE
5247 /* Skip dummy compilation units. */
5248 if (info_ptr >= begin_info_ptr + dwo_unit->length
5249 || peek_abbrev_code (abfd, info_ptr) == 0)
5250 return 0;
5251
5252 *result_info_ptr = info_ptr;
5253 return 1;
5254}
5255
5256/* Subroutine of init_cutu_and_read_dies to simplify it.
5257 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5258 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5259
5260static struct dwo_unit *
5261lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5262 struct die_info *comp_unit_die)
5263{
5264 struct dwarf2_cu *cu = this_cu->cu;
5265 struct attribute *attr;
5266 ULONGEST signature;
5267 struct dwo_unit *dwo_unit;
5268 const char *comp_dir, *dwo_name;
5269
a2ce51a0
DE
5270 gdb_assert (cu != NULL);
5271
b0c7bfa9
DE
5272 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5273 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5274 gdb_assert (attr != NULL);
5275 dwo_name = DW_STRING (attr);
5276 comp_dir = NULL;
5277 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5278 if (attr)
5279 comp_dir = DW_STRING (attr);
5280
5281 if (this_cu->is_debug_types)
5282 {
5283 struct signatured_type *sig_type;
5284
5285 /* Since this_cu is the first member of struct signatured_type,
5286 we can go from a pointer to one to a pointer to the other. */
5287 sig_type = (struct signatured_type *) this_cu;
5288 signature = sig_type->signature;
5289 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5290 }
5291 else
5292 {
5293 struct attribute *attr;
5294
5295 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5296 if (! attr)
5297 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5298 " [in module %s]"),
4262abfb 5299 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5300 signature = DW_UNSND (attr);
5301 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5302 signature);
5303 }
5304
b0c7bfa9
DE
5305 return dwo_unit;
5306}
5307
a2ce51a0 5308/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5309 See it for a description of the parameters.
5310 Read a TU directly from a DWO file, bypassing the stub.
5311
5312 Note: This function could be a little bit simpler if we shared cleanups
5313 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5314 to do, so we keep this function self-contained. Or we could move this
5315 into our caller, but it's complex enough already. */
a2ce51a0
DE
5316
5317static void
6aa5f3a6
DE
5318init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5319 int use_existing_cu, int keep,
a2ce51a0
DE
5320 die_reader_func_ftype *die_reader_func,
5321 void *data)
5322{
5323 struct dwarf2_cu *cu;
5324 struct signatured_type *sig_type;
6aa5f3a6 5325 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5326 struct die_reader_specs reader;
5327 const gdb_byte *info_ptr;
5328 struct die_info *comp_unit_die;
5329 int has_children;
5330
5331 /* Verify we can do the following downcast, and that we have the
5332 data we need. */
5333 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5334 sig_type = (struct signatured_type *) this_cu;
5335 gdb_assert (sig_type->dwo_unit != NULL);
5336
5337 cleanups = make_cleanup (null_cleanup, NULL);
5338
6aa5f3a6
DE
5339 if (use_existing_cu && this_cu->cu != NULL)
5340 {
5341 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5342 cu = this_cu->cu;
5343 /* There's no need to do the rereading_dwo_cu handling that
5344 init_cutu_and_read_dies does since we don't read the stub. */
5345 }
5346 else
5347 {
5348 /* If !use_existing_cu, this_cu->cu must be NULL. */
5349 gdb_assert (this_cu->cu == NULL);
5350 cu = xmalloc (sizeof (*cu));
5351 init_one_comp_unit (cu, this_cu);
5352 /* If an error occurs while loading, release our storage. */
5353 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5354 }
5355
5356 /* A future optimization, if needed, would be to use an existing
5357 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5358 could share abbrev tables. */
a2ce51a0
DE
5359
5360 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5361 0 /* abbrev_table_provided */,
5362 NULL /* stub_comp_unit_die */,
5363 sig_type->dwo_unit->dwo_file->comp_dir,
5364 &reader, &info_ptr,
5365 &comp_unit_die, &has_children) == 0)
5366 {
5367 /* Dummy die. */
5368 do_cleanups (cleanups);
5369 return;
5370 }
5371
5372 /* All the "real" work is done here. */
5373 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5374
6aa5f3a6 5375 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5376 but the alternative is making the latter more complex.
5377 This function is only for the special case of using DWO files directly:
5378 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5379 if (free_cu_cleanup != NULL)
a2ce51a0 5380 {
6aa5f3a6
DE
5381 if (keep)
5382 {
5383 /* We've successfully allocated this compilation unit. Let our
5384 caller clean it up when finished with it. */
5385 discard_cleanups (free_cu_cleanup);
a2ce51a0 5386
6aa5f3a6
DE
5387 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5388 So we have to manually free the abbrev table. */
5389 dwarf2_free_abbrev_table (cu);
a2ce51a0 5390
6aa5f3a6
DE
5391 /* Link this CU into read_in_chain. */
5392 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5393 dwarf2_per_objfile->read_in_chain = this_cu;
5394 }
5395 else
5396 do_cleanups (free_cu_cleanup);
a2ce51a0 5397 }
a2ce51a0
DE
5398
5399 do_cleanups (cleanups);
5400}
5401
fd820528 5402/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5403 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5404
f4dc4d17
DE
5405 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5406 Otherwise the table specified in the comp unit header is read in and used.
5407 This is an optimization for when we already have the abbrev table.
5408
dee91e82
DE
5409 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5410 Otherwise, a new CU is allocated with xmalloc.
5411
5412 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5413 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5414
5415 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5416 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5417
70221824 5418static void
fd820528 5419init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5420 struct abbrev_table *abbrev_table,
fd820528
DE
5421 int use_existing_cu, int keep,
5422 die_reader_func_ftype *die_reader_func,
5423 void *data)
c906108c 5424{
dee91e82 5425 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5426 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5427 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5428 struct dwarf2_cu *cu;
d521ce57 5429 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5430 struct die_reader_specs reader;
d85a05f0 5431 struct die_info *comp_unit_die;
dee91e82 5432 int has_children;
d85a05f0 5433 struct attribute *attr;
365156ad 5434 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5435 struct signatured_type *sig_type = NULL;
4bdcc0c1 5436 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5437 /* Non-zero if CU currently points to a DWO file and we need to
5438 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5439 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5440 int rereading_dwo_cu = 0;
c906108c 5441
b4f54984 5442 if (dwarf_die_debug)
09406207
DE
5443 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5444 this_cu->is_debug_types ? "type" : "comp",
5445 this_cu->offset.sect_off);
5446
dee91e82
DE
5447 if (use_existing_cu)
5448 gdb_assert (keep);
23745b47 5449
a2ce51a0
DE
5450 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5451 file (instead of going through the stub), short-circuit all of this. */
5452 if (this_cu->reading_dwo_directly)
5453 {
5454 /* Narrow down the scope of possibilities to have to understand. */
5455 gdb_assert (this_cu->is_debug_types);
5456 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5457 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5458 die_reader_func, data);
a2ce51a0
DE
5459 return;
5460 }
5461
dee91e82
DE
5462 cleanups = make_cleanup (null_cleanup, NULL);
5463
5464 /* This is cheap if the section is already read in. */
5465 dwarf2_read_section (objfile, section);
5466
5467 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5468
5469 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5470
5471 if (use_existing_cu && this_cu->cu != NULL)
5472 {
5473 cu = this_cu->cu;
42e7ad6c
DE
5474 /* If this CU is from a DWO file we need to start over, we need to
5475 refetch the attributes from the skeleton CU.
5476 This could be optimized by retrieving those attributes from when we
5477 were here the first time: the previous comp_unit_die was stored in
5478 comp_unit_obstack. But there's no data yet that we need this
5479 optimization. */
5480 if (cu->dwo_unit != NULL)
5481 rereading_dwo_cu = 1;
dee91e82
DE
5482 }
5483 else
5484 {
5485 /* If !use_existing_cu, this_cu->cu must be NULL. */
5486 gdb_assert (this_cu->cu == NULL);
dee91e82
DE
5487 cu = xmalloc (sizeof (*cu));
5488 init_one_comp_unit (cu, this_cu);
dee91e82 5489 /* If an error occurs while loading, release our storage. */
365156ad 5490 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5491 }
dee91e82 5492
b0c7bfa9 5493 /* Get the header. */
42e7ad6c
DE
5494 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5495 {
5496 /* We already have the header, there's no need to read it in again. */
5497 info_ptr += cu->header.first_die_offset.cu_off;
5498 }
5499 else
5500 {
3019eac3 5501 if (this_cu->is_debug_types)
dee91e82
DE
5502 {
5503 ULONGEST signature;
42e7ad6c 5504 cu_offset type_offset_in_tu;
dee91e82 5505
4bdcc0c1
DE
5506 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5507 abbrev_section, info_ptr,
42e7ad6c
DE
5508 &signature,
5509 &type_offset_in_tu);
dee91e82 5510
42e7ad6c
DE
5511 /* Since per_cu is the first member of struct signatured_type,
5512 we can go from a pointer to one to a pointer to the other. */
5513 sig_type = (struct signatured_type *) this_cu;
5514 gdb_assert (sig_type->signature == signature);
5515 gdb_assert (sig_type->type_offset_in_tu.cu_off
5516 == type_offset_in_tu.cu_off);
dee91e82
DE
5517 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5518
42e7ad6c
DE
5519 /* LENGTH has not been set yet for type units if we're
5520 using .gdb_index. */
1ce1cefd 5521 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5522
5523 /* Establish the type offset that can be used to lookup the type. */
5524 sig_type->type_offset_in_section.sect_off =
5525 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5526 }
5527 else
5528 {
4bdcc0c1
DE
5529 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5530 abbrev_section,
5531 info_ptr, 0);
dee91e82
DE
5532
5533 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5534 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5535 }
5536 }
10b3939b 5537
6caca83c 5538 /* Skip dummy compilation units. */
dee91e82 5539 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5540 || peek_abbrev_code (abfd, info_ptr) == 0)
5541 {
dee91e82 5542 do_cleanups (cleanups);
21b2bd31 5543 return;
6caca83c
CC
5544 }
5545
433df2d4
DE
5546 /* If we don't have them yet, read the abbrevs for this compilation unit.
5547 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5548 done. Note that it's important that if the CU had an abbrev table
5549 on entry we don't free it when we're done: Somewhere up the call stack
5550 it may be in use. */
f4dc4d17
DE
5551 if (abbrev_table != NULL)
5552 {
5553 gdb_assert (cu->abbrev_table == NULL);
5554 gdb_assert (cu->header.abbrev_offset.sect_off
5555 == abbrev_table->offset.sect_off);
5556 cu->abbrev_table = abbrev_table;
5557 }
5558 else if (cu->abbrev_table == NULL)
dee91e82 5559 {
4bdcc0c1 5560 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5561 make_cleanup (dwarf2_free_abbrev_table, cu);
5562 }
42e7ad6c
DE
5563 else if (rereading_dwo_cu)
5564 {
5565 dwarf2_free_abbrev_table (cu);
5566 dwarf2_read_abbrevs (cu, abbrev_section);
5567 }
af703f96 5568
dee91e82 5569 /* Read the top level CU/TU die. */
3019eac3 5570 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5571 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5572
b0c7bfa9
DE
5573 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5574 from the DWO file.
5575 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5576 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5577 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5578 if (attr)
5579 {
3019eac3 5580 struct dwo_unit *dwo_unit;
b0c7bfa9 5581 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5582
5583 if (has_children)
6a506a2d
DE
5584 {
5585 complaint (&symfile_complaints,
5586 _("compilation unit with DW_AT_GNU_dwo_name"
5587 " has children (offset 0x%x) [in module %s]"),
5588 this_cu->offset.sect_off, bfd_get_filename (abfd));
5589 }
b0c7bfa9 5590 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5591 if (dwo_unit != NULL)
3019eac3 5592 {
6a506a2d
DE
5593 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5594 abbrev_table != NULL,
a2ce51a0 5595 comp_unit_die, NULL,
6a506a2d
DE
5596 &reader, &info_ptr,
5597 &dwo_comp_unit_die, &has_children) == 0)
5598 {
5599 /* Dummy die. */
5600 do_cleanups (cleanups);
5601 return;
5602 }
5603 comp_unit_die = dwo_comp_unit_die;
5604 }
5605 else
5606 {
5607 /* Yikes, we couldn't find the rest of the DIE, we only have
5608 the stub. A complaint has already been logged. There's
5609 not much more we can do except pass on the stub DIE to
5610 die_reader_func. We don't want to throw an error on bad
5611 debug info. */
3019eac3
DE
5612 }
5613 }
5614
b0c7bfa9 5615 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5616 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5617
b0c7bfa9 5618 /* Done, clean up. */
365156ad 5619 if (free_cu_cleanup != NULL)
348e048f 5620 {
365156ad
TT
5621 if (keep)
5622 {
5623 /* We've successfully allocated this compilation unit. Let our
5624 caller clean it up when finished with it. */
5625 discard_cleanups (free_cu_cleanup);
dee91e82 5626
365156ad
TT
5627 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5628 So we have to manually free the abbrev table. */
5629 dwarf2_free_abbrev_table (cu);
dee91e82 5630
365156ad
TT
5631 /* Link this CU into read_in_chain. */
5632 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5633 dwarf2_per_objfile->read_in_chain = this_cu;
5634 }
5635 else
5636 do_cleanups (free_cu_cleanup);
348e048f 5637 }
365156ad
TT
5638
5639 do_cleanups (cleanups);
dee91e82
DE
5640}
5641
33e80786
DE
5642/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5643 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5644 to have already done the lookup to find the DWO file).
dee91e82
DE
5645
5646 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5647 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5648
5649 We fill in THIS_CU->length.
5650
5651 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5652 linker) then DIE_READER_FUNC will not get called.
5653
5654 THIS_CU->cu is always freed when done.
3019eac3
DE
5655 This is done in order to not leave THIS_CU->cu in a state where we have
5656 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5657
5658static void
5659init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5660 struct dwo_file *dwo_file,
dee91e82
DE
5661 die_reader_func_ftype *die_reader_func,
5662 void *data)
5663{
5664 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5665 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5666 bfd *abfd = get_section_bfd_owner (section);
33e80786 5667 struct dwarf2_section_info *abbrev_section;
dee91e82 5668 struct dwarf2_cu cu;
d521ce57 5669 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5670 struct die_reader_specs reader;
5671 struct cleanup *cleanups;
5672 struct die_info *comp_unit_die;
5673 int has_children;
5674
b4f54984 5675 if (dwarf_die_debug)
09406207
DE
5676 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5677 this_cu->is_debug_types ? "type" : "comp",
5678 this_cu->offset.sect_off);
5679
dee91e82
DE
5680 gdb_assert (this_cu->cu == NULL);
5681
33e80786
DE
5682 abbrev_section = (dwo_file != NULL
5683 ? &dwo_file->sections.abbrev
5684 : get_abbrev_section_for_cu (this_cu));
5685
dee91e82
DE
5686 /* This is cheap if the section is already read in. */
5687 dwarf2_read_section (objfile, section);
5688
5689 init_one_comp_unit (&cu, this_cu);
5690
5691 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5692
5693 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5694 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5695 abbrev_section, info_ptr,
3019eac3 5696 this_cu->is_debug_types);
dee91e82 5697
1ce1cefd 5698 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5699
5700 /* Skip dummy compilation units. */
5701 if (info_ptr >= begin_info_ptr + this_cu->length
5702 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5703 {
dee91e82 5704 do_cleanups (cleanups);
21b2bd31 5705 return;
93311388 5706 }
72bf9492 5707
dee91e82
DE
5708 dwarf2_read_abbrevs (&cu, abbrev_section);
5709 make_cleanup (dwarf2_free_abbrev_table, &cu);
5710
3019eac3 5711 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5712 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5713
5714 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5715
5716 do_cleanups (cleanups);
5717}
5718
3019eac3
DE
5719/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5720 does not lookup the specified DWO file.
5721 This cannot be used to read DWO files.
dee91e82
DE
5722
5723 THIS_CU->cu is always freed when done.
3019eac3
DE
5724 This is done in order to not leave THIS_CU->cu in a state where we have
5725 to care whether it refers to the "main" CU or the DWO CU.
5726 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5727
5728static void
5729init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5730 die_reader_func_ftype *die_reader_func,
5731 void *data)
5732{
33e80786 5733 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5734}
0018ea6f
DE
5735\f
5736/* Type Unit Groups.
dee91e82 5737
0018ea6f
DE
5738 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5739 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5740 so that all types coming from the same compilation (.o file) are grouped
5741 together. A future step could be to put the types in the same symtab as
5742 the CU the types ultimately came from. */
ff013f42 5743
f4dc4d17
DE
5744static hashval_t
5745hash_type_unit_group (const void *item)
5746{
094b34ac 5747 const struct type_unit_group *tu_group = item;
f4dc4d17 5748
094b34ac 5749 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5750}
348e048f
DE
5751
5752static int
f4dc4d17 5753eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5754{
f4dc4d17
DE
5755 const struct type_unit_group *lhs = item_lhs;
5756 const struct type_unit_group *rhs = item_rhs;
348e048f 5757
094b34ac 5758 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5759}
348e048f 5760
f4dc4d17
DE
5761/* Allocate a hash table for type unit groups. */
5762
5763static htab_t
5764allocate_type_unit_groups_table (void)
5765{
5766 return htab_create_alloc_ex (3,
5767 hash_type_unit_group,
5768 eq_type_unit_group,
5769 NULL,
5770 &dwarf2_per_objfile->objfile->objfile_obstack,
5771 hashtab_obstack_allocate,
5772 dummy_obstack_deallocate);
5773}
dee91e82 5774
f4dc4d17
DE
5775/* Type units that don't have DW_AT_stmt_list are grouped into their own
5776 partial symtabs. We combine several TUs per psymtab to not let the size
5777 of any one psymtab grow too big. */
5778#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5779#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5780
094b34ac 5781/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5782 Create the type_unit_group object used to hold one or more TUs. */
5783
5784static struct type_unit_group *
094b34ac 5785create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5786{
5787 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5788 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5789 struct type_unit_group *tu_group;
f4dc4d17
DE
5790
5791 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5792 struct type_unit_group);
094b34ac 5793 per_cu = &tu_group->per_cu;
f4dc4d17 5794 per_cu->objfile = objfile;
f4dc4d17 5795
094b34ac
DE
5796 if (dwarf2_per_objfile->using_index)
5797 {
5798 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5799 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5800 }
5801 else
5802 {
5803 unsigned int line_offset = line_offset_struct.sect_off;
5804 struct partial_symtab *pst;
5805 char *name;
5806
5807 /* Give the symtab a useful name for debug purposes. */
5808 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5809 name = xstrprintf ("<type_units_%d>",
5810 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5811 else
5812 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5813
5814 pst = create_partial_symtab (per_cu, name);
5815 pst->anonymous = 1;
f4dc4d17 5816
094b34ac
DE
5817 xfree (name);
5818 }
f4dc4d17 5819
094b34ac
DE
5820 tu_group->hash.dwo_unit = cu->dwo_unit;
5821 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5822
5823 return tu_group;
5824}
5825
094b34ac
DE
5826/* Look up the type_unit_group for type unit CU, and create it if necessary.
5827 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5828
5829static struct type_unit_group *
ff39bb5e 5830get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5831{
5832 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5833 struct type_unit_group *tu_group;
5834 void **slot;
5835 unsigned int line_offset;
5836 struct type_unit_group type_unit_group_for_lookup;
5837
5838 if (dwarf2_per_objfile->type_unit_groups == NULL)
5839 {
5840 dwarf2_per_objfile->type_unit_groups =
5841 allocate_type_unit_groups_table ();
5842 }
5843
5844 /* Do we need to create a new group, or can we use an existing one? */
5845
5846 if (stmt_list)
5847 {
5848 line_offset = DW_UNSND (stmt_list);
5849 ++tu_stats->nr_symtab_sharers;
5850 }
5851 else
5852 {
5853 /* Ugh, no stmt_list. Rare, but we have to handle it.
5854 We can do various things here like create one group per TU or
5855 spread them over multiple groups to split up the expansion work.
5856 To avoid worst case scenarios (too many groups or too large groups)
5857 we, umm, group them in bunches. */
5858 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5859 | (tu_stats->nr_stmt_less_type_units
5860 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5861 ++tu_stats->nr_stmt_less_type_units;
5862 }
5863
094b34ac
DE
5864 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5865 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5866 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5867 &type_unit_group_for_lookup, INSERT);
5868 if (*slot != NULL)
5869 {
5870 tu_group = *slot;
5871 gdb_assert (tu_group != NULL);
5872 }
5873 else
5874 {
5875 sect_offset line_offset_struct;
5876
5877 line_offset_struct.sect_off = line_offset;
094b34ac 5878 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5879 *slot = tu_group;
5880 ++tu_stats->nr_symtabs;
5881 }
5882
5883 return tu_group;
5884}
0018ea6f
DE
5885\f
5886/* Partial symbol tables. */
5887
5888/* Create a psymtab named NAME and assign it to PER_CU.
5889
5890 The caller must fill in the following details:
5891 dirname, textlow, texthigh. */
5892
5893static struct partial_symtab *
5894create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5895{
5896 struct objfile *objfile = per_cu->objfile;
5897 struct partial_symtab *pst;
5898
18a94d75 5899 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
5900 objfile->global_psymbols.next,
5901 objfile->static_psymbols.next);
5902
5903 pst->psymtabs_addrmap_supported = 1;
5904
5905 /* This is the glue that links PST into GDB's symbol API. */
5906 pst->read_symtab_private = per_cu;
5907 pst->read_symtab = dwarf2_read_symtab;
5908 per_cu->v.psymtab = pst;
5909
5910 return pst;
5911}
5912
b93601f3
TT
5913/* The DATA object passed to process_psymtab_comp_unit_reader has this
5914 type. */
5915
5916struct process_psymtab_comp_unit_data
5917{
5918 /* True if we are reading a DW_TAG_partial_unit. */
5919
5920 int want_partial_unit;
5921
5922 /* The "pretend" language that is used if the CU doesn't declare a
5923 language. */
5924
5925 enum language pretend_language;
5926};
5927
0018ea6f
DE
5928/* die_reader_func for process_psymtab_comp_unit. */
5929
5930static void
5931process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5932 const gdb_byte *info_ptr,
0018ea6f
DE
5933 struct die_info *comp_unit_die,
5934 int has_children,
5935 void *data)
5936{
5937 struct dwarf2_cu *cu = reader->cu;
5938 struct objfile *objfile = cu->objfile;
3e29f34a 5939 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f
DE
5940 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5941 struct attribute *attr;
5942 CORE_ADDR baseaddr;
5943 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5944 struct partial_symtab *pst;
5945 int has_pc_info;
5946 const char *filename;
b93601f3 5947 struct process_psymtab_comp_unit_data *info = data;
0018ea6f 5948
b93601f3 5949 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5950 return;
5951
5952 gdb_assert (! per_cu->is_debug_types);
5953
b93601f3 5954 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5955
5956 cu->list_in_scope = &file_symbols;
5957
5958 /* Allocate a new partial symbol table structure. */
5959 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5960 if (attr == NULL || !DW_STRING (attr))
5961 filename = "";
5962 else
5963 filename = DW_STRING (attr);
5964
5965 pst = create_partial_symtab (per_cu, filename);
5966
5967 /* This must be done before calling dwarf2_build_include_psymtabs. */
5968 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5969 if (attr != NULL)
5970 pst->dirname = DW_STRING (attr);
5971
5972 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5973
5974 dwarf2_find_base_address (comp_unit_die, cu);
5975
5976 /* Possibly set the default values of LOWPC and HIGHPC from
5977 `DW_AT_ranges'. */
5978 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5979 &best_highpc, cu, pst);
5980 if (has_pc_info == 1 && best_lowpc < best_highpc)
5981 /* Store the contiguous range if it is not empty; it can be empty for
5982 CUs with no code. */
5983 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
5984 gdbarch_adjust_dwarf2_addr (gdbarch,
5985 best_lowpc + baseaddr),
5986 gdbarch_adjust_dwarf2_addr (gdbarch,
5987 best_highpc + baseaddr) - 1,
5988 pst);
0018ea6f
DE
5989
5990 /* Check if comp unit has_children.
5991 If so, read the rest of the partial symbols from this comp unit.
5992 If not, there's no more debug_info for this comp unit. */
5993 if (has_children)
5994 {
5995 struct partial_die_info *first_die;
5996 CORE_ADDR lowpc, highpc;
5997
5998 lowpc = ((CORE_ADDR) -1);
5999 highpc = ((CORE_ADDR) 0);
6000
6001 first_die = load_partial_dies (reader, info_ptr, 1);
6002
6003 scan_partial_symbols (first_die, &lowpc, &highpc,
6004 ! has_pc_info, cu);
6005
6006 /* If we didn't find a lowpc, set it to highpc to avoid
6007 complaints from `maint check'. */
6008 if (lowpc == ((CORE_ADDR) -1))
6009 lowpc = highpc;
6010
6011 /* If the compilation unit didn't have an explicit address range,
6012 then use the information extracted from its child dies. */
6013 if (! has_pc_info)
6014 {
6015 best_lowpc = lowpc;
6016 best_highpc = highpc;
6017 }
6018 }
3e29f34a
MR
6019 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6020 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f
DE
6021
6022 pst->n_global_syms = objfile->global_psymbols.next -
6023 (objfile->global_psymbols.list + pst->globals_offset);
6024 pst->n_static_syms = objfile->static_psymbols.next -
6025 (objfile->static_psymbols.list + pst->statics_offset);
6026 sort_pst_symbols (objfile, pst);
6027
6028 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6029 {
6030 int i;
6031 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6032 struct dwarf2_per_cu_data *iter;
6033
6034 /* Fill in 'dependencies' here; we fill in 'users' in a
6035 post-pass. */
6036 pst->number_of_dependencies = len;
6037 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6038 len * sizeof (struct symtab *));
6039 for (i = 0;
6040 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6041 i, iter);
6042 ++i)
6043 pst->dependencies[i] = iter->v.psymtab;
6044
6045 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6046 }
6047
6048 /* Get the list of files included in the current compilation unit,
6049 and build a psymtab for each of them. */
6050 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6051
b4f54984 6052 if (dwarf_read_debug)
0018ea6f
DE
6053 {
6054 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6055
6056 fprintf_unfiltered (gdb_stdlog,
6057 "Psymtab for %s unit @0x%x: %s - %s"
6058 ", %d global, %d static syms\n",
6059 per_cu->is_debug_types ? "type" : "comp",
6060 per_cu->offset.sect_off,
6061 paddress (gdbarch, pst->textlow),
6062 paddress (gdbarch, pst->texthigh),
6063 pst->n_global_syms, pst->n_static_syms);
6064 }
6065}
6066
6067/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6068 Process compilation unit THIS_CU for a psymtab. */
6069
6070static void
6071process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6072 int want_partial_unit,
6073 enum language pretend_language)
0018ea6f 6074{
b93601f3
TT
6075 struct process_psymtab_comp_unit_data info;
6076
0018ea6f
DE
6077 /* If this compilation unit was already read in, free the
6078 cached copy in order to read it in again. This is
6079 necessary because we skipped some symbols when we first
6080 read in the compilation unit (see load_partial_dies).
6081 This problem could be avoided, but the benefit is unclear. */
6082 if (this_cu->cu != NULL)
6083 free_one_cached_comp_unit (this_cu);
6084
6085 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6086 info.want_partial_unit = want_partial_unit;
6087 info.pretend_language = pretend_language;
0018ea6f
DE
6088 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6089 process_psymtab_comp_unit_reader,
b93601f3 6090 &info);
0018ea6f
DE
6091
6092 /* Age out any secondary CUs. */
6093 age_cached_comp_units ();
6094}
f4dc4d17
DE
6095
6096/* Reader function for build_type_psymtabs. */
6097
6098static void
6099build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6100 const gdb_byte *info_ptr,
f4dc4d17
DE
6101 struct die_info *type_unit_die,
6102 int has_children,
6103 void *data)
6104{
6105 struct objfile *objfile = dwarf2_per_objfile->objfile;
6106 struct dwarf2_cu *cu = reader->cu;
6107 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6108 struct signatured_type *sig_type;
f4dc4d17
DE
6109 struct type_unit_group *tu_group;
6110 struct attribute *attr;
6111 struct partial_die_info *first_die;
6112 CORE_ADDR lowpc, highpc;
6113 struct partial_symtab *pst;
6114
6115 gdb_assert (data == NULL);
0186c6a7
DE
6116 gdb_assert (per_cu->is_debug_types);
6117 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6118
6119 if (! has_children)
6120 return;
6121
6122 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6123 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6124
0186c6a7 6125 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6126
6127 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6128 cu->list_in_scope = &file_symbols;
6129 pst = create_partial_symtab (per_cu, "");
6130 pst->anonymous = 1;
6131
6132 first_die = load_partial_dies (reader, info_ptr, 1);
6133
6134 lowpc = (CORE_ADDR) -1;
6135 highpc = (CORE_ADDR) 0;
6136 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6137
6138 pst->n_global_syms = objfile->global_psymbols.next -
6139 (objfile->global_psymbols.list + pst->globals_offset);
6140 pst->n_static_syms = objfile->static_psymbols.next -
6141 (objfile->static_psymbols.list + pst->statics_offset);
5c80ed9d 6142 sort_pst_symbols (objfile, pst);
f4dc4d17
DE
6143}
6144
73051182
DE
6145/* Struct used to sort TUs by their abbreviation table offset. */
6146
6147struct tu_abbrev_offset
6148{
6149 struct signatured_type *sig_type;
6150 sect_offset abbrev_offset;
6151};
6152
6153/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6154
6155static int
6156sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6157{
6158 const struct tu_abbrev_offset * const *a = ap;
6159 const struct tu_abbrev_offset * const *b = bp;
6160 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6161 unsigned int boff = (*b)->abbrev_offset.sect_off;
6162
6163 return (aoff > boff) - (aoff < boff);
6164}
6165
6166/* Efficiently read all the type units.
6167 This does the bulk of the work for build_type_psymtabs.
6168
6169 The efficiency is because we sort TUs by the abbrev table they use and
6170 only read each abbrev table once. In one program there are 200K TUs
6171 sharing 8K abbrev tables.
6172
6173 The main purpose of this function is to support building the
6174 dwarf2_per_objfile->type_unit_groups table.
6175 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6176 can collapse the search space by grouping them by stmt_list.
6177 The savings can be significant, in the same program from above the 200K TUs
6178 share 8K stmt_list tables.
6179
6180 FUNC is expected to call get_type_unit_group, which will create the
6181 struct type_unit_group if necessary and add it to
6182 dwarf2_per_objfile->type_unit_groups. */
6183
6184static void
6185build_type_psymtabs_1 (void)
6186{
6187 struct objfile *objfile = dwarf2_per_objfile->objfile;
6188 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6189 struct cleanup *cleanups;
6190 struct abbrev_table *abbrev_table;
6191 sect_offset abbrev_offset;
6192 struct tu_abbrev_offset *sorted_by_abbrev;
6193 struct type_unit_group **iter;
6194 int i;
6195
6196 /* It's up to the caller to not call us multiple times. */
6197 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6198
6199 if (dwarf2_per_objfile->n_type_units == 0)
6200 return;
6201
6202 /* TUs typically share abbrev tables, and there can be way more TUs than
6203 abbrev tables. Sort by abbrev table to reduce the number of times we
6204 read each abbrev table in.
6205 Alternatives are to punt or to maintain a cache of abbrev tables.
6206 This is simpler and efficient enough for now.
6207
6208 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6209 symtab to use). Typically TUs with the same abbrev offset have the same
6210 stmt_list value too so in practice this should work well.
6211
6212 The basic algorithm here is:
6213
6214 sort TUs by abbrev table
6215 for each TU with same abbrev table:
6216 read abbrev table if first user
6217 read TU top level DIE
6218 [IWBN if DWO skeletons had DW_AT_stmt_list]
6219 call FUNC */
6220
b4f54984 6221 if (dwarf_read_debug)
73051182
DE
6222 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6223
6224 /* Sort in a separate table to maintain the order of all_type_units
6225 for .gdb_index: TU indices directly index all_type_units. */
6226 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6227 dwarf2_per_objfile->n_type_units);
6228 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6229 {
6230 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6231
6232 sorted_by_abbrev[i].sig_type = sig_type;
6233 sorted_by_abbrev[i].abbrev_offset =
6234 read_abbrev_offset (sig_type->per_cu.section,
6235 sig_type->per_cu.offset);
6236 }
6237 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6238 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6239 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6240
6241 abbrev_offset.sect_off = ~(unsigned) 0;
6242 abbrev_table = NULL;
6243 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6244
6245 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6246 {
6247 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6248
6249 /* Switch to the next abbrev table if necessary. */
6250 if (abbrev_table == NULL
6251 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6252 {
6253 if (abbrev_table != NULL)
6254 {
6255 abbrev_table_free (abbrev_table);
6256 /* Reset to NULL in case abbrev_table_read_table throws
6257 an error: abbrev_table_free_cleanup will get called. */
6258 abbrev_table = NULL;
6259 }
6260 abbrev_offset = tu->abbrev_offset;
6261 abbrev_table =
6262 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6263 abbrev_offset);
6264 ++tu_stats->nr_uniq_abbrev_tables;
6265 }
6266
6267 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6268 build_type_psymtabs_reader, NULL);
6269 }
6270
73051182 6271 do_cleanups (cleanups);
6aa5f3a6 6272}
73051182 6273
6aa5f3a6
DE
6274/* Print collected type unit statistics. */
6275
6276static void
6277print_tu_stats (void)
6278{
6279 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6280
6281 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6282 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6283 dwarf2_per_objfile->n_type_units);
6284 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6285 tu_stats->nr_uniq_abbrev_tables);
6286 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6287 tu_stats->nr_symtabs);
6288 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6289 tu_stats->nr_symtab_sharers);
6290 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6291 tu_stats->nr_stmt_less_type_units);
6292 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6293 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6294}
6295
f4dc4d17
DE
6296/* Traversal function for build_type_psymtabs. */
6297
6298static int
6299build_type_psymtab_dependencies (void **slot, void *info)
6300{
6301 struct objfile *objfile = dwarf2_per_objfile->objfile;
6302 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6303 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6304 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6305 int len = VEC_length (sig_type_ptr, tu_group->tus);
6306 struct signatured_type *iter;
f4dc4d17
DE
6307 int i;
6308
6309 gdb_assert (len > 0);
0186c6a7 6310 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6311
6312 pst->number_of_dependencies = len;
6313 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6314 len * sizeof (struct psymtab *));
6315 for (i = 0;
0186c6a7 6316 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6317 ++i)
6318 {
0186c6a7
DE
6319 gdb_assert (iter->per_cu.is_debug_types);
6320 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6321 iter->type_unit_group = tu_group;
f4dc4d17
DE
6322 }
6323
0186c6a7 6324 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6325
6326 return 1;
6327}
6328
6329/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6330 Build partial symbol tables for the .debug_types comp-units. */
6331
6332static void
6333build_type_psymtabs (struct objfile *objfile)
6334{
0e50663e 6335 if (! create_all_type_units (objfile))
348e048f
DE
6336 return;
6337
73051182 6338 build_type_psymtabs_1 ();
6aa5f3a6 6339}
f4dc4d17 6340
6aa5f3a6
DE
6341/* Traversal function for process_skeletonless_type_unit.
6342 Read a TU in a DWO file and build partial symbols for it. */
6343
6344static int
6345process_skeletonless_type_unit (void **slot, void *info)
6346{
6347 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6348 struct objfile *objfile = info;
6349 struct signatured_type find_entry, *entry;
6350
6351 /* If this TU doesn't exist in the global table, add it and read it in. */
6352
6353 if (dwarf2_per_objfile->signatured_types == NULL)
6354 {
6355 dwarf2_per_objfile->signatured_types
6356 = allocate_signatured_type_table (objfile);
6357 }
6358
6359 find_entry.signature = dwo_unit->signature;
6360 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6361 INSERT);
6362 /* If we've already seen this type there's nothing to do. What's happening
6363 is we're doing our own version of comdat-folding here. */
6364 if (*slot != NULL)
6365 return 1;
6366
6367 /* This does the job that create_all_type_units would have done for
6368 this TU. */
6369 entry = add_type_unit (dwo_unit->signature, slot);
6370 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6371 *slot = entry;
6372
6373 /* This does the job that build_type_psymtabs_1 would have done. */
6374 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6375 build_type_psymtabs_reader, NULL);
6376
6377 return 1;
6378}
6379
6380/* Traversal function for process_skeletonless_type_units. */
6381
6382static int
6383process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6384{
6385 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6386
6387 if (dwo_file->tus != NULL)
6388 {
6389 htab_traverse_noresize (dwo_file->tus,
6390 process_skeletonless_type_unit, info);
6391 }
6392
6393 return 1;
6394}
6395
6396/* Scan all TUs of DWO files, verifying we've processed them.
6397 This is needed in case a TU was emitted without its skeleton.
6398 Note: This can't be done until we know what all the DWO files are. */
6399
6400static void
6401process_skeletonless_type_units (struct objfile *objfile)
6402{
6403 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6404 if (get_dwp_file () == NULL
6405 && dwarf2_per_objfile->dwo_files != NULL)
6406 {
6407 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6408 process_dwo_file_for_skeletonless_type_units,
6409 objfile);
6410 }
348e048f
DE
6411}
6412
60606b2c
TT
6413/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6414
6415static void
6416psymtabs_addrmap_cleanup (void *o)
6417{
6418 struct objfile *objfile = o;
ec61707d 6419
60606b2c
TT
6420 objfile->psymtabs_addrmap = NULL;
6421}
6422
95554aad
TT
6423/* Compute the 'user' field for each psymtab in OBJFILE. */
6424
6425static void
6426set_partial_user (struct objfile *objfile)
6427{
6428 int i;
6429
6430 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6431 {
8832e7e3 6432 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6433 struct partial_symtab *pst = per_cu->v.psymtab;
6434 int j;
6435
36586728
TT
6436 if (pst == NULL)
6437 continue;
6438
95554aad
TT
6439 for (j = 0; j < pst->number_of_dependencies; ++j)
6440 {
6441 /* Set the 'user' field only if it is not already set. */
6442 if (pst->dependencies[j]->user == NULL)
6443 pst->dependencies[j]->user = pst;
6444 }
6445 }
6446}
6447
93311388
DE
6448/* Build the partial symbol table by doing a quick pass through the
6449 .debug_info and .debug_abbrev sections. */
72bf9492 6450
93311388 6451static void
c67a9c90 6452dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6453{
60606b2c
TT
6454 struct cleanup *back_to, *addrmap_cleanup;
6455 struct obstack temp_obstack;
21b2bd31 6456 int i;
93311388 6457
b4f54984 6458 if (dwarf_read_debug)
45cfd468
DE
6459 {
6460 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6461 objfile_name (objfile));
45cfd468
DE
6462 }
6463
98bfdba5
PA
6464 dwarf2_per_objfile->reading_partial_symbols = 1;
6465
be391dca 6466 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6467
93311388
DE
6468 /* Any cached compilation units will be linked by the per-objfile
6469 read_in_chain. Make sure to free them when we're done. */
6470 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6471
348e048f
DE
6472 build_type_psymtabs (objfile);
6473
93311388 6474 create_all_comp_units (objfile);
c906108c 6475
60606b2c
TT
6476 /* Create a temporary address map on a temporary obstack. We later
6477 copy this to the final obstack. */
6478 obstack_init (&temp_obstack);
6479 make_cleanup_obstack_free (&temp_obstack);
6480 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6481 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6482
21b2bd31 6483 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6484 {
8832e7e3 6485 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6486
b93601f3 6487 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6488 }
ff013f42 6489
6aa5f3a6
DE
6490 /* This has to wait until we read the CUs, we need the list of DWOs. */
6491 process_skeletonless_type_units (objfile);
6492
6493 /* Now that all TUs have been processed we can fill in the dependencies. */
6494 if (dwarf2_per_objfile->type_unit_groups != NULL)
6495 {
6496 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6497 build_type_psymtab_dependencies, NULL);
6498 }
6499
b4f54984 6500 if (dwarf_read_debug)
6aa5f3a6
DE
6501 print_tu_stats ();
6502
95554aad
TT
6503 set_partial_user (objfile);
6504
ff013f42
JK
6505 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6506 &objfile->objfile_obstack);
60606b2c 6507 discard_cleanups (addrmap_cleanup);
ff013f42 6508
ae038cb0 6509 do_cleanups (back_to);
45cfd468 6510
b4f54984 6511 if (dwarf_read_debug)
45cfd468 6512 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6513 objfile_name (objfile));
ae038cb0
DJ
6514}
6515
3019eac3 6516/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6517
6518static void
dee91e82 6519load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6520 const gdb_byte *info_ptr,
dee91e82
DE
6521 struct die_info *comp_unit_die,
6522 int has_children,
6523 void *data)
ae038cb0 6524{
dee91e82 6525 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6526
95554aad 6527 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6528
ae038cb0
DJ
6529 /* Check if comp unit has_children.
6530 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6531 If not, there's no more debug_info for this comp unit. */
d85a05f0 6532 if (has_children)
dee91e82
DE
6533 load_partial_dies (reader, info_ptr, 0);
6534}
98bfdba5 6535
dee91e82
DE
6536/* Load the partial DIEs for a secondary CU into memory.
6537 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6538
dee91e82
DE
6539static void
6540load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6541{
f4dc4d17
DE
6542 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6543 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6544}
6545
ae038cb0 6546static void
36586728
TT
6547read_comp_units_from_section (struct objfile *objfile,
6548 struct dwarf2_section_info *section,
6549 unsigned int is_dwz,
6550 int *n_allocated,
6551 int *n_comp_units,
6552 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6553{
d521ce57 6554 const gdb_byte *info_ptr;
a32a8923 6555 bfd *abfd = get_section_bfd_owner (section);
be391dca 6556
b4f54984 6557 if (dwarf_read_debug)
bf6af496 6558 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6559 get_section_name (section),
6560 get_section_file_name (section));
bf6af496 6561
36586728 6562 dwarf2_read_section (objfile, section);
ae038cb0 6563
36586728 6564 info_ptr = section->buffer;
6e70227d 6565
36586728 6566 while (info_ptr < section->buffer + section->size)
ae038cb0 6567 {
c764a876 6568 unsigned int length, initial_length_size;
ae038cb0 6569 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6570 sect_offset offset;
ae038cb0 6571
36586728 6572 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6573
6574 /* Read just enough information to find out where the next
6575 compilation unit is. */
36586728 6576 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6577
6578 /* Save the compilation unit for later lookup. */
6579 this_cu = obstack_alloc (&objfile->objfile_obstack,
6580 sizeof (struct dwarf2_per_cu_data));
6581 memset (this_cu, 0, sizeof (*this_cu));
6582 this_cu->offset = offset;
c764a876 6583 this_cu->length = length + initial_length_size;
36586728 6584 this_cu->is_dwz = is_dwz;
9291a0cd 6585 this_cu->objfile = objfile;
8a0459fd 6586 this_cu->section = section;
ae038cb0 6587
36586728 6588 if (*n_comp_units == *n_allocated)
ae038cb0 6589 {
36586728
TT
6590 *n_allocated *= 2;
6591 *all_comp_units = xrealloc (*all_comp_units,
6592 *n_allocated
6593 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 6594 }
36586728
TT
6595 (*all_comp_units)[*n_comp_units] = this_cu;
6596 ++*n_comp_units;
ae038cb0
DJ
6597
6598 info_ptr = info_ptr + this_cu->length;
6599 }
36586728
TT
6600}
6601
6602/* Create a list of all compilation units in OBJFILE.
6603 This is only done for -readnow and building partial symtabs. */
6604
6605static void
6606create_all_comp_units (struct objfile *objfile)
6607{
6608 int n_allocated;
6609 int n_comp_units;
6610 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6611 struct dwz_file *dwz;
36586728
TT
6612
6613 n_comp_units = 0;
6614 n_allocated = 10;
6615 all_comp_units = xmalloc (n_allocated
6616 * sizeof (struct dwarf2_per_cu_data *));
6617
6618 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6619 &n_allocated, &n_comp_units, &all_comp_units);
6620
4db1a1dc
TT
6621 dwz = dwarf2_get_dwz_file ();
6622 if (dwz != NULL)
6623 read_comp_units_from_section (objfile, &dwz->info, 1,
6624 &n_allocated, &n_comp_units,
6625 &all_comp_units);
ae038cb0
DJ
6626
6627 dwarf2_per_objfile->all_comp_units
6628 = obstack_alloc (&objfile->objfile_obstack,
6629 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6630 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6631 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6632 xfree (all_comp_units);
6633 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6634}
6635
5734ee8b 6636/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6637 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6638 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6639 DW_AT_ranges). See the comments of add_partial_subprogram on how
6640 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6641
72bf9492
DJ
6642static void
6643scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6644 CORE_ADDR *highpc, int set_addrmap,
6645 struct dwarf2_cu *cu)
c906108c 6646{
72bf9492 6647 struct partial_die_info *pdi;
c906108c 6648
91c24f0a
DC
6649 /* Now, march along the PDI's, descending into ones which have
6650 interesting children but skipping the children of the other ones,
6651 until we reach the end of the compilation unit. */
c906108c 6652
72bf9492 6653 pdi = first_die;
91c24f0a 6654
72bf9492
DJ
6655 while (pdi != NULL)
6656 {
6657 fixup_partial_die (pdi, cu);
c906108c 6658
f55ee35c 6659 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6660 children, so we need to look at them. Ditto for anonymous
6661 enums. */
933c6fe4 6662
72bf9492 6663 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6664 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6665 || pdi->tag == DW_TAG_imported_unit)
c906108c 6666 {
72bf9492 6667 switch (pdi->tag)
c906108c
SS
6668 {
6669 case DW_TAG_subprogram:
cdc07690 6670 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6671 break;
72929c62 6672 case DW_TAG_constant:
c906108c
SS
6673 case DW_TAG_variable:
6674 case DW_TAG_typedef:
91c24f0a 6675 case DW_TAG_union_type:
72bf9492 6676 if (!pdi->is_declaration)
63d06c5c 6677 {
72bf9492 6678 add_partial_symbol (pdi, cu);
63d06c5c
DC
6679 }
6680 break;
c906108c 6681 case DW_TAG_class_type:
680b30c7 6682 case DW_TAG_interface_type:
c906108c 6683 case DW_TAG_structure_type:
72bf9492 6684 if (!pdi->is_declaration)
c906108c 6685 {
72bf9492 6686 add_partial_symbol (pdi, cu);
c906108c
SS
6687 }
6688 break;
91c24f0a 6689 case DW_TAG_enumeration_type:
72bf9492
DJ
6690 if (!pdi->is_declaration)
6691 add_partial_enumeration (pdi, cu);
c906108c
SS
6692 break;
6693 case DW_TAG_base_type:
a02abb62 6694 case DW_TAG_subrange_type:
c906108c 6695 /* File scope base type definitions are added to the partial
c5aa993b 6696 symbol table. */
72bf9492 6697 add_partial_symbol (pdi, cu);
c906108c 6698 break;
d9fa45fe 6699 case DW_TAG_namespace:
cdc07690 6700 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6701 break;
5d7cb8df 6702 case DW_TAG_module:
cdc07690 6703 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6704 break;
95554aad
TT
6705 case DW_TAG_imported_unit:
6706 {
6707 struct dwarf2_per_cu_data *per_cu;
6708
f4dc4d17
DE
6709 /* For now we don't handle imported units in type units. */
6710 if (cu->per_cu->is_debug_types)
6711 {
6712 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6713 " supported in type units [in module %s]"),
4262abfb 6714 objfile_name (cu->objfile));
f4dc4d17
DE
6715 }
6716
95554aad 6717 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6718 pdi->is_dwz,
95554aad
TT
6719 cu->objfile);
6720
6721 /* Go read the partial unit, if needed. */
6722 if (per_cu->v.psymtab == NULL)
b93601f3 6723 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6724
f4dc4d17 6725 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6726 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6727 }
6728 break;
74921315
KS
6729 case DW_TAG_imported_declaration:
6730 add_partial_symbol (pdi, cu);
6731 break;
c906108c
SS
6732 default:
6733 break;
6734 }
6735 }
6736
72bf9492
DJ
6737 /* If the die has a sibling, skip to the sibling. */
6738
6739 pdi = pdi->die_sibling;
6740 }
6741}
6742
6743/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6744
72bf9492 6745 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6746 name is concatenated with "::" and the partial DIE's name. For
6747 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6748 Enumerators are an exception; they use the scope of their parent
6749 enumeration type, i.e. the name of the enumeration type is not
6750 prepended to the enumerator.
91c24f0a 6751
72bf9492
DJ
6752 There are two complexities. One is DW_AT_specification; in this
6753 case "parent" means the parent of the target of the specification,
6754 instead of the direct parent of the DIE. The other is compilers
6755 which do not emit DW_TAG_namespace; in this case we try to guess
6756 the fully qualified name of structure types from their members'
6757 linkage names. This must be done using the DIE's children rather
6758 than the children of any DW_AT_specification target. We only need
6759 to do this for structures at the top level, i.e. if the target of
6760 any DW_AT_specification (if any; otherwise the DIE itself) does not
6761 have a parent. */
6762
6763/* Compute the scope prefix associated with PDI's parent, in
6764 compilation unit CU. The result will be allocated on CU's
6765 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6766 field. NULL is returned if no prefix is necessary. */
15d034d0 6767static const char *
72bf9492
DJ
6768partial_die_parent_scope (struct partial_die_info *pdi,
6769 struct dwarf2_cu *cu)
6770{
15d034d0 6771 const char *grandparent_scope;
72bf9492 6772 struct partial_die_info *parent, *real_pdi;
91c24f0a 6773
72bf9492
DJ
6774 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6775 then this means the parent of the specification DIE. */
6776
6777 real_pdi = pdi;
72bf9492 6778 while (real_pdi->has_specification)
36586728
TT
6779 real_pdi = find_partial_die (real_pdi->spec_offset,
6780 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6781
6782 parent = real_pdi->die_parent;
6783 if (parent == NULL)
6784 return NULL;
6785
6786 if (parent->scope_set)
6787 return parent->scope;
6788
6789 fixup_partial_die (parent, cu);
6790
10b3939b 6791 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6792
acebe513
UW
6793 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6794 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6795 Work around this problem here. */
6796 if (cu->language == language_cplus
6e70227d 6797 && parent->tag == DW_TAG_namespace
acebe513
UW
6798 && strcmp (parent->name, "::") == 0
6799 && grandparent_scope == NULL)
6800 {
6801 parent->scope = NULL;
6802 parent->scope_set = 1;
6803 return NULL;
6804 }
6805
9c6c53f7
SA
6806 if (pdi->tag == DW_TAG_enumerator)
6807 /* Enumerators should not get the name of the enumeration as a prefix. */
6808 parent->scope = grandparent_scope;
6809 else if (parent->tag == DW_TAG_namespace
f55ee35c 6810 || parent->tag == DW_TAG_module
72bf9492
DJ
6811 || parent->tag == DW_TAG_structure_type
6812 || parent->tag == DW_TAG_class_type
680b30c7 6813 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6814 || parent->tag == DW_TAG_union_type
6815 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6816 {
6817 if (grandparent_scope == NULL)
6818 parent->scope = parent->name;
6819 else
3e43a32a
MS
6820 parent->scope = typename_concat (&cu->comp_unit_obstack,
6821 grandparent_scope,
f55ee35c 6822 parent->name, 0, cu);
72bf9492 6823 }
72bf9492
DJ
6824 else
6825 {
6826 /* FIXME drow/2004-04-01: What should we be doing with
6827 function-local names? For partial symbols, we should probably be
6828 ignoring them. */
6829 complaint (&symfile_complaints,
e2e0b3e5 6830 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6831 parent->tag, pdi->offset.sect_off);
72bf9492 6832 parent->scope = grandparent_scope;
c906108c
SS
6833 }
6834
72bf9492
DJ
6835 parent->scope_set = 1;
6836 return parent->scope;
6837}
6838
6839/* Return the fully scoped name associated with PDI, from compilation unit
6840 CU. The result will be allocated with malloc. */
4568ecf9 6841
72bf9492
DJ
6842static char *
6843partial_die_full_name (struct partial_die_info *pdi,
6844 struct dwarf2_cu *cu)
6845{
15d034d0 6846 const char *parent_scope;
72bf9492 6847
98bfdba5
PA
6848 /* If this is a template instantiation, we can not work out the
6849 template arguments from partial DIEs. So, unfortunately, we have
6850 to go through the full DIEs. At least any work we do building
6851 types here will be reused if full symbols are loaded later. */
6852 if (pdi->has_template_arguments)
6853 {
6854 fixup_partial_die (pdi, cu);
6855
6856 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6857 {
6858 struct die_info *die;
6859 struct attribute attr;
6860 struct dwarf2_cu *ref_cu = cu;
6861
b64f50a1 6862 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6863 attr.name = 0;
6864 attr.form = DW_FORM_ref_addr;
4568ecf9 6865 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6866 die = follow_die_ref (NULL, &attr, &ref_cu);
6867
6868 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6869 }
6870 }
6871
72bf9492
DJ
6872 parent_scope = partial_die_parent_scope (pdi, cu);
6873 if (parent_scope == NULL)
6874 return NULL;
6875 else
f55ee35c 6876 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6877}
6878
6879static void
72bf9492 6880add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6881{
e7c27a73 6882 struct objfile *objfile = cu->objfile;
3e29f34a 6883 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 6884 CORE_ADDR addr = 0;
15d034d0 6885 const char *actual_name = NULL;
e142c38c 6886 CORE_ADDR baseaddr;
15d034d0 6887 char *built_actual_name;
e142c38c
DJ
6888
6889 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6890
15d034d0
TT
6891 built_actual_name = partial_die_full_name (pdi, cu);
6892 if (built_actual_name != NULL)
6893 actual_name = built_actual_name;
63d06c5c 6894
72bf9492
DJ
6895 if (actual_name == NULL)
6896 actual_name = pdi->name;
6897
c906108c
SS
6898 switch (pdi->tag)
6899 {
6900 case DW_TAG_subprogram:
3e29f34a 6901 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 6902 if (pdi->is_external || cu->language == language_ada)
c906108c 6903 {
2cfa0c8d
JB
6904 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6905 of the global scope. But in Ada, we want to be able to access
6906 nested procedures globally. So all Ada subprograms are stored
6907 in the global scope. */
3e29f34a
MR
6908 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6909 objfile); */
f47fb265 6910 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6911 built_actual_name != NULL,
f47fb265
MS
6912 VAR_DOMAIN, LOC_BLOCK,
6913 &objfile->global_psymbols,
3e29f34a 6914 0, addr, cu->language, objfile);
c906108c
SS
6915 }
6916 else
6917 {
3e29f34a
MR
6918 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6919 objfile); */
f47fb265 6920 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6921 built_actual_name != NULL,
f47fb265
MS
6922 VAR_DOMAIN, LOC_BLOCK,
6923 &objfile->static_psymbols,
3e29f34a 6924 0, addr, cu->language, objfile);
c906108c
SS
6925 }
6926 break;
72929c62
JB
6927 case DW_TAG_constant:
6928 {
6929 struct psymbol_allocation_list *list;
6930
6931 if (pdi->is_external)
6932 list = &objfile->global_psymbols;
6933 else
6934 list = &objfile->static_psymbols;
f47fb265 6935 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6936 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
f47fb265 6937 list, 0, 0, cu->language, objfile);
72929c62
JB
6938 }
6939 break;
c906108c 6940 case DW_TAG_variable:
95554aad
TT
6941 if (pdi->d.locdesc)
6942 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6943
95554aad 6944 if (pdi->d.locdesc
caac4577
JG
6945 && addr == 0
6946 && !dwarf2_per_objfile->has_section_at_zero)
6947 {
6948 /* A global or static variable may also have been stripped
6949 out by the linker if unused, in which case its address
6950 will be nullified; do not add such variables into partial
6951 symbol table then. */
6952 }
6953 else if (pdi->is_external)
c906108c
SS
6954 {
6955 /* Global Variable.
6956 Don't enter into the minimal symbol tables as there is
6957 a minimal symbol table entry from the ELF symbols already.
6958 Enter into partial symbol table if it has a location
6959 descriptor or a type.
6960 If the location descriptor is missing, new_symbol will create
6961 a LOC_UNRESOLVED symbol, the address of the variable will then
6962 be determined from the minimal symbol table whenever the variable
6963 is referenced.
6964 The address for the partial symbol table entry is not
6965 used by GDB, but it comes in handy for debugging partial symbol
6966 table building. */
6967
95554aad 6968 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6969 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6970 built_actual_name != NULL,
f47fb265
MS
6971 VAR_DOMAIN, LOC_STATIC,
6972 &objfile->global_psymbols,
6973 0, addr + baseaddr,
6974 cu->language, objfile);
c906108c
SS
6975 }
6976 else
6977 {
ff908ebf
AW
6978 int has_loc = pdi->d.locdesc != NULL;
6979
6980 /* Static Variable. Skip symbols whose value we cannot know (those
6981 without location descriptors or constant values). */
6982 if (!has_loc && !pdi->has_const_value)
decbce07 6983 {
15d034d0 6984 xfree (built_actual_name);
decbce07
MS
6985 return;
6986 }
ff908ebf 6987
f47fb265 6988 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 6989 mst_file_data, objfile); */
f47fb265 6990 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6991 built_actual_name != NULL,
f47fb265
MS
6992 VAR_DOMAIN, LOC_STATIC,
6993 &objfile->static_psymbols,
ff908ebf
AW
6994 0,
6995 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 6996 cu->language, objfile);
c906108c
SS
6997 }
6998 break;
6999 case DW_TAG_typedef:
7000 case DW_TAG_base_type:
a02abb62 7001 case DW_TAG_subrange_type:
38d518c9 7002 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7003 built_actual_name != NULL,
176620f1 7004 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 7005 &objfile->static_psymbols,
e142c38c 7006 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 7007 break;
74921315 7008 case DW_TAG_imported_declaration:
72bf9492
DJ
7009 case DW_TAG_namespace:
7010 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7011 built_actual_name != NULL,
72bf9492
DJ
7012 VAR_DOMAIN, LOC_TYPEDEF,
7013 &objfile->global_psymbols,
7014 0, (CORE_ADDR) 0, cu->language, objfile);
7015 break;
530e8392
KB
7016 case DW_TAG_module:
7017 add_psymbol_to_list (actual_name, strlen (actual_name),
7018 built_actual_name != NULL,
7019 MODULE_DOMAIN, LOC_TYPEDEF,
7020 &objfile->global_psymbols,
7021 0, (CORE_ADDR) 0, cu->language, objfile);
7022 break;
c906108c 7023 case DW_TAG_class_type:
680b30c7 7024 case DW_TAG_interface_type:
c906108c
SS
7025 case DW_TAG_structure_type:
7026 case DW_TAG_union_type:
7027 case DW_TAG_enumeration_type:
fa4028e9
JB
7028 /* Skip external references. The DWARF standard says in the section
7029 about "Structure, Union, and Class Type Entries": "An incomplete
7030 structure, union or class type is represented by a structure,
7031 union or class entry that does not have a byte size attribute
7032 and that has a DW_AT_declaration attribute." */
7033 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7034 {
15d034d0 7035 xfree (built_actual_name);
decbce07
MS
7036 return;
7037 }
fa4028e9 7038
63d06c5c
DC
7039 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7040 static vs. global. */
38d518c9 7041 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7042 built_actual_name != NULL,
176620f1 7043 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
7044 (cu->language == language_cplus
7045 || cu->language == language_java)
63d06c5c
DC
7046 ? &objfile->global_psymbols
7047 : &objfile->static_psymbols,
e142c38c 7048 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 7049
c906108c
SS
7050 break;
7051 case DW_TAG_enumerator:
38d518c9 7052 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7053 built_actual_name != NULL,
176620f1 7054 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
7055 (cu->language == language_cplus
7056 || cu->language == language_java)
f6fe98ef
DJ
7057 ? &objfile->global_psymbols
7058 : &objfile->static_psymbols,
e142c38c 7059 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
7060 break;
7061 default:
7062 break;
7063 }
5c4e30ca 7064
15d034d0 7065 xfree (built_actual_name);
c906108c
SS
7066}
7067
5c4e30ca
DC
7068/* Read a partial die corresponding to a namespace; also, add a symbol
7069 corresponding to that namespace to the symbol table. NAMESPACE is
7070 the name of the enclosing namespace. */
91c24f0a 7071
72bf9492
DJ
7072static void
7073add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7074 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7075 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7076{
72bf9492 7077 /* Add a symbol for the namespace. */
e7c27a73 7078
72bf9492 7079 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7080
7081 /* Now scan partial symbols in that namespace. */
7082
91c24f0a 7083 if (pdi->has_children)
cdc07690 7084 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7085}
7086
5d7cb8df
JK
7087/* Read a partial die corresponding to a Fortran module. */
7088
7089static void
7090add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7091 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7092{
530e8392
KB
7093 /* Add a symbol for the namespace. */
7094
7095 add_partial_symbol (pdi, cu);
7096
f55ee35c 7097 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7098
7099 if (pdi->has_children)
cdc07690 7100 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7101}
7102
bc30ff58
JB
7103/* Read a partial die corresponding to a subprogram and create a partial
7104 symbol for that subprogram. When the CU language allows it, this
7105 routine also defines a partial symbol for each nested subprogram
cdc07690 7106 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7107 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7108 and highest PC values found in PDI.
6e70227d 7109
cdc07690
YQ
7110 PDI may also be a lexical block, in which case we simply search
7111 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7112 Again, this is only performed when the CU language allows this
7113 type of definitions. */
7114
7115static void
7116add_partial_subprogram (struct partial_die_info *pdi,
7117 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7118 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7119{
7120 if (pdi->tag == DW_TAG_subprogram)
7121 {
7122 if (pdi->has_pc_info)
7123 {
7124 if (pdi->lowpc < *lowpc)
7125 *lowpc = pdi->lowpc;
7126 if (pdi->highpc > *highpc)
7127 *highpc = pdi->highpc;
cdc07690 7128 if (set_addrmap)
5734ee8b 7129 {
5734ee8b 7130 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7131 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7132 CORE_ADDR baseaddr;
7133 CORE_ADDR highpc;
7134 CORE_ADDR lowpc;
5734ee8b
DJ
7135
7136 baseaddr = ANOFFSET (objfile->section_offsets,
7137 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7138 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7139 pdi->lowpc + baseaddr);
7140 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7141 pdi->highpc + baseaddr);
7142 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7143 cu->per_cu->v.psymtab);
5734ee8b 7144 }
481860b3
GB
7145 }
7146
7147 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7148 {
bc30ff58 7149 if (!pdi->is_declaration)
e8d05480
JB
7150 /* Ignore subprogram DIEs that do not have a name, they are
7151 illegal. Do not emit a complaint at this point, we will
7152 do so when we convert this psymtab into a symtab. */
7153 if (pdi->name)
7154 add_partial_symbol (pdi, cu);
bc30ff58
JB
7155 }
7156 }
6e70227d 7157
bc30ff58
JB
7158 if (! pdi->has_children)
7159 return;
7160
7161 if (cu->language == language_ada)
7162 {
7163 pdi = pdi->die_child;
7164 while (pdi != NULL)
7165 {
7166 fixup_partial_die (pdi, cu);
7167 if (pdi->tag == DW_TAG_subprogram
7168 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7169 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7170 pdi = pdi->die_sibling;
7171 }
7172 }
7173}
7174
91c24f0a
DC
7175/* Read a partial die corresponding to an enumeration type. */
7176
72bf9492
DJ
7177static void
7178add_partial_enumeration (struct partial_die_info *enum_pdi,
7179 struct dwarf2_cu *cu)
91c24f0a 7180{
72bf9492 7181 struct partial_die_info *pdi;
91c24f0a
DC
7182
7183 if (enum_pdi->name != NULL)
72bf9492
DJ
7184 add_partial_symbol (enum_pdi, cu);
7185
7186 pdi = enum_pdi->die_child;
7187 while (pdi)
91c24f0a 7188 {
72bf9492 7189 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7190 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7191 else
72bf9492
DJ
7192 add_partial_symbol (pdi, cu);
7193 pdi = pdi->die_sibling;
91c24f0a 7194 }
91c24f0a
DC
7195}
7196
6caca83c
CC
7197/* Return the initial uleb128 in the die at INFO_PTR. */
7198
7199static unsigned int
d521ce57 7200peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7201{
7202 unsigned int bytes_read;
7203
7204 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7205}
7206
4bb7a0a7
DJ
7207/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7208 Return the corresponding abbrev, or NULL if the number is zero (indicating
7209 an empty DIE). In either case *BYTES_READ will be set to the length of
7210 the initial number. */
7211
7212static struct abbrev_info *
d521ce57 7213peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7214 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7215{
7216 bfd *abfd = cu->objfile->obfd;
7217 unsigned int abbrev_number;
7218 struct abbrev_info *abbrev;
7219
7220 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7221
7222 if (abbrev_number == 0)
7223 return NULL;
7224
433df2d4 7225 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7226 if (!abbrev)
7227 {
422b9917
DE
7228 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7229 " at offset 0x%x [in module %s]"),
7230 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7231 cu->header.offset.sect_off, bfd_get_filename (abfd));
4bb7a0a7
DJ
7232 }
7233
7234 return abbrev;
7235}
7236
93311388
DE
7237/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7238 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7239 DIE. Any children of the skipped DIEs will also be skipped. */
7240
d521ce57
TT
7241static const gdb_byte *
7242skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7243{
dee91e82 7244 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7245 struct abbrev_info *abbrev;
7246 unsigned int bytes_read;
7247
7248 while (1)
7249 {
7250 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7251 if (abbrev == NULL)
7252 return info_ptr + bytes_read;
7253 else
dee91e82 7254 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7255 }
7256}
7257
93311388
DE
7258/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7259 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7260 abbrev corresponding to that skipped uleb128 should be passed in
7261 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7262 children. */
7263
d521ce57
TT
7264static const gdb_byte *
7265skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7266 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7267{
7268 unsigned int bytes_read;
7269 struct attribute attr;
dee91e82
DE
7270 bfd *abfd = reader->abfd;
7271 struct dwarf2_cu *cu = reader->cu;
d521ce57 7272 const gdb_byte *buffer = reader->buffer;
f664829e 7273 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7274 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7275 unsigned int form, i;
7276
7277 for (i = 0; i < abbrev->num_attrs; i++)
7278 {
7279 /* The only abbrev we care about is DW_AT_sibling. */
7280 if (abbrev->attrs[i].name == DW_AT_sibling)
7281 {
dee91e82 7282 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7283 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7284 complaint (&symfile_complaints,
7285 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7286 else
b9502d3f
WN
7287 {
7288 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7289 const gdb_byte *sibling_ptr = buffer + off;
7290
7291 if (sibling_ptr < info_ptr)
7292 complaint (&symfile_complaints,
7293 _("DW_AT_sibling points backwards"));
22869d73
KS
7294 else if (sibling_ptr > reader->buffer_end)
7295 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7296 else
7297 return sibling_ptr;
7298 }
4bb7a0a7
DJ
7299 }
7300
7301 /* If it isn't DW_AT_sibling, skip this attribute. */
7302 form = abbrev->attrs[i].form;
7303 skip_attribute:
7304 switch (form)
7305 {
4bb7a0a7 7306 case DW_FORM_ref_addr:
ae411497
TT
7307 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7308 and later it is offset sized. */
7309 if (cu->header.version == 2)
7310 info_ptr += cu->header.addr_size;
7311 else
7312 info_ptr += cu->header.offset_size;
7313 break;
36586728
TT
7314 case DW_FORM_GNU_ref_alt:
7315 info_ptr += cu->header.offset_size;
7316 break;
ae411497 7317 case DW_FORM_addr:
4bb7a0a7
DJ
7318 info_ptr += cu->header.addr_size;
7319 break;
7320 case DW_FORM_data1:
7321 case DW_FORM_ref1:
7322 case DW_FORM_flag:
7323 info_ptr += 1;
7324 break;
2dc7f7b3
TT
7325 case DW_FORM_flag_present:
7326 break;
4bb7a0a7
DJ
7327 case DW_FORM_data2:
7328 case DW_FORM_ref2:
7329 info_ptr += 2;
7330 break;
7331 case DW_FORM_data4:
7332 case DW_FORM_ref4:
7333 info_ptr += 4;
7334 break;
7335 case DW_FORM_data8:
7336 case DW_FORM_ref8:
55f1336d 7337 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7338 info_ptr += 8;
7339 break;
7340 case DW_FORM_string:
9b1c24c8 7341 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7342 info_ptr += bytes_read;
7343 break;
2dc7f7b3 7344 case DW_FORM_sec_offset:
4bb7a0a7 7345 case DW_FORM_strp:
36586728 7346 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7347 info_ptr += cu->header.offset_size;
7348 break;
2dc7f7b3 7349 case DW_FORM_exprloc:
4bb7a0a7
DJ
7350 case DW_FORM_block:
7351 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7352 info_ptr += bytes_read;
7353 break;
7354 case DW_FORM_block1:
7355 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7356 break;
7357 case DW_FORM_block2:
7358 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7359 break;
7360 case DW_FORM_block4:
7361 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7362 break;
7363 case DW_FORM_sdata:
7364 case DW_FORM_udata:
7365 case DW_FORM_ref_udata:
3019eac3
DE
7366 case DW_FORM_GNU_addr_index:
7367 case DW_FORM_GNU_str_index:
d521ce57 7368 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7369 break;
7370 case DW_FORM_indirect:
7371 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7372 info_ptr += bytes_read;
7373 /* We need to continue parsing from here, so just go back to
7374 the top. */
7375 goto skip_attribute;
7376
7377 default:
3e43a32a
MS
7378 error (_("Dwarf Error: Cannot handle %s "
7379 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7380 dwarf_form_name (form),
7381 bfd_get_filename (abfd));
7382 }
7383 }
7384
7385 if (abbrev->has_children)
dee91e82 7386 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7387 else
7388 return info_ptr;
7389}
7390
93311388 7391/* Locate ORIG_PDI's sibling.
dee91e82 7392 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7393
d521ce57 7394static const gdb_byte *
dee91e82
DE
7395locate_pdi_sibling (const struct die_reader_specs *reader,
7396 struct partial_die_info *orig_pdi,
d521ce57 7397 const gdb_byte *info_ptr)
91c24f0a
DC
7398{
7399 /* Do we know the sibling already? */
72bf9492 7400
91c24f0a
DC
7401 if (orig_pdi->sibling)
7402 return orig_pdi->sibling;
7403
7404 /* Are there any children to deal with? */
7405
7406 if (!orig_pdi->has_children)
7407 return info_ptr;
7408
4bb7a0a7 7409 /* Skip the children the long way. */
91c24f0a 7410
dee91e82 7411 return skip_children (reader, info_ptr);
91c24f0a
DC
7412}
7413
257e7a09 7414/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7415 not NULL. */
c906108c
SS
7416
7417static void
257e7a09
YQ
7418dwarf2_read_symtab (struct partial_symtab *self,
7419 struct objfile *objfile)
c906108c 7420{
257e7a09 7421 if (self->readin)
c906108c 7422 {
442e4d9c 7423 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7424 self->filename);
442e4d9c
YQ
7425 }
7426 else
7427 {
7428 if (info_verbose)
c906108c 7429 {
442e4d9c 7430 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7431 self->filename);
442e4d9c 7432 gdb_flush (gdb_stdout);
c906108c 7433 }
c906108c 7434
442e4d9c
YQ
7435 /* Restore our global data. */
7436 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 7437
442e4d9c
YQ
7438 /* If this psymtab is constructed from a debug-only objfile, the
7439 has_section_at_zero flag will not necessarily be correct. We
7440 can get the correct value for this flag by looking at the data
7441 associated with the (presumably stripped) associated objfile. */
7442 if (objfile->separate_debug_objfile_backlink)
7443 {
7444 struct dwarf2_per_objfile *dpo_backlink
7445 = objfile_data (objfile->separate_debug_objfile_backlink,
7446 dwarf2_objfile_data_key);
9a619af0 7447
442e4d9c
YQ
7448 dwarf2_per_objfile->has_section_at_zero
7449 = dpo_backlink->has_section_at_zero;
7450 }
b2ab525c 7451
442e4d9c 7452 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7453
257e7a09 7454 psymtab_to_symtab_1 (self);
c906108c 7455
442e4d9c
YQ
7456 /* Finish up the debug error message. */
7457 if (info_verbose)
7458 printf_filtered (_("done.\n"));
c906108c 7459 }
95554aad
TT
7460
7461 process_cu_includes ();
c906108c 7462}
9cdd5dbd
DE
7463\f
7464/* Reading in full CUs. */
c906108c 7465
10b3939b
DJ
7466/* Add PER_CU to the queue. */
7467
7468static void
95554aad
TT
7469queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7470 enum language pretend_language)
10b3939b
DJ
7471{
7472 struct dwarf2_queue_item *item;
7473
7474 per_cu->queued = 1;
7475 item = xmalloc (sizeof (*item));
7476 item->per_cu = per_cu;
95554aad 7477 item->pretend_language = pretend_language;
10b3939b
DJ
7478 item->next = NULL;
7479
7480 if (dwarf2_queue == NULL)
7481 dwarf2_queue = item;
7482 else
7483 dwarf2_queue_tail->next = item;
7484
7485 dwarf2_queue_tail = item;
7486}
7487
89e63ee4
DE
7488/* If PER_CU is not yet queued, add it to the queue.
7489 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7490 dependency.
0907af0c 7491 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7492 meaning either PER_CU is already queued or it is already loaded.
7493
7494 N.B. There is an invariant here that if a CU is queued then it is loaded.
7495 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7496
7497static int
89e63ee4 7498maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7499 struct dwarf2_per_cu_data *per_cu,
7500 enum language pretend_language)
7501{
7502 /* We may arrive here during partial symbol reading, if we need full
7503 DIEs to process an unusual case (e.g. template arguments). Do
7504 not queue PER_CU, just tell our caller to load its DIEs. */
7505 if (dwarf2_per_objfile->reading_partial_symbols)
7506 {
7507 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7508 return 1;
7509 return 0;
7510 }
7511
7512 /* Mark the dependence relation so that we don't flush PER_CU
7513 too early. */
89e63ee4
DE
7514 if (dependent_cu != NULL)
7515 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7516
7517 /* If it's already on the queue, we have nothing to do. */
7518 if (per_cu->queued)
7519 return 0;
7520
7521 /* If the compilation unit is already loaded, just mark it as
7522 used. */
7523 if (per_cu->cu != NULL)
7524 {
7525 per_cu->cu->last_used = 0;
7526 return 0;
7527 }
7528
7529 /* Add it to the queue. */
7530 queue_comp_unit (per_cu, pretend_language);
7531
7532 return 1;
7533}
7534
10b3939b
DJ
7535/* Process the queue. */
7536
7537static void
a0f42c21 7538process_queue (void)
10b3939b
DJ
7539{
7540 struct dwarf2_queue_item *item, *next_item;
7541
b4f54984 7542 if (dwarf_read_debug)
45cfd468
DE
7543 {
7544 fprintf_unfiltered (gdb_stdlog,
7545 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7546 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7547 }
7548
03dd20cc
DJ
7549 /* The queue starts out with one item, but following a DIE reference
7550 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7551 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7552 {
cc12ce38
DE
7553 if ((dwarf2_per_objfile->using_index
7554 ? !item->per_cu->v.quick->compunit_symtab
7555 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7556 /* Skip dummy CUs. */
7557 && item->per_cu->cu != NULL)
f4dc4d17
DE
7558 {
7559 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7560 unsigned int debug_print_threshold;
247f5c4f 7561 char buf[100];
f4dc4d17 7562
247f5c4f 7563 if (per_cu->is_debug_types)
f4dc4d17 7564 {
247f5c4f
DE
7565 struct signatured_type *sig_type =
7566 (struct signatured_type *) per_cu;
7567
7568 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7569 hex_string (sig_type->signature),
7570 per_cu->offset.sect_off);
7571 /* There can be 100s of TUs.
7572 Only print them in verbose mode. */
7573 debug_print_threshold = 2;
f4dc4d17 7574 }
247f5c4f 7575 else
73be47f5
DE
7576 {
7577 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7578 debug_print_threshold = 1;
7579 }
247f5c4f 7580
b4f54984 7581 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7582 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7583
7584 if (per_cu->is_debug_types)
7585 process_full_type_unit (per_cu, item->pretend_language);
7586 else
7587 process_full_comp_unit (per_cu, item->pretend_language);
7588
b4f54984 7589 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7590 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7591 }
10b3939b
DJ
7592
7593 item->per_cu->queued = 0;
7594 next_item = item->next;
7595 xfree (item);
7596 }
7597
7598 dwarf2_queue_tail = NULL;
45cfd468 7599
b4f54984 7600 if (dwarf_read_debug)
45cfd468
DE
7601 {
7602 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7603 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7604 }
10b3939b
DJ
7605}
7606
7607/* Free all allocated queue entries. This function only releases anything if
7608 an error was thrown; if the queue was processed then it would have been
7609 freed as we went along. */
7610
7611static void
7612dwarf2_release_queue (void *dummy)
7613{
7614 struct dwarf2_queue_item *item, *last;
7615
7616 item = dwarf2_queue;
7617 while (item)
7618 {
7619 /* Anything still marked queued is likely to be in an
7620 inconsistent state, so discard it. */
7621 if (item->per_cu->queued)
7622 {
7623 if (item->per_cu->cu != NULL)
dee91e82 7624 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7625 item->per_cu->queued = 0;
7626 }
7627
7628 last = item;
7629 item = item->next;
7630 xfree (last);
7631 }
7632
7633 dwarf2_queue = dwarf2_queue_tail = NULL;
7634}
7635
7636/* Read in full symbols for PST, and anything it depends on. */
7637
c906108c 7638static void
fba45db2 7639psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7640{
10b3939b 7641 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7642 int i;
7643
95554aad
TT
7644 if (pst->readin)
7645 return;
7646
aaa75496 7647 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7648 if (!pst->dependencies[i]->readin
7649 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7650 {
7651 /* Inform about additional files that need to be read in. */
7652 if (info_verbose)
7653 {
a3f17187 7654 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7655 fputs_filtered (" ", gdb_stdout);
7656 wrap_here ("");
7657 fputs_filtered ("and ", gdb_stdout);
7658 wrap_here ("");
7659 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7660 wrap_here (""); /* Flush output. */
aaa75496
JB
7661 gdb_flush (gdb_stdout);
7662 }
7663 psymtab_to_symtab_1 (pst->dependencies[i]);
7664 }
7665
e38df1d0 7666 per_cu = pst->read_symtab_private;
10b3939b
DJ
7667
7668 if (per_cu == NULL)
aaa75496
JB
7669 {
7670 /* It's an include file, no symbols to read for it.
7671 Everything is in the parent symtab. */
7672 pst->readin = 1;
7673 return;
7674 }
c906108c 7675
a0f42c21 7676 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7677}
7678
dee91e82
DE
7679/* Trivial hash function for die_info: the hash value of a DIE
7680 is its offset in .debug_info for this objfile. */
10b3939b 7681
dee91e82
DE
7682static hashval_t
7683die_hash (const void *item)
10b3939b 7684{
dee91e82 7685 const struct die_info *die = item;
6502dd73 7686
dee91e82
DE
7687 return die->offset.sect_off;
7688}
63d06c5c 7689
dee91e82
DE
7690/* Trivial comparison function for die_info structures: two DIEs
7691 are equal if they have the same offset. */
98bfdba5 7692
dee91e82
DE
7693static int
7694die_eq (const void *item_lhs, const void *item_rhs)
7695{
7696 const struct die_info *die_lhs = item_lhs;
7697 const struct die_info *die_rhs = item_rhs;
c906108c 7698
dee91e82
DE
7699 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7700}
c906108c 7701
dee91e82
DE
7702/* die_reader_func for load_full_comp_unit.
7703 This is identical to read_signatured_type_reader,
7704 but is kept separate for now. */
c906108c 7705
dee91e82
DE
7706static void
7707load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7708 const gdb_byte *info_ptr,
dee91e82
DE
7709 struct die_info *comp_unit_die,
7710 int has_children,
7711 void *data)
7712{
7713 struct dwarf2_cu *cu = reader->cu;
95554aad 7714 enum language *language_ptr = data;
6caca83c 7715
dee91e82
DE
7716 gdb_assert (cu->die_hash == NULL);
7717 cu->die_hash =
7718 htab_create_alloc_ex (cu->header.length / 12,
7719 die_hash,
7720 die_eq,
7721 NULL,
7722 &cu->comp_unit_obstack,
7723 hashtab_obstack_allocate,
7724 dummy_obstack_deallocate);
e142c38c 7725
dee91e82
DE
7726 if (has_children)
7727 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7728 &info_ptr, comp_unit_die);
7729 cu->dies = comp_unit_die;
7730 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7731
7732 /* We try not to read any attributes in this function, because not
9cdd5dbd 7733 all CUs needed for references have been loaded yet, and symbol
10b3939b 7734 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7735 or we won't be able to build types correctly.
7736 Similarly, if we do not read the producer, we can not apply
7737 producer-specific interpretation. */
95554aad 7738 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7739}
10b3939b 7740
dee91e82 7741/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7742
dee91e82 7743static void
95554aad
TT
7744load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7745 enum language pretend_language)
dee91e82 7746{
3019eac3 7747 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7748
f4dc4d17
DE
7749 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7750 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7751}
7752
3da10d80
KS
7753/* Add a DIE to the delayed physname list. */
7754
7755static void
7756add_to_method_list (struct type *type, int fnfield_index, int index,
7757 const char *name, struct die_info *die,
7758 struct dwarf2_cu *cu)
7759{
7760 struct delayed_method_info mi;
7761 mi.type = type;
7762 mi.fnfield_index = fnfield_index;
7763 mi.index = index;
7764 mi.name = name;
7765 mi.die = die;
7766 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7767}
7768
7769/* A cleanup for freeing the delayed method list. */
7770
7771static void
7772free_delayed_list (void *ptr)
7773{
7774 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7775 if (cu->method_list != NULL)
7776 {
7777 VEC_free (delayed_method_info, cu->method_list);
7778 cu->method_list = NULL;
7779 }
7780}
7781
7782/* Compute the physnames of any methods on the CU's method list.
7783
7784 The computation of method physnames is delayed in order to avoid the
7785 (bad) condition that one of the method's formal parameters is of an as yet
7786 incomplete type. */
7787
7788static void
7789compute_delayed_physnames (struct dwarf2_cu *cu)
7790{
7791 int i;
7792 struct delayed_method_info *mi;
7793 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7794 {
1d06ead6 7795 const char *physname;
3da10d80
KS
7796 struct fn_fieldlist *fn_flp
7797 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7798 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
7799 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7800 = physname ? physname : "";
3da10d80
KS
7801 }
7802}
7803
a766d390
DE
7804/* Go objects should be embedded in a DW_TAG_module DIE,
7805 and it's not clear if/how imported objects will appear.
7806 To keep Go support simple until that's worked out,
7807 go back through what we've read and create something usable.
7808 We could do this while processing each DIE, and feels kinda cleaner,
7809 but that way is more invasive.
7810 This is to, for example, allow the user to type "p var" or "b main"
7811 without having to specify the package name, and allow lookups
7812 of module.object to work in contexts that use the expression
7813 parser. */
7814
7815static void
7816fixup_go_packaging (struct dwarf2_cu *cu)
7817{
7818 char *package_name = NULL;
7819 struct pending *list;
7820 int i;
7821
7822 for (list = global_symbols; list != NULL; list = list->next)
7823 {
7824 for (i = 0; i < list->nsyms; ++i)
7825 {
7826 struct symbol *sym = list->symbol[i];
7827
7828 if (SYMBOL_LANGUAGE (sym) == language_go
7829 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7830 {
7831 char *this_package_name = go_symbol_package_name (sym);
7832
7833 if (this_package_name == NULL)
7834 continue;
7835 if (package_name == NULL)
7836 package_name = this_package_name;
7837 else
7838 {
7839 if (strcmp (package_name, this_package_name) != 0)
7840 complaint (&symfile_complaints,
7841 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
7842 (symbol_symtab (sym) != NULL
7843 ? symtab_to_filename_for_display
7844 (symbol_symtab (sym))
4262abfb 7845 : objfile_name (cu->objfile)),
a766d390
DE
7846 this_package_name, package_name);
7847 xfree (this_package_name);
7848 }
7849 }
7850 }
7851 }
7852
7853 if (package_name != NULL)
7854 {
7855 struct objfile *objfile = cu->objfile;
34a68019
TT
7856 const char *saved_package_name
7857 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7858 package_name,
7859 strlen (package_name));
a766d390 7860 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7861 saved_package_name, objfile);
a766d390
DE
7862 struct symbol *sym;
7863
7864 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7865
e623cf5d 7866 sym = allocate_symbol (objfile);
f85f34ed 7867 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7868 SYMBOL_SET_NAMES (sym, saved_package_name,
7869 strlen (saved_package_name), 0, objfile);
a766d390
DE
7870 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7871 e.g., "main" finds the "main" module and not C's main(). */
7872 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7873 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7874 SYMBOL_TYPE (sym) = type;
7875
7876 add_symbol_to_list (sym, &global_symbols);
7877
7878 xfree (package_name);
7879 }
7880}
7881
95554aad
TT
7882/* Return the symtab for PER_CU. This works properly regardless of
7883 whether we're using the index or psymtabs. */
7884
43f3e411
DE
7885static struct compunit_symtab *
7886get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7887{
7888 return (dwarf2_per_objfile->using_index
43f3e411
DE
7889 ? per_cu->v.quick->compunit_symtab
7890 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7891}
7892
7893/* A helper function for computing the list of all symbol tables
7894 included by PER_CU. */
7895
7896static void
43f3e411 7897recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7898 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7899 struct dwarf2_per_cu_data *per_cu,
43f3e411 7900 struct compunit_symtab *immediate_parent)
95554aad
TT
7901{
7902 void **slot;
7903 int ix;
43f3e411 7904 struct compunit_symtab *cust;
95554aad
TT
7905 struct dwarf2_per_cu_data *iter;
7906
7907 slot = htab_find_slot (all_children, per_cu, INSERT);
7908 if (*slot != NULL)
7909 {
7910 /* This inclusion and its children have been processed. */
7911 return;
7912 }
7913
7914 *slot = per_cu;
7915 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7916 cust = get_compunit_symtab (per_cu);
7917 if (cust != NULL)
ec94af83
DE
7918 {
7919 /* If this is a type unit only add its symbol table if we haven't
7920 seen it yet (type unit per_cu's can share symtabs). */
7921 if (per_cu->is_debug_types)
7922 {
43f3e411 7923 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
7924 if (*slot == NULL)
7925 {
43f3e411
DE
7926 *slot = cust;
7927 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7928 if (cust->user == NULL)
7929 cust->user = immediate_parent;
ec94af83
DE
7930 }
7931 }
7932 else
f9125b6c 7933 {
43f3e411
DE
7934 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7935 if (cust->user == NULL)
7936 cust->user = immediate_parent;
f9125b6c 7937 }
ec94af83 7938 }
95554aad
TT
7939
7940 for (ix = 0;
796a7ff8 7941 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7942 ++ix)
ec94af83
DE
7943 {
7944 recursively_compute_inclusions (result, all_children,
43f3e411 7945 all_type_symtabs, iter, cust);
ec94af83 7946 }
95554aad
TT
7947}
7948
43f3e411 7949/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
7950 PER_CU. */
7951
7952static void
43f3e411 7953compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 7954{
f4dc4d17
DE
7955 gdb_assert (! per_cu->is_debug_types);
7956
796a7ff8 7957 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7958 {
7959 int ix, len;
ec94af83 7960 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
7961 struct compunit_symtab *compunit_symtab_iter;
7962 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 7963 htab_t all_children, all_type_symtabs;
43f3e411 7964 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
7965
7966 /* If we don't have a symtab, we can just skip this case. */
43f3e411 7967 if (cust == NULL)
95554aad
TT
7968 return;
7969
7970 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7971 NULL, xcalloc, xfree);
ec94af83
DE
7972 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7973 NULL, xcalloc, xfree);
95554aad
TT
7974
7975 for (ix = 0;
796a7ff8 7976 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7977 ix, per_cu_iter);
95554aad 7978 ++ix)
ec94af83
DE
7979 {
7980 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 7981 all_type_symtabs, per_cu_iter,
43f3e411 7982 cust);
ec94af83 7983 }
95554aad 7984
ec94af83 7985 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
7986 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7987 cust->includes
95554aad 7988 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
666fcf91 7989 (len + 1) * sizeof (struct compunit_symtab *));
95554aad 7990 for (ix = 0;
43f3e411
DE
7991 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7992 compunit_symtab_iter);
95554aad 7993 ++ix)
43f3e411
DE
7994 cust->includes[ix] = compunit_symtab_iter;
7995 cust->includes[len] = NULL;
95554aad 7996
43f3e411 7997 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 7998 htab_delete (all_children);
ec94af83 7999 htab_delete (all_type_symtabs);
95554aad
TT
8000 }
8001}
8002
8003/* Compute the 'includes' field for the symtabs of all the CUs we just
8004 read. */
8005
8006static void
8007process_cu_includes (void)
8008{
8009 int ix;
8010 struct dwarf2_per_cu_data *iter;
8011
8012 for (ix = 0;
8013 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8014 ix, iter);
8015 ++ix)
f4dc4d17
DE
8016 {
8017 if (! iter->is_debug_types)
43f3e411 8018 compute_compunit_symtab_includes (iter);
f4dc4d17 8019 }
95554aad
TT
8020
8021 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8022}
8023
9cdd5dbd 8024/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8025 already been loaded into memory. */
8026
8027static void
95554aad
TT
8028process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8029 enum language pretend_language)
10b3939b 8030{
10b3939b 8031 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8032 struct objfile *objfile = per_cu->objfile;
3e29f34a 8033 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8034 CORE_ADDR lowpc, highpc;
43f3e411 8035 struct compunit_symtab *cust;
3da10d80 8036 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8037 CORE_ADDR baseaddr;
4359dff1 8038 struct block *static_block;
3e29f34a 8039 CORE_ADDR addr;
10b3939b
DJ
8040
8041 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8042
10b3939b
DJ
8043 buildsym_init ();
8044 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8045 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8046
8047 cu->list_in_scope = &file_symbols;
c906108c 8048
95554aad
TT
8049 cu->language = pretend_language;
8050 cu->language_defn = language_def (cu->language);
8051
c906108c 8052 /* Do line number decoding in read_file_scope () */
10b3939b 8053 process_die (cu->dies, cu);
c906108c 8054
a766d390
DE
8055 /* For now fudge the Go package. */
8056 if (cu->language == language_go)
8057 fixup_go_packaging (cu);
8058
3da10d80
KS
8059 /* Now that we have processed all the DIEs in the CU, all the types
8060 should be complete, and it should now be safe to compute all of the
8061 physnames. */
8062 compute_delayed_physnames (cu);
8063 do_cleanups (delayed_list_cleanup);
8064
fae299cd
DC
8065 /* Some compilers don't define a DW_AT_high_pc attribute for the
8066 compilation unit. If the DW_AT_high_pc is missing, synthesize
8067 it, by scanning the DIE's below the compilation unit. */
10b3939b 8068 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8069
3e29f34a
MR
8070 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8071 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8072
8073 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8074 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8075 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8076 addrmap to help ensure it has an accurate map of pc values belonging to
8077 this comp unit. */
8078 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8079
43f3e411
DE
8080 cust = end_symtab_from_static_block (static_block,
8081 SECT_OFF_TEXT (objfile), 0);
c906108c 8082
43f3e411 8083 if (cust != NULL)
c906108c 8084 {
df15bd07 8085 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8086
8be455d7
JK
8087 /* Set symtab language to language from DW_AT_language. If the
8088 compilation is from a C file generated by language preprocessors, do
8089 not set the language if it was already deduced by start_subfile. */
43f3e411
DE
8090 if (!(cu->language == language_c
8091 && COMPUNIT_FILETABS (cust)->language != language_c))
8092 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8093
8094 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8095 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8096 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8097 there were bugs in prologue debug info, fixed later in GCC-4.5
8098 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8099
8100 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8101 needed, it would be wrong due to missing DW_AT_producer there.
8102
8103 Still one can confuse GDB by using non-standard GCC compilation
8104 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8105 */
ab260dad 8106 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8107 cust->locations_valid = 1;
e0d00bc7
JK
8108
8109 if (gcc_4_minor >= 5)
43f3e411 8110 cust->epilogue_unwind_valid = 1;
96408a79 8111
43f3e411 8112 cust->call_site_htab = cu->call_site_htab;
c906108c 8113 }
9291a0cd
TT
8114
8115 if (dwarf2_per_objfile->using_index)
43f3e411 8116 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8117 else
8118 {
8119 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8120 pst->compunit_symtab = cust;
9291a0cd
TT
8121 pst->readin = 1;
8122 }
c906108c 8123
95554aad
TT
8124 /* Push it for inclusion processing later. */
8125 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8126
c906108c 8127 do_cleanups (back_to);
f4dc4d17 8128}
45cfd468 8129
f4dc4d17
DE
8130/* Generate full symbol information for type unit PER_CU, whose DIEs have
8131 already been loaded into memory. */
8132
8133static void
8134process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8135 enum language pretend_language)
8136{
8137 struct dwarf2_cu *cu = per_cu->cu;
8138 struct objfile *objfile = per_cu->objfile;
43f3e411 8139 struct compunit_symtab *cust;
f4dc4d17 8140 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8141 struct signatured_type *sig_type;
8142
8143 gdb_assert (per_cu->is_debug_types);
8144 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8145
8146 buildsym_init ();
8147 back_to = make_cleanup (really_free_pendings, NULL);
8148 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8149
8150 cu->list_in_scope = &file_symbols;
8151
8152 cu->language = pretend_language;
8153 cu->language_defn = language_def (cu->language);
8154
8155 /* The symbol tables are set up in read_type_unit_scope. */
8156 process_die (cu->dies, cu);
8157
8158 /* For now fudge the Go package. */
8159 if (cu->language == language_go)
8160 fixup_go_packaging (cu);
8161
8162 /* Now that we have processed all the DIEs in the CU, all the types
8163 should be complete, and it should now be safe to compute all of the
8164 physnames. */
8165 compute_delayed_physnames (cu);
8166 do_cleanups (delayed_list_cleanup);
8167
8168 /* TUs share symbol tables.
8169 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8170 of it with end_expandable_symtab. Otherwise, complete the addition of
8171 this TU's symbols to the existing symtab. */
43f3e411 8172 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8173 {
43f3e411
DE
8174 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8175 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8176
43f3e411 8177 if (cust != NULL)
f4dc4d17
DE
8178 {
8179 /* Set symtab language to language from DW_AT_language. If the
8180 compilation is from a C file generated by language preprocessors,
8181 do not set the language if it was already deduced by
8182 start_subfile. */
43f3e411
DE
8183 if (!(cu->language == language_c
8184 && COMPUNIT_FILETABS (cust)->language != language_c))
8185 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8186 }
8187 }
8188 else
8189 {
0ab9ce85 8190 augment_type_symtab ();
43f3e411 8191 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8192 }
8193
8194 if (dwarf2_per_objfile->using_index)
43f3e411 8195 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8196 else
8197 {
8198 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8199 pst->compunit_symtab = cust;
f4dc4d17 8200 pst->readin = 1;
45cfd468 8201 }
f4dc4d17
DE
8202
8203 do_cleanups (back_to);
c906108c
SS
8204}
8205
95554aad
TT
8206/* Process an imported unit DIE. */
8207
8208static void
8209process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8210{
8211 struct attribute *attr;
8212
f4dc4d17
DE
8213 /* For now we don't handle imported units in type units. */
8214 if (cu->per_cu->is_debug_types)
8215 {
8216 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8217 " supported in type units [in module %s]"),
4262abfb 8218 objfile_name (cu->objfile));
f4dc4d17
DE
8219 }
8220
95554aad
TT
8221 attr = dwarf2_attr (die, DW_AT_import, cu);
8222 if (attr != NULL)
8223 {
8224 struct dwarf2_per_cu_data *per_cu;
8225 struct symtab *imported_symtab;
8226 sect_offset offset;
36586728 8227 int is_dwz;
95554aad
TT
8228
8229 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8230 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8231 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8232
69d751e3 8233 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8234 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8235 load_full_comp_unit (per_cu, cu->language);
8236
796a7ff8 8237 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8238 per_cu);
8239 }
8240}
8241
adde2bff
DE
8242/* Reset the in_process bit of a die. */
8243
8244static void
8245reset_die_in_process (void *arg)
8246{
8247 struct die_info *die = arg;
8c3cb9fa 8248
adde2bff
DE
8249 die->in_process = 0;
8250}
8251
c906108c
SS
8252/* Process a die and its children. */
8253
8254static void
e7c27a73 8255process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8256{
adde2bff
DE
8257 struct cleanup *in_process;
8258
8259 /* We should only be processing those not already in process. */
8260 gdb_assert (!die->in_process);
8261
8262 die->in_process = 1;
8263 in_process = make_cleanup (reset_die_in_process,die);
8264
c906108c
SS
8265 switch (die->tag)
8266 {
8267 case DW_TAG_padding:
8268 break;
8269 case DW_TAG_compile_unit:
95554aad 8270 case DW_TAG_partial_unit:
e7c27a73 8271 read_file_scope (die, cu);
c906108c 8272 break;
348e048f
DE
8273 case DW_TAG_type_unit:
8274 read_type_unit_scope (die, cu);
8275 break;
c906108c 8276 case DW_TAG_subprogram:
c906108c 8277 case DW_TAG_inlined_subroutine:
edb3359d 8278 read_func_scope (die, cu);
c906108c
SS
8279 break;
8280 case DW_TAG_lexical_block:
14898363
L
8281 case DW_TAG_try_block:
8282 case DW_TAG_catch_block:
e7c27a73 8283 read_lexical_block_scope (die, cu);
c906108c 8284 break;
96408a79
SA
8285 case DW_TAG_GNU_call_site:
8286 read_call_site_scope (die, cu);
8287 break;
c906108c 8288 case DW_TAG_class_type:
680b30c7 8289 case DW_TAG_interface_type:
c906108c
SS
8290 case DW_TAG_structure_type:
8291 case DW_TAG_union_type:
134d01f1 8292 process_structure_scope (die, cu);
c906108c
SS
8293 break;
8294 case DW_TAG_enumeration_type:
134d01f1 8295 process_enumeration_scope (die, cu);
c906108c 8296 break;
134d01f1 8297
f792889a
DJ
8298 /* These dies have a type, but processing them does not create
8299 a symbol or recurse to process the children. Therefore we can
8300 read them on-demand through read_type_die. */
c906108c 8301 case DW_TAG_subroutine_type:
72019c9c 8302 case DW_TAG_set_type:
c906108c 8303 case DW_TAG_array_type:
c906108c 8304 case DW_TAG_pointer_type:
c906108c 8305 case DW_TAG_ptr_to_member_type:
c906108c 8306 case DW_TAG_reference_type:
c906108c 8307 case DW_TAG_string_type:
c906108c 8308 break;
134d01f1 8309
c906108c 8310 case DW_TAG_base_type:
a02abb62 8311 case DW_TAG_subrange_type:
cb249c71 8312 case DW_TAG_typedef:
134d01f1
DJ
8313 /* Add a typedef symbol for the type definition, if it has a
8314 DW_AT_name. */
f792889a 8315 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8316 break;
c906108c 8317 case DW_TAG_common_block:
e7c27a73 8318 read_common_block (die, cu);
c906108c
SS
8319 break;
8320 case DW_TAG_common_inclusion:
8321 break;
d9fa45fe 8322 case DW_TAG_namespace:
4d4ec4e5 8323 cu->processing_has_namespace_info = 1;
e7c27a73 8324 read_namespace (die, cu);
d9fa45fe 8325 break;
5d7cb8df 8326 case DW_TAG_module:
4d4ec4e5 8327 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8328 read_module (die, cu);
8329 break;
d9fa45fe 8330 case DW_TAG_imported_declaration:
74921315
KS
8331 cu->processing_has_namespace_info = 1;
8332 if (read_namespace_alias (die, cu))
8333 break;
8334 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8335 case DW_TAG_imported_module:
4d4ec4e5 8336 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8337 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8338 || cu->language != language_fortran))
8339 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8340 dwarf_tag_name (die->tag));
8341 read_import_statement (die, cu);
d9fa45fe 8342 break;
95554aad
TT
8343
8344 case DW_TAG_imported_unit:
8345 process_imported_unit_die (die, cu);
8346 break;
8347
c906108c 8348 default:
e7c27a73 8349 new_symbol (die, NULL, cu);
c906108c
SS
8350 break;
8351 }
adde2bff
DE
8352
8353 do_cleanups (in_process);
c906108c 8354}
ca69b9e6
DE
8355\f
8356/* DWARF name computation. */
c906108c 8357
94af9270
KS
8358/* A helper function for dwarf2_compute_name which determines whether DIE
8359 needs to have the name of the scope prepended to the name listed in the
8360 die. */
8361
8362static int
8363die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8364{
1c809c68
TT
8365 struct attribute *attr;
8366
94af9270
KS
8367 switch (die->tag)
8368 {
8369 case DW_TAG_namespace:
8370 case DW_TAG_typedef:
8371 case DW_TAG_class_type:
8372 case DW_TAG_interface_type:
8373 case DW_TAG_structure_type:
8374 case DW_TAG_union_type:
8375 case DW_TAG_enumeration_type:
8376 case DW_TAG_enumerator:
8377 case DW_TAG_subprogram:
08a76f8a 8378 case DW_TAG_inlined_subroutine:
94af9270 8379 case DW_TAG_member:
74921315 8380 case DW_TAG_imported_declaration:
94af9270
KS
8381 return 1;
8382
8383 case DW_TAG_variable:
c2b0a229 8384 case DW_TAG_constant:
94af9270
KS
8385 /* We only need to prefix "globally" visible variables. These include
8386 any variable marked with DW_AT_external or any variable that
8387 lives in a namespace. [Variables in anonymous namespaces
8388 require prefixing, but they are not DW_AT_external.] */
8389
8390 if (dwarf2_attr (die, DW_AT_specification, cu))
8391 {
8392 struct dwarf2_cu *spec_cu = cu;
9a619af0 8393
94af9270
KS
8394 return die_needs_namespace (die_specification (die, &spec_cu),
8395 spec_cu);
8396 }
8397
1c809c68 8398 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8399 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8400 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8401 return 0;
8402 /* A variable in a lexical block of some kind does not need a
8403 namespace, even though in C++ such variables may be external
8404 and have a mangled name. */
8405 if (die->parent->tag == DW_TAG_lexical_block
8406 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8407 || die->parent->tag == DW_TAG_catch_block
8408 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8409 return 0;
8410 return 1;
94af9270
KS
8411
8412 default:
8413 return 0;
8414 }
8415}
8416
98bfdba5
PA
8417/* Retrieve the last character from a mem_file. */
8418
8419static void
8420do_ui_file_peek_last (void *object, const char *buffer, long length)
8421{
8422 char *last_char_p = (char *) object;
8423
8424 if (length > 0)
8425 *last_char_p = buffer[length - 1];
8426}
8427
94af9270 8428/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8429 compute the physname for the object, which include a method's:
8430 - formal parameters (C++/Java),
8431 - receiver type (Go),
8432 - return type (Java).
8433
8434 The term "physname" is a bit confusing.
8435 For C++, for example, it is the demangled name.
8436 For Go, for example, it's the mangled name.
94af9270 8437
af6b7be1
JB
8438 For Ada, return the DIE's linkage name rather than the fully qualified
8439 name. PHYSNAME is ignored..
8440
94af9270
KS
8441 The result is allocated on the objfile_obstack and canonicalized. */
8442
8443static const char *
15d034d0
TT
8444dwarf2_compute_name (const char *name,
8445 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8446 int physname)
8447{
bb5ed363
DE
8448 struct objfile *objfile = cu->objfile;
8449
94af9270
KS
8450 if (name == NULL)
8451 name = dwarf2_name (die, cu);
8452
f55ee35c
JK
8453 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8454 compute it by typename_concat inside GDB. */
8455 if (cu->language == language_ada
8456 || (cu->language == language_fortran && physname))
8457 {
8458 /* For Ada unit, we prefer the linkage name over the name, as
8459 the former contains the exported name, which the user expects
8460 to be able to reference. Ideally, we want the user to be able
8461 to reference this entity using either natural or linkage name,
8462 but we haven't started looking at this enhancement yet. */
8463 struct attribute *attr;
8464
8465 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8466 if (attr == NULL)
8467 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8468 if (attr && DW_STRING (attr))
8469 return DW_STRING (attr);
8470 }
8471
94af9270
KS
8472 /* These are the only languages we know how to qualify names in. */
8473 if (name != NULL
f55ee35c 8474 && (cu->language == language_cplus || cu->language == language_java
45280282 8475 || cu->language == language_fortran || cu->language == language_d))
94af9270
KS
8476 {
8477 if (die_needs_namespace (die, cu))
8478 {
8479 long length;
0d5cff50 8480 const char *prefix;
94af9270 8481 struct ui_file *buf;
34a68019
TT
8482 char *intermediate_name;
8483 const char *canonical_name = NULL;
94af9270
KS
8484
8485 prefix = determine_prefix (die, cu);
8486 buf = mem_fileopen ();
8487 if (*prefix != '\0')
8488 {
f55ee35c
JK
8489 char *prefixed_name = typename_concat (NULL, prefix, name,
8490 physname, cu);
9a619af0 8491
94af9270
KS
8492 fputs_unfiltered (prefixed_name, buf);
8493 xfree (prefixed_name);
8494 }
8495 else
62d5b8da 8496 fputs_unfiltered (name, buf);
94af9270 8497
98bfdba5
PA
8498 /* Template parameters may be specified in the DIE's DW_AT_name, or
8499 as children with DW_TAG_template_type_param or
8500 DW_TAG_value_type_param. If the latter, add them to the name
8501 here. If the name already has template parameters, then
8502 skip this step; some versions of GCC emit both, and
8503 it is more efficient to use the pre-computed name.
8504
8505 Something to keep in mind about this process: it is very
8506 unlikely, or in some cases downright impossible, to produce
8507 something that will match the mangled name of a function.
8508 If the definition of the function has the same debug info,
8509 we should be able to match up with it anyway. But fallbacks
8510 using the minimal symbol, for instance to find a method
8511 implemented in a stripped copy of libstdc++, will not work.
8512 If we do not have debug info for the definition, we will have to
8513 match them up some other way.
8514
8515 When we do name matching there is a related problem with function
8516 templates; two instantiated function templates are allowed to
8517 differ only by their return types, which we do not add here. */
8518
8519 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8520 {
8521 struct attribute *attr;
8522 struct die_info *child;
8523 int first = 1;
8524
8525 die->building_fullname = 1;
8526
8527 for (child = die->child; child != NULL; child = child->sibling)
8528 {
8529 struct type *type;
12df843f 8530 LONGEST value;
d521ce57 8531 const gdb_byte *bytes;
98bfdba5
PA
8532 struct dwarf2_locexpr_baton *baton;
8533 struct value *v;
8534
8535 if (child->tag != DW_TAG_template_type_param
8536 && child->tag != DW_TAG_template_value_param)
8537 continue;
8538
8539 if (first)
8540 {
8541 fputs_unfiltered ("<", buf);
8542 first = 0;
8543 }
8544 else
8545 fputs_unfiltered (", ", buf);
8546
8547 attr = dwarf2_attr (child, DW_AT_type, cu);
8548 if (attr == NULL)
8549 {
8550 complaint (&symfile_complaints,
8551 _("template parameter missing DW_AT_type"));
8552 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8553 continue;
8554 }
8555 type = die_type (child, cu);
8556
8557 if (child->tag == DW_TAG_template_type_param)
8558 {
79d43c61 8559 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8560 continue;
8561 }
8562
8563 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8564 if (attr == NULL)
8565 {
8566 complaint (&symfile_complaints,
3e43a32a
MS
8567 _("template parameter missing "
8568 "DW_AT_const_value"));
98bfdba5
PA
8569 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8570 continue;
8571 }
8572
8573 dwarf2_const_value_attr (attr, type, name,
8574 &cu->comp_unit_obstack, cu,
8575 &value, &bytes, &baton);
8576
8577 if (TYPE_NOSIGN (type))
8578 /* GDB prints characters as NUMBER 'CHAR'. If that's
8579 changed, this can use value_print instead. */
8580 c_printchar (value, type, buf);
8581 else
8582 {
8583 struct value_print_options opts;
8584
8585 if (baton != NULL)
8586 v = dwarf2_evaluate_loc_desc (type, NULL,
8587 baton->data,
8588 baton->size,
8589 baton->per_cu);
8590 else if (bytes != NULL)
8591 {
8592 v = allocate_value (type);
8593 memcpy (value_contents_writeable (v), bytes,
8594 TYPE_LENGTH (type));
8595 }
8596 else
8597 v = value_from_longest (type, value);
8598
3e43a32a
MS
8599 /* Specify decimal so that we do not depend on
8600 the radix. */
98bfdba5
PA
8601 get_formatted_print_options (&opts, 'd');
8602 opts.raw = 1;
8603 value_print (v, buf, &opts);
8604 release_value (v);
8605 value_free (v);
8606 }
8607 }
8608
8609 die->building_fullname = 0;
8610
8611 if (!first)
8612 {
8613 /* Close the argument list, with a space if necessary
8614 (nested templates). */
8615 char last_char = '\0';
8616 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8617 if (last_char == '>')
8618 fputs_unfiltered (" >", buf);
8619 else
8620 fputs_unfiltered (">", buf);
8621 }
8622 }
8623
94af9270
KS
8624 /* For Java and C++ methods, append formal parameter type
8625 information, if PHYSNAME. */
6e70227d 8626
94af9270
KS
8627 if (physname && die->tag == DW_TAG_subprogram
8628 && (cu->language == language_cplus
8629 || cu->language == language_java))
8630 {
8631 struct type *type = read_type_die (die, cu);
8632
79d43c61
TT
8633 c_type_print_args (type, buf, 1, cu->language,
8634 &type_print_raw_options);
94af9270
KS
8635
8636 if (cu->language == language_java)
8637 {
8638 /* For java, we must append the return type to method
0963b4bd 8639 names. */
94af9270
KS
8640 if (die->tag == DW_TAG_subprogram)
8641 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8642 0, 0, &type_print_raw_options);
94af9270
KS
8643 }
8644 else if (cu->language == language_cplus)
8645 {
60430eff
DJ
8646 /* Assume that an artificial first parameter is
8647 "this", but do not crash if it is not. RealView
8648 marks unnamed (and thus unused) parameters as
8649 artificial; there is no way to differentiate
8650 the two cases. */
94af9270
KS
8651 if (TYPE_NFIELDS (type) > 0
8652 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8653 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8654 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8655 0))))
94af9270
KS
8656 fputs_unfiltered (" const", buf);
8657 }
8658 }
8659
34a68019 8660 intermediate_name = ui_file_xstrdup (buf, &length);
94af9270
KS
8661 ui_file_delete (buf);
8662
8663 if (cu->language == language_cplus)
34a68019
TT
8664 canonical_name
8665 = dwarf2_canonicalize_name (intermediate_name, cu,
8666 &objfile->per_bfd->storage_obstack);
8667
8668 /* If we only computed INTERMEDIATE_NAME, or if
8669 INTERMEDIATE_NAME is already canonical, then we need to
8670 copy it to the appropriate obstack. */
8671 if (canonical_name == NULL || canonical_name == intermediate_name)
8672 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8673 intermediate_name,
8674 strlen (intermediate_name));
8675 else
8676 name = canonical_name;
9a619af0 8677
34a68019 8678 xfree (intermediate_name);
94af9270
KS
8679 }
8680 }
8681
8682 return name;
8683}
8684
0114d602
DJ
8685/* Return the fully qualified name of DIE, based on its DW_AT_name.
8686 If scope qualifiers are appropriate they will be added. The result
34a68019 8687 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8688 not have a name. NAME may either be from a previous call to
8689 dwarf2_name or NULL.
8690
0963b4bd 8691 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8692
8693static const char *
15d034d0 8694dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8695{
94af9270
KS
8696 return dwarf2_compute_name (name, die, cu, 0);
8697}
0114d602 8698
94af9270
KS
8699/* Construct a physname for the given DIE in CU. NAME may either be
8700 from a previous call to dwarf2_name or NULL. The result will be
8701 allocated on the objfile_objstack or NULL if the DIE does not have a
8702 name.
0114d602 8703
94af9270 8704 The output string will be canonicalized (if C++/Java). */
0114d602 8705
94af9270 8706static const char *
15d034d0 8707dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8708{
bb5ed363 8709 struct objfile *objfile = cu->objfile;
900e11f9
JK
8710 struct attribute *attr;
8711 const char *retval, *mangled = NULL, *canon = NULL;
8712 struct cleanup *back_to;
8713 int need_copy = 1;
8714
8715 /* In this case dwarf2_compute_name is just a shortcut not building anything
8716 on its own. */
8717 if (!die_needs_namespace (die, cu))
8718 return dwarf2_compute_name (name, die, cu, 1);
8719
8720 back_to = make_cleanup (null_cleanup, NULL);
8721
8722 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8723 if (!attr)
8724 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8725
8726 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8727 has computed. */
8728 if (attr && DW_STRING (attr))
8729 {
8730 char *demangled;
8731
8732 mangled = DW_STRING (attr);
8733
8734 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8735 type. It is easier for GDB users to search for such functions as
8736 `name(params)' than `long name(params)'. In such case the minimal
8737 symbol names do not match the full symbol names but for template
8738 functions there is never a need to look up their definition from their
8739 declaration so the only disadvantage remains the minimal symbol
8740 variant `long name(params)' does not have the proper inferior type.
8741 */
8742
a766d390
DE
8743 if (cu->language == language_go)
8744 {
8745 /* This is a lie, but we already lie to the caller new_symbol_full.
8746 new_symbol_full assumes we return the mangled name.
8747 This just undoes that lie until things are cleaned up. */
8748 demangled = NULL;
8749 }
8750 else
8751 {
8de20a37
TT
8752 demangled = gdb_demangle (mangled,
8753 (DMGL_PARAMS | DMGL_ANSI
8754 | (cu->language == language_java
8755 ? DMGL_JAVA | DMGL_RET_POSTFIX
8756 : DMGL_RET_DROP)));
a766d390 8757 }
900e11f9
JK
8758 if (demangled)
8759 {
8760 make_cleanup (xfree, demangled);
8761 canon = demangled;
8762 }
8763 else
8764 {
8765 canon = mangled;
8766 need_copy = 0;
8767 }
8768 }
8769
8770 if (canon == NULL || check_physname)
8771 {
8772 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8773
8774 if (canon != NULL && strcmp (physname, canon) != 0)
8775 {
8776 /* It may not mean a bug in GDB. The compiler could also
8777 compute DW_AT_linkage_name incorrectly. But in such case
8778 GDB would need to be bug-to-bug compatible. */
8779
8780 complaint (&symfile_complaints,
8781 _("Computed physname <%s> does not match demangled <%s> "
8782 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8783 physname, canon, mangled, die->offset.sect_off,
8784 objfile_name (objfile));
900e11f9
JK
8785
8786 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8787 is available here - over computed PHYSNAME. It is safer
8788 against both buggy GDB and buggy compilers. */
8789
8790 retval = canon;
8791 }
8792 else
8793 {
8794 retval = physname;
8795 need_copy = 0;
8796 }
8797 }
8798 else
8799 retval = canon;
8800
8801 if (need_copy)
34a68019
TT
8802 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8803 retval, strlen (retval));
900e11f9
JK
8804
8805 do_cleanups (back_to);
8806 return retval;
0114d602
DJ
8807}
8808
74921315
KS
8809/* Inspect DIE in CU for a namespace alias. If one exists, record
8810 a new symbol for it.
8811
8812 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8813
8814static int
8815read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8816{
8817 struct attribute *attr;
8818
8819 /* If the die does not have a name, this is not a namespace
8820 alias. */
8821 attr = dwarf2_attr (die, DW_AT_name, cu);
8822 if (attr != NULL)
8823 {
8824 int num;
8825 struct die_info *d = die;
8826 struct dwarf2_cu *imported_cu = cu;
8827
8828 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8829 keep inspecting DIEs until we hit the underlying import. */
8830#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8831 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8832 {
8833 attr = dwarf2_attr (d, DW_AT_import, cu);
8834 if (attr == NULL)
8835 break;
8836
8837 d = follow_die_ref (d, attr, &imported_cu);
8838 if (d->tag != DW_TAG_imported_declaration)
8839 break;
8840 }
8841
8842 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8843 {
8844 complaint (&symfile_complaints,
8845 _("DIE at 0x%x has too many recursively imported "
8846 "declarations"), d->offset.sect_off);
8847 return 0;
8848 }
8849
8850 if (attr != NULL)
8851 {
8852 struct type *type;
8853 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8854
8855 type = get_die_type_at_offset (offset, cu->per_cu);
8856 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8857 {
8858 /* This declaration is a global namespace alias. Add
8859 a symbol for it whose type is the aliased namespace. */
8860 new_symbol (die, type, cu);
8861 return 1;
8862 }
8863 }
8864 }
8865
8866 return 0;
8867}
8868
22cee43f
PMR
8869/* Return the using directives repository (global or local?) to use in the
8870 current context for LANGUAGE.
8871
8872 For Ada, imported declarations can materialize renamings, which *may* be
8873 global. However it is impossible (for now?) in DWARF to distinguish
8874 "external" imported declarations and "static" ones. As all imported
8875 declarations seem to be static in all other languages, make them all CU-wide
8876 global only in Ada. */
8877
8878static struct using_direct **
8879using_directives (enum language language)
8880{
8881 if (language == language_ada && context_stack_depth == 0)
8882 return &global_using_directives;
8883 else
8884 return &local_using_directives;
8885}
8886
27aa8d6a
SW
8887/* Read the import statement specified by the given die and record it. */
8888
8889static void
8890read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8891{
bb5ed363 8892 struct objfile *objfile = cu->objfile;
27aa8d6a 8893 struct attribute *import_attr;
32019081 8894 struct die_info *imported_die, *child_die;
de4affc9 8895 struct dwarf2_cu *imported_cu;
27aa8d6a 8896 const char *imported_name;
794684b6 8897 const char *imported_name_prefix;
13387711
SW
8898 const char *canonical_name;
8899 const char *import_alias;
8900 const char *imported_declaration = NULL;
794684b6 8901 const char *import_prefix;
32019081
JK
8902 VEC (const_char_ptr) *excludes = NULL;
8903 struct cleanup *cleanups;
13387711 8904
27aa8d6a
SW
8905 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8906 if (import_attr == NULL)
8907 {
8908 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8909 dwarf_tag_name (die->tag));
8910 return;
8911 }
8912
de4affc9
CC
8913 imported_cu = cu;
8914 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8915 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8916 if (imported_name == NULL)
8917 {
8918 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8919
8920 The import in the following code:
8921 namespace A
8922 {
8923 typedef int B;
8924 }
8925
8926 int main ()
8927 {
8928 using A::B;
8929 B b;
8930 return b;
8931 }
8932
8933 ...
8934 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8935 <52> DW_AT_decl_file : 1
8936 <53> DW_AT_decl_line : 6
8937 <54> DW_AT_import : <0x75>
8938 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8939 <59> DW_AT_name : B
8940 <5b> DW_AT_decl_file : 1
8941 <5c> DW_AT_decl_line : 2
8942 <5d> DW_AT_type : <0x6e>
8943 ...
8944 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8945 <76> DW_AT_byte_size : 4
8946 <77> DW_AT_encoding : 5 (signed)
8947
8948 imports the wrong die ( 0x75 instead of 0x58 ).
8949 This case will be ignored until the gcc bug is fixed. */
8950 return;
8951 }
8952
82856980
SW
8953 /* Figure out the local name after import. */
8954 import_alias = dwarf2_name (die, cu);
27aa8d6a 8955
794684b6
SW
8956 /* Figure out where the statement is being imported to. */
8957 import_prefix = determine_prefix (die, cu);
8958
8959 /* Figure out what the scope of the imported die is and prepend it
8960 to the name of the imported die. */
de4affc9 8961 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8962
f55ee35c
JK
8963 if (imported_die->tag != DW_TAG_namespace
8964 && imported_die->tag != DW_TAG_module)
794684b6 8965 {
13387711
SW
8966 imported_declaration = imported_name;
8967 canonical_name = imported_name_prefix;
794684b6 8968 }
13387711 8969 else if (strlen (imported_name_prefix) > 0)
12aaed36 8970 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
8971 imported_name_prefix,
8972 (cu->language == language_d ? "." : "::"),
8973 imported_name, (char *) NULL);
13387711
SW
8974 else
8975 canonical_name = imported_name;
794684b6 8976
32019081
JK
8977 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8978
8979 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8980 for (child_die = die->child; child_die && child_die->tag;
8981 child_die = sibling_die (child_die))
8982 {
8983 /* DWARF-4: A Fortran use statement with a “rename list” may be
8984 represented by an imported module entry with an import attribute
8985 referring to the module and owned entries corresponding to those
8986 entities that are renamed as part of being imported. */
8987
8988 if (child_die->tag != DW_TAG_imported_declaration)
8989 {
8990 complaint (&symfile_complaints,
8991 _("child DW_TAG_imported_declaration expected "
8992 "- DIE at 0x%x [in module %s]"),
4262abfb 8993 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8994 continue;
8995 }
8996
8997 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8998 if (import_attr == NULL)
8999 {
9000 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9001 dwarf_tag_name (child_die->tag));
9002 continue;
9003 }
9004
9005 imported_cu = cu;
9006 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9007 &imported_cu);
9008 imported_name = dwarf2_name (imported_die, imported_cu);
9009 if (imported_name == NULL)
9010 {
9011 complaint (&symfile_complaints,
9012 _("child DW_TAG_imported_declaration has unknown "
9013 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 9014 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
9015 continue;
9016 }
9017
9018 VEC_safe_push (const_char_ptr, excludes, imported_name);
9019
9020 process_die (child_die, cu);
9021 }
9022
22cee43f
PMR
9023 add_using_directive (using_directives (cu->language),
9024 import_prefix,
9025 canonical_name,
9026 import_alias,
9027 imported_declaration,
9028 excludes,
9029 0,
9030 &objfile->objfile_obstack);
32019081
JK
9031
9032 do_cleanups (cleanups);
27aa8d6a
SW
9033}
9034
f4dc4d17 9035/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 9036
cb1df416
DJ
9037static void
9038free_cu_line_header (void *arg)
9039{
9040 struct dwarf2_cu *cu = arg;
9041
9042 free_line_header (cu->line_header);
9043 cu->line_header = NULL;
9044}
9045
1b80a9fa
JK
9046/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9047 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9048 this, it was first present in GCC release 4.3.0. */
9049
9050static int
9051producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9052{
9053 if (!cu->checked_producer)
9054 check_producer (cu);
9055
9056 return cu->producer_is_gcc_lt_4_3;
9057}
9058
9291a0cd
TT
9059static void
9060find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 9061 const char **name, const char **comp_dir)
9291a0cd
TT
9062{
9063 struct attribute *attr;
9064
9065 *name = NULL;
9066 *comp_dir = NULL;
9067
9068 /* Find the filename. Do not use dwarf2_name here, since the filename
9069 is not a source language identifier. */
9070 attr = dwarf2_attr (die, DW_AT_name, cu);
9071 if (attr)
9072 {
9073 *name = DW_STRING (attr);
9074 }
9075
9076 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
9077 if (attr)
9078 *comp_dir = DW_STRING (attr);
1b80a9fa
JK
9079 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
9080 && IS_ABSOLUTE_PATH (*name))
9291a0cd 9081 {
15d034d0
TT
9082 char *d = ldirname (*name);
9083
9084 *comp_dir = d;
9085 if (d != NULL)
9086 make_cleanup (xfree, d);
9291a0cd
TT
9087 }
9088 if (*comp_dir != NULL)
9089 {
9090 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9091 directory, get rid of it. */
9092 char *cp = strchr (*comp_dir, ':');
9093
9094 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9095 *comp_dir = cp + 1;
9096 }
9097
9098 if (*name == NULL)
9099 *name = "<unknown>";
9100}
9101
f4dc4d17
DE
9102/* Handle DW_AT_stmt_list for a compilation unit.
9103 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9104 COMP_DIR is the compilation directory. LOWPC is passed to
9105 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9106
9107static void
9108handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9109 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9110{
527f3840 9111 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9112 struct attribute *attr;
527f3840
JK
9113 unsigned int line_offset;
9114 struct line_header line_header_local;
9115 hashval_t line_header_local_hash;
9116 unsigned u;
9117 void **slot;
9118 int decode_mapping;
2ab95328 9119
f4dc4d17
DE
9120 gdb_assert (! cu->per_cu->is_debug_types);
9121
2ab95328 9122 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9123 if (attr == NULL)
9124 return;
9125
9126 line_offset = DW_UNSND (attr);
9127
9128 /* The line header hash table is only created if needed (it exists to
9129 prevent redundant reading of the line table for partial_units).
9130 If we're given a partial_unit, we'll need it. If we're given a
9131 compile_unit, then use the line header hash table if it's already
9132 created, but don't create one just yet. */
9133
9134 if (dwarf2_per_objfile->line_header_hash == NULL
9135 && die->tag == DW_TAG_partial_unit)
2ab95328 9136 {
527f3840
JK
9137 dwarf2_per_objfile->line_header_hash
9138 = htab_create_alloc_ex (127, line_header_hash_voidp,
9139 line_header_eq_voidp,
9140 free_line_header_voidp,
9141 &objfile->objfile_obstack,
9142 hashtab_obstack_allocate,
9143 dummy_obstack_deallocate);
9144 }
2ab95328 9145
527f3840
JK
9146 line_header_local.offset.sect_off = line_offset;
9147 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9148 line_header_local_hash = line_header_hash (&line_header_local);
9149 if (dwarf2_per_objfile->line_header_hash != NULL)
9150 {
9151 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9152 &line_header_local,
9153 line_header_local_hash, NO_INSERT);
9154
9155 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9156 is not present in *SLOT (since if there is something in *SLOT then
9157 it will be for a partial_unit). */
9158 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9159 {
527f3840
JK
9160 gdb_assert (*slot != NULL);
9161 cu->line_header = *slot;
9162 return;
dee91e82 9163 }
2ab95328 9164 }
527f3840
JK
9165
9166 /* dwarf_decode_line_header does not yet provide sufficient information.
9167 We always have to call also dwarf_decode_lines for it. */
9168 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9169 if (cu->line_header == NULL)
9170 return;
9171
9172 if (dwarf2_per_objfile->line_header_hash == NULL)
9173 slot = NULL;
9174 else
9175 {
9176 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9177 &line_header_local,
9178 line_header_local_hash, INSERT);
9179 gdb_assert (slot != NULL);
9180 }
9181 if (slot != NULL && *slot == NULL)
9182 {
9183 /* This newly decoded line number information unit will be owned
9184 by line_header_hash hash table. */
9185 *slot = cu->line_header;
9186 }
9187 else
9188 {
9189 /* We cannot free any current entry in (*slot) as that struct line_header
9190 may be already used by multiple CUs. Create only temporary decoded
9191 line_header for this CU - it may happen at most once for each line
9192 number information unit. And if we're not using line_header_hash
9193 then this is what we want as well. */
9194 gdb_assert (die->tag != DW_TAG_partial_unit);
9195 make_cleanup (free_cu_line_header, cu);
9196 }
9197 decode_mapping = (die->tag != DW_TAG_partial_unit);
9198 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9199 decode_mapping);
2ab95328
TT
9200}
9201
95554aad 9202/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9203
c906108c 9204static void
e7c27a73 9205read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9206{
dee91e82 9207 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9208 struct gdbarch *gdbarch = get_objfile_arch (objfile);
debd256d 9209 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9210 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9211 CORE_ADDR highpc = ((CORE_ADDR) 0);
9212 struct attribute *attr;
15d034d0
TT
9213 const char *name = NULL;
9214 const char *comp_dir = NULL;
c906108c
SS
9215 struct die_info *child_die;
9216 bfd *abfd = objfile->obfd;
e142c38c 9217 CORE_ADDR baseaddr;
6e70227d 9218
e142c38c 9219 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9220
fae299cd 9221 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9222
9223 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9224 from finish_block. */
2acceee2 9225 if (lowpc == ((CORE_ADDR) -1))
c906108c 9226 lowpc = highpc;
3e29f34a 9227 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9228
9291a0cd 9229 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9230
95554aad 9231 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9232
f4b8a18d
KW
9233 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9234 standardised yet. As a workaround for the language detection we fall
9235 back to the DW_AT_producer string. */
9236 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9237 cu->language = language_opencl;
9238
3019eac3
DE
9239 /* Similar hack for Go. */
9240 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9241 set_cu_language (DW_LANG_Go, cu);
9242
f4dc4d17 9243 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9244
9245 /* Decode line number information if present. We do this before
9246 processing child DIEs, so that the line header table is available
9247 for DW_AT_decl_file. */
c3b7b696 9248 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9249
9250 /* Process all dies in compilation unit. */
9251 if (die->child != NULL)
9252 {
9253 child_die = die->child;
9254 while (child_die && child_die->tag)
9255 {
9256 process_die (child_die, cu);
9257 child_die = sibling_die (child_die);
9258 }
9259 }
9260
9261 /* Decode macro information, if present. Dwarf 2 macro information
9262 refers to information in the line number info statement program
9263 header, so we can only read it if we've read the header
9264 successfully. */
9265 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9266 if (attr && cu->line_header)
9267 {
9268 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9269 complaint (&symfile_complaints,
9270 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9271
43f3e411 9272 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9273 }
9274 else
9275 {
9276 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9277 if (attr && cu->line_header)
9278 {
9279 unsigned int macro_offset = DW_UNSND (attr);
9280
43f3e411 9281 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9282 }
9283 }
9284
9285 do_cleanups (back_to);
9286}
9287
f4dc4d17
DE
9288/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9289 Create the set of symtabs used by this TU, or if this TU is sharing
9290 symtabs with another TU and the symtabs have already been created
9291 then restore those symtabs in the line header.
9292 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9293
9294static void
f4dc4d17 9295setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9296{
f4dc4d17
DE
9297 struct objfile *objfile = dwarf2_per_objfile->objfile;
9298 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9299 struct type_unit_group *tu_group;
9300 int first_time;
9301 struct line_header *lh;
3019eac3 9302 struct attribute *attr;
f4dc4d17 9303 unsigned int i, line_offset;
0186c6a7 9304 struct signatured_type *sig_type;
3019eac3 9305
f4dc4d17 9306 gdb_assert (per_cu->is_debug_types);
0186c6a7 9307 sig_type = (struct signatured_type *) per_cu;
3019eac3 9308
f4dc4d17 9309 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9310
f4dc4d17 9311 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9312 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9313 if (sig_type->type_unit_group == NULL)
9314 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9315 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9316
9317 /* If we've already processed this stmt_list there's no real need to
9318 do it again, we could fake it and just recreate the part we need
9319 (file name,index -> symtab mapping). If data shows this optimization
9320 is useful we can do it then. */
43f3e411 9321 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9322
9323 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9324 debug info. */
9325 lh = NULL;
9326 if (attr != NULL)
3019eac3 9327 {
f4dc4d17
DE
9328 line_offset = DW_UNSND (attr);
9329 lh = dwarf_decode_line_header (line_offset, cu);
9330 }
9331 if (lh == NULL)
9332 {
9333 if (first_time)
9334 dwarf2_start_symtab (cu, "", NULL, 0);
9335 else
9336 {
9337 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9338 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9339 }
f4dc4d17 9340 return;
3019eac3
DE
9341 }
9342
f4dc4d17
DE
9343 cu->line_header = lh;
9344 make_cleanup (free_cu_line_header, cu);
3019eac3 9345
f4dc4d17
DE
9346 if (first_time)
9347 {
43f3e411 9348 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9349
f4dc4d17
DE
9350 tu_group->num_symtabs = lh->num_file_names;
9351 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9352
f4dc4d17
DE
9353 for (i = 0; i < lh->num_file_names; ++i)
9354 {
d521ce57 9355 const char *dir = NULL;
f4dc4d17 9356 struct file_entry *fe = &lh->file_names[i];
3019eac3 9357
afa6c9ab 9358 if (fe->dir_index && lh->include_dirs != NULL)
f4dc4d17 9359 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9360 dwarf2_start_subfile (fe->name, dir);
3019eac3 9361
f4dc4d17
DE
9362 if (current_subfile->symtab == NULL)
9363 {
9364 /* NOTE: start_subfile will recognize when it's been passed
9365 a file it has already seen. So we can't assume there's a
43f3e411 9366 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9367 lh->file_names may contain dups. */
43f3e411
DE
9368 current_subfile->symtab
9369 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9370 }
9371
9372 fe->symtab = current_subfile->symtab;
9373 tu_group->symtabs[i] = fe->symtab;
9374 }
9375 }
9376 else
3019eac3 9377 {
0ab9ce85 9378 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17
DE
9379
9380 for (i = 0; i < lh->num_file_names; ++i)
9381 {
9382 struct file_entry *fe = &lh->file_names[i];
9383
9384 fe->symtab = tu_group->symtabs[i];
9385 }
3019eac3
DE
9386 }
9387
f4dc4d17
DE
9388 /* The main symtab is allocated last. Type units don't have DW_AT_name
9389 so they don't have a "real" (so to speak) symtab anyway.
9390 There is later code that will assign the main symtab to all symbols
9391 that don't have one. We need to handle the case of a symbol with a
9392 missing symtab (DW_AT_decl_file) anyway. */
9393}
3019eac3 9394
f4dc4d17
DE
9395/* Process DW_TAG_type_unit.
9396 For TUs we want to skip the first top level sibling if it's not the
9397 actual type being defined by this TU. In this case the first top
9398 level sibling is there to provide context only. */
3019eac3 9399
f4dc4d17
DE
9400static void
9401read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9402{
9403 struct die_info *child_die;
3019eac3 9404
f4dc4d17
DE
9405 prepare_one_comp_unit (cu, die, language_minimal);
9406
9407 /* Initialize (or reinitialize) the machinery for building symtabs.
9408 We do this before processing child DIEs, so that the line header table
9409 is available for DW_AT_decl_file. */
9410 setup_type_unit_groups (die, cu);
9411
9412 if (die->child != NULL)
9413 {
9414 child_die = die->child;
9415 while (child_die && child_die->tag)
9416 {
9417 process_die (child_die, cu);
9418 child_die = sibling_die (child_die);
9419 }
9420 }
3019eac3
DE
9421}
9422\f
80626a55
DE
9423/* DWO/DWP files.
9424
9425 http://gcc.gnu.org/wiki/DebugFission
9426 http://gcc.gnu.org/wiki/DebugFissionDWP
9427
9428 To simplify handling of both DWO files ("object" files with the DWARF info)
9429 and DWP files (a file with the DWOs packaged up into one file), we treat
9430 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9431
9432static hashval_t
9433hash_dwo_file (const void *item)
9434{
9435 const struct dwo_file *dwo_file = item;
a2ce51a0 9436 hashval_t hash;
3019eac3 9437
a2ce51a0
DE
9438 hash = htab_hash_string (dwo_file->dwo_name);
9439 if (dwo_file->comp_dir != NULL)
9440 hash += htab_hash_string (dwo_file->comp_dir);
9441 return hash;
3019eac3
DE
9442}
9443
9444static int
9445eq_dwo_file (const void *item_lhs, const void *item_rhs)
9446{
9447 const struct dwo_file *lhs = item_lhs;
9448 const struct dwo_file *rhs = item_rhs;
9449
a2ce51a0
DE
9450 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9451 return 0;
9452 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9453 return lhs->comp_dir == rhs->comp_dir;
9454 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9455}
9456
9457/* Allocate a hash table for DWO files. */
9458
9459static htab_t
9460allocate_dwo_file_hash_table (void)
9461{
9462 struct objfile *objfile = dwarf2_per_objfile->objfile;
9463
9464 return htab_create_alloc_ex (41,
9465 hash_dwo_file,
9466 eq_dwo_file,
9467 NULL,
9468 &objfile->objfile_obstack,
9469 hashtab_obstack_allocate,
9470 dummy_obstack_deallocate);
9471}
9472
80626a55
DE
9473/* Lookup DWO file DWO_NAME. */
9474
9475static void **
0ac5b59e 9476lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9477{
9478 struct dwo_file find_entry;
9479 void **slot;
9480
9481 if (dwarf2_per_objfile->dwo_files == NULL)
9482 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9483
9484 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9485 find_entry.dwo_name = dwo_name;
9486 find_entry.comp_dir = comp_dir;
80626a55
DE
9487 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9488
9489 return slot;
9490}
9491
3019eac3
DE
9492static hashval_t
9493hash_dwo_unit (const void *item)
9494{
9495 const struct dwo_unit *dwo_unit = item;
9496
9497 /* This drops the top 32 bits of the id, but is ok for a hash. */
9498 return dwo_unit->signature;
9499}
9500
9501static int
9502eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9503{
9504 const struct dwo_unit *lhs = item_lhs;
9505 const struct dwo_unit *rhs = item_rhs;
9506
9507 /* The signature is assumed to be unique within the DWO file.
9508 So while object file CU dwo_id's always have the value zero,
9509 that's OK, assuming each object file DWO file has only one CU,
9510 and that's the rule for now. */
9511 return lhs->signature == rhs->signature;
9512}
9513
9514/* Allocate a hash table for DWO CUs,TUs.
9515 There is one of these tables for each of CUs,TUs for each DWO file. */
9516
9517static htab_t
9518allocate_dwo_unit_table (struct objfile *objfile)
9519{
9520 /* Start out with a pretty small number.
9521 Generally DWO files contain only one CU and maybe some TUs. */
9522 return htab_create_alloc_ex (3,
9523 hash_dwo_unit,
9524 eq_dwo_unit,
9525 NULL,
9526 &objfile->objfile_obstack,
9527 hashtab_obstack_allocate,
9528 dummy_obstack_deallocate);
9529}
9530
80626a55 9531/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9532
19c3d4c9 9533struct create_dwo_cu_data
3019eac3
DE
9534{
9535 struct dwo_file *dwo_file;
19c3d4c9 9536 struct dwo_unit dwo_unit;
3019eac3
DE
9537};
9538
19c3d4c9 9539/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9540
9541static void
19c3d4c9
DE
9542create_dwo_cu_reader (const struct die_reader_specs *reader,
9543 const gdb_byte *info_ptr,
9544 struct die_info *comp_unit_die,
9545 int has_children,
9546 void *datap)
3019eac3
DE
9547{
9548 struct dwarf2_cu *cu = reader->cu;
9549 struct objfile *objfile = dwarf2_per_objfile->objfile;
9550 sect_offset offset = cu->per_cu->offset;
8a0459fd 9551 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 9552 struct create_dwo_cu_data *data = datap;
3019eac3 9553 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9554 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9555 struct attribute *attr;
3019eac3
DE
9556
9557 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9558 if (attr == NULL)
9559 {
19c3d4c9
DE
9560 complaint (&symfile_complaints,
9561 _("Dwarf Error: debug entry at offset 0x%x is missing"
9562 " its dwo_id [in module %s]"),
9563 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9564 return;
9565 }
9566
3019eac3
DE
9567 dwo_unit->dwo_file = dwo_file;
9568 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9569 dwo_unit->section = section;
3019eac3
DE
9570 dwo_unit->offset = offset;
9571 dwo_unit->length = cu->per_cu->length;
9572
b4f54984 9573 if (dwarf_read_debug)
4031ecc5
DE
9574 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9575 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9576}
9577
19c3d4c9
DE
9578/* Create the dwo_unit for the lone CU in DWO_FILE.
9579 Note: This function processes DWO files only, not DWP files. */
3019eac3 9580
19c3d4c9
DE
9581static struct dwo_unit *
9582create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9583{
9584 struct objfile *objfile = dwarf2_per_objfile->objfile;
9585 struct dwarf2_section_info *section = &dwo_file->sections.info;
9586 bfd *abfd;
9587 htab_t cu_htab;
d521ce57 9588 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9589 struct create_dwo_cu_data create_dwo_cu_data;
9590 struct dwo_unit *dwo_unit;
3019eac3
DE
9591
9592 dwarf2_read_section (objfile, section);
9593 info_ptr = section->buffer;
9594
9595 if (info_ptr == NULL)
9596 return NULL;
9597
9598 /* We can't set abfd until now because the section may be empty or
9599 not present, in which case section->asection will be NULL. */
a32a8923 9600 abfd = get_section_bfd_owner (section);
3019eac3 9601
b4f54984 9602 if (dwarf_read_debug)
19c3d4c9
DE
9603 {
9604 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9605 get_section_name (section),
9606 get_section_file_name (section));
19c3d4c9 9607 }
3019eac3 9608
19c3d4c9
DE
9609 create_dwo_cu_data.dwo_file = dwo_file;
9610 dwo_unit = NULL;
3019eac3
DE
9611
9612 end_ptr = info_ptr + section->size;
9613 while (info_ptr < end_ptr)
9614 {
9615 struct dwarf2_per_cu_data per_cu;
9616
19c3d4c9
DE
9617 memset (&create_dwo_cu_data.dwo_unit, 0,
9618 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9619 memset (&per_cu, 0, sizeof (per_cu));
9620 per_cu.objfile = objfile;
9621 per_cu.is_debug_types = 0;
9622 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9623 per_cu.section = section;
3019eac3 9624
33e80786 9625 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9626 create_dwo_cu_reader,
9627 &create_dwo_cu_data);
9628
9629 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9630 {
9631 /* If we've already found one, complain. We only support one
9632 because having more than one requires hacking the dwo_name of
9633 each to match, which is highly unlikely to happen. */
9634 if (dwo_unit != NULL)
9635 {
9636 complaint (&symfile_complaints,
9637 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9638 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9639 break;
9640 }
9641
9642 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9643 *dwo_unit = create_dwo_cu_data.dwo_unit;
9644 }
3019eac3
DE
9645
9646 info_ptr += per_cu.length;
9647 }
9648
19c3d4c9 9649 return dwo_unit;
3019eac3
DE
9650}
9651
80626a55
DE
9652/* DWP file .debug_{cu,tu}_index section format:
9653 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9654
d2415c6c
DE
9655 DWP Version 1:
9656
80626a55
DE
9657 Both index sections have the same format, and serve to map a 64-bit
9658 signature to a set of section numbers. Each section begins with a header,
9659 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9660 indexes, and a pool of 32-bit section numbers. The index sections will be
9661 aligned at 8-byte boundaries in the file.
9662
d2415c6c
DE
9663 The index section header consists of:
9664
9665 V, 32 bit version number
9666 -, 32 bits unused
9667 N, 32 bit number of compilation units or type units in the index
9668 M, 32 bit number of slots in the hash table
80626a55 9669
d2415c6c 9670 Numbers are recorded using the byte order of the application binary.
80626a55 9671
d2415c6c
DE
9672 The hash table begins at offset 16 in the section, and consists of an array
9673 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9674 order of the application binary). Unused slots in the hash table are 0.
9675 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9676
d2415c6c
DE
9677 The parallel table begins immediately after the hash table
9678 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9679 array of 32-bit indexes (using the byte order of the application binary),
9680 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9681 table contains a 32-bit index into the pool of section numbers. For unused
9682 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9683
73869dc2
DE
9684 The pool of section numbers begins immediately following the hash table
9685 (at offset 16 + 12 * M from the beginning of the section). The pool of
9686 section numbers consists of an array of 32-bit words (using the byte order
9687 of the application binary). Each item in the array is indexed starting
9688 from 0. The hash table entry provides the index of the first section
9689 number in the set. Additional section numbers in the set follow, and the
9690 set is terminated by a 0 entry (section number 0 is not used in ELF).
9691
9692 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9693 section must be the first entry in the set, and the .debug_abbrev.dwo must
9694 be the second entry. Other members of the set may follow in any order.
9695
9696 ---
9697
9698 DWP Version 2:
9699
9700 DWP Version 2 combines all the .debug_info, etc. sections into one,
9701 and the entries in the index tables are now offsets into these sections.
9702 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9703 section.
9704
9705 Index Section Contents:
9706 Header
9707 Hash Table of Signatures dwp_hash_table.hash_table
9708 Parallel Table of Indices dwp_hash_table.unit_table
9709 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9710 Table of Section Sizes dwp_hash_table.v2.sizes
9711
9712 The index section header consists of:
9713
9714 V, 32 bit version number
9715 L, 32 bit number of columns in the table of section offsets
9716 N, 32 bit number of compilation units or type units in the index
9717 M, 32 bit number of slots in the hash table
9718
9719 Numbers are recorded using the byte order of the application binary.
9720
9721 The hash table has the same format as version 1.
9722 The parallel table of indices has the same format as version 1,
9723 except that the entries are origin-1 indices into the table of sections
9724 offsets and the table of section sizes.
9725
9726 The table of offsets begins immediately following the parallel table
9727 (at offset 16 + 12 * M from the beginning of the section). The table is
9728 a two-dimensional array of 32-bit words (using the byte order of the
9729 application binary), with L columns and N+1 rows, in row-major order.
9730 Each row in the array is indexed starting from 0. The first row provides
9731 a key to the remaining rows: each column in this row provides an identifier
9732 for a debug section, and the offsets in the same column of subsequent rows
9733 refer to that section. The section identifiers are:
9734
9735 DW_SECT_INFO 1 .debug_info.dwo
9736 DW_SECT_TYPES 2 .debug_types.dwo
9737 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9738 DW_SECT_LINE 4 .debug_line.dwo
9739 DW_SECT_LOC 5 .debug_loc.dwo
9740 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9741 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9742 DW_SECT_MACRO 8 .debug_macro.dwo
9743
9744 The offsets provided by the CU and TU index sections are the base offsets
9745 for the contributions made by each CU or TU to the corresponding section
9746 in the package file. Each CU and TU header contains an abbrev_offset
9747 field, used to find the abbreviations table for that CU or TU within the
9748 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9749 be interpreted as relative to the base offset given in the index section.
9750 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9751 should be interpreted as relative to the base offset for .debug_line.dwo,
9752 and offsets into other debug sections obtained from DWARF attributes should
9753 also be interpreted as relative to the corresponding base offset.
9754
9755 The table of sizes begins immediately following the table of offsets.
9756 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9757 with L columns and N rows, in row-major order. Each row in the array is
9758 indexed starting from 1 (row 0 is shared by the two tables).
9759
9760 ---
9761
9762 Hash table lookup is handled the same in version 1 and 2:
9763
9764 We assume that N and M will not exceed 2^32 - 1.
9765 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9766
d2415c6c
DE
9767 Given a 64-bit compilation unit signature or a type signature S, an entry
9768 in the hash table is located as follows:
80626a55 9769
d2415c6c
DE
9770 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9771 the low-order k bits all set to 1.
80626a55 9772
d2415c6c 9773 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9774
d2415c6c
DE
9775 3) If the hash table entry at index H matches the signature, use that
9776 entry. If the hash table entry at index H is unused (all zeroes),
9777 terminate the search: the signature is not present in the table.
80626a55 9778
d2415c6c 9779 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9780
d2415c6c 9781 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9782 to stop at an unused slot or find the match. */
80626a55
DE
9783
9784/* Create a hash table to map DWO IDs to their CU/TU entry in
9785 .debug_{info,types}.dwo in DWP_FILE.
9786 Returns NULL if there isn't one.
9787 Note: This function processes DWP files only, not DWO files. */
9788
9789static struct dwp_hash_table *
9790create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9791{
9792 struct objfile *objfile = dwarf2_per_objfile->objfile;
9793 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9794 const gdb_byte *index_ptr, *index_end;
80626a55 9795 struct dwarf2_section_info *index;
73869dc2 9796 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9797 struct dwp_hash_table *htab;
9798
9799 if (is_debug_types)
9800 index = &dwp_file->sections.tu_index;
9801 else
9802 index = &dwp_file->sections.cu_index;
9803
9804 if (dwarf2_section_empty_p (index))
9805 return NULL;
9806 dwarf2_read_section (objfile, index);
9807
9808 index_ptr = index->buffer;
9809 index_end = index_ptr + index->size;
9810
9811 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9812 index_ptr += 4;
9813 if (version == 2)
9814 nr_columns = read_4_bytes (dbfd, index_ptr);
9815 else
9816 nr_columns = 0;
9817 index_ptr += 4;
80626a55
DE
9818 nr_units = read_4_bytes (dbfd, index_ptr);
9819 index_ptr += 4;
9820 nr_slots = read_4_bytes (dbfd, index_ptr);
9821 index_ptr += 4;
9822
73869dc2 9823 if (version != 1 && version != 2)
80626a55 9824 {
21aa081e 9825 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9826 " [in module %s]"),
21aa081e 9827 pulongest (version), dwp_file->name);
80626a55
DE
9828 }
9829 if (nr_slots != (nr_slots & -nr_slots))
9830 {
21aa081e 9831 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9832 " is not power of 2 [in module %s]"),
21aa081e 9833 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9834 }
9835
9836 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9837 htab->version = version;
9838 htab->nr_columns = nr_columns;
80626a55
DE
9839 htab->nr_units = nr_units;
9840 htab->nr_slots = nr_slots;
9841 htab->hash_table = index_ptr;
9842 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9843
9844 /* Exit early if the table is empty. */
9845 if (nr_slots == 0 || nr_units == 0
9846 || (version == 2 && nr_columns == 0))
9847 {
9848 /* All must be zero. */
9849 if (nr_slots != 0 || nr_units != 0
9850 || (version == 2 && nr_columns != 0))
9851 {
9852 complaint (&symfile_complaints,
9853 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9854 " all zero [in modules %s]"),
9855 dwp_file->name);
9856 }
9857 return htab;
9858 }
9859
9860 if (version == 1)
9861 {
9862 htab->section_pool.v1.indices =
9863 htab->unit_table + sizeof (uint32_t) * nr_slots;
9864 /* It's harder to decide whether the section is too small in v1.
9865 V1 is deprecated anyway so we punt. */
9866 }
9867 else
9868 {
9869 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9870 int *ids = htab->section_pool.v2.section_ids;
9871 /* Reverse map for error checking. */
9872 int ids_seen[DW_SECT_MAX + 1];
9873 int i;
9874
9875 if (nr_columns < 2)
9876 {
9877 error (_("Dwarf Error: bad DWP hash table, too few columns"
9878 " in section table [in module %s]"),
9879 dwp_file->name);
9880 }
9881 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9882 {
9883 error (_("Dwarf Error: bad DWP hash table, too many columns"
9884 " in section table [in module %s]"),
9885 dwp_file->name);
9886 }
9887 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9888 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9889 for (i = 0; i < nr_columns; ++i)
9890 {
9891 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9892
9893 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9894 {
9895 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9896 " in section table [in module %s]"),
9897 id, dwp_file->name);
9898 }
9899 if (ids_seen[id] != -1)
9900 {
9901 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9902 " id %d in section table [in module %s]"),
9903 id, dwp_file->name);
9904 }
9905 ids_seen[id] = i;
9906 ids[i] = id;
9907 }
9908 /* Must have exactly one info or types section. */
9909 if (((ids_seen[DW_SECT_INFO] != -1)
9910 + (ids_seen[DW_SECT_TYPES] != -1))
9911 != 1)
9912 {
9913 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9914 " DWO info/types section [in module %s]"),
9915 dwp_file->name);
9916 }
9917 /* Must have an abbrev section. */
9918 if (ids_seen[DW_SECT_ABBREV] == -1)
9919 {
9920 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9921 " section [in module %s]"),
9922 dwp_file->name);
9923 }
9924 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9925 htab->section_pool.v2.sizes =
9926 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9927 * nr_units * nr_columns);
9928 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9929 * nr_units * nr_columns))
9930 > index_end)
9931 {
9932 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9933 " [in module %s]"),
9934 dwp_file->name);
9935 }
9936 }
80626a55
DE
9937
9938 return htab;
9939}
9940
9941/* Update SECTIONS with the data from SECTP.
9942
9943 This function is like the other "locate" section routines that are
9944 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9945 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9946
9947 The result is non-zero for success, or zero if an error was found. */
9948
9949static int
73869dc2
DE
9950locate_v1_virtual_dwo_sections (asection *sectp,
9951 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9952{
9953 const struct dwop_section_names *names = &dwop_section_names;
9954
9955 if (section_is_p (sectp->name, &names->abbrev_dwo))
9956 {
9957 /* There can be only one. */
73869dc2 9958 if (sections->abbrev.s.asection != NULL)
80626a55 9959 return 0;
73869dc2 9960 sections->abbrev.s.asection = sectp;
80626a55
DE
9961 sections->abbrev.size = bfd_get_section_size (sectp);
9962 }
9963 else if (section_is_p (sectp->name, &names->info_dwo)
9964 || section_is_p (sectp->name, &names->types_dwo))
9965 {
9966 /* There can be only one. */
73869dc2 9967 if (sections->info_or_types.s.asection != NULL)
80626a55 9968 return 0;
73869dc2 9969 sections->info_or_types.s.asection = sectp;
80626a55
DE
9970 sections->info_or_types.size = bfd_get_section_size (sectp);
9971 }
9972 else if (section_is_p (sectp->name, &names->line_dwo))
9973 {
9974 /* There can be only one. */
73869dc2 9975 if (sections->line.s.asection != NULL)
80626a55 9976 return 0;
73869dc2 9977 sections->line.s.asection = sectp;
80626a55
DE
9978 sections->line.size = bfd_get_section_size (sectp);
9979 }
9980 else if (section_is_p (sectp->name, &names->loc_dwo))
9981 {
9982 /* There can be only one. */
73869dc2 9983 if (sections->loc.s.asection != NULL)
80626a55 9984 return 0;
73869dc2 9985 sections->loc.s.asection = sectp;
80626a55
DE
9986 sections->loc.size = bfd_get_section_size (sectp);
9987 }
9988 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9989 {
9990 /* There can be only one. */
73869dc2 9991 if (sections->macinfo.s.asection != NULL)
80626a55 9992 return 0;
73869dc2 9993 sections->macinfo.s.asection = sectp;
80626a55
DE
9994 sections->macinfo.size = bfd_get_section_size (sectp);
9995 }
9996 else if (section_is_p (sectp->name, &names->macro_dwo))
9997 {
9998 /* There can be only one. */
73869dc2 9999 if (sections->macro.s.asection != NULL)
80626a55 10000 return 0;
73869dc2 10001 sections->macro.s.asection = sectp;
80626a55
DE
10002 sections->macro.size = bfd_get_section_size (sectp);
10003 }
10004 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10005 {
10006 /* There can be only one. */
73869dc2 10007 if (sections->str_offsets.s.asection != NULL)
80626a55 10008 return 0;
73869dc2 10009 sections->str_offsets.s.asection = sectp;
80626a55
DE
10010 sections->str_offsets.size = bfd_get_section_size (sectp);
10011 }
10012 else
10013 {
10014 /* No other kind of section is valid. */
10015 return 0;
10016 }
10017
10018 return 1;
10019}
10020
73869dc2
DE
10021/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10022 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10023 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10024 This is for DWP version 1 files. */
80626a55
DE
10025
10026static struct dwo_unit *
73869dc2
DE
10027create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10028 uint32_t unit_index,
10029 const char *comp_dir,
10030 ULONGEST signature, int is_debug_types)
80626a55
DE
10031{
10032 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10033 const struct dwp_hash_table *dwp_htab =
10034 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10035 bfd *dbfd = dwp_file->dbfd;
10036 const char *kind = is_debug_types ? "TU" : "CU";
10037 struct dwo_file *dwo_file;
10038 struct dwo_unit *dwo_unit;
73869dc2 10039 struct virtual_v1_dwo_sections sections;
80626a55
DE
10040 void **dwo_file_slot;
10041 char *virtual_dwo_name;
10042 struct dwarf2_section_info *cutu;
10043 struct cleanup *cleanups;
10044 int i;
10045
73869dc2
DE
10046 gdb_assert (dwp_file->version == 1);
10047
b4f54984 10048 if (dwarf_read_debug)
80626a55 10049 {
73869dc2 10050 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10051 kind,
73869dc2 10052 pulongest (unit_index), hex_string (signature),
80626a55
DE
10053 dwp_file->name);
10054 }
10055
19ac8c2e 10056 /* Fetch the sections of this DWO unit.
80626a55
DE
10057 Put a limit on the number of sections we look for so that bad data
10058 doesn't cause us to loop forever. */
10059
73869dc2 10060#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10061 (1 /* .debug_info or .debug_types */ \
10062 + 1 /* .debug_abbrev */ \
10063 + 1 /* .debug_line */ \
10064 + 1 /* .debug_loc */ \
10065 + 1 /* .debug_str_offsets */ \
19ac8c2e 10066 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10067 + 1 /* trailing zero */)
10068
10069 memset (&sections, 0, sizeof (sections));
10070 cleanups = make_cleanup (null_cleanup, 0);
10071
73869dc2 10072 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10073 {
10074 asection *sectp;
10075 uint32_t section_nr =
10076 read_4_bytes (dbfd,
73869dc2
DE
10077 dwp_htab->section_pool.v1.indices
10078 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10079
10080 if (section_nr == 0)
10081 break;
10082 if (section_nr >= dwp_file->num_sections)
10083 {
10084 error (_("Dwarf Error: bad DWP hash table, section number too large"
10085 " [in module %s]"),
10086 dwp_file->name);
10087 }
10088
10089 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10090 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10091 {
10092 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10093 " [in module %s]"),
10094 dwp_file->name);
10095 }
10096 }
10097
10098 if (i < 2
a32a8923
DE
10099 || dwarf2_section_empty_p (&sections.info_or_types)
10100 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10101 {
10102 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10103 " [in module %s]"),
10104 dwp_file->name);
10105 }
73869dc2 10106 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10107 {
10108 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10109 " [in module %s]"),
10110 dwp_file->name);
10111 }
10112
10113 /* It's easier for the rest of the code if we fake a struct dwo_file and
10114 have dwo_unit "live" in that. At least for now.
10115
10116 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10117 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10118 file, we can combine them back into a virtual DWO file to save space
10119 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10120 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10121
2792b94d
PM
10122 virtual_dwo_name =
10123 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10124 get_section_id (&sections.abbrev),
10125 get_section_id (&sections.line),
10126 get_section_id (&sections.loc),
10127 get_section_id (&sections.str_offsets));
80626a55
DE
10128 make_cleanup (xfree, virtual_dwo_name);
10129 /* Can we use an existing virtual DWO file? */
0ac5b59e 10130 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10131 /* Create one if necessary. */
10132 if (*dwo_file_slot == NULL)
10133 {
b4f54984 10134 if (dwarf_read_debug)
80626a55
DE
10135 {
10136 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10137 virtual_dwo_name);
10138 }
10139 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10140 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10141 virtual_dwo_name,
10142 strlen (virtual_dwo_name));
10143 dwo_file->comp_dir = comp_dir;
80626a55
DE
10144 dwo_file->sections.abbrev = sections.abbrev;
10145 dwo_file->sections.line = sections.line;
10146 dwo_file->sections.loc = sections.loc;
10147 dwo_file->sections.macinfo = sections.macinfo;
10148 dwo_file->sections.macro = sections.macro;
10149 dwo_file->sections.str_offsets = sections.str_offsets;
10150 /* The "str" section is global to the entire DWP file. */
10151 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10152 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10153 there's no need to record it in dwo_file.
10154 Also, we can't simply record type sections in dwo_file because
10155 we record a pointer into the vector in dwo_unit. As we collect more
10156 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10157 for it, invalidating all copies of pointers into the previous
10158 contents. */
80626a55
DE
10159 *dwo_file_slot = dwo_file;
10160 }
10161 else
10162 {
b4f54984 10163 if (dwarf_read_debug)
80626a55
DE
10164 {
10165 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10166 virtual_dwo_name);
10167 }
10168 dwo_file = *dwo_file_slot;
10169 }
10170 do_cleanups (cleanups);
10171
10172 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10173 dwo_unit->dwo_file = dwo_file;
10174 dwo_unit->signature = signature;
8a0459fd
DE
10175 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10176 sizeof (struct dwarf2_section_info));
10177 *dwo_unit->section = sections.info_or_types;
57d63ce2 10178 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10179
10180 return dwo_unit;
10181}
10182
73869dc2
DE
10183/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10184 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10185 piece within that section used by a TU/CU, return a virtual section
10186 of just that piece. */
10187
10188static struct dwarf2_section_info
10189create_dwp_v2_section (struct dwarf2_section_info *section,
10190 bfd_size_type offset, bfd_size_type size)
10191{
10192 struct dwarf2_section_info result;
10193 asection *sectp;
10194
10195 gdb_assert (section != NULL);
10196 gdb_assert (!section->is_virtual);
10197
10198 memset (&result, 0, sizeof (result));
10199 result.s.containing_section = section;
10200 result.is_virtual = 1;
10201
10202 if (size == 0)
10203 return result;
10204
10205 sectp = get_section_bfd_section (section);
10206
10207 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10208 bounds of the real section. This is a pretty-rare event, so just
10209 flag an error (easier) instead of a warning and trying to cope. */
10210 if (sectp == NULL
10211 || offset + size > bfd_get_section_size (sectp))
10212 {
10213 bfd *abfd = sectp->owner;
10214
10215 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10216 " in section %s [in module %s]"),
10217 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10218 objfile_name (dwarf2_per_objfile->objfile));
10219 }
10220
10221 result.virtual_offset = offset;
10222 result.size = size;
10223 return result;
10224}
10225
10226/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10227 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10228 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10229 This is for DWP version 2 files. */
10230
10231static struct dwo_unit *
10232create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10233 uint32_t unit_index,
10234 const char *comp_dir,
10235 ULONGEST signature, int is_debug_types)
10236{
10237 struct objfile *objfile = dwarf2_per_objfile->objfile;
10238 const struct dwp_hash_table *dwp_htab =
10239 is_debug_types ? dwp_file->tus : dwp_file->cus;
10240 bfd *dbfd = dwp_file->dbfd;
10241 const char *kind = is_debug_types ? "TU" : "CU";
10242 struct dwo_file *dwo_file;
10243 struct dwo_unit *dwo_unit;
10244 struct virtual_v2_dwo_sections sections;
10245 void **dwo_file_slot;
10246 char *virtual_dwo_name;
10247 struct dwarf2_section_info *cutu;
10248 struct cleanup *cleanups;
10249 int i;
10250
10251 gdb_assert (dwp_file->version == 2);
10252
b4f54984 10253 if (dwarf_read_debug)
73869dc2
DE
10254 {
10255 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10256 kind,
10257 pulongest (unit_index), hex_string (signature),
10258 dwp_file->name);
10259 }
10260
10261 /* Fetch the section offsets of this DWO unit. */
10262
10263 memset (&sections, 0, sizeof (sections));
10264 cleanups = make_cleanup (null_cleanup, 0);
10265
10266 for (i = 0; i < dwp_htab->nr_columns; ++i)
10267 {
10268 uint32_t offset = read_4_bytes (dbfd,
10269 dwp_htab->section_pool.v2.offsets
10270 + (((unit_index - 1) * dwp_htab->nr_columns
10271 + i)
10272 * sizeof (uint32_t)));
10273 uint32_t size = read_4_bytes (dbfd,
10274 dwp_htab->section_pool.v2.sizes
10275 + (((unit_index - 1) * dwp_htab->nr_columns
10276 + i)
10277 * sizeof (uint32_t)));
10278
10279 switch (dwp_htab->section_pool.v2.section_ids[i])
10280 {
10281 case DW_SECT_INFO:
10282 case DW_SECT_TYPES:
10283 sections.info_or_types_offset = offset;
10284 sections.info_or_types_size = size;
10285 break;
10286 case DW_SECT_ABBREV:
10287 sections.abbrev_offset = offset;
10288 sections.abbrev_size = size;
10289 break;
10290 case DW_SECT_LINE:
10291 sections.line_offset = offset;
10292 sections.line_size = size;
10293 break;
10294 case DW_SECT_LOC:
10295 sections.loc_offset = offset;
10296 sections.loc_size = size;
10297 break;
10298 case DW_SECT_STR_OFFSETS:
10299 sections.str_offsets_offset = offset;
10300 sections.str_offsets_size = size;
10301 break;
10302 case DW_SECT_MACINFO:
10303 sections.macinfo_offset = offset;
10304 sections.macinfo_size = size;
10305 break;
10306 case DW_SECT_MACRO:
10307 sections.macro_offset = offset;
10308 sections.macro_size = size;
10309 break;
10310 }
10311 }
10312
10313 /* It's easier for the rest of the code if we fake a struct dwo_file and
10314 have dwo_unit "live" in that. At least for now.
10315
10316 The DWP file can be made up of a random collection of CUs and TUs.
10317 However, for each CU + set of TUs that came from the same original DWO
10318 file, we can combine them back into a virtual DWO file to save space
10319 (fewer struct dwo_file objects to allocate). Remember that for really
10320 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10321
10322 virtual_dwo_name =
10323 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10324 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10325 (long) (sections.line_size ? sections.line_offset : 0),
10326 (long) (sections.loc_size ? sections.loc_offset : 0),
10327 (long) (sections.str_offsets_size
10328 ? sections.str_offsets_offset : 0));
10329 make_cleanup (xfree, virtual_dwo_name);
10330 /* Can we use an existing virtual DWO file? */
10331 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10332 /* Create one if necessary. */
10333 if (*dwo_file_slot == NULL)
10334 {
b4f54984 10335 if (dwarf_read_debug)
73869dc2
DE
10336 {
10337 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10338 virtual_dwo_name);
10339 }
10340 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10341 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10342 virtual_dwo_name,
10343 strlen (virtual_dwo_name));
10344 dwo_file->comp_dir = comp_dir;
10345 dwo_file->sections.abbrev =
10346 create_dwp_v2_section (&dwp_file->sections.abbrev,
10347 sections.abbrev_offset, sections.abbrev_size);
10348 dwo_file->sections.line =
10349 create_dwp_v2_section (&dwp_file->sections.line,
10350 sections.line_offset, sections.line_size);
10351 dwo_file->sections.loc =
10352 create_dwp_v2_section (&dwp_file->sections.loc,
10353 sections.loc_offset, sections.loc_size);
10354 dwo_file->sections.macinfo =
10355 create_dwp_v2_section (&dwp_file->sections.macinfo,
10356 sections.macinfo_offset, sections.macinfo_size);
10357 dwo_file->sections.macro =
10358 create_dwp_v2_section (&dwp_file->sections.macro,
10359 sections.macro_offset, sections.macro_size);
10360 dwo_file->sections.str_offsets =
10361 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10362 sections.str_offsets_offset,
10363 sections.str_offsets_size);
10364 /* The "str" section is global to the entire DWP file. */
10365 dwo_file->sections.str = dwp_file->sections.str;
10366 /* The info or types section is assigned below to dwo_unit,
10367 there's no need to record it in dwo_file.
10368 Also, we can't simply record type sections in dwo_file because
10369 we record a pointer into the vector in dwo_unit. As we collect more
10370 types we'll grow the vector and eventually have to reallocate space
10371 for it, invalidating all copies of pointers into the previous
10372 contents. */
10373 *dwo_file_slot = dwo_file;
10374 }
10375 else
10376 {
b4f54984 10377 if (dwarf_read_debug)
73869dc2
DE
10378 {
10379 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10380 virtual_dwo_name);
10381 }
10382 dwo_file = *dwo_file_slot;
10383 }
10384 do_cleanups (cleanups);
10385
10386 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10387 dwo_unit->dwo_file = dwo_file;
10388 dwo_unit->signature = signature;
10389 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10390 sizeof (struct dwarf2_section_info));
10391 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10392 ? &dwp_file->sections.types
10393 : &dwp_file->sections.info,
10394 sections.info_or_types_offset,
10395 sections.info_or_types_size);
10396 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10397
10398 return dwo_unit;
10399}
10400
57d63ce2
DE
10401/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10402 Returns NULL if the signature isn't found. */
80626a55
DE
10403
10404static struct dwo_unit *
57d63ce2
DE
10405lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10406 ULONGEST signature, int is_debug_types)
80626a55 10407{
57d63ce2
DE
10408 const struct dwp_hash_table *dwp_htab =
10409 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10410 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10411 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10412 uint32_t hash = signature & mask;
10413 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10414 unsigned int i;
10415 void **slot;
10416 struct dwo_unit find_dwo_cu, *dwo_cu;
10417
10418 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10419 find_dwo_cu.signature = signature;
19ac8c2e
DE
10420 slot = htab_find_slot (is_debug_types
10421 ? dwp_file->loaded_tus
10422 : dwp_file->loaded_cus,
10423 &find_dwo_cu, INSERT);
80626a55
DE
10424
10425 if (*slot != NULL)
10426 return *slot;
10427
10428 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10429 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10430 {
10431 ULONGEST signature_in_table;
10432
10433 signature_in_table =
57d63ce2 10434 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10435 if (signature_in_table == signature)
10436 {
57d63ce2
DE
10437 uint32_t unit_index =
10438 read_4_bytes (dbfd,
10439 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10440
73869dc2
DE
10441 if (dwp_file->version == 1)
10442 {
10443 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10444 comp_dir, signature,
10445 is_debug_types);
10446 }
10447 else
10448 {
10449 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10450 comp_dir, signature,
10451 is_debug_types);
10452 }
80626a55
DE
10453 return *slot;
10454 }
10455 if (signature_in_table == 0)
10456 return NULL;
10457 hash = (hash + hash2) & mask;
10458 }
10459
10460 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10461 " [in module %s]"),
10462 dwp_file->name);
10463}
10464
ab5088bf 10465/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10466 Open the file specified by FILE_NAME and hand it off to BFD for
10467 preliminary analysis. Return a newly initialized bfd *, which
10468 includes a canonicalized copy of FILE_NAME.
80626a55 10469 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10470 SEARCH_CWD is true if the current directory is to be searched.
10471 It will be searched before debug-file-directory.
13aaf454
DE
10472 If successful, the file is added to the bfd include table of the
10473 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10474 If unable to find/open the file, return NULL.
3019eac3
DE
10475 NOTE: This function is derived from symfile_bfd_open. */
10476
10477static bfd *
6ac97d4c 10478try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10479{
10480 bfd *sym_bfd;
80626a55 10481 int desc, flags;
3019eac3 10482 char *absolute_name;
9c02c129
DE
10483 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10484 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10485 to debug_file_directory. */
10486 char *search_path;
10487 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10488
6ac97d4c
DE
10489 if (search_cwd)
10490 {
10491 if (*debug_file_directory != '\0')
10492 search_path = concat (".", dirname_separator_string,
10493 debug_file_directory, NULL);
10494 else
10495 search_path = xstrdup (".");
10496 }
9c02c129 10497 else
6ac97d4c 10498 search_path = xstrdup (debug_file_directory);
3019eac3 10499
492c0ab7 10500 flags = OPF_RETURN_REALPATH;
80626a55
DE
10501 if (is_dwp)
10502 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10503 desc = openp (search_path, flags, file_name,
3019eac3 10504 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10505 xfree (search_path);
3019eac3
DE
10506 if (desc < 0)
10507 return NULL;
10508
bb397797 10509 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10510 xfree (absolute_name);
9c02c129
DE
10511 if (sym_bfd == NULL)
10512 return NULL;
3019eac3
DE
10513 bfd_set_cacheable (sym_bfd, 1);
10514
10515 if (!bfd_check_format (sym_bfd, bfd_object))
10516 {
cbb099e8 10517 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10518 return NULL;
10519 }
10520
13aaf454
DE
10521 /* Success. Record the bfd as having been included by the objfile's bfd.
10522 This is important because things like demangled_names_hash lives in the
10523 objfile's per_bfd space and may have references to things like symbol
10524 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10525 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10526
3019eac3
DE
10527 return sym_bfd;
10528}
10529
ab5088bf 10530/* Try to open DWO file FILE_NAME.
3019eac3
DE
10531 COMP_DIR is the DW_AT_comp_dir attribute.
10532 The result is the bfd handle of the file.
10533 If there is a problem finding or opening the file, return NULL.
10534 Upon success, the canonicalized path of the file is stored in the bfd,
10535 same as symfile_bfd_open. */
10536
10537static bfd *
ab5088bf 10538open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10539{
10540 bfd *abfd;
3019eac3 10541
80626a55 10542 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10543 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10544
10545 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10546
10547 if (comp_dir != NULL)
10548 {
80626a55 10549 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10550
10551 /* NOTE: If comp_dir is a relative path, this will also try the
10552 search path, which seems useful. */
6ac97d4c 10553 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10554 xfree (path_to_try);
10555 if (abfd != NULL)
10556 return abfd;
10557 }
10558
10559 /* That didn't work, try debug-file-directory, which, despite its name,
10560 is a list of paths. */
10561
10562 if (*debug_file_directory == '\0')
10563 return NULL;
10564
6ac97d4c 10565 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10566}
10567
80626a55
DE
10568/* This function is mapped across the sections and remembers the offset and
10569 size of each of the DWO debugging sections we are interested in. */
10570
10571static void
10572dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10573{
10574 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10575 const struct dwop_section_names *names = &dwop_section_names;
10576
10577 if (section_is_p (sectp->name, &names->abbrev_dwo))
10578 {
73869dc2 10579 dwo_sections->abbrev.s.asection = sectp;
80626a55
DE
10580 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10581 }
10582 else if (section_is_p (sectp->name, &names->info_dwo))
10583 {
73869dc2 10584 dwo_sections->info.s.asection = sectp;
80626a55
DE
10585 dwo_sections->info.size = bfd_get_section_size (sectp);
10586 }
10587 else if (section_is_p (sectp->name, &names->line_dwo))
10588 {
73869dc2 10589 dwo_sections->line.s.asection = sectp;
80626a55
DE
10590 dwo_sections->line.size = bfd_get_section_size (sectp);
10591 }
10592 else if (section_is_p (sectp->name, &names->loc_dwo))
10593 {
73869dc2 10594 dwo_sections->loc.s.asection = sectp;
80626a55
DE
10595 dwo_sections->loc.size = bfd_get_section_size (sectp);
10596 }
10597 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10598 {
73869dc2 10599 dwo_sections->macinfo.s.asection = sectp;
80626a55
DE
10600 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10601 }
10602 else if (section_is_p (sectp->name, &names->macro_dwo))
10603 {
73869dc2 10604 dwo_sections->macro.s.asection = sectp;
80626a55
DE
10605 dwo_sections->macro.size = bfd_get_section_size (sectp);
10606 }
10607 else if (section_is_p (sectp->name, &names->str_dwo))
10608 {
73869dc2 10609 dwo_sections->str.s.asection = sectp;
80626a55
DE
10610 dwo_sections->str.size = bfd_get_section_size (sectp);
10611 }
10612 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10613 {
73869dc2 10614 dwo_sections->str_offsets.s.asection = sectp;
80626a55
DE
10615 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10616 }
10617 else if (section_is_p (sectp->name, &names->types_dwo))
10618 {
10619 struct dwarf2_section_info type_section;
10620
10621 memset (&type_section, 0, sizeof (type_section));
73869dc2 10622 type_section.s.asection = sectp;
80626a55
DE
10623 type_section.size = bfd_get_section_size (sectp);
10624 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10625 &type_section);
10626 }
10627}
10628
ab5088bf 10629/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10630 by PER_CU. This is for the non-DWP case.
80626a55 10631 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10632
10633static struct dwo_file *
0ac5b59e
DE
10634open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10635 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10636{
10637 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10638 struct dwo_file *dwo_file;
10639 bfd *dbfd;
3019eac3
DE
10640 struct cleanup *cleanups;
10641
ab5088bf 10642 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10643 if (dbfd == NULL)
10644 {
b4f54984 10645 if (dwarf_read_debug)
80626a55
DE
10646 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10647 return NULL;
10648 }
10649 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10650 dwo_file->dwo_name = dwo_name;
10651 dwo_file->comp_dir = comp_dir;
80626a55 10652 dwo_file->dbfd = dbfd;
3019eac3
DE
10653
10654 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10655
80626a55 10656 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10657
19c3d4c9 10658 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10659
10660 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10661 dwo_file->sections.types);
10662
10663 discard_cleanups (cleanups);
10664
b4f54984 10665 if (dwarf_read_debug)
80626a55
DE
10666 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10667
3019eac3
DE
10668 return dwo_file;
10669}
10670
80626a55 10671/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10672 size of each of the DWP debugging sections common to version 1 and 2 that
10673 we are interested in. */
3019eac3 10674
80626a55 10675static void
73869dc2
DE
10676dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10677 void *dwp_file_ptr)
3019eac3 10678{
80626a55
DE
10679 struct dwp_file *dwp_file = dwp_file_ptr;
10680 const struct dwop_section_names *names = &dwop_section_names;
10681 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10682
80626a55 10683 /* Record the ELF section number for later lookup: this is what the
73869dc2 10684 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10685 gdb_assert (elf_section_nr < dwp_file->num_sections);
10686 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10687
80626a55
DE
10688 /* Look for specific sections that we need. */
10689 if (section_is_p (sectp->name, &names->str_dwo))
10690 {
73869dc2 10691 dwp_file->sections.str.s.asection = sectp;
80626a55
DE
10692 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10693 }
10694 else if (section_is_p (sectp->name, &names->cu_index))
10695 {
73869dc2 10696 dwp_file->sections.cu_index.s.asection = sectp;
80626a55
DE
10697 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10698 }
10699 else if (section_is_p (sectp->name, &names->tu_index))
10700 {
73869dc2 10701 dwp_file->sections.tu_index.s.asection = sectp;
80626a55
DE
10702 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10703 }
10704}
3019eac3 10705
73869dc2
DE
10706/* This function is mapped across the sections and remembers the offset and
10707 size of each of the DWP version 2 debugging sections that we are interested
10708 in. This is split into a separate function because we don't know if we
10709 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10710
10711static void
10712dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10713{
10714 struct dwp_file *dwp_file = dwp_file_ptr;
10715 const struct dwop_section_names *names = &dwop_section_names;
10716 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10717
10718 /* Record the ELF section number for later lookup: this is what the
10719 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10720 gdb_assert (elf_section_nr < dwp_file->num_sections);
10721 dwp_file->elf_sections[elf_section_nr] = sectp;
10722
10723 /* Look for specific sections that we need. */
10724 if (section_is_p (sectp->name, &names->abbrev_dwo))
10725 {
10726 dwp_file->sections.abbrev.s.asection = sectp;
10727 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10728 }
10729 else if (section_is_p (sectp->name, &names->info_dwo))
10730 {
10731 dwp_file->sections.info.s.asection = sectp;
10732 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10733 }
10734 else if (section_is_p (sectp->name, &names->line_dwo))
10735 {
10736 dwp_file->sections.line.s.asection = sectp;
10737 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10738 }
10739 else if (section_is_p (sectp->name, &names->loc_dwo))
10740 {
10741 dwp_file->sections.loc.s.asection = sectp;
10742 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10743 }
10744 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10745 {
10746 dwp_file->sections.macinfo.s.asection = sectp;
10747 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10748 }
10749 else if (section_is_p (sectp->name, &names->macro_dwo))
10750 {
10751 dwp_file->sections.macro.s.asection = sectp;
10752 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10753 }
10754 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10755 {
10756 dwp_file->sections.str_offsets.s.asection = sectp;
10757 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10758 }
10759 else if (section_is_p (sectp->name, &names->types_dwo))
10760 {
10761 dwp_file->sections.types.s.asection = sectp;
10762 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10763 }
10764}
10765
80626a55 10766/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10767
80626a55
DE
10768static hashval_t
10769hash_dwp_loaded_cutus (const void *item)
10770{
10771 const struct dwo_unit *dwo_unit = item;
3019eac3 10772
80626a55
DE
10773 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10774 return dwo_unit->signature;
3019eac3
DE
10775}
10776
80626a55 10777/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10778
80626a55
DE
10779static int
10780eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10781{
80626a55
DE
10782 const struct dwo_unit *dua = a;
10783 const struct dwo_unit *dub = b;
3019eac3 10784
80626a55
DE
10785 return dua->signature == dub->signature;
10786}
3019eac3 10787
80626a55 10788/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10789
80626a55
DE
10790static htab_t
10791allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10792{
10793 return htab_create_alloc_ex (3,
10794 hash_dwp_loaded_cutus,
10795 eq_dwp_loaded_cutus,
10796 NULL,
10797 &objfile->objfile_obstack,
10798 hashtab_obstack_allocate,
10799 dummy_obstack_deallocate);
10800}
3019eac3 10801
ab5088bf
DE
10802/* Try to open DWP file FILE_NAME.
10803 The result is the bfd handle of the file.
10804 If there is a problem finding or opening the file, return NULL.
10805 Upon success, the canonicalized path of the file is stored in the bfd,
10806 same as symfile_bfd_open. */
10807
10808static bfd *
10809open_dwp_file (const char *file_name)
10810{
6ac97d4c
DE
10811 bfd *abfd;
10812
10813 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10814 if (abfd != NULL)
10815 return abfd;
10816
10817 /* Work around upstream bug 15652.
10818 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10819 [Whether that's a "bug" is debatable, but it is getting in our way.]
10820 We have no real idea where the dwp file is, because gdb's realpath-ing
10821 of the executable's path may have discarded the needed info.
10822 [IWBN if the dwp file name was recorded in the executable, akin to
10823 .gnu_debuglink, but that doesn't exist yet.]
10824 Strip the directory from FILE_NAME and search again. */
10825 if (*debug_file_directory != '\0')
10826 {
10827 /* Don't implicitly search the current directory here.
10828 If the user wants to search "." to handle this case,
10829 it must be added to debug-file-directory. */
10830 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10831 0 /*search_cwd*/);
10832 }
10833
10834 return NULL;
ab5088bf
DE
10835}
10836
80626a55
DE
10837/* Initialize the use of the DWP file for the current objfile.
10838 By convention the name of the DWP file is ${objfile}.dwp.
10839 The result is NULL if it can't be found. */
a766d390 10840
80626a55 10841static struct dwp_file *
ab5088bf 10842open_and_init_dwp_file (void)
80626a55
DE
10843{
10844 struct objfile *objfile = dwarf2_per_objfile->objfile;
10845 struct dwp_file *dwp_file;
10846 char *dwp_name;
10847 bfd *dbfd;
10848 struct cleanup *cleanups;
10849
82bf32bc
JK
10850 /* Try to find first .dwp for the binary file before any symbolic links
10851 resolving. */
10852 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10853 cleanups = make_cleanup (xfree, dwp_name);
10854
ab5088bf 10855 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10856 if (dbfd == NULL
10857 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10858 {
10859 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10860 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10861 make_cleanup (xfree, dwp_name);
10862 dbfd = open_dwp_file (dwp_name);
10863 }
10864
80626a55
DE
10865 if (dbfd == NULL)
10866 {
b4f54984 10867 if (dwarf_read_debug)
80626a55
DE
10868 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10869 do_cleanups (cleanups);
10870 return NULL;
3019eac3 10871 }
80626a55 10872 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10873 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10874 dwp_file->dbfd = dbfd;
10875 do_cleanups (cleanups);
c906108c 10876
80626a55
DE
10877 /* +1: section 0 is unused */
10878 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10879 dwp_file->elf_sections =
10880 OBSTACK_CALLOC (&objfile->objfile_obstack,
10881 dwp_file->num_sections, asection *);
10882
73869dc2 10883 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10884
10885 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10886
10887 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10888
73869dc2
DE
10889 /* The DWP file version is stored in the hash table. Oh well. */
10890 if (dwp_file->cus->version != dwp_file->tus->version)
10891 {
10892 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10893 pretty bizarre. We use pulongest here because that's the established
4d65956b 10894 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10895 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10896 " TU version %s [in DWP file %s]"),
10897 pulongest (dwp_file->cus->version),
10898 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10899 }
10900 dwp_file->version = dwp_file->cus->version;
10901
10902 if (dwp_file->version == 2)
10903 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10904
19ac8c2e
DE
10905 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10906 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10907
b4f54984 10908 if (dwarf_read_debug)
80626a55
DE
10909 {
10910 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10911 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10912 " %s CUs, %s TUs\n",
10913 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10914 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10915 }
10916
10917 return dwp_file;
3019eac3 10918}
c906108c 10919
ab5088bf
DE
10920/* Wrapper around open_and_init_dwp_file, only open it once. */
10921
10922static struct dwp_file *
10923get_dwp_file (void)
10924{
10925 if (! dwarf2_per_objfile->dwp_checked)
10926 {
10927 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10928 dwarf2_per_objfile->dwp_checked = 1;
10929 }
10930 return dwarf2_per_objfile->dwp_file;
10931}
10932
80626a55
DE
10933/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10934 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10935 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10936 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10937 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10938
10939 This is called, for example, when wanting to read a variable with a
10940 complex location. Therefore we don't want to do file i/o for every call.
10941 Therefore we don't want to look for a DWO file on every call.
10942 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10943 then we check if we've already seen DWO_NAME, and only THEN do we check
10944 for a DWO file.
10945
1c658ad5 10946 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10947 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10948
3019eac3 10949static struct dwo_unit *
80626a55
DE
10950lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10951 const char *dwo_name, const char *comp_dir,
10952 ULONGEST signature, int is_debug_types)
3019eac3
DE
10953{
10954 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10955 const char *kind = is_debug_types ? "TU" : "CU";
10956 void **dwo_file_slot;
3019eac3 10957 struct dwo_file *dwo_file;
80626a55 10958 struct dwp_file *dwp_file;
cb1df416 10959
6a506a2d
DE
10960 /* First see if there's a DWP file.
10961 If we have a DWP file but didn't find the DWO inside it, don't
10962 look for the original DWO file. It makes gdb behave differently
10963 depending on whether one is debugging in the build tree. */
cf2c3c16 10964
ab5088bf 10965 dwp_file = get_dwp_file ();
80626a55 10966 if (dwp_file != NULL)
cf2c3c16 10967 {
80626a55
DE
10968 const struct dwp_hash_table *dwp_htab =
10969 is_debug_types ? dwp_file->tus : dwp_file->cus;
10970
10971 if (dwp_htab != NULL)
10972 {
10973 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10974 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10975 signature, is_debug_types);
80626a55
DE
10976
10977 if (dwo_cutu != NULL)
10978 {
b4f54984 10979 if (dwarf_read_debug)
80626a55
DE
10980 {
10981 fprintf_unfiltered (gdb_stdlog,
10982 "Virtual DWO %s %s found: @%s\n",
10983 kind, hex_string (signature),
10984 host_address_to_string (dwo_cutu));
10985 }
10986 return dwo_cutu;
10987 }
10988 }
10989 }
6a506a2d 10990 else
80626a55 10991 {
6a506a2d 10992 /* No DWP file, look for the DWO file. */
80626a55 10993
6a506a2d
DE
10994 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10995 if (*dwo_file_slot == NULL)
80626a55 10996 {
6a506a2d
DE
10997 /* Read in the file and build a table of the CUs/TUs it contains. */
10998 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10999 }
6a506a2d
DE
11000 /* NOTE: This will be NULL if unable to open the file. */
11001 dwo_file = *dwo_file_slot;
3019eac3 11002
6a506a2d 11003 if (dwo_file != NULL)
19c3d4c9 11004 {
6a506a2d
DE
11005 struct dwo_unit *dwo_cutu = NULL;
11006
11007 if (is_debug_types && dwo_file->tus)
11008 {
11009 struct dwo_unit find_dwo_cutu;
11010
11011 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11012 find_dwo_cutu.signature = signature;
11013 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
11014 }
11015 else if (!is_debug_types && dwo_file->cu)
80626a55 11016 {
6a506a2d
DE
11017 if (signature == dwo_file->cu->signature)
11018 dwo_cutu = dwo_file->cu;
11019 }
11020
11021 if (dwo_cutu != NULL)
11022 {
b4f54984 11023 if (dwarf_read_debug)
6a506a2d
DE
11024 {
11025 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11026 kind, dwo_name, hex_string (signature),
11027 host_address_to_string (dwo_cutu));
11028 }
11029 return dwo_cutu;
80626a55
DE
11030 }
11031 }
2e276125 11032 }
9cdd5dbd 11033
80626a55
DE
11034 /* We didn't find it. This could mean a dwo_id mismatch, or
11035 someone deleted the DWO/DWP file, or the search path isn't set up
11036 correctly to find the file. */
11037
b4f54984 11038 if (dwarf_read_debug)
80626a55
DE
11039 {
11040 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11041 kind, dwo_name, hex_string (signature));
11042 }
3019eac3 11043
6656a72d
DE
11044 /* This is a warning and not a complaint because it can be caused by
11045 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11046 {
11047 /* Print the name of the DWP file if we looked there, helps the user
11048 better diagnose the problem. */
11049 char *dwp_text = NULL;
11050 struct cleanup *cleanups;
11051
11052 if (dwp_file != NULL)
11053 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11054 cleanups = make_cleanup (xfree, dwp_text);
11055
11056 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11057 " [in module %s]"),
11058 kind, dwo_name, hex_string (signature),
11059 dwp_text != NULL ? dwp_text : "",
11060 this_unit->is_debug_types ? "TU" : "CU",
11061 this_unit->offset.sect_off, objfile_name (objfile));
11062
11063 do_cleanups (cleanups);
11064 }
3019eac3 11065 return NULL;
5fb290d7
DJ
11066}
11067
80626a55
DE
11068/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11069 See lookup_dwo_cutu_unit for details. */
11070
11071static struct dwo_unit *
11072lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11073 const char *dwo_name, const char *comp_dir,
11074 ULONGEST signature)
11075{
11076 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11077}
11078
11079/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11080 See lookup_dwo_cutu_unit for details. */
11081
11082static struct dwo_unit *
11083lookup_dwo_type_unit (struct signatured_type *this_tu,
11084 const char *dwo_name, const char *comp_dir)
11085{
11086 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11087}
11088
89e63ee4
DE
11089/* Traversal function for queue_and_load_all_dwo_tus. */
11090
11091static int
11092queue_and_load_dwo_tu (void **slot, void *info)
11093{
11094 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11095 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11096 ULONGEST signature = dwo_unit->signature;
11097 struct signatured_type *sig_type =
11098 lookup_dwo_signatured_type (per_cu->cu, signature);
11099
11100 if (sig_type != NULL)
11101 {
11102 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11103
11104 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11105 a real dependency of PER_CU on SIG_TYPE. That is detected later
11106 while processing PER_CU. */
11107 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11108 load_full_type_unit (sig_cu);
11109 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11110 }
11111
11112 return 1;
11113}
11114
11115/* Queue all TUs contained in the DWO of PER_CU to be read in.
11116 The DWO may have the only definition of the type, though it may not be
11117 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11118 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11119
11120static void
11121queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11122{
11123 struct dwo_unit *dwo_unit;
11124 struct dwo_file *dwo_file;
11125
11126 gdb_assert (!per_cu->is_debug_types);
11127 gdb_assert (get_dwp_file () == NULL);
11128 gdb_assert (per_cu->cu != NULL);
11129
11130 dwo_unit = per_cu->cu->dwo_unit;
11131 gdb_assert (dwo_unit != NULL);
11132
11133 dwo_file = dwo_unit->dwo_file;
11134 if (dwo_file->tus != NULL)
11135 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11136}
11137
3019eac3
DE
11138/* Free all resources associated with DWO_FILE.
11139 Close the DWO file and munmap the sections.
11140 All memory should be on the objfile obstack. */
348e048f
DE
11141
11142static void
3019eac3 11143free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11144{
3019eac3
DE
11145 int ix;
11146 struct dwarf2_section_info *section;
348e048f 11147
5c6fa7ab 11148 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11149 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11150
3019eac3
DE
11151 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11152}
348e048f 11153
3019eac3 11154/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11155
3019eac3
DE
11156static void
11157free_dwo_file_cleanup (void *arg)
11158{
11159 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11160 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11161
3019eac3
DE
11162 free_dwo_file (dwo_file, objfile);
11163}
348e048f 11164
3019eac3 11165/* Traversal function for free_dwo_files. */
2ab95328 11166
3019eac3
DE
11167static int
11168free_dwo_file_from_slot (void **slot, void *info)
11169{
11170 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11171 struct objfile *objfile = (struct objfile *) info;
348e048f 11172
3019eac3 11173 free_dwo_file (dwo_file, objfile);
348e048f 11174
3019eac3
DE
11175 return 1;
11176}
348e048f 11177
3019eac3 11178/* Free all resources associated with DWO_FILES. */
348e048f 11179
3019eac3
DE
11180static void
11181free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11182{
11183 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11184}
3019eac3
DE
11185\f
11186/* Read in various DIEs. */
348e048f 11187
d389af10
JK
11188/* qsort helper for inherit_abstract_dies. */
11189
11190static int
11191unsigned_int_compar (const void *ap, const void *bp)
11192{
11193 unsigned int a = *(unsigned int *) ap;
11194 unsigned int b = *(unsigned int *) bp;
11195
11196 return (a > b) - (b > a);
11197}
11198
11199/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11200 Inherit only the children of the DW_AT_abstract_origin DIE not being
11201 already referenced by DW_AT_abstract_origin from the children of the
11202 current DIE. */
d389af10
JK
11203
11204static void
11205inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11206{
11207 struct die_info *child_die;
11208 unsigned die_children_count;
11209 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11210 sect_offset *offsets;
11211 sect_offset *offsets_end, *offsetp;
d389af10
JK
11212 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11213 struct die_info *origin_die;
11214 /* Iterator of the ORIGIN_DIE children. */
11215 struct die_info *origin_child_die;
11216 struct cleanup *cleanups;
11217 struct attribute *attr;
cd02d79d
PA
11218 struct dwarf2_cu *origin_cu;
11219 struct pending **origin_previous_list_in_scope;
d389af10
JK
11220
11221 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11222 if (!attr)
11223 return;
11224
cd02d79d
PA
11225 /* Note that following die references may follow to a die in a
11226 different cu. */
11227
11228 origin_cu = cu;
11229 origin_die = follow_die_ref (die, attr, &origin_cu);
11230
11231 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11232 symbols in. */
11233 origin_previous_list_in_scope = origin_cu->list_in_scope;
11234 origin_cu->list_in_scope = cu->list_in_scope;
11235
edb3359d
DJ
11236 if (die->tag != origin_die->tag
11237 && !(die->tag == DW_TAG_inlined_subroutine
11238 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11239 complaint (&symfile_complaints,
11240 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11241 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11242
11243 child_die = die->child;
11244 die_children_count = 0;
11245 while (child_die && child_die->tag)
11246 {
11247 child_die = sibling_die (child_die);
11248 die_children_count++;
11249 }
11250 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11251 cleanups = make_cleanup (xfree, offsets);
11252
11253 offsets_end = offsets;
3ea89b92
PMR
11254 for (child_die = die->child;
11255 child_die && child_die->tag;
11256 child_die = sibling_die (child_die))
11257 {
11258 struct die_info *child_origin_die;
11259 struct dwarf2_cu *child_origin_cu;
11260
11261 /* We are trying to process concrete instance entries:
11262 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11263 it's not relevant to our analysis here. i.e. detecting DIEs that are
11264 present in the abstract instance but not referenced in the concrete
11265 one. */
11266 if (child_die->tag == DW_TAG_GNU_call_site)
11267 continue;
11268
c38f313d
DJ
11269 /* For each CHILD_DIE, find the corresponding child of
11270 ORIGIN_DIE. If there is more than one layer of
11271 DW_AT_abstract_origin, follow them all; there shouldn't be,
11272 but GCC versions at least through 4.4 generate this (GCC PR
11273 40573). */
3ea89b92
PMR
11274 child_origin_die = child_die;
11275 child_origin_cu = cu;
c38f313d
DJ
11276 while (1)
11277 {
cd02d79d
PA
11278 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11279 child_origin_cu);
c38f313d
DJ
11280 if (attr == NULL)
11281 break;
cd02d79d
PA
11282 child_origin_die = follow_die_ref (child_origin_die, attr,
11283 &child_origin_cu);
c38f313d
DJ
11284 }
11285
d389af10
JK
11286 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11287 counterpart may exist. */
c38f313d 11288 if (child_origin_die != child_die)
d389af10 11289 {
edb3359d
DJ
11290 if (child_die->tag != child_origin_die->tag
11291 && !(child_die->tag == DW_TAG_inlined_subroutine
11292 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11293 complaint (&symfile_complaints,
11294 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11295 "different tags"), child_die->offset.sect_off,
11296 child_origin_die->offset.sect_off);
c38f313d
DJ
11297 if (child_origin_die->parent != origin_die)
11298 complaint (&symfile_complaints,
11299 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11300 "different parents"), child_die->offset.sect_off,
11301 child_origin_die->offset.sect_off);
c38f313d
DJ
11302 else
11303 *offsets_end++ = child_origin_die->offset;
d389af10 11304 }
d389af10
JK
11305 }
11306 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11307 unsigned_int_compar);
11308 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11309 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11310 complaint (&symfile_complaints,
11311 _("Multiple children of DIE 0x%x refer "
11312 "to DIE 0x%x as their abstract origin"),
b64f50a1 11313 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11314
11315 offsetp = offsets;
11316 origin_child_die = origin_die->child;
11317 while (origin_child_die && origin_child_die->tag)
11318 {
11319 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11320 while (offsetp < offsets_end
11321 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11322 offsetp++;
b64f50a1
JK
11323 if (offsetp >= offsets_end
11324 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11325 {
adde2bff
DE
11326 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11327 Check whether we're already processing ORIGIN_CHILD_DIE.
11328 This can happen with mutually referenced abstract_origins.
11329 PR 16581. */
11330 if (!origin_child_die->in_process)
11331 process_die (origin_child_die, origin_cu);
d389af10
JK
11332 }
11333 origin_child_die = sibling_die (origin_child_die);
11334 }
cd02d79d 11335 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11336
11337 do_cleanups (cleanups);
11338}
11339
c906108c 11340static void
e7c27a73 11341read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11342{
e7c27a73 11343 struct objfile *objfile = cu->objfile;
3e29f34a 11344 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11345 struct context_stack *newobj;
c906108c
SS
11346 CORE_ADDR lowpc;
11347 CORE_ADDR highpc;
11348 struct die_info *child_die;
edb3359d 11349 struct attribute *attr, *call_line, *call_file;
15d034d0 11350 const char *name;
e142c38c 11351 CORE_ADDR baseaddr;
801e3a5b 11352 struct block *block;
edb3359d 11353 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11354 VEC (symbolp) *template_args = NULL;
11355 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11356
11357 if (inlined_func)
11358 {
11359 /* If we do not have call site information, we can't show the
11360 caller of this inlined function. That's too confusing, so
11361 only use the scope for local variables. */
11362 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11363 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11364 if (call_line == NULL || call_file == NULL)
11365 {
11366 read_lexical_block_scope (die, cu);
11367 return;
11368 }
11369 }
c906108c 11370
e142c38c
DJ
11371 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11372
94af9270 11373 name = dwarf2_name (die, cu);
c906108c 11374
e8d05480
JB
11375 /* Ignore functions with missing or empty names. These are actually
11376 illegal according to the DWARF standard. */
11377 if (name == NULL)
11378 {
11379 complaint (&symfile_complaints,
b64f50a1
JK
11380 _("missing name for subprogram DIE at %d"),
11381 die->offset.sect_off);
e8d05480
JB
11382 return;
11383 }
11384
11385 /* Ignore functions with missing or invalid low and high pc attributes. */
11386 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11387 {
ae4d0c03
PM
11388 attr = dwarf2_attr (die, DW_AT_external, cu);
11389 if (!attr || !DW_UNSND (attr))
11390 complaint (&symfile_complaints,
3e43a32a
MS
11391 _("cannot get low and high bounds "
11392 "for subprogram DIE at %d"),
b64f50a1 11393 die->offset.sect_off);
e8d05480
JB
11394 return;
11395 }
c906108c 11396
3e29f34a
MR
11397 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11398 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11399
34eaf542
TT
11400 /* If we have any template arguments, then we must allocate a
11401 different sort of symbol. */
11402 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11403 {
11404 if (child_die->tag == DW_TAG_template_type_param
11405 || child_die->tag == DW_TAG_template_value_param)
11406 {
e623cf5d 11407 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11408 templ_func->base.is_cplus_template_function = 1;
11409 break;
11410 }
11411 }
11412
fe978cb0
PA
11413 newobj = push_context (0, lowpc);
11414 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11415 (struct symbol *) templ_func);
4c2df51b 11416
4cecd739
DJ
11417 /* If there is a location expression for DW_AT_frame_base, record
11418 it. */
e142c38c 11419 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11420 if (attr)
fe978cb0 11421 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11422
e142c38c 11423 cu->list_in_scope = &local_symbols;
c906108c 11424
639d11d3 11425 if (die->child != NULL)
c906108c 11426 {
639d11d3 11427 child_die = die->child;
c906108c
SS
11428 while (child_die && child_die->tag)
11429 {
34eaf542
TT
11430 if (child_die->tag == DW_TAG_template_type_param
11431 || child_die->tag == DW_TAG_template_value_param)
11432 {
11433 struct symbol *arg = new_symbol (child_die, NULL, cu);
11434
f1078f66
DJ
11435 if (arg != NULL)
11436 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11437 }
11438 else
11439 process_die (child_die, cu);
c906108c
SS
11440 child_die = sibling_die (child_die);
11441 }
11442 }
11443
d389af10
JK
11444 inherit_abstract_dies (die, cu);
11445
4a811a97
UW
11446 /* If we have a DW_AT_specification, we might need to import using
11447 directives from the context of the specification DIE. See the
11448 comment in determine_prefix. */
11449 if (cu->language == language_cplus
11450 && dwarf2_attr (die, DW_AT_specification, cu))
11451 {
11452 struct dwarf2_cu *spec_cu = cu;
11453 struct die_info *spec_die = die_specification (die, &spec_cu);
11454
11455 while (spec_die)
11456 {
11457 child_die = spec_die->child;
11458 while (child_die && child_die->tag)
11459 {
11460 if (child_die->tag == DW_TAG_imported_module)
11461 process_die (child_die, spec_cu);
11462 child_die = sibling_die (child_die);
11463 }
11464
11465 /* In some cases, GCC generates specification DIEs that
11466 themselves contain DW_AT_specification attributes. */
11467 spec_die = die_specification (spec_die, &spec_cu);
11468 }
11469 }
11470
fe978cb0 11471 newobj = pop_context ();
c906108c 11472 /* Make a block for the local symbols within. */
fe978cb0 11473 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
4d663531 11474 lowpc, highpc);
801e3a5b 11475
df8a16a1 11476 /* For C++, set the block's scope. */
45280282
IB
11477 if ((cu->language == language_cplus
11478 || cu->language == language_fortran
11479 || cu->language == language_d)
4d4ec4e5 11480 && cu->processing_has_namespace_info)
195a3f6c
TT
11481 block_set_scope (block, determine_prefix (die, cu),
11482 &objfile->objfile_obstack);
df8a16a1 11483
801e3a5b
JB
11484 /* If we have address ranges, record them. */
11485 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11486
fe978cb0 11487 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11488
34eaf542
TT
11489 /* Attach template arguments to function. */
11490 if (! VEC_empty (symbolp, template_args))
11491 {
11492 gdb_assert (templ_func != NULL);
11493
11494 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11495 templ_func->template_arguments
11496 = obstack_alloc (&objfile->objfile_obstack,
11497 (templ_func->n_template_arguments
11498 * sizeof (struct symbol *)));
11499 memcpy (templ_func->template_arguments,
11500 VEC_address (symbolp, template_args),
11501 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11502 VEC_free (symbolp, template_args);
11503 }
11504
208d8187
JB
11505 /* In C++, we can have functions nested inside functions (e.g., when
11506 a function declares a class that has methods). This means that
11507 when we finish processing a function scope, we may need to go
11508 back to building a containing block's symbol lists. */
fe978cb0 11509 local_symbols = newobj->locals;
22cee43f 11510 local_using_directives = newobj->local_using_directives;
208d8187 11511
921e78cf
JB
11512 /* If we've finished processing a top-level function, subsequent
11513 symbols go in the file symbol list. */
11514 if (outermost_context_p ())
e142c38c 11515 cu->list_in_scope = &file_symbols;
c906108c
SS
11516}
11517
11518/* Process all the DIES contained within a lexical block scope. Start
11519 a new scope, process the dies, and then close the scope. */
11520
11521static void
e7c27a73 11522read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11523{
e7c27a73 11524 struct objfile *objfile = cu->objfile;
3e29f34a 11525 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11526 struct context_stack *newobj;
c906108c
SS
11527 CORE_ADDR lowpc, highpc;
11528 struct die_info *child_die;
e142c38c
DJ
11529 CORE_ADDR baseaddr;
11530
11531 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11532
11533 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11534 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11535 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11536 be nasty. Might be easier to properly extend generic blocks to
af34e669 11537 describe ranges. */
d85a05f0 11538 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c 11539 return;
3e29f34a
MR
11540 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11541 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11542
11543 push_context (0, lowpc);
639d11d3 11544 if (die->child != NULL)
c906108c 11545 {
639d11d3 11546 child_die = die->child;
c906108c
SS
11547 while (child_die && child_die->tag)
11548 {
e7c27a73 11549 process_die (child_die, cu);
c906108c
SS
11550 child_die = sibling_die (child_die);
11551 }
11552 }
3ea89b92 11553 inherit_abstract_dies (die, cu);
fe978cb0 11554 newobj = pop_context ();
c906108c 11555
22cee43f 11556 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11557 {
801e3a5b 11558 struct block *block
fe978cb0
PA
11559 = finish_block (0, &local_symbols, newobj->old_blocks,
11560 newobj->start_addr, highpc);
801e3a5b
JB
11561
11562 /* Note that recording ranges after traversing children, as we
11563 do here, means that recording a parent's ranges entails
11564 walking across all its children's ranges as they appear in
11565 the address map, which is quadratic behavior.
11566
11567 It would be nicer to record the parent's ranges before
11568 traversing its children, simply overriding whatever you find
11569 there. But since we don't even decide whether to create a
11570 block until after we've traversed its children, that's hard
11571 to do. */
11572 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11573 }
fe978cb0 11574 local_symbols = newobj->locals;
22cee43f 11575 local_using_directives = newobj->local_using_directives;
c906108c
SS
11576}
11577
96408a79
SA
11578/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11579
11580static void
11581read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11582{
11583 struct objfile *objfile = cu->objfile;
11584 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11585 CORE_ADDR pc, baseaddr;
11586 struct attribute *attr;
11587 struct call_site *call_site, call_site_local;
11588 void **slot;
11589 int nparams;
11590 struct die_info *child_die;
11591
11592 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11593
11594 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11595 if (!attr)
11596 {
11597 complaint (&symfile_complaints,
11598 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11599 "DIE 0x%x [in module %s]"),
4262abfb 11600 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11601 return;
11602 }
31aa7e4e 11603 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11604 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11605
11606 if (cu->call_site_htab == NULL)
11607 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11608 NULL, &objfile->objfile_obstack,
11609 hashtab_obstack_allocate, NULL);
11610 call_site_local.pc = pc;
11611 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11612 if (*slot != NULL)
11613 {
11614 complaint (&symfile_complaints,
11615 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11616 "DIE 0x%x [in module %s]"),
4262abfb
JK
11617 paddress (gdbarch, pc), die->offset.sect_off,
11618 objfile_name (objfile));
96408a79
SA
11619 return;
11620 }
11621
11622 /* Count parameters at the caller. */
11623
11624 nparams = 0;
11625 for (child_die = die->child; child_die && child_die->tag;
11626 child_die = sibling_die (child_die))
11627 {
11628 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11629 {
11630 complaint (&symfile_complaints,
11631 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11632 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11633 child_die->tag, child_die->offset.sect_off,
11634 objfile_name (objfile));
96408a79
SA
11635 continue;
11636 }
11637
11638 nparams++;
11639 }
11640
11641 call_site = obstack_alloc (&objfile->objfile_obstack,
11642 (sizeof (*call_site)
11643 + (sizeof (*call_site->parameter)
11644 * (nparams - 1))));
11645 *slot = call_site;
11646 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11647 call_site->pc = pc;
11648
11649 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11650 {
11651 struct die_info *func_die;
11652
11653 /* Skip also over DW_TAG_inlined_subroutine. */
11654 for (func_die = die->parent;
11655 func_die && func_die->tag != DW_TAG_subprogram
11656 && func_die->tag != DW_TAG_subroutine_type;
11657 func_die = func_die->parent);
11658
11659 /* DW_AT_GNU_all_call_sites is a superset
11660 of DW_AT_GNU_all_tail_call_sites. */
11661 if (func_die
11662 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11663 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11664 {
11665 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11666 not complete. But keep CALL_SITE for look ups via call_site_htab,
11667 both the initial caller containing the real return address PC and
11668 the final callee containing the current PC of a chain of tail
11669 calls do not need to have the tail call list complete. But any
11670 function candidate for a virtual tail call frame searched via
11671 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11672 determined unambiguously. */
11673 }
11674 else
11675 {
11676 struct type *func_type = NULL;
11677
11678 if (func_die)
11679 func_type = get_die_type (func_die, cu);
11680 if (func_type != NULL)
11681 {
11682 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11683
11684 /* Enlist this call site to the function. */
11685 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11686 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11687 }
11688 else
11689 complaint (&symfile_complaints,
11690 _("Cannot find function owning DW_TAG_GNU_call_site "
11691 "DIE 0x%x [in module %s]"),
4262abfb 11692 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11693 }
11694 }
11695
11696 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11697 if (attr == NULL)
11698 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11699 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11700 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11701 /* Keep NULL DWARF_BLOCK. */;
11702 else if (attr_form_is_block (attr))
11703 {
11704 struct dwarf2_locexpr_baton *dlbaton;
11705
11706 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11707 dlbaton->data = DW_BLOCK (attr)->data;
11708 dlbaton->size = DW_BLOCK (attr)->size;
11709 dlbaton->per_cu = cu->per_cu;
11710
11711 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11712 }
7771576e 11713 else if (attr_form_is_ref (attr))
96408a79 11714 {
96408a79
SA
11715 struct dwarf2_cu *target_cu = cu;
11716 struct die_info *target_die;
11717
ac9ec31b 11718 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11719 gdb_assert (target_cu->objfile == objfile);
11720 if (die_is_declaration (target_die, target_cu))
11721 {
9112db09
JK
11722 const char *target_physname = NULL;
11723 struct attribute *target_attr;
11724
11725 /* Prefer the mangled name; otherwise compute the demangled one. */
11726 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11727 if (target_attr == NULL)
11728 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11729 target_cu);
11730 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11731 target_physname = DW_STRING (target_attr);
11732 else
11733 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11734 if (target_physname == NULL)
11735 complaint (&symfile_complaints,
11736 _("DW_AT_GNU_call_site_target target DIE has invalid "
11737 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11738 die->offset.sect_off, objfile_name (objfile));
96408a79 11739 else
7d455152 11740 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11741 }
11742 else
11743 {
11744 CORE_ADDR lowpc;
11745
11746 /* DW_AT_entry_pc should be preferred. */
11747 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11748 complaint (&symfile_complaints,
11749 _("DW_AT_GNU_call_site_target target DIE has invalid "
11750 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11751 die->offset.sect_off, objfile_name (objfile));
96408a79 11752 else
3e29f34a
MR
11753 {
11754 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11755 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11756 }
96408a79
SA
11757 }
11758 }
11759 else
11760 complaint (&symfile_complaints,
11761 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11762 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11763 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11764
11765 call_site->per_cu = cu->per_cu;
11766
11767 for (child_die = die->child;
11768 child_die && child_die->tag;
11769 child_die = sibling_die (child_die))
11770 {
96408a79 11771 struct call_site_parameter *parameter;
1788b2d3 11772 struct attribute *loc, *origin;
96408a79
SA
11773
11774 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11775 {
11776 /* Already printed the complaint above. */
11777 continue;
11778 }
11779
11780 gdb_assert (call_site->parameter_count < nparams);
11781 parameter = &call_site->parameter[call_site->parameter_count];
11782
1788b2d3
JK
11783 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11784 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11785 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11786
24c5c679 11787 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11788 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11789 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11790 {
11791 sect_offset offset;
11792
11793 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11794 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11795 if (!offset_in_cu_p (&cu->header, offset))
11796 {
11797 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11798 binding can be done only inside one CU. Such referenced DIE
11799 therefore cannot be even moved to DW_TAG_partial_unit. */
11800 complaint (&symfile_complaints,
11801 _("DW_AT_abstract_origin offset is not in CU for "
11802 "DW_TAG_GNU_call_site child DIE 0x%x "
11803 "[in module %s]"),
4262abfb 11804 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11805 continue;
11806 }
1788b2d3
JK
11807 parameter->u.param_offset.cu_off = (offset.sect_off
11808 - cu->header.offset.sect_off);
11809 }
11810 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11811 {
11812 complaint (&symfile_complaints,
11813 _("No DW_FORM_block* DW_AT_location for "
11814 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11815 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11816 continue;
11817 }
24c5c679 11818 else
96408a79 11819 {
24c5c679
JK
11820 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11821 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11822 if (parameter->u.dwarf_reg != -1)
11823 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11824 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11825 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11826 &parameter->u.fb_offset))
11827 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11828 else
11829 {
11830 complaint (&symfile_complaints,
11831 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11832 "for DW_FORM_block* DW_AT_location is supported for "
11833 "DW_TAG_GNU_call_site child DIE 0x%x "
11834 "[in module %s]"),
4262abfb 11835 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11836 continue;
11837 }
96408a79
SA
11838 }
11839
11840 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11841 if (!attr_form_is_block (attr))
11842 {
11843 complaint (&symfile_complaints,
11844 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11845 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11846 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11847 continue;
11848 }
11849 parameter->value = DW_BLOCK (attr)->data;
11850 parameter->value_size = DW_BLOCK (attr)->size;
11851
11852 /* Parameters are not pre-cleared by memset above. */
11853 parameter->data_value = NULL;
11854 parameter->data_value_size = 0;
11855 call_site->parameter_count++;
11856
11857 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11858 if (attr)
11859 {
11860 if (!attr_form_is_block (attr))
11861 complaint (&symfile_complaints,
11862 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11863 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11864 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11865 else
11866 {
11867 parameter->data_value = DW_BLOCK (attr)->data;
11868 parameter->data_value_size = DW_BLOCK (attr)->size;
11869 }
11870 }
11871 }
11872}
11873
43039443 11874/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11875 Return 1 if the attributes are present and valid, otherwise, return 0.
11876 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11877
11878static int
11879dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11880 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11881 struct partial_symtab *ranges_pst)
43039443
JK
11882{
11883 struct objfile *objfile = cu->objfile;
3e29f34a 11884 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
11885 struct comp_unit_head *cu_header = &cu->header;
11886 bfd *obfd = objfile->obfd;
11887 unsigned int addr_size = cu_header->addr_size;
11888 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11889 /* Base address selection entry. */
11890 CORE_ADDR base;
11891 int found_base;
11892 unsigned int dummy;
d521ce57 11893 const gdb_byte *buffer;
43039443
JK
11894 CORE_ADDR marker;
11895 int low_set;
11896 CORE_ADDR low = 0;
11897 CORE_ADDR high = 0;
ff013f42 11898 CORE_ADDR baseaddr;
43039443 11899
d00adf39
DE
11900 found_base = cu->base_known;
11901 base = cu->base_address;
43039443 11902
be391dca 11903 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11904 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11905 {
11906 complaint (&symfile_complaints,
11907 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11908 offset);
11909 return 0;
11910 }
dce234bc 11911 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
11912
11913 /* Read in the largest possible address. */
11914 marker = read_address (obfd, buffer, cu, &dummy);
11915 if ((marker & mask) == mask)
11916 {
11917 /* If we found the largest possible address, then
11918 read the base address. */
11919 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11920 buffer += 2 * addr_size;
11921 offset += 2 * addr_size;
11922 found_base = 1;
11923 }
11924
11925 low_set = 0;
11926
e7030f15 11927 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11928
43039443
JK
11929 while (1)
11930 {
11931 CORE_ADDR range_beginning, range_end;
11932
11933 range_beginning = read_address (obfd, buffer, cu, &dummy);
11934 buffer += addr_size;
11935 range_end = read_address (obfd, buffer, cu, &dummy);
11936 buffer += addr_size;
11937 offset += 2 * addr_size;
11938
11939 /* An end of list marker is a pair of zero addresses. */
11940 if (range_beginning == 0 && range_end == 0)
11941 /* Found the end of list entry. */
11942 break;
11943
11944 /* Each base address selection entry is a pair of 2 values.
11945 The first is the largest possible address, the second is
11946 the base address. Check for a base address here. */
11947 if ((range_beginning & mask) == mask)
11948 {
11949 /* If we found the largest possible address, then
11950 read the base address. */
11951 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11952 found_base = 1;
11953 continue;
11954 }
11955
11956 if (!found_base)
11957 {
11958 /* We have no valid base address for the ranges
11959 data. */
11960 complaint (&symfile_complaints,
11961 _("Invalid .debug_ranges data (no base address)"));
11962 return 0;
11963 }
11964
9277c30c
UW
11965 if (range_beginning > range_end)
11966 {
11967 /* Inverted range entries are invalid. */
11968 complaint (&symfile_complaints,
11969 _("Invalid .debug_ranges data (inverted range)"));
11970 return 0;
11971 }
11972
11973 /* Empty range entries have no effect. */
11974 if (range_beginning == range_end)
11975 continue;
11976
43039443
JK
11977 range_beginning += base;
11978 range_end += base;
11979
01093045
DE
11980 /* A not-uncommon case of bad debug info.
11981 Don't pollute the addrmap with bad data. */
11982 if (range_beginning + baseaddr == 0
11983 && !dwarf2_per_objfile->has_section_at_zero)
11984 {
11985 complaint (&symfile_complaints,
11986 _(".debug_ranges entry has start address of zero"
4262abfb 11987 " [in module %s]"), objfile_name (objfile));
01093045
DE
11988 continue;
11989 }
11990
9277c30c 11991 if (ranges_pst != NULL)
3e29f34a
MR
11992 {
11993 CORE_ADDR lowpc;
11994 CORE_ADDR highpc;
11995
11996 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11997 range_beginning + baseaddr);
11998 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11999 range_end + baseaddr);
12000 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12001 ranges_pst);
12002 }
ff013f42 12003
43039443
JK
12004 /* FIXME: This is recording everything as a low-high
12005 segment of consecutive addresses. We should have a
12006 data structure for discontiguous block ranges
12007 instead. */
12008 if (! low_set)
12009 {
12010 low = range_beginning;
12011 high = range_end;
12012 low_set = 1;
12013 }
12014 else
12015 {
12016 if (range_beginning < low)
12017 low = range_beginning;
12018 if (range_end > high)
12019 high = range_end;
12020 }
12021 }
12022
12023 if (! low_set)
12024 /* If the first entry is an end-of-list marker, the range
12025 describes an empty scope, i.e. no instructions. */
12026 return 0;
12027
12028 if (low_return)
12029 *low_return = low;
12030 if (high_return)
12031 *high_return = high;
12032 return 1;
12033}
12034
af34e669
DJ
12035/* Get low and high pc attributes from a die. Return 1 if the attributes
12036 are present and valid, otherwise, return 0. Return -1 if the range is
12037 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 12038
c906108c 12039static int
af34e669 12040dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12041 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12042 struct partial_symtab *pst)
c906108c
SS
12043{
12044 struct attribute *attr;
91da1414 12045 struct attribute *attr_high;
af34e669
DJ
12046 CORE_ADDR low = 0;
12047 CORE_ADDR high = 0;
12048 int ret = 0;
c906108c 12049
91da1414
MW
12050 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12051 if (attr_high)
af34e669 12052 {
e142c38c 12053 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12054 if (attr)
91da1414 12055 {
31aa7e4e
JB
12056 low = attr_value_as_address (attr);
12057 high = attr_value_as_address (attr_high);
12058 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12059 high += low;
91da1414 12060 }
af34e669
DJ
12061 else
12062 /* Found high w/o low attribute. */
12063 return 0;
12064
12065 /* Found consecutive range of addresses. */
12066 ret = 1;
12067 }
c906108c 12068 else
af34e669 12069 {
e142c38c 12070 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12071 if (attr != NULL)
12072 {
ab435259
DE
12073 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12074 We take advantage of the fact that DW_AT_ranges does not appear
12075 in DW_TAG_compile_unit of DWO files. */
12076 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12077 unsigned int ranges_offset = (DW_UNSND (attr)
12078 + (need_ranges_base
12079 ? cu->ranges_base
12080 : 0));
2e3cf129 12081
af34e669 12082 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12083 .debug_ranges section. */
2e3cf129 12084 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 12085 return 0;
43039443 12086 /* Found discontinuous range of addresses. */
af34e669
DJ
12087 ret = -1;
12088 }
12089 }
c906108c 12090
9373cf26
JK
12091 /* read_partial_die has also the strict LOW < HIGH requirement. */
12092 if (high <= low)
c906108c
SS
12093 return 0;
12094
12095 /* When using the GNU linker, .gnu.linkonce. sections are used to
12096 eliminate duplicate copies of functions and vtables and such.
12097 The linker will arbitrarily choose one and discard the others.
12098 The AT_*_pc values for such functions refer to local labels in
12099 these sections. If the section from that file was discarded, the
12100 labels are not in the output, so the relocs get a value of 0.
12101 If this is a discarded function, mark the pc bounds as invalid,
12102 so that GDB will ignore it. */
72dca2f5 12103 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
12104 return 0;
12105
12106 *lowpc = low;
96408a79
SA
12107 if (highpc)
12108 *highpc = high;
af34e669 12109 return ret;
c906108c
SS
12110}
12111
b084d499
JB
12112/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12113 its low and high PC addresses. Do nothing if these addresses could not
12114 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12115 and HIGHPC to the high address if greater than HIGHPC. */
12116
12117static void
12118dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12119 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12120 struct dwarf2_cu *cu)
12121{
12122 CORE_ADDR low, high;
12123 struct die_info *child = die->child;
12124
d85a05f0 12125 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
12126 {
12127 *lowpc = min (*lowpc, low);
12128 *highpc = max (*highpc, high);
12129 }
12130
12131 /* If the language does not allow nested subprograms (either inside
12132 subprograms or lexical blocks), we're done. */
12133 if (cu->language != language_ada)
12134 return;
6e70227d 12135
b084d499
JB
12136 /* Check all the children of the given DIE. If it contains nested
12137 subprograms, then check their pc bounds. Likewise, we need to
12138 check lexical blocks as well, as they may also contain subprogram
12139 definitions. */
12140 while (child && child->tag)
12141 {
12142 if (child->tag == DW_TAG_subprogram
12143 || child->tag == DW_TAG_lexical_block)
12144 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12145 child = sibling_die (child);
12146 }
12147}
12148
fae299cd
DC
12149/* Get the low and high pc's represented by the scope DIE, and store
12150 them in *LOWPC and *HIGHPC. If the correct values can't be
12151 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12152
12153static void
12154get_scope_pc_bounds (struct die_info *die,
12155 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12156 struct dwarf2_cu *cu)
12157{
12158 CORE_ADDR best_low = (CORE_ADDR) -1;
12159 CORE_ADDR best_high = (CORE_ADDR) 0;
12160 CORE_ADDR current_low, current_high;
12161
d85a05f0 12162 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
12163 {
12164 best_low = current_low;
12165 best_high = current_high;
12166 }
12167 else
12168 {
12169 struct die_info *child = die->child;
12170
12171 while (child && child->tag)
12172 {
12173 switch (child->tag) {
12174 case DW_TAG_subprogram:
b084d499 12175 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12176 break;
12177 case DW_TAG_namespace:
f55ee35c 12178 case DW_TAG_module:
fae299cd
DC
12179 /* FIXME: carlton/2004-01-16: Should we do this for
12180 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12181 that current GCC's always emit the DIEs corresponding
12182 to definitions of methods of classes as children of a
12183 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12184 the DIEs giving the declarations, which could be
12185 anywhere). But I don't see any reason why the
12186 standards says that they have to be there. */
12187 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12188
12189 if (current_low != ((CORE_ADDR) -1))
12190 {
12191 best_low = min (best_low, current_low);
12192 best_high = max (best_high, current_high);
12193 }
12194 break;
12195 default:
0963b4bd 12196 /* Ignore. */
fae299cd
DC
12197 break;
12198 }
12199
12200 child = sibling_die (child);
12201 }
12202 }
12203
12204 *lowpc = best_low;
12205 *highpc = best_high;
12206}
12207
801e3a5b
JB
12208/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12209 in DIE. */
380bca97 12210
801e3a5b
JB
12211static void
12212dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12213 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12214{
bb5ed363 12215 struct objfile *objfile = cu->objfile;
3e29f34a 12216 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12217 struct attribute *attr;
91da1414 12218 struct attribute *attr_high;
801e3a5b 12219
91da1414
MW
12220 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12221 if (attr_high)
801e3a5b 12222 {
801e3a5b
JB
12223 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12224 if (attr)
12225 {
31aa7e4e
JB
12226 CORE_ADDR low = attr_value_as_address (attr);
12227 CORE_ADDR high = attr_value_as_address (attr_high);
12228
12229 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12230 high += low;
9a619af0 12231
3e29f34a
MR
12232 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12233 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12234 record_block_range (block, low, high - 1);
801e3a5b
JB
12235 }
12236 }
12237
12238 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12239 if (attr)
12240 {
bb5ed363 12241 bfd *obfd = objfile->obfd;
ab435259
DE
12242 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12243 We take advantage of the fact that DW_AT_ranges does not appear
12244 in DW_TAG_compile_unit of DWO files. */
12245 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12246
12247 /* The value of the DW_AT_ranges attribute is the offset of the
12248 address range list in the .debug_ranges section. */
ab435259
DE
12249 unsigned long offset = (DW_UNSND (attr)
12250 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12251 const gdb_byte *buffer;
801e3a5b
JB
12252
12253 /* For some target architectures, but not others, the
12254 read_address function sign-extends the addresses it returns.
12255 To recognize base address selection entries, we need a
12256 mask. */
12257 unsigned int addr_size = cu->header.addr_size;
12258 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12259
12260 /* The base address, to which the next pair is relative. Note
12261 that this 'base' is a DWARF concept: most entries in a range
12262 list are relative, to reduce the number of relocs against the
12263 debugging information. This is separate from this function's
12264 'baseaddr' argument, which GDB uses to relocate debugging
12265 information from a shared library based on the address at
12266 which the library was loaded. */
d00adf39
DE
12267 CORE_ADDR base = cu->base_address;
12268 int base_known = cu->base_known;
801e3a5b 12269
d62bfeaf 12270 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12271 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12272 {
12273 complaint (&symfile_complaints,
12274 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12275 offset);
12276 return;
12277 }
d62bfeaf 12278 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12279
12280 for (;;)
12281 {
12282 unsigned int bytes_read;
12283 CORE_ADDR start, end;
12284
12285 start = read_address (obfd, buffer, cu, &bytes_read);
12286 buffer += bytes_read;
12287 end = read_address (obfd, buffer, cu, &bytes_read);
12288 buffer += bytes_read;
12289
12290 /* Did we find the end of the range list? */
12291 if (start == 0 && end == 0)
12292 break;
12293
12294 /* Did we find a base address selection entry? */
12295 else if ((start & base_select_mask) == base_select_mask)
12296 {
12297 base = end;
12298 base_known = 1;
12299 }
12300
12301 /* We found an ordinary address range. */
12302 else
12303 {
12304 if (!base_known)
12305 {
12306 complaint (&symfile_complaints,
3e43a32a
MS
12307 _("Invalid .debug_ranges data "
12308 "(no base address)"));
801e3a5b
JB
12309 return;
12310 }
12311
9277c30c
UW
12312 if (start > end)
12313 {
12314 /* Inverted range entries are invalid. */
12315 complaint (&symfile_complaints,
12316 _("Invalid .debug_ranges data "
12317 "(inverted range)"));
12318 return;
12319 }
12320
12321 /* Empty range entries have no effect. */
12322 if (start == end)
12323 continue;
12324
01093045
DE
12325 start += base + baseaddr;
12326 end += base + baseaddr;
12327
12328 /* A not-uncommon case of bad debug info.
12329 Don't pollute the addrmap with bad data. */
12330 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12331 {
12332 complaint (&symfile_complaints,
12333 _(".debug_ranges entry has start address of zero"
4262abfb 12334 " [in module %s]"), objfile_name (objfile));
01093045
DE
12335 continue;
12336 }
12337
3e29f34a
MR
12338 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12339 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
01093045 12340 record_block_range (block, start, end - 1);
801e3a5b
JB
12341 }
12342 }
12343 }
12344}
12345
685b1105
JK
12346/* Check whether the producer field indicates either of GCC < 4.6, or the
12347 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12348
685b1105
JK
12349static void
12350check_producer (struct dwarf2_cu *cu)
60d5a603
JK
12351{
12352 const char *cs;
38360086 12353 int major, minor;
60d5a603
JK
12354
12355 if (cu->producer == NULL)
12356 {
12357 /* For unknown compilers expect their behavior is DWARF version
12358 compliant.
12359
12360 GCC started to support .debug_types sections by -gdwarf-4 since
12361 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12362 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12363 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12364 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12365 }
b1ffba5a 12366 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12367 {
38360086
MW
12368 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12369 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12370 }
61012eef 12371 else if (startswith (cu->producer, "Intel(R) C"))
685b1105
JK
12372 cu->producer_is_icc = 1;
12373 else
12374 {
12375 /* For other non-GCC compilers, expect their behavior is DWARF version
12376 compliant. */
60d5a603
JK
12377 }
12378
ba919b58 12379 cu->checked_producer = 1;
685b1105 12380}
ba919b58 12381
685b1105
JK
12382/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12383 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12384 during 4.6.0 experimental. */
12385
12386static int
12387producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12388{
12389 if (!cu->checked_producer)
12390 check_producer (cu);
12391
12392 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12393}
12394
12395/* Return the default accessibility type if it is not overriden by
12396 DW_AT_accessibility. */
12397
12398static enum dwarf_access_attribute
12399dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12400{
12401 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12402 {
12403 /* The default DWARF 2 accessibility for members is public, the default
12404 accessibility for inheritance is private. */
12405
12406 if (die->tag != DW_TAG_inheritance)
12407 return DW_ACCESS_public;
12408 else
12409 return DW_ACCESS_private;
12410 }
12411 else
12412 {
12413 /* DWARF 3+ defines the default accessibility a different way. The same
12414 rules apply now for DW_TAG_inheritance as for the members and it only
12415 depends on the container kind. */
12416
12417 if (die->parent->tag == DW_TAG_class_type)
12418 return DW_ACCESS_private;
12419 else
12420 return DW_ACCESS_public;
12421 }
12422}
12423
74ac6d43
TT
12424/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12425 offset. If the attribute was not found return 0, otherwise return
12426 1. If it was found but could not properly be handled, set *OFFSET
12427 to 0. */
12428
12429static int
12430handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12431 LONGEST *offset)
12432{
12433 struct attribute *attr;
12434
12435 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12436 if (attr != NULL)
12437 {
12438 *offset = 0;
12439
12440 /* Note that we do not check for a section offset first here.
12441 This is because DW_AT_data_member_location is new in DWARF 4,
12442 so if we see it, we can assume that a constant form is really
12443 a constant and not a section offset. */
12444 if (attr_form_is_constant (attr))
12445 *offset = dwarf2_get_attr_constant_value (attr, 0);
12446 else if (attr_form_is_section_offset (attr))
12447 dwarf2_complex_location_expr_complaint ();
12448 else if (attr_form_is_block (attr))
12449 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12450 else
12451 dwarf2_complex_location_expr_complaint ();
12452
12453 return 1;
12454 }
12455
12456 return 0;
12457}
12458
c906108c
SS
12459/* Add an aggregate field to the field list. */
12460
12461static void
107d2387 12462dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12463 struct dwarf2_cu *cu)
6e70227d 12464{
e7c27a73 12465 struct objfile *objfile = cu->objfile;
5e2b427d 12466 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12467 struct nextfield *new_field;
12468 struct attribute *attr;
12469 struct field *fp;
15d034d0 12470 const char *fieldname = "";
c906108c
SS
12471
12472 /* Allocate a new field list entry and link it in. */
12473 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 12474 make_cleanup (xfree, new_field);
c906108c 12475 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12476
12477 if (die->tag == DW_TAG_inheritance)
12478 {
12479 new_field->next = fip->baseclasses;
12480 fip->baseclasses = new_field;
12481 }
12482 else
12483 {
12484 new_field->next = fip->fields;
12485 fip->fields = new_field;
12486 }
c906108c
SS
12487 fip->nfields++;
12488
e142c38c 12489 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12490 if (attr)
12491 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12492 else
12493 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12494 if (new_field->accessibility != DW_ACCESS_public)
12495 fip->non_public_fields = 1;
60d5a603 12496
e142c38c 12497 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12498 if (attr)
12499 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12500 else
12501 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12502
12503 fp = &new_field->field;
a9a9bd0f 12504
e142c38c 12505 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12506 {
74ac6d43
TT
12507 LONGEST offset;
12508
a9a9bd0f 12509 /* Data member other than a C++ static data member. */
6e70227d 12510
c906108c 12511 /* Get type of field. */
e7c27a73 12512 fp->type = die_type (die, cu);
c906108c 12513
d6a843b5 12514 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12515
c906108c 12516 /* Get bit size of field (zero if none). */
e142c38c 12517 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12518 if (attr)
12519 {
12520 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12521 }
12522 else
12523 {
12524 FIELD_BITSIZE (*fp) = 0;
12525 }
12526
12527 /* Get bit offset of field. */
74ac6d43
TT
12528 if (handle_data_member_location (die, cu, &offset))
12529 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12530 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12531 if (attr)
12532 {
5e2b427d 12533 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12534 {
12535 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12536 additional bit offset from the MSB of the containing
12537 anonymous object to the MSB of the field. We don't
12538 have to do anything special since we don't need to
12539 know the size of the anonymous object. */
f41f5e61 12540 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12541 }
12542 else
12543 {
12544 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12545 MSB of the anonymous object, subtract off the number of
12546 bits from the MSB of the field to the MSB of the
12547 object, and then subtract off the number of bits of
12548 the field itself. The result is the bit offset of
12549 the LSB of the field. */
c906108c
SS
12550 int anonymous_size;
12551 int bit_offset = DW_UNSND (attr);
12552
e142c38c 12553 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12554 if (attr)
12555 {
12556 /* The size of the anonymous object containing
12557 the bit field is explicit, so use the
12558 indicated size (in bytes). */
12559 anonymous_size = DW_UNSND (attr);
12560 }
12561 else
12562 {
12563 /* The size of the anonymous object containing
12564 the bit field must be inferred from the type
12565 attribute of the data member containing the
12566 bit field. */
12567 anonymous_size = TYPE_LENGTH (fp->type);
12568 }
f41f5e61
PA
12569 SET_FIELD_BITPOS (*fp,
12570 (FIELD_BITPOS (*fp)
12571 + anonymous_size * bits_per_byte
12572 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12573 }
12574 }
12575
12576 /* Get name of field. */
39cbfefa
DJ
12577 fieldname = dwarf2_name (die, cu);
12578 if (fieldname == NULL)
12579 fieldname = "";
d8151005
DJ
12580
12581 /* The name is already allocated along with this objfile, so we don't
12582 need to duplicate it for the type. */
12583 fp->name = fieldname;
c906108c
SS
12584
12585 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12586 pointer or virtual base class pointer) to private. */
e142c38c 12587 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12588 {
d48cc9dd 12589 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12590 new_field->accessibility = DW_ACCESS_private;
12591 fip->non_public_fields = 1;
12592 }
12593 }
a9a9bd0f 12594 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12595 {
a9a9bd0f
DC
12596 /* C++ static member. */
12597
12598 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12599 is a declaration, but all versions of G++ as of this writing
12600 (so through at least 3.2.1) incorrectly generate
12601 DW_TAG_variable tags. */
6e70227d 12602
ff355380 12603 const char *physname;
c906108c 12604
a9a9bd0f 12605 /* Get name of field. */
39cbfefa
DJ
12606 fieldname = dwarf2_name (die, cu);
12607 if (fieldname == NULL)
c906108c
SS
12608 return;
12609
254e6b9e 12610 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12611 if (attr
12612 /* Only create a symbol if this is an external value.
12613 new_symbol checks this and puts the value in the global symbol
12614 table, which we want. If it is not external, new_symbol
12615 will try to put the value in cu->list_in_scope which is wrong. */
12616 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12617 {
12618 /* A static const member, not much different than an enum as far as
12619 we're concerned, except that we can support more types. */
12620 new_symbol (die, NULL, cu);
12621 }
12622
2df3850c 12623 /* Get physical name. */
ff355380 12624 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12625
d8151005
DJ
12626 /* The name is already allocated along with this objfile, so we don't
12627 need to duplicate it for the type. */
12628 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12629 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12630 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12631 }
12632 else if (die->tag == DW_TAG_inheritance)
12633 {
74ac6d43 12634 LONGEST offset;
d4b96c9a 12635
74ac6d43
TT
12636 /* C++ base class field. */
12637 if (handle_data_member_location (die, cu, &offset))
12638 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12639 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12640 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12641 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12642 fip->nbaseclasses++;
12643 }
12644}
12645
98751a41
JK
12646/* Add a typedef defined in the scope of the FIP's class. */
12647
12648static void
12649dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12650 struct dwarf2_cu *cu)
6e70227d 12651{
98751a41 12652 struct objfile *objfile = cu->objfile;
98751a41
JK
12653 struct typedef_field_list *new_field;
12654 struct attribute *attr;
12655 struct typedef_field *fp;
12656 char *fieldname = "";
12657
12658 /* Allocate a new field list entry and link it in. */
12659 new_field = xzalloc (sizeof (*new_field));
12660 make_cleanup (xfree, new_field);
12661
12662 gdb_assert (die->tag == DW_TAG_typedef);
12663
12664 fp = &new_field->field;
12665
12666 /* Get name of field. */
12667 fp->name = dwarf2_name (die, cu);
12668 if (fp->name == NULL)
12669 return;
12670
12671 fp->type = read_type_die (die, cu);
12672
12673 new_field->next = fip->typedef_field_list;
12674 fip->typedef_field_list = new_field;
12675 fip->typedef_field_list_count++;
12676}
12677
c906108c
SS
12678/* Create the vector of fields, and attach it to the type. */
12679
12680static void
fba45db2 12681dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12682 struct dwarf2_cu *cu)
c906108c
SS
12683{
12684 int nfields = fip->nfields;
12685
12686 /* Record the field count, allocate space for the array of fields,
12687 and create blank accessibility bitfields if necessary. */
12688 TYPE_NFIELDS (type) = nfields;
12689 TYPE_FIELDS (type) = (struct field *)
12690 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12691 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12692
b4ba55a1 12693 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12694 {
12695 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12696
12697 TYPE_FIELD_PRIVATE_BITS (type) =
12698 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12699 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12700
12701 TYPE_FIELD_PROTECTED_BITS (type) =
12702 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12703 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12704
774b6a14
TT
12705 TYPE_FIELD_IGNORE_BITS (type) =
12706 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12707 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12708 }
12709
12710 /* If the type has baseclasses, allocate and clear a bit vector for
12711 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12712 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12713 {
12714 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12715 unsigned char *pointer;
c906108c
SS
12716
12717 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
12718 pointer = TYPE_ALLOC (type, num_bytes);
12719 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12720 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12721 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12722 }
12723
3e43a32a
MS
12724 /* Copy the saved-up fields into the field vector. Start from the head of
12725 the list, adding to the tail of the field array, so that they end up in
12726 the same order in the array in which they were added to the list. */
c906108c
SS
12727 while (nfields-- > 0)
12728 {
7d0ccb61
DJ
12729 struct nextfield *fieldp;
12730
12731 if (fip->fields)
12732 {
12733 fieldp = fip->fields;
12734 fip->fields = fieldp->next;
12735 }
12736 else
12737 {
12738 fieldp = fip->baseclasses;
12739 fip->baseclasses = fieldp->next;
12740 }
12741
12742 TYPE_FIELD (type, nfields) = fieldp->field;
12743 switch (fieldp->accessibility)
c906108c 12744 {
c5aa993b 12745 case DW_ACCESS_private:
b4ba55a1
JB
12746 if (cu->language != language_ada)
12747 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12748 break;
c906108c 12749
c5aa993b 12750 case DW_ACCESS_protected:
b4ba55a1
JB
12751 if (cu->language != language_ada)
12752 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12753 break;
c906108c 12754
c5aa993b
JM
12755 case DW_ACCESS_public:
12756 break;
c906108c 12757
c5aa993b
JM
12758 default:
12759 /* Unknown accessibility. Complain and treat it as public. */
12760 {
e2e0b3e5 12761 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12762 fieldp->accessibility);
c5aa993b
JM
12763 }
12764 break;
c906108c
SS
12765 }
12766 if (nfields < fip->nbaseclasses)
12767 {
7d0ccb61 12768 switch (fieldp->virtuality)
c906108c 12769 {
c5aa993b
JM
12770 case DW_VIRTUALITY_virtual:
12771 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12772 if (cu->language == language_ada)
a73c6dcd 12773 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12774 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12775 break;
c906108c
SS
12776 }
12777 }
c906108c
SS
12778 }
12779}
12780
7d27a96d
TT
12781/* Return true if this member function is a constructor, false
12782 otherwise. */
12783
12784static int
12785dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12786{
12787 const char *fieldname;
fe978cb0 12788 const char *type_name;
7d27a96d
TT
12789 int len;
12790
12791 if (die->parent == NULL)
12792 return 0;
12793
12794 if (die->parent->tag != DW_TAG_structure_type
12795 && die->parent->tag != DW_TAG_union_type
12796 && die->parent->tag != DW_TAG_class_type)
12797 return 0;
12798
12799 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
12800 type_name = dwarf2_name (die->parent, cu);
12801 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
12802 return 0;
12803
12804 len = strlen (fieldname);
fe978cb0
PA
12805 return (strncmp (fieldname, type_name, len) == 0
12806 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
12807}
12808
c906108c
SS
12809/* Add a member function to the proper fieldlist. */
12810
12811static void
107d2387 12812dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12813 struct type *type, struct dwarf2_cu *cu)
c906108c 12814{
e7c27a73 12815 struct objfile *objfile = cu->objfile;
c906108c
SS
12816 struct attribute *attr;
12817 struct fnfieldlist *flp;
12818 int i;
12819 struct fn_field *fnp;
15d034d0 12820 const char *fieldname;
c906108c 12821 struct nextfnfield *new_fnfield;
f792889a 12822 struct type *this_type;
60d5a603 12823 enum dwarf_access_attribute accessibility;
c906108c 12824
b4ba55a1 12825 if (cu->language == language_ada)
a73c6dcd 12826 error (_("unexpected member function in Ada type"));
b4ba55a1 12827
2df3850c 12828 /* Get name of member function. */
39cbfefa
DJ
12829 fieldname = dwarf2_name (die, cu);
12830 if (fieldname == NULL)
2df3850c 12831 return;
c906108c 12832
c906108c
SS
12833 /* Look up member function name in fieldlist. */
12834 for (i = 0; i < fip->nfnfields; i++)
12835 {
27bfe10e 12836 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12837 break;
12838 }
12839
12840 /* Create new list element if necessary. */
12841 if (i < fip->nfnfields)
12842 flp = &fip->fnfieldlists[i];
12843 else
12844 {
12845 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12846 {
12847 fip->fnfieldlists = (struct fnfieldlist *)
12848 xrealloc (fip->fnfieldlists,
12849 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12850 * sizeof (struct fnfieldlist));
c906108c 12851 if (fip->nfnfields == 0)
c13c43fd 12852 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12853 }
12854 flp = &fip->fnfieldlists[fip->nfnfields];
12855 flp->name = fieldname;
12856 flp->length = 0;
12857 flp->head = NULL;
3da10d80 12858 i = fip->nfnfields++;
c906108c
SS
12859 }
12860
12861 /* Create a new member function field and chain it to the field list
0963b4bd 12862 entry. */
c906108c 12863 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 12864 make_cleanup (xfree, new_fnfield);
c906108c
SS
12865 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12866 new_fnfield->next = flp->head;
12867 flp->head = new_fnfield;
12868 flp->length++;
12869
12870 /* Fill in the member function field info. */
12871 fnp = &new_fnfield->fnfield;
3da10d80
KS
12872
12873 /* Delay processing of the physname until later. */
12874 if (cu->language == language_cplus || cu->language == language_java)
12875 {
12876 add_to_method_list (type, i, flp->length - 1, fieldname,
12877 die, cu);
12878 }
12879 else
12880 {
1d06ead6 12881 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12882 fnp->physname = physname ? physname : "";
12883 }
12884
c906108c 12885 fnp->type = alloc_type (objfile);
f792889a
DJ
12886 this_type = read_type_die (die, cu);
12887 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12888 {
f792889a 12889 int nparams = TYPE_NFIELDS (this_type);
c906108c 12890
f792889a 12891 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12892 of the method itself (TYPE_CODE_METHOD). */
12893 smash_to_method_type (fnp->type, type,
f792889a
DJ
12894 TYPE_TARGET_TYPE (this_type),
12895 TYPE_FIELDS (this_type),
12896 TYPE_NFIELDS (this_type),
12897 TYPE_VARARGS (this_type));
c906108c
SS
12898
12899 /* Handle static member functions.
c5aa993b 12900 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12901 member functions. G++ helps GDB by marking the first
12902 parameter for non-static member functions (which is the this
12903 pointer) as artificial. We obtain this information from
12904 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12905 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12906 fnp->voffset = VOFFSET_STATIC;
12907 }
12908 else
e2e0b3e5 12909 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12910 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12911
12912 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12913 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12914 fnp->fcontext = die_containing_type (die, cu);
c906108c 12915
3e43a32a
MS
12916 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12917 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12918
12919 /* Get accessibility. */
e142c38c 12920 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12921 if (attr)
aead7601 12922 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
12923 else
12924 accessibility = dwarf2_default_access_attribute (die, cu);
12925 switch (accessibility)
c906108c 12926 {
60d5a603
JK
12927 case DW_ACCESS_private:
12928 fnp->is_private = 1;
12929 break;
12930 case DW_ACCESS_protected:
12931 fnp->is_protected = 1;
12932 break;
c906108c
SS
12933 }
12934
b02dede2 12935 /* Check for artificial methods. */
e142c38c 12936 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12937 if (attr && DW_UNSND (attr) != 0)
12938 fnp->is_artificial = 1;
12939
7d27a96d
TT
12940 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12941
0d564a31 12942 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12943 function. For older versions of GCC, this is an offset in the
12944 appropriate virtual table, as specified by DW_AT_containing_type.
12945 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12946 to the object address. */
12947
e142c38c 12948 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12949 if (attr)
8e19ed76 12950 {
aec5aa8b 12951 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12952 {
aec5aa8b
TT
12953 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12954 {
12955 /* Old-style GCC. */
12956 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12957 }
12958 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12959 || (DW_BLOCK (attr)->size > 1
12960 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12961 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12962 {
12963 struct dwarf_block blk;
12964 int offset;
12965
12966 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12967 ? 1 : 2);
12968 blk.size = DW_BLOCK (attr)->size - offset;
12969 blk.data = DW_BLOCK (attr)->data + offset;
12970 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12971 if ((fnp->voffset % cu->header.addr_size) != 0)
12972 dwarf2_complex_location_expr_complaint ();
12973 else
12974 fnp->voffset /= cu->header.addr_size;
12975 fnp->voffset += 2;
12976 }
12977 else
12978 dwarf2_complex_location_expr_complaint ();
12979
12980 if (!fnp->fcontext)
7e993ebf
KS
12981 {
12982 /* If there is no `this' field and no DW_AT_containing_type,
12983 we cannot actually find a base class context for the
12984 vtable! */
12985 if (TYPE_NFIELDS (this_type) == 0
12986 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12987 {
12988 complaint (&symfile_complaints,
12989 _("cannot determine context for virtual member "
12990 "function \"%s\" (offset %d)"),
12991 fieldname, die->offset.sect_off);
12992 }
12993 else
12994 {
12995 fnp->fcontext
12996 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12997 }
12998 }
aec5aa8b 12999 }
3690dd37 13000 else if (attr_form_is_section_offset (attr))
8e19ed76 13001 {
4d3c2250 13002 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
13003 }
13004 else
13005 {
4d3c2250
KB
13006 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13007 fieldname);
8e19ed76 13008 }
0d564a31 13009 }
d48cc9dd
DJ
13010 else
13011 {
13012 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13013 if (attr && DW_UNSND (attr))
13014 {
13015 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13016 complaint (&symfile_complaints,
3e43a32a
MS
13017 _("Member function \"%s\" (offset %d) is virtual "
13018 "but the vtable offset is not specified"),
b64f50a1 13019 fieldname, die->offset.sect_off);
9655fd1a 13020 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
13021 TYPE_CPLUS_DYNAMIC (type) = 1;
13022 }
13023 }
c906108c
SS
13024}
13025
13026/* Create the vector of member function fields, and attach it to the type. */
13027
13028static void
fba45db2 13029dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13030 struct dwarf2_cu *cu)
c906108c
SS
13031{
13032 struct fnfieldlist *flp;
c906108c
SS
13033 int i;
13034
b4ba55a1 13035 if (cu->language == language_ada)
a73c6dcd 13036 error (_("unexpected member functions in Ada type"));
b4ba55a1 13037
c906108c
SS
13038 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13039 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13040 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13041
13042 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13043 {
13044 struct nextfnfield *nfp = flp->head;
13045 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13046 int k;
13047
13048 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13049 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13050 fn_flp->fn_fields = (struct fn_field *)
13051 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13052 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13053 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13054 }
13055
13056 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13057}
13058
1168df01
JB
13059/* Returns non-zero if NAME is the name of a vtable member in CU's
13060 language, zero otherwise. */
13061static int
13062is_vtable_name (const char *name, struct dwarf2_cu *cu)
13063{
13064 static const char vptr[] = "_vptr";
987504bb 13065 static const char vtable[] = "vtable";
1168df01 13066
987504bb
JJ
13067 /* Look for the C++ and Java forms of the vtable. */
13068 if ((cu->language == language_java
61012eef
GB
13069 && startswith (name, vtable))
13070 || (startswith (name, vptr)
987504bb 13071 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
13072 return 1;
13073
13074 return 0;
13075}
13076
c0dd20ea 13077/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13078 functions, with the ABI-specified layout. If TYPE describes
13079 such a structure, smash it into a member function type.
61049d3b
DJ
13080
13081 GCC shouldn't do this; it should just output pointer to member DIEs.
13082 This is GCC PR debug/28767. */
c0dd20ea 13083
0b92b5bb
TT
13084static void
13085quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13086{
09e2d7c7 13087 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13088
13089 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13090 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13091 return;
c0dd20ea
DJ
13092
13093 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13094 if (TYPE_FIELD_NAME (type, 0) == NULL
13095 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13096 || TYPE_FIELD_NAME (type, 1) == NULL
13097 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13098 return;
c0dd20ea
DJ
13099
13100 /* Find the type of the method. */
0b92b5bb 13101 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13102 if (pfn_type == NULL
13103 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13104 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13105 return;
c0dd20ea
DJ
13106
13107 /* Look for the "this" argument. */
13108 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13109 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13110 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13111 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13112 return;
c0dd20ea 13113
09e2d7c7 13114 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13115 new_type = alloc_type (objfile);
09e2d7c7 13116 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13117 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13118 TYPE_VARARGS (pfn_type));
0b92b5bb 13119 smash_to_methodptr_type (type, new_type);
c0dd20ea 13120}
1168df01 13121
685b1105
JK
13122/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13123 (icc). */
13124
13125static int
13126producer_is_icc (struct dwarf2_cu *cu)
13127{
13128 if (!cu->checked_producer)
13129 check_producer (cu);
13130
13131 return cu->producer_is_icc;
13132}
13133
c906108c 13134/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13135 (definition) to create a type for the structure or union. Fill in
13136 the type's name and general properties; the members will not be
83655187
DE
13137 processed until process_structure_scope. A symbol table entry for
13138 the type will also not be done until process_structure_scope (assuming
13139 the type has a name).
c906108c 13140
c767944b
DJ
13141 NOTE: we need to call these functions regardless of whether or not the
13142 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13143 structure or union. This gets the type entered into our set of
83655187 13144 user defined types. */
c906108c 13145
f792889a 13146static struct type *
134d01f1 13147read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13148{
e7c27a73 13149 struct objfile *objfile = cu->objfile;
c906108c
SS
13150 struct type *type;
13151 struct attribute *attr;
15d034d0 13152 const char *name;
c906108c 13153
348e048f
DE
13154 /* If the definition of this type lives in .debug_types, read that type.
13155 Don't follow DW_AT_specification though, that will take us back up
13156 the chain and we want to go down. */
45e58e77 13157 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13158 if (attr)
13159 {
ac9ec31b 13160 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13161
ac9ec31b 13162 /* The type's CU may not be the same as CU.
02142a6c 13163 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13164 return set_die_type (die, type, cu);
13165 }
13166
c0dd20ea 13167 type = alloc_type (objfile);
c906108c 13168 INIT_CPLUS_SPECIFIC (type);
93311388 13169
39cbfefa
DJ
13170 name = dwarf2_name (die, cu);
13171 if (name != NULL)
c906108c 13172 {
987504bb 13173 if (cu->language == language_cplus
45280282
IB
13174 || cu->language == language_java
13175 || cu->language == language_d)
63d06c5c 13176 {
15d034d0 13177 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13178
13179 /* dwarf2_full_name might have already finished building the DIE's
13180 type. If so, there is no need to continue. */
13181 if (get_die_type (die, cu) != NULL)
13182 return get_die_type (die, cu);
13183
13184 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13185 if (die->tag == DW_TAG_structure_type
13186 || die->tag == DW_TAG_class_type)
13187 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13188 }
13189 else
13190 {
d8151005
DJ
13191 /* The name is already allocated along with this objfile, so
13192 we don't need to duplicate it for the type. */
7d455152 13193 TYPE_TAG_NAME (type) = name;
94af9270
KS
13194 if (die->tag == DW_TAG_class_type)
13195 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13196 }
c906108c
SS
13197 }
13198
13199 if (die->tag == DW_TAG_structure_type)
13200 {
13201 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13202 }
13203 else if (die->tag == DW_TAG_union_type)
13204 {
13205 TYPE_CODE (type) = TYPE_CODE_UNION;
13206 }
13207 else
13208 {
4753d33b 13209 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13210 }
13211
0cc2414c
TT
13212 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13213 TYPE_DECLARED_CLASS (type) = 1;
13214
e142c38c 13215 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13216 if (attr)
13217 {
13218 TYPE_LENGTH (type) = DW_UNSND (attr);
13219 }
13220 else
13221 {
13222 TYPE_LENGTH (type) = 0;
13223 }
13224
422b1cb0 13225 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13226 {
13227 /* ICC does not output the required DW_AT_declaration
13228 on incomplete types, but gives them a size of zero. */
422b1cb0 13229 TYPE_STUB (type) = 1;
685b1105
JK
13230 }
13231 else
13232 TYPE_STUB_SUPPORTED (type) = 1;
13233
dc718098 13234 if (die_is_declaration (die, cu))
876cecd0 13235 TYPE_STUB (type) = 1;
a6c727b2
DJ
13236 else if (attr == NULL && die->child == NULL
13237 && producer_is_realview (cu->producer))
13238 /* RealView does not output the required DW_AT_declaration
13239 on incomplete types. */
13240 TYPE_STUB (type) = 1;
dc718098 13241
c906108c
SS
13242 /* We need to add the type field to the die immediately so we don't
13243 infinitely recurse when dealing with pointers to the structure
0963b4bd 13244 type within the structure itself. */
1c379e20 13245 set_die_type (die, type, cu);
c906108c 13246
7e314c57
JK
13247 /* set_die_type should be already done. */
13248 set_descriptive_type (type, die, cu);
13249
c767944b
DJ
13250 return type;
13251}
13252
13253/* Finish creating a structure or union type, including filling in
13254 its members and creating a symbol for it. */
13255
13256static void
13257process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13258{
13259 struct objfile *objfile = cu->objfile;
ca040673 13260 struct die_info *child_die;
c767944b
DJ
13261 struct type *type;
13262
13263 type = get_die_type (die, cu);
13264 if (type == NULL)
13265 type = read_structure_type (die, cu);
13266
e142c38c 13267 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13268 {
13269 struct field_info fi;
34eaf542 13270 VEC (symbolp) *template_args = NULL;
c767944b 13271 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13272
13273 memset (&fi, 0, sizeof (struct field_info));
13274
639d11d3 13275 child_die = die->child;
c906108c
SS
13276
13277 while (child_die && child_die->tag)
13278 {
a9a9bd0f
DC
13279 if (child_die->tag == DW_TAG_member
13280 || child_die->tag == DW_TAG_variable)
c906108c 13281 {
a9a9bd0f
DC
13282 /* NOTE: carlton/2002-11-05: A C++ static data member
13283 should be a DW_TAG_member that is a declaration, but
13284 all versions of G++ as of this writing (so through at
13285 least 3.2.1) incorrectly generate DW_TAG_variable
13286 tags for them instead. */
e7c27a73 13287 dwarf2_add_field (&fi, child_die, cu);
c906108c 13288 }
8713b1b1 13289 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13290 {
0963b4bd 13291 /* C++ member function. */
e7c27a73 13292 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
13293 }
13294 else if (child_die->tag == DW_TAG_inheritance)
13295 {
13296 /* C++ base class field. */
e7c27a73 13297 dwarf2_add_field (&fi, child_die, cu);
c906108c 13298 }
98751a41
JK
13299 else if (child_die->tag == DW_TAG_typedef)
13300 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13301 else if (child_die->tag == DW_TAG_template_type_param
13302 || child_die->tag == DW_TAG_template_value_param)
13303 {
13304 struct symbol *arg = new_symbol (child_die, NULL, cu);
13305
f1078f66
DJ
13306 if (arg != NULL)
13307 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13308 }
13309
c906108c
SS
13310 child_die = sibling_die (child_die);
13311 }
13312
34eaf542
TT
13313 /* Attach template arguments to type. */
13314 if (! VEC_empty (symbolp, template_args))
13315 {
13316 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13317 TYPE_N_TEMPLATE_ARGUMENTS (type)
13318 = VEC_length (symbolp, template_args);
13319 TYPE_TEMPLATE_ARGUMENTS (type)
13320 = obstack_alloc (&objfile->objfile_obstack,
13321 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13322 * sizeof (struct symbol *)));
13323 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13324 VEC_address (symbolp, template_args),
13325 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13326 * sizeof (struct symbol *)));
13327 VEC_free (symbolp, template_args);
13328 }
13329
c906108c
SS
13330 /* Attach fields and member functions to the type. */
13331 if (fi.nfields)
e7c27a73 13332 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13333 if (fi.nfnfields)
13334 {
e7c27a73 13335 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13336
c5aa993b 13337 /* Get the type which refers to the base class (possibly this
c906108c 13338 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13339 class from the DW_AT_containing_type attribute. This use of
13340 DW_AT_containing_type is a GNU extension. */
c906108c 13341
e142c38c 13342 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13343 {
e7c27a73 13344 struct type *t = die_containing_type (die, cu);
c906108c 13345
ae6ae975 13346 set_type_vptr_basetype (type, t);
c906108c
SS
13347 if (type == t)
13348 {
c906108c
SS
13349 int i;
13350
13351 /* Our own class provides vtbl ptr. */
13352 for (i = TYPE_NFIELDS (t) - 1;
13353 i >= TYPE_N_BASECLASSES (t);
13354 --i)
13355 {
0d5cff50 13356 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13357
1168df01 13358 if (is_vtable_name (fieldname, cu))
c906108c 13359 {
ae6ae975 13360 set_type_vptr_fieldno (type, i);
c906108c
SS
13361 break;
13362 }
13363 }
13364
13365 /* Complain if virtual function table field not found. */
13366 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13367 complaint (&symfile_complaints,
3e43a32a
MS
13368 _("virtual function table pointer "
13369 "not found when defining class '%s'"),
4d3c2250
KB
13370 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13371 "");
c906108c
SS
13372 }
13373 else
13374 {
ae6ae975 13375 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13376 }
13377 }
f6235d4c 13378 else if (cu->producer
61012eef 13379 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13380 {
13381 /* The IBM XLC compiler does not provide direct indication
13382 of the containing type, but the vtable pointer is
13383 always named __vfp. */
13384
13385 int i;
13386
13387 for (i = TYPE_NFIELDS (type) - 1;
13388 i >= TYPE_N_BASECLASSES (type);
13389 --i)
13390 {
13391 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13392 {
ae6ae975
DE
13393 set_type_vptr_fieldno (type, i);
13394 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13395 break;
13396 }
13397 }
13398 }
c906108c 13399 }
98751a41
JK
13400
13401 /* Copy fi.typedef_field_list linked list elements content into the
13402 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13403 if (fi.typedef_field_list)
13404 {
13405 int i = fi.typedef_field_list_count;
13406
a0d7a4ff 13407 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
13408 TYPE_TYPEDEF_FIELD_ARRAY (type)
13409 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13410 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13411
13412 /* Reverse the list order to keep the debug info elements order. */
13413 while (--i >= 0)
13414 {
13415 struct typedef_field *dest, *src;
6e70227d 13416
98751a41
JK
13417 dest = &TYPE_TYPEDEF_FIELD (type, i);
13418 src = &fi.typedef_field_list->field;
13419 fi.typedef_field_list = fi.typedef_field_list->next;
13420 *dest = *src;
13421 }
13422 }
c767944b
DJ
13423
13424 do_cleanups (back_to);
eb2a6f42
TT
13425
13426 if (HAVE_CPLUS_STRUCT (type))
13427 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13428 }
63d06c5c 13429
bb5ed363 13430 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13431
90aeadfc
DC
13432 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13433 snapshots) has been known to create a die giving a declaration
13434 for a class that has, as a child, a die giving a definition for a
13435 nested class. So we have to process our children even if the
13436 current die is a declaration. Normally, of course, a declaration
13437 won't have any children at all. */
134d01f1 13438
ca040673
DE
13439 child_die = die->child;
13440
90aeadfc
DC
13441 while (child_die != NULL && child_die->tag)
13442 {
13443 if (child_die->tag == DW_TAG_member
13444 || child_die->tag == DW_TAG_variable
34eaf542
TT
13445 || child_die->tag == DW_TAG_inheritance
13446 || child_die->tag == DW_TAG_template_value_param
13447 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13448 {
90aeadfc 13449 /* Do nothing. */
134d01f1 13450 }
90aeadfc
DC
13451 else
13452 process_die (child_die, cu);
134d01f1 13453
90aeadfc 13454 child_die = sibling_die (child_die);
134d01f1
DJ
13455 }
13456
fa4028e9
JB
13457 /* Do not consider external references. According to the DWARF standard,
13458 these DIEs are identified by the fact that they have no byte_size
13459 attribute, and a declaration attribute. */
13460 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13461 || !die_is_declaration (die, cu))
c767944b 13462 new_symbol (die, type, cu);
134d01f1
DJ
13463}
13464
55426c9d
JB
13465/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13466 update TYPE using some information only available in DIE's children. */
13467
13468static void
13469update_enumeration_type_from_children (struct die_info *die,
13470 struct type *type,
13471 struct dwarf2_cu *cu)
13472{
13473 struct obstack obstack;
60f7655a 13474 struct die_info *child_die;
55426c9d
JB
13475 int unsigned_enum = 1;
13476 int flag_enum = 1;
13477 ULONGEST mask = 0;
13478 struct cleanup *old_chain;
13479
13480 obstack_init (&obstack);
13481 old_chain = make_cleanup_obstack_free (&obstack);
13482
60f7655a
DE
13483 for (child_die = die->child;
13484 child_die != NULL && child_die->tag;
13485 child_die = sibling_die (child_die))
55426c9d
JB
13486 {
13487 struct attribute *attr;
13488 LONGEST value;
13489 const gdb_byte *bytes;
13490 struct dwarf2_locexpr_baton *baton;
13491 const char *name;
60f7655a 13492
55426c9d
JB
13493 if (child_die->tag != DW_TAG_enumerator)
13494 continue;
13495
13496 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13497 if (attr == NULL)
13498 continue;
13499
13500 name = dwarf2_name (child_die, cu);
13501 if (name == NULL)
13502 name = "<anonymous enumerator>";
13503
13504 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13505 &value, &bytes, &baton);
13506 if (value < 0)
13507 {
13508 unsigned_enum = 0;
13509 flag_enum = 0;
13510 }
13511 else if ((mask & value) != 0)
13512 flag_enum = 0;
13513 else
13514 mask |= value;
13515
13516 /* If we already know that the enum type is neither unsigned, nor
13517 a flag type, no need to look at the rest of the enumerates. */
13518 if (!unsigned_enum && !flag_enum)
13519 break;
55426c9d
JB
13520 }
13521
13522 if (unsigned_enum)
13523 TYPE_UNSIGNED (type) = 1;
13524 if (flag_enum)
13525 TYPE_FLAG_ENUM (type) = 1;
13526
13527 do_cleanups (old_chain);
13528}
13529
134d01f1
DJ
13530/* Given a DW_AT_enumeration_type die, set its type. We do not
13531 complete the type's fields yet, or create any symbols. */
c906108c 13532
f792889a 13533static struct type *
134d01f1 13534read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13535{
e7c27a73 13536 struct objfile *objfile = cu->objfile;
c906108c 13537 struct type *type;
c906108c 13538 struct attribute *attr;
0114d602 13539 const char *name;
134d01f1 13540
348e048f
DE
13541 /* If the definition of this type lives in .debug_types, read that type.
13542 Don't follow DW_AT_specification though, that will take us back up
13543 the chain and we want to go down. */
45e58e77 13544 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13545 if (attr)
13546 {
ac9ec31b 13547 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13548
ac9ec31b 13549 /* The type's CU may not be the same as CU.
02142a6c 13550 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13551 return set_die_type (die, type, cu);
13552 }
13553
c906108c
SS
13554 type = alloc_type (objfile);
13555
13556 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13557 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13558 if (name != NULL)
7d455152 13559 TYPE_TAG_NAME (type) = name;
c906108c 13560
0626fc76
TT
13561 attr = dwarf2_attr (die, DW_AT_type, cu);
13562 if (attr != NULL)
13563 {
13564 struct type *underlying_type = die_type (die, cu);
13565
13566 TYPE_TARGET_TYPE (type) = underlying_type;
13567 }
13568
e142c38c 13569 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13570 if (attr)
13571 {
13572 TYPE_LENGTH (type) = DW_UNSND (attr);
13573 }
13574 else
13575 {
13576 TYPE_LENGTH (type) = 0;
13577 }
13578
137033e9
JB
13579 /* The enumeration DIE can be incomplete. In Ada, any type can be
13580 declared as private in the package spec, and then defined only
13581 inside the package body. Such types are known as Taft Amendment
13582 Types. When another package uses such a type, an incomplete DIE
13583 may be generated by the compiler. */
02eb380e 13584 if (die_is_declaration (die, cu))
876cecd0 13585 TYPE_STUB (type) = 1;
02eb380e 13586
0626fc76
TT
13587 /* Finish the creation of this type by using the enum's children.
13588 We must call this even when the underlying type has been provided
13589 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13590 update_enumeration_type_from_children (die, type, cu);
13591
0626fc76
TT
13592 /* If this type has an underlying type that is not a stub, then we
13593 may use its attributes. We always use the "unsigned" attribute
13594 in this situation, because ordinarily we guess whether the type
13595 is unsigned -- but the guess can be wrong and the underlying type
13596 can tell us the reality. However, we defer to a local size
13597 attribute if one exists, because this lets the compiler override
13598 the underlying type if needed. */
13599 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13600 {
13601 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13602 if (TYPE_LENGTH (type) == 0)
13603 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13604 }
13605
3d567982
TT
13606 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13607
f792889a 13608 return set_die_type (die, type, cu);
134d01f1
DJ
13609}
13610
13611/* Given a pointer to a die which begins an enumeration, process all
13612 the dies that define the members of the enumeration, and create the
13613 symbol for the enumeration type.
13614
13615 NOTE: We reverse the order of the element list. */
13616
13617static void
13618process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13619{
f792889a 13620 struct type *this_type;
134d01f1 13621
f792889a
DJ
13622 this_type = get_die_type (die, cu);
13623 if (this_type == NULL)
13624 this_type = read_enumeration_type (die, cu);
9dc481d3 13625
639d11d3 13626 if (die->child != NULL)
c906108c 13627 {
9dc481d3
DE
13628 struct die_info *child_die;
13629 struct symbol *sym;
13630 struct field *fields = NULL;
13631 int num_fields = 0;
15d034d0 13632 const char *name;
9dc481d3 13633
639d11d3 13634 child_die = die->child;
c906108c
SS
13635 while (child_die && child_die->tag)
13636 {
13637 if (child_die->tag != DW_TAG_enumerator)
13638 {
e7c27a73 13639 process_die (child_die, cu);
c906108c
SS
13640 }
13641 else
13642 {
39cbfefa
DJ
13643 name = dwarf2_name (child_die, cu);
13644 if (name)
c906108c 13645 {
f792889a 13646 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13647
13648 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13649 {
13650 fields = (struct field *)
13651 xrealloc (fields,
13652 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13653 * sizeof (struct field));
c906108c
SS
13654 }
13655
3567439c 13656 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13657 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13658 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13659 FIELD_BITSIZE (fields[num_fields]) = 0;
13660
13661 num_fields++;
13662 }
13663 }
13664
13665 child_die = sibling_die (child_die);
13666 }
13667
13668 if (num_fields)
13669 {
f792889a
DJ
13670 TYPE_NFIELDS (this_type) = num_fields;
13671 TYPE_FIELDS (this_type) = (struct field *)
13672 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13673 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13674 sizeof (struct field) * num_fields);
b8c9b27d 13675 xfree (fields);
c906108c 13676 }
c906108c 13677 }
134d01f1 13678
6c83ed52
TT
13679 /* If we are reading an enum from a .debug_types unit, and the enum
13680 is a declaration, and the enum is not the signatured type in the
13681 unit, then we do not want to add a symbol for it. Adding a
13682 symbol would in some cases obscure the true definition of the
13683 enum, giving users an incomplete type when the definition is
13684 actually available. Note that we do not want to do this for all
13685 enums which are just declarations, because C++0x allows forward
13686 enum declarations. */
3019eac3 13687 if (cu->per_cu->is_debug_types
6c83ed52
TT
13688 && die_is_declaration (die, cu))
13689 {
52dc124a 13690 struct signatured_type *sig_type;
6c83ed52 13691
c0f78cd4 13692 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13693 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13694 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13695 return;
13696 }
13697
f792889a 13698 new_symbol (die, this_type, cu);
c906108c
SS
13699}
13700
13701/* Extract all information from a DW_TAG_array_type DIE and put it in
13702 the DIE's type field. For now, this only handles one dimensional
13703 arrays. */
13704
f792889a 13705static struct type *
e7c27a73 13706read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13707{
e7c27a73 13708 struct objfile *objfile = cu->objfile;
c906108c 13709 struct die_info *child_die;
7e314c57 13710 struct type *type;
c906108c
SS
13711 struct type *element_type, *range_type, *index_type;
13712 struct type **range_types = NULL;
13713 struct attribute *attr;
13714 int ndim = 0;
13715 struct cleanup *back_to;
15d034d0 13716 const char *name;
dc53a7ad 13717 unsigned int bit_stride = 0;
c906108c 13718
e7c27a73 13719 element_type = die_type (die, cu);
c906108c 13720
7e314c57
JK
13721 /* The die_type call above may have already set the type for this DIE. */
13722 type = get_die_type (die, cu);
13723 if (type)
13724 return type;
13725
dc53a7ad
JB
13726 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13727 if (attr != NULL)
13728 bit_stride = DW_UNSND (attr) * 8;
13729
13730 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13731 if (attr != NULL)
13732 bit_stride = DW_UNSND (attr);
13733
c906108c
SS
13734 /* Irix 6.2 native cc creates array types without children for
13735 arrays with unspecified length. */
639d11d3 13736 if (die->child == NULL)
c906108c 13737 {
46bf5051 13738 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13739 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13740 type = create_array_type_with_stride (NULL, element_type, range_type,
13741 bit_stride);
f792889a 13742 return set_die_type (die, type, cu);
c906108c
SS
13743 }
13744
13745 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13746 child_die = die->child;
c906108c
SS
13747 while (child_die && child_die->tag)
13748 {
13749 if (child_die->tag == DW_TAG_subrange_type)
13750 {
f792889a 13751 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13752
f792889a 13753 if (child_type != NULL)
a02abb62 13754 {
0963b4bd
MS
13755 /* The range type was succesfully read. Save it for the
13756 array type creation. */
a02abb62
JB
13757 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13758 {
13759 range_types = (struct type **)
13760 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13761 * sizeof (struct type *));
13762 if (ndim == 0)
13763 make_cleanup (free_current_contents, &range_types);
13764 }
f792889a 13765 range_types[ndim++] = child_type;
a02abb62 13766 }
c906108c
SS
13767 }
13768 child_die = sibling_die (child_die);
13769 }
13770
13771 /* Dwarf2 dimensions are output from left to right, create the
13772 necessary array types in backwards order. */
7ca2d3a3 13773
c906108c 13774 type = element_type;
7ca2d3a3
DL
13775
13776 if (read_array_order (die, cu) == DW_ORD_col_major)
13777 {
13778 int i = 0;
9a619af0 13779
7ca2d3a3 13780 while (i < ndim)
dc53a7ad
JB
13781 type = create_array_type_with_stride (NULL, type, range_types[i++],
13782 bit_stride);
7ca2d3a3
DL
13783 }
13784 else
13785 {
13786 while (ndim-- > 0)
dc53a7ad
JB
13787 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13788 bit_stride);
7ca2d3a3 13789 }
c906108c 13790
f5f8a009
EZ
13791 /* Understand Dwarf2 support for vector types (like they occur on
13792 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13793 array type. This is not part of the Dwarf2/3 standard yet, but a
13794 custom vendor extension. The main difference between a regular
13795 array and the vector variant is that vectors are passed by value
13796 to functions. */
e142c38c 13797 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13798 if (attr)
ea37ba09 13799 make_vector_type (type);
f5f8a009 13800
dbc98a8b
KW
13801 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13802 implementation may choose to implement triple vectors using this
13803 attribute. */
13804 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13805 if (attr)
13806 {
13807 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13808 TYPE_LENGTH (type) = DW_UNSND (attr);
13809 else
3e43a32a
MS
13810 complaint (&symfile_complaints,
13811 _("DW_AT_byte_size for array type smaller "
13812 "than the total size of elements"));
dbc98a8b
KW
13813 }
13814
39cbfefa
DJ
13815 name = dwarf2_name (die, cu);
13816 if (name)
13817 TYPE_NAME (type) = name;
6e70227d 13818
0963b4bd 13819 /* Install the type in the die. */
7e314c57
JK
13820 set_die_type (die, type, cu);
13821
13822 /* set_die_type should be already done. */
b4ba55a1
JB
13823 set_descriptive_type (type, die, cu);
13824
c906108c
SS
13825 do_cleanups (back_to);
13826
7e314c57 13827 return type;
c906108c
SS
13828}
13829
7ca2d3a3 13830static enum dwarf_array_dim_ordering
6e70227d 13831read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13832{
13833 struct attribute *attr;
13834
13835 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13836
aead7601
SM
13837 if (attr)
13838 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 13839
0963b4bd
MS
13840 /* GNU F77 is a special case, as at 08/2004 array type info is the
13841 opposite order to the dwarf2 specification, but data is still
13842 laid out as per normal fortran.
7ca2d3a3 13843
0963b4bd
MS
13844 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13845 version checking. */
7ca2d3a3 13846
905e0470
PM
13847 if (cu->language == language_fortran
13848 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13849 {
13850 return DW_ORD_row_major;
13851 }
13852
6e70227d 13853 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13854 {
13855 case array_column_major:
13856 return DW_ORD_col_major;
13857 case array_row_major:
13858 default:
13859 return DW_ORD_row_major;
13860 };
13861}
13862
72019c9c 13863/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13864 the DIE's type field. */
72019c9c 13865
f792889a 13866static struct type *
72019c9c
GM
13867read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13868{
7e314c57
JK
13869 struct type *domain_type, *set_type;
13870 struct attribute *attr;
f792889a 13871
7e314c57
JK
13872 domain_type = die_type (die, cu);
13873
13874 /* The die_type call above may have already set the type for this DIE. */
13875 set_type = get_die_type (die, cu);
13876 if (set_type)
13877 return set_type;
13878
13879 set_type = create_set_type (NULL, domain_type);
13880
13881 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13882 if (attr)
13883 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13884
f792889a 13885 return set_die_type (die, set_type, cu);
72019c9c 13886}
7ca2d3a3 13887
0971de02
TT
13888/* A helper for read_common_block that creates a locexpr baton.
13889 SYM is the symbol which we are marking as computed.
13890 COMMON_DIE is the DIE for the common block.
13891 COMMON_LOC is the location expression attribute for the common
13892 block itself.
13893 MEMBER_LOC is the location expression attribute for the particular
13894 member of the common block that we are processing.
13895 CU is the CU from which the above come. */
13896
13897static void
13898mark_common_block_symbol_computed (struct symbol *sym,
13899 struct die_info *common_die,
13900 struct attribute *common_loc,
13901 struct attribute *member_loc,
13902 struct dwarf2_cu *cu)
13903{
13904 struct objfile *objfile = dwarf2_per_objfile->objfile;
13905 struct dwarf2_locexpr_baton *baton;
13906 gdb_byte *ptr;
13907 unsigned int cu_off;
13908 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13909 LONGEST offset = 0;
13910
13911 gdb_assert (common_loc && member_loc);
13912 gdb_assert (attr_form_is_block (common_loc));
13913 gdb_assert (attr_form_is_block (member_loc)
13914 || attr_form_is_constant (member_loc));
13915
13916 baton = obstack_alloc (&objfile->objfile_obstack,
13917 sizeof (struct dwarf2_locexpr_baton));
13918 baton->per_cu = cu->per_cu;
13919 gdb_assert (baton->per_cu);
13920
13921 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13922
13923 if (attr_form_is_constant (member_loc))
13924 {
13925 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13926 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13927 }
13928 else
13929 baton->size += DW_BLOCK (member_loc)->size;
13930
13931 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13932 baton->data = ptr;
13933
13934 *ptr++ = DW_OP_call4;
13935 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13936 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13937 ptr += 4;
13938
13939 if (attr_form_is_constant (member_loc))
13940 {
13941 *ptr++ = DW_OP_addr;
13942 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13943 ptr += cu->header.addr_size;
13944 }
13945 else
13946 {
13947 /* We have to copy the data here, because DW_OP_call4 will only
13948 use a DW_AT_location attribute. */
13949 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13950 ptr += DW_BLOCK (member_loc)->size;
13951 }
13952
13953 *ptr++ = DW_OP_plus;
13954 gdb_assert (ptr - baton->data == baton->size);
13955
0971de02 13956 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13957 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13958}
13959
4357ac6c
TT
13960/* Create appropriate locally-scoped variables for all the
13961 DW_TAG_common_block entries. Also create a struct common_block
13962 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13963 is used to sepate the common blocks name namespace from regular
13964 variable names. */
c906108c
SS
13965
13966static void
e7c27a73 13967read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13968{
0971de02
TT
13969 struct attribute *attr;
13970
13971 attr = dwarf2_attr (die, DW_AT_location, cu);
13972 if (attr)
13973 {
13974 /* Support the .debug_loc offsets. */
13975 if (attr_form_is_block (attr))
13976 {
13977 /* Ok. */
13978 }
13979 else if (attr_form_is_section_offset (attr))
13980 {
13981 dwarf2_complex_location_expr_complaint ();
13982 attr = NULL;
13983 }
13984 else
13985 {
13986 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13987 "common block member");
13988 attr = NULL;
13989 }
13990 }
13991
639d11d3 13992 if (die->child != NULL)
c906108c 13993 {
4357ac6c
TT
13994 struct objfile *objfile = cu->objfile;
13995 struct die_info *child_die;
13996 size_t n_entries = 0, size;
13997 struct common_block *common_block;
13998 struct symbol *sym;
74ac6d43 13999
4357ac6c
TT
14000 for (child_die = die->child;
14001 child_die && child_die->tag;
14002 child_die = sibling_die (child_die))
14003 ++n_entries;
14004
14005 size = (sizeof (struct common_block)
14006 + (n_entries - 1) * sizeof (struct symbol *));
14007 common_block = obstack_alloc (&objfile->objfile_obstack, size);
14008 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14009 common_block->n_entries = 0;
14010
14011 for (child_die = die->child;
14012 child_die && child_die->tag;
14013 child_die = sibling_die (child_die))
14014 {
14015 /* Create the symbol in the DW_TAG_common_block block in the current
14016 symbol scope. */
e7c27a73 14017 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
14018 if (sym != NULL)
14019 {
14020 struct attribute *member_loc;
14021
14022 common_block->contents[common_block->n_entries++] = sym;
14023
14024 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14025 cu);
14026 if (member_loc)
14027 {
14028 /* GDB has handled this for a long time, but it is
14029 not specified by DWARF. It seems to have been
14030 emitted by gfortran at least as recently as:
14031 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14032 complaint (&symfile_complaints,
14033 _("Variable in common block has "
14034 "DW_AT_data_member_location "
14035 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
14036 child_die->offset.sect_off,
14037 objfile_name (cu->objfile));
0971de02
TT
14038
14039 if (attr_form_is_section_offset (member_loc))
14040 dwarf2_complex_location_expr_complaint ();
14041 else if (attr_form_is_constant (member_loc)
14042 || attr_form_is_block (member_loc))
14043 {
14044 if (attr)
14045 mark_common_block_symbol_computed (sym, die, attr,
14046 member_loc, cu);
14047 }
14048 else
14049 dwarf2_complex_location_expr_complaint ();
14050 }
14051 }
c906108c 14052 }
4357ac6c
TT
14053
14054 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14055 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14056 }
14057}
14058
0114d602 14059/* Create a type for a C++ namespace. */
d9fa45fe 14060
0114d602
DJ
14061static struct type *
14062read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14063{
e7c27a73 14064 struct objfile *objfile = cu->objfile;
0114d602 14065 const char *previous_prefix, *name;
9219021c 14066 int is_anonymous;
0114d602
DJ
14067 struct type *type;
14068
14069 /* For extensions, reuse the type of the original namespace. */
14070 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14071 {
14072 struct die_info *ext_die;
14073 struct dwarf2_cu *ext_cu = cu;
9a619af0 14074
0114d602
DJ
14075 ext_die = dwarf2_extension (die, &ext_cu);
14076 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14077
14078 /* EXT_CU may not be the same as CU.
02142a6c 14079 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14080 return set_die_type (die, type, cu);
14081 }
9219021c 14082
e142c38c 14083 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14084
14085 /* Now build the name of the current namespace. */
14086
0114d602
DJ
14087 previous_prefix = determine_prefix (die, cu);
14088 if (previous_prefix[0] != '\0')
14089 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14090 previous_prefix, name, 0, cu);
0114d602
DJ
14091
14092 /* Create the type. */
14093 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14094 objfile);
abee88f2 14095 TYPE_NAME (type) = name;
0114d602
DJ
14096 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14097
60531b24 14098 return set_die_type (die, type, cu);
0114d602
DJ
14099}
14100
22cee43f 14101/* Read a namespace scope. */
0114d602
DJ
14102
14103static void
14104read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14105{
14106 struct objfile *objfile = cu->objfile;
0114d602 14107 int is_anonymous;
9219021c 14108
5c4e30ca
DC
14109 /* Add a symbol associated to this if we haven't seen the namespace
14110 before. Also, add a using directive if it's an anonymous
14111 namespace. */
9219021c 14112
f2f0e013 14113 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14114 {
14115 struct type *type;
14116
0114d602 14117 type = read_type_die (die, cu);
e7c27a73 14118 new_symbol (die, type, cu);
5c4e30ca 14119
e8e80198 14120 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14121 if (is_anonymous)
0114d602
DJ
14122 {
14123 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14124
22cee43f
PMR
14125 add_using_directive (using_directives (cu->language),
14126 previous_prefix, TYPE_NAME (type), NULL,
14127 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14128 }
5c4e30ca 14129 }
9219021c 14130
639d11d3 14131 if (die->child != NULL)
d9fa45fe 14132 {
639d11d3 14133 struct die_info *child_die = die->child;
6e70227d 14134
d9fa45fe
DC
14135 while (child_die && child_die->tag)
14136 {
e7c27a73 14137 process_die (child_die, cu);
d9fa45fe
DC
14138 child_die = sibling_die (child_die);
14139 }
14140 }
38d518c9
EZ
14141}
14142
f55ee35c
JK
14143/* Read a Fortran module as type. This DIE can be only a declaration used for
14144 imported module. Still we need that type as local Fortran "use ... only"
14145 declaration imports depend on the created type in determine_prefix. */
14146
14147static struct type *
14148read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14149{
14150 struct objfile *objfile = cu->objfile;
15d034d0 14151 const char *module_name;
f55ee35c
JK
14152 struct type *type;
14153
14154 module_name = dwarf2_name (die, cu);
14155 if (!module_name)
3e43a32a
MS
14156 complaint (&symfile_complaints,
14157 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 14158 die->offset.sect_off);
f55ee35c
JK
14159 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14160
14161 /* determine_prefix uses TYPE_TAG_NAME. */
14162 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14163
14164 return set_die_type (die, type, cu);
14165}
14166
5d7cb8df
JK
14167/* Read a Fortran module. */
14168
14169static void
14170read_module (struct die_info *die, struct dwarf2_cu *cu)
14171{
14172 struct die_info *child_die = die->child;
530e8392
KB
14173 struct type *type;
14174
14175 type = read_type_die (die, cu);
14176 new_symbol (die, type, cu);
5d7cb8df 14177
5d7cb8df
JK
14178 while (child_die && child_die->tag)
14179 {
14180 process_die (child_die, cu);
14181 child_die = sibling_die (child_die);
14182 }
14183}
14184
38d518c9
EZ
14185/* Return the name of the namespace represented by DIE. Set
14186 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14187 namespace. */
14188
14189static const char *
e142c38c 14190namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14191{
14192 struct die_info *current_die;
14193 const char *name = NULL;
14194
14195 /* Loop through the extensions until we find a name. */
14196
14197 for (current_die = die;
14198 current_die != NULL;
f2f0e013 14199 current_die = dwarf2_extension (die, &cu))
38d518c9 14200 {
96553a0c
DE
14201 /* We don't use dwarf2_name here so that we can detect the absence
14202 of a name -> anonymous namespace. */
14203 struct attribute *attr = dwarf2_attr (die, DW_AT_name, cu);
14204
14205 if (attr != NULL)
14206 name = DW_STRING (attr);
38d518c9
EZ
14207 if (name != NULL)
14208 break;
14209 }
14210
14211 /* Is it an anonymous namespace? */
14212
14213 *is_anonymous = (name == NULL);
14214 if (*is_anonymous)
2b1dbab0 14215 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14216
14217 return name;
d9fa45fe
DC
14218}
14219
c906108c
SS
14220/* Extract all information from a DW_TAG_pointer_type DIE and add to
14221 the user defined type vector. */
14222
f792889a 14223static struct type *
e7c27a73 14224read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14225{
5e2b427d 14226 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14227 struct comp_unit_head *cu_header = &cu->header;
c906108c 14228 struct type *type;
8b2dbe47
KB
14229 struct attribute *attr_byte_size;
14230 struct attribute *attr_address_class;
14231 int byte_size, addr_class;
7e314c57
JK
14232 struct type *target_type;
14233
14234 target_type = die_type (die, cu);
c906108c 14235
7e314c57
JK
14236 /* The die_type call above may have already set the type for this DIE. */
14237 type = get_die_type (die, cu);
14238 if (type)
14239 return type;
14240
14241 type = lookup_pointer_type (target_type);
8b2dbe47 14242
e142c38c 14243 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14244 if (attr_byte_size)
14245 byte_size = DW_UNSND (attr_byte_size);
c906108c 14246 else
8b2dbe47
KB
14247 byte_size = cu_header->addr_size;
14248
e142c38c 14249 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14250 if (attr_address_class)
14251 addr_class = DW_UNSND (attr_address_class);
14252 else
14253 addr_class = DW_ADDR_none;
14254
14255 /* If the pointer size or address class is different than the
14256 default, create a type variant marked as such and set the
14257 length accordingly. */
14258 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14259 {
5e2b427d 14260 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14261 {
14262 int type_flags;
14263
849957d9 14264 type_flags = gdbarch_address_class_type_flags
5e2b427d 14265 (gdbarch, byte_size, addr_class);
876cecd0
TT
14266 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14267 == 0);
8b2dbe47
KB
14268 type = make_type_with_address_space (type, type_flags);
14269 }
14270 else if (TYPE_LENGTH (type) != byte_size)
14271 {
3e43a32a
MS
14272 complaint (&symfile_complaints,
14273 _("invalid pointer size %d"), byte_size);
8b2dbe47 14274 }
6e70227d 14275 else
9a619af0
MS
14276 {
14277 /* Should we also complain about unhandled address classes? */
14278 }
c906108c 14279 }
8b2dbe47
KB
14280
14281 TYPE_LENGTH (type) = byte_size;
f792889a 14282 return set_die_type (die, type, cu);
c906108c
SS
14283}
14284
14285/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14286 the user defined type vector. */
14287
f792889a 14288static struct type *
e7c27a73 14289read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14290{
14291 struct type *type;
14292 struct type *to_type;
14293 struct type *domain;
14294
e7c27a73
DJ
14295 to_type = die_type (die, cu);
14296 domain = die_containing_type (die, cu);
0d5de010 14297
7e314c57
JK
14298 /* The calls above may have already set the type for this DIE. */
14299 type = get_die_type (die, cu);
14300 if (type)
14301 return type;
14302
0d5de010
DJ
14303 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14304 type = lookup_methodptr_type (to_type);
7078baeb
TT
14305 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14306 {
14307 struct type *new_type = alloc_type (cu->objfile);
14308
14309 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14310 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14311 TYPE_VARARGS (to_type));
14312 type = lookup_methodptr_type (new_type);
14313 }
0d5de010
DJ
14314 else
14315 type = lookup_memberptr_type (to_type, domain);
c906108c 14316
f792889a 14317 return set_die_type (die, type, cu);
c906108c
SS
14318}
14319
14320/* Extract all information from a DW_TAG_reference_type DIE and add to
14321 the user defined type vector. */
14322
f792889a 14323static struct type *
e7c27a73 14324read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14325{
e7c27a73 14326 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14327 struct type *type, *target_type;
c906108c
SS
14328 struct attribute *attr;
14329
7e314c57
JK
14330 target_type = die_type (die, cu);
14331
14332 /* The die_type call above may have already set the type for this DIE. */
14333 type = get_die_type (die, cu);
14334 if (type)
14335 return type;
14336
14337 type = lookup_reference_type (target_type);
e142c38c 14338 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14339 if (attr)
14340 {
14341 TYPE_LENGTH (type) = DW_UNSND (attr);
14342 }
14343 else
14344 {
107d2387 14345 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14346 }
f792889a 14347 return set_die_type (die, type, cu);
c906108c
SS
14348}
14349
cf363f18
MW
14350/* Add the given cv-qualifiers to the element type of the array. GCC
14351 outputs DWARF type qualifiers that apply to an array, not the
14352 element type. But GDB relies on the array element type to carry
14353 the cv-qualifiers. This mimics section 6.7.3 of the C99
14354 specification. */
14355
14356static struct type *
14357add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14358 struct type *base_type, int cnst, int voltl)
14359{
14360 struct type *el_type, *inner_array;
14361
14362 base_type = copy_type (base_type);
14363 inner_array = base_type;
14364
14365 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14366 {
14367 TYPE_TARGET_TYPE (inner_array) =
14368 copy_type (TYPE_TARGET_TYPE (inner_array));
14369 inner_array = TYPE_TARGET_TYPE (inner_array);
14370 }
14371
14372 el_type = TYPE_TARGET_TYPE (inner_array);
14373 cnst |= TYPE_CONST (el_type);
14374 voltl |= TYPE_VOLATILE (el_type);
14375 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14376
14377 return set_die_type (die, base_type, cu);
14378}
14379
f792889a 14380static struct type *
e7c27a73 14381read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14382{
f792889a 14383 struct type *base_type, *cv_type;
c906108c 14384
e7c27a73 14385 base_type = die_type (die, cu);
7e314c57
JK
14386
14387 /* The die_type call above may have already set the type for this DIE. */
14388 cv_type = get_die_type (die, cu);
14389 if (cv_type)
14390 return cv_type;
14391
2f608a3a
KW
14392 /* In case the const qualifier is applied to an array type, the element type
14393 is so qualified, not the array type (section 6.7.3 of C99). */
14394 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14395 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14396
f792889a
DJ
14397 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14398 return set_die_type (die, cv_type, cu);
c906108c
SS
14399}
14400
f792889a 14401static struct type *
e7c27a73 14402read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14403{
f792889a 14404 struct type *base_type, *cv_type;
c906108c 14405
e7c27a73 14406 base_type = die_type (die, cu);
7e314c57
JK
14407
14408 /* The die_type call above may have already set the type for this DIE. */
14409 cv_type = get_die_type (die, cu);
14410 if (cv_type)
14411 return cv_type;
14412
cf363f18
MW
14413 /* In case the volatile qualifier is applied to an array type, the
14414 element type is so qualified, not the array type (section 6.7.3
14415 of C99). */
14416 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14417 return add_array_cv_type (die, cu, base_type, 0, 1);
14418
f792889a
DJ
14419 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14420 return set_die_type (die, cv_type, cu);
c906108c
SS
14421}
14422
06d66ee9
TT
14423/* Handle DW_TAG_restrict_type. */
14424
14425static struct type *
14426read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14427{
14428 struct type *base_type, *cv_type;
14429
14430 base_type = die_type (die, cu);
14431
14432 /* The die_type call above may have already set the type for this DIE. */
14433 cv_type = get_die_type (die, cu);
14434 if (cv_type)
14435 return cv_type;
14436
14437 cv_type = make_restrict_type (base_type);
14438 return set_die_type (die, cv_type, cu);
14439}
14440
a2c2acaf
MW
14441/* Handle DW_TAG_atomic_type. */
14442
14443static struct type *
14444read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14445{
14446 struct type *base_type, *cv_type;
14447
14448 base_type = die_type (die, cu);
14449
14450 /* The die_type call above may have already set the type for this DIE. */
14451 cv_type = get_die_type (die, cu);
14452 if (cv_type)
14453 return cv_type;
14454
14455 cv_type = make_atomic_type (base_type);
14456 return set_die_type (die, cv_type, cu);
14457}
14458
c906108c
SS
14459/* Extract all information from a DW_TAG_string_type DIE and add to
14460 the user defined type vector. It isn't really a user defined type,
14461 but it behaves like one, with other DIE's using an AT_user_def_type
14462 attribute to reference it. */
14463
f792889a 14464static struct type *
e7c27a73 14465read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14466{
e7c27a73 14467 struct objfile *objfile = cu->objfile;
3b7538c0 14468 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14469 struct type *type, *range_type, *index_type, *char_type;
14470 struct attribute *attr;
14471 unsigned int length;
14472
e142c38c 14473 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14474 if (attr)
14475 {
14476 length = DW_UNSND (attr);
14477 }
14478 else
14479 {
0963b4bd 14480 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14481 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14482 if (attr)
14483 {
14484 length = DW_UNSND (attr);
14485 }
14486 else
14487 {
14488 length = 1;
14489 }
c906108c 14490 }
6ccb9162 14491
46bf5051 14492 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14493 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14494 char_type = language_string_char_type (cu->language_defn, gdbarch);
14495 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14496
f792889a 14497 return set_die_type (die, type, cu);
c906108c
SS
14498}
14499
4d804846
JB
14500/* Assuming that DIE corresponds to a function, returns nonzero
14501 if the function is prototyped. */
14502
14503static int
14504prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14505{
14506 struct attribute *attr;
14507
14508 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14509 if (attr && (DW_UNSND (attr) != 0))
14510 return 1;
14511
14512 /* The DWARF standard implies that the DW_AT_prototyped attribute
14513 is only meaninful for C, but the concept also extends to other
14514 languages that allow unprototyped functions (Eg: Objective C).
14515 For all other languages, assume that functions are always
14516 prototyped. */
14517 if (cu->language != language_c
14518 && cu->language != language_objc
14519 && cu->language != language_opencl)
14520 return 1;
14521
14522 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14523 prototyped and unprototyped functions; default to prototyped,
14524 since that is more common in modern code (and RealView warns
14525 about unprototyped functions). */
14526 if (producer_is_realview (cu->producer))
14527 return 1;
14528
14529 return 0;
14530}
14531
c906108c
SS
14532/* Handle DIES due to C code like:
14533
14534 struct foo
c5aa993b
JM
14535 {
14536 int (*funcp)(int a, long l);
14537 int b;
14538 };
c906108c 14539
0963b4bd 14540 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14541
f792889a 14542static struct type *
e7c27a73 14543read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14544{
bb5ed363 14545 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14546 struct type *type; /* Type that this function returns. */
14547 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14548 struct attribute *attr;
14549
e7c27a73 14550 type = die_type (die, cu);
7e314c57
JK
14551
14552 /* The die_type call above may have already set the type for this DIE. */
14553 ftype = get_die_type (die, cu);
14554 if (ftype)
14555 return ftype;
14556
0c8b41f1 14557 ftype = lookup_function_type (type);
c906108c 14558
4d804846 14559 if (prototyped_function_p (die, cu))
a6c727b2 14560 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14561
c055b101
CV
14562 /* Store the calling convention in the type if it's available in
14563 the subroutine die. Otherwise set the calling convention to
14564 the default value DW_CC_normal. */
14565 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14566 if (attr)
14567 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14568 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14569 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14570 else
14571 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14572
743649fd
MW
14573 /* Record whether the function returns normally to its caller or not
14574 if the DWARF producer set that information. */
14575 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14576 if (attr && (DW_UNSND (attr) != 0))
14577 TYPE_NO_RETURN (ftype) = 1;
14578
76c10ea2
GM
14579 /* We need to add the subroutine type to the die immediately so
14580 we don't infinitely recurse when dealing with parameters
0963b4bd 14581 declared as the same subroutine type. */
76c10ea2 14582 set_die_type (die, ftype, cu);
6e70227d 14583
639d11d3 14584 if (die->child != NULL)
c906108c 14585 {
bb5ed363 14586 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14587 struct die_info *child_die;
8072405b 14588 int nparams, iparams;
c906108c
SS
14589
14590 /* Count the number of parameters.
14591 FIXME: GDB currently ignores vararg functions, but knows about
14592 vararg member functions. */
8072405b 14593 nparams = 0;
639d11d3 14594 child_die = die->child;
c906108c
SS
14595 while (child_die && child_die->tag)
14596 {
14597 if (child_die->tag == DW_TAG_formal_parameter)
14598 nparams++;
14599 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14600 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14601 child_die = sibling_die (child_die);
14602 }
14603
14604 /* Allocate storage for parameters and fill them in. */
14605 TYPE_NFIELDS (ftype) = nparams;
14606 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14607 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14608
8072405b
JK
14609 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14610 even if we error out during the parameters reading below. */
14611 for (iparams = 0; iparams < nparams; iparams++)
14612 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14613
14614 iparams = 0;
639d11d3 14615 child_die = die->child;
c906108c
SS
14616 while (child_die && child_die->tag)
14617 {
14618 if (child_die->tag == DW_TAG_formal_parameter)
14619 {
3ce3b1ba
PA
14620 struct type *arg_type;
14621
14622 /* DWARF version 2 has no clean way to discern C++
14623 static and non-static member functions. G++ helps
14624 GDB by marking the first parameter for non-static
14625 member functions (which is the this pointer) as
14626 artificial. We pass this information to
14627 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14628
14629 DWARF version 3 added DW_AT_object_pointer, which GCC
14630 4.5 does not yet generate. */
e142c38c 14631 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14632 if (attr)
14633 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14634 else
418835cc
KS
14635 {
14636 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14637
14638 /* GCC/43521: In java, the formal parameter
14639 "this" is sometimes not marked with DW_AT_artificial. */
14640 if (cu->language == language_java)
14641 {
14642 const char *name = dwarf2_name (child_die, cu);
9a619af0 14643
418835cc
KS
14644 if (name && !strcmp (name, "this"))
14645 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14646 }
14647 }
3ce3b1ba
PA
14648 arg_type = die_type (child_die, cu);
14649
14650 /* RealView does not mark THIS as const, which the testsuite
14651 expects. GCC marks THIS as const in method definitions,
14652 but not in the class specifications (GCC PR 43053). */
14653 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14654 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14655 {
14656 int is_this = 0;
14657 struct dwarf2_cu *arg_cu = cu;
14658 const char *name = dwarf2_name (child_die, cu);
14659
14660 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14661 if (attr)
14662 {
14663 /* If the compiler emits this, use it. */
14664 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14665 is_this = 1;
14666 }
14667 else if (name && strcmp (name, "this") == 0)
14668 /* Function definitions will have the argument names. */
14669 is_this = 1;
14670 else if (name == NULL && iparams == 0)
14671 /* Declarations may not have the names, so like
14672 elsewhere in GDB, assume an artificial first
14673 argument is "this". */
14674 is_this = 1;
14675
14676 if (is_this)
14677 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14678 arg_type, 0);
14679 }
14680
14681 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14682 iparams++;
14683 }
14684 child_die = sibling_die (child_die);
14685 }
14686 }
14687
76c10ea2 14688 return ftype;
c906108c
SS
14689}
14690
f792889a 14691static struct type *
e7c27a73 14692read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14693{
e7c27a73 14694 struct objfile *objfile = cu->objfile;
0114d602 14695 const char *name = NULL;
3c8e0968 14696 struct type *this_type, *target_type;
c906108c 14697
94af9270 14698 name = dwarf2_full_name (NULL, die, cu);
f792889a 14699 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14700 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14701 TYPE_NAME (this_type) = name;
f792889a 14702 set_die_type (die, this_type, cu);
3c8e0968
DE
14703 target_type = die_type (die, cu);
14704 if (target_type != this_type)
14705 TYPE_TARGET_TYPE (this_type) = target_type;
14706 else
14707 {
14708 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14709 spec and cause infinite loops in GDB. */
14710 complaint (&symfile_complaints,
14711 _("Self-referential DW_TAG_typedef "
14712 "- DIE at 0x%x [in module %s]"),
4262abfb 14713 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14714 TYPE_TARGET_TYPE (this_type) = NULL;
14715 }
f792889a 14716 return this_type;
c906108c
SS
14717}
14718
14719/* Find a representation of a given base type and install
14720 it in the TYPE field of the die. */
14721
f792889a 14722static struct type *
e7c27a73 14723read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14724{
e7c27a73 14725 struct objfile *objfile = cu->objfile;
c906108c
SS
14726 struct type *type;
14727 struct attribute *attr;
14728 int encoding = 0, size = 0;
15d034d0 14729 const char *name;
6ccb9162
UW
14730 enum type_code code = TYPE_CODE_INT;
14731 int type_flags = 0;
14732 struct type *target_type = NULL;
c906108c 14733
e142c38c 14734 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14735 if (attr)
14736 {
14737 encoding = DW_UNSND (attr);
14738 }
e142c38c 14739 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14740 if (attr)
14741 {
14742 size = DW_UNSND (attr);
14743 }
39cbfefa 14744 name = dwarf2_name (die, cu);
6ccb9162 14745 if (!name)
c906108c 14746 {
6ccb9162
UW
14747 complaint (&symfile_complaints,
14748 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14749 }
6ccb9162
UW
14750
14751 switch (encoding)
c906108c 14752 {
6ccb9162
UW
14753 case DW_ATE_address:
14754 /* Turn DW_ATE_address into a void * pointer. */
14755 code = TYPE_CODE_PTR;
14756 type_flags |= TYPE_FLAG_UNSIGNED;
14757 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14758 break;
14759 case DW_ATE_boolean:
14760 code = TYPE_CODE_BOOL;
14761 type_flags |= TYPE_FLAG_UNSIGNED;
14762 break;
14763 case DW_ATE_complex_float:
14764 code = TYPE_CODE_COMPLEX;
14765 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14766 break;
14767 case DW_ATE_decimal_float:
14768 code = TYPE_CODE_DECFLOAT;
14769 break;
14770 case DW_ATE_float:
14771 code = TYPE_CODE_FLT;
14772 break;
14773 case DW_ATE_signed:
14774 break;
14775 case DW_ATE_unsigned:
14776 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14777 if (cu->language == language_fortran
14778 && name
61012eef 14779 && startswith (name, "character("))
3b2b8fea 14780 code = TYPE_CODE_CHAR;
6ccb9162
UW
14781 break;
14782 case DW_ATE_signed_char:
6e70227d 14783 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14784 || cu->language == language_pascal
14785 || cu->language == language_fortran)
6ccb9162
UW
14786 code = TYPE_CODE_CHAR;
14787 break;
14788 case DW_ATE_unsigned_char:
868a0084 14789 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14790 || cu->language == language_pascal
14791 || cu->language == language_fortran)
6ccb9162
UW
14792 code = TYPE_CODE_CHAR;
14793 type_flags |= TYPE_FLAG_UNSIGNED;
14794 break;
75079b2b
TT
14795 case DW_ATE_UTF:
14796 /* We just treat this as an integer and then recognize the
14797 type by name elsewhere. */
14798 break;
14799
6ccb9162
UW
14800 default:
14801 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14802 dwarf_type_encoding_name (encoding));
14803 break;
c906108c 14804 }
6ccb9162 14805
0114d602
DJ
14806 type = init_type (code, size, type_flags, NULL, objfile);
14807 TYPE_NAME (type) = name;
6ccb9162
UW
14808 TYPE_TARGET_TYPE (type) = target_type;
14809
0114d602 14810 if (name && strcmp (name, "char") == 0)
876cecd0 14811 TYPE_NOSIGN (type) = 1;
0114d602 14812
f792889a 14813 return set_die_type (die, type, cu);
c906108c
SS
14814}
14815
80180f79
SA
14816/* Parse dwarf attribute if it's a block, reference or constant and put the
14817 resulting value of the attribute into struct bound_prop.
14818 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14819
14820static int
14821attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14822 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14823{
14824 struct dwarf2_property_baton *baton;
14825 struct obstack *obstack = &cu->objfile->objfile_obstack;
14826
14827 if (attr == NULL || prop == NULL)
14828 return 0;
14829
14830 if (attr_form_is_block (attr))
14831 {
14832 baton = obstack_alloc (obstack, sizeof (*baton));
14833 baton->referenced_type = NULL;
14834 baton->locexpr.per_cu = cu->per_cu;
14835 baton->locexpr.size = DW_BLOCK (attr)->size;
14836 baton->locexpr.data = DW_BLOCK (attr)->data;
14837 prop->data.baton = baton;
14838 prop->kind = PROP_LOCEXPR;
14839 gdb_assert (prop->data.baton != NULL);
14840 }
14841 else if (attr_form_is_ref (attr))
14842 {
14843 struct dwarf2_cu *target_cu = cu;
14844 struct die_info *target_die;
14845 struct attribute *target_attr;
14846
14847 target_die = follow_die_ref (die, attr, &target_cu);
14848 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
14849 if (target_attr == NULL)
14850 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14851 target_cu);
80180f79
SA
14852 if (target_attr == NULL)
14853 return 0;
14854
df25ebbd 14855 switch (target_attr->name)
80180f79 14856 {
df25ebbd
JB
14857 case DW_AT_location:
14858 if (attr_form_is_section_offset (target_attr))
14859 {
14860 baton = obstack_alloc (obstack, sizeof (*baton));
14861 baton->referenced_type = die_type (target_die, target_cu);
14862 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14863 prop->data.baton = baton;
14864 prop->kind = PROP_LOCLIST;
14865 gdb_assert (prop->data.baton != NULL);
14866 }
14867 else if (attr_form_is_block (target_attr))
14868 {
14869 baton = obstack_alloc (obstack, sizeof (*baton));
14870 baton->referenced_type = die_type (target_die, target_cu);
14871 baton->locexpr.per_cu = cu->per_cu;
14872 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14873 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14874 prop->data.baton = baton;
14875 prop->kind = PROP_LOCEXPR;
14876 gdb_assert (prop->data.baton != NULL);
14877 }
14878 else
14879 {
14880 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14881 "dynamic property");
14882 return 0;
14883 }
14884 break;
14885 case DW_AT_data_member_location:
14886 {
14887 LONGEST offset;
14888
14889 if (!handle_data_member_location (target_die, target_cu,
14890 &offset))
14891 return 0;
14892
14893 baton = obstack_alloc (obstack, sizeof (*baton));
6ad395a7
JB
14894 baton->referenced_type = read_type_die (target_die->parent,
14895 target_cu);
df25ebbd
JB
14896 baton->offset_info.offset = offset;
14897 baton->offset_info.type = die_type (target_die, target_cu);
14898 prop->data.baton = baton;
14899 prop->kind = PROP_ADDR_OFFSET;
14900 break;
14901 }
80180f79
SA
14902 }
14903 }
14904 else if (attr_form_is_constant (attr))
14905 {
14906 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14907 prop->kind = PROP_CONST;
14908 }
14909 else
14910 {
14911 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14912 dwarf2_name (die, cu));
14913 return 0;
14914 }
14915
14916 return 1;
14917}
14918
a02abb62
JB
14919/* Read the given DW_AT_subrange DIE. */
14920
f792889a 14921static struct type *
a02abb62
JB
14922read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14923{
4c9ad8c2 14924 struct type *base_type, *orig_base_type;
a02abb62
JB
14925 struct type *range_type;
14926 struct attribute *attr;
729efb13 14927 struct dynamic_prop low, high;
4fae6e18 14928 int low_default_is_valid;
c451ebe5 14929 int high_bound_is_count = 0;
15d034d0 14930 const char *name;
43bbcdc2 14931 LONGEST negative_mask;
e77813c8 14932
4c9ad8c2
TT
14933 orig_base_type = die_type (die, cu);
14934 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14935 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14936 creating the range type, but we use the result of check_typedef
14937 when examining properties of the type. */
14938 base_type = check_typedef (orig_base_type);
a02abb62 14939
7e314c57
JK
14940 /* The die_type call above may have already set the type for this DIE. */
14941 range_type = get_die_type (die, cu);
14942 if (range_type)
14943 return range_type;
14944
729efb13
SA
14945 low.kind = PROP_CONST;
14946 high.kind = PROP_CONST;
14947 high.data.const_val = 0;
14948
4fae6e18
JK
14949 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14950 omitting DW_AT_lower_bound. */
14951 switch (cu->language)
6e70227d 14952 {
4fae6e18
JK
14953 case language_c:
14954 case language_cplus:
729efb13 14955 low.data.const_val = 0;
4fae6e18
JK
14956 low_default_is_valid = 1;
14957 break;
14958 case language_fortran:
729efb13 14959 low.data.const_val = 1;
4fae6e18
JK
14960 low_default_is_valid = 1;
14961 break;
14962 case language_d:
14963 case language_java:
14964 case language_objc:
729efb13 14965 low.data.const_val = 0;
4fae6e18
JK
14966 low_default_is_valid = (cu->header.version >= 4);
14967 break;
14968 case language_ada:
14969 case language_m2:
14970 case language_pascal:
729efb13 14971 low.data.const_val = 1;
4fae6e18
JK
14972 low_default_is_valid = (cu->header.version >= 4);
14973 break;
14974 default:
729efb13 14975 low.data.const_val = 0;
4fae6e18
JK
14976 low_default_is_valid = 0;
14977 break;
a02abb62
JB
14978 }
14979
e142c38c 14980 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14981 if (attr)
11c1ba78 14982 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
14983 else if (!low_default_is_valid)
14984 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14985 "- DIE at 0x%x [in module %s]"),
4262abfb 14986 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14987
e142c38c 14988 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 14989 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
14990 {
14991 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 14992 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 14993 {
c451ebe5
SA
14994 /* If bounds are constant do the final calculation here. */
14995 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14996 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14997 else
14998 high_bound_is_count = 1;
c2ff108b 14999 }
e77813c8
PM
15000 }
15001
15002 /* Dwarf-2 specifications explicitly allows to create subrange types
15003 without specifying a base type.
15004 In that case, the base type must be set to the type of
15005 the lower bound, upper bound or count, in that order, if any of these
15006 three attributes references an object that has a type.
15007 If no base type is found, the Dwarf-2 specifications say that
15008 a signed integer type of size equal to the size of an address should
15009 be used.
15010 For the following C code: `extern char gdb_int [];'
15011 GCC produces an empty range DIE.
15012 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 15013 high bound or count are not yet handled by this code. */
e77813c8
PM
15014 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15015 {
15016 struct objfile *objfile = cu->objfile;
15017 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15018 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15019 struct type *int_type = objfile_type (objfile)->builtin_int;
15020
15021 /* Test "int", "long int", and "long long int" objfile types,
15022 and select the first one having a size above or equal to the
15023 architecture address size. */
15024 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15025 base_type = int_type;
15026 else
15027 {
15028 int_type = objfile_type (objfile)->builtin_long;
15029 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15030 base_type = int_type;
15031 else
15032 {
15033 int_type = objfile_type (objfile)->builtin_long_long;
15034 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15035 base_type = int_type;
15036 }
15037 }
15038 }
a02abb62 15039
dbb9c2b1
JB
15040 /* Normally, the DWARF producers are expected to use a signed
15041 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15042 But this is unfortunately not always the case, as witnessed
15043 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15044 is used instead. To work around that ambiguity, we treat
15045 the bounds as signed, and thus sign-extend their values, when
15046 the base type is signed. */
6e70227d 15047 negative_mask =
43bbcdc2 15048 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
729efb13
SA
15049 if (low.kind == PROP_CONST
15050 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15051 low.data.const_val |= negative_mask;
15052 if (high.kind == PROP_CONST
15053 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15054 high.data.const_val |= negative_mask;
43bbcdc2 15055
729efb13 15056 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15057
c451ebe5
SA
15058 if (high_bound_is_count)
15059 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15060
c2ff108b
JK
15061 /* Ada expects an empty array on no boundary attributes. */
15062 if (attr == NULL && cu->language != language_ada)
729efb13 15063 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15064
39cbfefa
DJ
15065 name = dwarf2_name (die, cu);
15066 if (name)
15067 TYPE_NAME (range_type) = name;
6e70227d 15068
e142c38c 15069 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15070 if (attr)
15071 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15072
7e314c57
JK
15073 set_die_type (die, range_type, cu);
15074
15075 /* set_die_type should be already done. */
b4ba55a1
JB
15076 set_descriptive_type (range_type, die, cu);
15077
7e314c57 15078 return range_type;
a02abb62 15079}
6e70227d 15080
f792889a 15081static struct type *
81a17f79
JB
15082read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15083{
15084 struct type *type;
81a17f79 15085
81a17f79
JB
15086 /* For now, we only support the C meaning of an unspecified type: void. */
15087
0114d602
DJ
15088 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15089 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15090
f792889a 15091 return set_die_type (die, type, cu);
81a17f79 15092}
a02abb62 15093
639d11d3
DC
15094/* Read a single die and all its descendents. Set the die's sibling
15095 field to NULL; set other fields in the die correctly, and set all
15096 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15097 location of the info_ptr after reading all of those dies. PARENT
15098 is the parent of the die in question. */
15099
15100static struct die_info *
dee91e82 15101read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15102 const gdb_byte *info_ptr,
15103 const gdb_byte **new_info_ptr,
dee91e82 15104 struct die_info *parent)
639d11d3
DC
15105{
15106 struct die_info *die;
d521ce57 15107 const gdb_byte *cur_ptr;
639d11d3
DC
15108 int has_children;
15109
bf6af496 15110 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15111 if (die == NULL)
15112 {
15113 *new_info_ptr = cur_ptr;
15114 return NULL;
15115 }
93311388 15116 store_in_ref_table (die, reader->cu);
639d11d3
DC
15117
15118 if (has_children)
bf6af496 15119 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15120 else
15121 {
15122 die->child = NULL;
15123 *new_info_ptr = cur_ptr;
15124 }
15125
15126 die->sibling = NULL;
15127 die->parent = parent;
15128 return die;
15129}
15130
15131/* Read a die, all of its descendents, and all of its siblings; set
15132 all of the fields of all of the dies correctly. Arguments are as
15133 in read_die_and_children. */
15134
15135static struct die_info *
bf6af496 15136read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15137 const gdb_byte *info_ptr,
15138 const gdb_byte **new_info_ptr,
bf6af496 15139 struct die_info *parent)
639d11d3
DC
15140{
15141 struct die_info *first_die, *last_sibling;
d521ce57 15142 const gdb_byte *cur_ptr;
639d11d3 15143
c906108c 15144 cur_ptr = info_ptr;
639d11d3
DC
15145 first_die = last_sibling = NULL;
15146
15147 while (1)
c906108c 15148 {
639d11d3 15149 struct die_info *die
dee91e82 15150 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15151
1d325ec1 15152 if (die == NULL)
c906108c 15153 {
639d11d3
DC
15154 *new_info_ptr = cur_ptr;
15155 return first_die;
c906108c 15156 }
1d325ec1
DJ
15157
15158 if (!first_die)
15159 first_die = die;
c906108c 15160 else
1d325ec1
DJ
15161 last_sibling->sibling = die;
15162
15163 last_sibling = die;
c906108c 15164 }
c906108c
SS
15165}
15166
bf6af496
DE
15167/* Read a die, all of its descendents, and all of its siblings; set
15168 all of the fields of all of the dies correctly. Arguments are as
15169 in read_die_and_children.
15170 This the main entry point for reading a DIE and all its children. */
15171
15172static struct die_info *
15173read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15174 const gdb_byte *info_ptr,
15175 const gdb_byte **new_info_ptr,
bf6af496
DE
15176 struct die_info *parent)
15177{
15178 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15179 new_info_ptr, parent);
15180
b4f54984 15181 if (dwarf_die_debug)
bf6af496
DE
15182 {
15183 fprintf_unfiltered (gdb_stdlog,
15184 "Read die from %s@0x%x of %s:\n",
a32a8923 15185 get_section_name (reader->die_section),
bf6af496
DE
15186 (unsigned) (info_ptr - reader->die_section->buffer),
15187 bfd_get_filename (reader->abfd));
b4f54984 15188 dump_die (die, dwarf_die_debug);
bf6af496
DE
15189 }
15190
15191 return die;
15192}
15193
3019eac3
DE
15194/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15195 attributes.
15196 The caller is responsible for filling in the extra attributes
15197 and updating (*DIEP)->num_attrs.
15198 Set DIEP to point to a newly allocated die with its information,
15199 except for its child, sibling, and parent fields.
15200 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15201
d521ce57 15202static const gdb_byte *
3019eac3 15203read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15204 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15205 int *has_children, int num_extra_attrs)
93311388 15206{
b64f50a1
JK
15207 unsigned int abbrev_number, bytes_read, i;
15208 sect_offset offset;
93311388
DE
15209 struct abbrev_info *abbrev;
15210 struct die_info *die;
15211 struct dwarf2_cu *cu = reader->cu;
15212 bfd *abfd = reader->abfd;
15213
b64f50a1 15214 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
15215 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15216 info_ptr += bytes_read;
15217 if (!abbrev_number)
15218 {
15219 *diep = NULL;
15220 *has_children = 0;
15221 return info_ptr;
15222 }
15223
433df2d4 15224 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15225 if (!abbrev)
348e048f
DE
15226 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15227 abbrev_number,
15228 bfd_get_filename (abfd));
15229
3019eac3 15230 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
15231 die->offset = offset;
15232 die->tag = abbrev->tag;
15233 die->abbrev = abbrev_number;
15234
3019eac3
DE
15235 /* Make the result usable.
15236 The caller needs to update num_attrs after adding the extra
15237 attributes. */
93311388
DE
15238 die->num_attrs = abbrev->num_attrs;
15239
15240 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15241 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15242 info_ptr);
93311388
DE
15243
15244 *diep = die;
15245 *has_children = abbrev->has_children;
15246 return info_ptr;
15247}
15248
3019eac3
DE
15249/* Read a die and all its attributes.
15250 Set DIEP to point to a newly allocated die with its information,
15251 except for its child, sibling, and parent fields.
15252 Set HAS_CHILDREN to tell whether the die has children or not. */
15253
d521ce57 15254static const gdb_byte *
3019eac3 15255read_full_die (const struct die_reader_specs *reader,
d521ce57 15256 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15257 int *has_children)
15258{
d521ce57 15259 const gdb_byte *result;
bf6af496
DE
15260
15261 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15262
b4f54984 15263 if (dwarf_die_debug)
bf6af496
DE
15264 {
15265 fprintf_unfiltered (gdb_stdlog,
15266 "Read die from %s@0x%x of %s:\n",
a32a8923 15267 get_section_name (reader->die_section),
bf6af496
DE
15268 (unsigned) (info_ptr - reader->die_section->buffer),
15269 bfd_get_filename (reader->abfd));
b4f54984 15270 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15271 }
15272
15273 return result;
3019eac3 15274}
433df2d4
DE
15275\f
15276/* Abbreviation tables.
3019eac3 15277
433df2d4 15278 In DWARF version 2, the description of the debugging information is
c906108c
SS
15279 stored in a separate .debug_abbrev section. Before we read any
15280 dies from a section we read in all abbreviations and install them
433df2d4
DE
15281 in a hash table. */
15282
15283/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15284
15285static struct abbrev_info *
15286abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15287{
15288 struct abbrev_info *abbrev;
15289
15290 abbrev = (struct abbrev_info *)
15291 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15292 memset (abbrev, 0, sizeof (struct abbrev_info));
15293 return abbrev;
15294}
15295
15296/* Add an abbreviation to the table. */
c906108c
SS
15297
15298static void
433df2d4
DE
15299abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15300 unsigned int abbrev_number,
15301 struct abbrev_info *abbrev)
15302{
15303 unsigned int hash_number;
15304
15305 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15306 abbrev->next = abbrev_table->abbrevs[hash_number];
15307 abbrev_table->abbrevs[hash_number] = abbrev;
15308}
dee91e82 15309
433df2d4
DE
15310/* Look up an abbrev in the table.
15311 Returns NULL if the abbrev is not found. */
15312
15313static struct abbrev_info *
15314abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15315 unsigned int abbrev_number)
c906108c 15316{
433df2d4
DE
15317 unsigned int hash_number;
15318 struct abbrev_info *abbrev;
15319
15320 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15321 abbrev = abbrev_table->abbrevs[hash_number];
15322
15323 while (abbrev)
15324 {
15325 if (abbrev->number == abbrev_number)
15326 return abbrev;
15327 abbrev = abbrev->next;
15328 }
15329 return NULL;
15330}
15331
15332/* Read in an abbrev table. */
15333
15334static struct abbrev_table *
15335abbrev_table_read_table (struct dwarf2_section_info *section,
15336 sect_offset offset)
15337{
15338 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15339 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15340 struct abbrev_table *abbrev_table;
d521ce57 15341 const gdb_byte *abbrev_ptr;
c906108c
SS
15342 struct abbrev_info *cur_abbrev;
15343 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15344 unsigned int abbrev_form;
f3dd6933
DJ
15345 struct attr_abbrev *cur_attrs;
15346 unsigned int allocated_attrs;
c906108c 15347
70ba0933 15348 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15349 abbrev_table->offset = offset;
433df2d4
DE
15350 obstack_init (&abbrev_table->abbrev_obstack);
15351 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15352 (ABBREV_HASH_SIZE
15353 * sizeof (struct abbrev_info *)));
15354 memset (abbrev_table->abbrevs, 0,
15355 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15356
433df2d4
DE
15357 dwarf2_read_section (objfile, section);
15358 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15359 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15360 abbrev_ptr += bytes_read;
15361
f3dd6933
DJ
15362 allocated_attrs = ATTR_ALLOC_CHUNK;
15363 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 15364
0963b4bd 15365 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15366 while (abbrev_number)
15367 {
433df2d4 15368 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15369
15370 /* read in abbrev header */
15371 cur_abbrev->number = abbrev_number;
aead7601
SM
15372 cur_abbrev->tag
15373 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15374 abbrev_ptr += bytes_read;
15375 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15376 abbrev_ptr += 1;
15377
15378 /* now read in declarations */
15379 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15380 abbrev_ptr += bytes_read;
15381 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15382 abbrev_ptr += bytes_read;
15383 while (abbrev_name)
15384 {
f3dd6933 15385 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15386 {
f3dd6933
DJ
15387 allocated_attrs += ATTR_ALLOC_CHUNK;
15388 cur_attrs
15389 = xrealloc (cur_attrs, (allocated_attrs
15390 * sizeof (struct attr_abbrev)));
c906108c 15391 }
ae038cb0 15392
aead7601
SM
15393 cur_attrs[cur_abbrev->num_attrs].name
15394 = (enum dwarf_attribute) abbrev_name;
15395 cur_attrs[cur_abbrev->num_attrs++].form
15396 = (enum dwarf_form) abbrev_form;
c906108c
SS
15397 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15398 abbrev_ptr += bytes_read;
15399 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15400 abbrev_ptr += bytes_read;
15401 }
15402
433df2d4 15403 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
15404 (cur_abbrev->num_attrs
15405 * sizeof (struct attr_abbrev)));
15406 memcpy (cur_abbrev->attrs, cur_attrs,
15407 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15408
433df2d4 15409 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15410
15411 /* Get next abbreviation.
15412 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15413 always properly terminated with an abbrev number of 0.
15414 Exit loop if we encounter an abbreviation which we have
15415 already read (which means we are about to read the abbreviations
15416 for the next compile unit) or if the end of the abbreviation
15417 table is reached. */
433df2d4 15418 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15419 break;
15420 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15421 abbrev_ptr += bytes_read;
433df2d4 15422 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15423 break;
15424 }
f3dd6933
DJ
15425
15426 xfree (cur_attrs);
433df2d4 15427 return abbrev_table;
c906108c
SS
15428}
15429
433df2d4 15430/* Free the resources held by ABBREV_TABLE. */
c906108c 15431
c906108c 15432static void
433df2d4 15433abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15434{
433df2d4
DE
15435 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15436 xfree (abbrev_table);
c906108c
SS
15437}
15438
f4dc4d17
DE
15439/* Same as abbrev_table_free but as a cleanup.
15440 We pass in a pointer to the pointer to the table so that we can
15441 set the pointer to NULL when we're done. It also simplifies
73051182 15442 build_type_psymtabs_1. */
f4dc4d17
DE
15443
15444static void
15445abbrev_table_free_cleanup (void *table_ptr)
15446{
15447 struct abbrev_table **abbrev_table_ptr = table_ptr;
15448
15449 if (*abbrev_table_ptr != NULL)
15450 abbrev_table_free (*abbrev_table_ptr);
15451 *abbrev_table_ptr = NULL;
15452}
15453
433df2d4
DE
15454/* Read the abbrev table for CU from ABBREV_SECTION. */
15455
15456static void
15457dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15458 struct dwarf2_section_info *abbrev_section)
c906108c 15459{
433df2d4
DE
15460 cu->abbrev_table =
15461 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15462}
c906108c 15463
433df2d4 15464/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15465
433df2d4
DE
15466static void
15467dwarf2_free_abbrev_table (void *ptr_to_cu)
15468{
15469 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 15470
a2ce51a0
DE
15471 if (cu->abbrev_table != NULL)
15472 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15473 /* Set this to NULL so that we SEGV if we try to read it later,
15474 and also because free_comp_unit verifies this is NULL. */
15475 cu->abbrev_table = NULL;
15476}
15477\f
72bf9492
DJ
15478/* Returns nonzero if TAG represents a type that we might generate a partial
15479 symbol for. */
15480
15481static int
15482is_type_tag_for_partial (int tag)
15483{
15484 switch (tag)
15485 {
15486#if 0
15487 /* Some types that would be reasonable to generate partial symbols for,
15488 that we don't at present. */
15489 case DW_TAG_array_type:
15490 case DW_TAG_file_type:
15491 case DW_TAG_ptr_to_member_type:
15492 case DW_TAG_set_type:
15493 case DW_TAG_string_type:
15494 case DW_TAG_subroutine_type:
15495#endif
15496 case DW_TAG_base_type:
15497 case DW_TAG_class_type:
680b30c7 15498 case DW_TAG_interface_type:
72bf9492
DJ
15499 case DW_TAG_enumeration_type:
15500 case DW_TAG_structure_type:
15501 case DW_TAG_subrange_type:
15502 case DW_TAG_typedef:
15503 case DW_TAG_union_type:
15504 return 1;
15505 default:
15506 return 0;
15507 }
15508}
15509
15510/* Load all DIEs that are interesting for partial symbols into memory. */
15511
15512static struct partial_die_info *
dee91e82 15513load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15514 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15515{
dee91e82 15516 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15517 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15518 struct partial_die_info *part_die;
15519 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15520 struct abbrev_info *abbrev;
15521 unsigned int bytes_read;
5afb4e99 15522 unsigned int load_all = 0;
72bf9492
DJ
15523 int nesting_level = 1;
15524
15525 parent_die = NULL;
15526 last_die = NULL;
15527
7adf1e79
DE
15528 gdb_assert (cu->per_cu != NULL);
15529 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15530 load_all = 1;
15531
72bf9492
DJ
15532 cu->partial_dies
15533 = htab_create_alloc_ex (cu->header.length / 12,
15534 partial_die_hash,
15535 partial_die_eq,
15536 NULL,
15537 &cu->comp_unit_obstack,
15538 hashtab_obstack_allocate,
15539 dummy_obstack_deallocate);
15540
15541 part_die = obstack_alloc (&cu->comp_unit_obstack,
15542 sizeof (struct partial_die_info));
15543
15544 while (1)
15545 {
15546 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15547
15548 /* A NULL abbrev means the end of a series of children. */
15549 if (abbrev == NULL)
15550 {
15551 if (--nesting_level == 0)
15552 {
15553 /* PART_DIE was probably the last thing allocated on the
15554 comp_unit_obstack, so we could call obstack_free
15555 here. We don't do that because the waste is small,
15556 and will be cleaned up when we're done with this
15557 compilation unit. This way, we're also more robust
15558 against other users of the comp_unit_obstack. */
15559 return first_die;
15560 }
15561 info_ptr += bytes_read;
15562 last_die = parent_die;
15563 parent_die = parent_die->die_parent;
15564 continue;
15565 }
15566
98bfdba5
PA
15567 /* Check for template arguments. We never save these; if
15568 they're seen, we just mark the parent, and go on our way. */
15569 if (parent_die != NULL
15570 && cu->language == language_cplus
15571 && (abbrev->tag == DW_TAG_template_type_param
15572 || abbrev->tag == DW_TAG_template_value_param))
15573 {
15574 parent_die->has_template_arguments = 1;
15575
15576 if (!load_all)
15577 {
15578 /* We don't need a partial DIE for the template argument. */
dee91e82 15579 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15580 continue;
15581 }
15582 }
15583
0d99eb77 15584 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15585 Skip their other children. */
15586 if (!load_all
15587 && cu->language == language_cplus
15588 && parent_die != NULL
15589 && parent_die->tag == DW_TAG_subprogram)
15590 {
dee91e82 15591 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15592 continue;
15593 }
15594
5afb4e99
DJ
15595 /* Check whether this DIE is interesting enough to save. Normally
15596 we would not be interested in members here, but there may be
15597 later variables referencing them via DW_AT_specification (for
15598 static members). */
15599 if (!load_all
15600 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15601 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15602 && abbrev->tag != DW_TAG_enumerator
15603 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15604 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15605 && abbrev->tag != DW_TAG_variable
5afb4e99 15606 && abbrev->tag != DW_TAG_namespace
f55ee35c 15607 && abbrev->tag != DW_TAG_module
95554aad 15608 && abbrev->tag != DW_TAG_member
74921315
KS
15609 && abbrev->tag != DW_TAG_imported_unit
15610 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15611 {
15612 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15613 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15614 continue;
15615 }
15616
dee91e82
DE
15617 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15618 info_ptr);
72bf9492
DJ
15619
15620 /* This two-pass algorithm for processing partial symbols has a
15621 high cost in cache pressure. Thus, handle some simple cases
15622 here which cover the majority of C partial symbols. DIEs
15623 which neither have specification tags in them, nor could have
15624 specification tags elsewhere pointing at them, can simply be
15625 processed and discarded.
15626
15627 This segment is also optional; scan_partial_symbols and
15628 add_partial_symbol will handle these DIEs if we chain
15629 them in normally. When compilers which do not emit large
15630 quantities of duplicate debug information are more common,
15631 this code can probably be removed. */
15632
15633 /* Any complete simple types at the top level (pretty much all
15634 of them, for a language without namespaces), can be processed
15635 directly. */
15636 if (parent_die == NULL
15637 && part_die->has_specification == 0
15638 && part_die->is_declaration == 0
d8228535 15639 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15640 || part_die->tag == DW_TAG_base_type
15641 || part_die->tag == DW_TAG_subrange_type))
15642 {
15643 if (building_psymtab && part_die->name != NULL)
04a679b8 15644 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15645 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
15646 &objfile->static_psymbols,
15647 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 15648 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15649 continue;
15650 }
15651
d8228535
JK
15652 /* The exception for DW_TAG_typedef with has_children above is
15653 a workaround of GCC PR debug/47510. In the case of this complaint
15654 type_name_no_tag_or_error will error on such types later.
15655
15656 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15657 it could not find the child DIEs referenced later, this is checked
15658 above. In correct DWARF DW_TAG_typedef should have no children. */
15659
15660 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15661 complaint (&symfile_complaints,
15662 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15663 "- DIE at 0x%x [in module %s]"),
4262abfb 15664 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15665
72bf9492
DJ
15666 /* If we're at the second level, and we're an enumerator, and
15667 our parent has no specification (meaning possibly lives in a
15668 namespace elsewhere), then we can add the partial symbol now
15669 instead of queueing it. */
15670 if (part_die->tag == DW_TAG_enumerator
15671 && parent_die != NULL
15672 && parent_die->die_parent == NULL
15673 && parent_die->tag == DW_TAG_enumeration_type
15674 && parent_die->has_specification == 0)
15675 {
15676 if (part_die->name == NULL)
3e43a32a
MS
15677 complaint (&symfile_complaints,
15678 _("malformed enumerator DIE ignored"));
72bf9492 15679 else if (building_psymtab)
04a679b8 15680 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15681 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15682 (cu->language == language_cplus
15683 || cu->language == language_java)
bb5ed363
DE
15684 ? &objfile->global_psymbols
15685 : &objfile->static_psymbols,
15686 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 15687
dee91e82 15688 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15689 continue;
15690 }
15691
15692 /* We'll save this DIE so link it in. */
15693 part_die->die_parent = parent_die;
15694 part_die->die_sibling = NULL;
15695 part_die->die_child = NULL;
15696
15697 if (last_die && last_die == parent_die)
15698 last_die->die_child = part_die;
15699 else if (last_die)
15700 last_die->die_sibling = part_die;
15701
15702 last_die = part_die;
15703
15704 if (first_die == NULL)
15705 first_die = part_die;
15706
15707 /* Maybe add the DIE to the hash table. Not all DIEs that we
15708 find interesting need to be in the hash table, because we
15709 also have the parent/sibling/child chains; only those that we
15710 might refer to by offset later during partial symbol reading.
15711
15712 For now this means things that might have be the target of a
15713 DW_AT_specification, DW_AT_abstract_origin, or
15714 DW_AT_extension. DW_AT_extension will refer only to
15715 namespaces; DW_AT_abstract_origin refers to functions (and
15716 many things under the function DIE, but we do not recurse
15717 into function DIEs during partial symbol reading) and
15718 possibly variables as well; DW_AT_specification refers to
15719 declarations. Declarations ought to have the DW_AT_declaration
15720 flag. It happens that GCC forgets to put it in sometimes, but
15721 only for functions, not for types.
15722
15723 Adding more things than necessary to the hash table is harmless
15724 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15725 wasted time in find_partial_die, when we reread the compilation
15726 unit with load_all_dies set. */
72bf9492 15727
5afb4e99 15728 if (load_all
72929c62 15729 || abbrev->tag == DW_TAG_constant
5afb4e99 15730 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15731 || abbrev->tag == DW_TAG_variable
15732 || abbrev->tag == DW_TAG_namespace
15733 || part_die->is_declaration)
15734 {
15735 void **slot;
15736
15737 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15738 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15739 *slot = part_die;
15740 }
15741
15742 part_die = obstack_alloc (&cu->comp_unit_obstack,
15743 sizeof (struct partial_die_info));
15744
15745 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15746 we have no reason to follow the children of structures; for other
98bfdba5
PA
15747 languages we have to, so that we can get at method physnames
15748 to infer fully qualified class names, for DW_AT_specification,
15749 and for C++ template arguments. For C++, we also look one level
15750 inside functions to find template arguments (if the name of the
15751 function does not already contain the template arguments).
bc30ff58
JB
15752
15753 For Ada, we need to scan the children of subprograms and lexical
15754 blocks as well because Ada allows the definition of nested
15755 entities that could be interesting for the debugger, such as
15756 nested subprograms for instance. */
72bf9492 15757 if (last_die->has_children
5afb4e99
DJ
15758 && (load_all
15759 || last_die->tag == DW_TAG_namespace
f55ee35c 15760 || last_die->tag == DW_TAG_module
72bf9492 15761 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15762 || (cu->language == language_cplus
15763 && last_die->tag == DW_TAG_subprogram
15764 && (last_die->name == NULL
15765 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15766 || (cu->language != language_c
15767 && (last_die->tag == DW_TAG_class_type
680b30c7 15768 || last_die->tag == DW_TAG_interface_type
72bf9492 15769 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15770 || last_die->tag == DW_TAG_union_type))
15771 || (cu->language == language_ada
15772 && (last_die->tag == DW_TAG_subprogram
15773 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15774 {
15775 nesting_level++;
15776 parent_die = last_die;
15777 continue;
15778 }
15779
15780 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15781 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15782
15783 /* Back to the top, do it again. */
15784 }
15785}
15786
c906108c
SS
15787/* Read a minimal amount of information into the minimal die structure. */
15788
d521ce57 15789static const gdb_byte *
dee91e82
DE
15790read_partial_die (const struct die_reader_specs *reader,
15791 struct partial_die_info *part_die,
15792 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15793 const gdb_byte *info_ptr)
c906108c 15794{
dee91e82 15795 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15796 struct objfile *objfile = cu->objfile;
d521ce57 15797 const gdb_byte *buffer = reader->buffer;
fa238c03 15798 unsigned int i;
c906108c 15799 struct attribute attr;
c5aa993b 15800 int has_low_pc_attr = 0;
c906108c 15801 int has_high_pc_attr = 0;
91da1414 15802 int high_pc_relative = 0;
c906108c 15803
72bf9492 15804 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15805
b64f50a1 15806 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15807
15808 info_ptr += abbrev_len;
15809
15810 if (abbrev == NULL)
15811 return info_ptr;
15812
c906108c
SS
15813 part_die->tag = abbrev->tag;
15814 part_die->has_children = abbrev->has_children;
c906108c
SS
15815
15816 for (i = 0; i < abbrev->num_attrs; ++i)
15817 {
dee91e82 15818 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15819
15820 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15821 partial symbol table. */
c906108c
SS
15822 switch (attr.name)
15823 {
15824 case DW_AT_name:
71c25dea
TT
15825 switch (part_die->tag)
15826 {
15827 case DW_TAG_compile_unit:
95554aad 15828 case DW_TAG_partial_unit:
348e048f 15829 case DW_TAG_type_unit:
71c25dea
TT
15830 /* Compilation units have a DW_AT_name that is a filename, not
15831 a source language identifier. */
15832 case DW_TAG_enumeration_type:
15833 case DW_TAG_enumerator:
15834 /* These tags always have simple identifiers already; no need
15835 to canonicalize them. */
15836 part_die->name = DW_STRING (&attr);
15837 break;
15838 default:
15839 part_die->name
15840 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15841 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15842 break;
15843 }
c906108c 15844 break;
31ef98ae 15845 case DW_AT_linkage_name:
c906108c 15846 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15847 /* Note that both forms of linkage name might appear. We
15848 assume they will be the same, and we only store the last
15849 one we see. */
94af9270
KS
15850 if (cu->language == language_ada)
15851 part_die->name = DW_STRING (&attr);
abc72ce4 15852 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15853 break;
15854 case DW_AT_low_pc:
15855 has_low_pc_attr = 1;
31aa7e4e 15856 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15857 break;
15858 case DW_AT_high_pc:
15859 has_high_pc_attr = 1;
31aa7e4e
JB
15860 part_die->highpc = attr_value_as_address (&attr);
15861 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15862 high_pc_relative = 1;
c906108c
SS
15863 break;
15864 case DW_AT_location:
0963b4bd 15865 /* Support the .debug_loc offsets. */
8e19ed76
PS
15866 if (attr_form_is_block (&attr))
15867 {
95554aad 15868 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15869 }
3690dd37 15870 else if (attr_form_is_section_offset (&attr))
8e19ed76 15871 {
4d3c2250 15872 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15873 }
15874 else
15875 {
4d3c2250
KB
15876 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15877 "partial symbol information");
8e19ed76 15878 }
c906108c 15879 break;
c906108c
SS
15880 case DW_AT_external:
15881 part_die->is_external = DW_UNSND (&attr);
15882 break;
15883 case DW_AT_declaration:
15884 part_die->is_declaration = DW_UNSND (&attr);
15885 break;
15886 case DW_AT_type:
15887 part_die->has_type = 1;
15888 break;
15889 case DW_AT_abstract_origin:
15890 case DW_AT_specification:
72bf9492
DJ
15891 case DW_AT_extension:
15892 part_die->has_specification = 1;
c764a876 15893 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15894 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15895 || cu->per_cu->is_dwz);
c906108c
SS
15896 break;
15897 case DW_AT_sibling:
15898 /* Ignore absolute siblings, they might point outside of
15899 the current compile unit. */
15900 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15901 complaint (&symfile_complaints,
15902 _("ignoring absolute DW_AT_sibling"));
c906108c 15903 else
b9502d3f
WN
15904 {
15905 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15906 const gdb_byte *sibling_ptr = buffer + off;
15907
15908 if (sibling_ptr < info_ptr)
15909 complaint (&symfile_complaints,
15910 _("DW_AT_sibling points backwards"));
22869d73
KS
15911 else if (sibling_ptr > reader->buffer_end)
15912 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15913 else
15914 part_die->sibling = sibling_ptr;
15915 }
c906108c 15916 break;
fa4028e9
JB
15917 case DW_AT_byte_size:
15918 part_die->has_byte_size = 1;
15919 break;
ff908ebf
AW
15920 case DW_AT_const_value:
15921 part_die->has_const_value = 1;
15922 break;
68511cec
CES
15923 case DW_AT_calling_convention:
15924 /* DWARF doesn't provide a way to identify a program's source-level
15925 entry point. DW_AT_calling_convention attributes are only meant
15926 to describe functions' calling conventions.
15927
15928 However, because it's a necessary piece of information in
15929 Fortran, and because DW_CC_program is the only piece of debugging
15930 information whose definition refers to a 'main program' at all,
15931 several compilers have begun marking Fortran main programs with
15932 DW_CC_program --- even when those functions use the standard
15933 calling conventions.
15934
15935 So until DWARF specifies a way to provide this information and
15936 compilers pick up the new representation, we'll support this
15937 practice. */
15938 if (DW_UNSND (&attr) == DW_CC_program
15939 && cu->language == language_fortran)
3d548a53 15940 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15941 break;
481860b3
GB
15942 case DW_AT_inline:
15943 if (DW_UNSND (&attr) == DW_INL_inlined
15944 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15945 part_die->may_be_inlined = 1;
15946 break;
95554aad
TT
15947
15948 case DW_AT_import:
15949 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15950 {
15951 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15952 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15953 || cu->per_cu->is_dwz);
15954 }
95554aad
TT
15955 break;
15956
c906108c
SS
15957 default:
15958 break;
15959 }
15960 }
15961
91da1414
MW
15962 if (high_pc_relative)
15963 part_die->highpc += part_die->lowpc;
15964
9373cf26
JK
15965 if (has_low_pc_attr && has_high_pc_attr)
15966 {
15967 /* When using the GNU linker, .gnu.linkonce. sections are used to
15968 eliminate duplicate copies of functions and vtables and such.
15969 The linker will arbitrarily choose one and discard the others.
15970 The AT_*_pc values for such functions refer to local labels in
15971 these sections. If the section from that file was discarded, the
15972 labels are not in the output, so the relocs get a value of 0.
15973 If this is a discarded function, mark the pc bounds as invalid,
15974 so that GDB will ignore it. */
15975 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15976 {
bb5ed363 15977 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15978
15979 complaint (&symfile_complaints,
15980 _("DW_AT_low_pc %s is zero "
15981 "for DIE at 0x%x [in module %s]"),
15982 paddress (gdbarch, part_die->lowpc),
4262abfb 15983 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15984 }
15985 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15986 else if (part_die->lowpc >= part_die->highpc)
15987 {
bb5ed363 15988 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15989
15990 complaint (&symfile_complaints,
15991 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15992 "for DIE at 0x%x [in module %s]"),
15993 paddress (gdbarch, part_die->lowpc),
15994 paddress (gdbarch, part_die->highpc),
4262abfb 15995 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15996 }
15997 else
15998 part_die->has_pc_info = 1;
15999 }
85cbf3d3 16000
c906108c
SS
16001 return info_ptr;
16002}
16003
72bf9492
DJ
16004/* Find a cached partial DIE at OFFSET in CU. */
16005
16006static struct partial_die_info *
b64f50a1 16007find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
16008{
16009 struct partial_die_info *lookup_die = NULL;
16010 struct partial_die_info part_die;
16011
16012 part_die.offset = offset;
b64f50a1
JK
16013 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
16014 offset.sect_off);
72bf9492 16015
72bf9492
DJ
16016 return lookup_die;
16017}
16018
348e048f
DE
16019/* Find a partial DIE at OFFSET, which may or may not be in CU,
16020 except in the case of .debug_types DIEs which do not reference
16021 outside their CU (they do however referencing other types via
55f1336d 16022 DW_FORM_ref_sig8). */
72bf9492
DJ
16023
16024static struct partial_die_info *
36586728 16025find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 16026{
bb5ed363 16027 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16028 struct dwarf2_per_cu_data *per_cu = NULL;
16029 struct partial_die_info *pd = NULL;
72bf9492 16030
36586728
TT
16031 if (offset_in_dwz == cu->per_cu->is_dwz
16032 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
16033 {
16034 pd = find_partial_die_in_comp_unit (offset, cu);
16035 if (pd != NULL)
16036 return pd;
0d99eb77
DE
16037 /* We missed recording what we needed.
16038 Load all dies and try again. */
16039 per_cu = cu->per_cu;
5afb4e99 16040 }
0d99eb77
DE
16041 else
16042 {
16043 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16044 if (cu->per_cu->is_debug_types)
0d99eb77
DE
16045 {
16046 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16047 " external reference to offset 0x%lx [in module %s].\n"),
16048 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16049 bfd_get_filename (objfile->obfd));
16050 }
36586728
TT
16051 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16052 objfile);
72bf9492 16053
0d99eb77
DE
16054 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16055 load_partial_comp_unit (per_cu);
ae038cb0 16056
0d99eb77
DE
16057 per_cu->cu->last_used = 0;
16058 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16059 }
5afb4e99 16060
dee91e82
DE
16061 /* If we didn't find it, and not all dies have been loaded,
16062 load them all and try again. */
16063
5afb4e99
DJ
16064 if (pd == NULL && per_cu->load_all_dies == 0)
16065 {
5afb4e99 16066 per_cu->load_all_dies = 1;
fd820528
DE
16067
16068 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16069 THIS_CU->cu may already be in use. So we can't just free it and
16070 replace its DIEs with the ones we read in. Instead, we leave those
16071 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16072 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16073 set. */
dee91e82 16074 load_partial_comp_unit (per_cu);
5afb4e99
DJ
16075
16076 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16077 }
16078
16079 if (pd == NULL)
16080 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16081 _("could not find partial DIE 0x%x "
16082 "in cache [from module %s]\n"),
b64f50a1 16083 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 16084 return pd;
72bf9492
DJ
16085}
16086
abc72ce4
DE
16087/* See if we can figure out if the class lives in a namespace. We do
16088 this by looking for a member function; its demangled name will
16089 contain namespace info, if there is any. */
16090
16091static void
16092guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16093 struct dwarf2_cu *cu)
16094{
16095 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16096 what template types look like, because the demangler
16097 frequently doesn't give the same name as the debug info. We
16098 could fix this by only using the demangled name to get the
16099 prefix (but see comment in read_structure_type). */
16100
16101 struct partial_die_info *real_pdi;
16102 struct partial_die_info *child_pdi;
16103
16104 /* If this DIE (this DIE's specification, if any) has a parent, then
16105 we should not do this. We'll prepend the parent's fully qualified
16106 name when we create the partial symbol. */
16107
16108 real_pdi = struct_pdi;
16109 while (real_pdi->has_specification)
36586728
TT
16110 real_pdi = find_partial_die (real_pdi->spec_offset,
16111 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16112
16113 if (real_pdi->die_parent != NULL)
16114 return;
16115
16116 for (child_pdi = struct_pdi->die_child;
16117 child_pdi != NULL;
16118 child_pdi = child_pdi->die_sibling)
16119 {
16120 if (child_pdi->tag == DW_TAG_subprogram
16121 && child_pdi->linkage_name != NULL)
16122 {
16123 char *actual_class_name
16124 = language_class_name_from_physname (cu->language_defn,
16125 child_pdi->linkage_name);
16126 if (actual_class_name != NULL)
16127 {
16128 struct_pdi->name
34a68019 16129 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
16130 actual_class_name,
16131 strlen (actual_class_name));
abc72ce4
DE
16132 xfree (actual_class_name);
16133 }
16134 break;
16135 }
16136 }
16137}
16138
72bf9492
DJ
16139/* Adjust PART_DIE before generating a symbol for it. This function
16140 may set the is_external flag or change the DIE's name. */
16141
16142static void
16143fixup_partial_die (struct partial_die_info *part_die,
16144 struct dwarf2_cu *cu)
16145{
abc72ce4
DE
16146 /* Once we've fixed up a die, there's no point in doing so again.
16147 This also avoids a memory leak if we were to call
16148 guess_partial_die_structure_name multiple times. */
16149 if (part_die->fixup_called)
16150 return;
16151
72bf9492
DJ
16152 /* If we found a reference attribute and the DIE has no name, try
16153 to find a name in the referred to DIE. */
16154
16155 if (part_die->name == NULL && part_die->has_specification)
16156 {
16157 struct partial_die_info *spec_die;
72bf9492 16158
36586728
TT
16159 spec_die = find_partial_die (part_die->spec_offset,
16160 part_die->spec_is_dwz, cu);
72bf9492 16161
10b3939b 16162 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16163
16164 if (spec_die->name)
16165 {
16166 part_die->name = spec_die->name;
16167
16168 /* Copy DW_AT_external attribute if it is set. */
16169 if (spec_die->is_external)
16170 part_die->is_external = spec_die->is_external;
16171 }
16172 }
16173
16174 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16175
16176 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16177 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16178
abc72ce4
DE
16179 /* If there is no parent die to provide a namespace, and there are
16180 children, see if we can determine the namespace from their linkage
122d1940 16181 name. */
abc72ce4 16182 if (cu->language == language_cplus
8b70b953 16183 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16184 && part_die->die_parent == NULL
16185 && part_die->has_children
16186 && (part_die->tag == DW_TAG_class_type
16187 || part_die->tag == DW_TAG_structure_type
16188 || part_die->tag == DW_TAG_union_type))
16189 guess_partial_die_structure_name (part_die, cu);
16190
53832f31
TT
16191 /* GCC might emit a nameless struct or union that has a linkage
16192 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16193 if (part_die->name == NULL
96408a79
SA
16194 && (part_die->tag == DW_TAG_class_type
16195 || part_die->tag == DW_TAG_interface_type
16196 || part_die->tag == DW_TAG_structure_type
16197 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16198 && part_die->linkage_name != NULL)
16199 {
16200 char *demangled;
16201
8de20a37 16202 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16203 if (demangled)
16204 {
96408a79
SA
16205 const char *base;
16206
16207 /* Strip any leading namespaces/classes, keep only the base name.
16208 DW_AT_name for named DIEs does not contain the prefixes. */
16209 base = strrchr (demangled, ':');
16210 if (base && base > demangled && base[-1] == ':')
16211 base++;
16212 else
16213 base = demangled;
16214
34a68019
TT
16215 part_die->name
16216 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16217 base, strlen (base));
53832f31
TT
16218 xfree (demangled);
16219 }
16220 }
16221
abc72ce4 16222 part_die->fixup_called = 1;
72bf9492
DJ
16223}
16224
a8329558 16225/* Read an attribute value described by an attribute form. */
c906108c 16226
d521ce57 16227static const gdb_byte *
dee91e82
DE
16228read_attribute_value (const struct die_reader_specs *reader,
16229 struct attribute *attr, unsigned form,
d521ce57 16230 const gdb_byte *info_ptr)
c906108c 16231{
dee91e82 16232 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16233 struct objfile *objfile = cu->objfile;
16234 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16235 bfd *abfd = reader->abfd;
e7c27a73 16236 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16237 unsigned int bytes_read;
16238 struct dwarf_block *blk;
16239
aead7601 16240 attr->form = (enum dwarf_form) form;
a8329558 16241 switch (form)
c906108c 16242 {
c906108c 16243 case DW_FORM_ref_addr:
ae411497 16244 if (cu->header.version == 2)
4568ecf9 16245 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16246 else
4568ecf9
DE
16247 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16248 &cu->header, &bytes_read);
ae411497
TT
16249 info_ptr += bytes_read;
16250 break;
36586728
TT
16251 case DW_FORM_GNU_ref_alt:
16252 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16253 info_ptr += bytes_read;
16254 break;
ae411497 16255 case DW_FORM_addr:
e7c27a73 16256 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16257 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16258 info_ptr += bytes_read;
c906108c
SS
16259 break;
16260 case DW_FORM_block2:
7b5a2f43 16261 blk = dwarf_alloc_block (cu);
c906108c
SS
16262 blk->size = read_2_bytes (abfd, info_ptr);
16263 info_ptr += 2;
16264 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16265 info_ptr += blk->size;
16266 DW_BLOCK (attr) = blk;
16267 break;
16268 case DW_FORM_block4:
7b5a2f43 16269 blk = dwarf_alloc_block (cu);
c906108c
SS
16270 blk->size = read_4_bytes (abfd, info_ptr);
16271 info_ptr += 4;
16272 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16273 info_ptr += blk->size;
16274 DW_BLOCK (attr) = blk;
16275 break;
16276 case DW_FORM_data2:
16277 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16278 info_ptr += 2;
16279 break;
16280 case DW_FORM_data4:
16281 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16282 info_ptr += 4;
16283 break;
16284 case DW_FORM_data8:
16285 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16286 info_ptr += 8;
16287 break;
2dc7f7b3
TT
16288 case DW_FORM_sec_offset:
16289 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16290 info_ptr += bytes_read;
16291 break;
c906108c 16292 case DW_FORM_string:
9b1c24c8 16293 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16294 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16295 info_ptr += bytes_read;
16296 break;
4bdf3d34 16297 case DW_FORM_strp:
36586728
TT
16298 if (!cu->per_cu->is_dwz)
16299 {
16300 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16301 &bytes_read);
16302 DW_STRING_IS_CANONICAL (attr) = 0;
16303 info_ptr += bytes_read;
16304 break;
16305 }
16306 /* FALLTHROUGH */
16307 case DW_FORM_GNU_strp_alt:
16308 {
16309 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16310 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16311 &bytes_read);
16312
16313 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16314 DW_STRING_IS_CANONICAL (attr) = 0;
16315 info_ptr += bytes_read;
16316 }
4bdf3d34 16317 break;
2dc7f7b3 16318 case DW_FORM_exprloc:
c906108c 16319 case DW_FORM_block:
7b5a2f43 16320 blk = dwarf_alloc_block (cu);
c906108c
SS
16321 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16322 info_ptr += bytes_read;
16323 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16324 info_ptr += blk->size;
16325 DW_BLOCK (attr) = blk;
16326 break;
16327 case DW_FORM_block1:
7b5a2f43 16328 blk = dwarf_alloc_block (cu);
c906108c
SS
16329 blk->size = read_1_byte (abfd, info_ptr);
16330 info_ptr += 1;
16331 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16332 info_ptr += blk->size;
16333 DW_BLOCK (attr) = blk;
16334 break;
16335 case DW_FORM_data1:
16336 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16337 info_ptr += 1;
16338 break;
16339 case DW_FORM_flag:
16340 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16341 info_ptr += 1;
16342 break;
2dc7f7b3
TT
16343 case DW_FORM_flag_present:
16344 DW_UNSND (attr) = 1;
16345 break;
c906108c
SS
16346 case DW_FORM_sdata:
16347 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16348 info_ptr += bytes_read;
16349 break;
16350 case DW_FORM_udata:
16351 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16352 info_ptr += bytes_read;
16353 break;
16354 case DW_FORM_ref1:
4568ecf9
DE
16355 DW_UNSND (attr) = (cu->header.offset.sect_off
16356 + read_1_byte (abfd, info_ptr));
c906108c
SS
16357 info_ptr += 1;
16358 break;
16359 case DW_FORM_ref2:
4568ecf9
DE
16360 DW_UNSND (attr) = (cu->header.offset.sect_off
16361 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16362 info_ptr += 2;
16363 break;
16364 case DW_FORM_ref4:
4568ecf9
DE
16365 DW_UNSND (attr) = (cu->header.offset.sect_off
16366 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16367 info_ptr += 4;
16368 break;
613e1657 16369 case DW_FORM_ref8:
4568ecf9
DE
16370 DW_UNSND (attr) = (cu->header.offset.sect_off
16371 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16372 info_ptr += 8;
16373 break;
55f1336d 16374 case DW_FORM_ref_sig8:
ac9ec31b 16375 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16376 info_ptr += 8;
16377 break;
c906108c 16378 case DW_FORM_ref_udata:
4568ecf9
DE
16379 DW_UNSND (attr) = (cu->header.offset.sect_off
16380 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16381 info_ptr += bytes_read;
16382 break;
c906108c 16383 case DW_FORM_indirect:
a8329558
KW
16384 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16385 info_ptr += bytes_read;
dee91e82 16386 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16387 break;
3019eac3
DE
16388 case DW_FORM_GNU_addr_index:
16389 if (reader->dwo_file == NULL)
16390 {
16391 /* For now flag a hard error.
16392 Later we can turn this into a complaint. */
16393 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16394 dwarf_form_name (form),
16395 bfd_get_filename (abfd));
16396 }
16397 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16398 info_ptr += bytes_read;
16399 break;
16400 case DW_FORM_GNU_str_index:
16401 if (reader->dwo_file == NULL)
16402 {
16403 /* For now flag a hard error.
16404 Later we can turn this into a complaint if warranted. */
16405 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16406 dwarf_form_name (form),
16407 bfd_get_filename (abfd));
16408 }
16409 {
16410 ULONGEST str_index =
16411 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16412
342587c4 16413 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16414 DW_STRING_IS_CANONICAL (attr) = 0;
16415 info_ptr += bytes_read;
16416 }
16417 break;
c906108c 16418 default:
8a3fe4f8 16419 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16420 dwarf_form_name (form),
16421 bfd_get_filename (abfd));
c906108c 16422 }
28e94949 16423
36586728 16424 /* Super hack. */
7771576e 16425 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16426 attr->form = DW_FORM_GNU_ref_alt;
16427
28e94949
JB
16428 /* We have seen instances where the compiler tried to emit a byte
16429 size attribute of -1 which ended up being encoded as an unsigned
16430 0xffffffff. Although 0xffffffff is technically a valid size value,
16431 an object of this size seems pretty unlikely so we can relatively
16432 safely treat these cases as if the size attribute was invalid and
16433 treat them as zero by default. */
16434 if (attr->name == DW_AT_byte_size
16435 && form == DW_FORM_data4
16436 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16437 {
16438 complaint
16439 (&symfile_complaints,
43bbcdc2
PH
16440 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16441 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16442 DW_UNSND (attr) = 0;
16443 }
28e94949 16444
c906108c
SS
16445 return info_ptr;
16446}
16447
a8329558
KW
16448/* Read an attribute described by an abbreviated attribute. */
16449
d521ce57 16450static const gdb_byte *
dee91e82
DE
16451read_attribute (const struct die_reader_specs *reader,
16452 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16453 const gdb_byte *info_ptr)
a8329558
KW
16454{
16455 attr->name = abbrev->name;
dee91e82 16456 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16457}
16458
0963b4bd 16459/* Read dwarf information from a buffer. */
c906108c
SS
16460
16461static unsigned int
a1855c1d 16462read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16463{
fe1b8b76 16464 return bfd_get_8 (abfd, buf);
c906108c
SS
16465}
16466
16467static int
a1855c1d 16468read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16469{
fe1b8b76 16470 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16471}
16472
16473static unsigned int
a1855c1d 16474read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16475{
fe1b8b76 16476 return bfd_get_16 (abfd, buf);
c906108c
SS
16477}
16478
21ae7a4d 16479static int
a1855c1d 16480read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16481{
16482 return bfd_get_signed_16 (abfd, buf);
16483}
16484
c906108c 16485static unsigned int
a1855c1d 16486read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16487{
fe1b8b76 16488 return bfd_get_32 (abfd, buf);
c906108c
SS
16489}
16490
21ae7a4d 16491static int
a1855c1d 16492read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16493{
16494 return bfd_get_signed_32 (abfd, buf);
16495}
16496
93311388 16497static ULONGEST
a1855c1d 16498read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16499{
fe1b8b76 16500 return bfd_get_64 (abfd, buf);
c906108c
SS
16501}
16502
16503static CORE_ADDR
d521ce57 16504read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16505 unsigned int *bytes_read)
c906108c 16506{
e7c27a73 16507 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16508 CORE_ADDR retval = 0;
16509
107d2387 16510 if (cu_header->signed_addr_p)
c906108c 16511 {
107d2387
AC
16512 switch (cu_header->addr_size)
16513 {
16514 case 2:
fe1b8b76 16515 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16516 break;
16517 case 4:
fe1b8b76 16518 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16519 break;
16520 case 8:
fe1b8b76 16521 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16522 break;
16523 default:
8e65ff28 16524 internal_error (__FILE__, __LINE__,
e2e0b3e5 16525 _("read_address: bad switch, signed [in module %s]"),
659b0389 16526 bfd_get_filename (abfd));
107d2387
AC
16527 }
16528 }
16529 else
16530 {
16531 switch (cu_header->addr_size)
16532 {
16533 case 2:
fe1b8b76 16534 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16535 break;
16536 case 4:
fe1b8b76 16537 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16538 break;
16539 case 8:
fe1b8b76 16540 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16541 break;
16542 default:
8e65ff28 16543 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16544 _("read_address: bad switch, "
16545 "unsigned [in module %s]"),
659b0389 16546 bfd_get_filename (abfd));
107d2387 16547 }
c906108c 16548 }
64367e0a 16549
107d2387
AC
16550 *bytes_read = cu_header->addr_size;
16551 return retval;
c906108c
SS
16552}
16553
f7ef9339 16554/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16555 specification allows the initial length to take up either 4 bytes
16556 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16557 bytes describe the length and all offsets will be 8 bytes in length
16558 instead of 4.
16559
f7ef9339
KB
16560 An older, non-standard 64-bit format is also handled by this
16561 function. The older format in question stores the initial length
16562 as an 8-byte quantity without an escape value. Lengths greater
16563 than 2^32 aren't very common which means that the initial 4 bytes
16564 is almost always zero. Since a length value of zero doesn't make
16565 sense for the 32-bit format, this initial zero can be considered to
16566 be an escape value which indicates the presence of the older 64-bit
16567 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16568 greater than 4GB. If it becomes necessary to handle lengths
16569 somewhat larger than 4GB, we could allow other small values (such
16570 as the non-sensical values of 1, 2, and 3) to also be used as
16571 escape values indicating the presence of the old format.
f7ef9339 16572
917c78fc
MK
16573 The value returned via bytes_read should be used to increment the
16574 relevant pointer after calling read_initial_length().
c764a876 16575
613e1657
KB
16576 [ Note: read_initial_length() and read_offset() are based on the
16577 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16578 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16579 from:
16580
f7ef9339 16581 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16582
613e1657
KB
16583 This document is only a draft and is subject to change. (So beware.)
16584
f7ef9339 16585 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16586 determined empirically by examining 64-bit ELF files produced by
16587 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16588
16589 - Kevin, July 16, 2002
613e1657
KB
16590 ] */
16591
16592static LONGEST
d521ce57 16593read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16594{
fe1b8b76 16595 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16596
dd373385 16597 if (length == 0xffffffff)
613e1657 16598 {
fe1b8b76 16599 length = bfd_get_64 (abfd, buf + 4);
613e1657 16600 *bytes_read = 12;
613e1657 16601 }
dd373385 16602 else if (length == 0)
f7ef9339 16603 {
dd373385 16604 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16605 length = bfd_get_64 (abfd, buf);
f7ef9339 16606 *bytes_read = 8;
f7ef9339 16607 }
613e1657
KB
16608 else
16609 {
16610 *bytes_read = 4;
613e1657
KB
16611 }
16612
c764a876
DE
16613 return length;
16614}
dd373385 16615
c764a876
DE
16616/* Cover function for read_initial_length.
16617 Returns the length of the object at BUF, and stores the size of the
16618 initial length in *BYTES_READ and stores the size that offsets will be in
16619 *OFFSET_SIZE.
16620 If the initial length size is not equivalent to that specified in
16621 CU_HEADER then issue a complaint.
16622 This is useful when reading non-comp-unit headers. */
dd373385 16623
c764a876 16624static LONGEST
d521ce57 16625read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16626 const struct comp_unit_head *cu_header,
16627 unsigned int *bytes_read,
16628 unsigned int *offset_size)
16629{
16630 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16631
16632 gdb_assert (cu_header->initial_length_size == 4
16633 || cu_header->initial_length_size == 8
16634 || cu_header->initial_length_size == 12);
16635
16636 if (cu_header->initial_length_size != *bytes_read)
16637 complaint (&symfile_complaints,
16638 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16639
c764a876 16640 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16641 return length;
613e1657
KB
16642}
16643
16644/* Read an offset from the data stream. The size of the offset is
917c78fc 16645 given by cu_header->offset_size. */
613e1657
KB
16646
16647static LONGEST
d521ce57
TT
16648read_offset (bfd *abfd, const gdb_byte *buf,
16649 const struct comp_unit_head *cu_header,
891d2f0b 16650 unsigned int *bytes_read)
c764a876
DE
16651{
16652 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16653
c764a876
DE
16654 *bytes_read = cu_header->offset_size;
16655 return offset;
16656}
16657
16658/* Read an offset from the data stream. */
16659
16660static LONGEST
d521ce57 16661read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16662{
16663 LONGEST retval = 0;
16664
c764a876 16665 switch (offset_size)
613e1657
KB
16666 {
16667 case 4:
fe1b8b76 16668 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16669 break;
16670 case 8:
fe1b8b76 16671 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16672 break;
16673 default:
8e65ff28 16674 internal_error (__FILE__, __LINE__,
c764a876 16675 _("read_offset_1: bad switch [in module %s]"),
659b0389 16676 bfd_get_filename (abfd));
613e1657
KB
16677 }
16678
917c78fc 16679 return retval;
613e1657
KB
16680}
16681
d521ce57
TT
16682static const gdb_byte *
16683read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16684{
16685 /* If the size of a host char is 8 bits, we can return a pointer
16686 to the buffer, otherwise we have to copy the data to a buffer
16687 allocated on the temporary obstack. */
4bdf3d34 16688 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16689 return buf;
c906108c
SS
16690}
16691
d521ce57
TT
16692static const char *
16693read_direct_string (bfd *abfd, const gdb_byte *buf,
16694 unsigned int *bytes_read_ptr)
c906108c
SS
16695{
16696 /* If the size of a host char is 8 bits, we can return a pointer
16697 to the string, otherwise we have to copy the string to a buffer
16698 allocated on the temporary obstack. */
4bdf3d34 16699 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16700 if (*buf == '\0')
16701 {
16702 *bytes_read_ptr = 1;
16703 return NULL;
16704 }
d521ce57
TT
16705 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16706 return (const char *) buf;
4bdf3d34
JJ
16707}
16708
d521ce57 16709static const char *
cf2c3c16 16710read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16711{
be391dca 16712 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16713 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16714 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16715 bfd_get_filename (abfd));
dce234bc 16716 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16717 error (_("DW_FORM_strp pointing outside of "
16718 ".debug_str section [in module %s]"),
16719 bfd_get_filename (abfd));
4bdf3d34 16720 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16721 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16722 return NULL;
d521ce57 16723 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16724}
16725
36586728
TT
16726/* Read a string at offset STR_OFFSET in the .debug_str section from
16727 the .dwz file DWZ. Throw an error if the offset is too large. If
16728 the string consists of a single NUL byte, return NULL; otherwise
16729 return a pointer to the string. */
16730
d521ce57 16731static const char *
36586728
TT
16732read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16733{
16734 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16735
16736 if (dwz->str.buffer == NULL)
16737 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16738 "section [in module %s]"),
16739 bfd_get_filename (dwz->dwz_bfd));
16740 if (str_offset >= dwz->str.size)
16741 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16742 ".debug_str section [in module %s]"),
16743 bfd_get_filename (dwz->dwz_bfd));
16744 gdb_assert (HOST_CHAR_BIT == 8);
16745 if (dwz->str.buffer[str_offset] == '\0')
16746 return NULL;
d521ce57 16747 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16748}
16749
d521ce57
TT
16750static const char *
16751read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16752 const struct comp_unit_head *cu_header,
16753 unsigned int *bytes_read_ptr)
16754{
16755 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16756
16757 return read_indirect_string_at_offset (abfd, str_offset);
16758}
16759
12df843f 16760static ULONGEST
d521ce57
TT
16761read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16762 unsigned int *bytes_read_ptr)
c906108c 16763{
12df843f 16764 ULONGEST result;
ce5d95e1 16765 unsigned int num_read;
c906108c
SS
16766 int i, shift;
16767 unsigned char byte;
16768
16769 result = 0;
16770 shift = 0;
16771 num_read = 0;
16772 i = 0;
16773 while (1)
16774 {
fe1b8b76 16775 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16776 buf++;
16777 num_read++;
12df843f 16778 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16779 if ((byte & 128) == 0)
16780 {
16781 break;
16782 }
16783 shift += 7;
16784 }
16785 *bytes_read_ptr = num_read;
16786 return result;
16787}
16788
12df843f 16789static LONGEST
d521ce57
TT
16790read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16791 unsigned int *bytes_read_ptr)
c906108c 16792{
12df843f 16793 LONGEST result;
77e0b926 16794 int i, shift, num_read;
c906108c
SS
16795 unsigned char byte;
16796
16797 result = 0;
16798 shift = 0;
c906108c
SS
16799 num_read = 0;
16800 i = 0;
16801 while (1)
16802 {
fe1b8b76 16803 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16804 buf++;
16805 num_read++;
12df843f 16806 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16807 shift += 7;
16808 if ((byte & 128) == 0)
16809 {
16810 break;
16811 }
16812 }
77e0b926 16813 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16814 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16815 *bytes_read_ptr = num_read;
16816 return result;
16817}
16818
3019eac3
DE
16819/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16820 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16821 ADDR_SIZE is the size of addresses from the CU header. */
16822
16823static CORE_ADDR
16824read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16825{
16826 struct objfile *objfile = dwarf2_per_objfile->objfile;
16827 bfd *abfd = objfile->obfd;
16828 const gdb_byte *info_ptr;
16829
16830 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16831 if (dwarf2_per_objfile->addr.buffer == NULL)
16832 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16833 objfile_name (objfile));
3019eac3
DE
16834 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16835 error (_("DW_FORM_addr_index pointing outside of "
16836 ".debug_addr section [in module %s]"),
4262abfb 16837 objfile_name (objfile));
3019eac3
DE
16838 info_ptr = (dwarf2_per_objfile->addr.buffer
16839 + addr_base + addr_index * addr_size);
16840 if (addr_size == 4)
16841 return bfd_get_32 (abfd, info_ptr);
16842 else
16843 return bfd_get_64 (abfd, info_ptr);
16844}
16845
16846/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16847
16848static CORE_ADDR
16849read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16850{
16851 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16852}
16853
16854/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16855
16856static CORE_ADDR
d521ce57 16857read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16858 unsigned int *bytes_read)
16859{
16860 bfd *abfd = cu->objfile->obfd;
16861 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16862
16863 return read_addr_index (cu, addr_index);
16864}
16865
16866/* Data structure to pass results from dwarf2_read_addr_index_reader
16867 back to dwarf2_read_addr_index. */
16868
16869struct dwarf2_read_addr_index_data
16870{
16871 ULONGEST addr_base;
16872 int addr_size;
16873};
16874
16875/* die_reader_func for dwarf2_read_addr_index. */
16876
16877static void
16878dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16879 const gdb_byte *info_ptr,
3019eac3
DE
16880 struct die_info *comp_unit_die,
16881 int has_children,
16882 void *data)
16883{
16884 struct dwarf2_cu *cu = reader->cu;
16885 struct dwarf2_read_addr_index_data *aidata =
16886 (struct dwarf2_read_addr_index_data *) data;
16887
16888 aidata->addr_base = cu->addr_base;
16889 aidata->addr_size = cu->header.addr_size;
16890}
16891
16892/* Given an index in .debug_addr, fetch the value.
16893 NOTE: This can be called during dwarf expression evaluation,
16894 long after the debug information has been read, and thus per_cu->cu
16895 may no longer exist. */
16896
16897CORE_ADDR
16898dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16899 unsigned int addr_index)
16900{
16901 struct objfile *objfile = per_cu->objfile;
16902 struct dwarf2_cu *cu = per_cu->cu;
16903 ULONGEST addr_base;
16904 int addr_size;
16905
16906 /* This is intended to be called from outside this file. */
16907 dw2_setup (objfile);
16908
16909 /* We need addr_base and addr_size.
16910 If we don't have PER_CU->cu, we have to get it.
16911 Nasty, but the alternative is storing the needed info in PER_CU,
16912 which at this point doesn't seem justified: it's not clear how frequently
16913 it would get used and it would increase the size of every PER_CU.
16914 Entry points like dwarf2_per_cu_addr_size do a similar thing
16915 so we're not in uncharted territory here.
16916 Alas we need to be a bit more complicated as addr_base is contained
16917 in the DIE.
16918
16919 We don't need to read the entire CU(/TU).
16920 We just need the header and top level die.
a1b64ce1 16921
3019eac3 16922 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16923 For now we skip this optimization. */
3019eac3
DE
16924
16925 if (cu != NULL)
16926 {
16927 addr_base = cu->addr_base;
16928 addr_size = cu->header.addr_size;
16929 }
16930 else
16931 {
16932 struct dwarf2_read_addr_index_data aidata;
16933
a1b64ce1
DE
16934 /* Note: We can't use init_cutu_and_read_dies_simple here,
16935 we need addr_base. */
16936 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16937 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16938 addr_base = aidata.addr_base;
16939 addr_size = aidata.addr_size;
16940 }
16941
16942 return read_addr_index_1 (addr_index, addr_base, addr_size);
16943}
16944
57d63ce2
DE
16945/* Given a DW_FORM_GNU_str_index, fetch the string.
16946 This is only used by the Fission support. */
3019eac3 16947
d521ce57 16948static const char *
342587c4 16949read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16950{
16951 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16952 const char *objf_name = objfile_name (objfile);
3019eac3 16953 bfd *abfd = objfile->obfd;
342587c4 16954 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16955 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16956 struct dwarf2_section_info *str_offsets_section =
16957 &reader->dwo_file->sections.str_offsets;
d521ce57 16958 const gdb_byte *info_ptr;
3019eac3 16959 ULONGEST str_offset;
57d63ce2 16960 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16961
73869dc2
DE
16962 dwarf2_read_section (objfile, str_section);
16963 dwarf2_read_section (objfile, str_offsets_section);
16964 if (str_section->buffer == NULL)
57d63ce2 16965 error (_("%s used without .debug_str.dwo section"
3019eac3 16966 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16967 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16968 if (str_offsets_section->buffer == NULL)
57d63ce2 16969 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16970 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16971 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16972 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16973 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16974 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16975 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16976 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16977 + str_index * cu->header.offset_size);
16978 if (cu->header.offset_size == 4)
16979 str_offset = bfd_get_32 (abfd, info_ptr);
16980 else
16981 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16982 if (str_offset >= str_section->size)
57d63ce2 16983 error (_("Offset from %s pointing outside of"
3019eac3 16984 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16985 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16986 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16987}
16988
3019eac3
DE
16989/* Return the length of an LEB128 number in BUF. */
16990
16991static int
16992leb128_size (const gdb_byte *buf)
16993{
16994 const gdb_byte *begin = buf;
16995 gdb_byte byte;
16996
16997 while (1)
16998 {
16999 byte = *buf++;
17000 if ((byte & 128) == 0)
17001 return buf - begin;
17002 }
17003}
17004
c906108c 17005static void
e142c38c 17006set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
17007{
17008 switch (lang)
17009 {
17010 case DW_LANG_C89:
76bee0cc 17011 case DW_LANG_C99:
0cfd832f 17012 case DW_LANG_C11:
c906108c 17013 case DW_LANG_C:
d1be3247 17014 case DW_LANG_UPC:
e142c38c 17015 cu->language = language_c;
c906108c
SS
17016 break;
17017 case DW_LANG_C_plus_plus:
0cfd832f
MW
17018 case DW_LANG_C_plus_plus_11:
17019 case DW_LANG_C_plus_plus_14:
e142c38c 17020 cu->language = language_cplus;
c906108c 17021 break;
6aecb9c2
JB
17022 case DW_LANG_D:
17023 cu->language = language_d;
17024 break;
c906108c
SS
17025 case DW_LANG_Fortran77:
17026 case DW_LANG_Fortran90:
b21b22e0 17027 case DW_LANG_Fortran95:
f7de9aab
MW
17028 case DW_LANG_Fortran03:
17029 case DW_LANG_Fortran08:
e142c38c 17030 cu->language = language_fortran;
c906108c 17031 break;
a766d390
DE
17032 case DW_LANG_Go:
17033 cu->language = language_go;
17034 break;
c906108c 17035 case DW_LANG_Mips_Assembler:
e142c38c 17036 cu->language = language_asm;
c906108c 17037 break;
bebd888e 17038 case DW_LANG_Java:
e142c38c 17039 cu->language = language_java;
bebd888e 17040 break;
c906108c 17041 case DW_LANG_Ada83:
8aaf0b47 17042 case DW_LANG_Ada95:
bc5f45f8
JB
17043 cu->language = language_ada;
17044 break;
72019c9c
GM
17045 case DW_LANG_Modula2:
17046 cu->language = language_m2;
17047 break;
fe8e67fd
PM
17048 case DW_LANG_Pascal83:
17049 cu->language = language_pascal;
17050 break;
22566fbd
DJ
17051 case DW_LANG_ObjC:
17052 cu->language = language_objc;
17053 break;
c906108c
SS
17054 case DW_LANG_Cobol74:
17055 case DW_LANG_Cobol85:
c906108c 17056 default:
e142c38c 17057 cu->language = language_minimal;
c906108c
SS
17058 break;
17059 }
e142c38c 17060 cu->language_defn = language_def (cu->language);
c906108c
SS
17061}
17062
17063/* Return the named attribute or NULL if not there. */
17064
17065static struct attribute *
e142c38c 17066dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17067{
a48e046c 17068 for (;;)
c906108c 17069 {
a48e046c
TT
17070 unsigned int i;
17071 struct attribute *spec = NULL;
17072
17073 for (i = 0; i < die->num_attrs; ++i)
17074 {
17075 if (die->attrs[i].name == name)
17076 return &die->attrs[i];
17077 if (die->attrs[i].name == DW_AT_specification
17078 || die->attrs[i].name == DW_AT_abstract_origin)
17079 spec = &die->attrs[i];
17080 }
17081
17082 if (!spec)
17083 break;
c906108c 17084
f2f0e013 17085 die = follow_die_ref (die, spec, &cu);
f2f0e013 17086 }
c5aa993b 17087
c906108c
SS
17088 return NULL;
17089}
17090
348e048f
DE
17091/* Return the named attribute or NULL if not there,
17092 but do not follow DW_AT_specification, etc.
17093 This is for use in contexts where we're reading .debug_types dies.
17094 Following DW_AT_specification, DW_AT_abstract_origin will take us
17095 back up the chain, and we want to go down. */
17096
17097static struct attribute *
45e58e77 17098dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17099{
17100 unsigned int i;
17101
17102 for (i = 0; i < die->num_attrs; ++i)
17103 if (die->attrs[i].name == name)
17104 return &die->attrs[i];
17105
17106 return NULL;
17107}
17108
05cf31d1
JB
17109/* Return non-zero iff the attribute NAME is defined for the given DIE,
17110 and holds a non-zero value. This function should only be used for
2dc7f7b3 17111 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17112
17113static int
17114dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17115{
17116 struct attribute *attr = dwarf2_attr (die, name, cu);
17117
17118 return (attr && DW_UNSND (attr));
17119}
17120
3ca72b44 17121static int
e142c38c 17122die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17123{
05cf31d1
JB
17124 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17125 which value is non-zero. However, we have to be careful with
17126 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17127 (via dwarf2_flag_true_p) follows this attribute. So we may
17128 end up accidently finding a declaration attribute that belongs
17129 to a different DIE referenced by the specification attribute,
17130 even though the given DIE does not have a declaration attribute. */
17131 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17132 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17133}
17134
63d06c5c 17135/* Return the die giving the specification for DIE, if there is
f2f0e013 17136 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17137 containing the return value on output. If there is no
17138 specification, but there is an abstract origin, that is
17139 returned. */
63d06c5c
DC
17140
17141static struct die_info *
f2f0e013 17142die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17143{
f2f0e013
DJ
17144 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17145 *spec_cu);
63d06c5c 17146
edb3359d
DJ
17147 if (spec_attr == NULL)
17148 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17149
63d06c5c
DC
17150 if (spec_attr == NULL)
17151 return NULL;
17152 else
f2f0e013 17153 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17154}
c906108c 17155
debd256d 17156/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
17157 refers to.
17158 NOTE: This is also used as a "cleanup" function. */
17159
debd256d
JB
17160static void
17161free_line_header (struct line_header *lh)
17162{
17163 if (lh->standard_opcode_lengths)
a8bc7b56 17164 xfree (lh->standard_opcode_lengths);
debd256d
JB
17165
17166 /* Remember that all the lh->file_names[i].name pointers are
17167 pointers into debug_line_buffer, and don't need to be freed. */
17168 if (lh->file_names)
a8bc7b56 17169 xfree (lh->file_names);
debd256d
JB
17170
17171 /* Similarly for the include directory names. */
17172 if (lh->include_dirs)
a8bc7b56 17173 xfree (lh->include_dirs);
debd256d 17174
a8bc7b56 17175 xfree (lh);
debd256d
JB
17176}
17177
527f3840
JK
17178/* Stub for free_line_header to match void * callback types. */
17179
17180static void
17181free_line_header_voidp (void *arg)
17182{
17183 struct line_header *lh = arg;
17184
17185 free_line_header (lh);
17186}
17187
debd256d 17188/* Add an entry to LH's include directory table. */
ae2de4f8 17189
debd256d 17190static void
d521ce57 17191add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 17192{
27e0867f
DE
17193 if (dwarf_line_debug >= 2)
17194 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17195 lh->num_include_dirs + 1, include_dir);
17196
debd256d
JB
17197 /* Grow the array if necessary. */
17198 if (lh->include_dirs_size == 0)
c5aa993b 17199 {
debd256d
JB
17200 lh->include_dirs_size = 1; /* for testing */
17201 lh->include_dirs = xmalloc (lh->include_dirs_size
17202 * sizeof (*lh->include_dirs));
17203 }
17204 else if (lh->num_include_dirs >= lh->include_dirs_size)
17205 {
17206 lh->include_dirs_size *= 2;
17207 lh->include_dirs = xrealloc (lh->include_dirs,
17208 (lh->include_dirs_size
17209 * sizeof (*lh->include_dirs)));
c5aa993b 17210 }
c906108c 17211
debd256d
JB
17212 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17213}
6e70227d 17214
debd256d 17215/* Add an entry to LH's file name table. */
ae2de4f8 17216
debd256d
JB
17217static void
17218add_file_name (struct line_header *lh,
d521ce57 17219 const char *name,
debd256d
JB
17220 unsigned int dir_index,
17221 unsigned int mod_time,
17222 unsigned int length)
17223{
17224 struct file_entry *fe;
17225
27e0867f
DE
17226 if (dwarf_line_debug >= 2)
17227 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17228 lh->num_file_names + 1, name);
17229
debd256d
JB
17230 /* Grow the array if necessary. */
17231 if (lh->file_names_size == 0)
17232 {
17233 lh->file_names_size = 1; /* for testing */
17234 lh->file_names = xmalloc (lh->file_names_size
17235 * sizeof (*lh->file_names));
17236 }
17237 else if (lh->num_file_names >= lh->file_names_size)
17238 {
17239 lh->file_names_size *= 2;
17240 lh->file_names = xrealloc (lh->file_names,
17241 (lh->file_names_size
17242 * sizeof (*lh->file_names)));
17243 }
17244
17245 fe = &lh->file_names[lh->num_file_names++];
17246 fe->name = name;
17247 fe->dir_index = dir_index;
17248 fe->mod_time = mod_time;
17249 fe->length = length;
aaa75496 17250 fe->included_p = 0;
cb1df416 17251 fe->symtab = NULL;
debd256d 17252}
6e70227d 17253
83769d0b 17254/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17255
17256static struct dwarf2_section_info *
17257get_debug_line_section (struct dwarf2_cu *cu)
17258{
17259 struct dwarf2_section_info *section;
17260
17261 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17262 DWO file. */
17263 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17264 section = &cu->dwo_unit->dwo_file->sections.line;
17265 else if (cu->per_cu->is_dwz)
17266 {
17267 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17268
17269 section = &dwz->line;
17270 }
17271 else
17272 section = &dwarf2_per_objfile->line;
17273
17274 return section;
17275}
17276
debd256d 17277/* Read the statement program header starting at OFFSET in
3019eac3 17278 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17279 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17280 Returns NULL if there is a problem reading the header, e.g., if it
17281 has a version we don't understand.
debd256d
JB
17282
17283 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17284 the returned object point into the dwarf line section buffer,
17285 and must not be freed. */
ae2de4f8 17286
debd256d 17287static struct line_header *
3019eac3 17288dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
17289{
17290 struct cleanup *back_to;
17291 struct line_header *lh;
d521ce57 17292 const gdb_byte *line_ptr;
c764a876 17293 unsigned int bytes_read, offset_size;
debd256d 17294 int i;
d521ce57 17295 const char *cur_dir, *cur_file;
3019eac3
DE
17296 struct dwarf2_section_info *section;
17297 bfd *abfd;
17298
36586728 17299 section = get_debug_line_section (cu);
3019eac3
DE
17300 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17301 if (section->buffer == NULL)
debd256d 17302 {
3019eac3
DE
17303 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17304 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17305 else
17306 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17307 return 0;
17308 }
17309
fceca515
DE
17310 /* We can't do this until we know the section is non-empty.
17311 Only then do we know we have such a section. */
a32a8923 17312 abfd = get_section_bfd_owner (section);
fceca515 17313
a738430d
MK
17314 /* Make sure that at least there's room for the total_length field.
17315 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 17316 if (offset + 4 >= section->size)
debd256d 17317 {
4d3c2250 17318 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17319 return 0;
17320 }
17321
17322 lh = xmalloc (sizeof (*lh));
17323 memset (lh, 0, sizeof (*lh));
17324 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17325 (void *) lh);
17326
527f3840
JK
17327 lh->offset.sect_off = offset;
17328 lh->offset_in_dwz = cu->per_cu->is_dwz;
17329
3019eac3 17330 line_ptr = section->buffer + offset;
debd256d 17331
a738430d 17332 /* Read in the header. */
6e70227d 17333 lh->total_length =
c764a876
DE
17334 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17335 &bytes_read, &offset_size);
debd256d 17336 line_ptr += bytes_read;
3019eac3 17337 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17338 {
4d3c2250 17339 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17340 do_cleanups (back_to);
debd256d
JB
17341 return 0;
17342 }
17343 lh->statement_program_end = line_ptr + lh->total_length;
17344 lh->version = read_2_bytes (abfd, line_ptr);
17345 line_ptr += 2;
cd366ee8
DE
17346 if (lh->version > 4)
17347 {
17348 /* This is a version we don't understand. The format could have
17349 changed in ways we don't handle properly so just punt. */
17350 complaint (&symfile_complaints,
17351 _("unsupported version in .debug_line section"));
17352 return NULL;
17353 }
c764a876
DE
17354 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17355 line_ptr += offset_size;
debd256d
JB
17356 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17357 line_ptr += 1;
2dc7f7b3
TT
17358 if (lh->version >= 4)
17359 {
17360 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17361 line_ptr += 1;
17362 }
17363 else
17364 lh->maximum_ops_per_instruction = 1;
17365
17366 if (lh->maximum_ops_per_instruction == 0)
17367 {
17368 lh->maximum_ops_per_instruction = 1;
17369 complaint (&symfile_complaints,
3e43a32a
MS
17370 _("invalid maximum_ops_per_instruction "
17371 "in `.debug_line' section"));
2dc7f7b3
TT
17372 }
17373
debd256d
JB
17374 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17375 line_ptr += 1;
17376 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17377 line_ptr += 1;
17378 lh->line_range = read_1_byte (abfd, line_ptr);
17379 line_ptr += 1;
17380 lh->opcode_base = read_1_byte (abfd, line_ptr);
17381 line_ptr += 1;
17382 lh->standard_opcode_lengths
fe1b8b76 17383 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
17384
17385 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17386 for (i = 1; i < lh->opcode_base; ++i)
17387 {
17388 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17389 line_ptr += 1;
17390 }
17391
a738430d 17392 /* Read directory table. */
9b1c24c8 17393 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17394 {
17395 line_ptr += bytes_read;
17396 add_include_dir (lh, cur_dir);
17397 }
17398 line_ptr += bytes_read;
17399
a738430d 17400 /* Read file name table. */
9b1c24c8 17401 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17402 {
17403 unsigned int dir_index, mod_time, length;
17404
17405 line_ptr += bytes_read;
17406 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17407 line_ptr += bytes_read;
17408 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17409 line_ptr += bytes_read;
17410 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17411 line_ptr += bytes_read;
17412
17413 add_file_name (lh, cur_file, dir_index, mod_time, length);
17414 }
17415 line_ptr += bytes_read;
6e70227d 17416 lh->statement_program_start = line_ptr;
debd256d 17417
3019eac3 17418 if (line_ptr > (section->buffer + section->size))
4d3c2250 17419 complaint (&symfile_complaints,
3e43a32a
MS
17420 _("line number info header doesn't "
17421 "fit in `.debug_line' section"));
debd256d
JB
17422
17423 discard_cleanups (back_to);
17424 return lh;
17425}
c906108c 17426
c6da4cef
DE
17427/* Subroutine of dwarf_decode_lines to simplify it.
17428 Return the file name of the psymtab for included file FILE_INDEX
17429 in line header LH of PST.
17430 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17431 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17432 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17433
17434 The function creates dangling cleanup registration. */
c6da4cef 17435
d521ce57 17436static const char *
c6da4cef
DE
17437psymtab_include_file_name (const struct line_header *lh, int file_index,
17438 const struct partial_symtab *pst,
17439 const char *comp_dir)
17440{
17441 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17442 const char *include_name = fe.name;
17443 const char *include_name_to_compare = include_name;
17444 const char *dir_name = NULL;
72b9f47f
TT
17445 const char *pst_filename;
17446 char *copied_name = NULL;
c6da4cef
DE
17447 int file_is_pst;
17448
afa6c9ab 17449 if (fe.dir_index && lh->include_dirs != NULL)
c6da4cef
DE
17450 dir_name = lh->include_dirs[fe.dir_index - 1];
17451
17452 if (!IS_ABSOLUTE_PATH (include_name)
17453 && (dir_name != NULL || comp_dir != NULL))
17454 {
17455 /* Avoid creating a duplicate psymtab for PST.
17456 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17457 Before we do the comparison, however, we need to account
17458 for DIR_NAME and COMP_DIR.
17459 First prepend dir_name (if non-NULL). If we still don't
17460 have an absolute path prepend comp_dir (if non-NULL).
17461 However, the directory we record in the include-file's
17462 psymtab does not contain COMP_DIR (to match the
17463 corresponding symtab(s)).
17464
17465 Example:
17466
17467 bash$ cd /tmp
17468 bash$ gcc -g ./hello.c
17469 include_name = "hello.c"
17470 dir_name = "."
17471 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17472 DW_AT_name = "./hello.c"
17473
17474 */
c6da4cef
DE
17475
17476 if (dir_name != NULL)
17477 {
d521ce57
TT
17478 char *tem = concat (dir_name, SLASH_STRING,
17479 include_name, (char *)NULL);
17480
17481 make_cleanup (xfree, tem);
17482 include_name = tem;
c6da4cef 17483 include_name_to_compare = include_name;
c6da4cef
DE
17484 }
17485 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17486 {
d521ce57
TT
17487 char *tem = concat (comp_dir, SLASH_STRING,
17488 include_name, (char *)NULL);
17489
17490 make_cleanup (xfree, tem);
17491 include_name_to_compare = tem;
c6da4cef
DE
17492 }
17493 }
17494
17495 pst_filename = pst->filename;
17496 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17497 {
72b9f47f
TT
17498 copied_name = concat (pst->dirname, SLASH_STRING,
17499 pst_filename, (char *)NULL);
17500 pst_filename = copied_name;
c6da4cef
DE
17501 }
17502
1e3fad37 17503 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17504
72b9f47f
TT
17505 if (copied_name != NULL)
17506 xfree (copied_name);
c6da4cef
DE
17507
17508 if (file_is_pst)
17509 return NULL;
17510 return include_name;
17511}
17512
d9b3de22
DE
17513/* State machine to track the state of the line number program. */
17514
17515typedef struct
17516{
17517 /* These are part of the standard DWARF line number state machine. */
17518
17519 unsigned char op_index;
17520 unsigned int file;
17521 unsigned int line;
17522 CORE_ADDR address;
17523 int is_stmt;
17524 unsigned int discriminator;
17525
17526 /* Additional bits of state we need to track. */
17527
17528 /* The last file that we called dwarf2_start_subfile for.
17529 This is only used for TLLs. */
17530 unsigned int last_file;
17531 /* The last file a line number was recorded for. */
17532 struct subfile *last_subfile;
17533
17534 /* The function to call to record a line. */
17535 record_line_ftype *record_line;
17536
17537 /* The last line number that was recorded, used to coalesce
17538 consecutive entries for the same line. This can happen, for
17539 example, when discriminators are present. PR 17276. */
17540 unsigned int last_line;
17541 int line_has_non_zero_discriminator;
17542} lnp_state_machine;
17543
17544/* There's a lot of static state to pass to dwarf_record_line.
17545 This keeps it all together. */
17546
17547typedef struct
17548{
17549 /* The gdbarch. */
17550 struct gdbarch *gdbarch;
17551
17552 /* The line number header. */
17553 struct line_header *line_header;
17554
17555 /* Non-zero if we're recording lines.
17556 Otherwise we're building partial symtabs and are just interested in
17557 finding include files mentioned by the line number program. */
17558 int record_lines_p;
17559} lnp_reader_state;
17560
c91513d8
PP
17561/* Ignore this record_line request. */
17562
17563static void
17564noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17565{
17566 return;
17567}
17568
a05a36a5
DE
17569/* Return non-zero if we should add LINE to the line number table.
17570 LINE is the line to add, LAST_LINE is the last line that was added,
17571 LAST_SUBFILE is the subfile for LAST_LINE.
17572 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17573 had a non-zero discriminator.
17574
17575 We have to be careful in the presence of discriminators.
17576 E.g., for this line:
17577
17578 for (i = 0; i < 100000; i++);
17579
17580 clang can emit four line number entries for that one line,
17581 each with a different discriminator.
17582 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17583
17584 However, we want gdb to coalesce all four entries into one.
17585 Otherwise the user could stepi into the middle of the line and
17586 gdb would get confused about whether the pc really was in the
17587 middle of the line.
17588
17589 Things are further complicated by the fact that two consecutive
17590 line number entries for the same line is a heuristic used by gcc
17591 to denote the end of the prologue. So we can't just discard duplicate
17592 entries, we have to be selective about it. The heuristic we use is
17593 that we only collapse consecutive entries for the same line if at least
17594 one of those entries has a non-zero discriminator. PR 17276.
17595
17596 Note: Addresses in the line number state machine can never go backwards
17597 within one sequence, thus this coalescing is ok. */
17598
17599static int
17600dwarf_record_line_p (unsigned int line, unsigned int last_line,
17601 int line_has_non_zero_discriminator,
17602 struct subfile *last_subfile)
17603{
17604 if (current_subfile != last_subfile)
17605 return 1;
17606 if (line != last_line)
17607 return 1;
17608 /* Same line for the same file that we've seen already.
17609 As a last check, for pr 17276, only record the line if the line
17610 has never had a non-zero discriminator. */
17611 if (!line_has_non_zero_discriminator)
17612 return 1;
17613 return 0;
17614}
17615
252a6764
DE
17616/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17617 in the line table of subfile SUBFILE. */
17618
17619static void
d9b3de22
DE
17620dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17621 unsigned int line, CORE_ADDR address,
17622 record_line_ftype p_record_line)
252a6764
DE
17623{
17624 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17625
27e0867f
DE
17626 if (dwarf_line_debug)
17627 {
17628 fprintf_unfiltered (gdb_stdlog,
17629 "Recording line %u, file %s, address %s\n",
17630 line, lbasename (subfile->name),
17631 paddress (gdbarch, address));
17632 }
17633
d5962de5 17634 (*p_record_line) (subfile, line, addr);
252a6764
DE
17635}
17636
17637/* Subroutine of dwarf_decode_lines_1 to simplify it.
17638 Mark the end of a set of line number records.
d9b3de22 17639 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
17640 If SUBFILE is NULL the request is ignored. */
17641
17642static void
17643dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17644 CORE_ADDR address, record_line_ftype p_record_line)
17645{
27e0867f
DE
17646 if (subfile == NULL)
17647 return;
17648
17649 if (dwarf_line_debug)
17650 {
17651 fprintf_unfiltered (gdb_stdlog,
17652 "Finishing current line, file %s, address %s\n",
17653 lbasename (subfile->name),
17654 paddress (gdbarch, address));
17655 }
17656
d9b3de22
DE
17657 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17658}
17659
17660/* Record the line in STATE.
17661 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17662
17663static void
17664dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17665 int end_sequence)
17666{
17667 const struct line_header *lh = reader->line_header;
17668 unsigned int file, line, discriminator;
17669 int is_stmt;
17670
17671 file = state->file;
17672 line = state->line;
17673 is_stmt = state->is_stmt;
17674 discriminator = state->discriminator;
17675
17676 if (dwarf_line_debug)
17677 {
17678 fprintf_unfiltered (gdb_stdlog,
17679 "Processing actual line %u: file %u,"
17680 " address %s, is_stmt %u, discrim %u\n",
17681 line, file,
17682 paddress (reader->gdbarch, state->address),
17683 is_stmt, discriminator);
17684 }
17685
17686 if (file == 0 || file - 1 >= lh->num_file_names)
17687 dwarf2_debug_line_missing_file_complaint ();
17688 /* For now we ignore lines not starting on an instruction boundary.
17689 But not when processing end_sequence for compatibility with the
17690 previous version of the code. */
17691 else if (state->op_index == 0 || end_sequence)
17692 {
17693 lh->file_names[file - 1].included_p = 1;
17694 if (reader->record_lines_p && is_stmt)
17695 {
e815d2d2 17696 if (state->last_subfile != current_subfile || end_sequence)
d9b3de22
DE
17697 {
17698 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17699 state->address, state->record_line);
17700 }
17701
17702 if (!end_sequence)
17703 {
17704 if (dwarf_record_line_p (line, state->last_line,
17705 state->line_has_non_zero_discriminator,
17706 state->last_subfile))
17707 {
17708 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17709 line, state->address,
17710 state->record_line);
17711 }
17712 state->last_subfile = current_subfile;
17713 state->last_line = line;
17714 }
17715 }
17716 }
17717}
17718
17719/* Initialize STATE for the start of a line number program. */
17720
17721static void
17722init_lnp_state_machine (lnp_state_machine *state,
17723 const lnp_reader_state *reader)
17724{
17725 memset (state, 0, sizeof (*state));
17726
17727 /* Just starting, there is no "last file". */
17728 state->last_file = 0;
17729 state->last_subfile = NULL;
17730
17731 state->record_line = record_line;
17732
17733 state->last_line = 0;
17734 state->line_has_non_zero_discriminator = 0;
17735
17736 /* Initialize these according to the DWARF spec. */
17737 state->op_index = 0;
17738 state->file = 1;
17739 state->line = 1;
17740 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17741 was a line entry for it so that the backend has a chance to adjust it
17742 and also record it in case it needs it. This is currently used by MIPS
17743 code, cf. `mips_adjust_dwarf2_line'. */
17744 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17745 state->is_stmt = reader->line_header->default_is_stmt;
17746 state->discriminator = 0;
252a6764
DE
17747}
17748
924c2928
DE
17749/* Check address and if invalid nop-out the rest of the lines in this
17750 sequence. */
17751
17752static void
d9b3de22 17753check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
924c2928
DE
17754 const gdb_byte *line_ptr,
17755 CORE_ADDR lowpc, CORE_ADDR address)
17756{
17757 /* If address < lowpc then it's not a usable value, it's outside the
17758 pc range of the CU. However, we restrict the test to only address
17759 values of zero to preserve GDB's previous behaviour which is to
17760 handle the specific case of a function being GC'd by the linker. */
17761
17762 if (address == 0 && address < lowpc)
17763 {
17764 /* This line table is for a function which has been
17765 GCd by the linker. Ignore it. PR gdb/12528 */
17766
17767 struct objfile *objfile = cu->objfile;
17768 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17769
17770 complaint (&symfile_complaints,
17771 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17772 line_offset, objfile_name (objfile));
d9b3de22
DE
17773 state->record_line = noop_record_line;
17774 /* Note: sm.record_line is left as noop_record_line
924c2928
DE
17775 until we see DW_LNE_end_sequence. */
17776 }
17777}
17778
f3f5162e 17779/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
17780 Process the line number information in LH.
17781 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17782 program in order to set included_p for every referenced header. */
debd256d 17783
c906108c 17784static void
43f3e411
DE
17785dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17786 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 17787{
d521ce57
TT
17788 const gdb_byte *line_ptr, *extended_end;
17789 const gdb_byte *line_end;
a8c50c1f 17790 unsigned int bytes_read, extended_len;
699ca60a 17791 unsigned char op_code, extended_op;
e142c38c
DJ
17792 CORE_ADDR baseaddr;
17793 struct objfile *objfile = cu->objfile;
f3f5162e 17794 bfd *abfd = objfile->obfd;
fbf65064 17795 struct gdbarch *gdbarch = get_objfile_arch (objfile);
d9b3de22
DE
17796 /* Non-zero if we're recording line info (as opposed to building partial
17797 symtabs). */
17798 int record_lines_p = !decode_for_pst_p;
17799 /* A collection of things we need to pass to dwarf_record_line. */
17800 lnp_reader_state reader_state;
e142c38c
DJ
17801
17802 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17803
debd256d
JB
17804 line_ptr = lh->statement_program_start;
17805 line_end = lh->statement_program_end;
c906108c 17806
d9b3de22
DE
17807 reader_state.gdbarch = gdbarch;
17808 reader_state.line_header = lh;
17809 reader_state.record_lines_p = record_lines_p;
17810
c906108c
SS
17811 /* Read the statement sequences until there's nothing left. */
17812 while (line_ptr < line_end)
17813 {
d9b3de22
DE
17814 /* The DWARF line number program state machine. */
17815 lnp_state_machine state_machine;
c906108c 17816 int end_sequence = 0;
d9b3de22
DE
17817
17818 /* Reset the state machine at the start of each sequence. */
17819 init_lnp_state_machine (&state_machine, &reader_state);
17820
17821 if (record_lines_p && lh->num_file_names >= state_machine.file)
c906108c 17822 {
aaa75496 17823 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17824 /* lh->include_dirs and lh->file_names are 0-based, but the
17825 directory and file name numbers in the statement program
17826 are 1-based. */
d9b3de22 17827 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
d521ce57 17828 const char *dir = NULL;
a738430d 17829
afa6c9ab 17830 if (fe->dir_index && lh->include_dirs != NULL)
debd256d 17831 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 17832
4d663531 17833 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
17834 }
17835
a738430d 17836 /* Decode the table. */
d9b3de22 17837 while (line_ptr < line_end && !end_sequence)
c906108c
SS
17838 {
17839 op_code = read_1_byte (abfd, line_ptr);
17840 line_ptr += 1;
9aa1fe7e 17841
debd256d 17842 if (op_code >= lh->opcode_base)
6e70227d 17843 {
8e07a239 17844 /* Special opcode. */
699ca60a 17845 unsigned char adj_opcode;
3e29f34a 17846 CORE_ADDR addr_adj;
a05a36a5 17847 int line_delta;
8e07a239 17848
debd256d 17849 adj_opcode = op_code - lh->opcode_base;
d9b3de22
DE
17850 addr_adj = (((state_machine.op_index
17851 + (adj_opcode / lh->line_range))
2dc7f7b3
TT
17852 / lh->maximum_ops_per_instruction)
17853 * lh->minimum_instruction_length);
d9b3de22
DE
17854 state_machine.address
17855 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17856 state_machine.op_index = ((state_machine.op_index
17857 + (adj_opcode / lh->line_range))
17858 % lh->maximum_ops_per_instruction);
a05a36a5 17859 line_delta = lh->line_base + (adj_opcode % lh->line_range);
d9b3de22 17860 state_machine.line += line_delta;
a05a36a5 17861 if (line_delta != 0)
d9b3de22
DE
17862 state_machine.line_has_non_zero_discriminator
17863 = state_machine.discriminator != 0;
17864
17865 dwarf_record_line (&reader_state, &state_machine, 0);
17866 state_machine.discriminator = 0;
9aa1fe7e
GK
17867 }
17868 else switch (op_code)
c906108c
SS
17869 {
17870 case DW_LNS_extended_op:
3e43a32a
MS
17871 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17872 &bytes_read);
473b7be6 17873 line_ptr += bytes_read;
a8c50c1f 17874 extended_end = line_ptr + extended_len;
c906108c
SS
17875 extended_op = read_1_byte (abfd, line_ptr);
17876 line_ptr += 1;
17877 switch (extended_op)
17878 {
17879 case DW_LNE_end_sequence:
d9b3de22 17880 state_machine.record_line = record_line;
c906108c 17881 end_sequence = 1;
c906108c
SS
17882 break;
17883 case DW_LNE_set_address:
d9b3de22
DE
17884 {
17885 CORE_ADDR address
17886 = read_address (abfd, line_ptr, cu, &bytes_read);
17887
17888 line_ptr += bytes_read;
17889 check_line_address (cu, &state_machine, line_ptr,
17890 lowpc, address);
17891 state_machine.op_index = 0;
17892 address += baseaddr;
17893 state_machine.address
17894 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17895 }
c906108c
SS
17896 break;
17897 case DW_LNE_define_file:
debd256d 17898 {
d521ce57 17899 const char *cur_file;
debd256d 17900 unsigned int dir_index, mod_time, length;
6e70227d 17901
3e43a32a
MS
17902 cur_file = read_direct_string (abfd, line_ptr,
17903 &bytes_read);
debd256d
JB
17904 line_ptr += bytes_read;
17905 dir_index =
17906 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17907 line_ptr += bytes_read;
17908 mod_time =
17909 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17910 line_ptr += bytes_read;
17911 length =
17912 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17913 line_ptr += bytes_read;
17914 add_file_name (lh, cur_file, dir_index, mod_time, length);
17915 }
c906108c 17916 break;
d0c6ba3d
CC
17917 case DW_LNE_set_discriminator:
17918 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
17919 just ignore it. We still need to check its value though:
17920 if there are consecutive entries for the same
17921 (non-prologue) line we want to coalesce them.
17922 PR 17276. */
d9b3de22
DE
17923 state_machine.discriminator
17924 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17925 state_machine.line_has_non_zero_discriminator
17926 |= state_machine.discriminator != 0;
a05a36a5 17927 line_ptr += bytes_read;
d0c6ba3d 17928 break;
c906108c 17929 default:
4d3c2250 17930 complaint (&symfile_complaints,
e2e0b3e5 17931 _("mangled .debug_line section"));
debd256d 17932 return;
c906108c 17933 }
a8c50c1f
DJ
17934 /* Make sure that we parsed the extended op correctly. If e.g.
17935 we expected a different address size than the producer used,
17936 we may have read the wrong number of bytes. */
17937 if (line_ptr != extended_end)
17938 {
17939 complaint (&symfile_complaints,
17940 _("mangled .debug_line section"));
17941 return;
17942 }
c906108c
SS
17943 break;
17944 case DW_LNS_copy:
d9b3de22
DE
17945 dwarf_record_line (&reader_state, &state_machine, 0);
17946 state_machine.discriminator = 0;
c906108c
SS
17947 break;
17948 case DW_LNS_advance_pc:
2dc7f7b3
TT
17949 {
17950 CORE_ADDR adjust
17951 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
3e29f34a 17952 CORE_ADDR addr_adj;
2dc7f7b3 17953
d9b3de22 17954 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
17955 / lh->maximum_ops_per_instruction)
17956 * lh->minimum_instruction_length);
d9b3de22
DE
17957 state_machine.address
17958 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17959 state_machine.op_index = ((state_machine.op_index + adjust)
17960 % lh->maximum_ops_per_instruction);
2dc7f7b3
TT
17961 line_ptr += bytes_read;
17962 }
c906108c
SS
17963 break;
17964 case DW_LNS_advance_line:
a05a36a5
DE
17965 {
17966 int line_delta
17967 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17968
d9b3de22 17969 state_machine.line += line_delta;
a05a36a5 17970 if (line_delta != 0)
d9b3de22
DE
17971 state_machine.line_has_non_zero_discriminator
17972 = state_machine.discriminator != 0;
a05a36a5
DE
17973 line_ptr += bytes_read;
17974 }
c906108c
SS
17975 break;
17976 case DW_LNS_set_file:
d9b3de22
DE
17977 {
17978 /* The arrays lh->include_dirs and lh->file_names are
17979 0-based, but the directory and file name numbers in
17980 the statement program are 1-based. */
17981 struct file_entry *fe;
17982 const char *dir = NULL;
17983
17984 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
17985 &bytes_read);
17986 line_ptr += bytes_read;
17987 if (state_machine.file == 0
17988 || state_machine.file - 1 >= lh->num_file_names)
17989 dwarf2_debug_line_missing_file_complaint ();
17990 else
17991 {
17992 fe = &lh->file_names[state_machine.file - 1];
17993 if (fe->dir_index && lh->include_dirs != NULL)
17994 dir = lh->include_dirs[fe->dir_index - 1];
17995 if (record_lines_p)
17996 {
17997 state_machine.last_subfile = current_subfile;
17998 state_machine.line_has_non_zero_discriminator
17999 = state_machine.discriminator != 0;
18000 dwarf2_start_subfile (fe->name, dir);
18001 }
18002 }
18003 }
c906108c
SS
18004 break;
18005 case DW_LNS_set_column:
0ad93d4f 18006 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
18007 line_ptr += bytes_read;
18008 break;
18009 case DW_LNS_negate_stmt:
d9b3de22 18010 state_machine.is_stmt = (!state_machine.is_stmt);
c906108c
SS
18011 break;
18012 case DW_LNS_set_basic_block:
c906108c 18013 break;
c2c6d25f
JM
18014 /* Add to the address register of the state machine the
18015 address increment value corresponding to special opcode
a738430d
MK
18016 255. I.e., this value is scaled by the minimum
18017 instruction length since special opcode 255 would have
b021a221 18018 scaled the increment. */
c906108c 18019 case DW_LNS_const_add_pc:
2dc7f7b3
TT
18020 {
18021 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
3e29f34a 18022 CORE_ADDR addr_adj;
2dc7f7b3 18023
d9b3de22 18024 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18025 / lh->maximum_ops_per_instruction)
18026 * lh->minimum_instruction_length);
d9b3de22
DE
18027 state_machine.address
18028 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18029 state_machine.op_index = ((state_machine.op_index + adjust)
18030 % lh->maximum_ops_per_instruction);
2dc7f7b3 18031 }
c906108c
SS
18032 break;
18033 case DW_LNS_fixed_advance_pc:
3e29f34a
MR
18034 {
18035 CORE_ADDR addr_adj;
18036
18037 addr_adj = read_2_bytes (abfd, line_ptr);
d9b3de22
DE
18038 state_machine.address
18039 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18040 state_machine.op_index = 0;
3e29f34a
MR
18041 line_ptr += 2;
18042 }
c906108c 18043 break;
9aa1fe7e 18044 default:
a738430d
MK
18045 {
18046 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18047 int i;
a738430d 18048
debd256d 18049 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18050 {
18051 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18052 line_ptr += bytes_read;
18053 }
18054 }
c906108c
SS
18055 }
18056 }
d9b3de22
DE
18057
18058 if (!end_sequence)
18059 dwarf2_debug_line_missing_end_sequence_complaint ();
18060
18061 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18062 in which case we still finish recording the last line). */
18063 dwarf_record_line (&reader_state, &state_machine, 1);
c906108c 18064 }
f3f5162e
DE
18065}
18066
18067/* Decode the Line Number Program (LNP) for the given line_header
18068 structure and CU. The actual information extracted and the type
18069 of structures created from the LNP depends on the value of PST.
18070
18071 1. If PST is NULL, then this procedure uses the data from the program
18072 to create all necessary symbol tables, and their linetables.
18073
18074 2. If PST is not NULL, this procedure reads the program to determine
18075 the list of files included by the unit represented by PST, and
18076 builds all the associated partial symbol tables.
18077
18078 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18079 It is used for relative paths in the line table.
18080 NOTE: When processing partial symtabs (pst != NULL),
18081 comp_dir == pst->dirname.
18082
18083 NOTE: It is important that psymtabs have the same file name (via strcmp)
18084 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18085 symtab we don't use it in the name of the psymtabs we create.
18086 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18087 A good testcase for this is mb-inline.exp.
18088
527f3840
JK
18089 LOWPC is the lowest address in CU (or 0 if not known).
18090
18091 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18092 for its PC<->lines mapping information. Otherwise only the filename
18093 table is read in. */
f3f5162e
DE
18094
18095static void
18096dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18097 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18098 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18099{
18100 struct objfile *objfile = cu->objfile;
18101 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18102
527f3840
JK
18103 if (decode_mapping)
18104 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18105
18106 if (decode_for_pst_p)
18107 {
18108 int file_index;
18109
18110 /* Now that we're done scanning the Line Header Program, we can
18111 create the psymtab of each included file. */
18112 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18113 if (lh->file_names[file_index].included_p == 1)
18114 {
d521ce57 18115 const char *include_name =
c6da4cef
DE
18116 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18117 if (include_name != NULL)
aaa75496
JB
18118 dwarf2_create_include_psymtab (include_name, pst, objfile);
18119 }
18120 }
cb1df416
DJ
18121 else
18122 {
18123 /* Make sure a symtab is created for every file, even files
18124 which contain only variables (i.e. no code with associated
18125 line numbers). */
43f3e411 18126 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18127 int i;
cb1df416
DJ
18128
18129 for (i = 0; i < lh->num_file_names; i++)
18130 {
d521ce57 18131 const char *dir = NULL;
f3f5162e 18132 struct file_entry *fe;
9a619af0 18133
cb1df416 18134 fe = &lh->file_names[i];
afa6c9ab 18135 if (fe->dir_index && lh->include_dirs != NULL)
cb1df416 18136 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 18137 dwarf2_start_subfile (fe->name, dir);
cb1df416 18138
cb1df416 18139 if (current_subfile->symtab == NULL)
43f3e411
DE
18140 {
18141 current_subfile->symtab
18142 = allocate_symtab (cust, current_subfile->name);
18143 }
cb1df416
DJ
18144 fe->symtab = current_subfile->symtab;
18145 }
18146 }
c906108c
SS
18147}
18148
18149/* Start a subfile for DWARF. FILENAME is the name of the file and
18150 DIRNAME the name of the source directory which contains FILENAME
4d663531 18151 or NULL if not known.
c906108c
SS
18152 This routine tries to keep line numbers from identical absolute and
18153 relative file names in a common subfile.
18154
18155 Using the `list' example from the GDB testsuite, which resides in
18156 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18157 of /srcdir/list0.c yields the following debugging information for list0.c:
18158
c5aa993b 18159 DW_AT_name: /srcdir/list0.c
4d663531 18160 DW_AT_comp_dir: /compdir
357e46e7 18161 files.files[0].name: list0.h
c5aa993b 18162 files.files[0].dir: /srcdir
357e46e7 18163 files.files[1].name: list0.c
c5aa993b 18164 files.files[1].dir: /srcdir
c906108c
SS
18165
18166 The line number information for list0.c has to end up in a single
4f1520fb
FR
18167 subfile, so that `break /srcdir/list0.c:1' works as expected.
18168 start_subfile will ensure that this happens provided that we pass the
18169 concatenation of files.files[1].dir and files.files[1].name as the
18170 subfile's name. */
c906108c
SS
18171
18172static void
4d663531 18173dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18174{
d521ce57 18175 char *copy = NULL;
4f1520fb 18176
4d663531 18177 /* In order not to lose the line information directory,
4f1520fb
FR
18178 we concatenate it to the filename when it makes sense.
18179 Note that the Dwarf3 standard says (speaking of filenames in line
18180 information): ``The directory index is ignored for file names
18181 that represent full path names''. Thus ignoring dirname in the
18182 `else' branch below isn't an issue. */
c906108c 18183
d5166ae1 18184 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18185 {
18186 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18187 filename = copy;
18188 }
c906108c 18189
4d663531 18190 start_subfile (filename);
4f1520fb 18191
d521ce57
TT
18192 if (copy != NULL)
18193 xfree (copy);
c906108c
SS
18194}
18195
f4dc4d17
DE
18196/* Start a symtab for DWARF.
18197 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18198
43f3e411 18199static struct compunit_symtab *
f4dc4d17 18200dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18201 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18202{
43f3e411
DE
18203 struct compunit_symtab *cust
18204 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18205
f4dc4d17
DE
18206 record_debugformat ("DWARF 2");
18207 record_producer (cu->producer);
18208
18209 /* We assume that we're processing GCC output. */
18210 processing_gcc_compilation = 2;
18211
4d4ec4e5 18212 cu->processing_has_namespace_info = 0;
43f3e411
DE
18213
18214 return cust;
f4dc4d17
DE
18215}
18216
4c2df51b
DJ
18217static void
18218var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18219 struct dwarf2_cu *cu)
4c2df51b 18220{
e7c27a73
DJ
18221 struct objfile *objfile = cu->objfile;
18222 struct comp_unit_head *cu_header = &cu->header;
18223
4c2df51b
DJ
18224 /* NOTE drow/2003-01-30: There used to be a comment and some special
18225 code here to turn a symbol with DW_AT_external and a
18226 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18227 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18228 with some versions of binutils) where shared libraries could have
18229 relocations against symbols in their debug information - the
18230 minimal symbol would have the right address, but the debug info
18231 would not. It's no longer necessary, because we will explicitly
18232 apply relocations when we read in the debug information now. */
18233
18234 /* A DW_AT_location attribute with no contents indicates that a
18235 variable has been optimized away. */
18236 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18237 {
f1e6e072 18238 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18239 return;
18240 }
18241
18242 /* Handle one degenerate form of location expression specially, to
18243 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18244 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18245 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18246
18247 if (attr_form_is_block (attr)
3019eac3
DE
18248 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18249 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18250 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18251 && (DW_BLOCK (attr)->size
18252 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18253 {
891d2f0b 18254 unsigned int dummy;
4c2df51b 18255
3019eac3
DE
18256 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18257 SYMBOL_VALUE_ADDRESS (sym) =
18258 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18259 else
18260 SYMBOL_VALUE_ADDRESS (sym) =
18261 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18262 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18263 fixup_symbol_section (sym, objfile);
18264 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18265 SYMBOL_SECTION (sym));
4c2df51b
DJ
18266 return;
18267 }
18268
18269 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18270 expression evaluator, and use LOC_COMPUTED only when necessary
18271 (i.e. when the value of a register or memory location is
18272 referenced, or a thread-local block, etc.). Then again, it might
18273 not be worthwhile. I'm assuming that it isn't unless performance
18274 or memory numbers show me otherwise. */
18275
f1e6e072 18276 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18277
f1e6e072 18278 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18279 cu->has_loclist = 1;
4c2df51b
DJ
18280}
18281
c906108c
SS
18282/* Given a pointer to a DWARF information entry, figure out if we need
18283 to make a symbol table entry for it, and if so, create a new entry
18284 and return a pointer to it.
18285 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18286 used the passed type.
18287 If SPACE is not NULL, use it to hold the new symbol. If it is
18288 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18289
18290static struct symbol *
34eaf542
TT
18291new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18292 struct symbol *space)
c906108c 18293{
e7c27a73 18294 struct objfile *objfile = cu->objfile;
3e29f34a 18295 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 18296 struct symbol *sym = NULL;
15d034d0 18297 const char *name;
c906108c
SS
18298 struct attribute *attr = NULL;
18299 struct attribute *attr2 = NULL;
e142c38c 18300 CORE_ADDR baseaddr;
e37fd15a
SW
18301 struct pending **list_to_add = NULL;
18302
edb3359d 18303 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
18304
18305 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18306
94af9270 18307 name = dwarf2_name (die, cu);
c906108c
SS
18308 if (name)
18309 {
94af9270 18310 const char *linkagename;
34eaf542 18311 int suppress_add = 0;
94af9270 18312
34eaf542
TT
18313 if (space)
18314 sym = space;
18315 else
e623cf5d 18316 sym = allocate_symbol (objfile);
c906108c 18317 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
18318
18319 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 18320 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
18321 linkagename = dwarf2_physname (name, die, cu);
18322 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 18323
f55ee35c
JK
18324 /* Fortran does not have mangling standard and the mangling does differ
18325 between gfortran, iFort etc. */
18326 if (cu->language == language_fortran
b250c185 18327 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 18328 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 18329 dwarf2_full_name (name, die, cu),
29df156d 18330 NULL);
f55ee35c 18331
c906108c 18332 /* Default assumptions.
c5aa993b 18333 Use the passed type or decode it from the die. */
176620f1 18334 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 18335 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
18336 if (type != NULL)
18337 SYMBOL_TYPE (sym) = type;
18338 else
e7c27a73 18339 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
18340 attr = dwarf2_attr (die,
18341 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18342 cu);
c906108c
SS
18343 if (attr)
18344 {
18345 SYMBOL_LINE (sym) = DW_UNSND (attr);
18346 }
cb1df416 18347
edb3359d
DJ
18348 attr = dwarf2_attr (die,
18349 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18350 cu);
cb1df416
DJ
18351 if (attr)
18352 {
18353 int file_index = DW_UNSND (attr);
9a619af0 18354
cb1df416
DJ
18355 if (cu->line_header == NULL
18356 || file_index > cu->line_header->num_file_names)
18357 complaint (&symfile_complaints,
18358 _("file index out of range"));
1c3d648d 18359 else if (file_index > 0)
cb1df416
DJ
18360 {
18361 struct file_entry *fe;
9a619af0 18362
cb1df416 18363 fe = &cu->line_header->file_names[file_index - 1];
08be3fe3 18364 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
18365 }
18366 }
18367
c906108c
SS
18368 switch (die->tag)
18369 {
18370 case DW_TAG_label:
e142c38c 18371 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 18372 if (attr)
3e29f34a
MR
18373 {
18374 CORE_ADDR addr;
18375
18376 addr = attr_value_as_address (attr);
18377 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18378 SYMBOL_VALUE_ADDRESS (sym) = addr;
18379 }
0f5238ed
TT
18380 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18381 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 18382 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 18383 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
18384 break;
18385 case DW_TAG_subprogram:
18386 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18387 finish_block. */
f1e6e072 18388 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 18389 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
18390 if ((attr2 && (DW_UNSND (attr2) != 0))
18391 || cu->language == language_ada)
c906108c 18392 {
2cfa0c8d
JB
18393 /* Subprograms marked external are stored as a global symbol.
18394 Ada subprograms, whether marked external or not, are always
18395 stored as a global symbol, because we want to be able to
18396 access them globally. For instance, we want to be able
18397 to break on a nested subprogram without having to
18398 specify the context. */
e37fd15a 18399 list_to_add = &global_symbols;
c906108c
SS
18400 }
18401 else
18402 {
e37fd15a 18403 list_to_add = cu->list_in_scope;
c906108c
SS
18404 }
18405 break;
edb3359d
DJ
18406 case DW_TAG_inlined_subroutine:
18407 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18408 finish_block. */
f1e6e072 18409 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 18410 SYMBOL_INLINED (sym) = 1;
481860b3 18411 list_to_add = cu->list_in_scope;
edb3359d 18412 break;
34eaf542
TT
18413 case DW_TAG_template_value_param:
18414 suppress_add = 1;
18415 /* Fall through. */
72929c62 18416 case DW_TAG_constant:
c906108c 18417 case DW_TAG_variable:
254e6b9e 18418 case DW_TAG_member:
0963b4bd
MS
18419 /* Compilation with minimal debug info may result in
18420 variables with missing type entries. Change the
18421 misleading `void' type to something sensible. */
c906108c 18422 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 18423 SYMBOL_TYPE (sym)
46bf5051 18424 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 18425
e142c38c 18426 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
18427 /* In the case of DW_TAG_member, we should only be called for
18428 static const members. */
18429 if (die->tag == DW_TAG_member)
18430 {
3863f96c
DE
18431 /* dwarf2_add_field uses die_is_declaration,
18432 so we do the same. */
254e6b9e
DE
18433 gdb_assert (die_is_declaration (die, cu));
18434 gdb_assert (attr);
18435 }
c906108c
SS
18436 if (attr)
18437 {
e7c27a73 18438 dwarf2_const_value (attr, sym, cu);
e142c38c 18439 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 18440 if (!suppress_add)
34eaf542
TT
18441 {
18442 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 18443 list_to_add = &global_symbols;
34eaf542 18444 else
e37fd15a 18445 list_to_add = cu->list_in_scope;
34eaf542 18446 }
c906108c
SS
18447 break;
18448 }
e142c38c 18449 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18450 if (attr)
18451 {
e7c27a73 18452 var_decode_location (attr, sym, cu);
e142c38c 18453 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
18454
18455 /* Fortran explicitly imports any global symbols to the local
18456 scope by DW_TAG_common_block. */
18457 if (cu->language == language_fortran && die->parent
18458 && die->parent->tag == DW_TAG_common_block)
18459 attr2 = NULL;
18460
caac4577
JG
18461 if (SYMBOL_CLASS (sym) == LOC_STATIC
18462 && SYMBOL_VALUE_ADDRESS (sym) == 0
18463 && !dwarf2_per_objfile->has_section_at_zero)
18464 {
18465 /* When a static variable is eliminated by the linker,
18466 the corresponding debug information is not stripped
18467 out, but the variable address is set to null;
18468 do not add such variables into symbol table. */
18469 }
18470 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 18471 {
f55ee35c
JK
18472 /* Workaround gfortran PR debug/40040 - it uses
18473 DW_AT_location for variables in -fPIC libraries which may
18474 get overriden by other libraries/executable and get
18475 a different address. Resolve it by the minimal symbol
18476 which may come from inferior's executable using copy
18477 relocation. Make this workaround only for gfortran as for
18478 other compilers GDB cannot guess the minimal symbol
18479 Fortran mangling kind. */
18480 if (cu->language == language_fortran && die->parent
18481 && die->parent->tag == DW_TAG_module
18482 && cu->producer
61012eef 18483 && startswith (cu->producer, "GNU Fortran "))
f1e6e072 18484 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 18485
1c809c68
TT
18486 /* A variable with DW_AT_external is never static,
18487 but it may be block-scoped. */
18488 list_to_add = (cu->list_in_scope == &file_symbols
18489 ? &global_symbols : cu->list_in_scope);
1c809c68 18490 }
c906108c 18491 else
e37fd15a 18492 list_to_add = cu->list_in_scope;
c906108c
SS
18493 }
18494 else
18495 {
18496 /* We do not know the address of this symbol.
c5aa993b
JM
18497 If it is an external symbol and we have type information
18498 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18499 The address of the variable will then be determined from
18500 the minimal symbol table whenever the variable is
18501 referenced. */
e142c38c 18502 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18503
18504 /* Fortran explicitly imports any global symbols to the local
18505 scope by DW_TAG_common_block. */
18506 if (cu->language == language_fortran && die->parent
18507 && die->parent->tag == DW_TAG_common_block)
18508 {
18509 /* SYMBOL_CLASS doesn't matter here because
18510 read_common_block is going to reset it. */
18511 if (!suppress_add)
18512 list_to_add = cu->list_in_scope;
18513 }
18514 else if (attr2 && (DW_UNSND (attr2) != 0)
18515 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18516 {
0fe7935b
DJ
18517 /* A variable with DW_AT_external is never static, but it
18518 may be block-scoped. */
18519 list_to_add = (cu->list_in_scope == &file_symbols
18520 ? &global_symbols : cu->list_in_scope);
18521
f1e6e072 18522 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18523 }
442ddf59
JK
18524 else if (!die_is_declaration (die, cu))
18525 {
18526 /* Use the default LOC_OPTIMIZED_OUT class. */
18527 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18528 if (!suppress_add)
18529 list_to_add = cu->list_in_scope;
442ddf59 18530 }
c906108c
SS
18531 }
18532 break;
18533 case DW_TAG_formal_parameter:
edb3359d
DJ
18534 /* If we are inside a function, mark this as an argument. If
18535 not, we might be looking at an argument to an inlined function
18536 when we do not have enough information to show inlined frames;
18537 pretend it's a local variable in that case so that the user can
18538 still see it. */
18539 if (context_stack_depth > 0
18540 && context_stack[context_stack_depth - 1].name != NULL)
18541 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18542 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18543 if (attr)
18544 {
e7c27a73 18545 var_decode_location (attr, sym, cu);
c906108c 18546 }
e142c38c 18547 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18548 if (attr)
18549 {
e7c27a73 18550 dwarf2_const_value (attr, sym, cu);
c906108c 18551 }
f346a30d 18552
e37fd15a 18553 list_to_add = cu->list_in_scope;
c906108c
SS
18554 break;
18555 case DW_TAG_unspecified_parameters:
18556 /* From varargs functions; gdb doesn't seem to have any
18557 interest in this information, so just ignore it for now.
18558 (FIXME?) */
18559 break;
34eaf542
TT
18560 case DW_TAG_template_type_param:
18561 suppress_add = 1;
18562 /* Fall through. */
c906108c 18563 case DW_TAG_class_type:
680b30c7 18564 case DW_TAG_interface_type:
c906108c
SS
18565 case DW_TAG_structure_type:
18566 case DW_TAG_union_type:
72019c9c 18567 case DW_TAG_set_type:
c906108c 18568 case DW_TAG_enumeration_type:
f1e6e072 18569 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18570 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18571
63d06c5c 18572 {
987504bb 18573 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
18574 really ever be static objects: otherwise, if you try
18575 to, say, break of a class's method and you're in a file
18576 which doesn't mention that class, it won't work unless
18577 the check for all static symbols in lookup_symbol_aux
18578 saves you. See the OtherFileClass tests in
18579 gdb.c++/namespace.exp. */
18580
e37fd15a 18581 if (!suppress_add)
34eaf542 18582 {
34eaf542
TT
18583 list_to_add = (cu->list_in_scope == &file_symbols
18584 && (cu->language == language_cplus
18585 || cu->language == language_java)
18586 ? &global_symbols : cu->list_in_scope);
63d06c5c 18587
64382290
TT
18588 /* The semantics of C++ state that "struct foo {
18589 ... }" also defines a typedef for "foo". A Java
18590 class declaration also defines a typedef for the
18591 class. */
18592 if (cu->language == language_cplus
18593 || cu->language == language_java
45280282
IB
18594 || cu->language == language_ada
18595 || cu->language == language_d)
64382290
TT
18596 {
18597 /* The symbol's name is already allocated along
18598 with this objfile, so we don't need to
18599 duplicate it for the type. */
18600 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18601 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18602 }
63d06c5c
DC
18603 }
18604 }
c906108c
SS
18605 break;
18606 case DW_TAG_typedef:
f1e6e072 18607 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18608 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18609 list_to_add = cu->list_in_scope;
63d06c5c 18610 break;
c906108c 18611 case DW_TAG_base_type:
a02abb62 18612 case DW_TAG_subrange_type:
f1e6e072 18613 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18614 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18615 list_to_add = cu->list_in_scope;
c906108c
SS
18616 break;
18617 case DW_TAG_enumerator:
e142c38c 18618 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18619 if (attr)
18620 {
e7c27a73 18621 dwarf2_const_value (attr, sym, cu);
c906108c 18622 }
63d06c5c
DC
18623 {
18624 /* NOTE: carlton/2003-11-10: See comment above in the
18625 DW_TAG_class_type, etc. block. */
18626
e142c38c 18627 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
18628 && (cu->language == language_cplus
18629 || cu->language == language_java)
e142c38c 18630 ? &global_symbols : cu->list_in_scope);
63d06c5c 18631 }
c906108c 18632 break;
74921315 18633 case DW_TAG_imported_declaration:
5c4e30ca 18634 case DW_TAG_namespace:
f1e6e072 18635 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18636 list_to_add = &global_symbols;
5c4e30ca 18637 break;
530e8392
KB
18638 case DW_TAG_module:
18639 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18640 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18641 list_to_add = &global_symbols;
18642 break;
4357ac6c 18643 case DW_TAG_common_block:
f1e6e072 18644 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18645 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18646 add_symbol_to_list (sym, cu->list_in_scope);
18647 break;
c906108c
SS
18648 default:
18649 /* Not a tag we recognize. Hopefully we aren't processing
18650 trash data, but since we must specifically ignore things
18651 we don't recognize, there is nothing else we should do at
0963b4bd 18652 this point. */
e2e0b3e5 18653 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18654 dwarf_tag_name (die->tag));
c906108c
SS
18655 break;
18656 }
df8a16a1 18657
e37fd15a
SW
18658 if (suppress_add)
18659 {
18660 sym->hash_next = objfile->template_symbols;
18661 objfile->template_symbols = sym;
18662 list_to_add = NULL;
18663 }
18664
18665 if (list_to_add != NULL)
18666 add_symbol_to_list (sym, list_to_add);
18667
df8a16a1
DJ
18668 /* For the benefit of old versions of GCC, check for anonymous
18669 namespaces based on the demangled name. */
4d4ec4e5 18670 if (!cu->processing_has_namespace_info
94af9270 18671 && cu->language == language_cplus)
a10964d1 18672 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18673 }
18674 return (sym);
18675}
18676
34eaf542
TT
18677/* A wrapper for new_symbol_full that always allocates a new symbol. */
18678
18679static struct symbol *
18680new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18681{
18682 return new_symbol_full (die, type, cu, NULL);
18683}
18684
98bfdba5
PA
18685/* Given an attr with a DW_FORM_dataN value in host byte order,
18686 zero-extend it as appropriate for the symbol's type. The DWARF
18687 standard (v4) is not entirely clear about the meaning of using
18688 DW_FORM_dataN for a constant with a signed type, where the type is
18689 wider than the data. The conclusion of a discussion on the DWARF
18690 list was that this is unspecified. We choose to always zero-extend
18691 because that is the interpretation long in use by GCC. */
c906108c 18692
98bfdba5 18693static gdb_byte *
ff39bb5e 18694dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18695 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18696{
e7c27a73 18697 struct objfile *objfile = cu->objfile;
e17a4113
UW
18698 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18699 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18700 LONGEST l = DW_UNSND (attr);
18701
18702 if (bits < sizeof (*value) * 8)
18703 {
18704 l &= ((LONGEST) 1 << bits) - 1;
18705 *value = l;
18706 }
18707 else if (bits == sizeof (*value) * 8)
18708 *value = l;
18709 else
18710 {
18711 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18712 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18713 return bytes;
18714 }
18715
18716 return NULL;
18717}
18718
18719/* Read a constant value from an attribute. Either set *VALUE, or if
18720 the value does not fit in *VALUE, set *BYTES - either already
18721 allocated on the objfile obstack, or newly allocated on OBSTACK,
18722 or, set *BATON, if we translated the constant to a location
18723 expression. */
18724
18725static void
ff39bb5e 18726dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18727 const char *name, struct obstack *obstack,
18728 struct dwarf2_cu *cu,
d521ce57 18729 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18730 struct dwarf2_locexpr_baton **baton)
18731{
18732 struct objfile *objfile = cu->objfile;
18733 struct comp_unit_head *cu_header = &cu->header;
c906108c 18734 struct dwarf_block *blk;
98bfdba5
PA
18735 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18736 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18737
18738 *value = 0;
18739 *bytes = NULL;
18740 *baton = NULL;
c906108c
SS
18741
18742 switch (attr->form)
18743 {
18744 case DW_FORM_addr:
3019eac3 18745 case DW_FORM_GNU_addr_index:
ac56253d 18746 {
ac56253d
TT
18747 gdb_byte *data;
18748
98bfdba5
PA
18749 if (TYPE_LENGTH (type) != cu_header->addr_size)
18750 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18751 cu_header->addr_size,
98bfdba5 18752 TYPE_LENGTH (type));
ac56253d
TT
18753 /* Symbols of this form are reasonably rare, so we just
18754 piggyback on the existing location code rather than writing
18755 a new implementation of symbol_computed_ops. */
7919a973 18756 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
98bfdba5
PA
18757 (*baton)->per_cu = cu->per_cu;
18758 gdb_assert ((*baton)->per_cu);
ac56253d 18759
98bfdba5 18760 (*baton)->size = 2 + cu_header->addr_size;
7919a973 18761 data = obstack_alloc (obstack, (*baton)->size);
98bfdba5 18762 (*baton)->data = data;
ac56253d
TT
18763
18764 data[0] = DW_OP_addr;
18765 store_unsigned_integer (&data[1], cu_header->addr_size,
18766 byte_order, DW_ADDR (attr));
18767 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18768 }
c906108c 18769 break;
4ac36638 18770 case DW_FORM_string:
93b5768b 18771 case DW_FORM_strp:
3019eac3 18772 case DW_FORM_GNU_str_index:
36586728 18773 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18774 /* DW_STRING is already allocated on the objfile obstack, point
18775 directly to it. */
d521ce57 18776 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18777 break;
c906108c
SS
18778 case DW_FORM_block1:
18779 case DW_FORM_block2:
18780 case DW_FORM_block4:
18781 case DW_FORM_block:
2dc7f7b3 18782 case DW_FORM_exprloc:
c906108c 18783 blk = DW_BLOCK (attr);
98bfdba5
PA
18784 if (TYPE_LENGTH (type) != blk->size)
18785 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18786 TYPE_LENGTH (type));
18787 *bytes = blk->data;
c906108c 18788 break;
2df3850c
JM
18789
18790 /* The DW_AT_const_value attributes are supposed to carry the
18791 symbol's value "represented as it would be on the target
18792 architecture." By the time we get here, it's already been
18793 converted to host endianness, so we just need to sign- or
18794 zero-extend it as appropriate. */
18795 case DW_FORM_data1:
3aef2284 18796 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18797 break;
c906108c 18798 case DW_FORM_data2:
3aef2284 18799 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18800 break;
c906108c 18801 case DW_FORM_data4:
3aef2284 18802 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18803 break;
c906108c 18804 case DW_FORM_data8:
3aef2284 18805 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18806 break;
18807
c906108c 18808 case DW_FORM_sdata:
98bfdba5 18809 *value = DW_SND (attr);
2df3850c
JM
18810 break;
18811
c906108c 18812 case DW_FORM_udata:
98bfdba5 18813 *value = DW_UNSND (attr);
c906108c 18814 break;
2df3850c 18815
c906108c 18816 default:
4d3c2250 18817 complaint (&symfile_complaints,
e2e0b3e5 18818 _("unsupported const value attribute form: '%s'"),
4d3c2250 18819 dwarf_form_name (attr->form));
98bfdba5 18820 *value = 0;
c906108c
SS
18821 break;
18822 }
18823}
18824
2df3850c 18825
98bfdba5
PA
18826/* Copy constant value from an attribute to a symbol. */
18827
2df3850c 18828static void
ff39bb5e 18829dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18830 struct dwarf2_cu *cu)
2df3850c 18831{
98bfdba5
PA
18832 struct objfile *objfile = cu->objfile;
18833 struct comp_unit_head *cu_header = &cu->header;
12df843f 18834 LONGEST value;
d521ce57 18835 const gdb_byte *bytes;
98bfdba5 18836 struct dwarf2_locexpr_baton *baton;
2df3850c 18837
98bfdba5
PA
18838 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18839 SYMBOL_PRINT_NAME (sym),
18840 &objfile->objfile_obstack, cu,
18841 &value, &bytes, &baton);
2df3850c 18842
98bfdba5
PA
18843 if (baton != NULL)
18844 {
98bfdba5 18845 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18846 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18847 }
18848 else if (bytes != NULL)
18849 {
18850 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18851 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18852 }
18853 else
18854 {
18855 SYMBOL_VALUE (sym) = value;
f1e6e072 18856 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18857 }
2df3850c
JM
18858}
18859
c906108c
SS
18860/* Return the type of the die in question using its DW_AT_type attribute. */
18861
18862static struct type *
e7c27a73 18863die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18864{
c906108c 18865 struct attribute *type_attr;
c906108c 18866
e142c38c 18867 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18868 if (!type_attr)
18869 {
18870 /* A missing DW_AT_type represents a void type. */
46bf5051 18871 return objfile_type (cu->objfile)->builtin_void;
c906108c 18872 }
348e048f 18873
673bfd45 18874 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18875}
18876
b4ba55a1
JB
18877/* True iff CU's producer generates GNAT Ada auxiliary information
18878 that allows to find parallel types through that information instead
18879 of having to do expensive parallel lookups by type name. */
18880
18881static int
18882need_gnat_info (struct dwarf2_cu *cu)
18883{
18884 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18885 of GNAT produces this auxiliary information, without any indication
18886 that it is produced. Part of enhancing the FSF version of GNAT
18887 to produce that information will be to put in place an indicator
18888 that we can use in order to determine whether the descriptive type
18889 info is available or not. One suggestion that has been made is
18890 to use a new attribute, attached to the CU die. For now, assume
18891 that the descriptive type info is not available. */
18892 return 0;
18893}
18894
b4ba55a1
JB
18895/* Return the auxiliary type of the die in question using its
18896 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18897 attribute is not present. */
18898
18899static struct type *
18900die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18901{
b4ba55a1 18902 struct attribute *type_attr;
b4ba55a1
JB
18903
18904 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18905 if (!type_attr)
18906 return NULL;
18907
673bfd45 18908 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18909}
18910
18911/* If DIE has a descriptive_type attribute, then set the TYPE's
18912 descriptive type accordingly. */
18913
18914static void
18915set_descriptive_type (struct type *type, struct die_info *die,
18916 struct dwarf2_cu *cu)
18917{
18918 struct type *descriptive_type = die_descriptive_type (die, cu);
18919
18920 if (descriptive_type)
18921 {
18922 ALLOCATE_GNAT_AUX_TYPE (type);
18923 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18924 }
18925}
18926
c906108c
SS
18927/* Return the containing type of the die in question using its
18928 DW_AT_containing_type attribute. */
18929
18930static struct type *
e7c27a73 18931die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18932{
c906108c 18933 struct attribute *type_attr;
c906108c 18934
e142c38c 18935 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18936 if (!type_attr)
18937 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18938 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18939
673bfd45 18940 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18941}
18942
ac9ec31b
DE
18943/* Return an error marker type to use for the ill formed type in DIE/CU. */
18944
18945static struct type *
18946build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18947{
18948 struct objfile *objfile = dwarf2_per_objfile->objfile;
18949 char *message, *saved;
18950
18951 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18952 objfile_name (objfile),
ac9ec31b
DE
18953 cu->header.offset.sect_off,
18954 die->offset.sect_off);
18955 saved = obstack_copy0 (&objfile->objfile_obstack,
18956 message, strlen (message));
18957 xfree (message);
18958
18959 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18960}
18961
673bfd45 18962/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
18963 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18964 DW_AT_containing_type.
673bfd45
DE
18965 If there is no type substitute an error marker. */
18966
c906108c 18967static struct type *
ff39bb5e 18968lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 18969 struct dwarf2_cu *cu)
c906108c 18970{
bb5ed363 18971 struct objfile *objfile = cu->objfile;
f792889a
DJ
18972 struct type *this_type;
18973
ac9ec31b
DE
18974 gdb_assert (attr->name == DW_AT_type
18975 || attr->name == DW_AT_GNAT_descriptive_type
18976 || attr->name == DW_AT_containing_type);
18977
673bfd45
DE
18978 /* First see if we have it cached. */
18979
36586728
TT
18980 if (attr->form == DW_FORM_GNU_ref_alt)
18981 {
18982 struct dwarf2_per_cu_data *per_cu;
18983 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18984
18985 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18986 this_type = get_die_type_at_offset (offset, per_cu);
18987 }
7771576e 18988 else if (attr_form_is_ref (attr))
673bfd45 18989 {
b64f50a1 18990 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
18991
18992 this_type = get_die_type_at_offset (offset, cu->per_cu);
18993 }
55f1336d 18994 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 18995 {
ac9ec31b 18996 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 18997
ac9ec31b 18998 return get_signatured_type (die, signature, cu);
673bfd45
DE
18999 }
19000 else
19001 {
ac9ec31b
DE
19002 complaint (&symfile_complaints,
19003 _("Dwarf Error: Bad type attribute %s in DIE"
19004 " at 0x%x [in module %s]"),
19005 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 19006 objfile_name (objfile));
ac9ec31b 19007 return build_error_marker_type (cu, die);
673bfd45
DE
19008 }
19009
19010 /* If not cached we need to read it in. */
19011
19012 if (this_type == NULL)
19013 {
ac9ec31b 19014 struct die_info *type_die = NULL;
673bfd45
DE
19015 struct dwarf2_cu *type_cu = cu;
19016
7771576e 19017 if (attr_form_is_ref (attr))
ac9ec31b
DE
19018 type_die = follow_die_ref (die, attr, &type_cu);
19019 if (type_die == NULL)
19020 return build_error_marker_type (cu, die);
19021 /* If we find the type now, it's probably because the type came
3019eac3
DE
19022 from an inter-CU reference and the type's CU got expanded before
19023 ours. */
ac9ec31b 19024 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19025 }
19026
19027 /* If we still don't have a type use an error marker. */
19028
19029 if (this_type == NULL)
ac9ec31b 19030 return build_error_marker_type (cu, die);
673bfd45 19031
f792889a 19032 return this_type;
c906108c
SS
19033}
19034
673bfd45
DE
19035/* Return the type in DIE, CU.
19036 Returns NULL for invalid types.
19037
02142a6c 19038 This first does a lookup in die_type_hash,
673bfd45
DE
19039 and only reads the die in if necessary.
19040
19041 NOTE: This can be called when reading in partial or full symbols. */
19042
f792889a 19043static struct type *
e7c27a73 19044read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19045{
f792889a
DJ
19046 struct type *this_type;
19047
19048 this_type = get_die_type (die, cu);
19049 if (this_type)
19050 return this_type;
19051
673bfd45
DE
19052 return read_type_die_1 (die, cu);
19053}
19054
19055/* Read the type in DIE, CU.
19056 Returns NULL for invalid types. */
19057
19058static struct type *
19059read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19060{
19061 struct type *this_type = NULL;
19062
c906108c
SS
19063 switch (die->tag)
19064 {
19065 case DW_TAG_class_type:
680b30c7 19066 case DW_TAG_interface_type:
c906108c
SS
19067 case DW_TAG_structure_type:
19068 case DW_TAG_union_type:
f792889a 19069 this_type = read_structure_type (die, cu);
c906108c
SS
19070 break;
19071 case DW_TAG_enumeration_type:
f792889a 19072 this_type = read_enumeration_type (die, cu);
c906108c
SS
19073 break;
19074 case DW_TAG_subprogram:
19075 case DW_TAG_subroutine_type:
edb3359d 19076 case DW_TAG_inlined_subroutine:
f792889a 19077 this_type = read_subroutine_type (die, cu);
c906108c
SS
19078 break;
19079 case DW_TAG_array_type:
f792889a 19080 this_type = read_array_type (die, cu);
c906108c 19081 break;
72019c9c 19082 case DW_TAG_set_type:
f792889a 19083 this_type = read_set_type (die, cu);
72019c9c 19084 break;
c906108c 19085 case DW_TAG_pointer_type:
f792889a 19086 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19087 break;
19088 case DW_TAG_ptr_to_member_type:
f792889a 19089 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19090 break;
19091 case DW_TAG_reference_type:
f792889a 19092 this_type = read_tag_reference_type (die, cu);
c906108c
SS
19093 break;
19094 case DW_TAG_const_type:
f792889a 19095 this_type = read_tag_const_type (die, cu);
c906108c
SS
19096 break;
19097 case DW_TAG_volatile_type:
f792889a 19098 this_type = read_tag_volatile_type (die, cu);
c906108c 19099 break;
06d66ee9
TT
19100 case DW_TAG_restrict_type:
19101 this_type = read_tag_restrict_type (die, cu);
19102 break;
c906108c 19103 case DW_TAG_string_type:
f792889a 19104 this_type = read_tag_string_type (die, cu);
c906108c
SS
19105 break;
19106 case DW_TAG_typedef:
f792889a 19107 this_type = read_typedef (die, cu);
c906108c 19108 break;
a02abb62 19109 case DW_TAG_subrange_type:
f792889a 19110 this_type = read_subrange_type (die, cu);
a02abb62 19111 break;
c906108c 19112 case DW_TAG_base_type:
f792889a 19113 this_type = read_base_type (die, cu);
c906108c 19114 break;
81a17f79 19115 case DW_TAG_unspecified_type:
f792889a 19116 this_type = read_unspecified_type (die, cu);
81a17f79 19117 break;
0114d602
DJ
19118 case DW_TAG_namespace:
19119 this_type = read_namespace_type (die, cu);
19120 break;
f55ee35c
JK
19121 case DW_TAG_module:
19122 this_type = read_module_type (die, cu);
19123 break;
a2c2acaf
MW
19124 case DW_TAG_atomic_type:
19125 this_type = read_tag_atomic_type (die, cu);
19126 break;
c906108c 19127 default:
3e43a32a
MS
19128 complaint (&symfile_complaints,
19129 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19130 dwarf_tag_name (die->tag));
c906108c
SS
19131 break;
19132 }
63d06c5c 19133
f792889a 19134 return this_type;
63d06c5c
DC
19135}
19136
abc72ce4
DE
19137/* See if we can figure out if the class lives in a namespace. We do
19138 this by looking for a member function; its demangled name will
19139 contain namespace info, if there is any.
19140 Return the computed name or NULL.
19141 Space for the result is allocated on the objfile's obstack.
19142 This is the full-die version of guess_partial_die_structure_name.
19143 In this case we know DIE has no useful parent. */
19144
19145static char *
19146guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19147{
19148 struct die_info *spec_die;
19149 struct dwarf2_cu *spec_cu;
19150 struct die_info *child;
19151
19152 spec_cu = cu;
19153 spec_die = die_specification (die, &spec_cu);
19154 if (spec_die != NULL)
19155 {
19156 die = spec_die;
19157 cu = spec_cu;
19158 }
19159
19160 for (child = die->child;
19161 child != NULL;
19162 child = child->sibling)
19163 {
19164 if (child->tag == DW_TAG_subprogram)
19165 {
19166 struct attribute *attr;
19167
19168 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
19169 if (attr == NULL)
19170 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
19171 if (attr != NULL)
19172 {
19173 char *actual_name
19174 = language_class_name_from_physname (cu->language_defn,
19175 DW_STRING (attr));
19176 char *name = NULL;
19177
19178 if (actual_name != NULL)
19179 {
15d034d0 19180 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19181
19182 if (die_name != NULL
19183 && strcmp (die_name, actual_name) != 0)
19184 {
19185 /* Strip off the class name from the full name.
19186 We want the prefix. */
19187 int die_name_len = strlen (die_name);
19188 int actual_name_len = strlen (actual_name);
19189
19190 /* Test for '::' as a sanity check. */
19191 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19192 && actual_name[actual_name_len
19193 - die_name_len - 1] == ':')
abc72ce4 19194 name =
34a68019 19195 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
19196 actual_name,
19197 actual_name_len - die_name_len - 2);
abc72ce4
DE
19198 }
19199 }
19200 xfree (actual_name);
19201 return name;
19202 }
19203 }
19204 }
19205
19206 return NULL;
19207}
19208
96408a79
SA
19209/* GCC might emit a nameless typedef that has a linkage name. Determine the
19210 prefix part in such case. See
19211 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19212
19213static char *
19214anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19215{
19216 struct attribute *attr;
19217 char *base;
19218
19219 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19220 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19221 return NULL;
19222
19223 attr = dwarf2_attr (die, DW_AT_name, cu);
19224 if (attr != NULL && DW_STRING (attr) != NULL)
19225 return NULL;
19226
19227 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19228 if (attr == NULL)
19229 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19230 if (attr == NULL || DW_STRING (attr) == NULL)
19231 return NULL;
19232
19233 /* dwarf2_name had to be already called. */
19234 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19235
19236 /* Strip the base name, keep any leading namespaces/classes. */
19237 base = strrchr (DW_STRING (attr), ':');
19238 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19239 return "";
19240
34a68019 19241 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb 19242 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
19243}
19244
fdde2d81 19245/* Return the name of the namespace/class that DIE is defined within,
0114d602 19246 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19247
0114d602
DJ
19248 For example, if we're within the method foo() in the following
19249 code:
19250
19251 namespace N {
19252 class C {
19253 void foo () {
19254 }
19255 };
19256 }
19257
19258 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19259
0d5cff50 19260static const char *
e142c38c 19261determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19262{
0114d602
DJ
19263 struct die_info *parent, *spec_die;
19264 struct dwarf2_cu *spec_cu;
19265 struct type *parent_type;
96408a79 19266 char *retval;
63d06c5c 19267
f55ee35c 19268 if (cu->language != language_cplus && cu->language != language_java
45280282 19269 && cu->language != language_fortran && cu->language != language_d)
0114d602
DJ
19270 return "";
19271
96408a79
SA
19272 retval = anonymous_struct_prefix (die, cu);
19273 if (retval)
19274 return retval;
19275
0114d602
DJ
19276 /* We have to be careful in the presence of DW_AT_specification.
19277 For example, with GCC 3.4, given the code
19278
19279 namespace N {
19280 void foo() {
19281 // Definition of N::foo.
19282 }
19283 }
19284
19285 then we'll have a tree of DIEs like this:
19286
19287 1: DW_TAG_compile_unit
19288 2: DW_TAG_namespace // N
19289 3: DW_TAG_subprogram // declaration of N::foo
19290 4: DW_TAG_subprogram // definition of N::foo
19291 DW_AT_specification // refers to die #3
19292
19293 Thus, when processing die #4, we have to pretend that we're in
19294 the context of its DW_AT_specification, namely the contex of die
19295 #3. */
19296 spec_cu = cu;
19297 spec_die = die_specification (die, &spec_cu);
19298 if (spec_die == NULL)
19299 parent = die->parent;
19300 else
63d06c5c 19301 {
0114d602
DJ
19302 parent = spec_die->parent;
19303 cu = spec_cu;
63d06c5c 19304 }
0114d602
DJ
19305
19306 if (parent == NULL)
19307 return "";
98bfdba5
PA
19308 else if (parent->building_fullname)
19309 {
19310 const char *name;
19311 const char *parent_name;
19312
19313 /* It has been seen on RealView 2.2 built binaries,
19314 DW_TAG_template_type_param types actually _defined_ as
19315 children of the parent class:
19316
19317 enum E {};
19318 template class <class Enum> Class{};
19319 Class<enum E> class_e;
19320
19321 1: DW_TAG_class_type (Class)
19322 2: DW_TAG_enumeration_type (E)
19323 3: DW_TAG_enumerator (enum1:0)
19324 3: DW_TAG_enumerator (enum2:1)
19325 ...
19326 2: DW_TAG_template_type_param
19327 DW_AT_type DW_FORM_ref_udata (E)
19328
19329 Besides being broken debug info, it can put GDB into an
19330 infinite loop. Consider:
19331
19332 When we're building the full name for Class<E>, we'll start
19333 at Class, and go look over its template type parameters,
19334 finding E. We'll then try to build the full name of E, and
19335 reach here. We're now trying to build the full name of E,
19336 and look over the parent DIE for containing scope. In the
19337 broken case, if we followed the parent DIE of E, we'd again
19338 find Class, and once again go look at its template type
19339 arguments, etc., etc. Simply don't consider such parent die
19340 as source-level parent of this die (it can't be, the language
19341 doesn't allow it), and break the loop here. */
19342 name = dwarf2_name (die, cu);
19343 parent_name = dwarf2_name (parent, cu);
19344 complaint (&symfile_complaints,
19345 _("template param type '%s' defined within parent '%s'"),
19346 name ? name : "<unknown>",
19347 parent_name ? parent_name : "<unknown>");
19348 return "";
19349 }
63d06c5c 19350 else
0114d602
DJ
19351 switch (parent->tag)
19352 {
63d06c5c 19353 case DW_TAG_namespace:
0114d602 19354 parent_type = read_type_die (parent, cu);
acebe513
UW
19355 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19356 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19357 Work around this problem here. */
19358 if (cu->language == language_cplus
19359 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19360 return "";
0114d602
DJ
19361 /* We give a name to even anonymous namespaces. */
19362 return TYPE_TAG_NAME (parent_type);
63d06c5c 19363 case DW_TAG_class_type:
680b30c7 19364 case DW_TAG_interface_type:
63d06c5c 19365 case DW_TAG_structure_type:
0114d602 19366 case DW_TAG_union_type:
f55ee35c 19367 case DW_TAG_module:
0114d602
DJ
19368 parent_type = read_type_die (parent, cu);
19369 if (TYPE_TAG_NAME (parent_type) != NULL)
19370 return TYPE_TAG_NAME (parent_type);
19371 else
19372 /* An anonymous structure is only allowed non-static data
19373 members; no typedefs, no member functions, et cetera.
19374 So it does not need a prefix. */
19375 return "";
abc72ce4 19376 case DW_TAG_compile_unit:
95554aad 19377 case DW_TAG_partial_unit:
abc72ce4
DE
19378 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19379 if (cu->language == language_cplus
8b70b953 19380 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
19381 && die->child != NULL
19382 && (die->tag == DW_TAG_class_type
19383 || die->tag == DW_TAG_structure_type
19384 || die->tag == DW_TAG_union_type))
19385 {
19386 char *name = guess_full_die_structure_name (die, cu);
19387 if (name != NULL)
19388 return name;
19389 }
19390 return "";
3d567982
TT
19391 case DW_TAG_enumeration_type:
19392 parent_type = read_type_die (parent, cu);
19393 if (TYPE_DECLARED_CLASS (parent_type))
19394 {
19395 if (TYPE_TAG_NAME (parent_type) != NULL)
19396 return TYPE_TAG_NAME (parent_type);
19397 return "";
19398 }
19399 /* Fall through. */
63d06c5c 19400 default:
8176b9b8 19401 return determine_prefix (parent, cu);
63d06c5c 19402 }
63d06c5c
DC
19403}
19404
3e43a32a
MS
19405/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19406 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19407 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19408 an obconcat, otherwise allocate storage for the result. The CU argument is
19409 used to determine the language and hence, the appropriate separator. */
987504bb 19410
f55ee35c 19411#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
19412
19413static char *
f55ee35c
JK
19414typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19415 int physname, struct dwarf2_cu *cu)
63d06c5c 19416{
f55ee35c 19417 const char *lead = "";
5c315b68 19418 const char *sep;
63d06c5c 19419
3e43a32a
MS
19420 if (suffix == NULL || suffix[0] == '\0'
19421 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
19422 sep = "";
19423 else if (cu->language == language_java)
19424 sep = ".";
45280282
IB
19425 else if (cu->language == language_d)
19426 {
19427 /* For D, the 'main' function could be defined in any module, but it
19428 should never be prefixed. */
19429 if (strcmp (suffix, "D main") == 0)
19430 {
19431 prefix = "";
19432 sep = "";
19433 }
19434 else
19435 sep = ".";
19436 }
f55ee35c
JK
19437 else if (cu->language == language_fortran && physname)
19438 {
19439 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19440 DW_AT_MIPS_linkage_name is preferred and used instead. */
19441
19442 lead = "__";
19443 sep = "_MOD_";
19444 }
987504bb
JJ
19445 else
19446 sep = "::";
63d06c5c 19447
6dd47d34
DE
19448 if (prefix == NULL)
19449 prefix = "";
19450 if (suffix == NULL)
19451 suffix = "";
19452
987504bb
JJ
19453 if (obs == NULL)
19454 {
3e43a32a
MS
19455 char *retval
19456 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 19457
f55ee35c
JK
19458 strcpy (retval, lead);
19459 strcat (retval, prefix);
6dd47d34
DE
19460 strcat (retval, sep);
19461 strcat (retval, suffix);
63d06c5c
DC
19462 return retval;
19463 }
987504bb
JJ
19464 else
19465 {
19466 /* We have an obstack. */
f55ee35c 19467 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 19468 }
63d06c5c
DC
19469}
19470
c906108c
SS
19471/* Return sibling of die, NULL if no sibling. */
19472
f9aca02d 19473static struct die_info *
fba45db2 19474sibling_die (struct die_info *die)
c906108c 19475{
639d11d3 19476 return die->sibling;
c906108c
SS
19477}
19478
71c25dea
TT
19479/* Get name of a die, return NULL if not found. */
19480
15d034d0
TT
19481static const char *
19482dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
19483 struct obstack *obstack)
19484{
19485 if (name && cu->language == language_cplus)
19486 {
19487 char *canon_name = cp_canonicalize_string (name);
19488
19489 if (canon_name != NULL)
19490 {
19491 if (strcmp (canon_name, name) != 0)
10f0c4bb 19492 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
19493 xfree (canon_name);
19494 }
19495 }
19496
19497 return name;
c906108c
SS
19498}
19499
96553a0c
DE
19500/* Get name of a die, return NULL if not found.
19501 Anonymous namespaces are converted to their magic string. */
9219021c 19502
15d034d0 19503static const char *
e142c38c 19504dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19505{
19506 struct attribute *attr;
19507
e142c38c 19508 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 19509 if ((!attr || !DW_STRING (attr))
96553a0c 19510 && die->tag != DW_TAG_namespace
53832f31
TT
19511 && die->tag != DW_TAG_class_type
19512 && die->tag != DW_TAG_interface_type
19513 && die->tag != DW_TAG_structure_type
19514 && die->tag != DW_TAG_union_type)
71c25dea
TT
19515 return NULL;
19516
19517 switch (die->tag)
19518 {
19519 case DW_TAG_compile_unit:
95554aad 19520 case DW_TAG_partial_unit:
71c25dea
TT
19521 /* Compilation units have a DW_AT_name that is a filename, not
19522 a source language identifier. */
19523 case DW_TAG_enumeration_type:
19524 case DW_TAG_enumerator:
19525 /* These tags always have simple identifiers already; no need
19526 to canonicalize them. */
19527 return DW_STRING (attr);
907af001 19528
96553a0c
DE
19529 case DW_TAG_namespace:
19530 if (attr != NULL && DW_STRING (attr) != NULL)
19531 return DW_STRING (attr);
19532 return CP_ANONYMOUS_NAMESPACE_STR;
19533
418835cc
KS
19534 case DW_TAG_subprogram:
19535 /* Java constructors will all be named "<init>", so return
19536 the class name when we see this special case. */
19537 if (cu->language == language_java
19538 && DW_STRING (attr) != NULL
19539 && strcmp (DW_STRING (attr), "<init>") == 0)
19540 {
19541 struct dwarf2_cu *spec_cu = cu;
19542 struct die_info *spec_die;
19543
19544 /* GCJ will output '<init>' for Java constructor names.
19545 For this special case, return the name of the parent class. */
19546
cdc07690 19547 /* GCJ may output subprogram DIEs with AT_specification set.
418835cc
KS
19548 If so, use the name of the specified DIE. */
19549 spec_die = die_specification (die, &spec_cu);
19550 if (spec_die != NULL)
19551 return dwarf2_name (spec_die, spec_cu);
19552
19553 do
19554 {
19555 die = die->parent;
19556 if (die->tag == DW_TAG_class_type)
19557 return dwarf2_name (die, cu);
19558 }
95554aad
TT
19559 while (die->tag != DW_TAG_compile_unit
19560 && die->tag != DW_TAG_partial_unit);
418835cc 19561 }
907af001
UW
19562 break;
19563
19564 case DW_TAG_class_type:
19565 case DW_TAG_interface_type:
19566 case DW_TAG_structure_type:
19567 case DW_TAG_union_type:
19568 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19569 structures or unions. These were of the form "._%d" in GCC 4.1,
19570 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19571 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 19572 if (attr && DW_STRING (attr)
61012eef
GB
19573 && (startswith (DW_STRING (attr), "._")
19574 || startswith (DW_STRING (attr), "<anonymous")))
907af001 19575 return NULL;
53832f31
TT
19576
19577 /* GCC might emit a nameless typedef that has a linkage name. See
19578 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19579 if (!attr || DW_STRING (attr) == NULL)
19580 {
df5c6c50 19581 char *demangled = NULL;
53832f31
TT
19582
19583 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19584 if (attr == NULL)
19585 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19586
19587 if (attr == NULL || DW_STRING (attr) == NULL)
19588 return NULL;
19589
df5c6c50
JK
19590 /* Avoid demangling DW_STRING (attr) the second time on a second
19591 call for the same DIE. */
19592 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19593 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19594
19595 if (demangled)
19596 {
96408a79
SA
19597 char *base;
19598
53832f31 19599 /* FIXME: we already did this for the partial symbol... */
34a68019
TT
19600 DW_STRING (attr)
19601 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19602 demangled, strlen (demangled));
53832f31
TT
19603 DW_STRING_IS_CANONICAL (attr) = 1;
19604 xfree (demangled);
96408a79
SA
19605
19606 /* Strip any leading namespaces/classes, keep only the base name.
19607 DW_AT_name for named DIEs does not contain the prefixes. */
19608 base = strrchr (DW_STRING (attr), ':');
19609 if (base && base > DW_STRING (attr) && base[-1] == ':')
19610 return &base[1];
19611 else
19612 return DW_STRING (attr);
53832f31
TT
19613 }
19614 }
907af001
UW
19615 break;
19616
71c25dea 19617 default:
907af001
UW
19618 break;
19619 }
19620
19621 if (!DW_STRING_IS_CANONICAL (attr))
19622 {
19623 DW_STRING (attr)
19624 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19625 &cu->objfile->per_bfd->storage_obstack);
907af001 19626 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19627 }
907af001 19628 return DW_STRING (attr);
9219021c
DC
19629}
19630
19631/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19632 is none. *EXT_CU is the CU containing DIE on input, and the CU
19633 containing the return value on output. */
9219021c
DC
19634
19635static struct die_info *
f2f0e013 19636dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19637{
19638 struct attribute *attr;
9219021c 19639
f2f0e013 19640 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19641 if (attr == NULL)
19642 return NULL;
19643
f2f0e013 19644 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19645}
19646
c906108c
SS
19647/* Convert a DIE tag into its string name. */
19648
f39c6ffd 19649static const char *
aa1ee363 19650dwarf_tag_name (unsigned tag)
c906108c 19651{
f39c6ffd
TT
19652 const char *name = get_DW_TAG_name (tag);
19653
19654 if (name == NULL)
19655 return "DW_TAG_<unknown>";
19656
19657 return name;
c906108c
SS
19658}
19659
19660/* Convert a DWARF attribute code into its string name. */
19661
f39c6ffd 19662static const char *
aa1ee363 19663dwarf_attr_name (unsigned attr)
c906108c 19664{
f39c6ffd
TT
19665 const char *name;
19666
c764a876 19667#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19668 if (attr == DW_AT_MIPS_fde)
19669 return "DW_AT_MIPS_fde";
19670#else
19671 if (attr == DW_AT_HP_block_index)
19672 return "DW_AT_HP_block_index";
c764a876 19673#endif
f39c6ffd
TT
19674
19675 name = get_DW_AT_name (attr);
19676
19677 if (name == NULL)
19678 return "DW_AT_<unknown>";
19679
19680 return name;
c906108c
SS
19681}
19682
19683/* Convert a DWARF value form code into its string name. */
19684
f39c6ffd 19685static const char *
aa1ee363 19686dwarf_form_name (unsigned form)
c906108c 19687{
f39c6ffd
TT
19688 const char *name = get_DW_FORM_name (form);
19689
19690 if (name == NULL)
19691 return "DW_FORM_<unknown>";
19692
19693 return name;
c906108c
SS
19694}
19695
19696static char *
fba45db2 19697dwarf_bool_name (unsigned mybool)
c906108c
SS
19698{
19699 if (mybool)
19700 return "TRUE";
19701 else
19702 return "FALSE";
19703}
19704
19705/* Convert a DWARF type code into its string name. */
19706
f39c6ffd 19707static const char *
aa1ee363 19708dwarf_type_encoding_name (unsigned enc)
c906108c 19709{
f39c6ffd 19710 const char *name = get_DW_ATE_name (enc);
c906108c 19711
f39c6ffd
TT
19712 if (name == NULL)
19713 return "DW_ATE_<unknown>";
c906108c 19714
f39c6ffd 19715 return name;
c906108c 19716}
c906108c 19717
f9aca02d 19718static void
d97bc12b 19719dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19720{
19721 unsigned int i;
19722
d97bc12b
DE
19723 print_spaces (indent, f);
19724 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19725 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19726
19727 if (die->parent != NULL)
19728 {
19729 print_spaces (indent, f);
19730 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19731 die->parent->offset.sect_off);
d97bc12b
DE
19732 }
19733
19734 print_spaces (indent, f);
19735 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19736 dwarf_bool_name (die->child != NULL));
c906108c 19737
d97bc12b
DE
19738 print_spaces (indent, f);
19739 fprintf_unfiltered (f, " attributes:\n");
19740
c906108c
SS
19741 for (i = 0; i < die->num_attrs; ++i)
19742 {
d97bc12b
DE
19743 print_spaces (indent, f);
19744 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19745 dwarf_attr_name (die->attrs[i].name),
19746 dwarf_form_name (die->attrs[i].form));
d97bc12b 19747
c906108c
SS
19748 switch (die->attrs[i].form)
19749 {
c906108c 19750 case DW_FORM_addr:
3019eac3 19751 case DW_FORM_GNU_addr_index:
d97bc12b 19752 fprintf_unfiltered (f, "address: ");
5af949e3 19753 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19754 break;
19755 case DW_FORM_block2:
19756 case DW_FORM_block4:
19757 case DW_FORM_block:
19758 case DW_FORM_block1:
56eb65bd
SP
19759 fprintf_unfiltered (f, "block: size %s",
19760 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19761 break;
2dc7f7b3 19762 case DW_FORM_exprloc:
56eb65bd
SP
19763 fprintf_unfiltered (f, "expression: size %s",
19764 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19765 break;
4568ecf9
DE
19766 case DW_FORM_ref_addr:
19767 fprintf_unfiltered (f, "ref address: ");
19768 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19769 break;
36586728
TT
19770 case DW_FORM_GNU_ref_alt:
19771 fprintf_unfiltered (f, "alt ref address: ");
19772 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19773 break;
10b3939b
DJ
19774 case DW_FORM_ref1:
19775 case DW_FORM_ref2:
19776 case DW_FORM_ref4:
4568ecf9
DE
19777 case DW_FORM_ref8:
19778 case DW_FORM_ref_udata:
d97bc12b 19779 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19780 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19781 break;
c906108c
SS
19782 case DW_FORM_data1:
19783 case DW_FORM_data2:
19784 case DW_FORM_data4:
ce5d95e1 19785 case DW_FORM_data8:
c906108c
SS
19786 case DW_FORM_udata:
19787 case DW_FORM_sdata:
43bbcdc2
PH
19788 fprintf_unfiltered (f, "constant: %s",
19789 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19790 break;
2dc7f7b3
TT
19791 case DW_FORM_sec_offset:
19792 fprintf_unfiltered (f, "section offset: %s",
19793 pulongest (DW_UNSND (&die->attrs[i])));
19794 break;
55f1336d 19795 case DW_FORM_ref_sig8:
ac9ec31b
DE
19796 fprintf_unfiltered (f, "signature: %s",
19797 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19798 break;
c906108c 19799 case DW_FORM_string:
4bdf3d34 19800 case DW_FORM_strp:
3019eac3 19801 case DW_FORM_GNU_str_index:
36586728 19802 case DW_FORM_GNU_strp_alt:
8285870a 19803 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19804 DW_STRING (&die->attrs[i])
8285870a
JK
19805 ? DW_STRING (&die->attrs[i]) : "",
19806 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19807 break;
19808 case DW_FORM_flag:
19809 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19810 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19811 else
d97bc12b 19812 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19813 break;
2dc7f7b3
TT
19814 case DW_FORM_flag_present:
19815 fprintf_unfiltered (f, "flag: TRUE");
19816 break;
a8329558 19817 case DW_FORM_indirect:
0963b4bd
MS
19818 /* The reader will have reduced the indirect form to
19819 the "base form" so this form should not occur. */
3e43a32a
MS
19820 fprintf_unfiltered (f,
19821 "unexpected attribute form: DW_FORM_indirect");
a8329558 19822 break;
c906108c 19823 default:
d97bc12b 19824 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19825 die->attrs[i].form);
d97bc12b 19826 break;
c906108c 19827 }
d97bc12b 19828 fprintf_unfiltered (f, "\n");
c906108c
SS
19829 }
19830}
19831
f9aca02d 19832static void
d97bc12b 19833dump_die_for_error (struct die_info *die)
c906108c 19834{
d97bc12b
DE
19835 dump_die_shallow (gdb_stderr, 0, die);
19836}
19837
19838static void
19839dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19840{
19841 int indent = level * 4;
19842
19843 gdb_assert (die != NULL);
19844
19845 if (level >= max_level)
19846 return;
19847
19848 dump_die_shallow (f, indent, die);
19849
19850 if (die->child != NULL)
c906108c 19851 {
d97bc12b
DE
19852 print_spaces (indent, f);
19853 fprintf_unfiltered (f, " Children:");
19854 if (level + 1 < max_level)
19855 {
19856 fprintf_unfiltered (f, "\n");
19857 dump_die_1 (f, level + 1, max_level, die->child);
19858 }
19859 else
19860 {
3e43a32a
MS
19861 fprintf_unfiltered (f,
19862 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19863 }
19864 }
19865
19866 if (die->sibling != NULL && level > 0)
19867 {
19868 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19869 }
19870}
19871
d97bc12b
DE
19872/* This is called from the pdie macro in gdbinit.in.
19873 It's not static so gcc will keep a copy callable from gdb. */
19874
19875void
19876dump_die (struct die_info *die, int max_level)
19877{
19878 dump_die_1 (gdb_stdlog, 0, max_level, die);
19879}
19880
f9aca02d 19881static void
51545339 19882store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19883{
51545339 19884 void **slot;
c906108c 19885
b64f50a1
JK
19886 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19887 INSERT);
51545339
DJ
19888
19889 *slot = die;
c906108c
SS
19890}
19891
b64f50a1
JK
19892/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19893 required kind. */
19894
19895static sect_offset
ff39bb5e 19896dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19897{
4568ecf9 19898 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19899
7771576e 19900 if (attr_form_is_ref (attr))
b64f50a1 19901 return retval;
93311388 19902
b64f50a1 19903 retval.sect_off = 0;
93311388
DE
19904 complaint (&symfile_complaints,
19905 _("unsupported die ref attribute form: '%s'"),
19906 dwarf_form_name (attr->form));
b64f50a1 19907 return retval;
c906108c
SS
19908}
19909
43bbcdc2
PH
19910/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19911 * the value held by the attribute is not constant. */
a02abb62 19912
43bbcdc2 19913static LONGEST
ff39bb5e 19914dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19915{
19916 if (attr->form == DW_FORM_sdata)
19917 return DW_SND (attr);
19918 else if (attr->form == DW_FORM_udata
19919 || attr->form == DW_FORM_data1
19920 || attr->form == DW_FORM_data2
19921 || attr->form == DW_FORM_data4
19922 || attr->form == DW_FORM_data8)
19923 return DW_UNSND (attr);
19924 else
19925 {
3e43a32a
MS
19926 complaint (&symfile_complaints,
19927 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19928 dwarf_form_name (attr->form));
19929 return default_value;
19930 }
19931}
19932
348e048f
DE
19933/* Follow reference or signature attribute ATTR of SRC_DIE.
19934 On entry *REF_CU is the CU of SRC_DIE.
19935 On exit *REF_CU is the CU of the result. */
19936
19937static struct die_info *
ff39bb5e 19938follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19939 struct dwarf2_cu **ref_cu)
19940{
19941 struct die_info *die;
19942
7771576e 19943 if (attr_form_is_ref (attr))
348e048f 19944 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19945 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19946 die = follow_die_sig (src_die, attr, ref_cu);
19947 else
19948 {
19949 dump_die_for_error (src_die);
19950 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19951 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19952 }
19953
19954 return die;
03dd20cc
DJ
19955}
19956
5c631832 19957/* Follow reference OFFSET.
673bfd45
DE
19958 On entry *REF_CU is the CU of the source die referencing OFFSET.
19959 On exit *REF_CU is the CU of the result.
19960 Returns NULL if OFFSET is invalid. */
f504f079 19961
f9aca02d 19962static struct die_info *
36586728
TT
19963follow_die_offset (sect_offset offset, int offset_in_dwz,
19964 struct dwarf2_cu **ref_cu)
c906108c 19965{
10b3939b 19966 struct die_info temp_die;
f2f0e013 19967 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19968
348e048f
DE
19969 gdb_assert (cu->per_cu != NULL);
19970
98bfdba5
PA
19971 target_cu = cu;
19972
3019eac3 19973 if (cu->per_cu->is_debug_types)
348e048f
DE
19974 {
19975 /* .debug_types CUs cannot reference anything outside their CU.
19976 If they need to, they have to reference a signatured type via
55f1336d 19977 DW_FORM_ref_sig8. */
348e048f 19978 if (! offset_in_cu_p (&cu->header, offset))
5c631832 19979 return NULL;
348e048f 19980 }
36586728
TT
19981 else if (offset_in_dwz != cu->per_cu->is_dwz
19982 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
19983 {
19984 struct dwarf2_per_cu_data *per_cu;
9a619af0 19985
36586728
TT
19986 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19987 cu->objfile);
03dd20cc
DJ
19988
19989 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
19990 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19991 load_full_comp_unit (per_cu, cu->language);
03dd20cc 19992
10b3939b
DJ
19993 target_cu = per_cu->cu;
19994 }
98bfdba5
PA
19995 else if (cu->dies == NULL)
19996 {
19997 /* We're loading full DIEs during partial symbol reading. */
19998 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 19999 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 20000 }
c906108c 20001
f2f0e013 20002 *ref_cu = target_cu;
51545339 20003 temp_die.offset = offset;
b64f50a1 20004 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 20005}
10b3939b 20006
5c631832
JK
20007/* Follow reference attribute ATTR of SRC_DIE.
20008 On entry *REF_CU is the CU of SRC_DIE.
20009 On exit *REF_CU is the CU of the result. */
20010
20011static struct die_info *
ff39bb5e 20012follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20013 struct dwarf2_cu **ref_cu)
20014{
b64f50a1 20015 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20016 struct dwarf2_cu *cu = *ref_cu;
20017 struct die_info *die;
20018
36586728
TT
20019 die = follow_die_offset (offset,
20020 (attr->form == DW_FORM_GNU_ref_alt
20021 || cu->per_cu->is_dwz),
20022 ref_cu);
5c631832
JK
20023 if (!die)
20024 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20025 "at 0x%x [in module %s]"),
4262abfb
JK
20026 offset.sect_off, src_die->offset.sect_off,
20027 objfile_name (cu->objfile));
348e048f 20028
5c631832
JK
20029 return die;
20030}
20031
d83e736b
JK
20032/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20033 Returned value is intended for DW_OP_call*. Returned
20034 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20035
20036struct dwarf2_locexpr_baton
8b9737bf
TT
20037dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20038 struct dwarf2_per_cu_data *per_cu,
20039 CORE_ADDR (*get_frame_pc) (void *baton),
20040 void *baton)
5c631832 20041{
918dd910 20042 struct dwarf2_cu *cu;
5c631832
JK
20043 struct die_info *die;
20044 struct attribute *attr;
20045 struct dwarf2_locexpr_baton retval;
20046
8cf6f0b1
TT
20047 dw2_setup (per_cu->objfile);
20048
918dd910
JK
20049 if (per_cu->cu == NULL)
20050 load_cu (per_cu);
20051 cu = per_cu->cu;
cc12ce38
DE
20052 if (cu == NULL)
20053 {
20054 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20055 Instead just throw an error, not much else we can do. */
20056 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20057 offset.sect_off, objfile_name (per_cu->objfile));
20058 }
918dd910 20059
36586728 20060 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
20061 if (!die)
20062 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20063 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20064
20065 attr = dwarf2_attr (die, DW_AT_location, cu);
20066 if (!attr)
20067 {
e103e986
JK
20068 /* DWARF: "If there is no such attribute, then there is no effect.".
20069 DATA is ignored if SIZE is 0. */
5c631832 20070
e103e986 20071 retval.data = NULL;
5c631832
JK
20072 retval.size = 0;
20073 }
8cf6f0b1
TT
20074 else if (attr_form_is_section_offset (attr))
20075 {
20076 struct dwarf2_loclist_baton loclist_baton;
20077 CORE_ADDR pc = (*get_frame_pc) (baton);
20078 size_t size;
20079
20080 fill_in_loclist_baton (cu, &loclist_baton, attr);
20081
20082 retval.data = dwarf2_find_location_expression (&loclist_baton,
20083 &size, pc);
20084 retval.size = size;
20085 }
5c631832
JK
20086 else
20087 {
20088 if (!attr_form_is_block (attr))
20089 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20090 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 20091 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20092
20093 retval.data = DW_BLOCK (attr)->data;
20094 retval.size = DW_BLOCK (attr)->size;
20095 }
20096 retval.per_cu = cu->per_cu;
918dd910 20097
918dd910
JK
20098 age_cached_comp_units ();
20099
5c631832 20100 return retval;
348e048f
DE
20101}
20102
8b9737bf
TT
20103/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20104 offset. */
20105
20106struct dwarf2_locexpr_baton
20107dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20108 struct dwarf2_per_cu_data *per_cu,
20109 CORE_ADDR (*get_frame_pc) (void *baton),
20110 void *baton)
20111{
20112 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20113
20114 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20115}
20116
b6807d98
TT
20117/* Write a constant of a given type as target-ordered bytes into
20118 OBSTACK. */
20119
20120static const gdb_byte *
20121write_constant_as_bytes (struct obstack *obstack,
20122 enum bfd_endian byte_order,
20123 struct type *type,
20124 ULONGEST value,
20125 LONGEST *len)
20126{
20127 gdb_byte *result;
20128
20129 *len = TYPE_LENGTH (type);
20130 result = obstack_alloc (obstack, *len);
20131 store_unsigned_integer (result, *len, byte_order, value);
20132
20133 return result;
20134}
20135
20136/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20137 pointer to the constant bytes and set LEN to the length of the
20138 data. If memory is needed, allocate it on OBSTACK. If the DIE
20139 does not have a DW_AT_const_value, return NULL. */
20140
20141const gdb_byte *
20142dwarf2_fetch_constant_bytes (sect_offset offset,
20143 struct dwarf2_per_cu_data *per_cu,
20144 struct obstack *obstack,
20145 LONGEST *len)
20146{
20147 struct dwarf2_cu *cu;
20148 struct die_info *die;
20149 struct attribute *attr;
20150 const gdb_byte *result = NULL;
20151 struct type *type;
20152 LONGEST value;
20153 enum bfd_endian byte_order;
20154
20155 dw2_setup (per_cu->objfile);
20156
20157 if (per_cu->cu == NULL)
20158 load_cu (per_cu);
20159 cu = per_cu->cu;
cc12ce38
DE
20160 if (cu == NULL)
20161 {
20162 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20163 Instead just throw an error, not much else we can do. */
20164 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20165 offset.sect_off, objfile_name (per_cu->objfile));
20166 }
b6807d98
TT
20167
20168 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20169 if (!die)
20170 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20171 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
20172
20173
20174 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20175 if (attr == NULL)
20176 return NULL;
20177
20178 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20179 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20180
20181 switch (attr->form)
20182 {
20183 case DW_FORM_addr:
20184 case DW_FORM_GNU_addr_index:
20185 {
20186 gdb_byte *tem;
20187
20188 *len = cu->header.addr_size;
20189 tem = obstack_alloc (obstack, *len);
20190 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20191 result = tem;
20192 }
20193 break;
20194 case DW_FORM_string:
20195 case DW_FORM_strp:
20196 case DW_FORM_GNU_str_index:
20197 case DW_FORM_GNU_strp_alt:
20198 /* DW_STRING is already allocated on the objfile obstack, point
20199 directly to it. */
20200 result = (const gdb_byte *) DW_STRING (attr);
20201 *len = strlen (DW_STRING (attr));
20202 break;
20203 case DW_FORM_block1:
20204 case DW_FORM_block2:
20205 case DW_FORM_block4:
20206 case DW_FORM_block:
20207 case DW_FORM_exprloc:
20208 result = DW_BLOCK (attr)->data;
20209 *len = DW_BLOCK (attr)->size;
20210 break;
20211
20212 /* The DW_AT_const_value attributes are supposed to carry the
20213 symbol's value "represented as it would be on the target
20214 architecture." By the time we get here, it's already been
20215 converted to host endianness, so we just need to sign- or
20216 zero-extend it as appropriate. */
20217 case DW_FORM_data1:
20218 type = die_type (die, cu);
20219 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20220 if (result == NULL)
20221 result = write_constant_as_bytes (obstack, byte_order,
20222 type, value, len);
20223 break;
20224 case DW_FORM_data2:
20225 type = die_type (die, cu);
20226 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20227 if (result == NULL)
20228 result = write_constant_as_bytes (obstack, byte_order,
20229 type, value, len);
20230 break;
20231 case DW_FORM_data4:
20232 type = die_type (die, cu);
20233 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20234 if (result == NULL)
20235 result = write_constant_as_bytes (obstack, byte_order,
20236 type, value, len);
20237 break;
20238 case DW_FORM_data8:
20239 type = die_type (die, cu);
20240 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20241 if (result == NULL)
20242 result = write_constant_as_bytes (obstack, byte_order,
20243 type, value, len);
20244 break;
20245
20246 case DW_FORM_sdata:
20247 type = die_type (die, cu);
20248 result = write_constant_as_bytes (obstack, byte_order,
20249 type, DW_SND (attr), len);
20250 break;
20251
20252 case DW_FORM_udata:
20253 type = die_type (die, cu);
20254 result = write_constant_as_bytes (obstack, byte_order,
20255 type, DW_UNSND (attr), len);
20256 break;
20257
20258 default:
20259 complaint (&symfile_complaints,
20260 _("unsupported const value attribute form: '%s'"),
20261 dwarf_form_name (attr->form));
20262 break;
20263 }
20264
20265 return result;
20266}
20267
8a9b8146
TT
20268/* Return the type of the DIE at DIE_OFFSET in the CU named by
20269 PER_CU. */
20270
20271struct type *
b64f50a1 20272dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20273 struct dwarf2_per_cu_data *per_cu)
20274{
b64f50a1
JK
20275 sect_offset die_offset_sect;
20276
8a9b8146 20277 dw2_setup (per_cu->objfile);
b64f50a1
JK
20278
20279 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20280 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
20281}
20282
ac9ec31b 20283/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 20284 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
20285 On exit *REF_CU is the CU of the result.
20286 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
20287
20288static struct die_info *
ac9ec31b
DE
20289follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20290 struct dwarf2_cu **ref_cu)
348e048f
DE
20291{
20292 struct objfile *objfile = (*ref_cu)->objfile;
20293 struct die_info temp_die;
348e048f
DE
20294 struct dwarf2_cu *sig_cu;
20295 struct die_info *die;
20296
ac9ec31b
DE
20297 /* While it might be nice to assert sig_type->type == NULL here,
20298 we can get here for DW_AT_imported_declaration where we need
20299 the DIE not the type. */
348e048f
DE
20300
20301 /* If necessary, add it to the queue and load its DIEs. */
20302
95554aad 20303 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 20304 read_signatured_type (sig_type);
348e048f 20305
348e048f 20306 sig_cu = sig_type->per_cu.cu;
69d751e3 20307 gdb_assert (sig_cu != NULL);
3019eac3
DE
20308 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20309 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
20310 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20311 temp_die.offset.sect_off);
348e048f
DE
20312 if (die)
20313 {
796a7ff8
DE
20314 /* For .gdb_index version 7 keep track of included TUs.
20315 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20316 if (dwarf2_per_objfile->index_table != NULL
20317 && dwarf2_per_objfile->index_table->version <= 7)
20318 {
20319 VEC_safe_push (dwarf2_per_cu_ptr,
20320 (*ref_cu)->per_cu->imported_symtabs,
20321 sig_cu->per_cu);
20322 }
20323
348e048f
DE
20324 *ref_cu = sig_cu;
20325 return die;
20326 }
20327
ac9ec31b
DE
20328 return NULL;
20329}
20330
20331/* Follow signatured type referenced by ATTR in SRC_DIE.
20332 On entry *REF_CU is the CU of SRC_DIE.
20333 On exit *REF_CU is the CU of the result.
20334 The result is the DIE of the type.
20335 If the referenced type cannot be found an error is thrown. */
20336
20337static struct die_info *
ff39bb5e 20338follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
20339 struct dwarf2_cu **ref_cu)
20340{
20341 ULONGEST signature = DW_SIGNATURE (attr);
20342 struct signatured_type *sig_type;
20343 struct die_info *die;
20344
20345 gdb_assert (attr->form == DW_FORM_ref_sig8);
20346
a2ce51a0 20347 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
20348 /* sig_type will be NULL if the signatured type is missing from
20349 the debug info. */
20350 if (sig_type == NULL)
20351 {
20352 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20353 " from DIE at 0x%x [in module %s]"),
20354 hex_string (signature), src_die->offset.sect_off,
4262abfb 20355 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20356 }
20357
20358 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20359 if (die == NULL)
20360 {
20361 dump_die_for_error (src_die);
20362 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20363 " from DIE at 0x%x [in module %s]"),
20364 hex_string (signature), src_die->offset.sect_off,
4262abfb 20365 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20366 }
20367
20368 return die;
20369}
20370
20371/* Get the type specified by SIGNATURE referenced in DIE/CU,
20372 reading in and processing the type unit if necessary. */
20373
20374static struct type *
20375get_signatured_type (struct die_info *die, ULONGEST signature,
20376 struct dwarf2_cu *cu)
20377{
20378 struct signatured_type *sig_type;
20379 struct dwarf2_cu *type_cu;
20380 struct die_info *type_die;
20381 struct type *type;
20382
a2ce51a0 20383 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
20384 /* sig_type will be NULL if the signatured type is missing from
20385 the debug info. */
20386 if (sig_type == NULL)
20387 {
20388 complaint (&symfile_complaints,
20389 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20390 " from DIE at 0x%x [in module %s]"),
20391 hex_string (signature), die->offset.sect_off,
4262abfb 20392 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20393 return build_error_marker_type (cu, die);
20394 }
20395
20396 /* If we already know the type we're done. */
20397 if (sig_type->type != NULL)
20398 return sig_type->type;
20399
20400 type_cu = cu;
20401 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20402 if (type_die != NULL)
20403 {
20404 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20405 is created. This is important, for example, because for c++ classes
20406 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20407 type = read_type_die (type_die, type_cu);
20408 if (type == NULL)
20409 {
20410 complaint (&symfile_complaints,
20411 _("Dwarf Error: Cannot build signatured type %s"
20412 " referenced from DIE at 0x%x [in module %s]"),
20413 hex_string (signature), die->offset.sect_off,
4262abfb 20414 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20415 type = build_error_marker_type (cu, die);
20416 }
20417 }
20418 else
20419 {
20420 complaint (&symfile_complaints,
20421 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20422 " from DIE at 0x%x [in module %s]"),
20423 hex_string (signature), die->offset.sect_off,
4262abfb 20424 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20425 type = build_error_marker_type (cu, die);
20426 }
20427 sig_type->type = type;
20428
20429 return type;
20430}
20431
20432/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20433 reading in and processing the type unit if necessary. */
20434
20435static struct type *
ff39bb5e 20436get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 20437 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
20438{
20439 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 20440 if (attr_form_is_ref (attr))
ac9ec31b
DE
20441 {
20442 struct dwarf2_cu *type_cu = cu;
20443 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20444
20445 return read_type_die (type_die, type_cu);
20446 }
20447 else if (attr->form == DW_FORM_ref_sig8)
20448 {
20449 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20450 }
20451 else
20452 {
20453 complaint (&symfile_complaints,
20454 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20455 " at 0x%x [in module %s]"),
20456 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 20457 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20458 return build_error_marker_type (cu, die);
20459 }
348e048f
DE
20460}
20461
e5fe5e75 20462/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
20463
20464static void
e5fe5e75 20465load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 20466{
52dc124a 20467 struct signatured_type *sig_type;
348e048f 20468
f4dc4d17
DE
20469 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20470 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20471
6721b2ec
DE
20472 /* We have the per_cu, but we need the signatured_type.
20473 Fortunately this is an easy translation. */
20474 gdb_assert (per_cu->is_debug_types);
20475 sig_type = (struct signatured_type *) per_cu;
348e048f 20476
6721b2ec 20477 gdb_assert (per_cu->cu == NULL);
348e048f 20478
52dc124a 20479 read_signatured_type (sig_type);
348e048f 20480
6721b2ec 20481 gdb_assert (per_cu->cu != NULL);
348e048f
DE
20482}
20483
dee91e82
DE
20484/* die_reader_func for read_signatured_type.
20485 This is identical to load_full_comp_unit_reader,
20486 but is kept separate for now. */
348e048f
DE
20487
20488static void
dee91e82 20489read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 20490 const gdb_byte *info_ptr,
dee91e82
DE
20491 struct die_info *comp_unit_die,
20492 int has_children,
20493 void *data)
348e048f 20494{
dee91e82 20495 struct dwarf2_cu *cu = reader->cu;
348e048f 20496
dee91e82
DE
20497 gdb_assert (cu->die_hash == NULL);
20498 cu->die_hash =
20499 htab_create_alloc_ex (cu->header.length / 12,
20500 die_hash,
20501 die_eq,
20502 NULL,
20503 &cu->comp_unit_obstack,
20504 hashtab_obstack_allocate,
20505 dummy_obstack_deallocate);
348e048f 20506
dee91e82
DE
20507 if (has_children)
20508 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20509 &info_ptr, comp_unit_die);
20510 cu->dies = comp_unit_die;
20511 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
20512
20513 /* We try not to read any attributes in this function, because not
9cdd5dbd 20514 all CUs needed for references have been loaded yet, and symbol
348e048f 20515 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
20516 or we won't be able to build types correctly.
20517 Similarly, if we do not read the producer, we can not apply
20518 producer-specific interpretation. */
95554aad 20519 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 20520}
348e048f 20521
3019eac3
DE
20522/* Read in a signatured type and build its CU and DIEs.
20523 If the type is a stub for the real type in a DWO file,
20524 read in the real type from the DWO file as well. */
dee91e82
DE
20525
20526static void
20527read_signatured_type (struct signatured_type *sig_type)
20528{
20529 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20530
3019eac3 20531 gdb_assert (per_cu->is_debug_types);
dee91e82 20532 gdb_assert (per_cu->cu == NULL);
348e048f 20533
f4dc4d17
DE
20534 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20535 read_signatured_type_reader, NULL);
7ee85ab1 20536 sig_type->per_cu.tu_read = 1;
c906108c
SS
20537}
20538
c906108c
SS
20539/* Decode simple location descriptions.
20540 Given a pointer to a dwarf block that defines a location, compute
20541 the location and return the value.
20542
4cecd739
DJ
20543 NOTE drow/2003-11-18: This function is called in two situations
20544 now: for the address of static or global variables (partial symbols
20545 only) and for offsets into structures which are expected to be
20546 (more or less) constant. The partial symbol case should go away,
20547 and only the constant case should remain. That will let this
20548 function complain more accurately. A few special modes are allowed
20549 without complaint for global variables (for instance, global
20550 register values and thread-local values).
c906108c
SS
20551
20552 A location description containing no operations indicates that the
4cecd739 20553 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20554 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20555 callers will only want a very basic result and this can become a
21ae7a4d
JK
20556 complaint.
20557
20558 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20559
20560static CORE_ADDR
e7c27a73 20561decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20562{
e7c27a73 20563 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20564 size_t i;
20565 size_t size = blk->size;
d521ce57 20566 const gdb_byte *data = blk->data;
21ae7a4d
JK
20567 CORE_ADDR stack[64];
20568 int stacki;
20569 unsigned int bytes_read, unsnd;
20570 gdb_byte op;
c906108c 20571
21ae7a4d
JK
20572 i = 0;
20573 stacki = 0;
20574 stack[stacki] = 0;
20575 stack[++stacki] = 0;
20576
20577 while (i < size)
20578 {
20579 op = data[i++];
20580 switch (op)
20581 {
20582 case DW_OP_lit0:
20583 case DW_OP_lit1:
20584 case DW_OP_lit2:
20585 case DW_OP_lit3:
20586 case DW_OP_lit4:
20587 case DW_OP_lit5:
20588 case DW_OP_lit6:
20589 case DW_OP_lit7:
20590 case DW_OP_lit8:
20591 case DW_OP_lit9:
20592 case DW_OP_lit10:
20593 case DW_OP_lit11:
20594 case DW_OP_lit12:
20595 case DW_OP_lit13:
20596 case DW_OP_lit14:
20597 case DW_OP_lit15:
20598 case DW_OP_lit16:
20599 case DW_OP_lit17:
20600 case DW_OP_lit18:
20601 case DW_OP_lit19:
20602 case DW_OP_lit20:
20603 case DW_OP_lit21:
20604 case DW_OP_lit22:
20605 case DW_OP_lit23:
20606 case DW_OP_lit24:
20607 case DW_OP_lit25:
20608 case DW_OP_lit26:
20609 case DW_OP_lit27:
20610 case DW_OP_lit28:
20611 case DW_OP_lit29:
20612 case DW_OP_lit30:
20613 case DW_OP_lit31:
20614 stack[++stacki] = op - DW_OP_lit0;
20615 break;
f1bea926 20616
21ae7a4d
JK
20617 case DW_OP_reg0:
20618 case DW_OP_reg1:
20619 case DW_OP_reg2:
20620 case DW_OP_reg3:
20621 case DW_OP_reg4:
20622 case DW_OP_reg5:
20623 case DW_OP_reg6:
20624 case DW_OP_reg7:
20625 case DW_OP_reg8:
20626 case DW_OP_reg9:
20627 case DW_OP_reg10:
20628 case DW_OP_reg11:
20629 case DW_OP_reg12:
20630 case DW_OP_reg13:
20631 case DW_OP_reg14:
20632 case DW_OP_reg15:
20633 case DW_OP_reg16:
20634 case DW_OP_reg17:
20635 case DW_OP_reg18:
20636 case DW_OP_reg19:
20637 case DW_OP_reg20:
20638 case DW_OP_reg21:
20639 case DW_OP_reg22:
20640 case DW_OP_reg23:
20641 case DW_OP_reg24:
20642 case DW_OP_reg25:
20643 case DW_OP_reg26:
20644 case DW_OP_reg27:
20645 case DW_OP_reg28:
20646 case DW_OP_reg29:
20647 case DW_OP_reg30:
20648 case DW_OP_reg31:
20649 stack[++stacki] = op - DW_OP_reg0;
20650 if (i < size)
20651 dwarf2_complex_location_expr_complaint ();
20652 break;
c906108c 20653
21ae7a4d
JK
20654 case DW_OP_regx:
20655 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20656 i += bytes_read;
20657 stack[++stacki] = unsnd;
20658 if (i < size)
20659 dwarf2_complex_location_expr_complaint ();
20660 break;
c906108c 20661
21ae7a4d
JK
20662 case DW_OP_addr:
20663 stack[++stacki] = read_address (objfile->obfd, &data[i],
20664 cu, &bytes_read);
20665 i += bytes_read;
20666 break;
d53d4ac5 20667
21ae7a4d
JK
20668 case DW_OP_const1u:
20669 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20670 i += 1;
20671 break;
20672
20673 case DW_OP_const1s:
20674 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20675 i += 1;
20676 break;
20677
20678 case DW_OP_const2u:
20679 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20680 i += 2;
20681 break;
20682
20683 case DW_OP_const2s:
20684 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20685 i += 2;
20686 break;
d53d4ac5 20687
21ae7a4d
JK
20688 case DW_OP_const4u:
20689 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20690 i += 4;
20691 break;
20692
20693 case DW_OP_const4s:
20694 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20695 i += 4;
20696 break;
20697
585861ea
JK
20698 case DW_OP_const8u:
20699 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20700 i += 8;
20701 break;
20702
21ae7a4d
JK
20703 case DW_OP_constu:
20704 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20705 &bytes_read);
20706 i += bytes_read;
20707 break;
20708
20709 case DW_OP_consts:
20710 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20711 i += bytes_read;
20712 break;
20713
20714 case DW_OP_dup:
20715 stack[stacki + 1] = stack[stacki];
20716 stacki++;
20717 break;
20718
20719 case DW_OP_plus:
20720 stack[stacki - 1] += stack[stacki];
20721 stacki--;
20722 break;
20723
20724 case DW_OP_plus_uconst:
20725 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20726 &bytes_read);
20727 i += bytes_read;
20728 break;
20729
20730 case DW_OP_minus:
20731 stack[stacki - 1] -= stack[stacki];
20732 stacki--;
20733 break;
20734
20735 case DW_OP_deref:
20736 /* If we're not the last op, then we definitely can't encode
20737 this using GDB's address_class enum. This is valid for partial
20738 global symbols, although the variable's address will be bogus
20739 in the psymtab. */
20740 if (i < size)
20741 dwarf2_complex_location_expr_complaint ();
20742 break;
20743
20744 case DW_OP_GNU_push_tls_address:
20745 /* The top of the stack has the offset from the beginning
20746 of the thread control block at which the variable is located. */
20747 /* Nothing should follow this operator, so the top of stack would
20748 be returned. */
20749 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20750 address will be bogus in the psymtab. Make it always at least
20751 non-zero to not look as a variable garbage collected by linker
20752 which have DW_OP_addr 0. */
21ae7a4d
JK
20753 if (i < size)
20754 dwarf2_complex_location_expr_complaint ();
585861ea 20755 stack[stacki]++;
21ae7a4d
JK
20756 break;
20757
20758 case DW_OP_GNU_uninit:
20759 break;
20760
3019eac3 20761 case DW_OP_GNU_addr_index:
49f6c839 20762 case DW_OP_GNU_const_index:
3019eac3
DE
20763 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20764 &bytes_read);
20765 i += bytes_read;
20766 break;
20767
21ae7a4d
JK
20768 default:
20769 {
f39c6ffd 20770 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20771
20772 if (name)
20773 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20774 name);
20775 else
20776 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20777 op);
20778 }
20779
20780 return (stack[stacki]);
d53d4ac5 20781 }
3c6e0cb3 20782
21ae7a4d
JK
20783 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20784 outside of the allocated space. Also enforce minimum>0. */
20785 if (stacki >= ARRAY_SIZE (stack) - 1)
20786 {
20787 complaint (&symfile_complaints,
20788 _("location description stack overflow"));
20789 return 0;
20790 }
20791
20792 if (stacki <= 0)
20793 {
20794 complaint (&symfile_complaints,
20795 _("location description stack underflow"));
20796 return 0;
20797 }
20798 }
20799 return (stack[stacki]);
c906108c
SS
20800}
20801
20802/* memory allocation interface */
20803
c906108c 20804static struct dwarf_block *
7b5a2f43 20805dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
20806{
20807 struct dwarf_block *blk;
20808
20809 blk = (struct dwarf_block *)
7b5a2f43 20810 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
20811 return (blk);
20812}
20813
c906108c 20814static struct die_info *
b60c80d6 20815dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20816{
20817 struct die_info *die;
b60c80d6
DJ
20818 size_t size = sizeof (struct die_info);
20819
20820 if (num_attrs > 1)
20821 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20822
b60c80d6 20823 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20824 memset (die, 0, sizeof (struct die_info));
20825 return (die);
20826}
2e276125
JB
20827
20828\f
20829/* Macro support. */
20830
233d95b5
JK
20831/* Return file name relative to the compilation directory of file number I in
20832 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20833 responsible for freeing it. */
233d95b5 20834
2e276125 20835static char *
233d95b5 20836file_file_name (int file, struct line_header *lh)
2e276125 20837{
6a83a1e6
EZ
20838 /* Is the file number a valid index into the line header's file name
20839 table? Remember that file numbers start with one, not zero. */
20840 if (1 <= file && file <= lh->num_file_names)
20841 {
20842 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20843
afa6c9ab
SL
20844 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20845 || lh->include_dirs == NULL)
6a83a1e6 20846 return xstrdup (fe->name);
233d95b5
JK
20847 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20848 fe->name, NULL);
6a83a1e6 20849 }
2e276125
JB
20850 else
20851 {
6a83a1e6
EZ
20852 /* The compiler produced a bogus file number. We can at least
20853 record the macro definitions made in the file, even if we
20854 won't be able to find the file by name. */
20855 char fake_name[80];
9a619af0 20856
8c042590
PM
20857 xsnprintf (fake_name, sizeof (fake_name),
20858 "<bad macro file number %d>", file);
2e276125 20859
6e70227d 20860 complaint (&symfile_complaints,
6a83a1e6
EZ
20861 _("bad file number in macro information (%d)"),
20862 file);
2e276125 20863
6a83a1e6 20864 return xstrdup (fake_name);
2e276125
JB
20865 }
20866}
20867
233d95b5
JK
20868/* Return the full name of file number I in *LH's file name table.
20869 Use COMP_DIR as the name of the current directory of the
20870 compilation. The result is allocated using xmalloc; the caller is
20871 responsible for freeing it. */
20872static char *
20873file_full_name (int file, struct line_header *lh, const char *comp_dir)
20874{
20875 /* Is the file number a valid index into the line header's file name
20876 table? Remember that file numbers start with one, not zero. */
20877 if (1 <= file && file <= lh->num_file_names)
20878 {
20879 char *relative = file_file_name (file, lh);
20880
20881 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20882 return relative;
20883 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20884 }
20885 else
20886 return file_file_name (file, lh);
20887}
20888
2e276125
JB
20889
20890static struct macro_source_file *
20891macro_start_file (int file, int line,
20892 struct macro_source_file *current_file,
43f3e411 20893 struct line_header *lh)
2e276125 20894{
233d95b5
JK
20895 /* File name relative to the compilation directory of this source file. */
20896 char *file_name = file_file_name (file, lh);
2e276125 20897
2e276125 20898 if (! current_file)
abc9d0dc 20899 {
fc474241
DE
20900 /* Note: We don't create a macro table for this compilation unit
20901 at all until we actually get a filename. */
43f3e411 20902 struct macro_table *macro_table = get_macro_table ();
fc474241 20903
abc9d0dc
TT
20904 /* If we have no current file, then this must be the start_file
20905 directive for the compilation unit's main source file. */
fc474241
DE
20906 current_file = macro_set_main (macro_table, file_name);
20907 macro_define_special (macro_table);
abc9d0dc 20908 }
2e276125 20909 else
233d95b5 20910 current_file = macro_include (current_file, line, file_name);
2e276125 20911
233d95b5 20912 xfree (file_name);
6e70227d 20913
2e276125
JB
20914 return current_file;
20915}
20916
20917
20918/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20919 followed by a null byte. */
20920static char *
20921copy_string (const char *buf, int len)
20922{
20923 char *s = xmalloc (len + 1);
9a619af0 20924
2e276125
JB
20925 memcpy (s, buf, len);
20926 s[len] = '\0';
2e276125
JB
20927 return s;
20928}
20929
20930
20931static const char *
20932consume_improper_spaces (const char *p, const char *body)
20933{
20934 if (*p == ' ')
20935 {
4d3c2250 20936 complaint (&symfile_complaints,
3e43a32a
MS
20937 _("macro definition contains spaces "
20938 "in formal argument list:\n`%s'"),
4d3c2250 20939 body);
2e276125
JB
20940
20941 while (*p == ' ')
20942 p++;
20943 }
20944
20945 return p;
20946}
20947
20948
20949static void
20950parse_macro_definition (struct macro_source_file *file, int line,
20951 const char *body)
20952{
20953 const char *p;
20954
20955 /* The body string takes one of two forms. For object-like macro
20956 definitions, it should be:
20957
20958 <macro name> " " <definition>
20959
20960 For function-like macro definitions, it should be:
20961
20962 <macro name> "() " <definition>
20963 or
20964 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20965
20966 Spaces may appear only where explicitly indicated, and in the
20967 <definition>.
20968
20969 The Dwarf 2 spec says that an object-like macro's name is always
20970 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20971 the space when the macro's definition is the empty string.
2e276125
JB
20972
20973 The Dwarf 2 spec says that there should be no spaces between the
20974 formal arguments in a function-like macro's formal argument list,
20975 but versions of GCC around March 2002 include spaces after the
20976 commas. */
20977
20978
20979 /* Find the extent of the macro name. The macro name is terminated
20980 by either a space or null character (for an object-like macro) or
20981 an opening paren (for a function-like macro). */
20982 for (p = body; *p; p++)
20983 if (*p == ' ' || *p == '(')
20984 break;
20985
20986 if (*p == ' ' || *p == '\0')
20987 {
20988 /* It's an object-like macro. */
20989 int name_len = p - body;
20990 char *name = copy_string (body, name_len);
20991 const char *replacement;
20992
20993 if (*p == ' ')
20994 replacement = body + name_len + 1;
20995 else
20996 {
4d3c2250 20997 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20998 replacement = body + name_len;
20999 }
6e70227d 21000
2e276125
JB
21001 macro_define_object (file, line, name, replacement);
21002
21003 xfree (name);
21004 }
21005 else if (*p == '(')
21006 {
21007 /* It's a function-like macro. */
21008 char *name = copy_string (body, p - body);
21009 int argc = 0;
21010 int argv_size = 1;
21011 char **argv = xmalloc (argv_size * sizeof (*argv));
21012
21013 p++;
21014
21015 p = consume_improper_spaces (p, body);
21016
21017 /* Parse the formal argument list. */
21018 while (*p && *p != ')')
21019 {
21020 /* Find the extent of the current argument name. */
21021 const char *arg_start = p;
21022
21023 while (*p && *p != ',' && *p != ')' && *p != ' ')
21024 p++;
21025
21026 if (! *p || p == arg_start)
4d3c2250 21027 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21028 else
21029 {
21030 /* Make sure argv has room for the new argument. */
21031 if (argc >= argv_size)
21032 {
21033 argv_size *= 2;
21034 argv = xrealloc (argv, argv_size * sizeof (*argv));
21035 }
21036
21037 argv[argc++] = copy_string (arg_start, p - arg_start);
21038 }
21039
21040 p = consume_improper_spaces (p, body);
21041
21042 /* Consume the comma, if present. */
21043 if (*p == ',')
21044 {
21045 p++;
21046
21047 p = consume_improper_spaces (p, body);
21048 }
21049 }
21050
21051 if (*p == ')')
21052 {
21053 p++;
21054
21055 if (*p == ' ')
21056 /* Perfectly formed definition, no complaints. */
21057 macro_define_function (file, line, name,
6e70227d 21058 argc, (const char **) argv,
2e276125
JB
21059 p + 1);
21060 else if (*p == '\0')
21061 {
21062 /* Complain, but do define it. */
4d3c2250 21063 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21064 macro_define_function (file, line, name,
6e70227d 21065 argc, (const char **) argv,
2e276125
JB
21066 p);
21067 }
21068 else
21069 /* Just complain. */
4d3c2250 21070 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21071 }
21072 else
21073 /* Just complain. */
4d3c2250 21074 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21075
21076 xfree (name);
21077 {
21078 int i;
21079
21080 for (i = 0; i < argc; i++)
21081 xfree (argv[i]);
21082 }
21083 xfree (argv);
21084 }
21085 else
4d3c2250 21086 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21087}
21088
cf2c3c16
TT
21089/* Skip some bytes from BYTES according to the form given in FORM.
21090 Returns the new pointer. */
2e276125 21091
d521ce57
TT
21092static const gdb_byte *
21093skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21094 enum dwarf_form form,
21095 unsigned int offset_size,
21096 struct dwarf2_section_info *section)
2e276125 21097{
cf2c3c16 21098 unsigned int bytes_read;
2e276125 21099
cf2c3c16 21100 switch (form)
2e276125 21101 {
cf2c3c16
TT
21102 case DW_FORM_data1:
21103 case DW_FORM_flag:
21104 ++bytes;
21105 break;
21106
21107 case DW_FORM_data2:
21108 bytes += 2;
21109 break;
21110
21111 case DW_FORM_data4:
21112 bytes += 4;
21113 break;
21114
21115 case DW_FORM_data8:
21116 bytes += 8;
21117 break;
21118
21119 case DW_FORM_string:
21120 read_direct_string (abfd, bytes, &bytes_read);
21121 bytes += bytes_read;
21122 break;
21123
21124 case DW_FORM_sec_offset:
21125 case DW_FORM_strp:
36586728 21126 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21127 bytes += offset_size;
21128 break;
21129
21130 case DW_FORM_block:
21131 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21132 bytes += bytes_read;
21133 break;
21134
21135 case DW_FORM_block1:
21136 bytes += 1 + read_1_byte (abfd, bytes);
21137 break;
21138 case DW_FORM_block2:
21139 bytes += 2 + read_2_bytes (abfd, bytes);
21140 break;
21141 case DW_FORM_block4:
21142 bytes += 4 + read_4_bytes (abfd, bytes);
21143 break;
21144
21145 case DW_FORM_sdata:
21146 case DW_FORM_udata:
3019eac3
DE
21147 case DW_FORM_GNU_addr_index:
21148 case DW_FORM_GNU_str_index:
d521ce57 21149 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21150 if (bytes == NULL)
21151 {
21152 dwarf2_section_buffer_overflow_complaint (section);
21153 return NULL;
21154 }
cf2c3c16
TT
21155 break;
21156
21157 default:
21158 {
21159 complain:
21160 complaint (&symfile_complaints,
21161 _("invalid form 0x%x in `%s'"),
a32a8923 21162 form, get_section_name (section));
cf2c3c16
TT
21163 return NULL;
21164 }
2e276125
JB
21165 }
21166
cf2c3c16
TT
21167 return bytes;
21168}
757a13d0 21169
cf2c3c16
TT
21170/* A helper for dwarf_decode_macros that handles skipping an unknown
21171 opcode. Returns an updated pointer to the macro data buffer; or,
21172 on error, issues a complaint and returns NULL. */
757a13d0 21173
d521ce57 21174static const gdb_byte *
cf2c3c16 21175skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21176 const gdb_byte **opcode_definitions,
21177 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21178 bfd *abfd,
21179 unsigned int offset_size,
21180 struct dwarf2_section_info *section)
21181{
21182 unsigned int bytes_read, i;
21183 unsigned long arg;
d521ce57 21184 const gdb_byte *defn;
2e276125 21185
cf2c3c16 21186 if (opcode_definitions[opcode] == NULL)
2e276125 21187 {
cf2c3c16
TT
21188 complaint (&symfile_complaints,
21189 _("unrecognized DW_MACFINO opcode 0x%x"),
21190 opcode);
21191 return NULL;
21192 }
2e276125 21193
cf2c3c16
TT
21194 defn = opcode_definitions[opcode];
21195 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21196 defn += bytes_read;
2e276125 21197
cf2c3c16
TT
21198 for (i = 0; i < arg; ++i)
21199 {
aead7601
SM
21200 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21201 (enum dwarf_form) defn[i], offset_size,
f664829e 21202 section);
cf2c3c16
TT
21203 if (mac_ptr == NULL)
21204 {
21205 /* skip_form_bytes already issued the complaint. */
21206 return NULL;
21207 }
21208 }
757a13d0 21209
cf2c3c16
TT
21210 return mac_ptr;
21211}
757a13d0 21212
cf2c3c16
TT
21213/* A helper function which parses the header of a macro section.
21214 If the macro section is the extended (for now called "GNU") type,
21215 then this updates *OFFSET_SIZE. Returns a pointer to just after
21216 the header, or issues a complaint and returns NULL on error. */
757a13d0 21217
d521ce57
TT
21218static const gdb_byte *
21219dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21220 bfd *abfd,
d521ce57 21221 const gdb_byte *mac_ptr,
cf2c3c16
TT
21222 unsigned int *offset_size,
21223 int section_is_gnu)
21224{
21225 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21226
cf2c3c16
TT
21227 if (section_is_gnu)
21228 {
21229 unsigned int version, flags;
757a13d0 21230
cf2c3c16
TT
21231 version = read_2_bytes (abfd, mac_ptr);
21232 if (version != 4)
21233 {
21234 complaint (&symfile_complaints,
21235 _("unrecognized version `%d' in .debug_macro section"),
21236 version);
21237 return NULL;
21238 }
21239 mac_ptr += 2;
757a13d0 21240
cf2c3c16
TT
21241 flags = read_1_byte (abfd, mac_ptr);
21242 ++mac_ptr;
21243 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21244
cf2c3c16
TT
21245 if ((flags & 2) != 0)
21246 /* We don't need the line table offset. */
21247 mac_ptr += *offset_size;
757a13d0 21248
cf2c3c16
TT
21249 /* Vendor opcode descriptions. */
21250 if ((flags & 4) != 0)
21251 {
21252 unsigned int i, count;
757a13d0 21253
cf2c3c16
TT
21254 count = read_1_byte (abfd, mac_ptr);
21255 ++mac_ptr;
21256 for (i = 0; i < count; ++i)
21257 {
21258 unsigned int opcode, bytes_read;
21259 unsigned long arg;
21260
21261 opcode = read_1_byte (abfd, mac_ptr);
21262 ++mac_ptr;
21263 opcode_definitions[opcode] = mac_ptr;
21264 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21265 mac_ptr += bytes_read;
21266 mac_ptr += arg;
21267 }
757a13d0 21268 }
cf2c3c16 21269 }
757a13d0 21270
cf2c3c16
TT
21271 return mac_ptr;
21272}
757a13d0 21273
cf2c3c16 21274/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 21275 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
21276
21277static void
d521ce57
TT
21278dwarf_decode_macro_bytes (bfd *abfd,
21279 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21280 struct macro_source_file *current_file,
43f3e411 21281 struct line_header *lh,
cf2c3c16 21282 struct dwarf2_section_info *section,
36586728 21283 int section_is_gnu, int section_is_dwz,
cf2c3c16 21284 unsigned int offset_size,
8fc3fc34 21285 htab_t include_hash)
cf2c3c16 21286{
4d663531 21287 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
21288 enum dwarf_macro_record_type macinfo_type;
21289 int at_commandline;
d521ce57 21290 const gdb_byte *opcode_definitions[256];
757a13d0 21291
cf2c3c16
TT
21292 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21293 &offset_size, section_is_gnu);
21294 if (mac_ptr == NULL)
21295 {
21296 /* We already issued a complaint. */
21297 return;
21298 }
757a13d0
JK
21299
21300 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21301 GDB is still reading the definitions from command line. First
21302 DW_MACINFO_start_file will need to be ignored as it was already executed
21303 to create CURRENT_FILE for the main source holding also the command line
21304 definitions. On first met DW_MACINFO_start_file this flag is reset to
21305 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21306
21307 at_commandline = 1;
21308
21309 do
21310 {
21311 /* Do we at least have room for a macinfo type byte? */
21312 if (mac_ptr >= mac_end)
21313 {
f664829e 21314 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
21315 break;
21316 }
21317
aead7601 21318 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
21319 mac_ptr++;
21320
cf2c3c16
TT
21321 /* Note that we rely on the fact that the corresponding GNU and
21322 DWARF constants are the same. */
757a13d0
JK
21323 switch (macinfo_type)
21324 {
21325 /* A zero macinfo type indicates the end of the macro
21326 information. */
21327 case 0:
21328 break;
2e276125 21329
cf2c3c16
TT
21330 case DW_MACRO_GNU_define:
21331 case DW_MACRO_GNU_undef:
21332 case DW_MACRO_GNU_define_indirect:
21333 case DW_MACRO_GNU_undef_indirect:
36586728
TT
21334 case DW_MACRO_GNU_define_indirect_alt:
21335 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 21336 {
891d2f0b 21337 unsigned int bytes_read;
2e276125 21338 int line;
d521ce57 21339 const char *body;
cf2c3c16 21340 int is_define;
2e276125 21341
cf2c3c16
TT
21342 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21343 mac_ptr += bytes_read;
21344
21345 if (macinfo_type == DW_MACRO_GNU_define
21346 || macinfo_type == DW_MACRO_GNU_undef)
21347 {
21348 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21349 mac_ptr += bytes_read;
21350 }
21351 else
21352 {
21353 LONGEST str_offset;
21354
21355 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21356 mac_ptr += offset_size;
2e276125 21357
36586728 21358 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
21359 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21360 || section_is_dwz)
36586728
TT
21361 {
21362 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21363
21364 body = read_indirect_string_from_dwz (dwz, str_offset);
21365 }
21366 else
21367 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
21368 }
21369
21370 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
21371 || macinfo_type == DW_MACRO_GNU_define_indirect
21372 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 21373 if (! current_file)
757a13d0
JK
21374 {
21375 /* DWARF violation as no main source is present. */
21376 complaint (&symfile_complaints,
21377 _("debug info with no main source gives macro %s "
21378 "on line %d: %s"),
cf2c3c16
TT
21379 is_define ? _("definition") : _("undefinition"),
21380 line, body);
757a13d0
JK
21381 break;
21382 }
3e43a32a
MS
21383 if ((line == 0 && !at_commandline)
21384 || (line != 0 && at_commandline))
4d3c2250 21385 complaint (&symfile_complaints,
757a13d0
JK
21386 _("debug info gives %s macro %s with %s line %d: %s"),
21387 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 21388 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
21389 line == 0 ? _("zero") : _("non-zero"), line, body);
21390
cf2c3c16 21391 if (is_define)
757a13d0 21392 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
21393 else
21394 {
21395 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
21396 || macinfo_type == DW_MACRO_GNU_undef_indirect
21397 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
21398 macro_undef (current_file, line, body);
21399 }
2e276125
JB
21400 }
21401 break;
21402
cf2c3c16 21403 case DW_MACRO_GNU_start_file:
2e276125 21404 {
891d2f0b 21405 unsigned int bytes_read;
2e276125
JB
21406 int line, file;
21407
21408 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21409 mac_ptr += bytes_read;
21410 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21411 mac_ptr += bytes_read;
21412
3e43a32a
MS
21413 if ((line == 0 && !at_commandline)
21414 || (line != 0 && at_commandline))
757a13d0
JK
21415 complaint (&symfile_complaints,
21416 _("debug info gives source %d included "
21417 "from %s at %s line %d"),
21418 file, at_commandline ? _("command-line") : _("file"),
21419 line == 0 ? _("zero") : _("non-zero"), line);
21420
21421 if (at_commandline)
21422 {
cf2c3c16
TT
21423 /* This DW_MACRO_GNU_start_file was executed in the
21424 pass one. */
757a13d0
JK
21425 at_commandline = 0;
21426 }
21427 else
43f3e411 21428 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
21429 }
21430 break;
21431
cf2c3c16 21432 case DW_MACRO_GNU_end_file:
2e276125 21433 if (! current_file)
4d3c2250 21434 complaint (&symfile_complaints,
3e43a32a
MS
21435 _("macro debug info has an unmatched "
21436 "`close_file' directive"));
2e276125
JB
21437 else
21438 {
21439 current_file = current_file->included_by;
21440 if (! current_file)
21441 {
cf2c3c16 21442 enum dwarf_macro_record_type next_type;
2e276125
JB
21443
21444 /* GCC circa March 2002 doesn't produce the zero
21445 type byte marking the end of the compilation
21446 unit. Complain if it's not there, but exit no
21447 matter what. */
21448
21449 /* Do we at least have room for a macinfo type byte? */
21450 if (mac_ptr >= mac_end)
21451 {
f664829e 21452 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
21453 return;
21454 }
21455
21456 /* We don't increment mac_ptr here, so this is just
21457 a look-ahead. */
aead7601
SM
21458 next_type
21459 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21460 mac_ptr);
2e276125 21461 if (next_type != 0)
4d3c2250 21462 complaint (&symfile_complaints,
3e43a32a
MS
21463 _("no terminating 0-type entry for "
21464 "macros in `.debug_macinfo' section"));
2e276125
JB
21465
21466 return;
21467 }
21468 }
21469 break;
21470
cf2c3c16 21471 case DW_MACRO_GNU_transparent_include:
36586728 21472 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21473 {
21474 LONGEST offset;
8fc3fc34 21475 void **slot;
a036ba48
TT
21476 bfd *include_bfd = abfd;
21477 struct dwarf2_section_info *include_section = section;
21478 struct dwarf2_section_info alt_section;
d521ce57 21479 const gdb_byte *include_mac_end = mac_end;
a036ba48 21480 int is_dwz = section_is_dwz;
d521ce57 21481 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
21482
21483 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21484 mac_ptr += offset_size;
21485
a036ba48
TT
21486 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21487 {
21488 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21489
4d663531 21490 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 21491
a036ba48 21492 include_section = &dwz->macro;
a32a8923 21493 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
21494 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21495 is_dwz = 1;
21496 }
21497
21498 new_mac_ptr = include_section->buffer + offset;
21499 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21500
8fc3fc34
TT
21501 if (*slot != NULL)
21502 {
21503 /* This has actually happened; see
21504 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21505 complaint (&symfile_complaints,
21506 _("recursive DW_MACRO_GNU_transparent_include in "
21507 ".debug_macro section"));
21508 }
21509 else
21510 {
d521ce57 21511 *slot = (void *) new_mac_ptr;
36586728 21512
a036ba48 21513 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 21514 include_mac_end, current_file, lh,
36586728 21515 section, section_is_gnu, is_dwz,
4d663531 21516 offset_size, include_hash);
8fc3fc34 21517
d521ce57 21518 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 21519 }
cf2c3c16
TT
21520 }
21521 break;
21522
2e276125 21523 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
21524 if (!section_is_gnu)
21525 {
21526 unsigned int bytes_read;
21527 int constant;
2e276125 21528
cf2c3c16
TT
21529 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21530 mac_ptr += bytes_read;
21531 read_direct_string (abfd, mac_ptr, &bytes_read);
21532 mac_ptr += bytes_read;
2e276125 21533
cf2c3c16
TT
21534 /* We don't recognize any vendor extensions. */
21535 break;
21536 }
21537 /* FALLTHROUGH */
21538
21539 default:
21540 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21541 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21542 section);
21543 if (mac_ptr == NULL)
21544 return;
21545 break;
2e276125 21546 }
757a13d0 21547 } while (macinfo_type != 0);
2e276125 21548}
8e19ed76 21549
cf2c3c16 21550static void
09262596 21551dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 21552 int section_is_gnu)
cf2c3c16 21553{
bb5ed363 21554 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21555 struct line_header *lh = cu->line_header;
21556 bfd *abfd;
d521ce57 21557 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21558 struct macro_source_file *current_file = 0;
21559 enum dwarf_macro_record_type macinfo_type;
21560 unsigned int offset_size = cu->header.offset_size;
d521ce57 21561 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
21562 struct cleanup *cleanup;
21563 htab_t include_hash;
21564 void **slot;
09262596
DE
21565 struct dwarf2_section_info *section;
21566 const char *section_name;
21567
21568 if (cu->dwo_unit != NULL)
21569 {
21570 if (section_is_gnu)
21571 {
21572 section = &cu->dwo_unit->dwo_file->sections.macro;
21573 section_name = ".debug_macro.dwo";
21574 }
21575 else
21576 {
21577 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21578 section_name = ".debug_macinfo.dwo";
21579 }
21580 }
21581 else
21582 {
21583 if (section_is_gnu)
21584 {
21585 section = &dwarf2_per_objfile->macro;
21586 section_name = ".debug_macro";
21587 }
21588 else
21589 {
21590 section = &dwarf2_per_objfile->macinfo;
21591 section_name = ".debug_macinfo";
21592 }
21593 }
cf2c3c16 21594
bb5ed363 21595 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21596 if (section->buffer == NULL)
21597 {
fceca515 21598 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21599 return;
21600 }
a32a8923 21601 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21602
21603 /* First pass: Find the name of the base filename.
21604 This filename is needed in order to process all macros whose definition
21605 (or undefinition) comes from the command line. These macros are defined
21606 before the first DW_MACINFO_start_file entry, and yet still need to be
21607 associated to the base file.
21608
21609 To determine the base file name, we scan the macro definitions until we
21610 reach the first DW_MACINFO_start_file entry. We then initialize
21611 CURRENT_FILE accordingly so that any macro definition found before the
21612 first DW_MACINFO_start_file can still be associated to the base file. */
21613
21614 mac_ptr = section->buffer + offset;
21615 mac_end = section->buffer + section->size;
21616
21617 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21618 &offset_size, section_is_gnu);
21619 if (mac_ptr == NULL)
21620 {
21621 /* We already issued a complaint. */
21622 return;
21623 }
21624
21625 do
21626 {
21627 /* Do we at least have room for a macinfo type byte? */
21628 if (mac_ptr >= mac_end)
21629 {
21630 /* Complaint is printed during the second pass as GDB will probably
21631 stop the first pass earlier upon finding
21632 DW_MACINFO_start_file. */
21633 break;
21634 }
21635
aead7601 21636 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
21637 mac_ptr++;
21638
21639 /* Note that we rely on the fact that the corresponding GNU and
21640 DWARF constants are the same. */
21641 switch (macinfo_type)
21642 {
21643 /* A zero macinfo type indicates the end of the macro
21644 information. */
21645 case 0:
21646 break;
21647
21648 case DW_MACRO_GNU_define:
21649 case DW_MACRO_GNU_undef:
21650 /* Only skip the data by MAC_PTR. */
21651 {
21652 unsigned int bytes_read;
21653
21654 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21655 mac_ptr += bytes_read;
21656 read_direct_string (abfd, mac_ptr, &bytes_read);
21657 mac_ptr += bytes_read;
21658 }
21659 break;
21660
21661 case DW_MACRO_GNU_start_file:
21662 {
21663 unsigned int bytes_read;
21664 int line, file;
21665
21666 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21667 mac_ptr += bytes_read;
21668 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21669 mac_ptr += bytes_read;
21670
43f3e411 21671 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
21672 }
21673 break;
21674
21675 case DW_MACRO_GNU_end_file:
21676 /* No data to skip by MAC_PTR. */
21677 break;
21678
21679 case DW_MACRO_GNU_define_indirect:
21680 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21681 case DW_MACRO_GNU_define_indirect_alt:
21682 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21683 {
21684 unsigned int bytes_read;
21685
21686 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21687 mac_ptr += bytes_read;
21688 mac_ptr += offset_size;
21689 }
21690 break;
21691
21692 case DW_MACRO_GNU_transparent_include:
f7a35f02 21693 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21694 /* Note that, according to the spec, a transparent include
21695 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21696 skip this opcode. */
21697 mac_ptr += offset_size;
21698 break;
21699
21700 case DW_MACINFO_vendor_ext:
21701 /* Only skip the data by MAC_PTR. */
21702 if (!section_is_gnu)
21703 {
21704 unsigned int bytes_read;
21705
21706 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21707 mac_ptr += bytes_read;
21708 read_direct_string (abfd, mac_ptr, &bytes_read);
21709 mac_ptr += bytes_read;
21710 }
21711 /* FALLTHROUGH */
21712
21713 default:
21714 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21715 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21716 section);
21717 if (mac_ptr == NULL)
21718 return;
21719 break;
21720 }
21721 } while (macinfo_type != 0 && current_file == NULL);
21722
21723 /* Second pass: Process all entries.
21724
21725 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21726 command-line macro definitions/undefinitions. This flag is unset when we
21727 reach the first DW_MACINFO_start_file entry. */
21728
8fc3fc34
TT
21729 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21730 NULL, xcalloc, xfree);
21731 cleanup = make_cleanup_htab_delete (include_hash);
21732 mac_ptr = section->buffer + offset;
21733 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21734 *slot = (void *) mac_ptr;
8fc3fc34 21735 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 21736 current_file, lh, section,
4d663531 21737 section_is_gnu, 0, offset_size, include_hash);
8fc3fc34 21738 do_cleanups (cleanup);
cf2c3c16
TT
21739}
21740
8e19ed76 21741/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21742 if so return true else false. */
380bca97 21743
8e19ed76 21744static int
6e5a29e1 21745attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21746{
21747 return (attr == NULL ? 0 :
21748 attr->form == DW_FORM_block1
21749 || attr->form == DW_FORM_block2
21750 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21751 || attr->form == DW_FORM_block
21752 || attr->form == DW_FORM_exprloc);
8e19ed76 21753}
4c2df51b 21754
c6a0999f
JB
21755/* Return non-zero if ATTR's value is a section offset --- classes
21756 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21757 You may use DW_UNSND (attr) to retrieve such offsets.
21758
21759 Section 7.5.4, "Attribute Encodings", explains that no attribute
21760 may have a value that belongs to more than one of these classes; it
21761 would be ambiguous if we did, because we use the same forms for all
21762 of them. */
380bca97 21763
3690dd37 21764static int
6e5a29e1 21765attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21766{
21767 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21768 || attr->form == DW_FORM_data8
21769 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21770}
21771
3690dd37
JB
21772/* Return non-zero if ATTR's value falls in the 'constant' class, or
21773 zero otherwise. When this function returns true, you can apply
21774 dwarf2_get_attr_constant_value to it.
21775
21776 However, note that for some attributes you must check
21777 attr_form_is_section_offset before using this test. DW_FORM_data4
21778 and DW_FORM_data8 are members of both the constant class, and of
21779 the classes that contain offsets into other debug sections
21780 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21781 that, if an attribute's can be either a constant or one of the
21782 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21783 taken as section offsets, not constants. */
380bca97 21784
3690dd37 21785static int
6e5a29e1 21786attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21787{
21788 switch (attr->form)
21789 {
21790 case DW_FORM_sdata:
21791 case DW_FORM_udata:
21792 case DW_FORM_data1:
21793 case DW_FORM_data2:
21794 case DW_FORM_data4:
21795 case DW_FORM_data8:
21796 return 1;
21797 default:
21798 return 0;
21799 }
21800}
21801
7771576e
SA
21802
21803/* DW_ADDR is always stored already as sect_offset; despite for the forms
21804 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21805
21806static int
6e5a29e1 21807attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21808{
21809 switch (attr->form)
21810 {
21811 case DW_FORM_ref_addr:
21812 case DW_FORM_ref1:
21813 case DW_FORM_ref2:
21814 case DW_FORM_ref4:
21815 case DW_FORM_ref8:
21816 case DW_FORM_ref_udata:
21817 case DW_FORM_GNU_ref_alt:
21818 return 1;
21819 default:
21820 return 0;
21821 }
21822}
21823
3019eac3
DE
21824/* Return the .debug_loc section to use for CU.
21825 For DWO files use .debug_loc.dwo. */
21826
21827static struct dwarf2_section_info *
21828cu_debug_loc_section (struct dwarf2_cu *cu)
21829{
21830 if (cu->dwo_unit)
21831 return &cu->dwo_unit->dwo_file->sections.loc;
21832 return &dwarf2_per_objfile->loc;
21833}
21834
8cf6f0b1
TT
21835/* A helper function that fills in a dwarf2_loclist_baton. */
21836
21837static void
21838fill_in_loclist_baton (struct dwarf2_cu *cu,
21839 struct dwarf2_loclist_baton *baton,
ff39bb5e 21840 const struct attribute *attr)
8cf6f0b1 21841{
3019eac3
DE
21842 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21843
21844 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21845
21846 baton->per_cu = cu->per_cu;
21847 gdb_assert (baton->per_cu);
21848 /* We don't know how long the location list is, but make sure we
21849 don't run off the edge of the section. */
3019eac3
DE
21850 baton->size = section->size - DW_UNSND (attr);
21851 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21852 baton->base_address = cu->base_address;
f664829e 21853 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21854}
21855
4c2df51b 21856static void
ff39bb5e 21857dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21858 struct dwarf2_cu *cu, int is_block)
4c2df51b 21859{
bb5ed363 21860 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21861 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21862
3690dd37 21863 if (attr_form_is_section_offset (attr)
3019eac3 21864 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21865 the section. If so, fall through to the complaint in the
21866 other branch. */
3019eac3 21867 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21868 {
0d53c4c4 21869 struct dwarf2_loclist_baton *baton;
4c2df51b 21870
bb5ed363 21871 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21872 sizeof (struct dwarf2_loclist_baton));
4c2df51b 21873
8cf6f0b1 21874 fill_in_loclist_baton (cu, baton, attr);
be391dca 21875
d00adf39 21876 if (cu->base_known == 0)
0d53c4c4 21877 complaint (&symfile_complaints,
3e43a32a
MS
21878 _("Location list used without "
21879 "specifying the CU base address."));
4c2df51b 21880
f1e6e072
TT
21881 SYMBOL_ACLASS_INDEX (sym) = (is_block
21882 ? dwarf2_loclist_block_index
21883 : dwarf2_loclist_index);
0d53c4c4
DJ
21884 SYMBOL_LOCATION_BATON (sym) = baton;
21885 }
21886 else
21887 {
21888 struct dwarf2_locexpr_baton *baton;
21889
bb5ed363 21890 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21891 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
21892 baton->per_cu = cu->per_cu;
21893 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21894
21895 if (attr_form_is_block (attr))
21896 {
21897 /* Note that we're just copying the block's data pointer
21898 here, not the actual data. We're still pointing into the
6502dd73
DJ
21899 info_buffer for SYM's objfile; right now we never release
21900 that buffer, but when we do clean up properly this may
21901 need to change. */
0d53c4c4
DJ
21902 baton->size = DW_BLOCK (attr)->size;
21903 baton->data = DW_BLOCK (attr)->data;
21904 }
21905 else
21906 {
21907 dwarf2_invalid_attrib_class_complaint ("location description",
21908 SYMBOL_NATURAL_NAME (sym));
21909 baton->size = 0;
0d53c4c4 21910 }
6e70227d 21911
f1e6e072
TT
21912 SYMBOL_ACLASS_INDEX (sym) = (is_block
21913 ? dwarf2_locexpr_block_index
21914 : dwarf2_locexpr_index);
0d53c4c4
DJ
21915 SYMBOL_LOCATION_BATON (sym) = baton;
21916 }
4c2df51b 21917}
6502dd73 21918
9aa1f1e3
TT
21919/* Return the OBJFILE associated with the compilation unit CU. If CU
21920 came from a separate debuginfo file, then the master objfile is
21921 returned. */
ae0d2f24
UW
21922
21923struct objfile *
21924dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21925{
9291a0cd 21926 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21927
21928 /* Return the master objfile, so that we can report and look up the
21929 correct file containing this variable. */
21930 if (objfile->separate_debug_objfile_backlink)
21931 objfile = objfile->separate_debug_objfile_backlink;
21932
21933 return objfile;
21934}
21935
96408a79
SA
21936/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21937 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21938 CU_HEADERP first. */
21939
21940static const struct comp_unit_head *
21941per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21942 struct dwarf2_per_cu_data *per_cu)
21943{
d521ce57 21944 const gdb_byte *info_ptr;
96408a79
SA
21945
21946 if (per_cu->cu)
21947 return &per_cu->cu->header;
21948
8a0459fd 21949 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21950
21951 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21952 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21953
21954 return cu_headerp;
21955}
21956
ae0d2f24
UW
21957/* Return the address size given in the compilation unit header for CU. */
21958
98714339 21959int
ae0d2f24
UW
21960dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21961{
96408a79
SA
21962 struct comp_unit_head cu_header_local;
21963 const struct comp_unit_head *cu_headerp;
c471e790 21964
96408a79
SA
21965 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21966
21967 return cu_headerp->addr_size;
ae0d2f24
UW
21968}
21969
9eae7c52
TT
21970/* Return the offset size given in the compilation unit header for CU. */
21971
21972int
21973dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21974{
96408a79
SA
21975 struct comp_unit_head cu_header_local;
21976 const struct comp_unit_head *cu_headerp;
9c6c53f7 21977
96408a79
SA
21978 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21979
21980 return cu_headerp->offset_size;
21981}
21982
21983/* See its dwarf2loc.h declaration. */
21984
21985int
21986dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21987{
21988 struct comp_unit_head cu_header_local;
21989 const struct comp_unit_head *cu_headerp;
21990
21991 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21992
21993 if (cu_headerp->version == 2)
21994 return cu_headerp->addr_size;
21995 else
21996 return cu_headerp->offset_size;
181cebd4
JK
21997}
21998
9aa1f1e3
TT
21999/* Return the text offset of the CU. The returned offset comes from
22000 this CU's objfile. If this objfile came from a separate debuginfo
22001 file, then the offset may be different from the corresponding
22002 offset in the parent objfile. */
22003
22004CORE_ADDR
22005dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22006{
bb3fa9d0 22007 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
22008
22009 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22010}
22011
348e048f
DE
22012/* Locate the .debug_info compilation unit from CU's objfile which contains
22013 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22014
22015static struct dwarf2_per_cu_data *
b64f50a1 22016dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 22017 unsigned int offset_in_dwz,
ae038cb0
DJ
22018 struct objfile *objfile)
22019{
22020 struct dwarf2_per_cu_data *this_cu;
22021 int low, high;
36586728 22022 const sect_offset *cu_off;
ae038cb0 22023
ae038cb0
DJ
22024 low = 0;
22025 high = dwarf2_per_objfile->n_comp_units - 1;
22026 while (high > low)
22027 {
36586728 22028 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22029 int mid = low + (high - low) / 2;
9a619af0 22030
36586728
TT
22031 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22032 cu_off = &mid_cu->offset;
22033 if (mid_cu->is_dwz > offset_in_dwz
22034 || (mid_cu->is_dwz == offset_in_dwz
22035 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
22036 high = mid;
22037 else
22038 low = mid + 1;
22039 }
22040 gdb_assert (low == high);
36586728
TT
22041 this_cu = dwarf2_per_objfile->all_comp_units[low];
22042 cu_off = &this_cu->offset;
22043 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 22044 {
36586728 22045 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
22046 error (_("Dwarf Error: could not find partial DIE containing "
22047 "offset 0x%lx [in module %s]"),
b64f50a1 22048 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 22049
b64f50a1
JK
22050 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22051 <= offset.sect_off);
ae038cb0
DJ
22052 return dwarf2_per_objfile->all_comp_units[low-1];
22053 }
22054 else
22055 {
22056 this_cu = dwarf2_per_objfile->all_comp_units[low];
22057 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
22058 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22059 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22060 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
22061 return this_cu;
22062 }
22063}
22064
23745b47 22065/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22066
9816fde3 22067static void
23745b47 22068init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22069{
9816fde3 22070 memset (cu, 0, sizeof (*cu));
23745b47
DE
22071 per_cu->cu = cu;
22072 cu->per_cu = per_cu;
22073 cu->objfile = per_cu->objfile;
93311388 22074 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22075}
22076
22077/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22078
22079static void
95554aad
TT
22080prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22081 enum language pretend_language)
9816fde3
JK
22082{
22083 struct attribute *attr;
22084
22085 /* Set the language we're debugging. */
22086 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22087 if (attr)
22088 set_cu_language (DW_UNSND (attr), cu);
22089 else
9cded63f 22090 {
95554aad 22091 cu->language = pretend_language;
9cded63f
TT
22092 cu->language_defn = language_def (cu->language);
22093 }
dee91e82
DE
22094
22095 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
22096 if (attr)
22097 cu->producer = DW_STRING (attr);
93311388
DE
22098}
22099
ae038cb0
DJ
22100/* Release one cached compilation unit, CU. We unlink it from the tree
22101 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22102 the caller is responsible for that.
22103 NOTE: DATA is a void * because this function is also used as a
22104 cleanup routine. */
ae038cb0
DJ
22105
22106static void
68dc6402 22107free_heap_comp_unit (void *data)
ae038cb0
DJ
22108{
22109 struct dwarf2_cu *cu = data;
22110
23745b47
DE
22111 gdb_assert (cu->per_cu != NULL);
22112 cu->per_cu->cu = NULL;
ae038cb0
DJ
22113 cu->per_cu = NULL;
22114
22115 obstack_free (&cu->comp_unit_obstack, NULL);
22116
22117 xfree (cu);
22118}
22119
72bf9492 22120/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22121 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22122 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22123
22124static void
22125free_stack_comp_unit (void *data)
22126{
22127 struct dwarf2_cu *cu = data;
22128
23745b47
DE
22129 gdb_assert (cu->per_cu != NULL);
22130 cu->per_cu->cu = NULL;
22131 cu->per_cu = NULL;
22132
72bf9492
DJ
22133 obstack_free (&cu->comp_unit_obstack, NULL);
22134 cu->partial_dies = NULL;
ae038cb0
DJ
22135}
22136
22137/* Free all cached compilation units. */
22138
22139static void
22140free_cached_comp_units (void *data)
22141{
22142 struct dwarf2_per_cu_data *per_cu, **last_chain;
22143
22144 per_cu = dwarf2_per_objfile->read_in_chain;
22145 last_chain = &dwarf2_per_objfile->read_in_chain;
22146 while (per_cu != NULL)
22147 {
22148 struct dwarf2_per_cu_data *next_cu;
22149
22150 next_cu = per_cu->cu->read_in_chain;
22151
68dc6402 22152 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22153 *last_chain = next_cu;
22154
22155 per_cu = next_cu;
22156 }
22157}
22158
22159/* Increase the age counter on each cached compilation unit, and free
22160 any that are too old. */
22161
22162static void
22163age_cached_comp_units (void)
22164{
22165 struct dwarf2_per_cu_data *per_cu, **last_chain;
22166
22167 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22168 per_cu = dwarf2_per_objfile->read_in_chain;
22169 while (per_cu != NULL)
22170 {
22171 per_cu->cu->last_used ++;
b4f54984 22172 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22173 dwarf2_mark (per_cu->cu);
22174 per_cu = per_cu->cu->read_in_chain;
22175 }
22176
22177 per_cu = dwarf2_per_objfile->read_in_chain;
22178 last_chain = &dwarf2_per_objfile->read_in_chain;
22179 while (per_cu != NULL)
22180 {
22181 struct dwarf2_per_cu_data *next_cu;
22182
22183 next_cu = per_cu->cu->read_in_chain;
22184
22185 if (!per_cu->cu->mark)
22186 {
68dc6402 22187 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22188 *last_chain = next_cu;
22189 }
22190 else
22191 last_chain = &per_cu->cu->read_in_chain;
22192
22193 per_cu = next_cu;
22194 }
22195}
22196
22197/* Remove a single compilation unit from the cache. */
22198
22199static void
dee91e82 22200free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22201{
22202 struct dwarf2_per_cu_data *per_cu, **last_chain;
22203
22204 per_cu = dwarf2_per_objfile->read_in_chain;
22205 last_chain = &dwarf2_per_objfile->read_in_chain;
22206 while (per_cu != NULL)
22207 {
22208 struct dwarf2_per_cu_data *next_cu;
22209
22210 next_cu = per_cu->cu->read_in_chain;
22211
dee91e82 22212 if (per_cu == target_per_cu)
ae038cb0 22213 {
68dc6402 22214 free_heap_comp_unit (per_cu->cu);
dee91e82 22215 per_cu->cu = NULL;
ae038cb0
DJ
22216 *last_chain = next_cu;
22217 break;
22218 }
22219 else
22220 last_chain = &per_cu->cu->read_in_chain;
22221
22222 per_cu = next_cu;
22223 }
22224}
22225
fe3e1990
DJ
22226/* Release all extra memory associated with OBJFILE. */
22227
22228void
22229dwarf2_free_objfile (struct objfile *objfile)
22230{
22231 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22232
22233 if (dwarf2_per_objfile == NULL)
22234 return;
22235
22236 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22237 free_cached_comp_units (NULL);
22238
7b9f3c50
DE
22239 if (dwarf2_per_objfile->quick_file_names_table)
22240 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 22241
527f3840
JK
22242 if (dwarf2_per_objfile->line_header_hash)
22243 htab_delete (dwarf2_per_objfile->line_header_hash);
22244
fe3e1990
DJ
22245 /* Everything else should be on the objfile obstack. */
22246}
22247
dee91e82
DE
22248/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22249 We store these in a hash table separate from the DIEs, and preserve them
22250 when the DIEs are flushed out of cache.
22251
22252 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22253 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22254 or the type may come from a DWO file. Furthermore, while it's more logical
22255 to use per_cu->section+offset, with Fission the section with the data is in
22256 the DWO file but we don't know that section at the point we need it.
22257 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22258 because we can enter the lookup routine, get_die_type_at_offset, from
22259 outside this file, and thus won't necessarily have PER_CU->cu.
22260 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22261
dee91e82 22262struct dwarf2_per_cu_offset_and_type
1c379e20 22263{
dee91e82 22264 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 22265 sect_offset offset;
1c379e20
DJ
22266 struct type *type;
22267};
22268
dee91e82 22269/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22270
22271static hashval_t
dee91e82 22272per_cu_offset_and_type_hash (const void *item)
1c379e20 22273{
dee91e82 22274 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 22275
dee91e82 22276 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
22277}
22278
dee91e82 22279/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22280
22281static int
dee91e82 22282per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22283{
dee91e82
DE
22284 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22285 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 22286
dee91e82
DE
22287 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22288 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
22289}
22290
22291/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22292 table if necessary. For convenience, return TYPE.
22293
22294 The DIEs reading must have careful ordering to:
22295 * Not cause infite loops trying to read in DIEs as a prerequisite for
22296 reading current DIE.
22297 * Not trying to dereference contents of still incompletely read in types
22298 while reading in other DIEs.
22299 * Enable referencing still incompletely read in types just by a pointer to
22300 the type without accessing its fields.
22301
22302 Therefore caller should follow these rules:
22303 * Try to fetch any prerequisite types we may need to build this DIE type
22304 before building the type and calling set_die_type.
e71ec853 22305 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22306 possible before fetching more types to complete the current type.
22307 * Make the type as complete as possible before fetching more types. */
1c379e20 22308
f792889a 22309static struct type *
1c379e20
DJ
22310set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22311{
dee91e82 22312 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 22313 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
22314 struct attribute *attr;
22315 struct dynamic_prop prop;
1c379e20 22316
b4ba55a1
JB
22317 /* For Ada types, make sure that the gnat-specific data is always
22318 initialized (if not already set). There are a few types where
22319 we should not be doing so, because the type-specific area is
22320 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22321 where the type-specific area is used to store the floatformat).
22322 But this is not a problem, because the gnat-specific information
22323 is actually not needed for these types. */
22324 if (need_gnat_info (cu)
22325 && TYPE_CODE (type) != TYPE_CODE_FUNC
22326 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
22327 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22328 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22329 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
22330 && !HAVE_GNAT_AUX_INFO (type))
22331 INIT_GNAT_SPECIFIC (type);
22332
3cdcd0ce
JB
22333 /* Read DW_AT_data_location and set in type. */
22334 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22335 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 22336 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 22337
dee91e82 22338 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22339 {
dee91e82
DE
22340 dwarf2_per_objfile->die_type_hash =
22341 htab_create_alloc_ex (127,
22342 per_cu_offset_and_type_hash,
22343 per_cu_offset_and_type_eq,
22344 NULL,
22345 &objfile->objfile_obstack,
22346 hashtab_obstack_allocate,
22347 dummy_obstack_deallocate);
f792889a 22348 }
1c379e20 22349
dee91e82 22350 ofs.per_cu = cu->per_cu;
1c379e20
DJ
22351 ofs.offset = die->offset;
22352 ofs.type = type;
dee91e82
DE
22353 slot = (struct dwarf2_per_cu_offset_and_type **)
22354 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
22355 if (*slot)
22356 complaint (&symfile_complaints,
22357 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 22358 die->offset.sect_off);
673bfd45 22359 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 22360 **slot = ofs;
f792889a 22361 return type;
1c379e20
DJ
22362}
22363
02142a6c
DE
22364/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22365 or return NULL if the die does not have a saved type. */
1c379e20
DJ
22366
22367static struct type *
b64f50a1 22368get_die_type_at_offset (sect_offset offset,
673bfd45 22369 struct dwarf2_per_cu_data *per_cu)
1c379e20 22370{
dee91e82 22371 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 22372
dee91e82 22373 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22374 return NULL;
1c379e20 22375
dee91e82 22376 ofs.per_cu = per_cu;
673bfd45 22377 ofs.offset = offset;
dee91e82 22378 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
22379 if (slot)
22380 return slot->type;
22381 else
22382 return NULL;
22383}
22384
02142a6c 22385/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
22386 or return NULL if DIE does not have a saved type. */
22387
22388static struct type *
22389get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22390{
22391 return get_die_type_at_offset (die->offset, cu->per_cu);
22392}
22393
10b3939b
DJ
22394/* Add a dependence relationship from CU to REF_PER_CU. */
22395
22396static void
22397dwarf2_add_dependence (struct dwarf2_cu *cu,
22398 struct dwarf2_per_cu_data *ref_per_cu)
22399{
22400 void **slot;
22401
22402 if (cu->dependencies == NULL)
22403 cu->dependencies
22404 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22405 NULL, &cu->comp_unit_obstack,
22406 hashtab_obstack_allocate,
22407 dummy_obstack_deallocate);
22408
22409 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22410 if (*slot == NULL)
22411 *slot = ref_per_cu;
22412}
1c379e20 22413
f504f079
DE
22414/* Subroutine of dwarf2_mark to pass to htab_traverse.
22415 Set the mark field in every compilation unit in the
ae038cb0
DJ
22416 cache that we must keep because we are keeping CU. */
22417
10b3939b
DJ
22418static int
22419dwarf2_mark_helper (void **slot, void *data)
22420{
22421 struct dwarf2_per_cu_data *per_cu;
22422
22423 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
22424
22425 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22426 reading of the chain. As such dependencies remain valid it is not much
22427 useful to track and undo them during QUIT cleanups. */
22428 if (per_cu->cu == NULL)
22429 return 1;
22430
10b3939b
DJ
22431 if (per_cu->cu->mark)
22432 return 1;
22433 per_cu->cu->mark = 1;
22434
22435 if (per_cu->cu->dependencies != NULL)
22436 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22437
22438 return 1;
22439}
22440
f504f079
DE
22441/* Set the mark field in CU and in every other compilation unit in the
22442 cache that we must keep because we are keeping CU. */
22443
ae038cb0
DJ
22444static void
22445dwarf2_mark (struct dwarf2_cu *cu)
22446{
22447 if (cu->mark)
22448 return;
22449 cu->mark = 1;
10b3939b
DJ
22450 if (cu->dependencies != NULL)
22451 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
22452}
22453
22454static void
22455dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22456{
22457 while (per_cu)
22458 {
22459 per_cu->cu->mark = 0;
22460 per_cu = per_cu->cu->read_in_chain;
22461 }
72bf9492
DJ
22462}
22463
72bf9492
DJ
22464/* Trivial hash function for partial_die_info: the hash value of a DIE
22465 is its offset in .debug_info for this objfile. */
22466
22467static hashval_t
22468partial_die_hash (const void *item)
22469{
22470 const struct partial_die_info *part_die = item;
9a619af0 22471
b64f50a1 22472 return part_die->offset.sect_off;
72bf9492
DJ
22473}
22474
22475/* Trivial comparison function for partial_die_info structures: two DIEs
22476 are equal if they have the same offset. */
22477
22478static int
22479partial_die_eq (const void *item_lhs, const void *item_rhs)
22480{
22481 const struct partial_die_info *part_die_lhs = item_lhs;
22482 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 22483
b64f50a1 22484 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
22485}
22486
b4f54984
DE
22487static struct cmd_list_element *set_dwarf_cmdlist;
22488static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
22489
22490static void
b4f54984 22491set_dwarf_cmd (char *args, int from_tty)
ae038cb0 22492{
b4f54984 22493 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 22494 gdb_stdout);
ae038cb0
DJ
22495}
22496
22497static void
b4f54984 22498show_dwarf_cmd (char *args, int from_tty)
6e70227d 22499{
b4f54984 22500 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
22501}
22502
4bf44c1c 22503/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
22504
22505static void
c1bd65d0 22506dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
22507{
22508 struct dwarf2_per_objfile *data = d;
8b70b953 22509 int ix;
8b70b953 22510
626f2d1c
TT
22511 /* Make sure we don't accidentally use dwarf2_per_objfile while
22512 cleaning up. */
22513 dwarf2_per_objfile = NULL;
22514
59b0c7c1
JB
22515 for (ix = 0; ix < data->n_comp_units; ++ix)
22516 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 22517
59b0c7c1 22518 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 22519 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
22520 data->all_type_units[ix]->per_cu.imported_symtabs);
22521 xfree (data->all_type_units);
95554aad 22522
8b70b953 22523 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
22524
22525 if (data->dwo_files)
22526 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
22527 if (data->dwp_file)
22528 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
22529
22530 if (data->dwz_file && data->dwz_file->dwz_bfd)
22531 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
22532}
22533
22534\f
ae2de4f8 22535/* The "save gdb-index" command. */
9291a0cd
TT
22536
22537/* The contents of the hash table we create when building the string
22538 table. */
22539struct strtab_entry
22540{
22541 offset_type offset;
22542 const char *str;
22543};
22544
559a7a62
JK
22545/* Hash function for a strtab_entry.
22546
22547 Function is used only during write_hash_table so no index format backward
22548 compatibility is needed. */
b89be57b 22549
9291a0cd
TT
22550static hashval_t
22551hash_strtab_entry (const void *e)
22552{
22553 const struct strtab_entry *entry = e;
559a7a62 22554 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22555}
22556
22557/* Equality function for a strtab_entry. */
b89be57b 22558
9291a0cd
TT
22559static int
22560eq_strtab_entry (const void *a, const void *b)
22561{
22562 const struct strtab_entry *ea = a;
22563 const struct strtab_entry *eb = b;
22564 return !strcmp (ea->str, eb->str);
22565}
22566
22567/* Create a strtab_entry hash table. */
b89be57b 22568
9291a0cd
TT
22569static htab_t
22570create_strtab (void)
22571{
22572 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22573 xfree, xcalloc, xfree);
22574}
22575
22576/* Add a string to the constant pool. Return the string's offset in
22577 host order. */
b89be57b 22578
9291a0cd
TT
22579static offset_type
22580add_string (htab_t table, struct obstack *cpool, const char *str)
22581{
22582 void **slot;
22583 struct strtab_entry entry;
22584 struct strtab_entry *result;
22585
22586 entry.str = str;
22587 slot = htab_find_slot (table, &entry, INSERT);
22588 if (*slot)
22589 result = *slot;
22590 else
22591 {
22592 result = XNEW (struct strtab_entry);
22593 result->offset = obstack_object_size (cpool);
22594 result->str = str;
22595 obstack_grow_str0 (cpool, str);
22596 *slot = result;
22597 }
22598 return result->offset;
22599}
22600
22601/* An entry in the symbol table. */
22602struct symtab_index_entry
22603{
22604 /* The name of the symbol. */
22605 const char *name;
22606 /* The offset of the name in the constant pool. */
22607 offset_type index_offset;
22608 /* A sorted vector of the indices of all the CUs that hold an object
22609 of this name. */
22610 VEC (offset_type) *cu_indices;
22611};
22612
22613/* The symbol table. This is a power-of-2-sized hash table. */
22614struct mapped_symtab
22615{
22616 offset_type n_elements;
22617 offset_type size;
22618 struct symtab_index_entry **data;
22619};
22620
22621/* Hash function for a symtab_index_entry. */
b89be57b 22622
9291a0cd
TT
22623static hashval_t
22624hash_symtab_entry (const void *e)
22625{
22626 const struct symtab_index_entry *entry = e;
22627 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22628 sizeof (offset_type) * VEC_length (offset_type,
22629 entry->cu_indices),
22630 0);
22631}
22632
22633/* Equality function for a symtab_index_entry. */
b89be57b 22634
9291a0cd
TT
22635static int
22636eq_symtab_entry (const void *a, const void *b)
22637{
22638 const struct symtab_index_entry *ea = a;
22639 const struct symtab_index_entry *eb = b;
22640 int len = VEC_length (offset_type, ea->cu_indices);
22641 if (len != VEC_length (offset_type, eb->cu_indices))
22642 return 0;
22643 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22644 VEC_address (offset_type, eb->cu_indices),
22645 sizeof (offset_type) * len);
22646}
22647
22648/* Destroy a symtab_index_entry. */
b89be57b 22649
9291a0cd
TT
22650static void
22651delete_symtab_entry (void *p)
22652{
22653 struct symtab_index_entry *entry = p;
22654 VEC_free (offset_type, entry->cu_indices);
22655 xfree (entry);
22656}
22657
22658/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22659
9291a0cd 22660static htab_t
3876f04e 22661create_symbol_hash_table (void)
9291a0cd
TT
22662{
22663 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22664 delete_symtab_entry, xcalloc, xfree);
22665}
22666
22667/* Create a new mapped symtab object. */
b89be57b 22668
9291a0cd
TT
22669static struct mapped_symtab *
22670create_mapped_symtab (void)
22671{
22672 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22673 symtab->n_elements = 0;
22674 symtab->size = 1024;
22675 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22676 return symtab;
22677}
22678
22679/* Destroy a mapped_symtab. */
b89be57b 22680
9291a0cd
TT
22681static void
22682cleanup_mapped_symtab (void *p)
22683{
22684 struct mapped_symtab *symtab = p;
22685 /* The contents of the array are freed when the other hash table is
22686 destroyed. */
22687 xfree (symtab->data);
22688 xfree (symtab);
22689}
22690
22691/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22692 the slot.
22693
22694 Function is used only during write_hash_table so no index format backward
22695 compatibility is needed. */
b89be57b 22696
9291a0cd
TT
22697static struct symtab_index_entry **
22698find_slot (struct mapped_symtab *symtab, const char *name)
22699{
559a7a62 22700 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22701
22702 index = hash & (symtab->size - 1);
22703 step = ((hash * 17) & (symtab->size - 1)) | 1;
22704
22705 for (;;)
22706 {
22707 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22708 return &symtab->data[index];
22709 index = (index + step) & (symtab->size - 1);
22710 }
22711}
22712
22713/* Expand SYMTAB's hash table. */
b89be57b 22714
9291a0cd
TT
22715static void
22716hash_expand (struct mapped_symtab *symtab)
22717{
22718 offset_type old_size = symtab->size;
22719 offset_type i;
22720 struct symtab_index_entry **old_entries = symtab->data;
22721
22722 symtab->size *= 2;
22723 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22724
22725 for (i = 0; i < old_size; ++i)
22726 {
22727 if (old_entries[i])
22728 {
22729 struct symtab_index_entry **slot = find_slot (symtab,
22730 old_entries[i]->name);
22731 *slot = old_entries[i];
22732 }
22733 }
22734
22735 xfree (old_entries);
22736}
22737
156942c7
DE
22738/* Add an entry to SYMTAB. NAME is the name of the symbol.
22739 CU_INDEX is the index of the CU in which the symbol appears.
22740 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22741
9291a0cd
TT
22742static void
22743add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22744 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22745 offset_type cu_index)
22746{
22747 struct symtab_index_entry **slot;
156942c7 22748 offset_type cu_index_and_attrs;
9291a0cd
TT
22749
22750 ++symtab->n_elements;
22751 if (4 * symtab->n_elements / 3 >= symtab->size)
22752 hash_expand (symtab);
22753
22754 slot = find_slot (symtab, name);
22755 if (!*slot)
22756 {
22757 *slot = XNEW (struct symtab_index_entry);
22758 (*slot)->name = name;
156942c7 22759 /* index_offset is set later. */
9291a0cd
TT
22760 (*slot)->cu_indices = NULL;
22761 }
156942c7
DE
22762
22763 cu_index_and_attrs = 0;
22764 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22765 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22766 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22767
22768 /* We don't want to record an index value twice as we want to avoid the
22769 duplication.
22770 We process all global symbols and then all static symbols
22771 (which would allow us to avoid the duplication by only having to check
22772 the last entry pushed), but a symbol could have multiple kinds in one CU.
22773 To keep things simple we don't worry about the duplication here and
22774 sort and uniqufy the list after we've processed all symbols. */
22775 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22776}
22777
22778/* qsort helper routine for uniquify_cu_indices. */
22779
22780static int
22781offset_type_compare (const void *ap, const void *bp)
22782{
22783 offset_type a = *(offset_type *) ap;
22784 offset_type b = *(offset_type *) bp;
22785
22786 return (a > b) - (b > a);
22787}
22788
22789/* Sort and remove duplicates of all symbols' cu_indices lists. */
22790
22791static void
22792uniquify_cu_indices (struct mapped_symtab *symtab)
22793{
22794 int i;
22795
22796 for (i = 0; i < symtab->size; ++i)
22797 {
22798 struct symtab_index_entry *entry = symtab->data[i];
22799
22800 if (entry
22801 && entry->cu_indices != NULL)
22802 {
22803 unsigned int next_to_insert, next_to_check;
22804 offset_type last_value;
22805
22806 qsort (VEC_address (offset_type, entry->cu_indices),
22807 VEC_length (offset_type, entry->cu_indices),
22808 sizeof (offset_type), offset_type_compare);
22809
22810 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22811 next_to_insert = 1;
22812 for (next_to_check = 1;
22813 next_to_check < VEC_length (offset_type, entry->cu_indices);
22814 ++next_to_check)
22815 {
22816 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22817 != last_value)
22818 {
22819 last_value = VEC_index (offset_type, entry->cu_indices,
22820 next_to_check);
22821 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22822 last_value);
22823 ++next_to_insert;
22824 }
22825 }
22826 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22827 }
22828 }
9291a0cd
TT
22829}
22830
22831/* Add a vector of indices to the constant pool. */
b89be57b 22832
9291a0cd 22833static offset_type
3876f04e 22834add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22835 struct symtab_index_entry *entry)
22836{
22837 void **slot;
22838
3876f04e 22839 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22840 if (!*slot)
22841 {
22842 offset_type len = VEC_length (offset_type, entry->cu_indices);
22843 offset_type val = MAYBE_SWAP (len);
22844 offset_type iter;
22845 int i;
22846
22847 *slot = entry;
22848 entry->index_offset = obstack_object_size (cpool);
22849
22850 obstack_grow (cpool, &val, sizeof (val));
22851 for (i = 0;
22852 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22853 ++i)
22854 {
22855 val = MAYBE_SWAP (iter);
22856 obstack_grow (cpool, &val, sizeof (val));
22857 }
22858 }
22859 else
22860 {
22861 struct symtab_index_entry *old_entry = *slot;
22862 entry->index_offset = old_entry->index_offset;
22863 entry = old_entry;
22864 }
22865 return entry->index_offset;
22866}
22867
22868/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22869 constant pool entries going into the obstack CPOOL. */
b89be57b 22870
9291a0cd
TT
22871static void
22872write_hash_table (struct mapped_symtab *symtab,
22873 struct obstack *output, struct obstack *cpool)
22874{
22875 offset_type i;
3876f04e 22876 htab_t symbol_hash_table;
9291a0cd
TT
22877 htab_t str_table;
22878
3876f04e 22879 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22880 str_table = create_strtab ();
3876f04e 22881
9291a0cd
TT
22882 /* We add all the index vectors to the constant pool first, to
22883 ensure alignment is ok. */
22884 for (i = 0; i < symtab->size; ++i)
22885 {
22886 if (symtab->data[i])
3876f04e 22887 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22888 }
22889
22890 /* Now write out the hash table. */
22891 for (i = 0; i < symtab->size; ++i)
22892 {
22893 offset_type str_off, vec_off;
22894
22895 if (symtab->data[i])
22896 {
22897 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22898 vec_off = symtab->data[i]->index_offset;
22899 }
22900 else
22901 {
22902 /* While 0 is a valid constant pool index, it is not valid
22903 to have 0 for both offsets. */
22904 str_off = 0;
22905 vec_off = 0;
22906 }
22907
22908 str_off = MAYBE_SWAP (str_off);
22909 vec_off = MAYBE_SWAP (vec_off);
22910
22911 obstack_grow (output, &str_off, sizeof (str_off));
22912 obstack_grow (output, &vec_off, sizeof (vec_off));
22913 }
22914
22915 htab_delete (str_table);
3876f04e 22916 htab_delete (symbol_hash_table);
9291a0cd
TT
22917}
22918
0a5429f6
DE
22919/* Struct to map psymtab to CU index in the index file. */
22920struct psymtab_cu_index_map
22921{
22922 struct partial_symtab *psymtab;
22923 unsigned int cu_index;
22924};
22925
22926static hashval_t
22927hash_psymtab_cu_index (const void *item)
22928{
22929 const struct psymtab_cu_index_map *map = item;
22930
22931 return htab_hash_pointer (map->psymtab);
22932}
22933
22934static int
22935eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22936{
22937 const struct psymtab_cu_index_map *lhs = item_lhs;
22938 const struct psymtab_cu_index_map *rhs = item_rhs;
22939
22940 return lhs->psymtab == rhs->psymtab;
22941}
22942
22943/* Helper struct for building the address table. */
22944struct addrmap_index_data
22945{
22946 struct objfile *objfile;
22947 struct obstack *addr_obstack;
22948 htab_t cu_index_htab;
22949
22950 /* Non-zero if the previous_* fields are valid.
22951 We can't write an entry until we see the next entry (since it is only then
22952 that we know the end of the entry). */
22953 int previous_valid;
22954 /* Index of the CU in the table of all CUs in the index file. */
22955 unsigned int previous_cu_index;
0963b4bd 22956 /* Start address of the CU. */
0a5429f6
DE
22957 CORE_ADDR previous_cu_start;
22958};
22959
22960/* Write an address entry to OBSTACK. */
b89be57b 22961
9291a0cd 22962static void
0a5429f6
DE
22963add_address_entry (struct objfile *objfile, struct obstack *obstack,
22964 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 22965{
0a5429f6 22966 offset_type cu_index_to_write;
948f8e3d 22967 gdb_byte addr[8];
9291a0cd
TT
22968 CORE_ADDR baseaddr;
22969
22970 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22971
0a5429f6
DE
22972 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22973 obstack_grow (obstack, addr, 8);
22974 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22975 obstack_grow (obstack, addr, 8);
22976 cu_index_to_write = MAYBE_SWAP (cu_index);
22977 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22978}
22979
22980/* Worker function for traversing an addrmap to build the address table. */
22981
22982static int
22983add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22984{
22985 struct addrmap_index_data *data = datap;
22986 struct partial_symtab *pst = obj;
0a5429f6
DE
22987
22988 if (data->previous_valid)
22989 add_address_entry (data->objfile, data->addr_obstack,
22990 data->previous_cu_start, start_addr,
22991 data->previous_cu_index);
22992
22993 data->previous_cu_start = start_addr;
22994 if (pst != NULL)
22995 {
22996 struct psymtab_cu_index_map find_map, *map;
22997 find_map.psymtab = pst;
22998 map = htab_find (data->cu_index_htab, &find_map);
22999 gdb_assert (map != NULL);
23000 data->previous_cu_index = map->cu_index;
23001 data->previous_valid = 1;
23002 }
23003 else
23004 data->previous_valid = 0;
23005
23006 return 0;
23007}
23008
23009/* Write OBJFILE's address map to OBSTACK.
23010 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23011 in the index file. */
23012
23013static void
23014write_address_map (struct objfile *objfile, struct obstack *obstack,
23015 htab_t cu_index_htab)
23016{
23017 struct addrmap_index_data addrmap_index_data;
23018
23019 /* When writing the address table, we have to cope with the fact that
23020 the addrmap iterator only provides the start of a region; we have to
23021 wait until the next invocation to get the start of the next region. */
23022
23023 addrmap_index_data.objfile = objfile;
23024 addrmap_index_data.addr_obstack = obstack;
23025 addrmap_index_data.cu_index_htab = cu_index_htab;
23026 addrmap_index_data.previous_valid = 0;
23027
23028 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23029 &addrmap_index_data);
23030
23031 /* It's highly unlikely the last entry (end address = 0xff...ff)
23032 is valid, but we should still handle it.
23033 The end address is recorded as the start of the next region, but that
23034 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23035 anyway. */
23036 if (addrmap_index_data.previous_valid)
23037 add_address_entry (objfile, obstack,
23038 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23039 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23040}
23041
156942c7
DE
23042/* Return the symbol kind of PSYM. */
23043
23044static gdb_index_symbol_kind
23045symbol_kind (struct partial_symbol *psym)
23046{
23047 domain_enum domain = PSYMBOL_DOMAIN (psym);
23048 enum address_class aclass = PSYMBOL_CLASS (psym);
23049
23050 switch (domain)
23051 {
23052 case VAR_DOMAIN:
23053 switch (aclass)
23054 {
23055 case LOC_BLOCK:
23056 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23057 case LOC_TYPEDEF:
23058 return GDB_INDEX_SYMBOL_KIND_TYPE;
23059 case LOC_COMPUTED:
23060 case LOC_CONST_BYTES:
23061 case LOC_OPTIMIZED_OUT:
23062 case LOC_STATIC:
23063 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23064 case LOC_CONST:
23065 /* Note: It's currently impossible to recognize psyms as enum values
23066 short of reading the type info. For now punt. */
23067 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23068 default:
23069 /* There are other LOC_FOO values that one might want to classify
23070 as variables, but dwarf2read.c doesn't currently use them. */
23071 return GDB_INDEX_SYMBOL_KIND_OTHER;
23072 }
23073 case STRUCT_DOMAIN:
23074 return GDB_INDEX_SYMBOL_KIND_TYPE;
23075 default:
23076 return GDB_INDEX_SYMBOL_KIND_OTHER;
23077 }
23078}
23079
9291a0cd 23080/* Add a list of partial symbols to SYMTAB. */
b89be57b 23081
9291a0cd
TT
23082static void
23083write_psymbols (struct mapped_symtab *symtab,
987d643c 23084 htab_t psyms_seen,
9291a0cd
TT
23085 struct partial_symbol **psymp,
23086 int count,
987d643c
TT
23087 offset_type cu_index,
23088 int is_static)
9291a0cd
TT
23089{
23090 for (; count-- > 0; ++psymp)
23091 {
156942c7
DE
23092 struct partial_symbol *psym = *psymp;
23093 void **slot;
987d643c 23094
156942c7 23095 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23096 error (_("Ada is not currently supported by the index"));
987d643c 23097
987d643c 23098 /* Only add a given psymbol once. */
156942c7 23099 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
23100 if (!*slot)
23101 {
156942c7
DE
23102 gdb_index_symbol_kind kind = symbol_kind (psym);
23103
23104 *slot = psym;
23105 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23106 is_static, kind, cu_index);
987d643c 23107 }
9291a0cd
TT
23108 }
23109}
23110
23111/* Write the contents of an ("unfinished") obstack to FILE. Throw an
23112 exception if there is an error. */
b89be57b 23113
9291a0cd
TT
23114static void
23115write_obstack (FILE *file, struct obstack *obstack)
23116{
23117 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23118 file)
23119 != obstack_object_size (obstack))
23120 error (_("couldn't data write to file"));
23121}
23122
23123/* Unlink a file if the argument is not NULL. */
b89be57b 23124
9291a0cd
TT
23125static void
23126unlink_if_set (void *p)
23127{
23128 char **filename = p;
23129 if (*filename)
23130 unlink (*filename);
23131}
23132
1fd400ff
TT
23133/* A helper struct used when iterating over debug_types. */
23134struct signatured_type_index_data
23135{
23136 struct objfile *objfile;
23137 struct mapped_symtab *symtab;
23138 struct obstack *types_list;
987d643c 23139 htab_t psyms_seen;
1fd400ff
TT
23140 int cu_index;
23141};
23142
23143/* A helper function that writes a single signatured_type to an
23144 obstack. */
b89be57b 23145
1fd400ff
TT
23146static int
23147write_one_signatured_type (void **slot, void *d)
23148{
23149 struct signatured_type_index_data *info = d;
23150 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23151 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23152 gdb_byte val[8];
23153
23154 write_psymbols (info->symtab,
987d643c 23155 info->psyms_seen,
3e43a32a
MS
23156 info->objfile->global_psymbols.list
23157 + psymtab->globals_offset,
987d643c
TT
23158 psymtab->n_global_syms, info->cu_index,
23159 0);
1fd400ff 23160 write_psymbols (info->symtab,
987d643c 23161 info->psyms_seen,
3e43a32a
MS
23162 info->objfile->static_psymbols.list
23163 + psymtab->statics_offset,
987d643c
TT
23164 psymtab->n_static_syms, info->cu_index,
23165 1);
1fd400ff 23166
b64f50a1
JK
23167 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23168 entry->per_cu.offset.sect_off);
1fd400ff 23169 obstack_grow (info->types_list, val, 8);
3019eac3
DE
23170 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23171 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
23172 obstack_grow (info->types_list, val, 8);
23173 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23174 obstack_grow (info->types_list, val, 8);
23175
23176 ++info->cu_index;
23177
23178 return 1;
23179}
23180
95554aad
TT
23181/* Recurse into all "included" dependencies and write their symbols as
23182 if they appeared in this psymtab. */
23183
23184static void
23185recursively_write_psymbols (struct objfile *objfile,
23186 struct partial_symtab *psymtab,
23187 struct mapped_symtab *symtab,
23188 htab_t psyms_seen,
23189 offset_type cu_index)
23190{
23191 int i;
23192
23193 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23194 if (psymtab->dependencies[i]->user != NULL)
23195 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23196 symtab, psyms_seen, cu_index);
23197
23198 write_psymbols (symtab,
23199 psyms_seen,
23200 objfile->global_psymbols.list + psymtab->globals_offset,
23201 psymtab->n_global_syms, cu_index,
23202 0);
23203 write_psymbols (symtab,
23204 psyms_seen,
23205 objfile->static_psymbols.list + psymtab->statics_offset,
23206 psymtab->n_static_syms, cu_index,
23207 1);
23208}
23209
9291a0cd 23210/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23211
9291a0cd
TT
23212static void
23213write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23214{
23215 struct cleanup *cleanup;
23216 char *filename, *cleanup_filename;
1fd400ff
TT
23217 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23218 struct obstack cu_list, types_cu_list;
9291a0cd
TT
23219 int i;
23220 FILE *out_file;
23221 struct mapped_symtab *symtab;
23222 offset_type val, size_of_contents, total_len;
23223 struct stat st;
987d643c 23224 htab_t psyms_seen;
0a5429f6
DE
23225 htab_t cu_index_htab;
23226 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 23227
9291a0cd
TT
23228 if (dwarf2_per_objfile->using_index)
23229 error (_("Cannot use an index to create the index"));
23230
8b70b953
TT
23231 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23232 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23233
260b681b
DE
23234 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23235 return;
23236
4262abfb
JK
23237 if (stat (objfile_name (objfile), &st) < 0)
23238 perror_with_name (objfile_name (objfile));
9291a0cd 23239
4262abfb 23240 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
23241 INDEX_SUFFIX, (char *) NULL);
23242 cleanup = make_cleanup (xfree, filename);
23243
614c279d 23244 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
23245 if (!out_file)
23246 error (_("Can't open `%s' for writing"), filename);
23247
23248 cleanup_filename = filename;
23249 make_cleanup (unlink_if_set, &cleanup_filename);
23250
23251 symtab = create_mapped_symtab ();
23252 make_cleanup (cleanup_mapped_symtab, symtab);
23253
23254 obstack_init (&addr_obstack);
23255 make_cleanup_obstack_free (&addr_obstack);
23256
23257 obstack_init (&cu_list);
23258 make_cleanup_obstack_free (&cu_list);
23259
1fd400ff
TT
23260 obstack_init (&types_cu_list);
23261 make_cleanup_obstack_free (&types_cu_list);
23262
987d643c
TT
23263 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23264 NULL, xcalloc, xfree);
96408a79 23265 make_cleanup_htab_delete (psyms_seen);
987d643c 23266
0a5429f6
DE
23267 /* While we're scanning CU's create a table that maps a psymtab pointer
23268 (which is what addrmap records) to its index (which is what is recorded
23269 in the index file). This will later be needed to write the address
23270 table. */
23271 cu_index_htab = htab_create_alloc (100,
23272 hash_psymtab_cu_index,
23273 eq_psymtab_cu_index,
23274 NULL, xcalloc, xfree);
96408a79 23275 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
23276 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
23277 xmalloc (sizeof (struct psymtab_cu_index_map)
23278 * dwarf2_per_objfile->n_comp_units);
23279 make_cleanup (xfree, psymtab_cu_index_map);
23280
23281 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23282 work here. Also, the debug_types entries do not appear in
23283 all_comp_units, but only in their own hash table. */
9291a0cd
TT
23284 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23285 {
3e43a32a
MS
23286 struct dwarf2_per_cu_data *per_cu
23287 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23288 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23289 gdb_byte val[8];
0a5429f6
DE
23290 struct psymtab_cu_index_map *map;
23291 void **slot;
9291a0cd 23292
92fac807
JK
23293 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23294 It may be referenced from a local scope but in such case it does not
23295 need to be present in .gdb_index. */
23296 if (psymtab == NULL)
23297 continue;
23298
95554aad
TT
23299 if (psymtab->user == NULL)
23300 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 23301
0a5429f6
DE
23302 map = &psymtab_cu_index_map[i];
23303 map->psymtab = psymtab;
23304 map->cu_index = i;
23305 slot = htab_find_slot (cu_index_htab, map, INSERT);
23306 gdb_assert (slot != NULL);
23307 gdb_assert (*slot == NULL);
23308 *slot = map;
9291a0cd 23309
b64f50a1
JK
23310 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23311 per_cu->offset.sect_off);
9291a0cd 23312 obstack_grow (&cu_list, val, 8);
e254ef6a 23313 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23314 obstack_grow (&cu_list, val, 8);
23315 }
23316
0a5429f6
DE
23317 /* Dump the address map. */
23318 write_address_map (objfile, &addr_obstack, cu_index_htab);
23319
1fd400ff
TT
23320 /* Write out the .debug_type entries, if any. */
23321 if (dwarf2_per_objfile->signatured_types)
23322 {
23323 struct signatured_type_index_data sig_data;
23324
23325 sig_data.objfile = objfile;
23326 sig_data.symtab = symtab;
23327 sig_data.types_list = &types_cu_list;
987d643c 23328 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
23329 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23330 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23331 write_one_signatured_type, &sig_data);
23332 }
23333
156942c7
DE
23334 /* Now that we've processed all symbols we can shrink their cu_indices
23335 lists. */
23336 uniquify_cu_indices (symtab);
23337
9291a0cd
TT
23338 obstack_init (&constant_pool);
23339 make_cleanup_obstack_free (&constant_pool);
23340 obstack_init (&symtab_obstack);
23341 make_cleanup_obstack_free (&symtab_obstack);
23342 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23343
23344 obstack_init (&contents);
23345 make_cleanup_obstack_free (&contents);
1fd400ff 23346 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
23347 total_len = size_of_contents;
23348
23349 /* The version number. */
796a7ff8 23350 val = MAYBE_SWAP (8);
9291a0cd
TT
23351 obstack_grow (&contents, &val, sizeof (val));
23352
23353 /* The offset of the CU list from the start of the file. */
23354 val = MAYBE_SWAP (total_len);
23355 obstack_grow (&contents, &val, sizeof (val));
23356 total_len += obstack_object_size (&cu_list);
23357
1fd400ff
TT
23358 /* The offset of the types CU list from the start of the file. */
23359 val = MAYBE_SWAP (total_len);
23360 obstack_grow (&contents, &val, sizeof (val));
23361 total_len += obstack_object_size (&types_cu_list);
23362
9291a0cd
TT
23363 /* The offset of the address table from the start of the file. */
23364 val = MAYBE_SWAP (total_len);
23365 obstack_grow (&contents, &val, sizeof (val));
23366 total_len += obstack_object_size (&addr_obstack);
23367
23368 /* The offset of the symbol table from the start of the file. */
23369 val = MAYBE_SWAP (total_len);
23370 obstack_grow (&contents, &val, sizeof (val));
23371 total_len += obstack_object_size (&symtab_obstack);
23372
23373 /* The offset of the constant pool from the start of the file. */
23374 val = MAYBE_SWAP (total_len);
23375 obstack_grow (&contents, &val, sizeof (val));
23376 total_len += obstack_object_size (&constant_pool);
23377
23378 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23379
23380 write_obstack (out_file, &contents);
23381 write_obstack (out_file, &cu_list);
1fd400ff 23382 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
23383 write_obstack (out_file, &addr_obstack);
23384 write_obstack (out_file, &symtab_obstack);
23385 write_obstack (out_file, &constant_pool);
23386
23387 fclose (out_file);
23388
23389 /* We want to keep the file, so we set cleanup_filename to NULL
23390 here. See unlink_if_set. */
23391 cleanup_filename = NULL;
23392
23393 do_cleanups (cleanup);
23394}
23395
90476074
TT
23396/* Implementation of the `save gdb-index' command.
23397
23398 Note that the file format used by this command is documented in the
23399 GDB manual. Any changes here must be documented there. */
11570e71 23400
9291a0cd
TT
23401static void
23402save_gdb_index_command (char *arg, int from_tty)
23403{
23404 struct objfile *objfile;
23405
23406 if (!arg || !*arg)
96d19272 23407 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23408
23409 ALL_OBJFILES (objfile)
23410 {
23411 struct stat st;
23412
23413 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23414 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23415 continue;
23416
23417 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23418 if (dwarf2_per_objfile)
23419 {
9291a0cd 23420
492d29ea 23421 TRY
9291a0cd
TT
23422 {
23423 write_psymtabs_to_index (objfile, arg);
23424 }
492d29ea
PA
23425 CATCH (except, RETURN_MASK_ERROR)
23426 {
23427 exception_fprintf (gdb_stderr, except,
23428 _("Error while writing index for `%s': "),
23429 objfile_name (objfile));
23430 }
23431 END_CATCH
9291a0cd
TT
23432 }
23433 }
dce234bc
PP
23434}
23435
9291a0cd
TT
23436\f
23437
b4f54984 23438int dwarf_always_disassemble;
9eae7c52
TT
23439
23440static void
b4f54984
DE
23441show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23442 struct cmd_list_element *c, const char *value)
9eae7c52 23443{
3e43a32a
MS
23444 fprintf_filtered (file,
23445 _("Whether to always disassemble "
23446 "DWARF expressions is %s.\n"),
9eae7c52
TT
23447 value);
23448}
23449
900e11f9
JK
23450static void
23451show_check_physname (struct ui_file *file, int from_tty,
23452 struct cmd_list_element *c, const char *value)
23453{
23454 fprintf_filtered (file,
23455 _("Whether to check \"physname\" is %s.\n"),
23456 value);
23457}
23458
6502dd73
DJ
23459void _initialize_dwarf2_read (void);
23460
23461void
23462_initialize_dwarf2_read (void)
23463{
96d19272
JK
23464 struct cmd_list_element *c;
23465
dce234bc 23466 dwarf2_objfile_data_key
c1bd65d0 23467 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 23468
b4f54984
DE
23469 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23470Set DWARF specific variables.\n\
23471Configure DWARF variables such as the cache size"),
23472 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
23473 0/*allow-unknown*/, &maintenance_set_cmdlist);
23474
b4f54984
DE
23475 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23476Show DWARF specific variables\n\
23477Show DWARF variables such as the cache size"),
23478 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
23479 0/*allow-unknown*/, &maintenance_show_cmdlist);
23480
23481 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
23482 &dwarf_max_cache_age, _("\
23483Set the upper bound on the age of cached DWARF compilation units."), _("\
23484Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
23485A higher limit means that cached compilation units will be stored\n\
23486in memory longer, and more total memory will be used. Zero disables\n\
23487caching, which can slow down startup."),
2c5b56ce 23488 NULL,
b4f54984
DE
23489 show_dwarf_max_cache_age,
23490 &set_dwarf_cmdlist,
23491 &show_dwarf_cmdlist);
d97bc12b 23492
9eae7c52 23493 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 23494 &dwarf_always_disassemble, _("\
9eae7c52
TT
23495Set whether `info address' always disassembles DWARF expressions."), _("\
23496Show whether `info address' always disassembles DWARF expressions."), _("\
23497When enabled, DWARF expressions are always printed in an assembly-like\n\
23498syntax. When disabled, expressions will be printed in a more\n\
23499conversational style, when possible."),
23500 NULL,
b4f54984
DE
23501 show_dwarf_always_disassemble,
23502 &set_dwarf_cmdlist,
23503 &show_dwarf_cmdlist);
23504
23505 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23506Set debugging of the DWARF reader."), _("\
23507Show debugging of the DWARF reader."), _("\
23508When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
23509reading and symtab expansion. A value of 1 (one) provides basic\n\
23510information. A value greater than 1 provides more verbose information."),
45cfd468
DE
23511 NULL,
23512 NULL,
23513 &setdebuglist, &showdebuglist);
23514
b4f54984
DE
23515 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23516Set debugging of the DWARF DIE reader."), _("\
23517Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
23518When enabled (non-zero), DIEs are dumped after they are read in.\n\
23519The value is the maximum depth to print."),
ccce17b0
YQ
23520 NULL,
23521 NULL,
23522 &setdebuglist, &showdebuglist);
9291a0cd 23523
27e0867f
DE
23524 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23525Set debugging of the dwarf line reader."), _("\
23526Show debugging of the dwarf line reader."), _("\
23527When enabled (non-zero), line number entries are dumped as they are read in.\n\
23528A value of 1 (one) provides basic information.\n\
23529A value greater than 1 provides more verbose information."),
23530 NULL,
23531 NULL,
23532 &setdebuglist, &showdebuglist);
23533
900e11f9
JK
23534 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23535Set cross-checking of \"physname\" code against demangler."), _("\
23536Show cross-checking of \"physname\" code against demangler."), _("\
23537When enabled, GDB's internal \"physname\" code is checked against\n\
23538the demangler."),
23539 NULL, show_check_physname,
23540 &setdebuglist, &showdebuglist);
23541
e615022a
DE
23542 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23543 no_class, &use_deprecated_index_sections, _("\
23544Set whether to use deprecated gdb_index sections."), _("\
23545Show whether to use deprecated gdb_index sections."), _("\
23546When enabled, deprecated .gdb_index sections are used anyway.\n\
23547Normally they are ignored either because of a missing feature or\n\
23548performance issue.\n\
23549Warning: This option must be enabled before gdb reads the file."),
23550 NULL,
23551 NULL,
23552 &setlist, &showlist);
23553
96d19272 23554 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23555 _("\
fc1a9d6e 23556Save a gdb-index file.\n\
11570e71 23557Usage: save gdb-index DIRECTORY"),
96d19272
JK
23558 &save_cmdlist);
23559 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23560
23561 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23562 &dwarf2_locexpr_funcs);
23563 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23564 &dwarf2_loclist_funcs);
23565
23566 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23567 &dwarf2_block_frame_base_locexpr_funcs);
23568 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23569 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23570}
This page took 3.571183 seconds and 4 git commands to generate.