Change "set debug dwarf2-read" to take a verbosity level.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
28e7fd62 3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
9291a0cd
TT
58#include "exceptions.h"
59#include "gdb_stat.h"
96d19272 60#include "completer.h"
34eaf542 61#include "vec.h"
98bfdba5 62#include "c-lang.h"
a766d390 63#include "go-lang.h"
98bfdba5 64#include "valprint.h"
3019eac3 65#include "gdbcore.h" /* for gnutarget */
156942c7 66#include "gdb/gdb-index.h"
60d5a603 67#include <ctype.h>
cbb099e8 68#include "gdb_bfd.h"
4357ac6c 69#include "f-lang.h"
05cba821 70#include "source.h"
614c279d 71#include "filestuff.h"
dc294be5 72#include "build-id.h"
4c2df51b 73
c906108c
SS
74#include <fcntl.h>
75#include "gdb_string.h"
4bdf3d34 76#include "gdb_assert.h"
c906108c 77#include <sys/types.h>
d8151005 78
34eaf542
TT
79typedef struct symbol *symbolp;
80DEF_VEC_P (symbolp);
81
73be47f5
DE
82/* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
45cfd468 84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
73be47f5 85static unsigned int dwarf2_read_debug = 0;
45cfd468 86
d97bc12b 87/* When non-zero, dump DIEs after they are read in. */
ccce17b0 88static unsigned int dwarf2_die_debug = 0;
d97bc12b 89
900e11f9
JK
90/* When non-zero, cross-check physname against demangler. */
91static int check_physname = 0;
92
481860b3 93/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 94static int use_deprecated_index_sections = 0;
481860b3 95
6502dd73
DJ
96static const struct objfile_data *dwarf2_objfile_data_key;
97
f1e6e072
TT
98/* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100static int dwarf2_locexpr_index;
101static int dwarf2_loclist_index;
102static int dwarf2_locexpr_block_index;
103static int dwarf2_loclist_block_index;
104
73869dc2
DE
105/* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
dce234bc
PP
121struct dwarf2_section_info
122{
73869dc2
DE
123 union
124 {
e5aa3347 125 /* If this is a real section, the bfd section. */
73869dc2
DE
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 128 section. */
73869dc2
DE
129 struct dwarf2_section_info *containing_section;
130 } s;
19ac8c2e 131 /* Pointer to section data, only valid if readin. */
d521ce57 132 const gdb_byte *buffer;
73869dc2 133 /* The size of the section, real or virtual. */
dce234bc 134 bfd_size_type size;
73869dc2
DE
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
be391dca 138 /* True if we have tried to read this section. */
73869dc2
DE
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
dce234bc
PP
143};
144
8b70b953
TT
145typedef struct dwarf2_section_info dwarf2_section_info_def;
146DEF_VEC_O (dwarf2_section_info_def);
147
9291a0cd
TT
148/* All offsets in the index are of this type. It must be
149 architecture-independent. */
150typedef uint32_t offset_type;
151
152DEF_VEC_I (offset_type);
153
156942c7
DE
154/* Ensure only legit values are used. */
155#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161/* Ensure only legit values are used. */
162#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169/* Ensure we don't use more than the alloted nuber of bits for the CU. */
170#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
9291a0cd
TT
176/* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178struct mapped_index
179{
559a7a62
JK
180 /* Index data format version. */
181 int version;
182
9291a0cd
TT
183 /* The total length of the buffer. */
184 off_t total_size;
b11b1f88 185
9291a0cd
TT
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
b11b1f88 188
9291a0cd
TT
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
b11b1f88 191
3876f04e
DE
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
b11b1f88 194
9291a0cd 195 /* Size in slots, each slot is 2 offset_types. */
3876f04e 196 offset_type symbol_table_slots;
b11b1f88 197
9291a0cd
TT
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200};
201
95554aad
TT
202typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203DEF_VEC_P (dwarf2_per_cu_ptr);
204
9cdd5dbd
DE
205/* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
207
6502dd73
DJ
208struct dwarf2_per_objfile
209{
dce234bc
PP
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
dce234bc
PP
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
cf2c3c16 215 struct dwarf2_section_info macro;
dce234bc
PP
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
3019eac3 218 struct dwarf2_section_info addr;
dce234bc
PP
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
9291a0cd 221 struct dwarf2_section_info gdb_index;
ae038cb0 222
8b70b953
TT
223 VEC (dwarf2_section_info_def) *types;
224
be391dca
TT
225 /* Back link. */
226 struct objfile *objfile;
227
d467dd73 228 /* Table of all the compilation units. This is used to locate
10b3939b 229 the target compilation unit of a particular reference. */
ae038cb0
DJ
230 struct dwarf2_per_cu_data **all_comp_units;
231
232 /* The number of compilation units in ALL_COMP_UNITS. */
233 int n_comp_units;
234
1fd400ff 235 /* The number of .debug_types-related CUs. */
d467dd73 236 int n_type_units;
1fd400ff 237
a2ce51a0
DE
238 /* The .debug_types-related CUs (TUs).
239 This is stored in malloc space because we may realloc it. */
b4dd5633 240 struct signatured_type **all_type_units;
1fd400ff 241
f4dc4d17
DE
242 /* The number of entries in all_type_unit_groups. */
243 int n_type_unit_groups;
244
245 /* Table of type unit groups.
246 This exists to make it easy to iterate over all CUs and TU groups. */
247 struct type_unit_group **all_type_unit_groups;
248
249 /* Table of struct type_unit_group objects.
250 The hash key is the DW_AT_stmt_list value. */
251 htab_t type_unit_groups;
72dca2f5 252
348e048f
DE
253 /* A table mapping .debug_types signatures to its signatured_type entry.
254 This is NULL if the .debug_types section hasn't been read in yet. */
255 htab_t signatured_types;
256
f4dc4d17
DE
257 /* Type unit statistics, to see how well the scaling improvements
258 are doing. */
259 struct tu_stats
260 {
261 int nr_uniq_abbrev_tables;
262 int nr_symtabs;
263 int nr_symtab_sharers;
264 int nr_stmt_less_type_units;
265 } tu_stats;
266
267 /* A chain of compilation units that are currently read in, so that
268 they can be freed later. */
269 struct dwarf2_per_cu_data *read_in_chain;
270
3019eac3
DE
271 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
272 This is NULL if the table hasn't been allocated yet. */
273 htab_t dwo_files;
274
80626a55
DE
275 /* Non-zero if we've check for whether there is a DWP file. */
276 int dwp_checked;
277
278 /* The DWP file if there is one, or NULL. */
279 struct dwp_file *dwp_file;
280
36586728
TT
281 /* The shared '.dwz' file, if one exists. This is used when the
282 original data was compressed using 'dwz -m'. */
283 struct dwz_file *dwz_file;
284
72dca2f5
FR
285 /* A flag indicating wether this objfile has a section loaded at a
286 VMA of 0. */
287 int has_section_at_zero;
9291a0cd 288
ae2de4f8
DE
289 /* True if we are using the mapped index,
290 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
291 unsigned char using_index;
292
ae2de4f8 293 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 294 struct mapped_index *index_table;
98bfdba5 295
7b9f3c50 296 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
297 TUs typically share line table entries with a CU, so we maintain a
298 separate table of all line table entries to support the sharing.
299 Note that while there can be way more TUs than CUs, we've already
300 sorted all the TUs into "type unit groups", grouped by their
301 DW_AT_stmt_list value. Therefore the only sharing done here is with a
302 CU and its associated TU group if there is one. */
7b9f3c50
DE
303 htab_t quick_file_names_table;
304
98bfdba5
PA
305 /* Set during partial symbol reading, to prevent queueing of full
306 symbols. */
307 int reading_partial_symbols;
673bfd45 308
dee91e82 309 /* Table mapping type DIEs to their struct type *.
673bfd45 310 This is NULL if not allocated yet.
02142a6c 311 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 312 htab_t die_type_hash;
95554aad
TT
313
314 /* The CUs we recently read. */
315 VEC (dwarf2_per_cu_ptr) *just_read_cus;
6502dd73
DJ
316};
317
318static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 319
251d32d9 320/* Default names of the debugging sections. */
c906108c 321
233a11ab
CS
322/* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
9cdd5dbd
DE
325static const struct dwarf2_debug_sections dwarf2_elf_names =
326{
251d32d9
TG
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 332 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
3019eac3 336 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
24d3216f
TT
339 { ".gdb_index", ".zgdb_index" },
340 23
251d32d9 341};
c906108c 342
80626a55 343/* List of DWO/DWP sections. */
3019eac3 344
80626a55 345static const struct dwop_section_names
3019eac3
DE
346{
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
09262596
DE
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
3019eac3
DE
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
80626a55
DE
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
3019eac3 358}
80626a55 359dwop_section_names =
3019eac3
DE
360{
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
372};
373
c906108c
SS
374/* local data types */
375
107d2387
AC
376/* The data in a compilation unit header, after target2host
377 translation, looks like this. */
c906108c 378struct comp_unit_head
a738430d 379{
c764a876 380 unsigned int length;
a738430d 381 short version;
a738430d
MK
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
b64f50a1 384 sect_offset abbrev_offset;
57349743 385
a738430d
MK
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
57349743 388
a738430d
MK
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
57349743 391
a738430d
MK
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
b64f50a1 394 sect_offset offset;
57349743 395
d00adf39
DE
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
b64f50a1 398 cu_offset first_die_offset;
a738430d 399};
c906108c 400
3da10d80
KS
401/* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403struct delayed_method_info
404{
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419};
420
421typedef struct delayed_method_info delayed_method_info;
422DEF_VEC_O (delayed_method_info);
423
e7c27a73
DJ
424/* Internal state when decoding a particular compilation unit. */
425struct dwarf2_cu
426{
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
d00adf39 430 /* The header of the compilation unit. */
e7c27a73 431 struct comp_unit_head header;
e142c38c 432
d00adf39
DE
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
e142c38c
DJ
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
b0f35d58
DL
443 const char *producer;
444
e142c38c
DJ
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
433df2d4
DE
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
72bf9492 460
b64f50a1
JK
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
ae038cb0
DJ
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
69d751e3 475 /* Backlink to our per_cu entry. */
ae038cb0
DJ
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
b64f50a1
JK
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
51545339 483 htab_t die_hash;
10b3939b
DJ
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
cb1df416
DJ
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
3da10d80
KS
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
96408a79
SA
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
034e5797
DE
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
3019eac3
DE
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the stub CU/TU's DIE. */
517 ULONGEST addr_base;
518
2e3cf129
DE
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
529 ULONGEST ranges_base;
530
ae038cb0
DJ
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
8be455d7
JK
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 538 unsigned int has_loclist : 1;
ba919b58 539
1b80a9fa
JK
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
ba919b58
TT
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 546 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 547 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
554};
555
10b3939b
DJ
556/* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
28dee7f5 558 read_symtab_private field of the psymtab. */
10b3939b 559
ae038cb0
DJ
560struct dwarf2_per_cu_data
561{
36586728 562 /* The start offset and length of this compilation unit.
45452591 563 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
b64f50a1 567 sect_offset offset;
36586728 568 unsigned int length;
ae038cb0
DJ
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
c764a876 572 unsigned int queued : 1;
ae038cb0 573
0d99eb77
DE
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
0186c6a7
DE
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
3019eac3
DE
583 unsigned int is_debug_types : 1;
584
36586728
TT
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
a2ce51a0
DE
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
7ee85ab1
DE
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
3019eac3
DE
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
8a0459fd 607 struct dwarf2_section_info *section;
348e048f 608
17ea53c3
JK
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
ae038cb0 611 struct dwarf2_cu *cu;
1c379e20 612
9cdd5dbd
DE
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
616 struct objfile *objfile;
617
618 /* When using partial symbol tables, the 'psymtab' field is active.
619 Otherwise the 'quick' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
95554aad 623 or NULL for unread partial units. */
9291a0cd
TT
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
95554aad 629
796a7ff8
DE
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
649};
650
348e048f
DE
651/* Entry in the signatured_types hash table. */
652
653struct signatured_type
654{
42e7ad6c 655 /* The "per_cu" object of this type.
ac9ec31b 656 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
3019eac3 661 /* The type's signature. */
348e048f
DE
662 ULONGEST signature;
663
3019eac3 664 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
0186c6a7
DE
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
ac9ec31b
DE
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
a2ce51a0
DE
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
348e048f
DE
688};
689
0186c6a7
DE
690typedef struct signatured_type *sig_type_ptr;
691DEF_VEC_P (sig_type_ptr);
692
094b34ac
DE
693/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696struct stmt_list_hash
697{
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703};
704
f4dc4d17
DE
705/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708struct type_unit_group
709{
0186c6a7 710 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
8a0459fd 715#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
716 struct dwarf2_per_cu_data per_cu;
717
0186c6a7
DE
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
f4dc4d17
DE
722
723 /* The primary symtab.
094b34ac
DE
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the primary symtab. */
f4dc4d17
DE
726 struct symtab *primary_symtab;
727
094b34ac
DE
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
f4dc4d17
DE
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744};
745
73869dc2 746/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
747
748struct dwo_sections
749{
750 struct dwarf2_section_info abbrev;
3019eac3
DE
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
09262596
DE
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
3019eac3
DE
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
80626a55
DE
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
3019eac3
DE
759 VEC (dwarf2_section_info_def) *types;
760};
761
c88ee1f0 762/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
763
764struct dwo_unit
765{
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 775 struct dwarf2_section_info *section;
3019eac3 776
19ac8c2e 777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783};
784
73869dc2
DE
785/* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789enum dwp_v2_section_ids
790{
791 DW_SECT_MIN = 1
792};
793
80626a55 794/* Data for one DWO file.
57d63ce2
DE
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
3019eac3
DE
804
805struct dwo_file
806{
0ac5b59e 807 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
0ac5b59e
DE
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
3019eac3 815
80626a55
DE
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
3019eac3 819
73869dc2
DE
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
3019eac3
DE
823 struct dwo_sections sections;
824
19c3d4c9
DE
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
3019eac3
DE
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835};
836
80626a55
DE
837/* These sections are what may appear in a DWP file. */
838
839struct dwp_sections
840{
73869dc2 841 /* These are used by both DWP version 1 and 2. */
80626a55
DE
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
73869dc2
DE
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
80626a55
DE
862};
863
73869dc2
DE
864/* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 866
73869dc2 867struct virtual_v1_dwo_sections
80626a55
DE
868{
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 876 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
877 struct dwarf2_section_info info_or_types;
878};
879
73869dc2
DE
880/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885struct virtual_v2_dwo_sections
886{
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909};
910
80626a55
DE
911/* Contents of DWP hash tables. */
912
913struct dwp_hash_table
914{
73869dc2 915 uint32_t version, nr_columns;
80626a55 916 uint32_t nr_units, nr_slots;
73869dc2
DE
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928#define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
80626a55
DE
940};
941
942/* Data for one DWP file. */
943
944struct dwp_file
945{
946 /* Name of the file. */
947 const char *name;
948
73869dc2
DE
949 /* File format version. */
950 int version;
951
93417882 952 /* The bfd. */
80626a55
DE
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
57d63ce2 958 /* Table of CUs in the file. */
80626a55
DE
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
19ac8c2e
DE
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
80626a55 967
73869dc2
DE
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
80626a55
DE
970 unsigned int num_sections;
971 asection **elf_sections;
972};
973
36586728
TT
974/* This represents a '.dwz' file. */
975
976struct dwz_file
977{
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
2ec9a5e0 984 struct dwarf2_section_info gdb_index;
36586728
TT
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988};
989
0963b4bd
MS
990/* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
dee91e82 993 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
994
995struct die_reader_specs
996{
a32a8923 997 /* The bfd of die_section. */
93311388
DE
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
80626a55 1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1004 struct dwo_file *dwo_file;
1005
dee91e82 1006 /* The section the die comes from.
3019eac3 1007 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
d521ce57 1011 const gdb_byte *buffer;
f664829e
DE
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
a2ce51a0
DE
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
93311388
DE
1018};
1019
fd820528 1020/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1021typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1022 const gdb_byte *info_ptr,
dee91e82
DE
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
debd256d
JB
1027/* The line number information for a compilation unit (found in the
1028 .debug_line section) begins with a "statement program header",
1029 which contains the following information. */
1030struct line_header
1031{
1032 unsigned int total_length;
1033 unsigned short version;
1034 unsigned int header_length;
1035 unsigned char minimum_instruction_length;
2dc7f7b3 1036 unsigned char maximum_ops_per_instruction;
debd256d
JB
1037 unsigned char default_is_stmt;
1038 int line_base;
1039 unsigned char line_range;
1040 unsigned char opcode_base;
1041
1042 /* standard_opcode_lengths[i] is the number of operands for the
1043 standard opcode whose value is i. This means that
1044 standard_opcode_lengths[0] is unused, and the last meaningful
1045 element is standard_opcode_lengths[opcode_base - 1]. */
1046 unsigned char *standard_opcode_lengths;
1047
1048 /* The include_directories table. NOTE! These strings are not
1049 allocated with xmalloc; instead, they are pointers into
1050 debug_line_buffer. If you try to free them, `free' will get
1051 indigestion. */
1052 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1053 const char **include_dirs;
debd256d
JB
1054
1055 /* The file_names table. NOTE! These strings are not allocated
1056 with xmalloc; instead, they are pointers into debug_line_buffer.
1057 Don't try to free them directly. */
1058 unsigned int num_file_names, file_names_size;
1059 struct file_entry
c906108c 1060 {
d521ce57 1061 const char *name;
debd256d
JB
1062 unsigned int dir_index;
1063 unsigned int mod_time;
1064 unsigned int length;
aaa75496 1065 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 1066 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
1067 } *file_names;
1068
1069 /* The start and end of the statement program following this
6502dd73 1070 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1071 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1072};
c906108c
SS
1073
1074/* When we construct a partial symbol table entry we only
0963b4bd 1075 need this much information. */
c906108c
SS
1076struct partial_die_info
1077 {
72bf9492 1078 /* Offset of this DIE. */
b64f50a1 1079 sect_offset offset;
72bf9492
DJ
1080
1081 /* DWARF-2 tag for this DIE. */
1082 ENUM_BITFIELD(dwarf_tag) tag : 16;
1083
72bf9492
DJ
1084 /* Assorted flags describing the data found in this DIE. */
1085 unsigned int has_children : 1;
1086 unsigned int is_external : 1;
1087 unsigned int is_declaration : 1;
1088 unsigned int has_type : 1;
1089 unsigned int has_specification : 1;
1090 unsigned int has_pc_info : 1;
481860b3 1091 unsigned int may_be_inlined : 1;
72bf9492
DJ
1092
1093 /* Flag set if the SCOPE field of this structure has been
1094 computed. */
1095 unsigned int scope_set : 1;
1096
fa4028e9
JB
1097 /* Flag set if the DIE has a byte_size attribute. */
1098 unsigned int has_byte_size : 1;
1099
98bfdba5
PA
1100 /* Flag set if any of the DIE's children are template arguments. */
1101 unsigned int has_template_arguments : 1;
1102
abc72ce4
DE
1103 /* Flag set if fixup_partial_die has been called on this die. */
1104 unsigned int fixup_called : 1;
1105
36586728
TT
1106 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1107 unsigned int is_dwz : 1;
1108
1109 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1110 unsigned int spec_is_dwz : 1;
1111
72bf9492 1112 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1113 sometimes a default name for unnamed DIEs. */
15d034d0 1114 const char *name;
72bf9492 1115
abc72ce4
DE
1116 /* The linkage name, if present. */
1117 const char *linkage_name;
1118
72bf9492
DJ
1119 /* The scope to prepend to our children. This is generally
1120 allocated on the comp_unit_obstack, so will disappear
1121 when this compilation unit leaves the cache. */
15d034d0 1122 const char *scope;
72bf9492 1123
95554aad
TT
1124 /* Some data associated with the partial DIE. The tag determines
1125 which field is live. */
1126 union
1127 {
1128 /* The location description associated with this DIE, if any. */
1129 struct dwarf_block *locdesc;
1130 /* The offset of an import, for DW_TAG_imported_unit. */
1131 sect_offset offset;
1132 } d;
72bf9492
DJ
1133
1134 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1135 CORE_ADDR lowpc;
1136 CORE_ADDR highpc;
72bf9492 1137
93311388 1138 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1139 DW_AT_sibling, if any. */
abc72ce4
DE
1140 /* NOTE: This member isn't strictly necessary, read_partial_die could
1141 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1142 const gdb_byte *sibling;
72bf9492
DJ
1143
1144 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1145 DW_AT_specification (or DW_AT_abstract_origin or
1146 DW_AT_extension). */
b64f50a1 1147 sect_offset spec_offset;
72bf9492
DJ
1148
1149 /* Pointers to this DIE's parent, first child, and next sibling,
1150 if any. */
1151 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1152 };
1153
0963b4bd 1154/* This data structure holds the information of an abbrev. */
c906108c
SS
1155struct abbrev_info
1156 {
1157 unsigned int number; /* number identifying abbrev */
1158 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1159 unsigned short has_children; /* boolean */
1160 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1161 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1162 struct abbrev_info *next; /* next in chain */
1163 };
1164
1165struct attr_abbrev
1166 {
9d25dd43
DE
1167 ENUM_BITFIELD(dwarf_attribute) name : 16;
1168 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1169 };
1170
433df2d4
DE
1171/* Size of abbrev_table.abbrev_hash_table. */
1172#define ABBREV_HASH_SIZE 121
1173
1174/* Top level data structure to contain an abbreviation table. */
1175
1176struct abbrev_table
1177{
f4dc4d17
DE
1178 /* Where the abbrev table came from.
1179 This is used as a sanity check when the table is used. */
433df2d4
DE
1180 sect_offset offset;
1181
1182 /* Storage for the abbrev table. */
1183 struct obstack abbrev_obstack;
1184
1185 /* Hash table of abbrevs.
1186 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1187 It could be statically allocated, but the previous code didn't so we
1188 don't either. */
1189 struct abbrev_info **abbrevs;
1190};
1191
0963b4bd 1192/* Attributes have a name and a value. */
b60c80d6
DJ
1193struct attribute
1194 {
9d25dd43 1195 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1196 ENUM_BITFIELD(dwarf_form) form : 15;
1197
1198 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1199 field should be in u.str (existing only for DW_STRING) but it is kept
1200 here for better struct attribute alignment. */
1201 unsigned int string_is_canonical : 1;
1202
b60c80d6
DJ
1203 union
1204 {
15d034d0 1205 const char *str;
b60c80d6 1206 struct dwarf_block *blk;
43bbcdc2
PH
1207 ULONGEST unsnd;
1208 LONGEST snd;
b60c80d6 1209 CORE_ADDR addr;
ac9ec31b 1210 ULONGEST signature;
b60c80d6
DJ
1211 }
1212 u;
1213 };
1214
0963b4bd 1215/* This data structure holds a complete die structure. */
c906108c
SS
1216struct die_info
1217 {
76815b17
DE
1218 /* DWARF-2 tag for this DIE. */
1219 ENUM_BITFIELD(dwarf_tag) tag : 16;
1220
1221 /* Number of attributes */
98bfdba5
PA
1222 unsigned char num_attrs;
1223
1224 /* True if we're presently building the full type name for the
1225 type derived from this DIE. */
1226 unsigned char building_fullname : 1;
76815b17
DE
1227
1228 /* Abbrev number */
1229 unsigned int abbrev;
1230
93311388 1231 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1232 sect_offset offset;
78ba4af6
JB
1233
1234 /* The dies in a compilation unit form an n-ary tree. PARENT
1235 points to this die's parent; CHILD points to the first child of
1236 this node; and all the children of a given node are chained
4950bc1c 1237 together via their SIBLING fields. */
639d11d3
DC
1238 struct die_info *child; /* Its first child, if any. */
1239 struct die_info *sibling; /* Its next sibling, if any. */
1240 struct die_info *parent; /* Its parent, if any. */
c906108c 1241
b60c80d6
DJ
1242 /* An array of attributes, with NUM_ATTRS elements. There may be
1243 zero, but it's not common and zero-sized arrays are not
1244 sufficiently portable C. */
1245 struct attribute attrs[1];
c906108c
SS
1246 };
1247
0963b4bd 1248/* Get at parts of an attribute structure. */
c906108c
SS
1249
1250#define DW_STRING(attr) ((attr)->u.str)
8285870a 1251#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1252#define DW_UNSND(attr) ((attr)->u.unsnd)
1253#define DW_BLOCK(attr) ((attr)->u.blk)
1254#define DW_SND(attr) ((attr)->u.snd)
1255#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1256#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1257
0963b4bd 1258/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1259struct dwarf_block
1260 {
56eb65bd 1261 size_t size;
1d6edc3c
JK
1262
1263 /* Valid only if SIZE is not zero. */
d521ce57 1264 const gdb_byte *data;
c906108c
SS
1265 };
1266
c906108c
SS
1267#ifndef ATTR_ALLOC_CHUNK
1268#define ATTR_ALLOC_CHUNK 4
1269#endif
1270
c906108c
SS
1271/* Allocate fields for structs, unions and enums in this size. */
1272#ifndef DW_FIELD_ALLOC_CHUNK
1273#define DW_FIELD_ALLOC_CHUNK 4
1274#endif
1275
c906108c
SS
1276/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1277 but this would require a corresponding change in unpack_field_as_long
1278 and friends. */
1279static int bits_per_byte = 8;
1280
1281/* The routines that read and process dies for a C struct or C++ class
1282 pass lists of data member fields and lists of member function fields
1283 in an instance of a field_info structure, as defined below. */
1284struct field_info
c5aa993b 1285 {
0963b4bd 1286 /* List of data member and baseclasses fields. */
c5aa993b
JM
1287 struct nextfield
1288 {
1289 struct nextfield *next;
1290 int accessibility;
1291 int virtuality;
1292 struct field field;
1293 }
7d0ccb61 1294 *fields, *baseclasses;
c906108c 1295
7d0ccb61 1296 /* Number of fields (including baseclasses). */
c5aa993b 1297 int nfields;
c906108c 1298
c5aa993b
JM
1299 /* Number of baseclasses. */
1300 int nbaseclasses;
c906108c 1301
c5aa993b
JM
1302 /* Set if the accesibility of one of the fields is not public. */
1303 int non_public_fields;
c906108c 1304
c5aa993b
JM
1305 /* Member function fields array, entries are allocated in the order they
1306 are encountered in the object file. */
1307 struct nextfnfield
1308 {
1309 struct nextfnfield *next;
1310 struct fn_field fnfield;
1311 }
1312 *fnfields;
c906108c 1313
c5aa993b
JM
1314 /* Member function fieldlist array, contains name of possibly overloaded
1315 member function, number of overloaded member functions and a pointer
1316 to the head of the member function field chain. */
1317 struct fnfieldlist
1318 {
15d034d0 1319 const char *name;
c5aa993b
JM
1320 int length;
1321 struct nextfnfield *head;
1322 }
1323 *fnfieldlists;
c906108c 1324
c5aa993b
JM
1325 /* Number of entries in the fnfieldlists array. */
1326 int nfnfields;
98751a41
JK
1327
1328 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1329 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1330 struct typedef_field_list
1331 {
1332 struct typedef_field field;
1333 struct typedef_field_list *next;
1334 }
1335 *typedef_field_list;
1336 unsigned typedef_field_list_count;
c5aa993b 1337 };
c906108c 1338
10b3939b
DJ
1339/* One item on the queue of compilation units to read in full symbols
1340 for. */
1341struct dwarf2_queue_item
1342{
1343 struct dwarf2_per_cu_data *per_cu;
95554aad 1344 enum language pretend_language;
10b3939b
DJ
1345 struct dwarf2_queue_item *next;
1346};
1347
1348/* The current queue. */
1349static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1350
ae038cb0
DJ
1351/* Loaded secondary compilation units are kept in memory until they
1352 have not been referenced for the processing of this many
1353 compilation units. Set this to zero to disable caching. Cache
1354 sizes of up to at least twenty will improve startup time for
1355 typical inter-CU-reference binaries, at an obvious memory cost. */
1356static int dwarf2_max_cache_age = 5;
920d2a44
AC
1357static void
1358show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1359 struct cmd_list_element *c, const char *value)
1360{
3e43a32a
MS
1361 fprintf_filtered (file, _("The upper bound on the age of cached "
1362 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
1363 value);
1364}
4390d890 1365\f
c906108c
SS
1366/* local function prototypes */
1367
a32a8923
DE
1368static const char *get_section_name (const struct dwarf2_section_info *);
1369
1370static const char *get_section_file_name (const struct dwarf2_section_info *);
1371
4efb68b1 1372static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1373
918dd910
JK
1374static void dwarf2_find_base_address (struct die_info *die,
1375 struct dwarf2_cu *cu);
1376
0018ea6f
DE
1377static struct partial_symtab *create_partial_symtab
1378 (struct dwarf2_per_cu_data *per_cu, const char *name);
1379
c67a9c90 1380static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1381
72bf9492
DJ
1382static void scan_partial_symbols (struct partial_die_info *,
1383 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1384 int, struct dwarf2_cu *);
c906108c 1385
72bf9492
DJ
1386static void add_partial_symbol (struct partial_die_info *,
1387 struct dwarf2_cu *);
63d06c5c 1388
72bf9492
DJ
1389static void add_partial_namespace (struct partial_die_info *pdi,
1390 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1391 int need_pc, struct dwarf2_cu *cu);
63d06c5c 1392
5d7cb8df
JK
1393static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1394 CORE_ADDR *highpc, int need_pc,
1395 struct dwarf2_cu *cu);
1396
72bf9492
DJ
1397static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1398 struct dwarf2_cu *cu);
91c24f0a 1399
bc30ff58
JB
1400static void add_partial_subprogram (struct partial_die_info *pdi,
1401 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1402 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1403
257e7a09
YQ
1404static void dwarf2_read_symtab (struct partial_symtab *,
1405 struct objfile *);
c906108c 1406
a14ed312 1407static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1408
433df2d4
DE
1409static struct abbrev_info *abbrev_table_lookup_abbrev
1410 (const struct abbrev_table *, unsigned int);
1411
1412static struct abbrev_table *abbrev_table_read_table
1413 (struct dwarf2_section_info *, sect_offset);
1414
1415static void abbrev_table_free (struct abbrev_table *);
1416
f4dc4d17
DE
1417static void abbrev_table_free_cleanup (void *);
1418
dee91e82
DE
1419static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1420 struct dwarf2_section_info *);
c906108c 1421
f3dd6933 1422static void dwarf2_free_abbrev_table (void *);
c906108c 1423
d521ce57 1424static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1425
dee91e82 1426static struct partial_die_info *load_partial_dies
d521ce57 1427 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1428
d521ce57
TT
1429static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1430 struct partial_die_info *,
1431 struct abbrev_info *,
1432 unsigned int,
1433 const gdb_byte *);
c906108c 1434
36586728 1435static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1436 struct dwarf2_cu *);
72bf9492
DJ
1437
1438static void fixup_partial_die (struct partial_die_info *,
1439 struct dwarf2_cu *);
1440
d521ce57
TT
1441static const gdb_byte *read_attribute (const struct die_reader_specs *,
1442 struct attribute *, struct attr_abbrev *,
1443 const gdb_byte *);
a8329558 1444
a1855c1d 1445static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1446
a1855c1d 1447static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1448
a1855c1d 1449static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1450
a1855c1d 1451static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1452
a1855c1d 1453static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1454
d521ce57 1455static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1456 unsigned int *);
c906108c 1457
d521ce57 1458static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1459
1460static LONGEST read_checked_initial_length_and_offset
d521ce57 1461 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1462 unsigned int *, unsigned int *);
613e1657 1463
d521ce57
TT
1464static LONGEST read_offset (bfd *, const gdb_byte *,
1465 const struct comp_unit_head *,
c764a876
DE
1466 unsigned int *);
1467
d521ce57 1468static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1469
f4dc4d17
DE
1470static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1471 sect_offset);
1472
d521ce57 1473static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1474
d521ce57 1475static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1476
d521ce57
TT
1477static const char *read_indirect_string (bfd *, const gdb_byte *,
1478 const struct comp_unit_head *,
1479 unsigned int *);
4bdf3d34 1480
d521ce57 1481static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1482
d521ce57 1483static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1484
d521ce57 1485static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1486
d521ce57
TT
1487static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1488 const gdb_byte *,
3019eac3
DE
1489 unsigned int *);
1490
d521ce57
TT
1491static const char *read_str_index (const struct die_reader_specs *reader,
1492 struct dwarf2_cu *cu, ULONGEST str_index);
3019eac3 1493
e142c38c 1494static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1495
e142c38c
DJ
1496static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1497 struct dwarf2_cu *);
c906108c 1498
348e048f 1499static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1500 unsigned int);
348e048f 1501
05cf31d1
JB
1502static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1503 struct dwarf2_cu *cu);
1504
e142c38c 1505static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1506
e142c38c 1507static struct die_info *die_specification (struct die_info *die,
f2f0e013 1508 struct dwarf2_cu **);
63d06c5c 1509
debd256d
JB
1510static void free_line_header (struct line_header *lh);
1511
3019eac3
DE
1512static struct line_header *dwarf_decode_line_header (unsigned int offset,
1513 struct dwarf2_cu *cu);
debd256d 1514
f3f5162e
DE
1515static void dwarf_decode_lines (struct line_header *, const char *,
1516 struct dwarf2_cu *, struct partial_symtab *,
1517 int);
c906108c 1518
d521ce57 1519static void dwarf2_start_subfile (const char *, const char *, const char *);
c906108c 1520
f4dc4d17 1521static void dwarf2_start_symtab (struct dwarf2_cu *,
15d034d0 1522 const char *, const char *, CORE_ADDR);
f4dc4d17 1523
a14ed312 1524static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1525 struct dwarf2_cu *);
c906108c 1526
34eaf542
TT
1527static struct symbol *new_symbol_full (struct die_info *, struct type *,
1528 struct dwarf2_cu *, struct symbol *);
1529
ff39bb5e 1530static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1531 struct dwarf2_cu *);
c906108c 1532
ff39bb5e 1533static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1534 struct type *type,
1535 const char *name,
1536 struct obstack *obstack,
12df843f 1537 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1538 const gdb_byte **bytes,
98bfdba5 1539 struct dwarf2_locexpr_baton **baton);
2df3850c 1540
e7c27a73 1541static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1542
b4ba55a1
JB
1543static int need_gnat_info (struct dwarf2_cu *);
1544
3e43a32a
MS
1545static struct type *die_descriptive_type (struct die_info *,
1546 struct dwarf2_cu *);
b4ba55a1
JB
1547
1548static void set_descriptive_type (struct type *, struct die_info *,
1549 struct dwarf2_cu *);
1550
e7c27a73
DJ
1551static struct type *die_containing_type (struct die_info *,
1552 struct dwarf2_cu *);
c906108c 1553
ff39bb5e 1554static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1555 struct dwarf2_cu *);
c906108c 1556
f792889a 1557static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1558
673bfd45
DE
1559static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1560
0d5cff50 1561static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1562
6e70227d 1563static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1564 const char *suffix, int physname,
1565 struct dwarf2_cu *cu);
63d06c5c 1566
e7c27a73 1567static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1568
348e048f
DE
1569static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1570
e7c27a73 1571static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1572
e7c27a73 1573static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1574
96408a79
SA
1575static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1576
ff013f42
JK
1577static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1578 struct dwarf2_cu *, struct partial_symtab *);
1579
a14ed312 1580static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1581 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1582 struct partial_symtab *);
c906108c 1583
fae299cd
DC
1584static void get_scope_pc_bounds (struct die_info *,
1585 CORE_ADDR *, CORE_ADDR *,
1586 struct dwarf2_cu *);
1587
801e3a5b
JB
1588static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1589 CORE_ADDR, struct dwarf2_cu *);
1590
a14ed312 1591static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1592 struct dwarf2_cu *);
c906108c 1593
a14ed312 1594static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1595 struct type *, struct dwarf2_cu *);
c906108c 1596
a14ed312 1597static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1598 struct die_info *, struct type *,
e7c27a73 1599 struct dwarf2_cu *);
c906108c 1600
a14ed312 1601static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1602 struct type *,
1603 struct dwarf2_cu *);
c906108c 1604
134d01f1 1605static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1606
e7c27a73 1607static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1608
e7c27a73 1609static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1610
5d7cb8df
JK
1611static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1612
27aa8d6a
SW
1613static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1614
f55ee35c
JK
1615static struct type *read_module_type (struct die_info *die,
1616 struct dwarf2_cu *cu);
1617
38d518c9 1618static const char *namespace_name (struct die_info *die,
e142c38c 1619 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1620
134d01f1 1621static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1622
e7c27a73 1623static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1624
6e70227d 1625static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1626 struct dwarf2_cu *);
1627
bf6af496 1628static struct die_info *read_die_and_siblings_1
d521ce57 1629 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1630 struct die_info *);
639d11d3 1631
dee91e82 1632static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1633 const gdb_byte *info_ptr,
1634 const gdb_byte **new_info_ptr,
639d11d3
DC
1635 struct die_info *parent);
1636
d521ce57
TT
1637static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1638 struct die_info **, const gdb_byte *,
1639 int *, int);
3019eac3 1640
d521ce57
TT
1641static const gdb_byte *read_full_die (const struct die_reader_specs *,
1642 struct die_info **, const gdb_byte *,
1643 int *);
93311388 1644
e7c27a73 1645static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1646
15d034d0
TT
1647static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1648 struct obstack *);
71c25dea 1649
15d034d0 1650static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1651
15d034d0 1652static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1653 struct die_info *die,
1654 struct dwarf2_cu *cu);
1655
ca69b9e6
DE
1656static const char *dwarf2_physname (const char *name, struct die_info *die,
1657 struct dwarf2_cu *cu);
1658
e142c38c 1659static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1660 struct dwarf2_cu **);
9219021c 1661
f39c6ffd 1662static const char *dwarf_tag_name (unsigned int);
c906108c 1663
f39c6ffd 1664static const char *dwarf_attr_name (unsigned int);
c906108c 1665
f39c6ffd 1666static const char *dwarf_form_name (unsigned int);
c906108c 1667
a14ed312 1668static char *dwarf_bool_name (unsigned int);
c906108c 1669
f39c6ffd 1670static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1671
f9aca02d 1672static struct die_info *sibling_die (struct die_info *);
c906108c 1673
d97bc12b
DE
1674static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1675
1676static void dump_die_for_error (struct die_info *);
1677
1678static void dump_die_1 (struct ui_file *, int level, int max_level,
1679 struct die_info *);
c906108c 1680
d97bc12b 1681/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1682
51545339 1683static void store_in_ref_table (struct die_info *,
10b3939b 1684 struct dwarf2_cu *);
c906108c 1685
ff39bb5e 1686static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1687
ff39bb5e 1688static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1689
348e048f 1690static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1691 const struct attribute *,
348e048f
DE
1692 struct dwarf2_cu **);
1693
10b3939b 1694static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1695 const struct attribute *,
f2f0e013 1696 struct dwarf2_cu **);
c906108c 1697
348e048f 1698static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1699 const struct attribute *,
348e048f
DE
1700 struct dwarf2_cu **);
1701
ac9ec31b
DE
1702static struct type *get_signatured_type (struct die_info *, ULONGEST,
1703 struct dwarf2_cu *);
1704
1705static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1706 const struct attribute *,
ac9ec31b
DE
1707 struct dwarf2_cu *);
1708
e5fe5e75 1709static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1710
52dc124a 1711static void read_signatured_type (struct signatured_type *);
348e048f 1712
f4dc4d17 1713static struct type_unit_group *get_type_unit_group
ff39bb5e 1714 (struct dwarf2_cu *, const struct attribute *);
f4dc4d17
DE
1715
1716static void build_type_unit_groups (die_reader_func_ftype *, void *);
1717
c906108c
SS
1718/* memory allocation interface */
1719
7b5a2f43 1720static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1721
b60c80d6 1722static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1723
09262596 1724static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
15d034d0 1725 const char *, int);
2e276125 1726
6e5a29e1 1727static int attr_form_is_block (const struct attribute *);
8e19ed76 1728
6e5a29e1 1729static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1730
6e5a29e1 1731static int attr_form_is_constant (const struct attribute *);
3690dd37 1732
6e5a29e1 1733static int attr_form_is_ref (const struct attribute *);
7771576e 1734
8cf6f0b1
TT
1735static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1736 struct dwarf2_loclist_baton *baton,
ff39bb5e 1737 const struct attribute *attr);
8cf6f0b1 1738
ff39bb5e 1739static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1740 struct symbol *sym,
f1e6e072
TT
1741 struct dwarf2_cu *cu,
1742 int is_block);
4c2df51b 1743
d521ce57
TT
1744static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1745 const gdb_byte *info_ptr,
1746 struct abbrev_info *abbrev);
4bb7a0a7 1747
72bf9492
DJ
1748static void free_stack_comp_unit (void *);
1749
72bf9492
DJ
1750static hashval_t partial_die_hash (const void *item);
1751
1752static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1753
ae038cb0 1754static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1755 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1756
9816fde3 1757static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1758 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1759
1760static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1761 struct die_info *comp_unit_die,
1762 enum language pretend_language);
93311388 1763
68dc6402 1764static void free_heap_comp_unit (void *);
ae038cb0
DJ
1765
1766static void free_cached_comp_units (void *);
1767
1768static void age_cached_comp_units (void);
1769
dee91e82 1770static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1771
f792889a
DJ
1772static struct type *set_die_type (struct die_info *, struct type *,
1773 struct dwarf2_cu *);
1c379e20 1774
ae038cb0
DJ
1775static void create_all_comp_units (struct objfile *);
1776
0e50663e 1777static int create_all_type_units (struct objfile *);
1fd400ff 1778
95554aad
TT
1779static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1780 enum language);
10b3939b 1781
95554aad
TT
1782static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1783 enum language);
10b3939b 1784
f4dc4d17
DE
1785static void process_full_type_unit (struct dwarf2_per_cu_data *,
1786 enum language);
1787
10b3939b
DJ
1788static void dwarf2_add_dependence (struct dwarf2_cu *,
1789 struct dwarf2_per_cu_data *);
1790
ae038cb0
DJ
1791static void dwarf2_mark (struct dwarf2_cu *);
1792
1793static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1794
b64f50a1 1795static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1796 struct dwarf2_per_cu_data *);
673bfd45 1797
f792889a 1798static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1799
9291a0cd
TT
1800static void dwarf2_release_queue (void *dummy);
1801
95554aad
TT
1802static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1803 enum language pretend_language);
1804
a0f42c21 1805static void process_queue (void);
9291a0cd
TT
1806
1807static void find_file_and_directory (struct die_info *die,
1808 struct dwarf2_cu *cu,
15d034d0 1809 const char **name, const char **comp_dir);
9291a0cd
TT
1810
1811static char *file_full_name (int file, struct line_header *lh,
1812 const char *comp_dir);
1813
d521ce57 1814static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1815 (struct comp_unit_head *header,
1816 struct dwarf2_section_info *section,
d521ce57 1817 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1818 int is_debug_types_section);
1819
fd820528 1820static void init_cutu_and_read_dies
f4dc4d17
DE
1821 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1822 int use_existing_cu, int keep,
3019eac3
DE
1823 die_reader_func_ftype *die_reader_func, void *data);
1824
dee91e82
DE
1825static void init_cutu_and_read_dies_simple
1826 (struct dwarf2_per_cu_data *this_cu,
1827 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1828
673bfd45 1829static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1830
3019eac3
DE
1831static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1832
57d63ce2
DE
1833static struct dwo_unit *lookup_dwo_unit_in_dwp
1834 (struct dwp_file *dwp_file, const char *comp_dir,
1835 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1836
1837static struct dwp_file *get_dwp_file (void);
1838
3019eac3 1839static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1840 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1841
1842static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1843 (struct signatured_type *, const char *, const char *);
3019eac3 1844
89e63ee4
DE
1845static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1846
3019eac3
DE
1847static void free_dwo_file_cleanup (void *);
1848
95554aad
TT
1849static void process_cu_includes (void);
1850
1b80a9fa 1851static void check_producer (struct dwarf2_cu *cu);
4390d890
DE
1852\f
1853/* Various complaints about symbol reading that don't abort the process. */
1854
1855static void
1856dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1857{
1858 complaint (&symfile_complaints,
1859 _("statement list doesn't fit in .debug_line section"));
1860}
1861
1862static void
1863dwarf2_debug_line_missing_file_complaint (void)
1864{
1865 complaint (&symfile_complaints,
1866 _(".debug_line section has line data without a file"));
1867}
1868
1869static void
1870dwarf2_debug_line_missing_end_sequence_complaint (void)
1871{
1872 complaint (&symfile_complaints,
1873 _(".debug_line section has line "
1874 "program sequence without an end"));
1875}
1876
1877static void
1878dwarf2_complex_location_expr_complaint (void)
1879{
1880 complaint (&symfile_complaints, _("location expression too complex"));
1881}
1882
1883static void
1884dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1885 int arg3)
1886{
1887 complaint (&symfile_complaints,
1888 _("const value length mismatch for '%s', got %d, expected %d"),
1889 arg1, arg2, arg3);
1890}
1891
1892static void
1893dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1894{
1895 complaint (&symfile_complaints,
1896 _("debug info runs off end of %s section"
1897 " [in module %s]"),
a32a8923
DE
1898 get_section_name (section),
1899 get_section_file_name (section));
4390d890 1900}
1b80a9fa 1901
4390d890
DE
1902static void
1903dwarf2_macro_malformed_definition_complaint (const char *arg1)
1904{
1905 complaint (&symfile_complaints,
1906 _("macro debug info contains a "
1907 "malformed macro definition:\n`%s'"),
1908 arg1);
1909}
1910
1911static void
1912dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1913{
1914 complaint (&symfile_complaints,
1915 _("invalid attribute class or form for '%s' in '%s'"),
1916 arg1, arg2);
1917}
1918\f
9291a0cd
TT
1919#if WORDS_BIGENDIAN
1920
1921/* Convert VALUE between big- and little-endian. */
1922static offset_type
1923byte_swap (offset_type value)
1924{
1925 offset_type result;
1926
1927 result = (value & 0xff) << 24;
1928 result |= (value & 0xff00) << 8;
1929 result |= (value & 0xff0000) >> 8;
1930 result |= (value & 0xff000000) >> 24;
1931 return result;
1932}
1933
1934#define MAYBE_SWAP(V) byte_swap (V)
1935
1936#else
1937#define MAYBE_SWAP(V) (V)
1938#endif /* WORDS_BIGENDIAN */
1939
1940/* The suffix for an index file. */
1941#define INDEX_SUFFIX ".gdb-index"
1942
c906108c 1943/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
1944 information and return true if we have enough to do something.
1945 NAMES points to the dwarf2 section names, or is NULL if the standard
1946 ELF names are used. */
c906108c
SS
1947
1948int
251d32d9
TG
1949dwarf2_has_info (struct objfile *objfile,
1950 const struct dwarf2_debug_sections *names)
c906108c 1951{
be391dca
TT
1952 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1953 if (!dwarf2_per_objfile)
1954 {
1955 /* Initialize per-objfile state. */
1956 struct dwarf2_per_objfile *data
1957 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1958
be391dca
TT
1959 memset (data, 0, sizeof (*data));
1960 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1961 dwarf2_per_objfile = data;
6502dd73 1962
251d32d9
TG
1963 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1964 (void *) names);
be391dca
TT
1965 dwarf2_per_objfile->objfile = objfile;
1966 }
73869dc2
DE
1967 return (!dwarf2_per_objfile->info.is_virtual
1968 && dwarf2_per_objfile->info.s.asection != NULL
1969 && !dwarf2_per_objfile->abbrev.is_virtual
1970 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1971}
1972
1973/* Return the containing section of virtual section SECTION. */
1974
1975static struct dwarf2_section_info *
1976get_containing_section (const struct dwarf2_section_info *section)
1977{
1978 gdb_assert (section->is_virtual);
1979 return section->s.containing_section;
c906108c
SS
1980}
1981
a32a8923
DE
1982/* Return the bfd owner of SECTION. */
1983
1984static struct bfd *
1985get_section_bfd_owner (const struct dwarf2_section_info *section)
1986{
73869dc2
DE
1987 if (section->is_virtual)
1988 {
1989 section = get_containing_section (section);
1990 gdb_assert (!section->is_virtual);
1991 }
1992 return section->s.asection->owner;
a32a8923
DE
1993}
1994
1995/* Return the bfd section of SECTION.
1996 Returns NULL if the section is not present. */
1997
1998static asection *
1999get_section_bfd_section (const struct dwarf2_section_info *section)
2000{
73869dc2
DE
2001 if (section->is_virtual)
2002 {
2003 section = get_containing_section (section);
2004 gdb_assert (!section->is_virtual);
2005 }
2006 return section->s.asection;
a32a8923
DE
2007}
2008
2009/* Return the name of SECTION. */
2010
2011static const char *
2012get_section_name (const struct dwarf2_section_info *section)
2013{
2014 asection *sectp = get_section_bfd_section (section);
2015
2016 gdb_assert (sectp != NULL);
2017 return bfd_section_name (get_section_bfd_owner (section), sectp);
2018}
2019
2020/* Return the name of the file SECTION is in. */
2021
2022static const char *
2023get_section_file_name (const struct dwarf2_section_info *section)
2024{
2025 bfd *abfd = get_section_bfd_owner (section);
2026
2027 return bfd_get_filename (abfd);
2028}
2029
2030/* Return the id of SECTION.
2031 Returns 0 if SECTION doesn't exist. */
2032
2033static int
2034get_section_id (const struct dwarf2_section_info *section)
2035{
2036 asection *sectp = get_section_bfd_section (section);
2037
2038 if (sectp == NULL)
2039 return 0;
2040 return sectp->id;
2041}
2042
2043/* Return the flags of SECTION.
73869dc2 2044 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2045
2046static int
2047get_section_flags (const struct dwarf2_section_info *section)
2048{
2049 asection *sectp = get_section_bfd_section (section);
2050
2051 gdb_assert (sectp != NULL);
2052 return bfd_get_section_flags (sectp->owner, sectp);
2053}
2054
251d32d9
TG
2055/* When loading sections, we look either for uncompressed section or for
2056 compressed section names. */
233a11ab
CS
2057
2058static int
251d32d9
TG
2059section_is_p (const char *section_name,
2060 const struct dwarf2_section_names *names)
233a11ab 2061{
251d32d9
TG
2062 if (names->normal != NULL
2063 && strcmp (section_name, names->normal) == 0)
2064 return 1;
2065 if (names->compressed != NULL
2066 && strcmp (section_name, names->compressed) == 0)
2067 return 1;
2068 return 0;
233a11ab
CS
2069}
2070
c906108c
SS
2071/* This function is mapped across the sections and remembers the
2072 offset and size of each of the debugging sections we are interested
2073 in. */
2074
2075static void
251d32d9 2076dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2077{
251d32d9 2078 const struct dwarf2_debug_sections *names;
dc7650b8 2079 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2080
2081 if (vnames == NULL)
2082 names = &dwarf2_elf_names;
2083 else
2084 names = (const struct dwarf2_debug_sections *) vnames;
2085
dc7650b8
JK
2086 if ((aflag & SEC_HAS_CONTENTS) == 0)
2087 {
2088 }
2089 else if (section_is_p (sectp->name, &names->info))
c906108c 2090 {
73869dc2 2091 dwarf2_per_objfile->info.s.asection = sectp;
dce234bc 2092 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2093 }
251d32d9 2094 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2095 {
73869dc2 2096 dwarf2_per_objfile->abbrev.s.asection = sectp;
dce234bc 2097 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2098 }
251d32d9 2099 else if (section_is_p (sectp->name, &names->line))
c906108c 2100 {
73869dc2 2101 dwarf2_per_objfile->line.s.asection = sectp;
dce234bc 2102 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2103 }
251d32d9 2104 else if (section_is_p (sectp->name, &names->loc))
c906108c 2105 {
73869dc2 2106 dwarf2_per_objfile->loc.s.asection = sectp;
dce234bc 2107 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2108 }
251d32d9 2109 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2110 {
73869dc2 2111 dwarf2_per_objfile->macinfo.s.asection = sectp;
dce234bc 2112 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2113 }
cf2c3c16
TT
2114 else if (section_is_p (sectp->name, &names->macro))
2115 {
73869dc2 2116 dwarf2_per_objfile->macro.s.asection = sectp;
cf2c3c16
TT
2117 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2118 }
251d32d9 2119 else if (section_is_p (sectp->name, &names->str))
c906108c 2120 {
73869dc2 2121 dwarf2_per_objfile->str.s.asection = sectp;
dce234bc 2122 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2123 }
3019eac3
DE
2124 else if (section_is_p (sectp->name, &names->addr))
2125 {
73869dc2 2126 dwarf2_per_objfile->addr.s.asection = sectp;
3019eac3
DE
2127 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2128 }
251d32d9 2129 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2130 {
73869dc2 2131 dwarf2_per_objfile->frame.s.asection = sectp;
dce234bc 2132 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2133 }
251d32d9 2134 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2135 {
73869dc2 2136 dwarf2_per_objfile->eh_frame.s.asection = sectp;
dc7650b8 2137 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2138 }
251d32d9 2139 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2140 {
73869dc2 2141 dwarf2_per_objfile->ranges.s.asection = sectp;
dce234bc 2142 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2143 }
251d32d9 2144 else if (section_is_p (sectp->name, &names->types))
348e048f 2145 {
8b70b953
TT
2146 struct dwarf2_section_info type_section;
2147
2148 memset (&type_section, 0, sizeof (type_section));
73869dc2 2149 type_section.s.asection = sectp;
8b70b953
TT
2150 type_section.size = bfd_get_section_size (sectp);
2151
2152 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2153 &type_section);
348e048f 2154 }
251d32d9 2155 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2156 {
73869dc2 2157 dwarf2_per_objfile->gdb_index.s.asection = sectp;
9291a0cd
TT
2158 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2159 }
dce234bc 2160
72dca2f5
FR
2161 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2162 && bfd_section_vma (abfd, sectp) == 0)
2163 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2164}
2165
fceca515
DE
2166/* A helper function that decides whether a section is empty,
2167 or not present. */
9e0ac564
TT
2168
2169static int
19ac8c2e 2170dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2171{
73869dc2
DE
2172 if (section->is_virtual)
2173 return section->size == 0;
2174 return section->s.asection == NULL || section->size == 0;
9e0ac564
TT
2175}
2176
3019eac3
DE
2177/* Read the contents of the section INFO.
2178 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2179 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2180 of the DWO file.
dce234bc 2181 If the section is compressed, uncompress it before returning. */
c906108c 2182
dce234bc
PP
2183static void
2184dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2185{
a32a8923 2186 asection *sectp;
3019eac3 2187 bfd *abfd;
dce234bc 2188 gdb_byte *buf, *retbuf;
c906108c 2189
be391dca
TT
2190 if (info->readin)
2191 return;
dce234bc 2192 info->buffer = NULL;
be391dca 2193 info->readin = 1;
188dd5d6 2194
9e0ac564 2195 if (dwarf2_section_empty_p (info))
dce234bc 2196 return;
c906108c 2197
a32a8923 2198 sectp = get_section_bfd_section (info);
3019eac3 2199
73869dc2
DE
2200 /* If this is a virtual section we need to read in the real one first. */
2201 if (info->is_virtual)
2202 {
2203 struct dwarf2_section_info *containing_section =
2204 get_containing_section (info);
2205
2206 gdb_assert (sectp != NULL);
2207 if ((sectp->flags & SEC_RELOC) != 0)
2208 {
2209 error (_("Dwarf Error: DWP format V2 with relocations is not"
2210 " supported in section %s [in module %s]"),
2211 get_section_name (info), get_section_file_name (info));
2212 }
2213 dwarf2_read_section (objfile, containing_section);
2214 /* Other code should have already caught virtual sections that don't
2215 fit. */
2216 gdb_assert (info->virtual_offset + info->size
2217 <= containing_section->size);
2218 /* If the real section is empty or there was a problem reading the
2219 section we shouldn't get here. */
2220 gdb_assert (containing_section->buffer != NULL);
2221 info->buffer = containing_section->buffer + info->virtual_offset;
2222 return;
2223 }
2224
4bf44c1c
TT
2225 /* If the section has relocations, we must read it ourselves.
2226 Otherwise we attach it to the BFD. */
2227 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2228 {
d521ce57 2229 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2230 return;
dce234bc 2231 }
dce234bc 2232
4bf44c1c
TT
2233 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2234 info->buffer = buf;
dce234bc
PP
2235
2236 /* When debugging .o files, we may need to apply relocations; see
2237 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2238 We never compress sections in .o files, so we only need to
2239 try this when the section is not compressed. */
ac8035ab 2240 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2241 if (retbuf != NULL)
2242 {
2243 info->buffer = retbuf;
2244 return;
2245 }
2246
a32a8923
DE
2247 abfd = get_section_bfd_owner (info);
2248 gdb_assert (abfd != NULL);
2249
dce234bc
PP
2250 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2251 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2252 {
2253 error (_("Dwarf Error: Can't read DWARF data"
2254 " in section %s [in module %s]"),
2255 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2256 }
dce234bc
PP
2257}
2258
9e0ac564
TT
2259/* A helper function that returns the size of a section in a safe way.
2260 If you are positive that the section has been read before using the
2261 size, then it is safe to refer to the dwarf2_section_info object's
2262 "size" field directly. In other cases, you must call this
2263 function, because for compressed sections the size field is not set
2264 correctly until the section has been read. */
2265
2266static bfd_size_type
2267dwarf2_section_size (struct objfile *objfile,
2268 struct dwarf2_section_info *info)
2269{
2270 if (!info->readin)
2271 dwarf2_read_section (objfile, info);
2272 return info->size;
2273}
2274
dce234bc 2275/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2276 SECTION_NAME. */
af34e669 2277
dce234bc 2278void
3017a003
TG
2279dwarf2_get_section_info (struct objfile *objfile,
2280 enum dwarf2_section_enum sect,
d521ce57 2281 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2282 bfd_size_type *sizep)
2283{
2284 struct dwarf2_per_objfile *data
2285 = objfile_data (objfile, dwarf2_objfile_data_key);
2286 struct dwarf2_section_info *info;
a3b2a86b
TT
2287
2288 /* We may see an objfile without any DWARF, in which case we just
2289 return nothing. */
2290 if (data == NULL)
2291 {
2292 *sectp = NULL;
2293 *bufp = NULL;
2294 *sizep = 0;
2295 return;
2296 }
3017a003
TG
2297 switch (sect)
2298 {
2299 case DWARF2_DEBUG_FRAME:
2300 info = &data->frame;
2301 break;
2302 case DWARF2_EH_FRAME:
2303 info = &data->eh_frame;
2304 break;
2305 default:
2306 gdb_assert_not_reached ("unexpected section");
2307 }
dce234bc 2308
9e0ac564 2309 dwarf2_read_section (objfile, info);
dce234bc 2310
a32a8923 2311 *sectp = get_section_bfd_section (info);
dce234bc
PP
2312 *bufp = info->buffer;
2313 *sizep = info->size;
2314}
2315
36586728
TT
2316/* A helper function to find the sections for a .dwz file. */
2317
2318static void
2319locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2320{
2321 struct dwz_file *dwz_file = arg;
2322
2323 /* Note that we only support the standard ELF names, because .dwz
2324 is ELF-only (at the time of writing). */
2325 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2326 {
73869dc2 2327 dwz_file->abbrev.s.asection = sectp;
36586728
TT
2328 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2329 }
2330 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2331 {
73869dc2 2332 dwz_file->info.s.asection = sectp;
36586728
TT
2333 dwz_file->info.size = bfd_get_section_size (sectp);
2334 }
2335 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2336 {
73869dc2 2337 dwz_file->str.s.asection = sectp;
36586728
TT
2338 dwz_file->str.size = bfd_get_section_size (sectp);
2339 }
2340 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2341 {
73869dc2 2342 dwz_file->line.s.asection = sectp;
36586728
TT
2343 dwz_file->line.size = bfd_get_section_size (sectp);
2344 }
2345 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2346 {
73869dc2 2347 dwz_file->macro.s.asection = sectp;
36586728
TT
2348 dwz_file->macro.size = bfd_get_section_size (sectp);
2349 }
2ec9a5e0
TT
2350 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2351 {
73869dc2 2352 dwz_file->gdb_index.s.asection = sectp;
2ec9a5e0
TT
2353 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2354 }
36586728
TT
2355}
2356
4db1a1dc
TT
2357/* Open the separate '.dwz' debug file, if needed. Return NULL if
2358 there is no .gnu_debugaltlink section in the file. Error if there
2359 is such a section but the file cannot be found. */
36586728
TT
2360
2361static struct dwz_file *
2362dwarf2_get_dwz_file (void)
2363{
4db1a1dc
TT
2364 bfd *dwz_bfd;
2365 char *data;
36586728
TT
2366 struct cleanup *cleanup;
2367 const char *filename;
2368 struct dwz_file *result;
acd13123 2369 bfd_size_type buildid_len_arg;
dc294be5
TT
2370 size_t buildid_len;
2371 bfd_byte *buildid;
36586728
TT
2372
2373 if (dwarf2_per_objfile->dwz_file != NULL)
2374 return dwarf2_per_objfile->dwz_file;
2375
4db1a1dc
TT
2376 bfd_set_error (bfd_error_no_error);
2377 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2378 &buildid_len_arg, &buildid);
4db1a1dc
TT
2379 if (data == NULL)
2380 {
2381 if (bfd_get_error () == bfd_error_no_error)
2382 return NULL;
2383 error (_("could not read '.gnu_debugaltlink' section: %s"),
2384 bfd_errmsg (bfd_get_error ()));
2385 }
36586728 2386 cleanup = make_cleanup (xfree, data);
dc294be5 2387 make_cleanup (xfree, buildid);
36586728 2388
acd13123
TT
2389 buildid_len = (size_t) buildid_len_arg;
2390
f9d83a0b 2391 filename = (const char *) data;
36586728
TT
2392 if (!IS_ABSOLUTE_PATH (filename))
2393 {
4262abfb 2394 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2395 char *rel;
2396
2397 make_cleanup (xfree, abs);
2398 abs = ldirname (abs);
2399 make_cleanup (xfree, abs);
2400
2401 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2402 make_cleanup (xfree, rel);
2403 filename = rel;
2404 }
2405
dc294be5
TT
2406 /* First try the file name given in the section. If that doesn't
2407 work, try to use the build-id instead. */
36586728 2408 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2409 if (dwz_bfd != NULL)
36586728 2410 {
dc294be5
TT
2411 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2412 {
2413 gdb_bfd_unref (dwz_bfd);
2414 dwz_bfd = NULL;
2415 }
36586728
TT
2416 }
2417
dc294be5
TT
2418 if (dwz_bfd == NULL)
2419 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2420
2421 if (dwz_bfd == NULL)
2422 error (_("could not find '.gnu_debugaltlink' file for %s"),
2423 objfile_name (dwarf2_per_objfile->objfile));
2424
36586728
TT
2425 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2426 struct dwz_file);
2427 result->dwz_bfd = dwz_bfd;
2428
2429 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2430
2431 do_cleanups (cleanup);
2432
8d2cc612 2433 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2434 return result;
2435}
9291a0cd 2436\f
7b9f3c50
DE
2437/* DWARF quick_symbols_functions support. */
2438
2439/* TUs can share .debug_line entries, and there can be a lot more TUs than
2440 unique line tables, so we maintain a separate table of all .debug_line
2441 derived entries to support the sharing.
2442 All the quick functions need is the list of file names. We discard the
2443 line_header when we're done and don't need to record it here. */
2444struct quick_file_names
2445{
094b34ac
DE
2446 /* The data used to construct the hash key. */
2447 struct stmt_list_hash hash;
7b9f3c50
DE
2448
2449 /* The number of entries in file_names, real_names. */
2450 unsigned int num_file_names;
2451
2452 /* The file names from the line table, after being run through
2453 file_full_name. */
2454 const char **file_names;
2455
2456 /* The file names from the line table after being run through
2457 gdb_realpath. These are computed lazily. */
2458 const char **real_names;
2459};
2460
2461/* When using the index (and thus not using psymtabs), each CU has an
2462 object of this type. This is used to hold information needed by
2463 the various "quick" methods. */
2464struct dwarf2_per_cu_quick_data
2465{
2466 /* The file table. This can be NULL if there was no file table
2467 or it's currently not read in.
2468 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2469 struct quick_file_names *file_names;
2470
2471 /* The corresponding symbol table. This is NULL if symbols for this
2472 CU have not yet been read. */
2473 struct symtab *symtab;
2474
2475 /* A temporary mark bit used when iterating over all CUs in
2476 expand_symtabs_matching. */
2477 unsigned int mark : 1;
2478
2479 /* True if we've tried to read the file table and found there isn't one.
2480 There will be no point in trying to read it again next time. */
2481 unsigned int no_file_data : 1;
2482};
2483
094b34ac
DE
2484/* Utility hash function for a stmt_list_hash. */
2485
2486static hashval_t
2487hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2488{
2489 hashval_t v = 0;
2490
2491 if (stmt_list_hash->dwo_unit != NULL)
2492 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2493 v += stmt_list_hash->line_offset.sect_off;
2494 return v;
2495}
2496
2497/* Utility equality function for a stmt_list_hash. */
2498
2499static int
2500eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2501 const struct stmt_list_hash *rhs)
2502{
2503 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2504 return 0;
2505 if (lhs->dwo_unit != NULL
2506 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2507 return 0;
2508
2509 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2510}
2511
7b9f3c50
DE
2512/* Hash function for a quick_file_names. */
2513
2514static hashval_t
2515hash_file_name_entry (const void *e)
2516{
2517 const struct quick_file_names *file_data = e;
2518
094b34ac 2519 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2520}
2521
2522/* Equality function for a quick_file_names. */
2523
2524static int
2525eq_file_name_entry (const void *a, const void *b)
2526{
2527 const struct quick_file_names *ea = a;
2528 const struct quick_file_names *eb = b;
2529
094b34ac 2530 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2531}
2532
2533/* Delete function for a quick_file_names. */
2534
2535static void
2536delete_file_name_entry (void *e)
2537{
2538 struct quick_file_names *file_data = e;
2539 int i;
2540
2541 for (i = 0; i < file_data->num_file_names; ++i)
2542 {
2543 xfree ((void*) file_data->file_names[i]);
2544 if (file_data->real_names)
2545 xfree ((void*) file_data->real_names[i]);
2546 }
2547
2548 /* The space for the struct itself lives on objfile_obstack,
2549 so we don't free it here. */
2550}
2551
2552/* Create a quick_file_names hash table. */
2553
2554static htab_t
2555create_quick_file_names_table (unsigned int nr_initial_entries)
2556{
2557 return htab_create_alloc (nr_initial_entries,
2558 hash_file_name_entry, eq_file_name_entry,
2559 delete_file_name_entry, xcalloc, xfree);
2560}
9291a0cd 2561
918dd910
JK
2562/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2563 have to be created afterwards. You should call age_cached_comp_units after
2564 processing PER_CU->CU. dw2_setup must have been already called. */
2565
2566static void
2567load_cu (struct dwarf2_per_cu_data *per_cu)
2568{
3019eac3 2569 if (per_cu->is_debug_types)
e5fe5e75 2570 load_full_type_unit (per_cu);
918dd910 2571 else
95554aad 2572 load_full_comp_unit (per_cu, language_minimal);
918dd910 2573
918dd910 2574 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
2575
2576 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2577}
2578
a0f42c21 2579/* Read in the symbols for PER_CU. */
2fdf6df6 2580
9291a0cd 2581static void
a0f42c21 2582dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2583{
2584 struct cleanup *back_to;
2585
f4dc4d17
DE
2586 /* Skip type_unit_groups, reading the type units they contain
2587 is handled elsewhere. */
2588 if (IS_TYPE_UNIT_GROUP (per_cu))
2589 return;
2590
9291a0cd
TT
2591 back_to = make_cleanup (dwarf2_release_queue, NULL);
2592
95554aad
TT
2593 if (dwarf2_per_objfile->using_index
2594 ? per_cu->v.quick->symtab == NULL
2595 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2596 {
2597 queue_comp_unit (per_cu, language_minimal);
2598 load_cu (per_cu);
89e63ee4
DE
2599
2600 /* If we just loaded a CU from a DWO, and we're working with an index
2601 that may badly handle TUs, load all the TUs in that DWO as well.
2602 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2603 if (!per_cu->is_debug_types
2604 && per_cu->cu->dwo_unit != NULL
2605 && dwarf2_per_objfile->index_table != NULL
2606 && dwarf2_per_objfile->index_table->version <= 7
2607 /* DWP files aren't supported yet. */
2608 && get_dwp_file () == NULL)
2609 queue_and_load_all_dwo_tus (per_cu);
95554aad 2610 }
9291a0cd 2611
a0f42c21 2612 process_queue ();
9291a0cd
TT
2613
2614 /* Age the cache, releasing compilation units that have not
2615 been used recently. */
2616 age_cached_comp_units ();
2617
2618 do_cleanups (back_to);
2619}
2620
2621/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2622 the objfile from which this CU came. Returns the resulting symbol
2623 table. */
2fdf6df6 2624
9291a0cd 2625static struct symtab *
a0f42c21 2626dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2627{
95554aad 2628 gdb_assert (dwarf2_per_objfile->using_index);
9291a0cd
TT
2629 if (!per_cu->v.quick->symtab)
2630 {
2631 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2632 increment_reading_symtab ();
a0f42c21 2633 dw2_do_instantiate_symtab (per_cu);
95554aad 2634 process_cu_includes ();
9291a0cd
TT
2635 do_cleanups (back_to);
2636 }
2637 return per_cu->v.quick->symtab;
2638}
2639
f4dc4d17
DE
2640/* Return the CU given its index.
2641
2642 This is intended for loops like:
2643
2644 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2645 + dwarf2_per_objfile->n_type_units); ++i)
2646 {
2647 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2648
2649 ...;
2650 }
2651*/
2fdf6df6 2652
1fd400ff
TT
2653static struct dwarf2_per_cu_data *
2654dw2_get_cu (int index)
2655{
2656 if (index >= dwarf2_per_objfile->n_comp_units)
2657 {
f4dc4d17 2658 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2659 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2660 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2661 }
2662
2663 return dwarf2_per_objfile->all_comp_units[index];
2664}
2665
2666/* Return the primary CU given its index.
2667 The difference between this function and dw2_get_cu is in the handling
2668 of type units (TUs). Here we return the type_unit_group object.
2669
2670 This is intended for loops like:
2671
2672 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2673 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2674 {
2675 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2676
2677 ...;
2678 }
2679*/
2680
2681static struct dwarf2_per_cu_data *
2682dw2_get_primary_cu (int index)
2683{
2684 if (index >= dwarf2_per_objfile->n_comp_units)
2685 {
1fd400ff 2686 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2687 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2688 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
1fd400ff 2689 }
f4dc4d17 2690
1fd400ff
TT
2691 return dwarf2_per_objfile->all_comp_units[index];
2692}
2693
2ec9a5e0
TT
2694/* A helper for create_cus_from_index that handles a given list of
2695 CUs. */
2fdf6df6 2696
74a0d9f6 2697static void
2ec9a5e0
TT
2698create_cus_from_index_list (struct objfile *objfile,
2699 const gdb_byte *cu_list, offset_type n_elements,
2700 struct dwarf2_section_info *section,
2701 int is_dwz,
2702 int base_offset)
9291a0cd
TT
2703{
2704 offset_type i;
9291a0cd 2705
2ec9a5e0 2706 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2707 {
2708 struct dwarf2_per_cu_data *the_cu;
2709 ULONGEST offset, length;
2710
74a0d9f6
JK
2711 gdb_static_assert (sizeof (ULONGEST) >= 8);
2712 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2713 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2714 cu_list += 2 * 8;
2715
2716 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2717 struct dwarf2_per_cu_data);
b64f50a1 2718 the_cu->offset.sect_off = offset;
9291a0cd
TT
2719 the_cu->length = length;
2720 the_cu->objfile = objfile;
8a0459fd 2721 the_cu->section = section;
9291a0cd
TT
2722 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2723 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2724 the_cu->is_dwz = is_dwz;
2725 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2726 }
9291a0cd
TT
2727}
2728
2ec9a5e0 2729/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2730 the CU objects for this objfile. */
2ec9a5e0 2731
74a0d9f6 2732static void
2ec9a5e0
TT
2733create_cus_from_index (struct objfile *objfile,
2734 const gdb_byte *cu_list, offset_type cu_list_elements,
2735 const gdb_byte *dwz_list, offset_type dwz_elements)
2736{
2737 struct dwz_file *dwz;
2738
2739 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2740 dwarf2_per_objfile->all_comp_units
2741 = obstack_alloc (&objfile->objfile_obstack,
2742 dwarf2_per_objfile->n_comp_units
2743 * sizeof (struct dwarf2_per_cu_data *));
2744
74a0d9f6
JK
2745 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2746 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2747
2748 if (dwz_elements == 0)
74a0d9f6 2749 return;
2ec9a5e0
TT
2750
2751 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2752 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2753 cu_list_elements / 2);
2ec9a5e0
TT
2754}
2755
1fd400ff 2756/* Create the signatured type hash table from the index. */
673bfd45 2757
74a0d9f6 2758static void
673bfd45 2759create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2760 struct dwarf2_section_info *section,
673bfd45
DE
2761 const gdb_byte *bytes,
2762 offset_type elements)
1fd400ff
TT
2763{
2764 offset_type i;
673bfd45 2765 htab_t sig_types_hash;
1fd400ff 2766
d467dd73
DE
2767 dwarf2_per_objfile->n_type_units = elements / 3;
2768 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
2769 = xmalloc (dwarf2_per_objfile->n_type_units
2770 * sizeof (struct signatured_type *));
1fd400ff 2771
673bfd45 2772 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2773
2774 for (i = 0; i < elements; i += 3)
2775 {
52dc124a
DE
2776 struct signatured_type *sig_type;
2777 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2778 void **slot;
2779
74a0d9f6
JK
2780 gdb_static_assert (sizeof (ULONGEST) >= 8);
2781 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2782 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2783 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2784 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2785 bytes += 3 * 8;
2786
52dc124a 2787 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2788 struct signatured_type);
52dc124a 2789 sig_type->signature = signature;
3019eac3
DE
2790 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2791 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2792 sig_type->per_cu.section = section;
52dc124a
DE
2793 sig_type->per_cu.offset.sect_off = offset;
2794 sig_type->per_cu.objfile = objfile;
2795 sig_type->per_cu.v.quick
1fd400ff
TT
2796 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2797 struct dwarf2_per_cu_quick_data);
2798
52dc124a
DE
2799 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2800 *slot = sig_type;
1fd400ff 2801
b4dd5633 2802 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2803 }
2804
673bfd45 2805 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2806}
2807
9291a0cd
TT
2808/* Read the address map data from the mapped index, and use it to
2809 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2810
9291a0cd
TT
2811static void
2812create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2813{
2814 const gdb_byte *iter, *end;
2815 struct obstack temp_obstack;
2816 struct addrmap *mutable_map;
2817 struct cleanup *cleanup;
2818 CORE_ADDR baseaddr;
2819
2820 obstack_init (&temp_obstack);
2821 cleanup = make_cleanup_obstack_free (&temp_obstack);
2822 mutable_map = addrmap_create_mutable (&temp_obstack);
2823
2824 iter = index->address_table;
2825 end = iter + index->address_table_size;
2826
2827 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2828
2829 while (iter < end)
2830 {
2831 ULONGEST hi, lo, cu_index;
2832 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2833 iter += 8;
2834 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2835 iter += 8;
2836 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2837 iter += 4;
f652bce2 2838
24a55014 2839 if (lo > hi)
f652bce2 2840 {
24a55014
DE
2841 complaint (&symfile_complaints,
2842 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2843 hex_string (lo), hex_string (hi));
24a55014 2844 continue;
f652bce2 2845 }
24a55014
DE
2846
2847 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2848 {
2849 complaint (&symfile_complaints,
2850 _(".gdb_index address table has invalid CU number %u"),
2851 (unsigned) cu_index);
24a55014 2852 continue;
f652bce2 2853 }
24a55014
DE
2854
2855 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2856 dw2_get_cu (cu_index));
9291a0cd
TT
2857 }
2858
2859 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2860 &objfile->objfile_obstack);
2861 do_cleanups (cleanup);
2862}
2863
59d7bcaf
JK
2864/* The hash function for strings in the mapped index. This is the same as
2865 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2866 implementation. This is necessary because the hash function is tied to the
2867 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2868 SYMBOL_HASH_NEXT.
2869
2870 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2871
9291a0cd 2872static hashval_t
559a7a62 2873mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2874{
2875 const unsigned char *str = (const unsigned char *) p;
2876 hashval_t r = 0;
2877 unsigned char c;
2878
2879 while ((c = *str++) != 0)
559a7a62
JK
2880 {
2881 if (index_version >= 5)
2882 c = tolower (c);
2883 r = r * 67 + c - 113;
2884 }
9291a0cd
TT
2885
2886 return r;
2887}
2888
2889/* Find a slot in the mapped index INDEX for the object named NAME.
2890 If NAME is found, set *VEC_OUT to point to the CU vector in the
2891 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2892
9291a0cd
TT
2893static int
2894find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2895 offset_type **vec_out)
2896{
0cf03b49
JK
2897 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2898 offset_type hash;
9291a0cd 2899 offset_type slot, step;
559a7a62 2900 int (*cmp) (const char *, const char *);
9291a0cd 2901
0cf03b49
JK
2902 if (current_language->la_language == language_cplus
2903 || current_language->la_language == language_java
2904 || current_language->la_language == language_fortran)
2905 {
2906 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2907 not contain any. */
2908 const char *paren = strchr (name, '(');
2909
2910 if (paren)
2911 {
2912 char *dup;
2913
2914 dup = xmalloc (paren - name + 1);
2915 memcpy (dup, name, paren - name);
2916 dup[paren - name] = 0;
2917
2918 make_cleanup (xfree, dup);
2919 name = dup;
2920 }
2921 }
2922
559a7a62 2923 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2924 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2925 simulate our NAME being searched is also lowercased. */
2926 hash = mapped_index_string_hash ((index->version == 4
2927 && case_sensitivity == case_sensitive_off
2928 ? 5 : index->version),
2929 name);
2930
3876f04e
DE
2931 slot = hash & (index->symbol_table_slots - 1);
2932 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2933 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2934
2935 for (;;)
2936 {
2937 /* Convert a slot number to an offset into the table. */
2938 offset_type i = 2 * slot;
2939 const char *str;
3876f04e 2940 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2941 {
2942 do_cleanups (back_to);
2943 return 0;
2944 }
9291a0cd 2945
3876f04e 2946 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 2947 if (!cmp (name, str))
9291a0cd
TT
2948 {
2949 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2950 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 2951 do_cleanups (back_to);
9291a0cd
TT
2952 return 1;
2953 }
2954
3876f04e 2955 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2956 }
2957}
2958
2ec9a5e0
TT
2959/* A helper function that reads the .gdb_index from SECTION and fills
2960 in MAP. FILENAME is the name of the file containing the section;
2961 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2962 ok to use deprecated sections.
2963
2964 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2965 out parameters that are filled in with information about the CU and
2966 TU lists in the section.
2967
2968 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 2969
9291a0cd 2970static int
2ec9a5e0
TT
2971read_index_from_section (struct objfile *objfile,
2972 const char *filename,
2973 int deprecated_ok,
2974 struct dwarf2_section_info *section,
2975 struct mapped_index *map,
2976 const gdb_byte **cu_list,
2977 offset_type *cu_list_elements,
2978 const gdb_byte **types_list,
2979 offset_type *types_list_elements)
9291a0cd 2980{
948f8e3d 2981 const gdb_byte *addr;
2ec9a5e0 2982 offset_type version;
b3b272e1 2983 offset_type *metadata;
1fd400ff 2984 int i;
9291a0cd 2985
2ec9a5e0 2986 if (dwarf2_section_empty_p (section))
9291a0cd 2987 return 0;
82430852
JK
2988
2989 /* Older elfutils strip versions could keep the section in the main
2990 executable while splitting it for the separate debug info file. */
a32a8923 2991 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
2992 return 0;
2993
2ec9a5e0 2994 dwarf2_read_section (objfile, section);
9291a0cd 2995
2ec9a5e0 2996 addr = section->buffer;
9291a0cd 2997 /* Version check. */
1fd400ff 2998 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 2999 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3000 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3001 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3002 indices. */
831adc1f 3003 if (version < 4)
481860b3
GB
3004 {
3005 static int warning_printed = 0;
3006 if (!warning_printed)
3007 {
3008 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3009 filename);
481860b3
GB
3010 warning_printed = 1;
3011 }
3012 return 0;
3013 }
3014 /* Index version 4 uses a different hash function than index version
3015 5 and later.
3016
3017 Versions earlier than 6 did not emit psymbols for inlined
3018 functions. Using these files will cause GDB not to be able to
3019 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3020 indices unless the user has done
3021 "set use-deprecated-index-sections on". */
2ec9a5e0 3022 if (version < 6 && !deprecated_ok)
481860b3
GB
3023 {
3024 static int warning_printed = 0;
3025 if (!warning_printed)
3026 {
e615022a
DE
3027 warning (_("\
3028Skipping deprecated .gdb_index section in %s.\n\
3029Do \"set use-deprecated-index-sections on\" before the file is read\n\
3030to use the section anyway."),
2ec9a5e0 3031 filename);
481860b3
GB
3032 warning_printed = 1;
3033 }
3034 return 0;
3035 }
796a7ff8
DE
3036 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3037 of the TU (for symbols coming from TUs). It's just a performance bug, and
3038 we can't distinguish gdb-generated indices from gold-generated ones, so
3039 nothing to do here. */
3040
481860b3 3041 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3042 longer backward compatible. */
796a7ff8 3043 if (version > 8)
594e8718 3044 return 0;
9291a0cd 3045
559a7a62 3046 map->version = version;
2ec9a5e0 3047 map->total_size = section->size;
9291a0cd
TT
3048
3049 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3050
3051 i = 0;
2ec9a5e0
TT
3052 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3053 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3054 / 8);
1fd400ff
TT
3055 ++i;
3056
2ec9a5e0
TT
3057 *types_list = addr + MAYBE_SWAP (metadata[i]);
3058 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3059 - MAYBE_SWAP (metadata[i]))
3060 / 8);
987d643c 3061 ++i;
1fd400ff
TT
3062
3063 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3064 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3065 - MAYBE_SWAP (metadata[i]));
3066 ++i;
3067
3876f04e
DE
3068 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3069 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3070 - MAYBE_SWAP (metadata[i]))
3071 / (2 * sizeof (offset_type)));
1fd400ff 3072 ++i;
9291a0cd 3073
f9d83a0b 3074 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3075
2ec9a5e0
TT
3076 return 1;
3077}
3078
3079
3080/* Read the index file. If everything went ok, initialize the "quick"
3081 elements of all the CUs and return 1. Otherwise, return 0. */
3082
3083static int
3084dwarf2_read_index (struct objfile *objfile)
3085{
3086 struct mapped_index local_map, *map;
3087 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3088 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3089 struct dwz_file *dwz;
2ec9a5e0 3090
4262abfb 3091 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3092 use_deprecated_index_sections,
3093 &dwarf2_per_objfile->gdb_index, &local_map,
3094 &cu_list, &cu_list_elements,
3095 &types_list, &types_list_elements))
3096 return 0;
3097
0fefef59 3098 /* Don't use the index if it's empty. */
2ec9a5e0 3099 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3100 return 0;
3101
2ec9a5e0
TT
3102 /* If there is a .dwz file, read it so we can get its CU list as
3103 well. */
4db1a1dc
TT
3104 dwz = dwarf2_get_dwz_file ();
3105 if (dwz != NULL)
2ec9a5e0 3106 {
2ec9a5e0
TT
3107 struct mapped_index dwz_map;
3108 const gdb_byte *dwz_types_ignore;
3109 offset_type dwz_types_elements_ignore;
3110
3111 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3112 1,
3113 &dwz->gdb_index, &dwz_map,
3114 &dwz_list, &dwz_list_elements,
3115 &dwz_types_ignore,
3116 &dwz_types_elements_ignore))
3117 {
3118 warning (_("could not read '.gdb_index' section from %s; skipping"),
3119 bfd_get_filename (dwz->dwz_bfd));
3120 return 0;
3121 }
3122 }
3123
74a0d9f6
JK
3124 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3125 dwz_list_elements);
1fd400ff 3126
8b70b953
TT
3127 if (types_list_elements)
3128 {
3129 struct dwarf2_section_info *section;
3130
3131 /* We can only handle a single .debug_types when we have an
3132 index. */
3133 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3134 return 0;
3135
3136 section = VEC_index (dwarf2_section_info_def,
3137 dwarf2_per_objfile->types, 0);
3138
74a0d9f6
JK
3139 create_signatured_type_table_from_index (objfile, section, types_list,
3140 types_list_elements);
8b70b953 3141 }
9291a0cd 3142
2ec9a5e0
TT
3143 create_addrmap_from_index (objfile, &local_map);
3144
3145 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3146 *map = local_map;
9291a0cd
TT
3147
3148 dwarf2_per_objfile->index_table = map;
3149 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3150 dwarf2_per_objfile->quick_file_names_table =
3151 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3152
3153 return 1;
3154}
3155
3156/* A helper for the "quick" functions which sets the global
3157 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3158
9291a0cd
TT
3159static void
3160dw2_setup (struct objfile *objfile)
3161{
3162 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3163 gdb_assert (dwarf2_per_objfile);
3164}
3165
dee91e82 3166/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3167
dee91e82
DE
3168static void
3169dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3170 const gdb_byte *info_ptr,
dee91e82
DE
3171 struct die_info *comp_unit_die,
3172 int has_children,
3173 void *data)
9291a0cd 3174{
dee91e82
DE
3175 struct dwarf2_cu *cu = reader->cu;
3176 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3177 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3178 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3179 struct line_header *lh;
9291a0cd 3180 struct attribute *attr;
dee91e82 3181 int i;
15d034d0 3182 const char *name, *comp_dir;
7b9f3c50
DE
3183 void **slot;
3184 struct quick_file_names *qfn;
3185 unsigned int line_offset;
9291a0cd 3186
0186c6a7
DE
3187 gdb_assert (! this_cu->is_debug_types);
3188
07261596
TT
3189 /* Our callers never want to match partial units -- instead they
3190 will match the enclosing full CU. */
3191 if (comp_unit_die->tag == DW_TAG_partial_unit)
3192 {
3193 this_cu->v.quick->no_file_data = 1;
3194 return;
3195 }
3196
0186c6a7 3197 lh_cu = this_cu;
7b9f3c50
DE
3198 lh = NULL;
3199 slot = NULL;
3200 line_offset = 0;
dee91e82
DE
3201
3202 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3203 if (attr)
3204 {
7b9f3c50
DE
3205 struct quick_file_names find_entry;
3206
3207 line_offset = DW_UNSND (attr);
3208
3209 /* We may have already read in this line header (TU line header sharing).
3210 If we have we're done. */
094b34ac
DE
3211 find_entry.hash.dwo_unit = cu->dwo_unit;
3212 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3213 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3214 &find_entry, INSERT);
3215 if (*slot != NULL)
3216 {
094b34ac 3217 lh_cu->v.quick->file_names = *slot;
dee91e82 3218 return;
7b9f3c50
DE
3219 }
3220
3019eac3 3221 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3222 }
3223 if (lh == NULL)
3224 {
094b34ac 3225 lh_cu->v.quick->no_file_data = 1;
dee91e82 3226 return;
9291a0cd
TT
3227 }
3228
7b9f3c50 3229 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
3230 qfn->hash.dwo_unit = cu->dwo_unit;
3231 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3232 gdb_assert (slot != NULL);
3233 *slot = qfn;
9291a0cd 3234
dee91e82 3235 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3236
7b9f3c50
DE
3237 qfn->num_file_names = lh->num_file_names;
3238 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3239 lh->num_file_names * sizeof (char *));
9291a0cd 3240 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3241 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3242 qfn->real_names = NULL;
9291a0cd 3243
7b9f3c50 3244 free_line_header (lh);
7b9f3c50 3245
094b34ac 3246 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3247}
3248
3249/* A helper for the "quick" functions which attempts to read the line
3250 table for THIS_CU. */
3251
3252static struct quick_file_names *
e4a48d9d 3253dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3254{
0186c6a7
DE
3255 /* This should never be called for TUs. */
3256 gdb_assert (! this_cu->is_debug_types);
3257 /* Nor type unit groups. */
3258 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3259
dee91e82
DE
3260 if (this_cu->v.quick->file_names != NULL)
3261 return this_cu->v.quick->file_names;
3262 /* If we know there is no line data, no point in looking again. */
3263 if (this_cu->v.quick->no_file_data)
3264 return NULL;
3265
0186c6a7 3266 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3267
3268 if (this_cu->v.quick->no_file_data)
3269 return NULL;
3270 return this_cu->v.quick->file_names;
9291a0cd
TT
3271}
3272
3273/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3274 real path for a given file name from the line table. */
2fdf6df6 3275
9291a0cd 3276static const char *
7b9f3c50
DE
3277dw2_get_real_path (struct objfile *objfile,
3278 struct quick_file_names *qfn, int index)
9291a0cd 3279{
7b9f3c50
DE
3280 if (qfn->real_names == NULL)
3281 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
fd0a4d76 3282 qfn->num_file_names, char *);
9291a0cd 3283
7b9f3c50
DE
3284 if (qfn->real_names[index] == NULL)
3285 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3286
7b9f3c50 3287 return qfn->real_names[index];
9291a0cd
TT
3288}
3289
3290static struct symtab *
3291dw2_find_last_source_symtab (struct objfile *objfile)
3292{
3293 int index;
ae2de4f8 3294
9291a0cd
TT
3295 dw2_setup (objfile);
3296 index = dwarf2_per_objfile->n_comp_units - 1;
a0f42c21 3297 return dw2_instantiate_symtab (dw2_get_cu (index));
9291a0cd
TT
3298}
3299
7b9f3c50
DE
3300/* Traversal function for dw2_forget_cached_source_info. */
3301
3302static int
3303dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3304{
7b9f3c50 3305 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3306
7b9f3c50 3307 if (file_data->real_names)
9291a0cd 3308 {
7b9f3c50 3309 int i;
9291a0cd 3310
7b9f3c50 3311 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3312 {
7b9f3c50
DE
3313 xfree ((void*) file_data->real_names[i]);
3314 file_data->real_names[i] = NULL;
9291a0cd
TT
3315 }
3316 }
7b9f3c50
DE
3317
3318 return 1;
3319}
3320
3321static void
3322dw2_forget_cached_source_info (struct objfile *objfile)
3323{
3324 dw2_setup (objfile);
3325
3326 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3327 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3328}
3329
f8eba3c6
TT
3330/* Helper function for dw2_map_symtabs_matching_filename that expands
3331 the symtabs and calls the iterator. */
3332
3333static int
3334dw2_map_expand_apply (struct objfile *objfile,
3335 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3336 const char *name, const char *real_path,
f8eba3c6
TT
3337 int (*callback) (struct symtab *, void *),
3338 void *data)
3339{
3340 struct symtab *last_made = objfile->symtabs;
3341
3342 /* Don't visit already-expanded CUs. */
3343 if (per_cu->v.quick->symtab)
3344 return 0;
3345
3346 /* This may expand more than one symtab, and we want to iterate over
3347 all of them. */
a0f42c21 3348 dw2_instantiate_symtab (per_cu);
f8eba3c6 3349
f5b95b50 3350 return iterate_over_some_symtabs (name, real_path, callback, data,
f8eba3c6
TT
3351 objfile->symtabs, last_made);
3352}
3353
3354/* Implementation of the map_symtabs_matching_filename method. */
3355
9291a0cd 3356static int
f8eba3c6 3357dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3358 const char *real_path,
f8eba3c6
TT
3359 int (*callback) (struct symtab *, void *),
3360 void *data)
9291a0cd
TT
3361{
3362 int i;
c011a4f4 3363 const char *name_basename = lbasename (name);
9291a0cd
TT
3364
3365 dw2_setup (objfile);
ae2de4f8 3366
848e3e78
DE
3367 /* The rule is CUs specify all the files, including those used by
3368 any TU, so there's no need to scan TUs here. */
f4dc4d17 3369
848e3e78 3370 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3371 {
3372 int j;
f4dc4d17 3373 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 3374 struct quick_file_names *file_data;
9291a0cd 3375
3d7bb9d9 3376 /* We only need to look at symtabs not already expanded. */
e254ef6a 3377 if (per_cu->v.quick->symtab)
9291a0cd
TT
3378 continue;
3379
e4a48d9d 3380 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3381 if (file_data == NULL)
9291a0cd
TT
3382 continue;
3383
7b9f3c50 3384 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3385 {
7b9f3c50 3386 const char *this_name = file_data->file_names[j];
da235a7c 3387 const char *this_real_name;
9291a0cd 3388
af529f8f 3389 if (compare_filenames_for_search (this_name, name))
9291a0cd 3390 {
f5b95b50 3391 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3392 callback, data))
3393 return 1;
288e77a7 3394 continue;
4aac40c8 3395 }
9291a0cd 3396
c011a4f4
DE
3397 /* Before we invoke realpath, which can get expensive when many
3398 files are involved, do a quick comparison of the basenames. */
3399 if (! basenames_may_differ
3400 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3401 continue;
3402
da235a7c
JK
3403 this_real_name = dw2_get_real_path (objfile, file_data, j);
3404 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3405 {
da235a7c
JK
3406 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3407 callback, data))
3408 return 1;
288e77a7 3409 continue;
da235a7c 3410 }
9291a0cd 3411
da235a7c
JK
3412 if (real_path != NULL)
3413 {
af529f8f
JK
3414 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3415 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3416 if (this_real_name != NULL
af529f8f 3417 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3418 {
f5b95b50 3419 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3420 callback, data))
3421 return 1;
288e77a7 3422 continue;
9291a0cd
TT
3423 }
3424 }
3425 }
3426 }
3427
9291a0cd
TT
3428 return 0;
3429}
3430
da51c347
DE
3431/* Struct used to manage iterating over all CUs looking for a symbol. */
3432
3433struct dw2_symtab_iterator
9291a0cd 3434{
da51c347
DE
3435 /* The internalized form of .gdb_index. */
3436 struct mapped_index *index;
3437 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3438 int want_specific_block;
3439 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3440 Unused if !WANT_SPECIFIC_BLOCK. */
3441 int block_index;
3442 /* The kind of symbol we're looking for. */
3443 domain_enum domain;
3444 /* The list of CUs from the index entry of the symbol,
3445 or NULL if not found. */
3446 offset_type *vec;
3447 /* The next element in VEC to look at. */
3448 int next;
3449 /* The number of elements in VEC, or zero if there is no match. */
3450 int length;
3451};
9291a0cd 3452
da51c347
DE
3453/* Initialize the index symtab iterator ITER.
3454 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3455 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3456
9291a0cd 3457static void
da51c347
DE
3458dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3459 struct mapped_index *index,
3460 int want_specific_block,
3461 int block_index,
3462 domain_enum domain,
3463 const char *name)
3464{
3465 iter->index = index;
3466 iter->want_specific_block = want_specific_block;
3467 iter->block_index = block_index;
3468 iter->domain = domain;
3469 iter->next = 0;
3470
3471 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3472 iter->length = MAYBE_SWAP (*iter->vec);
3473 else
3474 {
3475 iter->vec = NULL;
3476 iter->length = 0;
3477 }
3478}
3479
3480/* Return the next matching CU or NULL if there are no more. */
3481
3482static struct dwarf2_per_cu_data *
3483dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3484{
3485 for ( ; iter->next < iter->length; ++iter->next)
3486 {
3487 offset_type cu_index_and_attrs =
3488 MAYBE_SWAP (iter->vec[iter->next + 1]);
3489 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3490 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3491 int want_static = iter->block_index != GLOBAL_BLOCK;
3492 /* This value is only valid for index versions >= 7. */
3493 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3494 gdb_index_symbol_kind symbol_kind =
3495 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3496 /* Only check the symbol attributes if they're present.
3497 Indices prior to version 7 don't record them,
3498 and indices >= 7 may elide them for certain symbols
3499 (gold does this). */
3500 int attrs_valid =
3501 (iter->index->version >= 7
3502 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3503
3190f0c6
DE
3504 /* Don't crash on bad data. */
3505 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3506 + dwarf2_per_objfile->n_type_units))
3507 {
3508 complaint (&symfile_complaints,
3509 _(".gdb_index entry has bad CU index"
4262abfb
JK
3510 " [in module %s]"),
3511 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3512 continue;
3513 }
3514
3515 per_cu = dw2_get_cu (cu_index);
3516
da51c347
DE
3517 /* Skip if already read in. */
3518 if (per_cu->v.quick->symtab)
3519 continue;
3520
3521 if (attrs_valid
3522 && iter->want_specific_block
3523 && want_static != is_static)
3524 continue;
3525
3526 /* Only check the symbol's kind if it has one. */
3527 if (attrs_valid)
3528 {
3529 switch (iter->domain)
3530 {
3531 case VAR_DOMAIN:
3532 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3533 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3534 /* Some types are also in VAR_DOMAIN. */
3535 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3536 continue;
3537 break;
3538 case STRUCT_DOMAIN:
3539 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3540 continue;
3541 break;
3542 case LABEL_DOMAIN:
3543 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3544 continue;
3545 break;
3546 default:
3547 break;
3548 }
3549 }
3550
3551 ++iter->next;
3552 return per_cu;
3553 }
3554
3555 return NULL;
3556}
3557
3558static struct symtab *
3559dw2_lookup_symbol (struct objfile *objfile, int block_index,
3560 const char *name, domain_enum domain)
9291a0cd 3561{
da51c347 3562 struct symtab *stab_best = NULL;
156942c7
DE
3563 struct mapped_index *index;
3564
9291a0cd
TT
3565 dw2_setup (objfile);
3566
156942c7
DE
3567 index = dwarf2_per_objfile->index_table;
3568
da51c347 3569 /* index is NULL if OBJF_READNOW. */
156942c7 3570 if (index)
9291a0cd 3571 {
da51c347
DE
3572 struct dw2_symtab_iterator iter;
3573 struct dwarf2_per_cu_data *per_cu;
3574
3575 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3576
da51c347 3577 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3578 {
da51c347
DE
3579 struct symbol *sym = NULL;
3580 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3581
3582 /* Some caution must be observed with overloaded functions
3583 and methods, since the index will not contain any overload
3584 information (but NAME might contain it). */
3585 if (stab->primary)
9291a0cd 3586 {
da51c347
DE
3587 struct blockvector *bv = BLOCKVECTOR (stab);
3588 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
156942c7 3589
da51c347
DE
3590 sym = lookup_block_symbol (block, name, domain);
3591 }
1fd400ff 3592
da51c347
DE
3593 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3594 {
3595 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3596 return stab;
3597
3598 stab_best = stab;
9291a0cd 3599 }
da51c347
DE
3600
3601 /* Keep looking through other CUs. */
9291a0cd
TT
3602 }
3603 }
9291a0cd 3604
da51c347 3605 return stab_best;
9291a0cd
TT
3606}
3607
3608static void
3609dw2_print_stats (struct objfile *objfile)
3610{
e4a48d9d 3611 int i, total, count;
9291a0cd
TT
3612
3613 dw2_setup (objfile);
e4a48d9d 3614 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3615 count = 0;
e4a48d9d 3616 for (i = 0; i < total; ++i)
9291a0cd 3617 {
e254ef6a 3618 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3619
e254ef6a 3620 if (!per_cu->v.quick->symtab)
9291a0cd
TT
3621 ++count;
3622 }
e4a48d9d 3623 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3624 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3625}
3626
779bd270
DE
3627/* This dumps minimal information about the index.
3628 It is called via "mt print objfiles".
3629 One use is to verify .gdb_index has been loaded by the
3630 gdb.dwarf2/gdb-index.exp testcase. */
3631
9291a0cd
TT
3632static void
3633dw2_dump (struct objfile *objfile)
3634{
779bd270
DE
3635 dw2_setup (objfile);
3636 gdb_assert (dwarf2_per_objfile->using_index);
3637 printf_filtered (".gdb_index:");
3638 if (dwarf2_per_objfile->index_table != NULL)
3639 {
3640 printf_filtered (" version %d\n",
3641 dwarf2_per_objfile->index_table->version);
3642 }
3643 else
3644 printf_filtered (" faked for \"readnow\"\n");
3645 printf_filtered ("\n");
9291a0cd
TT
3646}
3647
3648static void
3189cb12
DE
3649dw2_relocate (struct objfile *objfile,
3650 const struct section_offsets *new_offsets,
3651 const struct section_offsets *delta)
9291a0cd
TT
3652{
3653 /* There's nothing to relocate here. */
3654}
3655
3656static void
3657dw2_expand_symtabs_for_function (struct objfile *objfile,
3658 const char *func_name)
3659{
da51c347
DE
3660 struct mapped_index *index;
3661
3662 dw2_setup (objfile);
3663
3664 index = dwarf2_per_objfile->index_table;
3665
3666 /* index is NULL if OBJF_READNOW. */
3667 if (index)
3668 {
3669 struct dw2_symtab_iterator iter;
3670 struct dwarf2_per_cu_data *per_cu;
3671
3672 /* Note: It doesn't matter what we pass for block_index here. */
3673 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3674 func_name);
3675
3676 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3677 dw2_instantiate_symtab (per_cu);
3678 }
9291a0cd
TT
3679}
3680
3681static void
3682dw2_expand_all_symtabs (struct objfile *objfile)
3683{
3684 int i;
3685
3686 dw2_setup (objfile);
1fd400ff
TT
3687
3688 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3689 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3690 {
e254ef6a 3691 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3692
a0f42c21 3693 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3694 }
3695}
3696
3697static void
652a8996
JK
3698dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3699 const char *fullname)
9291a0cd
TT
3700{
3701 int i;
3702
3703 dw2_setup (objfile);
d4637a04
DE
3704
3705 /* We don't need to consider type units here.
3706 This is only called for examining code, e.g. expand_line_sal.
3707 There can be an order of magnitude (or more) more type units
3708 than comp units, and we avoid them if we can. */
3709
3710 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3711 {
3712 int j;
e254ef6a 3713 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3714 struct quick_file_names *file_data;
9291a0cd 3715
3d7bb9d9 3716 /* We only need to look at symtabs not already expanded. */
e254ef6a 3717 if (per_cu->v.quick->symtab)
9291a0cd
TT
3718 continue;
3719
e4a48d9d 3720 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3721 if (file_data == NULL)
9291a0cd
TT
3722 continue;
3723
7b9f3c50 3724 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3725 {
652a8996
JK
3726 const char *this_fullname = file_data->file_names[j];
3727
3728 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3729 {
a0f42c21 3730 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3731 break;
3732 }
3733 }
3734 }
3735}
3736
9291a0cd 3737static void
ade7ed9e
DE
3738dw2_map_matching_symbols (struct objfile *objfile,
3739 const char * name, domain_enum namespace,
3740 int global,
40658b94
PH
3741 int (*callback) (struct block *,
3742 struct symbol *, void *),
2edb89d3
JK
3743 void *data, symbol_compare_ftype *match,
3744 symbol_compare_ftype *ordered_compare)
9291a0cd 3745{
40658b94 3746 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3747 current language is Ada for a non-Ada objfile using GNU index. As Ada
3748 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3749}
3750
3751static void
f8eba3c6
TT
3752dw2_expand_symtabs_matching
3753 (struct objfile *objfile,
fbd9ab74 3754 int (*file_matcher) (const char *, void *, int basenames),
e078317b 3755 int (*name_matcher) (const char *, void *),
f8eba3c6
TT
3756 enum search_domain kind,
3757 void *data)
9291a0cd
TT
3758{
3759 int i;
3760 offset_type iter;
4b5246aa 3761 struct mapped_index *index;
9291a0cd
TT
3762
3763 dw2_setup (objfile);
ae2de4f8
DE
3764
3765 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3766 if (!dwarf2_per_objfile->index_table)
3767 return;
4b5246aa 3768 index = dwarf2_per_objfile->index_table;
9291a0cd 3769
7b08b9eb 3770 if (file_matcher != NULL)
24c79950
TT
3771 {
3772 struct cleanup *cleanup;
3773 htab_t visited_found, visited_not_found;
3774
3775 visited_found = htab_create_alloc (10,
3776 htab_hash_pointer, htab_eq_pointer,
3777 NULL, xcalloc, xfree);
3778 cleanup = make_cleanup_htab_delete (visited_found);
3779 visited_not_found = htab_create_alloc (10,
3780 htab_hash_pointer, htab_eq_pointer,
3781 NULL, xcalloc, xfree);
3782 make_cleanup_htab_delete (visited_not_found);
3783
848e3e78
DE
3784 /* The rule is CUs specify all the files, including those used by
3785 any TU, so there's no need to scan TUs here. */
3786
3787 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3788 {
3789 int j;
f4dc4d17 3790 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
24c79950
TT
3791 struct quick_file_names *file_data;
3792 void **slot;
7b08b9eb 3793
24c79950 3794 per_cu->v.quick->mark = 0;
3d7bb9d9 3795
24c79950
TT
3796 /* We only need to look at symtabs not already expanded. */
3797 if (per_cu->v.quick->symtab)
3798 continue;
7b08b9eb 3799
e4a48d9d 3800 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3801 if (file_data == NULL)
3802 continue;
7b08b9eb 3803
24c79950
TT
3804 if (htab_find (visited_not_found, file_data) != NULL)
3805 continue;
3806 else if (htab_find (visited_found, file_data) != NULL)
3807 {
3808 per_cu->v.quick->mark = 1;
3809 continue;
3810 }
3811
3812 for (j = 0; j < file_data->num_file_names; ++j)
3813 {
da235a7c
JK
3814 const char *this_real_name;
3815
fbd9ab74 3816 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3817 {
3818 per_cu->v.quick->mark = 1;
3819 break;
3820 }
da235a7c
JK
3821
3822 /* Before we invoke realpath, which can get expensive when many
3823 files are involved, do a quick comparison of the basenames. */
3824 if (!basenames_may_differ
3825 && !file_matcher (lbasename (file_data->file_names[j]),
3826 data, 1))
3827 continue;
3828
3829 this_real_name = dw2_get_real_path (objfile, file_data, j);
3830 if (file_matcher (this_real_name, data, 0))
3831 {
3832 per_cu->v.quick->mark = 1;
3833 break;
3834 }
24c79950
TT
3835 }
3836
3837 slot = htab_find_slot (per_cu->v.quick->mark
3838 ? visited_found
3839 : visited_not_found,
3840 file_data, INSERT);
3841 *slot = file_data;
3842 }
3843
3844 do_cleanups (cleanup);
3845 }
9291a0cd 3846
3876f04e 3847 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3848 {
3849 offset_type idx = 2 * iter;
3850 const char *name;
3851 offset_type *vec, vec_len, vec_idx;
3852
3876f04e 3853 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3854 continue;
3855
3876f04e 3856 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3857
e078317b 3858 if (! (*name_matcher) (name, data))
9291a0cd
TT
3859 continue;
3860
3861 /* The name was matched, now expand corresponding CUs that were
3862 marked. */
4b5246aa 3863 vec = (offset_type *) (index->constant_pool
3876f04e 3864 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3865 vec_len = MAYBE_SWAP (vec[0]);
3866 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3867 {
e254ef6a 3868 struct dwarf2_per_cu_data *per_cu;
156942c7
DE
3869 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3870 gdb_index_symbol_kind symbol_kind =
3871 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3872 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3873 /* Only check the symbol attributes if they're present.
3874 Indices prior to version 7 don't record them,
3875 and indices >= 7 may elide them for certain symbols
3876 (gold does this). */
3877 int attrs_valid =
3878 (index->version >= 7
3879 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3880
3881 /* Only check the symbol's kind if it has one. */
3882 if (attrs_valid)
156942c7
DE
3883 {
3884 switch (kind)
3885 {
3886 case VARIABLES_DOMAIN:
3887 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3888 continue;
3889 break;
3890 case FUNCTIONS_DOMAIN:
3891 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3892 continue;
3893 break;
3894 case TYPES_DOMAIN:
3895 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3896 continue;
3897 break;
3898 default:
3899 break;
3900 }
3901 }
3902
3190f0c6
DE
3903 /* Don't crash on bad data. */
3904 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3905 + dwarf2_per_objfile->n_type_units))
3906 {
3907 complaint (&symfile_complaints,
3908 _(".gdb_index entry has bad CU index"
4262abfb 3909 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
3910 continue;
3911 }
3912
156942c7 3913 per_cu = dw2_get_cu (cu_index);
7b08b9eb 3914 if (file_matcher == NULL || per_cu->v.quick->mark)
a0f42c21 3915 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3916 }
3917 }
3918}
3919
9703b513
TT
3920/* A helper for dw2_find_pc_sect_symtab which finds the most specific
3921 symtab. */
3922
3923static struct symtab *
3924recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3925{
3926 int i;
3927
3928 if (BLOCKVECTOR (symtab) != NULL
3929 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3930 return symtab;
3931
a3ec0bb1
DE
3932 if (symtab->includes == NULL)
3933 return NULL;
3934
9703b513
TT
3935 for (i = 0; symtab->includes[i]; ++i)
3936 {
a3ec0bb1 3937 struct symtab *s = symtab->includes[i];
9703b513
TT
3938
3939 s = recursively_find_pc_sect_symtab (s, pc);
3940 if (s != NULL)
3941 return s;
3942 }
3943
3944 return NULL;
3945}
3946
9291a0cd
TT
3947static struct symtab *
3948dw2_find_pc_sect_symtab (struct objfile *objfile,
3949 struct minimal_symbol *msymbol,
3950 CORE_ADDR pc,
3951 struct obj_section *section,
3952 int warn_if_readin)
3953{
3954 struct dwarf2_per_cu_data *data;
9703b513 3955 struct symtab *result;
9291a0cd
TT
3956
3957 dw2_setup (objfile);
3958
3959 if (!objfile->psymtabs_addrmap)
3960 return NULL;
3961
3962 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3963 if (!data)
3964 return NULL;
3965
3966 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 3967 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
3968 paddress (get_objfile_arch (objfile), pc));
3969
9703b513
TT
3970 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3971 gdb_assert (result != NULL);
3972 return result;
9291a0cd
TT
3973}
3974
9291a0cd 3975static void
44b13c5a 3976dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 3977 void *data, int need_fullname)
9291a0cd
TT
3978{
3979 int i;
24c79950
TT
3980 struct cleanup *cleanup;
3981 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3982 NULL, xcalloc, xfree);
9291a0cd 3983
24c79950 3984 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 3985 dw2_setup (objfile);
ae2de4f8 3986
848e3e78
DE
3987 /* The rule is CUs specify all the files, including those used by
3988 any TU, so there's no need to scan TUs here.
3989 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 3990
848e3e78 3991 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3992 {
3993 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3994
3995 if (per_cu->v.quick->symtab)
3996 {
3997 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3998 INSERT);
3999
4000 *slot = per_cu->v.quick->file_names;
4001 }
4002 }
4003
848e3e78 4004 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4005 {
4006 int j;
f4dc4d17 4007 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 4008 struct quick_file_names *file_data;
24c79950 4009 void **slot;
9291a0cd 4010
3d7bb9d9 4011 /* We only need to look at symtabs not already expanded. */
e254ef6a 4012 if (per_cu->v.quick->symtab)
9291a0cd
TT
4013 continue;
4014
e4a48d9d 4015 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4016 if (file_data == NULL)
9291a0cd
TT
4017 continue;
4018
24c79950
TT
4019 slot = htab_find_slot (visited, file_data, INSERT);
4020 if (*slot)
4021 {
4022 /* Already visited. */
4023 continue;
4024 }
4025 *slot = file_data;
4026
7b9f3c50 4027 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4028 {
74e2f255
DE
4029 const char *this_real_name;
4030
4031 if (need_fullname)
4032 this_real_name = dw2_get_real_path (objfile, file_data, j);
4033 else
4034 this_real_name = NULL;
7b9f3c50 4035 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4036 }
4037 }
24c79950
TT
4038
4039 do_cleanups (cleanup);
9291a0cd
TT
4040}
4041
4042static int
4043dw2_has_symbols (struct objfile *objfile)
4044{
4045 return 1;
4046}
4047
4048const struct quick_symbol_functions dwarf2_gdb_index_functions =
4049{
4050 dw2_has_symbols,
4051 dw2_find_last_source_symtab,
4052 dw2_forget_cached_source_info,
f8eba3c6 4053 dw2_map_symtabs_matching_filename,
9291a0cd 4054 dw2_lookup_symbol,
9291a0cd
TT
4055 dw2_print_stats,
4056 dw2_dump,
4057 dw2_relocate,
4058 dw2_expand_symtabs_for_function,
4059 dw2_expand_all_symtabs,
652a8996 4060 dw2_expand_symtabs_with_fullname,
40658b94 4061 dw2_map_matching_symbols,
9291a0cd
TT
4062 dw2_expand_symtabs_matching,
4063 dw2_find_pc_sect_symtab,
9291a0cd
TT
4064 dw2_map_symbol_filenames
4065};
4066
4067/* Initialize for reading DWARF for this objfile. Return 0 if this
4068 file will use psymtabs, or 1 if using the GNU index. */
4069
4070int
4071dwarf2_initialize_objfile (struct objfile *objfile)
4072{
4073 /* If we're about to read full symbols, don't bother with the
4074 indices. In this case we also don't care if some other debug
4075 format is making psymtabs, because they are all about to be
4076 expanded anyway. */
4077 if ((objfile->flags & OBJF_READNOW))
4078 {
4079 int i;
4080
4081 dwarf2_per_objfile->using_index = 1;
4082 create_all_comp_units (objfile);
0e50663e 4083 create_all_type_units (objfile);
7b9f3c50
DE
4084 dwarf2_per_objfile->quick_file_names_table =
4085 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4086
1fd400ff 4087 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4088 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4089 {
e254ef6a 4090 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 4091
e254ef6a
DE
4092 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4093 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4094 }
4095
4096 /* Return 1 so that gdb sees the "quick" functions. However,
4097 these functions will be no-ops because we will have expanded
4098 all symtabs. */
4099 return 1;
4100 }
4101
4102 if (dwarf2_read_index (objfile))
4103 return 1;
4104
9291a0cd
TT
4105 return 0;
4106}
4107
4108\f
4109
dce234bc
PP
4110/* Build a partial symbol table. */
4111
4112void
f29dff0a 4113dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4114{
c9bf0622
TT
4115 volatile struct gdb_exception except;
4116
f29dff0a 4117 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4118 {
4119 init_psymbol_list (objfile, 1024);
4120 }
4121
c9bf0622
TT
4122 TRY_CATCH (except, RETURN_MASK_ERROR)
4123 {
4124 /* This isn't really ideal: all the data we allocate on the
4125 objfile's obstack is still uselessly kept around. However,
4126 freeing it seems unsafe. */
4127 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4128
4129 dwarf2_build_psymtabs_hard (objfile);
4130 discard_cleanups (cleanups);
4131 }
4132 if (except.reason < 0)
4133 exception_print (gdb_stderr, except);
c906108c 4134}
c906108c 4135
1ce1cefd
DE
4136/* Return the total length of the CU described by HEADER. */
4137
4138static unsigned int
4139get_cu_length (const struct comp_unit_head *header)
4140{
4141 return header->initial_length_size + header->length;
4142}
4143
45452591
DE
4144/* Return TRUE if OFFSET is within CU_HEADER. */
4145
4146static inline int
b64f50a1 4147offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4148{
b64f50a1 4149 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4150 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4151
b64f50a1 4152 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4153}
4154
3b80fe9b
DE
4155/* Find the base address of the compilation unit for range lists and
4156 location lists. It will normally be specified by DW_AT_low_pc.
4157 In DWARF-3 draft 4, the base address could be overridden by
4158 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4159 compilation units with discontinuous ranges. */
4160
4161static void
4162dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4163{
4164 struct attribute *attr;
4165
4166 cu->base_known = 0;
4167 cu->base_address = 0;
4168
4169 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4170 if (attr)
4171 {
4172 cu->base_address = DW_ADDR (attr);
4173 cu->base_known = 1;
4174 }
4175 else
4176 {
4177 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4178 if (attr)
4179 {
4180 cu->base_address = DW_ADDR (attr);
4181 cu->base_known = 1;
4182 }
4183 }
4184}
4185
93311388
DE
4186/* Read in the comp unit header information from the debug_info at info_ptr.
4187 NOTE: This leaves members offset, first_die_offset to be filled in
4188 by the caller. */
107d2387 4189
d521ce57 4190static const gdb_byte *
107d2387 4191read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4192 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4193{
4194 int signed_addr;
891d2f0b 4195 unsigned int bytes_read;
c764a876
DE
4196
4197 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4198 cu_header->initial_length_size = bytes_read;
4199 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4200 info_ptr += bytes_read;
107d2387
AC
4201 cu_header->version = read_2_bytes (abfd, info_ptr);
4202 info_ptr += 2;
b64f50a1
JK
4203 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4204 &bytes_read);
613e1657 4205 info_ptr += bytes_read;
107d2387
AC
4206 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4207 info_ptr += 1;
4208 signed_addr = bfd_get_sign_extend_vma (abfd);
4209 if (signed_addr < 0)
8e65ff28 4210 internal_error (__FILE__, __LINE__,
e2e0b3e5 4211 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4212 cu_header->signed_addr_p = signed_addr;
c764a876 4213
107d2387
AC
4214 return info_ptr;
4215}
4216
36586728
TT
4217/* Helper function that returns the proper abbrev section for
4218 THIS_CU. */
4219
4220static struct dwarf2_section_info *
4221get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4222{
4223 struct dwarf2_section_info *abbrev;
4224
4225 if (this_cu->is_dwz)
4226 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4227 else
4228 abbrev = &dwarf2_per_objfile->abbrev;
4229
4230 return abbrev;
4231}
4232
9ff913ba
DE
4233/* Subroutine of read_and_check_comp_unit_head and
4234 read_and_check_type_unit_head to simplify them.
4235 Perform various error checking on the header. */
4236
4237static void
4238error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4239 struct dwarf2_section_info *section,
4240 struct dwarf2_section_info *abbrev_section)
9ff913ba 4241{
a32a8923
DE
4242 bfd *abfd = get_section_bfd_owner (section);
4243 const char *filename = get_section_file_name (section);
9ff913ba
DE
4244
4245 if (header->version != 2 && header->version != 3 && header->version != 4)
4246 error (_("Dwarf Error: wrong version in compilation unit header "
4247 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4248 filename);
4249
b64f50a1 4250 if (header->abbrev_offset.sect_off
36586728 4251 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4252 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4253 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4254 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4255 filename);
4256
4257 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4258 avoid potential 32-bit overflow. */
1ce1cefd 4259 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4260 > section->size)
4261 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4262 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4263 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4264 filename);
4265}
4266
4267/* Read in a CU/TU header and perform some basic error checking.
4268 The contents of the header are stored in HEADER.
4269 The result is a pointer to the start of the first DIE. */
adabb602 4270
d521ce57 4271static const gdb_byte *
9ff913ba
DE
4272read_and_check_comp_unit_head (struct comp_unit_head *header,
4273 struct dwarf2_section_info *section,
4bdcc0c1 4274 struct dwarf2_section_info *abbrev_section,
d521ce57 4275 const gdb_byte *info_ptr,
9ff913ba 4276 int is_debug_types_section)
72bf9492 4277{
d521ce57 4278 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4279 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4280
b64f50a1 4281 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4282
72bf9492
DJ
4283 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4284
460c1c54
CC
4285 /* If we're reading a type unit, skip over the signature and
4286 type_offset fields. */
b0df02fd 4287 if (is_debug_types_section)
460c1c54
CC
4288 info_ptr += 8 /*signature*/ + header->offset_size;
4289
b64f50a1 4290 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4291
4bdcc0c1 4292 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4293
4294 return info_ptr;
4295}
4296
348e048f
DE
4297/* Read in the types comp unit header information from .debug_types entry at
4298 types_ptr. The result is a pointer to one past the end of the header. */
4299
d521ce57 4300static const gdb_byte *
9ff913ba
DE
4301read_and_check_type_unit_head (struct comp_unit_head *header,
4302 struct dwarf2_section_info *section,
4bdcc0c1 4303 struct dwarf2_section_info *abbrev_section,
d521ce57 4304 const gdb_byte *info_ptr,
dee91e82
DE
4305 ULONGEST *signature,
4306 cu_offset *type_offset_in_tu)
348e048f 4307{
d521ce57 4308 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4309 bfd *abfd = get_section_bfd_owner (section);
348e048f 4310
b64f50a1 4311 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4312
9ff913ba 4313 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4314
9ff913ba
DE
4315 /* If we're reading a type unit, skip over the signature and
4316 type_offset fields. */
4317 if (signature != NULL)
4318 *signature = read_8_bytes (abfd, info_ptr);
4319 info_ptr += 8;
dee91e82
DE
4320 if (type_offset_in_tu != NULL)
4321 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4322 header->offset_size);
9ff913ba
DE
4323 info_ptr += header->offset_size;
4324
b64f50a1 4325 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4326
4bdcc0c1 4327 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4328
4329 return info_ptr;
348e048f
DE
4330}
4331
f4dc4d17
DE
4332/* Fetch the abbreviation table offset from a comp or type unit header. */
4333
4334static sect_offset
4335read_abbrev_offset (struct dwarf2_section_info *section,
4336 sect_offset offset)
4337{
a32a8923 4338 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4339 const gdb_byte *info_ptr;
f4dc4d17
DE
4340 unsigned int length, initial_length_size, offset_size;
4341 sect_offset abbrev_offset;
4342
4343 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4344 info_ptr = section->buffer + offset.sect_off;
4345 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4346 offset_size = initial_length_size == 4 ? 4 : 8;
4347 info_ptr += initial_length_size + 2 /*version*/;
4348 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4349 return abbrev_offset;
4350}
4351
aaa75496
JB
4352/* Allocate a new partial symtab for file named NAME and mark this new
4353 partial symtab as being an include of PST. */
4354
4355static void
d521ce57 4356dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4357 struct objfile *objfile)
4358{
4359 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4360
fbd9ab74
JK
4361 if (!IS_ABSOLUTE_PATH (subpst->filename))
4362 {
4363 /* It shares objfile->objfile_obstack. */
4364 subpst->dirname = pst->dirname;
4365 }
4366
aaa75496
JB
4367 subpst->section_offsets = pst->section_offsets;
4368 subpst->textlow = 0;
4369 subpst->texthigh = 0;
4370
4371 subpst->dependencies = (struct partial_symtab **)
4372 obstack_alloc (&objfile->objfile_obstack,
4373 sizeof (struct partial_symtab *));
4374 subpst->dependencies[0] = pst;
4375 subpst->number_of_dependencies = 1;
4376
4377 subpst->globals_offset = 0;
4378 subpst->n_global_syms = 0;
4379 subpst->statics_offset = 0;
4380 subpst->n_static_syms = 0;
4381 subpst->symtab = NULL;
4382 subpst->read_symtab = pst->read_symtab;
4383 subpst->readin = 0;
4384
4385 /* No private part is necessary for include psymtabs. This property
4386 can be used to differentiate between such include psymtabs and
10b3939b 4387 the regular ones. */
58a9656e 4388 subpst->read_symtab_private = NULL;
aaa75496
JB
4389}
4390
4391/* Read the Line Number Program data and extract the list of files
4392 included by the source file represented by PST. Build an include
d85a05f0 4393 partial symtab for each of these included files. */
aaa75496
JB
4394
4395static void
4396dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4397 struct die_info *die,
4398 struct partial_symtab *pst)
aaa75496 4399{
d85a05f0
DJ
4400 struct line_header *lh = NULL;
4401 struct attribute *attr;
aaa75496 4402
d85a05f0
DJ
4403 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4404 if (attr)
3019eac3 4405 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4406 if (lh == NULL)
4407 return; /* No linetable, so no includes. */
4408
c6da4cef 4409 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
f3f5162e 4410 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
aaa75496
JB
4411
4412 free_line_header (lh);
4413}
4414
348e048f 4415static hashval_t
52dc124a 4416hash_signatured_type (const void *item)
348e048f 4417{
52dc124a 4418 const struct signatured_type *sig_type = item;
9a619af0 4419
348e048f 4420 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4421 return sig_type->signature;
348e048f
DE
4422}
4423
4424static int
52dc124a 4425eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4426{
4427 const struct signatured_type *lhs = item_lhs;
4428 const struct signatured_type *rhs = item_rhs;
9a619af0 4429
348e048f
DE
4430 return lhs->signature == rhs->signature;
4431}
4432
1fd400ff
TT
4433/* Allocate a hash table for signatured types. */
4434
4435static htab_t
673bfd45 4436allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4437{
4438 return htab_create_alloc_ex (41,
52dc124a
DE
4439 hash_signatured_type,
4440 eq_signatured_type,
1fd400ff
TT
4441 NULL,
4442 &objfile->objfile_obstack,
4443 hashtab_obstack_allocate,
4444 dummy_obstack_deallocate);
4445}
4446
d467dd73 4447/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4448
4449static int
d467dd73 4450add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4451{
4452 struct signatured_type *sigt = *slot;
b4dd5633 4453 struct signatured_type ***datap = datum;
1fd400ff 4454
b4dd5633 4455 **datap = sigt;
1fd400ff
TT
4456 ++*datap;
4457
4458 return 1;
4459}
4460
c88ee1f0
DE
4461/* Create the hash table of all entries in the .debug_types
4462 (or .debug_types.dwo) section(s).
4463 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4464 otherwise it is NULL.
4465
4466 The result is a pointer to the hash table or NULL if there are no types.
4467
4468 Note: This function processes DWO files only, not DWP files. */
348e048f 4469
3019eac3
DE
4470static htab_t
4471create_debug_types_hash_table (struct dwo_file *dwo_file,
4472 VEC (dwarf2_section_info_def) *types)
348e048f 4473{
3019eac3 4474 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4475 htab_t types_htab = NULL;
8b70b953
TT
4476 int ix;
4477 struct dwarf2_section_info *section;
4bdcc0c1 4478 struct dwarf2_section_info *abbrev_section;
348e048f 4479
3019eac3
DE
4480 if (VEC_empty (dwarf2_section_info_def, types))
4481 return NULL;
348e048f 4482
4bdcc0c1
DE
4483 abbrev_section = (dwo_file != NULL
4484 ? &dwo_file->sections.abbrev
4485 : &dwarf2_per_objfile->abbrev);
4486
09406207
DE
4487 if (dwarf2_read_debug)
4488 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4489 dwo_file ? ".dwo" : "",
a32a8923 4490 get_section_file_name (abbrev_section));
09406207 4491
8b70b953 4492 for (ix = 0;
3019eac3 4493 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4494 ++ix)
4495 {
3019eac3 4496 bfd *abfd;
d521ce57 4497 const gdb_byte *info_ptr, *end_ptr;
348e048f 4498
8b70b953
TT
4499 dwarf2_read_section (objfile, section);
4500 info_ptr = section->buffer;
348e048f 4501
8b70b953
TT
4502 if (info_ptr == NULL)
4503 continue;
348e048f 4504
3019eac3 4505 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4506 not present, in which case the bfd is unknown. */
4507 abfd = get_section_bfd_owner (section);
3019eac3 4508
dee91e82
DE
4509 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4510 because we don't need to read any dies: the signature is in the
4511 header. */
8b70b953
TT
4512
4513 end_ptr = info_ptr + section->size;
4514 while (info_ptr < end_ptr)
4515 {
b64f50a1 4516 sect_offset offset;
3019eac3 4517 cu_offset type_offset_in_tu;
8b70b953 4518 ULONGEST signature;
52dc124a 4519 struct signatured_type *sig_type;
3019eac3 4520 struct dwo_unit *dwo_tu;
8b70b953 4521 void **slot;
d521ce57 4522 const gdb_byte *ptr = info_ptr;
9ff913ba 4523 struct comp_unit_head header;
dee91e82 4524 unsigned int length;
348e048f 4525
b64f50a1 4526 offset.sect_off = ptr - section->buffer;
348e048f 4527
8b70b953 4528 /* We need to read the type's signature in order to build the hash
9ff913ba 4529 table, but we don't need anything else just yet. */
348e048f 4530
4bdcc0c1
DE
4531 ptr = read_and_check_type_unit_head (&header, section,
4532 abbrev_section, ptr,
3019eac3 4533 &signature, &type_offset_in_tu);
6caca83c 4534
1ce1cefd 4535 length = get_cu_length (&header);
dee91e82 4536
6caca83c 4537 /* Skip dummy type units. */
dee91e82
DE
4538 if (ptr >= info_ptr + length
4539 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4540 {
1ce1cefd 4541 info_ptr += length;
6caca83c
CC
4542 continue;
4543 }
8b70b953 4544
0349ea22
DE
4545 if (types_htab == NULL)
4546 {
4547 if (dwo_file)
4548 types_htab = allocate_dwo_unit_table (objfile);
4549 else
4550 types_htab = allocate_signatured_type_table (objfile);
4551 }
4552
3019eac3
DE
4553 if (dwo_file)
4554 {
4555 sig_type = NULL;
4556 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4557 struct dwo_unit);
4558 dwo_tu->dwo_file = dwo_file;
4559 dwo_tu->signature = signature;
4560 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4561 dwo_tu->section = section;
3019eac3
DE
4562 dwo_tu->offset = offset;
4563 dwo_tu->length = length;
4564 }
4565 else
4566 {
4567 /* N.B.: type_offset is not usable if this type uses a DWO file.
4568 The real type_offset is in the DWO file. */
4569 dwo_tu = NULL;
4570 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4571 struct signatured_type);
4572 sig_type->signature = signature;
4573 sig_type->type_offset_in_tu = type_offset_in_tu;
4574 sig_type->per_cu.objfile = objfile;
4575 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4576 sig_type->per_cu.section = section;
3019eac3
DE
4577 sig_type->per_cu.offset = offset;
4578 sig_type->per_cu.length = length;
4579 }
8b70b953 4580
3019eac3
DE
4581 slot = htab_find_slot (types_htab,
4582 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4583 INSERT);
8b70b953
TT
4584 gdb_assert (slot != NULL);
4585 if (*slot != NULL)
4586 {
3019eac3
DE
4587 sect_offset dup_offset;
4588
4589 if (dwo_file)
4590 {
4591 const struct dwo_unit *dup_tu = *slot;
4592
4593 dup_offset = dup_tu->offset;
4594 }
4595 else
4596 {
4597 const struct signatured_type *dup_tu = *slot;
4598
4599 dup_offset = dup_tu->per_cu.offset;
4600 }
b3c8eb43 4601
8b70b953 4602 complaint (&symfile_complaints,
c88ee1f0 4603 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4604 " the entry at offset 0x%x, signature %s"),
3019eac3 4605 offset.sect_off, dup_offset.sect_off,
4031ecc5 4606 hex_string (signature));
8b70b953 4607 }
3019eac3 4608 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4609
73be47f5 4610 if (dwarf2_read_debug > 1)
4031ecc5 4611 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4612 offset.sect_off,
4031ecc5 4613 hex_string (signature));
348e048f 4614
dee91e82 4615 info_ptr += length;
8b70b953 4616 }
348e048f
DE
4617 }
4618
3019eac3
DE
4619 return types_htab;
4620}
4621
4622/* Create the hash table of all entries in the .debug_types section,
4623 and initialize all_type_units.
4624 The result is zero if there is an error (e.g. missing .debug_types section),
4625 otherwise non-zero. */
4626
4627static int
4628create_all_type_units (struct objfile *objfile)
4629{
4630 htab_t types_htab;
b4dd5633 4631 struct signatured_type **iter;
3019eac3
DE
4632
4633 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4634 if (types_htab == NULL)
4635 {
4636 dwarf2_per_objfile->signatured_types = NULL;
4637 return 0;
4638 }
4639
348e048f
DE
4640 dwarf2_per_objfile->signatured_types = types_htab;
4641
d467dd73
DE
4642 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4643 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
4644 = xmalloc (dwarf2_per_objfile->n_type_units
4645 * sizeof (struct signatured_type *));
d467dd73
DE
4646 iter = &dwarf2_per_objfile->all_type_units[0];
4647 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4648 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4649 == dwarf2_per_objfile->n_type_units);
1fd400ff 4650
348e048f
DE
4651 return 1;
4652}
4653
a2ce51a0
DE
4654/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4655 Fill in SIG_ENTRY with DWO_ENTRY. */
4656
4657static void
4658fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4659 struct signatured_type *sig_entry,
4660 struct dwo_unit *dwo_entry)
4661{
7ee85ab1 4662 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4663 gdb_assert (! sig_entry->per_cu.queued);
4664 gdb_assert (sig_entry->per_cu.cu == NULL);
4665 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4666 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4667 gdb_assert (sig_entry->signature == dwo_entry->signature);
4668 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4669 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4670 gdb_assert (sig_entry->dwo_unit == NULL);
4671
4672 sig_entry->per_cu.section = dwo_entry->section;
4673 sig_entry->per_cu.offset = dwo_entry->offset;
4674 sig_entry->per_cu.length = dwo_entry->length;
4675 sig_entry->per_cu.reading_dwo_directly = 1;
4676 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4677 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4678 sig_entry->dwo_unit = dwo_entry;
4679}
4680
4681/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4682 If we haven't read the TU yet, create the signatured_type data structure
4683 for a TU to be read in directly from a DWO file, bypassing the stub.
4684 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4685 using .gdb_index, then when reading a CU we want to stay in the DWO file
4686 containing that CU. Otherwise we could end up reading several other DWO
4687 files (due to comdat folding) to process the transitive closure of all the
4688 mentioned TUs, and that can be slow. The current DWO file will have every
4689 type signature that it needs.
a2ce51a0
DE
4690 We only do this for .gdb_index because in the psymtab case we already have
4691 to read all the DWOs to build the type unit groups. */
4692
4693static struct signatured_type *
4694lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4695{
4696 struct objfile *objfile = dwarf2_per_objfile->objfile;
4697 struct dwo_file *dwo_file;
4698 struct dwo_unit find_dwo_entry, *dwo_entry;
4699 struct signatured_type find_sig_entry, *sig_entry;
4700
4701 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4702
4703 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4704 dwo_unit of the TU itself. */
4705 dwo_file = cu->dwo_unit->dwo_file;
4706
4707 /* We only ever need to read in one copy of a signatured type.
4708 Just use the global signatured_types array. If this is the first time
4709 we're reading this type, replace the recorded data from .gdb_index with
4710 this TU. */
4711
4712 if (dwarf2_per_objfile->signatured_types == NULL)
4713 return NULL;
4714 find_sig_entry.signature = sig;
4715 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4716 if (sig_entry == NULL)
4717 return NULL;
7ee85ab1
DE
4718
4719 /* We can get here with the TU already read, *or* in the process of being
4720 read. Don't reassign it if that's the case. Also note that if the TU is
4721 already being read, it may not have come from a DWO, the program may be
4722 a mix of Fission-compiled code and non-Fission-compiled code. */
a2ce51a0 4723 /* Have we already tried to read this TU? */
7ee85ab1 4724 if (sig_entry->per_cu.tu_read)
a2ce51a0
DE
4725 return sig_entry;
4726
4727 /* Ok, this is the first time we're reading this TU. */
4728 if (dwo_file->tus == NULL)
4729 return NULL;
4730 find_dwo_entry.signature = sig;
4731 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4732 if (dwo_entry == NULL)
4733 return NULL;
4734
4735 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4736 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4737 return sig_entry;
4738}
4739
4740/* Subroutine of lookup_dwp_signatured_type.
4741 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4742
4743static struct signatured_type *
4744add_type_unit (ULONGEST sig)
4745{
4746 struct objfile *objfile = dwarf2_per_objfile->objfile;
4747 int n_type_units = dwarf2_per_objfile->n_type_units;
4748 struct signatured_type *sig_type;
4749 void **slot;
4750
4751 ++n_type_units;
4752 dwarf2_per_objfile->all_type_units =
4753 xrealloc (dwarf2_per_objfile->all_type_units,
4754 n_type_units * sizeof (struct signatured_type *));
4755 dwarf2_per_objfile->n_type_units = n_type_units;
4756 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4757 struct signatured_type);
4758 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4759 sig_type->signature = sig;
4760 sig_type->per_cu.is_debug_types = 1;
4761 sig_type->per_cu.v.quick =
4762 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4763 struct dwarf2_per_cu_quick_data);
4764 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4765 sig_type, INSERT);
4766 gdb_assert (*slot == NULL);
4767 *slot = sig_type;
4768 /* The rest of sig_type must be filled in by the caller. */
4769 return sig_type;
4770}
4771
4772/* Subroutine of lookup_signatured_type.
4773 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4774 then try the DWP file.
4775 Normally this "can't happen", but if there's a bug in signature
4776 generation and/or the DWP file is built incorrectly, it can happen.
4777 Using the type directly from the DWP file means we don't have the stub
4778 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4779 not critical. [Eventually the stub may go away for type units anyway.] */
4780
4781static struct signatured_type *
4782lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4783{
4784 struct objfile *objfile = dwarf2_per_objfile->objfile;
4785 struct dwp_file *dwp_file = get_dwp_file ();
4786 struct dwo_unit *dwo_entry;
4787 struct signatured_type find_sig_entry, *sig_entry;
4788
4789 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4790 gdb_assert (dwp_file != NULL);
4791
4792 if (dwarf2_per_objfile->signatured_types != NULL)
4793 {
4794 find_sig_entry.signature = sig;
4795 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4796 &find_sig_entry);
4797 if (sig_entry != NULL)
4798 return sig_entry;
4799 }
4800
4801 /* This is the "shouldn't happen" case.
4802 Try the DWP file and hope for the best. */
4803 if (dwp_file->tus == NULL)
4804 return NULL;
57d63ce2
DE
4805 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4806 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4807 if (dwo_entry == NULL)
4808 return NULL;
4809
4810 sig_entry = add_type_unit (sig);
4811 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4812
4813 /* The caller will signal a complaint if we return NULL.
4814 Here we don't return NULL but we still want to complain. */
4815 complaint (&symfile_complaints,
4816 _("Bad type signature %s referenced by %s at 0x%x,"
4817 " coping by using copy in DWP [in module %s]"),
4818 hex_string (sig),
4819 cu->per_cu->is_debug_types ? "TU" : "CU",
4820 cu->per_cu->offset.sect_off,
4262abfb 4821 objfile_name (objfile));
a2ce51a0
DE
4822
4823 return sig_entry;
4824}
4825
380bca97 4826/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4827 Returns NULL if signature SIG is not present in the table.
4828 It is up to the caller to complain about this. */
348e048f
DE
4829
4830static struct signatured_type *
a2ce51a0 4831lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 4832{
a2ce51a0
DE
4833 if (cu->dwo_unit
4834 && dwarf2_per_objfile->using_index)
4835 {
4836 /* We're in a DWO/DWP file, and we're using .gdb_index.
4837 These cases require special processing. */
4838 if (get_dwp_file () == NULL)
4839 return lookup_dwo_signatured_type (cu, sig);
4840 else
4841 return lookup_dwp_signatured_type (cu, sig);
4842 }
4843 else
4844 {
4845 struct signatured_type find_entry, *entry;
348e048f 4846
a2ce51a0
DE
4847 if (dwarf2_per_objfile->signatured_types == NULL)
4848 return NULL;
4849 find_entry.signature = sig;
4850 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4851 return entry;
4852 }
348e048f 4853}
42e7ad6c
DE
4854\f
4855/* Low level DIE reading support. */
348e048f 4856
d85a05f0
DJ
4857/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4858
4859static void
4860init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 4861 struct dwarf2_cu *cu,
3019eac3
DE
4862 struct dwarf2_section_info *section,
4863 struct dwo_file *dwo_file)
d85a05f0 4864{
fceca515 4865 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 4866 reader->abfd = get_section_bfd_owner (section);
d85a05f0 4867 reader->cu = cu;
3019eac3 4868 reader->dwo_file = dwo_file;
dee91e82
DE
4869 reader->die_section = section;
4870 reader->buffer = section->buffer;
f664829e 4871 reader->buffer_end = section->buffer + section->size;
a2ce51a0 4872 reader->comp_dir = NULL;
d85a05f0
DJ
4873}
4874
b0c7bfa9
DE
4875/* Subroutine of init_cutu_and_read_dies to simplify it.
4876 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4877 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4878 already.
4879
4880 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4881 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
4882 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4883 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4884 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4885 COMP_DIR must be non-NULL.
b0c7bfa9
DE
4886 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4887 are filled in with the info of the DIE from the DWO file.
4888 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4889 provided an abbrev table to use.
4890 The result is non-zero if a valid (non-dummy) DIE was found. */
4891
4892static int
4893read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4894 struct dwo_unit *dwo_unit,
4895 int abbrev_table_provided,
4896 struct die_info *stub_comp_unit_die,
a2ce51a0 4897 const char *stub_comp_dir,
b0c7bfa9 4898 struct die_reader_specs *result_reader,
d521ce57 4899 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
4900 struct die_info **result_comp_unit_die,
4901 int *result_has_children)
4902{
4903 struct objfile *objfile = dwarf2_per_objfile->objfile;
4904 struct dwarf2_cu *cu = this_cu->cu;
4905 struct dwarf2_section_info *section;
4906 bfd *abfd;
d521ce57 4907 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
4908 const char *comp_dir_string;
4909 ULONGEST signature; /* Or dwo_id. */
4910 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4911 int i,num_extra_attrs;
4912 struct dwarf2_section_info *dwo_abbrev_section;
4913 struct attribute *attr;
a2ce51a0 4914 struct attribute comp_dir_attr;
b0c7bfa9
DE
4915 struct die_info *comp_unit_die;
4916
a2ce51a0
DE
4917 /* Both can't be provided. */
4918 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4919
b0c7bfa9
DE
4920 /* These attributes aren't processed until later:
4921 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4922 However, the attribute is found in the stub which we won't have later.
4923 In order to not impose this complication on the rest of the code,
4924 we read them here and copy them to the DWO CU/TU die. */
4925
4926 stmt_list = NULL;
4927 low_pc = NULL;
4928 high_pc = NULL;
4929 ranges = NULL;
4930 comp_dir = NULL;
4931
4932 if (stub_comp_unit_die != NULL)
4933 {
4934 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4935 DWO file. */
4936 if (! this_cu->is_debug_types)
4937 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4938 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4939 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4940 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4941 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4942
4943 /* There should be a DW_AT_addr_base attribute here (if needed).
4944 We need the value before we can process DW_FORM_GNU_addr_index. */
4945 cu->addr_base = 0;
4946 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4947 if (attr)
4948 cu->addr_base = DW_UNSND (attr);
4949
4950 /* There should be a DW_AT_ranges_base attribute here (if needed).
4951 We need the value before we can process DW_AT_ranges. */
4952 cu->ranges_base = 0;
4953 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4954 if (attr)
4955 cu->ranges_base = DW_UNSND (attr);
4956 }
a2ce51a0
DE
4957 else if (stub_comp_dir != NULL)
4958 {
4959 /* Reconstruct the comp_dir attribute to simplify the code below. */
4960 comp_dir = (struct attribute *)
4961 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4962 comp_dir->name = DW_AT_comp_dir;
4963 comp_dir->form = DW_FORM_string;
4964 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4965 DW_STRING (comp_dir) = stub_comp_dir;
4966 }
b0c7bfa9
DE
4967
4968 /* Set up for reading the DWO CU/TU. */
4969 cu->dwo_unit = dwo_unit;
4970 section = dwo_unit->section;
4971 dwarf2_read_section (objfile, section);
a32a8923 4972 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
4973 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4974 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4975 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4976
4977 if (this_cu->is_debug_types)
4978 {
4979 ULONGEST header_signature;
4980 cu_offset type_offset_in_tu;
4981 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4982
4983 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4984 dwo_abbrev_section,
4985 info_ptr,
4986 &header_signature,
4987 &type_offset_in_tu);
a2ce51a0
DE
4988 /* This is not an assert because it can be caused by bad debug info. */
4989 if (sig_type->signature != header_signature)
4990 {
4991 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
4992 " TU at offset 0x%x [in module %s]"),
4993 hex_string (sig_type->signature),
4994 hex_string (header_signature),
4995 dwo_unit->offset.sect_off,
4996 bfd_get_filename (abfd));
4997 }
b0c7bfa9
DE
4998 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4999 /* For DWOs coming from DWP files, we don't know the CU length
5000 nor the type's offset in the TU until now. */
5001 dwo_unit->length = get_cu_length (&cu->header);
5002 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5003
5004 /* Establish the type offset that can be used to lookup the type.
5005 For DWO files, we don't know it until now. */
5006 sig_type->type_offset_in_section.sect_off =
5007 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5008 }
5009 else
5010 {
5011 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5012 dwo_abbrev_section,
5013 info_ptr, 0);
5014 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5015 /* For DWOs coming from DWP files, we don't know the CU length
5016 until now. */
5017 dwo_unit->length = get_cu_length (&cu->header);
5018 }
5019
02142a6c
DE
5020 /* Replace the CU's original abbrev table with the DWO's.
5021 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5022 if (abbrev_table_provided)
5023 {
5024 /* Don't free the provided abbrev table, the caller of
5025 init_cutu_and_read_dies owns it. */
5026 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5027 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5028 make_cleanup (dwarf2_free_abbrev_table, cu);
5029 }
5030 else
5031 {
5032 dwarf2_free_abbrev_table (cu);
5033 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5034 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5035 }
5036
5037 /* Read in the die, but leave space to copy over the attributes
5038 from the stub. This has the benefit of simplifying the rest of
5039 the code - all the work to maintain the illusion of a single
5040 DW_TAG_{compile,type}_unit DIE is done here. */
5041 num_extra_attrs = ((stmt_list != NULL)
5042 + (low_pc != NULL)
5043 + (high_pc != NULL)
5044 + (ranges != NULL)
5045 + (comp_dir != NULL));
5046 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5047 result_has_children, num_extra_attrs);
5048
5049 /* Copy over the attributes from the stub to the DIE we just read in. */
5050 comp_unit_die = *result_comp_unit_die;
5051 i = comp_unit_die->num_attrs;
5052 if (stmt_list != NULL)
5053 comp_unit_die->attrs[i++] = *stmt_list;
5054 if (low_pc != NULL)
5055 comp_unit_die->attrs[i++] = *low_pc;
5056 if (high_pc != NULL)
5057 comp_unit_die->attrs[i++] = *high_pc;
5058 if (ranges != NULL)
5059 comp_unit_die->attrs[i++] = *ranges;
5060 if (comp_dir != NULL)
5061 comp_unit_die->attrs[i++] = *comp_dir;
5062 comp_unit_die->num_attrs += num_extra_attrs;
5063
bf6af496
DE
5064 if (dwarf2_die_debug)
5065 {
5066 fprintf_unfiltered (gdb_stdlog,
5067 "Read die from %s@0x%x of %s:\n",
a32a8923 5068 get_section_name (section),
bf6af496
DE
5069 (unsigned) (begin_info_ptr - section->buffer),
5070 bfd_get_filename (abfd));
5071 dump_die (comp_unit_die, dwarf2_die_debug);
5072 }
5073
a2ce51a0
DE
5074 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5075 TUs by skipping the stub and going directly to the entry in the DWO file.
5076 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5077 to get it via circuitous means. Blech. */
5078 if (comp_dir != NULL)
5079 result_reader->comp_dir = DW_STRING (comp_dir);
5080
b0c7bfa9
DE
5081 /* Skip dummy compilation units. */
5082 if (info_ptr >= begin_info_ptr + dwo_unit->length
5083 || peek_abbrev_code (abfd, info_ptr) == 0)
5084 return 0;
5085
5086 *result_info_ptr = info_ptr;
5087 return 1;
5088}
5089
5090/* Subroutine of init_cutu_and_read_dies to simplify it.
5091 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5092 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5093
5094static struct dwo_unit *
5095lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5096 struct die_info *comp_unit_die)
5097{
5098 struct dwarf2_cu *cu = this_cu->cu;
5099 struct attribute *attr;
5100 ULONGEST signature;
5101 struct dwo_unit *dwo_unit;
5102 const char *comp_dir, *dwo_name;
5103
a2ce51a0
DE
5104 gdb_assert (cu != NULL);
5105
b0c7bfa9
DE
5106 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5107 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5108 gdb_assert (attr != NULL);
5109 dwo_name = DW_STRING (attr);
5110 comp_dir = NULL;
5111 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5112 if (attr)
5113 comp_dir = DW_STRING (attr);
5114
5115 if (this_cu->is_debug_types)
5116 {
5117 struct signatured_type *sig_type;
5118
5119 /* Since this_cu is the first member of struct signatured_type,
5120 we can go from a pointer to one to a pointer to the other. */
5121 sig_type = (struct signatured_type *) this_cu;
5122 signature = sig_type->signature;
5123 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5124 }
5125 else
5126 {
5127 struct attribute *attr;
5128
5129 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5130 if (! attr)
5131 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5132 " [in module %s]"),
4262abfb 5133 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5134 signature = DW_UNSND (attr);
5135 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5136 signature);
5137 }
5138
b0c7bfa9
DE
5139 return dwo_unit;
5140}
5141
a2ce51a0
DE
5142/* Subroutine of init_cutu_and_read_dies to simplify it.
5143 Read a TU directly from a DWO file, bypassing the stub. */
5144
5145static void
5146init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
5147 die_reader_func_ftype *die_reader_func,
5148 void *data)
5149{
5150 struct dwarf2_cu *cu;
5151 struct signatured_type *sig_type;
5152 struct cleanup *cleanups, *free_cu_cleanup;
5153 struct die_reader_specs reader;
5154 const gdb_byte *info_ptr;
5155 struct die_info *comp_unit_die;
5156 int has_children;
5157
5158 /* Verify we can do the following downcast, and that we have the
5159 data we need. */
5160 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5161 sig_type = (struct signatured_type *) this_cu;
5162 gdb_assert (sig_type->dwo_unit != NULL);
5163
5164 cleanups = make_cleanup (null_cleanup, NULL);
5165
5166 gdb_assert (this_cu->cu == NULL);
5167 cu = xmalloc (sizeof (*cu));
5168 init_one_comp_unit (cu, this_cu);
5169 /* If an error occurs while loading, release our storage. */
5170 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5171
5172 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5173 0 /* abbrev_table_provided */,
5174 NULL /* stub_comp_unit_die */,
5175 sig_type->dwo_unit->dwo_file->comp_dir,
5176 &reader, &info_ptr,
5177 &comp_unit_die, &has_children) == 0)
5178 {
5179 /* Dummy die. */
5180 do_cleanups (cleanups);
5181 return;
5182 }
5183
5184 /* All the "real" work is done here. */
5185 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5186
5187 /* This duplicates some code in init_cutu_and_read_dies,
5188 but the alternative is making the latter more complex.
5189 This function is only for the special case of using DWO files directly:
5190 no point in overly complicating the general case just to handle this. */
5191 if (keep)
5192 {
5193 /* We've successfully allocated this compilation unit. Let our
5194 caller clean it up when finished with it. */
5195 discard_cleanups (free_cu_cleanup);
5196
5197 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5198 So we have to manually free the abbrev table. */
5199 dwarf2_free_abbrev_table (cu);
5200
5201 /* Link this CU into read_in_chain. */
5202 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5203 dwarf2_per_objfile->read_in_chain = this_cu;
5204 }
5205 else
5206 do_cleanups (free_cu_cleanup);
5207
5208 do_cleanups (cleanups);
5209}
5210
fd820528 5211/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5212 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5213
f4dc4d17
DE
5214 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5215 Otherwise the table specified in the comp unit header is read in and used.
5216 This is an optimization for when we already have the abbrev table.
5217
dee91e82
DE
5218 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5219 Otherwise, a new CU is allocated with xmalloc.
5220
5221 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5222 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5223
5224 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5225 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5226
70221824 5227static void
fd820528 5228init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5229 struct abbrev_table *abbrev_table,
fd820528
DE
5230 int use_existing_cu, int keep,
5231 die_reader_func_ftype *die_reader_func,
5232 void *data)
c906108c 5233{
dee91e82 5234 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5235 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5236 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5237 struct dwarf2_cu *cu;
d521ce57 5238 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5239 struct die_reader_specs reader;
d85a05f0 5240 struct die_info *comp_unit_die;
dee91e82 5241 int has_children;
d85a05f0 5242 struct attribute *attr;
365156ad 5243 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5244 struct signatured_type *sig_type = NULL;
4bdcc0c1 5245 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5246 /* Non-zero if CU currently points to a DWO file and we need to
5247 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5248 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5249 int rereading_dwo_cu = 0;
c906108c 5250
09406207
DE
5251 if (dwarf2_die_debug)
5252 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5253 this_cu->is_debug_types ? "type" : "comp",
5254 this_cu->offset.sect_off);
5255
dee91e82
DE
5256 if (use_existing_cu)
5257 gdb_assert (keep);
23745b47 5258
a2ce51a0
DE
5259 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5260 file (instead of going through the stub), short-circuit all of this. */
5261 if (this_cu->reading_dwo_directly)
5262 {
5263 /* Narrow down the scope of possibilities to have to understand. */
5264 gdb_assert (this_cu->is_debug_types);
5265 gdb_assert (abbrev_table == NULL);
5266 gdb_assert (!use_existing_cu);
5267 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5268 return;
5269 }
5270
dee91e82
DE
5271 cleanups = make_cleanup (null_cleanup, NULL);
5272
5273 /* This is cheap if the section is already read in. */
5274 dwarf2_read_section (objfile, section);
5275
5276 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5277
5278 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5279
5280 if (use_existing_cu && this_cu->cu != NULL)
5281 {
5282 cu = this_cu->cu;
42e7ad6c
DE
5283
5284 /* If this CU is from a DWO file we need to start over, we need to
5285 refetch the attributes from the skeleton CU.
5286 This could be optimized by retrieving those attributes from when we
5287 were here the first time: the previous comp_unit_die was stored in
5288 comp_unit_obstack. But there's no data yet that we need this
5289 optimization. */
5290 if (cu->dwo_unit != NULL)
5291 rereading_dwo_cu = 1;
dee91e82
DE
5292 }
5293 else
5294 {
5295 /* If !use_existing_cu, this_cu->cu must be NULL. */
5296 gdb_assert (this_cu->cu == NULL);
5297
5298 cu = xmalloc (sizeof (*cu));
5299 init_one_comp_unit (cu, this_cu);
5300
5301 /* If an error occurs while loading, release our storage. */
365156ad 5302 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5303 }
dee91e82 5304
b0c7bfa9 5305 /* Get the header. */
42e7ad6c
DE
5306 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5307 {
5308 /* We already have the header, there's no need to read it in again. */
5309 info_ptr += cu->header.first_die_offset.cu_off;
5310 }
5311 else
5312 {
3019eac3 5313 if (this_cu->is_debug_types)
dee91e82
DE
5314 {
5315 ULONGEST signature;
42e7ad6c 5316 cu_offset type_offset_in_tu;
dee91e82 5317
4bdcc0c1
DE
5318 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5319 abbrev_section, info_ptr,
42e7ad6c
DE
5320 &signature,
5321 &type_offset_in_tu);
dee91e82 5322
42e7ad6c
DE
5323 /* Since per_cu is the first member of struct signatured_type,
5324 we can go from a pointer to one to a pointer to the other. */
5325 sig_type = (struct signatured_type *) this_cu;
5326 gdb_assert (sig_type->signature == signature);
5327 gdb_assert (sig_type->type_offset_in_tu.cu_off
5328 == type_offset_in_tu.cu_off);
dee91e82
DE
5329 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5330
42e7ad6c
DE
5331 /* LENGTH has not been set yet for type units if we're
5332 using .gdb_index. */
1ce1cefd 5333 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5334
5335 /* Establish the type offset that can be used to lookup the type. */
5336 sig_type->type_offset_in_section.sect_off =
5337 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5338 }
5339 else
5340 {
4bdcc0c1
DE
5341 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5342 abbrev_section,
5343 info_ptr, 0);
dee91e82
DE
5344
5345 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5346 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5347 }
5348 }
10b3939b 5349
6caca83c 5350 /* Skip dummy compilation units. */
dee91e82 5351 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5352 || peek_abbrev_code (abfd, info_ptr) == 0)
5353 {
dee91e82 5354 do_cleanups (cleanups);
21b2bd31 5355 return;
6caca83c
CC
5356 }
5357
433df2d4
DE
5358 /* If we don't have them yet, read the abbrevs for this compilation unit.
5359 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5360 done. Note that it's important that if the CU had an abbrev table
5361 on entry we don't free it when we're done: Somewhere up the call stack
5362 it may be in use. */
f4dc4d17
DE
5363 if (abbrev_table != NULL)
5364 {
5365 gdb_assert (cu->abbrev_table == NULL);
5366 gdb_assert (cu->header.abbrev_offset.sect_off
5367 == abbrev_table->offset.sect_off);
5368 cu->abbrev_table = abbrev_table;
5369 }
5370 else if (cu->abbrev_table == NULL)
dee91e82 5371 {
4bdcc0c1 5372 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5373 make_cleanup (dwarf2_free_abbrev_table, cu);
5374 }
42e7ad6c
DE
5375 else if (rereading_dwo_cu)
5376 {
5377 dwarf2_free_abbrev_table (cu);
5378 dwarf2_read_abbrevs (cu, abbrev_section);
5379 }
af703f96 5380
dee91e82 5381 /* Read the top level CU/TU die. */
3019eac3 5382 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5383 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5384
b0c7bfa9
DE
5385 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5386 from the DWO file.
5387 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5388 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5389 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5390 if (attr)
5391 {
3019eac3 5392 struct dwo_unit *dwo_unit;
b0c7bfa9 5393 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5394
5395 if (has_children)
6a506a2d
DE
5396 {
5397 complaint (&symfile_complaints,
5398 _("compilation unit with DW_AT_GNU_dwo_name"
5399 " has children (offset 0x%x) [in module %s]"),
5400 this_cu->offset.sect_off, bfd_get_filename (abfd));
5401 }
b0c7bfa9 5402 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5403 if (dwo_unit != NULL)
3019eac3 5404 {
6a506a2d
DE
5405 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5406 abbrev_table != NULL,
a2ce51a0 5407 comp_unit_die, NULL,
6a506a2d
DE
5408 &reader, &info_ptr,
5409 &dwo_comp_unit_die, &has_children) == 0)
5410 {
5411 /* Dummy die. */
5412 do_cleanups (cleanups);
5413 return;
5414 }
5415 comp_unit_die = dwo_comp_unit_die;
5416 }
5417 else
5418 {
5419 /* Yikes, we couldn't find the rest of the DIE, we only have
5420 the stub. A complaint has already been logged. There's
5421 not much more we can do except pass on the stub DIE to
5422 die_reader_func. We don't want to throw an error on bad
5423 debug info. */
3019eac3
DE
5424 }
5425 }
5426
b0c7bfa9 5427 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5428 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5429
b0c7bfa9 5430 /* Done, clean up. */
365156ad 5431 if (free_cu_cleanup != NULL)
348e048f 5432 {
365156ad
TT
5433 if (keep)
5434 {
5435 /* We've successfully allocated this compilation unit. Let our
5436 caller clean it up when finished with it. */
5437 discard_cleanups (free_cu_cleanup);
dee91e82 5438
365156ad
TT
5439 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5440 So we have to manually free the abbrev table. */
5441 dwarf2_free_abbrev_table (cu);
dee91e82 5442
365156ad
TT
5443 /* Link this CU into read_in_chain. */
5444 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5445 dwarf2_per_objfile->read_in_chain = this_cu;
5446 }
5447 else
5448 do_cleanups (free_cu_cleanup);
348e048f 5449 }
365156ad
TT
5450
5451 do_cleanups (cleanups);
dee91e82
DE
5452}
5453
3019eac3
DE
5454/* Read CU/TU THIS_CU in section SECTION,
5455 but do not follow DW_AT_GNU_dwo_name if present.
80626a55
DE
5456 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5457 to have already done the lookup to find the DWO/DWP file).
dee91e82
DE
5458
5459 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5460 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5461
5462 We fill in THIS_CU->length.
5463
5464 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5465 linker) then DIE_READER_FUNC will not get called.
5466
5467 THIS_CU->cu is always freed when done.
3019eac3
DE
5468 This is done in order to not leave THIS_CU->cu in a state where we have
5469 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5470
5471static void
5472init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5473 struct dwarf2_section_info *abbrev_section,
3019eac3 5474 struct dwo_file *dwo_file,
dee91e82
DE
5475 die_reader_func_ftype *die_reader_func,
5476 void *data)
5477{
5478 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5479 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5480 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5481 struct dwarf2_cu cu;
d521ce57 5482 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5483 struct die_reader_specs reader;
5484 struct cleanup *cleanups;
5485 struct die_info *comp_unit_die;
5486 int has_children;
5487
09406207
DE
5488 if (dwarf2_die_debug)
5489 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5490 this_cu->is_debug_types ? "type" : "comp",
5491 this_cu->offset.sect_off);
5492
dee91e82
DE
5493 gdb_assert (this_cu->cu == NULL);
5494
dee91e82
DE
5495 /* This is cheap if the section is already read in. */
5496 dwarf2_read_section (objfile, section);
5497
5498 init_one_comp_unit (&cu, this_cu);
5499
5500 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5501
5502 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5503 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5504 abbrev_section, info_ptr,
3019eac3 5505 this_cu->is_debug_types);
dee91e82 5506
1ce1cefd 5507 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5508
5509 /* Skip dummy compilation units. */
5510 if (info_ptr >= begin_info_ptr + this_cu->length
5511 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5512 {
dee91e82 5513 do_cleanups (cleanups);
21b2bd31 5514 return;
93311388 5515 }
72bf9492 5516
dee91e82
DE
5517 dwarf2_read_abbrevs (&cu, abbrev_section);
5518 make_cleanup (dwarf2_free_abbrev_table, &cu);
5519
3019eac3 5520 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5521 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5522
5523 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5524
5525 do_cleanups (cleanups);
5526}
5527
3019eac3
DE
5528/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5529 does not lookup the specified DWO file.
5530 This cannot be used to read DWO files.
dee91e82
DE
5531
5532 THIS_CU->cu is always freed when done.
3019eac3
DE
5533 This is done in order to not leave THIS_CU->cu in a state where we have
5534 to care whether it refers to the "main" CU or the DWO CU.
5535 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5536
5537static void
5538init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5539 die_reader_func_ftype *die_reader_func,
5540 void *data)
5541{
5542 init_cutu_and_read_dies_no_follow (this_cu,
36586728 5543 get_abbrev_section_for_cu (this_cu),
3019eac3 5544 NULL,
dee91e82
DE
5545 die_reader_func, data);
5546}
0018ea6f
DE
5547\f
5548/* Type Unit Groups.
dee91e82 5549
0018ea6f
DE
5550 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5551 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5552 so that all types coming from the same compilation (.o file) are grouped
5553 together. A future step could be to put the types in the same symtab as
5554 the CU the types ultimately came from. */
ff013f42 5555
f4dc4d17
DE
5556static hashval_t
5557hash_type_unit_group (const void *item)
5558{
094b34ac 5559 const struct type_unit_group *tu_group = item;
f4dc4d17 5560
094b34ac 5561 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5562}
348e048f
DE
5563
5564static int
f4dc4d17 5565eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5566{
f4dc4d17
DE
5567 const struct type_unit_group *lhs = item_lhs;
5568 const struct type_unit_group *rhs = item_rhs;
348e048f 5569
094b34ac 5570 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5571}
348e048f 5572
f4dc4d17
DE
5573/* Allocate a hash table for type unit groups. */
5574
5575static htab_t
5576allocate_type_unit_groups_table (void)
5577{
5578 return htab_create_alloc_ex (3,
5579 hash_type_unit_group,
5580 eq_type_unit_group,
5581 NULL,
5582 &dwarf2_per_objfile->objfile->objfile_obstack,
5583 hashtab_obstack_allocate,
5584 dummy_obstack_deallocate);
5585}
dee91e82 5586
f4dc4d17
DE
5587/* Type units that don't have DW_AT_stmt_list are grouped into their own
5588 partial symtabs. We combine several TUs per psymtab to not let the size
5589 of any one psymtab grow too big. */
5590#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5591#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5592
094b34ac 5593/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5594 Create the type_unit_group object used to hold one or more TUs. */
5595
5596static struct type_unit_group *
094b34ac 5597create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5598{
5599 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5600 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5601 struct type_unit_group *tu_group;
f4dc4d17
DE
5602
5603 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5604 struct type_unit_group);
094b34ac 5605 per_cu = &tu_group->per_cu;
f4dc4d17 5606 per_cu->objfile = objfile;
f4dc4d17 5607
094b34ac
DE
5608 if (dwarf2_per_objfile->using_index)
5609 {
5610 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5611 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5612 }
5613 else
5614 {
5615 unsigned int line_offset = line_offset_struct.sect_off;
5616 struct partial_symtab *pst;
5617 char *name;
5618
5619 /* Give the symtab a useful name for debug purposes. */
5620 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5621 name = xstrprintf ("<type_units_%d>",
5622 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5623 else
5624 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5625
5626 pst = create_partial_symtab (per_cu, name);
5627 pst->anonymous = 1;
f4dc4d17 5628
094b34ac
DE
5629 xfree (name);
5630 }
f4dc4d17 5631
094b34ac
DE
5632 tu_group->hash.dwo_unit = cu->dwo_unit;
5633 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5634
5635 return tu_group;
5636}
5637
094b34ac
DE
5638/* Look up the type_unit_group for type unit CU, and create it if necessary.
5639 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5640
5641static struct type_unit_group *
ff39bb5e 5642get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5643{
5644 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5645 struct type_unit_group *tu_group;
5646 void **slot;
5647 unsigned int line_offset;
5648 struct type_unit_group type_unit_group_for_lookup;
5649
5650 if (dwarf2_per_objfile->type_unit_groups == NULL)
5651 {
5652 dwarf2_per_objfile->type_unit_groups =
5653 allocate_type_unit_groups_table ();
5654 }
5655
5656 /* Do we need to create a new group, or can we use an existing one? */
5657
5658 if (stmt_list)
5659 {
5660 line_offset = DW_UNSND (stmt_list);
5661 ++tu_stats->nr_symtab_sharers;
5662 }
5663 else
5664 {
5665 /* Ugh, no stmt_list. Rare, but we have to handle it.
5666 We can do various things here like create one group per TU or
5667 spread them over multiple groups to split up the expansion work.
5668 To avoid worst case scenarios (too many groups or too large groups)
5669 we, umm, group them in bunches. */
5670 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5671 | (tu_stats->nr_stmt_less_type_units
5672 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5673 ++tu_stats->nr_stmt_less_type_units;
5674 }
5675
094b34ac
DE
5676 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5677 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5678 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5679 &type_unit_group_for_lookup, INSERT);
5680 if (*slot != NULL)
5681 {
5682 tu_group = *slot;
5683 gdb_assert (tu_group != NULL);
5684 }
5685 else
5686 {
5687 sect_offset line_offset_struct;
5688
5689 line_offset_struct.sect_off = line_offset;
094b34ac 5690 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5691 *slot = tu_group;
5692 ++tu_stats->nr_symtabs;
5693 }
5694
5695 return tu_group;
5696}
5697
5698/* Struct used to sort TUs by their abbreviation table offset. */
5699
5700struct tu_abbrev_offset
5701{
5702 struct signatured_type *sig_type;
5703 sect_offset abbrev_offset;
5704};
5705
5706/* Helper routine for build_type_unit_groups, passed to qsort. */
5707
5708static int
5709sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5710{
5711 const struct tu_abbrev_offset * const *a = ap;
5712 const struct tu_abbrev_offset * const *b = bp;
5713 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5714 unsigned int boff = (*b)->abbrev_offset.sect_off;
5715
5716 return (aoff > boff) - (aoff < boff);
5717}
5718
5719/* A helper function to add a type_unit_group to a table. */
5720
5721static int
5722add_type_unit_group_to_table (void **slot, void *datum)
5723{
5724 struct type_unit_group *tu_group = *slot;
5725 struct type_unit_group ***datap = datum;
5726
5727 **datap = tu_group;
5728 ++*datap;
5729
5730 return 1;
5731}
5732
5733/* Efficiently read all the type units, calling init_cutu_and_read_dies on
5734 each one passing FUNC,DATA.
5735
5736 The efficiency is because we sort TUs by the abbrev table they use and
5737 only read each abbrev table once. In one program there are 200K TUs
5738 sharing 8K abbrev tables.
5739
5740 The main purpose of this function is to support building the
5741 dwarf2_per_objfile->type_unit_groups table.
5742 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5743 can collapse the search space by grouping them by stmt_list.
5744 The savings can be significant, in the same program from above the 200K TUs
5745 share 8K stmt_list tables.
5746
5747 FUNC is expected to call get_type_unit_group, which will create the
5748 struct type_unit_group if necessary and add it to
5749 dwarf2_per_objfile->type_unit_groups. */
5750
5751static void
5752build_type_unit_groups (die_reader_func_ftype *func, void *data)
5753{
5754 struct objfile *objfile = dwarf2_per_objfile->objfile;
5755 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5756 struct cleanup *cleanups;
5757 struct abbrev_table *abbrev_table;
5758 sect_offset abbrev_offset;
5759 struct tu_abbrev_offset *sorted_by_abbrev;
5760 struct type_unit_group **iter;
5761 int i;
5762
5763 /* It's up to the caller to not call us multiple times. */
5764 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5765
5766 if (dwarf2_per_objfile->n_type_units == 0)
5767 return;
5768
5769 /* TUs typically share abbrev tables, and there can be way more TUs than
5770 abbrev tables. Sort by abbrev table to reduce the number of times we
5771 read each abbrev table in.
5772 Alternatives are to punt or to maintain a cache of abbrev tables.
5773 This is simpler and efficient enough for now.
5774
5775 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5776 symtab to use). Typically TUs with the same abbrev offset have the same
5777 stmt_list value too so in practice this should work well.
5778
5779 The basic algorithm here is:
5780
5781 sort TUs by abbrev table
5782 for each TU with same abbrev table:
5783 read abbrev table if first user
5784 read TU top level DIE
5785 [IWBN if DWO skeletons had DW_AT_stmt_list]
5786 call FUNC */
5787
5788 if (dwarf2_read_debug)
5789 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5790
5791 /* Sort in a separate table to maintain the order of all_type_units
5792 for .gdb_index: TU indices directly index all_type_units. */
5793 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5794 dwarf2_per_objfile->n_type_units);
5795 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5796 {
5797 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5798
5799 sorted_by_abbrev[i].sig_type = sig_type;
5800 sorted_by_abbrev[i].abbrev_offset =
8a0459fd 5801 read_abbrev_offset (sig_type->per_cu.section,
f4dc4d17
DE
5802 sig_type->per_cu.offset);
5803 }
5804 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5805 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5806 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5807
094b34ac
DE
5808 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5809 called any number of times, so we don't reset tu_stats here. */
5810
f4dc4d17
DE
5811 abbrev_offset.sect_off = ~(unsigned) 0;
5812 abbrev_table = NULL;
5813 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5814
5815 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5816 {
5817 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5818
5819 /* Switch to the next abbrev table if necessary. */
5820 if (abbrev_table == NULL
5821 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5822 {
5823 if (abbrev_table != NULL)
5824 {
5825 abbrev_table_free (abbrev_table);
5826 /* Reset to NULL in case abbrev_table_read_table throws
5827 an error: abbrev_table_free_cleanup will get called. */
5828 abbrev_table = NULL;
5829 }
5830 abbrev_offset = tu->abbrev_offset;
5831 abbrev_table =
5832 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5833 abbrev_offset);
5834 ++tu_stats->nr_uniq_abbrev_tables;
5835 }
5836
5837 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5838 func, data);
5839 }
5840
a2ce51a0
DE
5841 /* type_unit_groups can be NULL if there is an error in the debug info.
5842 Just create an empty table so the rest of gdb doesn't have to watch
5843 for this error case. */
5844 if (dwarf2_per_objfile->type_unit_groups == NULL)
5845 {
5846 dwarf2_per_objfile->type_unit_groups =
5847 allocate_type_unit_groups_table ();
5848 dwarf2_per_objfile->n_type_unit_groups = 0;
5849 }
5850
f4dc4d17
DE
5851 /* Create a vector of pointers to primary type units to make it easy to
5852 iterate over them and CUs. See dw2_get_primary_cu. */
5853 dwarf2_per_objfile->n_type_unit_groups =
5854 htab_elements (dwarf2_per_objfile->type_unit_groups);
5855 dwarf2_per_objfile->all_type_unit_groups =
5856 obstack_alloc (&objfile->objfile_obstack,
5857 dwarf2_per_objfile->n_type_unit_groups
5858 * sizeof (struct type_unit_group *));
5859 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5860 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5861 add_type_unit_group_to_table, &iter);
5862 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5863 == dwarf2_per_objfile->n_type_unit_groups);
5864
5865 do_cleanups (cleanups);
5866
5867 if (dwarf2_read_debug)
5868 {
5869 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5870 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5871 dwarf2_per_objfile->n_type_units);
5872 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5873 tu_stats->nr_uniq_abbrev_tables);
5874 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5875 tu_stats->nr_symtabs);
5876 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5877 tu_stats->nr_symtab_sharers);
5878 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5879 tu_stats->nr_stmt_less_type_units);
5880 }
5881}
0018ea6f
DE
5882\f
5883/* Partial symbol tables. */
5884
5885/* Create a psymtab named NAME and assign it to PER_CU.
5886
5887 The caller must fill in the following details:
5888 dirname, textlow, texthigh. */
5889
5890static struct partial_symtab *
5891create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5892{
5893 struct objfile *objfile = per_cu->objfile;
5894 struct partial_symtab *pst;
5895
5896 pst = start_psymtab_common (objfile, objfile->section_offsets,
5897 name, 0,
5898 objfile->global_psymbols.next,
5899 objfile->static_psymbols.next);
5900
5901 pst->psymtabs_addrmap_supported = 1;
5902
5903 /* This is the glue that links PST into GDB's symbol API. */
5904 pst->read_symtab_private = per_cu;
5905 pst->read_symtab = dwarf2_read_symtab;
5906 per_cu->v.psymtab = pst;
5907
5908 return pst;
5909}
5910
b93601f3
TT
5911/* The DATA object passed to process_psymtab_comp_unit_reader has this
5912 type. */
5913
5914struct process_psymtab_comp_unit_data
5915{
5916 /* True if we are reading a DW_TAG_partial_unit. */
5917
5918 int want_partial_unit;
5919
5920 /* The "pretend" language that is used if the CU doesn't declare a
5921 language. */
5922
5923 enum language pretend_language;
5924};
5925
0018ea6f
DE
5926/* die_reader_func for process_psymtab_comp_unit. */
5927
5928static void
5929process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5930 const gdb_byte *info_ptr,
0018ea6f
DE
5931 struct die_info *comp_unit_die,
5932 int has_children,
5933 void *data)
5934{
5935 struct dwarf2_cu *cu = reader->cu;
5936 struct objfile *objfile = cu->objfile;
5937 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5938 struct attribute *attr;
5939 CORE_ADDR baseaddr;
5940 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5941 struct partial_symtab *pst;
5942 int has_pc_info;
5943 const char *filename;
b93601f3 5944 struct process_psymtab_comp_unit_data *info = data;
0018ea6f 5945
b93601f3 5946 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5947 return;
5948
5949 gdb_assert (! per_cu->is_debug_types);
5950
b93601f3 5951 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5952
5953 cu->list_in_scope = &file_symbols;
5954
5955 /* Allocate a new partial symbol table structure. */
5956 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5957 if (attr == NULL || !DW_STRING (attr))
5958 filename = "";
5959 else
5960 filename = DW_STRING (attr);
5961
5962 pst = create_partial_symtab (per_cu, filename);
5963
5964 /* This must be done before calling dwarf2_build_include_psymtabs. */
5965 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5966 if (attr != NULL)
5967 pst->dirname = DW_STRING (attr);
5968
5969 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5970
5971 dwarf2_find_base_address (comp_unit_die, cu);
5972
5973 /* Possibly set the default values of LOWPC and HIGHPC from
5974 `DW_AT_ranges'. */
5975 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5976 &best_highpc, cu, pst);
5977 if (has_pc_info == 1 && best_lowpc < best_highpc)
5978 /* Store the contiguous range if it is not empty; it can be empty for
5979 CUs with no code. */
5980 addrmap_set_empty (objfile->psymtabs_addrmap,
5981 best_lowpc + baseaddr,
5982 best_highpc + baseaddr - 1, pst);
5983
5984 /* Check if comp unit has_children.
5985 If so, read the rest of the partial symbols from this comp unit.
5986 If not, there's no more debug_info for this comp unit. */
5987 if (has_children)
5988 {
5989 struct partial_die_info *first_die;
5990 CORE_ADDR lowpc, highpc;
5991
5992 lowpc = ((CORE_ADDR) -1);
5993 highpc = ((CORE_ADDR) 0);
5994
5995 first_die = load_partial_dies (reader, info_ptr, 1);
5996
5997 scan_partial_symbols (first_die, &lowpc, &highpc,
5998 ! has_pc_info, cu);
5999
6000 /* If we didn't find a lowpc, set it to highpc to avoid
6001 complaints from `maint check'. */
6002 if (lowpc == ((CORE_ADDR) -1))
6003 lowpc = highpc;
6004
6005 /* If the compilation unit didn't have an explicit address range,
6006 then use the information extracted from its child dies. */
6007 if (! has_pc_info)
6008 {
6009 best_lowpc = lowpc;
6010 best_highpc = highpc;
6011 }
6012 }
6013 pst->textlow = best_lowpc + baseaddr;
6014 pst->texthigh = best_highpc + baseaddr;
6015
6016 pst->n_global_syms = objfile->global_psymbols.next -
6017 (objfile->global_psymbols.list + pst->globals_offset);
6018 pst->n_static_syms = objfile->static_psymbols.next -
6019 (objfile->static_psymbols.list + pst->statics_offset);
6020 sort_pst_symbols (objfile, pst);
6021
6022 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6023 {
6024 int i;
6025 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6026 struct dwarf2_per_cu_data *iter;
6027
6028 /* Fill in 'dependencies' here; we fill in 'users' in a
6029 post-pass. */
6030 pst->number_of_dependencies = len;
6031 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6032 len * sizeof (struct symtab *));
6033 for (i = 0;
6034 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6035 i, iter);
6036 ++i)
6037 pst->dependencies[i] = iter->v.psymtab;
6038
6039 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6040 }
6041
6042 /* Get the list of files included in the current compilation unit,
6043 and build a psymtab for each of them. */
6044 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6045
6046 if (dwarf2_read_debug)
6047 {
6048 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6049
6050 fprintf_unfiltered (gdb_stdlog,
6051 "Psymtab for %s unit @0x%x: %s - %s"
6052 ", %d global, %d static syms\n",
6053 per_cu->is_debug_types ? "type" : "comp",
6054 per_cu->offset.sect_off,
6055 paddress (gdbarch, pst->textlow),
6056 paddress (gdbarch, pst->texthigh),
6057 pst->n_global_syms, pst->n_static_syms);
6058 }
6059}
6060
6061/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6062 Process compilation unit THIS_CU for a psymtab. */
6063
6064static void
6065process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6066 int want_partial_unit,
6067 enum language pretend_language)
0018ea6f 6068{
b93601f3
TT
6069 struct process_psymtab_comp_unit_data info;
6070
0018ea6f
DE
6071 /* If this compilation unit was already read in, free the
6072 cached copy in order to read it in again. This is
6073 necessary because we skipped some symbols when we first
6074 read in the compilation unit (see load_partial_dies).
6075 This problem could be avoided, but the benefit is unclear. */
6076 if (this_cu->cu != NULL)
6077 free_one_cached_comp_unit (this_cu);
6078
6079 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6080 info.want_partial_unit = want_partial_unit;
6081 info.pretend_language = pretend_language;
0018ea6f
DE
6082 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6083 process_psymtab_comp_unit_reader,
b93601f3 6084 &info);
0018ea6f
DE
6085
6086 /* Age out any secondary CUs. */
6087 age_cached_comp_units ();
6088}
f4dc4d17
DE
6089
6090/* Reader function for build_type_psymtabs. */
6091
6092static void
6093build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6094 const gdb_byte *info_ptr,
f4dc4d17
DE
6095 struct die_info *type_unit_die,
6096 int has_children,
6097 void *data)
6098{
6099 struct objfile *objfile = dwarf2_per_objfile->objfile;
6100 struct dwarf2_cu *cu = reader->cu;
6101 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6102 struct signatured_type *sig_type;
f4dc4d17
DE
6103 struct type_unit_group *tu_group;
6104 struct attribute *attr;
6105 struct partial_die_info *first_die;
6106 CORE_ADDR lowpc, highpc;
6107 struct partial_symtab *pst;
6108
6109 gdb_assert (data == NULL);
0186c6a7
DE
6110 gdb_assert (per_cu->is_debug_types);
6111 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6112
6113 if (! has_children)
6114 return;
6115
6116 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6117 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6118
0186c6a7 6119 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6120
6121 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6122 cu->list_in_scope = &file_symbols;
6123 pst = create_partial_symtab (per_cu, "");
6124 pst->anonymous = 1;
6125
6126 first_die = load_partial_dies (reader, info_ptr, 1);
6127
6128 lowpc = (CORE_ADDR) -1;
6129 highpc = (CORE_ADDR) 0;
6130 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6131
6132 pst->n_global_syms = objfile->global_psymbols.next -
6133 (objfile->global_psymbols.list + pst->globals_offset);
6134 pst->n_static_syms = objfile->static_psymbols.next -
6135 (objfile->static_psymbols.list + pst->statics_offset);
5c80ed9d 6136 sort_pst_symbols (objfile, pst);
f4dc4d17
DE
6137}
6138
6139/* Traversal function for build_type_psymtabs. */
6140
6141static int
6142build_type_psymtab_dependencies (void **slot, void *info)
6143{
6144 struct objfile *objfile = dwarf2_per_objfile->objfile;
6145 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6146 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6147 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6148 int len = VEC_length (sig_type_ptr, tu_group->tus);
6149 struct signatured_type *iter;
f4dc4d17
DE
6150 int i;
6151
6152 gdb_assert (len > 0);
0186c6a7 6153 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6154
6155 pst->number_of_dependencies = len;
6156 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6157 len * sizeof (struct psymtab *));
6158 for (i = 0;
0186c6a7 6159 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6160 ++i)
6161 {
0186c6a7
DE
6162 gdb_assert (iter->per_cu.is_debug_types);
6163 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6164 iter->type_unit_group = tu_group;
f4dc4d17
DE
6165 }
6166
0186c6a7 6167 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6168
6169 return 1;
6170}
6171
6172/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6173 Build partial symbol tables for the .debug_types comp-units. */
6174
6175static void
6176build_type_psymtabs (struct objfile *objfile)
6177{
0e50663e 6178 if (! create_all_type_units (objfile))
348e048f
DE
6179 return;
6180
f4dc4d17
DE
6181 build_type_unit_groups (build_type_psymtabs_reader, NULL);
6182
6183 /* Now that all TUs have been processed we can fill in the dependencies. */
6184 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6185 build_type_psymtab_dependencies, NULL);
348e048f
DE
6186}
6187
60606b2c
TT
6188/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6189
6190static void
6191psymtabs_addrmap_cleanup (void *o)
6192{
6193 struct objfile *objfile = o;
ec61707d 6194
60606b2c
TT
6195 objfile->psymtabs_addrmap = NULL;
6196}
6197
95554aad
TT
6198/* Compute the 'user' field for each psymtab in OBJFILE. */
6199
6200static void
6201set_partial_user (struct objfile *objfile)
6202{
6203 int i;
6204
6205 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6206 {
6207 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6208 struct partial_symtab *pst = per_cu->v.psymtab;
6209 int j;
6210
36586728
TT
6211 if (pst == NULL)
6212 continue;
6213
95554aad
TT
6214 for (j = 0; j < pst->number_of_dependencies; ++j)
6215 {
6216 /* Set the 'user' field only if it is not already set. */
6217 if (pst->dependencies[j]->user == NULL)
6218 pst->dependencies[j]->user = pst;
6219 }
6220 }
6221}
6222
93311388
DE
6223/* Build the partial symbol table by doing a quick pass through the
6224 .debug_info and .debug_abbrev sections. */
72bf9492 6225
93311388 6226static void
c67a9c90 6227dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6228{
60606b2c
TT
6229 struct cleanup *back_to, *addrmap_cleanup;
6230 struct obstack temp_obstack;
21b2bd31 6231 int i;
93311388 6232
45cfd468
DE
6233 if (dwarf2_read_debug)
6234 {
6235 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6236 objfile_name (objfile));
45cfd468
DE
6237 }
6238
98bfdba5
PA
6239 dwarf2_per_objfile->reading_partial_symbols = 1;
6240
be391dca 6241 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6242
93311388
DE
6243 /* Any cached compilation units will be linked by the per-objfile
6244 read_in_chain. Make sure to free them when we're done. */
6245 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6246
348e048f
DE
6247 build_type_psymtabs (objfile);
6248
93311388 6249 create_all_comp_units (objfile);
c906108c 6250
60606b2c
TT
6251 /* Create a temporary address map on a temporary obstack. We later
6252 copy this to the final obstack. */
6253 obstack_init (&temp_obstack);
6254 make_cleanup_obstack_free (&temp_obstack);
6255 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6256 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6257
21b2bd31 6258 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6259 {
21b2bd31 6260 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
aaa75496 6261
b93601f3 6262 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6263 }
ff013f42 6264
95554aad
TT
6265 set_partial_user (objfile);
6266
ff013f42
JK
6267 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6268 &objfile->objfile_obstack);
60606b2c 6269 discard_cleanups (addrmap_cleanup);
ff013f42 6270
ae038cb0 6271 do_cleanups (back_to);
45cfd468
DE
6272
6273 if (dwarf2_read_debug)
6274 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6275 objfile_name (objfile));
ae038cb0
DJ
6276}
6277
3019eac3 6278/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6279
6280static void
dee91e82 6281load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6282 const gdb_byte *info_ptr,
dee91e82
DE
6283 struct die_info *comp_unit_die,
6284 int has_children,
6285 void *data)
ae038cb0 6286{
dee91e82 6287 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6288
95554aad 6289 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6290
ae038cb0
DJ
6291 /* Check if comp unit has_children.
6292 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6293 If not, there's no more debug_info for this comp unit. */
d85a05f0 6294 if (has_children)
dee91e82
DE
6295 load_partial_dies (reader, info_ptr, 0);
6296}
98bfdba5 6297
dee91e82
DE
6298/* Load the partial DIEs for a secondary CU into memory.
6299 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6300
dee91e82
DE
6301static void
6302load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6303{
f4dc4d17
DE
6304 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6305 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6306}
6307
ae038cb0 6308static void
36586728
TT
6309read_comp_units_from_section (struct objfile *objfile,
6310 struct dwarf2_section_info *section,
6311 unsigned int is_dwz,
6312 int *n_allocated,
6313 int *n_comp_units,
6314 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6315{
d521ce57 6316 const gdb_byte *info_ptr;
a32a8923 6317 bfd *abfd = get_section_bfd_owner (section);
be391dca 6318
bf6af496
DE
6319 if (dwarf2_read_debug)
6320 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6321 get_section_name (section),
6322 get_section_file_name (section));
bf6af496 6323
36586728 6324 dwarf2_read_section (objfile, section);
ae038cb0 6325
36586728 6326 info_ptr = section->buffer;
6e70227d 6327
36586728 6328 while (info_ptr < section->buffer + section->size)
ae038cb0 6329 {
c764a876 6330 unsigned int length, initial_length_size;
ae038cb0 6331 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6332 sect_offset offset;
ae038cb0 6333
36586728 6334 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6335
6336 /* Read just enough information to find out where the next
6337 compilation unit is. */
36586728 6338 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6339
6340 /* Save the compilation unit for later lookup. */
6341 this_cu = obstack_alloc (&objfile->objfile_obstack,
6342 sizeof (struct dwarf2_per_cu_data));
6343 memset (this_cu, 0, sizeof (*this_cu));
6344 this_cu->offset = offset;
c764a876 6345 this_cu->length = length + initial_length_size;
36586728 6346 this_cu->is_dwz = is_dwz;
9291a0cd 6347 this_cu->objfile = objfile;
8a0459fd 6348 this_cu->section = section;
ae038cb0 6349
36586728 6350 if (*n_comp_units == *n_allocated)
ae038cb0 6351 {
36586728
TT
6352 *n_allocated *= 2;
6353 *all_comp_units = xrealloc (*all_comp_units,
6354 *n_allocated
6355 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 6356 }
36586728
TT
6357 (*all_comp_units)[*n_comp_units] = this_cu;
6358 ++*n_comp_units;
ae038cb0
DJ
6359
6360 info_ptr = info_ptr + this_cu->length;
6361 }
36586728
TT
6362}
6363
6364/* Create a list of all compilation units in OBJFILE.
6365 This is only done for -readnow and building partial symtabs. */
6366
6367static void
6368create_all_comp_units (struct objfile *objfile)
6369{
6370 int n_allocated;
6371 int n_comp_units;
6372 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6373 struct dwz_file *dwz;
36586728
TT
6374
6375 n_comp_units = 0;
6376 n_allocated = 10;
6377 all_comp_units = xmalloc (n_allocated
6378 * sizeof (struct dwarf2_per_cu_data *));
6379
6380 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6381 &n_allocated, &n_comp_units, &all_comp_units);
6382
4db1a1dc
TT
6383 dwz = dwarf2_get_dwz_file ();
6384 if (dwz != NULL)
6385 read_comp_units_from_section (objfile, &dwz->info, 1,
6386 &n_allocated, &n_comp_units,
6387 &all_comp_units);
ae038cb0
DJ
6388
6389 dwarf2_per_objfile->all_comp_units
6390 = obstack_alloc (&objfile->objfile_obstack,
6391 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6392 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6393 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6394 xfree (all_comp_units);
6395 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6396}
6397
5734ee8b
DJ
6398/* Process all loaded DIEs for compilation unit CU, starting at
6399 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6400 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6401 DW_AT_ranges). If NEED_PC is set, then this function will set
6402 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6403 and record the covered ranges in the addrmap. */
c906108c 6404
72bf9492
DJ
6405static void
6406scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 6407 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 6408{
72bf9492 6409 struct partial_die_info *pdi;
c906108c 6410
91c24f0a
DC
6411 /* Now, march along the PDI's, descending into ones which have
6412 interesting children but skipping the children of the other ones,
6413 until we reach the end of the compilation unit. */
c906108c 6414
72bf9492 6415 pdi = first_die;
91c24f0a 6416
72bf9492
DJ
6417 while (pdi != NULL)
6418 {
6419 fixup_partial_die (pdi, cu);
c906108c 6420
f55ee35c 6421 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6422 children, so we need to look at them. Ditto for anonymous
6423 enums. */
933c6fe4 6424
72bf9492 6425 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6426 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6427 || pdi->tag == DW_TAG_imported_unit)
c906108c 6428 {
72bf9492 6429 switch (pdi->tag)
c906108c
SS
6430 {
6431 case DW_TAG_subprogram:
5734ee8b 6432 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 6433 break;
72929c62 6434 case DW_TAG_constant:
c906108c
SS
6435 case DW_TAG_variable:
6436 case DW_TAG_typedef:
91c24f0a 6437 case DW_TAG_union_type:
72bf9492 6438 if (!pdi->is_declaration)
63d06c5c 6439 {
72bf9492 6440 add_partial_symbol (pdi, cu);
63d06c5c
DC
6441 }
6442 break;
c906108c 6443 case DW_TAG_class_type:
680b30c7 6444 case DW_TAG_interface_type:
c906108c 6445 case DW_TAG_structure_type:
72bf9492 6446 if (!pdi->is_declaration)
c906108c 6447 {
72bf9492 6448 add_partial_symbol (pdi, cu);
c906108c
SS
6449 }
6450 break;
91c24f0a 6451 case DW_TAG_enumeration_type:
72bf9492
DJ
6452 if (!pdi->is_declaration)
6453 add_partial_enumeration (pdi, cu);
c906108c
SS
6454 break;
6455 case DW_TAG_base_type:
a02abb62 6456 case DW_TAG_subrange_type:
c906108c 6457 /* File scope base type definitions are added to the partial
c5aa993b 6458 symbol table. */
72bf9492 6459 add_partial_symbol (pdi, cu);
c906108c 6460 break;
d9fa45fe 6461 case DW_TAG_namespace:
5734ee8b 6462 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 6463 break;
5d7cb8df
JK
6464 case DW_TAG_module:
6465 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6466 break;
95554aad
TT
6467 case DW_TAG_imported_unit:
6468 {
6469 struct dwarf2_per_cu_data *per_cu;
6470
f4dc4d17
DE
6471 /* For now we don't handle imported units in type units. */
6472 if (cu->per_cu->is_debug_types)
6473 {
6474 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6475 " supported in type units [in module %s]"),
4262abfb 6476 objfile_name (cu->objfile));
f4dc4d17
DE
6477 }
6478
95554aad 6479 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6480 pdi->is_dwz,
95554aad
TT
6481 cu->objfile);
6482
6483 /* Go read the partial unit, if needed. */
6484 if (per_cu->v.psymtab == NULL)
b93601f3 6485 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6486
f4dc4d17 6487 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6488 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6489 }
6490 break;
c906108c
SS
6491 default:
6492 break;
6493 }
6494 }
6495
72bf9492
DJ
6496 /* If the die has a sibling, skip to the sibling. */
6497
6498 pdi = pdi->die_sibling;
6499 }
6500}
6501
6502/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6503
72bf9492 6504 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6505 name is concatenated with "::" and the partial DIE's name. For
6506 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6507 Enumerators are an exception; they use the scope of their parent
6508 enumeration type, i.e. the name of the enumeration type is not
6509 prepended to the enumerator.
91c24f0a 6510
72bf9492
DJ
6511 There are two complexities. One is DW_AT_specification; in this
6512 case "parent" means the parent of the target of the specification,
6513 instead of the direct parent of the DIE. The other is compilers
6514 which do not emit DW_TAG_namespace; in this case we try to guess
6515 the fully qualified name of structure types from their members'
6516 linkage names. This must be done using the DIE's children rather
6517 than the children of any DW_AT_specification target. We only need
6518 to do this for structures at the top level, i.e. if the target of
6519 any DW_AT_specification (if any; otherwise the DIE itself) does not
6520 have a parent. */
6521
6522/* Compute the scope prefix associated with PDI's parent, in
6523 compilation unit CU. The result will be allocated on CU's
6524 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6525 field. NULL is returned if no prefix is necessary. */
15d034d0 6526static const char *
72bf9492
DJ
6527partial_die_parent_scope (struct partial_die_info *pdi,
6528 struct dwarf2_cu *cu)
6529{
15d034d0 6530 const char *grandparent_scope;
72bf9492 6531 struct partial_die_info *parent, *real_pdi;
91c24f0a 6532
72bf9492
DJ
6533 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6534 then this means the parent of the specification DIE. */
6535
6536 real_pdi = pdi;
72bf9492 6537 while (real_pdi->has_specification)
36586728
TT
6538 real_pdi = find_partial_die (real_pdi->spec_offset,
6539 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6540
6541 parent = real_pdi->die_parent;
6542 if (parent == NULL)
6543 return NULL;
6544
6545 if (parent->scope_set)
6546 return parent->scope;
6547
6548 fixup_partial_die (parent, cu);
6549
10b3939b 6550 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6551
acebe513
UW
6552 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6553 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6554 Work around this problem here. */
6555 if (cu->language == language_cplus
6e70227d 6556 && parent->tag == DW_TAG_namespace
acebe513
UW
6557 && strcmp (parent->name, "::") == 0
6558 && grandparent_scope == NULL)
6559 {
6560 parent->scope = NULL;
6561 parent->scope_set = 1;
6562 return NULL;
6563 }
6564
9c6c53f7
SA
6565 if (pdi->tag == DW_TAG_enumerator)
6566 /* Enumerators should not get the name of the enumeration as a prefix. */
6567 parent->scope = grandparent_scope;
6568 else if (parent->tag == DW_TAG_namespace
f55ee35c 6569 || parent->tag == DW_TAG_module
72bf9492
DJ
6570 || parent->tag == DW_TAG_structure_type
6571 || parent->tag == DW_TAG_class_type
680b30c7 6572 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6573 || parent->tag == DW_TAG_union_type
6574 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6575 {
6576 if (grandparent_scope == NULL)
6577 parent->scope = parent->name;
6578 else
3e43a32a
MS
6579 parent->scope = typename_concat (&cu->comp_unit_obstack,
6580 grandparent_scope,
f55ee35c 6581 parent->name, 0, cu);
72bf9492 6582 }
72bf9492
DJ
6583 else
6584 {
6585 /* FIXME drow/2004-04-01: What should we be doing with
6586 function-local names? For partial symbols, we should probably be
6587 ignoring them. */
6588 complaint (&symfile_complaints,
e2e0b3e5 6589 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6590 parent->tag, pdi->offset.sect_off);
72bf9492 6591 parent->scope = grandparent_scope;
c906108c
SS
6592 }
6593
72bf9492
DJ
6594 parent->scope_set = 1;
6595 return parent->scope;
6596}
6597
6598/* Return the fully scoped name associated with PDI, from compilation unit
6599 CU. The result will be allocated with malloc. */
4568ecf9 6600
72bf9492
DJ
6601static char *
6602partial_die_full_name (struct partial_die_info *pdi,
6603 struct dwarf2_cu *cu)
6604{
15d034d0 6605 const char *parent_scope;
72bf9492 6606
98bfdba5
PA
6607 /* If this is a template instantiation, we can not work out the
6608 template arguments from partial DIEs. So, unfortunately, we have
6609 to go through the full DIEs. At least any work we do building
6610 types here will be reused if full symbols are loaded later. */
6611 if (pdi->has_template_arguments)
6612 {
6613 fixup_partial_die (pdi, cu);
6614
6615 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6616 {
6617 struct die_info *die;
6618 struct attribute attr;
6619 struct dwarf2_cu *ref_cu = cu;
6620
b64f50a1 6621 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6622 attr.name = 0;
6623 attr.form = DW_FORM_ref_addr;
4568ecf9 6624 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6625 die = follow_die_ref (NULL, &attr, &ref_cu);
6626
6627 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6628 }
6629 }
6630
72bf9492
DJ
6631 parent_scope = partial_die_parent_scope (pdi, cu);
6632 if (parent_scope == NULL)
6633 return NULL;
6634 else
f55ee35c 6635 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6636}
6637
6638static void
72bf9492 6639add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6640{
e7c27a73 6641 struct objfile *objfile = cu->objfile;
c906108c 6642 CORE_ADDR addr = 0;
15d034d0 6643 const char *actual_name = NULL;
e142c38c 6644 CORE_ADDR baseaddr;
15d034d0 6645 char *built_actual_name;
e142c38c
DJ
6646
6647 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6648
15d034d0
TT
6649 built_actual_name = partial_die_full_name (pdi, cu);
6650 if (built_actual_name != NULL)
6651 actual_name = built_actual_name;
63d06c5c 6652
72bf9492
DJ
6653 if (actual_name == NULL)
6654 actual_name = pdi->name;
6655
c906108c
SS
6656 switch (pdi->tag)
6657 {
6658 case DW_TAG_subprogram:
2cfa0c8d 6659 if (pdi->is_external || cu->language == language_ada)
c906108c 6660 {
2cfa0c8d
JB
6661 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6662 of the global scope. But in Ada, we want to be able to access
6663 nested procedures globally. So all Ada subprograms are stored
6664 in the global scope. */
f47fb265 6665 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6666 mst_text, objfile); */
f47fb265 6667 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6668 built_actual_name != NULL,
f47fb265
MS
6669 VAR_DOMAIN, LOC_BLOCK,
6670 &objfile->global_psymbols,
6671 0, pdi->lowpc + baseaddr,
6672 cu->language, objfile);
c906108c
SS
6673 }
6674 else
6675 {
f47fb265 6676 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6677 mst_file_text, objfile); */
f47fb265 6678 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6679 built_actual_name != NULL,
f47fb265
MS
6680 VAR_DOMAIN, LOC_BLOCK,
6681 &objfile->static_psymbols,
6682 0, pdi->lowpc + baseaddr,
6683 cu->language, objfile);
c906108c
SS
6684 }
6685 break;
72929c62
JB
6686 case DW_TAG_constant:
6687 {
6688 struct psymbol_allocation_list *list;
6689
6690 if (pdi->is_external)
6691 list = &objfile->global_psymbols;
6692 else
6693 list = &objfile->static_psymbols;
f47fb265 6694 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6695 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
f47fb265 6696 list, 0, 0, cu->language, objfile);
72929c62
JB
6697 }
6698 break;
c906108c 6699 case DW_TAG_variable:
95554aad
TT
6700 if (pdi->d.locdesc)
6701 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6702
95554aad 6703 if (pdi->d.locdesc
caac4577
JG
6704 && addr == 0
6705 && !dwarf2_per_objfile->has_section_at_zero)
6706 {
6707 /* A global or static variable may also have been stripped
6708 out by the linker if unused, in which case its address
6709 will be nullified; do not add such variables into partial
6710 symbol table then. */
6711 }
6712 else if (pdi->is_external)
c906108c
SS
6713 {
6714 /* Global Variable.
6715 Don't enter into the minimal symbol tables as there is
6716 a minimal symbol table entry from the ELF symbols already.
6717 Enter into partial symbol table if it has a location
6718 descriptor or a type.
6719 If the location descriptor is missing, new_symbol will create
6720 a LOC_UNRESOLVED symbol, the address of the variable will then
6721 be determined from the minimal symbol table whenever the variable
6722 is referenced.
6723 The address for the partial symbol table entry is not
6724 used by GDB, but it comes in handy for debugging partial symbol
6725 table building. */
6726
95554aad 6727 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6728 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6729 built_actual_name != NULL,
f47fb265
MS
6730 VAR_DOMAIN, LOC_STATIC,
6731 &objfile->global_psymbols,
6732 0, addr + baseaddr,
6733 cu->language, objfile);
c906108c
SS
6734 }
6735 else
6736 {
0963b4bd 6737 /* Static Variable. Skip symbols without location descriptors. */
95554aad 6738 if (pdi->d.locdesc == NULL)
decbce07 6739 {
15d034d0 6740 xfree (built_actual_name);
decbce07
MS
6741 return;
6742 }
f47fb265 6743 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 6744 mst_file_data, objfile); */
f47fb265 6745 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6746 built_actual_name != NULL,
f47fb265
MS
6747 VAR_DOMAIN, LOC_STATIC,
6748 &objfile->static_psymbols,
6749 0, addr + baseaddr,
6750 cu->language, objfile);
c906108c
SS
6751 }
6752 break;
6753 case DW_TAG_typedef:
6754 case DW_TAG_base_type:
a02abb62 6755 case DW_TAG_subrange_type:
38d518c9 6756 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6757 built_actual_name != NULL,
176620f1 6758 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6759 &objfile->static_psymbols,
e142c38c 6760 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6761 break;
72bf9492
DJ
6762 case DW_TAG_namespace:
6763 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6764 built_actual_name != NULL,
72bf9492
DJ
6765 VAR_DOMAIN, LOC_TYPEDEF,
6766 &objfile->global_psymbols,
6767 0, (CORE_ADDR) 0, cu->language, objfile);
6768 break;
c906108c 6769 case DW_TAG_class_type:
680b30c7 6770 case DW_TAG_interface_type:
c906108c
SS
6771 case DW_TAG_structure_type:
6772 case DW_TAG_union_type:
6773 case DW_TAG_enumeration_type:
fa4028e9
JB
6774 /* Skip external references. The DWARF standard says in the section
6775 about "Structure, Union, and Class Type Entries": "An incomplete
6776 structure, union or class type is represented by a structure,
6777 union or class entry that does not have a byte size attribute
6778 and that has a DW_AT_declaration attribute." */
6779 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 6780 {
15d034d0 6781 xfree (built_actual_name);
decbce07
MS
6782 return;
6783 }
fa4028e9 6784
63d06c5c
DC
6785 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6786 static vs. global. */
38d518c9 6787 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6788 built_actual_name != NULL,
176620f1 6789 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
6790 (cu->language == language_cplus
6791 || cu->language == language_java)
63d06c5c
DC
6792 ? &objfile->global_psymbols
6793 : &objfile->static_psymbols,
e142c38c 6794 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6795
c906108c
SS
6796 break;
6797 case DW_TAG_enumerator:
38d518c9 6798 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6799 built_actual_name != NULL,
176620f1 6800 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6801 (cu->language == language_cplus
6802 || cu->language == language_java)
f6fe98ef
DJ
6803 ? &objfile->global_psymbols
6804 : &objfile->static_psymbols,
e142c38c 6805 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
6806 break;
6807 default:
6808 break;
6809 }
5c4e30ca 6810
15d034d0 6811 xfree (built_actual_name);
c906108c
SS
6812}
6813
5c4e30ca
DC
6814/* Read a partial die corresponding to a namespace; also, add a symbol
6815 corresponding to that namespace to the symbol table. NAMESPACE is
6816 the name of the enclosing namespace. */
91c24f0a 6817
72bf9492
DJ
6818static void
6819add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 6820 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6821 int need_pc, struct dwarf2_cu *cu)
91c24f0a 6822{
72bf9492 6823 /* Add a symbol for the namespace. */
e7c27a73 6824
72bf9492 6825 add_partial_symbol (pdi, cu);
5c4e30ca
DC
6826
6827 /* Now scan partial symbols in that namespace. */
6828
91c24f0a 6829 if (pdi->has_children)
5734ee8b 6830 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
6831}
6832
5d7cb8df
JK
6833/* Read a partial die corresponding to a Fortran module. */
6834
6835static void
6836add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6837 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6838{
f55ee35c 6839 /* Now scan partial symbols in that module. */
5d7cb8df
JK
6840
6841 if (pdi->has_children)
6842 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6843}
6844
bc30ff58
JB
6845/* Read a partial die corresponding to a subprogram and create a partial
6846 symbol for that subprogram. When the CU language allows it, this
6847 routine also defines a partial symbol for each nested subprogram
6848 that this subprogram contains.
6e70227d 6849
bc30ff58
JB
6850 DIE my also be a lexical block, in which case we simply search
6851 recursively for suprograms defined inside that lexical block.
6852 Again, this is only performed when the CU language allows this
6853 type of definitions. */
6854
6855static void
6856add_partial_subprogram (struct partial_die_info *pdi,
6857 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6858 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
6859{
6860 if (pdi->tag == DW_TAG_subprogram)
6861 {
6862 if (pdi->has_pc_info)
6863 {
6864 if (pdi->lowpc < *lowpc)
6865 *lowpc = pdi->lowpc;
6866 if (pdi->highpc > *highpc)
6867 *highpc = pdi->highpc;
5734ee8b
DJ
6868 if (need_pc)
6869 {
6870 CORE_ADDR baseaddr;
6871 struct objfile *objfile = cu->objfile;
6872
6873 baseaddr = ANOFFSET (objfile->section_offsets,
6874 SECT_OFF_TEXT (objfile));
6875 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
6876 pdi->lowpc + baseaddr,
6877 pdi->highpc - 1 + baseaddr,
9291a0cd 6878 cu->per_cu->v.psymtab);
5734ee8b 6879 }
481860b3
GB
6880 }
6881
6882 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6883 {
bc30ff58 6884 if (!pdi->is_declaration)
e8d05480
JB
6885 /* Ignore subprogram DIEs that do not have a name, they are
6886 illegal. Do not emit a complaint at this point, we will
6887 do so when we convert this psymtab into a symtab. */
6888 if (pdi->name)
6889 add_partial_symbol (pdi, cu);
bc30ff58
JB
6890 }
6891 }
6e70227d 6892
bc30ff58
JB
6893 if (! pdi->has_children)
6894 return;
6895
6896 if (cu->language == language_ada)
6897 {
6898 pdi = pdi->die_child;
6899 while (pdi != NULL)
6900 {
6901 fixup_partial_die (pdi, cu);
6902 if (pdi->tag == DW_TAG_subprogram
6903 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 6904 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
6905 pdi = pdi->die_sibling;
6906 }
6907 }
6908}
6909
91c24f0a
DC
6910/* Read a partial die corresponding to an enumeration type. */
6911
72bf9492
DJ
6912static void
6913add_partial_enumeration (struct partial_die_info *enum_pdi,
6914 struct dwarf2_cu *cu)
91c24f0a 6915{
72bf9492 6916 struct partial_die_info *pdi;
91c24f0a
DC
6917
6918 if (enum_pdi->name != NULL)
72bf9492
DJ
6919 add_partial_symbol (enum_pdi, cu);
6920
6921 pdi = enum_pdi->die_child;
6922 while (pdi)
91c24f0a 6923 {
72bf9492 6924 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 6925 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 6926 else
72bf9492
DJ
6927 add_partial_symbol (pdi, cu);
6928 pdi = pdi->die_sibling;
91c24f0a 6929 }
91c24f0a
DC
6930}
6931
6caca83c
CC
6932/* Return the initial uleb128 in the die at INFO_PTR. */
6933
6934static unsigned int
d521ce57 6935peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
6936{
6937 unsigned int bytes_read;
6938
6939 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6940}
6941
4bb7a0a7
DJ
6942/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6943 Return the corresponding abbrev, or NULL if the number is zero (indicating
6944 an empty DIE). In either case *BYTES_READ will be set to the length of
6945 the initial number. */
6946
6947static struct abbrev_info *
d521ce57 6948peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 6949 struct dwarf2_cu *cu)
4bb7a0a7
DJ
6950{
6951 bfd *abfd = cu->objfile->obfd;
6952 unsigned int abbrev_number;
6953 struct abbrev_info *abbrev;
6954
6955 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6956
6957 if (abbrev_number == 0)
6958 return NULL;
6959
433df2d4 6960 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
6961 if (!abbrev)
6962 {
3e43a32a
MS
6963 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6964 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
6965 }
6966
6967 return abbrev;
6968}
6969
93311388
DE
6970/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6971 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
6972 DIE. Any children of the skipped DIEs will also be skipped. */
6973
d521ce57
TT
6974static const gdb_byte *
6975skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 6976{
dee91e82 6977 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
6978 struct abbrev_info *abbrev;
6979 unsigned int bytes_read;
6980
6981 while (1)
6982 {
6983 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6984 if (abbrev == NULL)
6985 return info_ptr + bytes_read;
6986 else
dee91e82 6987 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
6988 }
6989}
6990
93311388
DE
6991/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6992 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
6993 abbrev corresponding to that skipped uleb128 should be passed in
6994 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6995 children. */
6996
d521ce57
TT
6997static const gdb_byte *
6998skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 6999 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7000{
7001 unsigned int bytes_read;
7002 struct attribute attr;
dee91e82
DE
7003 bfd *abfd = reader->abfd;
7004 struct dwarf2_cu *cu = reader->cu;
d521ce57 7005 const gdb_byte *buffer = reader->buffer;
f664829e 7006 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7007 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7008 unsigned int form, i;
7009
7010 for (i = 0; i < abbrev->num_attrs; i++)
7011 {
7012 /* The only abbrev we care about is DW_AT_sibling. */
7013 if (abbrev->attrs[i].name == DW_AT_sibling)
7014 {
dee91e82 7015 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7016 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7017 complaint (&symfile_complaints,
7018 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7019 else
b9502d3f
WN
7020 {
7021 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7022 const gdb_byte *sibling_ptr = buffer + off;
7023
7024 if (sibling_ptr < info_ptr)
7025 complaint (&symfile_complaints,
7026 _("DW_AT_sibling points backwards"));
7027 else
7028 return sibling_ptr;
7029 }
4bb7a0a7
DJ
7030 }
7031
7032 /* If it isn't DW_AT_sibling, skip this attribute. */
7033 form = abbrev->attrs[i].form;
7034 skip_attribute:
7035 switch (form)
7036 {
4bb7a0a7 7037 case DW_FORM_ref_addr:
ae411497
TT
7038 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7039 and later it is offset sized. */
7040 if (cu->header.version == 2)
7041 info_ptr += cu->header.addr_size;
7042 else
7043 info_ptr += cu->header.offset_size;
7044 break;
36586728
TT
7045 case DW_FORM_GNU_ref_alt:
7046 info_ptr += cu->header.offset_size;
7047 break;
ae411497 7048 case DW_FORM_addr:
4bb7a0a7
DJ
7049 info_ptr += cu->header.addr_size;
7050 break;
7051 case DW_FORM_data1:
7052 case DW_FORM_ref1:
7053 case DW_FORM_flag:
7054 info_ptr += 1;
7055 break;
2dc7f7b3
TT
7056 case DW_FORM_flag_present:
7057 break;
4bb7a0a7
DJ
7058 case DW_FORM_data2:
7059 case DW_FORM_ref2:
7060 info_ptr += 2;
7061 break;
7062 case DW_FORM_data4:
7063 case DW_FORM_ref4:
7064 info_ptr += 4;
7065 break;
7066 case DW_FORM_data8:
7067 case DW_FORM_ref8:
55f1336d 7068 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7069 info_ptr += 8;
7070 break;
7071 case DW_FORM_string:
9b1c24c8 7072 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7073 info_ptr += bytes_read;
7074 break;
2dc7f7b3 7075 case DW_FORM_sec_offset:
4bb7a0a7 7076 case DW_FORM_strp:
36586728 7077 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7078 info_ptr += cu->header.offset_size;
7079 break;
2dc7f7b3 7080 case DW_FORM_exprloc:
4bb7a0a7
DJ
7081 case DW_FORM_block:
7082 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7083 info_ptr += bytes_read;
7084 break;
7085 case DW_FORM_block1:
7086 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7087 break;
7088 case DW_FORM_block2:
7089 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7090 break;
7091 case DW_FORM_block4:
7092 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7093 break;
7094 case DW_FORM_sdata:
7095 case DW_FORM_udata:
7096 case DW_FORM_ref_udata:
3019eac3
DE
7097 case DW_FORM_GNU_addr_index:
7098 case DW_FORM_GNU_str_index:
d521ce57 7099 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7100 break;
7101 case DW_FORM_indirect:
7102 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7103 info_ptr += bytes_read;
7104 /* We need to continue parsing from here, so just go back to
7105 the top. */
7106 goto skip_attribute;
7107
7108 default:
3e43a32a
MS
7109 error (_("Dwarf Error: Cannot handle %s "
7110 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7111 dwarf_form_name (form),
7112 bfd_get_filename (abfd));
7113 }
7114 }
7115
7116 if (abbrev->has_children)
dee91e82 7117 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7118 else
7119 return info_ptr;
7120}
7121
93311388 7122/* Locate ORIG_PDI's sibling.
dee91e82 7123 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7124
d521ce57 7125static const gdb_byte *
dee91e82
DE
7126locate_pdi_sibling (const struct die_reader_specs *reader,
7127 struct partial_die_info *orig_pdi,
d521ce57 7128 const gdb_byte *info_ptr)
91c24f0a
DC
7129{
7130 /* Do we know the sibling already? */
72bf9492 7131
91c24f0a
DC
7132 if (orig_pdi->sibling)
7133 return orig_pdi->sibling;
7134
7135 /* Are there any children to deal with? */
7136
7137 if (!orig_pdi->has_children)
7138 return info_ptr;
7139
4bb7a0a7 7140 /* Skip the children the long way. */
91c24f0a 7141
dee91e82 7142 return skip_children (reader, info_ptr);
91c24f0a
DC
7143}
7144
257e7a09 7145/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7146 not NULL. */
c906108c
SS
7147
7148static void
257e7a09
YQ
7149dwarf2_read_symtab (struct partial_symtab *self,
7150 struct objfile *objfile)
c906108c 7151{
257e7a09 7152 if (self->readin)
c906108c 7153 {
442e4d9c 7154 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7155 self->filename);
442e4d9c
YQ
7156 }
7157 else
7158 {
7159 if (info_verbose)
c906108c 7160 {
442e4d9c 7161 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7162 self->filename);
442e4d9c 7163 gdb_flush (gdb_stdout);
c906108c 7164 }
c906108c 7165
442e4d9c
YQ
7166 /* Restore our global data. */
7167 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 7168
442e4d9c
YQ
7169 /* If this psymtab is constructed from a debug-only objfile, the
7170 has_section_at_zero flag will not necessarily be correct. We
7171 can get the correct value for this flag by looking at the data
7172 associated with the (presumably stripped) associated objfile. */
7173 if (objfile->separate_debug_objfile_backlink)
7174 {
7175 struct dwarf2_per_objfile *dpo_backlink
7176 = objfile_data (objfile->separate_debug_objfile_backlink,
7177 dwarf2_objfile_data_key);
9a619af0 7178
442e4d9c
YQ
7179 dwarf2_per_objfile->has_section_at_zero
7180 = dpo_backlink->has_section_at_zero;
7181 }
b2ab525c 7182
442e4d9c 7183 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7184
257e7a09 7185 psymtab_to_symtab_1 (self);
c906108c 7186
442e4d9c
YQ
7187 /* Finish up the debug error message. */
7188 if (info_verbose)
7189 printf_filtered (_("done.\n"));
c906108c 7190 }
95554aad
TT
7191
7192 process_cu_includes ();
c906108c 7193}
9cdd5dbd
DE
7194\f
7195/* Reading in full CUs. */
c906108c 7196
10b3939b
DJ
7197/* Add PER_CU to the queue. */
7198
7199static void
95554aad
TT
7200queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7201 enum language pretend_language)
10b3939b
DJ
7202{
7203 struct dwarf2_queue_item *item;
7204
7205 per_cu->queued = 1;
7206 item = xmalloc (sizeof (*item));
7207 item->per_cu = per_cu;
95554aad 7208 item->pretend_language = pretend_language;
10b3939b
DJ
7209 item->next = NULL;
7210
7211 if (dwarf2_queue == NULL)
7212 dwarf2_queue = item;
7213 else
7214 dwarf2_queue_tail->next = item;
7215
7216 dwarf2_queue_tail = item;
7217}
7218
89e63ee4
DE
7219/* If PER_CU is not yet queued, add it to the queue.
7220 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7221 dependency.
0907af0c 7222 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7223 meaning either PER_CU is already queued or it is already loaded.
7224
7225 N.B. There is an invariant here that if a CU is queued then it is loaded.
7226 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7227
7228static int
89e63ee4 7229maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7230 struct dwarf2_per_cu_data *per_cu,
7231 enum language pretend_language)
7232{
7233 /* We may arrive here during partial symbol reading, if we need full
7234 DIEs to process an unusual case (e.g. template arguments). Do
7235 not queue PER_CU, just tell our caller to load its DIEs. */
7236 if (dwarf2_per_objfile->reading_partial_symbols)
7237 {
7238 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7239 return 1;
7240 return 0;
7241 }
7242
7243 /* Mark the dependence relation so that we don't flush PER_CU
7244 too early. */
89e63ee4
DE
7245 if (dependent_cu != NULL)
7246 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7247
7248 /* If it's already on the queue, we have nothing to do. */
7249 if (per_cu->queued)
7250 return 0;
7251
7252 /* If the compilation unit is already loaded, just mark it as
7253 used. */
7254 if (per_cu->cu != NULL)
7255 {
7256 per_cu->cu->last_used = 0;
7257 return 0;
7258 }
7259
7260 /* Add it to the queue. */
7261 queue_comp_unit (per_cu, pretend_language);
7262
7263 return 1;
7264}
7265
10b3939b
DJ
7266/* Process the queue. */
7267
7268static void
a0f42c21 7269process_queue (void)
10b3939b
DJ
7270{
7271 struct dwarf2_queue_item *item, *next_item;
7272
45cfd468
DE
7273 if (dwarf2_read_debug)
7274 {
7275 fprintf_unfiltered (gdb_stdlog,
7276 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7277 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7278 }
7279
03dd20cc
DJ
7280 /* The queue starts out with one item, but following a DIE reference
7281 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7282 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7283 {
9291a0cd
TT
7284 if (dwarf2_per_objfile->using_index
7285 ? !item->per_cu->v.quick->symtab
7286 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
f4dc4d17
DE
7287 {
7288 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7289 unsigned int debug_print_threshold;
247f5c4f 7290 char buf[100];
f4dc4d17 7291
247f5c4f 7292 if (per_cu->is_debug_types)
f4dc4d17 7293 {
247f5c4f
DE
7294 struct signatured_type *sig_type =
7295 (struct signatured_type *) per_cu;
7296
7297 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7298 hex_string (sig_type->signature),
7299 per_cu->offset.sect_off);
7300 /* There can be 100s of TUs.
7301 Only print them in verbose mode. */
7302 debug_print_threshold = 2;
f4dc4d17 7303 }
247f5c4f 7304 else
73be47f5
DE
7305 {
7306 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7307 debug_print_threshold = 1;
7308 }
247f5c4f 7309
73be47f5 7310 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7311 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7312
7313 if (per_cu->is_debug_types)
7314 process_full_type_unit (per_cu, item->pretend_language);
7315 else
7316 process_full_comp_unit (per_cu, item->pretend_language);
7317
73be47f5 7318 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7319 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7320 }
10b3939b
DJ
7321
7322 item->per_cu->queued = 0;
7323 next_item = item->next;
7324 xfree (item);
7325 }
7326
7327 dwarf2_queue_tail = NULL;
45cfd468
DE
7328
7329 if (dwarf2_read_debug)
7330 {
7331 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7332 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7333 }
10b3939b
DJ
7334}
7335
7336/* Free all allocated queue entries. This function only releases anything if
7337 an error was thrown; if the queue was processed then it would have been
7338 freed as we went along. */
7339
7340static void
7341dwarf2_release_queue (void *dummy)
7342{
7343 struct dwarf2_queue_item *item, *last;
7344
7345 item = dwarf2_queue;
7346 while (item)
7347 {
7348 /* Anything still marked queued is likely to be in an
7349 inconsistent state, so discard it. */
7350 if (item->per_cu->queued)
7351 {
7352 if (item->per_cu->cu != NULL)
dee91e82 7353 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7354 item->per_cu->queued = 0;
7355 }
7356
7357 last = item;
7358 item = item->next;
7359 xfree (last);
7360 }
7361
7362 dwarf2_queue = dwarf2_queue_tail = NULL;
7363}
7364
7365/* Read in full symbols for PST, and anything it depends on. */
7366
c906108c 7367static void
fba45db2 7368psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7369{
10b3939b 7370 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7371 int i;
7372
95554aad
TT
7373 if (pst->readin)
7374 return;
7375
aaa75496 7376 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7377 if (!pst->dependencies[i]->readin
7378 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7379 {
7380 /* Inform about additional files that need to be read in. */
7381 if (info_verbose)
7382 {
a3f17187 7383 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7384 fputs_filtered (" ", gdb_stdout);
7385 wrap_here ("");
7386 fputs_filtered ("and ", gdb_stdout);
7387 wrap_here ("");
7388 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7389 wrap_here (""); /* Flush output. */
aaa75496
JB
7390 gdb_flush (gdb_stdout);
7391 }
7392 psymtab_to_symtab_1 (pst->dependencies[i]);
7393 }
7394
e38df1d0 7395 per_cu = pst->read_symtab_private;
10b3939b
DJ
7396
7397 if (per_cu == NULL)
aaa75496
JB
7398 {
7399 /* It's an include file, no symbols to read for it.
7400 Everything is in the parent symtab. */
7401 pst->readin = 1;
7402 return;
7403 }
c906108c 7404
a0f42c21 7405 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7406}
7407
dee91e82
DE
7408/* Trivial hash function for die_info: the hash value of a DIE
7409 is its offset in .debug_info for this objfile. */
10b3939b 7410
dee91e82
DE
7411static hashval_t
7412die_hash (const void *item)
10b3939b 7413{
dee91e82 7414 const struct die_info *die = item;
6502dd73 7415
dee91e82
DE
7416 return die->offset.sect_off;
7417}
63d06c5c 7418
dee91e82
DE
7419/* Trivial comparison function for die_info structures: two DIEs
7420 are equal if they have the same offset. */
98bfdba5 7421
dee91e82
DE
7422static int
7423die_eq (const void *item_lhs, const void *item_rhs)
7424{
7425 const struct die_info *die_lhs = item_lhs;
7426 const struct die_info *die_rhs = item_rhs;
c906108c 7427
dee91e82
DE
7428 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7429}
c906108c 7430
dee91e82
DE
7431/* die_reader_func for load_full_comp_unit.
7432 This is identical to read_signatured_type_reader,
7433 but is kept separate for now. */
c906108c 7434
dee91e82
DE
7435static void
7436load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7437 const gdb_byte *info_ptr,
dee91e82
DE
7438 struct die_info *comp_unit_die,
7439 int has_children,
7440 void *data)
7441{
7442 struct dwarf2_cu *cu = reader->cu;
95554aad 7443 enum language *language_ptr = data;
6caca83c 7444
dee91e82
DE
7445 gdb_assert (cu->die_hash == NULL);
7446 cu->die_hash =
7447 htab_create_alloc_ex (cu->header.length / 12,
7448 die_hash,
7449 die_eq,
7450 NULL,
7451 &cu->comp_unit_obstack,
7452 hashtab_obstack_allocate,
7453 dummy_obstack_deallocate);
e142c38c 7454
dee91e82
DE
7455 if (has_children)
7456 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7457 &info_ptr, comp_unit_die);
7458 cu->dies = comp_unit_die;
7459 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7460
7461 /* We try not to read any attributes in this function, because not
9cdd5dbd 7462 all CUs needed for references have been loaded yet, and symbol
10b3939b 7463 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7464 or we won't be able to build types correctly.
7465 Similarly, if we do not read the producer, we can not apply
7466 producer-specific interpretation. */
95554aad 7467 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7468}
10b3939b 7469
dee91e82 7470/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7471
dee91e82 7472static void
95554aad
TT
7473load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7474 enum language pretend_language)
dee91e82 7475{
3019eac3 7476 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7477
f4dc4d17
DE
7478 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7479 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7480}
7481
3da10d80
KS
7482/* Add a DIE to the delayed physname list. */
7483
7484static void
7485add_to_method_list (struct type *type, int fnfield_index, int index,
7486 const char *name, struct die_info *die,
7487 struct dwarf2_cu *cu)
7488{
7489 struct delayed_method_info mi;
7490 mi.type = type;
7491 mi.fnfield_index = fnfield_index;
7492 mi.index = index;
7493 mi.name = name;
7494 mi.die = die;
7495 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7496}
7497
7498/* A cleanup for freeing the delayed method list. */
7499
7500static void
7501free_delayed_list (void *ptr)
7502{
7503 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7504 if (cu->method_list != NULL)
7505 {
7506 VEC_free (delayed_method_info, cu->method_list);
7507 cu->method_list = NULL;
7508 }
7509}
7510
7511/* Compute the physnames of any methods on the CU's method list.
7512
7513 The computation of method physnames is delayed in order to avoid the
7514 (bad) condition that one of the method's formal parameters is of an as yet
7515 incomplete type. */
7516
7517static void
7518compute_delayed_physnames (struct dwarf2_cu *cu)
7519{
7520 int i;
7521 struct delayed_method_info *mi;
7522 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7523 {
1d06ead6 7524 const char *physname;
3da10d80
KS
7525 struct fn_fieldlist *fn_flp
7526 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7527 physname = dwarf2_physname (mi->name, mi->die, cu);
3da10d80
KS
7528 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7529 }
7530}
7531
a766d390
DE
7532/* Go objects should be embedded in a DW_TAG_module DIE,
7533 and it's not clear if/how imported objects will appear.
7534 To keep Go support simple until that's worked out,
7535 go back through what we've read and create something usable.
7536 We could do this while processing each DIE, and feels kinda cleaner,
7537 but that way is more invasive.
7538 This is to, for example, allow the user to type "p var" or "b main"
7539 without having to specify the package name, and allow lookups
7540 of module.object to work in contexts that use the expression
7541 parser. */
7542
7543static void
7544fixup_go_packaging (struct dwarf2_cu *cu)
7545{
7546 char *package_name = NULL;
7547 struct pending *list;
7548 int i;
7549
7550 for (list = global_symbols; list != NULL; list = list->next)
7551 {
7552 for (i = 0; i < list->nsyms; ++i)
7553 {
7554 struct symbol *sym = list->symbol[i];
7555
7556 if (SYMBOL_LANGUAGE (sym) == language_go
7557 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7558 {
7559 char *this_package_name = go_symbol_package_name (sym);
7560
7561 if (this_package_name == NULL)
7562 continue;
7563 if (package_name == NULL)
7564 package_name = this_package_name;
7565 else
7566 {
7567 if (strcmp (package_name, this_package_name) != 0)
7568 complaint (&symfile_complaints,
7569 _("Symtab %s has objects from two different Go packages: %s and %s"),
210bbc17 7570 (SYMBOL_SYMTAB (sym)
05cba821 7571 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
4262abfb 7572 : objfile_name (cu->objfile)),
a766d390
DE
7573 this_package_name, package_name);
7574 xfree (this_package_name);
7575 }
7576 }
7577 }
7578 }
7579
7580 if (package_name != NULL)
7581 {
7582 struct objfile *objfile = cu->objfile;
10f0c4bb
TT
7583 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7584 package_name,
7585 strlen (package_name));
a766d390 7586 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7587 saved_package_name, objfile);
a766d390
DE
7588 struct symbol *sym;
7589
7590 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7591
e623cf5d 7592 sym = allocate_symbol (objfile);
f85f34ed 7593 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7594 SYMBOL_SET_NAMES (sym, saved_package_name,
7595 strlen (saved_package_name), 0, objfile);
a766d390
DE
7596 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7597 e.g., "main" finds the "main" module and not C's main(). */
7598 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7599 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7600 SYMBOL_TYPE (sym) = type;
7601
7602 add_symbol_to_list (sym, &global_symbols);
7603
7604 xfree (package_name);
7605 }
7606}
7607
95554aad
TT
7608/* Return the symtab for PER_CU. This works properly regardless of
7609 whether we're using the index or psymtabs. */
7610
7611static struct symtab *
7612get_symtab (struct dwarf2_per_cu_data *per_cu)
7613{
7614 return (dwarf2_per_objfile->using_index
7615 ? per_cu->v.quick->symtab
7616 : per_cu->v.psymtab->symtab);
7617}
7618
7619/* A helper function for computing the list of all symbol tables
7620 included by PER_CU. */
7621
7622static void
ec94af83
DE
7623recursively_compute_inclusions (VEC (symtab_ptr) **result,
7624 htab_t all_children, htab_t all_type_symtabs,
f9125b6c
TT
7625 struct dwarf2_per_cu_data *per_cu,
7626 struct symtab *immediate_parent)
95554aad
TT
7627{
7628 void **slot;
7629 int ix;
ec94af83 7630 struct symtab *symtab;
95554aad
TT
7631 struct dwarf2_per_cu_data *iter;
7632
7633 slot = htab_find_slot (all_children, per_cu, INSERT);
7634 if (*slot != NULL)
7635 {
7636 /* This inclusion and its children have been processed. */
7637 return;
7638 }
7639
7640 *slot = per_cu;
7641 /* Only add a CU if it has a symbol table. */
ec94af83
DE
7642 symtab = get_symtab (per_cu);
7643 if (symtab != NULL)
7644 {
7645 /* If this is a type unit only add its symbol table if we haven't
7646 seen it yet (type unit per_cu's can share symtabs). */
7647 if (per_cu->is_debug_types)
7648 {
7649 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7650 if (*slot == NULL)
7651 {
7652 *slot = symtab;
7653 VEC_safe_push (symtab_ptr, *result, symtab);
f9125b6c
TT
7654 if (symtab->user == NULL)
7655 symtab->user = immediate_parent;
ec94af83
DE
7656 }
7657 }
7658 else
f9125b6c
TT
7659 {
7660 VEC_safe_push (symtab_ptr, *result, symtab);
7661 if (symtab->user == NULL)
7662 symtab->user = immediate_parent;
7663 }
ec94af83 7664 }
95554aad
TT
7665
7666 for (ix = 0;
796a7ff8 7667 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7668 ++ix)
ec94af83
DE
7669 {
7670 recursively_compute_inclusions (result, all_children,
f9125b6c 7671 all_type_symtabs, iter, symtab);
ec94af83 7672 }
95554aad
TT
7673}
7674
7675/* Compute the symtab 'includes' fields for the symtab related to
7676 PER_CU. */
7677
7678static void
7679compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7680{
f4dc4d17
DE
7681 gdb_assert (! per_cu->is_debug_types);
7682
796a7ff8 7683 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7684 {
7685 int ix, len;
ec94af83
DE
7686 struct dwarf2_per_cu_data *per_cu_iter;
7687 struct symtab *symtab_iter;
7688 VEC (symtab_ptr) *result_symtabs = NULL;
7689 htab_t all_children, all_type_symtabs;
95554aad
TT
7690 struct symtab *symtab = get_symtab (per_cu);
7691
7692 /* If we don't have a symtab, we can just skip this case. */
7693 if (symtab == NULL)
7694 return;
7695
7696 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7697 NULL, xcalloc, xfree);
ec94af83
DE
7698 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7699 NULL, xcalloc, xfree);
95554aad
TT
7700
7701 for (ix = 0;
796a7ff8 7702 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7703 ix, per_cu_iter);
95554aad 7704 ++ix)
ec94af83
DE
7705 {
7706 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c
TT
7707 all_type_symtabs, per_cu_iter,
7708 symtab);
ec94af83 7709 }
95554aad 7710
ec94af83
DE
7711 /* Now we have a transitive closure of all the included symtabs. */
7712 len = VEC_length (symtab_ptr, result_symtabs);
95554aad
TT
7713 symtab->includes
7714 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7715 (len + 1) * sizeof (struct symtab *));
7716 for (ix = 0;
ec94af83 7717 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
95554aad 7718 ++ix)
ec94af83 7719 symtab->includes[ix] = symtab_iter;
95554aad
TT
7720 symtab->includes[len] = NULL;
7721
ec94af83 7722 VEC_free (symtab_ptr, result_symtabs);
95554aad 7723 htab_delete (all_children);
ec94af83 7724 htab_delete (all_type_symtabs);
95554aad
TT
7725 }
7726}
7727
7728/* Compute the 'includes' field for the symtabs of all the CUs we just
7729 read. */
7730
7731static void
7732process_cu_includes (void)
7733{
7734 int ix;
7735 struct dwarf2_per_cu_data *iter;
7736
7737 for (ix = 0;
7738 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7739 ix, iter);
7740 ++ix)
f4dc4d17
DE
7741 {
7742 if (! iter->is_debug_types)
7743 compute_symtab_includes (iter);
7744 }
95554aad
TT
7745
7746 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7747}
7748
9cdd5dbd 7749/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
7750 already been loaded into memory. */
7751
7752static void
95554aad
TT
7753process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7754 enum language pretend_language)
10b3939b 7755{
10b3939b 7756 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 7757 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
7758 CORE_ADDR lowpc, highpc;
7759 struct symtab *symtab;
3da10d80 7760 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 7761 CORE_ADDR baseaddr;
4359dff1 7762 struct block *static_block;
10b3939b
DJ
7763
7764 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7765
10b3939b
DJ
7766 buildsym_init ();
7767 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 7768 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
7769
7770 cu->list_in_scope = &file_symbols;
c906108c 7771
95554aad
TT
7772 cu->language = pretend_language;
7773 cu->language_defn = language_def (cu->language);
7774
c906108c 7775 /* Do line number decoding in read_file_scope () */
10b3939b 7776 process_die (cu->dies, cu);
c906108c 7777
a766d390
DE
7778 /* For now fudge the Go package. */
7779 if (cu->language == language_go)
7780 fixup_go_packaging (cu);
7781
3da10d80
KS
7782 /* Now that we have processed all the DIEs in the CU, all the types
7783 should be complete, and it should now be safe to compute all of the
7784 physnames. */
7785 compute_delayed_physnames (cu);
7786 do_cleanups (delayed_list_cleanup);
7787
fae299cd
DC
7788 /* Some compilers don't define a DW_AT_high_pc attribute for the
7789 compilation unit. If the DW_AT_high_pc is missing, synthesize
7790 it, by scanning the DIE's below the compilation unit. */
10b3939b 7791 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 7792
36586728 7793 static_block
ff546935 7794 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
4359dff1
JK
7795
7796 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7797 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7798 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7799 addrmap to help ensure it has an accurate map of pc values belonging to
7800 this comp unit. */
7801 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7802
7803 symtab = end_symtab_from_static_block (static_block, objfile,
7804 SECT_OFF_TEXT (objfile), 0);
c906108c 7805
8be455d7 7806 if (symtab != NULL)
c906108c 7807 {
df15bd07 7808 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 7809
8be455d7
JK
7810 /* Set symtab language to language from DW_AT_language. If the
7811 compilation is from a C file generated by language preprocessors, do
7812 not set the language if it was already deduced by start_subfile. */
7813 if (!(cu->language == language_c && symtab->language != language_c))
7814 symtab->language = cu->language;
7815
7816 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7817 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
7818 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7819 there were bugs in prologue debug info, fixed later in GCC-4.5
7820 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
7821
7822 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7823 needed, it would be wrong due to missing DW_AT_producer there.
7824
7825 Still one can confuse GDB by using non-standard GCC compilation
7826 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7827 */
ab260dad 7828 if (cu->has_loclist && gcc_4_minor >= 5)
8be455d7 7829 symtab->locations_valid = 1;
e0d00bc7
JK
7830
7831 if (gcc_4_minor >= 5)
7832 symtab->epilogue_unwind_valid = 1;
96408a79
SA
7833
7834 symtab->call_site_htab = cu->call_site_htab;
c906108c 7835 }
9291a0cd
TT
7836
7837 if (dwarf2_per_objfile->using_index)
7838 per_cu->v.quick->symtab = symtab;
7839 else
7840 {
7841 struct partial_symtab *pst = per_cu->v.psymtab;
7842 pst->symtab = symtab;
7843 pst->readin = 1;
7844 }
c906108c 7845
95554aad
TT
7846 /* Push it for inclusion processing later. */
7847 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7848
c906108c 7849 do_cleanups (back_to);
f4dc4d17 7850}
45cfd468 7851
f4dc4d17
DE
7852/* Generate full symbol information for type unit PER_CU, whose DIEs have
7853 already been loaded into memory. */
7854
7855static void
7856process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7857 enum language pretend_language)
7858{
7859 struct dwarf2_cu *cu = per_cu->cu;
7860 struct objfile *objfile = per_cu->objfile;
7861 struct symtab *symtab;
7862 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
7863 struct signatured_type *sig_type;
7864
7865 gdb_assert (per_cu->is_debug_types);
7866 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
7867
7868 buildsym_init ();
7869 back_to = make_cleanup (really_free_pendings, NULL);
7870 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7871
7872 cu->list_in_scope = &file_symbols;
7873
7874 cu->language = pretend_language;
7875 cu->language_defn = language_def (cu->language);
7876
7877 /* The symbol tables are set up in read_type_unit_scope. */
7878 process_die (cu->dies, cu);
7879
7880 /* For now fudge the Go package. */
7881 if (cu->language == language_go)
7882 fixup_go_packaging (cu);
7883
7884 /* Now that we have processed all the DIEs in the CU, all the types
7885 should be complete, and it should now be safe to compute all of the
7886 physnames. */
7887 compute_delayed_physnames (cu);
7888 do_cleanups (delayed_list_cleanup);
7889
7890 /* TUs share symbol tables.
7891 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
7892 of it with end_expandable_symtab. Otherwise, complete the addition of
7893 this TU's symbols to the existing symtab. */
0186c6a7 7894 if (sig_type->type_unit_group->primary_symtab == NULL)
45cfd468 7895 {
f4dc4d17 7896 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
0186c6a7 7897 sig_type->type_unit_group->primary_symtab = symtab;
f4dc4d17
DE
7898
7899 if (symtab != NULL)
7900 {
7901 /* Set symtab language to language from DW_AT_language. If the
7902 compilation is from a C file generated by language preprocessors,
7903 do not set the language if it was already deduced by
7904 start_subfile. */
7905 if (!(cu->language == language_c && symtab->language != language_c))
7906 symtab->language = cu->language;
7907 }
7908 }
7909 else
7910 {
7911 augment_type_symtab (objfile,
0186c6a7
DE
7912 sig_type->type_unit_group->primary_symtab);
7913 symtab = sig_type->type_unit_group->primary_symtab;
f4dc4d17
DE
7914 }
7915
7916 if (dwarf2_per_objfile->using_index)
7917 per_cu->v.quick->symtab = symtab;
7918 else
7919 {
7920 struct partial_symtab *pst = per_cu->v.psymtab;
7921 pst->symtab = symtab;
7922 pst->readin = 1;
45cfd468 7923 }
f4dc4d17
DE
7924
7925 do_cleanups (back_to);
c906108c
SS
7926}
7927
95554aad
TT
7928/* Process an imported unit DIE. */
7929
7930static void
7931process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7932{
7933 struct attribute *attr;
7934
f4dc4d17
DE
7935 /* For now we don't handle imported units in type units. */
7936 if (cu->per_cu->is_debug_types)
7937 {
7938 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7939 " supported in type units [in module %s]"),
4262abfb 7940 objfile_name (cu->objfile));
f4dc4d17
DE
7941 }
7942
95554aad
TT
7943 attr = dwarf2_attr (die, DW_AT_import, cu);
7944 if (attr != NULL)
7945 {
7946 struct dwarf2_per_cu_data *per_cu;
7947 struct symtab *imported_symtab;
7948 sect_offset offset;
36586728 7949 int is_dwz;
95554aad
TT
7950
7951 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
7952 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7953 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 7954
69d751e3 7955 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
7956 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7957 load_full_comp_unit (per_cu, cu->language);
7958
796a7ff8 7959 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
7960 per_cu);
7961 }
7962}
7963
c906108c
SS
7964/* Process a die and its children. */
7965
7966static void
e7c27a73 7967process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7968{
7969 switch (die->tag)
7970 {
7971 case DW_TAG_padding:
7972 break;
7973 case DW_TAG_compile_unit:
95554aad 7974 case DW_TAG_partial_unit:
e7c27a73 7975 read_file_scope (die, cu);
c906108c 7976 break;
348e048f
DE
7977 case DW_TAG_type_unit:
7978 read_type_unit_scope (die, cu);
7979 break;
c906108c 7980 case DW_TAG_subprogram:
c906108c 7981 case DW_TAG_inlined_subroutine:
edb3359d 7982 read_func_scope (die, cu);
c906108c
SS
7983 break;
7984 case DW_TAG_lexical_block:
14898363
L
7985 case DW_TAG_try_block:
7986 case DW_TAG_catch_block:
e7c27a73 7987 read_lexical_block_scope (die, cu);
c906108c 7988 break;
96408a79
SA
7989 case DW_TAG_GNU_call_site:
7990 read_call_site_scope (die, cu);
7991 break;
c906108c 7992 case DW_TAG_class_type:
680b30c7 7993 case DW_TAG_interface_type:
c906108c
SS
7994 case DW_TAG_structure_type:
7995 case DW_TAG_union_type:
134d01f1 7996 process_structure_scope (die, cu);
c906108c
SS
7997 break;
7998 case DW_TAG_enumeration_type:
134d01f1 7999 process_enumeration_scope (die, cu);
c906108c 8000 break;
134d01f1 8001
f792889a
DJ
8002 /* These dies have a type, but processing them does not create
8003 a symbol or recurse to process the children. Therefore we can
8004 read them on-demand through read_type_die. */
c906108c 8005 case DW_TAG_subroutine_type:
72019c9c 8006 case DW_TAG_set_type:
c906108c 8007 case DW_TAG_array_type:
c906108c 8008 case DW_TAG_pointer_type:
c906108c 8009 case DW_TAG_ptr_to_member_type:
c906108c 8010 case DW_TAG_reference_type:
c906108c 8011 case DW_TAG_string_type:
c906108c 8012 break;
134d01f1 8013
c906108c 8014 case DW_TAG_base_type:
a02abb62 8015 case DW_TAG_subrange_type:
cb249c71 8016 case DW_TAG_typedef:
134d01f1
DJ
8017 /* Add a typedef symbol for the type definition, if it has a
8018 DW_AT_name. */
f792889a 8019 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8020 break;
c906108c 8021 case DW_TAG_common_block:
e7c27a73 8022 read_common_block (die, cu);
c906108c
SS
8023 break;
8024 case DW_TAG_common_inclusion:
8025 break;
d9fa45fe 8026 case DW_TAG_namespace:
4d4ec4e5 8027 cu->processing_has_namespace_info = 1;
e7c27a73 8028 read_namespace (die, cu);
d9fa45fe 8029 break;
5d7cb8df 8030 case DW_TAG_module:
4d4ec4e5 8031 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8032 read_module (die, cu);
8033 break;
d9fa45fe
DC
8034 case DW_TAG_imported_declaration:
8035 case DW_TAG_imported_module:
4d4ec4e5 8036 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8037 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8038 || cu->language != language_fortran))
8039 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8040 dwarf_tag_name (die->tag));
8041 read_import_statement (die, cu);
d9fa45fe 8042 break;
95554aad
TT
8043
8044 case DW_TAG_imported_unit:
8045 process_imported_unit_die (die, cu);
8046 break;
8047
c906108c 8048 default:
e7c27a73 8049 new_symbol (die, NULL, cu);
c906108c
SS
8050 break;
8051 }
8052}
ca69b9e6
DE
8053\f
8054/* DWARF name computation. */
c906108c 8055
94af9270
KS
8056/* A helper function for dwarf2_compute_name which determines whether DIE
8057 needs to have the name of the scope prepended to the name listed in the
8058 die. */
8059
8060static int
8061die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8062{
1c809c68
TT
8063 struct attribute *attr;
8064
94af9270
KS
8065 switch (die->tag)
8066 {
8067 case DW_TAG_namespace:
8068 case DW_TAG_typedef:
8069 case DW_TAG_class_type:
8070 case DW_TAG_interface_type:
8071 case DW_TAG_structure_type:
8072 case DW_TAG_union_type:
8073 case DW_TAG_enumeration_type:
8074 case DW_TAG_enumerator:
8075 case DW_TAG_subprogram:
8076 case DW_TAG_member:
8077 return 1;
8078
8079 case DW_TAG_variable:
c2b0a229 8080 case DW_TAG_constant:
94af9270
KS
8081 /* We only need to prefix "globally" visible variables. These include
8082 any variable marked with DW_AT_external or any variable that
8083 lives in a namespace. [Variables in anonymous namespaces
8084 require prefixing, but they are not DW_AT_external.] */
8085
8086 if (dwarf2_attr (die, DW_AT_specification, cu))
8087 {
8088 struct dwarf2_cu *spec_cu = cu;
9a619af0 8089
94af9270
KS
8090 return die_needs_namespace (die_specification (die, &spec_cu),
8091 spec_cu);
8092 }
8093
1c809c68 8094 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8095 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8096 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8097 return 0;
8098 /* A variable in a lexical block of some kind does not need a
8099 namespace, even though in C++ such variables may be external
8100 and have a mangled name. */
8101 if (die->parent->tag == DW_TAG_lexical_block
8102 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8103 || die->parent->tag == DW_TAG_catch_block
8104 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8105 return 0;
8106 return 1;
94af9270
KS
8107
8108 default:
8109 return 0;
8110 }
8111}
8112
98bfdba5
PA
8113/* Retrieve the last character from a mem_file. */
8114
8115static void
8116do_ui_file_peek_last (void *object, const char *buffer, long length)
8117{
8118 char *last_char_p = (char *) object;
8119
8120 if (length > 0)
8121 *last_char_p = buffer[length - 1];
8122}
8123
94af9270 8124/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8125 compute the physname for the object, which include a method's:
8126 - formal parameters (C++/Java),
8127 - receiver type (Go),
8128 - return type (Java).
8129
8130 The term "physname" is a bit confusing.
8131 For C++, for example, it is the demangled name.
8132 For Go, for example, it's the mangled name.
94af9270 8133
af6b7be1
JB
8134 For Ada, return the DIE's linkage name rather than the fully qualified
8135 name. PHYSNAME is ignored..
8136
94af9270
KS
8137 The result is allocated on the objfile_obstack and canonicalized. */
8138
8139static const char *
15d034d0
TT
8140dwarf2_compute_name (const char *name,
8141 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8142 int physname)
8143{
bb5ed363
DE
8144 struct objfile *objfile = cu->objfile;
8145
94af9270
KS
8146 if (name == NULL)
8147 name = dwarf2_name (die, cu);
8148
f55ee35c
JK
8149 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8150 compute it by typename_concat inside GDB. */
8151 if (cu->language == language_ada
8152 || (cu->language == language_fortran && physname))
8153 {
8154 /* For Ada unit, we prefer the linkage name over the name, as
8155 the former contains the exported name, which the user expects
8156 to be able to reference. Ideally, we want the user to be able
8157 to reference this entity using either natural or linkage name,
8158 but we haven't started looking at this enhancement yet. */
8159 struct attribute *attr;
8160
8161 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8162 if (attr == NULL)
8163 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8164 if (attr && DW_STRING (attr))
8165 return DW_STRING (attr);
8166 }
8167
94af9270
KS
8168 /* These are the only languages we know how to qualify names in. */
8169 if (name != NULL
f55ee35c
JK
8170 && (cu->language == language_cplus || cu->language == language_java
8171 || cu->language == language_fortran))
94af9270
KS
8172 {
8173 if (die_needs_namespace (die, cu))
8174 {
8175 long length;
0d5cff50 8176 const char *prefix;
94af9270
KS
8177 struct ui_file *buf;
8178
8179 prefix = determine_prefix (die, cu);
8180 buf = mem_fileopen ();
8181 if (*prefix != '\0')
8182 {
f55ee35c
JK
8183 char *prefixed_name = typename_concat (NULL, prefix, name,
8184 physname, cu);
9a619af0 8185
94af9270
KS
8186 fputs_unfiltered (prefixed_name, buf);
8187 xfree (prefixed_name);
8188 }
8189 else
62d5b8da 8190 fputs_unfiltered (name, buf);
94af9270 8191
98bfdba5
PA
8192 /* Template parameters may be specified in the DIE's DW_AT_name, or
8193 as children with DW_TAG_template_type_param or
8194 DW_TAG_value_type_param. If the latter, add them to the name
8195 here. If the name already has template parameters, then
8196 skip this step; some versions of GCC emit both, and
8197 it is more efficient to use the pre-computed name.
8198
8199 Something to keep in mind about this process: it is very
8200 unlikely, or in some cases downright impossible, to produce
8201 something that will match the mangled name of a function.
8202 If the definition of the function has the same debug info,
8203 we should be able to match up with it anyway. But fallbacks
8204 using the minimal symbol, for instance to find a method
8205 implemented in a stripped copy of libstdc++, will not work.
8206 If we do not have debug info for the definition, we will have to
8207 match them up some other way.
8208
8209 When we do name matching there is a related problem with function
8210 templates; two instantiated function templates are allowed to
8211 differ only by their return types, which we do not add here. */
8212
8213 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8214 {
8215 struct attribute *attr;
8216 struct die_info *child;
8217 int first = 1;
8218
8219 die->building_fullname = 1;
8220
8221 for (child = die->child; child != NULL; child = child->sibling)
8222 {
8223 struct type *type;
12df843f 8224 LONGEST value;
d521ce57 8225 const gdb_byte *bytes;
98bfdba5
PA
8226 struct dwarf2_locexpr_baton *baton;
8227 struct value *v;
8228
8229 if (child->tag != DW_TAG_template_type_param
8230 && child->tag != DW_TAG_template_value_param)
8231 continue;
8232
8233 if (first)
8234 {
8235 fputs_unfiltered ("<", buf);
8236 first = 0;
8237 }
8238 else
8239 fputs_unfiltered (", ", buf);
8240
8241 attr = dwarf2_attr (child, DW_AT_type, cu);
8242 if (attr == NULL)
8243 {
8244 complaint (&symfile_complaints,
8245 _("template parameter missing DW_AT_type"));
8246 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8247 continue;
8248 }
8249 type = die_type (child, cu);
8250
8251 if (child->tag == DW_TAG_template_type_param)
8252 {
79d43c61 8253 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8254 continue;
8255 }
8256
8257 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8258 if (attr == NULL)
8259 {
8260 complaint (&symfile_complaints,
3e43a32a
MS
8261 _("template parameter missing "
8262 "DW_AT_const_value"));
98bfdba5
PA
8263 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8264 continue;
8265 }
8266
8267 dwarf2_const_value_attr (attr, type, name,
8268 &cu->comp_unit_obstack, cu,
8269 &value, &bytes, &baton);
8270
8271 if (TYPE_NOSIGN (type))
8272 /* GDB prints characters as NUMBER 'CHAR'. If that's
8273 changed, this can use value_print instead. */
8274 c_printchar (value, type, buf);
8275 else
8276 {
8277 struct value_print_options opts;
8278
8279 if (baton != NULL)
8280 v = dwarf2_evaluate_loc_desc (type, NULL,
8281 baton->data,
8282 baton->size,
8283 baton->per_cu);
8284 else if (bytes != NULL)
8285 {
8286 v = allocate_value (type);
8287 memcpy (value_contents_writeable (v), bytes,
8288 TYPE_LENGTH (type));
8289 }
8290 else
8291 v = value_from_longest (type, value);
8292
3e43a32a
MS
8293 /* Specify decimal so that we do not depend on
8294 the radix. */
98bfdba5
PA
8295 get_formatted_print_options (&opts, 'd');
8296 opts.raw = 1;
8297 value_print (v, buf, &opts);
8298 release_value (v);
8299 value_free (v);
8300 }
8301 }
8302
8303 die->building_fullname = 0;
8304
8305 if (!first)
8306 {
8307 /* Close the argument list, with a space if necessary
8308 (nested templates). */
8309 char last_char = '\0';
8310 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8311 if (last_char == '>')
8312 fputs_unfiltered (" >", buf);
8313 else
8314 fputs_unfiltered (">", buf);
8315 }
8316 }
8317
94af9270
KS
8318 /* For Java and C++ methods, append formal parameter type
8319 information, if PHYSNAME. */
6e70227d 8320
94af9270
KS
8321 if (physname && die->tag == DW_TAG_subprogram
8322 && (cu->language == language_cplus
8323 || cu->language == language_java))
8324 {
8325 struct type *type = read_type_die (die, cu);
8326
79d43c61
TT
8327 c_type_print_args (type, buf, 1, cu->language,
8328 &type_print_raw_options);
94af9270
KS
8329
8330 if (cu->language == language_java)
8331 {
8332 /* For java, we must append the return type to method
0963b4bd 8333 names. */
94af9270
KS
8334 if (die->tag == DW_TAG_subprogram)
8335 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8336 0, 0, &type_print_raw_options);
94af9270
KS
8337 }
8338 else if (cu->language == language_cplus)
8339 {
60430eff
DJ
8340 /* Assume that an artificial first parameter is
8341 "this", but do not crash if it is not. RealView
8342 marks unnamed (and thus unused) parameters as
8343 artificial; there is no way to differentiate
8344 the two cases. */
94af9270
KS
8345 if (TYPE_NFIELDS (type) > 0
8346 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8347 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8348 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8349 0))))
94af9270
KS
8350 fputs_unfiltered (" const", buf);
8351 }
8352 }
8353
bb5ed363 8354 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
94af9270
KS
8355 &length);
8356 ui_file_delete (buf);
8357
8358 if (cu->language == language_cplus)
8359 {
15d034d0 8360 const char *cname
94af9270 8361 = dwarf2_canonicalize_name (name, cu,
bb5ed363 8362 &objfile->objfile_obstack);
9a619af0 8363
94af9270
KS
8364 if (cname != NULL)
8365 name = cname;
8366 }
8367 }
8368 }
8369
8370 return name;
8371}
8372
0114d602
DJ
8373/* Return the fully qualified name of DIE, based on its DW_AT_name.
8374 If scope qualifiers are appropriate they will be added. The result
8375 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
8376 not have a name. NAME may either be from a previous call to
8377 dwarf2_name or NULL.
8378
0963b4bd 8379 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8380
8381static const char *
15d034d0 8382dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8383{
94af9270
KS
8384 return dwarf2_compute_name (name, die, cu, 0);
8385}
0114d602 8386
94af9270
KS
8387/* Construct a physname for the given DIE in CU. NAME may either be
8388 from a previous call to dwarf2_name or NULL. The result will be
8389 allocated on the objfile_objstack or NULL if the DIE does not have a
8390 name.
0114d602 8391
94af9270 8392 The output string will be canonicalized (if C++/Java). */
0114d602 8393
94af9270 8394static const char *
15d034d0 8395dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8396{
bb5ed363 8397 struct objfile *objfile = cu->objfile;
900e11f9
JK
8398 struct attribute *attr;
8399 const char *retval, *mangled = NULL, *canon = NULL;
8400 struct cleanup *back_to;
8401 int need_copy = 1;
8402
8403 /* In this case dwarf2_compute_name is just a shortcut not building anything
8404 on its own. */
8405 if (!die_needs_namespace (die, cu))
8406 return dwarf2_compute_name (name, die, cu, 1);
8407
8408 back_to = make_cleanup (null_cleanup, NULL);
8409
8410 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8411 if (!attr)
8412 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8413
8414 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8415 has computed. */
8416 if (attr && DW_STRING (attr))
8417 {
8418 char *demangled;
8419
8420 mangled = DW_STRING (attr);
8421
8422 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8423 type. It is easier for GDB users to search for such functions as
8424 `name(params)' than `long name(params)'. In such case the minimal
8425 symbol names do not match the full symbol names but for template
8426 functions there is never a need to look up their definition from their
8427 declaration so the only disadvantage remains the minimal symbol
8428 variant `long name(params)' does not have the proper inferior type.
8429 */
8430
a766d390
DE
8431 if (cu->language == language_go)
8432 {
8433 /* This is a lie, but we already lie to the caller new_symbol_full.
8434 new_symbol_full assumes we return the mangled name.
8435 This just undoes that lie until things are cleaned up. */
8436 demangled = NULL;
8437 }
8438 else
8439 {
8de20a37
TT
8440 demangled = gdb_demangle (mangled,
8441 (DMGL_PARAMS | DMGL_ANSI
8442 | (cu->language == language_java
8443 ? DMGL_JAVA | DMGL_RET_POSTFIX
8444 : DMGL_RET_DROP)));
a766d390 8445 }
900e11f9
JK
8446 if (demangled)
8447 {
8448 make_cleanup (xfree, demangled);
8449 canon = demangled;
8450 }
8451 else
8452 {
8453 canon = mangled;
8454 need_copy = 0;
8455 }
8456 }
8457
8458 if (canon == NULL || check_physname)
8459 {
8460 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8461
8462 if (canon != NULL && strcmp (physname, canon) != 0)
8463 {
8464 /* It may not mean a bug in GDB. The compiler could also
8465 compute DW_AT_linkage_name incorrectly. But in such case
8466 GDB would need to be bug-to-bug compatible. */
8467
8468 complaint (&symfile_complaints,
8469 _("Computed physname <%s> does not match demangled <%s> "
8470 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8471 physname, canon, mangled, die->offset.sect_off,
8472 objfile_name (objfile));
900e11f9
JK
8473
8474 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8475 is available here - over computed PHYSNAME. It is safer
8476 against both buggy GDB and buggy compilers. */
8477
8478 retval = canon;
8479 }
8480 else
8481 {
8482 retval = physname;
8483 need_copy = 0;
8484 }
8485 }
8486 else
8487 retval = canon;
8488
8489 if (need_copy)
10f0c4bb 8490 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
900e11f9
JK
8491
8492 do_cleanups (back_to);
8493 return retval;
0114d602
DJ
8494}
8495
27aa8d6a
SW
8496/* Read the import statement specified by the given die and record it. */
8497
8498static void
8499read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8500{
bb5ed363 8501 struct objfile *objfile = cu->objfile;
27aa8d6a 8502 struct attribute *import_attr;
32019081 8503 struct die_info *imported_die, *child_die;
de4affc9 8504 struct dwarf2_cu *imported_cu;
27aa8d6a 8505 const char *imported_name;
794684b6 8506 const char *imported_name_prefix;
13387711
SW
8507 const char *canonical_name;
8508 const char *import_alias;
8509 const char *imported_declaration = NULL;
794684b6 8510 const char *import_prefix;
32019081
JK
8511 VEC (const_char_ptr) *excludes = NULL;
8512 struct cleanup *cleanups;
13387711 8513
27aa8d6a
SW
8514 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8515 if (import_attr == NULL)
8516 {
8517 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8518 dwarf_tag_name (die->tag));
8519 return;
8520 }
8521
de4affc9
CC
8522 imported_cu = cu;
8523 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8524 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8525 if (imported_name == NULL)
8526 {
8527 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8528
8529 The import in the following code:
8530 namespace A
8531 {
8532 typedef int B;
8533 }
8534
8535 int main ()
8536 {
8537 using A::B;
8538 B b;
8539 return b;
8540 }
8541
8542 ...
8543 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8544 <52> DW_AT_decl_file : 1
8545 <53> DW_AT_decl_line : 6
8546 <54> DW_AT_import : <0x75>
8547 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8548 <59> DW_AT_name : B
8549 <5b> DW_AT_decl_file : 1
8550 <5c> DW_AT_decl_line : 2
8551 <5d> DW_AT_type : <0x6e>
8552 ...
8553 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8554 <76> DW_AT_byte_size : 4
8555 <77> DW_AT_encoding : 5 (signed)
8556
8557 imports the wrong die ( 0x75 instead of 0x58 ).
8558 This case will be ignored until the gcc bug is fixed. */
8559 return;
8560 }
8561
82856980
SW
8562 /* Figure out the local name after import. */
8563 import_alias = dwarf2_name (die, cu);
27aa8d6a 8564
794684b6
SW
8565 /* Figure out where the statement is being imported to. */
8566 import_prefix = determine_prefix (die, cu);
8567
8568 /* Figure out what the scope of the imported die is and prepend it
8569 to the name of the imported die. */
de4affc9 8570 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8571
f55ee35c
JK
8572 if (imported_die->tag != DW_TAG_namespace
8573 && imported_die->tag != DW_TAG_module)
794684b6 8574 {
13387711
SW
8575 imported_declaration = imported_name;
8576 canonical_name = imported_name_prefix;
794684b6 8577 }
13387711 8578 else if (strlen (imported_name_prefix) > 0)
12aaed36
TT
8579 canonical_name = obconcat (&objfile->objfile_obstack,
8580 imported_name_prefix, "::", imported_name,
8581 (char *) NULL);
13387711
SW
8582 else
8583 canonical_name = imported_name;
794684b6 8584
32019081
JK
8585 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8586
8587 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8588 for (child_die = die->child; child_die && child_die->tag;
8589 child_die = sibling_die (child_die))
8590 {
8591 /* DWARF-4: A Fortran use statement with a “rename list” may be
8592 represented by an imported module entry with an import attribute
8593 referring to the module and owned entries corresponding to those
8594 entities that are renamed as part of being imported. */
8595
8596 if (child_die->tag != DW_TAG_imported_declaration)
8597 {
8598 complaint (&symfile_complaints,
8599 _("child DW_TAG_imported_declaration expected "
8600 "- DIE at 0x%x [in module %s]"),
4262abfb 8601 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8602 continue;
8603 }
8604
8605 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8606 if (import_attr == NULL)
8607 {
8608 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8609 dwarf_tag_name (child_die->tag));
8610 continue;
8611 }
8612
8613 imported_cu = cu;
8614 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8615 &imported_cu);
8616 imported_name = dwarf2_name (imported_die, imported_cu);
8617 if (imported_name == NULL)
8618 {
8619 complaint (&symfile_complaints,
8620 _("child DW_TAG_imported_declaration has unknown "
8621 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 8622 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8623 continue;
8624 }
8625
8626 VEC_safe_push (const_char_ptr, excludes, imported_name);
8627
8628 process_die (child_die, cu);
8629 }
8630
c0cc3a76
SW
8631 cp_add_using_directive (import_prefix,
8632 canonical_name,
8633 import_alias,
13387711 8634 imported_declaration,
32019081 8635 excludes,
12aaed36 8636 0,
bb5ed363 8637 &objfile->objfile_obstack);
32019081
JK
8638
8639 do_cleanups (cleanups);
27aa8d6a
SW
8640}
8641
f4dc4d17 8642/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 8643
cb1df416
DJ
8644static void
8645free_cu_line_header (void *arg)
8646{
8647 struct dwarf2_cu *cu = arg;
8648
8649 free_line_header (cu->line_header);
8650 cu->line_header = NULL;
8651}
8652
1b80a9fa
JK
8653/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8654 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8655 this, it was first present in GCC release 4.3.0. */
8656
8657static int
8658producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8659{
8660 if (!cu->checked_producer)
8661 check_producer (cu);
8662
8663 return cu->producer_is_gcc_lt_4_3;
8664}
8665
9291a0cd
TT
8666static void
8667find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 8668 const char **name, const char **comp_dir)
9291a0cd
TT
8669{
8670 struct attribute *attr;
8671
8672 *name = NULL;
8673 *comp_dir = NULL;
8674
8675 /* Find the filename. Do not use dwarf2_name here, since the filename
8676 is not a source language identifier. */
8677 attr = dwarf2_attr (die, DW_AT_name, cu);
8678 if (attr)
8679 {
8680 *name = DW_STRING (attr);
8681 }
8682
8683 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8684 if (attr)
8685 *comp_dir = DW_STRING (attr);
1b80a9fa
JK
8686 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8687 && IS_ABSOLUTE_PATH (*name))
9291a0cd 8688 {
15d034d0
TT
8689 char *d = ldirname (*name);
8690
8691 *comp_dir = d;
8692 if (d != NULL)
8693 make_cleanup (xfree, d);
9291a0cd
TT
8694 }
8695 if (*comp_dir != NULL)
8696 {
8697 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8698 directory, get rid of it. */
8699 char *cp = strchr (*comp_dir, ':');
8700
8701 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8702 *comp_dir = cp + 1;
8703 }
8704
8705 if (*name == NULL)
8706 *name = "<unknown>";
8707}
8708
f4dc4d17
DE
8709/* Handle DW_AT_stmt_list for a compilation unit.
8710 DIE is the DW_TAG_compile_unit die for CU.
f3f5162e
DE
8711 COMP_DIR is the compilation directory.
8712 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
2ab95328
TT
8713
8714static void
8715handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
b385a60d 8716 const char *comp_dir) /* ARI: editCase function */
2ab95328
TT
8717{
8718 struct attribute *attr;
2ab95328 8719
f4dc4d17
DE
8720 gdb_assert (! cu->per_cu->is_debug_types);
8721
2ab95328
TT
8722 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8723 if (attr)
8724 {
8725 unsigned int line_offset = DW_UNSND (attr);
8726 struct line_header *line_header
3019eac3 8727 = dwarf_decode_line_header (line_offset, cu);
2ab95328
TT
8728
8729 if (line_header)
dee91e82
DE
8730 {
8731 cu->line_header = line_header;
8732 make_cleanup (free_cu_line_header, cu);
f4dc4d17 8733 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
dee91e82 8734 }
2ab95328
TT
8735 }
8736}
8737
95554aad 8738/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 8739
c906108c 8740static void
e7c27a73 8741read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8742{
dee91e82 8743 struct objfile *objfile = dwarf2_per_objfile->objfile;
debd256d 8744 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 8745 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
8746 CORE_ADDR highpc = ((CORE_ADDR) 0);
8747 struct attribute *attr;
15d034d0
TT
8748 const char *name = NULL;
8749 const char *comp_dir = NULL;
c906108c
SS
8750 struct die_info *child_die;
8751 bfd *abfd = objfile->obfd;
e142c38c 8752 CORE_ADDR baseaddr;
6e70227d 8753
e142c38c 8754 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8755
fae299cd 8756 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
8757
8758 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8759 from finish_block. */
2acceee2 8760 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
8761 lowpc = highpc;
8762 lowpc += baseaddr;
8763 highpc += baseaddr;
8764
9291a0cd 8765 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 8766
95554aad 8767 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 8768
f4b8a18d
KW
8769 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8770 standardised yet. As a workaround for the language detection we fall
8771 back to the DW_AT_producer string. */
8772 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8773 cu->language = language_opencl;
8774
3019eac3
DE
8775 /* Similar hack for Go. */
8776 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8777 set_cu_language (DW_LANG_Go, cu);
8778
f4dc4d17 8779 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
8780
8781 /* Decode line number information if present. We do this before
8782 processing child DIEs, so that the line header table is available
8783 for DW_AT_decl_file. */
f4dc4d17 8784 handle_DW_AT_stmt_list (die, cu, comp_dir);
3019eac3
DE
8785
8786 /* Process all dies in compilation unit. */
8787 if (die->child != NULL)
8788 {
8789 child_die = die->child;
8790 while (child_die && child_die->tag)
8791 {
8792 process_die (child_die, cu);
8793 child_die = sibling_die (child_die);
8794 }
8795 }
8796
8797 /* Decode macro information, if present. Dwarf 2 macro information
8798 refers to information in the line number info statement program
8799 header, so we can only read it if we've read the header
8800 successfully. */
8801 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8802 if (attr && cu->line_header)
8803 {
8804 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8805 complaint (&symfile_complaints,
8806 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8807
09262596 8808 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
3019eac3
DE
8809 }
8810 else
8811 {
8812 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8813 if (attr && cu->line_header)
8814 {
8815 unsigned int macro_offset = DW_UNSND (attr);
8816
09262596 8817 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
3019eac3
DE
8818 }
8819 }
8820
8821 do_cleanups (back_to);
8822}
8823
f4dc4d17
DE
8824/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8825 Create the set of symtabs used by this TU, or if this TU is sharing
8826 symtabs with another TU and the symtabs have already been created
8827 then restore those symtabs in the line header.
8828 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
8829
8830static void
f4dc4d17 8831setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 8832{
f4dc4d17
DE
8833 struct objfile *objfile = dwarf2_per_objfile->objfile;
8834 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8835 struct type_unit_group *tu_group;
8836 int first_time;
8837 struct line_header *lh;
3019eac3 8838 struct attribute *attr;
f4dc4d17 8839 unsigned int i, line_offset;
0186c6a7 8840 struct signatured_type *sig_type;
3019eac3 8841
f4dc4d17 8842 gdb_assert (per_cu->is_debug_types);
0186c6a7 8843 sig_type = (struct signatured_type *) per_cu;
3019eac3 8844
f4dc4d17 8845 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 8846
f4dc4d17 8847 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 8848 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
8849 if (sig_type->type_unit_group == NULL)
8850 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8851 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
8852
8853 /* If we've already processed this stmt_list there's no real need to
8854 do it again, we could fake it and just recreate the part we need
8855 (file name,index -> symtab mapping). If data shows this optimization
8856 is useful we can do it then. */
8857 first_time = tu_group->primary_symtab == NULL;
8858
8859 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8860 debug info. */
8861 lh = NULL;
8862 if (attr != NULL)
3019eac3 8863 {
f4dc4d17
DE
8864 line_offset = DW_UNSND (attr);
8865 lh = dwarf_decode_line_header (line_offset, cu);
8866 }
8867 if (lh == NULL)
8868 {
8869 if (first_time)
8870 dwarf2_start_symtab (cu, "", NULL, 0);
8871 else
8872 {
8873 gdb_assert (tu_group->symtabs == NULL);
8874 restart_symtab (0);
8875 }
8876 /* Note: The primary symtab will get allocated at the end. */
8877 return;
3019eac3
DE
8878 }
8879
f4dc4d17
DE
8880 cu->line_header = lh;
8881 make_cleanup (free_cu_line_header, cu);
3019eac3 8882
f4dc4d17
DE
8883 if (first_time)
8884 {
8885 dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 8886
f4dc4d17
DE
8887 tu_group->num_symtabs = lh->num_file_names;
8888 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 8889
f4dc4d17
DE
8890 for (i = 0; i < lh->num_file_names; ++i)
8891 {
d521ce57 8892 const char *dir = NULL;
f4dc4d17 8893 struct file_entry *fe = &lh->file_names[i];
3019eac3 8894
f4dc4d17
DE
8895 if (fe->dir_index)
8896 dir = lh->include_dirs[fe->dir_index - 1];
8897 dwarf2_start_subfile (fe->name, dir, NULL);
3019eac3 8898
f4dc4d17
DE
8899 /* Note: We don't have to watch for the main subfile here, type units
8900 don't have DW_AT_name. */
3019eac3 8901
f4dc4d17
DE
8902 if (current_subfile->symtab == NULL)
8903 {
8904 /* NOTE: start_subfile will recognize when it's been passed
8905 a file it has already seen. So we can't assume there's a
8906 simple mapping from lh->file_names to subfiles,
8907 lh->file_names may contain dups. */
8908 current_subfile->symtab = allocate_symtab (current_subfile->name,
8909 objfile);
8910 }
8911
8912 fe->symtab = current_subfile->symtab;
8913 tu_group->symtabs[i] = fe->symtab;
8914 }
8915 }
8916 else
3019eac3 8917 {
f4dc4d17
DE
8918 restart_symtab (0);
8919
8920 for (i = 0; i < lh->num_file_names; ++i)
8921 {
8922 struct file_entry *fe = &lh->file_names[i];
8923
8924 fe->symtab = tu_group->symtabs[i];
8925 }
3019eac3
DE
8926 }
8927
f4dc4d17
DE
8928 /* The main symtab is allocated last. Type units don't have DW_AT_name
8929 so they don't have a "real" (so to speak) symtab anyway.
8930 There is later code that will assign the main symtab to all symbols
8931 that don't have one. We need to handle the case of a symbol with a
8932 missing symtab (DW_AT_decl_file) anyway. */
8933}
3019eac3 8934
f4dc4d17
DE
8935/* Process DW_TAG_type_unit.
8936 For TUs we want to skip the first top level sibling if it's not the
8937 actual type being defined by this TU. In this case the first top
8938 level sibling is there to provide context only. */
3019eac3 8939
f4dc4d17
DE
8940static void
8941read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8942{
8943 struct die_info *child_die;
3019eac3 8944
f4dc4d17
DE
8945 prepare_one_comp_unit (cu, die, language_minimal);
8946
8947 /* Initialize (or reinitialize) the machinery for building symtabs.
8948 We do this before processing child DIEs, so that the line header table
8949 is available for DW_AT_decl_file. */
8950 setup_type_unit_groups (die, cu);
8951
8952 if (die->child != NULL)
8953 {
8954 child_die = die->child;
8955 while (child_die && child_die->tag)
8956 {
8957 process_die (child_die, cu);
8958 child_die = sibling_die (child_die);
8959 }
8960 }
3019eac3
DE
8961}
8962\f
80626a55
DE
8963/* DWO/DWP files.
8964
8965 http://gcc.gnu.org/wiki/DebugFission
8966 http://gcc.gnu.org/wiki/DebugFissionDWP
8967
8968 To simplify handling of both DWO files ("object" files with the DWARF info)
8969 and DWP files (a file with the DWOs packaged up into one file), we treat
8970 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
8971
8972static hashval_t
8973hash_dwo_file (const void *item)
8974{
8975 const struct dwo_file *dwo_file = item;
a2ce51a0 8976 hashval_t hash;
3019eac3 8977
a2ce51a0
DE
8978 hash = htab_hash_string (dwo_file->dwo_name);
8979 if (dwo_file->comp_dir != NULL)
8980 hash += htab_hash_string (dwo_file->comp_dir);
8981 return hash;
3019eac3
DE
8982}
8983
8984static int
8985eq_dwo_file (const void *item_lhs, const void *item_rhs)
8986{
8987 const struct dwo_file *lhs = item_lhs;
8988 const struct dwo_file *rhs = item_rhs;
8989
a2ce51a0
DE
8990 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
8991 return 0;
8992 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
8993 return lhs->comp_dir == rhs->comp_dir;
8994 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
8995}
8996
8997/* Allocate a hash table for DWO files. */
8998
8999static htab_t
9000allocate_dwo_file_hash_table (void)
9001{
9002 struct objfile *objfile = dwarf2_per_objfile->objfile;
9003
9004 return htab_create_alloc_ex (41,
9005 hash_dwo_file,
9006 eq_dwo_file,
9007 NULL,
9008 &objfile->objfile_obstack,
9009 hashtab_obstack_allocate,
9010 dummy_obstack_deallocate);
9011}
9012
80626a55
DE
9013/* Lookup DWO file DWO_NAME. */
9014
9015static void **
0ac5b59e 9016lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9017{
9018 struct dwo_file find_entry;
9019 void **slot;
9020
9021 if (dwarf2_per_objfile->dwo_files == NULL)
9022 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9023
9024 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9025 find_entry.dwo_name = dwo_name;
9026 find_entry.comp_dir = comp_dir;
80626a55
DE
9027 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9028
9029 return slot;
9030}
9031
3019eac3
DE
9032static hashval_t
9033hash_dwo_unit (const void *item)
9034{
9035 const struct dwo_unit *dwo_unit = item;
9036
9037 /* This drops the top 32 bits of the id, but is ok for a hash. */
9038 return dwo_unit->signature;
9039}
9040
9041static int
9042eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9043{
9044 const struct dwo_unit *lhs = item_lhs;
9045 const struct dwo_unit *rhs = item_rhs;
9046
9047 /* The signature is assumed to be unique within the DWO file.
9048 So while object file CU dwo_id's always have the value zero,
9049 that's OK, assuming each object file DWO file has only one CU,
9050 and that's the rule for now. */
9051 return lhs->signature == rhs->signature;
9052}
9053
9054/* Allocate a hash table for DWO CUs,TUs.
9055 There is one of these tables for each of CUs,TUs for each DWO file. */
9056
9057static htab_t
9058allocate_dwo_unit_table (struct objfile *objfile)
9059{
9060 /* Start out with a pretty small number.
9061 Generally DWO files contain only one CU and maybe some TUs. */
9062 return htab_create_alloc_ex (3,
9063 hash_dwo_unit,
9064 eq_dwo_unit,
9065 NULL,
9066 &objfile->objfile_obstack,
9067 hashtab_obstack_allocate,
9068 dummy_obstack_deallocate);
9069}
9070
80626a55 9071/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9072
19c3d4c9 9073struct create_dwo_cu_data
3019eac3
DE
9074{
9075 struct dwo_file *dwo_file;
19c3d4c9 9076 struct dwo_unit dwo_unit;
3019eac3
DE
9077};
9078
19c3d4c9 9079/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9080
9081static void
19c3d4c9
DE
9082create_dwo_cu_reader (const struct die_reader_specs *reader,
9083 const gdb_byte *info_ptr,
9084 struct die_info *comp_unit_die,
9085 int has_children,
9086 void *datap)
3019eac3
DE
9087{
9088 struct dwarf2_cu *cu = reader->cu;
9089 struct objfile *objfile = dwarf2_per_objfile->objfile;
9090 sect_offset offset = cu->per_cu->offset;
8a0459fd 9091 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 9092 struct create_dwo_cu_data *data = datap;
3019eac3 9093 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9094 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9095 struct attribute *attr;
3019eac3
DE
9096
9097 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9098 if (attr == NULL)
9099 {
19c3d4c9
DE
9100 complaint (&symfile_complaints,
9101 _("Dwarf Error: debug entry at offset 0x%x is missing"
9102 " its dwo_id [in module %s]"),
9103 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9104 return;
9105 }
9106
3019eac3
DE
9107 dwo_unit->dwo_file = dwo_file;
9108 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9109 dwo_unit->section = section;
3019eac3
DE
9110 dwo_unit->offset = offset;
9111 dwo_unit->length = cu->per_cu->length;
9112
09406207 9113 if (dwarf2_read_debug)
4031ecc5
DE
9114 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9115 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9116}
9117
19c3d4c9
DE
9118/* Create the dwo_unit for the lone CU in DWO_FILE.
9119 Note: This function processes DWO files only, not DWP files. */
3019eac3 9120
19c3d4c9
DE
9121static struct dwo_unit *
9122create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9123{
9124 struct objfile *objfile = dwarf2_per_objfile->objfile;
9125 struct dwarf2_section_info *section = &dwo_file->sections.info;
9126 bfd *abfd;
9127 htab_t cu_htab;
d521ce57 9128 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9129 struct create_dwo_cu_data create_dwo_cu_data;
9130 struct dwo_unit *dwo_unit;
3019eac3
DE
9131
9132 dwarf2_read_section (objfile, section);
9133 info_ptr = section->buffer;
9134
9135 if (info_ptr == NULL)
9136 return NULL;
9137
9138 /* We can't set abfd until now because the section may be empty or
9139 not present, in which case section->asection will be NULL. */
a32a8923 9140 abfd = get_section_bfd_owner (section);
3019eac3 9141
09406207 9142 if (dwarf2_read_debug)
19c3d4c9
DE
9143 {
9144 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9145 get_section_name (section),
9146 get_section_file_name (section));
19c3d4c9 9147 }
3019eac3 9148
19c3d4c9
DE
9149 create_dwo_cu_data.dwo_file = dwo_file;
9150 dwo_unit = NULL;
3019eac3
DE
9151
9152 end_ptr = info_ptr + section->size;
9153 while (info_ptr < end_ptr)
9154 {
9155 struct dwarf2_per_cu_data per_cu;
9156
19c3d4c9
DE
9157 memset (&create_dwo_cu_data.dwo_unit, 0,
9158 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9159 memset (&per_cu, 0, sizeof (per_cu));
9160 per_cu.objfile = objfile;
9161 per_cu.is_debug_types = 0;
9162 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9163 per_cu.section = section;
3019eac3
DE
9164
9165 init_cutu_and_read_dies_no_follow (&per_cu,
9166 &dwo_file->sections.abbrev,
9167 dwo_file,
19c3d4c9
DE
9168 create_dwo_cu_reader,
9169 &create_dwo_cu_data);
9170
9171 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9172 {
9173 /* If we've already found one, complain. We only support one
9174 because having more than one requires hacking the dwo_name of
9175 each to match, which is highly unlikely to happen. */
9176 if (dwo_unit != NULL)
9177 {
9178 complaint (&symfile_complaints,
9179 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9180 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9181 break;
9182 }
9183
9184 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9185 *dwo_unit = create_dwo_cu_data.dwo_unit;
9186 }
3019eac3
DE
9187
9188 info_ptr += per_cu.length;
9189 }
9190
19c3d4c9 9191 return dwo_unit;
3019eac3
DE
9192}
9193
80626a55
DE
9194/* DWP file .debug_{cu,tu}_index section format:
9195 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9196
d2415c6c
DE
9197 DWP Version 1:
9198
80626a55
DE
9199 Both index sections have the same format, and serve to map a 64-bit
9200 signature to a set of section numbers. Each section begins with a header,
9201 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9202 indexes, and a pool of 32-bit section numbers. The index sections will be
9203 aligned at 8-byte boundaries in the file.
9204
d2415c6c
DE
9205 The index section header consists of:
9206
9207 V, 32 bit version number
9208 -, 32 bits unused
9209 N, 32 bit number of compilation units or type units in the index
9210 M, 32 bit number of slots in the hash table
80626a55 9211
d2415c6c 9212 Numbers are recorded using the byte order of the application binary.
80626a55 9213
d2415c6c
DE
9214 The hash table begins at offset 16 in the section, and consists of an array
9215 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9216 order of the application binary). Unused slots in the hash table are 0.
9217 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9218
d2415c6c
DE
9219 The parallel table begins immediately after the hash table
9220 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9221 array of 32-bit indexes (using the byte order of the application binary),
9222 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9223 table contains a 32-bit index into the pool of section numbers. For unused
9224 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9225
73869dc2
DE
9226 The pool of section numbers begins immediately following the hash table
9227 (at offset 16 + 12 * M from the beginning of the section). The pool of
9228 section numbers consists of an array of 32-bit words (using the byte order
9229 of the application binary). Each item in the array is indexed starting
9230 from 0. The hash table entry provides the index of the first section
9231 number in the set. Additional section numbers in the set follow, and the
9232 set is terminated by a 0 entry (section number 0 is not used in ELF).
9233
9234 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9235 section must be the first entry in the set, and the .debug_abbrev.dwo must
9236 be the second entry. Other members of the set may follow in any order.
9237
9238 ---
9239
9240 DWP Version 2:
9241
9242 DWP Version 2 combines all the .debug_info, etc. sections into one,
9243 and the entries in the index tables are now offsets into these sections.
9244 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9245 section.
9246
9247 Index Section Contents:
9248 Header
9249 Hash Table of Signatures dwp_hash_table.hash_table
9250 Parallel Table of Indices dwp_hash_table.unit_table
9251 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9252 Table of Section Sizes dwp_hash_table.v2.sizes
9253
9254 The index section header consists of:
9255
9256 V, 32 bit version number
9257 L, 32 bit number of columns in the table of section offsets
9258 N, 32 bit number of compilation units or type units in the index
9259 M, 32 bit number of slots in the hash table
9260
9261 Numbers are recorded using the byte order of the application binary.
9262
9263 The hash table has the same format as version 1.
9264 The parallel table of indices has the same format as version 1,
9265 except that the entries are origin-1 indices into the table of sections
9266 offsets and the table of section sizes.
9267
9268 The table of offsets begins immediately following the parallel table
9269 (at offset 16 + 12 * M from the beginning of the section). The table is
9270 a two-dimensional array of 32-bit words (using the byte order of the
9271 application binary), with L columns and N+1 rows, in row-major order.
9272 Each row in the array is indexed starting from 0. The first row provides
9273 a key to the remaining rows: each column in this row provides an identifier
9274 for a debug section, and the offsets in the same column of subsequent rows
9275 refer to that section. The section identifiers are:
9276
9277 DW_SECT_INFO 1 .debug_info.dwo
9278 DW_SECT_TYPES 2 .debug_types.dwo
9279 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9280 DW_SECT_LINE 4 .debug_line.dwo
9281 DW_SECT_LOC 5 .debug_loc.dwo
9282 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9283 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9284 DW_SECT_MACRO 8 .debug_macro.dwo
9285
9286 The offsets provided by the CU and TU index sections are the base offsets
9287 for the contributions made by each CU or TU to the corresponding section
9288 in the package file. Each CU and TU header contains an abbrev_offset
9289 field, used to find the abbreviations table for that CU or TU within the
9290 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9291 be interpreted as relative to the base offset given in the index section.
9292 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9293 should be interpreted as relative to the base offset for .debug_line.dwo,
9294 and offsets into other debug sections obtained from DWARF attributes should
9295 also be interpreted as relative to the corresponding base offset.
9296
9297 The table of sizes begins immediately following the table of offsets.
9298 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9299 with L columns and N rows, in row-major order. Each row in the array is
9300 indexed starting from 1 (row 0 is shared by the two tables).
9301
9302 ---
9303
9304 Hash table lookup is handled the same in version 1 and 2:
9305
9306 We assume that N and M will not exceed 2^32 - 1.
9307 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9308
d2415c6c
DE
9309 Given a 64-bit compilation unit signature or a type signature S, an entry
9310 in the hash table is located as follows:
80626a55 9311
d2415c6c
DE
9312 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9313 the low-order k bits all set to 1.
80626a55 9314
d2415c6c 9315 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9316
d2415c6c
DE
9317 3) If the hash table entry at index H matches the signature, use that
9318 entry. If the hash table entry at index H is unused (all zeroes),
9319 terminate the search: the signature is not present in the table.
80626a55 9320
d2415c6c 9321 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9322
d2415c6c 9323 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9324 to stop at an unused slot or find the match. */
80626a55
DE
9325
9326/* Create a hash table to map DWO IDs to their CU/TU entry in
9327 .debug_{info,types}.dwo in DWP_FILE.
9328 Returns NULL if there isn't one.
9329 Note: This function processes DWP files only, not DWO files. */
9330
9331static struct dwp_hash_table *
9332create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9333{
9334 struct objfile *objfile = dwarf2_per_objfile->objfile;
9335 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9336 const gdb_byte *index_ptr, *index_end;
80626a55 9337 struct dwarf2_section_info *index;
73869dc2 9338 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9339 struct dwp_hash_table *htab;
9340
9341 if (is_debug_types)
9342 index = &dwp_file->sections.tu_index;
9343 else
9344 index = &dwp_file->sections.cu_index;
9345
9346 if (dwarf2_section_empty_p (index))
9347 return NULL;
9348 dwarf2_read_section (objfile, index);
9349
9350 index_ptr = index->buffer;
9351 index_end = index_ptr + index->size;
9352
9353 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9354 index_ptr += 4;
9355 if (version == 2)
9356 nr_columns = read_4_bytes (dbfd, index_ptr);
9357 else
9358 nr_columns = 0;
9359 index_ptr += 4;
80626a55
DE
9360 nr_units = read_4_bytes (dbfd, index_ptr);
9361 index_ptr += 4;
9362 nr_slots = read_4_bytes (dbfd, index_ptr);
9363 index_ptr += 4;
9364
73869dc2 9365 if (version != 1 && version != 2)
80626a55 9366 {
21aa081e 9367 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9368 " [in module %s]"),
21aa081e 9369 pulongest (version), dwp_file->name);
80626a55
DE
9370 }
9371 if (nr_slots != (nr_slots & -nr_slots))
9372 {
21aa081e 9373 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9374 " is not power of 2 [in module %s]"),
21aa081e 9375 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9376 }
9377
9378 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9379 htab->version = version;
9380 htab->nr_columns = nr_columns;
80626a55
DE
9381 htab->nr_units = nr_units;
9382 htab->nr_slots = nr_slots;
9383 htab->hash_table = index_ptr;
9384 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9385
9386 /* Exit early if the table is empty. */
9387 if (nr_slots == 0 || nr_units == 0
9388 || (version == 2 && nr_columns == 0))
9389 {
9390 /* All must be zero. */
9391 if (nr_slots != 0 || nr_units != 0
9392 || (version == 2 && nr_columns != 0))
9393 {
9394 complaint (&symfile_complaints,
9395 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9396 " all zero [in modules %s]"),
9397 dwp_file->name);
9398 }
9399 return htab;
9400 }
9401
9402 if (version == 1)
9403 {
9404 htab->section_pool.v1.indices =
9405 htab->unit_table + sizeof (uint32_t) * nr_slots;
9406 /* It's harder to decide whether the section is too small in v1.
9407 V1 is deprecated anyway so we punt. */
9408 }
9409 else
9410 {
9411 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9412 int *ids = htab->section_pool.v2.section_ids;
9413 /* Reverse map for error checking. */
9414 int ids_seen[DW_SECT_MAX + 1];
9415 int i;
9416
9417 if (nr_columns < 2)
9418 {
9419 error (_("Dwarf Error: bad DWP hash table, too few columns"
9420 " in section table [in module %s]"),
9421 dwp_file->name);
9422 }
9423 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9424 {
9425 error (_("Dwarf Error: bad DWP hash table, too many columns"
9426 " in section table [in module %s]"),
9427 dwp_file->name);
9428 }
9429 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9430 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9431 for (i = 0; i < nr_columns; ++i)
9432 {
9433 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9434
9435 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9436 {
9437 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9438 " in section table [in module %s]"),
9439 id, dwp_file->name);
9440 }
9441 if (ids_seen[id] != -1)
9442 {
9443 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9444 " id %d in section table [in module %s]"),
9445 id, dwp_file->name);
9446 }
9447 ids_seen[id] = i;
9448 ids[i] = id;
9449 }
9450 /* Must have exactly one info or types section. */
9451 if (((ids_seen[DW_SECT_INFO] != -1)
9452 + (ids_seen[DW_SECT_TYPES] != -1))
9453 != 1)
9454 {
9455 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9456 " DWO info/types section [in module %s]"),
9457 dwp_file->name);
9458 }
9459 /* Must have an abbrev section. */
9460 if (ids_seen[DW_SECT_ABBREV] == -1)
9461 {
9462 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9463 " section [in module %s]"),
9464 dwp_file->name);
9465 }
9466 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9467 htab->section_pool.v2.sizes =
9468 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9469 * nr_units * nr_columns);
9470 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9471 * nr_units * nr_columns))
9472 > index_end)
9473 {
9474 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9475 " [in module %s]"),
9476 dwp_file->name);
9477 }
9478 }
80626a55
DE
9479
9480 return htab;
9481}
9482
9483/* Update SECTIONS with the data from SECTP.
9484
9485 This function is like the other "locate" section routines that are
9486 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9487 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9488
9489 The result is non-zero for success, or zero if an error was found. */
9490
9491static int
73869dc2
DE
9492locate_v1_virtual_dwo_sections (asection *sectp,
9493 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9494{
9495 const struct dwop_section_names *names = &dwop_section_names;
9496
9497 if (section_is_p (sectp->name, &names->abbrev_dwo))
9498 {
9499 /* There can be only one. */
73869dc2 9500 if (sections->abbrev.s.asection != NULL)
80626a55 9501 return 0;
73869dc2 9502 sections->abbrev.s.asection = sectp;
80626a55
DE
9503 sections->abbrev.size = bfd_get_section_size (sectp);
9504 }
9505 else if (section_is_p (sectp->name, &names->info_dwo)
9506 || section_is_p (sectp->name, &names->types_dwo))
9507 {
9508 /* There can be only one. */
73869dc2 9509 if (sections->info_or_types.s.asection != NULL)
80626a55 9510 return 0;
73869dc2 9511 sections->info_or_types.s.asection = sectp;
80626a55
DE
9512 sections->info_or_types.size = bfd_get_section_size (sectp);
9513 }
9514 else if (section_is_p (sectp->name, &names->line_dwo))
9515 {
9516 /* There can be only one. */
73869dc2 9517 if (sections->line.s.asection != NULL)
80626a55 9518 return 0;
73869dc2 9519 sections->line.s.asection = sectp;
80626a55
DE
9520 sections->line.size = bfd_get_section_size (sectp);
9521 }
9522 else if (section_is_p (sectp->name, &names->loc_dwo))
9523 {
9524 /* There can be only one. */
73869dc2 9525 if (sections->loc.s.asection != NULL)
80626a55 9526 return 0;
73869dc2 9527 sections->loc.s.asection = sectp;
80626a55
DE
9528 sections->loc.size = bfd_get_section_size (sectp);
9529 }
9530 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9531 {
9532 /* There can be only one. */
73869dc2 9533 if (sections->macinfo.s.asection != NULL)
80626a55 9534 return 0;
73869dc2 9535 sections->macinfo.s.asection = sectp;
80626a55
DE
9536 sections->macinfo.size = bfd_get_section_size (sectp);
9537 }
9538 else if (section_is_p (sectp->name, &names->macro_dwo))
9539 {
9540 /* There can be only one. */
73869dc2 9541 if (sections->macro.s.asection != NULL)
80626a55 9542 return 0;
73869dc2 9543 sections->macro.s.asection = sectp;
80626a55
DE
9544 sections->macro.size = bfd_get_section_size (sectp);
9545 }
9546 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9547 {
9548 /* There can be only one. */
73869dc2 9549 if (sections->str_offsets.s.asection != NULL)
80626a55 9550 return 0;
73869dc2 9551 sections->str_offsets.s.asection = sectp;
80626a55
DE
9552 sections->str_offsets.size = bfd_get_section_size (sectp);
9553 }
9554 else
9555 {
9556 /* No other kind of section is valid. */
9557 return 0;
9558 }
9559
9560 return 1;
9561}
9562
73869dc2
DE
9563/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9564 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9565 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9566 This is for DWP version 1 files. */
80626a55
DE
9567
9568static struct dwo_unit *
73869dc2
DE
9569create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9570 uint32_t unit_index,
9571 const char *comp_dir,
9572 ULONGEST signature, int is_debug_types)
80626a55
DE
9573{
9574 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
9575 const struct dwp_hash_table *dwp_htab =
9576 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
9577 bfd *dbfd = dwp_file->dbfd;
9578 const char *kind = is_debug_types ? "TU" : "CU";
9579 struct dwo_file *dwo_file;
9580 struct dwo_unit *dwo_unit;
73869dc2 9581 struct virtual_v1_dwo_sections sections;
80626a55
DE
9582 void **dwo_file_slot;
9583 char *virtual_dwo_name;
9584 struct dwarf2_section_info *cutu;
9585 struct cleanup *cleanups;
9586 int i;
9587
73869dc2
DE
9588 gdb_assert (dwp_file->version == 1);
9589
80626a55
DE
9590 if (dwarf2_read_debug)
9591 {
73869dc2 9592 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 9593 kind,
73869dc2 9594 pulongest (unit_index), hex_string (signature),
80626a55
DE
9595 dwp_file->name);
9596 }
9597
19ac8c2e 9598 /* Fetch the sections of this DWO unit.
80626a55
DE
9599 Put a limit on the number of sections we look for so that bad data
9600 doesn't cause us to loop forever. */
9601
73869dc2 9602#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
9603 (1 /* .debug_info or .debug_types */ \
9604 + 1 /* .debug_abbrev */ \
9605 + 1 /* .debug_line */ \
9606 + 1 /* .debug_loc */ \
9607 + 1 /* .debug_str_offsets */ \
19ac8c2e 9608 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
9609 + 1 /* trailing zero */)
9610
9611 memset (&sections, 0, sizeof (sections));
9612 cleanups = make_cleanup (null_cleanup, 0);
9613
73869dc2 9614 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
9615 {
9616 asection *sectp;
9617 uint32_t section_nr =
9618 read_4_bytes (dbfd,
73869dc2
DE
9619 dwp_htab->section_pool.v1.indices
9620 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
9621
9622 if (section_nr == 0)
9623 break;
9624 if (section_nr >= dwp_file->num_sections)
9625 {
9626 error (_("Dwarf Error: bad DWP hash table, section number too large"
9627 " [in module %s]"),
9628 dwp_file->name);
9629 }
9630
9631 sectp = dwp_file->elf_sections[section_nr];
73869dc2 9632 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
9633 {
9634 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9635 " [in module %s]"),
9636 dwp_file->name);
9637 }
9638 }
9639
9640 if (i < 2
a32a8923
DE
9641 || dwarf2_section_empty_p (&sections.info_or_types)
9642 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
9643 {
9644 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9645 " [in module %s]"),
9646 dwp_file->name);
9647 }
73869dc2 9648 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
9649 {
9650 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9651 " [in module %s]"),
9652 dwp_file->name);
9653 }
9654
9655 /* It's easier for the rest of the code if we fake a struct dwo_file and
9656 have dwo_unit "live" in that. At least for now.
9657
9658 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 9659 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
9660 file, we can combine them back into a virtual DWO file to save space
9661 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
9662 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9663
2792b94d
PM
9664 virtual_dwo_name =
9665 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
9666 get_section_id (&sections.abbrev),
9667 get_section_id (&sections.line),
9668 get_section_id (&sections.loc),
9669 get_section_id (&sections.str_offsets));
80626a55
DE
9670 make_cleanup (xfree, virtual_dwo_name);
9671 /* Can we use an existing virtual DWO file? */
0ac5b59e 9672 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
9673 /* Create one if necessary. */
9674 if (*dwo_file_slot == NULL)
9675 {
9676 if (dwarf2_read_debug)
9677 {
9678 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9679 virtual_dwo_name);
9680 }
9681 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
9682 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9683 virtual_dwo_name,
9684 strlen (virtual_dwo_name));
9685 dwo_file->comp_dir = comp_dir;
80626a55
DE
9686 dwo_file->sections.abbrev = sections.abbrev;
9687 dwo_file->sections.line = sections.line;
9688 dwo_file->sections.loc = sections.loc;
9689 dwo_file->sections.macinfo = sections.macinfo;
9690 dwo_file->sections.macro = sections.macro;
9691 dwo_file->sections.str_offsets = sections.str_offsets;
9692 /* The "str" section is global to the entire DWP file. */
9693 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 9694 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
9695 there's no need to record it in dwo_file.
9696 Also, we can't simply record type sections in dwo_file because
9697 we record a pointer into the vector in dwo_unit. As we collect more
9698 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
9699 for it, invalidating all copies of pointers into the previous
9700 contents. */
80626a55
DE
9701 *dwo_file_slot = dwo_file;
9702 }
9703 else
9704 {
9705 if (dwarf2_read_debug)
9706 {
9707 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9708 virtual_dwo_name);
9709 }
9710 dwo_file = *dwo_file_slot;
9711 }
9712 do_cleanups (cleanups);
9713
9714 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9715 dwo_unit->dwo_file = dwo_file;
9716 dwo_unit->signature = signature;
8a0459fd
DE
9717 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9718 sizeof (struct dwarf2_section_info));
9719 *dwo_unit->section = sections.info_or_types;
57d63ce2 9720 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
9721
9722 return dwo_unit;
9723}
9724
73869dc2
DE
9725/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9726 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9727 piece within that section used by a TU/CU, return a virtual section
9728 of just that piece. */
9729
9730static struct dwarf2_section_info
9731create_dwp_v2_section (struct dwarf2_section_info *section,
9732 bfd_size_type offset, bfd_size_type size)
9733{
9734 struct dwarf2_section_info result;
9735 asection *sectp;
9736
9737 gdb_assert (section != NULL);
9738 gdb_assert (!section->is_virtual);
9739
9740 memset (&result, 0, sizeof (result));
9741 result.s.containing_section = section;
9742 result.is_virtual = 1;
9743
9744 if (size == 0)
9745 return result;
9746
9747 sectp = get_section_bfd_section (section);
9748
9749 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
9750 bounds of the real section. This is a pretty-rare event, so just
9751 flag an error (easier) instead of a warning and trying to cope. */
9752 if (sectp == NULL
9753 || offset + size > bfd_get_section_size (sectp))
9754 {
9755 bfd *abfd = sectp->owner;
9756
9757 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
9758 " in section %s [in module %s]"),
9759 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
9760 objfile_name (dwarf2_per_objfile->objfile));
9761 }
9762
9763 result.virtual_offset = offset;
9764 result.size = size;
9765 return result;
9766}
9767
9768/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9769 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9770 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9771 This is for DWP version 2 files. */
9772
9773static struct dwo_unit *
9774create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
9775 uint32_t unit_index,
9776 const char *comp_dir,
9777 ULONGEST signature, int is_debug_types)
9778{
9779 struct objfile *objfile = dwarf2_per_objfile->objfile;
9780 const struct dwp_hash_table *dwp_htab =
9781 is_debug_types ? dwp_file->tus : dwp_file->cus;
9782 bfd *dbfd = dwp_file->dbfd;
9783 const char *kind = is_debug_types ? "TU" : "CU";
9784 struct dwo_file *dwo_file;
9785 struct dwo_unit *dwo_unit;
9786 struct virtual_v2_dwo_sections sections;
9787 void **dwo_file_slot;
9788 char *virtual_dwo_name;
9789 struct dwarf2_section_info *cutu;
9790 struct cleanup *cleanups;
9791 int i;
9792
9793 gdb_assert (dwp_file->version == 2);
9794
9795 if (dwarf2_read_debug)
9796 {
9797 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
9798 kind,
9799 pulongest (unit_index), hex_string (signature),
9800 dwp_file->name);
9801 }
9802
9803 /* Fetch the section offsets of this DWO unit. */
9804
9805 memset (&sections, 0, sizeof (sections));
9806 cleanups = make_cleanup (null_cleanup, 0);
9807
9808 for (i = 0; i < dwp_htab->nr_columns; ++i)
9809 {
9810 uint32_t offset = read_4_bytes (dbfd,
9811 dwp_htab->section_pool.v2.offsets
9812 + (((unit_index - 1) * dwp_htab->nr_columns
9813 + i)
9814 * sizeof (uint32_t)));
9815 uint32_t size = read_4_bytes (dbfd,
9816 dwp_htab->section_pool.v2.sizes
9817 + (((unit_index - 1) * dwp_htab->nr_columns
9818 + i)
9819 * sizeof (uint32_t)));
9820
9821 switch (dwp_htab->section_pool.v2.section_ids[i])
9822 {
9823 case DW_SECT_INFO:
9824 case DW_SECT_TYPES:
9825 sections.info_or_types_offset = offset;
9826 sections.info_or_types_size = size;
9827 break;
9828 case DW_SECT_ABBREV:
9829 sections.abbrev_offset = offset;
9830 sections.abbrev_size = size;
9831 break;
9832 case DW_SECT_LINE:
9833 sections.line_offset = offset;
9834 sections.line_size = size;
9835 break;
9836 case DW_SECT_LOC:
9837 sections.loc_offset = offset;
9838 sections.loc_size = size;
9839 break;
9840 case DW_SECT_STR_OFFSETS:
9841 sections.str_offsets_offset = offset;
9842 sections.str_offsets_size = size;
9843 break;
9844 case DW_SECT_MACINFO:
9845 sections.macinfo_offset = offset;
9846 sections.macinfo_size = size;
9847 break;
9848 case DW_SECT_MACRO:
9849 sections.macro_offset = offset;
9850 sections.macro_size = size;
9851 break;
9852 }
9853 }
9854
9855 /* It's easier for the rest of the code if we fake a struct dwo_file and
9856 have dwo_unit "live" in that. At least for now.
9857
9858 The DWP file can be made up of a random collection of CUs and TUs.
9859 However, for each CU + set of TUs that came from the same original DWO
9860 file, we can combine them back into a virtual DWO file to save space
9861 (fewer struct dwo_file objects to allocate). Remember that for really
9862 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9863
9864 virtual_dwo_name =
9865 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
9866 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
9867 (long) (sections.line_size ? sections.line_offset : 0),
9868 (long) (sections.loc_size ? sections.loc_offset : 0),
9869 (long) (sections.str_offsets_size
9870 ? sections.str_offsets_offset : 0));
9871 make_cleanup (xfree, virtual_dwo_name);
9872 /* Can we use an existing virtual DWO file? */
9873 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9874 /* Create one if necessary. */
9875 if (*dwo_file_slot == NULL)
9876 {
9877 if (dwarf2_read_debug)
9878 {
9879 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9880 virtual_dwo_name);
9881 }
9882 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9883 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9884 virtual_dwo_name,
9885 strlen (virtual_dwo_name));
9886 dwo_file->comp_dir = comp_dir;
9887 dwo_file->sections.abbrev =
9888 create_dwp_v2_section (&dwp_file->sections.abbrev,
9889 sections.abbrev_offset, sections.abbrev_size);
9890 dwo_file->sections.line =
9891 create_dwp_v2_section (&dwp_file->sections.line,
9892 sections.line_offset, sections.line_size);
9893 dwo_file->sections.loc =
9894 create_dwp_v2_section (&dwp_file->sections.loc,
9895 sections.loc_offset, sections.loc_size);
9896 dwo_file->sections.macinfo =
9897 create_dwp_v2_section (&dwp_file->sections.macinfo,
9898 sections.macinfo_offset, sections.macinfo_size);
9899 dwo_file->sections.macro =
9900 create_dwp_v2_section (&dwp_file->sections.macro,
9901 sections.macro_offset, sections.macro_size);
9902 dwo_file->sections.str_offsets =
9903 create_dwp_v2_section (&dwp_file->sections.str_offsets,
9904 sections.str_offsets_offset,
9905 sections.str_offsets_size);
9906 /* The "str" section is global to the entire DWP file. */
9907 dwo_file->sections.str = dwp_file->sections.str;
9908 /* The info or types section is assigned below to dwo_unit,
9909 there's no need to record it in dwo_file.
9910 Also, we can't simply record type sections in dwo_file because
9911 we record a pointer into the vector in dwo_unit. As we collect more
9912 types we'll grow the vector and eventually have to reallocate space
9913 for it, invalidating all copies of pointers into the previous
9914 contents. */
9915 *dwo_file_slot = dwo_file;
9916 }
9917 else
9918 {
9919 if (dwarf2_read_debug)
9920 {
9921 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9922 virtual_dwo_name);
9923 }
9924 dwo_file = *dwo_file_slot;
9925 }
9926 do_cleanups (cleanups);
9927
9928 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9929 dwo_unit->dwo_file = dwo_file;
9930 dwo_unit->signature = signature;
9931 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9932 sizeof (struct dwarf2_section_info));
9933 *dwo_unit->section = create_dwp_v2_section (is_debug_types
9934 ? &dwp_file->sections.types
9935 : &dwp_file->sections.info,
9936 sections.info_or_types_offset,
9937 sections.info_or_types_size);
9938 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9939
9940 return dwo_unit;
9941}
9942
57d63ce2
DE
9943/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
9944 Returns NULL if the signature isn't found. */
80626a55
DE
9945
9946static struct dwo_unit *
57d63ce2
DE
9947lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
9948 ULONGEST signature, int is_debug_types)
80626a55 9949{
57d63ce2
DE
9950 const struct dwp_hash_table *dwp_htab =
9951 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 9952 bfd *dbfd = dwp_file->dbfd;
57d63ce2 9953 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
9954 uint32_t hash = signature & mask;
9955 uint32_t hash2 = ((signature >> 32) & mask) | 1;
9956 unsigned int i;
9957 void **slot;
9958 struct dwo_unit find_dwo_cu, *dwo_cu;
9959
9960 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
9961 find_dwo_cu.signature = signature;
19ac8c2e
DE
9962 slot = htab_find_slot (is_debug_types
9963 ? dwp_file->loaded_tus
9964 : dwp_file->loaded_cus,
9965 &find_dwo_cu, INSERT);
80626a55
DE
9966
9967 if (*slot != NULL)
9968 return *slot;
9969
9970 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 9971 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
9972 {
9973 ULONGEST signature_in_table;
9974
9975 signature_in_table =
57d63ce2 9976 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
9977 if (signature_in_table == signature)
9978 {
57d63ce2
DE
9979 uint32_t unit_index =
9980 read_4_bytes (dbfd,
9981 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 9982
73869dc2
DE
9983 if (dwp_file->version == 1)
9984 {
9985 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
9986 comp_dir, signature,
9987 is_debug_types);
9988 }
9989 else
9990 {
9991 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
9992 comp_dir, signature,
9993 is_debug_types);
9994 }
80626a55
DE
9995 return *slot;
9996 }
9997 if (signature_in_table == 0)
9998 return NULL;
9999 hash = (hash + hash2) & mask;
10000 }
10001
10002 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10003 " [in module %s]"),
10004 dwp_file->name);
10005}
10006
ab5088bf 10007/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10008 Open the file specified by FILE_NAME and hand it off to BFD for
10009 preliminary analysis. Return a newly initialized bfd *, which
10010 includes a canonicalized copy of FILE_NAME.
80626a55 10011 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10012 SEARCH_CWD is true if the current directory is to be searched.
10013 It will be searched before debug-file-directory.
10014 If unable to find/open the file, return NULL.
3019eac3
DE
10015 NOTE: This function is derived from symfile_bfd_open. */
10016
10017static bfd *
6ac97d4c 10018try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10019{
10020 bfd *sym_bfd;
80626a55 10021 int desc, flags;
3019eac3 10022 char *absolute_name;
9c02c129
DE
10023 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10024 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10025 to debug_file_directory. */
10026 char *search_path;
10027 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10028
6ac97d4c
DE
10029 if (search_cwd)
10030 {
10031 if (*debug_file_directory != '\0')
10032 search_path = concat (".", dirname_separator_string,
10033 debug_file_directory, NULL);
10034 else
10035 search_path = xstrdup (".");
10036 }
9c02c129 10037 else
6ac97d4c 10038 search_path = xstrdup (debug_file_directory);
3019eac3 10039
492c0ab7 10040 flags = OPF_RETURN_REALPATH;
80626a55
DE
10041 if (is_dwp)
10042 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10043 desc = openp (search_path, flags, file_name,
3019eac3 10044 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10045 xfree (search_path);
3019eac3
DE
10046 if (desc < 0)
10047 return NULL;
10048
bb397797 10049 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10050 xfree (absolute_name);
9c02c129
DE
10051 if (sym_bfd == NULL)
10052 return NULL;
3019eac3
DE
10053 bfd_set_cacheable (sym_bfd, 1);
10054
10055 if (!bfd_check_format (sym_bfd, bfd_object))
10056 {
cbb099e8 10057 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10058 return NULL;
10059 }
10060
3019eac3
DE
10061 return sym_bfd;
10062}
10063
ab5088bf 10064/* Try to open DWO file FILE_NAME.
3019eac3
DE
10065 COMP_DIR is the DW_AT_comp_dir attribute.
10066 The result is the bfd handle of the file.
10067 If there is a problem finding or opening the file, return NULL.
10068 Upon success, the canonicalized path of the file is stored in the bfd,
10069 same as symfile_bfd_open. */
10070
10071static bfd *
ab5088bf 10072open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10073{
10074 bfd *abfd;
3019eac3 10075
80626a55 10076 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10077 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10078
10079 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10080
10081 if (comp_dir != NULL)
10082 {
80626a55 10083 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10084
10085 /* NOTE: If comp_dir is a relative path, this will also try the
10086 search path, which seems useful. */
6ac97d4c 10087 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10088 xfree (path_to_try);
10089 if (abfd != NULL)
10090 return abfd;
10091 }
10092
10093 /* That didn't work, try debug-file-directory, which, despite its name,
10094 is a list of paths. */
10095
10096 if (*debug_file_directory == '\0')
10097 return NULL;
10098
6ac97d4c 10099 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10100}
10101
80626a55
DE
10102/* This function is mapped across the sections and remembers the offset and
10103 size of each of the DWO debugging sections we are interested in. */
10104
10105static void
10106dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10107{
10108 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10109 const struct dwop_section_names *names = &dwop_section_names;
10110
10111 if (section_is_p (sectp->name, &names->abbrev_dwo))
10112 {
73869dc2 10113 dwo_sections->abbrev.s.asection = sectp;
80626a55
DE
10114 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10115 }
10116 else if (section_is_p (sectp->name, &names->info_dwo))
10117 {
73869dc2 10118 dwo_sections->info.s.asection = sectp;
80626a55
DE
10119 dwo_sections->info.size = bfd_get_section_size (sectp);
10120 }
10121 else if (section_is_p (sectp->name, &names->line_dwo))
10122 {
73869dc2 10123 dwo_sections->line.s.asection = sectp;
80626a55
DE
10124 dwo_sections->line.size = bfd_get_section_size (sectp);
10125 }
10126 else if (section_is_p (sectp->name, &names->loc_dwo))
10127 {
73869dc2 10128 dwo_sections->loc.s.asection = sectp;
80626a55
DE
10129 dwo_sections->loc.size = bfd_get_section_size (sectp);
10130 }
10131 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10132 {
73869dc2 10133 dwo_sections->macinfo.s.asection = sectp;
80626a55
DE
10134 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10135 }
10136 else if (section_is_p (sectp->name, &names->macro_dwo))
10137 {
73869dc2 10138 dwo_sections->macro.s.asection = sectp;
80626a55
DE
10139 dwo_sections->macro.size = bfd_get_section_size (sectp);
10140 }
10141 else if (section_is_p (sectp->name, &names->str_dwo))
10142 {
73869dc2 10143 dwo_sections->str.s.asection = sectp;
80626a55
DE
10144 dwo_sections->str.size = bfd_get_section_size (sectp);
10145 }
10146 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10147 {
73869dc2 10148 dwo_sections->str_offsets.s.asection = sectp;
80626a55
DE
10149 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10150 }
10151 else if (section_is_p (sectp->name, &names->types_dwo))
10152 {
10153 struct dwarf2_section_info type_section;
10154
10155 memset (&type_section, 0, sizeof (type_section));
73869dc2 10156 type_section.s.asection = sectp;
80626a55
DE
10157 type_section.size = bfd_get_section_size (sectp);
10158 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10159 &type_section);
10160 }
10161}
10162
ab5088bf 10163/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10164 by PER_CU. This is for the non-DWP case.
80626a55 10165 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10166
10167static struct dwo_file *
0ac5b59e
DE
10168open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10169 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10170{
10171 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10172 struct dwo_file *dwo_file;
10173 bfd *dbfd;
3019eac3
DE
10174 struct cleanup *cleanups;
10175
ab5088bf 10176 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10177 if (dbfd == NULL)
10178 {
10179 if (dwarf2_read_debug)
10180 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10181 return NULL;
10182 }
10183 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10184 dwo_file->dwo_name = dwo_name;
10185 dwo_file->comp_dir = comp_dir;
80626a55 10186 dwo_file->dbfd = dbfd;
3019eac3
DE
10187
10188 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10189
80626a55 10190 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10191
19c3d4c9 10192 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10193
10194 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10195 dwo_file->sections.types);
10196
10197 discard_cleanups (cleanups);
10198
80626a55
DE
10199 if (dwarf2_read_debug)
10200 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10201
3019eac3
DE
10202 return dwo_file;
10203}
10204
80626a55 10205/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10206 size of each of the DWP debugging sections common to version 1 and 2 that
10207 we are interested in. */
3019eac3 10208
80626a55 10209static void
73869dc2
DE
10210dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10211 void *dwp_file_ptr)
3019eac3 10212{
80626a55
DE
10213 struct dwp_file *dwp_file = dwp_file_ptr;
10214 const struct dwop_section_names *names = &dwop_section_names;
10215 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10216
80626a55 10217 /* Record the ELF section number for later lookup: this is what the
73869dc2 10218 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10219 gdb_assert (elf_section_nr < dwp_file->num_sections);
10220 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10221
80626a55
DE
10222 /* Look for specific sections that we need. */
10223 if (section_is_p (sectp->name, &names->str_dwo))
10224 {
73869dc2 10225 dwp_file->sections.str.s.asection = sectp;
80626a55
DE
10226 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10227 }
10228 else if (section_is_p (sectp->name, &names->cu_index))
10229 {
73869dc2 10230 dwp_file->sections.cu_index.s.asection = sectp;
80626a55
DE
10231 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10232 }
10233 else if (section_is_p (sectp->name, &names->tu_index))
10234 {
73869dc2 10235 dwp_file->sections.tu_index.s.asection = sectp;
80626a55
DE
10236 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10237 }
10238}
3019eac3 10239
73869dc2
DE
10240/* This function is mapped across the sections and remembers the offset and
10241 size of each of the DWP version 2 debugging sections that we are interested
10242 in. This is split into a separate function because we don't know if we
10243 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10244
10245static void
10246dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10247{
10248 struct dwp_file *dwp_file = dwp_file_ptr;
10249 const struct dwop_section_names *names = &dwop_section_names;
10250 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10251
10252 /* Record the ELF section number for later lookup: this is what the
10253 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10254 gdb_assert (elf_section_nr < dwp_file->num_sections);
10255 dwp_file->elf_sections[elf_section_nr] = sectp;
10256
10257 /* Look for specific sections that we need. */
10258 if (section_is_p (sectp->name, &names->abbrev_dwo))
10259 {
10260 dwp_file->sections.abbrev.s.asection = sectp;
10261 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10262 }
10263 else if (section_is_p (sectp->name, &names->info_dwo))
10264 {
10265 dwp_file->sections.info.s.asection = sectp;
10266 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10267 }
10268 else if (section_is_p (sectp->name, &names->line_dwo))
10269 {
10270 dwp_file->sections.line.s.asection = sectp;
10271 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10272 }
10273 else if (section_is_p (sectp->name, &names->loc_dwo))
10274 {
10275 dwp_file->sections.loc.s.asection = sectp;
10276 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10277 }
10278 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10279 {
10280 dwp_file->sections.macinfo.s.asection = sectp;
10281 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10282 }
10283 else if (section_is_p (sectp->name, &names->macro_dwo))
10284 {
10285 dwp_file->sections.macro.s.asection = sectp;
10286 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10287 }
10288 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10289 {
10290 dwp_file->sections.str_offsets.s.asection = sectp;
10291 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10292 }
10293 else if (section_is_p (sectp->name, &names->types_dwo))
10294 {
10295 dwp_file->sections.types.s.asection = sectp;
10296 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10297 }
10298}
10299
80626a55 10300/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10301
80626a55
DE
10302static hashval_t
10303hash_dwp_loaded_cutus (const void *item)
10304{
10305 const struct dwo_unit *dwo_unit = item;
3019eac3 10306
80626a55
DE
10307 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10308 return dwo_unit->signature;
3019eac3
DE
10309}
10310
80626a55 10311/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10312
80626a55
DE
10313static int
10314eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10315{
80626a55
DE
10316 const struct dwo_unit *dua = a;
10317 const struct dwo_unit *dub = b;
3019eac3 10318
80626a55
DE
10319 return dua->signature == dub->signature;
10320}
3019eac3 10321
80626a55 10322/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10323
80626a55
DE
10324static htab_t
10325allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10326{
10327 return htab_create_alloc_ex (3,
10328 hash_dwp_loaded_cutus,
10329 eq_dwp_loaded_cutus,
10330 NULL,
10331 &objfile->objfile_obstack,
10332 hashtab_obstack_allocate,
10333 dummy_obstack_deallocate);
10334}
3019eac3 10335
ab5088bf
DE
10336/* Try to open DWP file FILE_NAME.
10337 The result is the bfd handle of the file.
10338 If there is a problem finding or opening the file, return NULL.
10339 Upon success, the canonicalized path of the file is stored in the bfd,
10340 same as symfile_bfd_open. */
10341
10342static bfd *
10343open_dwp_file (const char *file_name)
10344{
6ac97d4c
DE
10345 bfd *abfd;
10346
10347 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10348 if (abfd != NULL)
10349 return abfd;
10350
10351 /* Work around upstream bug 15652.
10352 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10353 [Whether that's a "bug" is debatable, but it is getting in our way.]
10354 We have no real idea where the dwp file is, because gdb's realpath-ing
10355 of the executable's path may have discarded the needed info.
10356 [IWBN if the dwp file name was recorded in the executable, akin to
10357 .gnu_debuglink, but that doesn't exist yet.]
10358 Strip the directory from FILE_NAME and search again. */
10359 if (*debug_file_directory != '\0')
10360 {
10361 /* Don't implicitly search the current directory here.
10362 If the user wants to search "." to handle this case,
10363 it must be added to debug-file-directory. */
10364 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10365 0 /*search_cwd*/);
10366 }
10367
10368 return NULL;
ab5088bf
DE
10369}
10370
80626a55
DE
10371/* Initialize the use of the DWP file for the current objfile.
10372 By convention the name of the DWP file is ${objfile}.dwp.
10373 The result is NULL if it can't be found. */
a766d390 10374
80626a55 10375static struct dwp_file *
ab5088bf 10376open_and_init_dwp_file (void)
80626a55
DE
10377{
10378 struct objfile *objfile = dwarf2_per_objfile->objfile;
10379 struct dwp_file *dwp_file;
10380 char *dwp_name;
10381 bfd *dbfd;
10382 struct cleanup *cleanups;
10383
82bf32bc
JK
10384 /* Try to find first .dwp for the binary file before any symbolic links
10385 resolving. */
10386 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10387 cleanups = make_cleanup (xfree, dwp_name);
10388
ab5088bf 10389 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10390 if (dbfd == NULL
10391 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10392 {
10393 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10394 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10395 make_cleanup (xfree, dwp_name);
10396 dbfd = open_dwp_file (dwp_name);
10397 }
10398
80626a55
DE
10399 if (dbfd == NULL)
10400 {
10401 if (dwarf2_read_debug)
10402 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10403 do_cleanups (cleanups);
10404 return NULL;
3019eac3 10405 }
80626a55 10406 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10407 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10408 dwp_file->dbfd = dbfd;
10409 do_cleanups (cleanups);
c906108c 10410
80626a55
DE
10411 /* +1: section 0 is unused */
10412 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10413 dwp_file->elf_sections =
10414 OBSTACK_CALLOC (&objfile->objfile_obstack,
10415 dwp_file->num_sections, asection *);
10416
73869dc2 10417 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10418
10419 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10420
10421 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10422
73869dc2
DE
10423 /* The DWP file version is stored in the hash table. Oh well. */
10424 if (dwp_file->cus->version != dwp_file->tus->version)
10425 {
10426 /* Technically speaking, we should try to limp along, but this is
10427 pretty bizarre. */
10428 error (_("Dwarf Error: DWP file CU version %d doesn't match"
10429 " TU version %d [in DWP file %s]"),
10430 dwp_file->cus->version, dwp_file->tus->version, dwp_name);
10431 }
10432 dwp_file->version = dwp_file->cus->version;
10433
10434 if (dwp_file->version == 2)
10435 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10436
19ac8c2e
DE
10437 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10438 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10439
80626a55
DE
10440 if (dwarf2_read_debug)
10441 {
10442 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10443 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10444 " %s CUs, %s TUs\n",
10445 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10446 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10447 }
10448
10449 return dwp_file;
3019eac3 10450}
c906108c 10451
ab5088bf
DE
10452/* Wrapper around open_and_init_dwp_file, only open it once. */
10453
10454static struct dwp_file *
10455get_dwp_file (void)
10456{
10457 if (! dwarf2_per_objfile->dwp_checked)
10458 {
10459 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10460 dwarf2_per_objfile->dwp_checked = 1;
10461 }
10462 return dwarf2_per_objfile->dwp_file;
10463}
10464
80626a55
DE
10465/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10466 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10467 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10468 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10469 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10470
10471 This is called, for example, when wanting to read a variable with a
10472 complex location. Therefore we don't want to do file i/o for every call.
10473 Therefore we don't want to look for a DWO file on every call.
10474 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10475 then we check if we've already seen DWO_NAME, and only THEN do we check
10476 for a DWO file.
10477
1c658ad5 10478 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10479 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10480
3019eac3 10481static struct dwo_unit *
80626a55
DE
10482lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10483 const char *dwo_name, const char *comp_dir,
10484 ULONGEST signature, int is_debug_types)
3019eac3
DE
10485{
10486 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10487 const char *kind = is_debug_types ? "TU" : "CU";
10488 void **dwo_file_slot;
3019eac3 10489 struct dwo_file *dwo_file;
80626a55 10490 struct dwp_file *dwp_file;
cb1df416 10491
6a506a2d
DE
10492 /* First see if there's a DWP file.
10493 If we have a DWP file but didn't find the DWO inside it, don't
10494 look for the original DWO file. It makes gdb behave differently
10495 depending on whether one is debugging in the build tree. */
cf2c3c16 10496
ab5088bf 10497 dwp_file = get_dwp_file ();
80626a55 10498 if (dwp_file != NULL)
cf2c3c16 10499 {
80626a55
DE
10500 const struct dwp_hash_table *dwp_htab =
10501 is_debug_types ? dwp_file->tus : dwp_file->cus;
10502
10503 if (dwp_htab != NULL)
10504 {
10505 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10506 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10507 signature, is_debug_types);
80626a55
DE
10508
10509 if (dwo_cutu != NULL)
10510 {
10511 if (dwarf2_read_debug)
10512 {
10513 fprintf_unfiltered (gdb_stdlog,
10514 "Virtual DWO %s %s found: @%s\n",
10515 kind, hex_string (signature),
10516 host_address_to_string (dwo_cutu));
10517 }
10518 return dwo_cutu;
10519 }
10520 }
10521 }
6a506a2d 10522 else
80626a55 10523 {
6a506a2d 10524 /* No DWP file, look for the DWO file. */
80626a55 10525
6a506a2d
DE
10526 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10527 if (*dwo_file_slot == NULL)
80626a55 10528 {
6a506a2d
DE
10529 /* Read in the file and build a table of the CUs/TUs it contains. */
10530 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10531 }
6a506a2d
DE
10532 /* NOTE: This will be NULL if unable to open the file. */
10533 dwo_file = *dwo_file_slot;
3019eac3 10534
6a506a2d 10535 if (dwo_file != NULL)
19c3d4c9 10536 {
6a506a2d
DE
10537 struct dwo_unit *dwo_cutu = NULL;
10538
10539 if (is_debug_types && dwo_file->tus)
10540 {
10541 struct dwo_unit find_dwo_cutu;
10542
10543 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10544 find_dwo_cutu.signature = signature;
10545 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10546 }
10547 else if (!is_debug_types && dwo_file->cu)
80626a55 10548 {
6a506a2d
DE
10549 if (signature == dwo_file->cu->signature)
10550 dwo_cutu = dwo_file->cu;
10551 }
10552
10553 if (dwo_cutu != NULL)
10554 {
10555 if (dwarf2_read_debug)
10556 {
10557 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10558 kind, dwo_name, hex_string (signature),
10559 host_address_to_string (dwo_cutu));
10560 }
10561 return dwo_cutu;
80626a55
DE
10562 }
10563 }
2e276125 10564 }
9cdd5dbd 10565
80626a55
DE
10566 /* We didn't find it. This could mean a dwo_id mismatch, or
10567 someone deleted the DWO/DWP file, or the search path isn't set up
10568 correctly to find the file. */
10569
10570 if (dwarf2_read_debug)
10571 {
10572 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10573 kind, dwo_name, hex_string (signature));
10574 }
3019eac3 10575
6656a72d
DE
10576 /* This is a warning and not a complaint because it can be caused by
10577 pilot error (e.g., user accidentally deleting the DWO). */
10578 warning (_("Could not find DWO %s %s(%s) referenced by %s at offset 0x%x"
10579 " [in module %s]"),
10580 kind, dwo_name, hex_string (signature),
10581 this_unit->is_debug_types ? "TU" : "CU",
4262abfb 10582 this_unit->offset.sect_off, objfile_name (objfile));
3019eac3 10583 return NULL;
5fb290d7
DJ
10584}
10585
80626a55
DE
10586/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10587 See lookup_dwo_cutu_unit for details. */
10588
10589static struct dwo_unit *
10590lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10591 const char *dwo_name, const char *comp_dir,
10592 ULONGEST signature)
10593{
10594 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10595}
10596
10597/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10598 See lookup_dwo_cutu_unit for details. */
10599
10600static struct dwo_unit *
10601lookup_dwo_type_unit (struct signatured_type *this_tu,
10602 const char *dwo_name, const char *comp_dir)
10603{
10604 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10605}
10606
89e63ee4
DE
10607/* Traversal function for queue_and_load_all_dwo_tus. */
10608
10609static int
10610queue_and_load_dwo_tu (void **slot, void *info)
10611{
10612 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10613 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10614 ULONGEST signature = dwo_unit->signature;
10615 struct signatured_type *sig_type =
10616 lookup_dwo_signatured_type (per_cu->cu, signature);
10617
10618 if (sig_type != NULL)
10619 {
10620 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10621
10622 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10623 a real dependency of PER_CU on SIG_TYPE. That is detected later
10624 while processing PER_CU. */
10625 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10626 load_full_type_unit (sig_cu);
10627 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10628 }
10629
10630 return 1;
10631}
10632
10633/* Queue all TUs contained in the DWO of PER_CU to be read in.
10634 The DWO may have the only definition of the type, though it may not be
10635 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10636 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10637
10638static void
10639queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10640{
10641 struct dwo_unit *dwo_unit;
10642 struct dwo_file *dwo_file;
10643
10644 gdb_assert (!per_cu->is_debug_types);
10645 gdb_assert (get_dwp_file () == NULL);
10646 gdb_assert (per_cu->cu != NULL);
10647
10648 dwo_unit = per_cu->cu->dwo_unit;
10649 gdb_assert (dwo_unit != NULL);
10650
10651 dwo_file = dwo_unit->dwo_file;
10652 if (dwo_file->tus != NULL)
10653 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10654}
10655
3019eac3
DE
10656/* Free all resources associated with DWO_FILE.
10657 Close the DWO file and munmap the sections.
10658 All memory should be on the objfile obstack. */
348e048f
DE
10659
10660static void
3019eac3 10661free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 10662{
3019eac3
DE
10663 int ix;
10664 struct dwarf2_section_info *section;
348e048f 10665
5c6fa7ab 10666 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 10667 gdb_bfd_unref (dwo_file->dbfd);
348e048f 10668
3019eac3
DE
10669 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10670}
348e048f 10671
3019eac3 10672/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 10673
3019eac3
DE
10674static void
10675free_dwo_file_cleanup (void *arg)
10676{
10677 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10678 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 10679
3019eac3
DE
10680 free_dwo_file (dwo_file, objfile);
10681}
348e048f 10682
3019eac3 10683/* Traversal function for free_dwo_files. */
2ab95328 10684
3019eac3
DE
10685static int
10686free_dwo_file_from_slot (void **slot, void *info)
10687{
10688 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10689 struct objfile *objfile = (struct objfile *) info;
348e048f 10690
3019eac3 10691 free_dwo_file (dwo_file, objfile);
348e048f 10692
3019eac3
DE
10693 return 1;
10694}
348e048f 10695
3019eac3 10696/* Free all resources associated with DWO_FILES. */
348e048f 10697
3019eac3
DE
10698static void
10699free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10700{
10701 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 10702}
3019eac3
DE
10703\f
10704/* Read in various DIEs. */
348e048f 10705
d389af10
JK
10706/* qsort helper for inherit_abstract_dies. */
10707
10708static int
10709unsigned_int_compar (const void *ap, const void *bp)
10710{
10711 unsigned int a = *(unsigned int *) ap;
10712 unsigned int b = *(unsigned int *) bp;
10713
10714 return (a > b) - (b > a);
10715}
10716
10717/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
10718 Inherit only the children of the DW_AT_abstract_origin DIE not being
10719 already referenced by DW_AT_abstract_origin from the children of the
10720 current DIE. */
d389af10
JK
10721
10722static void
10723inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
10724{
10725 struct die_info *child_die;
10726 unsigned die_children_count;
10727 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
10728 sect_offset *offsets;
10729 sect_offset *offsets_end, *offsetp;
d389af10
JK
10730 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
10731 struct die_info *origin_die;
10732 /* Iterator of the ORIGIN_DIE children. */
10733 struct die_info *origin_child_die;
10734 struct cleanup *cleanups;
10735 struct attribute *attr;
cd02d79d
PA
10736 struct dwarf2_cu *origin_cu;
10737 struct pending **origin_previous_list_in_scope;
d389af10
JK
10738
10739 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10740 if (!attr)
10741 return;
10742
cd02d79d
PA
10743 /* Note that following die references may follow to a die in a
10744 different cu. */
10745
10746 origin_cu = cu;
10747 origin_die = follow_die_ref (die, attr, &origin_cu);
10748
10749 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
10750 symbols in. */
10751 origin_previous_list_in_scope = origin_cu->list_in_scope;
10752 origin_cu->list_in_scope = cu->list_in_scope;
10753
edb3359d
DJ
10754 if (die->tag != origin_die->tag
10755 && !(die->tag == DW_TAG_inlined_subroutine
10756 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
10757 complaint (&symfile_complaints,
10758 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 10759 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
10760
10761 child_die = die->child;
10762 die_children_count = 0;
10763 while (child_die && child_die->tag)
10764 {
10765 child_die = sibling_die (child_die);
10766 die_children_count++;
10767 }
10768 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10769 cleanups = make_cleanup (xfree, offsets);
10770
10771 offsets_end = offsets;
10772 child_die = die->child;
10773 while (child_die && child_die->tag)
10774 {
c38f313d
DJ
10775 /* For each CHILD_DIE, find the corresponding child of
10776 ORIGIN_DIE. If there is more than one layer of
10777 DW_AT_abstract_origin, follow them all; there shouldn't be,
10778 but GCC versions at least through 4.4 generate this (GCC PR
10779 40573). */
10780 struct die_info *child_origin_die = child_die;
cd02d79d 10781 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 10782
c38f313d
DJ
10783 while (1)
10784 {
cd02d79d
PA
10785 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10786 child_origin_cu);
c38f313d
DJ
10787 if (attr == NULL)
10788 break;
cd02d79d
PA
10789 child_origin_die = follow_die_ref (child_origin_die, attr,
10790 &child_origin_cu);
c38f313d
DJ
10791 }
10792
d389af10
JK
10793 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10794 counterpart may exist. */
c38f313d 10795 if (child_origin_die != child_die)
d389af10 10796 {
edb3359d
DJ
10797 if (child_die->tag != child_origin_die->tag
10798 && !(child_die->tag == DW_TAG_inlined_subroutine
10799 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
10800 complaint (&symfile_complaints,
10801 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
10802 "different tags"), child_die->offset.sect_off,
10803 child_origin_die->offset.sect_off);
c38f313d
DJ
10804 if (child_origin_die->parent != origin_die)
10805 complaint (&symfile_complaints,
10806 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
10807 "different parents"), child_die->offset.sect_off,
10808 child_origin_die->offset.sect_off);
c38f313d
DJ
10809 else
10810 *offsets_end++ = child_origin_die->offset;
d389af10
JK
10811 }
10812 child_die = sibling_die (child_die);
10813 }
10814 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
10815 unsigned_int_compar);
10816 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 10817 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
10818 complaint (&symfile_complaints,
10819 _("Multiple children of DIE 0x%x refer "
10820 "to DIE 0x%x as their abstract origin"),
b64f50a1 10821 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
10822
10823 offsetp = offsets;
10824 origin_child_die = origin_die->child;
10825 while (origin_child_die && origin_child_die->tag)
10826 {
10827 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
10828 while (offsetp < offsets_end
10829 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 10830 offsetp++;
b64f50a1
JK
10831 if (offsetp >= offsets_end
10832 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10
JK
10833 {
10834 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
cd02d79d 10835 process_die (origin_child_die, origin_cu);
d389af10
JK
10836 }
10837 origin_child_die = sibling_die (origin_child_die);
10838 }
cd02d79d 10839 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
10840
10841 do_cleanups (cleanups);
10842}
10843
c906108c 10844static void
e7c27a73 10845read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10846{
e7c27a73 10847 struct objfile *objfile = cu->objfile;
52f0bd74 10848 struct context_stack *new;
c906108c
SS
10849 CORE_ADDR lowpc;
10850 CORE_ADDR highpc;
10851 struct die_info *child_die;
edb3359d 10852 struct attribute *attr, *call_line, *call_file;
15d034d0 10853 const char *name;
e142c38c 10854 CORE_ADDR baseaddr;
801e3a5b 10855 struct block *block;
edb3359d 10856 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
10857 VEC (symbolp) *template_args = NULL;
10858 struct template_symbol *templ_func = NULL;
edb3359d
DJ
10859
10860 if (inlined_func)
10861 {
10862 /* If we do not have call site information, we can't show the
10863 caller of this inlined function. That's too confusing, so
10864 only use the scope for local variables. */
10865 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
10866 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
10867 if (call_line == NULL || call_file == NULL)
10868 {
10869 read_lexical_block_scope (die, cu);
10870 return;
10871 }
10872 }
c906108c 10873
e142c38c
DJ
10874 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10875
94af9270 10876 name = dwarf2_name (die, cu);
c906108c 10877
e8d05480
JB
10878 /* Ignore functions with missing or empty names. These are actually
10879 illegal according to the DWARF standard. */
10880 if (name == NULL)
10881 {
10882 complaint (&symfile_complaints,
b64f50a1
JK
10883 _("missing name for subprogram DIE at %d"),
10884 die->offset.sect_off);
e8d05480
JB
10885 return;
10886 }
10887
10888 /* Ignore functions with missing or invalid low and high pc attributes. */
10889 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10890 {
ae4d0c03
PM
10891 attr = dwarf2_attr (die, DW_AT_external, cu);
10892 if (!attr || !DW_UNSND (attr))
10893 complaint (&symfile_complaints,
3e43a32a
MS
10894 _("cannot get low and high bounds "
10895 "for subprogram DIE at %d"),
b64f50a1 10896 die->offset.sect_off);
e8d05480
JB
10897 return;
10898 }
c906108c
SS
10899
10900 lowpc += baseaddr;
10901 highpc += baseaddr;
10902
34eaf542
TT
10903 /* If we have any template arguments, then we must allocate a
10904 different sort of symbol. */
10905 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
10906 {
10907 if (child_die->tag == DW_TAG_template_type_param
10908 || child_die->tag == DW_TAG_template_value_param)
10909 {
e623cf5d 10910 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
10911 templ_func->base.is_cplus_template_function = 1;
10912 break;
10913 }
10914 }
10915
c906108c 10916 new = push_context (0, lowpc);
34eaf542
TT
10917 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
10918 (struct symbol *) templ_func);
4c2df51b 10919
4cecd739
DJ
10920 /* If there is a location expression for DW_AT_frame_base, record
10921 it. */
e142c38c 10922 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 10923 if (attr)
f1e6e072 10924 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
4c2df51b 10925
e142c38c 10926 cu->list_in_scope = &local_symbols;
c906108c 10927
639d11d3 10928 if (die->child != NULL)
c906108c 10929 {
639d11d3 10930 child_die = die->child;
c906108c
SS
10931 while (child_die && child_die->tag)
10932 {
34eaf542
TT
10933 if (child_die->tag == DW_TAG_template_type_param
10934 || child_die->tag == DW_TAG_template_value_param)
10935 {
10936 struct symbol *arg = new_symbol (child_die, NULL, cu);
10937
f1078f66
DJ
10938 if (arg != NULL)
10939 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
10940 }
10941 else
10942 process_die (child_die, cu);
c906108c
SS
10943 child_die = sibling_die (child_die);
10944 }
10945 }
10946
d389af10
JK
10947 inherit_abstract_dies (die, cu);
10948
4a811a97
UW
10949 /* If we have a DW_AT_specification, we might need to import using
10950 directives from the context of the specification DIE. See the
10951 comment in determine_prefix. */
10952 if (cu->language == language_cplus
10953 && dwarf2_attr (die, DW_AT_specification, cu))
10954 {
10955 struct dwarf2_cu *spec_cu = cu;
10956 struct die_info *spec_die = die_specification (die, &spec_cu);
10957
10958 while (spec_die)
10959 {
10960 child_die = spec_die->child;
10961 while (child_die && child_die->tag)
10962 {
10963 if (child_die->tag == DW_TAG_imported_module)
10964 process_die (child_die, spec_cu);
10965 child_die = sibling_die (child_die);
10966 }
10967
10968 /* In some cases, GCC generates specification DIEs that
10969 themselves contain DW_AT_specification attributes. */
10970 spec_die = die_specification (spec_die, &spec_cu);
10971 }
10972 }
10973
c906108c
SS
10974 new = pop_context ();
10975 /* Make a block for the local symbols within. */
801e3a5b
JB
10976 block = finish_block (new->name, &local_symbols, new->old_blocks,
10977 lowpc, highpc, objfile);
10978
df8a16a1 10979 /* For C++, set the block's scope. */
195a3f6c 10980 if ((cu->language == language_cplus || cu->language == language_fortran)
4d4ec4e5 10981 && cu->processing_has_namespace_info)
195a3f6c
TT
10982 block_set_scope (block, determine_prefix (die, cu),
10983 &objfile->objfile_obstack);
df8a16a1 10984
801e3a5b
JB
10985 /* If we have address ranges, record them. */
10986 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 10987
34eaf542
TT
10988 /* Attach template arguments to function. */
10989 if (! VEC_empty (symbolp, template_args))
10990 {
10991 gdb_assert (templ_func != NULL);
10992
10993 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
10994 templ_func->template_arguments
10995 = obstack_alloc (&objfile->objfile_obstack,
10996 (templ_func->n_template_arguments
10997 * sizeof (struct symbol *)));
10998 memcpy (templ_func->template_arguments,
10999 VEC_address (symbolp, template_args),
11000 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11001 VEC_free (symbolp, template_args);
11002 }
11003
208d8187
JB
11004 /* In C++, we can have functions nested inside functions (e.g., when
11005 a function declares a class that has methods). This means that
11006 when we finish processing a function scope, we may need to go
11007 back to building a containing block's symbol lists. */
11008 local_symbols = new->locals;
27aa8d6a 11009 using_directives = new->using_directives;
208d8187 11010
921e78cf
JB
11011 /* If we've finished processing a top-level function, subsequent
11012 symbols go in the file symbol list. */
11013 if (outermost_context_p ())
e142c38c 11014 cu->list_in_scope = &file_symbols;
c906108c
SS
11015}
11016
11017/* Process all the DIES contained within a lexical block scope. Start
11018 a new scope, process the dies, and then close the scope. */
11019
11020static void
e7c27a73 11021read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11022{
e7c27a73 11023 struct objfile *objfile = cu->objfile;
52f0bd74 11024 struct context_stack *new;
c906108c
SS
11025 CORE_ADDR lowpc, highpc;
11026 struct die_info *child_die;
e142c38c
DJ
11027 CORE_ADDR baseaddr;
11028
11029 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11030
11031 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11032 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11033 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11034 be nasty. Might be easier to properly extend generic blocks to
af34e669 11035 describe ranges. */
d85a05f0 11036 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
11037 return;
11038 lowpc += baseaddr;
11039 highpc += baseaddr;
11040
11041 push_context (0, lowpc);
639d11d3 11042 if (die->child != NULL)
c906108c 11043 {
639d11d3 11044 child_die = die->child;
c906108c
SS
11045 while (child_die && child_die->tag)
11046 {
e7c27a73 11047 process_die (child_die, cu);
c906108c
SS
11048 child_die = sibling_die (child_die);
11049 }
11050 }
11051 new = pop_context ();
11052
8540c487 11053 if (local_symbols != NULL || using_directives != NULL)
c906108c 11054 {
801e3a5b
JB
11055 struct block *block
11056 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11057 highpc, objfile);
11058
11059 /* Note that recording ranges after traversing children, as we
11060 do here, means that recording a parent's ranges entails
11061 walking across all its children's ranges as they appear in
11062 the address map, which is quadratic behavior.
11063
11064 It would be nicer to record the parent's ranges before
11065 traversing its children, simply overriding whatever you find
11066 there. But since we don't even decide whether to create a
11067 block until after we've traversed its children, that's hard
11068 to do. */
11069 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
11070 }
11071 local_symbols = new->locals;
27aa8d6a 11072 using_directives = new->using_directives;
c906108c
SS
11073}
11074
96408a79
SA
11075/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11076
11077static void
11078read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11079{
11080 struct objfile *objfile = cu->objfile;
11081 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11082 CORE_ADDR pc, baseaddr;
11083 struct attribute *attr;
11084 struct call_site *call_site, call_site_local;
11085 void **slot;
11086 int nparams;
11087 struct die_info *child_die;
11088
11089 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11090
11091 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11092 if (!attr)
11093 {
11094 complaint (&symfile_complaints,
11095 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11096 "DIE 0x%x [in module %s]"),
4262abfb 11097 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11098 return;
11099 }
11100 pc = DW_ADDR (attr) + baseaddr;
11101
11102 if (cu->call_site_htab == NULL)
11103 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11104 NULL, &objfile->objfile_obstack,
11105 hashtab_obstack_allocate, NULL);
11106 call_site_local.pc = pc;
11107 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11108 if (*slot != NULL)
11109 {
11110 complaint (&symfile_complaints,
11111 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11112 "DIE 0x%x [in module %s]"),
4262abfb
JK
11113 paddress (gdbarch, pc), die->offset.sect_off,
11114 objfile_name (objfile));
96408a79
SA
11115 return;
11116 }
11117
11118 /* Count parameters at the caller. */
11119
11120 nparams = 0;
11121 for (child_die = die->child; child_die && child_die->tag;
11122 child_die = sibling_die (child_die))
11123 {
11124 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11125 {
11126 complaint (&symfile_complaints,
11127 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11128 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11129 child_die->tag, child_die->offset.sect_off,
11130 objfile_name (objfile));
96408a79
SA
11131 continue;
11132 }
11133
11134 nparams++;
11135 }
11136
11137 call_site = obstack_alloc (&objfile->objfile_obstack,
11138 (sizeof (*call_site)
11139 + (sizeof (*call_site->parameter)
11140 * (nparams - 1))));
11141 *slot = call_site;
11142 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11143 call_site->pc = pc;
11144
11145 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11146 {
11147 struct die_info *func_die;
11148
11149 /* Skip also over DW_TAG_inlined_subroutine. */
11150 for (func_die = die->parent;
11151 func_die && func_die->tag != DW_TAG_subprogram
11152 && func_die->tag != DW_TAG_subroutine_type;
11153 func_die = func_die->parent);
11154
11155 /* DW_AT_GNU_all_call_sites is a superset
11156 of DW_AT_GNU_all_tail_call_sites. */
11157 if (func_die
11158 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11159 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11160 {
11161 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11162 not complete. But keep CALL_SITE for look ups via call_site_htab,
11163 both the initial caller containing the real return address PC and
11164 the final callee containing the current PC of a chain of tail
11165 calls do not need to have the tail call list complete. But any
11166 function candidate for a virtual tail call frame searched via
11167 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11168 determined unambiguously. */
11169 }
11170 else
11171 {
11172 struct type *func_type = NULL;
11173
11174 if (func_die)
11175 func_type = get_die_type (func_die, cu);
11176 if (func_type != NULL)
11177 {
11178 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11179
11180 /* Enlist this call site to the function. */
11181 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11182 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11183 }
11184 else
11185 complaint (&symfile_complaints,
11186 _("Cannot find function owning DW_TAG_GNU_call_site "
11187 "DIE 0x%x [in module %s]"),
4262abfb 11188 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11189 }
11190 }
11191
11192 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11193 if (attr == NULL)
11194 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11195 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11196 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11197 /* Keep NULL DWARF_BLOCK. */;
11198 else if (attr_form_is_block (attr))
11199 {
11200 struct dwarf2_locexpr_baton *dlbaton;
11201
11202 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11203 dlbaton->data = DW_BLOCK (attr)->data;
11204 dlbaton->size = DW_BLOCK (attr)->size;
11205 dlbaton->per_cu = cu->per_cu;
11206
11207 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11208 }
7771576e 11209 else if (attr_form_is_ref (attr))
96408a79 11210 {
96408a79
SA
11211 struct dwarf2_cu *target_cu = cu;
11212 struct die_info *target_die;
11213
ac9ec31b 11214 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11215 gdb_assert (target_cu->objfile == objfile);
11216 if (die_is_declaration (target_die, target_cu))
11217 {
9112db09
JK
11218 const char *target_physname = NULL;
11219 struct attribute *target_attr;
11220
11221 /* Prefer the mangled name; otherwise compute the demangled one. */
11222 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11223 if (target_attr == NULL)
11224 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11225 target_cu);
11226 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11227 target_physname = DW_STRING (target_attr);
11228 else
11229 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11230 if (target_physname == NULL)
11231 complaint (&symfile_complaints,
11232 _("DW_AT_GNU_call_site_target target DIE has invalid "
11233 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11234 die->offset.sect_off, objfile_name (objfile));
96408a79 11235 else
7d455152 11236 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11237 }
11238 else
11239 {
11240 CORE_ADDR lowpc;
11241
11242 /* DW_AT_entry_pc should be preferred. */
11243 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11244 complaint (&symfile_complaints,
11245 _("DW_AT_GNU_call_site_target target DIE has invalid "
11246 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11247 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11248 else
11249 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11250 }
11251 }
11252 else
11253 complaint (&symfile_complaints,
11254 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11255 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11256 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11257
11258 call_site->per_cu = cu->per_cu;
11259
11260 for (child_die = die->child;
11261 child_die && child_die->tag;
11262 child_die = sibling_die (child_die))
11263 {
96408a79 11264 struct call_site_parameter *parameter;
1788b2d3 11265 struct attribute *loc, *origin;
96408a79
SA
11266
11267 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11268 {
11269 /* Already printed the complaint above. */
11270 continue;
11271 }
11272
11273 gdb_assert (call_site->parameter_count < nparams);
11274 parameter = &call_site->parameter[call_site->parameter_count];
11275
1788b2d3
JK
11276 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11277 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11278 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11279
24c5c679 11280 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11281 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11282 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11283 {
11284 sect_offset offset;
11285
11286 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11287 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11288 if (!offset_in_cu_p (&cu->header, offset))
11289 {
11290 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11291 binding can be done only inside one CU. Such referenced DIE
11292 therefore cannot be even moved to DW_TAG_partial_unit. */
11293 complaint (&symfile_complaints,
11294 _("DW_AT_abstract_origin offset is not in CU for "
11295 "DW_TAG_GNU_call_site child DIE 0x%x "
11296 "[in module %s]"),
4262abfb 11297 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11298 continue;
11299 }
1788b2d3
JK
11300 parameter->u.param_offset.cu_off = (offset.sect_off
11301 - cu->header.offset.sect_off);
11302 }
11303 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11304 {
11305 complaint (&symfile_complaints,
11306 _("No DW_FORM_block* DW_AT_location for "
11307 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11308 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11309 continue;
11310 }
24c5c679 11311 else
96408a79 11312 {
24c5c679
JK
11313 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11314 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11315 if (parameter->u.dwarf_reg != -1)
11316 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11317 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11318 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11319 &parameter->u.fb_offset))
11320 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11321 else
11322 {
11323 complaint (&symfile_complaints,
11324 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11325 "for DW_FORM_block* DW_AT_location is supported for "
11326 "DW_TAG_GNU_call_site child DIE 0x%x "
11327 "[in module %s]"),
4262abfb 11328 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11329 continue;
11330 }
96408a79
SA
11331 }
11332
11333 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11334 if (!attr_form_is_block (attr))
11335 {
11336 complaint (&symfile_complaints,
11337 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11338 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11339 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11340 continue;
11341 }
11342 parameter->value = DW_BLOCK (attr)->data;
11343 parameter->value_size = DW_BLOCK (attr)->size;
11344
11345 /* Parameters are not pre-cleared by memset above. */
11346 parameter->data_value = NULL;
11347 parameter->data_value_size = 0;
11348 call_site->parameter_count++;
11349
11350 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11351 if (attr)
11352 {
11353 if (!attr_form_is_block (attr))
11354 complaint (&symfile_complaints,
11355 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11356 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11357 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11358 else
11359 {
11360 parameter->data_value = DW_BLOCK (attr)->data;
11361 parameter->data_value_size = DW_BLOCK (attr)->size;
11362 }
11363 }
11364 }
11365}
11366
43039443 11367/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11368 Return 1 if the attributes are present and valid, otherwise, return 0.
11369 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11370
11371static int
11372dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11373 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11374 struct partial_symtab *ranges_pst)
43039443
JK
11375{
11376 struct objfile *objfile = cu->objfile;
11377 struct comp_unit_head *cu_header = &cu->header;
11378 bfd *obfd = objfile->obfd;
11379 unsigned int addr_size = cu_header->addr_size;
11380 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11381 /* Base address selection entry. */
11382 CORE_ADDR base;
11383 int found_base;
11384 unsigned int dummy;
d521ce57 11385 const gdb_byte *buffer;
43039443
JK
11386 CORE_ADDR marker;
11387 int low_set;
11388 CORE_ADDR low = 0;
11389 CORE_ADDR high = 0;
ff013f42 11390 CORE_ADDR baseaddr;
43039443 11391
d00adf39
DE
11392 found_base = cu->base_known;
11393 base = cu->base_address;
43039443 11394
be391dca 11395 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11396 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11397 {
11398 complaint (&symfile_complaints,
11399 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11400 offset);
11401 return 0;
11402 }
dce234bc 11403 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
11404
11405 /* Read in the largest possible address. */
11406 marker = read_address (obfd, buffer, cu, &dummy);
11407 if ((marker & mask) == mask)
11408 {
11409 /* If we found the largest possible address, then
11410 read the base address. */
11411 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11412 buffer += 2 * addr_size;
11413 offset += 2 * addr_size;
11414 found_base = 1;
11415 }
11416
11417 low_set = 0;
11418
e7030f15 11419 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11420
43039443
JK
11421 while (1)
11422 {
11423 CORE_ADDR range_beginning, range_end;
11424
11425 range_beginning = read_address (obfd, buffer, cu, &dummy);
11426 buffer += addr_size;
11427 range_end = read_address (obfd, buffer, cu, &dummy);
11428 buffer += addr_size;
11429 offset += 2 * addr_size;
11430
11431 /* An end of list marker is a pair of zero addresses. */
11432 if (range_beginning == 0 && range_end == 0)
11433 /* Found the end of list entry. */
11434 break;
11435
11436 /* Each base address selection entry is a pair of 2 values.
11437 The first is the largest possible address, the second is
11438 the base address. Check for a base address here. */
11439 if ((range_beginning & mask) == mask)
11440 {
11441 /* If we found the largest possible address, then
11442 read the base address. */
11443 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11444 found_base = 1;
11445 continue;
11446 }
11447
11448 if (!found_base)
11449 {
11450 /* We have no valid base address for the ranges
11451 data. */
11452 complaint (&symfile_complaints,
11453 _("Invalid .debug_ranges data (no base address)"));
11454 return 0;
11455 }
11456
9277c30c
UW
11457 if (range_beginning > range_end)
11458 {
11459 /* Inverted range entries are invalid. */
11460 complaint (&symfile_complaints,
11461 _("Invalid .debug_ranges data (inverted range)"));
11462 return 0;
11463 }
11464
11465 /* Empty range entries have no effect. */
11466 if (range_beginning == range_end)
11467 continue;
11468
43039443
JK
11469 range_beginning += base;
11470 range_end += base;
11471
01093045
DE
11472 /* A not-uncommon case of bad debug info.
11473 Don't pollute the addrmap with bad data. */
11474 if (range_beginning + baseaddr == 0
11475 && !dwarf2_per_objfile->has_section_at_zero)
11476 {
11477 complaint (&symfile_complaints,
11478 _(".debug_ranges entry has start address of zero"
4262abfb 11479 " [in module %s]"), objfile_name (objfile));
01093045
DE
11480 continue;
11481 }
11482
9277c30c 11483 if (ranges_pst != NULL)
ff013f42 11484 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
11485 range_beginning + baseaddr,
11486 range_end - 1 + baseaddr,
ff013f42
JK
11487 ranges_pst);
11488
43039443
JK
11489 /* FIXME: This is recording everything as a low-high
11490 segment of consecutive addresses. We should have a
11491 data structure for discontiguous block ranges
11492 instead. */
11493 if (! low_set)
11494 {
11495 low = range_beginning;
11496 high = range_end;
11497 low_set = 1;
11498 }
11499 else
11500 {
11501 if (range_beginning < low)
11502 low = range_beginning;
11503 if (range_end > high)
11504 high = range_end;
11505 }
11506 }
11507
11508 if (! low_set)
11509 /* If the first entry is an end-of-list marker, the range
11510 describes an empty scope, i.e. no instructions. */
11511 return 0;
11512
11513 if (low_return)
11514 *low_return = low;
11515 if (high_return)
11516 *high_return = high;
11517 return 1;
11518}
11519
af34e669
DJ
11520/* Get low and high pc attributes from a die. Return 1 if the attributes
11521 are present and valid, otherwise, return 0. Return -1 if the range is
11522 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 11523
c906108c 11524static int
af34e669 11525dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
11526 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11527 struct partial_symtab *pst)
c906108c
SS
11528{
11529 struct attribute *attr;
91da1414 11530 struct attribute *attr_high;
af34e669
DJ
11531 CORE_ADDR low = 0;
11532 CORE_ADDR high = 0;
11533 int ret = 0;
c906108c 11534
91da1414
MW
11535 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11536 if (attr_high)
af34e669 11537 {
e142c38c 11538 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 11539 if (attr)
91da1414
MW
11540 {
11541 low = DW_ADDR (attr);
3019eac3
DE
11542 if (attr_high->form == DW_FORM_addr
11543 || attr_high->form == DW_FORM_GNU_addr_index)
91da1414
MW
11544 high = DW_ADDR (attr_high);
11545 else
11546 high = low + DW_UNSND (attr_high);
11547 }
af34e669
DJ
11548 else
11549 /* Found high w/o low attribute. */
11550 return 0;
11551
11552 /* Found consecutive range of addresses. */
11553 ret = 1;
11554 }
c906108c 11555 else
af34e669 11556 {
e142c38c 11557 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
11558 if (attr != NULL)
11559 {
ab435259
DE
11560 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11561 We take advantage of the fact that DW_AT_ranges does not appear
11562 in DW_TAG_compile_unit of DWO files. */
11563 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11564 unsigned int ranges_offset = (DW_UNSND (attr)
11565 + (need_ranges_base
11566 ? cu->ranges_base
11567 : 0));
2e3cf129 11568
af34e669 11569 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 11570 .debug_ranges section. */
2e3cf129 11571 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 11572 return 0;
43039443 11573 /* Found discontinuous range of addresses. */
af34e669
DJ
11574 ret = -1;
11575 }
11576 }
c906108c 11577
9373cf26
JK
11578 /* read_partial_die has also the strict LOW < HIGH requirement. */
11579 if (high <= low)
c906108c
SS
11580 return 0;
11581
11582 /* When using the GNU linker, .gnu.linkonce. sections are used to
11583 eliminate duplicate copies of functions and vtables and such.
11584 The linker will arbitrarily choose one and discard the others.
11585 The AT_*_pc values for such functions refer to local labels in
11586 these sections. If the section from that file was discarded, the
11587 labels are not in the output, so the relocs get a value of 0.
11588 If this is a discarded function, mark the pc bounds as invalid,
11589 so that GDB will ignore it. */
72dca2f5 11590 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
11591 return 0;
11592
11593 *lowpc = low;
96408a79
SA
11594 if (highpc)
11595 *highpc = high;
af34e669 11596 return ret;
c906108c
SS
11597}
11598
b084d499
JB
11599/* Assuming that DIE represents a subprogram DIE or a lexical block, get
11600 its low and high PC addresses. Do nothing if these addresses could not
11601 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11602 and HIGHPC to the high address if greater than HIGHPC. */
11603
11604static void
11605dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11606 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11607 struct dwarf2_cu *cu)
11608{
11609 CORE_ADDR low, high;
11610 struct die_info *child = die->child;
11611
d85a05f0 11612 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
11613 {
11614 *lowpc = min (*lowpc, low);
11615 *highpc = max (*highpc, high);
11616 }
11617
11618 /* If the language does not allow nested subprograms (either inside
11619 subprograms or lexical blocks), we're done. */
11620 if (cu->language != language_ada)
11621 return;
6e70227d 11622
b084d499
JB
11623 /* Check all the children of the given DIE. If it contains nested
11624 subprograms, then check their pc bounds. Likewise, we need to
11625 check lexical blocks as well, as they may also contain subprogram
11626 definitions. */
11627 while (child && child->tag)
11628 {
11629 if (child->tag == DW_TAG_subprogram
11630 || child->tag == DW_TAG_lexical_block)
11631 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11632 child = sibling_die (child);
11633 }
11634}
11635
fae299cd
DC
11636/* Get the low and high pc's represented by the scope DIE, and store
11637 them in *LOWPC and *HIGHPC. If the correct values can't be
11638 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11639
11640static void
11641get_scope_pc_bounds (struct die_info *die,
11642 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11643 struct dwarf2_cu *cu)
11644{
11645 CORE_ADDR best_low = (CORE_ADDR) -1;
11646 CORE_ADDR best_high = (CORE_ADDR) 0;
11647 CORE_ADDR current_low, current_high;
11648
d85a05f0 11649 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
11650 {
11651 best_low = current_low;
11652 best_high = current_high;
11653 }
11654 else
11655 {
11656 struct die_info *child = die->child;
11657
11658 while (child && child->tag)
11659 {
11660 switch (child->tag) {
11661 case DW_TAG_subprogram:
b084d499 11662 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
11663 break;
11664 case DW_TAG_namespace:
f55ee35c 11665 case DW_TAG_module:
fae299cd
DC
11666 /* FIXME: carlton/2004-01-16: Should we do this for
11667 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11668 that current GCC's always emit the DIEs corresponding
11669 to definitions of methods of classes as children of a
11670 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11671 the DIEs giving the declarations, which could be
11672 anywhere). But I don't see any reason why the
11673 standards says that they have to be there. */
11674 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11675
11676 if (current_low != ((CORE_ADDR) -1))
11677 {
11678 best_low = min (best_low, current_low);
11679 best_high = max (best_high, current_high);
11680 }
11681 break;
11682 default:
0963b4bd 11683 /* Ignore. */
fae299cd
DC
11684 break;
11685 }
11686
11687 child = sibling_die (child);
11688 }
11689 }
11690
11691 *lowpc = best_low;
11692 *highpc = best_high;
11693}
11694
801e3a5b
JB
11695/* Record the address ranges for BLOCK, offset by BASEADDR, as given
11696 in DIE. */
380bca97 11697
801e3a5b
JB
11698static void
11699dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11700 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11701{
bb5ed363 11702 struct objfile *objfile = cu->objfile;
801e3a5b 11703 struct attribute *attr;
91da1414 11704 struct attribute *attr_high;
801e3a5b 11705
91da1414
MW
11706 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11707 if (attr_high)
801e3a5b 11708 {
801e3a5b
JB
11709 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11710 if (attr)
11711 {
11712 CORE_ADDR low = DW_ADDR (attr);
91da1414 11713 CORE_ADDR high;
3019eac3
DE
11714 if (attr_high->form == DW_FORM_addr
11715 || attr_high->form == DW_FORM_GNU_addr_index)
91da1414
MW
11716 high = DW_ADDR (attr_high);
11717 else
11718 high = low + DW_UNSND (attr_high);
9a619af0 11719
801e3a5b
JB
11720 record_block_range (block, baseaddr + low, baseaddr + high - 1);
11721 }
11722 }
11723
11724 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11725 if (attr)
11726 {
bb5ed363 11727 bfd *obfd = objfile->obfd;
ab435259
DE
11728 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11729 We take advantage of the fact that DW_AT_ranges does not appear
11730 in DW_TAG_compile_unit of DWO files. */
11731 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
11732
11733 /* The value of the DW_AT_ranges attribute is the offset of the
11734 address range list in the .debug_ranges section. */
ab435259
DE
11735 unsigned long offset = (DW_UNSND (attr)
11736 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 11737 const gdb_byte *buffer;
801e3a5b
JB
11738
11739 /* For some target architectures, but not others, the
11740 read_address function sign-extends the addresses it returns.
11741 To recognize base address selection entries, we need a
11742 mask. */
11743 unsigned int addr_size = cu->header.addr_size;
11744 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11745
11746 /* The base address, to which the next pair is relative. Note
11747 that this 'base' is a DWARF concept: most entries in a range
11748 list are relative, to reduce the number of relocs against the
11749 debugging information. This is separate from this function's
11750 'baseaddr' argument, which GDB uses to relocate debugging
11751 information from a shared library based on the address at
11752 which the library was loaded. */
d00adf39
DE
11753 CORE_ADDR base = cu->base_address;
11754 int base_known = cu->base_known;
801e3a5b 11755
d62bfeaf 11756 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11757 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
11758 {
11759 complaint (&symfile_complaints,
11760 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
11761 offset);
11762 return;
11763 }
d62bfeaf 11764 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
11765
11766 for (;;)
11767 {
11768 unsigned int bytes_read;
11769 CORE_ADDR start, end;
11770
11771 start = read_address (obfd, buffer, cu, &bytes_read);
11772 buffer += bytes_read;
11773 end = read_address (obfd, buffer, cu, &bytes_read);
11774 buffer += bytes_read;
11775
11776 /* Did we find the end of the range list? */
11777 if (start == 0 && end == 0)
11778 break;
11779
11780 /* Did we find a base address selection entry? */
11781 else if ((start & base_select_mask) == base_select_mask)
11782 {
11783 base = end;
11784 base_known = 1;
11785 }
11786
11787 /* We found an ordinary address range. */
11788 else
11789 {
11790 if (!base_known)
11791 {
11792 complaint (&symfile_complaints,
3e43a32a
MS
11793 _("Invalid .debug_ranges data "
11794 "(no base address)"));
801e3a5b
JB
11795 return;
11796 }
11797
9277c30c
UW
11798 if (start > end)
11799 {
11800 /* Inverted range entries are invalid. */
11801 complaint (&symfile_complaints,
11802 _("Invalid .debug_ranges data "
11803 "(inverted range)"));
11804 return;
11805 }
11806
11807 /* Empty range entries have no effect. */
11808 if (start == end)
11809 continue;
11810
01093045
DE
11811 start += base + baseaddr;
11812 end += base + baseaddr;
11813
11814 /* A not-uncommon case of bad debug info.
11815 Don't pollute the addrmap with bad data. */
11816 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
11817 {
11818 complaint (&symfile_complaints,
11819 _(".debug_ranges entry has start address of zero"
4262abfb 11820 " [in module %s]"), objfile_name (objfile));
01093045
DE
11821 continue;
11822 }
11823
11824 record_block_range (block, start, end - 1);
801e3a5b
JB
11825 }
11826 }
11827 }
11828}
11829
685b1105
JK
11830/* Check whether the producer field indicates either of GCC < 4.6, or the
11831 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 11832
685b1105
JK
11833static void
11834check_producer (struct dwarf2_cu *cu)
60d5a603
JK
11835{
11836 const char *cs;
11837 int major, minor, release;
11838
11839 if (cu->producer == NULL)
11840 {
11841 /* For unknown compilers expect their behavior is DWARF version
11842 compliant.
11843
11844 GCC started to support .debug_types sections by -gdwarf-4 since
11845 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
11846 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
11847 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
11848 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 11849 }
685b1105 11850 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
60d5a603 11851 {
685b1105
JK
11852 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
11853
ba919b58
TT
11854 cs = &cu->producer[strlen ("GNU ")];
11855 while (*cs && !isdigit (*cs))
11856 cs++;
11857 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
11858 {
11859 /* Not recognized as GCC. */
11860 }
11861 else
1b80a9fa
JK
11862 {
11863 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
11864 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
11865 }
685b1105
JK
11866 }
11867 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
11868 cu->producer_is_icc = 1;
11869 else
11870 {
11871 /* For other non-GCC compilers, expect their behavior is DWARF version
11872 compliant. */
60d5a603
JK
11873 }
11874
ba919b58 11875 cu->checked_producer = 1;
685b1105 11876}
ba919b58 11877
685b1105
JK
11878/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
11879 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
11880 during 4.6.0 experimental. */
11881
11882static int
11883producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
11884{
11885 if (!cu->checked_producer)
11886 check_producer (cu);
11887
11888 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
11889}
11890
11891/* Return the default accessibility type if it is not overriden by
11892 DW_AT_accessibility. */
11893
11894static enum dwarf_access_attribute
11895dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
11896{
11897 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
11898 {
11899 /* The default DWARF 2 accessibility for members is public, the default
11900 accessibility for inheritance is private. */
11901
11902 if (die->tag != DW_TAG_inheritance)
11903 return DW_ACCESS_public;
11904 else
11905 return DW_ACCESS_private;
11906 }
11907 else
11908 {
11909 /* DWARF 3+ defines the default accessibility a different way. The same
11910 rules apply now for DW_TAG_inheritance as for the members and it only
11911 depends on the container kind. */
11912
11913 if (die->parent->tag == DW_TAG_class_type)
11914 return DW_ACCESS_private;
11915 else
11916 return DW_ACCESS_public;
11917 }
11918}
11919
74ac6d43
TT
11920/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
11921 offset. If the attribute was not found return 0, otherwise return
11922 1. If it was found but could not properly be handled, set *OFFSET
11923 to 0. */
11924
11925static int
11926handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
11927 LONGEST *offset)
11928{
11929 struct attribute *attr;
11930
11931 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
11932 if (attr != NULL)
11933 {
11934 *offset = 0;
11935
11936 /* Note that we do not check for a section offset first here.
11937 This is because DW_AT_data_member_location is new in DWARF 4,
11938 so if we see it, we can assume that a constant form is really
11939 a constant and not a section offset. */
11940 if (attr_form_is_constant (attr))
11941 *offset = dwarf2_get_attr_constant_value (attr, 0);
11942 else if (attr_form_is_section_offset (attr))
11943 dwarf2_complex_location_expr_complaint ();
11944 else if (attr_form_is_block (attr))
11945 *offset = decode_locdesc (DW_BLOCK (attr), cu);
11946 else
11947 dwarf2_complex_location_expr_complaint ();
11948
11949 return 1;
11950 }
11951
11952 return 0;
11953}
11954
c906108c
SS
11955/* Add an aggregate field to the field list. */
11956
11957static void
107d2387 11958dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 11959 struct dwarf2_cu *cu)
6e70227d 11960{
e7c27a73 11961 struct objfile *objfile = cu->objfile;
5e2b427d 11962 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
11963 struct nextfield *new_field;
11964 struct attribute *attr;
11965 struct field *fp;
15d034d0 11966 const char *fieldname = "";
c906108c
SS
11967
11968 /* Allocate a new field list entry and link it in. */
11969 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 11970 make_cleanup (xfree, new_field);
c906108c 11971 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
11972
11973 if (die->tag == DW_TAG_inheritance)
11974 {
11975 new_field->next = fip->baseclasses;
11976 fip->baseclasses = new_field;
11977 }
11978 else
11979 {
11980 new_field->next = fip->fields;
11981 fip->fields = new_field;
11982 }
c906108c
SS
11983 fip->nfields++;
11984
e142c38c 11985 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
11986 if (attr)
11987 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
11988 else
11989 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
11990 if (new_field->accessibility != DW_ACCESS_public)
11991 fip->non_public_fields = 1;
60d5a603 11992
e142c38c 11993 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
11994 if (attr)
11995 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
11996 else
11997 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
11998
11999 fp = &new_field->field;
a9a9bd0f 12000
e142c38c 12001 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12002 {
74ac6d43
TT
12003 LONGEST offset;
12004
a9a9bd0f 12005 /* Data member other than a C++ static data member. */
6e70227d 12006
c906108c 12007 /* Get type of field. */
e7c27a73 12008 fp->type = die_type (die, cu);
c906108c 12009
d6a843b5 12010 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12011
c906108c 12012 /* Get bit size of field (zero if none). */
e142c38c 12013 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12014 if (attr)
12015 {
12016 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12017 }
12018 else
12019 {
12020 FIELD_BITSIZE (*fp) = 0;
12021 }
12022
12023 /* Get bit offset of field. */
74ac6d43
TT
12024 if (handle_data_member_location (die, cu, &offset))
12025 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12026 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12027 if (attr)
12028 {
5e2b427d 12029 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12030 {
12031 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12032 additional bit offset from the MSB of the containing
12033 anonymous object to the MSB of the field. We don't
12034 have to do anything special since we don't need to
12035 know the size of the anonymous object. */
f41f5e61 12036 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12037 }
12038 else
12039 {
12040 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12041 MSB of the anonymous object, subtract off the number of
12042 bits from the MSB of the field to the MSB of the
12043 object, and then subtract off the number of bits of
12044 the field itself. The result is the bit offset of
12045 the LSB of the field. */
c906108c
SS
12046 int anonymous_size;
12047 int bit_offset = DW_UNSND (attr);
12048
e142c38c 12049 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12050 if (attr)
12051 {
12052 /* The size of the anonymous object containing
12053 the bit field is explicit, so use the
12054 indicated size (in bytes). */
12055 anonymous_size = DW_UNSND (attr);
12056 }
12057 else
12058 {
12059 /* The size of the anonymous object containing
12060 the bit field must be inferred from the type
12061 attribute of the data member containing the
12062 bit field. */
12063 anonymous_size = TYPE_LENGTH (fp->type);
12064 }
f41f5e61
PA
12065 SET_FIELD_BITPOS (*fp,
12066 (FIELD_BITPOS (*fp)
12067 + anonymous_size * bits_per_byte
12068 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12069 }
12070 }
12071
12072 /* Get name of field. */
39cbfefa
DJ
12073 fieldname = dwarf2_name (die, cu);
12074 if (fieldname == NULL)
12075 fieldname = "";
d8151005
DJ
12076
12077 /* The name is already allocated along with this objfile, so we don't
12078 need to duplicate it for the type. */
12079 fp->name = fieldname;
c906108c
SS
12080
12081 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12082 pointer or virtual base class pointer) to private. */
e142c38c 12083 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12084 {
d48cc9dd 12085 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12086 new_field->accessibility = DW_ACCESS_private;
12087 fip->non_public_fields = 1;
12088 }
12089 }
a9a9bd0f 12090 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12091 {
a9a9bd0f
DC
12092 /* C++ static member. */
12093
12094 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12095 is a declaration, but all versions of G++ as of this writing
12096 (so through at least 3.2.1) incorrectly generate
12097 DW_TAG_variable tags. */
6e70227d 12098
ff355380 12099 const char *physname;
c906108c 12100
a9a9bd0f 12101 /* Get name of field. */
39cbfefa
DJ
12102 fieldname = dwarf2_name (die, cu);
12103 if (fieldname == NULL)
c906108c
SS
12104 return;
12105
254e6b9e 12106 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12107 if (attr
12108 /* Only create a symbol if this is an external value.
12109 new_symbol checks this and puts the value in the global symbol
12110 table, which we want. If it is not external, new_symbol
12111 will try to put the value in cu->list_in_scope which is wrong. */
12112 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12113 {
12114 /* A static const member, not much different than an enum as far as
12115 we're concerned, except that we can support more types. */
12116 new_symbol (die, NULL, cu);
12117 }
12118
2df3850c 12119 /* Get physical name. */
ff355380 12120 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12121
d8151005
DJ
12122 /* The name is already allocated along with this objfile, so we don't
12123 need to duplicate it for the type. */
12124 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12125 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12126 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12127 }
12128 else if (die->tag == DW_TAG_inheritance)
12129 {
74ac6d43 12130 LONGEST offset;
d4b96c9a 12131
74ac6d43
TT
12132 /* C++ base class field. */
12133 if (handle_data_member_location (die, cu, &offset))
12134 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12135 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12136 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12137 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12138 fip->nbaseclasses++;
12139 }
12140}
12141
98751a41
JK
12142/* Add a typedef defined in the scope of the FIP's class. */
12143
12144static void
12145dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12146 struct dwarf2_cu *cu)
6e70227d 12147{
98751a41 12148 struct objfile *objfile = cu->objfile;
98751a41
JK
12149 struct typedef_field_list *new_field;
12150 struct attribute *attr;
12151 struct typedef_field *fp;
12152 char *fieldname = "";
12153
12154 /* Allocate a new field list entry and link it in. */
12155 new_field = xzalloc (sizeof (*new_field));
12156 make_cleanup (xfree, new_field);
12157
12158 gdb_assert (die->tag == DW_TAG_typedef);
12159
12160 fp = &new_field->field;
12161
12162 /* Get name of field. */
12163 fp->name = dwarf2_name (die, cu);
12164 if (fp->name == NULL)
12165 return;
12166
12167 fp->type = read_type_die (die, cu);
12168
12169 new_field->next = fip->typedef_field_list;
12170 fip->typedef_field_list = new_field;
12171 fip->typedef_field_list_count++;
12172}
12173
c906108c
SS
12174/* Create the vector of fields, and attach it to the type. */
12175
12176static void
fba45db2 12177dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12178 struct dwarf2_cu *cu)
c906108c
SS
12179{
12180 int nfields = fip->nfields;
12181
12182 /* Record the field count, allocate space for the array of fields,
12183 and create blank accessibility bitfields if necessary. */
12184 TYPE_NFIELDS (type) = nfields;
12185 TYPE_FIELDS (type) = (struct field *)
12186 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12187 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12188
b4ba55a1 12189 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12190 {
12191 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12192
12193 TYPE_FIELD_PRIVATE_BITS (type) =
12194 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12195 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12196
12197 TYPE_FIELD_PROTECTED_BITS (type) =
12198 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12199 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12200
774b6a14
TT
12201 TYPE_FIELD_IGNORE_BITS (type) =
12202 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12203 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12204 }
12205
12206 /* If the type has baseclasses, allocate and clear a bit vector for
12207 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12208 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12209 {
12210 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12211 unsigned char *pointer;
c906108c
SS
12212
12213 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
12214 pointer = TYPE_ALLOC (type, num_bytes);
12215 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12216 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12217 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12218 }
12219
3e43a32a
MS
12220 /* Copy the saved-up fields into the field vector. Start from the head of
12221 the list, adding to the tail of the field array, so that they end up in
12222 the same order in the array in which they were added to the list. */
c906108c
SS
12223 while (nfields-- > 0)
12224 {
7d0ccb61
DJ
12225 struct nextfield *fieldp;
12226
12227 if (fip->fields)
12228 {
12229 fieldp = fip->fields;
12230 fip->fields = fieldp->next;
12231 }
12232 else
12233 {
12234 fieldp = fip->baseclasses;
12235 fip->baseclasses = fieldp->next;
12236 }
12237
12238 TYPE_FIELD (type, nfields) = fieldp->field;
12239 switch (fieldp->accessibility)
c906108c 12240 {
c5aa993b 12241 case DW_ACCESS_private:
b4ba55a1
JB
12242 if (cu->language != language_ada)
12243 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12244 break;
c906108c 12245
c5aa993b 12246 case DW_ACCESS_protected:
b4ba55a1
JB
12247 if (cu->language != language_ada)
12248 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12249 break;
c906108c 12250
c5aa993b
JM
12251 case DW_ACCESS_public:
12252 break;
c906108c 12253
c5aa993b
JM
12254 default:
12255 /* Unknown accessibility. Complain and treat it as public. */
12256 {
e2e0b3e5 12257 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12258 fieldp->accessibility);
c5aa993b
JM
12259 }
12260 break;
c906108c
SS
12261 }
12262 if (nfields < fip->nbaseclasses)
12263 {
7d0ccb61 12264 switch (fieldp->virtuality)
c906108c 12265 {
c5aa993b
JM
12266 case DW_VIRTUALITY_virtual:
12267 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12268 if (cu->language == language_ada)
a73c6dcd 12269 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12270 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12271 break;
c906108c
SS
12272 }
12273 }
c906108c
SS
12274 }
12275}
12276
7d27a96d
TT
12277/* Return true if this member function is a constructor, false
12278 otherwise. */
12279
12280static int
12281dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12282{
12283 const char *fieldname;
12284 const char *typename;
12285 int len;
12286
12287 if (die->parent == NULL)
12288 return 0;
12289
12290 if (die->parent->tag != DW_TAG_structure_type
12291 && die->parent->tag != DW_TAG_union_type
12292 && die->parent->tag != DW_TAG_class_type)
12293 return 0;
12294
12295 fieldname = dwarf2_name (die, cu);
12296 typename = dwarf2_name (die->parent, cu);
12297 if (fieldname == NULL || typename == NULL)
12298 return 0;
12299
12300 len = strlen (fieldname);
12301 return (strncmp (fieldname, typename, len) == 0
12302 && (typename[len] == '\0' || typename[len] == '<'));
12303}
12304
c906108c
SS
12305/* Add a member function to the proper fieldlist. */
12306
12307static void
107d2387 12308dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12309 struct type *type, struct dwarf2_cu *cu)
c906108c 12310{
e7c27a73 12311 struct objfile *objfile = cu->objfile;
c906108c
SS
12312 struct attribute *attr;
12313 struct fnfieldlist *flp;
12314 int i;
12315 struct fn_field *fnp;
15d034d0 12316 const char *fieldname;
c906108c 12317 struct nextfnfield *new_fnfield;
f792889a 12318 struct type *this_type;
60d5a603 12319 enum dwarf_access_attribute accessibility;
c906108c 12320
b4ba55a1 12321 if (cu->language == language_ada)
a73c6dcd 12322 error (_("unexpected member function in Ada type"));
b4ba55a1 12323
2df3850c 12324 /* Get name of member function. */
39cbfefa
DJ
12325 fieldname = dwarf2_name (die, cu);
12326 if (fieldname == NULL)
2df3850c 12327 return;
c906108c 12328
c906108c
SS
12329 /* Look up member function name in fieldlist. */
12330 for (i = 0; i < fip->nfnfields; i++)
12331 {
27bfe10e 12332 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12333 break;
12334 }
12335
12336 /* Create new list element if necessary. */
12337 if (i < fip->nfnfields)
12338 flp = &fip->fnfieldlists[i];
12339 else
12340 {
12341 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12342 {
12343 fip->fnfieldlists = (struct fnfieldlist *)
12344 xrealloc (fip->fnfieldlists,
12345 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12346 * sizeof (struct fnfieldlist));
c906108c 12347 if (fip->nfnfields == 0)
c13c43fd 12348 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12349 }
12350 flp = &fip->fnfieldlists[fip->nfnfields];
12351 flp->name = fieldname;
12352 flp->length = 0;
12353 flp->head = NULL;
3da10d80 12354 i = fip->nfnfields++;
c906108c
SS
12355 }
12356
12357 /* Create a new member function field and chain it to the field list
0963b4bd 12358 entry. */
c906108c 12359 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 12360 make_cleanup (xfree, new_fnfield);
c906108c
SS
12361 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12362 new_fnfield->next = flp->head;
12363 flp->head = new_fnfield;
12364 flp->length++;
12365
12366 /* Fill in the member function field info. */
12367 fnp = &new_fnfield->fnfield;
3da10d80
KS
12368
12369 /* Delay processing of the physname until later. */
12370 if (cu->language == language_cplus || cu->language == language_java)
12371 {
12372 add_to_method_list (type, i, flp->length - 1, fieldname,
12373 die, cu);
12374 }
12375 else
12376 {
1d06ead6 12377 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12378 fnp->physname = physname ? physname : "";
12379 }
12380
c906108c 12381 fnp->type = alloc_type (objfile);
f792889a
DJ
12382 this_type = read_type_die (die, cu);
12383 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12384 {
f792889a 12385 int nparams = TYPE_NFIELDS (this_type);
c906108c 12386
f792889a 12387 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12388 of the method itself (TYPE_CODE_METHOD). */
12389 smash_to_method_type (fnp->type, type,
f792889a
DJ
12390 TYPE_TARGET_TYPE (this_type),
12391 TYPE_FIELDS (this_type),
12392 TYPE_NFIELDS (this_type),
12393 TYPE_VARARGS (this_type));
c906108c
SS
12394
12395 /* Handle static member functions.
c5aa993b 12396 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12397 member functions. G++ helps GDB by marking the first
12398 parameter for non-static member functions (which is the this
12399 pointer) as artificial. We obtain this information from
12400 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12401 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12402 fnp->voffset = VOFFSET_STATIC;
12403 }
12404 else
e2e0b3e5 12405 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12406 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12407
12408 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12409 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12410 fnp->fcontext = die_containing_type (die, cu);
c906108c 12411
3e43a32a
MS
12412 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12413 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12414
12415 /* Get accessibility. */
e142c38c 12416 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12417 if (attr)
60d5a603
JK
12418 accessibility = DW_UNSND (attr);
12419 else
12420 accessibility = dwarf2_default_access_attribute (die, cu);
12421 switch (accessibility)
c906108c 12422 {
60d5a603
JK
12423 case DW_ACCESS_private:
12424 fnp->is_private = 1;
12425 break;
12426 case DW_ACCESS_protected:
12427 fnp->is_protected = 1;
12428 break;
c906108c
SS
12429 }
12430
b02dede2 12431 /* Check for artificial methods. */
e142c38c 12432 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12433 if (attr && DW_UNSND (attr) != 0)
12434 fnp->is_artificial = 1;
12435
7d27a96d
TT
12436 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12437
0d564a31 12438 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12439 function. For older versions of GCC, this is an offset in the
12440 appropriate virtual table, as specified by DW_AT_containing_type.
12441 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12442 to the object address. */
12443
e142c38c 12444 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12445 if (attr)
8e19ed76 12446 {
aec5aa8b 12447 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12448 {
aec5aa8b
TT
12449 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12450 {
12451 /* Old-style GCC. */
12452 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12453 }
12454 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12455 || (DW_BLOCK (attr)->size > 1
12456 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12457 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12458 {
12459 struct dwarf_block blk;
12460 int offset;
12461
12462 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12463 ? 1 : 2);
12464 blk.size = DW_BLOCK (attr)->size - offset;
12465 blk.data = DW_BLOCK (attr)->data + offset;
12466 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12467 if ((fnp->voffset % cu->header.addr_size) != 0)
12468 dwarf2_complex_location_expr_complaint ();
12469 else
12470 fnp->voffset /= cu->header.addr_size;
12471 fnp->voffset += 2;
12472 }
12473 else
12474 dwarf2_complex_location_expr_complaint ();
12475
12476 if (!fnp->fcontext)
12477 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12478 }
3690dd37 12479 else if (attr_form_is_section_offset (attr))
8e19ed76 12480 {
4d3c2250 12481 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
12482 }
12483 else
12484 {
4d3c2250
KB
12485 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12486 fieldname);
8e19ed76 12487 }
0d564a31 12488 }
d48cc9dd
DJ
12489 else
12490 {
12491 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12492 if (attr && DW_UNSND (attr))
12493 {
12494 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12495 complaint (&symfile_complaints,
3e43a32a
MS
12496 _("Member function \"%s\" (offset %d) is virtual "
12497 "but the vtable offset is not specified"),
b64f50a1 12498 fieldname, die->offset.sect_off);
9655fd1a 12499 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
12500 TYPE_CPLUS_DYNAMIC (type) = 1;
12501 }
12502 }
c906108c
SS
12503}
12504
12505/* Create the vector of member function fields, and attach it to the type. */
12506
12507static void
fba45db2 12508dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12509 struct dwarf2_cu *cu)
c906108c
SS
12510{
12511 struct fnfieldlist *flp;
c906108c
SS
12512 int i;
12513
b4ba55a1 12514 if (cu->language == language_ada)
a73c6dcd 12515 error (_("unexpected member functions in Ada type"));
b4ba55a1 12516
c906108c
SS
12517 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12518 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12519 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12520
12521 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12522 {
12523 struct nextfnfield *nfp = flp->head;
12524 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12525 int k;
12526
12527 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12528 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12529 fn_flp->fn_fields = (struct fn_field *)
12530 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12531 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 12532 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
12533 }
12534
12535 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
12536}
12537
1168df01
JB
12538/* Returns non-zero if NAME is the name of a vtable member in CU's
12539 language, zero otherwise. */
12540static int
12541is_vtable_name (const char *name, struct dwarf2_cu *cu)
12542{
12543 static const char vptr[] = "_vptr";
987504bb 12544 static const char vtable[] = "vtable";
1168df01 12545
987504bb
JJ
12546 /* Look for the C++ and Java forms of the vtable. */
12547 if ((cu->language == language_java
12548 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12549 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12550 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
12551 return 1;
12552
12553 return 0;
12554}
12555
c0dd20ea 12556/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
12557 functions, with the ABI-specified layout. If TYPE describes
12558 such a structure, smash it into a member function type.
61049d3b
DJ
12559
12560 GCC shouldn't do this; it should just output pointer to member DIEs.
12561 This is GCC PR debug/28767. */
c0dd20ea 12562
0b92b5bb
TT
12563static void
12564quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 12565{
0b92b5bb 12566 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
12567
12568 /* Check for a structure with no name and two children. */
0b92b5bb
TT
12569 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12570 return;
c0dd20ea
DJ
12571
12572 /* Check for __pfn and __delta members. */
0b92b5bb
TT
12573 if (TYPE_FIELD_NAME (type, 0) == NULL
12574 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12575 || TYPE_FIELD_NAME (type, 1) == NULL
12576 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12577 return;
c0dd20ea
DJ
12578
12579 /* Find the type of the method. */
0b92b5bb 12580 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
12581 if (pfn_type == NULL
12582 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12583 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 12584 return;
c0dd20ea
DJ
12585
12586 /* Look for the "this" argument. */
12587 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12588 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 12589 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 12590 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 12591 return;
c0dd20ea
DJ
12592
12593 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
12594 new_type = alloc_type (objfile);
12595 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
12596 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12597 TYPE_VARARGS (pfn_type));
0b92b5bb 12598 smash_to_methodptr_type (type, new_type);
c0dd20ea 12599}
1168df01 12600
685b1105
JK
12601/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12602 (icc). */
12603
12604static int
12605producer_is_icc (struct dwarf2_cu *cu)
12606{
12607 if (!cu->checked_producer)
12608 check_producer (cu);
12609
12610 return cu->producer_is_icc;
12611}
12612
c906108c 12613/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
12614 (definition) to create a type for the structure or union. Fill in
12615 the type's name and general properties; the members will not be
3d1d5ea3 12616 processed until process_structure_scope.
c906108c 12617
c767944b
DJ
12618 NOTE: we need to call these functions regardless of whether or not the
12619 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c
SS
12620 structure or union. This gets the type entered into our set of
12621 user defined types.
12622
12623 However, if the structure is incomplete (an opaque struct/union)
12624 then suppress creating a symbol table entry for it since gdb only
12625 wants to find the one with the complete definition. Note that if
12626 it is complete, we just call new_symbol, which does it's own
12627 checking about whether the struct/union is anonymous or not (and
12628 suppresses creating a symbol table entry itself). */
12629
f792889a 12630static struct type *
134d01f1 12631read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12632{
e7c27a73 12633 struct objfile *objfile = cu->objfile;
c906108c
SS
12634 struct type *type;
12635 struct attribute *attr;
15d034d0 12636 const char *name;
c906108c 12637
348e048f
DE
12638 /* If the definition of this type lives in .debug_types, read that type.
12639 Don't follow DW_AT_specification though, that will take us back up
12640 the chain and we want to go down. */
45e58e77 12641 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
12642 if (attr)
12643 {
ac9ec31b 12644 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 12645
ac9ec31b 12646 /* The type's CU may not be the same as CU.
02142a6c 12647 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
12648 return set_die_type (die, type, cu);
12649 }
12650
c0dd20ea 12651 type = alloc_type (objfile);
c906108c 12652 INIT_CPLUS_SPECIFIC (type);
93311388 12653
39cbfefa
DJ
12654 name = dwarf2_name (die, cu);
12655 if (name != NULL)
c906108c 12656 {
987504bb
JJ
12657 if (cu->language == language_cplus
12658 || cu->language == language_java)
63d06c5c 12659 {
15d034d0 12660 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
12661
12662 /* dwarf2_full_name might have already finished building the DIE's
12663 type. If so, there is no need to continue. */
12664 if (get_die_type (die, cu) != NULL)
12665 return get_die_type (die, cu);
12666
12667 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
12668 if (die->tag == DW_TAG_structure_type
12669 || die->tag == DW_TAG_class_type)
12670 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
12671 }
12672 else
12673 {
d8151005
DJ
12674 /* The name is already allocated along with this objfile, so
12675 we don't need to duplicate it for the type. */
7d455152 12676 TYPE_TAG_NAME (type) = name;
94af9270
KS
12677 if (die->tag == DW_TAG_class_type)
12678 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 12679 }
c906108c
SS
12680 }
12681
12682 if (die->tag == DW_TAG_structure_type)
12683 {
12684 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12685 }
12686 else if (die->tag == DW_TAG_union_type)
12687 {
12688 TYPE_CODE (type) = TYPE_CODE_UNION;
12689 }
12690 else
12691 {
c906108c
SS
12692 TYPE_CODE (type) = TYPE_CODE_CLASS;
12693 }
12694
0cc2414c
TT
12695 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12696 TYPE_DECLARED_CLASS (type) = 1;
12697
e142c38c 12698 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12699 if (attr)
12700 {
12701 TYPE_LENGTH (type) = DW_UNSND (attr);
12702 }
12703 else
12704 {
12705 TYPE_LENGTH (type) = 0;
12706 }
12707
685b1105
JK
12708 if (producer_is_icc (cu))
12709 {
12710 /* ICC does not output the required DW_AT_declaration
12711 on incomplete types, but gives them a size of zero. */
12712 }
12713 else
12714 TYPE_STUB_SUPPORTED (type) = 1;
12715
dc718098 12716 if (die_is_declaration (die, cu))
876cecd0 12717 TYPE_STUB (type) = 1;
a6c727b2
DJ
12718 else if (attr == NULL && die->child == NULL
12719 && producer_is_realview (cu->producer))
12720 /* RealView does not output the required DW_AT_declaration
12721 on incomplete types. */
12722 TYPE_STUB (type) = 1;
dc718098 12723
c906108c
SS
12724 /* We need to add the type field to the die immediately so we don't
12725 infinitely recurse when dealing with pointers to the structure
0963b4bd 12726 type within the structure itself. */
1c379e20 12727 set_die_type (die, type, cu);
c906108c 12728
7e314c57
JK
12729 /* set_die_type should be already done. */
12730 set_descriptive_type (type, die, cu);
12731
c767944b
DJ
12732 return type;
12733}
12734
12735/* Finish creating a structure or union type, including filling in
12736 its members and creating a symbol for it. */
12737
12738static void
12739process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
12740{
12741 struct objfile *objfile = cu->objfile;
12742 struct die_info *child_die = die->child;
12743 struct type *type;
12744
12745 type = get_die_type (die, cu);
12746 if (type == NULL)
12747 type = read_structure_type (die, cu);
12748
e142c38c 12749 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
12750 {
12751 struct field_info fi;
12752 struct die_info *child_die;
34eaf542 12753 VEC (symbolp) *template_args = NULL;
c767944b 12754 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
12755
12756 memset (&fi, 0, sizeof (struct field_info));
12757
639d11d3 12758 child_die = die->child;
c906108c
SS
12759
12760 while (child_die && child_die->tag)
12761 {
a9a9bd0f
DC
12762 if (child_die->tag == DW_TAG_member
12763 || child_die->tag == DW_TAG_variable)
c906108c 12764 {
a9a9bd0f
DC
12765 /* NOTE: carlton/2002-11-05: A C++ static data member
12766 should be a DW_TAG_member that is a declaration, but
12767 all versions of G++ as of this writing (so through at
12768 least 3.2.1) incorrectly generate DW_TAG_variable
12769 tags for them instead. */
e7c27a73 12770 dwarf2_add_field (&fi, child_die, cu);
c906108c 12771 }
8713b1b1 12772 else if (child_die->tag == DW_TAG_subprogram)
c906108c 12773 {
0963b4bd 12774 /* C++ member function. */
e7c27a73 12775 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
12776 }
12777 else if (child_die->tag == DW_TAG_inheritance)
12778 {
12779 /* C++ base class field. */
e7c27a73 12780 dwarf2_add_field (&fi, child_die, cu);
c906108c 12781 }
98751a41
JK
12782 else if (child_die->tag == DW_TAG_typedef)
12783 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
12784 else if (child_die->tag == DW_TAG_template_type_param
12785 || child_die->tag == DW_TAG_template_value_param)
12786 {
12787 struct symbol *arg = new_symbol (child_die, NULL, cu);
12788
f1078f66
DJ
12789 if (arg != NULL)
12790 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
12791 }
12792
c906108c
SS
12793 child_die = sibling_die (child_die);
12794 }
12795
34eaf542
TT
12796 /* Attach template arguments to type. */
12797 if (! VEC_empty (symbolp, template_args))
12798 {
12799 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12800 TYPE_N_TEMPLATE_ARGUMENTS (type)
12801 = VEC_length (symbolp, template_args);
12802 TYPE_TEMPLATE_ARGUMENTS (type)
12803 = obstack_alloc (&objfile->objfile_obstack,
12804 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12805 * sizeof (struct symbol *)));
12806 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12807 VEC_address (symbolp, template_args),
12808 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12809 * sizeof (struct symbol *)));
12810 VEC_free (symbolp, template_args);
12811 }
12812
c906108c
SS
12813 /* Attach fields and member functions to the type. */
12814 if (fi.nfields)
e7c27a73 12815 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
12816 if (fi.nfnfields)
12817 {
e7c27a73 12818 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 12819
c5aa993b 12820 /* Get the type which refers to the base class (possibly this
c906108c 12821 class itself) which contains the vtable pointer for the current
0d564a31
DJ
12822 class from the DW_AT_containing_type attribute. This use of
12823 DW_AT_containing_type is a GNU extension. */
c906108c 12824
e142c38c 12825 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 12826 {
e7c27a73 12827 struct type *t = die_containing_type (die, cu);
c906108c
SS
12828
12829 TYPE_VPTR_BASETYPE (type) = t;
12830 if (type == t)
12831 {
c906108c
SS
12832 int i;
12833
12834 /* Our own class provides vtbl ptr. */
12835 for (i = TYPE_NFIELDS (t) - 1;
12836 i >= TYPE_N_BASECLASSES (t);
12837 --i)
12838 {
0d5cff50 12839 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 12840
1168df01 12841 if (is_vtable_name (fieldname, cu))
c906108c
SS
12842 {
12843 TYPE_VPTR_FIELDNO (type) = i;
12844 break;
12845 }
12846 }
12847
12848 /* Complain if virtual function table field not found. */
12849 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 12850 complaint (&symfile_complaints,
3e43a32a
MS
12851 _("virtual function table pointer "
12852 "not found when defining class '%s'"),
4d3c2250
KB
12853 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
12854 "");
c906108c
SS
12855 }
12856 else
12857 {
12858 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
12859 }
12860 }
f6235d4c
EZ
12861 else if (cu->producer
12862 && strncmp (cu->producer,
12863 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
12864 {
12865 /* The IBM XLC compiler does not provide direct indication
12866 of the containing type, but the vtable pointer is
12867 always named __vfp. */
12868
12869 int i;
12870
12871 for (i = TYPE_NFIELDS (type) - 1;
12872 i >= TYPE_N_BASECLASSES (type);
12873 --i)
12874 {
12875 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
12876 {
12877 TYPE_VPTR_FIELDNO (type) = i;
12878 TYPE_VPTR_BASETYPE (type) = type;
12879 break;
12880 }
12881 }
12882 }
c906108c 12883 }
98751a41
JK
12884
12885 /* Copy fi.typedef_field_list linked list elements content into the
12886 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
12887 if (fi.typedef_field_list)
12888 {
12889 int i = fi.typedef_field_list_count;
12890
a0d7a4ff 12891 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
12892 TYPE_TYPEDEF_FIELD_ARRAY (type)
12893 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
12894 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
12895
12896 /* Reverse the list order to keep the debug info elements order. */
12897 while (--i >= 0)
12898 {
12899 struct typedef_field *dest, *src;
6e70227d 12900
98751a41
JK
12901 dest = &TYPE_TYPEDEF_FIELD (type, i);
12902 src = &fi.typedef_field_list->field;
12903 fi.typedef_field_list = fi.typedef_field_list->next;
12904 *dest = *src;
12905 }
12906 }
c767944b
DJ
12907
12908 do_cleanups (back_to);
eb2a6f42
TT
12909
12910 if (HAVE_CPLUS_STRUCT (type))
12911 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 12912 }
63d06c5c 12913
bb5ed363 12914 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 12915
90aeadfc
DC
12916 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
12917 snapshots) has been known to create a die giving a declaration
12918 for a class that has, as a child, a die giving a definition for a
12919 nested class. So we have to process our children even if the
12920 current die is a declaration. Normally, of course, a declaration
12921 won't have any children at all. */
134d01f1 12922
90aeadfc
DC
12923 while (child_die != NULL && child_die->tag)
12924 {
12925 if (child_die->tag == DW_TAG_member
12926 || child_die->tag == DW_TAG_variable
34eaf542
TT
12927 || child_die->tag == DW_TAG_inheritance
12928 || child_die->tag == DW_TAG_template_value_param
12929 || child_die->tag == DW_TAG_template_type_param)
134d01f1 12930 {
90aeadfc 12931 /* Do nothing. */
134d01f1 12932 }
90aeadfc
DC
12933 else
12934 process_die (child_die, cu);
134d01f1 12935
90aeadfc 12936 child_die = sibling_die (child_die);
134d01f1
DJ
12937 }
12938
fa4028e9
JB
12939 /* Do not consider external references. According to the DWARF standard,
12940 these DIEs are identified by the fact that they have no byte_size
12941 attribute, and a declaration attribute. */
12942 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
12943 || !die_is_declaration (die, cu))
c767944b 12944 new_symbol (die, type, cu);
134d01f1
DJ
12945}
12946
12947/* Given a DW_AT_enumeration_type die, set its type. We do not
12948 complete the type's fields yet, or create any symbols. */
c906108c 12949
f792889a 12950static struct type *
134d01f1 12951read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12952{
e7c27a73 12953 struct objfile *objfile = cu->objfile;
c906108c 12954 struct type *type;
c906108c 12955 struct attribute *attr;
0114d602 12956 const char *name;
134d01f1 12957
348e048f
DE
12958 /* If the definition of this type lives in .debug_types, read that type.
12959 Don't follow DW_AT_specification though, that will take us back up
12960 the chain and we want to go down. */
45e58e77 12961 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
12962 if (attr)
12963 {
ac9ec31b 12964 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 12965
ac9ec31b 12966 /* The type's CU may not be the same as CU.
02142a6c 12967 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
12968 return set_die_type (die, type, cu);
12969 }
12970
c906108c
SS
12971 type = alloc_type (objfile);
12972
12973 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 12974 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 12975 if (name != NULL)
7d455152 12976 TYPE_TAG_NAME (type) = name;
c906108c 12977
e142c38c 12978 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12979 if (attr)
12980 {
12981 TYPE_LENGTH (type) = DW_UNSND (attr);
12982 }
12983 else
12984 {
12985 TYPE_LENGTH (type) = 0;
12986 }
12987
137033e9
JB
12988 /* The enumeration DIE can be incomplete. In Ada, any type can be
12989 declared as private in the package spec, and then defined only
12990 inside the package body. Such types are known as Taft Amendment
12991 Types. When another package uses such a type, an incomplete DIE
12992 may be generated by the compiler. */
02eb380e 12993 if (die_is_declaration (die, cu))
876cecd0 12994 TYPE_STUB (type) = 1;
02eb380e 12995
f792889a 12996 return set_die_type (die, type, cu);
134d01f1
DJ
12997}
12998
12999/* Given a pointer to a die which begins an enumeration, process all
13000 the dies that define the members of the enumeration, and create the
13001 symbol for the enumeration type.
13002
13003 NOTE: We reverse the order of the element list. */
13004
13005static void
13006process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13007{
f792889a 13008 struct type *this_type;
134d01f1 13009
f792889a
DJ
13010 this_type = get_die_type (die, cu);
13011 if (this_type == NULL)
13012 this_type = read_enumeration_type (die, cu);
9dc481d3 13013
639d11d3 13014 if (die->child != NULL)
c906108c 13015 {
9dc481d3
DE
13016 struct die_info *child_die;
13017 struct symbol *sym;
13018 struct field *fields = NULL;
13019 int num_fields = 0;
13020 int unsigned_enum = 1;
15d034d0 13021 const char *name;
cafec441
TT
13022 int flag_enum = 1;
13023 ULONGEST mask = 0;
9dc481d3 13024
639d11d3 13025 child_die = die->child;
c906108c
SS
13026 while (child_die && child_die->tag)
13027 {
13028 if (child_die->tag != DW_TAG_enumerator)
13029 {
e7c27a73 13030 process_die (child_die, cu);
c906108c
SS
13031 }
13032 else
13033 {
39cbfefa
DJ
13034 name = dwarf2_name (child_die, cu);
13035 if (name)
c906108c 13036 {
f792889a 13037 sym = new_symbol (child_die, this_type, cu);
c906108c 13038 if (SYMBOL_VALUE (sym) < 0)
cafec441
TT
13039 {
13040 unsigned_enum = 0;
13041 flag_enum = 0;
13042 }
13043 else if ((mask & SYMBOL_VALUE (sym)) != 0)
13044 flag_enum = 0;
13045 else
13046 mask |= SYMBOL_VALUE (sym);
c906108c
SS
13047
13048 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13049 {
13050 fields = (struct field *)
13051 xrealloc (fields,
13052 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13053 * sizeof (struct field));
c906108c
SS
13054 }
13055
3567439c 13056 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13057 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13058 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13059 FIELD_BITSIZE (fields[num_fields]) = 0;
13060
13061 num_fields++;
13062 }
13063 }
13064
13065 child_die = sibling_die (child_die);
13066 }
13067
13068 if (num_fields)
13069 {
f792889a
DJ
13070 TYPE_NFIELDS (this_type) = num_fields;
13071 TYPE_FIELDS (this_type) = (struct field *)
13072 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13073 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13074 sizeof (struct field) * num_fields);
b8c9b27d 13075 xfree (fields);
c906108c
SS
13076 }
13077 if (unsigned_enum)
876cecd0 13078 TYPE_UNSIGNED (this_type) = 1;
cafec441
TT
13079 if (flag_enum)
13080 TYPE_FLAG_ENUM (this_type) = 1;
c906108c 13081 }
134d01f1 13082
6c83ed52
TT
13083 /* If we are reading an enum from a .debug_types unit, and the enum
13084 is a declaration, and the enum is not the signatured type in the
13085 unit, then we do not want to add a symbol for it. Adding a
13086 symbol would in some cases obscure the true definition of the
13087 enum, giving users an incomplete type when the definition is
13088 actually available. Note that we do not want to do this for all
13089 enums which are just declarations, because C++0x allows forward
13090 enum declarations. */
3019eac3 13091 if (cu->per_cu->is_debug_types
6c83ed52
TT
13092 && die_is_declaration (die, cu))
13093 {
52dc124a 13094 struct signatured_type *sig_type;
6c83ed52 13095
c0f78cd4 13096 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13097 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13098 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13099 return;
13100 }
13101
f792889a 13102 new_symbol (die, this_type, cu);
c906108c
SS
13103}
13104
13105/* Extract all information from a DW_TAG_array_type DIE and put it in
13106 the DIE's type field. For now, this only handles one dimensional
13107 arrays. */
13108
f792889a 13109static struct type *
e7c27a73 13110read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13111{
e7c27a73 13112 struct objfile *objfile = cu->objfile;
c906108c 13113 struct die_info *child_die;
7e314c57 13114 struct type *type;
c906108c
SS
13115 struct type *element_type, *range_type, *index_type;
13116 struct type **range_types = NULL;
13117 struct attribute *attr;
13118 int ndim = 0;
13119 struct cleanup *back_to;
15d034d0 13120 const char *name;
c906108c 13121
e7c27a73 13122 element_type = die_type (die, cu);
c906108c 13123
7e314c57
JK
13124 /* The die_type call above may have already set the type for this DIE. */
13125 type = get_die_type (die, cu);
13126 if (type)
13127 return type;
13128
c906108c
SS
13129 /* Irix 6.2 native cc creates array types without children for
13130 arrays with unspecified length. */
639d11d3 13131 if (die->child == NULL)
c906108c 13132 {
46bf5051 13133 index_type = objfile_type (objfile)->builtin_int;
c906108c 13134 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
13135 type = create_array_type (NULL, element_type, range_type);
13136 return set_die_type (die, type, cu);
c906108c
SS
13137 }
13138
13139 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13140 child_die = die->child;
c906108c
SS
13141 while (child_die && child_die->tag)
13142 {
13143 if (child_die->tag == DW_TAG_subrange_type)
13144 {
f792889a 13145 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13146
f792889a 13147 if (child_type != NULL)
a02abb62 13148 {
0963b4bd
MS
13149 /* The range type was succesfully read. Save it for the
13150 array type creation. */
a02abb62
JB
13151 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13152 {
13153 range_types = (struct type **)
13154 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13155 * sizeof (struct type *));
13156 if (ndim == 0)
13157 make_cleanup (free_current_contents, &range_types);
13158 }
f792889a 13159 range_types[ndim++] = child_type;
a02abb62 13160 }
c906108c
SS
13161 }
13162 child_die = sibling_die (child_die);
13163 }
13164
13165 /* Dwarf2 dimensions are output from left to right, create the
13166 necessary array types in backwards order. */
7ca2d3a3 13167
c906108c 13168 type = element_type;
7ca2d3a3
DL
13169
13170 if (read_array_order (die, cu) == DW_ORD_col_major)
13171 {
13172 int i = 0;
9a619af0 13173
7ca2d3a3
DL
13174 while (i < ndim)
13175 type = create_array_type (NULL, type, range_types[i++]);
13176 }
13177 else
13178 {
13179 while (ndim-- > 0)
13180 type = create_array_type (NULL, type, range_types[ndim]);
13181 }
c906108c 13182
f5f8a009
EZ
13183 /* Understand Dwarf2 support for vector types (like they occur on
13184 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13185 array type. This is not part of the Dwarf2/3 standard yet, but a
13186 custom vendor extension. The main difference between a regular
13187 array and the vector variant is that vectors are passed by value
13188 to functions. */
e142c38c 13189 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13190 if (attr)
ea37ba09 13191 make_vector_type (type);
f5f8a009 13192
dbc98a8b
KW
13193 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13194 implementation may choose to implement triple vectors using this
13195 attribute. */
13196 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13197 if (attr)
13198 {
13199 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13200 TYPE_LENGTH (type) = DW_UNSND (attr);
13201 else
3e43a32a
MS
13202 complaint (&symfile_complaints,
13203 _("DW_AT_byte_size for array type smaller "
13204 "than the total size of elements"));
dbc98a8b
KW
13205 }
13206
39cbfefa
DJ
13207 name = dwarf2_name (die, cu);
13208 if (name)
13209 TYPE_NAME (type) = name;
6e70227d 13210
0963b4bd 13211 /* Install the type in the die. */
7e314c57
JK
13212 set_die_type (die, type, cu);
13213
13214 /* set_die_type should be already done. */
b4ba55a1
JB
13215 set_descriptive_type (type, die, cu);
13216
c906108c
SS
13217 do_cleanups (back_to);
13218
7e314c57 13219 return type;
c906108c
SS
13220}
13221
7ca2d3a3 13222static enum dwarf_array_dim_ordering
6e70227d 13223read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13224{
13225 struct attribute *attr;
13226
13227 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13228
13229 if (attr) return DW_SND (attr);
13230
0963b4bd
MS
13231 /* GNU F77 is a special case, as at 08/2004 array type info is the
13232 opposite order to the dwarf2 specification, but data is still
13233 laid out as per normal fortran.
7ca2d3a3 13234
0963b4bd
MS
13235 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13236 version checking. */
7ca2d3a3 13237
905e0470
PM
13238 if (cu->language == language_fortran
13239 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13240 {
13241 return DW_ORD_row_major;
13242 }
13243
6e70227d 13244 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13245 {
13246 case array_column_major:
13247 return DW_ORD_col_major;
13248 case array_row_major:
13249 default:
13250 return DW_ORD_row_major;
13251 };
13252}
13253
72019c9c 13254/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13255 the DIE's type field. */
72019c9c 13256
f792889a 13257static struct type *
72019c9c
GM
13258read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13259{
7e314c57
JK
13260 struct type *domain_type, *set_type;
13261 struct attribute *attr;
f792889a 13262
7e314c57
JK
13263 domain_type = die_type (die, cu);
13264
13265 /* The die_type call above may have already set the type for this DIE. */
13266 set_type = get_die_type (die, cu);
13267 if (set_type)
13268 return set_type;
13269
13270 set_type = create_set_type (NULL, domain_type);
13271
13272 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13273 if (attr)
13274 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13275
f792889a 13276 return set_die_type (die, set_type, cu);
72019c9c 13277}
7ca2d3a3 13278
0971de02
TT
13279/* A helper for read_common_block that creates a locexpr baton.
13280 SYM is the symbol which we are marking as computed.
13281 COMMON_DIE is the DIE for the common block.
13282 COMMON_LOC is the location expression attribute for the common
13283 block itself.
13284 MEMBER_LOC is the location expression attribute for the particular
13285 member of the common block that we are processing.
13286 CU is the CU from which the above come. */
13287
13288static void
13289mark_common_block_symbol_computed (struct symbol *sym,
13290 struct die_info *common_die,
13291 struct attribute *common_loc,
13292 struct attribute *member_loc,
13293 struct dwarf2_cu *cu)
13294{
13295 struct objfile *objfile = dwarf2_per_objfile->objfile;
13296 struct dwarf2_locexpr_baton *baton;
13297 gdb_byte *ptr;
13298 unsigned int cu_off;
13299 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13300 LONGEST offset = 0;
13301
13302 gdb_assert (common_loc && member_loc);
13303 gdb_assert (attr_form_is_block (common_loc));
13304 gdb_assert (attr_form_is_block (member_loc)
13305 || attr_form_is_constant (member_loc));
13306
13307 baton = obstack_alloc (&objfile->objfile_obstack,
13308 sizeof (struct dwarf2_locexpr_baton));
13309 baton->per_cu = cu->per_cu;
13310 gdb_assert (baton->per_cu);
13311
13312 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13313
13314 if (attr_form_is_constant (member_loc))
13315 {
13316 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13317 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13318 }
13319 else
13320 baton->size += DW_BLOCK (member_loc)->size;
13321
13322 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13323 baton->data = ptr;
13324
13325 *ptr++ = DW_OP_call4;
13326 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13327 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13328 ptr += 4;
13329
13330 if (attr_form_is_constant (member_loc))
13331 {
13332 *ptr++ = DW_OP_addr;
13333 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13334 ptr += cu->header.addr_size;
13335 }
13336 else
13337 {
13338 /* We have to copy the data here, because DW_OP_call4 will only
13339 use a DW_AT_location attribute. */
13340 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13341 ptr += DW_BLOCK (member_loc)->size;
13342 }
13343
13344 *ptr++ = DW_OP_plus;
13345 gdb_assert (ptr - baton->data == baton->size);
13346
0971de02 13347 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13348 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13349}
13350
4357ac6c
TT
13351/* Create appropriate locally-scoped variables for all the
13352 DW_TAG_common_block entries. Also create a struct common_block
13353 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13354 is used to sepate the common blocks name namespace from regular
13355 variable names. */
c906108c
SS
13356
13357static void
e7c27a73 13358read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13359{
0971de02
TT
13360 struct attribute *attr;
13361
13362 attr = dwarf2_attr (die, DW_AT_location, cu);
13363 if (attr)
13364 {
13365 /* Support the .debug_loc offsets. */
13366 if (attr_form_is_block (attr))
13367 {
13368 /* Ok. */
13369 }
13370 else if (attr_form_is_section_offset (attr))
13371 {
13372 dwarf2_complex_location_expr_complaint ();
13373 attr = NULL;
13374 }
13375 else
13376 {
13377 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13378 "common block member");
13379 attr = NULL;
13380 }
13381 }
13382
639d11d3 13383 if (die->child != NULL)
c906108c 13384 {
4357ac6c
TT
13385 struct objfile *objfile = cu->objfile;
13386 struct die_info *child_die;
13387 size_t n_entries = 0, size;
13388 struct common_block *common_block;
13389 struct symbol *sym;
74ac6d43 13390
4357ac6c
TT
13391 for (child_die = die->child;
13392 child_die && child_die->tag;
13393 child_die = sibling_die (child_die))
13394 ++n_entries;
13395
13396 size = (sizeof (struct common_block)
13397 + (n_entries - 1) * sizeof (struct symbol *));
13398 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13399 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13400 common_block->n_entries = 0;
13401
13402 for (child_die = die->child;
13403 child_die && child_die->tag;
13404 child_die = sibling_die (child_die))
13405 {
13406 /* Create the symbol in the DW_TAG_common_block block in the current
13407 symbol scope. */
e7c27a73 13408 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
13409 if (sym != NULL)
13410 {
13411 struct attribute *member_loc;
13412
13413 common_block->contents[common_block->n_entries++] = sym;
13414
13415 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13416 cu);
13417 if (member_loc)
13418 {
13419 /* GDB has handled this for a long time, but it is
13420 not specified by DWARF. It seems to have been
13421 emitted by gfortran at least as recently as:
13422 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13423 complaint (&symfile_complaints,
13424 _("Variable in common block has "
13425 "DW_AT_data_member_location "
13426 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
13427 child_die->offset.sect_off,
13428 objfile_name (cu->objfile));
0971de02
TT
13429
13430 if (attr_form_is_section_offset (member_loc))
13431 dwarf2_complex_location_expr_complaint ();
13432 else if (attr_form_is_constant (member_loc)
13433 || attr_form_is_block (member_loc))
13434 {
13435 if (attr)
13436 mark_common_block_symbol_computed (sym, die, attr,
13437 member_loc, cu);
13438 }
13439 else
13440 dwarf2_complex_location_expr_complaint ();
13441 }
13442 }
c906108c 13443 }
4357ac6c
TT
13444
13445 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13446 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
13447 }
13448}
13449
0114d602 13450/* Create a type for a C++ namespace. */
d9fa45fe 13451
0114d602
DJ
13452static struct type *
13453read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 13454{
e7c27a73 13455 struct objfile *objfile = cu->objfile;
0114d602 13456 const char *previous_prefix, *name;
9219021c 13457 int is_anonymous;
0114d602
DJ
13458 struct type *type;
13459
13460 /* For extensions, reuse the type of the original namespace. */
13461 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13462 {
13463 struct die_info *ext_die;
13464 struct dwarf2_cu *ext_cu = cu;
9a619af0 13465
0114d602
DJ
13466 ext_die = dwarf2_extension (die, &ext_cu);
13467 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
13468
13469 /* EXT_CU may not be the same as CU.
02142a6c 13470 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
13471 return set_die_type (die, type, cu);
13472 }
9219021c 13473
e142c38c 13474 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
13475
13476 /* Now build the name of the current namespace. */
13477
0114d602
DJ
13478 previous_prefix = determine_prefix (die, cu);
13479 if (previous_prefix[0] != '\0')
13480 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 13481 previous_prefix, name, 0, cu);
0114d602
DJ
13482
13483 /* Create the type. */
13484 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13485 objfile);
abee88f2 13486 TYPE_NAME (type) = name;
0114d602
DJ
13487 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13488
60531b24 13489 return set_die_type (die, type, cu);
0114d602
DJ
13490}
13491
13492/* Read a C++ namespace. */
13493
13494static void
13495read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13496{
13497 struct objfile *objfile = cu->objfile;
0114d602 13498 int is_anonymous;
9219021c 13499
5c4e30ca
DC
13500 /* Add a symbol associated to this if we haven't seen the namespace
13501 before. Also, add a using directive if it's an anonymous
13502 namespace. */
9219021c 13503
f2f0e013 13504 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
13505 {
13506 struct type *type;
13507
0114d602 13508 type = read_type_die (die, cu);
e7c27a73 13509 new_symbol (die, type, cu);
5c4e30ca 13510
e8e80198 13511 namespace_name (die, &is_anonymous, cu);
5c4e30ca 13512 if (is_anonymous)
0114d602
DJ
13513 {
13514 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 13515
c0cc3a76 13516 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12aaed36 13517 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 13518 }
5c4e30ca 13519 }
9219021c 13520
639d11d3 13521 if (die->child != NULL)
d9fa45fe 13522 {
639d11d3 13523 struct die_info *child_die = die->child;
6e70227d 13524
d9fa45fe
DC
13525 while (child_die && child_die->tag)
13526 {
e7c27a73 13527 process_die (child_die, cu);
d9fa45fe
DC
13528 child_die = sibling_die (child_die);
13529 }
13530 }
38d518c9
EZ
13531}
13532
f55ee35c
JK
13533/* Read a Fortran module as type. This DIE can be only a declaration used for
13534 imported module. Still we need that type as local Fortran "use ... only"
13535 declaration imports depend on the created type in determine_prefix. */
13536
13537static struct type *
13538read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13539{
13540 struct objfile *objfile = cu->objfile;
15d034d0 13541 const char *module_name;
f55ee35c
JK
13542 struct type *type;
13543
13544 module_name = dwarf2_name (die, cu);
13545 if (!module_name)
3e43a32a
MS
13546 complaint (&symfile_complaints,
13547 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 13548 die->offset.sect_off);
f55ee35c
JK
13549 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13550
13551 /* determine_prefix uses TYPE_TAG_NAME. */
13552 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13553
13554 return set_die_type (die, type, cu);
13555}
13556
5d7cb8df
JK
13557/* Read a Fortran module. */
13558
13559static void
13560read_module (struct die_info *die, struct dwarf2_cu *cu)
13561{
13562 struct die_info *child_die = die->child;
13563
5d7cb8df
JK
13564 while (child_die && child_die->tag)
13565 {
13566 process_die (child_die, cu);
13567 child_die = sibling_die (child_die);
13568 }
13569}
13570
38d518c9
EZ
13571/* Return the name of the namespace represented by DIE. Set
13572 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13573 namespace. */
13574
13575static const char *
e142c38c 13576namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
13577{
13578 struct die_info *current_die;
13579 const char *name = NULL;
13580
13581 /* Loop through the extensions until we find a name. */
13582
13583 for (current_die = die;
13584 current_die != NULL;
f2f0e013 13585 current_die = dwarf2_extension (die, &cu))
38d518c9 13586 {
e142c38c 13587 name = dwarf2_name (current_die, cu);
38d518c9
EZ
13588 if (name != NULL)
13589 break;
13590 }
13591
13592 /* Is it an anonymous namespace? */
13593
13594 *is_anonymous = (name == NULL);
13595 if (*is_anonymous)
2b1dbab0 13596 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
13597
13598 return name;
d9fa45fe
DC
13599}
13600
c906108c
SS
13601/* Extract all information from a DW_TAG_pointer_type DIE and add to
13602 the user defined type vector. */
13603
f792889a 13604static struct type *
e7c27a73 13605read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13606{
5e2b427d 13607 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 13608 struct comp_unit_head *cu_header = &cu->header;
c906108c 13609 struct type *type;
8b2dbe47
KB
13610 struct attribute *attr_byte_size;
13611 struct attribute *attr_address_class;
13612 int byte_size, addr_class;
7e314c57
JK
13613 struct type *target_type;
13614
13615 target_type = die_type (die, cu);
c906108c 13616
7e314c57
JK
13617 /* The die_type call above may have already set the type for this DIE. */
13618 type = get_die_type (die, cu);
13619 if (type)
13620 return type;
13621
13622 type = lookup_pointer_type (target_type);
8b2dbe47 13623
e142c38c 13624 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
13625 if (attr_byte_size)
13626 byte_size = DW_UNSND (attr_byte_size);
c906108c 13627 else
8b2dbe47
KB
13628 byte_size = cu_header->addr_size;
13629
e142c38c 13630 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
13631 if (attr_address_class)
13632 addr_class = DW_UNSND (attr_address_class);
13633 else
13634 addr_class = DW_ADDR_none;
13635
13636 /* If the pointer size or address class is different than the
13637 default, create a type variant marked as such and set the
13638 length accordingly. */
13639 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 13640 {
5e2b427d 13641 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
13642 {
13643 int type_flags;
13644
849957d9 13645 type_flags = gdbarch_address_class_type_flags
5e2b427d 13646 (gdbarch, byte_size, addr_class);
876cecd0
TT
13647 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
13648 == 0);
8b2dbe47
KB
13649 type = make_type_with_address_space (type, type_flags);
13650 }
13651 else if (TYPE_LENGTH (type) != byte_size)
13652 {
3e43a32a
MS
13653 complaint (&symfile_complaints,
13654 _("invalid pointer size %d"), byte_size);
8b2dbe47 13655 }
6e70227d 13656 else
9a619af0
MS
13657 {
13658 /* Should we also complain about unhandled address classes? */
13659 }
c906108c 13660 }
8b2dbe47
KB
13661
13662 TYPE_LENGTH (type) = byte_size;
f792889a 13663 return set_die_type (die, type, cu);
c906108c
SS
13664}
13665
13666/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
13667 the user defined type vector. */
13668
f792889a 13669static struct type *
e7c27a73 13670read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
13671{
13672 struct type *type;
13673 struct type *to_type;
13674 struct type *domain;
13675
e7c27a73
DJ
13676 to_type = die_type (die, cu);
13677 domain = die_containing_type (die, cu);
0d5de010 13678
7e314c57
JK
13679 /* The calls above may have already set the type for this DIE. */
13680 type = get_die_type (die, cu);
13681 if (type)
13682 return type;
13683
0d5de010
DJ
13684 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
13685 type = lookup_methodptr_type (to_type);
7078baeb
TT
13686 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
13687 {
13688 struct type *new_type = alloc_type (cu->objfile);
13689
13690 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
13691 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
13692 TYPE_VARARGS (to_type));
13693 type = lookup_methodptr_type (new_type);
13694 }
0d5de010
DJ
13695 else
13696 type = lookup_memberptr_type (to_type, domain);
c906108c 13697
f792889a 13698 return set_die_type (die, type, cu);
c906108c
SS
13699}
13700
13701/* Extract all information from a DW_TAG_reference_type DIE and add to
13702 the user defined type vector. */
13703
f792889a 13704static struct type *
e7c27a73 13705read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13706{
e7c27a73 13707 struct comp_unit_head *cu_header = &cu->header;
7e314c57 13708 struct type *type, *target_type;
c906108c
SS
13709 struct attribute *attr;
13710
7e314c57
JK
13711 target_type = die_type (die, cu);
13712
13713 /* The die_type call above may have already set the type for this DIE. */
13714 type = get_die_type (die, cu);
13715 if (type)
13716 return type;
13717
13718 type = lookup_reference_type (target_type);
e142c38c 13719 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13720 if (attr)
13721 {
13722 TYPE_LENGTH (type) = DW_UNSND (attr);
13723 }
13724 else
13725 {
107d2387 13726 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 13727 }
f792889a 13728 return set_die_type (die, type, cu);
c906108c
SS
13729}
13730
f792889a 13731static struct type *
e7c27a73 13732read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13733{
f792889a 13734 struct type *base_type, *cv_type;
c906108c 13735
e7c27a73 13736 base_type = die_type (die, cu);
7e314c57
JK
13737
13738 /* The die_type call above may have already set the type for this DIE. */
13739 cv_type = get_die_type (die, cu);
13740 if (cv_type)
13741 return cv_type;
13742
2f608a3a
KW
13743 /* In case the const qualifier is applied to an array type, the element type
13744 is so qualified, not the array type (section 6.7.3 of C99). */
13745 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
13746 {
13747 struct type *el_type, *inner_array;
13748
13749 base_type = copy_type (base_type);
13750 inner_array = base_type;
13751
13752 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
13753 {
13754 TYPE_TARGET_TYPE (inner_array) =
13755 copy_type (TYPE_TARGET_TYPE (inner_array));
13756 inner_array = TYPE_TARGET_TYPE (inner_array);
13757 }
13758
13759 el_type = TYPE_TARGET_TYPE (inner_array);
13760 TYPE_TARGET_TYPE (inner_array) =
13761 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
13762
13763 return set_die_type (die, base_type, cu);
13764 }
13765
f792889a
DJ
13766 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
13767 return set_die_type (die, cv_type, cu);
c906108c
SS
13768}
13769
f792889a 13770static struct type *
e7c27a73 13771read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13772{
f792889a 13773 struct type *base_type, *cv_type;
c906108c 13774
e7c27a73 13775 base_type = die_type (die, cu);
7e314c57
JK
13776
13777 /* The die_type call above may have already set the type for this DIE. */
13778 cv_type = get_die_type (die, cu);
13779 if (cv_type)
13780 return cv_type;
13781
f792889a
DJ
13782 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
13783 return set_die_type (die, cv_type, cu);
c906108c
SS
13784}
13785
06d66ee9
TT
13786/* Handle DW_TAG_restrict_type. */
13787
13788static struct type *
13789read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
13790{
13791 struct type *base_type, *cv_type;
13792
13793 base_type = die_type (die, cu);
13794
13795 /* The die_type call above may have already set the type for this DIE. */
13796 cv_type = get_die_type (die, cu);
13797 if (cv_type)
13798 return cv_type;
13799
13800 cv_type = make_restrict_type (base_type);
13801 return set_die_type (die, cv_type, cu);
13802}
13803
c906108c
SS
13804/* Extract all information from a DW_TAG_string_type DIE and add to
13805 the user defined type vector. It isn't really a user defined type,
13806 but it behaves like one, with other DIE's using an AT_user_def_type
13807 attribute to reference it. */
13808
f792889a 13809static struct type *
e7c27a73 13810read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13811{
e7c27a73 13812 struct objfile *objfile = cu->objfile;
3b7538c0 13813 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
13814 struct type *type, *range_type, *index_type, *char_type;
13815 struct attribute *attr;
13816 unsigned int length;
13817
e142c38c 13818 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
13819 if (attr)
13820 {
13821 length = DW_UNSND (attr);
13822 }
13823 else
13824 {
0963b4bd 13825 /* Check for the DW_AT_byte_size attribute. */
e142c38c 13826 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
13827 if (attr)
13828 {
13829 length = DW_UNSND (attr);
13830 }
13831 else
13832 {
13833 length = 1;
13834 }
c906108c 13835 }
6ccb9162 13836
46bf5051 13837 index_type = objfile_type (objfile)->builtin_int;
c906108c 13838 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
13839 char_type = language_string_char_type (cu->language_defn, gdbarch);
13840 type = create_string_type (NULL, char_type, range_type);
6ccb9162 13841
f792889a 13842 return set_die_type (die, type, cu);
c906108c
SS
13843}
13844
4d804846
JB
13845/* Assuming that DIE corresponds to a function, returns nonzero
13846 if the function is prototyped. */
13847
13848static int
13849prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
13850{
13851 struct attribute *attr;
13852
13853 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
13854 if (attr && (DW_UNSND (attr) != 0))
13855 return 1;
13856
13857 /* The DWARF standard implies that the DW_AT_prototyped attribute
13858 is only meaninful for C, but the concept also extends to other
13859 languages that allow unprototyped functions (Eg: Objective C).
13860 For all other languages, assume that functions are always
13861 prototyped. */
13862 if (cu->language != language_c
13863 && cu->language != language_objc
13864 && cu->language != language_opencl)
13865 return 1;
13866
13867 /* RealView does not emit DW_AT_prototyped. We can not distinguish
13868 prototyped and unprototyped functions; default to prototyped,
13869 since that is more common in modern code (and RealView warns
13870 about unprototyped functions). */
13871 if (producer_is_realview (cu->producer))
13872 return 1;
13873
13874 return 0;
13875}
13876
c906108c
SS
13877/* Handle DIES due to C code like:
13878
13879 struct foo
c5aa993b
JM
13880 {
13881 int (*funcp)(int a, long l);
13882 int b;
13883 };
c906108c 13884
0963b4bd 13885 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 13886
f792889a 13887static struct type *
e7c27a73 13888read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13889{
bb5ed363 13890 struct objfile *objfile = cu->objfile;
0963b4bd
MS
13891 struct type *type; /* Type that this function returns. */
13892 struct type *ftype; /* Function that returns above type. */
c906108c
SS
13893 struct attribute *attr;
13894
e7c27a73 13895 type = die_type (die, cu);
7e314c57
JK
13896
13897 /* The die_type call above may have already set the type for this DIE. */
13898 ftype = get_die_type (die, cu);
13899 if (ftype)
13900 return ftype;
13901
0c8b41f1 13902 ftype = lookup_function_type (type);
c906108c 13903
4d804846 13904 if (prototyped_function_p (die, cu))
a6c727b2 13905 TYPE_PROTOTYPED (ftype) = 1;
c906108c 13906
c055b101
CV
13907 /* Store the calling convention in the type if it's available in
13908 the subroutine die. Otherwise set the calling convention to
13909 the default value DW_CC_normal. */
13910 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
13911 if (attr)
13912 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
13913 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
13914 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
13915 else
13916 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
13917
13918 /* We need to add the subroutine type to the die immediately so
13919 we don't infinitely recurse when dealing with parameters
0963b4bd 13920 declared as the same subroutine type. */
76c10ea2 13921 set_die_type (die, ftype, cu);
6e70227d 13922
639d11d3 13923 if (die->child != NULL)
c906108c 13924 {
bb5ed363 13925 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 13926 struct die_info *child_die;
8072405b 13927 int nparams, iparams;
c906108c
SS
13928
13929 /* Count the number of parameters.
13930 FIXME: GDB currently ignores vararg functions, but knows about
13931 vararg member functions. */
8072405b 13932 nparams = 0;
639d11d3 13933 child_die = die->child;
c906108c
SS
13934 while (child_die && child_die->tag)
13935 {
13936 if (child_die->tag == DW_TAG_formal_parameter)
13937 nparams++;
13938 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 13939 TYPE_VARARGS (ftype) = 1;
c906108c
SS
13940 child_die = sibling_die (child_die);
13941 }
13942
13943 /* Allocate storage for parameters and fill them in. */
13944 TYPE_NFIELDS (ftype) = nparams;
13945 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 13946 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 13947
8072405b
JK
13948 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
13949 even if we error out during the parameters reading below. */
13950 for (iparams = 0; iparams < nparams; iparams++)
13951 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
13952
13953 iparams = 0;
639d11d3 13954 child_die = die->child;
c906108c
SS
13955 while (child_die && child_die->tag)
13956 {
13957 if (child_die->tag == DW_TAG_formal_parameter)
13958 {
3ce3b1ba
PA
13959 struct type *arg_type;
13960
13961 /* DWARF version 2 has no clean way to discern C++
13962 static and non-static member functions. G++ helps
13963 GDB by marking the first parameter for non-static
13964 member functions (which is the this pointer) as
13965 artificial. We pass this information to
13966 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
13967
13968 DWARF version 3 added DW_AT_object_pointer, which GCC
13969 4.5 does not yet generate. */
e142c38c 13970 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
13971 if (attr)
13972 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
13973 else
418835cc
KS
13974 {
13975 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
13976
13977 /* GCC/43521: In java, the formal parameter
13978 "this" is sometimes not marked with DW_AT_artificial. */
13979 if (cu->language == language_java)
13980 {
13981 const char *name = dwarf2_name (child_die, cu);
9a619af0 13982
418835cc
KS
13983 if (name && !strcmp (name, "this"))
13984 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
13985 }
13986 }
3ce3b1ba
PA
13987 arg_type = die_type (child_die, cu);
13988
13989 /* RealView does not mark THIS as const, which the testsuite
13990 expects. GCC marks THIS as const in method definitions,
13991 but not in the class specifications (GCC PR 43053). */
13992 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
13993 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
13994 {
13995 int is_this = 0;
13996 struct dwarf2_cu *arg_cu = cu;
13997 const char *name = dwarf2_name (child_die, cu);
13998
13999 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14000 if (attr)
14001 {
14002 /* If the compiler emits this, use it. */
14003 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14004 is_this = 1;
14005 }
14006 else if (name && strcmp (name, "this") == 0)
14007 /* Function definitions will have the argument names. */
14008 is_this = 1;
14009 else if (name == NULL && iparams == 0)
14010 /* Declarations may not have the names, so like
14011 elsewhere in GDB, assume an artificial first
14012 argument is "this". */
14013 is_this = 1;
14014
14015 if (is_this)
14016 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14017 arg_type, 0);
14018 }
14019
14020 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14021 iparams++;
14022 }
14023 child_die = sibling_die (child_die);
14024 }
14025 }
14026
76c10ea2 14027 return ftype;
c906108c
SS
14028}
14029
f792889a 14030static struct type *
e7c27a73 14031read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14032{
e7c27a73 14033 struct objfile *objfile = cu->objfile;
0114d602 14034 const char *name = NULL;
3c8e0968 14035 struct type *this_type, *target_type;
c906108c 14036
94af9270 14037 name = dwarf2_full_name (NULL, die, cu);
f792889a 14038 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14039 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14040 TYPE_NAME (this_type) = name;
f792889a 14041 set_die_type (die, this_type, cu);
3c8e0968
DE
14042 target_type = die_type (die, cu);
14043 if (target_type != this_type)
14044 TYPE_TARGET_TYPE (this_type) = target_type;
14045 else
14046 {
14047 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14048 spec and cause infinite loops in GDB. */
14049 complaint (&symfile_complaints,
14050 _("Self-referential DW_TAG_typedef "
14051 "- DIE at 0x%x [in module %s]"),
4262abfb 14052 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14053 TYPE_TARGET_TYPE (this_type) = NULL;
14054 }
f792889a 14055 return this_type;
c906108c
SS
14056}
14057
14058/* Find a representation of a given base type and install
14059 it in the TYPE field of the die. */
14060
f792889a 14061static struct type *
e7c27a73 14062read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14063{
e7c27a73 14064 struct objfile *objfile = cu->objfile;
c906108c
SS
14065 struct type *type;
14066 struct attribute *attr;
14067 int encoding = 0, size = 0;
15d034d0 14068 const char *name;
6ccb9162
UW
14069 enum type_code code = TYPE_CODE_INT;
14070 int type_flags = 0;
14071 struct type *target_type = NULL;
c906108c 14072
e142c38c 14073 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14074 if (attr)
14075 {
14076 encoding = DW_UNSND (attr);
14077 }
e142c38c 14078 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14079 if (attr)
14080 {
14081 size = DW_UNSND (attr);
14082 }
39cbfefa 14083 name = dwarf2_name (die, cu);
6ccb9162 14084 if (!name)
c906108c 14085 {
6ccb9162
UW
14086 complaint (&symfile_complaints,
14087 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14088 }
6ccb9162
UW
14089
14090 switch (encoding)
c906108c 14091 {
6ccb9162
UW
14092 case DW_ATE_address:
14093 /* Turn DW_ATE_address into a void * pointer. */
14094 code = TYPE_CODE_PTR;
14095 type_flags |= TYPE_FLAG_UNSIGNED;
14096 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14097 break;
14098 case DW_ATE_boolean:
14099 code = TYPE_CODE_BOOL;
14100 type_flags |= TYPE_FLAG_UNSIGNED;
14101 break;
14102 case DW_ATE_complex_float:
14103 code = TYPE_CODE_COMPLEX;
14104 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14105 break;
14106 case DW_ATE_decimal_float:
14107 code = TYPE_CODE_DECFLOAT;
14108 break;
14109 case DW_ATE_float:
14110 code = TYPE_CODE_FLT;
14111 break;
14112 case DW_ATE_signed:
14113 break;
14114 case DW_ATE_unsigned:
14115 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14116 if (cu->language == language_fortran
14117 && name
14118 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14119 code = TYPE_CODE_CHAR;
6ccb9162
UW
14120 break;
14121 case DW_ATE_signed_char:
6e70227d 14122 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14123 || cu->language == language_pascal
14124 || cu->language == language_fortran)
6ccb9162
UW
14125 code = TYPE_CODE_CHAR;
14126 break;
14127 case DW_ATE_unsigned_char:
868a0084 14128 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14129 || cu->language == language_pascal
14130 || cu->language == language_fortran)
6ccb9162
UW
14131 code = TYPE_CODE_CHAR;
14132 type_flags |= TYPE_FLAG_UNSIGNED;
14133 break;
75079b2b
TT
14134 case DW_ATE_UTF:
14135 /* We just treat this as an integer and then recognize the
14136 type by name elsewhere. */
14137 break;
14138
6ccb9162
UW
14139 default:
14140 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14141 dwarf_type_encoding_name (encoding));
14142 break;
c906108c 14143 }
6ccb9162 14144
0114d602
DJ
14145 type = init_type (code, size, type_flags, NULL, objfile);
14146 TYPE_NAME (type) = name;
6ccb9162
UW
14147 TYPE_TARGET_TYPE (type) = target_type;
14148
0114d602 14149 if (name && strcmp (name, "char") == 0)
876cecd0 14150 TYPE_NOSIGN (type) = 1;
0114d602 14151
f792889a 14152 return set_die_type (die, type, cu);
c906108c
SS
14153}
14154
a02abb62
JB
14155/* Read the given DW_AT_subrange DIE. */
14156
f792889a 14157static struct type *
a02abb62
JB
14158read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14159{
4c9ad8c2 14160 struct type *base_type, *orig_base_type;
a02abb62
JB
14161 struct type *range_type;
14162 struct attribute *attr;
4fae6e18
JK
14163 LONGEST low, high;
14164 int low_default_is_valid;
15d034d0 14165 const char *name;
43bbcdc2 14166 LONGEST negative_mask;
e77813c8 14167
4c9ad8c2
TT
14168 orig_base_type = die_type (die, cu);
14169 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14170 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14171 creating the range type, but we use the result of check_typedef
14172 when examining properties of the type. */
14173 base_type = check_typedef (orig_base_type);
a02abb62 14174
7e314c57
JK
14175 /* The die_type call above may have already set the type for this DIE. */
14176 range_type = get_die_type (die, cu);
14177 if (range_type)
14178 return range_type;
14179
4fae6e18
JK
14180 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14181 omitting DW_AT_lower_bound. */
14182 switch (cu->language)
6e70227d 14183 {
4fae6e18
JK
14184 case language_c:
14185 case language_cplus:
14186 low = 0;
14187 low_default_is_valid = 1;
14188 break;
14189 case language_fortran:
14190 low = 1;
14191 low_default_is_valid = 1;
14192 break;
14193 case language_d:
14194 case language_java:
14195 case language_objc:
14196 low = 0;
14197 low_default_is_valid = (cu->header.version >= 4);
14198 break;
14199 case language_ada:
14200 case language_m2:
14201 case language_pascal:
a02abb62 14202 low = 1;
4fae6e18
JK
14203 low_default_is_valid = (cu->header.version >= 4);
14204 break;
14205 default:
14206 low = 0;
14207 low_default_is_valid = 0;
14208 break;
a02abb62
JB
14209 }
14210
dd5e6932
DJ
14211 /* FIXME: For variable sized arrays either of these could be
14212 a variable rather than a constant value. We'll allow it,
14213 but we don't know how to handle it. */
e142c38c 14214 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14215 if (attr)
4fae6e18
JK
14216 low = dwarf2_get_attr_constant_value (attr, low);
14217 else if (!low_default_is_valid)
14218 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14219 "- DIE at 0x%x [in module %s]"),
4262abfb 14220 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14221
e142c38c 14222 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 14223 if (attr)
6e70227d 14224 {
7771576e 14225 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
a02abb62
JB
14226 {
14227 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 14228 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
14229 FIXME: GDB does not yet know how to handle dynamic
14230 arrays properly, treat them as arrays with unspecified
14231 length for now.
14232
14233 FIXME: jimb/2003-09-22: GDB does not really know
14234 how to handle arrays of unspecified length
14235 either; we just represent them as zero-length
14236 arrays. Choose an appropriate upper bound given
14237 the lower bound we've computed above. */
14238 high = low - 1;
14239 }
14240 else
14241 high = dwarf2_get_attr_constant_value (attr, 1);
14242 }
e77813c8
PM
14243 else
14244 {
14245 attr = dwarf2_attr (die, DW_AT_count, cu);
14246 if (attr)
14247 {
14248 int count = dwarf2_get_attr_constant_value (attr, 1);
14249 high = low + count - 1;
14250 }
c2ff108b
JK
14251 else
14252 {
14253 /* Unspecified array length. */
14254 high = low - 1;
14255 }
e77813c8
PM
14256 }
14257
14258 /* Dwarf-2 specifications explicitly allows to create subrange types
14259 without specifying a base type.
14260 In that case, the base type must be set to the type of
14261 the lower bound, upper bound or count, in that order, if any of these
14262 three attributes references an object that has a type.
14263 If no base type is found, the Dwarf-2 specifications say that
14264 a signed integer type of size equal to the size of an address should
14265 be used.
14266 For the following C code: `extern char gdb_int [];'
14267 GCC produces an empty range DIE.
14268 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 14269 high bound or count are not yet handled by this code. */
e77813c8
PM
14270 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14271 {
14272 struct objfile *objfile = cu->objfile;
14273 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14274 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14275 struct type *int_type = objfile_type (objfile)->builtin_int;
14276
14277 /* Test "int", "long int", and "long long int" objfile types,
14278 and select the first one having a size above or equal to the
14279 architecture address size. */
14280 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14281 base_type = int_type;
14282 else
14283 {
14284 int_type = objfile_type (objfile)->builtin_long;
14285 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14286 base_type = int_type;
14287 else
14288 {
14289 int_type = objfile_type (objfile)->builtin_long_long;
14290 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14291 base_type = int_type;
14292 }
14293 }
14294 }
a02abb62 14295
6e70227d 14296 negative_mask =
43bbcdc2
PH
14297 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14298 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
14299 low |= negative_mask;
14300 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
14301 high |= negative_mask;
14302
4c9ad8c2 14303 range_type = create_range_type (NULL, orig_base_type, low, high);
a02abb62 14304
bbb0eef6
JK
14305 /* Mark arrays with dynamic length at least as an array of unspecified
14306 length. GDB could check the boundary but before it gets implemented at
14307 least allow accessing the array elements. */
d48323d8 14308 if (attr && attr_form_is_block (attr))
bbb0eef6
JK
14309 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14310
c2ff108b
JK
14311 /* Ada expects an empty array on no boundary attributes. */
14312 if (attr == NULL && cu->language != language_ada)
14313 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14314
39cbfefa
DJ
14315 name = dwarf2_name (die, cu);
14316 if (name)
14317 TYPE_NAME (range_type) = name;
6e70227d 14318
e142c38c 14319 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
14320 if (attr)
14321 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14322
7e314c57
JK
14323 set_die_type (die, range_type, cu);
14324
14325 /* set_die_type should be already done. */
b4ba55a1
JB
14326 set_descriptive_type (range_type, die, cu);
14327
7e314c57 14328 return range_type;
a02abb62 14329}
6e70227d 14330
f792889a 14331static struct type *
81a17f79
JB
14332read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14333{
14334 struct type *type;
81a17f79 14335
81a17f79
JB
14336 /* For now, we only support the C meaning of an unspecified type: void. */
14337
0114d602
DJ
14338 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14339 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 14340
f792889a 14341 return set_die_type (die, type, cu);
81a17f79 14342}
a02abb62 14343
639d11d3
DC
14344/* Read a single die and all its descendents. Set the die's sibling
14345 field to NULL; set other fields in the die correctly, and set all
14346 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14347 location of the info_ptr after reading all of those dies. PARENT
14348 is the parent of the die in question. */
14349
14350static struct die_info *
dee91e82 14351read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
14352 const gdb_byte *info_ptr,
14353 const gdb_byte **new_info_ptr,
dee91e82 14354 struct die_info *parent)
639d11d3
DC
14355{
14356 struct die_info *die;
d521ce57 14357 const gdb_byte *cur_ptr;
639d11d3
DC
14358 int has_children;
14359
bf6af496 14360 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
14361 if (die == NULL)
14362 {
14363 *new_info_ptr = cur_ptr;
14364 return NULL;
14365 }
93311388 14366 store_in_ref_table (die, reader->cu);
639d11d3
DC
14367
14368 if (has_children)
bf6af496 14369 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
14370 else
14371 {
14372 die->child = NULL;
14373 *new_info_ptr = cur_ptr;
14374 }
14375
14376 die->sibling = NULL;
14377 die->parent = parent;
14378 return die;
14379}
14380
14381/* Read a die, all of its descendents, and all of its siblings; set
14382 all of the fields of all of the dies correctly. Arguments are as
14383 in read_die_and_children. */
14384
14385static struct die_info *
bf6af496 14386read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
14387 const gdb_byte *info_ptr,
14388 const gdb_byte **new_info_ptr,
bf6af496 14389 struct die_info *parent)
639d11d3
DC
14390{
14391 struct die_info *first_die, *last_sibling;
d521ce57 14392 const gdb_byte *cur_ptr;
639d11d3 14393
c906108c 14394 cur_ptr = info_ptr;
639d11d3
DC
14395 first_die = last_sibling = NULL;
14396
14397 while (1)
c906108c 14398 {
639d11d3 14399 struct die_info *die
dee91e82 14400 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 14401
1d325ec1 14402 if (die == NULL)
c906108c 14403 {
639d11d3
DC
14404 *new_info_ptr = cur_ptr;
14405 return first_die;
c906108c 14406 }
1d325ec1
DJ
14407
14408 if (!first_die)
14409 first_die = die;
c906108c 14410 else
1d325ec1
DJ
14411 last_sibling->sibling = die;
14412
14413 last_sibling = die;
c906108c 14414 }
c906108c
SS
14415}
14416
bf6af496
DE
14417/* Read a die, all of its descendents, and all of its siblings; set
14418 all of the fields of all of the dies correctly. Arguments are as
14419 in read_die_and_children.
14420 This the main entry point for reading a DIE and all its children. */
14421
14422static struct die_info *
14423read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
14424 const gdb_byte *info_ptr,
14425 const gdb_byte **new_info_ptr,
bf6af496
DE
14426 struct die_info *parent)
14427{
14428 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14429 new_info_ptr, parent);
14430
14431 if (dwarf2_die_debug)
14432 {
14433 fprintf_unfiltered (gdb_stdlog,
14434 "Read die from %s@0x%x of %s:\n",
a32a8923 14435 get_section_name (reader->die_section),
bf6af496
DE
14436 (unsigned) (info_ptr - reader->die_section->buffer),
14437 bfd_get_filename (reader->abfd));
14438 dump_die (die, dwarf2_die_debug);
14439 }
14440
14441 return die;
14442}
14443
3019eac3
DE
14444/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14445 attributes.
14446 The caller is responsible for filling in the extra attributes
14447 and updating (*DIEP)->num_attrs.
14448 Set DIEP to point to a newly allocated die with its information,
14449 except for its child, sibling, and parent fields.
14450 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 14451
d521ce57 14452static const gdb_byte *
3019eac3 14453read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 14454 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 14455 int *has_children, int num_extra_attrs)
93311388 14456{
b64f50a1
JK
14457 unsigned int abbrev_number, bytes_read, i;
14458 sect_offset offset;
93311388
DE
14459 struct abbrev_info *abbrev;
14460 struct die_info *die;
14461 struct dwarf2_cu *cu = reader->cu;
14462 bfd *abfd = reader->abfd;
14463
b64f50a1 14464 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
14465 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14466 info_ptr += bytes_read;
14467 if (!abbrev_number)
14468 {
14469 *diep = NULL;
14470 *has_children = 0;
14471 return info_ptr;
14472 }
14473
433df2d4 14474 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 14475 if (!abbrev)
348e048f
DE
14476 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14477 abbrev_number,
14478 bfd_get_filename (abfd));
14479
3019eac3 14480 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
14481 die->offset = offset;
14482 die->tag = abbrev->tag;
14483 die->abbrev = abbrev_number;
14484
3019eac3
DE
14485 /* Make the result usable.
14486 The caller needs to update num_attrs after adding the extra
14487 attributes. */
93311388
DE
14488 die->num_attrs = abbrev->num_attrs;
14489
14490 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
14491 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14492 info_ptr);
93311388
DE
14493
14494 *diep = die;
14495 *has_children = abbrev->has_children;
14496 return info_ptr;
14497}
14498
3019eac3
DE
14499/* Read a die and all its attributes.
14500 Set DIEP to point to a newly allocated die with its information,
14501 except for its child, sibling, and parent fields.
14502 Set HAS_CHILDREN to tell whether the die has children or not. */
14503
d521ce57 14504static const gdb_byte *
3019eac3 14505read_full_die (const struct die_reader_specs *reader,
d521ce57 14506 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
14507 int *has_children)
14508{
d521ce57 14509 const gdb_byte *result;
bf6af496
DE
14510
14511 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14512
14513 if (dwarf2_die_debug)
14514 {
14515 fprintf_unfiltered (gdb_stdlog,
14516 "Read die from %s@0x%x of %s:\n",
a32a8923 14517 get_section_name (reader->die_section),
bf6af496
DE
14518 (unsigned) (info_ptr - reader->die_section->buffer),
14519 bfd_get_filename (reader->abfd));
14520 dump_die (*diep, dwarf2_die_debug);
14521 }
14522
14523 return result;
3019eac3 14524}
433df2d4
DE
14525\f
14526/* Abbreviation tables.
3019eac3 14527
433df2d4 14528 In DWARF version 2, the description of the debugging information is
c906108c
SS
14529 stored in a separate .debug_abbrev section. Before we read any
14530 dies from a section we read in all abbreviations and install them
433df2d4
DE
14531 in a hash table. */
14532
14533/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14534
14535static struct abbrev_info *
14536abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14537{
14538 struct abbrev_info *abbrev;
14539
14540 abbrev = (struct abbrev_info *)
14541 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14542 memset (abbrev, 0, sizeof (struct abbrev_info));
14543 return abbrev;
14544}
14545
14546/* Add an abbreviation to the table. */
c906108c
SS
14547
14548static void
433df2d4
DE
14549abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
14550 unsigned int abbrev_number,
14551 struct abbrev_info *abbrev)
14552{
14553 unsigned int hash_number;
14554
14555 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14556 abbrev->next = abbrev_table->abbrevs[hash_number];
14557 abbrev_table->abbrevs[hash_number] = abbrev;
14558}
dee91e82 14559
433df2d4
DE
14560/* Look up an abbrev in the table.
14561 Returns NULL if the abbrev is not found. */
14562
14563static struct abbrev_info *
14564abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
14565 unsigned int abbrev_number)
c906108c 14566{
433df2d4
DE
14567 unsigned int hash_number;
14568 struct abbrev_info *abbrev;
14569
14570 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14571 abbrev = abbrev_table->abbrevs[hash_number];
14572
14573 while (abbrev)
14574 {
14575 if (abbrev->number == abbrev_number)
14576 return abbrev;
14577 abbrev = abbrev->next;
14578 }
14579 return NULL;
14580}
14581
14582/* Read in an abbrev table. */
14583
14584static struct abbrev_table *
14585abbrev_table_read_table (struct dwarf2_section_info *section,
14586 sect_offset offset)
14587{
14588 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 14589 bfd *abfd = get_section_bfd_owner (section);
433df2d4 14590 struct abbrev_table *abbrev_table;
d521ce57 14591 const gdb_byte *abbrev_ptr;
c906108c
SS
14592 struct abbrev_info *cur_abbrev;
14593 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 14594 unsigned int abbrev_form;
f3dd6933
DJ
14595 struct attr_abbrev *cur_attrs;
14596 unsigned int allocated_attrs;
c906108c 14597
433df2d4 14598 abbrev_table = XMALLOC (struct abbrev_table);
f4dc4d17 14599 abbrev_table->offset = offset;
433df2d4
DE
14600 obstack_init (&abbrev_table->abbrev_obstack);
14601 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
14602 (ABBREV_HASH_SIZE
14603 * sizeof (struct abbrev_info *)));
14604 memset (abbrev_table->abbrevs, 0,
14605 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 14606
433df2d4
DE
14607 dwarf2_read_section (objfile, section);
14608 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
14609 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14610 abbrev_ptr += bytes_read;
14611
f3dd6933
DJ
14612 allocated_attrs = ATTR_ALLOC_CHUNK;
14613 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 14614
0963b4bd 14615 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
14616 while (abbrev_number)
14617 {
433df2d4 14618 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
14619
14620 /* read in abbrev header */
14621 cur_abbrev->number = abbrev_number;
14622 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14623 abbrev_ptr += bytes_read;
14624 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
14625 abbrev_ptr += 1;
14626
14627 /* now read in declarations */
14628 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14629 abbrev_ptr += bytes_read;
14630 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14631 abbrev_ptr += bytes_read;
14632 while (abbrev_name)
14633 {
f3dd6933 14634 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 14635 {
f3dd6933
DJ
14636 allocated_attrs += ATTR_ALLOC_CHUNK;
14637 cur_attrs
14638 = xrealloc (cur_attrs, (allocated_attrs
14639 * sizeof (struct attr_abbrev)));
c906108c 14640 }
ae038cb0 14641
f3dd6933
DJ
14642 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
14643 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
14644 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14645 abbrev_ptr += bytes_read;
14646 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14647 abbrev_ptr += bytes_read;
14648 }
14649
433df2d4 14650 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
14651 (cur_abbrev->num_attrs
14652 * sizeof (struct attr_abbrev)));
14653 memcpy (cur_abbrev->attrs, cur_attrs,
14654 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
14655
433df2d4 14656 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
14657
14658 /* Get next abbreviation.
14659 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
14660 always properly terminated with an abbrev number of 0.
14661 Exit loop if we encounter an abbreviation which we have
14662 already read (which means we are about to read the abbreviations
14663 for the next compile unit) or if the end of the abbreviation
14664 table is reached. */
433df2d4 14665 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
14666 break;
14667 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14668 abbrev_ptr += bytes_read;
433df2d4 14669 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
14670 break;
14671 }
f3dd6933
DJ
14672
14673 xfree (cur_attrs);
433df2d4 14674 return abbrev_table;
c906108c
SS
14675}
14676
433df2d4 14677/* Free the resources held by ABBREV_TABLE. */
c906108c 14678
c906108c 14679static void
433df2d4 14680abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 14681{
433df2d4
DE
14682 obstack_free (&abbrev_table->abbrev_obstack, NULL);
14683 xfree (abbrev_table);
c906108c
SS
14684}
14685
f4dc4d17
DE
14686/* Same as abbrev_table_free but as a cleanup.
14687 We pass in a pointer to the pointer to the table so that we can
14688 set the pointer to NULL when we're done. It also simplifies
14689 build_type_unit_groups. */
14690
14691static void
14692abbrev_table_free_cleanup (void *table_ptr)
14693{
14694 struct abbrev_table **abbrev_table_ptr = table_ptr;
14695
14696 if (*abbrev_table_ptr != NULL)
14697 abbrev_table_free (*abbrev_table_ptr);
14698 *abbrev_table_ptr = NULL;
14699}
14700
433df2d4
DE
14701/* Read the abbrev table for CU from ABBREV_SECTION. */
14702
14703static void
14704dwarf2_read_abbrevs (struct dwarf2_cu *cu,
14705 struct dwarf2_section_info *abbrev_section)
c906108c 14706{
433df2d4
DE
14707 cu->abbrev_table =
14708 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
14709}
c906108c 14710
433df2d4 14711/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 14712
433df2d4
DE
14713static void
14714dwarf2_free_abbrev_table (void *ptr_to_cu)
14715{
14716 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 14717
a2ce51a0
DE
14718 if (cu->abbrev_table != NULL)
14719 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
14720 /* Set this to NULL so that we SEGV if we try to read it later,
14721 and also because free_comp_unit verifies this is NULL. */
14722 cu->abbrev_table = NULL;
14723}
14724\f
72bf9492
DJ
14725/* Returns nonzero if TAG represents a type that we might generate a partial
14726 symbol for. */
14727
14728static int
14729is_type_tag_for_partial (int tag)
14730{
14731 switch (tag)
14732 {
14733#if 0
14734 /* Some types that would be reasonable to generate partial symbols for,
14735 that we don't at present. */
14736 case DW_TAG_array_type:
14737 case DW_TAG_file_type:
14738 case DW_TAG_ptr_to_member_type:
14739 case DW_TAG_set_type:
14740 case DW_TAG_string_type:
14741 case DW_TAG_subroutine_type:
14742#endif
14743 case DW_TAG_base_type:
14744 case DW_TAG_class_type:
680b30c7 14745 case DW_TAG_interface_type:
72bf9492
DJ
14746 case DW_TAG_enumeration_type:
14747 case DW_TAG_structure_type:
14748 case DW_TAG_subrange_type:
14749 case DW_TAG_typedef:
14750 case DW_TAG_union_type:
14751 return 1;
14752 default:
14753 return 0;
14754 }
14755}
14756
14757/* Load all DIEs that are interesting for partial symbols into memory. */
14758
14759static struct partial_die_info *
dee91e82 14760load_partial_dies (const struct die_reader_specs *reader,
d521ce57 14761 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 14762{
dee91e82 14763 struct dwarf2_cu *cu = reader->cu;
bb5ed363 14764 struct objfile *objfile = cu->objfile;
72bf9492
DJ
14765 struct partial_die_info *part_die;
14766 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
14767 struct abbrev_info *abbrev;
14768 unsigned int bytes_read;
5afb4e99 14769 unsigned int load_all = 0;
72bf9492
DJ
14770 int nesting_level = 1;
14771
14772 parent_die = NULL;
14773 last_die = NULL;
14774
7adf1e79
DE
14775 gdb_assert (cu->per_cu != NULL);
14776 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
14777 load_all = 1;
14778
72bf9492
DJ
14779 cu->partial_dies
14780 = htab_create_alloc_ex (cu->header.length / 12,
14781 partial_die_hash,
14782 partial_die_eq,
14783 NULL,
14784 &cu->comp_unit_obstack,
14785 hashtab_obstack_allocate,
14786 dummy_obstack_deallocate);
14787
14788 part_die = obstack_alloc (&cu->comp_unit_obstack,
14789 sizeof (struct partial_die_info));
14790
14791 while (1)
14792 {
14793 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
14794
14795 /* A NULL abbrev means the end of a series of children. */
14796 if (abbrev == NULL)
14797 {
14798 if (--nesting_level == 0)
14799 {
14800 /* PART_DIE was probably the last thing allocated on the
14801 comp_unit_obstack, so we could call obstack_free
14802 here. We don't do that because the waste is small,
14803 and will be cleaned up when we're done with this
14804 compilation unit. This way, we're also more robust
14805 against other users of the comp_unit_obstack. */
14806 return first_die;
14807 }
14808 info_ptr += bytes_read;
14809 last_die = parent_die;
14810 parent_die = parent_die->die_parent;
14811 continue;
14812 }
14813
98bfdba5
PA
14814 /* Check for template arguments. We never save these; if
14815 they're seen, we just mark the parent, and go on our way. */
14816 if (parent_die != NULL
14817 && cu->language == language_cplus
14818 && (abbrev->tag == DW_TAG_template_type_param
14819 || abbrev->tag == DW_TAG_template_value_param))
14820 {
14821 parent_die->has_template_arguments = 1;
14822
14823 if (!load_all)
14824 {
14825 /* We don't need a partial DIE for the template argument. */
dee91e82 14826 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
14827 continue;
14828 }
14829 }
14830
0d99eb77 14831 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
14832 Skip their other children. */
14833 if (!load_all
14834 && cu->language == language_cplus
14835 && parent_die != NULL
14836 && parent_die->tag == DW_TAG_subprogram)
14837 {
dee91e82 14838 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
14839 continue;
14840 }
14841
5afb4e99
DJ
14842 /* Check whether this DIE is interesting enough to save. Normally
14843 we would not be interested in members here, but there may be
14844 later variables referencing them via DW_AT_specification (for
14845 static members). */
14846 if (!load_all
14847 && !is_type_tag_for_partial (abbrev->tag)
72929c62 14848 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
14849 && abbrev->tag != DW_TAG_enumerator
14850 && abbrev->tag != DW_TAG_subprogram
bc30ff58 14851 && abbrev->tag != DW_TAG_lexical_block
72bf9492 14852 && abbrev->tag != DW_TAG_variable
5afb4e99 14853 && abbrev->tag != DW_TAG_namespace
f55ee35c 14854 && abbrev->tag != DW_TAG_module
95554aad
TT
14855 && abbrev->tag != DW_TAG_member
14856 && abbrev->tag != DW_TAG_imported_unit)
72bf9492
DJ
14857 {
14858 /* Otherwise we skip to the next sibling, if any. */
dee91e82 14859 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
14860 continue;
14861 }
14862
dee91e82
DE
14863 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
14864 info_ptr);
72bf9492
DJ
14865
14866 /* This two-pass algorithm for processing partial symbols has a
14867 high cost in cache pressure. Thus, handle some simple cases
14868 here which cover the majority of C partial symbols. DIEs
14869 which neither have specification tags in them, nor could have
14870 specification tags elsewhere pointing at them, can simply be
14871 processed and discarded.
14872
14873 This segment is also optional; scan_partial_symbols and
14874 add_partial_symbol will handle these DIEs if we chain
14875 them in normally. When compilers which do not emit large
14876 quantities of duplicate debug information are more common,
14877 this code can probably be removed. */
14878
14879 /* Any complete simple types at the top level (pretty much all
14880 of them, for a language without namespaces), can be processed
14881 directly. */
14882 if (parent_die == NULL
14883 && part_die->has_specification == 0
14884 && part_die->is_declaration == 0
d8228535 14885 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
14886 || part_die->tag == DW_TAG_base_type
14887 || part_die->tag == DW_TAG_subrange_type))
14888 {
14889 if (building_psymtab && part_die->name != NULL)
04a679b8 14890 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 14891 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
14892 &objfile->static_psymbols,
14893 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 14894 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
14895 continue;
14896 }
14897
d8228535
JK
14898 /* The exception for DW_TAG_typedef with has_children above is
14899 a workaround of GCC PR debug/47510. In the case of this complaint
14900 type_name_no_tag_or_error will error on such types later.
14901
14902 GDB skipped children of DW_TAG_typedef by the shortcut above and then
14903 it could not find the child DIEs referenced later, this is checked
14904 above. In correct DWARF DW_TAG_typedef should have no children. */
14905
14906 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
14907 complaint (&symfile_complaints,
14908 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
14909 "- DIE at 0x%x [in module %s]"),
4262abfb 14910 part_die->offset.sect_off, objfile_name (objfile));
d8228535 14911
72bf9492
DJ
14912 /* If we're at the second level, and we're an enumerator, and
14913 our parent has no specification (meaning possibly lives in a
14914 namespace elsewhere), then we can add the partial symbol now
14915 instead of queueing it. */
14916 if (part_die->tag == DW_TAG_enumerator
14917 && parent_die != NULL
14918 && parent_die->die_parent == NULL
14919 && parent_die->tag == DW_TAG_enumeration_type
14920 && parent_die->has_specification == 0)
14921 {
14922 if (part_die->name == NULL)
3e43a32a
MS
14923 complaint (&symfile_complaints,
14924 _("malformed enumerator DIE ignored"));
72bf9492 14925 else if (building_psymtab)
04a679b8 14926 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 14927 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
14928 (cu->language == language_cplus
14929 || cu->language == language_java)
bb5ed363
DE
14930 ? &objfile->global_psymbols
14931 : &objfile->static_psymbols,
14932 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 14933
dee91e82 14934 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
14935 continue;
14936 }
14937
14938 /* We'll save this DIE so link it in. */
14939 part_die->die_parent = parent_die;
14940 part_die->die_sibling = NULL;
14941 part_die->die_child = NULL;
14942
14943 if (last_die && last_die == parent_die)
14944 last_die->die_child = part_die;
14945 else if (last_die)
14946 last_die->die_sibling = part_die;
14947
14948 last_die = part_die;
14949
14950 if (first_die == NULL)
14951 first_die = part_die;
14952
14953 /* Maybe add the DIE to the hash table. Not all DIEs that we
14954 find interesting need to be in the hash table, because we
14955 also have the parent/sibling/child chains; only those that we
14956 might refer to by offset later during partial symbol reading.
14957
14958 For now this means things that might have be the target of a
14959 DW_AT_specification, DW_AT_abstract_origin, or
14960 DW_AT_extension. DW_AT_extension will refer only to
14961 namespaces; DW_AT_abstract_origin refers to functions (and
14962 many things under the function DIE, but we do not recurse
14963 into function DIEs during partial symbol reading) and
14964 possibly variables as well; DW_AT_specification refers to
14965 declarations. Declarations ought to have the DW_AT_declaration
14966 flag. It happens that GCC forgets to put it in sometimes, but
14967 only for functions, not for types.
14968
14969 Adding more things than necessary to the hash table is harmless
14970 except for the performance cost. Adding too few will result in
5afb4e99
DJ
14971 wasted time in find_partial_die, when we reread the compilation
14972 unit with load_all_dies set. */
72bf9492 14973
5afb4e99 14974 if (load_all
72929c62 14975 || abbrev->tag == DW_TAG_constant
5afb4e99 14976 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
14977 || abbrev->tag == DW_TAG_variable
14978 || abbrev->tag == DW_TAG_namespace
14979 || part_die->is_declaration)
14980 {
14981 void **slot;
14982
14983 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 14984 part_die->offset.sect_off, INSERT);
72bf9492
DJ
14985 *slot = part_die;
14986 }
14987
14988 part_die = obstack_alloc (&cu->comp_unit_obstack,
14989 sizeof (struct partial_die_info));
14990
14991 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 14992 we have no reason to follow the children of structures; for other
98bfdba5
PA
14993 languages we have to, so that we can get at method physnames
14994 to infer fully qualified class names, for DW_AT_specification,
14995 and for C++ template arguments. For C++, we also look one level
14996 inside functions to find template arguments (if the name of the
14997 function does not already contain the template arguments).
bc30ff58
JB
14998
14999 For Ada, we need to scan the children of subprograms and lexical
15000 blocks as well because Ada allows the definition of nested
15001 entities that could be interesting for the debugger, such as
15002 nested subprograms for instance. */
72bf9492 15003 if (last_die->has_children
5afb4e99
DJ
15004 && (load_all
15005 || last_die->tag == DW_TAG_namespace
f55ee35c 15006 || last_die->tag == DW_TAG_module
72bf9492 15007 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15008 || (cu->language == language_cplus
15009 && last_die->tag == DW_TAG_subprogram
15010 && (last_die->name == NULL
15011 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15012 || (cu->language != language_c
15013 && (last_die->tag == DW_TAG_class_type
680b30c7 15014 || last_die->tag == DW_TAG_interface_type
72bf9492 15015 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15016 || last_die->tag == DW_TAG_union_type))
15017 || (cu->language == language_ada
15018 && (last_die->tag == DW_TAG_subprogram
15019 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15020 {
15021 nesting_level++;
15022 parent_die = last_die;
15023 continue;
15024 }
15025
15026 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15027 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15028
15029 /* Back to the top, do it again. */
15030 }
15031}
15032
c906108c
SS
15033/* Read a minimal amount of information into the minimal die structure. */
15034
d521ce57 15035static const gdb_byte *
dee91e82
DE
15036read_partial_die (const struct die_reader_specs *reader,
15037 struct partial_die_info *part_die,
15038 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15039 const gdb_byte *info_ptr)
c906108c 15040{
dee91e82 15041 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15042 struct objfile *objfile = cu->objfile;
d521ce57 15043 const gdb_byte *buffer = reader->buffer;
fa238c03 15044 unsigned int i;
c906108c 15045 struct attribute attr;
c5aa993b 15046 int has_low_pc_attr = 0;
c906108c 15047 int has_high_pc_attr = 0;
91da1414 15048 int high_pc_relative = 0;
c906108c 15049
72bf9492 15050 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15051
b64f50a1 15052 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15053
15054 info_ptr += abbrev_len;
15055
15056 if (abbrev == NULL)
15057 return info_ptr;
15058
c906108c
SS
15059 part_die->tag = abbrev->tag;
15060 part_die->has_children = abbrev->has_children;
c906108c
SS
15061
15062 for (i = 0; i < abbrev->num_attrs; ++i)
15063 {
dee91e82 15064 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15065
15066 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15067 partial symbol table. */
c906108c
SS
15068 switch (attr.name)
15069 {
15070 case DW_AT_name:
71c25dea
TT
15071 switch (part_die->tag)
15072 {
15073 case DW_TAG_compile_unit:
95554aad 15074 case DW_TAG_partial_unit:
348e048f 15075 case DW_TAG_type_unit:
71c25dea
TT
15076 /* Compilation units have a DW_AT_name that is a filename, not
15077 a source language identifier. */
15078 case DW_TAG_enumeration_type:
15079 case DW_TAG_enumerator:
15080 /* These tags always have simple identifiers already; no need
15081 to canonicalize them. */
15082 part_die->name = DW_STRING (&attr);
15083 break;
15084 default:
15085 part_die->name
15086 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
bb5ed363 15087 &objfile->objfile_obstack);
71c25dea
TT
15088 break;
15089 }
c906108c 15090 break;
31ef98ae 15091 case DW_AT_linkage_name:
c906108c 15092 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15093 /* Note that both forms of linkage name might appear. We
15094 assume they will be the same, and we only store the last
15095 one we see. */
94af9270
KS
15096 if (cu->language == language_ada)
15097 part_die->name = DW_STRING (&attr);
abc72ce4 15098 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15099 break;
15100 case DW_AT_low_pc:
15101 has_low_pc_attr = 1;
15102 part_die->lowpc = DW_ADDR (&attr);
15103 break;
15104 case DW_AT_high_pc:
15105 has_high_pc_attr = 1;
3019eac3
DE
15106 if (attr.form == DW_FORM_addr
15107 || attr.form == DW_FORM_GNU_addr_index)
91da1414
MW
15108 part_die->highpc = DW_ADDR (&attr);
15109 else
15110 {
15111 high_pc_relative = 1;
15112 part_die->highpc = DW_UNSND (&attr);
15113 }
c906108c
SS
15114 break;
15115 case DW_AT_location:
0963b4bd 15116 /* Support the .debug_loc offsets. */
8e19ed76
PS
15117 if (attr_form_is_block (&attr))
15118 {
95554aad 15119 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15120 }
3690dd37 15121 else if (attr_form_is_section_offset (&attr))
8e19ed76 15122 {
4d3c2250 15123 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15124 }
15125 else
15126 {
4d3c2250
KB
15127 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15128 "partial symbol information");
8e19ed76 15129 }
c906108c 15130 break;
c906108c
SS
15131 case DW_AT_external:
15132 part_die->is_external = DW_UNSND (&attr);
15133 break;
15134 case DW_AT_declaration:
15135 part_die->is_declaration = DW_UNSND (&attr);
15136 break;
15137 case DW_AT_type:
15138 part_die->has_type = 1;
15139 break;
15140 case DW_AT_abstract_origin:
15141 case DW_AT_specification:
72bf9492
DJ
15142 case DW_AT_extension:
15143 part_die->has_specification = 1;
c764a876 15144 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15145 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15146 || cu->per_cu->is_dwz);
c906108c
SS
15147 break;
15148 case DW_AT_sibling:
15149 /* Ignore absolute siblings, they might point outside of
15150 the current compile unit. */
15151 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15152 complaint (&symfile_complaints,
15153 _("ignoring absolute DW_AT_sibling"));
c906108c 15154 else
b9502d3f
WN
15155 {
15156 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15157 const gdb_byte *sibling_ptr = buffer + off;
15158
15159 if (sibling_ptr < info_ptr)
15160 complaint (&symfile_complaints,
15161 _("DW_AT_sibling points backwards"));
15162 else
15163 part_die->sibling = sibling_ptr;
15164 }
c906108c 15165 break;
fa4028e9
JB
15166 case DW_AT_byte_size:
15167 part_die->has_byte_size = 1;
15168 break;
68511cec
CES
15169 case DW_AT_calling_convention:
15170 /* DWARF doesn't provide a way to identify a program's source-level
15171 entry point. DW_AT_calling_convention attributes are only meant
15172 to describe functions' calling conventions.
15173
15174 However, because it's a necessary piece of information in
15175 Fortran, and because DW_CC_program is the only piece of debugging
15176 information whose definition refers to a 'main program' at all,
15177 several compilers have begun marking Fortran main programs with
15178 DW_CC_program --- even when those functions use the standard
15179 calling conventions.
15180
15181 So until DWARF specifies a way to provide this information and
15182 compilers pick up the new representation, we'll support this
15183 practice. */
15184 if (DW_UNSND (&attr) == DW_CC_program
15185 && cu->language == language_fortran)
01f8c46d
JK
15186 {
15187 set_main_name (part_die->name);
15188
15189 /* As this DIE has a static linkage the name would be difficult
15190 to look up later. */
15191 language_of_main = language_fortran;
15192 }
68511cec 15193 break;
481860b3
GB
15194 case DW_AT_inline:
15195 if (DW_UNSND (&attr) == DW_INL_inlined
15196 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15197 part_die->may_be_inlined = 1;
15198 break;
95554aad
TT
15199
15200 case DW_AT_import:
15201 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15202 {
15203 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15204 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15205 || cu->per_cu->is_dwz);
15206 }
95554aad
TT
15207 break;
15208
c906108c
SS
15209 default:
15210 break;
15211 }
15212 }
15213
91da1414
MW
15214 if (high_pc_relative)
15215 part_die->highpc += part_die->lowpc;
15216
9373cf26
JK
15217 if (has_low_pc_attr && has_high_pc_attr)
15218 {
15219 /* When using the GNU linker, .gnu.linkonce. sections are used to
15220 eliminate duplicate copies of functions and vtables and such.
15221 The linker will arbitrarily choose one and discard the others.
15222 The AT_*_pc values for such functions refer to local labels in
15223 these sections. If the section from that file was discarded, the
15224 labels are not in the output, so the relocs get a value of 0.
15225 If this is a discarded function, mark the pc bounds as invalid,
15226 so that GDB will ignore it. */
15227 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15228 {
bb5ed363 15229 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15230
15231 complaint (&symfile_complaints,
15232 _("DW_AT_low_pc %s is zero "
15233 "for DIE at 0x%x [in module %s]"),
15234 paddress (gdbarch, part_die->lowpc),
4262abfb 15235 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15236 }
15237 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15238 else if (part_die->lowpc >= part_die->highpc)
15239 {
bb5ed363 15240 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15241
15242 complaint (&symfile_complaints,
15243 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15244 "for DIE at 0x%x [in module %s]"),
15245 paddress (gdbarch, part_die->lowpc),
15246 paddress (gdbarch, part_die->highpc),
4262abfb 15247 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15248 }
15249 else
15250 part_die->has_pc_info = 1;
15251 }
85cbf3d3 15252
c906108c
SS
15253 return info_ptr;
15254}
15255
72bf9492
DJ
15256/* Find a cached partial DIE at OFFSET in CU. */
15257
15258static struct partial_die_info *
b64f50a1 15259find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
15260{
15261 struct partial_die_info *lookup_die = NULL;
15262 struct partial_die_info part_die;
15263
15264 part_die.offset = offset;
b64f50a1
JK
15265 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15266 offset.sect_off);
72bf9492 15267
72bf9492
DJ
15268 return lookup_die;
15269}
15270
348e048f
DE
15271/* Find a partial DIE at OFFSET, which may or may not be in CU,
15272 except in the case of .debug_types DIEs which do not reference
15273 outside their CU (they do however referencing other types via
55f1336d 15274 DW_FORM_ref_sig8). */
72bf9492
DJ
15275
15276static struct partial_die_info *
36586728 15277find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 15278{
bb5ed363 15279 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
15280 struct dwarf2_per_cu_data *per_cu = NULL;
15281 struct partial_die_info *pd = NULL;
72bf9492 15282
36586728
TT
15283 if (offset_in_dwz == cu->per_cu->is_dwz
15284 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
15285 {
15286 pd = find_partial_die_in_comp_unit (offset, cu);
15287 if (pd != NULL)
15288 return pd;
0d99eb77
DE
15289 /* We missed recording what we needed.
15290 Load all dies and try again. */
15291 per_cu = cu->per_cu;
5afb4e99 15292 }
0d99eb77
DE
15293 else
15294 {
15295 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 15296 if (cu->per_cu->is_debug_types)
0d99eb77
DE
15297 {
15298 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15299 " external reference to offset 0x%lx [in module %s].\n"),
15300 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15301 bfd_get_filename (objfile->obfd));
15302 }
36586728
TT
15303 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15304 objfile);
72bf9492 15305
0d99eb77
DE
15306 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15307 load_partial_comp_unit (per_cu);
ae038cb0 15308
0d99eb77
DE
15309 per_cu->cu->last_used = 0;
15310 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15311 }
5afb4e99 15312
dee91e82
DE
15313 /* If we didn't find it, and not all dies have been loaded,
15314 load them all and try again. */
15315
5afb4e99
DJ
15316 if (pd == NULL && per_cu->load_all_dies == 0)
15317 {
5afb4e99 15318 per_cu->load_all_dies = 1;
fd820528
DE
15319
15320 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15321 THIS_CU->cu may already be in use. So we can't just free it and
15322 replace its DIEs with the ones we read in. Instead, we leave those
15323 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15324 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15325 set. */
dee91e82 15326 load_partial_comp_unit (per_cu);
5afb4e99
DJ
15327
15328 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15329 }
15330
15331 if (pd == NULL)
15332 internal_error (__FILE__, __LINE__,
3e43a32a
MS
15333 _("could not find partial DIE 0x%x "
15334 "in cache [from module %s]\n"),
b64f50a1 15335 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 15336 return pd;
72bf9492
DJ
15337}
15338
abc72ce4
DE
15339/* See if we can figure out if the class lives in a namespace. We do
15340 this by looking for a member function; its demangled name will
15341 contain namespace info, if there is any. */
15342
15343static void
15344guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15345 struct dwarf2_cu *cu)
15346{
15347 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15348 what template types look like, because the demangler
15349 frequently doesn't give the same name as the debug info. We
15350 could fix this by only using the demangled name to get the
15351 prefix (but see comment in read_structure_type). */
15352
15353 struct partial_die_info *real_pdi;
15354 struct partial_die_info *child_pdi;
15355
15356 /* If this DIE (this DIE's specification, if any) has a parent, then
15357 we should not do this. We'll prepend the parent's fully qualified
15358 name when we create the partial symbol. */
15359
15360 real_pdi = struct_pdi;
15361 while (real_pdi->has_specification)
36586728
TT
15362 real_pdi = find_partial_die (real_pdi->spec_offset,
15363 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
15364
15365 if (real_pdi->die_parent != NULL)
15366 return;
15367
15368 for (child_pdi = struct_pdi->die_child;
15369 child_pdi != NULL;
15370 child_pdi = child_pdi->die_sibling)
15371 {
15372 if (child_pdi->tag == DW_TAG_subprogram
15373 && child_pdi->linkage_name != NULL)
15374 {
15375 char *actual_class_name
15376 = language_class_name_from_physname (cu->language_defn,
15377 child_pdi->linkage_name);
15378 if (actual_class_name != NULL)
15379 {
15380 struct_pdi->name
10f0c4bb
TT
15381 = obstack_copy0 (&cu->objfile->objfile_obstack,
15382 actual_class_name,
15383 strlen (actual_class_name));
abc72ce4
DE
15384 xfree (actual_class_name);
15385 }
15386 break;
15387 }
15388 }
15389}
15390
72bf9492
DJ
15391/* Adjust PART_DIE before generating a symbol for it. This function
15392 may set the is_external flag or change the DIE's name. */
15393
15394static void
15395fixup_partial_die (struct partial_die_info *part_die,
15396 struct dwarf2_cu *cu)
15397{
abc72ce4
DE
15398 /* Once we've fixed up a die, there's no point in doing so again.
15399 This also avoids a memory leak if we were to call
15400 guess_partial_die_structure_name multiple times. */
15401 if (part_die->fixup_called)
15402 return;
15403
72bf9492
DJ
15404 /* If we found a reference attribute and the DIE has no name, try
15405 to find a name in the referred to DIE. */
15406
15407 if (part_die->name == NULL && part_die->has_specification)
15408 {
15409 struct partial_die_info *spec_die;
72bf9492 15410
36586728
TT
15411 spec_die = find_partial_die (part_die->spec_offset,
15412 part_die->spec_is_dwz, cu);
72bf9492 15413
10b3939b 15414 fixup_partial_die (spec_die, cu);
72bf9492
DJ
15415
15416 if (spec_die->name)
15417 {
15418 part_die->name = spec_die->name;
15419
15420 /* Copy DW_AT_external attribute if it is set. */
15421 if (spec_die->is_external)
15422 part_die->is_external = spec_die->is_external;
15423 }
15424 }
15425
15426 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
15427
15428 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 15429 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 15430
abc72ce4
DE
15431 /* If there is no parent die to provide a namespace, and there are
15432 children, see if we can determine the namespace from their linkage
122d1940 15433 name. */
abc72ce4 15434 if (cu->language == language_cplus
8b70b953 15435 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
15436 && part_die->die_parent == NULL
15437 && part_die->has_children
15438 && (part_die->tag == DW_TAG_class_type
15439 || part_die->tag == DW_TAG_structure_type
15440 || part_die->tag == DW_TAG_union_type))
15441 guess_partial_die_structure_name (part_die, cu);
15442
53832f31
TT
15443 /* GCC might emit a nameless struct or union that has a linkage
15444 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15445 if (part_die->name == NULL
96408a79
SA
15446 && (part_die->tag == DW_TAG_class_type
15447 || part_die->tag == DW_TAG_interface_type
15448 || part_die->tag == DW_TAG_structure_type
15449 || part_die->tag == DW_TAG_union_type)
53832f31
TT
15450 && part_die->linkage_name != NULL)
15451 {
15452 char *demangled;
15453
8de20a37 15454 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
15455 if (demangled)
15456 {
96408a79
SA
15457 const char *base;
15458
15459 /* Strip any leading namespaces/classes, keep only the base name.
15460 DW_AT_name for named DIEs does not contain the prefixes. */
15461 base = strrchr (demangled, ':');
15462 if (base && base > demangled && base[-1] == ':')
15463 base++;
15464 else
15465 base = demangled;
15466
10f0c4bb
TT
15467 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
15468 base, strlen (base));
53832f31
TT
15469 xfree (demangled);
15470 }
15471 }
15472
abc72ce4 15473 part_die->fixup_called = 1;
72bf9492
DJ
15474}
15475
a8329558 15476/* Read an attribute value described by an attribute form. */
c906108c 15477
d521ce57 15478static const gdb_byte *
dee91e82
DE
15479read_attribute_value (const struct die_reader_specs *reader,
15480 struct attribute *attr, unsigned form,
d521ce57 15481 const gdb_byte *info_ptr)
c906108c 15482{
dee91e82
DE
15483 struct dwarf2_cu *cu = reader->cu;
15484 bfd *abfd = reader->abfd;
e7c27a73 15485 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
15486 unsigned int bytes_read;
15487 struct dwarf_block *blk;
15488
a8329558
KW
15489 attr->form = form;
15490 switch (form)
c906108c 15491 {
c906108c 15492 case DW_FORM_ref_addr:
ae411497 15493 if (cu->header.version == 2)
4568ecf9 15494 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 15495 else
4568ecf9
DE
15496 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15497 &cu->header, &bytes_read);
ae411497
TT
15498 info_ptr += bytes_read;
15499 break;
36586728
TT
15500 case DW_FORM_GNU_ref_alt:
15501 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15502 info_ptr += bytes_read;
15503 break;
ae411497 15504 case DW_FORM_addr:
e7c27a73 15505 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 15506 info_ptr += bytes_read;
c906108c
SS
15507 break;
15508 case DW_FORM_block2:
7b5a2f43 15509 blk = dwarf_alloc_block (cu);
c906108c
SS
15510 blk->size = read_2_bytes (abfd, info_ptr);
15511 info_ptr += 2;
15512 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15513 info_ptr += blk->size;
15514 DW_BLOCK (attr) = blk;
15515 break;
15516 case DW_FORM_block4:
7b5a2f43 15517 blk = dwarf_alloc_block (cu);
c906108c
SS
15518 blk->size = read_4_bytes (abfd, info_ptr);
15519 info_ptr += 4;
15520 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15521 info_ptr += blk->size;
15522 DW_BLOCK (attr) = blk;
15523 break;
15524 case DW_FORM_data2:
15525 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15526 info_ptr += 2;
15527 break;
15528 case DW_FORM_data4:
15529 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15530 info_ptr += 4;
15531 break;
15532 case DW_FORM_data8:
15533 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15534 info_ptr += 8;
15535 break;
2dc7f7b3
TT
15536 case DW_FORM_sec_offset:
15537 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15538 info_ptr += bytes_read;
15539 break;
c906108c 15540 case DW_FORM_string:
9b1c24c8 15541 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 15542 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
15543 info_ptr += bytes_read;
15544 break;
4bdf3d34 15545 case DW_FORM_strp:
36586728
TT
15546 if (!cu->per_cu->is_dwz)
15547 {
15548 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15549 &bytes_read);
15550 DW_STRING_IS_CANONICAL (attr) = 0;
15551 info_ptr += bytes_read;
15552 break;
15553 }
15554 /* FALLTHROUGH */
15555 case DW_FORM_GNU_strp_alt:
15556 {
15557 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15558 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
15559 &bytes_read);
15560
15561 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
15562 DW_STRING_IS_CANONICAL (attr) = 0;
15563 info_ptr += bytes_read;
15564 }
4bdf3d34 15565 break;
2dc7f7b3 15566 case DW_FORM_exprloc:
c906108c 15567 case DW_FORM_block:
7b5a2f43 15568 blk = dwarf_alloc_block (cu);
c906108c
SS
15569 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15570 info_ptr += bytes_read;
15571 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15572 info_ptr += blk->size;
15573 DW_BLOCK (attr) = blk;
15574 break;
15575 case DW_FORM_block1:
7b5a2f43 15576 blk = dwarf_alloc_block (cu);
c906108c
SS
15577 blk->size = read_1_byte (abfd, info_ptr);
15578 info_ptr += 1;
15579 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15580 info_ptr += blk->size;
15581 DW_BLOCK (attr) = blk;
15582 break;
15583 case DW_FORM_data1:
15584 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15585 info_ptr += 1;
15586 break;
15587 case DW_FORM_flag:
15588 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15589 info_ptr += 1;
15590 break;
2dc7f7b3
TT
15591 case DW_FORM_flag_present:
15592 DW_UNSND (attr) = 1;
15593 break;
c906108c
SS
15594 case DW_FORM_sdata:
15595 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
15596 info_ptr += bytes_read;
15597 break;
15598 case DW_FORM_udata:
15599 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15600 info_ptr += bytes_read;
15601 break;
15602 case DW_FORM_ref1:
4568ecf9
DE
15603 DW_UNSND (attr) = (cu->header.offset.sect_off
15604 + read_1_byte (abfd, info_ptr));
c906108c
SS
15605 info_ptr += 1;
15606 break;
15607 case DW_FORM_ref2:
4568ecf9
DE
15608 DW_UNSND (attr) = (cu->header.offset.sect_off
15609 + read_2_bytes (abfd, info_ptr));
c906108c
SS
15610 info_ptr += 2;
15611 break;
15612 case DW_FORM_ref4:
4568ecf9
DE
15613 DW_UNSND (attr) = (cu->header.offset.sect_off
15614 + read_4_bytes (abfd, info_ptr));
c906108c
SS
15615 info_ptr += 4;
15616 break;
613e1657 15617 case DW_FORM_ref8:
4568ecf9
DE
15618 DW_UNSND (attr) = (cu->header.offset.sect_off
15619 + read_8_bytes (abfd, info_ptr));
613e1657
KB
15620 info_ptr += 8;
15621 break;
55f1336d 15622 case DW_FORM_ref_sig8:
ac9ec31b 15623 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
15624 info_ptr += 8;
15625 break;
c906108c 15626 case DW_FORM_ref_udata:
4568ecf9
DE
15627 DW_UNSND (attr) = (cu->header.offset.sect_off
15628 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
15629 info_ptr += bytes_read;
15630 break;
c906108c 15631 case DW_FORM_indirect:
a8329558
KW
15632 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15633 info_ptr += bytes_read;
dee91e82 15634 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 15635 break;
3019eac3
DE
15636 case DW_FORM_GNU_addr_index:
15637 if (reader->dwo_file == NULL)
15638 {
15639 /* For now flag a hard error.
15640 Later we can turn this into a complaint. */
15641 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15642 dwarf_form_name (form),
15643 bfd_get_filename (abfd));
15644 }
15645 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
15646 info_ptr += bytes_read;
15647 break;
15648 case DW_FORM_GNU_str_index:
15649 if (reader->dwo_file == NULL)
15650 {
15651 /* For now flag a hard error.
15652 Later we can turn this into a complaint if warranted. */
15653 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15654 dwarf_form_name (form),
15655 bfd_get_filename (abfd));
15656 }
15657 {
15658 ULONGEST str_index =
15659 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15660
15661 DW_STRING (attr) = read_str_index (reader, cu, str_index);
15662 DW_STRING_IS_CANONICAL (attr) = 0;
15663 info_ptr += bytes_read;
15664 }
15665 break;
c906108c 15666 default:
8a3fe4f8 15667 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
15668 dwarf_form_name (form),
15669 bfd_get_filename (abfd));
c906108c 15670 }
28e94949 15671
36586728 15672 /* Super hack. */
7771576e 15673 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
15674 attr->form = DW_FORM_GNU_ref_alt;
15675
28e94949
JB
15676 /* We have seen instances where the compiler tried to emit a byte
15677 size attribute of -1 which ended up being encoded as an unsigned
15678 0xffffffff. Although 0xffffffff is technically a valid size value,
15679 an object of this size seems pretty unlikely so we can relatively
15680 safely treat these cases as if the size attribute was invalid and
15681 treat them as zero by default. */
15682 if (attr->name == DW_AT_byte_size
15683 && form == DW_FORM_data4
15684 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
15685 {
15686 complaint
15687 (&symfile_complaints,
43bbcdc2
PH
15688 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
15689 hex_string (DW_UNSND (attr)));
01c66ae6
JB
15690 DW_UNSND (attr) = 0;
15691 }
28e94949 15692
c906108c
SS
15693 return info_ptr;
15694}
15695
a8329558
KW
15696/* Read an attribute described by an abbreviated attribute. */
15697
d521ce57 15698static const gdb_byte *
dee91e82
DE
15699read_attribute (const struct die_reader_specs *reader,
15700 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 15701 const gdb_byte *info_ptr)
a8329558
KW
15702{
15703 attr->name = abbrev->name;
dee91e82 15704 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
15705}
15706
0963b4bd 15707/* Read dwarf information from a buffer. */
c906108c
SS
15708
15709static unsigned int
a1855c1d 15710read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 15711{
fe1b8b76 15712 return bfd_get_8 (abfd, buf);
c906108c
SS
15713}
15714
15715static int
a1855c1d 15716read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 15717{
fe1b8b76 15718 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
15719}
15720
15721static unsigned int
a1855c1d 15722read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 15723{
fe1b8b76 15724 return bfd_get_16 (abfd, buf);
c906108c
SS
15725}
15726
21ae7a4d 15727static int
a1855c1d 15728read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
15729{
15730 return bfd_get_signed_16 (abfd, buf);
15731}
15732
c906108c 15733static unsigned int
a1855c1d 15734read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 15735{
fe1b8b76 15736 return bfd_get_32 (abfd, buf);
c906108c
SS
15737}
15738
21ae7a4d 15739static int
a1855c1d 15740read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
15741{
15742 return bfd_get_signed_32 (abfd, buf);
15743}
15744
93311388 15745static ULONGEST
a1855c1d 15746read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 15747{
fe1b8b76 15748 return bfd_get_64 (abfd, buf);
c906108c
SS
15749}
15750
15751static CORE_ADDR
d521ce57 15752read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 15753 unsigned int *bytes_read)
c906108c 15754{
e7c27a73 15755 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
15756 CORE_ADDR retval = 0;
15757
107d2387 15758 if (cu_header->signed_addr_p)
c906108c 15759 {
107d2387
AC
15760 switch (cu_header->addr_size)
15761 {
15762 case 2:
fe1b8b76 15763 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
15764 break;
15765 case 4:
fe1b8b76 15766 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
15767 break;
15768 case 8:
fe1b8b76 15769 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
15770 break;
15771 default:
8e65ff28 15772 internal_error (__FILE__, __LINE__,
e2e0b3e5 15773 _("read_address: bad switch, signed [in module %s]"),
659b0389 15774 bfd_get_filename (abfd));
107d2387
AC
15775 }
15776 }
15777 else
15778 {
15779 switch (cu_header->addr_size)
15780 {
15781 case 2:
fe1b8b76 15782 retval = bfd_get_16 (abfd, buf);
107d2387
AC
15783 break;
15784 case 4:
fe1b8b76 15785 retval = bfd_get_32 (abfd, buf);
107d2387
AC
15786 break;
15787 case 8:
fe1b8b76 15788 retval = bfd_get_64 (abfd, buf);
107d2387
AC
15789 break;
15790 default:
8e65ff28 15791 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
15792 _("read_address: bad switch, "
15793 "unsigned [in module %s]"),
659b0389 15794 bfd_get_filename (abfd));
107d2387 15795 }
c906108c 15796 }
64367e0a 15797
107d2387
AC
15798 *bytes_read = cu_header->addr_size;
15799 return retval;
c906108c
SS
15800}
15801
f7ef9339 15802/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
15803 specification allows the initial length to take up either 4 bytes
15804 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
15805 bytes describe the length and all offsets will be 8 bytes in length
15806 instead of 4.
15807
f7ef9339
KB
15808 An older, non-standard 64-bit format is also handled by this
15809 function. The older format in question stores the initial length
15810 as an 8-byte quantity without an escape value. Lengths greater
15811 than 2^32 aren't very common which means that the initial 4 bytes
15812 is almost always zero. Since a length value of zero doesn't make
15813 sense for the 32-bit format, this initial zero can be considered to
15814 be an escape value which indicates the presence of the older 64-bit
15815 format. As written, the code can't detect (old format) lengths
917c78fc
MK
15816 greater than 4GB. If it becomes necessary to handle lengths
15817 somewhat larger than 4GB, we could allow other small values (such
15818 as the non-sensical values of 1, 2, and 3) to also be used as
15819 escape values indicating the presence of the old format.
f7ef9339 15820
917c78fc
MK
15821 The value returned via bytes_read should be used to increment the
15822 relevant pointer after calling read_initial_length().
c764a876 15823
613e1657
KB
15824 [ Note: read_initial_length() and read_offset() are based on the
15825 document entitled "DWARF Debugging Information Format", revision
f7ef9339 15826 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
15827 from:
15828
f7ef9339 15829 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 15830
613e1657
KB
15831 This document is only a draft and is subject to change. (So beware.)
15832
f7ef9339 15833 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
15834 determined empirically by examining 64-bit ELF files produced by
15835 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
15836
15837 - Kevin, July 16, 2002
613e1657
KB
15838 ] */
15839
15840static LONGEST
d521ce57 15841read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 15842{
fe1b8b76 15843 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 15844
dd373385 15845 if (length == 0xffffffff)
613e1657 15846 {
fe1b8b76 15847 length = bfd_get_64 (abfd, buf + 4);
613e1657 15848 *bytes_read = 12;
613e1657 15849 }
dd373385 15850 else if (length == 0)
f7ef9339 15851 {
dd373385 15852 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 15853 length = bfd_get_64 (abfd, buf);
f7ef9339 15854 *bytes_read = 8;
f7ef9339 15855 }
613e1657
KB
15856 else
15857 {
15858 *bytes_read = 4;
613e1657
KB
15859 }
15860
c764a876
DE
15861 return length;
15862}
dd373385 15863
c764a876
DE
15864/* Cover function for read_initial_length.
15865 Returns the length of the object at BUF, and stores the size of the
15866 initial length in *BYTES_READ and stores the size that offsets will be in
15867 *OFFSET_SIZE.
15868 If the initial length size is not equivalent to that specified in
15869 CU_HEADER then issue a complaint.
15870 This is useful when reading non-comp-unit headers. */
dd373385 15871
c764a876 15872static LONGEST
d521ce57 15873read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
15874 const struct comp_unit_head *cu_header,
15875 unsigned int *bytes_read,
15876 unsigned int *offset_size)
15877{
15878 LONGEST length = read_initial_length (abfd, buf, bytes_read);
15879
15880 gdb_assert (cu_header->initial_length_size == 4
15881 || cu_header->initial_length_size == 8
15882 || cu_header->initial_length_size == 12);
15883
15884 if (cu_header->initial_length_size != *bytes_read)
15885 complaint (&symfile_complaints,
15886 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 15887
c764a876 15888 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 15889 return length;
613e1657
KB
15890}
15891
15892/* Read an offset from the data stream. The size of the offset is
917c78fc 15893 given by cu_header->offset_size. */
613e1657
KB
15894
15895static LONGEST
d521ce57
TT
15896read_offset (bfd *abfd, const gdb_byte *buf,
15897 const struct comp_unit_head *cu_header,
891d2f0b 15898 unsigned int *bytes_read)
c764a876
DE
15899{
15900 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 15901
c764a876
DE
15902 *bytes_read = cu_header->offset_size;
15903 return offset;
15904}
15905
15906/* Read an offset from the data stream. */
15907
15908static LONGEST
d521ce57 15909read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
15910{
15911 LONGEST retval = 0;
15912
c764a876 15913 switch (offset_size)
613e1657
KB
15914 {
15915 case 4:
fe1b8b76 15916 retval = bfd_get_32 (abfd, buf);
613e1657
KB
15917 break;
15918 case 8:
fe1b8b76 15919 retval = bfd_get_64 (abfd, buf);
613e1657
KB
15920 break;
15921 default:
8e65ff28 15922 internal_error (__FILE__, __LINE__,
c764a876 15923 _("read_offset_1: bad switch [in module %s]"),
659b0389 15924 bfd_get_filename (abfd));
613e1657
KB
15925 }
15926
917c78fc 15927 return retval;
613e1657
KB
15928}
15929
d521ce57
TT
15930static const gdb_byte *
15931read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
15932{
15933 /* If the size of a host char is 8 bits, we can return a pointer
15934 to the buffer, otherwise we have to copy the data to a buffer
15935 allocated on the temporary obstack. */
4bdf3d34 15936 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 15937 return buf;
c906108c
SS
15938}
15939
d521ce57
TT
15940static const char *
15941read_direct_string (bfd *abfd, const gdb_byte *buf,
15942 unsigned int *bytes_read_ptr)
c906108c
SS
15943{
15944 /* If the size of a host char is 8 bits, we can return a pointer
15945 to the string, otherwise we have to copy the string to a buffer
15946 allocated on the temporary obstack. */
4bdf3d34 15947 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
15948 if (*buf == '\0')
15949 {
15950 *bytes_read_ptr = 1;
15951 return NULL;
15952 }
d521ce57
TT
15953 *bytes_read_ptr = strlen ((const char *) buf) + 1;
15954 return (const char *) buf;
4bdf3d34
JJ
15955}
15956
d521ce57 15957static const char *
cf2c3c16 15958read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 15959{
be391dca 15960 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 15961 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
15962 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
15963 bfd_get_filename (abfd));
dce234bc 15964 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
15965 error (_("DW_FORM_strp pointing outside of "
15966 ".debug_str section [in module %s]"),
15967 bfd_get_filename (abfd));
4bdf3d34 15968 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 15969 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 15970 return NULL;
d521ce57 15971 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
15972}
15973
36586728
TT
15974/* Read a string at offset STR_OFFSET in the .debug_str section from
15975 the .dwz file DWZ. Throw an error if the offset is too large. If
15976 the string consists of a single NUL byte, return NULL; otherwise
15977 return a pointer to the string. */
15978
d521ce57 15979static const char *
36586728
TT
15980read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
15981{
15982 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
15983
15984 if (dwz->str.buffer == NULL)
15985 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
15986 "section [in module %s]"),
15987 bfd_get_filename (dwz->dwz_bfd));
15988 if (str_offset >= dwz->str.size)
15989 error (_("DW_FORM_GNU_strp_alt pointing outside of "
15990 ".debug_str section [in module %s]"),
15991 bfd_get_filename (dwz->dwz_bfd));
15992 gdb_assert (HOST_CHAR_BIT == 8);
15993 if (dwz->str.buffer[str_offset] == '\0')
15994 return NULL;
d521ce57 15995 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
15996}
15997
d521ce57
TT
15998static const char *
15999read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16000 const struct comp_unit_head *cu_header,
16001 unsigned int *bytes_read_ptr)
16002{
16003 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16004
16005 return read_indirect_string_at_offset (abfd, str_offset);
16006}
16007
12df843f 16008static ULONGEST
d521ce57
TT
16009read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16010 unsigned int *bytes_read_ptr)
c906108c 16011{
12df843f 16012 ULONGEST result;
ce5d95e1 16013 unsigned int num_read;
c906108c
SS
16014 int i, shift;
16015 unsigned char byte;
16016
16017 result = 0;
16018 shift = 0;
16019 num_read = 0;
16020 i = 0;
16021 while (1)
16022 {
fe1b8b76 16023 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16024 buf++;
16025 num_read++;
12df843f 16026 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16027 if ((byte & 128) == 0)
16028 {
16029 break;
16030 }
16031 shift += 7;
16032 }
16033 *bytes_read_ptr = num_read;
16034 return result;
16035}
16036
12df843f 16037static LONGEST
d521ce57
TT
16038read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16039 unsigned int *bytes_read_ptr)
c906108c 16040{
12df843f 16041 LONGEST result;
77e0b926 16042 int i, shift, num_read;
c906108c
SS
16043 unsigned char byte;
16044
16045 result = 0;
16046 shift = 0;
c906108c
SS
16047 num_read = 0;
16048 i = 0;
16049 while (1)
16050 {
fe1b8b76 16051 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16052 buf++;
16053 num_read++;
12df843f 16054 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16055 shift += 7;
16056 if ((byte & 128) == 0)
16057 {
16058 break;
16059 }
16060 }
77e0b926 16061 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16062 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16063 *bytes_read_ptr = num_read;
16064 return result;
16065}
16066
3019eac3
DE
16067/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16068 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16069 ADDR_SIZE is the size of addresses from the CU header. */
16070
16071static CORE_ADDR
16072read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16073{
16074 struct objfile *objfile = dwarf2_per_objfile->objfile;
16075 bfd *abfd = objfile->obfd;
16076 const gdb_byte *info_ptr;
16077
16078 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16079 if (dwarf2_per_objfile->addr.buffer == NULL)
16080 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16081 objfile_name (objfile));
3019eac3
DE
16082 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16083 error (_("DW_FORM_addr_index pointing outside of "
16084 ".debug_addr section [in module %s]"),
4262abfb 16085 objfile_name (objfile));
3019eac3
DE
16086 info_ptr = (dwarf2_per_objfile->addr.buffer
16087 + addr_base + addr_index * addr_size);
16088 if (addr_size == 4)
16089 return bfd_get_32 (abfd, info_ptr);
16090 else
16091 return bfd_get_64 (abfd, info_ptr);
16092}
16093
16094/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16095
16096static CORE_ADDR
16097read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16098{
16099 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16100}
16101
16102/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16103
16104static CORE_ADDR
d521ce57 16105read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16106 unsigned int *bytes_read)
16107{
16108 bfd *abfd = cu->objfile->obfd;
16109 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16110
16111 return read_addr_index (cu, addr_index);
16112}
16113
16114/* Data structure to pass results from dwarf2_read_addr_index_reader
16115 back to dwarf2_read_addr_index. */
16116
16117struct dwarf2_read_addr_index_data
16118{
16119 ULONGEST addr_base;
16120 int addr_size;
16121};
16122
16123/* die_reader_func for dwarf2_read_addr_index. */
16124
16125static void
16126dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16127 const gdb_byte *info_ptr,
3019eac3
DE
16128 struct die_info *comp_unit_die,
16129 int has_children,
16130 void *data)
16131{
16132 struct dwarf2_cu *cu = reader->cu;
16133 struct dwarf2_read_addr_index_data *aidata =
16134 (struct dwarf2_read_addr_index_data *) data;
16135
16136 aidata->addr_base = cu->addr_base;
16137 aidata->addr_size = cu->header.addr_size;
16138}
16139
16140/* Given an index in .debug_addr, fetch the value.
16141 NOTE: This can be called during dwarf expression evaluation,
16142 long after the debug information has been read, and thus per_cu->cu
16143 may no longer exist. */
16144
16145CORE_ADDR
16146dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16147 unsigned int addr_index)
16148{
16149 struct objfile *objfile = per_cu->objfile;
16150 struct dwarf2_cu *cu = per_cu->cu;
16151 ULONGEST addr_base;
16152 int addr_size;
16153
16154 /* This is intended to be called from outside this file. */
16155 dw2_setup (objfile);
16156
16157 /* We need addr_base and addr_size.
16158 If we don't have PER_CU->cu, we have to get it.
16159 Nasty, but the alternative is storing the needed info in PER_CU,
16160 which at this point doesn't seem justified: it's not clear how frequently
16161 it would get used and it would increase the size of every PER_CU.
16162 Entry points like dwarf2_per_cu_addr_size do a similar thing
16163 so we're not in uncharted territory here.
16164 Alas we need to be a bit more complicated as addr_base is contained
16165 in the DIE.
16166
16167 We don't need to read the entire CU(/TU).
16168 We just need the header and top level die.
a1b64ce1 16169
3019eac3 16170 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16171 For now we skip this optimization. */
3019eac3
DE
16172
16173 if (cu != NULL)
16174 {
16175 addr_base = cu->addr_base;
16176 addr_size = cu->header.addr_size;
16177 }
16178 else
16179 {
16180 struct dwarf2_read_addr_index_data aidata;
16181
a1b64ce1
DE
16182 /* Note: We can't use init_cutu_and_read_dies_simple here,
16183 we need addr_base. */
16184 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16185 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16186 addr_base = aidata.addr_base;
16187 addr_size = aidata.addr_size;
16188 }
16189
16190 return read_addr_index_1 (addr_index, addr_base, addr_size);
16191}
16192
57d63ce2
DE
16193/* Given a DW_FORM_GNU_str_index, fetch the string.
16194 This is only used by the Fission support. */
3019eac3 16195
d521ce57 16196static const char *
3019eac3
DE
16197read_str_index (const struct die_reader_specs *reader,
16198 struct dwarf2_cu *cu, ULONGEST str_index)
16199{
16200 struct objfile *objfile = dwarf2_per_objfile->objfile;
4262abfb 16201 const char *dwo_name = objfile_name (objfile);
3019eac3 16202 bfd *abfd = objfile->obfd;
73869dc2
DE
16203 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16204 struct dwarf2_section_info *str_offsets_section =
16205 &reader->dwo_file->sections.str_offsets;
d521ce57 16206 const gdb_byte *info_ptr;
3019eac3 16207 ULONGEST str_offset;
57d63ce2 16208 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16209
73869dc2
DE
16210 dwarf2_read_section (objfile, str_section);
16211 dwarf2_read_section (objfile, str_offsets_section);
16212 if (str_section->buffer == NULL)
57d63ce2 16213 error (_("%s used without .debug_str.dwo section"
3019eac3 16214 " in CU at offset 0x%lx [in module %s]"),
57d63ce2 16215 form_name, (long) cu->header.offset.sect_off, dwo_name);
73869dc2 16216 if (str_offsets_section->buffer == NULL)
57d63ce2 16217 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16218 " in CU at offset 0x%lx [in module %s]"),
57d63ce2 16219 form_name, (long) cu->header.offset.sect_off, dwo_name);
73869dc2 16220 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16221 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16222 " section in CU at offset 0x%lx [in module %s]"),
57d63ce2 16223 form_name, (long) cu->header.offset.sect_off, dwo_name);
73869dc2 16224 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16225 + str_index * cu->header.offset_size);
16226 if (cu->header.offset_size == 4)
16227 str_offset = bfd_get_32 (abfd, info_ptr);
16228 else
16229 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16230 if (str_offset >= str_section->size)
57d63ce2 16231 error (_("Offset from %s pointing outside of"
3019eac3 16232 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
57d63ce2 16233 form_name, (long) cu->header.offset.sect_off, dwo_name);
73869dc2 16234 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16235}
16236
3019eac3
DE
16237/* Return the length of an LEB128 number in BUF. */
16238
16239static int
16240leb128_size (const gdb_byte *buf)
16241{
16242 const gdb_byte *begin = buf;
16243 gdb_byte byte;
16244
16245 while (1)
16246 {
16247 byte = *buf++;
16248 if ((byte & 128) == 0)
16249 return buf - begin;
16250 }
16251}
16252
c906108c 16253static void
e142c38c 16254set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
16255{
16256 switch (lang)
16257 {
16258 case DW_LANG_C89:
76bee0cc 16259 case DW_LANG_C99:
c906108c 16260 case DW_LANG_C:
d1be3247 16261 case DW_LANG_UPC:
e142c38c 16262 cu->language = language_c;
c906108c
SS
16263 break;
16264 case DW_LANG_C_plus_plus:
e142c38c 16265 cu->language = language_cplus;
c906108c 16266 break;
6aecb9c2
JB
16267 case DW_LANG_D:
16268 cu->language = language_d;
16269 break;
c906108c
SS
16270 case DW_LANG_Fortran77:
16271 case DW_LANG_Fortran90:
b21b22e0 16272 case DW_LANG_Fortran95:
e142c38c 16273 cu->language = language_fortran;
c906108c 16274 break;
a766d390
DE
16275 case DW_LANG_Go:
16276 cu->language = language_go;
16277 break;
c906108c 16278 case DW_LANG_Mips_Assembler:
e142c38c 16279 cu->language = language_asm;
c906108c 16280 break;
bebd888e 16281 case DW_LANG_Java:
e142c38c 16282 cu->language = language_java;
bebd888e 16283 break;
c906108c 16284 case DW_LANG_Ada83:
8aaf0b47 16285 case DW_LANG_Ada95:
bc5f45f8
JB
16286 cu->language = language_ada;
16287 break;
72019c9c
GM
16288 case DW_LANG_Modula2:
16289 cu->language = language_m2;
16290 break;
fe8e67fd
PM
16291 case DW_LANG_Pascal83:
16292 cu->language = language_pascal;
16293 break;
22566fbd
DJ
16294 case DW_LANG_ObjC:
16295 cu->language = language_objc;
16296 break;
c906108c
SS
16297 case DW_LANG_Cobol74:
16298 case DW_LANG_Cobol85:
c906108c 16299 default:
e142c38c 16300 cu->language = language_minimal;
c906108c
SS
16301 break;
16302 }
e142c38c 16303 cu->language_defn = language_def (cu->language);
c906108c
SS
16304}
16305
16306/* Return the named attribute or NULL if not there. */
16307
16308static struct attribute *
e142c38c 16309dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 16310{
a48e046c 16311 for (;;)
c906108c 16312 {
a48e046c
TT
16313 unsigned int i;
16314 struct attribute *spec = NULL;
16315
16316 for (i = 0; i < die->num_attrs; ++i)
16317 {
16318 if (die->attrs[i].name == name)
16319 return &die->attrs[i];
16320 if (die->attrs[i].name == DW_AT_specification
16321 || die->attrs[i].name == DW_AT_abstract_origin)
16322 spec = &die->attrs[i];
16323 }
16324
16325 if (!spec)
16326 break;
c906108c 16327
f2f0e013 16328 die = follow_die_ref (die, spec, &cu);
f2f0e013 16329 }
c5aa993b 16330
c906108c
SS
16331 return NULL;
16332}
16333
348e048f
DE
16334/* Return the named attribute or NULL if not there,
16335 but do not follow DW_AT_specification, etc.
16336 This is for use in contexts where we're reading .debug_types dies.
16337 Following DW_AT_specification, DW_AT_abstract_origin will take us
16338 back up the chain, and we want to go down. */
16339
16340static struct attribute *
45e58e77 16341dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
16342{
16343 unsigned int i;
16344
16345 for (i = 0; i < die->num_attrs; ++i)
16346 if (die->attrs[i].name == name)
16347 return &die->attrs[i];
16348
16349 return NULL;
16350}
16351
05cf31d1
JB
16352/* Return non-zero iff the attribute NAME is defined for the given DIE,
16353 and holds a non-zero value. This function should only be used for
2dc7f7b3 16354 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
16355
16356static int
16357dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16358{
16359 struct attribute *attr = dwarf2_attr (die, name, cu);
16360
16361 return (attr && DW_UNSND (attr));
16362}
16363
3ca72b44 16364static int
e142c38c 16365die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 16366{
05cf31d1
JB
16367 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16368 which value is non-zero. However, we have to be careful with
16369 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16370 (via dwarf2_flag_true_p) follows this attribute. So we may
16371 end up accidently finding a declaration attribute that belongs
16372 to a different DIE referenced by the specification attribute,
16373 even though the given DIE does not have a declaration attribute. */
16374 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16375 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
16376}
16377
63d06c5c 16378/* Return the die giving the specification for DIE, if there is
f2f0e013 16379 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
16380 containing the return value on output. If there is no
16381 specification, but there is an abstract origin, that is
16382 returned. */
63d06c5c
DC
16383
16384static struct die_info *
f2f0e013 16385die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 16386{
f2f0e013
DJ
16387 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16388 *spec_cu);
63d06c5c 16389
edb3359d
DJ
16390 if (spec_attr == NULL)
16391 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16392
63d06c5c
DC
16393 if (spec_attr == NULL)
16394 return NULL;
16395 else
f2f0e013 16396 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 16397}
c906108c 16398
debd256d 16399/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
16400 refers to.
16401 NOTE: This is also used as a "cleanup" function. */
16402
debd256d
JB
16403static void
16404free_line_header (struct line_header *lh)
16405{
16406 if (lh->standard_opcode_lengths)
a8bc7b56 16407 xfree (lh->standard_opcode_lengths);
debd256d
JB
16408
16409 /* Remember that all the lh->file_names[i].name pointers are
16410 pointers into debug_line_buffer, and don't need to be freed. */
16411 if (lh->file_names)
a8bc7b56 16412 xfree (lh->file_names);
debd256d
JB
16413
16414 /* Similarly for the include directory names. */
16415 if (lh->include_dirs)
a8bc7b56 16416 xfree (lh->include_dirs);
debd256d 16417
a8bc7b56 16418 xfree (lh);
debd256d
JB
16419}
16420
debd256d 16421/* Add an entry to LH's include directory table. */
ae2de4f8 16422
debd256d 16423static void
d521ce57 16424add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 16425{
debd256d
JB
16426 /* Grow the array if necessary. */
16427 if (lh->include_dirs_size == 0)
c5aa993b 16428 {
debd256d
JB
16429 lh->include_dirs_size = 1; /* for testing */
16430 lh->include_dirs = xmalloc (lh->include_dirs_size
16431 * sizeof (*lh->include_dirs));
16432 }
16433 else if (lh->num_include_dirs >= lh->include_dirs_size)
16434 {
16435 lh->include_dirs_size *= 2;
16436 lh->include_dirs = xrealloc (lh->include_dirs,
16437 (lh->include_dirs_size
16438 * sizeof (*lh->include_dirs)));
c5aa993b 16439 }
c906108c 16440
debd256d
JB
16441 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16442}
6e70227d 16443
debd256d 16444/* Add an entry to LH's file name table. */
ae2de4f8 16445
debd256d
JB
16446static void
16447add_file_name (struct line_header *lh,
d521ce57 16448 const char *name,
debd256d
JB
16449 unsigned int dir_index,
16450 unsigned int mod_time,
16451 unsigned int length)
16452{
16453 struct file_entry *fe;
16454
16455 /* Grow the array if necessary. */
16456 if (lh->file_names_size == 0)
16457 {
16458 lh->file_names_size = 1; /* for testing */
16459 lh->file_names = xmalloc (lh->file_names_size
16460 * sizeof (*lh->file_names));
16461 }
16462 else if (lh->num_file_names >= lh->file_names_size)
16463 {
16464 lh->file_names_size *= 2;
16465 lh->file_names = xrealloc (lh->file_names,
16466 (lh->file_names_size
16467 * sizeof (*lh->file_names)));
16468 }
16469
16470 fe = &lh->file_names[lh->num_file_names++];
16471 fe->name = name;
16472 fe->dir_index = dir_index;
16473 fe->mod_time = mod_time;
16474 fe->length = length;
aaa75496 16475 fe->included_p = 0;
cb1df416 16476 fe->symtab = NULL;
debd256d 16477}
6e70227d 16478
36586728
TT
16479/* A convenience function to find the proper .debug_line section for a
16480 CU. */
16481
16482static struct dwarf2_section_info *
16483get_debug_line_section (struct dwarf2_cu *cu)
16484{
16485 struct dwarf2_section_info *section;
16486
16487 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16488 DWO file. */
16489 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16490 section = &cu->dwo_unit->dwo_file->sections.line;
16491 else if (cu->per_cu->is_dwz)
16492 {
16493 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16494
16495 section = &dwz->line;
16496 }
16497 else
16498 section = &dwarf2_per_objfile->line;
16499
16500 return section;
16501}
16502
debd256d 16503/* Read the statement program header starting at OFFSET in
3019eac3 16504 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 16505 to a struct line_header, allocated using xmalloc.
debd256d
JB
16506
16507 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
16508 the returned object point into the dwarf line section buffer,
16509 and must not be freed. */
ae2de4f8 16510
debd256d 16511static struct line_header *
3019eac3 16512dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
16513{
16514 struct cleanup *back_to;
16515 struct line_header *lh;
d521ce57 16516 const gdb_byte *line_ptr;
c764a876 16517 unsigned int bytes_read, offset_size;
debd256d 16518 int i;
d521ce57 16519 const char *cur_dir, *cur_file;
3019eac3
DE
16520 struct dwarf2_section_info *section;
16521 bfd *abfd;
16522
36586728 16523 section = get_debug_line_section (cu);
3019eac3
DE
16524 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16525 if (section->buffer == NULL)
debd256d 16526 {
3019eac3
DE
16527 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16528 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16529 else
16530 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
16531 return 0;
16532 }
16533
fceca515
DE
16534 /* We can't do this until we know the section is non-empty.
16535 Only then do we know we have such a section. */
a32a8923 16536 abfd = get_section_bfd_owner (section);
fceca515 16537
a738430d
MK
16538 /* Make sure that at least there's room for the total_length field.
16539 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 16540 if (offset + 4 >= section->size)
debd256d 16541 {
4d3c2250 16542 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
16543 return 0;
16544 }
16545
16546 lh = xmalloc (sizeof (*lh));
16547 memset (lh, 0, sizeof (*lh));
16548 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16549 (void *) lh);
16550
3019eac3 16551 line_ptr = section->buffer + offset;
debd256d 16552
a738430d 16553 /* Read in the header. */
6e70227d 16554 lh->total_length =
c764a876
DE
16555 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16556 &bytes_read, &offset_size);
debd256d 16557 line_ptr += bytes_read;
3019eac3 16558 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 16559 {
4d3c2250 16560 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 16561 do_cleanups (back_to);
debd256d
JB
16562 return 0;
16563 }
16564 lh->statement_program_end = line_ptr + lh->total_length;
16565 lh->version = read_2_bytes (abfd, line_ptr);
16566 line_ptr += 2;
c764a876
DE
16567 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
16568 line_ptr += offset_size;
debd256d
JB
16569 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
16570 line_ptr += 1;
2dc7f7b3
TT
16571 if (lh->version >= 4)
16572 {
16573 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
16574 line_ptr += 1;
16575 }
16576 else
16577 lh->maximum_ops_per_instruction = 1;
16578
16579 if (lh->maximum_ops_per_instruction == 0)
16580 {
16581 lh->maximum_ops_per_instruction = 1;
16582 complaint (&symfile_complaints,
3e43a32a
MS
16583 _("invalid maximum_ops_per_instruction "
16584 "in `.debug_line' section"));
2dc7f7b3
TT
16585 }
16586
debd256d
JB
16587 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
16588 line_ptr += 1;
16589 lh->line_base = read_1_signed_byte (abfd, line_ptr);
16590 line_ptr += 1;
16591 lh->line_range = read_1_byte (abfd, line_ptr);
16592 line_ptr += 1;
16593 lh->opcode_base = read_1_byte (abfd, line_ptr);
16594 line_ptr += 1;
16595 lh->standard_opcode_lengths
fe1b8b76 16596 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
16597
16598 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
16599 for (i = 1; i < lh->opcode_base; ++i)
16600 {
16601 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
16602 line_ptr += 1;
16603 }
16604
a738430d 16605 /* Read directory table. */
9b1c24c8 16606 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
16607 {
16608 line_ptr += bytes_read;
16609 add_include_dir (lh, cur_dir);
16610 }
16611 line_ptr += bytes_read;
16612
a738430d 16613 /* Read file name table. */
9b1c24c8 16614 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
16615 {
16616 unsigned int dir_index, mod_time, length;
16617
16618 line_ptr += bytes_read;
16619 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16620 line_ptr += bytes_read;
16621 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16622 line_ptr += bytes_read;
16623 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16624 line_ptr += bytes_read;
16625
16626 add_file_name (lh, cur_file, dir_index, mod_time, length);
16627 }
16628 line_ptr += bytes_read;
6e70227d 16629 lh->statement_program_start = line_ptr;
debd256d 16630
3019eac3 16631 if (line_ptr > (section->buffer + section->size))
4d3c2250 16632 complaint (&symfile_complaints,
3e43a32a
MS
16633 _("line number info header doesn't "
16634 "fit in `.debug_line' section"));
debd256d
JB
16635
16636 discard_cleanups (back_to);
16637 return lh;
16638}
c906108c 16639
c6da4cef
DE
16640/* Subroutine of dwarf_decode_lines to simplify it.
16641 Return the file name of the psymtab for included file FILE_INDEX
16642 in line header LH of PST.
16643 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16644 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
16645 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
16646
16647 The function creates dangling cleanup registration. */
c6da4cef 16648
d521ce57 16649static const char *
c6da4cef
DE
16650psymtab_include_file_name (const struct line_header *lh, int file_index,
16651 const struct partial_symtab *pst,
16652 const char *comp_dir)
16653{
16654 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
16655 const char *include_name = fe.name;
16656 const char *include_name_to_compare = include_name;
16657 const char *dir_name = NULL;
72b9f47f
TT
16658 const char *pst_filename;
16659 char *copied_name = NULL;
c6da4cef
DE
16660 int file_is_pst;
16661
16662 if (fe.dir_index)
16663 dir_name = lh->include_dirs[fe.dir_index - 1];
16664
16665 if (!IS_ABSOLUTE_PATH (include_name)
16666 && (dir_name != NULL || comp_dir != NULL))
16667 {
16668 /* Avoid creating a duplicate psymtab for PST.
16669 We do this by comparing INCLUDE_NAME and PST_FILENAME.
16670 Before we do the comparison, however, we need to account
16671 for DIR_NAME and COMP_DIR.
16672 First prepend dir_name (if non-NULL). If we still don't
16673 have an absolute path prepend comp_dir (if non-NULL).
16674 However, the directory we record in the include-file's
16675 psymtab does not contain COMP_DIR (to match the
16676 corresponding symtab(s)).
16677
16678 Example:
16679
16680 bash$ cd /tmp
16681 bash$ gcc -g ./hello.c
16682 include_name = "hello.c"
16683 dir_name = "."
16684 DW_AT_comp_dir = comp_dir = "/tmp"
16685 DW_AT_name = "./hello.c" */
16686
16687 if (dir_name != NULL)
16688 {
d521ce57
TT
16689 char *tem = concat (dir_name, SLASH_STRING,
16690 include_name, (char *)NULL);
16691
16692 make_cleanup (xfree, tem);
16693 include_name = tem;
c6da4cef 16694 include_name_to_compare = include_name;
c6da4cef
DE
16695 }
16696 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
16697 {
d521ce57
TT
16698 char *tem = concat (comp_dir, SLASH_STRING,
16699 include_name, (char *)NULL);
16700
16701 make_cleanup (xfree, tem);
16702 include_name_to_compare = tem;
c6da4cef
DE
16703 }
16704 }
16705
16706 pst_filename = pst->filename;
16707 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
16708 {
72b9f47f
TT
16709 copied_name = concat (pst->dirname, SLASH_STRING,
16710 pst_filename, (char *)NULL);
16711 pst_filename = copied_name;
c6da4cef
DE
16712 }
16713
1e3fad37 16714 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 16715
72b9f47f
TT
16716 if (copied_name != NULL)
16717 xfree (copied_name);
c6da4cef
DE
16718
16719 if (file_is_pst)
16720 return NULL;
16721 return include_name;
16722}
16723
c91513d8
PP
16724/* Ignore this record_line request. */
16725
16726static void
16727noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
16728{
16729 return;
16730}
16731
f3f5162e
DE
16732/* Subroutine of dwarf_decode_lines to simplify it.
16733 Process the line number information in LH. */
debd256d 16734
c906108c 16735static void
f3f5162e
DE
16736dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
16737 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 16738{
d521ce57
TT
16739 const gdb_byte *line_ptr, *extended_end;
16740 const gdb_byte *line_end;
a8c50c1f 16741 unsigned int bytes_read, extended_len;
c906108c 16742 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
16743 CORE_ADDR baseaddr;
16744 struct objfile *objfile = cu->objfile;
f3f5162e 16745 bfd *abfd = objfile->obfd;
fbf65064 16746 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 16747 const int decode_for_pst_p = (pst != NULL);
f3f5162e 16748 struct subfile *last_subfile = NULL;
c91513d8
PP
16749 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
16750 = record_line;
e142c38c
DJ
16751
16752 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 16753
debd256d
JB
16754 line_ptr = lh->statement_program_start;
16755 line_end = lh->statement_program_end;
c906108c
SS
16756
16757 /* Read the statement sequences until there's nothing left. */
16758 while (line_ptr < line_end)
16759 {
16760 /* state machine registers */
16761 CORE_ADDR address = 0;
16762 unsigned int file = 1;
16763 unsigned int line = 1;
16764 unsigned int column = 0;
debd256d 16765 int is_stmt = lh->default_is_stmt;
c906108c
SS
16766 int basic_block = 0;
16767 int end_sequence = 0;
fbf65064 16768 CORE_ADDR addr;
2dc7f7b3 16769 unsigned char op_index = 0;
c906108c 16770
aaa75496 16771 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 16772 {
aaa75496 16773 /* Start a subfile for the current file of the state machine. */
debd256d
JB
16774 /* lh->include_dirs and lh->file_names are 0-based, but the
16775 directory and file name numbers in the statement program
16776 are 1-based. */
16777 struct file_entry *fe = &lh->file_names[file - 1];
d521ce57 16778 const char *dir = NULL;
a738430d 16779
debd256d
JB
16780 if (fe->dir_index)
16781 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
16782
16783 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
16784 }
16785
a738430d 16786 /* Decode the table. */
c5aa993b 16787 while (!end_sequence)
c906108c
SS
16788 {
16789 op_code = read_1_byte (abfd, line_ptr);
16790 line_ptr += 1;
59205f5a
JB
16791 if (line_ptr > line_end)
16792 {
16793 dwarf2_debug_line_missing_end_sequence_complaint ();
16794 break;
16795 }
9aa1fe7e 16796
debd256d 16797 if (op_code >= lh->opcode_base)
6e70227d 16798 {
a738430d 16799 /* Special operand. */
debd256d 16800 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
16801 address += (((op_index + (adj_opcode / lh->line_range))
16802 / lh->maximum_ops_per_instruction)
16803 * lh->minimum_instruction_length);
16804 op_index = ((op_index + (adj_opcode / lh->line_range))
16805 % lh->maximum_ops_per_instruction);
debd256d 16806 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 16807 if (lh->num_file_names < file || file == 0)
25e43795 16808 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
16809 /* For now we ignore lines not starting on an
16810 instruction boundary. */
16811 else if (op_index == 0)
25e43795
DJ
16812 {
16813 lh->file_names[file - 1].included_p = 1;
ca5f395d 16814 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
16815 {
16816 if (last_subfile != current_subfile)
16817 {
16818 addr = gdbarch_addr_bits_remove (gdbarch, address);
16819 if (last_subfile)
c91513d8 16820 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
16821 last_subfile = current_subfile;
16822 }
25e43795 16823 /* Append row to matrix using current values. */
7019d805 16824 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 16825 (*p_record_line) (current_subfile, line, addr);
366da635 16826 }
25e43795 16827 }
ca5f395d 16828 basic_block = 0;
9aa1fe7e
GK
16829 }
16830 else switch (op_code)
c906108c
SS
16831 {
16832 case DW_LNS_extended_op:
3e43a32a
MS
16833 extended_len = read_unsigned_leb128 (abfd, line_ptr,
16834 &bytes_read);
473b7be6 16835 line_ptr += bytes_read;
a8c50c1f 16836 extended_end = line_ptr + extended_len;
c906108c
SS
16837 extended_op = read_1_byte (abfd, line_ptr);
16838 line_ptr += 1;
16839 switch (extended_op)
16840 {
16841 case DW_LNE_end_sequence:
c91513d8 16842 p_record_line = record_line;
c906108c 16843 end_sequence = 1;
c906108c
SS
16844 break;
16845 case DW_LNE_set_address:
e7c27a73 16846 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8
PP
16847
16848 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
16849 {
16850 /* This line table is for a function which has been
16851 GCd by the linker. Ignore it. PR gdb/12528 */
16852
16853 long line_offset
36586728 16854 = line_ptr - get_debug_line_section (cu)->buffer;
c91513d8
PP
16855
16856 complaint (&symfile_complaints,
16857 _(".debug_line address at offset 0x%lx is 0 "
16858 "[in module %s]"),
4262abfb 16859 line_offset, objfile_name (objfile));
c91513d8
PP
16860 p_record_line = noop_record_line;
16861 }
16862
2dc7f7b3 16863 op_index = 0;
107d2387
AC
16864 line_ptr += bytes_read;
16865 address += baseaddr;
c906108c
SS
16866 break;
16867 case DW_LNE_define_file:
debd256d 16868 {
d521ce57 16869 const char *cur_file;
debd256d 16870 unsigned int dir_index, mod_time, length;
6e70227d 16871
3e43a32a
MS
16872 cur_file = read_direct_string (abfd, line_ptr,
16873 &bytes_read);
debd256d
JB
16874 line_ptr += bytes_read;
16875 dir_index =
16876 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16877 line_ptr += bytes_read;
16878 mod_time =
16879 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16880 line_ptr += bytes_read;
16881 length =
16882 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16883 line_ptr += bytes_read;
16884 add_file_name (lh, cur_file, dir_index, mod_time, length);
16885 }
c906108c 16886 break;
d0c6ba3d
CC
16887 case DW_LNE_set_discriminator:
16888 /* The discriminator is not interesting to the debugger;
16889 just ignore it. */
16890 line_ptr = extended_end;
16891 break;
c906108c 16892 default:
4d3c2250 16893 complaint (&symfile_complaints,
e2e0b3e5 16894 _("mangled .debug_line section"));
debd256d 16895 return;
c906108c 16896 }
a8c50c1f
DJ
16897 /* Make sure that we parsed the extended op correctly. If e.g.
16898 we expected a different address size than the producer used,
16899 we may have read the wrong number of bytes. */
16900 if (line_ptr != extended_end)
16901 {
16902 complaint (&symfile_complaints,
16903 _("mangled .debug_line section"));
16904 return;
16905 }
c906108c
SS
16906 break;
16907 case DW_LNS_copy:
59205f5a 16908 if (lh->num_file_names < file || file == 0)
25e43795
DJ
16909 dwarf2_debug_line_missing_file_complaint ();
16910 else
366da635 16911 {
25e43795 16912 lh->file_names[file - 1].included_p = 1;
ca5f395d 16913 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
16914 {
16915 if (last_subfile != current_subfile)
16916 {
16917 addr = gdbarch_addr_bits_remove (gdbarch, address);
16918 if (last_subfile)
c91513d8 16919 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
16920 last_subfile = current_subfile;
16921 }
7019d805 16922 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 16923 (*p_record_line) (current_subfile, line, addr);
fbf65064 16924 }
366da635 16925 }
c906108c
SS
16926 basic_block = 0;
16927 break;
16928 case DW_LNS_advance_pc:
2dc7f7b3
TT
16929 {
16930 CORE_ADDR adjust
16931 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16932
16933 address += (((op_index + adjust)
16934 / lh->maximum_ops_per_instruction)
16935 * lh->minimum_instruction_length);
16936 op_index = ((op_index + adjust)
16937 % lh->maximum_ops_per_instruction);
16938 line_ptr += bytes_read;
16939 }
c906108c
SS
16940 break;
16941 case DW_LNS_advance_line:
16942 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
16943 line_ptr += bytes_read;
16944 break;
16945 case DW_LNS_set_file:
debd256d 16946 {
a738430d
MK
16947 /* The arrays lh->include_dirs and lh->file_names are
16948 0-based, but the directory and file name numbers in
16949 the statement program are 1-based. */
debd256d 16950 struct file_entry *fe;
d521ce57 16951 const char *dir = NULL;
a738430d 16952
debd256d
JB
16953 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16954 line_ptr += bytes_read;
59205f5a 16955 if (lh->num_file_names < file || file == 0)
25e43795
DJ
16956 dwarf2_debug_line_missing_file_complaint ();
16957 else
16958 {
16959 fe = &lh->file_names[file - 1];
16960 if (fe->dir_index)
16961 dir = lh->include_dirs[fe->dir_index - 1];
16962 if (!decode_for_pst_p)
16963 {
16964 last_subfile = current_subfile;
16965 dwarf2_start_subfile (fe->name, dir, comp_dir);
16966 }
16967 }
debd256d 16968 }
c906108c
SS
16969 break;
16970 case DW_LNS_set_column:
16971 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16972 line_ptr += bytes_read;
16973 break;
16974 case DW_LNS_negate_stmt:
16975 is_stmt = (!is_stmt);
16976 break;
16977 case DW_LNS_set_basic_block:
16978 basic_block = 1;
16979 break;
c2c6d25f
JM
16980 /* Add to the address register of the state machine the
16981 address increment value corresponding to special opcode
a738430d
MK
16982 255. I.e., this value is scaled by the minimum
16983 instruction length since special opcode 255 would have
b021a221 16984 scaled the increment. */
c906108c 16985 case DW_LNS_const_add_pc:
2dc7f7b3
TT
16986 {
16987 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
16988
16989 address += (((op_index + adjust)
16990 / lh->maximum_ops_per_instruction)
16991 * lh->minimum_instruction_length);
16992 op_index = ((op_index + adjust)
16993 % lh->maximum_ops_per_instruction);
16994 }
c906108c
SS
16995 break;
16996 case DW_LNS_fixed_advance_pc:
16997 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 16998 op_index = 0;
c906108c
SS
16999 line_ptr += 2;
17000 break;
9aa1fe7e 17001 default:
a738430d
MK
17002 {
17003 /* Unknown standard opcode, ignore it. */
9aa1fe7e 17004 int i;
a738430d 17005
debd256d 17006 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
17007 {
17008 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17009 line_ptr += bytes_read;
17010 }
17011 }
c906108c
SS
17012 }
17013 }
59205f5a
JB
17014 if (lh->num_file_names < file || file == 0)
17015 dwarf2_debug_line_missing_file_complaint ();
17016 else
17017 {
17018 lh->file_names[file - 1].included_p = 1;
17019 if (!decode_for_pst_p)
fbf65064
UW
17020 {
17021 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 17022 (*p_record_line) (current_subfile, 0, addr);
fbf65064 17023 }
59205f5a 17024 }
c906108c 17025 }
f3f5162e
DE
17026}
17027
17028/* Decode the Line Number Program (LNP) for the given line_header
17029 structure and CU. The actual information extracted and the type
17030 of structures created from the LNP depends on the value of PST.
17031
17032 1. If PST is NULL, then this procedure uses the data from the program
17033 to create all necessary symbol tables, and their linetables.
17034
17035 2. If PST is not NULL, this procedure reads the program to determine
17036 the list of files included by the unit represented by PST, and
17037 builds all the associated partial symbol tables.
17038
17039 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17040 It is used for relative paths in the line table.
17041 NOTE: When processing partial symtabs (pst != NULL),
17042 comp_dir == pst->dirname.
17043
17044 NOTE: It is important that psymtabs have the same file name (via strcmp)
17045 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17046 symtab we don't use it in the name of the psymtabs we create.
17047 E.g. expand_line_sal requires this when finding psymtabs to expand.
17048 A good testcase for this is mb-inline.exp. */
17049
17050static void
17051dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17052 struct dwarf2_cu *cu, struct partial_symtab *pst,
17053 int want_line_info)
17054{
17055 struct objfile *objfile = cu->objfile;
17056 const int decode_for_pst_p = (pst != NULL);
17057 struct subfile *first_subfile = current_subfile;
17058
17059 if (want_line_info)
17060 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
aaa75496
JB
17061
17062 if (decode_for_pst_p)
17063 {
17064 int file_index;
17065
17066 /* Now that we're done scanning the Line Header Program, we can
17067 create the psymtab of each included file. */
17068 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17069 if (lh->file_names[file_index].included_p == 1)
17070 {
d521ce57 17071 const char *include_name =
c6da4cef
DE
17072 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17073 if (include_name != NULL)
aaa75496
JB
17074 dwarf2_create_include_psymtab (include_name, pst, objfile);
17075 }
17076 }
cb1df416
DJ
17077 else
17078 {
17079 /* Make sure a symtab is created for every file, even files
17080 which contain only variables (i.e. no code with associated
17081 line numbers). */
cb1df416 17082 int i;
cb1df416
DJ
17083
17084 for (i = 0; i < lh->num_file_names; i++)
17085 {
d521ce57 17086 const char *dir = NULL;
f3f5162e 17087 struct file_entry *fe;
9a619af0 17088
cb1df416
DJ
17089 fe = &lh->file_names[i];
17090 if (fe->dir_index)
17091 dir = lh->include_dirs[fe->dir_index - 1];
17092 dwarf2_start_subfile (fe->name, dir, comp_dir);
17093
17094 /* Skip the main file; we don't need it, and it must be
17095 allocated last, so that it will show up before the
17096 non-primary symtabs in the objfile's symtab list. */
17097 if (current_subfile == first_subfile)
17098 continue;
17099
17100 if (current_subfile->symtab == NULL)
17101 current_subfile->symtab = allocate_symtab (current_subfile->name,
bb5ed363 17102 objfile);
cb1df416
DJ
17103 fe->symtab = current_subfile->symtab;
17104 }
17105 }
c906108c
SS
17106}
17107
17108/* Start a subfile for DWARF. FILENAME is the name of the file and
17109 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
17110 or NULL if not known. COMP_DIR is the compilation directory for the
17111 linetable's compilation unit or NULL if not known.
c906108c
SS
17112 This routine tries to keep line numbers from identical absolute and
17113 relative file names in a common subfile.
17114
17115 Using the `list' example from the GDB testsuite, which resides in
17116 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17117 of /srcdir/list0.c yields the following debugging information for list0.c:
17118
c5aa993b
JM
17119 DW_AT_name: /srcdir/list0.c
17120 DW_AT_comp_dir: /compdir
357e46e7 17121 files.files[0].name: list0.h
c5aa993b 17122 files.files[0].dir: /srcdir
357e46e7 17123 files.files[1].name: list0.c
c5aa993b 17124 files.files[1].dir: /srcdir
c906108c
SS
17125
17126 The line number information for list0.c has to end up in a single
4f1520fb
FR
17127 subfile, so that `break /srcdir/list0.c:1' works as expected.
17128 start_subfile will ensure that this happens provided that we pass the
17129 concatenation of files.files[1].dir and files.files[1].name as the
17130 subfile's name. */
c906108c
SS
17131
17132static void
d521ce57 17133dwarf2_start_subfile (const char *filename, const char *dirname,
3e43a32a 17134 const char *comp_dir)
c906108c 17135{
d521ce57 17136 char *copy = NULL;
4f1520fb
FR
17137
17138 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17139 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17140 second argument to start_subfile. To be consistent, we do the
17141 same here. In order not to lose the line information directory,
17142 we concatenate it to the filename when it makes sense.
17143 Note that the Dwarf3 standard says (speaking of filenames in line
17144 information): ``The directory index is ignored for file names
17145 that represent full path names''. Thus ignoring dirname in the
17146 `else' branch below isn't an issue. */
c906108c 17147
d5166ae1 17148 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
17149 {
17150 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17151 filename = copy;
17152 }
c906108c 17153
d521ce57 17154 start_subfile (filename, comp_dir);
4f1520fb 17155
d521ce57
TT
17156 if (copy != NULL)
17157 xfree (copy);
c906108c
SS
17158}
17159
f4dc4d17
DE
17160/* Start a symtab for DWARF.
17161 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17162
17163static void
17164dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 17165 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17
DE
17166{
17167 start_symtab (name, comp_dir, low_pc);
17168 record_debugformat ("DWARF 2");
17169 record_producer (cu->producer);
17170
17171 /* We assume that we're processing GCC output. */
17172 processing_gcc_compilation = 2;
17173
4d4ec4e5 17174 cu->processing_has_namespace_info = 0;
f4dc4d17
DE
17175}
17176
4c2df51b
DJ
17177static void
17178var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 17179 struct dwarf2_cu *cu)
4c2df51b 17180{
e7c27a73
DJ
17181 struct objfile *objfile = cu->objfile;
17182 struct comp_unit_head *cu_header = &cu->header;
17183
4c2df51b
DJ
17184 /* NOTE drow/2003-01-30: There used to be a comment and some special
17185 code here to turn a symbol with DW_AT_external and a
17186 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17187 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17188 with some versions of binutils) where shared libraries could have
17189 relocations against symbols in their debug information - the
17190 minimal symbol would have the right address, but the debug info
17191 would not. It's no longer necessary, because we will explicitly
17192 apply relocations when we read in the debug information now. */
17193
17194 /* A DW_AT_location attribute with no contents indicates that a
17195 variable has been optimized away. */
17196 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17197 {
f1e6e072 17198 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
17199 return;
17200 }
17201
17202 /* Handle one degenerate form of location expression specially, to
17203 preserve GDB's previous behavior when section offsets are
3019eac3
DE
17204 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17205 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
17206
17207 if (attr_form_is_block (attr)
3019eac3
DE
17208 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17209 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17210 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17211 && (DW_BLOCK (attr)->size
17212 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 17213 {
891d2f0b 17214 unsigned int dummy;
4c2df51b 17215
3019eac3
DE
17216 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17217 SYMBOL_VALUE_ADDRESS (sym) =
17218 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17219 else
17220 SYMBOL_VALUE_ADDRESS (sym) =
17221 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 17222 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
17223 fixup_symbol_section (sym, objfile);
17224 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17225 SYMBOL_SECTION (sym));
4c2df51b
DJ
17226 return;
17227 }
17228
17229 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17230 expression evaluator, and use LOC_COMPUTED only when necessary
17231 (i.e. when the value of a register or memory location is
17232 referenced, or a thread-local block, etc.). Then again, it might
17233 not be worthwhile. I'm assuming that it isn't unless performance
17234 or memory numbers show me otherwise. */
17235
f1e6e072 17236 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 17237
f1e6e072 17238 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 17239 cu->has_loclist = 1;
4c2df51b
DJ
17240}
17241
c906108c
SS
17242/* Given a pointer to a DWARF information entry, figure out if we need
17243 to make a symbol table entry for it, and if so, create a new entry
17244 and return a pointer to it.
17245 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
17246 used the passed type.
17247 If SPACE is not NULL, use it to hold the new symbol. If it is
17248 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
17249
17250static struct symbol *
34eaf542
TT
17251new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17252 struct symbol *space)
c906108c 17253{
e7c27a73 17254 struct objfile *objfile = cu->objfile;
c906108c 17255 struct symbol *sym = NULL;
15d034d0 17256 const char *name;
c906108c
SS
17257 struct attribute *attr = NULL;
17258 struct attribute *attr2 = NULL;
e142c38c 17259 CORE_ADDR baseaddr;
e37fd15a
SW
17260 struct pending **list_to_add = NULL;
17261
edb3359d 17262 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
17263
17264 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17265
94af9270 17266 name = dwarf2_name (die, cu);
c906108c
SS
17267 if (name)
17268 {
94af9270 17269 const char *linkagename;
34eaf542 17270 int suppress_add = 0;
94af9270 17271
34eaf542
TT
17272 if (space)
17273 sym = space;
17274 else
e623cf5d 17275 sym = allocate_symbol (objfile);
c906108c 17276 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
17277
17278 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 17279 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
17280 linkagename = dwarf2_physname (name, die, cu);
17281 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 17282
f55ee35c
JK
17283 /* Fortran does not have mangling standard and the mangling does differ
17284 between gfortran, iFort etc. */
17285 if (cu->language == language_fortran
b250c185 17286 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 17287 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 17288 dwarf2_full_name (name, die, cu),
29df156d 17289 NULL);
f55ee35c 17290
c906108c 17291 /* Default assumptions.
c5aa993b 17292 Use the passed type or decode it from the die. */
176620f1 17293 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 17294 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
17295 if (type != NULL)
17296 SYMBOL_TYPE (sym) = type;
17297 else
e7c27a73 17298 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
17299 attr = dwarf2_attr (die,
17300 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17301 cu);
c906108c
SS
17302 if (attr)
17303 {
17304 SYMBOL_LINE (sym) = DW_UNSND (attr);
17305 }
cb1df416 17306
edb3359d
DJ
17307 attr = dwarf2_attr (die,
17308 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17309 cu);
cb1df416
DJ
17310 if (attr)
17311 {
17312 int file_index = DW_UNSND (attr);
9a619af0 17313
cb1df416
DJ
17314 if (cu->line_header == NULL
17315 || file_index > cu->line_header->num_file_names)
17316 complaint (&symfile_complaints,
17317 _("file index out of range"));
1c3d648d 17318 else if (file_index > 0)
cb1df416
DJ
17319 {
17320 struct file_entry *fe;
9a619af0 17321
cb1df416
DJ
17322 fe = &cu->line_header->file_names[file_index - 1];
17323 SYMBOL_SYMTAB (sym) = fe->symtab;
17324 }
17325 }
17326
c906108c
SS
17327 switch (die->tag)
17328 {
17329 case DW_TAG_label:
e142c38c 17330 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
17331 if (attr)
17332 {
17333 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
17334 }
0f5238ed
TT
17335 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17336 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 17337 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 17338 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
17339 break;
17340 case DW_TAG_subprogram:
17341 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17342 finish_block. */
f1e6e072 17343 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 17344 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
17345 if ((attr2 && (DW_UNSND (attr2) != 0))
17346 || cu->language == language_ada)
c906108c 17347 {
2cfa0c8d
JB
17348 /* Subprograms marked external are stored as a global symbol.
17349 Ada subprograms, whether marked external or not, are always
17350 stored as a global symbol, because we want to be able to
17351 access them globally. For instance, we want to be able
17352 to break on a nested subprogram without having to
17353 specify the context. */
e37fd15a 17354 list_to_add = &global_symbols;
c906108c
SS
17355 }
17356 else
17357 {
e37fd15a 17358 list_to_add = cu->list_in_scope;
c906108c
SS
17359 }
17360 break;
edb3359d
DJ
17361 case DW_TAG_inlined_subroutine:
17362 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17363 finish_block. */
f1e6e072 17364 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 17365 SYMBOL_INLINED (sym) = 1;
481860b3 17366 list_to_add = cu->list_in_scope;
edb3359d 17367 break;
34eaf542
TT
17368 case DW_TAG_template_value_param:
17369 suppress_add = 1;
17370 /* Fall through. */
72929c62 17371 case DW_TAG_constant:
c906108c 17372 case DW_TAG_variable:
254e6b9e 17373 case DW_TAG_member:
0963b4bd
MS
17374 /* Compilation with minimal debug info may result in
17375 variables with missing type entries. Change the
17376 misleading `void' type to something sensible. */
c906108c 17377 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 17378 SYMBOL_TYPE (sym)
46bf5051 17379 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 17380
e142c38c 17381 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
17382 /* In the case of DW_TAG_member, we should only be called for
17383 static const members. */
17384 if (die->tag == DW_TAG_member)
17385 {
3863f96c
DE
17386 /* dwarf2_add_field uses die_is_declaration,
17387 so we do the same. */
254e6b9e
DE
17388 gdb_assert (die_is_declaration (die, cu));
17389 gdb_assert (attr);
17390 }
c906108c
SS
17391 if (attr)
17392 {
e7c27a73 17393 dwarf2_const_value (attr, sym, cu);
e142c38c 17394 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 17395 if (!suppress_add)
34eaf542
TT
17396 {
17397 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 17398 list_to_add = &global_symbols;
34eaf542 17399 else
e37fd15a 17400 list_to_add = cu->list_in_scope;
34eaf542 17401 }
c906108c
SS
17402 break;
17403 }
e142c38c 17404 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
17405 if (attr)
17406 {
e7c27a73 17407 var_decode_location (attr, sym, cu);
e142c38c 17408 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
17409
17410 /* Fortran explicitly imports any global symbols to the local
17411 scope by DW_TAG_common_block. */
17412 if (cu->language == language_fortran && die->parent
17413 && die->parent->tag == DW_TAG_common_block)
17414 attr2 = NULL;
17415
caac4577
JG
17416 if (SYMBOL_CLASS (sym) == LOC_STATIC
17417 && SYMBOL_VALUE_ADDRESS (sym) == 0
17418 && !dwarf2_per_objfile->has_section_at_zero)
17419 {
17420 /* When a static variable is eliminated by the linker,
17421 the corresponding debug information is not stripped
17422 out, but the variable address is set to null;
17423 do not add such variables into symbol table. */
17424 }
17425 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 17426 {
f55ee35c
JK
17427 /* Workaround gfortran PR debug/40040 - it uses
17428 DW_AT_location for variables in -fPIC libraries which may
17429 get overriden by other libraries/executable and get
17430 a different address. Resolve it by the minimal symbol
17431 which may come from inferior's executable using copy
17432 relocation. Make this workaround only for gfortran as for
17433 other compilers GDB cannot guess the minimal symbol
17434 Fortran mangling kind. */
17435 if (cu->language == language_fortran && die->parent
17436 && die->parent->tag == DW_TAG_module
17437 && cu->producer
17438 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
f1e6e072 17439 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 17440
1c809c68
TT
17441 /* A variable with DW_AT_external is never static,
17442 but it may be block-scoped. */
17443 list_to_add = (cu->list_in_scope == &file_symbols
17444 ? &global_symbols : cu->list_in_scope);
1c809c68 17445 }
c906108c 17446 else
e37fd15a 17447 list_to_add = cu->list_in_scope;
c906108c
SS
17448 }
17449 else
17450 {
17451 /* We do not know the address of this symbol.
c5aa993b
JM
17452 If it is an external symbol and we have type information
17453 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17454 The address of the variable will then be determined from
17455 the minimal symbol table whenever the variable is
17456 referenced. */
e142c38c 17457 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
17458
17459 /* Fortran explicitly imports any global symbols to the local
17460 scope by DW_TAG_common_block. */
17461 if (cu->language == language_fortran && die->parent
17462 && die->parent->tag == DW_TAG_common_block)
17463 {
17464 /* SYMBOL_CLASS doesn't matter here because
17465 read_common_block is going to reset it. */
17466 if (!suppress_add)
17467 list_to_add = cu->list_in_scope;
17468 }
17469 else if (attr2 && (DW_UNSND (attr2) != 0)
17470 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 17471 {
0fe7935b
DJ
17472 /* A variable with DW_AT_external is never static, but it
17473 may be block-scoped. */
17474 list_to_add = (cu->list_in_scope == &file_symbols
17475 ? &global_symbols : cu->list_in_scope);
17476
f1e6e072 17477 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 17478 }
442ddf59
JK
17479 else if (!die_is_declaration (die, cu))
17480 {
17481 /* Use the default LOC_OPTIMIZED_OUT class. */
17482 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
17483 if (!suppress_add)
17484 list_to_add = cu->list_in_scope;
442ddf59 17485 }
c906108c
SS
17486 }
17487 break;
17488 case DW_TAG_formal_parameter:
edb3359d
DJ
17489 /* If we are inside a function, mark this as an argument. If
17490 not, we might be looking at an argument to an inlined function
17491 when we do not have enough information to show inlined frames;
17492 pretend it's a local variable in that case so that the user can
17493 still see it. */
17494 if (context_stack_depth > 0
17495 && context_stack[context_stack_depth - 1].name != NULL)
17496 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 17497 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
17498 if (attr)
17499 {
e7c27a73 17500 var_decode_location (attr, sym, cu);
c906108c 17501 }
e142c38c 17502 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
17503 if (attr)
17504 {
e7c27a73 17505 dwarf2_const_value (attr, sym, cu);
c906108c 17506 }
f346a30d 17507
e37fd15a 17508 list_to_add = cu->list_in_scope;
c906108c
SS
17509 break;
17510 case DW_TAG_unspecified_parameters:
17511 /* From varargs functions; gdb doesn't seem to have any
17512 interest in this information, so just ignore it for now.
17513 (FIXME?) */
17514 break;
34eaf542
TT
17515 case DW_TAG_template_type_param:
17516 suppress_add = 1;
17517 /* Fall through. */
c906108c 17518 case DW_TAG_class_type:
680b30c7 17519 case DW_TAG_interface_type:
c906108c
SS
17520 case DW_TAG_structure_type:
17521 case DW_TAG_union_type:
72019c9c 17522 case DW_TAG_set_type:
c906108c 17523 case DW_TAG_enumeration_type:
f1e6e072 17524 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 17525 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 17526
63d06c5c 17527 {
987504bb 17528 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
17529 really ever be static objects: otherwise, if you try
17530 to, say, break of a class's method and you're in a file
17531 which doesn't mention that class, it won't work unless
17532 the check for all static symbols in lookup_symbol_aux
17533 saves you. See the OtherFileClass tests in
17534 gdb.c++/namespace.exp. */
17535
e37fd15a 17536 if (!suppress_add)
34eaf542 17537 {
34eaf542
TT
17538 list_to_add = (cu->list_in_scope == &file_symbols
17539 && (cu->language == language_cplus
17540 || cu->language == language_java)
17541 ? &global_symbols : cu->list_in_scope);
63d06c5c 17542
64382290
TT
17543 /* The semantics of C++ state that "struct foo {
17544 ... }" also defines a typedef for "foo". A Java
17545 class declaration also defines a typedef for the
17546 class. */
17547 if (cu->language == language_cplus
17548 || cu->language == language_java
17549 || cu->language == language_ada)
17550 {
17551 /* The symbol's name is already allocated along
17552 with this objfile, so we don't need to
17553 duplicate it for the type. */
17554 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17555 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
17556 }
63d06c5c
DC
17557 }
17558 }
c906108c
SS
17559 break;
17560 case DW_TAG_typedef:
f1e6e072 17561 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 17562 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 17563 list_to_add = cu->list_in_scope;
63d06c5c 17564 break;
c906108c 17565 case DW_TAG_base_type:
a02abb62 17566 case DW_TAG_subrange_type:
f1e6e072 17567 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 17568 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 17569 list_to_add = cu->list_in_scope;
c906108c
SS
17570 break;
17571 case DW_TAG_enumerator:
e142c38c 17572 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
17573 if (attr)
17574 {
e7c27a73 17575 dwarf2_const_value (attr, sym, cu);
c906108c 17576 }
63d06c5c
DC
17577 {
17578 /* NOTE: carlton/2003-11-10: See comment above in the
17579 DW_TAG_class_type, etc. block. */
17580
e142c38c 17581 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
17582 && (cu->language == language_cplus
17583 || cu->language == language_java)
e142c38c 17584 ? &global_symbols : cu->list_in_scope);
63d06c5c 17585 }
c906108c 17586 break;
5c4e30ca 17587 case DW_TAG_namespace:
f1e6e072 17588 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 17589 list_to_add = &global_symbols;
5c4e30ca 17590 break;
4357ac6c 17591 case DW_TAG_common_block:
f1e6e072 17592 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
17593 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
17594 add_symbol_to_list (sym, cu->list_in_scope);
17595 break;
c906108c
SS
17596 default:
17597 /* Not a tag we recognize. Hopefully we aren't processing
17598 trash data, but since we must specifically ignore things
17599 we don't recognize, there is nothing else we should do at
0963b4bd 17600 this point. */
e2e0b3e5 17601 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 17602 dwarf_tag_name (die->tag));
c906108c
SS
17603 break;
17604 }
df8a16a1 17605
e37fd15a
SW
17606 if (suppress_add)
17607 {
17608 sym->hash_next = objfile->template_symbols;
17609 objfile->template_symbols = sym;
17610 list_to_add = NULL;
17611 }
17612
17613 if (list_to_add != NULL)
17614 add_symbol_to_list (sym, list_to_add);
17615
df8a16a1
DJ
17616 /* For the benefit of old versions of GCC, check for anonymous
17617 namespaces based on the demangled name. */
4d4ec4e5 17618 if (!cu->processing_has_namespace_info
94af9270 17619 && cu->language == language_cplus)
a10964d1 17620 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
17621 }
17622 return (sym);
17623}
17624
34eaf542
TT
17625/* A wrapper for new_symbol_full that always allocates a new symbol. */
17626
17627static struct symbol *
17628new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
17629{
17630 return new_symbol_full (die, type, cu, NULL);
17631}
17632
98bfdba5
PA
17633/* Given an attr with a DW_FORM_dataN value in host byte order,
17634 zero-extend it as appropriate for the symbol's type. The DWARF
17635 standard (v4) is not entirely clear about the meaning of using
17636 DW_FORM_dataN for a constant with a signed type, where the type is
17637 wider than the data. The conclusion of a discussion on the DWARF
17638 list was that this is unspecified. We choose to always zero-extend
17639 because that is the interpretation long in use by GCC. */
c906108c 17640
98bfdba5 17641static gdb_byte *
ff39bb5e 17642dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 17643 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 17644{
e7c27a73 17645 struct objfile *objfile = cu->objfile;
e17a4113
UW
17646 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
17647 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
17648 LONGEST l = DW_UNSND (attr);
17649
17650 if (bits < sizeof (*value) * 8)
17651 {
17652 l &= ((LONGEST) 1 << bits) - 1;
17653 *value = l;
17654 }
17655 else if (bits == sizeof (*value) * 8)
17656 *value = l;
17657 else
17658 {
17659 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
17660 store_unsigned_integer (bytes, bits / 8, byte_order, l);
17661 return bytes;
17662 }
17663
17664 return NULL;
17665}
17666
17667/* Read a constant value from an attribute. Either set *VALUE, or if
17668 the value does not fit in *VALUE, set *BYTES - either already
17669 allocated on the objfile obstack, or newly allocated on OBSTACK,
17670 or, set *BATON, if we translated the constant to a location
17671 expression. */
17672
17673static void
ff39bb5e 17674dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
17675 const char *name, struct obstack *obstack,
17676 struct dwarf2_cu *cu,
d521ce57 17677 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
17678 struct dwarf2_locexpr_baton **baton)
17679{
17680 struct objfile *objfile = cu->objfile;
17681 struct comp_unit_head *cu_header = &cu->header;
c906108c 17682 struct dwarf_block *blk;
98bfdba5
PA
17683 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
17684 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
17685
17686 *value = 0;
17687 *bytes = NULL;
17688 *baton = NULL;
c906108c
SS
17689
17690 switch (attr->form)
17691 {
17692 case DW_FORM_addr:
3019eac3 17693 case DW_FORM_GNU_addr_index:
ac56253d 17694 {
ac56253d
TT
17695 gdb_byte *data;
17696
98bfdba5
PA
17697 if (TYPE_LENGTH (type) != cu_header->addr_size)
17698 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 17699 cu_header->addr_size,
98bfdba5 17700 TYPE_LENGTH (type));
ac56253d
TT
17701 /* Symbols of this form are reasonably rare, so we just
17702 piggyback on the existing location code rather than writing
17703 a new implementation of symbol_computed_ops. */
7919a973 17704 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
98bfdba5
PA
17705 (*baton)->per_cu = cu->per_cu;
17706 gdb_assert ((*baton)->per_cu);
ac56253d 17707
98bfdba5 17708 (*baton)->size = 2 + cu_header->addr_size;
7919a973 17709 data = obstack_alloc (obstack, (*baton)->size);
98bfdba5 17710 (*baton)->data = data;
ac56253d
TT
17711
17712 data[0] = DW_OP_addr;
17713 store_unsigned_integer (&data[1], cu_header->addr_size,
17714 byte_order, DW_ADDR (attr));
17715 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 17716 }
c906108c 17717 break;
4ac36638 17718 case DW_FORM_string:
93b5768b 17719 case DW_FORM_strp:
3019eac3 17720 case DW_FORM_GNU_str_index:
36586728 17721 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
17722 /* DW_STRING is already allocated on the objfile obstack, point
17723 directly to it. */
d521ce57 17724 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 17725 break;
c906108c
SS
17726 case DW_FORM_block1:
17727 case DW_FORM_block2:
17728 case DW_FORM_block4:
17729 case DW_FORM_block:
2dc7f7b3 17730 case DW_FORM_exprloc:
c906108c 17731 blk = DW_BLOCK (attr);
98bfdba5
PA
17732 if (TYPE_LENGTH (type) != blk->size)
17733 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
17734 TYPE_LENGTH (type));
17735 *bytes = blk->data;
c906108c 17736 break;
2df3850c
JM
17737
17738 /* The DW_AT_const_value attributes are supposed to carry the
17739 symbol's value "represented as it would be on the target
17740 architecture." By the time we get here, it's already been
17741 converted to host endianness, so we just need to sign- or
17742 zero-extend it as appropriate. */
17743 case DW_FORM_data1:
3aef2284 17744 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 17745 break;
c906108c 17746 case DW_FORM_data2:
3aef2284 17747 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 17748 break;
c906108c 17749 case DW_FORM_data4:
3aef2284 17750 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 17751 break;
c906108c 17752 case DW_FORM_data8:
3aef2284 17753 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
17754 break;
17755
c906108c 17756 case DW_FORM_sdata:
98bfdba5 17757 *value = DW_SND (attr);
2df3850c
JM
17758 break;
17759
c906108c 17760 case DW_FORM_udata:
98bfdba5 17761 *value = DW_UNSND (attr);
c906108c 17762 break;
2df3850c 17763
c906108c 17764 default:
4d3c2250 17765 complaint (&symfile_complaints,
e2e0b3e5 17766 _("unsupported const value attribute form: '%s'"),
4d3c2250 17767 dwarf_form_name (attr->form));
98bfdba5 17768 *value = 0;
c906108c
SS
17769 break;
17770 }
17771}
17772
2df3850c 17773
98bfdba5
PA
17774/* Copy constant value from an attribute to a symbol. */
17775
2df3850c 17776static void
ff39bb5e 17777dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 17778 struct dwarf2_cu *cu)
2df3850c 17779{
98bfdba5
PA
17780 struct objfile *objfile = cu->objfile;
17781 struct comp_unit_head *cu_header = &cu->header;
12df843f 17782 LONGEST value;
d521ce57 17783 const gdb_byte *bytes;
98bfdba5 17784 struct dwarf2_locexpr_baton *baton;
2df3850c 17785
98bfdba5
PA
17786 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
17787 SYMBOL_PRINT_NAME (sym),
17788 &objfile->objfile_obstack, cu,
17789 &value, &bytes, &baton);
2df3850c 17790
98bfdba5
PA
17791 if (baton != NULL)
17792 {
98bfdba5 17793 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 17794 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
17795 }
17796 else if (bytes != NULL)
17797 {
17798 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 17799 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
17800 }
17801 else
17802 {
17803 SYMBOL_VALUE (sym) = value;
f1e6e072 17804 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 17805 }
2df3850c
JM
17806}
17807
c906108c
SS
17808/* Return the type of the die in question using its DW_AT_type attribute. */
17809
17810static struct type *
e7c27a73 17811die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17812{
c906108c 17813 struct attribute *type_attr;
c906108c 17814
e142c38c 17815 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
17816 if (!type_attr)
17817 {
17818 /* A missing DW_AT_type represents a void type. */
46bf5051 17819 return objfile_type (cu->objfile)->builtin_void;
c906108c 17820 }
348e048f 17821
673bfd45 17822 return lookup_die_type (die, type_attr, cu);
c906108c
SS
17823}
17824
b4ba55a1
JB
17825/* True iff CU's producer generates GNAT Ada auxiliary information
17826 that allows to find parallel types through that information instead
17827 of having to do expensive parallel lookups by type name. */
17828
17829static int
17830need_gnat_info (struct dwarf2_cu *cu)
17831{
17832 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
17833 of GNAT produces this auxiliary information, without any indication
17834 that it is produced. Part of enhancing the FSF version of GNAT
17835 to produce that information will be to put in place an indicator
17836 that we can use in order to determine whether the descriptive type
17837 info is available or not. One suggestion that has been made is
17838 to use a new attribute, attached to the CU die. For now, assume
17839 that the descriptive type info is not available. */
17840 return 0;
17841}
17842
b4ba55a1
JB
17843/* Return the auxiliary type of the die in question using its
17844 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
17845 attribute is not present. */
17846
17847static struct type *
17848die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
17849{
b4ba55a1 17850 struct attribute *type_attr;
b4ba55a1
JB
17851
17852 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
17853 if (!type_attr)
17854 return NULL;
17855
673bfd45 17856 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
17857}
17858
17859/* If DIE has a descriptive_type attribute, then set the TYPE's
17860 descriptive type accordingly. */
17861
17862static void
17863set_descriptive_type (struct type *type, struct die_info *die,
17864 struct dwarf2_cu *cu)
17865{
17866 struct type *descriptive_type = die_descriptive_type (die, cu);
17867
17868 if (descriptive_type)
17869 {
17870 ALLOCATE_GNAT_AUX_TYPE (type);
17871 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
17872 }
17873}
17874
c906108c
SS
17875/* Return the containing type of the die in question using its
17876 DW_AT_containing_type attribute. */
17877
17878static struct type *
e7c27a73 17879die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17880{
c906108c 17881 struct attribute *type_attr;
c906108c 17882
e142c38c 17883 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
17884 if (!type_attr)
17885 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 17886 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 17887
673bfd45 17888 return lookup_die_type (die, type_attr, cu);
c906108c
SS
17889}
17890
ac9ec31b
DE
17891/* Return an error marker type to use for the ill formed type in DIE/CU. */
17892
17893static struct type *
17894build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
17895{
17896 struct objfile *objfile = dwarf2_per_objfile->objfile;
17897 char *message, *saved;
17898
17899 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 17900 objfile_name (objfile),
ac9ec31b
DE
17901 cu->header.offset.sect_off,
17902 die->offset.sect_off);
17903 saved = obstack_copy0 (&objfile->objfile_obstack,
17904 message, strlen (message));
17905 xfree (message);
17906
17907 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
17908}
17909
673bfd45 17910/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
17911 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
17912 DW_AT_containing_type.
673bfd45
DE
17913 If there is no type substitute an error marker. */
17914
c906108c 17915static struct type *
ff39bb5e 17916lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 17917 struct dwarf2_cu *cu)
c906108c 17918{
bb5ed363 17919 struct objfile *objfile = cu->objfile;
f792889a
DJ
17920 struct type *this_type;
17921
ac9ec31b
DE
17922 gdb_assert (attr->name == DW_AT_type
17923 || attr->name == DW_AT_GNAT_descriptive_type
17924 || attr->name == DW_AT_containing_type);
17925
673bfd45
DE
17926 /* First see if we have it cached. */
17927
36586728
TT
17928 if (attr->form == DW_FORM_GNU_ref_alt)
17929 {
17930 struct dwarf2_per_cu_data *per_cu;
17931 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17932
17933 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
17934 this_type = get_die_type_at_offset (offset, per_cu);
17935 }
7771576e 17936 else if (attr_form_is_ref (attr))
673bfd45 17937 {
b64f50a1 17938 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
17939
17940 this_type = get_die_type_at_offset (offset, cu->per_cu);
17941 }
55f1336d 17942 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 17943 {
ac9ec31b 17944 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 17945
ac9ec31b 17946 return get_signatured_type (die, signature, cu);
673bfd45
DE
17947 }
17948 else
17949 {
ac9ec31b
DE
17950 complaint (&symfile_complaints,
17951 _("Dwarf Error: Bad type attribute %s in DIE"
17952 " at 0x%x [in module %s]"),
17953 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 17954 objfile_name (objfile));
ac9ec31b 17955 return build_error_marker_type (cu, die);
673bfd45
DE
17956 }
17957
17958 /* If not cached we need to read it in. */
17959
17960 if (this_type == NULL)
17961 {
ac9ec31b 17962 struct die_info *type_die = NULL;
673bfd45
DE
17963 struct dwarf2_cu *type_cu = cu;
17964
7771576e 17965 if (attr_form_is_ref (attr))
ac9ec31b
DE
17966 type_die = follow_die_ref (die, attr, &type_cu);
17967 if (type_die == NULL)
17968 return build_error_marker_type (cu, die);
17969 /* If we find the type now, it's probably because the type came
3019eac3
DE
17970 from an inter-CU reference and the type's CU got expanded before
17971 ours. */
ac9ec31b 17972 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
17973 }
17974
17975 /* If we still don't have a type use an error marker. */
17976
17977 if (this_type == NULL)
ac9ec31b 17978 return build_error_marker_type (cu, die);
673bfd45 17979
f792889a 17980 return this_type;
c906108c
SS
17981}
17982
673bfd45
DE
17983/* Return the type in DIE, CU.
17984 Returns NULL for invalid types.
17985
02142a6c 17986 This first does a lookup in die_type_hash,
673bfd45
DE
17987 and only reads the die in if necessary.
17988
17989 NOTE: This can be called when reading in partial or full symbols. */
17990
f792889a 17991static struct type *
e7c27a73 17992read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17993{
f792889a
DJ
17994 struct type *this_type;
17995
17996 this_type = get_die_type (die, cu);
17997 if (this_type)
17998 return this_type;
17999
673bfd45
DE
18000 return read_type_die_1 (die, cu);
18001}
18002
18003/* Read the type in DIE, CU.
18004 Returns NULL for invalid types. */
18005
18006static struct type *
18007read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18008{
18009 struct type *this_type = NULL;
18010
c906108c
SS
18011 switch (die->tag)
18012 {
18013 case DW_TAG_class_type:
680b30c7 18014 case DW_TAG_interface_type:
c906108c
SS
18015 case DW_TAG_structure_type:
18016 case DW_TAG_union_type:
f792889a 18017 this_type = read_structure_type (die, cu);
c906108c
SS
18018 break;
18019 case DW_TAG_enumeration_type:
f792889a 18020 this_type = read_enumeration_type (die, cu);
c906108c
SS
18021 break;
18022 case DW_TAG_subprogram:
18023 case DW_TAG_subroutine_type:
edb3359d 18024 case DW_TAG_inlined_subroutine:
f792889a 18025 this_type = read_subroutine_type (die, cu);
c906108c
SS
18026 break;
18027 case DW_TAG_array_type:
f792889a 18028 this_type = read_array_type (die, cu);
c906108c 18029 break;
72019c9c 18030 case DW_TAG_set_type:
f792889a 18031 this_type = read_set_type (die, cu);
72019c9c 18032 break;
c906108c 18033 case DW_TAG_pointer_type:
f792889a 18034 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
18035 break;
18036 case DW_TAG_ptr_to_member_type:
f792889a 18037 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
18038 break;
18039 case DW_TAG_reference_type:
f792889a 18040 this_type = read_tag_reference_type (die, cu);
c906108c
SS
18041 break;
18042 case DW_TAG_const_type:
f792889a 18043 this_type = read_tag_const_type (die, cu);
c906108c
SS
18044 break;
18045 case DW_TAG_volatile_type:
f792889a 18046 this_type = read_tag_volatile_type (die, cu);
c906108c 18047 break;
06d66ee9
TT
18048 case DW_TAG_restrict_type:
18049 this_type = read_tag_restrict_type (die, cu);
18050 break;
c906108c 18051 case DW_TAG_string_type:
f792889a 18052 this_type = read_tag_string_type (die, cu);
c906108c
SS
18053 break;
18054 case DW_TAG_typedef:
f792889a 18055 this_type = read_typedef (die, cu);
c906108c 18056 break;
a02abb62 18057 case DW_TAG_subrange_type:
f792889a 18058 this_type = read_subrange_type (die, cu);
a02abb62 18059 break;
c906108c 18060 case DW_TAG_base_type:
f792889a 18061 this_type = read_base_type (die, cu);
c906108c 18062 break;
81a17f79 18063 case DW_TAG_unspecified_type:
f792889a 18064 this_type = read_unspecified_type (die, cu);
81a17f79 18065 break;
0114d602
DJ
18066 case DW_TAG_namespace:
18067 this_type = read_namespace_type (die, cu);
18068 break;
f55ee35c
JK
18069 case DW_TAG_module:
18070 this_type = read_module_type (die, cu);
18071 break;
c906108c 18072 default:
3e43a32a
MS
18073 complaint (&symfile_complaints,
18074 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 18075 dwarf_tag_name (die->tag));
c906108c
SS
18076 break;
18077 }
63d06c5c 18078
f792889a 18079 return this_type;
63d06c5c
DC
18080}
18081
abc72ce4
DE
18082/* See if we can figure out if the class lives in a namespace. We do
18083 this by looking for a member function; its demangled name will
18084 contain namespace info, if there is any.
18085 Return the computed name or NULL.
18086 Space for the result is allocated on the objfile's obstack.
18087 This is the full-die version of guess_partial_die_structure_name.
18088 In this case we know DIE has no useful parent. */
18089
18090static char *
18091guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18092{
18093 struct die_info *spec_die;
18094 struct dwarf2_cu *spec_cu;
18095 struct die_info *child;
18096
18097 spec_cu = cu;
18098 spec_die = die_specification (die, &spec_cu);
18099 if (spec_die != NULL)
18100 {
18101 die = spec_die;
18102 cu = spec_cu;
18103 }
18104
18105 for (child = die->child;
18106 child != NULL;
18107 child = child->sibling)
18108 {
18109 if (child->tag == DW_TAG_subprogram)
18110 {
18111 struct attribute *attr;
18112
18113 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18114 if (attr == NULL)
18115 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18116 if (attr != NULL)
18117 {
18118 char *actual_name
18119 = language_class_name_from_physname (cu->language_defn,
18120 DW_STRING (attr));
18121 char *name = NULL;
18122
18123 if (actual_name != NULL)
18124 {
15d034d0 18125 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
18126
18127 if (die_name != NULL
18128 && strcmp (die_name, actual_name) != 0)
18129 {
18130 /* Strip off the class name from the full name.
18131 We want the prefix. */
18132 int die_name_len = strlen (die_name);
18133 int actual_name_len = strlen (actual_name);
18134
18135 /* Test for '::' as a sanity check. */
18136 if (actual_name_len > die_name_len + 2
3e43a32a
MS
18137 && actual_name[actual_name_len
18138 - die_name_len - 1] == ':')
abc72ce4 18139 name =
10f0c4bb
TT
18140 obstack_copy0 (&cu->objfile->objfile_obstack,
18141 actual_name,
18142 actual_name_len - die_name_len - 2);
abc72ce4
DE
18143 }
18144 }
18145 xfree (actual_name);
18146 return name;
18147 }
18148 }
18149 }
18150
18151 return NULL;
18152}
18153
96408a79
SA
18154/* GCC might emit a nameless typedef that has a linkage name. Determine the
18155 prefix part in such case. See
18156 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18157
18158static char *
18159anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18160{
18161 struct attribute *attr;
18162 char *base;
18163
18164 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18165 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18166 return NULL;
18167
18168 attr = dwarf2_attr (die, DW_AT_name, cu);
18169 if (attr != NULL && DW_STRING (attr) != NULL)
18170 return NULL;
18171
18172 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18173 if (attr == NULL)
18174 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18175 if (attr == NULL || DW_STRING (attr) == NULL)
18176 return NULL;
18177
18178 /* dwarf2_name had to be already called. */
18179 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18180
18181 /* Strip the base name, keep any leading namespaces/classes. */
18182 base = strrchr (DW_STRING (attr), ':');
18183 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18184 return "";
18185
10f0c4bb
TT
18186 return obstack_copy0 (&cu->objfile->objfile_obstack,
18187 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
18188}
18189
fdde2d81 18190/* Return the name of the namespace/class that DIE is defined within,
0114d602 18191 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 18192
0114d602
DJ
18193 For example, if we're within the method foo() in the following
18194 code:
18195
18196 namespace N {
18197 class C {
18198 void foo () {
18199 }
18200 };
18201 }
18202
18203 then determine_prefix on foo's die will return "N::C". */
fdde2d81 18204
0d5cff50 18205static const char *
e142c38c 18206determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 18207{
0114d602
DJ
18208 struct die_info *parent, *spec_die;
18209 struct dwarf2_cu *spec_cu;
18210 struct type *parent_type;
96408a79 18211 char *retval;
63d06c5c 18212
f55ee35c
JK
18213 if (cu->language != language_cplus && cu->language != language_java
18214 && cu->language != language_fortran)
0114d602
DJ
18215 return "";
18216
96408a79
SA
18217 retval = anonymous_struct_prefix (die, cu);
18218 if (retval)
18219 return retval;
18220
0114d602
DJ
18221 /* We have to be careful in the presence of DW_AT_specification.
18222 For example, with GCC 3.4, given the code
18223
18224 namespace N {
18225 void foo() {
18226 // Definition of N::foo.
18227 }
18228 }
18229
18230 then we'll have a tree of DIEs like this:
18231
18232 1: DW_TAG_compile_unit
18233 2: DW_TAG_namespace // N
18234 3: DW_TAG_subprogram // declaration of N::foo
18235 4: DW_TAG_subprogram // definition of N::foo
18236 DW_AT_specification // refers to die #3
18237
18238 Thus, when processing die #4, we have to pretend that we're in
18239 the context of its DW_AT_specification, namely the contex of die
18240 #3. */
18241 spec_cu = cu;
18242 spec_die = die_specification (die, &spec_cu);
18243 if (spec_die == NULL)
18244 parent = die->parent;
18245 else
63d06c5c 18246 {
0114d602
DJ
18247 parent = spec_die->parent;
18248 cu = spec_cu;
63d06c5c 18249 }
0114d602
DJ
18250
18251 if (parent == NULL)
18252 return "";
98bfdba5
PA
18253 else if (parent->building_fullname)
18254 {
18255 const char *name;
18256 const char *parent_name;
18257
18258 /* It has been seen on RealView 2.2 built binaries,
18259 DW_TAG_template_type_param types actually _defined_ as
18260 children of the parent class:
18261
18262 enum E {};
18263 template class <class Enum> Class{};
18264 Class<enum E> class_e;
18265
18266 1: DW_TAG_class_type (Class)
18267 2: DW_TAG_enumeration_type (E)
18268 3: DW_TAG_enumerator (enum1:0)
18269 3: DW_TAG_enumerator (enum2:1)
18270 ...
18271 2: DW_TAG_template_type_param
18272 DW_AT_type DW_FORM_ref_udata (E)
18273
18274 Besides being broken debug info, it can put GDB into an
18275 infinite loop. Consider:
18276
18277 When we're building the full name for Class<E>, we'll start
18278 at Class, and go look over its template type parameters,
18279 finding E. We'll then try to build the full name of E, and
18280 reach here. We're now trying to build the full name of E,
18281 and look over the parent DIE for containing scope. In the
18282 broken case, if we followed the parent DIE of E, we'd again
18283 find Class, and once again go look at its template type
18284 arguments, etc., etc. Simply don't consider such parent die
18285 as source-level parent of this die (it can't be, the language
18286 doesn't allow it), and break the loop here. */
18287 name = dwarf2_name (die, cu);
18288 parent_name = dwarf2_name (parent, cu);
18289 complaint (&symfile_complaints,
18290 _("template param type '%s' defined within parent '%s'"),
18291 name ? name : "<unknown>",
18292 parent_name ? parent_name : "<unknown>");
18293 return "";
18294 }
63d06c5c 18295 else
0114d602
DJ
18296 switch (parent->tag)
18297 {
63d06c5c 18298 case DW_TAG_namespace:
0114d602 18299 parent_type = read_type_die (parent, cu);
acebe513
UW
18300 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18301 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18302 Work around this problem here. */
18303 if (cu->language == language_cplus
18304 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18305 return "";
0114d602
DJ
18306 /* We give a name to even anonymous namespaces. */
18307 return TYPE_TAG_NAME (parent_type);
63d06c5c 18308 case DW_TAG_class_type:
680b30c7 18309 case DW_TAG_interface_type:
63d06c5c 18310 case DW_TAG_structure_type:
0114d602 18311 case DW_TAG_union_type:
f55ee35c 18312 case DW_TAG_module:
0114d602
DJ
18313 parent_type = read_type_die (parent, cu);
18314 if (TYPE_TAG_NAME (parent_type) != NULL)
18315 return TYPE_TAG_NAME (parent_type);
18316 else
18317 /* An anonymous structure is only allowed non-static data
18318 members; no typedefs, no member functions, et cetera.
18319 So it does not need a prefix. */
18320 return "";
abc72ce4 18321 case DW_TAG_compile_unit:
95554aad 18322 case DW_TAG_partial_unit:
abc72ce4
DE
18323 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18324 if (cu->language == language_cplus
8b70b953 18325 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
18326 && die->child != NULL
18327 && (die->tag == DW_TAG_class_type
18328 || die->tag == DW_TAG_structure_type
18329 || die->tag == DW_TAG_union_type))
18330 {
18331 char *name = guess_full_die_structure_name (die, cu);
18332 if (name != NULL)
18333 return name;
18334 }
18335 return "";
63d06c5c 18336 default:
8176b9b8 18337 return determine_prefix (parent, cu);
63d06c5c 18338 }
63d06c5c
DC
18339}
18340
3e43a32a
MS
18341/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18342 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18343 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18344 an obconcat, otherwise allocate storage for the result. The CU argument is
18345 used to determine the language and hence, the appropriate separator. */
987504bb 18346
f55ee35c 18347#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
18348
18349static char *
f55ee35c
JK
18350typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18351 int physname, struct dwarf2_cu *cu)
63d06c5c 18352{
f55ee35c 18353 const char *lead = "";
5c315b68 18354 const char *sep;
63d06c5c 18355
3e43a32a
MS
18356 if (suffix == NULL || suffix[0] == '\0'
18357 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
18358 sep = "";
18359 else if (cu->language == language_java)
18360 sep = ".";
f55ee35c
JK
18361 else if (cu->language == language_fortran && physname)
18362 {
18363 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18364 DW_AT_MIPS_linkage_name is preferred and used instead. */
18365
18366 lead = "__";
18367 sep = "_MOD_";
18368 }
987504bb
JJ
18369 else
18370 sep = "::";
63d06c5c 18371
6dd47d34
DE
18372 if (prefix == NULL)
18373 prefix = "";
18374 if (suffix == NULL)
18375 suffix = "";
18376
987504bb
JJ
18377 if (obs == NULL)
18378 {
3e43a32a
MS
18379 char *retval
18380 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 18381
f55ee35c
JK
18382 strcpy (retval, lead);
18383 strcat (retval, prefix);
6dd47d34
DE
18384 strcat (retval, sep);
18385 strcat (retval, suffix);
63d06c5c
DC
18386 return retval;
18387 }
987504bb
JJ
18388 else
18389 {
18390 /* We have an obstack. */
f55ee35c 18391 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 18392 }
63d06c5c
DC
18393}
18394
c906108c
SS
18395/* Return sibling of die, NULL if no sibling. */
18396
f9aca02d 18397static struct die_info *
fba45db2 18398sibling_die (struct die_info *die)
c906108c 18399{
639d11d3 18400 return die->sibling;
c906108c
SS
18401}
18402
71c25dea
TT
18403/* Get name of a die, return NULL if not found. */
18404
15d034d0
TT
18405static const char *
18406dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
18407 struct obstack *obstack)
18408{
18409 if (name && cu->language == language_cplus)
18410 {
18411 char *canon_name = cp_canonicalize_string (name);
18412
18413 if (canon_name != NULL)
18414 {
18415 if (strcmp (canon_name, name) != 0)
10f0c4bb 18416 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
18417 xfree (canon_name);
18418 }
18419 }
18420
18421 return name;
c906108c
SS
18422}
18423
9219021c
DC
18424/* Get name of a die, return NULL if not found. */
18425
15d034d0 18426static const char *
e142c38c 18427dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
18428{
18429 struct attribute *attr;
18430
e142c38c 18431 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
18432 if ((!attr || !DW_STRING (attr))
18433 && die->tag != DW_TAG_class_type
18434 && die->tag != DW_TAG_interface_type
18435 && die->tag != DW_TAG_structure_type
18436 && die->tag != DW_TAG_union_type)
71c25dea
TT
18437 return NULL;
18438
18439 switch (die->tag)
18440 {
18441 case DW_TAG_compile_unit:
95554aad 18442 case DW_TAG_partial_unit:
71c25dea
TT
18443 /* Compilation units have a DW_AT_name that is a filename, not
18444 a source language identifier. */
18445 case DW_TAG_enumeration_type:
18446 case DW_TAG_enumerator:
18447 /* These tags always have simple identifiers already; no need
18448 to canonicalize them. */
18449 return DW_STRING (attr);
907af001 18450
418835cc
KS
18451 case DW_TAG_subprogram:
18452 /* Java constructors will all be named "<init>", so return
18453 the class name when we see this special case. */
18454 if (cu->language == language_java
18455 && DW_STRING (attr) != NULL
18456 && strcmp (DW_STRING (attr), "<init>") == 0)
18457 {
18458 struct dwarf2_cu *spec_cu = cu;
18459 struct die_info *spec_die;
18460
18461 /* GCJ will output '<init>' for Java constructor names.
18462 For this special case, return the name of the parent class. */
18463
18464 /* GCJ may output suprogram DIEs with AT_specification set.
18465 If so, use the name of the specified DIE. */
18466 spec_die = die_specification (die, &spec_cu);
18467 if (spec_die != NULL)
18468 return dwarf2_name (spec_die, spec_cu);
18469
18470 do
18471 {
18472 die = die->parent;
18473 if (die->tag == DW_TAG_class_type)
18474 return dwarf2_name (die, cu);
18475 }
95554aad
TT
18476 while (die->tag != DW_TAG_compile_unit
18477 && die->tag != DW_TAG_partial_unit);
418835cc 18478 }
907af001
UW
18479 break;
18480
18481 case DW_TAG_class_type:
18482 case DW_TAG_interface_type:
18483 case DW_TAG_structure_type:
18484 case DW_TAG_union_type:
18485 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18486 structures or unions. These were of the form "._%d" in GCC 4.1,
18487 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18488 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
18489 if (attr && DW_STRING (attr)
18490 && (strncmp (DW_STRING (attr), "._", 2) == 0
18491 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 18492 return NULL;
53832f31
TT
18493
18494 /* GCC might emit a nameless typedef that has a linkage name. See
18495 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18496 if (!attr || DW_STRING (attr) == NULL)
18497 {
df5c6c50 18498 char *demangled = NULL;
53832f31
TT
18499
18500 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18501 if (attr == NULL)
18502 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18503
18504 if (attr == NULL || DW_STRING (attr) == NULL)
18505 return NULL;
18506
df5c6c50
JK
18507 /* Avoid demangling DW_STRING (attr) the second time on a second
18508 call for the same DIE. */
18509 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 18510 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
18511
18512 if (demangled)
18513 {
96408a79
SA
18514 char *base;
18515
53832f31 18516 /* FIXME: we already did this for the partial symbol... */
10f0c4bb
TT
18517 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
18518 demangled, strlen (demangled));
53832f31
TT
18519 DW_STRING_IS_CANONICAL (attr) = 1;
18520 xfree (demangled);
96408a79
SA
18521
18522 /* Strip any leading namespaces/classes, keep only the base name.
18523 DW_AT_name for named DIEs does not contain the prefixes. */
18524 base = strrchr (DW_STRING (attr), ':');
18525 if (base && base > DW_STRING (attr) && base[-1] == ':')
18526 return &base[1];
18527 else
18528 return DW_STRING (attr);
53832f31
TT
18529 }
18530 }
907af001
UW
18531 break;
18532
71c25dea 18533 default:
907af001
UW
18534 break;
18535 }
18536
18537 if (!DW_STRING_IS_CANONICAL (attr))
18538 {
18539 DW_STRING (attr)
18540 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
18541 &cu->objfile->objfile_obstack);
18542 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 18543 }
907af001 18544 return DW_STRING (attr);
9219021c
DC
18545}
18546
18547/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
18548 is none. *EXT_CU is the CU containing DIE on input, and the CU
18549 containing the return value on output. */
9219021c
DC
18550
18551static struct die_info *
f2f0e013 18552dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
18553{
18554 struct attribute *attr;
9219021c 18555
f2f0e013 18556 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
18557 if (attr == NULL)
18558 return NULL;
18559
f2f0e013 18560 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
18561}
18562
c906108c
SS
18563/* Convert a DIE tag into its string name. */
18564
f39c6ffd 18565static const char *
aa1ee363 18566dwarf_tag_name (unsigned tag)
c906108c 18567{
f39c6ffd
TT
18568 const char *name = get_DW_TAG_name (tag);
18569
18570 if (name == NULL)
18571 return "DW_TAG_<unknown>";
18572
18573 return name;
c906108c
SS
18574}
18575
18576/* Convert a DWARF attribute code into its string name. */
18577
f39c6ffd 18578static const char *
aa1ee363 18579dwarf_attr_name (unsigned attr)
c906108c 18580{
f39c6ffd
TT
18581 const char *name;
18582
c764a876 18583#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
18584 if (attr == DW_AT_MIPS_fde)
18585 return "DW_AT_MIPS_fde";
18586#else
18587 if (attr == DW_AT_HP_block_index)
18588 return "DW_AT_HP_block_index";
c764a876 18589#endif
f39c6ffd
TT
18590
18591 name = get_DW_AT_name (attr);
18592
18593 if (name == NULL)
18594 return "DW_AT_<unknown>";
18595
18596 return name;
c906108c
SS
18597}
18598
18599/* Convert a DWARF value form code into its string name. */
18600
f39c6ffd 18601static const char *
aa1ee363 18602dwarf_form_name (unsigned form)
c906108c 18603{
f39c6ffd
TT
18604 const char *name = get_DW_FORM_name (form);
18605
18606 if (name == NULL)
18607 return "DW_FORM_<unknown>";
18608
18609 return name;
c906108c
SS
18610}
18611
18612static char *
fba45db2 18613dwarf_bool_name (unsigned mybool)
c906108c
SS
18614{
18615 if (mybool)
18616 return "TRUE";
18617 else
18618 return "FALSE";
18619}
18620
18621/* Convert a DWARF type code into its string name. */
18622
f39c6ffd 18623static const char *
aa1ee363 18624dwarf_type_encoding_name (unsigned enc)
c906108c 18625{
f39c6ffd 18626 const char *name = get_DW_ATE_name (enc);
c906108c 18627
f39c6ffd
TT
18628 if (name == NULL)
18629 return "DW_ATE_<unknown>";
c906108c 18630
f39c6ffd 18631 return name;
c906108c 18632}
c906108c 18633
f9aca02d 18634static void
d97bc12b 18635dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
18636{
18637 unsigned int i;
18638
d97bc12b
DE
18639 print_spaces (indent, f);
18640 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 18641 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
18642
18643 if (die->parent != NULL)
18644 {
18645 print_spaces (indent, f);
18646 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 18647 die->parent->offset.sect_off);
d97bc12b
DE
18648 }
18649
18650 print_spaces (indent, f);
18651 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 18652 dwarf_bool_name (die->child != NULL));
c906108c 18653
d97bc12b
DE
18654 print_spaces (indent, f);
18655 fprintf_unfiltered (f, " attributes:\n");
18656
c906108c
SS
18657 for (i = 0; i < die->num_attrs; ++i)
18658 {
d97bc12b
DE
18659 print_spaces (indent, f);
18660 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
18661 dwarf_attr_name (die->attrs[i].name),
18662 dwarf_form_name (die->attrs[i].form));
d97bc12b 18663
c906108c
SS
18664 switch (die->attrs[i].form)
18665 {
c906108c 18666 case DW_FORM_addr:
3019eac3 18667 case DW_FORM_GNU_addr_index:
d97bc12b 18668 fprintf_unfiltered (f, "address: ");
5af949e3 18669 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
18670 break;
18671 case DW_FORM_block2:
18672 case DW_FORM_block4:
18673 case DW_FORM_block:
18674 case DW_FORM_block1:
56eb65bd
SP
18675 fprintf_unfiltered (f, "block: size %s",
18676 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 18677 break;
2dc7f7b3 18678 case DW_FORM_exprloc:
56eb65bd
SP
18679 fprintf_unfiltered (f, "expression: size %s",
18680 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 18681 break;
4568ecf9
DE
18682 case DW_FORM_ref_addr:
18683 fprintf_unfiltered (f, "ref address: ");
18684 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18685 break;
36586728
TT
18686 case DW_FORM_GNU_ref_alt:
18687 fprintf_unfiltered (f, "alt ref address: ");
18688 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18689 break;
10b3939b
DJ
18690 case DW_FORM_ref1:
18691 case DW_FORM_ref2:
18692 case DW_FORM_ref4:
4568ecf9
DE
18693 case DW_FORM_ref8:
18694 case DW_FORM_ref_udata:
d97bc12b 18695 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 18696 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 18697 break;
c906108c
SS
18698 case DW_FORM_data1:
18699 case DW_FORM_data2:
18700 case DW_FORM_data4:
ce5d95e1 18701 case DW_FORM_data8:
c906108c
SS
18702 case DW_FORM_udata:
18703 case DW_FORM_sdata:
43bbcdc2
PH
18704 fprintf_unfiltered (f, "constant: %s",
18705 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 18706 break;
2dc7f7b3
TT
18707 case DW_FORM_sec_offset:
18708 fprintf_unfiltered (f, "section offset: %s",
18709 pulongest (DW_UNSND (&die->attrs[i])));
18710 break;
55f1336d 18711 case DW_FORM_ref_sig8:
ac9ec31b
DE
18712 fprintf_unfiltered (f, "signature: %s",
18713 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 18714 break;
c906108c 18715 case DW_FORM_string:
4bdf3d34 18716 case DW_FORM_strp:
3019eac3 18717 case DW_FORM_GNU_str_index:
36586728 18718 case DW_FORM_GNU_strp_alt:
8285870a 18719 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 18720 DW_STRING (&die->attrs[i])
8285870a
JK
18721 ? DW_STRING (&die->attrs[i]) : "",
18722 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
18723 break;
18724 case DW_FORM_flag:
18725 if (DW_UNSND (&die->attrs[i]))
d97bc12b 18726 fprintf_unfiltered (f, "flag: TRUE");
c906108c 18727 else
d97bc12b 18728 fprintf_unfiltered (f, "flag: FALSE");
c906108c 18729 break;
2dc7f7b3
TT
18730 case DW_FORM_flag_present:
18731 fprintf_unfiltered (f, "flag: TRUE");
18732 break;
a8329558 18733 case DW_FORM_indirect:
0963b4bd
MS
18734 /* The reader will have reduced the indirect form to
18735 the "base form" so this form should not occur. */
3e43a32a
MS
18736 fprintf_unfiltered (f,
18737 "unexpected attribute form: DW_FORM_indirect");
a8329558 18738 break;
c906108c 18739 default:
d97bc12b 18740 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 18741 die->attrs[i].form);
d97bc12b 18742 break;
c906108c 18743 }
d97bc12b 18744 fprintf_unfiltered (f, "\n");
c906108c
SS
18745 }
18746}
18747
f9aca02d 18748static void
d97bc12b 18749dump_die_for_error (struct die_info *die)
c906108c 18750{
d97bc12b
DE
18751 dump_die_shallow (gdb_stderr, 0, die);
18752}
18753
18754static void
18755dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
18756{
18757 int indent = level * 4;
18758
18759 gdb_assert (die != NULL);
18760
18761 if (level >= max_level)
18762 return;
18763
18764 dump_die_shallow (f, indent, die);
18765
18766 if (die->child != NULL)
c906108c 18767 {
d97bc12b
DE
18768 print_spaces (indent, f);
18769 fprintf_unfiltered (f, " Children:");
18770 if (level + 1 < max_level)
18771 {
18772 fprintf_unfiltered (f, "\n");
18773 dump_die_1 (f, level + 1, max_level, die->child);
18774 }
18775 else
18776 {
3e43a32a
MS
18777 fprintf_unfiltered (f,
18778 " [not printed, max nesting level reached]\n");
d97bc12b
DE
18779 }
18780 }
18781
18782 if (die->sibling != NULL && level > 0)
18783 {
18784 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
18785 }
18786}
18787
d97bc12b
DE
18788/* This is called from the pdie macro in gdbinit.in.
18789 It's not static so gcc will keep a copy callable from gdb. */
18790
18791void
18792dump_die (struct die_info *die, int max_level)
18793{
18794 dump_die_1 (gdb_stdlog, 0, max_level, die);
18795}
18796
f9aca02d 18797static void
51545339 18798store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18799{
51545339 18800 void **slot;
c906108c 18801
b64f50a1
JK
18802 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
18803 INSERT);
51545339
DJ
18804
18805 *slot = die;
c906108c
SS
18806}
18807
b64f50a1
JK
18808/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
18809 required kind. */
18810
18811static sect_offset
ff39bb5e 18812dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 18813{
4568ecf9 18814 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 18815
7771576e 18816 if (attr_form_is_ref (attr))
b64f50a1 18817 return retval;
93311388 18818
b64f50a1 18819 retval.sect_off = 0;
93311388
DE
18820 complaint (&symfile_complaints,
18821 _("unsupported die ref attribute form: '%s'"),
18822 dwarf_form_name (attr->form));
b64f50a1 18823 return retval;
c906108c
SS
18824}
18825
43bbcdc2
PH
18826/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
18827 * the value held by the attribute is not constant. */
a02abb62 18828
43bbcdc2 18829static LONGEST
ff39bb5e 18830dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
18831{
18832 if (attr->form == DW_FORM_sdata)
18833 return DW_SND (attr);
18834 else if (attr->form == DW_FORM_udata
18835 || attr->form == DW_FORM_data1
18836 || attr->form == DW_FORM_data2
18837 || attr->form == DW_FORM_data4
18838 || attr->form == DW_FORM_data8)
18839 return DW_UNSND (attr);
18840 else
18841 {
3e43a32a
MS
18842 complaint (&symfile_complaints,
18843 _("Attribute value is not a constant (%s)"),
a02abb62
JB
18844 dwarf_form_name (attr->form));
18845 return default_value;
18846 }
18847}
18848
348e048f
DE
18849/* Follow reference or signature attribute ATTR of SRC_DIE.
18850 On entry *REF_CU is the CU of SRC_DIE.
18851 On exit *REF_CU is the CU of the result. */
18852
18853static struct die_info *
ff39bb5e 18854follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
18855 struct dwarf2_cu **ref_cu)
18856{
18857 struct die_info *die;
18858
7771576e 18859 if (attr_form_is_ref (attr))
348e048f 18860 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 18861 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
18862 die = follow_die_sig (src_die, attr, ref_cu);
18863 else
18864 {
18865 dump_die_for_error (src_die);
18866 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 18867 objfile_name ((*ref_cu)->objfile));
348e048f
DE
18868 }
18869
18870 return die;
03dd20cc
DJ
18871}
18872
5c631832 18873/* Follow reference OFFSET.
673bfd45
DE
18874 On entry *REF_CU is the CU of the source die referencing OFFSET.
18875 On exit *REF_CU is the CU of the result.
18876 Returns NULL if OFFSET is invalid. */
f504f079 18877
f9aca02d 18878static struct die_info *
36586728
TT
18879follow_die_offset (sect_offset offset, int offset_in_dwz,
18880 struct dwarf2_cu **ref_cu)
c906108c 18881{
10b3939b 18882 struct die_info temp_die;
f2f0e013 18883 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 18884
348e048f
DE
18885 gdb_assert (cu->per_cu != NULL);
18886
98bfdba5
PA
18887 target_cu = cu;
18888
3019eac3 18889 if (cu->per_cu->is_debug_types)
348e048f
DE
18890 {
18891 /* .debug_types CUs cannot reference anything outside their CU.
18892 If they need to, they have to reference a signatured type via
55f1336d 18893 DW_FORM_ref_sig8. */
348e048f 18894 if (! offset_in_cu_p (&cu->header, offset))
5c631832 18895 return NULL;
348e048f 18896 }
36586728
TT
18897 else if (offset_in_dwz != cu->per_cu->is_dwz
18898 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
18899 {
18900 struct dwarf2_per_cu_data *per_cu;
9a619af0 18901
36586728
TT
18902 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
18903 cu->objfile);
03dd20cc
DJ
18904
18905 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
18906 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
18907 load_full_comp_unit (per_cu, cu->language);
03dd20cc 18908
10b3939b
DJ
18909 target_cu = per_cu->cu;
18910 }
98bfdba5
PA
18911 else if (cu->dies == NULL)
18912 {
18913 /* We're loading full DIEs during partial symbol reading. */
18914 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 18915 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 18916 }
c906108c 18917
f2f0e013 18918 *ref_cu = target_cu;
51545339 18919 temp_die.offset = offset;
b64f50a1 18920 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 18921}
10b3939b 18922
5c631832
JK
18923/* Follow reference attribute ATTR of SRC_DIE.
18924 On entry *REF_CU is the CU of SRC_DIE.
18925 On exit *REF_CU is the CU of the result. */
18926
18927static struct die_info *
ff39bb5e 18928follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
18929 struct dwarf2_cu **ref_cu)
18930{
b64f50a1 18931 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
18932 struct dwarf2_cu *cu = *ref_cu;
18933 struct die_info *die;
18934
36586728
TT
18935 die = follow_die_offset (offset,
18936 (attr->form == DW_FORM_GNU_ref_alt
18937 || cu->per_cu->is_dwz),
18938 ref_cu);
5c631832
JK
18939 if (!die)
18940 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
18941 "at 0x%x [in module %s]"),
4262abfb
JK
18942 offset.sect_off, src_die->offset.sect_off,
18943 objfile_name (cu->objfile));
348e048f 18944
5c631832
JK
18945 return die;
18946}
18947
d83e736b
JK
18948/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
18949 Returned value is intended for DW_OP_call*. Returned
18950 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
18951
18952struct dwarf2_locexpr_baton
8b9737bf
TT
18953dwarf2_fetch_die_loc_sect_off (sect_offset offset,
18954 struct dwarf2_per_cu_data *per_cu,
18955 CORE_ADDR (*get_frame_pc) (void *baton),
18956 void *baton)
5c631832 18957{
918dd910 18958 struct dwarf2_cu *cu;
5c631832
JK
18959 struct die_info *die;
18960 struct attribute *attr;
18961 struct dwarf2_locexpr_baton retval;
18962
8cf6f0b1
TT
18963 dw2_setup (per_cu->objfile);
18964
918dd910
JK
18965 if (per_cu->cu == NULL)
18966 load_cu (per_cu);
18967 cu = per_cu->cu;
18968
36586728 18969 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
18970 if (!die)
18971 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 18972 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
18973
18974 attr = dwarf2_attr (die, DW_AT_location, cu);
18975 if (!attr)
18976 {
e103e986
JK
18977 /* DWARF: "If there is no such attribute, then there is no effect.".
18978 DATA is ignored if SIZE is 0. */
5c631832 18979
e103e986 18980 retval.data = NULL;
5c631832
JK
18981 retval.size = 0;
18982 }
8cf6f0b1
TT
18983 else if (attr_form_is_section_offset (attr))
18984 {
18985 struct dwarf2_loclist_baton loclist_baton;
18986 CORE_ADDR pc = (*get_frame_pc) (baton);
18987 size_t size;
18988
18989 fill_in_loclist_baton (cu, &loclist_baton, attr);
18990
18991 retval.data = dwarf2_find_location_expression (&loclist_baton,
18992 &size, pc);
18993 retval.size = size;
18994 }
5c631832
JK
18995 else
18996 {
18997 if (!attr_form_is_block (attr))
18998 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
18999 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 19000 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19001
19002 retval.data = DW_BLOCK (attr)->data;
19003 retval.size = DW_BLOCK (attr)->size;
19004 }
19005 retval.per_cu = cu->per_cu;
918dd910 19006
918dd910
JK
19007 age_cached_comp_units ();
19008
5c631832 19009 return retval;
348e048f
DE
19010}
19011
8b9737bf
TT
19012/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19013 offset. */
19014
19015struct dwarf2_locexpr_baton
19016dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19017 struct dwarf2_per_cu_data *per_cu,
19018 CORE_ADDR (*get_frame_pc) (void *baton),
19019 void *baton)
19020{
19021 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19022
19023 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19024}
19025
b6807d98
TT
19026/* Write a constant of a given type as target-ordered bytes into
19027 OBSTACK. */
19028
19029static const gdb_byte *
19030write_constant_as_bytes (struct obstack *obstack,
19031 enum bfd_endian byte_order,
19032 struct type *type,
19033 ULONGEST value,
19034 LONGEST *len)
19035{
19036 gdb_byte *result;
19037
19038 *len = TYPE_LENGTH (type);
19039 result = obstack_alloc (obstack, *len);
19040 store_unsigned_integer (result, *len, byte_order, value);
19041
19042 return result;
19043}
19044
19045/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19046 pointer to the constant bytes and set LEN to the length of the
19047 data. If memory is needed, allocate it on OBSTACK. If the DIE
19048 does not have a DW_AT_const_value, return NULL. */
19049
19050const gdb_byte *
19051dwarf2_fetch_constant_bytes (sect_offset offset,
19052 struct dwarf2_per_cu_data *per_cu,
19053 struct obstack *obstack,
19054 LONGEST *len)
19055{
19056 struct dwarf2_cu *cu;
19057 struct die_info *die;
19058 struct attribute *attr;
19059 const gdb_byte *result = NULL;
19060 struct type *type;
19061 LONGEST value;
19062 enum bfd_endian byte_order;
19063
19064 dw2_setup (per_cu->objfile);
19065
19066 if (per_cu->cu == NULL)
19067 load_cu (per_cu);
19068 cu = per_cu->cu;
19069
19070 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19071 if (!die)
19072 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19073 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
19074
19075
19076 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19077 if (attr == NULL)
19078 return NULL;
19079
19080 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19081 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19082
19083 switch (attr->form)
19084 {
19085 case DW_FORM_addr:
19086 case DW_FORM_GNU_addr_index:
19087 {
19088 gdb_byte *tem;
19089
19090 *len = cu->header.addr_size;
19091 tem = obstack_alloc (obstack, *len);
19092 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19093 result = tem;
19094 }
19095 break;
19096 case DW_FORM_string:
19097 case DW_FORM_strp:
19098 case DW_FORM_GNU_str_index:
19099 case DW_FORM_GNU_strp_alt:
19100 /* DW_STRING is already allocated on the objfile obstack, point
19101 directly to it. */
19102 result = (const gdb_byte *) DW_STRING (attr);
19103 *len = strlen (DW_STRING (attr));
19104 break;
19105 case DW_FORM_block1:
19106 case DW_FORM_block2:
19107 case DW_FORM_block4:
19108 case DW_FORM_block:
19109 case DW_FORM_exprloc:
19110 result = DW_BLOCK (attr)->data;
19111 *len = DW_BLOCK (attr)->size;
19112 break;
19113
19114 /* The DW_AT_const_value attributes are supposed to carry the
19115 symbol's value "represented as it would be on the target
19116 architecture." By the time we get here, it's already been
19117 converted to host endianness, so we just need to sign- or
19118 zero-extend it as appropriate. */
19119 case DW_FORM_data1:
19120 type = die_type (die, cu);
19121 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19122 if (result == NULL)
19123 result = write_constant_as_bytes (obstack, byte_order,
19124 type, value, len);
19125 break;
19126 case DW_FORM_data2:
19127 type = die_type (die, cu);
19128 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19129 if (result == NULL)
19130 result = write_constant_as_bytes (obstack, byte_order,
19131 type, value, len);
19132 break;
19133 case DW_FORM_data4:
19134 type = die_type (die, cu);
19135 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19136 if (result == NULL)
19137 result = write_constant_as_bytes (obstack, byte_order,
19138 type, value, len);
19139 break;
19140 case DW_FORM_data8:
19141 type = die_type (die, cu);
19142 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19143 if (result == NULL)
19144 result = write_constant_as_bytes (obstack, byte_order,
19145 type, value, len);
19146 break;
19147
19148 case DW_FORM_sdata:
19149 type = die_type (die, cu);
19150 result = write_constant_as_bytes (obstack, byte_order,
19151 type, DW_SND (attr), len);
19152 break;
19153
19154 case DW_FORM_udata:
19155 type = die_type (die, cu);
19156 result = write_constant_as_bytes (obstack, byte_order,
19157 type, DW_UNSND (attr), len);
19158 break;
19159
19160 default:
19161 complaint (&symfile_complaints,
19162 _("unsupported const value attribute form: '%s'"),
19163 dwarf_form_name (attr->form));
19164 break;
19165 }
19166
19167 return result;
19168}
19169
8a9b8146
TT
19170/* Return the type of the DIE at DIE_OFFSET in the CU named by
19171 PER_CU. */
19172
19173struct type *
b64f50a1 19174dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
19175 struct dwarf2_per_cu_data *per_cu)
19176{
b64f50a1
JK
19177 sect_offset die_offset_sect;
19178
8a9b8146 19179 dw2_setup (per_cu->objfile);
b64f50a1
JK
19180
19181 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19182 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
19183}
19184
ac9ec31b 19185/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 19186 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
19187 On exit *REF_CU is the CU of the result.
19188 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
19189
19190static struct die_info *
ac9ec31b
DE
19191follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19192 struct dwarf2_cu **ref_cu)
348e048f
DE
19193{
19194 struct objfile *objfile = (*ref_cu)->objfile;
19195 struct die_info temp_die;
348e048f
DE
19196 struct dwarf2_cu *sig_cu;
19197 struct die_info *die;
19198
ac9ec31b
DE
19199 /* While it might be nice to assert sig_type->type == NULL here,
19200 we can get here for DW_AT_imported_declaration where we need
19201 the DIE not the type. */
348e048f
DE
19202
19203 /* If necessary, add it to the queue and load its DIEs. */
19204
95554aad 19205 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 19206 read_signatured_type (sig_type);
348e048f 19207
348e048f 19208 sig_cu = sig_type->per_cu.cu;
69d751e3 19209 gdb_assert (sig_cu != NULL);
3019eac3
DE
19210 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19211 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
19212 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19213 temp_die.offset.sect_off);
348e048f
DE
19214 if (die)
19215 {
796a7ff8
DE
19216 /* For .gdb_index version 7 keep track of included TUs.
19217 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19218 if (dwarf2_per_objfile->index_table != NULL
19219 && dwarf2_per_objfile->index_table->version <= 7)
19220 {
19221 VEC_safe_push (dwarf2_per_cu_ptr,
19222 (*ref_cu)->per_cu->imported_symtabs,
19223 sig_cu->per_cu);
19224 }
19225
348e048f
DE
19226 *ref_cu = sig_cu;
19227 return die;
19228 }
19229
ac9ec31b
DE
19230 return NULL;
19231}
19232
19233/* Follow signatured type referenced by ATTR in SRC_DIE.
19234 On entry *REF_CU is the CU of SRC_DIE.
19235 On exit *REF_CU is the CU of the result.
19236 The result is the DIE of the type.
19237 If the referenced type cannot be found an error is thrown. */
19238
19239static struct die_info *
ff39bb5e 19240follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
19241 struct dwarf2_cu **ref_cu)
19242{
19243 ULONGEST signature = DW_SIGNATURE (attr);
19244 struct signatured_type *sig_type;
19245 struct die_info *die;
19246
19247 gdb_assert (attr->form == DW_FORM_ref_sig8);
19248
a2ce51a0 19249 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
19250 /* sig_type will be NULL if the signatured type is missing from
19251 the debug info. */
19252 if (sig_type == NULL)
19253 {
19254 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19255 " from DIE at 0x%x [in module %s]"),
19256 hex_string (signature), src_die->offset.sect_off,
4262abfb 19257 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19258 }
19259
19260 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19261 if (die == NULL)
19262 {
19263 dump_die_for_error (src_die);
19264 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19265 " from DIE at 0x%x [in module %s]"),
19266 hex_string (signature), src_die->offset.sect_off,
4262abfb 19267 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19268 }
19269
19270 return die;
19271}
19272
19273/* Get the type specified by SIGNATURE referenced in DIE/CU,
19274 reading in and processing the type unit if necessary. */
19275
19276static struct type *
19277get_signatured_type (struct die_info *die, ULONGEST signature,
19278 struct dwarf2_cu *cu)
19279{
19280 struct signatured_type *sig_type;
19281 struct dwarf2_cu *type_cu;
19282 struct die_info *type_die;
19283 struct type *type;
19284
a2ce51a0 19285 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
19286 /* sig_type will be NULL if the signatured type is missing from
19287 the debug info. */
19288 if (sig_type == NULL)
19289 {
19290 complaint (&symfile_complaints,
19291 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19292 " from DIE at 0x%x [in module %s]"),
19293 hex_string (signature), die->offset.sect_off,
4262abfb 19294 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19295 return build_error_marker_type (cu, die);
19296 }
19297
19298 /* If we already know the type we're done. */
19299 if (sig_type->type != NULL)
19300 return sig_type->type;
19301
19302 type_cu = cu;
19303 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19304 if (type_die != NULL)
19305 {
19306 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19307 is created. This is important, for example, because for c++ classes
19308 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19309 type = read_type_die (type_die, type_cu);
19310 if (type == NULL)
19311 {
19312 complaint (&symfile_complaints,
19313 _("Dwarf Error: Cannot build signatured type %s"
19314 " referenced from DIE at 0x%x [in module %s]"),
19315 hex_string (signature), die->offset.sect_off,
4262abfb 19316 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19317 type = build_error_marker_type (cu, die);
19318 }
19319 }
19320 else
19321 {
19322 complaint (&symfile_complaints,
19323 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19324 " from DIE at 0x%x [in module %s]"),
19325 hex_string (signature), die->offset.sect_off,
4262abfb 19326 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19327 type = build_error_marker_type (cu, die);
19328 }
19329 sig_type->type = type;
19330
19331 return type;
19332}
19333
19334/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19335 reading in and processing the type unit if necessary. */
19336
19337static struct type *
ff39bb5e 19338get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 19339 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
19340{
19341 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 19342 if (attr_form_is_ref (attr))
ac9ec31b
DE
19343 {
19344 struct dwarf2_cu *type_cu = cu;
19345 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19346
19347 return read_type_die (type_die, type_cu);
19348 }
19349 else if (attr->form == DW_FORM_ref_sig8)
19350 {
19351 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19352 }
19353 else
19354 {
19355 complaint (&symfile_complaints,
19356 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19357 " at 0x%x [in module %s]"),
19358 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 19359 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19360 return build_error_marker_type (cu, die);
19361 }
348e048f
DE
19362}
19363
e5fe5e75 19364/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
19365
19366static void
e5fe5e75 19367load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 19368{
52dc124a 19369 struct signatured_type *sig_type;
348e048f 19370
f4dc4d17
DE
19371 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19372 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19373
6721b2ec
DE
19374 /* We have the per_cu, but we need the signatured_type.
19375 Fortunately this is an easy translation. */
19376 gdb_assert (per_cu->is_debug_types);
19377 sig_type = (struct signatured_type *) per_cu;
348e048f 19378
6721b2ec 19379 gdb_assert (per_cu->cu == NULL);
348e048f 19380
52dc124a 19381 read_signatured_type (sig_type);
348e048f 19382
6721b2ec 19383 gdb_assert (per_cu->cu != NULL);
348e048f
DE
19384}
19385
dee91e82
DE
19386/* die_reader_func for read_signatured_type.
19387 This is identical to load_full_comp_unit_reader,
19388 but is kept separate for now. */
348e048f
DE
19389
19390static void
dee91e82 19391read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 19392 const gdb_byte *info_ptr,
dee91e82
DE
19393 struct die_info *comp_unit_die,
19394 int has_children,
19395 void *data)
348e048f 19396{
dee91e82 19397 struct dwarf2_cu *cu = reader->cu;
348e048f 19398
dee91e82
DE
19399 gdb_assert (cu->die_hash == NULL);
19400 cu->die_hash =
19401 htab_create_alloc_ex (cu->header.length / 12,
19402 die_hash,
19403 die_eq,
19404 NULL,
19405 &cu->comp_unit_obstack,
19406 hashtab_obstack_allocate,
19407 dummy_obstack_deallocate);
348e048f 19408
dee91e82
DE
19409 if (has_children)
19410 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19411 &info_ptr, comp_unit_die);
19412 cu->dies = comp_unit_die;
19413 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
19414
19415 /* We try not to read any attributes in this function, because not
9cdd5dbd 19416 all CUs needed for references have been loaded yet, and symbol
348e048f 19417 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
19418 or we won't be able to build types correctly.
19419 Similarly, if we do not read the producer, we can not apply
19420 producer-specific interpretation. */
95554aad 19421 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 19422}
348e048f 19423
3019eac3
DE
19424/* Read in a signatured type and build its CU and DIEs.
19425 If the type is a stub for the real type in a DWO file,
19426 read in the real type from the DWO file as well. */
dee91e82
DE
19427
19428static void
19429read_signatured_type (struct signatured_type *sig_type)
19430{
19431 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 19432
3019eac3 19433 gdb_assert (per_cu->is_debug_types);
dee91e82 19434 gdb_assert (per_cu->cu == NULL);
348e048f 19435
f4dc4d17
DE
19436 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19437 read_signatured_type_reader, NULL);
7ee85ab1 19438 sig_type->per_cu.tu_read = 1;
c906108c
SS
19439}
19440
c906108c
SS
19441/* Decode simple location descriptions.
19442 Given a pointer to a dwarf block that defines a location, compute
19443 the location and return the value.
19444
4cecd739
DJ
19445 NOTE drow/2003-11-18: This function is called in two situations
19446 now: for the address of static or global variables (partial symbols
19447 only) and for offsets into structures which are expected to be
19448 (more or less) constant. The partial symbol case should go away,
19449 and only the constant case should remain. That will let this
19450 function complain more accurately. A few special modes are allowed
19451 without complaint for global variables (for instance, global
19452 register values and thread-local values).
c906108c
SS
19453
19454 A location description containing no operations indicates that the
4cecd739 19455 object is optimized out. The return value is 0 for that case.
6b992462
DJ
19456 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19457 callers will only want a very basic result and this can become a
21ae7a4d
JK
19458 complaint.
19459
19460 Note that stack[0] is unused except as a default error return. */
c906108c
SS
19461
19462static CORE_ADDR
e7c27a73 19463decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 19464{
e7c27a73 19465 struct objfile *objfile = cu->objfile;
56eb65bd
SP
19466 size_t i;
19467 size_t size = blk->size;
d521ce57 19468 const gdb_byte *data = blk->data;
21ae7a4d
JK
19469 CORE_ADDR stack[64];
19470 int stacki;
19471 unsigned int bytes_read, unsnd;
19472 gdb_byte op;
c906108c 19473
21ae7a4d
JK
19474 i = 0;
19475 stacki = 0;
19476 stack[stacki] = 0;
19477 stack[++stacki] = 0;
19478
19479 while (i < size)
19480 {
19481 op = data[i++];
19482 switch (op)
19483 {
19484 case DW_OP_lit0:
19485 case DW_OP_lit1:
19486 case DW_OP_lit2:
19487 case DW_OP_lit3:
19488 case DW_OP_lit4:
19489 case DW_OP_lit5:
19490 case DW_OP_lit6:
19491 case DW_OP_lit7:
19492 case DW_OP_lit8:
19493 case DW_OP_lit9:
19494 case DW_OP_lit10:
19495 case DW_OP_lit11:
19496 case DW_OP_lit12:
19497 case DW_OP_lit13:
19498 case DW_OP_lit14:
19499 case DW_OP_lit15:
19500 case DW_OP_lit16:
19501 case DW_OP_lit17:
19502 case DW_OP_lit18:
19503 case DW_OP_lit19:
19504 case DW_OP_lit20:
19505 case DW_OP_lit21:
19506 case DW_OP_lit22:
19507 case DW_OP_lit23:
19508 case DW_OP_lit24:
19509 case DW_OP_lit25:
19510 case DW_OP_lit26:
19511 case DW_OP_lit27:
19512 case DW_OP_lit28:
19513 case DW_OP_lit29:
19514 case DW_OP_lit30:
19515 case DW_OP_lit31:
19516 stack[++stacki] = op - DW_OP_lit0;
19517 break;
f1bea926 19518
21ae7a4d
JK
19519 case DW_OP_reg0:
19520 case DW_OP_reg1:
19521 case DW_OP_reg2:
19522 case DW_OP_reg3:
19523 case DW_OP_reg4:
19524 case DW_OP_reg5:
19525 case DW_OP_reg6:
19526 case DW_OP_reg7:
19527 case DW_OP_reg8:
19528 case DW_OP_reg9:
19529 case DW_OP_reg10:
19530 case DW_OP_reg11:
19531 case DW_OP_reg12:
19532 case DW_OP_reg13:
19533 case DW_OP_reg14:
19534 case DW_OP_reg15:
19535 case DW_OP_reg16:
19536 case DW_OP_reg17:
19537 case DW_OP_reg18:
19538 case DW_OP_reg19:
19539 case DW_OP_reg20:
19540 case DW_OP_reg21:
19541 case DW_OP_reg22:
19542 case DW_OP_reg23:
19543 case DW_OP_reg24:
19544 case DW_OP_reg25:
19545 case DW_OP_reg26:
19546 case DW_OP_reg27:
19547 case DW_OP_reg28:
19548 case DW_OP_reg29:
19549 case DW_OP_reg30:
19550 case DW_OP_reg31:
19551 stack[++stacki] = op - DW_OP_reg0;
19552 if (i < size)
19553 dwarf2_complex_location_expr_complaint ();
19554 break;
c906108c 19555
21ae7a4d
JK
19556 case DW_OP_regx:
19557 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
19558 i += bytes_read;
19559 stack[++stacki] = unsnd;
19560 if (i < size)
19561 dwarf2_complex_location_expr_complaint ();
19562 break;
c906108c 19563
21ae7a4d
JK
19564 case DW_OP_addr:
19565 stack[++stacki] = read_address (objfile->obfd, &data[i],
19566 cu, &bytes_read);
19567 i += bytes_read;
19568 break;
d53d4ac5 19569
21ae7a4d
JK
19570 case DW_OP_const1u:
19571 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
19572 i += 1;
19573 break;
19574
19575 case DW_OP_const1s:
19576 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
19577 i += 1;
19578 break;
19579
19580 case DW_OP_const2u:
19581 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
19582 i += 2;
19583 break;
19584
19585 case DW_OP_const2s:
19586 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
19587 i += 2;
19588 break;
d53d4ac5 19589
21ae7a4d
JK
19590 case DW_OP_const4u:
19591 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
19592 i += 4;
19593 break;
19594
19595 case DW_OP_const4s:
19596 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
19597 i += 4;
19598 break;
19599
585861ea
JK
19600 case DW_OP_const8u:
19601 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
19602 i += 8;
19603 break;
19604
21ae7a4d
JK
19605 case DW_OP_constu:
19606 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
19607 &bytes_read);
19608 i += bytes_read;
19609 break;
19610
19611 case DW_OP_consts:
19612 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
19613 i += bytes_read;
19614 break;
19615
19616 case DW_OP_dup:
19617 stack[stacki + 1] = stack[stacki];
19618 stacki++;
19619 break;
19620
19621 case DW_OP_plus:
19622 stack[stacki - 1] += stack[stacki];
19623 stacki--;
19624 break;
19625
19626 case DW_OP_plus_uconst:
19627 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
19628 &bytes_read);
19629 i += bytes_read;
19630 break;
19631
19632 case DW_OP_minus:
19633 stack[stacki - 1] -= stack[stacki];
19634 stacki--;
19635 break;
19636
19637 case DW_OP_deref:
19638 /* If we're not the last op, then we definitely can't encode
19639 this using GDB's address_class enum. This is valid for partial
19640 global symbols, although the variable's address will be bogus
19641 in the psymtab. */
19642 if (i < size)
19643 dwarf2_complex_location_expr_complaint ();
19644 break;
19645
19646 case DW_OP_GNU_push_tls_address:
19647 /* The top of the stack has the offset from the beginning
19648 of the thread control block at which the variable is located. */
19649 /* Nothing should follow this operator, so the top of stack would
19650 be returned. */
19651 /* This is valid for partial global symbols, but the variable's
585861ea
JK
19652 address will be bogus in the psymtab. Make it always at least
19653 non-zero to not look as a variable garbage collected by linker
19654 which have DW_OP_addr 0. */
21ae7a4d
JK
19655 if (i < size)
19656 dwarf2_complex_location_expr_complaint ();
585861ea 19657 stack[stacki]++;
21ae7a4d
JK
19658 break;
19659
19660 case DW_OP_GNU_uninit:
19661 break;
19662
3019eac3 19663 case DW_OP_GNU_addr_index:
49f6c839 19664 case DW_OP_GNU_const_index:
3019eac3
DE
19665 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
19666 &bytes_read);
19667 i += bytes_read;
19668 break;
19669
21ae7a4d
JK
19670 default:
19671 {
f39c6ffd 19672 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
19673
19674 if (name)
19675 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
19676 name);
19677 else
19678 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
19679 op);
19680 }
19681
19682 return (stack[stacki]);
d53d4ac5 19683 }
3c6e0cb3 19684
21ae7a4d
JK
19685 /* Enforce maximum stack depth of SIZE-1 to avoid writing
19686 outside of the allocated space. Also enforce minimum>0. */
19687 if (stacki >= ARRAY_SIZE (stack) - 1)
19688 {
19689 complaint (&symfile_complaints,
19690 _("location description stack overflow"));
19691 return 0;
19692 }
19693
19694 if (stacki <= 0)
19695 {
19696 complaint (&symfile_complaints,
19697 _("location description stack underflow"));
19698 return 0;
19699 }
19700 }
19701 return (stack[stacki]);
c906108c
SS
19702}
19703
19704/* memory allocation interface */
19705
c906108c 19706static struct dwarf_block *
7b5a2f43 19707dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
19708{
19709 struct dwarf_block *blk;
19710
19711 blk = (struct dwarf_block *)
7b5a2f43 19712 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
19713 return (blk);
19714}
19715
c906108c 19716static struct die_info *
b60c80d6 19717dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
19718{
19719 struct die_info *die;
b60c80d6
DJ
19720 size_t size = sizeof (struct die_info);
19721
19722 if (num_attrs > 1)
19723 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 19724
b60c80d6 19725 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
19726 memset (die, 0, sizeof (struct die_info));
19727 return (die);
19728}
2e276125
JB
19729
19730\f
19731/* Macro support. */
19732
233d95b5
JK
19733/* Return file name relative to the compilation directory of file number I in
19734 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 19735 responsible for freeing it. */
233d95b5 19736
2e276125 19737static char *
233d95b5 19738file_file_name (int file, struct line_header *lh)
2e276125 19739{
6a83a1e6
EZ
19740 /* Is the file number a valid index into the line header's file name
19741 table? Remember that file numbers start with one, not zero. */
19742 if (1 <= file && file <= lh->num_file_names)
19743 {
19744 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 19745
233d95b5 19746 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
6a83a1e6 19747 return xstrdup (fe->name);
233d95b5
JK
19748 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
19749 fe->name, NULL);
6a83a1e6 19750 }
2e276125
JB
19751 else
19752 {
6a83a1e6
EZ
19753 /* The compiler produced a bogus file number. We can at least
19754 record the macro definitions made in the file, even if we
19755 won't be able to find the file by name. */
19756 char fake_name[80];
9a619af0 19757
8c042590
PM
19758 xsnprintf (fake_name, sizeof (fake_name),
19759 "<bad macro file number %d>", file);
2e276125 19760
6e70227d 19761 complaint (&symfile_complaints,
6a83a1e6
EZ
19762 _("bad file number in macro information (%d)"),
19763 file);
2e276125 19764
6a83a1e6 19765 return xstrdup (fake_name);
2e276125
JB
19766 }
19767}
19768
233d95b5
JK
19769/* Return the full name of file number I in *LH's file name table.
19770 Use COMP_DIR as the name of the current directory of the
19771 compilation. The result is allocated using xmalloc; the caller is
19772 responsible for freeing it. */
19773static char *
19774file_full_name (int file, struct line_header *lh, const char *comp_dir)
19775{
19776 /* Is the file number a valid index into the line header's file name
19777 table? Remember that file numbers start with one, not zero. */
19778 if (1 <= file && file <= lh->num_file_names)
19779 {
19780 char *relative = file_file_name (file, lh);
19781
19782 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
19783 return relative;
19784 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
19785 }
19786 else
19787 return file_file_name (file, lh);
19788}
19789
2e276125
JB
19790
19791static struct macro_source_file *
19792macro_start_file (int file, int line,
19793 struct macro_source_file *current_file,
19794 const char *comp_dir,
19795 struct line_header *lh, struct objfile *objfile)
19796{
233d95b5
JK
19797 /* File name relative to the compilation directory of this source file. */
19798 char *file_name = file_file_name (file, lh);
2e276125 19799
2e276125 19800 if (! current_file)
abc9d0dc 19801 {
fc474241
DE
19802 /* Note: We don't create a macro table for this compilation unit
19803 at all until we actually get a filename. */
19804 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
19805
abc9d0dc
TT
19806 /* If we have no current file, then this must be the start_file
19807 directive for the compilation unit's main source file. */
fc474241
DE
19808 current_file = macro_set_main (macro_table, file_name);
19809 macro_define_special (macro_table);
abc9d0dc 19810 }
2e276125 19811 else
233d95b5 19812 current_file = macro_include (current_file, line, file_name);
2e276125 19813
233d95b5 19814 xfree (file_name);
6e70227d 19815
2e276125
JB
19816 return current_file;
19817}
19818
19819
19820/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
19821 followed by a null byte. */
19822static char *
19823copy_string (const char *buf, int len)
19824{
19825 char *s = xmalloc (len + 1);
9a619af0 19826
2e276125
JB
19827 memcpy (s, buf, len);
19828 s[len] = '\0';
2e276125
JB
19829 return s;
19830}
19831
19832
19833static const char *
19834consume_improper_spaces (const char *p, const char *body)
19835{
19836 if (*p == ' ')
19837 {
4d3c2250 19838 complaint (&symfile_complaints,
3e43a32a
MS
19839 _("macro definition contains spaces "
19840 "in formal argument list:\n`%s'"),
4d3c2250 19841 body);
2e276125
JB
19842
19843 while (*p == ' ')
19844 p++;
19845 }
19846
19847 return p;
19848}
19849
19850
19851static void
19852parse_macro_definition (struct macro_source_file *file, int line,
19853 const char *body)
19854{
19855 const char *p;
19856
19857 /* The body string takes one of two forms. For object-like macro
19858 definitions, it should be:
19859
19860 <macro name> " " <definition>
19861
19862 For function-like macro definitions, it should be:
19863
19864 <macro name> "() " <definition>
19865 or
19866 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
19867
19868 Spaces may appear only where explicitly indicated, and in the
19869 <definition>.
19870
19871 The Dwarf 2 spec says that an object-like macro's name is always
19872 followed by a space, but versions of GCC around March 2002 omit
6e70227d 19873 the space when the macro's definition is the empty string.
2e276125
JB
19874
19875 The Dwarf 2 spec says that there should be no spaces between the
19876 formal arguments in a function-like macro's formal argument list,
19877 but versions of GCC around March 2002 include spaces after the
19878 commas. */
19879
19880
19881 /* Find the extent of the macro name. The macro name is terminated
19882 by either a space or null character (for an object-like macro) or
19883 an opening paren (for a function-like macro). */
19884 for (p = body; *p; p++)
19885 if (*p == ' ' || *p == '(')
19886 break;
19887
19888 if (*p == ' ' || *p == '\0')
19889 {
19890 /* It's an object-like macro. */
19891 int name_len = p - body;
19892 char *name = copy_string (body, name_len);
19893 const char *replacement;
19894
19895 if (*p == ' ')
19896 replacement = body + name_len + 1;
19897 else
19898 {
4d3c2250 19899 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19900 replacement = body + name_len;
19901 }
6e70227d 19902
2e276125
JB
19903 macro_define_object (file, line, name, replacement);
19904
19905 xfree (name);
19906 }
19907 else if (*p == '(')
19908 {
19909 /* It's a function-like macro. */
19910 char *name = copy_string (body, p - body);
19911 int argc = 0;
19912 int argv_size = 1;
19913 char **argv = xmalloc (argv_size * sizeof (*argv));
19914
19915 p++;
19916
19917 p = consume_improper_spaces (p, body);
19918
19919 /* Parse the formal argument list. */
19920 while (*p && *p != ')')
19921 {
19922 /* Find the extent of the current argument name. */
19923 const char *arg_start = p;
19924
19925 while (*p && *p != ',' && *p != ')' && *p != ' ')
19926 p++;
19927
19928 if (! *p || p == arg_start)
4d3c2250 19929 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19930 else
19931 {
19932 /* Make sure argv has room for the new argument. */
19933 if (argc >= argv_size)
19934 {
19935 argv_size *= 2;
19936 argv = xrealloc (argv, argv_size * sizeof (*argv));
19937 }
19938
19939 argv[argc++] = copy_string (arg_start, p - arg_start);
19940 }
19941
19942 p = consume_improper_spaces (p, body);
19943
19944 /* Consume the comma, if present. */
19945 if (*p == ',')
19946 {
19947 p++;
19948
19949 p = consume_improper_spaces (p, body);
19950 }
19951 }
19952
19953 if (*p == ')')
19954 {
19955 p++;
19956
19957 if (*p == ' ')
19958 /* Perfectly formed definition, no complaints. */
19959 macro_define_function (file, line, name,
6e70227d 19960 argc, (const char **) argv,
2e276125
JB
19961 p + 1);
19962 else if (*p == '\0')
19963 {
19964 /* Complain, but do define it. */
4d3c2250 19965 dwarf2_macro_malformed_definition_complaint (body);
2e276125 19966 macro_define_function (file, line, name,
6e70227d 19967 argc, (const char **) argv,
2e276125
JB
19968 p);
19969 }
19970 else
19971 /* Just complain. */
4d3c2250 19972 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19973 }
19974 else
19975 /* Just complain. */
4d3c2250 19976 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19977
19978 xfree (name);
19979 {
19980 int i;
19981
19982 for (i = 0; i < argc; i++)
19983 xfree (argv[i]);
19984 }
19985 xfree (argv);
19986 }
19987 else
4d3c2250 19988 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19989}
19990
cf2c3c16
TT
19991/* Skip some bytes from BYTES according to the form given in FORM.
19992 Returns the new pointer. */
2e276125 19993
d521ce57
TT
19994static const gdb_byte *
19995skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
19996 enum dwarf_form form,
19997 unsigned int offset_size,
19998 struct dwarf2_section_info *section)
2e276125 19999{
cf2c3c16 20000 unsigned int bytes_read;
2e276125 20001
cf2c3c16 20002 switch (form)
2e276125 20003 {
cf2c3c16
TT
20004 case DW_FORM_data1:
20005 case DW_FORM_flag:
20006 ++bytes;
20007 break;
20008
20009 case DW_FORM_data2:
20010 bytes += 2;
20011 break;
20012
20013 case DW_FORM_data4:
20014 bytes += 4;
20015 break;
20016
20017 case DW_FORM_data8:
20018 bytes += 8;
20019 break;
20020
20021 case DW_FORM_string:
20022 read_direct_string (abfd, bytes, &bytes_read);
20023 bytes += bytes_read;
20024 break;
20025
20026 case DW_FORM_sec_offset:
20027 case DW_FORM_strp:
36586728 20028 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
20029 bytes += offset_size;
20030 break;
20031
20032 case DW_FORM_block:
20033 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20034 bytes += bytes_read;
20035 break;
20036
20037 case DW_FORM_block1:
20038 bytes += 1 + read_1_byte (abfd, bytes);
20039 break;
20040 case DW_FORM_block2:
20041 bytes += 2 + read_2_bytes (abfd, bytes);
20042 break;
20043 case DW_FORM_block4:
20044 bytes += 4 + read_4_bytes (abfd, bytes);
20045 break;
20046
20047 case DW_FORM_sdata:
20048 case DW_FORM_udata:
3019eac3
DE
20049 case DW_FORM_GNU_addr_index:
20050 case DW_FORM_GNU_str_index:
d521ce57 20051 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
20052 if (bytes == NULL)
20053 {
20054 dwarf2_section_buffer_overflow_complaint (section);
20055 return NULL;
20056 }
cf2c3c16
TT
20057 break;
20058
20059 default:
20060 {
20061 complain:
20062 complaint (&symfile_complaints,
20063 _("invalid form 0x%x in `%s'"),
a32a8923 20064 form, get_section_name (section));
cf2c3c16
TT
20065 return NULL;
20066 }
2e276125
JB
20067 }
20068
cf2c3c16
TT
20069 return bytes;
20070}
757a13d0 20071
cf2c3c16
TT
20072/* A helper for dwarf_decode_macros that handles skipping an unknown
20073 opcode. Returns an updated pointer to the macro data buffer; or,
20074 on error, issues a complaint and returns NULL. */
757a13d0 20075
d521ce57 20076static const gdb_byte *
cf2c3c16 20077skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
20078 const gdb_byte **opcode_definitions,
20079 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
20080 bfd *abfd,
20081 unsigned int offset_size,
20082 struct dwarf2_section_info *section)
20083{
20084 unsigned int bytes_read, i;
20085 unsigned long arg;
d521ce57 20086 const gdb_byte *defn;
2e276125 20087
cf2c3c16 20088 if (opcode_definitions[opcode] == NULL)
2e276125 20089 {
cf2c3c16
TT
20090 complaint (&symfile_complaints,
20091 _("unrecognized DW_MACFINO opcode 0x%x"),
20092 opcode);
20093 return NULL;
20094 }
2e276125 20095
cf2c3c16
TT
20096 defn = opcode_definitions[opcode];
20097 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20098 defn += bytes_read;
2e276125 20099
cf2c3c16
TT
20100 for (i = 0; i < arg; ++i)
20101 {
f664829e
DE
20102 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20103 section);
cf2c3c16
TT
20104 if (mac_ptr == NULL)
20105 {
20106 /* skip_form_bytes already issued the complaint. */
20107 return NULL;
20108 }
20109 }
757a13d0 20110
cf2c3c16
TT
20111 return mac_ptr;
20112}
757a13d0 20113
cf2c3c16
TT
20114/* A helper function which parses the header of a macro section.
20115 If the macro section is the extended (for now called "GNU") type,
20116 then this updates *OFFSET_SIZE. Returns a pointer to just after
20117 the header, or issues a complaint and returns NULL on error. */
757a13d0 20118
d521ce57
TT
20119static const gdb_byte *
20120dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 20121 bfd *abfd,
d521ce57 20122 const gdb_byte *mac_ptr,
cf2c3c16
TT
20123 unsigned int *offset_size,
20124 int section_is_gnu)
20125{
20126 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 20127
cf2c3c16
TT
20128 if (section_is_gnu)
20129 {
20130 unsigned int version, flags;
757a13d0 20131
cf2c3c16
TT
20132 version = read_2_bytes (abfd, mac_ptr);
20133 if (version != 4)
20134 {
20135 complaint (&symfile_complaints,
20136 _("unrecognized version `%d' in .debug_macro section"),
20137 version);
20138 return NULL;
20139 }
20140 mac_ptr += 2;
757a13d0 20141
cf2c3c16
TT
20142 flags = read_1_byte (abfd, mac_ptr);
20143 ++mac_ptr;
20144 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 20145
cf2c3c16
TT
20146 if ((flags & 2) != 0)
20147 /* We don't need the line table offset. */
20148 mac_ptr += *offset_size;
757a13d0 20149
cf2c3c16
TT
20150 /* Vendor opcode descriptions. */
20151 if ((flags & 4) != 0)
20152 {
20153 unsigned int i, count;
757a13d0 20154
cf2c3c16
TT
20155 count = read_1_byte (abfd, mac_ptr);
20156 ++mac_ptr;
20157 for (i = 0; i < count; ++i)
20158 {
20159 unsigned int opcode, bytes_read;
20160 unsigned long arg;
20161
20162 opcode = read_1_byte (abfd, mac_ptr);
20163 ++mac_ptr;
20164 opcode_definitions[opcode] = mac_ptr;
20165 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20166 mac_ptr += bytes_read;
20167 mac_ptr += arg;
20168 }
757a13d0 20169 }
cf2c3c16 20170 }
757a13d0 20171
cf2c3c16
TT
20172 return mac_ptr;
20173}
757a13d0 20174
cf2c3c16 20175/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 20176 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
20177
20178static void
d521ce57
TT
20179dwarf_decode_macro_bytes (bfd *abfd,
20180 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 20181 struct macro_source_file *current_file,
15d034d0 20182 struct line_header *lh, const char *comp_dir,
cf2c3c16 20183 struct dwarf2_section_info *section,
36586728 20184 int section_is_gnu, int section_is_dwz,
cf2c3c16 20185 unsigned int offset_size,
8fc3fc34
TT
20186 struct objfile *objfile,
20187 htab_t include_hash)
cf2c3c16
TT
20188{
20189 enum dwarf_macro_record_type macinfo_type;
20190 int at_commandline;
d521ce57 20191 const gdb_byte *opcode_definitions[256];
757a13d0 20192
cf2c3c16
TT
20193 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20194 &offset_size, section_is_gnu);
20195 if (mac_ptr == NULL)
20196 {
20197 /* We already issued a complaint. */
20198 return;
20199 }
757a13d0
JK
20200
20201 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20202 GDB is still reading the definitions from command line. First
20203 DW_MACINFO_start_file will need to be ignored as it was already executed
20204 to create CURRENT_FILE for the main source holding also the command line
20205 definitions. On first met DW_MACINFO_start_file this flag is reset to
20206 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20207
20208 at_commandline = 1;
20209
20210 do
20211 {
20212 /* Do we at least have room for a macinfo type byte? */
20213 if (mac_ptr >= mac_end)
20214 {
f664829e 20215 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
20216 break;
20217 }
20218
20219 macinfo_type = read_1_byte (abfd, mac_ptr);
20220 mac_ptr++;
20221
cf2c3c16
TT
20222 /* Note that we rely on the fact that the corresponding GNU and
20223 DWARF constants are the same. */
757a13d0
JK
20224 switch (macinfo_type)
20225 {
20226 /* A zero macinfo type indicates the end of the macro
20227 information. */
20228 case 0:
20229 break;
2e276125 20230
cf2c3c16
TT
20231 case DW_MACRO_GNU_define:
20232 case DW_MACRO_GNU_undef:
20233 case DW_MACRO_GNU_define_indirect:
20234 case DW_MACRO_GNU_undef_indirect:
36586728
TT
20235 case DW_MACRO_GNU_define_indirect_alt:
20236 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 20237 {
891d2f0b 20238 unsigned int bytes_read;
2e276125 20239 int line;
d521ce57 20240 const char *body;
cf2c3c16 20241 int is_define;
2e276125 20242
cf2c3c16
TT
20243 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20244 mac_ptr += bytes_read;
20245
20246 if (macinfo_type == DW_MACRO_GNU_define
20247 || macinfo_type == DW_MACRO_GNU_undef)
20248 {
20249 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20250 mac_ptr += bytes_read;
20251 }
20252 else
20253 {
20254 LONGEST str_offset;
20255
20256 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20257 mac_ptr += offset_size;
2e276125 20258
36586728 20259 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
20260 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20261 || section_is_dwz)
36586728
TT
20262 {
20263 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20264
20265 body = read_indirect_string_from_dwz (dwz, str_offset);
20266 }
20267 else
20268 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
20269 }
20270
20271 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
20272 || macinfo_type == DW_MACRO_GNU_define_indirect
20273 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 20274 if (! current_file)
757a13d0
JK
20275 {
20276 /* DWARF violation as no main source is present. */
20277 complaint (&symfile_complaints,
20278 _("debug info with no main source gives macro %s "
20279 "on line %d: %s"),
cf2c3c16
TT
20280 is_define ? _("definition") : _("undefinition"),
20281 line, body);
757a13d0
JK
20282 break;
20283 }
3e43a32a
MS
20284 if ((line == 0 && !at_commandline)
20285 || (line != 0 && at_commandline))
4d3c2250 20286 complaint (&symfile_complaints,
757a13d0
JK
20287 _("debug info gives %s macro %s with %s line %d: %s"),
20288 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 20289 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
20290 line == 0 ? _("zero") : _("non-zero"), line, body);
20291
cf2c3c16 20292 if (is_define)
757a13d0 20293 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
20294 else
20295 {
20296 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
20297 || macinfo_type == DW_MACRO_GNU_undef_indirect
20298 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
20299 macro_undef (current_file, line, body);
20300 }
2e276125
JB
20301 }
20302 break;
20303
cf2c3c16 20304 case DW_MACRO_GNU_start_file:
2e276125 20305 {
891d2f0b 20306 unsigned int bytes_read;
2e276125
JB
20307 int line, file;
20308
20309 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20310 mac_ptr += bytes_read;
20311 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20312 mac_ptr += bytes_read;
20313
3e43a32a
MS
20314 if ((line == 0 && !at_commandline)
20315 || (line != 0 && at_commandline))
757a13d0
JK
20316 complaint (&symfile_complaints,
20317 _("debug info gives source %d included "
20318 "from %s at %s line %d"),
20319 file, at_commandline ? _("command-line") : _("file"),
20320 line == 0 ? _("zero") : _("non-zero"), line);
20321
20322 if (at_commandline)
20323 {
cf2c3c16
TT
20324 /* This DW_MACRO_GNU_start_file was executed in the
20325 pass one. */
757a13d0
JK
20326 at_commandline = 0;
20327 }
20328 else
20329 current_file = macro_start_file (file, line,
20330 current_file, comp_dir,
cf2c3c16 20331 lh, objfile);
2e276125
JB
20332 }
20333 break;
20334
cf2c3c16 20335 case DW_MACRO_GNU_end_file:
2e276125 20336 if (! current_file)
4d3c2250 20337 complaint (&symfile_complaints,
3e43a32a
MS
20338 _("macro debug info has an unmatched "
20339 "`close_file' directive"));
2e276125
JB
20340 else
20341 {
20342 current_file = current_file->included_by;
20343 if (! current_file)
20344 {
cf2c3c16 20345 enum dwarf_macro_record_type next_type;
2e276125
JB
20346
20347 /* GCC circa March 2002 doesn't produce the zero
20348 type byte marking the end of the compilation
20349 unit. Complain if it's not there, but exit no
20350 matter what. */
20351
20352 /* Do we at least have room for a macinfo type byte? */
20353 if (mac_ptr >= mac_end)
20354 {
f664829e 20355 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
20356 return;
20357 }
20358
20359 /* We don't increment mac_ptr here, so this is just
20360 a look-ahead. */
20361 next_type = read_1_byte (abfd, mac_ptr);
20362 if (next_type != 0)
4d3c2250 20363 complaint (&symfile_complaints,
3e43a32a
MS
20364 _("no terminating 0-type entry for "
20365 "macros in `.debug_macinfo' section"));
2e276125
JB
20366
20367 return;
20368 }
20369 }
20370 break;
20371
cf2c3c16 20372 case DW_MACRO_GNU_transparent_include:
36586728 20373 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
20374 {
20375 LONGEST offset;
8fc3fc34 20376 void **slot;
a036ba48
TT
20377 bfd *include_bfd = abfd;
20378 struct dwarf2_section_info *include_section = section;
20379 struct dwarf2_section_info alt_section;
d521ce57 20380 const gdb_byte *include_mac_end = mac_end;
a036ba48 20381 int is_dwz = section_is_dwz;
d521ce57 20382 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
20383
20384 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20385 mac_ptr += offset_size;
20386
a036ba48
TT
20387 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20388 {
20389 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20390
20391 dwarf2_read_section (dwarf2_per_objfile->objfile,
20392 &dwz->macro);
20393
a036ba48 20394 include_section = &dwz->macro;
a32a8923 20395 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
20396 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20397 is_dwz = 1;
20398 }
20399
20400 new_mac_ptr = include_section->buffer + offset;
20401 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20402
8fc3fc34
TT
20403 if (*slot != NULL)
20404 {
20405 /* This has actually happened; see
20406 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20407 complaint (&symfile_complaints,
20408 _("recursive DW_MACRO_GNU_transparent_include in "
20409 ".debug_macro section"));
20410 }
20411 else
20412 {
d521ce57 20413 *slot = (void *) new_mac_ptr;
36586728 20414
a036ba48 20415 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
36586728 20416 include_mac_end, current_file,
8fc3fc34 20417 lh, comp_dir,
36586728 20418 section, section_is_gnu, is_dwz,
8fc3fc34
TT
20419 offset_size, objfile, include_hash);
20420
d521ce57 20421 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 20422 }
cf2c3c16
TT
20423 }
20424 break;
20425
2e276125 20426 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
20427 if (!section_is_gnu)
20428 {
20429 unsigned int bytes_read;
20430 int constant;
2e276125 20431
cf2c3c16
TT
20432 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20433 mac_ptr += bytes_read;
20434 read_direct_string (abfd, mac_ptr, &bytes_read);
20435 mac_ptr += bytes_read;
2e276125 20436
cf2c3c16
TT
20437 /* We don't recognize any vendor extensions. */
20438 break;
20439 }
20440 /* FALLTHROUGH */
20441
20442 default:
20443 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 20444 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
20445 section);
20446 if (mac_ptr == NULL)
20447 return;
20448 break;
2e276125 20449 }
757a13d0 20450 } while (macinfo_type != 0);
2e276125 20451}
8e19ed76 20452
cf2c3c16 20453static void
09262596 20454dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
15d034d0 20455 const char *comp_dir, int section_is_gnu)
cf2c3c16 20456{
bb5ed363 20457 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
20458 struct line_header *lh = cu->line_header;
20459 bfd *abfd;
d521ce57 20460 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
20461 struct macro_source_file *current_file = 0;
20462 enum dwarf_macro_record_type macinfo_type;
20463 unsigned int offset_size = cu->header.offset_size;
d521ce57 20464 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
20465 struct cleanup *cleanup;
20466 htab_t include_hash;
20467 void **slot;
09262596
DE
20468 struct dwarf2_section_info *section;
20469 const char *section_name;
20470
20471 if (cu->dwo_unit != NULL)
20472 {
20473 if (section_is_gnu)
20474 {
20475 section = &cu->dwo_unit->dwo_file->sections.macro;
20476 section_name = ".debug_macro.dwo";
20477 }
20478 else
20479 {
20480 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20481 section_name = ".debug_macinfo.dwo";
20482 }
20483 }
20484 else
20485 {
20486 if (section_is_gnu)
20487 {
20488 section = &dwarf2_per_objfile->macro;
20489 section_name = ".debug_macro";
20490 }
20491 else
20492 {
20493 section = &dwarf2_per_objfile->macinfo;
20494 section_name = ".debug_macinfo";
20495 }
20496 }
cf2c3c16 20497
bb5ed363 20498 dwarf2_read_section (objfile, section);
cf2c3c16
TT
20499 if (section->buffer == NULL)
20500 {
fceca515 20501 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
20502 return;
20503 }
a32a8923 20504 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
20505
20506 /* First pass: Find the name of the base filename.
20507 This filename is needed in order to process all macros whose definition
20508 (or undefinition) comes from the command line. These macros are defined
20509 before the first DW_MACINFO_start_file entry, and yet still need to be
20510 associated to the base file.
20511
20512 To determine the base file name, we scan the macro definitions until we
20513 reach the first DW_MACINFO_start_file entry. We then initialize
20514 CURRENT_FILE accordingly so that any macro definition found before the
20515 first DW_MACINFO_start_file can still be associated to the base file. */
20516
20517 mac_ptr = section->buffer + offset;
20518 mac_end = section->buffer + section->size;
20519
20520 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20521 &offset_size, section_is_gnu);
20522 if (mac_ptr == NULL)
20523 {
20524 /* We already issued a complaint. */
20525 return;
20526 }
20527
20528 do
20529 {
20530 /* Do we at least have room for a macinfo type byte? */
20531 if (mac_ptr >= mac_end)
20532 {
20533 /* Complaint is printed during the second pass as GDB will probably
20534 stop the first pass earlier upon finding
20535 DW_MACINFO_start_file. */
20536 break;
20537 }
20538
20539 macinfo_type = read_1_byte (abfd, mac_ptr);
20540 mac_ptr++;
20541
20542 /* Note that we rely on the fact that the corresponding GNU and
20543 DWARF constants are the same. */
20544 switch (macinfo_type)
20545 {
20546 /* A zero macinfo type indicates the end of the macro
20547 information. */
20548 case 0:
20549 break;
20550
20551 case DW_MACRO_GNU_define:
20552 case DW_MACRO_GNU_undef:
20553 /* Only skip the data by MAC_PTR. */
20554 {
20555 unsigned int bytes_read;
20556
20557 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20558 mac_ptr += bytes_read;
20559 read_direct_string (abfd, mac_ptr, &bytes_read);
20560 mac_ptr += bytes_read;
20561 }
20562 break;
20563
20564 case DW_MACRO_GNU_start_file:
20565 {
20566 unsigned int bytes_read;
20567 int line, file;
20568
20569 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20570 mac_ptr += bytes_read;
20571 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20572 mac_ptr += bytes_read;
20573
20574 current_file = macro_start_file (file, line, current_file,
bb5ed363 20575 comp_dir, lh, objfile);
cf2c3c16
TT
20576 }
20577 break;
20578
20579 case DW_MACRO_GNU_end_file:
20580 /* No data to skip by MAC_PTR. */
20581 break;
20582
20583 case DW_MACRO_GNU_define_indirect:
20584 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
20585 case DW_MACRO_GNU_define_indirect_alt:
20586 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
20587 {
20588 unsigned int bytes_read;
20589
20590 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20591 mac_ptr += bytes_read;
20592 mac_ptr += offset_size;
20593 }
20594 break;
20595
20596 case DW_MACRO_GNU_transparent_include:
f7a35f02 20597 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
20598 /* Note that, according to the spec, a transparent include
20599 chain cannot call DW_MACRO_GNU_start_file. So, we can just
20600 skip this opcode. */
20601 mac_ptr += offset_size;
20602 break;
20603
20604 case DW_MACINFO_vendor_ext:
20605 /* Only skip the data by MAC_PTR. */
20606 if (!section_is_gnu)
20607 {
20608 unsigned int bytes_read;
20609
20610 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20611 mac_ptr += bytes_read;
20612 read_direct_string (abfd, mac_ptr, &bytes_read);
20613 mac_ptr += bytes_read;
20614 }
20615 /* FALLTHROUGH */
20616
20617 default:
20618 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 20619 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
20620 section);
20621 if (mac_ptr == NULL)
20622 return;
20623 break;
20624 }
20625 } while (macinfo_type != 0 && current_file == NULL);
20626
20627 /* Second pass: Process all entries.
20628
20629 Use the AT_COMMAND_LINE flag to determine whether we are still processing
20630 command-line macro definitions/undefinitions. This flag is unset when we
20631 reach the first DW_MACINFO_start_file entry. */
20632
8fc3fc34
TT
20633 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
20634 NULL, xcalloc, xfree);
20635 cleanup = make_cleanup_htab_delete (include_hash);
20636 mac_ptr = section->buffer + offset;
20637 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 20638 *slot = (void *) mac_ptr;
8fc3fc34 20639 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
36586728
TT
20640 current_file, lh, comp_dir, section,
20641 section_is_gnu, 0,
8fc3fc34
TT
20642 offset_size, objfile, include_hash);
20643 do_cleanups (cleanup);
cf2c3c16
TT
20644}
20645
8e19ed76 20646/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 20647 if so return true else false. */
380bca97 20648
8e19ed76 20649static int
6e5a29e1 20650attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
20651{
20652 return (attr == NULL ? 0 :
20653 attr->form == DW_FORM_block1
20654 || attr->form == DW_FORM_block2
20655 || attr->form == DW_FORM_block4
2dc7f7b3
TT
20656 || attr->form == DW_FORM_block
20657 || attr->form == DW_FORM_exprloc);
8e19ed76 20658}
4c2df51b 20659
c6a0999f
JB
20660/* Return non-zero if ATTR's value is a section offset --- classes
20661 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
20662 You may use DW_UNSND (attr) to retrieve such offsets.
20663
20664 Section 7.5.4, "Attribute Encodings", explains that no attribute
20665 may have a value that belongs to more than one of these classes; it
20666 would be ambiguous if we did, because we use the same forms for all
20667 of them. */
380bca97 20668
3690dd37 20669static int
6e5a29e1 20670attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
20671{
20672 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
20673 || attr->form == DW_FORM_data8
20674 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
20675}
20676
3690dd37
JB
20677/* Return non-zero if ATTR's value falls in the 'constant' class, or
20678 zero otherwise. When this function returns true, you can apply
20679 dwarf2_get_attr_constant_value to it.
20680
20681 However, note that for some attributes you must check
20682 attr_form_is_section_offset before using this test. DW_FORM_data4
20683 and DW_FORM_data8 are members of both the constant class, and of
20684 the classes that contain offsets into other debug sections
20685 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
20686 that, if an attribute's can be either a constant or one of the
20687 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
20688 taken as section offsets, not constants. */
380bca97 20689
3690dd37 20690static int
6e5a29e1 20691attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
20692{
20693 switch (attr->form)
20694 {
20695 case DW_FORM_sdata:
20696 case DW_FORM_udata:
20697 case DW_FORM_data1:
20698 case DW_FORM_data2:
20699 case DW_FORM_data4:
20700 case DW_FORM_data8:
20701 return 1;
20702 default:
20703 return 0;
20704 }
20705}
20706
7771576e
SA
20707
20708/* DW_ADDR is always stored already as sect_offset; despite for the forms
20709 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
20710
20711static int
6e5a29e1 20712attr_form_is_ref (const struct attribute *attr)
7771576e
SA
20713{
20714 switch (attr->form)
20715 {
20716 case DW_FORM_ref_addr:
20717 case DW_FORM_ref1:
20718 case DW_FORM_ref2:
20719 case DW_FORM_ref4:
20720 case DW_FORM_ref8:
20721 case DW_FORM_ref_udata:
20722 case DW_FORM_GNU_ref_alt:
20723 return 1;
20724 default:
20725 return 0;
20726 }
20727}
20728
3019eac3
DE
20729/* Return the .debug_loc section to use for CU.
20730 For DWO files use .debug_loc.dwo. */
20731
20732static struct dwarf2_section_info *
20733cu_debug_loc_section (struct dwarf2_cu *cu)
20734{
20735 if (cu->dwo_unit)
20736 return &cu->dwo_unit->dwo_file->sections.loc;
20737 return &dwarf2_per_objfile->loc;
20738}
20739
8cf6f0b1
TT
20740/* A helper function that fills in a dwarf2_loclist_baton. */
20741
20742static void
20743fill_in_loclist_baton (struct dwarf2_cu *cu,
20744 struct dwarf2_loclist_baton *baton,
ff39bb5e 20745 const struct attribute *attr)
8cf6f0b1 20746{
3019eac3
DE
20747 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20748
20749 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
20750
20751 baton->per_cu = cu->per_cu;
20752 gdb_assert (baton->per_cu);
20753 /* We don't know how long the location list is, but make sure we
20754 don't run off the edge of the section. */
3019eac3
DE
20755 baton->size = section->size - DW_UNSND (attr);
20756 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 20757 baton->base_address = cu->base_address;
f664829e 20758 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
20759}
20760
4c2df51b 20761static void
ff39bb5e 20762dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 20763 struct dwarf2_cu *cu, int is_block)
4c2df51b 20764{
bb5ed363 20765 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 20766 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 20767
3690dd37 20768 if (attr_form_is_section_offset (attr)
3019eac3 20769 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
20770 the section. If so, fall through to the complaint in the
20771 other branch. */
3019eac3 20772 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 20773 {
0d53c4c4 20774 struct dwarf2_loclist_baton *baton;
4c2df51b 20775
bb5ed363 20776 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 20777 sizeof (struct dwarf2_loclist_baton));
4c2df51b 20778
8cf6f0b1 20779 fill_in_loclist_baton (cu, baton, attr);
be391dca 20780
d00adf39 20781 if (cu->base_known == 0)
0d53c4c4 20782 complaint (&symfile_complaints,
3e43a32a
MS
20783 _("Location list used without "
20784 "specifying the CU base address."));
4c2df51b 20785
f1e6e072
TT
20786 SYMBOL_ACLASS_INDEX (sym) = (is_block
20787 ? dwarf2_loclist_block_index
20788 : dwarf2_loclist_index);
0d53c4c4
DJ
20789 SYMBOL_LOCATION_BATON (sym) = baton;
20790 }
20791 else
20792 {
20793 struct dwarf2_locexpr_baton *baton;
20794
bb5ed363 20795 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 20796 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
20797 baton->per_cu = cu->per_cu;
20798 gdb_assert (baton->per_cu);
0d53c4c4
DJ
20799
20800 if (attr_form_is_block (attr))
20801 {
20802 /* Note that we're just copying the block's data pointer
20803 here, not the actual data. We're still pointing into the
6502dd73
DJ
20804 info_buffer for SYM's objfile; right now we never release
20805 that buffer, but when we do clean up properly this may
20806 need to change. */
0d53c4c4
DJ
20807 baton->size = DW_BLOCK (attr)->size;
20808 baton->data = DW_BLOCK (attr)->data;
20809 }
20810 else
20811 {
20812 dwarf2_invalid_attrib_class_complaint ("location description",
20813 SYMBOL_NATURAL_NAME (sym));
20814 baton->size = 0;
0d53c4c4 20815 }
6e70227d 20816
f1e6e072
TT
20817 SYMBOL_ACLASS_INDEX (sym) = (is_block
20818 ? dwarf2_locexpr_block_index
20819 : dwarf2_locexpr_index);
0d53c4c4
DJ
20820 SYMBOL_LOCATION_BATON (sym) = baton;
20821 }
4c2df51b 20822}
6502dd73 20823
9aa1f1e3
TT
20824/* Return the OBJFILE associated with the compilation unit CU. If CU
20825 came from a separate debuginfo file, then the master objfile is
20826 returned. */
ae0d2f24
UW
20827
20828struct objfile *
20829dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
20830{
9291a0cd 20831 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
20832
20833 /* Return the master objfile, so that we can report and look up the
20834 correct file containing this variable. */
20835 if (objfile->separate_debug_objfile_backlink)
20836 objfile = objfile->separate_debug_objfile_backlink;
20837
20838 return objfile;
20839}
20840
96408a79
SA
20841/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
20842 (CU_HEADERP is unused in such case) or prepare a temporary copy at
20843 CU_HEADERP first. */
20844
20845static const struct comp_unit_head *
20846per_cu_header_read_in (struct comp_unit_head *cu_headerp,
20847 struct dwarf2_per_cu_data *per_cu)
20848{
d521ce57 20849 const gdb_byte *info_ptr;
96408a79
SA
20850
20851 if (per_cu->cu)
20852 return &per_cu->cu->header;
20853
8a0459fd 20854 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
20855
20856 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 20857 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
20858
20859 return cu_headerp;
20860}
20861
ae0d2f24
UW
20862/* Return the address size given in the compilation unit header for CU. */
20863
98714339 20864int
ae0d2f24
UW
20865dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
20866{
96408a79
SA
20867 struct comp_unit_head cu_header_local;
20868 const struct comp_unit_head *cu_headerp;
c471e790 20869
96408a79
SA
20870 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20871
20872 return cu_headerp->addr_size;
ae0d2f24
UW
20873}
20874
9eae7c52
TT
20875/* Return the offset size given in the compilation unit header for CU. */
20876
20877int
20878dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
20879{
96408a79
SA
20880 struct comp_unit_head cu_header_local;
20881 const struct comp_unit_head *cu_headerp;
9c6c53f7 20882
96408a79
SA
20883 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20884
20885 return cu_headerp->offset_size;
20886}
20887
20888/* See its dwarf2loc.h declaration. */
20889
20890int
20891dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
20892{
20893 struct comp_unit_head cu_header_local;
20894 const struct comp_unit_head *cu_headerp;
20895
20896 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20897
20898 if (cu_headerp->version == 2)
20899 return cu_headerp->addr_size;
20900 else
20901 return cu_headerp->offset_size;
181cebd4
JK
20902}
20903
9aa1f1e3
TT
20904/* Return the text offset of the CU. The returned offset comes from
20905 this CU's objfile. If this objfile came from a separate debuginfo
20906 file, then the offset may be different from the corresponding
20907 offset in the parent objfile. */
20908
20909CORE_ADDR
20910dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
20911{
bb3fa9d0 20912 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
20913
20914 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20915}
20916
348e048f
DE
20917/* Locate the .debug_info compilation unit from CU's objfile which contains
20918 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
20919
20920static struct dwarf2_per_cu_data *
b64f50a1 20921dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 20922 unsigned int offset_in_dwz,
ae038cb0
DJ
20923 struct objfile *objfile)
20924{
20925 struct dwarf2_per_cu_data *this_cu;
20926 int low, high;
36586728 20927 const sect_offset *cu_off;
ae038cb0 20928
ae038cb0
DJ
20929 low = 0;
20930 high = dwarf2_per_objfile->n_comp_units - 1;
20931 while (high > low)
20932 {
36586728 20933 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 20934 int mid = low + (high - low) / 2;
9a619af0 20935
36586728
TT
20936 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
20937 cu_off = &mid_cu->offset;
20938 if (mid_cu->is_dwz > offset_in_dwz
20939 || (mid_cu->is_dwz == offset_in_dwz
20940 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
20941 high = mid;
20942 else
20943 low = mid + 1;
20944 }
20945 gdb_assert (low == high);
36586728
TT
20946 this_cu = dwarf2_per_objfile->all_comp_units[low];
20947 cu_off = &this_cu->offset;
20948 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 20949 {
36586728 20950 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
20951 error (_("Dwarf Error: could not find partial DIE containing "
20952 "offset 0x%lx [in module %s]"),
b64f50a1 20953 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 20954
b64f50a1
JK
20955 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
20956 <= offset.sect_off);
ae038cb0
DJ
20957 return dwarf2_per_objfile->all_comp_units[low-1];
20958 }
20959 else
20960 {
20961 this_cu = dwarf2_per_objfile->all_comp_units[low];
20962 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
20963 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
20964 error (_("invalid dwarf2 offset %u"), offset.sect_off);
20965 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
20966 return this_cu;
20967 }
20968}
20969
23745b47 20970/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 20971
9816fde3 20972static void
23745b47 20973init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 20974{
9816fde3 20975 memset (cu, 0, sizeof (*cu));
23745b47
DE
20976 per_cu->cu = cu;
20977 cu->per_cu = per_cu;
20978 cu->objfile = per_cu->objfile;
93311388 20979 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
20980}
20981
20982/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
20983
20984static void
95554aad
TT
20985prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
20986 enum language pretend_language)
9816fde3
JK
20987{
20988 struct attribute *attr;
20989
20990 /* Set the language we're debugging. */
20991 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
20992 if (attr)
20993 set_cu_language (DW_UNSND (attr), cu);
20994 else
9cded63f 20995 {
95554aad 20996 cu->language = pretend_language;
9cded63f
TT
20997 cu->language_defn = language_def (cu->language);
20998 }
dee91e82
DE
20999
21000 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21001 if (attr)
21002 cu->producer = DW_STRING (attr);
93311388
DE
21003}
21004
ae038cb0
DJ
21005/* Release one cached compilation unit, CU. We unlink it from the tree
21006 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
21007 the caller is responsible for that.
21008 NOTE: DATA is a void * because this function is also used as a
21009 cleanup routine. */
ae038cb0
DJ
21010
21011static void
68dc6402 21012free_heap_comp_unit (void *data)
ae038cb0
DJ
21013{
21014 struct dwarf2_cu *cu = data;
21015
23745b47
DE
21016 gdb_assert (cu->per_cu != NULL);
21017 cu->per_cu->cu = NULL;
ae038cb0
DJ
21018 cu->per_cu = NULL;
21019
21020 obstack_free (&cu->comp_unit_obstack, NULL);
21021
21022 xfree (cu);
21023}
21024
72bf9492 21025/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 21026 when we're finished with it. We can't free the pointer itself, but be
dee91e82 21027 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
21028
21029static void
21030free_stack_comp_unit (void *data)
21031{
21032 struct dwarf2_cu *cu = data;
21033
23745b47
DE
21034 gdb_assert (cu->per_cu != NULL);
21035 cu->per_cu->cu = NULL;
21036 cu->per_cu = NULL;
21037
72bf9492
DJ
21038 obstack_free (&cu->comp_unit_obstack, NULL);
21039 cu->partial_dies = NULL;
ae038cb0
DJ
21040}
21041
21042/* Free all cached compilation units. */
21043
21044static void
21045free_cached_comp_units (void *data)
21046{
21047 struct dwarf2_per_cu_data *per_cu, **last_chain;
21048
21049 per_cu = dwarf2_per_objfile->read_in_chain;
21050 last_chain = &dwarf2_per_objfile->read_in_chain;
21051 while (per_cu != NULL)
21052 {
21053 struct dwarf2_per_cu_data *next_cu;
21054
21055 next_cu = per_cu->cu->read_in_chain;
21056
68dc6402 21057 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21058 *last_chain = next_cu;
21059
21060 per_cu = next_cu;
21061 }
21062}
21063
21064/* Increase the age counter on each cached compilation unit, and free
21065 any that are too old. */
21066
21067static void
21068age_cached_comp_units (void)
21069{
21070 struct dwarf2_per_cu_data *per_cu, **last_chain;
21071
21072 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21073 per_cu = dwarf2_per_objfile->read_in_chain;
21074 while (per_cu != NULL)
21075 {
21076 per_cu->cu->last_used ++;
21077 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21078 dwarf2_mark (per_cu->cu);
21079 per_cu = per_cu->cu->read_in_chain;
21080 }
21081
21082 per_cu = dwarf2_per_objfile->read_in_chain;
21083 last_chain = &dwarf2_per_objfile->read_in_chain;
21084 while (per_cu != NULL)
21085 {
21086 struct dwarf2_per_cu_data *next_cu;
21087
21088 next_cu = per_cu->cu->read_in_chain;
21089
21090 if (!per_cu->cu->mark)
21091 {
68dc6402 21092 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21093 *last_chain = next_cu;
21094 }
21095 else
21096 last_chain = &per_cu->cu->read_in_chain;
21097
21098 per_cu = next_cu;
21099 }
21100}
21101
21102/* Remove a single compilation unit from the cache. */
21103
21104static void
dee91e82 21105free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
21106{
21107 struct dwarf2_per_cu_data *per_cu, **last_chain;
21108
21109 per_cu = dwarf2_per_objfile->read_in_chain;
21110 last_chain = &dwarf2_per_objfile->read_in_chain;
21111 while (per_cu != NULL)
21112 {
21113 struct dwarf2_per_cu_data *next_cu;
21114
21115 next_cu = per_cu->cu->read_in_chain;
21116
dee91e82 21117 if (per_cu == target_per_cu)
ae038cb0 21118 {
68dc6402 21119 free_heap_comp_unit (per_cu->cu);
dee91e82 21120 per_cu->cu = NULL;
ae038cb0
DJ
21121 *last_chain = next_cu;
21122 break;
21123 }
21124 else
21125 last_chain = &per_cu->cu->read_in_chain;
21126
21127 per_cu = next_cu;
21128 }
21129}
21130
fe3e1990
DJ
21131/* Release all extra memory associated with OBJFILE. */
21132
21133void
21134dwarf2_free_objfile (struct objfile *objfile)
21135{
21136 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21137
21138 if (dwarf2_per_objfile == NULL)
21139 return;
21140
21141 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21142 free_cached_comp_units (NULL);
21143
7b9f3c50
DE
21144 if (dwarf2_per_objfile->quick_file_names_table)
21145 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 21146
fe3e1990
DJ
21147 /* Everything else should be on the objfile obstack. */
21148}
21149
dee91e82
DE
21150/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21151 We store these in a hash table separate from the DIEs, and preserve them
21152 when the DIEs are flushed out of cache.
21153
21154 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 21155 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
21156 or the type may come from a DWO file. Furthermore, while it's more logical
21157 to use per_cu->section+offset, with Fission the section with the data is in
21158 the DWO file but we don't know that section at the point we need it.
21159 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21160 because we can enter the lookup routine, get_die_type_at_offset, from
21161 outside this file, and thus won't necessarily have PER_CU->cu.
21162 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 21163
dee91e82 21164struct dwarf2_per_cu_offset_and_type
1c379e20 21165{
dee91e82 21166 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 21167 sect_offset offset;
1c379e20
DJ
21168 struct type *type;
21169};
21170
dee91e82 21171/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21172
21173static hashval_t
dee91e82 21174per_cu_offset_and_type_hash (const void *item)
1c379e20 21175{
dee91e82 21176 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 21177
dee91e82 21178 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
21179}
21180
dee91e82 21181/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21182
21183static int
dee91e82 21184per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 21185{
dee91e82
DE
21186 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21187 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 21188
dee91e82
DE
21189 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21190 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
21191}
21192
21193/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
21194 table if necessary. For convenience, return TYPE.
21195
21196 The DIEs reading must have careful ordering to:
21197 * Not cause infite loops trying to read in DIEs as a prerequisite for
21198 reading current DIE.
21199 * Not trying to dereference contents of still incompletely read in types
21200 while reading in other DIEs.
21201 * Enable referencing still incompletely read in types just by a pointer to
21202 the type without accessing its fields.
21203
21204 Therefore caller should follow these rules:
21205 * Try to fetch any prerequisite types we may need to build this DIE type
21206 before building the type and calling set_die_type.
e71ec853 21207 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
21208 possible before fetching more types to complete the current type.
21209 * Make the type as complete as possible before fetching more types. */
1c379e20 21210
f792889a 21211static struct type *
1c379e20
DJ
21212set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21213{
dee91e82 21214 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 21215 struct objfile *objfile = cu->objfile;
1c379e20 21216
b4ba55a1
JB
21217 /* For Ada types, make sure that the gnat-specific data is always
21218 initialized (if not already set). There are a few types where
21219 we should not be doing so, because the type-specific area is
21220 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21221 where the type-specific area is used to store the floatformat).
21222 But this is not a problem, because the gnat-specific information
21223 is actually not needed for these types. */
21224 if (need_gnat_info (cu)
21225 && TYPE_CODE (type) != TYPE_CODE_FUNC
21226 && TYPE_CODE (type) != TYPE_CODE_FLT
21227 && !HAVE_GNAT_AUX_INFO (type))
21228 INIT_GNAT_SPECIFIC (type);
21229
dee91e82 21230 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21231 {
dee91e82
DE
21232 dwarf2_per_objfile->die_type_hash =
21233 htab_create_alloc_ex (127,
21234 per_cu_offset_and_type_hash,
21235 per_cu_offset_and_type_eq,
21236 NULL,
21237 &objfile->objfile_obstack,
21238 hashtab_obstack_allocate,
21239 dummy_obstack_deallocate);
f792889a 21240 }
1c379e20 21241
dee91e82 21242 ofs.per_cu = cu->per_cu;
1c379e20
DJ
21243 ofs.offset = die->offset;
21244 ofs.type = type;
dee91e82
DE
21245 slot = (struct dwarf2_per_cu_offset_and_type **)
21246 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
21247 if (*slot)
21248 complaint (&symfile_complaints,
21249 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 21250 die->offset.sect_off);
673bfd45 21251 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 21252 **slot = ofs;
f792889a 21253 return type;
1c379e20
DJ
21254}
21255
02142a6c
DE
21256/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21257 or return NULL if the die does not have a saved type. */
1c379e20
DJ
21258
21259static struct type *
b64f50a1 21260get_die_type_at_offset (sect_offset offset,
673bfd45 21261 struct dwarf2_per_cu_data *per_cu)
1c379e20 21262{
dee91e82 21263 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 21264
dee91e82 21265 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21266 return NULL;
1c379e20 21267
dee91e82 21268 ofs.per_cu = per_cu;
673bfd45 21269 ofs.offset = offset;
dee91e82 21270 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
21271 if (slot)
21272 return slot->type;
21273 else
21274 return NULL;
21275}
21276
02142a6c 21277/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
21278 or return NULL if DIE does not have a saved type. */
21279
21280static struct type *
21281get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21282{
21283 return get_die_type_at_offset (die->offset, cu->per_cu);
21284}
21285
10b3939b
DJ
21286/* Add a dependence relationship from CU to REF_PER_CU. */
21287
21288static void
21289dwarf2_add_dependence (struct dwarf2_cu *cu,
21290 struct dwarf2_per_cu_data *ref_per_cu)
21291{
21292 void **slot;
21293
21294 if (cu->dependencies == NULL)
21295 cu->dependencies
21296 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21297 NULL, &cu->comp_unit_obstack,
21298 hashtab_obstack_allocate,
21299 dummy_obstack_deallocate);
21300
21301 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21302 if (*slot == NULL)
21303 *slot = ref_per_cu;
21304}
1c379e20 21305
f504f079
DE
21306/* Subroutine of dwarf2_mark to pass to htab_traverse.
21307 Set the mark field in every compilation unit in the
ae038cb0
DJ
21308 cache that we must keep because we are keeping CU. */
21309
10b3939b
DJ
21310static int
21311dwarf2_mark_helper (void **slot, void *data)
21312{
21313 struct dwarf2_per_cu_data *per_cu;
21314
21315 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
21316
21317 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21318 reading of the chain. As such dependencies remain valid it is not much
21319 useful to track and undo them during QUIT cleanups. */
21320 if (per_cu->cu == NULL)
21321 return 1;
21322
10b3939b
DJ
21323 if (per_cu->cu->mark)
21324 return 1;
21325 per_cu->cu->mark = 1;
21326
21327 if (per_cu->cu->dependencies != NULL)
21328 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21329
21330 return 1;
21331}
21332
f504f079
DE
21333/* Set the mark field in CU and in every other compilation unit in the
21334 cache that we must keep because we are keeping CU. */
21335
ae038cb0
DJ
21336static void
21337dwarf2_mark (struct dwarf2_cu *cu)
21338{
21339 if (cu->mark)
21340 return;
21341 cu->mark = 1;
10b3939b
DJ
21342 if (cu->dependencies != NULL)
21343 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
21344}
21345
21346static void
21347dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21348{
21349 while (per_cu)
21350 {
21351 per_cu->cu->mark = 0;
21352 per_cu = per_cu->cu->read_in_chain;
21353 }
72bf9492
DJ
21354}
21355
72bf9492
DJ
21356/* Trivial hash function for partial_die_info: the hash value of a DIE
21357 is its offset in .debug_info for this objfile. */
21358
21359static hashval_t
21360partial_die_hash (const void *item)
21361{
21362 const struct partial_die_info *part_die = item;
9a619af0 21363
b64f50a1 21364 return part_die->offset.sect_off;
72bf9492
DJ
21365}
21366
21367/* Trivial comparison function for partial_die_info structures: two DIEs
21368 are equal if they have the same offset. */
21369
21370static int
21371partial_die_eq (const void *item_lhs, const void *item_rhs)
21372{
21373 const struct partial_die_info *part_die_lhs = item_lhs;
21374 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 21375
b64f50a1 21376 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
21377}
21378
ae038cb0
DJ
21379static struct cmd_list_element *set_dwarf2_cmdlist;
21380static struct cmd_list_element *show_dwarf2_cmdlist;
21381
21382static void
21383set_dwarf2_cmd (char *args, int from_tty)
21384{
21385 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
21386}
21387
21388static void
21389show_dwarf2_cmd (char *args, int from_tty)
6e70227d 21390{
ae038cb0
DJ
21391 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21392}
21393
4bf44c1c 21394/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
21395
21396static void
c1bd65d0 21397dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
21398{
21399 struct dwarf2_per_objfile *data = d;
8b70b953 21400 int ix;
8b70b953 21401
626f2d1c
TT
21402 /* Make sure we don't accidentally use dwarf2_per_objfile while
21403 cleaning up. */
21404 dwarf2_per_objfile = NULL;
21405
59b0c7c1
JB
21406 for (ix = 0; ix < data->n_comp_units; ++ix)
21407 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 21408
59b0c7c1 21409 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 21410 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
21411 data->all_type_units[ix]->per_cu.imported_symtabs);
21412 xfree (data->all_type_units);
95554aad 21413
8b70b953 21414 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
21415
21416 if (data->dwo_files)
21417 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
21418 if (data->dwp_file)
21419 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
21420
21421 if (data->dwz_file && data->dwz_file->dwz_bfd)
21422 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
21423}
21424
21425\f
ae2de4f8 21426/* The "save gdb-index" command. */
9291a0cd
TT
21427
21428/* The contents of the hash table we create when building the string
21429 table. */
21430struct strtab_entry
21431{
21432 offset_type offset;
21433 const char *str;
21434};
21435
559a7a62
JK
21436/* Hash function for a strtab_entry.
21437
21438 Function is used only during write_hash_table so no index format backward
21439 compatibility is needed. */
b89be57b 21440
9291a0cd
TT
21441static hashval_t
21442hash_strtab_entry (const void *e)
21443{
21444 const struct strtab_entry *entry = e;
559a7a62 21445 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
21446}
21447
21448/* Equality function for a strtab_entry. */
b89be57b 21449
9291a0cd
TT
21450static int
21451eq_strtab_entry (const void *a, const void *b)
21452{
21453 const struct strtab_entry *ea = a;
21454 const struct strtab_entry *eb = b;
21455 return !strcmp (ea->str, eb->str);
21456}
21457
21458/* Create a strtab_entry hash table. */
b89be57b 21459
9291a0cd
TT
21460static htab_t
21461create_strtab (void)
21462{
21463 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21464 xfree, xcalloc, xfree);
21465}
21466
21467/* Add a string to the constant pool. Return the string's offset in
21468 host order. */
b89be57b 21469
9291a0cd
TT
21470static offset_type
21471add_string (htab_t table, struct obstack *cpool, const char *str)
21472{
21473 void **slot;
21474 struct strtab_entry entry;
21475 struct strtab_entry *result;
21476
21477 entry.str = str;
21478 slot = htab_find_slot (table, &entry, INSERT);
21479 if (*slot)
21480 result = *slot;
21481 else
21482 {
21483 result = XNEW (struct strtab_entry);
21484 result->offset = obstack_object_size (cpool);
21485 result->str = str;
21486 obstack_grow_str0 (cpool, str);
21487 *slot = result;
21488 }
21489 return result->offset;
21490}
21491
21492/* An entry in the symbol table. */
21493struct symtab_index_entry
21494{
21495 /* The name of the symbol. */
21496 const char *name;
21497 /* The offset of the name in the constant pool. */
21498 offset_type index_offset;
21499 /* A sorted vector of the indices of all the CUs that hold an object
21500 of this name. */
21501 VEC (offset_type) *cu_indices;
21502};
21503
21504/* The symbol table. This is a power-of-2-sized hash table. */
21505struct mapped_symtab
21506{
21507 offset_type n_elements;
21508 offset_type size;
21509 struct symtab_index_entry **data;
21510};
21511
21512/* Hash function for a symtab_index_entry. */
b89be57b 21513
9291a0cd
TT
21514static hashval_t
21515hash_symtab_entry (const void *e)
21516{
21517 const struct symtab_index_entry *entry = e;
21518 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21519 sizeof (offset_type) * VEC_length (offset_type,
21520 entry->cu_indices),
21521 0);
21522}
21523
21524/* Equality function for a symtab_index_entry. */
b89be57b 21525
9291a0cd
TT
21526static int
21527eq_symtab_entry (const void *a, const void *b)
21528{
21529 const struct symtab_index_entry *ea = a;
21530 const struct symtab_index_entry *eb = b;
21531 int len = VEC_length (offset_type, ea->cu_indices);
21532 if (len != VEC_length (offset_type, eb->cu_indices))
21533 return 0;
21534 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21535 VEC_address (offset_type, eb->cu_indices),
21536 sizeof (offset_type) * len);
21537}
21538
21539/* Destroy a symtab_index_entry. */
b89be57b 21540
9291a0cd
TT
21541static void
21542delete_symtab_entry (void *p)
21543{
21544 struct symtab_index_entry *entry = p;
21545 VEC_free (offset_type, entry->cu_indices);
21546 xfree (entry);
21547}
21548
21549/* Create a hash table holding symtab_index_entry objects. */
b89be57b 21550
9291a0cd 21551static htab_t
3876f04e 21552create_symbol_hash_table (void)
9291a0cd
TT
21553{
21554 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
21555 delete_symtab_entry, xcalloc, xfree);
21556}
21557
21558/* Create a new mapped symtab object. */
b89be57b 21559
9291a0cd
TT
21560static struct mapped_symtab *
21561create_mapped_symtab (void)
21562{
21563 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
21564 symtab->n_elements = 0;
21565 symtab->size = 1024;
21566 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21567 return symtab;
21568}
21569
21570/* Destroy a mapped_symtab. */
b89be57b 21571
9291a0cd
TT
21572static void
21573cleanup_mapped_symtab (void *p)
21574{
21575 struct mapped_symtab *symtab = p;
21576 /* The contents of the array are freed when the other hash table is
21577 destroyed. */
21578 xfree (symtab->data);
21579 xfree (symtab);
21580}
21581
21582/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
21583 the slot.
21584
21585 Function is used only during write_hash_table so no index format backward
21586 compatibility is needed. */
b89be57b 21587
9291a0cd
TT
21588static struct symtab_index_entry **
21589find_slot (struct mapped_symtab *symtab, const char *name)
21590{
559a7a62 21591 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
21592
21593 index = hash & (symtab->size - 1);
21594 step = ((hash * 17) & (symtab->size - 1)) | 1;
21595
21596 for (;;)
21597 {
21598 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
21599 return &symtab->data[index];
21600 index = (index + step) & (symtab->size - 1);
21601 }
21602}
21603
21604/* Expand SYMTAB's hash table. */
b89be57b 21605
9291a0cd
TT
21606static void
21607hash_expand (struct mapped_symtab *symtab)
21608{
21609 offset_type old_size = symtab->size;
21610 offset_type i;
21611 struct symtab_index_entry **old_entries = symtab->data;
21612
21613 symtab->size *= 2;
21614 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21615
21616 for (i = 0; i < old_size; ++i)
21617 {
21618 if (old_entries[i])
21619 {
21620 struct symtab_index_entry **slot = find_slot (symtab,
21621 old_entries[i]->name);
21622 *slot = old_entries[i];
21623 }
21624 }
21625
21626 xfree (old_entries);
21627}
21628
156942c7
DE
21629/* Add an entry to SYMTAB. NAME is the name of the symbol.
21630 CU_INDEX is the index of the CU in which the symbol appears.
21631 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 21632
9291a0cd
TT
21633static void
21634add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 21635 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
21636 offset_type cu_index)
21637{
21638 struct symtab_index_entry **slot;
156942c7 21639 offset_type cu_index_and_attrs;
9291a0cd
TT
21640
21641 ++symtab->n_elements;
21642 if (4 * symtab->n_elements / 3 >= symtab->size)
21643 hash_expand (symtab);
21644
21645 slot = find_slot (symtab, name);
21646 if (!*slot)
21647 {
21648 *slot = XNEW (struct symtab_index_entry);
21649 (*slot)->name = name;
156942c7 21650 /* index_offset is set later. */
9291a0cd
TT
21651 (*slot)->cu_indices = NULL;
21652 }
156942c7
DE
21653
21654 cu_index_and_attrs = 0;
21655 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
21656 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
21657 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
21658
21659 /* We don't want to record an index value twice as we want to avoid the
21660 duplication.
21661 We process all global symbols and then all static symbols
21662 (which would allow us to avoid the duplication by only having to check
21663 the last entry pushed), but a symbol could have multiple kinds in one CU.
21664 To keep things simple we don't worry about the duplication here and
21665 sort and uniqufy the list after we've processed all symbols. */
21666 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
21667}
21668
21669/* qsort helper routine for uniquify_cu_indices. */
21670
21671static int
21672offset_type_compare (const void *ap, const void *bp)
21673{
21674 offset_type a = *(offset_type *) ap;
21675 offset_type b = *(offset_type *) bp;
21676
21677 return (a > b) - (b > a);
21678}
21679
21680/* Sort and remove duplicates of all symbols' cu_indices lists. */
21681
21682static void
21683uniquify_cu_indices (struct mapped_symtab *symtab)
21684{
21685 int i;
21686
21687 for (i = 0; i < symtab->size; ++i)
21688 {
21689 struct symtab_index_entry *entry = symtab->data[i];
21690
21691 if (entry
21692 && entry->cu_indices != NULL)
21693 {
21694 unsigned int next_to_insert, next_to_check;
21695 offset_type last_value;
21696
21697 qsort (VEC_address (offset_type, entry->cu_indices),
21698 VEC_length (offset_type, entry->cu_indices),
21699 sizeof (offset_type), offset_type_compare);
21700
21701 last_value = VEC_index (offset_type, entry->cu_indices, 0);
21702 next_to_insert = 1;
21703 for (next_to_check = 1;
21704 next_to_check < VEC_length (offset_type, entry->cu_indices);
21705 ++next_to_check)
21706 {
21707 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
21708 != last_value)
21709 {
21710 last_value = VEC_index (offset_type, entry->cu_indices,
21711 next_to_check);
21712 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
21713 last_value);
21714 ++next_to_insert;
21715 }
21716 }
21717 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
21718 }
21719 }
9291a0cd
TT
21720}
21721
21722/* Add a vector of indices to the constant pool. */
b89be57b 21723
9291a0cd 21724static offset_type
3876f04e 21725add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
21726 struct symtab_index_entry *entry)
21727{
21728 void **slot;
21729
3876f04e 21730 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
21731 if (!*slot)
21732 {
21733 offset_type len = VEC_length (offset_type, entry->cu_indices);
21734 offset_type val = MAYBE_SWAP (len);
21735 offset_type iter;
21736 int i;
21737
21738 *slot = entry;
21739 entry->index_offset = obstack_object_size (cpool);
21740
21741 obstack_grow (cpool, &val, sizeof (val));
21742 for (i = 0;
21743 VEC_iterate (offset_type, entry->cu_indices, i, iter);
21744 ++i)
21745 {
21746 val = MAYBE_SWAP (iter);
21747 obstack_grow (cpool, &val, sizeof (val));
21748 }
21749 }
21750 else
21751 {
21752 struct symtab_index_entry *old_entry = *slot;
21753 entry->index_offset = old_entry->index_offset;
21754 entry = old_entry;
21755 }
21756 return entry->index_offset;
21757}
21758
21759/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
21760 constant pool entries going into the obstack CPOOL. */
b89be57b 21761
9291a0cd
TT
21762static void
21763write_hash_table (struct mapped_symtab *symtab,
21764 struct obstack *output, struct obstack *cpool)
21765{
21766 offset_type i;
3876f04e 21767 htab_t symbol_hash_table;
9291a0cd
TT
21768 htab_t str_table;
21769
3876f04e 21770 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 21771 str_table = create_strtab ();
3876f04e 21772
9291a0cd
TT
21773 /* We add all the index vectors to the constant pool first, to
21774 ensure alignment is ok. */
21775 for (i = 0; i < symtab->size; ++i)
21776 {
21777 if (symtab->data[i])
3876f04e 21778 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
21779 }
21780
21781 /* Now write out the hash table. */
21782 for (i = 0; i < symtab->size; ++i)
21783 {
21784 offset_type str_off, vec_off;
21785
21786 if (symtab->data[i])
21787 {
21788 str_off = add_string (str_table, cpool, symtab->data[i]->name);
21789 vec_off = symtab->data[i]->index_offset;
21790 }
21791 else
21792 {
21793 /* While 0 is a valid constant pool index, it is not valid
21794 to have 0 for both offsets. */
21795 str_off = 0;
21796 vec_off = 0;
21797 }
21798
21799 str_off = MAYBE_SWAP (str_off);
21800 vec_off = MAYBE_SWAP (vec_off);
21801
21802 obstack_grow (output, &str_off, sizeof (str_off));
21803 obstack_grow (output, &vec_off, sizeof (vec_off));
21804 }
21805
21806 htab_delete (str_table);
3876f04e 21807 htab_delete (symbol_hash_table);
9291a0cd
TT
21808}
21809
0a5429f6
DE
21810/* Struct to map psymtab to CU index in the index file. */
21811struct psymtab_cu_index_map
21812{
21813 struct partial_symtab *psymtab;
21814 unsigned int cu_index;
21815};
21816
21817static hashval_t
21818hash_psymtab_cu_index (const void *item)
21819{
21820 const struct psymtab_cu_index_map *map = item;
21821
21822 return htab_hash_pointer (map->psymtab);
21823}
21824
21825static int
21826eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
21827{
21828 const struct psymtab_cu_index_map *lhs = item_lhs;
21829 const struct psymtab_cu_index_map *rhs = item_rhs;
21830
21831 return lhs->psymtab == rhs->psymtab;
21832}
21833
21834/* Helper struct for building the address table. */
21835struct addrmap_index_data
21836{
21837 struct objfile *objfile;
21838 struct obstack *addr_obstack;
21839 htab_t cu_index_htab;
21840
21841 /* Non-zero if the previous_* fields are valid.
21842 We can't write an entry until we see the next entry (since it is only then
21843 that we know the end of the entry). */
21844 int previous_valid;
21845 /* Index of the CU in the table of all CUs in the index file. */
21846 unsigned int previous_cu_index;
0963b4bd 21847 /* Start address of the CU. */
0a5429f6
DE
21848 CORE_ADDR previous_cu_start;
21849};
21850
21851/* Write an address entry to OBSTACK. */
b89be57b 21852
9291a0cd 21853static void
0a5429f6
DE
21854add_address_entry (struct objfile *objfile, struct obstack *obstack,
21855 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 21856{
0a5429f6 21857 offset_type cu_index_to_write;
948f8e3d 21858 gdb_byte addr[8];
9291a0cd
TT
21859 CORE_ADDR baseaddr;
21860
21861 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21862
0a5429f6
DE
21863 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
21864 obstack_grow (obstack, addr, 8);
21865 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
21866 obstack_grow (obstack, addr, 8);
21867 cu_index_to_write = MAYBE_SWAP (cu_index);
21868 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
21869}
21870
21871/* Worker function for traversing an addrmap to build the address table. */
21872
21873static int
21874add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
21875{
21876 struct addrmap_index_data *data = datap;
21877 struct partial_symtab *pst = obj;
0a5429f6
DE
21878
21879 if (data->previous_valid)
21880 add_address_entry (data->objfile, data->addr_obstack,
21881 data->previous_cu_start, start_addr,
21882 data->previous_cu_index);
21883
21884 data->previous_cu_start = start_addr;
21885 if (pst != NULL)
21886 {
21887 struct psymtab_cu_index_map find_map, *map;
21888 find_map.psymtab = pst;
21889 map = htab_find (data->cu_index_htab, &find_map);
21890 gdb_assert (map != NULL);
21891 data->previous_cu_index = map->cu_index;
21892 data->previous_valid = 1;
21893 }
21894 else
21895 data->previous_valid = 0;
21896
21897 return 0;
21898}
21899
21900/* Write OBJFILE's address map to OBSTACK.
21901 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
21902 in the index file. */
21903
21904static void
21905write_address_map (struct objfile *objfile, struct obstack *obstack,
21906 htab_t cu_index_htab)
21907{
21908 struct addrmap_index_data addrmap_index_data;
21909
21910 /* When writing the address table, we have to cope with the fact that
21911 the addrmap iterator only provides the start of a region; we have to
21912 wait until the next invocation to get the start of the next region. */
21913
21914 addrmap_index_data.objfile = objfile;
21915 addrmap_index_data.addr_obstack = obstack;
21916 addrmap_index_data.cu_index_htab = cu_index_htab;
21917 addrmap_index_data.previous_valid = 0;
21918
21919 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
21920 &addrmap_index_data);
21921
21922 /* It's highly unlikely the last entry (end address = 0xff...ff)
21923 is valid, but we should still handle it.
21924 The end address is recorded as the start of the next region, but that
21925 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
21926 anyway. */
21927 if (addrmap_index_data.previous_valid)
21928 add_address_entry (objfile, obstack,
21929 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
21930 addrmap_index_data.previous_cu_index);
9291a0cd
TT
21931}
21932
156942c7
DE
21933/* Return the symbol kind of PSYM. */
21934
21935static gdb_index_symbol_kind
21936symbol_kind (struct partial_symbol *psym)
21937{
21938 domain_enum domain = PSYMBOL_DOMAIN (psym);
21939 enum address_class aclass = PSYMBOL_CLASS (psym);
21940
21941 switch (domain)
21942 {
21943 case VAR_DOMAIN:
21944 switch (aclass)
21945 {
21946 case LOC_BLOCK:
21947 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
21948 case LOC_TYPEDEF:
21949 return GDB_INDEX_SYMBOL_KIND_TYPE;
21950 case LOC_COMPUTED:
21951 case LOC_CONST_BYTES:
21952 case LOC_OPTIMIZED_OUT:
21953 case LOC_STATIC:
21954 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21955 case LOC_CONST:
21956 /* Note: It's currently impossible to recognize psyms as enum values
21957 short of reading the type info. For now punt. */
21958 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21959 default:
21960 /* There are other LOC_FOO values that one might want to classify
21961 as variables, but dwarf2read.c doesn't currently use them. */
21962 return GDB_INDEX_SYMBOL_KIND_OTHER;
21963 }
21964 case STRUCT_DOMAIN:
21965 return GDB_INDEX_SYMBOL_KIND_TYPE;
21966 default:
21967 return GDB_INDEX_SYMBOL_KIND_OTHER;
21968 }
21969}
21970
9291a0cd 21971/* Add a list of partial symbols to SYMTAB. */
b89be57b 21972
9291a0cd
TT
21973static void
21974write_psymbols (struct mapped_symtab *symtab,
987d643c 21975 htab_t psyms_seen,
9291a0cd
TT
21976 struct partial_symbol **psymp,
21977 int count,
987d643c
TT
21978 offset_type cu_index,
21979 int is_static)
9291a0cd
TT
21980{
21981 for (; count-- > 0; ++psymp)
21982 {
156942c7
DE
21983 struct partial_symbol *psym = *psymp;
21984 void **slot;
987d643c 21985
156942c7 21986 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 21987 error (_("Ada is not currently supported by the index"));
987d643c 21988
987d643c 21989 /* Only add a given psymbol once. */
156942c7 21990 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
21991 if (!*slot)
21992 {
156942c7
DE
21993 gdb_index_symbol_kind kind = symbol_kind (psym);
21994
21995 *slot = psym;
21996 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
21997 is_static, kind, cu_index);
987d643c 21998 }
9291a0cd
TT
21999 }
22000}
22001
22002/* Write the contents of an ("unfinished") obstack to FILE. Throw an
22003 exception if there is an error. */
b89be57b 22004
9291a0cd
TT
22005static void
22006write_obstack (FILE *file, struct obstack *obstack)
22007{
22008 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22009 file)
22010 != obstack_object_size (obstack))
22011 error (_("couldn't data write to file"));
22012}
22013
22014/* Unlink a file if the argument is not NULL. */
b89be57b 22015
9291a0cd
TT
22016static void
22017unlink_if_set (void *p)
22018{
22019 char **filename = p;
22020 if (*filename)
22021 unlink (*filename);
22022}
22023
1fd400ff
TT
22024/* A helper struct used when iterating over debug_types. */
22025struct signatured_type_index_data
22026{
22027 struct objfile *objfile;
22028 struct mapped_symtab *symtab;
22029 struct obstack *types_list;
987d643c 22030 htab_t psyms_seen;
1fd400ff
TT
22031 int cu_index;
22032};
22033
22034/* A helper function that writes a single signatured_type to an
22035 obstack. */
b89be57b 22036
1fd400ff
TT
22037static int
22038write_one_signatured_type (void **slot, void *d)
22039{
22040 struct signatured_type_index_data *info = d;
22041 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 22042 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
22043 gdb_byte val[8];
22044
22045 write_psymbols (info->symtab,
987d643c 22046 info->psyms_seen,
3e43a32a
MS
22047 info->objfile->global_psymbols.list
22048 + psymtab->globals_offset,
987d643c
TT
22049 psymtab->n_global_syms, info->cu_index,
22050 0);
1fd400ff 22051 write_psymbols (info->symtab,
987d643c 22052 info->psyms_seen,
3e43a32a
MS
22053 info->objfile->static_psymbols.list
22054 + psymtab->statics_offset,
987d643c
TT
22055 psymtab->n_static_syms, info->cu_index,
22056 1);
1fd400ff 22057
b64f50a1
JK
22058 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22059 entry->per_cu.offset.sect_off);
1fd400ff 22060 obstack_grow (info->types_list, val, 8);
3019eac3
DE
22061 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22062 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
22063 obstack_grow (info->types_list, val, 8);
22064 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22065 obstack_grow (info->types_list, val, 8);
22066
22067 ++info->cu_index;
22068
22069 return 1;
22070}
22071
95554aad
TT
22072/* Recurse into all "included" dependencies and write their symbols as
22073 if they appeared in this psymtab. */
22074
22075static void
22076recursively_write_psymbols (struct objfile *objfile,
22077 struct partial_symtab *psymtab,
22078 struct mapped_symtab *symtab,
22079 htab_t psyms_seen,
22080 offset_type cu_index)
22081{
22082 int i;
22083
22084 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22085 if (psymtab->dependencies[i]->user != NULL)
22086 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22087 symtab, psyms_seen, cu_index);
22088
22089 write_psymbols (symtab,
22090 psyms_seen,
22091 objfile->global_psymbols.list + psymtab->globals_offset,
22092 psymtab->n_global_syms, cu_index,
22093 0);
22094 write_psymbols (symtab,
22095 psyms_seen,
22096 objfile->static_psymbols.list + psymtab->statics_offset,
22097 psymtab->n_static_syms, cu_index,
22098 1);
22099}
22100
9291a0cd 22101/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 22102
9291a0cd
TT
22103static void
22104write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22105{
22106 struct cleanup *cleanup;
22107 char *filename, *cleanup_filename;
1fd400ff
TT
22108 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22109 struct obstack cu_list, types_cu_list;
9291a0cd
TT
22110 int i;
22111 FILE *out_file;
22112 struct mapped_symtab *symtab;
22113 offset_type val, size_of_contents, total_len;
22114 struct stat st;
987d643c 22115 htab_t psyms_seen;
0a5429f6
DE
22116 htab_t cu_index_htab;
22117 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 22118
9291a0cd
TT
22119 if (dwarf2_per_objfile->using_index)
22120 error (_("Cannot use an index to create the index"));
22121
8b70b953
TT
22122 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22123 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22124
260b681b
DE
22125 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22126 return;
22127
4262abfb
JK
22128 if (stat (objfile_name (objfile), &st) < 0)
22129 perror_with_name (objfile_name (objfile));
9291a0cd 22130
4262abfb 22131 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
22132 INDEX_SUFFIX, (char *) NULL);
22133 cleanup = make_cleanup (xfree, filename);
22134
614c279d 22135 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
22136 if (!out_file)
22137 error (_("Can't open `%s' for writing"), filename);
22138
22139 cleanup_filename = filename;
22140 make_cleanup (unlink_if_set, &cleanup_filename);
22141
22142 symtab = create_mapped_symtab ();
22143 make_cleanup (cleanup_mapped_symtab, symtab);
22144
22145 obstack_init (&addr_obstack);
22146 make_cleanup_obstack_free (&addr_obstack);
22147
22148 obstack_init (&cu_list);
22149 make_cleanup_obstack_free (&cu_list);
22150
1fd400ff
TT
22151 obstack_init (&types_cu_list);
22152 make_cleanup_obstack_free (&types_cu_list);
22153
987d643c
TT
22154 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22155 NULL, xcalloc, xfree);
96408a79 22156 make_cleanup_htab_delete (psyms_seen);
987d643c 22157
0a5429f6
DE
22158 /* While we're scanning CU's create a table that maps a psymtab pointer
22159 (which is what addrmap records) to its index (which is what is recorded
22160 in the index file). This will later be needed to write the address
22161 table. */
22162 cu_index_htab = htab_create_alloc (100,
22163 hash_psymtab_cu_index,
22164 eq_psymtab_cu_index,
22165 NULL, xcalloc, xfree);
96408a79 22166 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
22167 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22168 xmalloc (sizeof (struct psymtab_cu_index_map)
22169 * dwarf2_per_objfile->n_comp_units);
22170 make_cleanup (xfree, psymtab_cu_index_map);
22171
22172 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
22173 work here. Also, the debug_types entries do not appear in
22174 all_comp_units, but only in their own hash table. */
9291a0cd
TT
22175 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22176 {
3e43a32a
MS
22177 struct dwarf2_per_cu_data *per_cu
22178 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 22179 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 22180 gdb_byte val[8];
0a5429f6
DE
22181 struct psymtab_cu_index_map *map;
22182 void **slot;
9291a0cd 22183
92fac807
JK
22184 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22185 It may be referenced from a local scope but in such case it does not
22186 need to be present in .gdb_index. */
22187 if (psymtab == NULL)
22188 continue;
22189
95554aad
TT
22190 if (psymtab->user == NULL)
22191 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 22192
0a5429f6
DE
22193 map = &psymtab_cu_index_map[i];
22194 map->psymtab = psymtab;
22195 map->cu_index = i;
22196 slot = htab_find_slot (cu_index_htab, map, INSERT);
22197 gdb_assert (slot != NULL);
22198 gdb_assert (*slot == NULL);
22199 *slot = map;
9291a0cd 22200
b64f50a1
JK
22201 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22202 per_cu->offset.sect_off);
9291a0cd 22203 obstack_grow (&cu_list, val, 8);
e254ef6a 22204 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
22205 obstack_grow (&cu_list, val, 8);
22206 }
22207
0a5429f6
DE
22208 /* Dump the address map. */
22209 write_address_map (objfile, &addr_obstack, cu_index_htab);
22210
1fd400ff
TT
22211 /* Write out the .debug_type entries, if any. */
22212 if (dwarf2_per_objfile->signatured_types)
22213 {
22214 struct signatured_type_index_data sig_data;
22215
22216 sig_data.objfile = objfile;
22217 sig_data.symtab = symtab;
22218 sig_data.types_list = &types_cu_list;
987d643c 22219 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
22220 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22221 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22222 write_one_signatured_type, &sig_data);
22223 }
22224
156942c7
DE
22225 /* Now that we've processed all symbols we can shrink their cu_indices
22226 lists. */
22227 uniquify_cu_indices (symtab);
22228
9291a0cd
TT
22229 obstack_init (&constant_pool);
22230 make_cleanup_obstack_free (&constant_pool);
22231 obstack_init (&symtab_obstack);
22232 make_cleanup_obstack_free (&symtab_obstack);
22233 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22234
22235 obstack_init (&contents);
22236 make_cleanup_obstack_free (&contents);
1fd400ff 22237 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
22238 total_len = size_of_contents;
22239
22240 /* The version number. */
796a7ff8 22241 val = MAYBE_SWAP (8);
9291a0cd
TT
22242 obstack_grow (&contents, &val, sizeof (val));
22243
22244 /* The offset of the CU list from the start of the file. */
22245 val = MAYBE_SWAP (total_len);
22246 obstack_grow (&contents, &val, sizeof (val));
22247 total_len += obstack_object_size (&cu_list);
22248
1fd400ff
TT
22249 /* The offset of the types CU list from the start of the file. */
22250 val = MAYBE_SWAP (total_len);
22251 obstack_grow (&contents, &val, sizeof (val));
22252 total_len += obstack_object_size (&types_cu_list);
22253
9291a0cd
TT
22254 /* The offset of the address table from the start of the file. */
22255 val = MAYBE_SWAP (total_len);
22256 obstack_grow (&contents, &val, sizeof (val));
22257 total_len += obstack_object_size (&addr_obstack);
22258
22259 /* The offset of the symbol table from the start of the file. */
22260 val = MAYBE_SWAP (total_len);
22261 obstack_grow (&contents, &val, sizeof (val));
22262 total_len += obstack_object_size (&symtab_obstack);
22263
22264 /* The offset of the constant pool from the start of the file. */
22265 val = MAYBE_SWAP (total_len);
22266 obstack_grow (&contents, &val, sizeof (val));
22267 total_len += obstack_object_size (&constant_pool);
22268
22269 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22270
22271 write_obstack (out_file, &contents);
22272 write_obstack (out_file, &cu_list);
1fd400ff 22273 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
22274 write_obstack (out_file, &addr_obstack);
22275 write_obstack (out_file, &symtab_obstack);
22276 write_obstack (out_file, &constant_pool);
22277
22278 fclose (out_file);
22279
22280 /* We want to keep the file, so we set cleanup_filename to NULL
22281 here. See unlink_if_set. */
22282 cleanup_filename = NULL;
22283
22284 do_cleanups (cleanup);
22285}
22286
90476074
TT
22287/* Implementation of the `save gdb-index' command.
22288
22289 Note that the file format used by this command is documented in the
22290 GDB manual. Any changes here must be documented there. */
11570e71 22291
9291a0cd
TT
22292static void
22293save_gdb_index_command (char *arg, int from_tty)
22294{
22295 struct objfile *objfile;
22296
22297 if (!arg || !*arg)
96d19272 22298 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
22299
22300 ALL_OBJFILES (objfile)
22301 {
22302 struct stat st;
22303
22304 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 22305 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
22306 continue;
22307
22308 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22309 if (dwarf2_per_objfile)
22310 {
22311 volatile struct gdb_exception except;
22312
22313 TRY_CATCH (except, RETURN_MASK_ERROR)
22314 {
22315 write_psymtabs_to_index (objfile, arg);
22316 }
22317 if (except.reason < 0)
22318 exception_fprintf (gdb_stderr, except,
22319 _("Error while writing index for `%s': "),
4262abfb 22320 objfile_name (objfile));
9291a0cd
TT
22321 }
22322 }
dce234bc
PP
22323}
22324
9291a0cd
TT
22325\f
22326
9eae7c52
TT
22327int dwarf2_always_disassemble;
22328
22329static void
22330show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22331 struct cmd_list_element *c, const char *value)
22332{
3e43a32a
MS
22333 fprintf_filtered (file,
22334 _("Whether to always disassemble "
22335 "DWARF expressions is %s.\n"),
9eae7c52
TT
22336 value);
22337}
22338
900e11f9
JK
22339static void
22340show_check_physname (struct ui_file *file, int from_tty,
22341 struct cmd_list_element *c, const char *value)
22342{
22343 fprintf_filtered (file,
22344 _("Whether to check \"physname\" is %s.\n"),
22345 value);
22346}
22347
6502dd73
DJ
22348void _initialize_dwarf2_read (void);
22349
22350void
22351_initialize_dwarf2_read (void)
22352{
96d19272
JK
22353 struct cmd_list_element *c;
22354
dce234bc 22355 dwarf2_objfile_data_key
c1bd65d0 22356 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 22357
1bedd215
AC
22358 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22359Set DWARF 2 specific variables.\n\
22360Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
22361 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22362 0/*allow-unknown*/, &maintenance_set_cmdlist);
22363
1bedd215
AC
22364 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22365Show DWARF 2 specific variables\n\
22366Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
22367 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22368 0/*allow-unknown*/, &maintenance_show_cmdlist);
22369
22370 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
22371 &dwarf2_max_cache_age, _("\
22372Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22373Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22374A higher limit means that cached compilation units will be stored\n\
22375in memory longer, and more total memory will be used. Zero disables\n\
22376caching, which can slow down startup."),
2c5b56ce 22377 NULL,
920d2a44 22378 show_dwarf2_max_cache_age,
2c5b56ce 22379 &set_dwarf2_cmdlist,
ae038cb0 22380 &show_dwarf2_cmdlist);
d97bc12b 22381
9eae7c52
TT
22382 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22383 &dwarf2_always_disassemble, _("\
22384Set whether `info address' always disassembles DWARF expressions."), _("\
22385Show whether `info address' always disassembles DWARF expressions."), _("\
22386When enabled, DWARF expressions are always printed in an assembly-like\n\
22387syntax. When disabled, expressions will be printed in a more\n\
22388conversational style, when possible."),
22389 NULL,
22390 show_dwarf2_always_disassemble,
22391 &set_dwarf2_cmdlist,
22392 &show_dwarf2_cmdlist);
22393
73be47f5 22394 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
45cfd468
DE
22395Set debugging of the dwarf2 reader."), _("\
22396Show debugging of the dwarf2 reader."), _("\
73be47f5
DE
22397When enabled (non-zero), debugging messages are printed during dwarf2\n\
22398reading and symtab expansion. A value of 1 (one) provides basic\n\
22399information. A value greater than 1 provides more verbose information."),
45cfd468
DE
22400 NULL,
22401 NULL,
22402 &setdebuglist, &showdebuglist);
22403
ccce17b0 22404 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
d97bc12b
DE
22405Set debugging of the dwarf2 DIE reader."), _("\
22406Show debugging of the dwarf2 DIE reader."), _("\
22407When enabled (non-zero), DIEs are dumped after they are read in.\n\
22408The value is the maximum depth to print."),
ccce17b0
YQ
22409 NULL,
22410 NULL,
22411 &setdebuglist, &showdebuglist);
9291a0cd 22412
900e11f9
JK
22413 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22414Set cross-checking of \"physname\" code against demangler."), _("\
22415Show cross-checking of \"physname\" code against demangler."), _("\
22416When enabled, GDB's internal \"physname\" code is checked against\n\
22417the demangler."),
22418 NULL, show_check_physname,
22419 &setdebuglist, &showdebuglist);
22420
e615022a
DE
22421 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22422 no_class, &use_deprecated_index_sections, _("\
22423Set whether to use deprecated gdb_index sections."), _("\
22424Show whether to use deprecated gdb_index sections."), _("\
22425When enabled, deprecated .gdb_index sections are used anyway.\n\
22426Normally they are ignored either because of a missing feature or\n\
22427performance issue.\n\
22428Warning: This option must be enabled before gdb reads the file."),
22429 NULL,
22430 NULL,
22431 &setlist, &showlist);
22432
96d19272 22433 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 22434 _("\
fc1a9d6e 22435Save a gdb-index file.\n\
11570e71 22436Usage: save gdb-index DIRECTORY"),
96d19272
JK
22437 &save_cmdlist);
22438 set_cmd_completer (c, filename_completer);
f1e6e072
TT
22439
22440 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22441 &dwarf2_locexpr_funcs);
22442 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22443 &dwarf2_loclist_funcs);
22444
22445 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22446 &dwarf2_block_frame_base_locexpr_funcs);
22447 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22448 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 22449}
This page took 3.226247 seconds and 4 git commands to generate.