Remove make_cleanup_clear_parser_state
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
61baf725 3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270 55#include "typeprint.h"
ccefe4c4 56#include "psympriv.h"
53ce3c39 57#include <sys/stat.h>
96d19272 58#include "completer.h"
34eaf542 59#include "vec.h"
98bfdba5 60#include "c-lang.h"
a766d390 61#include "go-lang.h"
98bfdba5 62#include "valprint.h"
3019eac3 63#include "gdbcore.h" /* for gnutarget */
156942c7 64#include "gdb/gdb-index.h"
60d5a603 65#include <ctype.h>
cbb099e8 66#include "gdb_bfd.h"
4357ac6c 67#include "f-lang.h"
05cba821 68#include "source.h"
614c279d 69#include "filestuff.h"
dc294be5 70#include "build-id.h"
22cee43f 71#include "namespace.h"
bef155c3 72#include "common/gdb_unlinker.h"
14bc53a8 73#include "common/function-view.h"
ecfb656c
PA
74#include "common/gdb_optional.h"
75#include "common/underlying.h"
d5722aa2 76#include "common/byte-vector.h"
bbf2f4df 77#include "filename-seen-cache.h"
c906108c 78#include <fcntl.h>
c906108c 79#include <sys/types.h>
325fac50 80#include <algorithm>
bc8f2430
JK
81#include <unordered_set>
82#include <unordered_map>
d8151005 83
34eaf542
TT
84typedef struct symbol *symbolp;
85DEF_VEC_P (symbolp);
86
73be47f5
DE
87/* When == 1, print basic high level tracing messages.
88 When > 1, be more verbose.
b4f54984
DE
89 This is in contrast to the low level DIE reading of dwarf_die_debug. */
90static unsigned int dwarf_read_debug = 0;
45cfd468 91
d97bc12b 92/* When non-zero, dump DIEs after they are read in. */
b4f54984 93static unsigned int dwarf_die_debug = 0;
d97bc12b 94
27e0867f
DE
95/* When non-zero, dump line number entries as they are read in. */
96static unsigned int dwarf_line_debug = 0;
97
900e11f9
JK
98/* When non-zero, cross-check physname against demangler. */
99static int check_physname = 0;
100
481860b3 101/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 102static int use_deprecated_index_sections = 0;
481860b3 103
6502dd73
DJ
104static const struct objfile_data *dwarf2_objfile_data_key;
105
f1e6e072
TT
106/* The "aclass" indices for various kinds of computed DWARF symbols. */
107
108static int dwarf2_locexpr_index;
109static int dwarf2_loclist_index;
110static int dwarf2_locexpr_block_index;
111static int dwarf2_loclist_block_index;
112
73869dc2
DE
113/* A descriptor for dwarf sections.
114
115 S.ASECTION, SIZE are typically initialized when the objfile is first
116 scanned. BUFFER, READIN are filled in later when the section is read.
117 If the section contained compressed data then SIZE is updated to record
118 the uncompressed size of the section.
119
120 DWP file format V2 introduces a wrinkle that is easiest to handle by
121 creating the concept of virtual sections contained within a real section.
122 In DWP V2 the sections of the input DWO files are concatenated together
123 into one section, but section offsets are kept relative to the original
124 input section.
125 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
126 the real section this "virtual" section is contained in, and BUFFER,SIZE
127 describe the virtual section. */
128
dce234bc
PP
129struct dwarf2_section_info
130{
73869dc2
DE
131 union
132 {
e5aa3347 133 /* If this is a real section, the bfd section. */
049412e3 134 asection *section;
73869dc2 135 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 136 section. */
73869dc2
DE
137 struct dwarf2_section_info *containing_section;
138 } s;
19ac8c2e 139 /* Pointer to section data, only valid if readin. */
d521ce57 140 const gdb_byte *buffer;
73869dc2 141 /* The size of the section, real or virtual. */
dce234bc 142 bfd_size_type size;
73869dc2
DE
143 /* If this is a virtual section, the offset in the real section.
144 Only valid if is_virtual. */
145 bfd_size_type virtual_offset;
be391dca 146 /* True if we have tried to read this section. */
73869dc2
DE
147 char readin;
148 /* True if this is a virtual section, False otherwise.
049412e3 149 This specifies which of s.section and s.containing_section to use. */
73869dc2 150 char is_virtual;
dce234bc
PP
151};
152
8b70b953
TT
153typedef struct dwarf2_section_info dwarf2_section_info_def;
154DEF_VEC_O (dwarf2_section_info_def);
155
9291a0cd
TT
156/* All offsets in the index are of this type. It must be
157 architecture-independent. */
158typedef uint32_t offset_type;
159
160DEF_VEC_I (offset_type);
161
156942c7
DE
162/* Ensure only legit values are used. */
163#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((unsigned int) (value) <= 1); \
166 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169/* Ensure only legit values are used. */
170#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
173 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
174 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177/* Ensure we don't use more than the alloted nuber of bits for the CU. */
178#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
179 do { \
180 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
181 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
182 } while (0)
183
9291a0cd
TT
184/* A description of the mapped index. The file format is described in
185 a comment by the code that writes the index. */
186struct mapped_index
187{
559a7a62
JK
188 /* Index data format version. */
189 int version;
190
9291a0cd
TT
191 /* The total length of the buffer. */
192 off_t total_size;
b11b1f88 193
9291a0cd
TT
194 /* A pointer to the address table data. */
195 const gdb_byte *address_table;
b11b1f88 196
9291a0cd
TT
197 /* Size of the address table data in bytes. */
198 offset_type address_table_size;
b11b1f88 199
3876f04e
DE
200 /* The symbol table, implemented as a hash table. */
201 const offset_type *symbol_table;
b11b1f88 202
9291a0cd 203 /* Size in slots, each slot is 2 offset_types. */
3876f04e 204 offset_type symbol_table_slots;
b11b1f88 205
9291a0cd
TT
206 /* A pointer to the constant pool. */
207 const char *constant_pool;
208};
209
95554aad
TT
210typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
211DEF_VEC_P (dwarf2_per_cu_ptr);
212
52059ffd
TT
213struct tu_stats
214{
215 int nr_uniq_abbrev_tables;
216 int nr_symtabs;
217 int nr_symtab_sharers;
218 int nr_stmt_less_type_units;
219 int nr_all_type_units_reallocs;
220};
221
9cdd5dbd
DE
222/* Collection of data recorded per objfile.
223 This hangs off of dwarf2_objfile_data_key. */
224
6502dd73
DJ
225struct dwarf2_per_objfile
226{
330cdd98
PA
227 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
228 dwarf2 section names, or is NULL if the standard ELF names are
229 used. */
230 dwarf2_per_objfile (struct objfile *objfile,
231 const dwarf2_debug_sections *names);
ae038cb0 232
330cdd98
PA
233 ~dwarf2_per_objfile ();
234
235 /* Disable copy. */
236 dwarf2_per_objfile (const dwarf2_per_objfile &) = delete;
237 void operator= (const dwarf2_per_objfile &) = delete;
238
239 /* Free all cached compilation units. */
240 void free_cached_comp_units ();
241private:
242 /* This function is mapped across the sections and remembers the
243 offset and size of each of the debugging sections we are
244 interested in. */
245 void locate_sections (bfd *abfd, asection *sectp,
246 const dwarf2_debug_sections &names);
247
248public:
249 dwarf2_section_info info {};
250 dwarf2_section_info abbrev {};
251 dwarf2_section_info line {};
252 dwarf2_section_info loc {};
253 dwarf2_section_info loclists {};
254 dwarf2_section_info macinfo {};
255 dwarf2_section_info macro {};
256 dwarf2_section_info str {};
257 dwarf2_section_info line_str {};
258 dwarf2_section_info ranges {};
259 dwarf2_section_info rnglists {};
260 dwarf2_section_info addr {};
261 dwarf2_section_info frame {};
262 dwarf2_section_info eh_frame {};
263 dwarf2_section_info gdb_index {};
264
265 VEC (dwarf2_section_info_def) *types = NULL;
8b70b953 266
be391dca 267 /* Back link. */
330cdd98 268 struct objfile *objfile = NULL;
be391dca 269
d467dd73 270 /* Table of all the compilation units. This is used to locate
10b3939b 271 the target compilation unit of a particular reference. */
330cdd98 272 struct dwarf2_per_cu_data **all_comp_units = NULL;
ae038cb0
DJ
273
274 /* The number of compilation units in ALL_COMP_UNITS. */
330cdd98 275 int n_comp_units = 0;
ae038cb0 276
1fd400ff 277 /* The number of .debug_types-related CUs. */
330cdd98 278 int n_type_units = 0;
1fd400ff 279
6aa5f3a6
DE
280 /* The number of elements allocated in all_type_units.
281 If there are skeleton-less TUs, we add them to all_type_units lazily. */
330cdd98 282 int n_allocated_type_units = 0;
6aa5f3a6 283
a2ce51a0
DE
284 /* The .debug_types-related CUs (TUs).
285 This is stored in malloc space because we may realloc it. */
330cdd98 286 struct signatured_type **all_type_units = NULL;
1fd400ff 287
f4dc4d17
DE
288 /* Table of struct type_unit_group objects.
289 The hash key is the DW_AT_stmt_list value. */
330cdd98 290 htab_t type_unit_groups {};
72dca2f5 291
348e048f
DE
292 /* A table mapping .debug_types signatures to its signatured_type entry.
293 This is NULL if the .debug_types section hasn't been read in yet. */
330cdd98 294 htab_t signatured_types {};
348e048f 295
f4dc4d17
DE
296 /* Type unit statistics, to see how well the scaling improvements
297 are doing. */
330cdd98 298 struct tu_stats tu_stats {};
f4dc4d17
DE
299
300 /* A chain of compilation units that are currently read in, so that
301 they can be freed later. */
330cdd98 302 dwarf2_per_cu_data *read_in_chain = NULL;
f4dc4d17 303
3019eac3
DE
304 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
305 This is NULL if the table hasn't been allocated yet. */
330cdd98 306 htab_t dwo_files {};
3019eac3 307
330cdd98
PA
308 /* True if we've checked for whether there is a DWP file. */
309 bool dwp_checked = false;
80626a55
DE
310
311 /* The DWP file if there is one, or NULL. */
330cdd98 312 struct dwp_file *dwp_file = NULL;
80626a55 313
36586728
TT
314 /* The shared '.dwz' file, if one exists. This is used when the
315 original data was compressed using 'dwz -m'. */
330cdd98 316 struct dwz_file *dwz_file = NULL;
36586728 317
330cdd98 318 /* A flag indicating whether this objfile has a section loaded at a
72dca2f5 319 VMA of 0. */
330cdd98 320 bool has_section_at_zero = false;
9291a0cd 321
ae2de4f8
DE
322 /* True if we are using the mapped index,
323 or we are faking it for OBJF_READNOW's sake. */
330cdd98 324 bool using_index = false;
9291a0cd 325
ae2de4f8 326 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
330cdd98 327 mapped_index *index_table = NULL;
98bfdba5 328
7b9f3c50 329 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
330 TUs typically share line table entries with a CU, so we maintain a
331 separate table of all line table entries to support the sharing.
332 Note that while there can be way more TUs than CUs, we've already
333 sorted all the TUs into "type unit groups", grouped by their
334 DW_AT_stmt_list value. Therefore the only sharing done here is with a
335 CU and its associated TU group if there is one. */
330cdd98 336 htab_t quick_file_names_table {};
7b9f3c50 337
98bfdba5
PA
338 /* Set during partial symbol reading, to prevent queueing of full
339 symbols. */
330cdd98 340 bool reading_partial_symbols = false;
673bfd45 341
dee91e82 342 /* Table mapping type DIEs to their struct type *.
673bfd45 343 This is NULL if not allocated yet.
02142a6c 344 The mapping is done via (CU/TU + DIE offset) -> type. */
330cdd98 345 htab_t die_type_hash {};
95554aad
TT
346
347 /* The CUs we recently read. */
330cdd98 348 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
527f3840
JK
349
350 /* Table containing line_header indexed by offset and offset_in_dwz. */
330cdd98 351 htab_t line_header_hash {};
bbf2f4df
PA
352
353 /* Table containing all filenames. This is an optional because the
354 table is lazily constructed on first access. */
355 gdb::optional<filename_seen_cache> filenames_cache;
6502dd73
DJ
356};
357
358static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 359
251d32d9 360/* Default names of the debugging sections. */
c906108c 361
233a11ab
CS
362/* Note that if the debugging section has been compressed, it might
363 have a name like .zdebug_info. */
364
9cdd5dbd
DE
365static const struct dwarf2_debug_sections dwarf2_elf_names =
366{
251d32d9
TG
367 { ".debug_info", ".zdebug_info" },
368 { ".debug_abbrev", ".zdebug_abbrev" },
369 { ".debug_line", ".zdebug_line" },
370 { ".debug_loc", ".zdebug_loc" },
43988095 371 { ".debug_loclists", ".zdebug_loclists" },
251d32d9 372 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 373 { ".debug_macro", ".zdebug_macro" },
251d32d9 374 { ".debug_str", ".zdebug_str" },
43988095 375 { ".debug_line_str", ".zdebug_line_str" },
251d32d9 376 { ".debug_ranges", ".zdebug_ranges" },
43988095 377 { ".debug_rnglists", ".zdebug_rnglists" },
251d32d9 378 { ".debug_types", ".zdebug_types" },
3019eac3 379 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
380 { ".debug_frame", ".zdebug_frame" },
381 { ".eh_frame", NULL },
24d3216f
TT
382 { ".gdb_index", ".zgdb_index" },
383 23
251d32d9 384};
c906108c 385
80626a55 386/* List of DWO/DWP sections. */
3019eac3 387
80626a55 388static const struct dwop_section_names
3019eac3
DE
389{
390 struct dwarf2_section_names abbrev_dwo;
391 struct dwarf2_section_names info_dwo;
392 struct dwarf2_section_names line_dwo;
393 struct dwarf2_section_names loc_dwo;
43988095 394 struct dwarf2_section_names loclists_dwo;
09262596
DE
395 struct dwarf2_section_names macinfo_dwo;
396 struct dwarf2_section_names macro_dwo;
3019eac3
DE
397 struct dwarf2_section_names str_dwo;
398 struct dwarf2_section_names str_offsets_dwo;
399 struct dwarf2_section_names types_dwo;
80626a55
DE
400 struct dwarf2_section_names cu_index;
401 struct dwarf2_section_names tu_index;
3019eac3 402}
80626a55 403dwop_section_names =
3019eac3
DE
404{
405 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
406 { ".debug_info.dwo", ".zdebug_info.dwo" },
407 { ".debug_line.dwo", ".zdebug_line.dwo" },
408 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
43988095 409 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
09262596
DE
410 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
411 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
412 { ".debug_str.dwo", ".zdebug_str.dwo" },
413 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
414 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
415 { ".debug_cu_index", ".zdebug_cu_index" },
416 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
417};
418
c906108c
SS
419/* local data types */
420
107d2387
AC
421/* The data in a compilation unit header, after target2host
422 translation, looks like this. */
c906108c 423struct comp_unit_head
a738430d 424{
c764a876 425 unsigned int length;
a738430d 426 short version;
a738430d
MK
427 unsigned char addr_size;
428 unsigned char signed_addr_p;
9c541725 429 sect_offset abbrev_sect_off;
57349743 430
a738430d
MK
431 /* Size of file offsets; either 4 or 8. */
432 unsigned int offset_size;
57349743 433
a738430d
MK
434 /* Size of the length field; either 4 or 12. */
435 unsigned int initial_length_size;
57349743 436
43988095
JK
437 enum dwarf_unit_type unit_type;
438
a738430d
MK
439 /* Offset to the first byte of this compilation unit header in the
440 .debug_info section, for resolving relative reference dies. */
9c541725 441 sect_offset sect_off;
57349743 442
d00adf39
DE
443 /* Offset to first die in this cu from the start of the cu.
444 This will be the first byte following the compilation unit header. */
9c541725 445 cu_offset first_die_cu_offset;
43988095
JK
446
447 /* 64-bit signature of this type unit - it is valid only for
448 UNIT_TYPE DW_UT_type. */
449 ULONGEST signature;
450
451 /* For types, offset in the type's DIE of the type defined by this TU. */
9c541725 452 cu_offset type_cu_offset_in_tu;
a738430d 453};
c906108c 454
3da10d80
KS
455/* Type used for delaying computation of method physnames.
456 See comments for compute_delayed_physnames. */
457struct delayed_method_info
458{
459 /* The type to which the method is attached, i.e., its parent class. */
460 struct type *type;
461
462 /* The index of the method in the type's function fieldlists. */
463 int fnfield_index;
464
465 /* The index of the method in the fieldlist. */
466 int index;
467
468 /* The name of the DIE. */
469 const char *name;
470
471 /* The DIE associated with this method. */
472 struct die_info *die;
473};
474
475typedef struct delayed_method_info delayed_method_info;
476DEF_VEC_O (delayed_method_info);
477
e7c27a73
DJ
478/* Internal state when decoding a particular compilation unit. */
479struct dwarf2_cu
480{
481 /* The objfile containing this compilation unit. */
482 struct objfile *objfile;
483
d00adf39 484 /* The header of the compilation unit. */
e7c27a73 485 struct comp_unit_head header;
e142c38c 486
d00adf39
DE
487 /* Base address of this compilation unit. */
488 CORE_ADDR base_address;
489
490 /* Non-zero if base_address has been set. */
491 int base_known;
492
e142c38c
DJ
493 /* The language we are debugging. */
494 enum language language;
495 const struct language_defn *language_defn;
496
b0f35d58
DL
497 const char *producer;
498
e142c38c
DJ
499 /* The generic symbol table building routines have separate lists for
500 file scope symbols and all all other scopes (local scopes). So
501 we need to select the right one to pass to add_symbol_to_list().
502 We do it by keeping a pointer to the correct list in list_in_scope.
503
504 FIXME: The original dwarf code just treated the file scope as the
505 first local scope, and all other local scopes as nested local
506 scopes, and worked fine. Check to see if we really need to
507 distinguish these in buildsym.c. */
508 struct pending **list_in_scope;
509
433df2d4
DE
510 /* The abbrev table for this CU.
511 Normally this points to the abbrev table in the objfile.
512 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
513 struct abbrev_table *abbrev_table;
72bf9492 514
b64f50a1
JK
515 /* Hash table holding all the loaded partial DIEs
516 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
517 htab_t partial_dies;
518
519 /* Storage for things with the same lifetime as this read-in compilation
520 unit, including partial DIEs. */
521 struct obstack comp_unit_obstack;
522
ae038cb0
DJ
523 /* When multiple dwarf2_cu structures are living in memory, this field
524 chains them all together, so that they can be released efficiently.
525 We will probably also want a generation counter so that most-recently-used
526 compilation units are cached... */
527 struct dwarf2_per_cu_data *read_in_chain;
528
69d751e3 529 /* Backlink to our per_cu entry. */
ae038cb0
DJ
530 struct dwarf2_per_cu_data *per_cu;
531
532 /* How many compilation units ago was this CU last referenced? */
533 int last_used;
534
b64f50a1
JK
535 /* A hash table of DIE cu_offset for following references with
536 die_info->offset.sect_off as hash. */
51545339 537 htab_t die_hash;
10b3939b
DJ
538
539 /* Full DIEs if read in. */
540 struct die_info *dies;
541
542 /* A set of pointers to dwarf2_per_cu_data objects for compilation
543 units referenced by this one. Only set during full symbol processing;
544 partial symbol tables do not have dependencies. */
545 htab_t dependencies;
546
cb1df416
DJ
547 /* Header data from the line table, during full symbol processing. */
548 struct line_header *line_header;
4c8aa72d
PA
549 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
550 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
551 this is the DW_TAG_compile_unit die for this CU. We'll hold on
552 to the line header as long as this DIE is being processed. See
553 process_die_scope. */
554 die_info *line_header_die_owner;
cb1df416 555
3da10d80
KS
556 /* A list of methods which need to have physnames computed
557 after all type information has been read. */
558 VEC (delayed_method_info) *method_list;
559
96408a79
SA
560 /* To be copied to symtab->call_site_htab. */
561 htab_t call_site_htab;
562
034e5797
DE
563 /* Non-NULL if this CU came from a DWO file.
564 There is an invariant here that is important to remember:
565 Except for attributes copied from the top level DIE in the "main"
566 (or "stub") file in preparation for reading the DWO file
567 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
568 Either there isn't a DWO file (in which case this is NULL and the point
569 is moot), or there is and either we're not going to read it (in which
570 case this is NULL) or there is and we are reading it (in which case this
571 is non-NULL). */
3019eac3
DE
572 struct dwo_unit *dwo_unit;
573
574 /* The DW_AT_addr_base attribute if present, zero otherwise
575 (zero is a valid value though).
1dbab08b 576 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
577 ULONGEST addr_base;
578
2e3cf129
DE
579 /* The DW_AT_ranges_base attribute if present, zero otherwise
580 (zero is a valid value though).
1dbab08b 581 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 582 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
583 be used without needing to know whether DWO files are in use or not.
584 N.B. This does not apply to DW_AT_ranges appearing in
585 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
586 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
587 DW_AT_ranges_base *would* have to be applied, and we'd have to care
588 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
589 ULONGEST ranges_base;
590
ae038cb0
DJ
591 /* Mark used when releasing cached dies. */
592 unsigned int mark : 1;
593
8be455d7
JK
594 /* This CU references .debug_loc. See the symtab->locations_valid field.
595 This test is imperfect as there may exist optimized debug code not using
596 any location list and still facing inlining issues if handled as
597 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 598 unsigned int has_loclist : 1;
ba919b58 599
1b80a9fa
JK
600 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
601 if all the producer_is_* fields are valid. This information is cached
602 because profiling CU expansion showed excessive time spent in
603 producer_is_gxx_lt_4_6. */
ba919b58
TT
604 unsigned int checked_producer : 1;
605 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 606 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 607 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
608
609 /* When set, the file that we're processing is known to have
610 debugging info for C++ namespaces. GCC 3.3.x did not produce
611 this information, but later versions do. */
612
613 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
614};
615
10b3939b
DJ
616/* Persistent data held for a compilation unit, even when not
617 processing it. We put a pointer to this structure in the
28dee7f5 618 read_symtab_private field of the psymtab. */
10b3939b 619
ae038cb0
DJ
620struct dwarf2_per_cu_data
621{
36586728 622 /* The start offset and length of this compilation unit.
45452591 623 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
624 initial_length_size.
625 If the DIE refers to a DWO file, this is always of the original die,
626 not the DWO file. */
9c541725 627 sect_offset sect_off;
36586728 628 unsigned int length;
ae038cb0 629
43988095
JK
630 /* DWARF standard version this data has been read from (such as 4 or 5). */
631 short dwarf_version;
632
ae038cb0
DJ
633 /* Flag indicating this compilation unit will be read in before
634 any of the current compilation units are processed. */
c764a876 635 unsigned int queued : 1;
ae038cb0 636
0d99eb77
DE
637 /* This flag will be set when reading partial DIEs if we need to load
638 absolutely all DIEs for this compilation unit, instead of just the ones
639 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
640 hash table and don't find it. */
641 unsigned int load_all_dies : 1;
642
0186c6a7
DE
643 /* Non-zero if this CU is from .debug_types.
644 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
645 this is non-zero. */
3019eac3
DE
646 unsigned int is_debug_types : 1;
647
36586728
TT
648 /* Non-zero if this CU is from the .dwz file. */
649 unsigned int is_dwz : 1;
650
a2ce51a0
DE
651 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
652 This flag is only valid if is_debug_types is true.
653 We can't read a CU directly from a DWO file: There are required
654 attributes in the stub. */
655 unsigned int reading_dwo_directly : 1;
656
7ee85ab1
DE
657 /* Non-zero if the TU has been read.
658 This is used to assist the "Stay in DWO Optimization" for Fission:
659 When reading a DWO, it's faster to read TUs from the DWO instead of
660 fetching them from random other DWOs (due to comdat folding).
661 If the TU has already been read, the optimization is unnecessary
662 (and unwise - we don't want to change where gdb thinks the TU lives
663 "midflight").
664 This flag is only valid if is_debug_types is true. */
665 unsigned int tu_read : 1;
666
3019eac3
DE
667 /* The section this CU/TU lives in.
668 If the DIE refers to a DWO file, this is always the original die,
669 not the DWO file. */
8a0459fd 670 struct dwarf2_section_info *section;
348e048f 671
17ea53c3 672 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
673 of the CU cache it gets reset to NULL again. This is left as NULL for
674 dummy CUs (a CU header, but nothing else). */
ae038cb0 675 struct dwarf2_cu *cu;
1c379e20 676
9cdd5dbd
DE
677 /* The corresponding objfile.
678 Normally we can get the objfile from dwarf2_per_objfile.
679 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
680 struct objfile *objfile;
681
fffbe6a8
YQ
682 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
683 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
684 union
685 {
686 /* The partial symbol table associated with this compilation unit,
95554aad 687 or NULL for unread partial units. */
9291a0cd
TT
688 struct partial_symtab *psymtab;
689
690 /* Data needed by the "quick" functions. */
691 struct dwarf2_per_cu_quick_data *quick;
692 } v;
95554aad 693
796a7ff8
DE
694 /* The CUs we import using DW_TAG_imported_unit. This is filled in
695 while reading psymtabs, used to compute the psymtab dependencies,
696 and then cleared. Then it is filled in again while reading full
697 symbols, and only deleted when the objfile is destroyed.
698
699 This is also used to work around a difference between the way gold
700 generates .gdb_index version <=7 and the way gdb does. Arguably this
701 is a gold bug. For symbols coming from TUs, gold records in the index
702 the CU that includes the TU instead of the TU itself. This breaks
703 dw2_lookup_symbol: It assumes that if the index says symbol X lives
704 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
705 will find X. Alas TUs live in their own symtab, so after expanding CU Y
706 we need to look in TU Z to find X. Fortunately, this is akin to
707 DW_TAG_imported_unit, so we just use the same mechanism: For
708 .gdb_index version <=7 this also records the TUs that the CU referred
709 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
710 indices so we only pay a price for gold generated indices.
711 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 712 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
713};
714
348e048f
DE
715/* Entry in the signatured_types hash table. */
716
717struct signatured_type
718{
42e7ad6c 719 /* The "per_cu" object of this type.
ac9ec31b 720 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
721 N.B.: This is the first member so that it's easy to convert pointers
722 between them. */
723 struct dwarf2_per_cu_data per_cu;
724
3019eac3 725 /* The type's signature. */
348e048f
DE
726 ULONGEST signature;
727
3019eac3 728 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
729 If this TU is a DWO stub and the definition lives in a DWO file
730 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
731 cu_offset type_offset_in_tu;
732
733 /* Offset in the section of the type's DIE.
734 If the definition lives in a DWO file, this is the offset in the
735 .debug_types.dwo section.
736 The value is zero until the actual value is known.
737 Zero is otherwise not a valid section offset. */
738 sect_offset type_offset_in_section;
0186c6a7
DE
739
740 /* Type units are grouped by their DW_AT_stmt_list entry so that they
741 can share them. This points to the containing symtab. */
742 struct type_unit_group *type_unit_group;
ac9ec31b
DE
743
744 /* The type.
745 The first time we encounter this type we fully read it in and install it
746 in the symbol tables. Subsequent times we only need the type. */
747 struct type *type;
a2ce51a0
DE
748
749 /* Containing DWO unit.
750 This field is valid iff per_cu.reading_dwo_directly. */
751 struct dwo_unit *dwo_unit;
348e048f
DE
752};
753
0186c6a7
DE
754typedef struct signatured_type *sig_type_ptr;
755DEF_VEC_P (sig_type_ptr);
756
094b34ac
DE
757/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
758 This includes type_unit_group and quick_file_names. */
759
760struct stmt_list_hash
761{
762 /* The DWO unit this table is from or NULL if there is none. */
763 struct dwo_unit *dwo_unit;
764
765 /* Offset in .debug_line or .debug_line.dwo. */
9c541725 766 sect_offset line_sect_off;
094b34ac
DE
767};
768
f4dc4d17
DE
769/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
770 an object of this type. */
771
772struct type_unit_group
773{
0186c6a7 774 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
775 To simplify things we create an artificial CU that "includes" all the
776 type units using this stmt_list so that the rest of the code still has
777 a "per_cu" handle on the symtab.
778 This PER_CU is recognized by having no section. */
8a0459fd 779#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
780 struct dwarf2_per_cu_data per_cu;
781
0186c6a7
DE
782 /* The TUs that share this DW_AT_stmt_list entry.
783 This is added to while parsing type units to build partial symtabs,
784 and is deleted afterwards and not used again. */
785 VEC (sig_type_ptr) *tus;
f4dc4d17 786
43f3e411 787 /* The compunit symtab.
094b34ac 788 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
789 so we create an essentially anonymous symtab as the compunit symtab. */
790 struct compunit_symtab *compunit_symtab;
f4dc4d17 791
094b34ac
DE
792 /* The data used to construct the hash key. */
793 struct stmt_list_hash hash;
f4dc4d17
DE
794
795 /* The number of symtabs from the line header.
796 The value here must match line_header.num_file_names. */
797 unsigned int num_symtabs;
798
799 /* The symbol tables for this TU (obtained from the files listed in
800 DW_AT_stmt_list).
801 WARNING: The order of entries here must match the order of entries
802 in the line header. After the first TU using this type_unit_group, the
803 line header for the subsequent TUs is recreated from this. This is done
804 because we need to use the same symtabs for each TU using the same
805 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
806 there's no guarantee the line header doesn't have duplicate entries. */
807 struct symtab **symtabs;
808};
809
73869dc2 810/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
811
812struct dwo_sections
813{
814 struct dwarf2_section_info abbrev;
3019eac3
DE
815 struct dwarf2_section_info line;
816 struct dwarf2_section_info loc;
43988095 817 struct dwarf2_section_info loclists;
09262596
DE
818 struct dwarf2_section_info macinfo;
819 struct dwarf2_section_info macro;
3019eac3
DE
820 struct dwarf2_section_info str;
821 struct dwarf2_section_info str_offsets;
80626a55
DE
822 /* In the case of a virtual DWO file, these two are unused. */
823 struct dwarf2_section_info info;
3019eac3
DE
824 VEC (dwarf2_section_info_def) *types;
825};
826
c88ee1f0 827/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
828
829struct dwo_unit
830{
831 /* Backlink to the containing struct dwo_file. */
832 struct dwo_file *dwo_file;
833
834 /* The "id" that distinguishes this CU/TU.
835 .debug_info calls this "dwo_id", .debug_types calls this "signature".
836 Since signatures came first, we stick with it for consistency. */
837 ULONGEST signature;
838
839 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 840 struct dwarf2_section_info *section;
3019eac3 841
9c541725
PA
842 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
843 sect_offset sect_off;
3019eac3
DE
844 unsigned int length;
845
846 /* For types, offset in the type's DIE of the type defined by this TU. */
847 cu_offset type_offset_in_tu;
848};
849
73869dc2
DE
850/* include/dwarf2.h defines the DWP section codes.
851 It defines a max value but it doesn't define a min value, which we
852 use for error checking, so provide one. */
853
854enum dwp_v2_section_ids
855{
856 DW_SECT_MIN = 1
857};
858
80626a55 859/* Data for one DWO file.
57d63ce2
DE
860
861 This includes virtual DWO files (a virtual DWO file is a DWO file as it
862 appears in a DWP file). DWP files don't really have DWO files per se -
863 comdat folding of types "loses" the DWO file they came from, and from
864 a high level view DWP files appear to contain a mass of random types.
865 However, to maintain consistency with the non-DWP case we pretend DWP
866 files contain virtual DWO files, and we assign each TU with one virtual
867 DWO file (generally based on the line and abbrev section offsets -
868 a heuristic that seems to work in practice). */
3019eac3
DE
869
870struct dwo_file
871{
0ac5b59e 872 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
873 For virtual DWO files the name is constructed from the section offsets
874 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
875 from related CU+TUs. */
0ac5b59e
DE
876 const char *dwo_name;
877
878 /* The DW_AT_comp_dir attribute. */
879 const char *comp_dir;
3019eac3 880
80626a55
DE
881 /* The bfd, when the file is open. Otherwise this is NULL.
882 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
883 bfd *dbfd;
3019eac3 884
73869dc2
DE
885 /* The sections that make up this DWO file.
886 Remember that for virtual DWO files in DWP V2, these are virtual
887 sections (for lack of a better name). */
3019eac3
DE
888 struct dwo_sections sections;
889
33c5cd75
DB
890 /* The CUs in the file.
891 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
892 an extension to handle LLVM's Link Time Optimization output (where
893 multiple source files may be compiled into a single object/dwo pair). */
894 htab_t cus;
3019eac3
DE
895
896 /* Table of TUs in the file.
897 Each element is a struct dwo_unit. */
898 htab_t tus;
899};
900
80626a55
DE
901/* These sections are what may appear in a DWP file. */
902
903struct dwp_sections
904{
73869dc2 905 /* These are used by both DWP version 1 and 2. */
80626a55
DE
906 struct dwarf2_section_info str;
907 struct dwarf2_section_info cu_index;
908 struct dwarf2_section_info tu_index;
73869dc2
DE
909
910 /* These are only used by DWP version 2 files.
911 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
912 sections are referenced by section number, and are not recorded here.
913 In DWP version 2 there is at most one copy of all these sections, each
914 section being (effectively) comprised of the concatenation of all of the
915 individual sections that exist in the version 1 format.
916 To keep the code simple we treat each of these concatenated pieces as a
917 section itself (a virtual section?). */
918 struct dwarf2_section_info abbrev;
919 struct dwarf2_section_info info;
920 struct dwarf2_section_info line;
921 struct dwarf2_section_info loc;
922 struct dwarf2_section_info macinfo;
923 struct dwarf2_section_info macro;
924 struct dwarf2_section_info str_offsets;
925 struct dwarf2_section_info types;
80626a55
DE
926};
927
73869dc2
DE
928/* These sections are what may appear in a virtual DWO file in DWP version 1.
929 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 930
73869dc2 931struct virtual_v1_dwo_sections
80626a55
DE
932{
933 struct dwarf2_section_info abbrev;
934 struct dwarf2_section_info line;
935 struct dwarf2_section_info loc;
936 struct dwarf2_section_info macinfo;
937 struct dwarf2_section_info macro;
938 struct dwarf2_section_info str_offsets;
939 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 940 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
941 struct dwarf2_section_info info_or_types;
942};
943
73869dc2
DE
944/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
945 In version 2, the sections of the DWO files are concatenated together
946 and stored in one section of that name. Thus each ELF section contains
947 several "virtual" sections. */
948
949struct virtual_v2_dwo_sections
950{
951 bfd_size_type abbrev_offset;
952 bfd_size_type abbrev_size;
953
954 bfd_size_type line_offset;
955 bfd_size_type line_size;
956
957 bfd_size_type loc_offset;
958 bfd_size_type loc_size;
959
960 bfd_size_type macinfo_offset;
961 bfd_size_type macinfo_size;
962
963 bfd_size_type macro_offset;
964 bfd_size_type macro_size;
965
966 bfd_size_type str_offsets_offset;
967 bfd_size_type str_offsets_size;
968
969 /* Each DWP hash table entry records one CU or one TU.
970 That is recorded here, and copied to dwo_unit.section. */
971 bfd_size_type info_or_types_offset;
972 bfd_size_type info_or_types_size;
973};
974
80626a55
DE
975/* Contents of DWP hash tables. */
976
977struct dwp_hash_table
978{
73869dc2 979 uint32_t version, nr_columns;
80626a55 980 uint32_t nr_units, nr_slots;
73869dc2
DE
981 const gdb_byte *hash_table, *unit_table;
982 union
983 {
984 struct
985 {
986 const gdb_byte *indices;
987 } v1;
988 struct
989 {
990 /* This is indexed by column number and gives the id of the section
991 in that column. */
992#define MAX_NR_V2_DWO_SECTIONS \
993 (1 /* .debug_info or .debug_types */ \
994 + 1 /* .debug_abbrev */ \
995 + 1 /* .debug_line */ \
996 + 1 /* .debug_loc */ \
997 + 1 /* .debug_str_offsets */ \
998 + 1 /* .debug_macro or .debug_macinfo */)
999 int section_ids[MAX_NR_V2_DWO_SECTIONS];
1000 const gdb_byte *offsets;
1001 const gdb_byte *sizes;
1002 } v2;
1003 } section_pool;
80626a55
DE
1004};
1005
1006/* Data for one DWP file. */
1007
1008struct dwp_file
1009{
1010 /* Name of the file. */
1011 const char *name;
1012
73869dc2
DE
1013 /* File format version. */
1014 int version;
1015
93417882 1016 /* The bfd. */
80626a55
DE
1017 bfd *dbfd;
1018
1019 /* Section info for this file. */
1020 struct dwp_sections sections;
1021
57d63ce2 1022 /* Table of CUs in the file. */
80626a55
DE
1023 const struct dwp_hash_table *cus;
1024
1025 /* Table of TUs in the file. */
1026 const struct dwp_hash_table *tus;
1027
19ac8c2e
DE
1028 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1029 htab_t loaded_cus;
1030 htab_t loaded_tus;
80626a55 1031
73869dc2
DE
1032 /* Table to map ELF section numbers to their sections.
1033 This is only needed for the DWP V1 file format. */
80626a55
DE
1034 unsigned int num_sections;
1035 asection **elf_sections;
1036};
1037
36586728
TT
1038/* This represents a '.dwz' file. */
1039
1040struct dwz_file
1041{
1042 /* A dwz file can only contain a few sections. */
1043 struct dwarf2_section_info abbrev;
1044 struct dwarf2_section_info info;
1045 struct dwarf2_section_info str;
1046 struct dwarf2_section_info line;
1047 struct dwarf2_section_info macro;
2ec9a5e0 1048 struct dwarf2_section_info gdb_index;
36586728
TT
1049
1050 /* The dwz's BFD. */
1051 bfd *dwz_bfd;
1052};
1053
0963b4bd
MS
1054/* Struct used to pass misc. parameters to read_die_and_children, et
1055 al. which are used for both .debug_info and .debug_types dies.
1056 All parameters here are unchanging for the life of the call. This
dee91e82 1057 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
1058
1059struct die_reader_specs
1060{
a32a8923 1061 /* The bfd of die_section. */
93311388
DE
1062 bfd* abfd;
1063
1064 /* The CU of the DIE we are parsing. */
1065 struct dwarf2_cu *cu;
1066
80626a55 1067 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1068 struct dwo_file *dwo_file;
1069
dee91e82 1070 /* The section the die comes from.
3019eac3 1071 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1072 struct dwarf2_section_info *die_section;
1073
1074 /* die_section->buffer. */
d521ce57 1075 const gdb_byte *buffer;
f664829e
DE
1076
1077 /* The end of the buffer. */
1078 const gdb_byte *buffer_end;
a2ce51a0
DE
1079
1080 /* The value of the DW_AT_comp_dir attribute. */
1081 const char *comp_dir;
93311388
DE
1082};
1083
fd820528 1084/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1085typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1086 const gdb_byte *info_ptr,
dee91e82
DE
1087 struct die_info *comp_unit_die,
1088 int has_children,
1089 void *data);
1090
ecfb656c
PA
1091/* A 1-based directory index. This is a strong typedef to prevent
1092 accidentally using a directory index as a 0-based index into an
1093 array/vector. */
1094enum class dir_index : unsigned int {};
1095
1096/* Likewise, a 1-based file name index. */
1097enum class file_name_index : unsigned int {};
1098
52059ffd
TT
1099struct file_entry
1100{
fff8551c
PA
1101 file_entry () = default;
1102
ecfb656c 1103 file_entry (const char *name_, dir_index d_index_,
fff8551c
PA
1104 unsigned int mod_time_, unsigned int length_)
1105 : name (name_),
ecfb656c 1106 d_index (d_index_),
fff8551c
PA
1107 mod_time (mod_time_),
1108 length (length_)
1109 {}
1110
ecfb656c
PA
1111 /* Return the include directory at D_INDEX stored in LH. Returns
1112 NULL if D_INDEX is out of bounds. */
8c43009f
PA
1113 const char *include_dir (const line_header *lh) const;
1114
fff8551c
PA
1115 /* The file name. Note this is an observing pointer. The memory is
1116 owned by debug_line_buffer. */
1117 const char *name {};
1118
8c43009f 1119 /* The directory index (1-based). */
ecfb656c 1120 dir_index d_index {};
fff8551c
PA
1121
1122 unsigned int mod_time {};
1123
1124 unsigned int length {};
1125
1126 /* True if referenced by the Line Number Program. */
1127 bool included_p {};
1128
83769d0b 1129 /* The associated symbol table, if any. */
fff8551c 1130 struct symtab *symtab {};
52059ffd
TT
1131};
1132
debd256d
JB
1133/* The line number information for a compilation unit (found in the
1134 .debug_line section) begins with a "statement program header",
1135 which contains the following information. */
1136struct line_header
1137{
fff8551c
PA
1138 line_header ()
1139 : offset_in_dwz {}
1140 {}
1141
1142 /* Add an entry to the include directory table. */
1143 void add_include_dir (const char *include_dir);
1144
1145 /* Add an entry to the file name table. */
ecfb656c 1146 void add_file_name (const char *name, dir_index d_index,
fff8551c
PA
1147 unsigned int mod_time, unsigned int length);
1148
ecfb656c 1149 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
8c43009f 1150 is out of bounds. */
ecfb656c 1151 const char *include_dir_at (dir_index index) const
8c43009f 1152 {
ecfb656c
PA
1153 /* Convert directory index number (1-based) to vector index
1154 (0-based). */
1155 size_t vec_index = to_underlying (index) - 1;
1156
1157 if (vec_index >= include_dirs.size ())
8c43009f 1158 return NULL;
ecfb656c 1159 return include_dirs[vec_index];
8c43009f
PA
1160 }
1161
ecfb656c 1162 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
8c43009f 1163 is out of bounds. */
ecfb656c 1164 file_entry *file_name_at (file_name_index index)
8c43009f 1165 {
ecfb656c
PA
1166 /* Convert file name index number (1-based) to vector index
1167 (0-based). */
1168 size_t vec_index = to_underlying (index) - 1;
1169
1170 if (vec_index >= file_names.size ())
fff8551c 1171 return NULL;
ecfb656c 1172 return &file_names[vec_index];
fff8551c
PA
1173 }
1174
1175 /* Const version of the above. */
1176 const file_entry *file_name_at (unsigned int index) const
1177 {
1178 if (index >= file_names.size ())
8c43009f
PA
1179 return NULL;
1180 return &file_names[index];
1181 }
1182
527f3840 1183 /* Offset of line number information in .debug_line section. */
9c541725 1184 sect_offset sect_off {};
527f3840
JK
1185
1186 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
fff8551c
PA
1187 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1188
1189 unsigned int total_length {};
1190 unsigned short version {};
1191 unsigned int header_length {};
1192 unsigned char minimum_instruction_length {};
1193 unsigned char maximum_ops_per_instruction {};
1194 unsigned char default_is_stmt {};
1195 int line_base {};
1196 unsigned char line_range {};
1197 unsigned char opcode_base {};
debd256d
JB
1198
1199 /* standard_opcode_lengths[i] is the number of operands for the
1200 standard opcode whose value is i. This means that
1201 standard_opcode_lengths[0] is unused, and the last meaningful
1202 element is standard_opcode_lengths[opcode_base - 1]. */
fff8551c 1203 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
debd256d 1204
fff8551c
PA
1205 /* The include_directories table. Note these are observing
1206 pointers. The memory is owned by debug_line_buffer. */
1207 std::vector<const char *> include_dirs;
debd256d 1208
fff8551c
PA
1209 /* The file_names table. */
1210 std::vector<file_entry> file_names;
debd256d
JB
1211
1212 /* The start and end of the statement program following this
6502dd73 1213 header. These point into dwarf2_per_objfile->line_buffer. */
fff8551c 1214 const gdb_byte *statement_program_start {}, *statement_program_end {};
debd256d 1215};
c906108c 1216
fff8551c
PA
1217typedef std::unique_ptr<line_header> line_header_up;
1218
8c43009f
PA
1219const char *
1220file_entry::include_dir (const line_header *lh) const
1221{
ecfb656c 1222 return lh->include_dir_at (d_index);
8c43009f
PA
1223}
1224
c906108c 1225/* When we construct a partial symbol table entry we only
0963b4bd 1226 need this much information. */
c906108c
SS
1227struct partial_die_info
1228 {
72bf9492 1229 /* Offset of this DIE. */
9c541725 1230 sect_offset sect_off;
72bf9492
DJ
1231
1232 /* DWARF-2 tag for this DIE. */
1233 ENUM_BITFIELD(dwarf_tag) tag : 16;
1234
72bf9492
DJ
1235 /* Assorted flags describing the data found in this DIE. */
1236 unsigned int has_children : 1;
1237 unsigned int is_external : 1;
1238 unsigned int is_declaration : 1;
1239 unsigned int has_type : 1;
1240 unsigned int has_specification : 1;
1241 unsigned int has_pc_info : 1;
481860b3 1242 unsigned int may_be_inlined : 1;
72bf9492 1243
0c1b455e
TT
1244 /* This DIE has been marked DW_AT_main_subprogram. */
1245 unsigned int main_subprogram : 1;
1246
72bf9492
DJ
1247 /* Flag set if the SCOPE field of this structure has been
1248 computed. */
1249 unsigned int scope_set : 1;
1250
fa4028e9
JB
1251 /* Flag set if the DIE has a byte_size attribute. */
1252 unsigned int has_byte_size : 1;
1253
ff908ebf
AW
1254 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1255 unsigned int has_const_value : 1;
1256
98bfdba5
PA
1257 /* Flag set if any of the DIE's children are template arguments. */
1258 unsigned int has_template_arguments : 1;
1259
abc72ce4
DE
1260 /* Flag set if fixup_partial_die has been called on this die. */
1261 unsigned int fixup_called : 1;
1262
36586728
TT
1263 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1264 unsigned int is_dwz : 1;
1265
1266 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1267 unsigned int spec_is_dwz : 1;
1268
72bf9492 1269 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1270 sometimes a default name for unnamed DIEs. */
15d034d0 1271 const char *name;
72bf9492 1272
abc72ce4
DE
1273 /* The linkage name, if present. */
1274 const char *linkage_name;
1275
72bf9492
DJ
1276 /* The scope to prepend to our children. This is generally
1277 allocated on the comp_unit_obstack, so will disappear
1278 when this compilation unit leaves the cache. */
15d034d0 1279 const char *scope;
72bf9492 1280
95554aad
TT
1281 /* Some data associated with the partial DIE. The tag determines
1282 which field is live. */
1283 union
1284 {
1285 /* The location description associated with this DIE, if any. */
1286 struct dwarf_block *locdesc;
1287 /* The offset of an import, for DW_TAG_imported_unit. */
9c541725 1288 sect_offset sect_off;
95554aad 1289 } d;
72bf9492
DJ
1290
1291 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1292 CORE_ADDR lowpc;
1293 CORE_ADDR highpc;
72bf9492 1294
93311388 1295 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1296 DW_AT_sibling, if any. */
abc72ce4
DE
1297 /* NOTE: This member isn't strictly necessary, read_partial_die could
1298 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1299 const gdb_byte *sibling;
72bf9492
DJ
1300
1301 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1302 DW_AT_specification (or DW_AT_abstract_origin or
1303 DW_AT_extension). */
b64f50a1 1304 sect_offset spec_offset;
72bf9492
DJ
1305
1306 /* Pointers to this DIE's parent, first child, and next sibling,
1307 if any. */
1308 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1309 };
1310
0963b4bd 1311/* This data structure holds the information of an abbrev. */
c906108c
SS
1312struct abbrev_info
1313 {
1314 unsigned int number; /* number identifying abbrev */
1315 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1316 unsigned short has_children; /* boolean */
1317 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1318 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1319 struct abbrev_info *next; /* next in chain */
1320 };
1321
1322struct attr_abbrev
1323 {
9d25dd43
DE
1324 ENUM_BITFIELD(dwarf_attribute) name : 16;
1325 ENUM_BITFIELD(dwarf_form) form : 16;
43988095
JK
1326
1327 /* It is valid only if FORM is DW_FORM_implicit_const. */
1328 LONGEST implicit_const;
c906108c
SS
1329 };
1330
433df2d4
DE
1331/* Size of abbrev_table.abbrev_hash_table. */
1332#define ABBREV_HASH_SIZE 121
1333
1334/* Top level data structure to contain an abbreviation table. */
1335
1336struct abbrev_table
1337{
f4dc4d17
DE
1338 /* Where the abbrev table came from.
1339 This is used as a sanity check when the table is used. */
9c541725 1340 sect_offset sect_off;
433df2d4
DE
1341
1342 /* Storage for the abbrev table. */
1343 struct obstack abbrev_obstack;
1344
1345 /* Hash table of abbrevs.
1346 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1347 It could be statically allocated, but the previous code didn't so we
1348 don't either. */
1349 struct abbrev_info **abbrevs;
1350};
1351
0963b4bd 1352/* Attributes have a name and a value. */
b60c80d6
DJ
1353struct attribute
1354 {
9d25dd43 1355 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1356 ENUM_BITFIELD(dwarf_form) form : 15;
1357
1358 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1359 field should be in u.str (existing only for DW_STRING) but it is kept
1360 here for better struct attribute alignment. */
1361 unsigned int string_is_canonical : 1;
1362
b60c80d6
DJ
1363 union
1364 {
15d034d0 1365 const char *str;
b60c80d6 1366 struct dwarf_block *blk;
43bbcdc2
PH
1367 ULONGEST unsnd;
1368 LONGEST snd;
b60c80d6 1369 CORE_ADDR addr;
ac9ec31b 1370 ULONGEST signature;
b60c80d6
DJ
1371 }
1372 u;
1373 };
1374
0963b4bd 1375/* This data structure holds a complete die structure. */
c906108c
SS
1376struct die_info
1377 {
76815b17
DE
1378 /* DWARF-2 tag for this DIE. */
1379 ENUM_BITFIELD(dwarf_tag) tag : 16;
1380
1381 /* Number of attributes */
98bfdba5
PA
1382 unsigned char num_attrs;
1383
1384 /* True if we're presently building the full type name for the
1385 type derived from this DIE. */
1386 unsigned char building_fullname : 1;
76815b17 1387
adde2bff
DE
1388 /* True if this die is in process. PR 16581. */
1389 unsigned char in_process : 1;
1390
76815b17
DE
1391 /* Abbrev number */
1392 unsigned int abbrev;
1393
93311388 1394 /* Offset in .debug_info or .debug_types section. */
9c541725 1395 sect_offset sect_off;
78ba4af6
JB
1396
1397 /* The dies in a compilation unit form an n-ary tree. PARENT
1398 points to this die's parent; CHILD points to the first child of
1399 this node; and all the children of a given node are chained
4950bc1c 1400 together via their SIBLING fields. */
639d11d3
DC
1401 struct die_info *child; /* Its first child, if any. */
1402 struct die_info *sibling; /* Its next sibling, if any. */
1403 struct die_info *parent; /* Its parent, if any. */
c906108c 1404
b60c80d6
DJ
1405 /* An array of attributes, with NUM_ATTRS elements. There may be
1406 zero, but it's not common and zero-sized arrays are not
1407 sufficiently portable C. */
1408 struct attribute attrs[1];
c906108c
SS
1409 };
1410
0963b4bd 1411/* Get at parts of an attribute structure. */
c906108c
SS
1412
1413#define DW_STRING(attr) ((attr)->u.str)
8285870a 1414#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1415#define DW_UNSND(attr) ((attr)->u.unsnd)
1416#define DW_BLOCK(attr) ((attr)->u.blk)
1417#define DW_SND(attr) ((attr)->u.snd)
1418#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1419#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1420
0963b4bd 1421/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1422struct dwarf_block
1423 {
56eb65bd 1424 size_t size;
1d6edc3c
JK
1425
1426 /* Valid only if SIZE is not zero. */
d521ce57 1427 const gdb_byte *data;
c906108c
SS
1428 };
1429
c906108c
SS
1430#ifndef ATTR_ALLOC_CHUNK
1431#define ATTR_ALLOC_CHUNK 4
1432#endif
1433
c906108c
SS
1434/* Allocate fields for structs, unions and enums in this size. */
1435#ifndef DW_FIELD_ALLOC_CHUNK
1436#define DW_FIELD_ALLOC_CHUNK 4
1437#endif
1438
c906108c
SS
1439/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1440 but this would require a corresponding change in unpack_field_as_long
1441 and friends. */
1442static int bits_per_byte = 8;
1443
52059ffd
TT
1444struct nextfield
1445{
1446 struct nextfield *next;
1447 int accessibility;
1448 int virtuality;
1449 struct field field;
1450};
1451
1452struct nextfnfield
1453{
1454 struct nextfnfield *next;
1455 struct fn_field fnfield;
1456};
1457
1458struct fnfieldlist
1459{
1460 const char *name;
1461 int length;
1462 struct nextfnfield *head;
1463};
1464
1465struct typedef_field_list
1466{
1467 struct typedef_field field;
1468 struct typedef_field_list *next;
1469};
1470
c906108c
SS
1471/* The routines that read and process dies for a C struct or C++ class
1472 pass lists of data member fields and lists of member function fields
1473 in an instance of a field_info structure, as defined below. */
1474struct field_info
c5aa993b 1475 {
0963b4bd 1476 /* List of data member and baseclasses fields. */
52059ffd 1477 struct nextfield *fields, *baseclasses;
c906108c 1478
7d0ccb61 1479 /* Number of fields (including baseclasses). */
c5aa993b 1480 int nfields;
c906108c 1481
c5aa993b
JM
1482 /* Number of baseclasses. */
1483 int nbaseclasses;
c906108c 1484
c5aa993b
JM
1485 /* Set if the accesibility of one of the fields is not public. */
1486 int non_public_fields;
c906108c 1487
c5aa993b
JM
1488 /* Member function fields array, entries are allocated in the order they
1489 are encountered in the object file. */
52059ffd 1490 struct nextfnfield *fnfields;
c906108c 1491
c5aa993b
JM
1492 /* Member function fieldlist array, contains name of possibly overloaded
1493 member function, number of overloaded member functions and a pointer
1494 to the head of the member function field chain. */
52059ffd 1495 struct fnfieldlist *fnfieldlists;
c906108c 1496
c5aa993b
JM
1497 /* Number of entries in the fnfieldlists array. */
1498 int nfnfields;
98751a41
JK
1499
1500 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1501 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1502 struct typedef_field_list *typedef_field_list;
98751a41 1503 unsigned typedef_field_list_count;
c5aa993b 1504 };
c906108c 1505
10b3939b
DJ
1506/* One item on the queue of compilation units to read in full symbols
1507 for. */
1508struct dwarf2_queue_item
1509{
1510 struct dwarf2_per_cu_data *per_cu;
95554aad 1511 enum language pretend_language;
10b3939b
DJ
1512 struct dwarf2_queue_item *next;
1513};
1514
1515/* The current queue. */
1516static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1517
ae038cb0
DJ
1518/* Loaded secondary compilation units are kept in memory until they
1519 have not been referenced for the processing of this many
1520 compilation units. Set this to zero to disable caching. Cache
1521 sizes of up to at least twenty will improve startup time for
1522 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1523static int dwarf_max_cache_age = 5;
920d2a44 1524static void
b4f54984
DE
1525show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1526 struct cmd_list_element *c, const char *value)
920d2a44 1527{
3e43a32a 1528 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1529 "DWARF compilation units is %s.\n"),
920d2a44
AC
1530 value);
1531}
4390d890 1532\f
c906108c
SS
1533/* local function prototypes */
1534
a32a8923
DE
1535static const char *get_section_name (const struct dwarf2_section_info *);
1536
1537static const char *get_section_file_name (const struct dwarf2_section_info *);
1538
918dd910
JK
1539static void dwarf2_find_base_address (struct die_info *die,
1540 struct dwarf2_cu *cu);
1541
0018ea6f
DE
1542static struct partial_symtab *create_partial_symtab
1543 (struct dwarf2_per_cu_data *per_cu, const char *name);
1544
f1902523
JK
1545static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1546 const gdb_byte *info_ptr,
1547 struct die_info *type_unit_die,
1548 int has_children, void *data);
1549
c67a9c90 1550static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1551
72bf9492
DJ
1552static void scan_partial_symbols (struct partial_die_info *,
1553 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1554 int, struct dwarf2_cu *);
c906108c 1555
72bf9492
DJ
1556static void add_partial_symbol (struct partial_die_info *,
1557 struct dwarf2_cu *);
63d06c5c 1558
72bf9492
DJ
1559static void add_partial_namespace (struct partial_die_info *pdi,
1560 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1561 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1562
5d7cb8df 1563static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1564 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1565 struct dwarf2_cu *cu);
1566
72bf9492
DJ
1567static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1568 struct dwarf2_cu *cu);
91c24f0a 1569
bc30ff58
JB
1570static void add_partial_subprogram (struct partial_die_info *pdi,
1571 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1572 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1573
257e7a09
YQ
1574static void dwarf2_read_symtab (struct partial_symtab *,
1575 struct objfile *);
c906108c 1576
a14ed312 1577static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1578
433df2d4
DE
1579static struct abbrev_info *abbrev_table_lookup_abbrev
1580 (const struct abbrev_table *, unsigned int);
1581
1582static struct abbrev_table *abbrev_table_read_table
1583 (struct dwarf2_section_info *, sect_offset);
1584
1585static void abbrev_table_free (struct abbrev_table *);
1586
f4dc4d17
DE
1587static void abbrev_table_free_cleanup (void *);
1588
dee91e82
DE
1589static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1590 struct dwarf2_section_info *);
c906108c 1591
f3dd6933 1592static void dwarf2_free_abbrev_table (void *);
c906108c 1593
d521ce57 1594static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1595
dee91e82 1596static struct partial_die_info *load_partial_dies
d521ce57 1597 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1598
d521ce57
TT
1599static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1600 struct partial_die_info *,
1601 struct abbrev_info *,
1602 unsigned int,
1603 const gdb_byte *);
c906108c 1604
36586728 1605static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1606 struct dwarf2_cu *);
72bf9492
DJ
1607
1608static void fixup_partial_die (struct partial_die_info *,
1609 struct dwarf2_cu *);
1610
d521ce57
TT
1611static const gdb_byte *read_attribute (const struct die_reader_specs *,
1612 struct attribute *, struct attr_abbrev *,
1613 const gdb_byte *);
a8329558 1614
a1855c1d 1615static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1616
a1855c1d 1617static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1618
a1855c1d 1619static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1620
a1855c1d 1621static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1622
a1855c1d 1623static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1624
d521ce57 1625static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1626 unsigned int *);
c906108c 1627
d521ce57 1628static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1629
1630static LONGEST read_checked_initial_length_and_offset
d521ce57 1631 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1632 unsigned int *, unsigned int *);
613e1657 1633
d521ce57
TT
1634static LONGEST read_offset (bfd *, const gdb_byte *,
1635 const struct comp_unit_head *,
c764a876
DE
1636 unsigned int *);
1637
d521ce57 1638static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1639
f4dc4d17
DE
1640static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1641 sect_offset);
1642
d521ce57 1643static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1644
d521ce57 1645static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1646
d521ce57
TT
1647static const char *read_indirect_string (bfd *, const gdb_byte *,
1648 const struct comp_unit_head *,
1649 unsigned int *);
4bdf3d34 1650
43988095
JK
1651static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1652 const struct comp_unit_head *,
1653 unsigned int *);
36586728 1654
43988095 1655static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
c906108c 1656
d521ce57 1657static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1658
d521ce57
TT
1659static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1660 const gdb_byte *,
3019eac3
DE
1661 unsigned int *);
1662
d521ce57 1663static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1664 ULONGEST str_index);
3019eac3 1665
e142c38c 1666static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1667
e142c38c
DJ
1668static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1669 struct dwarf2_cu *);
c906108c 1670
348e048f 1671static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1672 unsigned int);
348e048f 1673
7d45c7c3
KB
1674static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1675 struct dwarf2_cu *cu);
1676
05cf31d1
JB
1677static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1678 struct dwarf2_cu *cu);
1679
e142c38c 1680static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1681
e142c38c 1682static struct die_info *die_specification (struct die_info *die,
f2f0e013 1683 struct dwarf2_cu **);
63d06c5c 1684
9c541725 1685static line_header_up dwarf_decode_line_header (sect_offset sect_off,
fff8551c 1686 struct dwarf2_cu *cu);
debd256d 1687
f3f5162e 1688static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1689 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1690 CORE_ADDR, int decode_mapping);
c906108c 1691
4d663531 1692static void dwarf2_start_subfile (const char *, const char *);
c906108c 1693
43f3e411
DE
1694static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1695 const char *, const char *,
1696 CORE_ADDR);
f4dc4d17 1697
a14ed312 1698static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1699 struct dwarf2_cu *);
c906108c 1700
34eaf542
TT
1701static struct symbol *new_symbol_full (struct die_info *, struct type *,
1702 struct dwarf2_cu *, struct symbol *);
1703
ff39bb5e 1704static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1705 struct dwarf2_cu *);
c906108c 1706
ff39bb5e 1707static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1708 struct type *type,
1709 const char *name,
1710 struct obstack *obstack,
12df843f 1711 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1712 const gdb_byte **bytes,
98bfdba5 1713 struct dwarf2_locexpr_baton **baton);
2df3850c 1714
e7c27a73 1715static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1716
b4ba55a1
JB
1717static int need_gnat_info (struct dwarf2_cu *);
1718
3e43a32a
MS
1719static struct type *die_descriptive_type (struct die_info *,
1720 struct dwarf2_cu *);
b4ba55a1
JB
1721
1722static void set_descriptive_type (struct type *, struct die_info *,
1723 struct dwarf2_cu *);
1724
e7c27a73
DJ
1725static struct type *die_containing_type (struct die_info *,
1726 struct dwarf2_cu *);
c906108c 1727
ff39bb5e 1728static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1729 struct dwarf2_cu *);
c906108c 1730
f792889a 1731static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1732
673bfd45
DE
1733static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1734
0d5cff50 1735static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1736
6e70227d 1737static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1738 const char *suffix, int physname,
1739 struct dwarf2_cu *cu);
63d06c5c 1740
e7c27a73 1741static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1742
348e048f
DE
1743static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1744
e7c27a73 1745static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1746
e7c27a73 1747static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1748
96408a79
SA
1749static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1750
ff013f42
JK
1751static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1752 struct dwarf2_cu *, struct partial_symtab *);
1753
3a2b436a 1754/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
e385593e 1755 values. Keep the items ordered with increasing constraints compliance. */
3a2b436a
JK
1756enum pc_bounds_kind
1757{
e385593e 1758 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
3a2b436a
JK
1759 PC_BOUNDS_NOT_PRESENT,
1760
e385593e
JK
1761 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1762 were present but they do not form a valid range of PC addresses. */
1763 PC_BOUNDS_INVALID,
1764
3a2b436a
JK
1765 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1766 PC_BOUNDS_RANGES,
1767
1768 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1769 PC_BOUNDS_HIGH_LOW,
1770};
1771
1772static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1773 CORE_ADDR *, CORE_ADDR *,
1774 struct dwarf2_cu *,
1775 struct partial_symtab *);
c906108c 1776
fae299cd
DC
1777static void get_scope_pc_bounds (struct die_info *,
1778 CORE_ADDR *, CORE_ADDR *,
1779 struct dwarf2_cu *);
1780
801e3a5b
JB
1781static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1782 CORE_ADDR, struct dwarf2_cu *);
1783
a14ed312 1784static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1785 struct dwarf2_cu *);
c906108c 1786
a14ed312 1787static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1788 struct type *, struct dwarf2_cu *);
c906108c 1789
a14ed312 1790static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1791 struct die_info *, struct type *,
e7c27a73 1792 struct dwarf2_cu *);
c906108c 1793
a14ed312 1794static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1795 struct type *,
1796 struct dwarf2_cu *);
c906108c 1797
134d01f1 1798static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1799
e7c27a73 1800static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1801
e7c27a73 1802static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1803
5d7cb8df
JK
1804static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1805
22cee43f
PMR
1806static struct using_direct **using_directives (enum language);
1807
27aa8d6a
SW
1808static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1809
74921315
KS
1810static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1811
f55ee35c
JK
1812static struct type *read_module_type (struct die_info *die,
1813 struct dwarf2_cu *cu);
1814
38d518c9 1815static const char *namespace_name (struct die_info *die,
e142c38c 1816 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1817
134d01f1 1818static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1819
e7c27a73 1820static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1821
6e70227d 1822static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1823 struct dwarf2_cu *);
1824
bf6af496 1825static struct die_info *read_die_and_siblings_1
d521ce57 1826 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1827 struct die_info *);
639d11d3 1828
dee91e82 1829static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1830 const gdb_byte *info_ptr,
1831 const gdb_byte **new_info_ptr,
639d11d3
DC
1832 struct die_info *parent);
1833
d521ce57
TT
1834static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1835 struct die_info **, const gdb_byte *,
1836 int *, int);
3019eac3 1837
d521ce57
TT
1838static const gdb_byte *read_full_die (const struct die_reader_specs *,
1839 struct die_info **, const gdb_byte *,
1840 int *);
93311388 1841
e7c27a73 1842static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1843
15d034d0
TT
1844static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1845 struct obstack *);
71c25dea 1846
15d034d0 1847static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1848
15d034d0 1849static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1850 struct die_info *die,
1851 struct dwarf2_cu *cu);
1852
ca69b9e6
DE
1853static const char *dwarf2_physname (const char *name, struct die_info *die,
1854 struct dwarf2_cu *cu);
1855
e142c38c 1856static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1857 struct dwarf2_cu **);
9219021c 1858
f39c6ffd 1859static const char *dwarf_tag_name (unsigned int);
c906108c 1860
f39c6ffd 1861static const char *dwarf_attr_name (unsigned int);
c906108c 1862
f39c6ffd 1863static const char *dwarf_form_name (unsigned int);
c906108c 1864
a121b7c1 1865static const char *dwarf_bool_name (unsigned int);
c906108c 1866
f39c6ffd 1867static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1868
f9aca02d 1869static struct die_info *sibling_die (struct die_info *);
c906108c 1870
d97bc12b
DE
1871static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1872
1873static void dump_die_for_error (struct die_info *);
1874
1875static void dump_die_1 (struct ui_file *, int level, int max_level,
1876 struct die_info *);
c906108c 1877
d97bc12b 1878/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1879
51545339 1880static void store_in_ref_table (struct die_info *,
10b3939b 1881 struct dwarf2_cu *);
c906108c 1882
ff39bb5e 1883static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1884
ff39bb5e 1885static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1886
348e048f 1887static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1888 const struct attribute *,
348e048f
DE
1889 struct dwarf2_cu **);
1890
10b3939b 1891static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1892 const struct attribute *,
f2f0e013 1893 struct dwarf2_cu **);
c906108c 1894
348e048f 1895static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1896 const struct attribute *,
348e048f
DE
1897 struct dwarf2_cu **);
1898
ac9ec31b
DE
1899static struct type *get_signatured_type (struct die_info *, ULONGEST,
1900 struct dwarf2_cu *);
1901
1902static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1903 const struct attribute *,
ac9ec31b
DE
1904 struct dwarf2_cu *);
1905
e5fe5e75 1906static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1907
52dc124a 1908static void read_signatured_type (struct signatured_type *);
348e048f 1909
63e43d3a
PMR
1910static int attr_to_dynamic_prop (const struct attribute *attr,
1911 struct die_info *die, struct dwarf2_cu *cu,
1912 struct dynamic_prop *prop);
1913
c906108c
SS
1914/* memory allocation interface */
1915
7b5a2f43 1916static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1917
b60c80d6 1918static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1919
43f3e411 1920static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1921
6e5a29e1 1922static int attr_form_is_block (const struct attribute *);
8e19ed76 1923
6e5a29e1 1924static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1925
6e5a29e1 1926static int attr_form_is_constant (const struct attribute *);
3690dd37 1927
6e5a29e1 1928static int attr_form_is_ref (const struct attribute *);
7771576e 1929
8cf6f0b1
TT
1930static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1931 struct dwarf2_loclist_baton *baton,
ff39bb5e 1932 const struct attribute *attr);
8cf6f0b1 1933
ff39bb5e 1934static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1935 struct symbol *sym,
f1e6e072
TT
1936 struct dwarf2_cu *cu,
1937 int is_block);
4c2df51b 1938
d521ce57
TT
1939static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1940 const gdb_byte *info_ptr,
1941 struct abbrev_info *abbrev);
4bb7a0a7 1942
72bf9492
DJ
1943static void free_stack_comp_unit (void *);
1944
72bf9492
DJ
1945static hashval_t partial_die_hash (const void *item);
1946
1947static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1948
ae038cb0 1949static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
9c541725 1950 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1951
9816fde3 1952static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1953 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1954
1955static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1956 struct die_info *comp_unit_die,
1957 enum language pretend_language);
93311388 1958
68dc6402 1959static void free_heap_comp_unit (void *);
ae038cb0
DJ
1960
1961static void free_cached_comp_units (void *);
1962
1963static void age_cached_comp_units (void);
1964
dee91e82 1965static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1966
f792889a
DJ
1967static struct type *set_die_type (struct die_info *, struct type *,
1968 struct dwarf2_cu *);
1c379e20 1969
ae038cb0
DJ
1970static void create_all_comp_units (struct objfile *);
1971
0e50663e 1972static int create_all_type_units (struct objfile *);
1fd400ff 1973
95554aad
TT
1974static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1975 enum language);
10b3939b 1976
95554aad
TT
1977static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1978 enum language);
10b3939b 1979
f4dc4d17
DE
1980static void process_full_type_unit (struct dwarf2_per_cu_data *,
1981 enum language);
1982
10b3939b
DJ
1983static void dwarf2_add_dependence (struct dwarf2_cu *,
1984 struct dwarf2_per_cu_data *);
1985
ae038cb0
DJ
1986static void dwarf2_mark (struct dwarf2_cu *);
1987
1988static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1989
b64f50a1 1990static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1991 struct dwarf2_per_cu_data *);
673bfd45 1992
f792889a 1993static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1994
9291a0cd
TT
1995static void dwarf2_release_queue (void *dummy);
1996
95554aad
TT
1997static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1998 enum language pretend_language);
1999
a0f42c21 2000static void process_queue (void);
9291a0cd 2001
d721ba37
PA
2002/* The return type of find_file_and_directory. Note, the enclosed
2003 string pointers are only valid while this object is valid. */
2004
2005struct file_and_directory
2006{
2007 /* The filename. This is never NULL. */
2008 const char *name;
2009
2010 /* The compilation directory. NULL if not known. If we needed to
2011 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2012 points directly to the DW_AT_comp_dir string attribute owned by
2013 the obstack that owns the DIE. */
2014 const char *comp_dir;
2015
2016 /* If we needed to build a new string for comp_dir, this is what
2017 owns the storage. */
2018 std::string comp_dir_storage;
2019};
2020
2021static file_and_directory find_file_and_directory (struct die_info *die,
2022 struct dwarf2_cu *cu);
9291a0cd
TT
2023
2024static char *file_full_name (int file, struct line_header *lh,
2025 const char *comp_dir);
2026
43988095
JK
2027/* Expected enum dwarf_unit_type for read_comp_unit_head. */
2028enum class rcuh_kind { COMPILE, TYPE };
2029
d521ce57 2030static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
2031 (struct comp_unit_head *header,
2032 struct dwarf2_section_info *section,
d521ce57 2033 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
43988095 2034 rcuh_kind section_kind);
36586728 2035
fd820528 2036static void init_cutu_and_read_dies
f4dc4d17
DE
2037 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2038 int use_existing_cu, int keep,
3019eac3
DE
2039 die_reader_func_ftype *die_reader_func, void *data);
2040
dee91e82
DE
2041static void init_cutu_and_read_dies_simple
2042 (struct dwarf2_per_cu_data *this_cu,
2043 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 2044
673bfd45 2045static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 2046
3019eac3
DE
2047static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2048
57d63ce2
DE
2049static struct dwo_unit *lookup_dwo_unit_in_dwp
2050 (struct dwp_file *dwp_file, const char *comp_dir,
2051 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
2052
2053static struct dwp_file *get_dwp_file (void);
2054
3019eac3 2055static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 2056 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
2057
2058static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 2059 (struct signatured_type *, const char *, const char *);
3019eac3 2060
89e63ee4
DE
2061static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2062
3019eac3
DE
2063static void free_dwo_file_cleanup (void *);
2064
95554aad
TT
2065static void process_cu_includes (void);
2066
1b80a9fa 2067static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
2068
2069static void free_line_header_voidp (void *arg);
4390d890
DE
2070\f
2071/* Various complaints about symbol reading that don't abort the process. */
2072
2073static void
2074dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2075{
2076 complaint (&symfile_complaints,
2077 _("statement list doesn't fit in .debug_line section"));
2078}
2079
2080static void
2081dwarf2_debug_line_missing_file_complaint (void)
2082{
2083 complaint (&symfile_complaints,
2084 _(".debug_line section has line data without a file"));
2085}
2086
2087static void
2088dwarf2_debug_line_missing_end_sequence_complaint (void)
2089{
2090 complaint (&symfile_complaints,
2091 _(".debug_line section has line "
2092 "program sequence without an end"));
2093}
2094
2095static void
2096dwarf2_complex_location_expr_complaint (void)
2097{
2098 complaint (&symfile_complaints, _("location expression too complex"));
2099}
2100
2101static void
2102dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2103 int arg3)
2104{
2105 complaint (&symfile_complaints,
2106 _("const value length mismatch for '%s', got %d, expected %d"),
2107 arg1, arg2, arg3);
2108}
2109
2110static void
2111dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2112{
2113 complaint (&symfile_complaints,
2114 _("debug info runs off end of %s section"
2115 " [in module %s]"),
a32a8923
DE
2116 get_section_name (section),
2117 get_section_file_name (section));
4390d890 2118}
1b80a9fa 2119
4390d890
DE
2120static void
2121dwarf2_macro_malformed_definition_complaint (const char *arg1)
2122{
2123 complaint (&symfile_complaints,
2124 _("macro debug info contains a "
2125 "malformed macro definition:\n`%s'"),
2126 arg1);
2127}
2128
2129static void
2130dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2131{
2132 complaint (&symfile_complaints,
2133 _("invalid attribute class or form for '%s' in '%s'"),
2134 arg1, arg2);
2135}
527f3840
JK
2136
2137/* Hash function for line_header_hash. */
2138
2139static hashval_t
2140line_header_hash (const struct line_header *ofs)
2141{
9c541725 2142 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
527f3840
JK
2143}
2144
2145/* Hash function for htab_create_alloc_ex for line_header_hash. */
2146
2147static hashval_t
2148line_header_hash_voidp (const void *item)
2149{
9a3c8263 2150 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
2151
2152 return line_header_hash (ofs);
2153}
2154
2155/* Equality function for line_header_hash. */
2156
2157static int
2158line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2159{
9a3c8263
SM
2160 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2161 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840 2162
9c541725 2163 return (ofs_lhs->sect_off == ofs_rhs->sect_off
527f3840
JK
2164 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2165}
2166
4390d890 2167\f
9291a0cd
TT
2168#if WORDS_BIGENDIAN
2169
2170/* Convert VALUE between big- and little-endian. */
2171static offset_type
2172byte_swap (offset_type value)
2173{
2174 offset_type result;
2175
2176 result = (value & 0xff) << 24;
2177 result |= (value & 0xff00) << 8;
2178 result |= (value & 0xff0000) >> 8;
2179 result |= (value & 0xff000000) >> 24;
2180 return result;
2181}
2182
2183#define MAYBE_SWAP(V) byte_swap (V)
2184
2185#else
bc8f2430 2186#define MAYBE_SWAP(V) static_cast<offset_type> (V)
9291a0cd
TT
2187#endif /* WORDS_BIGENDIAN */
2188
31aa7e4e
JB
2189/* Read the given attribute value as an address, taking the attribute's
2190 form into account. */
2191
2192static CORE_ADDR
2193attr_value_as_address (struct attribute *attr)
2194{
2195 CORE_ADDR addr;
2196
2197 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2198 {
2199 /* Aside from a few clearly defined exceptions, attributes that
2200 contain an address must always be in DW_FORM_addr form.
2201 Unfortunately, some compilers happen to be violating this
2202 requirement by encoding addresses using other forms, such
2203 as DW_FORM_data4 for example. For those broken compilers,
2204 we try to do our best, without any guarantee of success,
2205 to interpret the address correctly. It would also be nice
2206 to generate a complaint, but that would require us to maintain
2207 a list of legitimate cases where a non-address form is allowed,
2208 as well as update callers to pass in at least the CU's DWARF
2209 version. This is more overhead than what we're willing to
2210 expand for a pretty rare case. */
2211 addr = DW_UNSND (attr);
2212 }
2213 else
2214 addr = DW_ADDR (attr);
2215
2216 return addr;
2217}
2218
9291a0cd
TT
2219/* The suffix for an index file. */
2220#define INDEX_SUFFIX ".gdb-index"
2221
330cdd98
PA
2222/* See declaration. */
2223
2224dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2225 const dwarf2_debug_sections *names)
2226 : objfile (objfile_)
2227{
2228 if (names == NULL)
2229 names = &dwarf2_elf_names;
2230
2231 bfd *obfd = objfile->obfd;
2232
2233 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2234 locate_sections (obfd, sec, *names);
2235}
2236
2237dwarf2_per_objfile::~dwarf2_per_objfile ()
2238{
2239 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2240 free_cached_comp_units ();
2241
2242 if (quick_file_names_table)
2243 htab_delete (quick_file_names_table);
2244
2245 if (line_header_hash)
2246 htab_delete (line_header_hash);
2247
2248 /* Everything else should be on the objfile obstack. */
2249}
2250
2251/* See declaration. */
2252
2253void
2254dwarf2_per_objfile::free_cached_comp_units ()
2255{
2256 dwarf2_per_cu_data *per_cu = read_in_chain;
2257 dwarf2_per_cu_data **last_chain = &read_in_chain;
2258 while (per_cu != NULL)
2259 {
2260 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2261
2262 free_heap_comp_unit (per_cu->cu);
2263 *last_chain = next_cu;
2264 per_cu = next_cu;
2265 }
2266}
2267
c906108c 2268/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2269 information and return true if we have enough to do something.
2270 NAMES points to the dwarf2 section names, or is NULL if the standard
2271 ELF names are used. */
c906108c
SS
2272
2273int
251d32d9
TG
2274dwarf2_has_info (struct objfile *objfile,
2275 const struct dwarf2_debug_sections *names)
c906108c 2276{
9a3c8263
SM
2277 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2278 objfile_data (objfile, dwarf2_objfile_data_key));
be391dca
TT
2279 if (!dwarf2_per_objfile)
2280 {
2281 /* Initialize per-objfile state. */
2282 struct dwarf2_per_objfile *data
8d749320 2283 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
9a619af0 2284
330cdd98
PA
2285 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2286 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
be391dca 2287 }
73869dc2 2288 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2289 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2290 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2291 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2292}
2293
2294/* Return the containing section of virtual section SECTION. */
2295
2296static struct dwarf2_section_info *
2297get_containing_section (const struct dwarf2_section_info *section)
2298{
2299 gdb_assert (section->is_virtual);
2300 return section->s.containing_section;
c906108c
SS
2301}
2302
a32a8923
DE
2303/* Return the bfd owner of SECTION. */
2304
2305static struct bfd *
2306get_section_bfd_owner (const struct dwarf2_section_info *section)
2307{
73869dc2
DE
2308 if (section->is_virtual)
2309 {
2310 section = get_containing_section (section);
2311 gdb_assert (!section->is_virtual);
2312 }
049412e3 2313 return section->s.section->owner;
a32a8923
DE
2314}
2315
2316/* Return the bfd section of SECTION.
2317 Returns NULL if the section is not present. */
2318
2319static asection *
2320get_section_bfd_section (const struct dwarf2_section_info *section)
2321{
73869dc2
DE
2322 if (section->is_virtual)
2323 {
2324 section = get_containing_section (section);
2325 gdb_assert (!section->is_virtual);
2326 }
049412e3 2327 return section->s.section;
a32a8923
DE
2328}
2329
2330/* Return the name of SECTION. */
2331
2332static const char *
2333get_section_name (const struct dwarf2_section_info *section)
2334{
2335 asection *sectp = get_section_bfd_section (section);
2336
2337 gdb_assert (sectp != NULL);
2338 return bfd_section_name (get_section_bfd_owner (section), sectp);
2339}
2340
2341/* Return the name of the file SECTION is in. */
2342
2343static const char *
2344get_section_file_name (const struct dwarf2_section_info *section)
2345{
2346 bfd *abfd = get_section_bfd_owner (section);
2347
2348 return bfd_get_filename (abfd);
2349}
2350
2351/* Return the id of SECTION.
2352 Returns 0 if SECTION doesn't exist. */
2353
2354static int
2355get_section_id (const struct dwarf2_section_info *section)
2356{
2357 asection *sectp = get_section_bfd_section (section);
2358
2359 if (sectp == NULL)
2360 return 0;
2361 return sectp->id;
2362}
2363
2364/* Return the flags of SECTION.
73869dc2 2365 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2366
2367static int
2368get_section_flags (const struct dwarf2_section_info *section)
2369{
2370 asection *sectp = get_section_bfd_section (section);
2371
2372 gdb_assert (sectp != NULL);
2373 return bfd_get_section_flags (sectp->owner, sectp);
2374}
2375
251d32d9
TG
2376/* When loading sections, we look either for uncompressed section or for
2377 compressed section names. */
233a11ab
CS
2378
2379static int
251d32d9
TG
2380section_is_p (const char *section_name,
2381 const struct dwarf2_section_names *names)
233a11ab 2382{
251d32d9
TG
2383 if (names->normal != NULL
2384 && strcmp (section_name, names->normal) == 0)
2385 return 1;
2386 if (names->compressed != NULL
2387 && strcmp (section_name, names->compressed) == 0)
2388 return 1;
2389 return 0;
233a11ab
CS
2390}
2391
330cdd98 2392/* See declaration. */
c906108c 2393
330cdd98
PA
2394void
2395dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2396 const dwarf2_debug_sections &names)
c906108c 2397{
dc7650b8 2398 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9 2399
dc7650b8
JK
2400 if ((aflag & SEC_HAS_CONTENTS) == 0)
2401 {
2402 }
330cdd98 2403 else if (section_is_p (sectp->name, &names.info))
c906108c 2404 {
330cdd98
PA
2405 this->info.s.section = sectp;
2406 this->info.size = bfd_get_section_size (sectp);
c906108c 2407 }
330cdd98 2408 else if (section_is_p (sectp->name, &names.abbrev))
c906108c 2409 {
330cdd98
PA
2410 this->abbrev.s.section = sectp;
2411 this->abbrev.size = bfd_get_section_size (sectp);
c906108c 2412 }
330cdd98 2413 else if (section_is_p (sectp->name, &names.line))
c906108c 2414 {
330cdd98
PA
2415 this->line.s.section = sectp;
2416 this->line.size = bfd_get_section_size (sectp);
c906108c 2417 }
330cdd98 2418 else if (section_is_p (sectp->name, &names.loc))
c906108c 2419 {
330cdd98
PA
2420 this->loc.s.section = sectp;
2421 this->loc.size = bfd_get_section_size (sectp);
c906108c 2422 }
330cdd98 2423 else if (section_is_p (sectp->name, &names.loclists))
43988095 2424 {
330cdd98
PA
2425 this->loclists.s.section = sectp;
2426 this->loclists.size = bfd_get_section_size (sectp);
43988095 2427 }
330cdd98 2428 else if (section_is_p (sectp->name, &names.macinfo))
c906108c 2429 {
330cdd98
PA
2430 this->macinfo.s.section = sectp;
2431 this->macinfo.size = bfd_get_section_size (sectp);
c906108c 2432 }
330cdd98 2433 else if (section_is_p (sectp->name, &names.macro))
cf2c3c16 2434 {
330cdd98
PA
2435 this->macro.s.section = sectp;
2436 this->macro.size = bfd_get_section_size (sectp);
cf2c3c16 2437 }
330cdd98 2438 else if (section_is_p (sectp->name, &names.str))
c906108c 2439 {
330cdd98
PA
2440 this->str.s.section = sectp;
2441 this->str.size = bfd_get_section_size (sectp);
c906108c 2442 }
330cdd98 2443 else if (section_is_p (sectp->name, &names.line_str))
43988095 2444 {
330cdd98
PA
2445 this->line_str.s.section = sectp;
2446 this->line_str.size = bfd_get_section_size (sectp);
43988095 2447 }
330cdd98 2448 else if (section_is_p (sectp->name, &names.addr))
3019eac3 2449 {
330cdd98
PA
2450 this->addr.s.section = sectp;
2451 this->addr.size = bfd_get_section_size (sectp);
3019eac3 2452 }
330cdd98 2453 else if (section_is_p (sectp->name, &names.frame))
b6af0555 2454 {
330cdd98
PA
2455 this->frame.s.section = sectp;
2456 this->frame.size = bfd_get_section_size (sectp);
b6af0555 2457 }
330cdd98 2458 else if (section_is_p (sectp->name, &names.eh_frame))
b6af0555 2459 {
330cdd98
PA
2460 this->eh_frame.s.section = sectp;
2461 this->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2462 }
330cdd98 2463 else if (section_is_p (sectp->name, &names.ranges))
af34e669 2464 {
330cdd98
PA
2465 this->ranges.s.section = sectp;
2466 this->ranges.size = bfd_get_section_size (sectp);
af34e669 2467 }
330cdd98 2468 else if (section_is_p (sectp->name, &names.rnglists))
43988095 2469 {
330cdd98
PA
2470 this->rnglists.s.section = sectp;
2471 this->rnglists.size = bfd_get_section_size (sectp);
43988095 2472 }
330cdd98 2473 else if (section_is_p (sectp->name, &names.types))
348e048f 2474 {
8b70b953
TT
2475 struct dwarf2_section_info type_section;
2476
2477 memset (&type_section, 0, sizeof (type_section));
049412e3 2478 type_section.s.section = sectp;
8b70b953
TT
2479 type_section.size = bfd_get_section_size (sectp);
2480
330cdd98 2481 VEC_safe_push (dwarf2_section_info_def, this->types,
8b70b953 2482 &type_section);
348e048f 2483 }
330cdd98 2484 else if (section_is_p (sectp->name, &names.gdb_index))
9291a0cd 2485 {
330cdd98
PA
2486 this->gdb_index.s.section = sectp;
2487 this->gdb_index.size = bfd_get_section_size (sectp);
9291a0cd 2488 }
dce234bc 2489
b4e1fd61 2490 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5 2491 && bfd_section_vma (abfd, sectp) == 0)
330cdd98 2492 this->has_section_at_zero = true;
c906108c
SS
2493}
2494
fceca515
DE
2495/* A helper function that decides whether a section is empty,
2496 or not present. */
9e0ac564
TT
2497
2498static int
19ac8c2e 2499dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2500{
73869dc2
DE
2501 if (section->is_virtual)
2502 return section->size == 0;
049412e3 2503 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2504}
2505
3019eac3
DE
2506/* Read the contents of the section INFO.
2507 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2508 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2509 of the DWO file.
dce234bc 2510 If the section is compressed, uncompress it before returning. */
c906108c 2511
dce234bc
PP
2512static void
2513dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2514{
a32a8923 2515 asection *sectp;
3019eac3 2516 bfd *abfd;
dce234bc 2517 gdb_byte *buf, *retbuf;
c906108c 2518
be391dca
TT
2519 if (info->readin)
2520 return;
dce234bc 2521 info->buffer = NULL;
be391dca 2522 info->readin = 1;
188dd5d6 2523
9e0ac564 2524 if (dwarf2_section_empty_p (info))
dce234bc 2525 return;
c906108c 2526
a32a8923 2527 sectp = get_section_bfd_section (info);
3019eac3 2528
73869dc2
DE
2529 /* If this is a virtual section we need to read in the real one first. */
2530 if (info->is_virtual)
2531 {
2532 struct dwarf2_section_info *containing_section =
2533 get_containing_section (info);
2534
2535 gdb_assert (sectp != NULL);
2536 if ((sectp->flags & SEC_RELOC) != 0)
2537 {
2538 error (_("Dwarf Error: DWP format V2 with relocations is not"
2539 " supported in section %s [in module %s]"),
2540 get_section_name (info), get_section_file_name (info));
2541 }
2542 dwarf2_read_section (objfile, containing_section);
2543 /* Other code should have already caught virtual sections that don't
2544 fit. */
2545 gdb_assert (info->virtual_offset + info->size
2546 <= containing_section->size);
2547 /* If the real section is empty or there was a problem reading the
2548 section we shouldn't get here. */
2549 gdb_assert (containing_section->buffer != NULL);
2550 info->buffer = containing_section->buffer + info->virtual_offset;
2551 return;
2552 }
2553
4bf44c1c
TT
2554 /* If the section has relocations, we must read it ourselves.
2555 Otherwise we attach it to the BFD. */
2556 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2557 {
d521ce57 2558 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2559 return;
dce234bc 2560 }
dce234bc 2561
224c3ddb 2562 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2563 info->buffer = buf;
dce234bc
PP
2564
2565 /* When debugging .o files, we may need to apply relocations; see
2566 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2567 We never compress sections in .o files, so we only need to
2568 try this when the section is not compressed. */
ac8035ab 2569 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2570 if (retbuf != NULL)
2571 {
2572 info->buffer = retbuf;
2573 return;
2574 }
2575
a32a8923
DE
2576 abfd = get_section_bfd_owner (info);
2577 gdb_assert (abfd != NULL);
2578
dce234bc
PP
2579 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2580 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2581 {
2582 error (_("Dwarf Error: Can't read DWARF data"
2583 " in section %s [in module %s]"),
2584 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2585 }
dce234bc
PP
2586}
2587
9e0ac564
TT
2588/* A helper function that returns the size of a section in a safe way.
2589 If you are positive that the section has been read before using the
2590 size, then it is safe to refer to the dwarf2_section_info object's
2591 "size" field directly. In other cases, you must call this
2592 function, because for compressed sections the size field is not set
2593 correctly until the section has been read. */
2594
2595static bfd_size_type
2596dwarf2_section_size (struct objfile *objfile,
2597 struct dwarf2_section_info *info)
2598{
2599 if (!info->readin)
2600 dwarf2_read_section (objfile, info);
2601 return info->size;
2602}
2603
dce234bc 2604/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2605 SECTION_NAME. */
af34e669 2606
dce234bc 2607void
3017a003
TG
2608dwarf2_get_section_info (struct objfile *objfile,
2609 enum dwarf2_section_enum sect,
d521ce57 2610 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2611 bfd_size_type *sizep)
2612{
2613 struct dwarf2_per_objfile *data
9a3c8263
SM
2614 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2615 dwarf2_objfile_data_key);
dce234bc 2616 struct dwarf2_section_info *info;
a3b2a86b
TT
2617
2618 /* We may see an objfile without any DWARF, in which case we just
2619 return nothing. */
2620 if (data == NULL)
2621 {
2622 *sectp = NULL;
2623 *bufp = NULL;
2624 *sizep = 0;
2625 return;
2626 }
3017a003
TG
2627 switch (sect)
2628 {
2629 case DWARF2_DEBUG_FRAME:
2630 info = &data->frame;
2631 break;
2632 case DWARF2_EH_FRAME:
2633 info = &data->eh_frame;
2634 break;
2635 default:
2636 gdb_assert_not_reached ("unexpected section");
2637 }
dce234bc 2638
9e0ac564 2639 dwarf2_read_section (objfile, info);
dce234bc 2640
a32a8923 2641 *sectp = get_section_bfd_section (info);
dce234bc
PP
2642 *bufp = info->buffer;
2643 *sizep = info->size;
2644}
2645
36586728
TT
2646/* A helper function to find the sections for a .dwz file. */
2647
2648static void
2649locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2650{
9a3c8263 2651 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2652
2653 /* Note that we only support the standard ELF names, because .dwz
2654 is ELF-only (at the time of writing). */
2655 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2656 {
049412e3 2657 dwz_file->abbrev.s.section = sectp;
36586728
TT
2658 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2659 }
2660 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2661 {
049412e3 2662 dwz_file->info.s.section = sectp;
36586728
TT
2663 dwz_file->info.size = bfd_get_section_size (sectp);
2664 }
2665 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2666 {
049412e3 2667 dwz_file->str.s.section = sectp;
36586728
TT
2668 dwz_file->str.size = bfd_get_section_size (sectp);
2669 }
2670 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2671 {
049412e3 2672 dwz_file->line.s.section = sectp;
36586728
TT
2673 dwz_file->line.size = bfd_get_section_size (sectp);
2674 }
2675 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2676 {
049412e3 2677 dwz_file->macro.s.section = sectp;
36586728
TT
2678 dwz_file->macro.size = bfd_get_section_size (sectp);
2679 }
2ec9a5e0
TT
2680 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2681 {
049412e3 2682 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2683 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2684 }
36586728
TT
2685}
2686
4db1a1dc
TT
2687/* Open the separate '.dwz' debug file, if needed. Return NULL if
2688 there is no .gnu_debugaltlink section in the file. Error if there
2689 is such a section but the file cannot be found. */
36586728
TT
2690
2691static struct dwz_file *
2692dwarf2_get_dwz_file (void)
2693{
4db1a1dc 2694 char *data;
36586728
TT
2695 struct cleanup *cleanup;
2696 const char *filename;
2697 struct dwz_file *result;
acd13123 2698 bfd_size_type buildid_len_arg;
dc294be5
TT
2699 size_t buildid_len;
2700 bfd_byte *buildid;
36586728
TT
2701
2702 if (dwarf2_per_objfile->dwz_file != NULL)
2703 return dwarf2_per_objfile->dwz_file;
2704
4db1a1dc
TT
2705 bfd_set_error (bfd_error_no_error);
2706 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2707 &buildid_len_arg, &buildid);
4db1a1dc
TT
2708 if (data == NULL)
2709 {
2710 if (bfd_get_error () == bfd_error_no_error)
2711 return NULL;
2712 error (_("could not read '.gnu_debugaltlink' section: %s"),
2713 bfd_errmsg (bfd_get_error ()));
2714 }
36586728 2715 cleanup = make_cleanup (xfree, data);
dc294be5 2716 make_cleanup (xfree, buildid);
36586728 2717
acd13123
TT
2718 buildid_len = (size_t) buildid_len_arg;
2719
f9d83a0b 2720 filename = (const char *) data;
d721ba37
PA
2721
2722 std::string abs_storage;
36586728
TT
2723 if (!IS_ABSOLUTE_PATH (filename))
2724 {
14278e1f
TT
2725 gdb::unique_xmalloc_ptr<char> abs
2726 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728 2727
14278e1f 2728 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
d721ba37 2729 filename = abs_storage.c_str ();
36586728
TT
2730 }
2731
dc294be5
TT
2732 /* First try the file name given in the section. If that doesn't
2733 work, try to use the build-id instead. */
192b62ce 2734 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
dc294be5 2735 if (dwz_bfd != NULL)
36586728 2736 {
192b62ce
TT
2737 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2738 dwz_bfd.release ();
36586728
TT
2739 }
2740
dc294be5
TT
2741 if (dwz_bfd == NULL)
2742 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2743
2744 if (dwz_bfd == NULL)
2745 error (_("could not find '.gnu_debugaltlink' file for %s"),
2746 objfile_name (dwarf2_per_objfile->objfile));
2747
36586728
TT
2748 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2749 struct dwz_file);
192b62ce 2750 result->dwz_bfd = dwz_bfd.release ();
36586728 2751
192b62ce 2752 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
36586728
TT
2753
2754 do_cleanups (cleanup);
2755
192b62ce 2756 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
8d2cc612 2757 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2758 return result;
2759}
9291a0cd 2760\f
7b9f3c50
DE
2761/* DWARF quick_symbols_functions support. */
2762
2763/* TUs can share .debug_line entries, and there can be a lot more TUs than
2764 unique line tables, so we maintain a separate table of all .debug_line
2765 derived entries to support the sharing.
2766 All the quick functions need is the list of file names. We discard the
2767 line_header when we're done and don't need to record it here. */
2768struct quick_file_names
2769{
094b34ac
DE
2770 /* The data used to construct the hash key. */
2771 struct stmt_list_hash hash;
7b9f3c50
DE
2772
2773 /* The number of entries in file_names, real_names. */
2774 unsigned int num_file_names;
2775
2776 /* The file names from the line table, after being run through
2777 file_full_name. */
2778 const char **file_names;
2779
2780 /* The file names from the line table after being run through
2781 gdb_realpath. These are computed lazily. */
2782 const char **real_names;
2783};
2784
2785/* When using the index (and thus not using psymtabs), each CU has an
2786 object of this type. This is used to hold information needed by
2787 the various "quick" methods. */
2788struct dwarf2_per_cu_quick_data
2789{
2790 /* The file table. This can be NULL if there was no file table
2791 or it's currently not read in.
2792 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2793 struct quick_file_names *file_names;
2794
2795 /* The corresponding symbol table. This is NULL if symbols for this
2796 CU have not yet been read. */
43f3e411 2797 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2798
2799 /* A temporary mark bit used when iterating over all CUs in
2800 expand_symtabs_matching. */
2801 unsigned int mark : 1;
2802
2803 /* True if we've tried to read the file table and found there isn't one.
2804 There will be no point in trying to read it again next time. */
2805 unsigned int no_file_data : 1;
2806};
2807
094b34ac
DE
2808/* Utility hash function for a stmt_list_hash. */
2809
2810static hashval_t
2811hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2812{
2813 hashval_t v = 0;
2814
2815 if (stmt_list_hash->dwo_unit != NULL)
2816 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
9c541725 2817 v += to_underlying (stmt_list_hash->line_sect_off);
094b34ac
DE
2818 return v;
2819}
2820
2821/* Utility equality function for a stmt_list_hash. */
2822
2823static int
2824eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2825 const struct stmt_list_hash *rhs)
2826{
2827 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2828 return 0;
2829 if (lhs->dwo_unit != NULL
2830 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2831 return 0;
2832
9c541725 2833 return lhs->line_sect_off == rhs->line_sect_off;
094b34ac
DE
2834}
2835
7b9f3c50
DE
2836/* Hash function for a quick_file_names. */
2837
2838static hashval_t
2839hash_file_name_entry (const void *e)
2840{
9a3c8263
SM
2841 const struct quick_file_names *file_data
2842 = (const struct quick_file_names *) e;
7b9f3c50 2843
094b34ac 2844 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2845}
2846
2847/* Equality function for a quick_file_names. */
2848
2849static int
2850eq_file_name_entry (const void *a, const void *b)
2851{
9a3c8263
SM
2852 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2853 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2854
094b34ac 2855 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2856}
2857
2858/* Delete function for a quick_file_names. */
2859
2860static void
2861delete_file_name_entry (void *e)
2862{
9a3c8263 2863 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2864 int i;
2865
2866 for (i = 0; i < file_data->num_file_names; ++i)
2867 {
2868 xfree ((void*) file_data->file_names[i]);
2869 if (file_data->real_names)
2870 xfree ((void*) file_data->real_names[i]);
2871 }
2872
2873 /* The space for the struct itself lives on objfile_obstack,
2874 so we don't free it here. */
2875}
2876
2877/* Create a quick_file_names hash table. */
2878
2879static htab_t
2880create_quick_file_names_table (unsigned int nr_initial_entries)
2881{
2882 return htab_create_alloc (nr_initial_entries,
2883 hash_file_name_entry, eq_file_name_entry,
2884 delete_file_name_entry, xcalloc, xfree);
2885}
9291a0cd 2886
918dd910
JK
2887/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2888 have to be created afterwards. You should call age_cached_comp_units after
2889 processing PER_CU->CU. dw2_setup must have been already called. */
2890
2891static void
2892load_cu (struct dwarf2_per_cu_data *per_cu)
2893{
3019eac3 2894 if (per_cu->is_debug_types)
e5fe5e75 2895 load_full_type_unit (per_cu);
918dd910 2896 else
95554aad 2897 load_full_comp_unit (per_cu, language_minimal);
918dd910 2898
cc12ce38
DE
2899 if (per_cu->cu == NULL)
2900 return; /* Dummy CU. */
2dc860c0
DE
2901
2902 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2903}
2904
a0f42c21 2905/* Read in the symbols for PER_CU. */
2fdf6df6 2906
9291a0cd 2907static void
a0f42c21 2908dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2909{
2910 struct cleanup *back_to;
2911
f4dc4d17
DE
2912 /* Skip type_unit_groups, reading the type units they contain
2913 is handled elsewhere. */
2914 if (IS_TYPE_UNIT_GROUP (per_cu))
2915 return;
2916
9291a0cd
TT
2917 back_to = make_cleanup (dwarf2_release_queue, NULL);
2918
95554aad 2919 if (dwarf2_per_objfile->using_index
43f3e411 2920 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2921 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2922 {
2923 queue_comp_unit (per_cu, language_minimal);
2924 load_cu (per_cu);
89e63ee4
DE
2925
2926 /* If we just loaded a CU from a DWO, and we're working with an index
2927 that may badly handle TUs, load all the TUs in that DWO as well.
2928 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2929 if (!per_cu->is_debug_types
cc12ce38 2930 && per_cu->cu != NULL
89e63ee4
DE
2931 && per_cu->cu->dwo_unit != NULL
2932 && dwarf2_per_objfile->index_table != NULL
2933 && dwarf2_per_objfile->index_table->version <= 7
2934 /* DWP files aren't supported yet. */
2935 && get_dwp_file () == NULL)
2936 queue_and_load_all_dwo_tus (per_cu);
95554aad 2937 }
9291a0cd 2938
a0f42c21 2939 process_queue ();
9291a0cd
TT
2940
2941 /* Age the cache, releasing compilation units that have not
2942 been used recently. */
2943 age_cached_comp_units ();
2944
2945 do_cleanups (back_to);
2946}
2947
2948/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2949 the objfile from which this CU came. Returns the resulting symbol
2950 table. */
2fdf6df6 2951
43f3e411 2952static struct compunit_symtab *
a0f42c21 2953dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2954{
95554aad 2955 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2956 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2957 {
2958 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
c83dd867 2959 scoped_restore decrementer = increment_reading_symtab ();
a0f42c21 2960 dw2_do_instantiate_symtab (per_cu);
95554aad 2961 process_cu_includes ();
9291a0cd
TT
2962 do_cleanups (back_to);
2963 }
f194fefb 2964
43f3e411 2965 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2966}
2967
8832e7e3 2968/* Return the CU/TU given its index.
f4dc4d17
DE
2969
2970 This is intended for loops like:
2971
2972 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2973 + dwarf2_per_objfile->n_type_units); ++i)
2974 {
8832e7e3 2975 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2976
2977 ...;
2978 }
2979*/
2fdf6df6 2980
1fd400ff 2981static struct dwarf2_per_cu_data *
8832e7e3 2982dw2_get_cutu (int index)
1fd400ff
TT
2983{
2984 if (index >= dwarf2_per_objfile->n_comp_units)
2985 {
f4dc4d17 2986 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2987 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2988 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2989 }
2990
2991 return dwarf2_per_objfile->all_comp_units[index];
2992}
2993
8832e7e3
DE
2994/* Return the CU given its index.
2995 This differs from dw2_get_cutu in that it's for when you know INDEX
2996 refers to a CU. */
f4dc4d17
DE
2997
2998static struct dwarf2_per_cu_data *
8832e7e3 2999dw2_get_cu (int index)
f4dc4d17 3000{
8832e7e3 3001 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 3002
1fd400ff
TT
3003 return dwarf2_per_objfile->all_comp_units[index];
3004}
3005
2ec9a5e0
TT
3006/* A helper for create_cus_from_index that handles a given list of
3007 CUs. */
2fdf6df6 3008
74a0d9f6 3009static void
2ec9a5e0
TT
3010create_cus_from_index_list (struct objfile *objfile,
3011 const gdb_byte *cu_list, offset_type n_elements,
3012 struct dwarf2_section_info *section,
3013 int is_dwz,
3014 int base_offset)
9291a0cd
TT
3015{
3016 offset_type i;
9291a0cd 3017
2ec9a5e0 3018 for (i = 0; i < n_elements; i += 2)
9291a0cd 3019 {
74a0d9f6 3020 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
3021
3022 sect_offset sect_off
3023 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3024 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
3025 cu_list += 2 * 8;
3026
9c541725
PA
3027 dwarf2_per_cu_data *the_cu
3028 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3029 struct dwarf2_per_cu_data);
3030 the_cu->sect_off = sect_off;
9291a0cd
TT
3031 the_cu->length = length;
3032 the_cu->objfile = objfile;
8a0459fd 3033 the_cu->section = section;
9291a0cd
TT
3034 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3035 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
3036 the_cu->is_dwz = is_dwz;
3037 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 3038 }
9291a0cd
TT
3039}
3040
2ec9a5e0 3041/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 3042 the CU objects for this objfile. */
2ec9a5e0 3043
74a0d9f6 3044static void
2ec9a5e0
TT
3045create_cus_from_index (struct objfile *objfile,
3046 const gdb_byte *cu_list, offset_type cu_list_elements,
3047 const gdb_byte *dwz_list, offset_type dwz_elements)
3048{
3049 struct dwz_file *dwz;
3050
3051 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
8d749320
SM
3052 dwarf2_per_objfile->all_comp_units =
3053 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3054 dwarf2_per_objfile->n_comp_units);
2ec9a5e0 3055
74a0d9f6
JK
3056 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3057 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
3058
3059 if (dwz_elements == 0)
74a0d9f6 3060 return;
2ec9a5e0
TT
3061
3062 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
3063 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3064 cu_list_elements / 2);
2ec9a5e0
TT
3065}
3066
1fd400ff 3067/* Create the signatured type hash table from the index. */
673bfd45 3068
74a0d9f6 3069static void
673bfd45 3070create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 3071 struct dwarf2_section_info *section,
673bfd45
DE
3072 const gdb_byte *bytes,
3073 offset_type elements)
1fd400ff
TT
3074{
3075 offset_type i;
673bfd45 3076 htab_t sig_types_hash;
1fd400ff 3077
6aa5f3a6
DE
3078 dwarf2_per_objfile->n_type_units
3079 = dwarf2_per_objfile->n_allocated_type_units
3080 = elements / 3;
8d749320
SM
3081 dwarf2_per_objfile->all_type_units =
3082 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
1fd400ff 3083
673bfd45 3084 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
3085
3086 for (i = 0; i < elements; i += 3)
3087 {
52dc124a 3088 struct signatured_type *sig_type;
9c541725 3089 ULONGEST signature;
1fd400ff 3090 void **slot;
9c541725 3091 cu_offset type_offset_in_tu;
1fd400ff 3092
74a0d9f6 3093 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
3094 sect_offset sect_off
3095 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3096 type_offset_in_tu
3097 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3098 BFD_ENDIAN_LITTLE);
1fd400ff
TT
3099 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3100 bytes += 3 * 8;
3101
52dc124a 3102 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 3103 struct signatured_type);
52dc124a 3104 sig_type->signature = signature;
9c541725 3105 sig_type->type_offset_in_tu = type_offset_in_tu;
3019eac3 3106 sig_type->per_cu.is_debug_types = 1;
8a0459fd 3107 sig_type->per_cu.section = section;
9c541725 3108 sig_type->per_cu.sect_off = sect_off;
52dc124a
DE
3109 sig_type->per_cu.objfile = objfile;
3110 sig_type->per_cu.v.quick
1fd400ff
TT
3111 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3112 struct dwarf2_per_cu_quick_data);
3113
52dc124a
DE
3114 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3115 *slot = sig_type;
1fd400ff 3116
b4dd5633 3117 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
3118 }
3119
673bfd45 3120 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
3121}
3122
9291a0cd
TT
3123/* Read the address map data from the mapped index, and use it to
3124 populate the objfile's psymtabs_addrmap. */
2fdf6df6 3125
9291a0cd
TT
3126static void
3127create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3128{
3e29f34a 3129 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd 3130 const gdb_byte *iter, *end;
9291a0cd 3131 struct addrmap *mutable_map;
9291a0cd
TT
3132 CORE_ADDR baseaddr;
3133
8268c778
PA
3134 auto_obstack temp_obstack;
3135
9291a0cd
TT
3136 mutable_map = addrmap_create_mutable (&temp_obstack);
3137
3138 iter = index->address_table;
3139 end = iter + index->address_table_size;
3140
3141 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3142
3143 while (iter < end)
3144 {
3145 ULONGEST hi, lo, cu_index;
3146 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3147 iter += 8;
3148 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3149 iter += 8;
3150 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3151 iter += 4;
f652bce2 3152
24a55014 3153 if (lo > hi)
f652bce2 3154 {
24a55014
DE
3155 complaint (&symfile_complaints,
3156 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 3157 hex_string (lo), hex_string (hi));
24a55014 3158 continue;
f652bce2 3159 }
24a55014
DE
3160
3161 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
3162 {
3163 complaint (&symfile_complaints,
3164 _(".gdb_index address table has invalid CU number %u"),
3165 (unsigned) cu_index);
24a55014 3166 continue;
f652bce2 3167 }
24a55014 3168
3e29f34a
MR
3169 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3170 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3171 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
3172 }
3173
3174 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3175 &objfile->objfile_obstack);
9291a0cd
TT
3176}
3177
59d7bcaf
JK
3178/* The hash function for strings in the mapped index. This is the same as
3179 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3180 implementation. This is necessary because the hash function is tied to the
3181 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
3182 SYMBOL_HASH_NEXT.
3183
3184 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 3185
9291a0cd 3186static hashval_t
559a7a62 3187mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
3188{
3189 const unsigned char *str = (const unsigned char *) p;
3190 hashval_t r = 0;
3191 unsigned char c;
3192
3193 while ((c = *str++) != 0)
559a7a62
JK
3194 {
3195 if (index_version >= 5)
3196 c = tolower (c);
3197 r = r * 67 + c - 113;
3198 }
9291a0cd
TT
3199
3200 return r;
3201}
3202
3203/* Find a slot in the mapped index INDEX for the object named NAME.
3204 If NAME is found, set *VEC_OUT to point to the CU vector in the
3205 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 3206
9291a0cd
TT
3207static int
3208find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3209 offset_type **vec_out)
3210{
0cf03b49
JK
3211 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3212 offset_type hash;
9291a0cd 3213 offset_type slot, step;
559a7a62 3214 int (*cmp) (const char *, const char *);
9291a0cd 3215
0cf03b49 3216 if (current_language->la_language == language_cplus
45280282
IB
3217 || current_language->la_language == language_fortran
3218 || current_language->la_language == language_d)
0cf03b49
JK
3219 {
3220 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3221 not contain any. */
a8719064 3222
72998fb3 3223 if (strchr (name, '(') != NULL)
0cf03b49 3224 {
72998fb3 3225 char *without_params = cp_remove_params (name);
0cf03b49 3226
72998fb3
DE
3227 if (without_params != NULL)
3228 {
3229 make_cleanup (xfree, without_params);
3230 name = without_params;
3231 }
0cf03b49
JK
3232 }
3233 }
3234
559a7a62 3235 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3236 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3237 simulate our NAME being searched is also lowercased. */
3238 hash = mapped_index_string_hash ((index->version == 4
3239 && case_sensitivity == case_sensitive_off
3240 ? 5 : index->version),
3241 name);
3242
3876f04e
DE
3243 slot = hash & (index->symbol_table_slots - 1);
3244 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3245 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3246
3247 for (;;)
3248 {
3249 /* Convert a slot number to an offset into the table. */
3250 offset_type i = 2 * slot;
3251 const char *str;
3876f04e 3252 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3253 {
3254 do_cleanups (back_to);
3255 return 0;
3256 }
9291a0cd 3257
3876f04e 3258 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3259 if (!cmp (name, str))
9291a0cd
TT
3260 {
3261 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3262 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3263 do_cleanups (back_to);
9291a0cd
TT
3264 return 1;
3265 }
3266
3876f04e 3267 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3268 }
3269}
3270
2ec9a5e0
TT
3271/* A helper function that reads the .gdb_index from SECTION and fills
3272 in MAP. FILENAME is the name of the file containing the section;
3273 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3274 ok to use deprecated sections.
3275
3276 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3277 out parameters that are filled in with information about the CU and
3278 TU lists in the section.
3279
3280 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3281
9291a0cd 3282static int
2ec9a5e0
TT
3283read_index_from_section (struct objfile *objfile,
3284 const char *filename,
3285 int deprecated_ok,
3286 struct dwarf2_section_info *section,
3287 struct mapped_index *map,
3288 const gdb_byte **cu_list,
3289 offset_type *cu_list_elements,
3290 const gdb_byte **types_list,
3291 offset_type *types_list_elements)
9291a0cd 3292{
948f8e3d 3293 const gdb_byte *addr;
2ec9a5e0 3294 offset_type version;
b3b272e1 3295 offset_type *metadata;
1fd400ff 3296 int i;
9291a0cd 3297
2ec9a5e0 3298 if (dwarf2_section_empty_p (section))
9291a0cd 3299 return 0;
82430852
JK
3300
3301 /* Older elfutils strip versions could keep the section in the main
3302 executable while splitting it for the separate debug info file. */
a32a8923 3303 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3304 return 0;
3305
2ec9a5e0 3306 dwarf2_read_section (objfile, section);
9291a0cd 3307
2ec9a5e0 3308 addr = section->buffer;
9291a0cd 3309 /* Version check. */
1fd400ff 3310 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3311 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3312 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3313 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3314 indices. */
831adc1f 3315 if (version < 4)
481860b3
GB
3316 {
3317 static int warning_printed = 0;
3318 if (!warning_printed)
3319 {
3320 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3321 filename);
481860b3
GB
3322 warning_printed = 1;
3323 }
3324 return 0;
3325 }
3326 /* Index version 4 uses a different hash function than index version
3327 5 and later.
3328
3329 Versions earlier than 6 did not emit psymbols for inlined
3330 functions. Using these files will cause GDB not to be able to
3331 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3332 indices unless the user has done
3333 "set use-deprecated-index-sections on". */
2ec9a5e0 3334 if (version < 6 && !deprecated_ok)
481860b3
GB
3335 {
3336 static int warning_printed = 0;
3337 if (!warning_printed)
3338 {
e615022a
DE
3339 warning (_("\
3340Skipping deprecated .gdb_index section in %s.\n\
3341Do \"set use-deprecated-index-sections on\" before the file is read\n\
3342to use the section anyway."),
2ec9a5e0 3343 filename);
481860b3
GB
3344 warning_printed = 1;
3345 }
3346 return 0;
3347 }
796a7ff8 3348 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3349 of the TU (for symbols coming from TUs),
3350 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3351 Plus gold-generated indices can have duplicate entries for global symbols,
3352 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3353 These are just performance bugs, and we can't distinguish gdb-generated
3354 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3355
481860b3 3356 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3357 longer backward compatible. */
796a7ff8 3358 if (version > 8)
594e8718 3359 return 0;
9291a0cd 3360
559a7a62 3361 map->version = version;
2ec9a5e0 3362 map->total_size = section->size;
9291a0cd
TT
3363
3364 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3365
3366 i = 0;
2ec9a5e0
TT
3367 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3368 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3369 / 8);
1fd400ff
TT
3370 ++i;
3371
2ec9a5e0
TT
3372 *types_list = addr + MAYBE_SWAP (metadata[i]);
3373 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3374 - MAYBE_SWAP (metadata[i]))
3375 / 8);
987d643c 3376 ++i;
1fd400ff
TT
3377
3378 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3379 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3380 - MAYBE_SWAP (metadata[i]));
3381 ++i;
3382
3876f04e
DE
3383 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3384 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3385 - MAYBE_SWAP (metadata[i]))
3386 / (2 * sizeof (offset_type)));
1fd400ff 3387 ++i;
9291a0cd 3388
f9d83a0b 3389 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3390
2ec9a5e0
TT
3391 return 1;
3392}
3393
3394
3395/* Read the index file. If everything went ok, initialize the "quick"
3396 elements of all the CUs and return 1. Otherwise, return 0. */
3397
3398static int
3399dwarf2_read_index (struct objfile *objfile)
3400{
3401 struct mapped_index local_map, *map;
3402 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3403 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3404 struct dwz_file *dwz;
2ec9a5e0 3405
4262abfb 3406 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3407 use_deprecated_index_sections,
3408 &dwarf2_per_objfile->gdb_index, &local_map,
3409 &cu_list, &cu_list_elements,
3410 &types_list, &types_list_elements))
3411 return 0;
3412
0fefef59 3413 /* Don't use the index if it's empty. */
2ec9a5e0 3414 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3415 return 0;
3416
2ec9a5e0
TT
3417 /* If there is a .dwz file, read it so we can get its CU list as
3418 well. */
4db1a1dc
TT
3419 dwz = dwarf2_get_dwz_file ();
3420 if (dwz != NULL)
2ec9a5e0 3421 {
2ec9a5e0
TT
3422 struct mapped_index dwz_map;
3423 const gdb_byte *dwz_types_ignore;
3424 offset_type dwz_types_elements_ignore;
3425
3426 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3427 1,
3428 &dwz->gdb_index, &dwz_map,
3429 &dwz_list, &dwz_list_elements,
3430 &dwz_types_ignore,
3431 &dwz_types_elements_ignore))
3432 {
3433 warning (_("could not read '.gdb_index' section from %s; skipping"),
3434 bfd_get_filename (dwz->dwz_bfd));
3435 return 0;
3436 }
3437 }
3438
74a0d9f6
JK
3439 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3440 dwz_list_elements);
1fd400ff 3441
8b70b953
TT
3442 if (types_list_elements)
3443 {
3444 struct dwarf2_section_info *section;
3445
3446 /* We can only handle a single .debug_types when we have an
3447 index. */
3448 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3449 return 0;
3450
3451 section = VEC_index (dwarf2_section_info_def,
3452 dwarf2_per_objfile->types, 0);
3453
74a0d9f6
JK
3454 create_signatured_type_table_from_index (objfile, section, types_list,
3455 types_list_elements);
8b70b953 3456 }
9291a0cd 3457
2ec9a5e0
TT
3458 create_addrmap_from_index (objfile, &local_map);
3459
8d749320 3460 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
2ec9a5e0 3461 *map = local_map;
9291a0cd
TT
3462
3463 dwarf2_per_objfile->index_table = map;
3464 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3465 dwarf2_per_objfile->quick_file_names_table =
3466 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3467
3468 return 1;
3469}
3470
3471/* A helper for the "quick" functions which sets the global
3472 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3473
9291a0cd
TT
3474static void
3475dw2_setup (struct objfile *objfile)
3476{
9a3c8263
SM
3477 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3478 objfile_data (objfile, dwarf2_objfile_data_key));
9291a0cd
TT
3479 gdb_assert (dwarf2_per_objfile);
3480}
3481
dee91e82 3482/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3483
dee91e82
DE
3484static void
3485dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3486 const gdb_byte *info_ptr,
dee91e82
DE
3487 struct die_info *comp_unit_die,
3488 int has_children,
3489 void *data)
9291a0cd 3490{
dee91e82
DE
3491 struct dwarf2_cu *cu = reader->cu;
3492 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3493 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3494 struct dwarf2_per_cu_data *lh_cu;
9291a0cd 3495 struct attribute *attr;
dee91e82 3496 int i;
7b9f3c50
DE
3497 void **slot;
3498 struct quick_file_names *qfn;
9291a0cd 3499
0186c6a7
DE
3500 gdb_assert (! this_cu->is_debug_types);
3501
07261596
TT
3502 /* Our callers never want to match partial units -- instead they
3503 will match the enclosing full CU. */
3504 if (comp_unit_die->tag == DW_TAG_partial_unit)
3505 {
3506 this_cu->v.quick->no_file_data = 1;
3507 return;
3508 }
3509
0186c6a7 3510 lh_cu = this_cu;
7b9f3c50 3511 slot = NULL;
dee91e82 3512
fff8551c 3513 line_header_up lh;
9c541725 3514 sect_offset line_offset {};
fff8551c 3515
dee91e82 3516 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3517 if (attr)
3518 {
7b9f3c50
DE
3519 struct quick_file_names find_entry;
3520
9c541725 3521 line_offset = (sect_offset) DW_UNSND (attr);
7b9f3c50
DE
3522
3523 /* We may have already read in this line header (TU line header sharing).
3524 If we have we're done. */
094b34ac 3525 find_entry.hash.dwo_unit = cu->dwo_unit;
9c541725 3526 find_entry.hash.line_sect_off = line_offset;
7b9f3c50
DE
3527 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3528 &find_entry, INSERT);
3529 if (*slot != NULL)
3530 {
9a3c8263 3531 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3532 return;
7b9f3c50
DE
3533 }
3534
3019eac3 3535 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3536 }
3537 if (lh == NULL)
3538 {
094b34ac 3539 lh_cu->v.quick->no_file_data = 1;
dee91e82 3540 return;
9291a0cd
TT
3541 }
3542
8d749320 3543 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac 3544 qfn->hash.dwo_unit = cu->dwo_unit;
9c541725 3545 qfn->hash.line_sect_off = line_offset;
7b9f3c50
DE
3546 gdb_assert (slot != NULL);
3547 *slot = qfn;
9291a0cd 3548
d721ba37 3549 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
9291a0cd 3550
fff8551c 3551 qfn->num_file_names = lh->file_names.size ();
8d749320 3552 qfn->file_names =
fff8551c
PA
3553 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3554 for (i = 0; i < lh->file_names.size (); ++i)
3555 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
7b9f3c50 3556 qfn->real_names = NULL;
9291a0cd 3557
094b34ac 3558 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3559}
3560
3561/* A helper for the "quick" functions which attempts to read the line
3562 table for THIS_CU. */
3563
3564static struct quick_file_names *
e4a48d9d 3565dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3566{
0186c6a7
DE
3567 /* This should never be called for TUs. */
3568 gdb_assert (! this_cu->is_debug_types);
3569 /* Nor type unit groups. */
3570 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3571
dee91e82
DE
3572 if (this_cu->v.quick->file_names != NULL)
3573 return this_cu->v.quick->file_names;
3574 /* If we know there is no line data, no point in looking again. */
3575 if (this_cu->v.quick->no_file_data)
3576 return NULL;
3577
0186c6a7 3578 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3579
3580 if (this_cu->v.quick->no_file_data)
3581 return NULL;
3582 return this_cu->v.quick->file_names;
9291a0cd
TT
3583}
3584
3585/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3586 real path for a given file name from the line table. */
2fdf6df6 3587
9291a0cd 3588static const char *
7b9f3c50
DE
3589dw2_get_real_path (struct objfile *objfile,
3590 struct quick_file_names *qfn, int index)
9291a0cd 3591{
7b9f3c50
DE
3592 if (qfn->real_names == NULL)
3593 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3594 qfn->num_file_names, const char *);
9291a0cd 3595
7b9f3c50 3596 if (qfn->real_names[index] == NULL)
14278e1f 3597 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
9291a0cd 3598
7b9f3c50 3599 return qfn->real_names[index];
9291a0cd
TT
3600}
3601
3602static struct symtab *
3603dw2_find_last_source_symtab (struct objfile *objfile)
3604{
43f3e411 3605 struct compunit_symtab *cust;
9291a0cd 3606 int index;
ae2de4f8 3607
9291a0cd
TT
3608 dw2_setup (objfile);
3609 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3610 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3611 if (cust == NULL)
3612 return NULL;
3613 return compunit_primary_filetab (cust);
9291a0cd
TT
3614}
3615
7b9f3c50
DE
3616/* Traversal function for dw2_forget_cached_source_info. */
3617
3618static int
3619dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3620{
7b9f3c50 3621 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3622
7b9f3c50 3623 if (file_data->real_names)
9291a0cd 3624 {
7b9f3c50 3625 int i;
9291a0cd 3626
7b9f3c50 3627 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3628 {
7b9f3c50
DE
3629 xfree ((void*) file_data->real_names[i]);
3630 file_data->real_names[i] = NULL;
9291a0cd
TT
3631 }
3632 }
7b9f3c50
DE
3633
3634 return 1;
3635}
3636
3637static void
3638dw2_forget_cached_source_info (struct objfile *objfile)
3639{
3640 dw2_setup (objfile);
3641
3642 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3643 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3644}
3645
f8eba3c6
TT
3646/* Helper function for dw2_map_symtabs_matching_filename that expands
3647 the symtabs and calls the iterator. */
3648
3649static int
3650dw2_map_expand_apply (struct objfile *objfile,
3651 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3652 const char *name, const char *real_path,
14bc53a8 3653 gdb::function_view<bool (symtab *)> callback)
f8eba3c6 3654{
43f3e411 3655 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3656
3657 /* Don't visit already-expanded CUs. */
43f3e411 3658 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3659 return 0;
3660
3661 /* This may expand more than one symtab, and we want to iterate over
3662 all of them. */
a0f42c21 3663 dw2_instantiate_symtab (per_cu);
f8eba3c6 3664
14bc53a8
PA
3665 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3666 last_made, callback);
f8eba3c6
TT
3667}
3668
3669/* Implementation of the map_symtabs_matching_filename method. */
3670
14bc53a8
PA
3671static bool
3672dw2_map_symtabs_matching_filename
3673 (struct objfile *objfile, const char *name, const char *real_path,
3674 gdb::function_view<bool (symtab *)> callback)
9291a0cd
TT
3675{
3676 int i;
c011a4f4 3677 const char *name_basename = lbasename (name);
9291a0cd
TT
3678
3679 dw2_setup (objfile);
ae2de4f8 3680
848e3e78
DE
3681 /* The rule is CUs specify all the files, including those used by
3682 any TU, so there's no need to scan TUs here. */
f4dc4d17 3683
848e3e78 3684 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3685 {
3686 int j;
8832e7e3 3687 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3688 struct quick_file_names *file_data;
9291a0cd 3689
3d7bb9d9 3690 /* We only need to look at symtabs not already expanded. */
43f3e411 3691 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3692 continue;
3693
e4a48d9d 3694 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3695 if (file_data == NULL)
9291a0cd
TT
3696 continue;
3697
7b9f3c50 3698 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3699 {
7b9f3c50 3700 const char *this_name = file_data->file_names[j];
da235a7c 3701 const char *this_real_name;
9291a0cd 3702
af529f8f 3703 if (compare_filenames_for_search (this_name, name))
9291a0cd 3704 {
f5b95b50 3705 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3706 callback))
3707 return true;
288e77a7 3708 continue;
4aac40c8 3709 }
9291a0cd 3710
c011a4f4
DE
3711 /* Before we invoke realpath, which can get expensive when many
3712 files are involved, do a quick comparison of the basenames. */
3713 if (! basenames_may_differ
3714 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3715 continue;
3716
da235a7c
JK
3717 this_real_name = dw2_get_real_path (objfile, file_data, j);
3718 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3719 {
da235a7c 3720 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3721 callback))
3722 return true;
288e77a7 3723 continue;
da235a7c 3724 }
9291a0cd 3725
da235a7c
JK
3726 if (real_path != NULL)
3727 {
af529f8f
JK
3728 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3729 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3730 if (this_real_name != NULL
af529f8f 3731 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3732 {
f5b95b50 3733 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3734 callback))
3735 return true;
288e77a7 3736 continue;
9291a0cd
TT
3737 }
3738 }
3739 }
3740 }
3741
14bc53a8 3742 return false;
9291a0cd
TT
3743}
3744
da51c347
DE
3745/* Struct used to manage iterating over all CUs looking for a symbol. */
3746
3747struct dw2_symtab_iterator
9291a0cd 3748{
da51c347
DE
3749 /* The internalized form of .gdb_index. */
3750 struct mapped_index *index;
3751 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3752 int want_specific_block;
3753 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3754 Unused if !WANT_SPECIFIC_BLOCK. */
3755 int block_index;
3756 /* The kind of symbol we're looking for. */
3757 domain_enum domain;
3758 /* The list of CUs from the index entry of the symbol,
3759 or NULL if not found. */
3760 offset_type *vec;
3761 /* The next element in VEC to look at. */
3762 int next;
3763 /* The number of elements in VEC, or zero if there is no match. */
3764 int length;
8943b874
DE
3765 /* Have we seen a global version of the symbol?
3766 If so we can ignore all further global instances.
3767 This is to work around gold/15646, inefficient gold-generated
3768 indices. */
3769 int global_seen;
da51c347 3770};
9291a0cd 3771
da51c347
DE
3772/* Initialize the index symtab iterator ITER.
3773 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3774 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3775
9291a0cd 3776static void
da51c347
DE
3777dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3778 struct mapped_index *index,
3779 int want_specific_block,
3780 int block_index,
3781 domain_enum domain,
3782 const char *name)
3783{
3784 iter->index = index;
3785 iter->want_specific_block = want_specific_block;
3786 iter->block_index = block_index;
3787 iter->domain = domain;
3788 iter->next = 0;
8943b874 3789 iter->global_seen = 0;
da51c347
DE
3790
3791 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3792 iter->length = MAYBE_SWAP (*iter->vec);
3793 else
3794 {
3795 iter->vec = NULL;
3796 iter->length = 0;
3797 }
3798}
3799
3800/* Return the next matching CU or NULL if there are no more. */
3801
3802static struct dwarf2_per_cu_data *
3803dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3804{
3805 for ( ; iter->next < iter->length; ++iter->next)
3806 {
3807 offset_type cu_index_and_attrs =
3808 MAYBE_SWAP (iter->vec[iter->next + 1]);
3809 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3810 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3811 int want_static = iter->block_index != GLOBAL_BLOCK;
3812 /* This value is only valid for index versions >= 7. */
3813 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3814 gdb_index_symbol_kind symbol_kind =
3815 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3816 /* Only check the symbol attributes if they're present.
3817 Indices prior to version 7 don't record them,
3818 and indices >= 7 may elide them for certain symbols
3819 (gold does this). */
3820 int attrs_valid =
3821 (iter->index->version >= 7
3822 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3823
3190f0c6
DE
3824 /* Don't crash on bad data. */
3825 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3826 + dwarf2_per_objfile->n_type_units))
3827 {
3828 complaint (&symfile_complaints,
3829 _(".gdb_index entry has bad CU index"
4262abfb
JK
3830 " [in module %s]"),
3831 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3832 continue;
3833 }
3834
8832e7e3 3835 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3836
da51c347 3837 /* Skip if already read in. */
43f3e411 3838 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3839 continue;
3840
8943b874
DE
3841 /* Check static vs global. */
3842 if (attrs_valid)
3843 {
3844 if (iter->want_specific_block
3845 && want_static != is_static)
3846 continue;
3847 /* Work around gold/15646. */
3848 if (!is_static && iter->global_seen)
3849 continue;
3850 if (!is_static)
3851 iter->global_seen = 1;
3852 }
da51c347
DE
3853
3854 /* Only check the symbol's kind if it has one. */
3855 if (attrs_valid)
3856 {
3857 switch (iter->domain)
3858 {
3859 case VAR_DOMAIN:
3860 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3861 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3862 /* Some types are also in VAR_DOMAIN. */
3863 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3864 continue;
3865 break;
3866 case STRUCT_DOMAIN:
3867 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3868 continue;
3869 break;
3870 case LABEL_DOMAIN:
3871 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3872 continue;
3873 break;
3874 default:
3875 break;
3876 }
3877 }
3878
3879 ++iter->next;
3880 return per_cu;
3881 }
3882
3883 return NULL;
3884}
3885
43f3e411 3886static struct compunit_symtab *
da51c347
DE
3887dw2_lookup_symbol (struct objfile *objfile, int block_index,
3888 const char *name, domain_enum domain)
9291a0cd 3889{
43f3e411 3890 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3891 struct mapped_index *index;
3892
9291a0cd
TT
3893 dw2_setup (objfile);
3894
156942c7
DE
3895 index = dwarf2_per_objfile->index_table;
3896
da51c347 3897 /* index is NULL if OBJF_READNOW. */
156942c7 3898 if (index)
9291a0cd 3899 {
da51c347
DE
3900 struct dw2_symtab_iterator iter;
3901 struct dwarf2_per_cu_data *per_cu;
3902
3903 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3904
da51c347 3905 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3906 {
b2e2f908 3907 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3908 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3909 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3910 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3911
b2e2f908
DE
3912 sym = block_find_symbol (block, name, domain,
3913 block_find_non_opaque_type_preferred,
3914 &with_opaque);
3915
da51c347
DE
3916 /* Some caution must be observed with overloaded functions
3917 and methods, since the index will not contain any overload
3918 information (but NAME might contain it). */
da51c347 3919
b2e2f908 3920 if (sym != NULL
a778f165 3921 && SYMBOL_MATCHES_SEARCH_NAME (sym, name))
b2e2f908
DE
3922 return stab;
3923 if (with_opaque != NULL
a778f165 3924 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, name))
b2e2f908 3925 stab_best = stab;
da51c347
DE
3926
3927 /* Keep looking through other CUs. */
9291a0cd
TT
3928 }
3929 }
9291a0cd 3930
da51c347 3931 return stab_best;
9291a0cd
TT
3932}
3933
3934static void
3935dw2_print_stats (struct objfile *objfile)
3936{
e4a48d9d 3937 int i, total, count;
9291a0cd
TT
3938
3939 dw2_setup (objfile);
e4a48d9d 3940 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3941 count = 0;
e4a48d9d 3942 for (i = 0; i < total; ++i)
9291a0cd 3943 {
8832e7e3 3944 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3945
43f3e411 3946 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3947 ++count;
3948 }
e4a48d9d 3949 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3950 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3951}
3952
779bd270
DE
3953/* This dumps minimal information about the index.
3954 It is called via "mt print objfiles".
3955 One use is to verify .gdb_index has been loaded by the
3956 gdb.dwarf2/gdb-index.exp testcase. */
3957
9291a0cd
TT
3958static void
3959dw2_dump (struct objfile *objfile)
3960{
779bd270
DE
3961 dw2_setup (objfile);
3962 gdb_assert (dwarf2_per_objfile->using_index);
3963 printf_filtered (".gdb_index:");
3964 if (dwarf2_per_objfile->index_table != NULL)
3965 {
3966 printf_filtered (" version %d\n",
3967 dwarf2_per_objfile->index_table->version);
3968 }
3969 else
3970 printf_filtered (" faked for \"readnow\"\n");
3971 printf_filtered ("\n");
9291a0cd
TT
3972}
3973
3974static void
3189cb12
DE
3975dw2_relocate (struct objfile *objfile,
3976 const struct section_offsets *new_offsets,
3977 const struct section_offsets *delta)
9291a0cd
TT
3978{
3979 /* There's nothing to relocate here. */
3980}
3981
3982static void
3983dw2_expand_symtabs_for_function (struct objfile *objfile,
3984 const char *func_name)
3985{
da51c347
DE
3986 struct mapped_index *index;
3987
3988 dw2_setup (objfile);
3989
3990 index = dwarf2_per_objfile->index_table;
3991
3992 /* index is NULL if OBJF_READNOW. */
3993 if (index)
3994 {
3995 struct dw2_symtab_iterator iter;
3996 struct dwarf2_per_cu_data *per_cu;
3997
3998 /* Note: It doesn't matter what we pass for block_index here. */
3999 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4000 func_name);
4001
4002 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4003 dw2_instantiate_symtab (per_cu);
4004 }
9291a0cd
TT
4005}
4006
4007static void
4008dw2_expand_all_symtabs (struct objfile *objfile)
4009{
4010 int i;
4011
4012 dw2_setup (objfile);
1fd400ff
TT
4013
4014 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4015 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4016 {
8832e7e3 4017 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4018
a0f42c21 4019 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
4020 }
4021}
4022
4023static void
652a8996
JK
4024dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4025 const char *fullname)
9291a0cd
TT
4026{
4027 int i;
4028
4029 dw2_setup (objfile);
d4637a04
DE
4030
4031 /* We don't need to consider type units here.
4032 This is only called for examining code, e.g. expand_line_sal.
4033 There can be an order of magnitude (or more) more type units
4034 than comp units, and we avoid them if we can. */
4035
4036 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4037 {
4038 int j;
8832e7e3 4039 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 4040 struct quick_file_names *file_data;
9291a0cd 4041
3d7bb9d9 4042 /* We only need to look at symtabs not already expanded. */
43f3e411 4043 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4044 continue;
4045
e4a48d9d 4046 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4047 if (file_data == NULL)
9291a0cd
TT
4048 continue;
4049
7b9f3c50 4050 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4051 {
652a8996
JK
4052 const char *this_fullname = file_data->file_names[j];
4053
4054 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 4055 {
a0f42c21 4056 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
4057 break;
4058 }
4059 }
4060 }
4061}
4062
9291a0cd 4063static void
ade7ed9e 4064dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 4065 const char * name, domain_enum domain,
ade7ed9e 4066 int global,
40658b94
PH
4067 int (*callback) (struct block *,
4068 struct symbol *, void *),
2edb89d3
JK
4069 void *data, symbol_compare_ftype *match,
4070 symbol_compare_ftype *ordered_compare)
9291a0cd 4071{
40658b94 4072 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
4073 current language is Ada for a non-Ada objfile using GNU index. As Ada
4074 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
4075}
4076
4077static void
f8eba3c6
TT
4078dw2_expand_symtabs_matching
4079 (struct objfile *objfile,
14bc53a8
PA
4080 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4081 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4082 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4083 enum search_domain kind)
9291a0cd
TT
4084{
4085 int i;
4086 offset_type iter;
4b5246aa 4087 struct mapped_index *index;
9291a0cd
TT
4088
4089 dw2_setup (objfile);
ae2de4f8
DE
4090
4091 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
4092 if (!dwarf2_per_objfile->index_table)
4093 return;
4b5246aa 4094 index = dwarf2_per_objfile->index_table;
9291a0cd 4095
7b08b9eb 4096 if (file_matcher != NULL)
24c79950 4097 {
fc4007c9
TT
4098 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4099 htab_eq_pointer,
4100 NULL, xcalloc, xfree));
4101 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4102 htab_eq_pointer,
4103 NULL, xcalloc, xfree));
24c79950 4104
848e3e78
DE
4105 /* The rule is CUs specify all the files, including those used by
4106 any TU, so there's no need to scan TUs here. */
4107
4108 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
4109 {
4110 int j;
8832e7e3 4111 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
4112 struct quick_file_names *file_data;
4113 void **slot;
7b08b9eb 4114
61d96d7e
DE
4115 QUIT;
4116
24c79950 4117 per_cu->v.quick->mark = 0;
3d7bb9d9 4118
24c79950 4119 /* We only need to look at symtabs not already expanded. */
43f3e411 4120 if (per_cu->v.quick->compunit_symtab)
24c79950 4121 continue;
7b08b9eb 4122
e4a48d9d 4123 file_data = dw2_get_file_names (per_cu);
24c79950
TT
4124 if (file_data == NULL)
4125 continue;
7b08b9eb 4126
fc4007c9 4127 if (htab_find (visited_not_found.get (), file_data) != NULL)
24c79950 4128 continue;
fc4007c9 4129 else if (htab_find (visited_found.get (), file_data) != NULL)
24c79950
TT
4130 {
4131 per_cu->v.quick->mark = 1;
4132 continue;
4133 }
4134
4135 for (j = 0; j < file_data->num_file_names; ++j)
4136 {
da235a7c
JK
4137 const char *this_real_name;
4138
14bc53a8 4139 if (file_matcher (file_data->file_names[j], false))
24c79950
TT
4140 {
4141 per_cu->v.quick->mark = 1;
4142 break;
4143 }
da235a7c
JK
4144
4145 /* Before we invoke realpath, which can get expensive when many
4146 files are involved, do a quick comparison of the basenames. */
4147 if (!basenames_may_differ
4148 && !file_matcher (lbasename (file_data->file_names[j]),
14bc53a8 4149 true))
da235a7c
JK
4150 continue;
4151
4152 this_real_name = dw2_get_real_path (objfile, file_data, j);
14bc53a8 4153 if (file_matcher (this_real_name, false))
da235a7c
JK
4154 {
4155 per_cu->v.quick->mark = 1;
4156 break;
4157 }
24c79950
TT
4158 }
4159
4160 slot = htab_find_slot (per_cu->v.quick->mark
fc4007c9
TT
4161 ? visited_found.get ()
4162 : visited_not_found.get (),
24c79950
TT
4163 file_data, INSERT);
4164 *slot = file_data;
4165 }
24c79950 4166 }
9291a0cd 4167
3876f04e 4168 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
4169 {
4170 offset_type idx = 2 * iter;
4171 const char *name;
4172 offset_type *vec, vec_len, vec_idx;
8943b874 4173 int global_seen = 0;
9291a0cd 4174
61d96d7e
DE
4175 QUIT;
4176
3876f04e 4177 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
4178 continue;
4179
3876f04e 4180 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 4181
14bc53a8 4182 if (!symbol_matcher (name))
9291a0cd
TT
4183 continue;
4184
4185 /* The name was matched, now expand corresponding CUs that were
4186 marked. */
4b5246aa 4187 vec = (offset_type *) (index->constant_pool
3876f04e 4188 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
4189 vec_len = MAYBE_SWAP (vec[0]);
4190 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4191 {
e254ef6a 4192 struct dwarf2_per_cu_data *per_cu;
156942c7 4193 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
4194 /* This value is only valid for index versions >= 7. */
4195 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
4196 gdb_index_symbol_kind symbol_kind =
4197 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4198 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
4199 /* Only check the symbol attributes if they're present.
4200 Indices prior to version 7 don't record them,
4201 and indices >= 7 may elide them for certain symbols
4202 (gold does this). */
4203 int attrs_valid =
4204 (index->version >= 7
4205 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4206
8943b874
DE
4207 /* Work around gold/15646. */
4208 if (attrs_valid)
4209 {
4210 if (!is_static && global_seen)
4211 continue;
4212 if (!is_static)
4213 global_seen = 1;
4214 }
4215
3190f0c6
DE
4216 /* Only check the symbol's kind if it has one. */
4217 if (attrs_valid)
156942c7
DE
4218 {
4219 switch (kind)
4220 {
4221 case VARIABLES_DOMAIN:
4222 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4223 continue;
4224 break;
4225 case FUNCTIONS_DOMAIN:
4226 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4227 continue;
4228 break;
4229 case TYPES_DOMAIN:
4230 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4231 continue;
4232 break;
4233 default:
4234 break;
4235 }
4236 }
4237
3190f0c6
DE
4238 /* Don't crash on bad data. */
4239 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4240 + dwarf2_per_objfile->n_type_units))
4241 {
4242 complaint (&symfile_complaints,
4243 _(".gdb_index entry has bad CU index"
4262abfb 4244 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4245 continue;
4246 }
4247
8832e7e3 4248 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4249 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4250 {
4251 int symtab_was_null =
4252 (per_cu->v.quick->compunit_symtab == NULL);
4253
4254 dw2_instantiate_symtab (per_cu);
4255
4256 if (expansion_notify != NULL
4257 && symtab_was_null
4258 && per_cu->v.quick->compunit_symtab != NULL)
4259 {
14bc53a8 4260 expansion_notify (per_cu->v.quick->compunit_symtab);
276d885b
GB
4261 }
4262 }
9291a0cd
TT
4263 }
4264 }
4265}
4266
43f3e411 4267/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4268 symtab. */
4269
43f3e411
DE
4270static struct compunit_symtab *
4271recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4272 CORE_ADDR pc)
9703b513
TT
4273{
4274 int i;
4275
43f3e411
DE
4276 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4277 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4278 return cust;
9703b513 4279
43f3e411 4280 if (cust->includes == NULL)
a3ec0bb1
DE
4281 return NULL;
4282
43f3e411 4283 for (i = 0; cust->includes[i]; ++i)
9703b513 4284 {
43f3e411 4285 struct compunit_symtab *s = cust->includes[i];
9703b513 4286
43f3e411 4287 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4288 if (s != NULL)
4289 return s;
4290 }
4291
4292 return NULL;
4293}
4294
43f3e411
DE
4295static struct compunit_symtab *
4296dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4297 struct bound_minimal_symbol msymbol,
4298 CORE_ADDR pc,
4299 struct obj_section *section,
4300 int warn_if_readin)
9291a0cd
TT
4301{
4302 struct dwarf2_per_cu_data *data;
43f3e411 4303 struct compunit_symtab *result;
9291a0cd
TT
4304
4305 dw2_setup (objfile);
4306
4307 if (!objfile->psymtabs_addrmap)
4308 return NULL;
4309
9a3c8263
SM
4310 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4311 pc);
9291a0cd
TT
4312 if (!data)
4313 return NULL;
4314
43f3e411 4315 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4316 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4317 paddress (get_objfile_arch (objfile), pc));
4318
43f3e411
DE
4319 result
4320 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4321 pc);
9703b513
TT
4322 gdb_assert (result != NULL);
4323 return result;
9291a0cd
TT
4324}
4325
9291a0cd 4326static void
44b13c5a 4327dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4328 void *data, int need_fullname)
9291a0cd 4329{
9291a0cd 4330 dw2_setup (objfile);
ae2de4f8 4331
bbf2f4df 4332 if (!dwarf2_per_objfile->filenames_cache)
24c79950 4333 {
bbf2f4df 4334 dwarf2_per_objfile->filenames_cache.emplace ();
24c79950 4335
bbf2f4df
PA
4336 htab_up visited (htab_create_alloc (10,
4337 htab_hash_pointer, htab_eq_pointer,
4338 NULL, xcalloc, xfree));
24c79950 4339
bbf2f4df
PA
4340 /* The rule is CUs specify all the files, including those used
4341 by any TU, so there's no need to scan TUs here. We can
4342 ignore file names coming from already-expanded CUs. */
24c79950 4343
bbf2f4df
PA
4344 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4345 {
4346 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4347
bbf2f4df
PA
4348 if (per_cu->v.quick->compunit_symtab)
4349 {
4350 void **slot = htab_find_slot (visited.get (),
4351 per_cu->v.quick->file_names,
4352 INSERT);
9291a0cd 4353
bbf2f4df
PA
4354 *slot = per_cu->v.quick->file_names;
4355 }
24c79950 4356 }
24c79950 4357
bbf2f4df 4358 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd 4359 {
bbf2f4df
PA
4360 int j;
4361 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4362 struct quick_file_names *file_data;
4363 void **slot;
4364
4365 /* We only need to look at symtabs not already expanded. */
4366 if (per_cu->v.quick->compunit_symtab)
4367 continue;
74e2f255 4368
bbf2f4df
PA
4369 file_data = dw2_get_file_names (per_cu);
4370 if (file_data == NULL)
4371 continue;
4372
4373 slot = htab_find_slot (visited.get (), file_data, INSERT);
4374 if (*slot)
4375 {
4376 /* Already visited. */
4377 continue;
4378 }
4379 *slot = file_data;
4380
4381 for (int j = 0; j < file_data->num_file_names; ++j)
4382 {
4383 const char *filename = file_data->file_names[j];
4384 dwarf2_per_objfile->filenames_cache->seen (filename);
4385 }
9291a0cd
TT
4386 }
4387 }
bbf2f4df
PA
4388
4389 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4390 {
14278e1f 4391 gdb::unique_xmalloc_ptr<char> this_real_name;
bbf2f4df
PA
4392
4393 if (need_fullname)
4394 this_real_name = gdb_realpath (filename);
14278e1f 4395 (*fun) (filename, this_real_name.get (), data);
bbf2f4df 4396 });
9291a0cd
TT
4397}
4398
4399static int
4400dw2_has_symbols (struct objfile *objfile)
4401{
4402 return 1;
4403}
4404
4405const struct quick_symbol_functions dwarf2_gdb_index_functions =
4406{
4407 dw2_has_symbols,
4408 dw2_find_last_source_symtab,
4409 dw2_forget_cached_source_info,
f8eba3c6 4410 dw2_map_symtabs_matching_filename,
9291a0cd 4411 dw2_lookup_symbol,
9291a0cd
TT
4412 dw2_print_stats,
4413 dw2_dump,
4414 dw2_relocate,
4415 dw2_expand_symtabs_for_function,
4416 dw2_expand_all_symtabs,
652a8996 4417 dw2_expand_symtabs_with_fullname,
40658b94 4418 dw2_map_matching_symbols,
9291a0cd 4419 dw2_expand_symtabs_matching,
43f3e411 4420 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4421 dw2_map_symbol_filenames
4422};
4423
4424/* Initialize for reading DWARF for this objfile. Return 0 if this
4425 file will use psymtabs, or 1 if using the GNU index. */
4426
4427int
4428dwarf2_initialize_objfile (struct objfile *objfile)
4429{
4430 /* If we're about to read full symbols, don't bother with the
4431 indices. In this case we also don't care if some other debug
4432 format is making psymtabs, because they are all about to be
4433 expanded anyway. */
4434 if ((objfile->flags & OBJF_READNOW))
4435 {
4436 int i;
4437
4438 dwarf2_per_objfile->using_index = 1;
4439 create_all_comp_units (objfile);
0e50663e 4440 create_all_type_units (objfile);
7b9f3c50
DE
4441 dwarf2_per_objfile->quick_file_names_table =
4442 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4443
1fd400ff 4444 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4445 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4446 {
8832e7e3 4447 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4448
e254ef6a
DE
4449 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4450 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4451 }
4452
4453 /* Return 1 so that gdb sees the "quick" functions. However,
4454 these functions will be no-ops because we will have expanded
4455 all symtabs. */
4456 return 1;
4457 }
4458
4459 if (dwarf2_read_index (objfile))
4460 return 1;
4461
9291a0cd
TT
4462 return 0;
4463}
4464
4465\f
4466
dce234bc
PP
4467/* Build a partial symbol table. */
4468
4469void
f29dff0a 4470dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4471{
c9bf0622 4472
f29dff0a 4473 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4474 {
4475 init_psymbol_list (objfile, 1024);
4476 }
4477
492d29ea 4478 TRY
c9bf0622
TT
4479 {
4480 /* This isn't really ideal: all the data we allocate on the
4481 objfile's obstack is still uselessly kept around. However,
4482 freeing it seems unsafe. */
906768f9 4483 psymtab_discarder psymtabs (objfile);
c9bf0622 4484 dwarf2_build_psymtabs_hard (objfile);
906768f9 4485 psymtabs.keep ();
c9bf0622 4486 }
492d29ea
PA
4487 CATCH (except, RETURN_MASK_ERROR)
4488 {
4489 exception_print (gdb_stderr, except);
4490 }
4491 END_CATCH
c906108c 4492}
c906108c 4493
1ce1cefd
DE
4494/* Return the total length of the CU described by HEADER. */
4495
4496static unsigned int
4497get_cu_length (const struct comp_unit_head *header)
4498{
4499 return header->initial_length_size + header->length;
4500}
4501
9c541725 4502/* Return TRUE if SECT_OFF is within CU_HEADER. */
45452591 4503
9c541725
PA
4504static inline bool
4505offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
45452591 4506{
9c541725
PA
4507 sect_offset bottom = cu_header->sect_off;
4508 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
9a619af0 4509
9c541725 4510 return sect_off >= bottom && sect_off < top;
45452591
DE
4511}
4512
3b80fe9b
DE
4513/* Find the base address of the compilation unit for range lists and
4514 location lists. It will normally be specified by DW_AT_low_pc.
4515 In DWARF-3 draft 4, the base address could be overridden by
4516 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4517 compilation units with discontinuous ranges. */
4518
4519static void
4520dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4521{
4522 struct attribute *attr;
4523
4524 cu->base_known = 0;
4525 cu->base_address = 0;
4526
4527 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4528 if (attr)
4529 {
31aa7e4e 4530 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4531 cu->base_known = 1;
4532 }
4533 else
4534 {
4535 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4536 if (attr)
4537 {
31aa7e4e 4538 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4539 cu->base_known = 1;
4540 }
4541 }
4542}
4543
93311388 4544/* Read in the comp unit header information from the debug_info at info_ptr.
43988095 4545 Use rcuh_kind::COMPILE as the default type if not known by the caller.
93311388
DE
4546 NOTE: This leaves members offset, first_die_offset to be filled in
4547 by the caller. */
107d2387 4548
d521ce57 4549static const gdb_byte *
107d2387 4550read_comp_unit_head (struct comp_unit_head *cu_header,
43988095
JK
4551 const gdb_byte *info_ptr,
4552 struct dwarf2_section_info *section,
4553 rcuh_kind section_kind)
107d2387
AC
4554{
4555 int signed_addr;
891d2f0b 4556 unsigned int bytes_read;
43988095
JK
4557 const char *filename = get_section_file_name (section);
4558 bfd *abfd = get_section_bfd_owner (section);
c764a876
DE
4559
4560 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4561 cu_header->initial_length_size = bytes_read;
4562 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4563 info_ptr += bytes_read;
107d2387
AC
4564 cu_header->version = read_2_bytes (abfd, info_ptr);
4565 info_ptr += 2;
43988095
JK
4566 if (cu_header->version < 5)
4567 switch (section_kind)
4568 {
4569 case rcuh_kind::COMPILE:
4570 cu_header->unit_type = DW_UT_compile;
4571 break;
4572 case rcuh_kind::TYPE:
4573 cu_header->unit_type = DW_UT_type;
4574 break;
4575 default:
4576 internal_error (__FILE__, __LINE__,
4577 _("read_comp_unit_head: invalid section_kind"));
4578 }
4579 else
4580 {
4581 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4582 (read_1_byte (abfd, info_ptr));
4583 info_ptr += 1;
4584 switch (cu_header->unit_type)
4585 {
4586 case DW_UT_compile:
4587 if (section_kind != rcuh_kind::COMPILE)
4588 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4589 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4590 filename);
4591 break;
4592 case DW_UT_type:
4593 section_kind = rcuh_kind::TYPE;
4594 break;
4595 default:
4596 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4597 "(is %d, should be %d or %d) [in module %s]"),
4598 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4599 }
4600
4601 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4602 info_ptr += 1;
4603 }
9c541725
PA
4604 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
4605 cu_header,
4606 &bytes_read);
613e1657 4607 info_ptr += bytes_read;
43988095
JK
4608 if (cu_header->version < 5)
4609 {
4610 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4611 info_ptr += 1;
4612 }
107d2387
AC
4613 signed_addr = bfd_get_sign_extend_vma (abfd);
4614 if (signed_addr < 0)
8e65ff28 4615 internal_error (__FILE__, __LINE__,
e2e0b3e5 4616 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4617 cu_header->signed_addr_p = signed_addr;
c764a876 4618
43988095
JK
4619 if (section_kind == rcuh_kind::TYPE)
4620 {
4621 LONGEST type_offset;
4622
4623 cu_header->signature = read_8_bytes (abfd, info_ptr);
4624 info_ptr += 8;
4625
4626 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4627 info_ptr += bytes_read;
9c541725
PA
4628 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
4629 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
43988095
JK
4630 error (_("Dwarf Error: Too big type_offset in compilation unit "
4631 "header (is %s) [in module %s]"), plongest (type_offset),
4632 filename);
4633 }
4634
107d2387
AC
4635 return info_ptr;
4636}
4637
36586728
TT
4638/* Helper function that returns the proper abbrev section for
4639 THIS_CU. */
4640
4641static struct dwarf2_section_info *
4642get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4643{
4644 struct dwarf2_section_info *abbrev;
4645
4646 if (this_cu->is_dwz)
4647 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4648 else
4649 abbrev = &dwarf2_per_objfile->abbrev;
4650
4651 return abbrev;
4652}
4653
9ff913ba
DE
4654/* Subroutine of read_and_check_comp_unit_head and
4655 read_and_check_type_unit_head to simplify them.
4656 Perform various error checking on the header. */
4657
4658static void
4659error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4660 struct dwarf2_section_info *section,
4661 struct dwarf2_section_info *abbrev_section)
9ff913ba 4662{
a32a8923 4663 const char *filename = get_section_file_name (section);
9ff913ba 4664
43988095 4665 if (header->version < 2 || header->version > 5)
9ff913ba 4666 error (_("Dwarf Error: wrong version in compilation unit header "
43988095 4667 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
9ff913ba
DE
4668 filename);
4669
9c541725 4670 if (to_underlying (header->abbrev_sect_off)
36586728 4671 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9c541725
PA
4672 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
4673 "(offset 0x%x + 6) [in module %s]"),
4674 to_underlying (header->abbrev_sect_off),
4675 to_underlying (header->sect_off),
9ff913ba
DE
4676 filename);
4677
9c541725 4678 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
9ff913ba 4679 avoid potential 32-bit overflow. */
9c541725 4680 if (((ULONGEST) header->sect_off + get_cu_length (header))
9ff913ba 4681 > section->size)
9c541725
PA
4682 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
4683 "(offset 0x%x + 0) [in module %s]"),
4684 header->length, to_underlying (header->sect_off),
9ff913ba
DE
4685 filename);
4686}
4687
4688/* Read in a CU/TU header and perform some basic error checking.
4689 The contents of the header are stored in HEADER.
4690 The result is a pointer to the start of the first DIE. */
adabb602 4691
d521ce57 4692static const gdb_byte *
9ff913ba
DE
4693read_and_check_comp_unit_head (struct comp_unit_head *header,
4694 struct dwarf2_section_info *section,
4bdcc0c1 4695 struct dwarf2_section_info *abbrev_section,
d521ce57 4696 const gdb_byte *info_ptr,
43988095 4697 rcuh_kind section_kind)
72bf9492 4698{
d521ce57 4699 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4700 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4701
9c541725 4702 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
adabb602 4703
43988095 4704 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
9ff913ba 4705
9c541725 4706 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
348e048f 4707
4bdcc0c1 4708 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4709
4710 return info_ptr;
348e048f
DE
4711}
4712
f4dc4d17
DE
4713/* Fetch the abbreviation table offset from a comp or type unit header. */
4714
4715static sect_offset
4716read_abbrev_offset (struct dwarf2_section_info *section,
9c541725 4717 sect_offset sect_off)
f4dc4d17 4718{
a32a8923 4719 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4720 const gdb_byte *info_ptr;
ac298888 4721 unsigned int initial_length_size, offset_size;
43988095 4722 uint16_t version;
f4dc4d17
DE
4723
4724 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
9c541725 4725 info_ptr = section->buffer + to_underlying (sect_off);
ac298888 4726 read_initial_length (abfd, info_ptr, &initial_length_size);
f4dc4d17 4727 offset_size = initial_length_size == 4 ? 4 : 8;
43988095
JK
4728 info_ptr += initial_length_size;
4729
4730 version = read_2_bytes (abfd, info_ptr);
4731 info_ptr += 2;
4732 if (version >= 5)
4733 {
4734 /* Skip unit type and address size. */
4735 info_ptr += 2;
4736 }
4737
9c541725 4738 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
f4dc4d17
DE
4739}
4740
aaa75496
JB
4741/* Allocate a new partial symtab for file named NAME and mark this new
4742 partial symtab as being an include of PST. */
4743
4744static void
d521ce57 4745dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4746 struct objfile *objfile)
4747{
4748 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4749
fbd9ab74
JK
4750 if (!IS_ABSOLUTE_PATH (subpst->filename))
4751 {
4752 /* It shares objfile->objfile_obstack. */
4753 subpst->dirname = pst->dirname;
4754 }
4755
aaa75496
JB
4756 subpst->textlow = 0;
4757 subpst->texthigh = 0;
4758
8d749320
SM
4759 subpst->dependencies
4760 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
4761 subpst->dependencies[0] = pst;
4762 subpst->number_of_dependencies = 1;
4763
4764 subpst->globals_offset = 0;
4765 subpst->n_global_syms = 0;
4766 subpst->statics_offset = 0;
4767 subpst->n_static_syms = 0;
43f3e411 4768 subpst->compunit_symtab = NULL;
aaa75496
JB
4769 subpst->read_symtab = pst->read_symtab;
4770 subpst->readin = 0;
4771
4772 /* No private part is necessary for include psymtabs. This property
4773 can be used to differentiate between such include psymtabs and
10b3939b 4774 the regular ones. */
58a9656e 4775 subpst->read_symtab_private = NULL;
aaa75496
JB
4776}
4777
4778/* Read the Line Number Program data and extract the list of files
4779 included by the source file represented by PST. Build an include
d85a05f0 4780 partial symtab for each of these included files. */
aaa75496
JB
4781
4782static void
4783dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4784 struct die_info *die,
4785 struct partial_symtab *pst)
aaa75496 4786{
fff8551c 4787 line_header_up lh;
d85a05f0 4788 struct attribute *attr;
aaa75496 4789
d85a05f0
DJ
4790 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4791 if (attr)
9c541725 4792 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
aaa75496
JB
4793 if (lh == NULL)
4794 return; /* No linetable, so no includes. */
4795
c6da4cef 4796 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
fff8551c 4797 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4798}
4799
348e048f 4800static hashval_t
52dc124a 4801hash_signatured_type (const void *item)
348e048f 4802{
9a3c8263
SM
4803 const struct signatured_type *sig_type
4804 = (const struct signatured_type *) item;
9a619af0 4805
348e048f 4806 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4807 return sig_type->signature;
348e048f
DE
4808}
4809
4810static int
52dc124a 4811eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 4812{
9a3c8263
SM
4813 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4814 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 4815
348e048f
DE
4816 return lhs->signature == rhs->signature;
4817}
4818
1fd400ff
TT
4819/* Allocate a hash table for signatured types. */
4820
4821static htab_t
673bfd45 4822allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4823{
4824 return htab_create_alloc_ex (41,
52dc124a
DE
4825 hash_signatured_type,
4826 eq_signatured_type,
1fd400ff
TT
4827 NULL,
4828 &objfile->objfile_obstack,
4829 hashtab_obstack_allocate,
4830 dummy_obstack_deallocate);
4831}
4832
d467dd73 4833/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4834
4835static int
d467dd73 4836add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 4837{
9a3c8263
SM
4838 struct signatured_type *sigt = (struct signatured_type *) *slot;
4839 struct signatured_type ***datap = (struct signatured_type ***) datum;
1fd400ff 4840
b4dd5633 4841 **datap = sigt;
1fd400ff
TT
4842 ++*datap;
4843
4844 return 1;
4845}
4846
78d4d2c5 4847/* A helper for create_debug_types_hash_table. Read types from SECTION
43988095
JK
4848 and fill them into TYPES_HTAB. It will process only type units,
4849 therefore DW_UT_type. */
c88ee1f0 4850
78d4d2c5
JK
4851static void
4852create_debug_type_hash_table (struct dwo_file *dwo_file,
43988095
JK
4853 dwarf2_section_info *section, htab_t &types_htab,
4854 rcuh_kind section_kind)
348e048f 4855{
3019eac3 4856 struct objfile *objfile = dwarf2_per_objfile->objfile;
4bdcc0c1 4857 struct dwarf2_section_info *abbrev_section;
78d4d2c5
JK
4858 bfd *abfd;
4859 const gdb_byte *info_ptr, *end_ptr;
348e048f 4860
4bdcc0c1
DE
4861 abbrev_section = (dwo_file != NULL
4862 ? &dwo_file->sections.abbrev
4863 : &dwarf2_per_objfile->abbrev);
4864
b4f54984 4865 if (dwarf_read_debug)
43988095
JK
4866 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4867 get_section_name (section),
a32a8923 4868 get_section_file_name (abbrev_section));
09406207 4869
78d4d2c5
JK
4870 dwarf2_read_section (objfile, section);
4871 info_ptr = section->buffer;
348e048f 4872
78d4d2c5
JK
4873 if (info_ptr == NULL)
4874 return;
348e048f 4875
78d4d2c5
JK
4876 /* We can't set abfd until now because the section may be empty or
4877 not present, in which case the bfd is unknown. */
4878 abfd = get_section_bfd_owner (section);
348e048f 4879
78d4d2c5
JK
4880 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4881 because we don't need to read any dies: the signature is in the
4882 header. */
3019eac3 4883
78d4d2c5
JK
4884 end_ptr = info_ptr + section->size;
4885 while (info_ptr < end_ptr)
4886 {
78d4d2c5
JK
4887 struct signatured_type *sig_type;
4888 struct dwo_unit *dwo_tu;
4889 void **slot;
4890 const gdb_byte *ptr = info_ptr;
4891 struct comp_unit_head header;
4892 unsigned int length;
8b70b953 4893
9c541725 4894 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
348e048f 4895
a49dd8dd
JK
4896 /* Initialize it due to a false compiler warning. */
4897 header.signature = -1;
9c541725 4898 header.type_cu_offset_in_tu = (cu_offset) -1;
a49dd8dd 4899
78d4d2c5
JK
4900 /* We need to read the type's signature in order to build the hash
4901 table, but we don't need anything else just yet. */
348e048f 4902
43988095
JK
4903 ptr = read_and_check_comp_unit_head (&header, section,
4904 abbrev_section, ptr, section_kind);
348e048f 4905
78d4d2c5 4906 length = get_cu_length (&header);
6caca83c 4907
78d4d2c5
JK
4908 /* Skip dummy type units. */
4909 if (ptr >= info_ptr + length
43988095
JK
4910 || peek_abbrev_code (abfd, ptr) == 0
4911 || header.unit_type != DW_UT_type)
78d4d2c5
JK
4912 {
4913 info_ptr += length;
4914 continue;
4915 }
dee91e82 4916
78d4d2c5
JK
4917 if (types_htab == NULL)
4918 {
4919 if (dwo_file)
4920 types_htab = allocate_dwo_unit_table (objfile);
4921 else
4922 types_htab = allocate_signatured_type_table (objfile);
4923 }
8b70b953 4924
78d4d2c5
JK
4925 if (dwo_file)
4926 {
4927 sig_type = NULL;
4928 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4929 struct dwo_unit);
4930 dwo_tu->dwo_file = dwo_file;
43988095 4931 dwo_tu->signature = header.signature;
9c541725 4932 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
78d4d2c5 4933 dwo_tu->section = section;
9c541725 4934 dwo_tu->sect_off = sect_off;
78d4d2c5
JK
4935 dwo_tu->length = length;
4936 }
4937 else
4938 {
4939 /* N.B.: type_offset is not usable if this type uses a DWO file.
4940 The real type_offset is in the DWO file. */
4941 dwo_tu = NULL;
4942 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4943 struct signatured_type);
43988095 4944 sig_type->signature = header.signature;
9c541725 4945 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
78d4d2c5
JK
4946 sig_type->per_cu.objfile = objfile;
4947 sig_type->per_cu.is_debug_types = 1;
4948 sig_type->per_cu.section = section;
9c541725 4949 sig_type->per_cu.sect_off = sect_off;
78d4d2c5
JK
4950 sig_type->per_cu.length = length;
4951 }
4952
4953 slot = htab_find_slot (types_htab,
4954 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4955 INSERT);
4956 gdb_assert (slot != NULL);
4957 if (*slot != NULL)
4958 {
9c541725 4959 sect_offset dup_sect_off;
0349ea22 4960
3019eac3
DE
4961 if (dwo_file)
4962 {
78d4d2c5
JK
4963 const struct dwo_unit *dup_tu
4964 = (const struct dwo_unit *) *slot;
4965
9c541725 4966 dup_sect_off = dup_tu->sect_off;
3019eac3
DE
4967 }
4968 else
4969 {
78d4d2c5
JK
4970 const struct signatured_type *dup_tu
4971 = (const struct signatured_type *) *slot;
4972
9c541725 4973 dup_sect_off = dup_tu->per_cu.sect_off;
3019eac3 4974 }
8b70b953 4975
78d4d2c5
JK
4976 complaint (&symfile_complaints,
4977 _("debug type entry at offset 0x%x is duplicate to"
4978 " the entry at offset 0x%x, signature %s"),
9c541725 4979 to_underlying (sect_off), to_underlying (dup_sect_off),
43988095 4980 hex_string (header.signature));
78d4d2c5
JK
4981 }
4982 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
3019eac3 4983
78d4d2c5
JK
4984 if (dwarf_read_debug > 1)
4985 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
9c541725 4986 to_underlying (sect_off),
43988095 4987 hex_string (header.signature));
3019eac3 4988
78d4d2c5
JK
4989 info_ptr += length;
4990 }
4991}
3019eac3 4992
78d4d2c5
JK
4993/* Create the hash table of all entries in the .debug_types
4994 (or .debug_types.dwo) section(s).
4995 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4996 otherwise it is NULL.
b3c8eb43 4997
78d4d2c5 4998 The result is a pointer to the hash table or NULL if there are no types.
348e048f 4999
78d4d2c5 5000 Note: This function processes DWO files only, not DWP files. */
348e048f 5001
78d4d2c5
JK
5002static void
5003create_debug_types_hash_table (struct dwo_file *dwo_file,
5004 VEC (dwarf2_section_info_def) *types,
5005 htab_t &types_htab)
5006{
5007 int ix;
5008 struct dwarf2_section_info *section;
5009
5010 if (VEC_empty (dwarf2_section_info_def, types))
5011 return;
348e048f 5012
78d4d2c5
JK
5013 for (ix = 0;
5014 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5015 ++ix)
43988095
JK
5016 create_debug_type_hash_table (dwo_file, section, types_htab,
5017 rcuh_kind::TYPE);
3019eac3
DE
5018}
5019
5020/* Create the hash table of all entries in the .debug_types section,
5021 and initialize all_type_units.
5022 The result is zero if there is an error (e.g. missing .debug_types section),
5023 otherwise non-zero. */
5024
5025static int
5026create_all_type_units (struct objfile *objfile)
5027{
78d4d2c5 5028 htab_t types_htab = NULL;
b4dd5633 5029 struct signatured_type **iter;
3019eac3 5030
43988095
JK
5031 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5032 rcuh_kind::COMPILE);
78d4d2c5 5033 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
3019eac3
DE
5034 if (types_htab == NULL)
5035 {
5036 dwarf2_per_objfile->signatured_types = NULL;
5037 return 0;
5038 }
5039
348e048f
DE
5040 dwarf2_per_objfile->signatured_types = types_htab;
5041
6aa5f3a6
DE
5042 dwarf2_per_objfile->n_type_units
5043 = dwarf2_per_objfile->n_allocated_type_units
5044 = htab_elements (types_htab);
8d749320
SM
5045 dwarf2_per_objfile->all_type_units =
5046 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
d467dd73
DE
5047 iter = &dwarf2_per_objfile->all_type_units[0];
5048 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5049 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5050 == dwarf2_per_objfile->n_type_units);
1fd400ff 5051
348e048f
DE
5052 return 1;
5053}
5054
6aa5f3a6
DE
5055/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5056 If SLOT is non-NULL, it is the entry to use in the hash table.
5057 Otherwise we find one. */
5058
5059static struct signatured_type *
5060add_type_unit (ULONGEST sig, void **slot)
5061{
5062 struct objfile *objfile = dwarf2_per_objfile->objfile;
5063 int n_type_units = dwarf2_per_objfile->n_type_units;
5064 struct signatured_type *sig_type;
5065
5066 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5067 ++n_type_units;
5068 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5069 {
5070 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5071 dwarf2_per_objfile->n_allocated_type_units = 1;
5072 dwarf2_per_objfile->n_allocated_type_units *= 2;
5073 dwarf2_per_objfile->all_type_units
224c3ddb
SM
5074 = XRESIZEVEC (struct signatured_type *,
5075 dwarf2_per_objfile->all_type_units,
5076 dwarf2_per_objfile->n_allocated_type_units);
6aa5f3a6
DE
5077 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5078 }
5079 dwarf2_per_objfile->n_type_units = n_type_units;
5080
5081 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5082 struct signatured_type);
5083 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5084 sig_type->signature = sig;
5085 sig_type->per_cu.is_debug_types = 1;
5086 if (dwarf2_per_objfile->using_index)
5087 {
5088 sig_type->per_cu.v.quick =
5089 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5090 struct dwarf2_per_cu_quick_data);
5091 }
5092
5093 if (slot == NULL)
5094 {
5095 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5096 sig_type, INSERT);
5097 }
5098 gdb_assert (*slot == NULL);
5099 *slot = sig_type;
5100 /* The rest of sig_type must be filled in by the caller. */
5101 return sig_type;
5102}
5103
a2ce51a0
DE
5104/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5105 Fill in SIG_ENTRY with DWO_ENTRY. */
5106
5107static void
5108fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5109 struct signatured_type *sig_entry,
5110 struct dwo_unit *dwo_entry)
5111{
7ee85ab1 5112 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
5113 gdb_assert (! sig_entry->per_cu.queued);
5114 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
5115 if (dwarf2_per_objfile->using_index)
5116 {
5117 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 5118 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
5119 }
5120 else
5121 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0 5122 gdb_assert (sig_entry->signature == dwo_entry->signature);
9c541725 5123 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
a2ce51a0 5124 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
5125 gdb_assert (sig_entry->dwo_unit == NULL);
5126
5127 sig_entry->per_cu.section = dwo_entry->section;
9c541725 5128 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7ee85ab1
DE
5129 sig_entry->per_cu.length = dwo_entry->length;
5130 sig_entry->per_cu.reading_dwo_directly = 1;
5131 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
5132 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5133 sig_entry->dwo_unit = dwo_entry;
5134}
5135
5136/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
5137 If we haven't read the TU yet, create the signatured_type data structure
5138 for a TU to be read in directly from a DWO file, bypassing the stub.
5139 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5140 using .gdb_index, then when reading a CU we want to stay in the DWO file
5141 containing that CU. Otherwise we could end up reading several other DWO
5142 files (due to comdat folding) to process the transitive closure of all the
5143 mentioned TUs, and that can be slow. The current DWO file will have every
5144 type signature that it needs.
a2ce51a0
DE
5145 We only do this for .gdb_index because in the psymtab case we already have
5146 to read all the DWOs to build the type unit groups. */
5147
5148static struct signatured_type *
5149lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5150{
5151 struct objfile *objfile = dwarf2_per_objfile->objfile;
5152 struct dwo_file *dwo_file;
5153 struct dwo_unit find_dwo_entry, *dwo_entry;
5154 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 5155 void **slot;
a2ce51a0
DE
5156
5157 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5158
6aa5f3a6
DE
5159 /* If TU skeletons have been removed then we may not have read in any
5160 TUs yet. */
5161 if (dwarf2_per_objfile->signatured_types == NULL)
5162 {
5163 dwarf2_per_objfile->signatured_types
5164 = allocate_signatured_type_table (objfile);
5165 }
a2ce51a0
DE
5166
5167 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
5168 Use the global signatured_types array to do our own comdat-folding
5169 of types. If this is the first time we're reading this TU, and
5170 the TU has an entry in .gdb_index, replace the recorded data from
5171 .gdb_index with this TU. */
a2ce51a0 5172
a2ce51a0 5173 find_sig_entry.signature = sig;
6aa5f3a6
DE
5174 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5175 &find_sig_entry, INSERT);
9a3c8263 5176 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
5177
5178 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
5179 read. Don't reassign the global entry to point to this DWO if that's
5180 the case. Also note that if the TU is already being read, it may not
5181 have come from a DWO, the program may be a mix of Fission-compiled
5182 code and non-Fission-compiled code. */
5183
5184 /* Have we already tried to read this TU?
5185 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5186 needn't exist in the global table yet). */
5187 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
5188 return sig_entry;
5189
6aa5f3a6
DE
5190 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5191 dwo_unit of the TU itself. */
5192 dwo_file = cu->dwo_unit->dwo_file;
5193
a2ce51a0
DE
5194 /* Ok, this is the first time we're reading this TU. */
5195 if (dwo_file->tus == NULL)
5196 return NULL;
5197 find_dwo_entry.signature = sig;
9a3c8263 5198 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
5199 if (dwo_entry == NULL)
5200 return NULL;
5201
6aa5f3a6
DE
5202 /* If the global table doesn't have an entry for this TU, add one. */
5203 if (sig_entry == NULL)
5204 sig_entry = add_type_unit (sig, slot);
5205
a2ce51a0 5206 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 5207 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
5208 return sig_entry;
5209}
5210
a2ce51a0
DE
5211/* Subroutine of lookup_signatured_type.
5212 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
5213 then try the DWP file. If the TU stub (skeleton) has been removed then
5214 it won't be in .gdb_index. */
a2ce51a0
DE
5215
5216static struct signatured_type *
5217lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5218{
5219 struct objfile *objfile = dwarf2_per_objfile->objfile;
5220 struct dwp_file *dwp_file = get_dwp_file ();
5221 struct dwo_unit *dwo_entry;
5222 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 5223 void **slot;
a2ce51a0
DE
5224
5225 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5226 gdb_assert (dwp_file != NULL);
5227
6aa5f3a6
DE
5228 /* If TU skeletons have been removed then we may not have read in any
5229 TUs yet. */
5230 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 5231 {
6aa5f3a6
DE
5232 dwarf2_per_objfile->signatured_types
5233 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
5234 }
5235
6aa5f3a6
DE
5236 find_sig_entry.signature = sig;
5237 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5238 &find_sig_entry, INSERT);
9a3c8263 5239 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
5240
5241 /* Have we already tried to read this TU?
5242 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5243 needn't exist in the global table yet). */
5244 if (sig_entry != NULL)
5245 return sig_entry;
5246
a2ce51a0
DE
5247 if (dwp_file->tus == NULL)
5248 return NULL;
57d63ce2
DE
5249 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5250 sig, 1 /* is_debug_types */);
a2ce51a0
DE
5251 if (dwo_entry == NULL)
5252 return NULL;
5253
6aa5f3a6 5254 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
5255 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5256
a2ce51a0
DE
5257 return sig_entry;
5258}
5259
380bca97 5260/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
5261 Returns NULL if signature SIG is not present in the table.
5262 It is up to the caller to complain about this. */
348e048f
DE
5263
5264static struct signatured_type *
a2ce51a0 5265lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 5266{
a2ce51a0
DE
5267 if (cu->dwo_unit
5268 && dwarf2_per_objfile->using_index)
5269 {
5270 /* We're in a DWO/DWP file, and we're using .gdb_index.
5271 These cases require special processing. */
5272 if (get_dwp_file () == NULL)
5273 return lookup_dwo_signatured_type (cu, sig);
5274 else
5275 return lookup_dwp_signatured_type (cu, sig);
5276 }
5277 else
5278 {
5279 struct signatured_type find_entry, *entry;
348e048f 5280
a2ce51a0
DE
5281 if (dwarf2_per_objfile->signatured_types == NULL)
5282 return NULL;
5283 find_entry.signature = sig;
9a3c8263
SM
5284 entry = ((struct signatured_type *)
5285 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
5286 return entry;
5287 }
348e048f 5288}
42e7ad6c
DE
5289\f
5290/* Low level DIE reading support. */
348e048f 5291
d85a05f0
DJ
5292/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5293
5294static void
5295init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5296 struct dwarf2_cu *cu,
3019eac3
DE
5297 struct dwarf2_section_info *section,
5298 struct dwo_file *dwo_file)
d85a05f0 5299{
fceca515 5300 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5301 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5302 reader->cu = cu;
3019eac3 5303 reader->dwo_file = dwo_file;
dee91e82
DE
5304 reader->die_section = section;
5305 reader->buffer = section->buffer;
f664829e 5306 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5307 reader->comp_dir = NULL;
d85a05f0
DJ
5308}
5309
b0c7bfa9
DE
5310/* Subroutine of init_cutu_and_read_dies to simplify it.
5311 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5312 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5313 already.
5314
5315 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5316 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5317 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5318 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5319 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5320 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5321 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5322 are filled in with the info of the DIE from the DWO file.
5323 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5324 provided an abbrev table to use.
5325 The result is non-zero if a valid (non-dummy) DIE was found. */
5326
5327static int
5328read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5329 struct dwo_unit *dwo_unit,
5330 int abbrev_table_provided,
5331 struct die_info *stub_comp_unit_die,
a2ce51a0 5332 const char *stub_comp_dir,
b0c7bfa9 5333 struct die_reader_specs *result_reader,
d521ce57 5334 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5335 struct die_info **result_comp_unit_die,
5336 int *result_has_children)
5337{
5338 struct objfile *objfile = dwarf2_per_objfile->objfile;
5339 struct dwarf2_cu *cu = this_cu->cu;
5340 struct dwarf2_section_info *section;
5341 bfd *abfd;
d521ce57 5342 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5343 ULONGEST signature; /* Or dwo_id. */
5344 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5345 int i,num_extra_attrs;
5346 struct dwarf2_section_info *dwo_abbrev_section;
5347 struct attribute *attr;
5348 struct die_info *comp_unit_die;
5349
b0aeadb3
DE
5350 /* At most one of these may be provided. */
5351 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5352
b0c7bfa9
DE
5353 /* These attributes aren't processed until later:
5354 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5355 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5356 referenced later. However, these attributes are found in the stub
5357 which we won't have later. In order to not impose this complication
5358 on the rest of the code, we read them here and copy them to the
5359 DWO CU/TU die. */
b0c7bfa9
DE
5360
5361 stmt_list = NULL;
5362 low_pc = NULL;
5363 high_pc = NULL;
5364 ranges = NULL;
5365 comp_dir = NULL;
5366
5367 if (stub_comp_unit_die != NULL)
5368 {
5369 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5370 DWO file. */
5371 if (! this_cu->is_debug_types)
5372 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5373 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5374 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5375 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5376 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5377
5378 /* There should be a DW_AT_addr_base attribute here (if needed).
5379 We need the value before we can process DW_FORM_GNU_addr_index. */
5380 cu->addr_base = 0;
5381 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5382 if (attr)
5383 cu->addr_base = DW_UNSND (attr);
5384
5385 /* There should be a DW_AT_ranges_base attribute here (if needed).
5386 We need the value before we can process DW_AT_ranges. */
5387 cu->ranges_base = 0;
5388 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5389 if (attr)
5390 cu->ranges_base = DW_UNSND (attr);
5391 }
a2ce51a0
DE
5392 else if (stub_comp_dir != NULL)
5393 {
5394 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 5395 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
5396 comp_dir->name = DW_AT_comp_dir;
5397 comp_dir->form = DW_FORM_string;
5398 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5399 DW_STRING (comp_dir) = stub_comp_dir;
5400 }
b0c7bfa9
DE
5401
5402 /* Set up for reading the DWO CU/TU. */
5403 cu->dwo_unit = dwo_unit;
5404 section = dwo_unit->section;
5405 dwarf2_read_section (objfile, section);
a32a8923 5406 abfd = get_section_bfd_owner (section);
9c541725
PA
5407 begin_info_ptr = info_ptr = (section->buffer
5408 + to_underlying (dwo_unit->sect_off));
b0c7bfa9
DE
5409 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5410 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5411
5412 if (this_cu->is_debug_types)
5413 {
b0c7bfa9
DE
5414 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5415
43988095 5416 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
b0c7bfa9 5417 dwo_abbrev_section,
43988095 5418 info_ptr, rcuh_kind::TYPE);
a2ce51a0 5419 /* This is not an assert because it can be caused by bad debug info. */
43988095 5420 if (sig_type->signature != cu->header.signature)
a2ce51a0
DE
5421 {
5422 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5423 " TU at offset 0x%x [in module %s]"),
5424 hex_string (sig_type->signature),
43988095 5425 hex_string (cu->header.signature),
9c541725 5426 to_underlying (dwo_unit->sect_off),
a2ce51a0
DE
5427 bfd_get_filename (abfd));
5428 }
9c541725 5429 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
5430 /* For DWOs coming from DWP files, we don't know the CU length
5431 nor the type's offset in the TU until now. */
5432 dwo_unit->length = get_cu_length (&cu->header);
9c541725 5433 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
b0c7bfa9
DE
5434
5435 /* Establish the type offset that can be used to lookup the type.
5436 For DWO files, we don't know it until now. */
9c541725
PA
5437 sig_type->type_offset_in_section
5438 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
b0c7bfa9
DE
5439 }
5440 else
5441 {
5442 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5443 dwo_abbrev_section,
43988095 5444 info_ptr, rcuh_kind::COMPILE);
9c541725 5445 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
5446 /* For DWOs coming from DWP files, we don't know the CU length
5447 until now. */
5448 dwo_unit->length = get_cu_length (&cu->header);
5449 }
5450
02142a6c
DE
5451 /* Replace the CU's original abbrev table with the DWO's.
5452 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5453 if (abbrev_table_provided)
5454 {
5455 /* Don't free the provided abbrev table, the caller of
5456 init_cutu_and_read_dies owns it. */
5457 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5458 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5459 make_cleanup (dwarf2_free_abbrev_table, cu);
5460 }
5461 else
5462 {
5463 dwarf2_free_abbrev_table (cu);
5464 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5465 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5466 }
5467
5468 /* Read in the die, but leave space to copy over the attributes
5469 from the stub. This has the benefit of simplifying the rest of
5470 the code - all the work to maintain the illusion of a single
5471 DW_TAG_{compile,type}_unit DIE is done here. */
5472 num_extra_attrs = ((stmt_list != NULL)
5473 + (low_pc != NULL)
5474 + (high_pc != NULL)
5475 + (ranges != NULL)
5476 + (comp_dir != NULL));
5477 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5478 result_has_children, num_extra_attrs);
5479
5480 /* Copy over the attributes from the stub to the DIE we just read in. */
5481 comp_unit_die = *result_comp_unit_die;
5482 i = comp_unit_die->num_attrs;
5483 if (stmt_list != NULL)
5484 comp_unit_die->attrs[i++] = *stmt_list;
5485 if (low_pc != NULL)
5486 comp_unit_die->attrs[i++] = *low_pc;
5487 if (high_pc != NULL)
5488 comp_unit_die->attrs[i++] = *high_pc;
5489 if (ranges != NULL)
5490 comp_unit_die->attrs[i++] = *ranges;
5491 if (comp_dir != NULL)
5492 comp_unit_die->attrs[i++] = *comp_dir;
5493 comp_unit_die->num_attrs += num_extra_attrs;
5494
b4f54984 5495 if (dwarf_die_debug)
bf6af496
DE
5496 {
5497 fprintf_unfiltered (gdb_stdlog,
5498 "Read die from %s@0x%x of %s:\n",
a32a8923 5499 get_section_name (section),
bf6af496
DE
5500 (unsigned) (begin_info_ptr - section->buffer),
5501 bfd_get_filename (abfd));
b4f54984 5502 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5503 }
5504
a2ce51a0
DE
5505 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5506 TUs by skipping the stub and going directly to the entry in the DWO file.
5507 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5508 to get it via circuitous means. Blech. */
5509 if (comp_dir != NULL)
5510 result_reader->comp_dir = DW_STRING (comp_dir);
5511
b0c7bfa9
DE
5512 /* Skip dummy compilation units. */
5513 if (info_ptr >= begin_info_ptr + dwo_unit->length
5514 || peek_abbrev_code (abfd, info_ptr) == 0)
5515 return 0;
5516
5517 *result_info_ptr = info_ptr;
5518 return 1;
5519}
5520
5521/* Subroutine of init_cutu_and_read_dies to simplify it.
5522 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5523 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5524
5525static struct dwo_unit *
5526lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5527 struct die_info *comp_unit_die)
5528{
5529 struct dwarf2_cu *cu = this_cu->cu;
5530 struct attribute *attr;
5531 ULONGEST signature;
5532 struct dwo_unit *dwo_unit;
5533 const char *comp_dir, *dwo_name;
5534
a2ce51a0
DE
5535 gdb_assert (cu != NULL);
5536
b0c7bfa9 5537 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
5538 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5539 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
5540
5541 if (this_cu->is_debug_types)
5542 {
5543 struct signatured_type *sig_type;
5544
5545 /* Since this_cu is the first member of struct signatured_type,
5546 we can go from a pointer to one to a pointer to the other. */
5547 sig_type = (struct signatured_type *) this_cu;
5548 signature = sig_type->signature;
5549 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5550 }
5551 else
5552 {
5553 struct attribute *attr;
5554
5555 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5556 if (! attr)
5557 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5558 " [in module %s]"),
4262abfb 5559 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5560 signature = DW_UNSND (attr);
5561 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5562 signature);
5563 }
5564
b0c7bfa9
DE
5565 return dwo_unit;
5566}
5567
a2ce51a0 5568/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5569 See it for a description of the parameters.
5570 Read a TU directly from a DWO file, bypassing the stub.
5571
5572 Note: This function could be a little bit simpler if we shared cleanups
5573 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5574 to do, so we keep this function self-contained. Or we could move this
5575 into our caller, but it's complex enough already. */
a2ce51a0
DE
5576
5577static void
6aa5f3a6
DE
5578init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5579 int use_existing_cu, int keep,
a2ce51a0
DE
5580 die_reader_func_ftype *die_reader_func,
5581 void *data)
5582{
5583 struct dwarf2_cu *cu;
5584 struct signatured_type *sig_type;
6aa5f3a6 5585 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5586 struct die_reader_specs reader;
5587 const gdb_byte *info_ptr;
5588 struct die_info *comp_unit_die;
5589 int has_children;
5590
5591 /* Verify we can do the following downcast, and that we have the
5592 data we need. */
5593 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5594 sig_type = (struct signatured_type *) this_cu;
5595 gdb_assert (sig_type->dwo_unit != NULL);
5596
5597 cleanups = make_cleanup (null_cleanup, NULL);
5598
6aa5f3a6
DE
5599 if (use_existing_cu && this_cu->cu != NULL)
5600 {
5601 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5602 cu = this_cu->cu;
5603 /* There's no need to do the rereading_dwo_cu handling that
5604 init_cutu_and_read_dies does since we don't read the stub. */
5605 }
5606 else
5607 {
5608 /* If !use_existing_cu, this_cu->cu must be NULL. */
5609 gdb_assert (this_cu->cu == NULL);
8d749320 5610 cu = XNEW (struct dwarf2_cu);
6aa5f3a6
DE
5611 init_one_comp_unit (cu, this_cu);
5612 /* If an error occurs while loading, release our storage. */
5613 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5614 }
5615
5616 /* A future optimization, if needed, would be to use an existing
5617 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5618 could share abbrev tables. */
a2ce51a0
DE
5619
5620 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5621 0 /* abbrev_table_provided */,
5622 NULL /* stub_comp_unit_die */,
5623 sig_type->dwo_unit->dwo_file->comp_dir,
5624 &reader, &info_ptr,
5625 &comp_unit_die, &has_children) == 0)
5626 {
5627 /* Dummy die. */
5628 do_cleanups (cleanups);
5629 return;
5630 }
5631
5632 /* All the "real" work is done here. */
5633 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5634
6aa5f3a6 5635 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5636 but the alternative is making the latter more complex.
5637 This function is only for the special case of using DWO files directly:
5638 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5639 if (free_cu_cleanup != NULL)
a2ce51a0 5640 {
6aa5f3a6
DE
5641 if (keep)
5642 {
5643 /* We've successfully allocated this compilation unit. Let our
5644 caller clean it up when finished with it. */
5645 discard_cleanups (free_cu_cleanup);
a2ce51a0 5646
6aa5f3a6
DE
5647 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5648 So we have to manually free the abbrev table. */
5649 dwarf2_free_abbrev_table (cu);
a2ce51a0 5650
6aa5f3a6
DE
5651 /* Link this CU into read_in_chain. */
5652 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5653 dwarf2_per_objfile->read_in_chain = this_cu;
5654 }
5655 else
5656 do_cleanups (free_cu_cleanup);
a2ce51a0 5657 }
a2ce51a0
DE
5658
5659 do_cleanups (cleanups);
5660}
5661
fd820528 5662/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5663 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5664
f4dc4d17
DE
5665 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5666 Otherwise the table specified in the comp unit header is read in and used.
5667 This is an optimization for when we already have the abbrev table.
5668
dee91e82
DE
5669 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5670 Otherwise, a new CU is allocated with xmalloc.
5671
5672 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5673 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5674
5675 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5676 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5677
70221824 5678static void
fd820528 5679init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5680 struct abbrev_table *abbrev_table,
fd820528
DE
5681 int use_existing_cu, int keep,
5682 die_reader_func_ftype *die_reader_func,
5683 void *data)
c906108c 5684{
dee91e82 5685 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5686 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5687 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5688 struct dwarf2_cu *cu;
d521ce57 5689 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5690 struct die_reader_specs reader;
d85a05f0 5691 struct die_info *comp_unit_die;
dee91e82 5692 int has_children;
d85a05f0 5693 struct attribute *attr;
365156ad 5694 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5695 struct signatured_type *sig_type = NULL;
4bdcc0c1 5696 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5697 /* Non-zero if CU currently points to a DWO file and we need to
5698 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5699 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5700 int rereading_dwo_cu = 0;
c906108c 5701
b4f54984 5702 if (dwarf_die_debug)
09406207
DE
5703 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5704 this_cu->is_debug_types ? "type" : "comp",
9c541725 5705 to_underlying (this_cu->sect_off));
09406207 5706
dee91e82
DE
5707 if (use_existing_cu)
5708 gdb_assert (keep);
23745b47 5709
a2ce51a0
DE
5710 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5711 file (instead of going through the stub), short-circuit all of this. */
5712 if (this_cu->reading_dwo_directly)
5713 {
5714 /* Narrow down the scope of possibilities to have to understand. */
5715 gdb_assert (this_cu->is_debug_types);
5716 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5717 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5718 die_reader_func, data);
a2ce51a0
DE
5719 return;
5720 }
5721
dee91e82
DE
5722 cleanups = make_cleanup (null_cleanup, NULL);
5723
5724 /* This is cheap if the section is already read in. */
5725 dwarf2_read_section (objfile, section);
5726
9c541725 5727 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
36586728
TT
5728
5729 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5730
5731 if (use_existing_cu && this_cu->cu != NULL)
5732 {
5733 cu = this_cu->cu;
42e7ad6c
DE
5734 /* If this CU is from a DWO file we need to start over, we need to
5735 refetch the attributes from the skeleton CU.
5736 This could be optimized by retrieving those attributes from when we
5737 were here the first time: the previous comp_unit_die was stored in
5738 comp_unit_obstack. But there's no data yet that we need this
5739 optimization. */
5740 if (cu->dwo_unit != NULL)
5741 rereading_dwo_cu = 1;
dee91e82
DE
5742 }
5743 else
5744 {
5745 /* If !use_existing_cu, this_cu->cu must be NULL. */
5746 gdb_assert (this_cu->cu == NULL);
8d749320 5747 cu = XNEW (struct dwarf2_cu);
dee91e82 5748 init_one_comp_unit (cu, this_cu);
dee91e82 5749 /* If an error occurs while loading, release our storage. */
365156ad 5750 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5751 }
dee91e82 5752
b0c7bfa9 5753 /* Get the header. */
9c541725 5754 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
42e7ad6c
DE
5755 {
5756 /* We already have the header, there's no need to read it in again. */
9c541725 5757 info_ptr += to_underlying (cu->header.first_die_cu_offset);
42e7ad6c
DE
5758 }
5759 else
5760 {
3019eac3 5761 if (this_cu->is_debug_types)
dee91e82 5762 {
43988095 5763 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4bdcc0c1 5764 abbrev_section, info_ptr,
43988095 5765 rcuh_kind::TYPE);
dee91e82 5766
42e7ad6c
DE
5767 /* Since per_cu is the first member of struct signatured_type,
5768 we can go from a pointer to one to a pointer to the other. */
5769 sig_type = (struct signatured_type *) this_cu;
43988095 5770 gdb_assert (sig_type->signature == cu->header.signature);
9c541725
PA
5771 gdb_assert (sig_type->type_offset_in_tu
5772 == cu->header.type_cu_offset_in_tu);
5773 gdb_assert (this_cu->sect_off == cu->header.sect_off);
dee91e82 5774
42e7ad6c
DE
5775 /* LENGTH has not been set yet for type units if we're
5776 using .gdb_index. */
1ce1cefd 5777 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5778
5779 /* Establish the type offset that can be used to lookup the type. */
9c541725
PA
5780 sig_type->type_offset_in_section =
5781 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
43988095
JK
5782
5783 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
5784 }
5785 else
5786 {
4bdcc0c1
DE
5787 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5788 abbrev_section,
43988095
JK
5789 info_ptr,
5790 rcuh_kind::COMPILE);
dee91e82 5791
9c541725 5792 gdb_assert (this_cu->sect_off == cu->header.sect_off);
1ce1cefd 5793 gdb_assert (this_cu->length == get_cu_length (&cu->header));
43988095 5794 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
5795 }
5796 }
10b3939b 5797
6caca83c 5798 /* Skip dummy compilation units. */
dee91e82 5799 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5800 || peek_abbrev_code (abfd, info_ptr) == 0)
5801 {
dee91e82 5802 do_cleanups (cleanups);
21b2bd31 5803 return;
6caca83c
CC
5804 }
5805
433df2d4
DE
5806 /* If we don't have them yet, read the abbrevs for this compilation unit.
5807 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5808 done. Note that it's important that if the CU had an abbrev table
5809 on entry we don't free it when we're done: Somewhere up the call stack
5810 it may be in use. */
f4dc4d17
DE
5811 if (abbrev_table != NULL)
5812 {
5813 gdb_assert (cu->abbrev_table == NULL);
9c541725 5814 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
f4dc4d17
DE
5815 cu->abbrev_table = abbrev_table;
5816 }
5817 else if (cu->abbrev_table == NULL)
dee91e82 5818 {
4bdcc0c1 5819 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5820 make_cleanup (dwarf2_free_abbrev_table, cu);
5821 }
42e7ad6c
DE
5822 else if (rereading_dwo_cu)
5823 {
5824 dwarf2_free_abbrev_table (cu);
5825 dwarf2_read_abbrevs (cu, abbrev_section);
5826 }
af703f96 5827
dee91e82 5828 /* Read the top level CU/TU die. */
3019eac3 5829 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5830 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5831
b0c7bfa9
DE
5832 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5833 from the DWO file.
5834 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5835 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5836 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5837 if (attr)
5838 {
3019eac3 5839 struct dwo_unit *dwo_unit;
b0c7bfa9 5840 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5841
5842 if (has_children)
6a506a2d
DE
5843 {
5844 complaint (&symfile_complaints,
5845 _("compilation unit with DW_AT_GNU_dwo_name"
5846 " has children (offset 0x%x) [in module %s]"),
9c541725 5847 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
6a506a2d 5848 }
b0c7bfa9 5849 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5850 if (dwo_unit != NULL)
3019eac3 5851 {
6a506a2d
DE
5852 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5853 abbrev_table != NULL,
a2ce51a0 5854 comp_unit_die, NULL,
6a506a2d
DE
5855 &reader, &info_ptr,
5856 &dwo_comp_unit_die, &has_children) == 0)
5857 {
5858 /* Dummy die. */
5859 do_cleanups (cleanups);
5860 return;
5861 }
5862 comp_unit_die = dwo_comp_unit_die;
5863 }
5864 else
5865 {
5866 /* Yikes, we couldn't find the rest of the DIE, we only have
5867 the stub. A complaint has already been logged. There's
5868 not much more we can do except pass on the stub DIE to
5869 die_reader_func. We don't want to throw an error on bad
5870 debug info. */
3019eac3
DE
5871 }
5872 }
5873
b0c7bfa9 5874 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5875 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5876
b0c7bfa9 5877 /* Done, clean up. */
365156ad 5878 if (free_cu_cleanup != NULL)
348e048f 5879 {
365156ad
TT
5880 if (keep)
5881 {
5882 /* We've successfully allocated this compilation unit. Let our
5883 caller clean it up when finished with it. */
5884 discard_cleanups (free_cu_cleanup);
dee91e82 5885
365156ad
TT
5886 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5887 So we have to manually free the abbrev table. */
5888 dwarf2_free_abbrev_table (cu);
dee91e82 5889
365156ad
TT
5890 /* Link this CU into read_in_chain. */
5891 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5892 dwarf2_per_objfile->read_in_chain = this_cu;
5893 }
5894 else
5895 do_cleanups (free_cu_cleanup);
348e048f 5896 }
365156ad
TT
5897
5898 do_cleanups (cleanups);
dee91e82
DE
5899}
5900
33e80786
DE
5901/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5902 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5903 to have already done the lookup to find the DWO file).
dee91e82
DE
5904
5905 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5906 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5907
5908 We fill in THIS_CU->length.
5909
5910 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5911 linker) then DIE_READER_FUNC will not get called.
5912
5913 THIS_CU->cu is always freed when done.
3019eac3
DE
5914 This is done in order to not leave THIS_CU->cu in a state where we have
5915 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5916
5917static void
5918init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5919 struct dwo_file *dwo_file,
dee91e82
DE
5920 die_reader_func_ftype *die_reader_func,
5921 void *data)
5922{
5923 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5924 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5925 bfd *abfd = get_section_bfd_owner (section);
33e80786 5926 struct dwarf2_section_info *abbrev_section;
dee91e82 5927 struct dwarf2_cu cu;
d521ce57 5928 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5929 struct die_reader_specs reader;
5930 struct cleanup *cleanups;
5931 struct die_info *comp_unit_die;
5932 int has_children;
5933
b4f54984 5934 if (dwarf_die_debug)
09406207
DE
5935 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5936 this_cu->is_debug_types ? "type" : "comp",
9c541725 5937 to_underlying (this_cu->sect_off));
09406207 5938
dee91e82
DE
5939 gdb_assert (this_cu->cu == NULL);
5940
33e80786
DE
5941 abbrev_section = (dwo_file != NULL
5942 ? &dwo_file->sections.abbrev
5943 : get_abbrev_section_for_cu (this_cu));
5944
dee91e82
DE
5945 /* This is cheap if the section is already read in. */
5946 dwarf2_read_section (objfile, section);
5947
5948 init_one_comp_unit (&cu, this_cu);
5949
5950 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5951
9c541725 5952 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
4bdcc0c1
DE
5953 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5954 abbrev_section, info_ptr,
43988095
JK
5955 (this_cu->is_debug_types
5956 ? rcuh_kind::TYPE
5957 : rcuh_kind::COMPILE));
dee91e82 5958
1ce1cefd 5959 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5960
5961 /* Skip dummy compilation units. */
5962 if (info_ptr >= begin_info_ptr + this_cu->length
5963 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5964 {
dee91e82 5965 do_cleanups (cleanups);
21b2bd31 5966 return;
93311388 5967 }
72bf9492 5968
dee91e82
DE
5969 dwarf2_read_abbrevs (&cu, abbrev_section);
5970 make_cleanup (dwarf2_free_abbrev_table, &cu);
5971
3019eac3 5972 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5973 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5974
5975 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5976
5977 do_cleanups (cleanups);
5978}
5979
3019eac3
DE
5980/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5981 does not lookup the specified DWO file.
5982 This cannot be used to read DWO files.
dee91e82
DE
5983
5984 THIS_CU->cu is always freed when done.
3019eac3
DE
5985 This is done in order to not leave THIS_CU->cu in a state where we have
5986 to care whether it refers to the "main" CU or the DWO CU.
5987 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5988
5989static void
5990init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5991 die_reader_func_ftype *die_reader_func,
5992 void *data)
5993{
33e80786 5994 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5995}
0018ea6f
DE
5996\f
5997/* Type Unit Groups.
dee91e82 5998
0018ea6f
DE
5999 Type Unit Groups are a way to collapse the set of all TUs (type units) into
6000 a more manageable set. The grouping is done by DW_AT_stmt_list entry
6001 so that all types coming from the same compilation (.o file) are grouped
6002 together. A future step could be to put the types in the same symtab as
6003 the CU the types ultimately came from. */
ff013f42 6004
f4dc4d17
DE
6005static hashval_t
6006hash_type_unit_group (const void *item)
6007{
9a3c8263
SM
6008 const struct type_unit_group *tu_group
6009 = (const struct type_unit_group *) item;
f4dc4d17 6010
094b34ac 6011 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 6012}
348e048f
DE
6013
6014static int
f4dc4d17 6015eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 6016{
9a3c8263
SM
6017 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6018 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 6019
094b34ac 6020 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 6021}
348e048f 6022
f4dc4d17
DE
6023/* Allocate a hash table for type unit groups. */
6024
6025static htab_t
6026allocate_type_unit_groups_table (void)
6027{
6028 return htab_create_alloc_ex (3,
6029 hash_type_unit_group,
6030 eq_type_unit_group,
6031 NULL,
6032 &dwarf2_per_objfile->objfile->objfile_obstack,
6033 hashtab_obstack_allocate,
6034 dummy_obstack_deallocate);
6035}
dee91e82 6036
f4dc4d17
DE
6037/* Type units that don't have DW_AT_stmt_list are grouped into their own
6038 partial symtabs. We combine several TUs per psymtab to not let the size
6039 of any one psymtab grow too big. */
6040#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6041#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 6042
094b34ac 6043/* Helper routine for get_type_unit_group.
f4dc4d17
DE
6044 Create the type_unit_group object used to hold one or more TUs. */
6045
6046static struct type_unit_group *
094b34ac 6047create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
6048{
6049 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 6050 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 6051 struct type_unit_group *tu_group;
f4dc4d17
DE
6052
6053 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6054 struct type_unit_group);
094b34ac 6055 per_cu = &tu_group->per_cu;
f4dc4d17 6056 per_cu->objfile = objfile;
f4dc4d17 6057
094b34ac
DE
6058 if (dwarf2_per_objfile->using_index)
6059 {
6060 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6061 struct dwarf2_per_cu_quick_data);
094b34ac
DE
6062 }
6063 else
6064 {
9c541725 6065 unsigned int line_offset = to_underlying (line_offset_struct);
094b34ac
DE
6066 struct partial_symtab *pst;
6067 char *name;
6068
6069 /* Give the symtab a useful name for debug purposes. */
6070 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6071 name = xstrprintf ("<type_units_%d>",
6072 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6073 else
6074 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6075
6076 pst = create_partial_symtab (per_cu, name);
6077 pst->anonymous = 1;
f4dc4d17 6078
094b34ac
DE
6079 xfree (name);
6080 }
f4dc4d17 6081
094b34ac 6082 tu_group->hash.dwo_unit = cu->dwo_unit;
9c541725 6083 tu_group->hash.line_sect_off = line_offset_struct;
f4dc4d17
DE
6084
6085 return tu_group;
6086}
6087
094b34ac
DE
6088/* Look up the type_unit_group for type unit CU, and create it if necessary.
6089 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
6090
6091static struct type_unit_group *
ff39bb5e 6092get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
6093{
6094 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6095 struct type_unit_group *tu_group;
6096 void **slot;
6097 unsigned int line_offset;
6098 struct type_unit_group type_unit_group_for_lookup;
6099
6100 if (dwarf2_per_objfile->type_unit_groups == NULL)
6101 {
6102 dwarf2_per_objfile->type_unit_groups =
6103 allocate_type_unit_groups_table ();
6104 }
6105
6106 /* Do we need to create a new group, or can we use an existing one? */
6107
6108 if (stmt_list)
6109 {
6110 line_offset = DW_UNSND (stmt_list);
6111 ++tu_stats->nr_symtab_sharers;
6112 }
6113 else
6114 {
6115 /* Ugh, no stmt_list. Rare, but we have to handle it.
6116 We can do various things here like create one group per TU or
6117 spread them over multiple groups to split up the expansion work.
6118 To avoid worst case scenarios (too many groups or too large groups)
6119 we, umm, group them in bunches. */
6120 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6121 | (tu_stats->nr_stmt_less_type_units
6122 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6123 ++tu_stats->nr_stmt_less_type_units;
6124 }
6125
094b34ac 6126 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
9c541725 6127 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
f4dc4d17
DE
6128 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6129 &type_unit_group_for_lookup, INSERT);
6130 if (*slot != NULL)
6131 {
9a3c8263 6132 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
6133 gdb_assert (tu_group != NULL);
6134 }
6135 else
6136 {
9c541725 6137 sect_offset line_offset_struct = (sect_offset) line_offset;
094b34ac 6138 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
6139 *slot = tu_group;
6140 ++tu_stats->nr_symtabs;
6141 }
6142
6143 return tu_group;
6144}
0018ea6f
DE
6145\f
6146/* Partial symbol tables. */
6147
6148/* Create a psymtab named NAME and assign it to PER_CU.
6149
6150 The caller must fill in the following details:
6151 dirname, textlow, texthigh. */
6152
6153static struct partial_symtab *
6154create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6155{
6156 struct objfile *objfile = per_cu->objfile;
6157 struct partial_symtab *pst;
6158
18a94d75 6159 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
6160 objfile->global_psymbols.next,
6161 objfile->static_psymbols.next);
6162
6163 pst->psymtabs_addrmap_supported = 1;
6164
6165 /* This is the glue that links PST into GDB's symbol API. */
6166 pst->read_symtab_private = per_cu;
6167 pst->read_symtab = dwarf2_read_symtab;
6168 per_cu->v.psymtab = pst;
6169
6170 return pst;
6171}
6172
b93601f3
TT
6173/* The DATA object passed to process_psymtab_comp_unit_reader has this
6174 type. */
6175
6176struct process_psymtab_comp_unit_data
6177{
6178 /* True if we are reading a DW_TAG_partial_unit. */
6179
6180 int want_partial_unit;
6181
6182 /* The "pretend" language that is used if the CU doesn't declare a
6183 language. */
6184
6185 enum language pretend_language;
6186};
6187
0018ea6f
DE
6188/* die_reader_func for process_psymtab_comp_unit. */
6189
6190static void
6191process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6192 const gdb_byte *info_ptr,
0018ea6f
DE
6193 struct die_info *comp_unit_die,
6194 int has_children,
6195 void *data)
6196{
6197 struct dwarf2_cu *cu = reader->cu;
6198 struct objfile *objfile = cu->objfile;
3e29f34a 6199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 6200 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
6201 CORE_ADDR baseaddr;
6202 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6203 struct partial_symtab *pst;
3a2b436a 6204 enum pc_bounds_kind cu_bounds_kind;
0018ea6f 6205 const char *filename;
9a3c8263
SM
6206 struct process_psymtab_comp_unit_data *info
6207 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 6208
b93601f3 6209 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
6210 return;
6211
6212 gdb_assert (! per_cu->is_debug_types);
6213
b93601f3 6214 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
6215
6216 cu->list_in_scope = &file_symbols;
6217
6218 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
6219 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6220 if (filename == NULL)
0018ea6f 6221 filename = "";
0018ea6f
DE
6222
6223 pst = create_partial_symtab (per_cu, filename);
6224
6225 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 6226 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
6227
6228 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6229
6230 dwarf2_find_base_address (comp_unit_die, cu);
6231
6232 /* Possibly set the default values of LOWPC and HIGHPC from
6233 `DW_AT_ranges'. */
3a2b436a
JK
6234 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6235 &best_highpc, cu, pst);
6236 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
0018ea6f
DE
6237 /* Store the contiguous range if it is not empty; it can be empty for
6238 CUs with no code. */
6239 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
6240 gdbarch_adjust_dwarf2_addr (gdbarch,
6241 best_lowpc + baseaddr),
6242 gdbarch_adjust_dwarf2_addr (gdbarch,
6243 best_highpc + baseaddr) - 1,
6244 pst);
0018ea6f
DE
6245
6246 /* Check if comp unit has_children.
6247 If so, read the rest of the partial symbols from this comp unit.
6248 If not, there's no more debug_info for this comp unit. */
6249 if (has_children)
6250 {
6251 struct partial_die_info *first_die;
6252 CORE_ADDR lowpc, highpc;
6253
6254 lowpc = ((CORE_ADDR) -1);
6255 highpc = ((CORE_ADDR) 0);
6256
6257 first_die = load_partial_dies (reader, info_ptr, 1);
6258
6259 scan_partial_symbols (first_die, &lowpc, &highpc,
e385593e 6260 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
0018ea6f
DE
6261
6262 /* If we didn't find a lowpc, set it to highpc to avoid
6263 complaints from `maint check'. */
6264 if (lowpc == ((CORE_ADDR) -1))
6265 lowpc = highpc;
6266
6267 /* If the compilation unit didn't have an explicit address range,
6268 then use the information extracted from its child dies. */
e385593e 6269 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
0018ea6f
DE
6270 {
6271 best_lowpc = lowpc;
6272 best_highpc = highpc;
6273 }
6274 }
3e29f34a
MR
6275 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6276 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6277
8763cede 6278 end_psymtab_common (objfile, pst);
0018ea6f
DE
6279
6280 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6281 {
6282 int i;
6283 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6284 struct dwarf2_per_cu_data *iter;
6285
6286 /* Fill in 'dependencies' here; we fill in 'users' in a
6287 post-pass. */
6288 pst->number_of_dependencies = len;
8d749320
SM
6289 pst->dependencies =
6290 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
6291 for (i = 0;
6292 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6293 i, iter);
6294 ++i)
6295 pst->dependencies[i] = iter->v.psymtab;
6296
6297 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6298 }
6299
6300 /* Get the list of files included in the current compilation unit,
6301 and build a psymtab for each of them. */
6302 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6303
b4f54984 6304 if (dwarf_read_debug)
0018ea6f
DE
6305 {
6306 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6307
6308 fprintf_unfiltered (gdb_stdlog,
6309 "Psymtab for %s unit @0x%x: %s - %s"
6310 ", %d global, %d static syms\n",
6311 per_cu->is_debug_types ? "type" : "comp",
9c541725 6312 to_underlying (per_cu->sect_off),
0018ea6f
DE
6313 paddress (gdbarch, pst->textlow),
6314 paddress (gdbarch, pst->texthigh),
6315 pst->n_global_syms, pst->n_static_syms);
6316 }
6317}
6318
6319/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6320 Process compilation unit THIS_CU for a psymtab. */
6321
6322static void
6323process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6324 int want_partial_unit,
6325 enum language pretend_language)
0018ea6f
DE
6326{
6327 /* If this compilation unit was already read in, free the
6328 cached copy in order to read it in again. This is
6329 necessary because we skipped some symbols when we first
6330 read in the compilation unit (see load_partial_dies).
6331 This problem could be avoided, but the benefit is unclear. */
6332 if (this_cu->cu != NULL)
6333 free_one_cached_comp_unit (this_cu);
6334
f1902523
JK
6335 if (this_cu->is_debug_types)
6336 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
6337 NULL);
6338 else
6339 {
6340 process_psymtab_comp_unit_data info;
6341 info.want_partial_unit = want_partial_unit;
6342 info.pretend_language = pretend_language;
6343 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6344 process_psymtab_comp_unit_reader, &info);
6345 }
0018ea6f
DE
6346
6347 /* Age out any secondary CUs. */
6348 age_cached_comp_units ();
6349}
f4dc4d17
DE
6350
6351/* Reader function for build_type_psymtabs. */
6352
6353static void
6354build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6355 const gdb_byte *info_ptr,
f4dc4d17
DE
6356 struct die_info *type_unit_die,
6357 int has_children,
6358 void *data)
6359{
6360 struct objfile *objfile = dwarf2_per_objfile->objfile;
6361 struct dwarf2_cu *cu = reader->cu;
6362 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6363 struct signatured_type *sig_type;
f4dc4d17
DE
6364 struct type_unit_group *tu_group;
6365 struct attribute *attr;
6366 struct partial_die_info *first_die;
6367 CORE_ADDR lowpc, highpc;
6368 struct partial_symtab *pst;
6369
6370 gdb_assert (data == NULL);
0186c6a7
DE
6371 gdb_assert (per_cu->is_debug_types);
6372 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6373
6374 if (! has_children)
6375 return;
6376
6377 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6378 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6379
0186c6a7 6380 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6381
6382 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6383 cu->list_in_scope = &file_symbols;
6384 pst = create_partial_symtab (per_cu, "");
6385 pst->anonymous = 1;
6386
6387 first_die = load_partial_dies (reader, info_ptr, 1);
6388
6389 lowpc = (CORE_ADDR) -1;
6390 highpc = (CORE_ADDR) 0;
6391 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6392
8763cede 6393 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6394}
6395
73051182
DE
6396/* Struct used to sort TUs by their abbreviation table offset. */
6397
6398struct tu_abbrev_offset
6399{
6400 struct signatured_type *sig_type;
6401 sect_offset abbrev_offset;
6402};
6403
6404/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6405
6406static int
6407sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6408{
9a3c8263
SM
6409 const struct tu_abbrev_offset * const *a
6410 = (const struct tu_abbrev_offset * const*) ap;
6411 const struct tu_abbrev_offset * const *b
6412 = (const struct tu_abbrev_offset * const*) bp;
9c541725
PA
6413 sect_offset aoff = (*a)->abbrev_offset;
6414 sect_offset boff = (*b)->abbrev_offset;
73051182
DE
6415
6416 return (aoff > boff) - (aoff < boff);
6417}
6418
6419/* Efficiently read all the type units.
6420 This does the bulk of the work for build_type_psymtabs.
6421
6422 The efficiency is because we sort TUs by the abbrev table they use and
6423 only read each abbrev table once. In one program there are 200K TUs
6424 sharing 8K abbrev tables.
6425
6426 The main purpose of this function is to support building the
6427 dwarf2_per_objfile->type_unit_groups table.
6428 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6429 can collapse the search space by grouping them by stmt_list.
6430 The savings can be significant, in the same program from above the 200K TUs
6431 share 8K stmt_list tables.
6432
6433 FUNC is expected to call get_type_unit_group, which will create the
6434 struct type_unit_group if necessary and add it to
6435 dwarf2_per_objfile->type_unit_groups. */
6436
6437static void
6438build_type_psymtabs_1 (void)
6439{
73051182
DE
6440 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6441 struct cleanup *cleanups;
6442 struct abbrev_table *abbrev_table;
6443 sect_offset abbrev_offset;
6444 struct tu_abbrev_offset *sorted_by_abbrev;
73051182
DE
6445 int i;
6446
6447 /* It's up to the caller to not call us multiple times. */
6448 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6449
6450 if (dwarf2_per_objfile->n_type_units == 0)
6451 return;
6452
6453 /* TUs typically share abbrev tables, and there can be way more TUs than
6454 abbrev tables. Sort by abbrev table to reduce the number of times we
6455 read each abbrev table in.
6456 Alternatives are to punt or to maintain a cache of abbrev tables.
6457 This is simpler and efficient enough for now.
6458
6459 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6460 symtab to use). Typically TUs with the same abbrev offset have the same
6461 stmt_list value too so in practice this should work well.
6462
6463 The basic algorithm here is:
6464
6465 sort TUs by abbrev table
6466 for each TU with same abbrev table:
6467 read abbrev table if first user
6468 read TU top level DIE
6469 [IWBN if DWO skeletons had DW_AT_stmt_list]
6470 call FUNC */
6471
b4f54984 6472 if (dwarf_read_debug)
73051182
DE
6473 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6474
6475 /* Sort in a separate table to maintain the order of all_type_units
6476 for .gdb_index: TU indices directly index all_type_units. */
6477 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6478 dwarf2_per_objfile->n_type_units);
6479 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6480 {
6481 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6482
6483 sorted_by_abbrev[i].sig_type = sig_type;
6484 sorted_by_abbrev[i].abbrev_offset =
6485 read_abbrev_offset (sig_type->per_cu.section,
9c541725 6486 sig_type->per_cu.sect_off);
73051182
DE
6487 }
6488 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6489 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6490 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6491
9c541725 6492 abbrev_offset = (sect_offset) ~(unsigned) 0;
73051182
DE
6493 abbrev_table = NULL;
6494 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6495
6496 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6497 {
6498 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6499
6500 /* Switch to the next abbrev table if necessary. */
6501 if (abbrev_table == NULL
9c541725 6502 || tu->abbrev_offset != abbrev_offset)
73051182
DE
6503 {
6504 if (abbrev_table != NULL)
6505 {
6506 abbrev_table_free (abbrev_table);
6507 /* Reset to NULL in case abbrev_table_read_table throws
6508 an error: abbrev_table_free_cleanup will get called. */
6509 abbrev_table = NULL;
6510 }
6511 abbrev_offset = tu->abbrev_offset;
6512 abbrev_table =
6513 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6514 abbrev_offset);
6515 ++tu_stats->nr_uniq_abbrev_tables;
6516 }
6517
6518 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6519 build_type_psymtabs_reader, NULL);
6520 }
6521
73051182 6522 do_cleanups (cleanups);
6aa5f3a6 6523}
73051182 6524
6aa5f3a6
DE
6525/* Print collected type unit statistics. */
6526
6527static void
6528print_tu_stats (void)
6529{
6530 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6531
6532 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6533 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6534 dwarf2_per_objfile->n_type_units);
6535 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6536 tu_stats->nr_uniq_abbrev_tables);
6537 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6538 tu_stats->nr_symtabs);
6539 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6540 tu_stats->nr_symtab_sharers);
6541 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6542 tu_stats->nr_stmt_less_type_units);
6543 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6544 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6545}
6546
f4dc4d17
DE
6547/* Traversal function for build_type_psymtabs. */
6548
6549static int
6550build_type_psymtab_dependencies (void **slot, void *info)
6551{
6552 struct objfile *objfile = dwarf2_per_objfile->objfile;
6553 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6554 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6555 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6556 int len = VEC_length (sig_type_ptr, tu_group->tus);
6557 struct signatured_type *iter;
f4dc4d17
DE
6558 int i;
6559
6560 gdb_assert (len > 0);
0186c6a7 6561 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6562
6563 pst->number_of_dependencies = len;
8d749320
SM
6564 pst->dependencies =
6565 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 6566 for (i = 0;
0186c6a7 6567 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6568 ++i)
6569 {
0186c6a7
DE
6570 gdb_assert (iter->per_cu.is_debug_types);
6571 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6572 iter->type_unit_group = tu_group;
f4dc4d17
DE
6573 }
6574
0186c6a7 6575 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6576
6577 return 1;
6578}
6579
6580/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6581 Build partial symbol tables for the .debug_types comp-units. */
6582
6583static void
6584build_type_psymtabs (struct objfile *objfile)
6585{
0e50663e 6586 if (! create_all_type_units (objfile))
348e048f
DE
6587 return;
6588
73051182 6589 build_type_psymtabs_1 ();
6aa5f3a6 6590}
f4dc4d17 6591
6aa5f3a6
DE
6592/* Traversal function for process_skeletonless_type_unit.
6593 Read a TU in a DWO file and build partial symbols for it. */
6594
6595static int
6596process_skeletonless_type_unit (void **slot, void *info)
6597{
6598 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9a3c8263 6599 struct objfile *objfile = (struct objfile *) info;
6aa5f3a6
DE
6600 struct signatured_type find_entry, *entry;
6601
6602 /* If this TU doesn't exist in the global table, add it and read it in. */
6603
6604 if (dwarf2_per_objfile->signatured_types == NULL)
6605 {
6606 dwarf2_per_objfile->signatured_types
6607 = allocate_signatured_type_table (objfile);
6608 }
6609
6610 find_entry.signature = dwo_unit->signature;
6611 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6612 INSERT);
6613 /* If we've already seen this type there's nothing to do. What's happening
6614 is we're doing our own version of comdat-folding here. */
6615 if (*slot != NULL)
6616 return 1;
6617
6618 /* This does the job that create_all_type_units would have done for
6619 this TU. */
6620 entry = add_type_unit (dwo_unit->signature, slot);
6621 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6622 *slot = entry;
6623
6624 /* This does the job that build_type_psymtabs_1 would have done. */
6625 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6626 build_type_psymtabs_reader, NULL);
6627
6628 return 1;
6629}
6630
6631/* Traversal function for process_skeletonless_type_units. */
6632
6633static int
6634process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6635{
6636 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6637
6638 if (dwo_file->tus != NULL)
6639 {
6640 htab_traverse_noresize (dwo_file->tus,
6641 process_skeletonless_type_unit, info);
6642 }
6643
6644 return 1;
6645}
6646
6647/* Scan all TUs of DWO files, verifying we've processed them.
6648 This is needed in case a TU was emitted without its skeleton.
6649 Note: This can't be done until we know what all the DWO files are. */
6650
6651static void
6652process_skeletonless_type_units (struct objfile *objfile)
6653{
6654 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6655 if (get_dwp_file () == NULL
6656 && dwarf2_per_objfile->dwo_files != NULL)
6657 {
6658 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6659 process_dwo_file_for_skeletonless_type_units,
6660 objfile);
6661 }
348e048f
DE
6662}
6663
60606b2c
TT
6664/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6665
6666static void
6667psymtabs_addrmap_cleanup (void *o)
6668{
9a3c8263 6669 struct objfile *objfile = (struct objfile *) o;
ec61707d 6670
60606b2c
TT
6671 objfile->psymtabs_addrmap = NULL;
6672}
6673
95554aad
TT
6674/* Compute the 'user' field for each psymtab in OBJFILE. */
6675
6676static void
6677set_partial_user (struct objfile *objfile)
6678{
6679 int i;
6680
6681 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6682 {
8832e7e3 6683 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6684 struct partial_symtab *pst = per_cu->v.psymtab;
6685 int j;
6686
36586728
TT
6687 if (pst == NULL)
6688 continue;
6689
95554aad
TT
6690 for (j = 0; j < pst->number_of_dependencies; ++j)
6691 {
6692 /* Set the 'user' field only if it is not already set. */
6693 if (pst->dependencies[j]->user == NULL)
6694 pst->dependencies[j]->user = pst;
6695 }
6696 }
6697}
6698
93311388
DE
6699/* Build the partial symbol table by doing a quick pass through the
6700 .debug_info and .debug_abbrev sections. */
72bf9492 6701
93311388 6702static void
c67a9c90 6703dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6704{
60606b2c 6705 struct cleanup *back_to, *addrmap_cleanup;
21b2bd31 6706 int i;
93311388 6707
b4f54984 6708 if (dwarf_read_debug)
45cfd468
DE
6709 {
6710 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6711 objfile_name (objfile));
45cfd468
DE
6712 }
6713
98bfdba5
PA
6714 dwarf2_per_objfile->reading_partial_symbols = 1;
6715
be391dca 6716 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6717
93311388
DE
6718 /* Any cached compilation units will be linked by the per-objfile
6719 read_in_chain. Make sure to free them when we're done. */
6720 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6721
348e048f
DE
6722 build_type_psymtabs (objfile);
6723
93311388 6724 create_all_comp_units (objfile);
c906108c 6725
60606b2c
TT
6726 /* Create a temporary address map on a temporary obstack. We later
6727 copy this to the final obstack. */
8268c778 6728 auto_obstack temp_obstack;
60606b2c
TT
6729 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6730 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6731
21b2bd31 6732 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6733 {
8832e7e3 6734 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6735
b93601f3 6736 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6737 }
ff013f42 6738
6aa5f3a6
DE
6739 /* This has to wait until we read the CUs, we need the list of DWOs. */
6740 process_skeletonless_type_units (objfile);
6741
6742 /* Now that all TUs have been processed we can fill in the dependencies. */
6743 if (dwarf2_per_objfile->type_unit_groups != NULL)
6744 {
6745 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6746 build_type_psymtab_dependencies, NULL);
6747 }
6748
b4f54984 6749 if (dwarf_read_debug)
6aa5f3a6
DE
6750 print_tu_stats ();
6751
95554aad
TT
6752 set_partial_user (objfile);
6753
ff013f42
JK
6754 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6755 &objfile->objfile_obstack);
60606b2c 6756 discard_cleanups (addrmap_cleanup);
ff013f42 6757
ae038cb0 6758 do_cleanups (back_to);
45cfd468 6759
b4f54984 6760 if (dwarf_read_debug)
45cfd468 6761 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6762 objfile_name (objfile));
ae038cb0
DJ
6763}
6764
3019eac3 6765/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6766
6767static void
dee91e82 6768load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6769 const gdb_byte *info_ptr,
dee91e82
DE
6770 struct die_info *comp_unit_die,
6771 int has_children,
6772 void *data)
ae038cb0 6773{
dee91e82 6774 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6775
95554aad 6776 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6777
ae038cb0
DJ
6778 /* Check if comp unit has_children.
6779 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6780 If not, there's no more debug_info for this comp unit. */
d85a05f0 6781 if (has_children)
dee91e82
DE
6782 load_partial_dies (reader, info_ptr, 0);
6783}
98bfdba5 6784
dee91e82
DE
6785/* Load the partial DIEs for a secondary CU into memory.
6786 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6787
dee91e82
DE
6788static void
6789load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6790{
f4dc4d17
DE
6791 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6792 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6793}
6794
ae038cb0 6795static void
36586728
TT
6796read_comp_units_from_section (struct objfile *objfile,
6797 struct dwarf2_section_info *section,
f1902523 6798 struct dwarf2_section_info *abbrev_section,
36586728
TT
6799 unsigned int is_dwz,
6800 int *n_allocated,
6801 int *n_comp_units,
6802 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6803{
d521ce57 6804 const gdb_byte *info_ptr;
a32a8923 6805 bfd *abfd = get_section_bfd_owner (section);
be391dca 6806
b4f54984 6807 if (dwarf_read_debug)
bf6af496 6808 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6809 get_section_name (section),
6810 get_section_file_name (section));
bf6af496 6811
36586728 6812 dwarf2_read_section (objfile, section);
ae038cb0 6813
36586728 6814 info_ptr = section->buffer;
6e70227d 6815
36586728 6816 while (info_ptr < section->buffer + section->size)
ae038cb0 6817 {
ae038cb0 6818 struct dwarf2_per_cu_data *this_cu;
ae038cb0 6819
9c541725 6820 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
ae038cb0 6821
f1902523
JK
6822 comp_unit_head cu_header;
6823 read_and_check_comp_unit_head (&cu_header, section, abbrev_section,
6824 info_ptr, rcuh_kind::COMPILE);
ae038cb0
DJ
6825
6826 /* Save the compilation unit for later lookup. */
f1902523
JK
6827 if (cu_header.unit_type != DW_UT_type)
6828 {
6829 this_cu = XOBNEW (&objfile->objfile_obstack,
6830 struct dwarf2_per_cu_data);
6831 memset (this_cu, 0, sizeof (*this_cu));
6832 }
6833 else
6834 {
6835 auto sig_type = XOBNEW (&objfile->objfile_obstack,
6836 struct signatured_type);
6837 memset (sig_type, 0, sizeof (*sig_type));
6838 sig_type->signature = cu_header.signature;
6839 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
6840 this_cu = &sig_type->per_cu;
6841 }
6842 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
9c541725 6843 this_cu->sect_off = sect_off;
f1902523 6844 this_cu->length = cu_header.length + cu_header.initial_length_size;
36586728 6845 this_cu->is_dwz = is_dwz;
9291a0cd 6846 this_cu->objfile = objfile;
8a0459fd 6847 this_cu->section = section;
ae038cb0 6848
36586728 6849 if (*n_comp_units == *n_allocated)
ae038cb0 6850 {
36586728 6851 *n_allocated *= 2;
224c3ddb
SM
6852 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6853 *all_comp_units, *n_allocated);
ae038cb0 6854 }
36586728
TT
6855 (*all_comp_units)[*n_comp_units] = this_cu;
6856 ++*n_comp_units;
ae038cb0
DJ
6857
6858 info_ptr = info_ptr + this_cu->length;
6859 }
36586728
TT
6860}
6861
6862/* Create a list of all compilation units in OBJFILE.
6863 This is only done for -readnow and building partial symtabs. */
6864
6865static void
6866create_all_comp_units (struct objfile *objfile)
6867{
6868 int n_allocated;
6869 int n_comp_units;
6870 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6871 struct dwz_file *dwz;
36586728
TT
6872
6873 n_comp_units = 0;
6874 n_allocated = 10;
8d749320 6875 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
36586728 6876
f1902523
JK
6877 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info,
6878 &dwarf2_per_objfile->abbrev, 0,
36586728
TT
6879 &n_allocated, &n_comp_units, &all_comp_units);
6880
4db1a1dc
TT
6881 dwz = dwarf2_get_dwz_file ();
6882 if (dwz != NULL)
f1902523 6883 read_comp_units_from_section (objfile, &dwz->info, &dwz->abbrev, 1,
4db1a1dc
TT
6884 &n_allocated, &n_comp_units,
6885 &all_comp_units);
ae038cb0 6886
8d749320
SM
6887 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6888 struct dwarf2_per_cu_data *,
6889 n_comp_units);
ae038cb0
DJ
6890 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6891 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6892 xfree (all_comp_units);
6893 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6894}
6895
5734ee8b 6896/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6897 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6898 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6899 DW_AT_ranges). See the comments of add_partial_subprogram on how
6900 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6901
72bf9492
DJ
6902static void
6903scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6904 CORE_ADDR *highpc, int set_addrmap,
6905 struct dwarf2_cu *cu)
c906108c 6906{
72bf9492 6907 struct partial_die_info *pdi;
c906108c 6908
91c24f0a
DC
6909 /* Now, march along the PDI's, descending into ones which have
6910 interesting children but skipping the children of the other ones,
6911 until we reach the end of the compilation unit. */
c906108c 6912
72bf9492 6913 pdi = first_die;
91c24f0a 6914
72bf9492
DJ
6915 while (pdi != NULL)
6916 {
6917 fixup_partial_die (pdi, cu);
c906108c 6918
f55ee35c 6919 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6920 children, so we need to look at them. Ditto for anonymous
6921 enums. */
933c6fe4 6922
72bf9492 6923 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6924 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6925 || pdi->tag == DW_TAG_imported_unit)
c906108c 6926 {
72bf9492 6927 switch (pdi->tag)
c906108c
SS
6928 {
6929 case DW_TAG_subprogram:
cdc07690 6930 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6931 break;
72929c62 6932 case DW_TAG_constant:
c906108c
SS
6933 case DW_TAG_variable:
6934 case DW_TAG_typedef:
91c24f0a 6935 case DW_TAG_union_type:
72bf9492 6936 if (!pdi->is_declaration)
63d06c5c 6937 {
72bf9492 6938 add_partial_symbol (pdi, cu);
63d06c5c
DC
6939 }
6940 break;
c906108c 6941 case DW_TAG_class_type:
680b30c7 6942 case DW_TAG_interface_type:
c906108c 6943 case DW_TAG_structure_type:
72bf9492 6944 if (!pdi->is_declaration)
c906108c 6945 {
72bf9492 6946 add_partial_symbol (pdi, cu);
c906108c 6947 }
e98c9e7c
TT
6948 if (cu->language == language_rust && pdi->has_children)
6949 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6950 set_addrmap, cu);
c906108c 6951 break;
91c24f0a 6952 case DW_TAG_enumeration_type:
72bf9492
DJ
6953 if (!pdi->is_declaration)
6954 add_partial_enumeration (pdi, cu);
c906108c
SS
6955 break;
6956 case DW_TAG_base_type:
a02abb62 6957 case DW_TAG_subrange_type:
c906108c 6958 /* File scope base type definitions are added to the partial
c5aa993b 6959 symbol table. */
72bf9492 6960 add_partial_symbol (pdi, cu);
c906108c 6961 break;
d9fa45fe 6962 case DW_TAG_namespace:
cdc07690 6963 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6964 break;
5d7cb8df 6965 case DW_TAG_module:
cdc07690 6966 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6967 break;
95554aad
TT
6968 case DW_TAG_imported_unit:
6969 {
6970 struct dwarf2_per_cu_data *per_cu;
6971
f4dc4d17
DE
6972 /* For now we don't handle imported units in type units. */
6973 if (cu->per_cu->is_debug_types)
6974 {
6975 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6976 " supported in type units [in module %s]"),
4262abfb 6977 objfile_name (cu->objfile));
f4dc4d17
DE
6978 }
6979
9c541725 6980 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
36586728 6981 pdi->is_dwz,
95554aad
TT
6982 cu->objfile);
6983
6984 /* Go read the partial unit, if needed. */
6985 if (per_cu->v.psymtab == NULL)
b93601f3 6986 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6987
f4dc4d17 6988 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6989 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6990 }
6991 break;
74921315
KS
6992 case DW_TAG_imported_declaration:
6993 add_partial_symbol (pdi, cu);
6994 break;
c906108c
SS
6995 default:
6996 break;
6997 }
6998 }
6999
72bf9492
DJ
7000 /* If the die has a sibling, skip to the sibling. */
7001
7002 pdi = pdi->die_sibling;
7003 }
7004}
7005
7006/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 7007
72bf9492 7008 Normally, this is simple. For C++, the parent DIE's fully scoped
9c37b5ae 7009 name is concatenated with "::" and the partial DIE's name.
72bf9492
DJ
7010 Enumerators are an exception; they use the scope of their parent
7011 enumeration type, i.e. the name of the enumeration type is not
7012 prepended to the enumerator.
91c24f0a 7013
72bf9492
DJ
7014 There are two complexities. One is DW_AT_specification; in this
7015 case "parent" means the parent of the target of the specification,
7016 instead of the direct parent of the DIE. The other is compilers
7017 which do not emit DW_TAG_namespace; in this case we try to guess
7018 the fully qualified name of structure types from their members'
7019 linkage names. This must be done using the DIE's children rather
7020 than the children of any DW_AT_specification target. We only need
7021 to do this for structures at the top level, i.e. if the target of
7022 any DW_AT_specification (if any; otherwise the DIE itself) does not
7023 have a parent. */
7024
7025/* Compute the scope prefix associated with PDI's parent, in
7026 compilation unit CU. The result will be allocated on CU's
7027 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7028 field. NULL is returned if no prefix is necessary. */
15d034d0 7029static const char *
72bf9492
DJ
7030partial_die_parent_scope (struct partial_die_info *pdi,
7031 struct dwarf2_cu *cu)
7032{
15d034d0 7033 const char *grandparent_scope;
72bf9492 7034 struct partial_die_info *parent, *real_pdi;
91c24f0a 7035
72bf9492
DJ
7036 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7037 then this means the parent of the specification DIE. */
7038
7039 real_pdi = pdi;
72bf9492 7040 while (real_pdi->has_specification)
36586728
TT
7041 real_pdi = find_partial_die (real_pdi->spec_offset,
7042 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
7043
7044 parent = real_pdi->die_parent;
7045 if (parent == NULL)
7046 return NULL;
7047
7048 if (parent->scope_set)
7049 return parent->scope;
7050
7051 fixup_partial_die (parent, cu);
7052
10b3939b 7053 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 7054
acebe513
UW
7055 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7056 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7057 Work around this problem here. */
7058 if (cu->language == language_cplus
6e70227d 7059 && parent->tag == DW_TAG_namespace
acebe513
UW
7060 && strcmp (parent->name, "::") == 0
7061 && grandparent_scope == NULL)
7062 {
7063 parent->scope = NULL;
7064 parent->scope_set = 1;
7065 return NULL;
7066 }
7067
9c6c53f7
SA
7068 if (pdi->tag == DW_TAG_enumerator)
7069 /* Enumerators should not get the name of the enumeration as a prefix. */
7070 parent->scope = grandparent_scope;
7071 else if (parent->tag == DW_TAG_namespace
f55ee35c 7072 || parent->tag == DW_TAG_module
72bf9492
DJ
7073 || parent->tag == DW_TAG_structure_type
7074 || parent->tag == DW_TAG_class_type
680b30c7 7075 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
7076 || parent->tag == DW_TAG_union_type
7077 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
7078 {
7079 if (grandparent_scope == NULL)
7080 parent->scope = parent->name;
7081 else
3e43a32a
MS
7082 parent->scope = typename_concat (&cu->comp_unit_obstack,
7083 grandparent_scope,
f55ee35c 7084 parent->name, 0, cu);
72bf9492 7085 }
72bf9492
DJ
7086 else
7087 {
7088 /* FIXME drow/2004-04-01: What should we be doing with
7089 function-local names? For partial symbols, we should probably be
7090 ignoring them. */
7091 complaint (&symfile_complaints,
e2e0b3e5 7092 _("unhandled containing DIE tag %d for DIE at %d"),
9c541725 7093 parent->tag, to_underlying (pdi->sect_off));
72bf9492 7094 parent->scope = grandparent_scope;
c906108c
SS
7095 }
7096
72bf9492
DJ
7097 parent->scope_set = 1;
7098 return parent->scope;
7099}
7100
7101/* Return the fully scoped name associated with PDI, from compilation unit
7102 CU. The result will be allocated with malloc. */
4568ecf9 7103
72bf9492
DJ
7104static char *
7105partial_die_full_name (struct partial_die_info *pdi,
7106 struct dwarf2_cu *cu)
7107{
15d034d0 7108 const char *parent_scope;
72bf9492 7109
98bfdba5
PA
7110 /* If this is a template instantiation, we can not work out the
7111 template arguments from partial DIEs. So, unfortunately, we have
7112 to go through the full DIEs. At least any work we do building
7113 types here will be reused if full symbols are loaded later. */
7114 if (pdi->has_template_arguments)
7115 {
7116 fixup_partial_die (pdi, cu);
7117
7118 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7119 {
7120 struct die_info *die;
7121 struct attribute attr;
7122 struct dwarf2_cu *ref_cu = cu;
7123
b64f50a1 7124 /* DW_FORM_ref_addr is using section offset. */
b4069958 7125 attr.name = (enum dwarf_attribute) 0;
98bfdba5 7126 attr.form = DW_FORM_ref_addr;
9c541725 7127 attr.u.unsnd = to_underlying (pdi->sect_off);
98bfdba5
PA
7128 die = follow_die_ref (NULL, &attr, &ref_cu);
7129
7130 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7131 }
7132 }
7133
72bf9492
DJ
7134 parent_scope = partial_die_parent_scope (pdi, cu);
7135 if (parent_scope == NULL)
7136 return NULL;
7137 else
f55ee35c 7138 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
7139}
7140
7141static void
72bf9492 7142add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 7143{
e7c27a73 7144 struct objfile *objfile = cu->objfile;
3e29f34a 7145 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 7146 CORE_ADDR addr = 0;
15d034d0 7147 const char *actual_name = NULL;
e142c38c 7148 CORE_ADDR baseaddr;
15d034d0 7149 char *built_actual_name;
e142c38c
DJ
7150
7151 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 7152
15d034d0
TT
7153 built_actual_name = partial_die_full_name (pdi, cu);
7154 if (built_actual_name != NULL)
7155 actual_name = built_actual_name;
63d06c5c 7156
72bf9492
DJ
7157 if (actual_name == NULL)
7158 actual_name = pdi->name;
7159
c906108c
SS
7160 switch (pdi->tag)
7161 {
7162 case DW_TAG_subprogram:
3e29f34a 7163 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 7164 if (pdi->is_external || cu->language == language_ada)
c906108c 7165 {
2cfa0c8d
JB
7166 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7167 of the global scope. But in Ada, we want to be able to access
7168 nested procedures globally. So all Ada subprograms are stored
7169 in the global scope. */
f47fb265 7170 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7171 built_actual_name != NULL,
f47fb265
MS
7172 VAR_DOMAIN, LOC_BLOCK,
7173 &objfile->global_psymbols,
1762568f 7174 addr, cu->language, objfile);
c906108c
SS
7175 }
7176 else
7177 {
f47fb265 7178 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7179 built_actual_name != NULL,
f47fb265
MS
7180 VAR_DOMAIN, LOC_BLOCK,
7181 &objfile->static_psymbols,
1762568f 7182 addr, cu->language, objfile);
c906108c 7183 }
0c1b455e
TT
7184
7185 if (pdi->main_subprogram && actual_name != NULL)
7186 set_objfile_main_name (objfile, actual_name, cu->language);
c906108c 7187 break;
72929c62
JB
7188 case DW_TAG_constant:
7189 {
7190 struct psymbol_allocation_list *list;
7191
7192 if (pdi->is_external)
7193 list = &objfile->global_psymbols;
7194 else
7195 list = &objfile->static_psymbols;
f47fb265 7196 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7197 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 7198 list, 0, cu->language, objfile);
72929c62
JB
7199 }
7200 break;
c906108c 7201 case DW_TAG_variable:
95554aad
TT
7202 if (pdi->d.locdesc)
7203 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 7204
95554aad 7205 if (pdi->d.locdesc
caac4577
JG
7206 && addr == 0
7207 && !dwarf2_per_objfile->has_section_at_zero)
7208 {
7209 /* A global or static variable may also have been stripped
7210 out by the linker if unused, in which case its address
7211 will be nullified; do not add such variables into partial
7212 symbol table then. */
7213 }
7214 else if (pdi->is_external)
c906108c
SS
7215 {
7216 /* Global Variable.
7217 Don't enter into the minimal symbol tables as there is
7218 a minimal symbol table entry from the ELF symbols already.
7219 Enter into partial symbol table if it has a location
7220 descriptor or a type.
7221 If the location descriptor is missing, new_symbol will create
7222 a LOC_UNRESOLVED symbol, the address of the variable will then
7223 be determined from the minimal symbol table whenever the variable
7224 is referenced.
7225 The address for the partial symbol table entry is not
7226 used by GDB, but it comes in handy for debugging partial symbol
7227 table building. */
7228
95554aad 7229 if (pdi->d.locdesc || pdi->has_type)
f47fb265 7230 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7231 built_actual_name != NULL,
f47fb265
MS
7232 VAR_DOMAIN, LOC_STATIC,
7233 &objfile->global_psymbols,
1762568f 7234 addr + baseaddr,
f47fb265 7235 cu->language, objfile);
c906108c
SS
7236 }
7237 else
7238 {
ff908ebf
AW
7239 int has_loc = pdi->d.locdesc != NULL;
7240
7241 /* Static Variable. Skip symbols whose value we cannot know (those
7242 without location descriptors or constant values). */
7243 if (!has_loc && !pdi->has_const_value)
decbce07 7244 {
15d034d0 7245 xfree (built_actual_name);
decbce07
MS
7246 return;
7247 }
ff908ebf 7248
f47fb265 7249 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7250 built_actual_name != NULL,
f47fb265
MS
7251 VAR_DOMAIN, LOC_STATIC,
7252 &objfile->static_psymbols,
ff908ebf 7253 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 7254 cu->language, objfile);
c906108c
SS
7255 }
7256 break;
7257 case DW_TAG_typedef:
7258 case DW_TAG_base_type:
a02abb62 7259 case DW_TAG_subrange_type:
38d518c9 7260 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7261 built_actual_name != NULL,
176620f1 7262 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 7263 &objfile->static_psymbols,
1762568f 7264 0, cu->language, objfile);
c906108c 7265 break;
74921315 7266 case DW_TAG_imported_declaration:
72bf9492
DJ
7267 case DW_TAG_namespace:
7268 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7269 built_actual_name != NULL,
72bf9492
DJ
7270 VAR_DOMAIN, LOC_TYPEDEF,
7271 &objfile->global_psymbols,
1762568f 7272 0, cu->language, objfile);
72bf9492 7273 break;
530e8392
KB
7274 case DW_TAG_module:
7275 add_psymbol_to_list (actual_name, strlen (actual_name),
7276 built_actual_name != NULL,
7277 MODULE_DOMAIN, LOC_TYPEDEF,
7278 &objfile->global_psymbols,
1762568f 7279 0, cu->language, objfile);
530e8392 7280 break;
c906108c 7281 case DW_TAG_class_type:
680b30c7 7282 case DW_TAG_interface_type:
c906108c
SS
7283 case DW_TAG_structure_type:
7284 case DW_TAG_union_type:
7285 case DW_TAG_enumeration_type:
fa4028e9
JB
7286 /* Skip external references. The DWARF standard says in the section
7287 about "Structure, Union, and Class Type Entries": "An incomplete
7288 structure, union or class type is represented by a structure,
7289 union or class entry that does not have a byte size attribute
7290 and that has a DW_AT_declaration attribute." */
7291 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7292 {
15d034d0 7293 xfree (built_actual_name);
decbce07
MS
7294 return;
7295 }
fa4028e9 7296
63d06c5c
DC
7297 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7298 static vs. global. */
38d518c9 7299 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7300 built_actual_name != NULL,
176620f1 7301 STRUCT_DOMAIN, LOC_TYPEDEF,
9c37b5ae 7302 cu->language == language_cplus
63d06c5c
DC
7303 ? &objfile->global_psymbols
7304 : &objfile->static_psymbols,
1762568f 7305 0, cu->language, objfile);
c906108c 7306
c906108c
SS
7307 break;
7308 case DW_TAG_enumerator:
38d518c9 7309 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7310 built_actual_name != NULL,
176620f1 7311 VAR_DOMAIN, LOC_CONST,
9c37b5ae 7312 cu->language == language_cplus
f6fe98ef
DJ
7313 ? &objfile->global_psymbols
7314 : &objfile->static_psymbols,
1762568f 7315 0, cu->language, objfile);
c906108c
SS
7316 break;
7317 default:
7318 break;
7319 }
5c4e30ca 7320
15d034d0 7321 xfree (built_actual_name);
c906108c
SS
7322}
7323
5c4e30ca
DC
7324/* Read a partial die corresponding to a namespace; also, add a symbol
7325 corresponding to that namespace to the symbol table. NAMESPACE is
7326 the name of the enclosing namespace. */
91c24f0a 7327
72bf9492
DJ
7328static void
7329add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7330 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7331 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7332{
72bf9492 7333 /* Add a symbol for the namespace. */
e7c27a73 7334
72bf9492 7335 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7336
7337 /* Now scan partial symbols in that namespace. */
7338
91c24f0a 7339 if (pdi->has_children)
cdc07690 7340 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7341}
7342
5d7cb8df
JK
7343/* Read a partial die corresponding to a Fortran module. */
7344
7345static void
7346add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7347 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7348{
530e8392
KB
7349 /* Add a symbol for the namespace. */
7350
7351 add_partial_symbol (pdi, cu);
7352
f55ee35c 7353 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7354
7355 if (pdi->has_children)
cdc07690 7356 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7357}
7358
bc30ff58
JB
7359/* Read a partial die corresponding to a subprogram and create a partial
7360 symbol for that subprogram. When the CU language allows it, this
7361 routine also defines a partial symbol for each nested subprogram
cdc07690 7362 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7363 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7364 and highest PC values found in PDI.
6e70227d 7365
cdc07690
YQ
7366 PDI may also be a lexical block, in which case we simply search
7367 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7368 Again, this is only performed when the CU language allows this
7369 type of definitions. */
7370
7371static void
7372add_partial_subprogram (struct partial_die_info *pdi,
7373 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7374 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7375{
7376 if (pdi->tag == DW_TAG_subprogram)
7377 {
7378 if (pdi->has_pc_info)
7379 {
7380 if (pdi->lowpc < *lowpc)
7381 *lowpc = pdi->lowpc;
7382 if (pdi->highpc > *highpc)
7383 *highpc = pdi->highpc;
cdc07690 7384 if (set_addrmap)
5734ee8b 7385 {
5734ee8b 7386 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7387 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7388 CORE_ADDR baseaddr;
7389 CORE_ADDR highpc;
7390 CORE_ADDR lowpc;
5734ee8b
DJ
7391
7392 baseaddr = ANOFFSET (objfile->section_offsets,
7393 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7394 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7395 pdi->lowpc + baseaddr);
7396 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7397 pdi->highpc + baseaddr);
7398 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7399 cu->per_cu->v.psymtab);
5734ee8b 7400 }
481860b3
GB
7401 }
7402
7403 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7404 {
bc30ff58 7405 if (!pdi->is_declaration)
e8d05480
JB
7406 /* Ignore subprogram DIEs that do not have a name, they are
7407 illegal. Do not emit a complaint at this point, we will
7408 do so when we convert this psymtab into a symtab. */
7409 if (pdi->name)
7410 add_partial_symbol (pdi, cu);
bc30ff58
JB
7411 }
7412 }
6e70227d 7413
bc30ff58
JB
7414 if (! pdi->has_children)
7415 return;
7416
7417 if (cu->language == language_ada)
7418 {
7419 pdi = pdi->die_child;
7420 while (pdi != NULL)
7421 {
7422 fixup_partial_die (pdi, cu);
7423 if (pdi->tag == DW_TAG_subprogram
7424 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7425 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7426 pdi = pdi->die_sibling;
7427 }
7428 }
7429}
7430
91c24f0a
DC
7431/* Read a partial die corresponding to an enumeration type. */
7432
72bf9492
DJ
7433static void
7434add_partial_enumeration (struct partial_die_info *enum_pdi,
7435 struct dwarf2_cu *cu)
91c24f0a 7436{
72bf9492 7437 struct partial_die_info *pdi;
91c24f0a
DC
7438
7439 if (enum_pdi->name != NULL)
72bf9492
DJ
7440 add_partial_symbol (enum_pdi, cu);
7441
7442 pdi = enum_pdi->die_child;
7443 while (pdi)
91c24f0a 7444 {
72bf9492 7445 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7446 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7447 else
72bf9492
DJ
7448 add_partial_symbol (pdi, cu);
7449 pdi = pdi->die_sibling;
91c24f0a 7450 }
91c24f0a
DC
7451}
7452
6caca83c
CC
7453/* Return the initial uleb128 in the die at INFO_PTR. */
7454
7455static unsigned int
d521ce57 7456peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7457{
7458 unsigned int bytes_read;
7459
7460 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7461}
7462
4bb7a0a7
DJ
7463/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7464 Return the corresponding abbrev, or NULL if the number is zero (indicating
7465 an empty DIE). In either case *BYTES_READ will be set to the length of
7466 the initial number. */
7467
7468static struct abbrev_info *
d521ce57 7469peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7470 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7471{
7472 bfd *abfd = cu->objfile->obfd;
7473 unsigned int abbrev_number;
7474 struct abbrev_info *abbrev;
7475
7476 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7477
7478 if (abbrev_number == 0)
7479 return NULL;
7480
433df2d4 7481 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7482 if (!abbrev)
7483 {
422b9917
DE
7484 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7485 " at offset 0x%x [in module %s]"),
7486 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9c541725 7487 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
4bb7a0a7
DJ
7488 }
7489
7490 return abbrev;
7491}
7492
93311388
DE
7493/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7494 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7495 DIE. Any children of the skipped DIEs will also be skipped. */
7496
d521ce57
TT
7497static const gdb_byte *
7498skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7499{
dee91e82 7500 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7501 struct abbrev_info *abbrev;
7502 unsigned int bytes_read;
7503
7504 while (1)
7505 {
7506 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7507 if (abbrev == NULL)
7508 return info_ptr + bytes_read;
7509 else
dee91e82 7510 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7511 }
7512}
7513
93311388
DE
7514/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7515 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7516 abbrev corresponding to that skipped uleb128 should be passed in
7517 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7518 children. */
7519
d521ce57
TT
7520static const gdb_byte *
7521skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7522 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7523{
7524 unsigned int bytes_read;
7525 struct attribute attr;
dee91e82
DE
7526 bfd *abfd = reader->abfd;
7527 struct dwarf2_cu *cu = reader->cu;
d521ce57 7528 const gdb_byte *buffer = reader->buffer;
f664829e 7529 const gdb_byte *buffer_end = reader->buffer_end;
4bb7a0a7
DJ
7530 unsigned int form, i;
7531
7532 for (i = 0; i < abbrev->num_attrs; i++)
7533 {
7534 /* The only abbrev we care about is DW_AT_sibling. */
7535 if (abbrev->attrs[i].name == DW_AT_sibling)
7536 {
dee91e82 7537 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7538 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7539 complaint (&symfile_complaints,
7540 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7541 else
b9502d3f 7542 {
9c541725
PA
7543 sect_offset off = dwarf2_get_ref_die_offset (&attr);
7544 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
7545
7546 if (sibling_ptr < info_ptr)
7547 complaint (&symfile_complaints,
7548 _("DW_AT_sibling points backwards"));
22869d73
KS
7549 else if (sibling_ptr > reader->buffer_end)
7550 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7551 else
7552 return sibling_ptr;
7553 }
4bb7a0a7
DJ
7554 }
7555
7556 /* If it isn't DW_AT_sibling, skip this attribute. */
7557 form = abbrev->attrs[i].form;
7558 skip_attribute:
7559 switch (form)
7560 {
4bb7a0a7 7561 case DW_FORM_ref_addr:
ae411497
TT
7562 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7563 and later it is offset sized. */
7564 if (cu->header.version == 2)
7565 info_ptr += cu->header.addr_size;
7566 else
7567 info_ptr += cu->header.offset_size;
7568 break;
36586728
TT
7569 case DW_FORM_GNU_ref_alt:
7570 info_ptr += cu->header.offset_size;
7571 break;
ae411497 7572 case DW_FORM_addr:
4bb7a0a7
DJ
7573 info_ptr += cu->header.addr_size;
7574 break;
7575 case DW_FORM_data1:
7576 case DW_FORM_ref1:
7577 case DW_FORM_flag:
7578 info_ptr += 1;
7579 break;
2dc7f7b3 7580 case DW_FORM_flag_present:
43988095 7581 case DW_FORM_implicit_const:
2dc7f7b3 7582 break;
4bb7a0a7
DJ
7583 case DW_FORM_data2:
7584 case DW_FORM_ref2:
7585 info_ptr += 2;
7586 break;
7587 case DW_FORM_data4:
7588 case DW_FORM_ref4:
7589 info_ptr += 4;
7590 break;
7591 case DW_FORM_data8:
7592 case DW_FORM_ref8:
55f1336d 7593 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7594 info_ptr += 8;
7595 break;
0224619f
JK
7596 case DW_FORM_data16:
7597 info_ptr += 16;
7598 break;
4bb7a0a7 7599 case DW_FORM_string:
9b1c24c8 7600 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7601 info_ptr += bytes_read;
7602 break;
2dc7f7b3 7603 case DW_FORM_sec_offset:
4bb7a0a7 7604 case DW_FORM_strp:
36586728 7605 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7606 info_ptr += cu->header.offset_size;
7607 break;
2dc7f7b3 7608 case DW_FORM_exprloc:
4bb7a0a7
DJ
7609 case DW_FORM_block:
7610 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7611 info_ptr += bytes_read;
7612 break;
7613 case DW_FORM_block1:
7614 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7615 break;
7616 case DW_FORM_block2:
7617 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7618 break;
7619 case DW_FORM_block4:
7620 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7621 break;
7622 case DW_FORM_sdata:
7623 case DW_FORM_udata:
7624 case DW_FORM_ref_udata:
3019eac3
DE
7625 case DW_FORM_GNU_addr_index:
7626 case DW_FORM_GNU_str_index:
d521ce57 7627 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7628 break;
7629 case DW_FORM_indirect:
7630 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7631 info_ptr += bytes_read;
7632 /* We need to continue parsing from here, so just go back to
7633 the top. */
7634 goto skip_attribute;
7635
7636 default:
3e43a32a
MS
7637 error (_("Dwarf Error: Cannot handle %s "
7638 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7639 dwarf_form_name (form),
7640 bfd_get_filename (abfd));
7641 }
7642 }
7643
7644 if (abbrev->has_children)
dee91e82 7645 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7646 else
7647 return info_ptr;
7648}
7649
93311388 7650/* Locate ORIG_PDI's sibling.
dee91e82 7651 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7652
d521ce57 7653static const gdb_byte *
dee91e82
DE
7654locate_pdi_sibling (const struct die_reader_specs *reader,
7655 struct partial_die_info *orig_pdi,
d521ce57 7656 const gdb_byte *info_ptr)
91c24f0a
DC
7657{
7658 /* Do we know the sibling already? */
72bf9492 7659
91c24f0a
DC
7660 if (orig_pdi->sibling)
7661 return orig_pdi->sibling;
7662
7663 /* Are there any children to deal with? */
7664
7665 if (!orig_pdi->has_children)
7666 return info_ptr;
7667
4bb7a0a7 7668 /* Skip the children the long way. */
91c24f0a 7669
dee91e82 7670 return skip_children (reader, info_ptr);
91c24f0a
DC
7671}
7672
257e7a09 7673/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7674 not NULL. */
c906108c
SS
7675
7676static void
257e7a09
YQ
7677dwarf2_read_symtab (struct partial_symtab *self,
7678 struct objfile *objfile)
c906108c 7679{
257e7a09 7680 if (self->readin)
c906108c 7681 {
442e4d9c 7682 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7683 self->filename);
442e4d9c
YQ
7684 }
7685 else
7686 {
7687 if (info_verbose)
c906108c 7688 {
442e4d9c 7689 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7690 self->filename);
442e4d9c 7691 gdb_flush (gdb_stdout);
c906108c 7692 }
c906108c 7693
442e4d9c 7694 /* Restore our global data. */
9a3c8263
SM
7695 dwarf2_per_objfile
7696 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7697 dwarf2_objfile_data_key);
10b3939b 7698
442e4d9c
YQ
7699 /* If this psymtab is constructed from a debug-only objfile, the
7700 has_section_at_zero flag will not necessarily be correct. We
7701 can get the correct value for this flag by looking at the data
7702 associated with the (presumably stripped) associated objfile. */
7703 if (objfile->separate_debug_objfile_backlink)
7704 {
7705 struct dwarf2_per_objfile *dpo_backlink
9a3c8263
SM
7706 = ((struct dwarf2_per_objfile *)
7707 objfile_data (objfile->separate_debug_objfile_backlink,
7708 dwarf2_objfile_data_key));
9a619af0 7709
442e4d9c
YQ
7710 dwarf2_per_objfile->has_section_at_zero
7711 = dpo_backlink->has_section_at_zero;
7712 }
b2ab525c 7713
442e4d9c 7714 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7715
257e7a09 7716 psymtab_to_symtab_1 (self);
c906108c 7717
442e4d9c
YQ
7718 /* Finish up the debug error message. */
7719 if (info_verbose)
7720 printf_filtered (_("done.\n"));
c906108c 7721 }
95554aad
TT
7722
7723 process_cu_includes ();
c906108c 7724}
9cdd5dbd
DE
7725\f
7726/* Reading in full CUs. */
c906108c 7727
10b3939b
DJ
7728/* Add PER_CU to the queue. */
7729
7730static void
95554aad
TT
7731queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7732 enum language pretend_language)
10b3939b
DJ
7733{
7734 struct dwarf2_queue_item *item;
7735
7736 per_cu->queued = 1;
8d749320 7737 item = XNEW (struct dwarf2_queue_item);
10b3939b 7738 item->per_cu = per_cu;
95554aad 7739 item->pretend_language = pretend_language;
10b3939b
DJ
7740 item->next = NULL;
7741
7742 if (dwarf2_queue == NULL)
7743 dwarf2_queue = item;
7744 else
7745 dwarf2_queue_tail->next = item;
7746
7747 dwarf2_queue_tail = item;
7748}
7749
89e63ee4
DE
7750/* If PER_CU is not yet queued, add it to the queue.
7751 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7752 dependency.
0907af0c 7753 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7754 meaning either PER_CU is already queued or it is already loaded.
7755
7756 N.B. There is an invariant here that if a CU is queued then it is loaded.
7757 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7758
7759static int
89e63ee4 7760maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7761 struct dwarf2_per_cu_data *per_cu,
7762 enum language pretend_language)
7763{
7764 /* We may arrive here during partial symbol reading, if we need full
7765 DIEs to process an unusual case (e.g. template arguments). Do
7766 not queue PER_CU, just tell our caller to load its DIEs. */
7767 if (dwarf2_per_objfile->reading_partial_symbols)
7768 {
7769 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7770 return 1;
7771 return 0;
7772 }
7773
7774 /* Mark the dependence relation so that we don't flush PER_CU
7775 too early. */
89e63ee4
DE
7776 if (dependent_cu != NULL)
7777 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7778
7779 /* If it's already on the queue, we have nothing to do. */
7780 if (per_cu->queued)
7781 return 0;
7782
7783 /* If the compilation unit is already loaded, just mark it as
7784 used. */
7785 if (per_cu->cu != NULL)
7786 {
7787 per_cu->cu->last_used = 0;
7788 return 0;
7789 }
7790
7791 /* Add it to the queue. */
7792 queue_comp_unit (per_cu, pretend_language);
7793
7794 return 1;
7795}
7796
10b3939b
DJ
7797/* Process the queue. */
7798
7799static void
a0f42c21 7800process_queue (void)
10b3939b
DJ
7801{
7802 struct dwarf2_queue_item *item, *next_item;
7803
b4f54984 7804 if (dwarf_read_debug)
45cfd468
DE
7805 {
7806 fprintf_unfiltered (gdb_stdlog,
7807 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7808 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7809 }
7810
03dd20cc
DJ
7811 /* The queue starts out with one item, but following a DIE reference
7812 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7813 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7814 {
cc12ce38
DE
7815 if ((dwarf2_per_objfile->using_index
7816 ? !item->per_cu->v.quick->compunit_symtab
7817 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7818 /* Skip dummy CUs. */
7819 && item->per_cu->cu != NULL)
f4dc4d17
DE
7820 {
7821 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7822 unsigned int debug_print_threshold;
247f5c4f 7823 char buf[100];
f4dc4d17 7824
247f5c4f 7825 if (per_cu->is_debug_types)
f4dc4d17 7826 {
247f5c4f
DE
7827 struct signatured_type *sig_type =
7828 (struct signatured_type *) per_cu;
7829
7830 sprintf (buf, "TU %s at offset 0x%x",
73be47f5 7831 hex_string (sig_type->signature),
9c541725 7832 to_underlying (per_cu->sect_off));
73be47f5
DE
7833 /* There can be 100s of TUs.
7834 Only print them in verbose mode. */
7835 debug_print_threshold = 2;
f4dc4d17 7836 }
247f5c4f 7837 else
73be47f5 7838 {
9c541725
PA
7839 sprintf (buf, "CU at offset 0x%x",
7840 to_underlying (per_cu->sect_off));
73be47f5
DE
7841 debug_print_threshold = 1;
7842 }
247f5c4f 7843
b4f54984 7844 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7845 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7846
7847 if (per_cu->is_debug_types)
7848 process_full_type_unit (per_cu, item->pretend_language);
7849 else
7850 process_full_comp_unit (per_cu, item->pretend_language);
7851
b4f54984 7852 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7853 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7854 }
10b3939b
DJ
7855
7856 item->per_cu->queued = 0;
7857 next_item = item->next;
7858 xfree (item);
7859 }
7860
7861 dwarf2_queue_tail = NULL;
45cfd468 7862
b4f54984 7863 if (dwarf_read_debug)
45cfd468
DE
7864 {
7865 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7866 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7867 }
10b3939b
DJ
7868}
7869
7870/* Free all allocated queue entries. This function only releases anything if
7871 an error was thrown; if the queue was processed then it would have been
7872 freed as we went along. */
7873
7874static void
7875dwarf2_release_queue (void *dummy)
7876{
7877 struct dwarf2_queue_item *item, *last;
7878
7879 item = dwarf2_queue;
7880 while (item)
7881 {
7882 /* Anything still marked queued is likely to be in an
7883 inconsistent state, so discard it. */
7884 if (item->per_cu->queued)
7885 {
7886 if (item->per_cu->cu != NULL)
dee91e82 7887 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7888 item->per_cu->queued = 0;
7889 }
7890
7891 last = item;
7892 item = item->next;
7893 xfree (last);
7894 }
7895
7896 dwarf2_queue = dwarf2_queue_tail = NULL;
7897}
7898
7899/* Read in full symbols for PST, and anything it depends on. */
7900
c906108c 7901static void
fba45db2 7902psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7903{
10b3939b 7904 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7905 int i;
7906
95554aad
TT
7907 if (pst->readin)
7908 return;
7909
aaa75496 7910 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7911 if (!pst->dependencies[i]->readin
7912 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7913 {
7914 /* Inform about additional files that need to be read in. */
7915 if (info_verbose)
7916 {
a3f17187 7917 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7918 fputs_filtered (" ", gdb_stdout);
7919 wrap_here ("");
7920 fputs_filtered ("and ", gdb_stdout);
7921 wrap_here ("");
7922 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7923 wrap_here (""); /* Flush output. */
aaa75496
JB
7924 gdb_flush (gdb_stdout);
7925 }
7926 psymtab_to_symtab_1 (pst->dependencies[i]);
7927 }
7928
9a3c8263 7929 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
7930
7931 if (per_cu == NULL)
aaa75496
JB
7932 {
7933 /* It's an include file, no symbols to read for it.
7934 Everything is in the parent symtab. */
7935 pst->readin = 1;
7936 return;
7937 }
c906108c 7938
a0f42c21 7939 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7940}
7941
dee91e82
DE
7942/* Trivial hash function for die_info: the hash value of a DIE
7943 is its offset in .debug_info for this objfile. */
10b3939b 7944
dee91e82
DE
7945static hashval_t
7946die_hash (const void *item)
10b3939b 7947{
9a3c8263 7948 const struct die_info *die = (const struct die_info *) item;
6502dd73 7949
9c541725 7950 return to_underlying (die->sect_off);
dee91e82 7951}
63d06c5c 7952
dee91e82
DE
7953/* Trivial comparison function for die_info structures: two DIEs
7954 are equal if they have the same offset. */
98bfdba5 7955
dee91e82
DE
7956static int
7957die_eq (const void *item_lhs, const void *item_rhs)
7958{
9a3c8263
SM
7959 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7960 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 7961
9c541725 7962 return die_lhs->sect_off == die_rhs->sect_off;
dee91e82 7963}
c906108c 7964
dee91e82
DE
7965/* die_reader_func for load_full_comp_unit.
7966 This is identical to read_signatured_type_reader,
7967 but is kept separate for now. */
c906108c 7968
dee91e82
DE
7969static void
7970load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7971 const gdb_byte *info_ptr,
dee91e82
DE
7972 struct die_info *comp_unit_die,
7973 int has_children,
7974 void *data)
7975{
7976 struct dwarf2_cu *cu = reader->cu;
9a3c8263 7977 enum language *language_ptr = (enum language *) data;
6caca83c 7978
dee91e82
DE
7979 gdb_assert (cu->die_hash == NULL);
7980 cu->die_hash =
7981 htab_create_alloc_ex (cu->header.length / 12,
7982 die_hash,
7983 die_eq,
7984 NULL,
7985 &cu->comp_unit_obstack,
7986 hashtab_obstack_allocate,
7987 dummy_obstack_deallocate);
e142c38c 7988
dee91e82
DE
7989 if (has_children)
7990 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7991 &info_ptr, comp_unit_die);
7992 cu->dies = comp_unit_die;
7993 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7994
7995 /* We try not to read any attributes in this function, because not
9cdd5dbd 7996 all CUs needed for references have been loaded yet, and symbol
10b3939b 7997 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7998 or we won't be able to build types correctly.
7999 Similarly, if we do not read the producer, we can not apply
8000 producer-specific interpretation. */
95554aad 8001 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 8002}
10b3939b 8003
dee91e82 8004/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 8005
dee91e82 8006static void
95554aad
TT
8007load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8008 enum language pretend_language)
dee91e82 8009{
3019eac3 8010 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 8011
f4dc4d17
DE
8012 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8013 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
8014}
8015
3da10d80
KS
8016/* Add a DIE to the delayed physname list. */
8017
8018static void
8019add_to_method_list (struct type *type, int fnfield_index, int index,
8020 const char *name, struct die_info *die,
8021 struct dwarf2_cu *cu)
8022{
8023 struct delayed_method_info mi;
8024 mi.type = type;
8025 mi.fnfield_index = fnfield_index;
8026 mi.index = index;
8027 mi.name = name;
8028 mi.die = die;
8029 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8030}
8031
8032/* A cleanup for freeing the delayed method list. */
8033
8034static void
8035free_delayed_list (void *ptr)
8036{
8037 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8038 if (cu->method_list != NULL)
8039 {
8040 VEC_free (delayed_method_info, cu->method_list);
8041 cu->method_list = NULL;
8042 }
8043}
8044
3693fdb3
PA
8045/* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8046 "const" / "volatile". If so, decrements LEN by the length of the
8047 modifier and return true. Otherwise return false. */
8048
8049template<size_t N>
8050static bool
8051check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8052{
8053 size_t mod_len = sizeof (mod) - 1;
8054 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8055 {
8056 len -= mod_len;
8057 return true;
8058 }
8059 return false;
8060}
8061
3da10d80
KS
8062/* Compute the physnames of any methods on the CU's method list.
8063
8064 The computation of method physnames is delayed in order to avoid the
8065 (bad) condition that one of the method's formal parameters is of an as yet
8066 incomplete type. */
8067
8068static void
8069compute_delayed_physnames (struct dwarf2_cu *cu)
8070{
8071 int i;
8072 struct delayed_method_info *mi;
3693fdb3
PA
8073
8074 /* Only C++ delays computing physnames. */
8075 if (VEC_empty (delayed_method_info, cu->method_list))
8076 return;
8077 gdb_assert (cu->language == language_cplus);
8078
3da10d80
KS
8079 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8080 {
1d06ead6 8081 const char *physname;
3da10d80
KS
8082 struct fn_fieldlist *fn_flp
8083 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 8084 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
8085 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8086 = physname ? physname : "";
3693fdb3
PA
8087
8088 /* Since there's no tag to indicate whether a method is a
8089 const/volatile overload, extract that information out of the
8090 demangled name. */
8091 if (physname != NULL)
8092 {
8093 size_t len = strlen (physname);
8094
8095 while (1)
8096 {
8097 if (physname[len] == ')') /* shortcut */
8098 break;
8099 else if (check_modifier (physname, len, " const"))
8100 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi->index) = 1;
8101 else if (check_modifier (physname, len, " volatile"))
8102 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi->index) = 1;
8103 else
8104 break;
8105 }
8106 }
3da10d80
KS
8107 }
8108}
8109
a766d390
DE
8110/* Go objects should be embedded in a DW_TAG_module DIE,
8111 and it's not clear if/how imported objects will appear.
8112 To keep Go support simple until that's worked out,
8113 go back through what we've read and create something usable.
8114 We could do this while processing each DIE, and feels kinda cleaner,
8115 but that way is more invasive.
8116 This is to, for example, allow the user to type "p var" or "b main"
8117 without having to specify the package name, and allow lookups
8118 of module.object to work in contexts that use the expression
8119 parser. */
8120
8121static void
8122fixup_go_packaging (struct dwarf2_cu *cu)
8123{
8124 char *package_name = NULL;
8125 struct pending *list;
8126 int i;
8127
8128 for (list = global_symbols; list != NULL; list = list->next)
8129 {
8130 for (i = 0; i < list->nsyms; ++i)
8131 {
8132 struct symbol *sym = list->symbol[i];
8133
8134 if (SYMBOL_LANGUAGE (sym) == language_go
8135 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8136 {
8137 char *this_package_name = go_symbol_package_name (sym);
8138
8139 if (this_package_name == NULL)
8140 continue;
8141 if (package_name == NULL)
8142 package_name = this_package_name;
8143 else
8144 {
8145 if (strcmp (package_name, this_package_name) != 0)
8146 complaint (&symfile_complaints,
8147 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
8148 (symbol_symtab (sym) != NULL
8149 ? symtab_to_filename_for_display
8150 (symbol_symtab (sym))
4262abfb 8151 : objfile_name (cu->objfile)),
a766d390
DE
8152 this_package_name, package_name);
8153 xfree (this_package_name);
8154 }
8155 }
8156 }
8157 }
8158
8159 if (package_name != NULL)
8160 {
8161 struct objfile *objfile = cu->objfile;
34a68019 8162 const char *saved_package_name
224c3ddb
SM
8163 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8164 package_name,
8165 strlen (package_name));
19f392bc
UW
8166 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8167 saved_package_name);
a766d390
DE
8168 struct symbol *sym;
8169
8170 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8171
e623cf5d 8172 sym = allocate_symbol (objfile);
f85f34ed 8173 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
8174 SYMBOL_SET_NAMES (sym, saved_package_name,
8175 strlen (saved_package_name), 0, objfile);
a766d390
DE
8176 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8177 e.g., "main" finds the "main" module and not C's main(). */
8178 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 8179 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
8180 SYMBOL_TYPE (sym) = type;
8181
8182 add_symbol_to_list (sym, &global_symbols);
8183
8184 xfree (package_name);
8185 }
8186}
8187
95554aad
TT
8188/* Return the symtab for PER_CU. This works properly regardless of
8189 whether we're using the index or psymtabs. */
8190
43f3e411
DE
8191static struct compunit_symtab *
8192get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
8193{
8194 return (dwarf2_per_objfile->using_index
43f3e411
DE
8195 ? per_cu->v.quick->compunit_symtab
8196 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
8197}
8198
8199/* A helper function for computing the list of all symbol tables
8200 included by PER_CU. */
8201
8202static void
43f3e411 8203recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 8204 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 8205 struct dwarf2_per_cu_data *per_cu,
43f3e411 8206 struct compunit_symtab *immediate_parent)
95554aad
TT
8207{
8208 void **slot;
8209 int ix;
43f3e411 8210 struct compunit_symtab *cust;
95554aad
TT
8211 struct dwarf2_per_cu_data *iter;
8212
8213 slot = htab_find_slot (all_children, per_cu, INSERT);
8214 if (*slot != NULL)
8215 {
8216 /* This inclusion and its children have been processed. */
8217 return;
8218 }
8219
8220 *slot = per_cu;
8221 /* Only add a CU if it has a symbol table. */
43f3e411
DE
8222 cust = get_compunit_symtab (per_cu);
8223 if (cust != NULL)
ec94af83
DE
8224 {
8225 /* If this is a type unit only add its symbol table if we haven't
8226 seen it yet (type unit per_cu's can share symtabs). */
8227 if (per_cu->is_debug_types)
8228 {
43f3e411 8229 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
8230 if (*slot == NULL)
8231 {
43f3e411
DE
8232 *slot = cust;
8233 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8234 if (cust->user == NULL)
8235 cust->user = immediate_parent;
ec94af83
DE
8236 }
8237 }
8238 else
f9125b6c 8239 {
43f3e411
DE
8240 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8241 if (cust->user == NULL)
8242 cust->user = immediate_parent;
f9125b6c 8243 }
ec94af83 8244 }
95554aad
TT
8245
8246 for (ix = 0;
796a7ff8 8247 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 8248 ++ix)
ec94af83
DE
8249 {
8250 recursively_compute_inclusions (result, all_children,
43f3e411 8251 all_type_symtabs, iter, cust);
ec94af83 8252 }
95554aad
TT
8253}
8254
43f3e411 8255/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
8256 PER_CU. */
8257
8258static void
43f3e411 8259compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 8260{
f4dc4d17
DE
8261 gdb_assert (! per_cu->is_debug_types);
8262
796a7ff8 8263 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
8264 {
8265 int ix, len;
ec94af83 8266 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
8267 struct compunit_symtab *compunit_symtab_iter;
8268 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 8269 htab_t all_children, all_type_symtabs;
43f3e411 8270 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
8271
8272 /* If we don't have a symtab, we can just skip this case. */
43f3e411 8273 if (cust == NULL)
95554aad
TT
8274 return;
8275
8276 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8277 NULL, xcalloc, xfree);
ec94af83
DE
8278 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8279 NULL, xcalloc, xfree);
95554aad
TT
8280
8281 for (ix = 0;
796a7ff8 8282 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 8283 ix, per_cu_iter);
95554aad 8284 ++ix)
ec94af83
DE
8285 {
8286 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 8287 all_type_symtabs, per_cu_iter,
43f3e411 8288 cust);
ec94af83 8289 }
95554aad 8290
ec94af83 8291 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
8292 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8293 cust->includes
8d749320
SM
8294 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8295 struct compunit_symtab *, len + 1);
95554aad 8296 for (ix = 0;
43f3e411
DE
8297 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8298 compunit_symtab_iter);
95554aad 8299 ++ix)
43f3e411
DE
8300 cust->includes[ix] = compunit_symtab_iter;
8301 cust->includes[len] = NULL;
95554aad 8302
43f3e411 8303 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 8304 htab_delete (all_children);
ec94af83 8305 htab_delete (all_type_symtabs);
95554aad
TT
8306 }
8307}
8308
8309/* Compute the 'includes' field for the symtabs of all the CUs we just
8310 read. */
8311
8312static void
8313process_cu_includes (void)
8314{
8315 int ix;
8316 struct dwarf2_per_cu_data *iter;
8317
8318 for (ix = 0;
8319 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8320 ix, iter);
8321 ++ix)
f4dc4d17
DE
8322 {
8323 if (! iter->is_debug_types)
43f3e411 8324 compute_compunit_symtab_includes (iter);
f4dc4d17 8325 }
95554aad
TT
8326
8327 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8328}
8329
9cdd5dbd 8330/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8331 already been loaded into memory. */
8332
8333static void
95554aad
TT
8334process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8335 enum language pretend_language)
10b3939b 8336{
10b3939b 8337 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8338 struct objfile *objfile = per_cu->objfile;
3e29f34a 8339 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8340 CORE_ADDR lowpc, highpc;
43f3e411 8341 struct compunit_symtab *cust;
3da10d80 8342 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8343 CORE_ADDR baseaddr;
4359dff1 8344 struct block *static_block;
3e29f34a 8345 CORE_ADDR addr;
10b3939b
DJ
8346
8347 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8348
10b3939b
DJ
8349 buildsym_init ();
8350 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8351 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8352
8353 cu->list_in_scope = &file_symbols;
c906108c 8354
95554aad
TT
8355 cu->language = pretend_language;
8356 cu->language_defn = language_def (cu->language);
8357
c906108c 8358 /* Do line number decoding in read_file_scope () */
10b3939b 8359 process_die (cu->dies, cu);
c906108c 8360
a766d390
DE
8361 /* For now fudge the Go package. */
8362 if (cu->language == language_go)
8363 fixup_go_packaging (cu);
8364
3da10d80
KS
8365 /* Now that we have processed all the DIEs in the CU, all the types
8366 should be complete, and it should now be safe to compute all of the
8367 physnames. */
8368 compute_delayed_physnames (cu);
8369 do_cleanups (delayed_list_cleanup);
8370
fae299cd
DC
8371 /* Some compilers don't define a DW_AT_high_pc attribute for the
8372 compilation unit. If the DW_AT_high_pc is missing, synthesize
8373 it, by scanning the DIE's below the compilation unit. */
10b3939b 8374 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8375
3e29f34a
MR
8376 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8377 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8378
8379 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8380 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8381 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8382 addrmap to help ensure it has an accurate map of pc values belonging to
8383 this comp unit. */
8384 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8385
43f3e411
DE
8386 cust = end_symtab_from_static_block (static_block,
8387 SECT_OFF_TEXT (objfile), 0);
c906108c 8388
43f3e411 8389 if (cust != NULL)
c906108c 8390 {
df15bd07 8391 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8392
8be455d7
JK
8393 /* Set symtab language to language from DW_AT_language. If the
8394 compilation is from a C file generated by language preprocessors, do
8395 not set the language if it was already deduced by start_subfile. */
43f3e411 8396 if (!(cu->language == language_c
40e3ad0e 8397 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 8398 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8399
8400 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8401 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8402 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8403 there were bugs in prologue debug info, fixed later in GCC-4.5
8404 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8405
8406 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8407 needed, it would be wrong due to missing DW_AT_producer there.
8408
8409 Still one can confuse GDB by using non-standard GCC compilation
8410 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8411 */
ab260dad 8412 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8413 cust->locations_valid = 1;
e0d00bc7
JK
8414
8415 if (gcc_4_minor >= 5)
43f3e411 8416 cust->epilogue_unwind_valid = 1;
96408a79 8417
43f3e411 8418 cust->call_site_htab = cu->call_site_htab;
c906108c 8419 }
9291a0cd
TT
8420
8421 if (dwarf2_per_objfile->using_index)
43f3e411 8422 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8423 else
8424 {
8425 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8426 pst->compunit_symtab = cust;
9291a0cd
TT
8427 pst->readin = 1;
8428 }
c906108c 8429
95554aad
TT
8430 /* Push it for inclusion processing later. */
8431 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8432
c906108c 8433 do_cleanups (back_to);
f4dc4d17 8434}
45cfd468 8435
f4dc4d17
DE
8436/* Generate full symbol information for type unit PER_CU, whose DIEs have
8437 already been loaded into memory. */
8438
8439static void
8440process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8441 enum language pretend_language)
8442{
8443 struct dwarf2_cu *cu = per_cu->cu;
8444 struct objfile *objfile = per_cu->objfile;
43f3e411 8445 struct compunit_symtab *cust;
f4dc4d17 8446 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8447 struct signatured_type *sig_type;
8448
8449 gdb_assert (per_cu->is_debug_types);
8450 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8451
8452 buildsym_init ();
8453 back_to = make_cleanup (really_free_pendings, NULL);
8454 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8455
8456 cu->list_in_scope = &file_symbols;
8457
8458 cu->language = pretend_language;
8459 cu->language_defn = language_def (cu->language);
8460
8461 /* The symbol tables are set up in read_type_unit_scope. */
8462 process_die (cu->dies, cu);
8463
8464 /* For now fudge the Go package. */
8465 if (cu->language == language_go)
8466 fixup_go_packaging (cu);
8467
8468 /* Now that we have processed all the DIEs in the CU, all the types
8469 should be complete, and it should now be safe to compute all of the
8470 physnames. */
8471 compute_delayed_physnames (cu);
8472 do_cleanups (delayed_list_cleanup);
8473
8474 /* TUs share symbol tables.
8475 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8476 of it with end_expandable_symtab. Otherwise, complete the addition of
8477 this TU's symbols to the existing symtab. */
43f3e411 8478 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8479 {
43f3e411
DE
8480 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8481 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8482
43f3e411 8483 if (cust != NULL)
f4dc4d17
DE
8484 {
8485 /* Set symtab language to language from DW_AT_language. If the
8486 compilation is from a C file generated by language preprocessors,
8487 do not set the language if it was already deduced by
8488 start_subfile. */
43f3e411
DE
8489 if (!(cu->language == language_c
8490 && COMPUNIT_FILETABS (cust)->language != language_c))
8491 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8492 }
8493 }
8494 else
8495 {
0ab9ce85 8496 augment_type_symtab ();
43f3e411 8497 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8498 }
8499
8500 if (dwarf2_per_objfile->using_index)
43f3e411 8501 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8502 else
8503 {
8504 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8505 pst->compunit_symtab = cust;
f4dc4d17 8506 pst->readin = 1;
45cfd468 8507 }
f4dc4d17
DE
8508
8509 do_cleanups (back_to);
c906108c
SS
8510}
8511
95554aad
TT
8512/* Process an imported unit DIE. */
8513
8514static void
8515process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8516{
8517 struct attribute *attr;
8518
f4dc4d17
DE
8519 /* For now we don't handle imported units in type units. */
8520 if (cu->per_cu->is_debug_types)
8521 {
8522 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8523 " supported in type units [in module %s]"),
4262abfb 8524 objfile_name (cu->objfile));
f4dc4d17
DE
8525 }
8526
95554aad
TT
8527 attr = dwarf2_attr (die, DW_AT_import, cu);
8528 if (attr != NULL)
8529 {
9c541725
PA
8530 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
8531 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8532 dwarf2_per_cu_data *per_cu
8533 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
95554aad 8534
69d751e3 8535 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8536 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8537 load_full_comp_unit (per_cu, cu->language);
8538
796a7ff8 8539 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8540 per_cu);
8541 }
8542}
8543
4c8aa72d
PA
8544/* RAII object that represents a process_die scope: i.e.,
8545 starts/finishes processing a DIE. */
8546class process_die_scope
adde2bff 8547{
4c8aa72d
PA
8548public:
8549 process_die_scope (die_info *die, dwarf2_cu *cu)
8550 : m_die (die), m_cu (cu)
8551 {
8552 /* We should only be processing DIEs not already in process. */
8553 gdb_assert (!m_die->in_process);
8554 m_die->in_process = true;
8555 }
8c3cb9fa 8556
4c8aa72d
PA
8557 ~process_die_scope ()
8558 {
8559 m_die->in_process = false;
8560
8561 /* If we're done processing the DIE for the CU that owns the line
8562 header, we don't need the line header anymore. */
8563 if (m_cu->line_header_die_owner == m_die)
8564 {
8565 delete m_cu->line_header;
8566 m_cu->line_header = NULL;
8567 m_cu->line_header_die_owner = NULL;
8568 }
8569 }
8570
8571private:
8572 die_info *m_die;
8573 dwarf2_cu *m_cu;
8574};
adde2bff 8575
c906108c
SS
8576/* Process a die and its children. */
8577
8578static void
e7c27a73 8579process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8580{
4c8aa72d 8581 process_die_scope scope (die, cu);
adde2bff 8582
c906108c
SS
8583 switch (die->tag)
8584 {
8585 case DW_TAG_padding:
8586 break;
8587 case DW_TAG_compile_unit:
95554aad 8588 case DW_TAG_partial_unit:
e7c27a73 8589 read_file_scope (die, cu);
c906108c 8590 break;
348e048f
DE
8591 case DW_TAG_type_unit:
8592 read_type_unit_scope (die, cu);
8593 break;
c906108c 8594 case DW_TAG_subprogram:
c906108c 8595 case DW_TAG_inlined_subroutine:
edb3359d 8596 read_func_scope (die, cu);
c906108c
SS
8597 break;
8598 case DW_TAG_lexical_block:
14898363
L
8599 case DW_TAG_try_block:
8600 case DW_TAG_catch_block:
e7c27a73 8601 read_lexical_block_scope (die, cu);
c906108c 8602 break;
216f72a1 8603 case DW_TAG_call_site:
96408a79
SA
8604 case DW_TAG_GNU_call_site:
8605 read_call_site_scope (die, cu);
8606 break;
c906108c 8607 case DW_TAG_class_type:
680b30c7 8608 case DW_TAG_interface_type:
c906108c
SS
8609 case DW_TAG_structure_type:
8610 case DW_TAG_union_type:
134d01f1 8611 process_structure_scope (die, cu);
c906108c
SS
8612 break;
8613 case DW_TAG_enumeration_type:
134d01f1 8614 process_enumeration_scope (die, cu);
c906108c 8615 break;
134d01f1 8616
f792889a
DJ
8617 /* These dies have a type, but processing them does not create
8618 a symbol or recurse to process the children. Therefore we can
8619 read them on-demand through read_type_die. */
c906108c 8620 case DW_TAG_subroutine_type:
72019c9c 8621 case DW_TAG_set_type:
c906108c 8622 case DW_TAG_array_type:
c906108c 8623 case DW_TAG_pointer_type:
c906108c 8624 case DW_TAG_ptr_to_member_type:
c906108c 8625 case DW_TAG_reference_type:
4297a3f0 8626 case DW_TAG_rvalue_reference_type:
c906108c 8627 case DW_TAG_string_type:
c906108c 8628 break;
134d01f1 8629
c906108c 8630 case DW_TAG_base_type:
a02abb62 8631 case DW_TAG_subrange_type:
cb249c71 8632 case DW_TAG_typedef:
134d01f1
DJ
8633 /* Add a typedef symbol for the type definition, if it has a
8634 DW_AT_name. */
f792889a 8635 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8636 break;
c906108c 8637 case DW_TAG_common_block:
e7c27a73 8638 read_common_block (die, cu);
c906108c
SS
8639 break;
8640 case DW_TAG_common_inclusion:
8641 break;
d9fa45fe 8642 case DW_TAG_namespace:
4d4ec4e5 8643 cu->processing_has_namespace_info = 1;
e7c27a73 8644 read_namespace (die, cu);
d9fa45fe 8645 break;
5d7cb8df 8646 case DW_TAG_module:
4d4ec4e5 8647 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8648 read_module (die, cu);
8649 break;
d9fa45fe 8650 case DW_TAG_imported_declaration:
74921315
KS
8651 cu->processing_has_namespace_info = 1;
8652 if (read_namespace_alias (die, cu))
8653 break;
8654 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8655 case DW_TAG_imported_module:
4d4ec4e5 8656 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8657 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8658 || cu->language != language_fortran))
8659 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8660 dwarf_tag_name (die->tag));
8661 read_import_statement (die, cu);
d9fa45fe 8662 break;
95554aad
TT
8663
8664 case DW_TAG_imported_unit:
8665 process_imported_unit_die (die, cu);
8666 break;
8667
c906108c 8668 default:
e7c27a73 8669 new_symbol (die, NULL, cu);
c906108c
SS
8670 break;
8671 }
8672}
ca69b9e6
DE
8673\f
8674/* DWARF name computation. */
c906108c 8675
94af9270
KS
8676/* A helper function for dwarf2_compute_name which determines whether DIE
8677 needs to have the name of the scope prepended to the name listed in the
8678 die. */
8679
8680static int
8681die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8682{
1c809c68
TT
8683 struct attribute *attr;
8684
94af9270
KS
8685 switch (die->tag)
8686 {
8687 case DW_TAG_namespace:
8688 case DW_TAG_typedef:
8689 case DW_TAG_class_type:
8690 case DW_TAG_interface_type:
8691 case DW_TAG_structure_type:
8692 case DW_TAG_union_type:
8693 case DW_TAG_enumeration_type:
8694 case DW_TAG_enumerator:
8695 case DW_TAG_subprogram:
08a76f8a 8696 case DW_TAG_inlined_subroutine:
94af9270 8697 case DW_TAG_member:
74921315 8698 case DW_TAG_imported_declaration:
94af9270
KS
8699 return 1;
8700
8701 case DW_TAG_variable:
c2b0a229 8702 case DW_TAG_constant:
94af9270
KS
8703 /* We only need to prefix "globally" visible variables. These include
8704 any variable marked with DW_AT_external or any variable that
8705 lives in a namespace. [Variables in anonymous namespaces
8706 require prefixing, but they are not DW_AT_external.] */
8707
8708 if (dwarf2_attr (die, DW_AT_specification, cu))
8709 {
8710 struct dwarf2_cu *spec_cu = cu;
9a619af0 8711
94af9270
KS
8712 return die_needs_namespace (die_specification (die, &spec_cu),
8713 spec_cu);
8714 }
8715
1c809c68 8716 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8717 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8718 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8719 return 0;
8720 /* A variable in a lexical block of some kind does not need a
8721 namespace, even though in C++ such variables may be external
8722 and have a mangled name. */
8723 if (die->parent->tag == DW_TAG_lexical_block
8724 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8725 || die->parent->tag == DW_TAG_catch_block
8726 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8727 return 0;
8728 return 1;
94af9270
KS
8729
8730 default:
8731 return 0;
8732 }
8733}
8734
73b9be8b
KS
8735/* Return the DIE's linkage name attribute, either DW_AT_linkage_name
8736 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
8737 defined for the given DIE. */
8738
8739static struct attribute *
8740dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
8741{
8742 struct attribute *attr;
8743
8744 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8745 if (attr == NULL)
8746 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8747
8748 return attr;
8749}
8750
8751/* Return the DIE's linkage name as a string, either DW_AT_linkage_name
8752 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
8753 defined for the given DIE. */
8754
8755static const char *
8756dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
8757{
8758 const char *linkage_name;
8759
8760 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8761 if (linkage_name == NULL)
8762 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8763
8764 return linkage_name;
8765}
8766
94af9270 8767/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390 8768 compute the physname for the object, which include a method's:
9c37b5ae 8769 - formal parameters (C++),
a766d390 8770 - receiver type (Go),
a766d390
DE
8771
8772 The term "physname" is a bit confusing.
8773 For C++, for example, it is the demangled name.
8774 For Go, for example, it's the mangled name.
94af9270 8775
af6b7be1
JB
8776 For Ada, return the DIE's linkage name rather than the fully qualified
8777 name. PHYSNAME is ignored..
8778
94af9270
KS
8779 The result is allocated on the objfile_obstack and canonicalized. */
8780
8781static const char *
15d034d0
TT
8782dwarf2_compute_name (const char *name,
8783 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8784 int physname)
8785{
bb5ed363
DE
8786 struct objfile *objfile = cu->objfile;
8787
94af9270
KS
8788 if (name == NULL)
8789 name = dwarf2_name (die, cu);
8790
2ee7123e
DE
8791 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8792 but otherwise compute it by typename_concat inside GDB.
8793 FIXME: Actually this is not really true, or at least not always true.
8794 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8795 Fortran names because there is no mangling standard. So new_symbol_full
8796 will set the demangled name to the result of dwarf2_full_name, and it is
8797 the demangled name that GDB uses if it exists. */
f55ee35c
JK
8798 if (cu->language == language_ada
8799 || (cu->language == language_fortran && physname))
8800 {
8801 /* For Ada unit, we prefer the linkage name over the name, as
8802 the former contains the exported name, which the user expects
8803 to be able to reference. Ideally, we want the user to be able
8804 to reference this entity using either natural or linkage name,
8805 but we haven't started looking at this enhancement yet. */
73b9be8b 8806 const char *linkage_name = dw2_linkage_name (die, cu);
f55ee35c 8807
2ee7123e
DE
8808 if (linkage_name != NULL)
8809 return linkage_name;
f55ee35c
JK
8810 }
8811
94af9270
KS
8812 /* These are the only languages we know how to qualify names in. */
8813 if (name != NULL
9c37b5ae 8814 && (cu->language == language_cplus
c44af4eb
TT
8815 || cu->language == language_fortran || cu->language == language_d
8816 || cu->language == language_rust))
94af9270
KS
8817 {
8818 if (die_needs_namespace (die, cu))
8819 {
8820 long length;
0d5cff50 8821 const char *prefix;
34a68019 8822 const char *canonical_name = NULL;
94af9270 8823
d7e74731
PA
8824 string_file buf;
8825
94af9270 8826 prefix = determine_prefix (die, cu);
94af9270
KS
8827 if (*prefix != '\0')
8828 {
f55ee35c
JK
8829 char *prefixed_name = typename_concat (NULL, prefix, name,
8830 physname, cu);
9a619af0 8831
d7e74731 8832 buf.puts (prefixed_name);
94af9270
KS
8833 xfree (prefixed_name);
8834 }
8835 else
d7e74731 8836 buf.puts (name);
94af9270 8837
98bfdba5
PA
8838 /* Template parameters may be specified in the DIE's DW_AT_name, or
8839 as children with DW_TAG_template_type_param or
8840 DW_TAG_value_type_param. If the latter, add them to the name
8841 here. If the name already has template parameters, then
8842 skip this step; some versions of GCC emit both, and
8843 it is more efficient to use the pre-computed name.
8844
8845 Something to keep in mind about this process: it is very
8846 unlikely, or in some cases downright impossible, to produce
8847 something that will match the mangled name of a function.
8848 If the definition of the function has the same debug info,
8849 we should be able to match up with it anyway. But fallbacks
8850 using the minimal symbol, for instance to find a method
8851 implemented in a stripped copy of libstdc++, will not work.
8852 If we do not have debug info for the definition, we will have to
8853 match them up some other way.
8854
8855 When we do name matching there is a related problem with function
8856 templates; two instantiated function templates are allowed to
8857 differ only by their return types, which we do not add here. */
8858
8859 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8860 {
8861 struct attribute *attr;
8862 struct die_info *child;
8863 int first = 1;
8864
8865 die->building_fullname = 1;
8866
8867 for (child = die->child; child != NULL; child = child->sibling)
8868 {
8869 struct type *type;
12df843f 8870 LONGEST value;
d521ce57 8871 const gdb_byte *bytes;
98bfdba5
PA
8872 struct dwarf2_locexpr_baton *baton;
8873 struct value *v;
8874
8875 if (child->tag != DW_TAG_template_type_param
8876 && child->tag != DW_TAG_template_value_param)
8877 continue;
8878
8879 if (first)
8880 {
d7e74731 8881 buf.puts ("<");
98bfdba5
PA
8882 first = 0;
8883 }
8884 else
d7e74731 8885 buf.puts (", ");
98bfdba5
PA
8886
8887 attr = dwarf2_attr (child, DW_AT_type, cu);
8888 if (attr == NULL)
8889 {
8890 complaint (&symfile_complaints,
8891 _("template parameter missing DW_AT_type"));
d7e74731 8892 buf.puts ("UNKNOWN_TYPE");
98bfdba5
PA
8893 continue;
8894 }
8895 type = die_type (child, cu);
8896
8897 if (child->tag == DW_TAG_template_type_param)
8898 {
d7e74731 8899 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8900 continue;
8901 }
8902
8903 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8904 if (attr == NULL)
8905 {
8906 complaint (&symfile_complaints,
3e43a32a
MS
8907 _("template parameter missing "
8908 "DW_AT_const_value"));
d7e74731 8909 buf.puts ("UNKNOWN_VALUE");
98bfdba5
PA
8910 continue;
8911 }
8912
8913 dwarf2_const_value_attr (attr, type, name,
8914 &cu->comp_unit_obstack, cu,
8915 &value, &bytes, &baton);
8916
8917 if (TYPE_NOSIGN (type))
8918 /* GDB prints characters as NUMBER 'CHAR'. If that's
8919 changed, this can use value_print instead. */
d7e74731 8920 c_printchar (value, type, &buf);
98bfdba5
PA
8921 else
8922 {
8923 struct value_print_options opts;
8924
8925 if (baton != NULL)
8926 v = dwarf2_evaluate_loc_desc (type, NULL,
8927 baton->data,
8928 baton->size,
8929 baton->per_cu);
8930 else if (bytes != NULL)
8931 {
8932 v = allocate_value (type);
8933 memcpy (value_contents_writeable (v), bytes,
8934 TYPE_LENGTH (type));
8935 }
8936 else
8937 v = value_from_longest (type, value);
8938
3e43a32a
MS
8939 /* Specify decimal so that we do not depend on
8940 the radix. */
98bfdba5
PA
8941 get_formatted_print_options (&opts, 'd');
8942 opts.raw = 1;
d7e74731 8943 value_print (v, &buf, &opts);
98bfdba5
PA
8944 release_value (v);
8945 value_free (v);
8946 }
8947 }
8948
8949 die->building_fullname = 0;
8950
8951 if (!first)
8952 {
8953 /* Close the argument list, with a space if necessary
8954 (nested templates). */
d7e74731
PA
8955 if (!buf.empty () && buf.string ().back () == '>')
8956 buf.puts (" >");
98bfdba5 8957 else
d7e74731 8958 buf.puts (">");
98bfdba5
PA
8959 }
8960 }
8961
9c37b5ae 8962 /* For C++ methods, append formal parameter type
94af9270 8963 information, if PHYSNAME. */
6e70227d 8964
94af9270 8965 if (physname && die->tag == DW_TAG_subprogram
9c37b5ae 8966 && cu->language == language_cplus)
94af9270
KS
8967 {
8968 struct type *type = read_type_die (die, cu);
8969
d7e74731 8970 c_type_print_args (type, &buf, 1, cu->language,
79d43c61 8971 &type_print_raw_options);
94af9270 8972
9c37b5ae 8973 if (cu->language == language_cplus)
94af9270 8974 {
60430eff
DJ
8975 /* Assume that an artificial first parameter is
8976 "this", but do not crash if it is not. RealView
8977 marks unnamed (and thus unused) parameters as
8978 artificial; there is no way to differentiate
8979 the two cases. */
94af9270
KS
8980 if (TYPE_NFIELDS (type) > 0
8981 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8982 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8983 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8984 0))))
d7e74731 8985 buf.puts (" const");
94af9270
KS
8986 }
8987 }
8988
d7e74731 8989 const std::string &intermediate_name = buf.string ();
94af9270
KS
8990
8991 if (cu->language == language_cplus)
34a68019 8992 canonical_name
322a8516 8993 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
34a68019
TT
8994 &objfile->per_bfd->storage_obstack);
8995
8996 /* If we only computed INTERMEDIATE_NAME, or if
8997 INTERMEDIATE_NAME is already canonical, then we need to
8998 copy it to the appropriate obstack. */
322a8516 8999 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
224c3ddb
SM
9000 name = ((const char *)
9001 obstack_copy0 (&objfile->per_bfd->storage_obstack,
322a8516
PA
9002 intermediate_name.c_str (),
9003 intermediate_name.length ()));
34a68019
TT
9004 else
9005 name = canonical_name;
94af9270
KS
9006 }
9007 }
9008
9009 return name;
9010}
9011
0114d602
DJ
9012/* Return the fully qualified name of DIE, based on its DW_AT_name.
9013 If scope qualifiers are appropriate they will be added. The result
34a68019 9014 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
9015 not have a name. NAME may either be from a previous call to
9016 dwarf2_name or NULL.
9017
9c37b5ae 9018 The output string will be canonicalized (if C++). */
0114d602
DJ
9019
9020static const char *
15d034d0 9021dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 9022{
94af9270
KS
9023 return dwarf2_compute_name (name, die, cu, 0);
9024}
0114d602 9025
94af9270
KS
9026/* Construct a physname for the given DIE in CU. NAME may either be
9027 from a previous call to dwarf2_name or NULL. The result will be
9028 allocated on the objfile_objstack or NULL if the DIE does not have a
9029 name.
0114d602 9030
9c37b5ae 9031 The output string will be canonicalized (if C++). */
0114d602 9032
94af9270 9033static const char *
15d034d0 9034dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 9035{
bb5ed363 9036 struct objfile *objfile = cu->objfile;
900e11f9
JK
9037 const char *retval, *mangled = NULL, *canon = NULL;
9038 struct cleanup *back_to;
9039 int need_copy = 1;
9040
9041 /* In this case dwarf2_compute_name is just a shortcut not building anything
9042 on its own. */
9043 if (!die_needs_namespace (die, cu))
9044 return dwarf2_compute_name (name, die, cu, 1);
9045
9046 back_to = make_cleanup (null_cleanup, NULL);
9047
73b9be8b 9048 mangled = dw2_linkage_name (die, cu);
900e11f9 9049
e98c9e7c
TT
9050 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
9051 See https://github.com/rust-lang/rust/issues/32925. */
9052 if (cu->language == language_rust && mangled != NULL
9053 && strchr (mangled, '{') != NULL)
9054 mangled = NULL;
9055
900e11f9
JK
9056 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
9057 has computed. */
7d45c7c3 9058 if (mangled != NULL)
900e11f9
JK
9059 {
9060 char *demangled;
9061
900e11f9
JK
9062 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
9063 type. It is easier for GDB users to search for such functions as
9064 `name(params)' than `long name(params)'. In such case the minimal
9065 symbol names do not match the full symbol names but for template
9066 functions there is never a need to look up their definition from their
9067 declaration so the only disadvantage remains the minimal symbol
9068 variant `long name(params)' does not have the proper inferior type.
9069 */
9070
a766d390
DE
9071 if (cu->language == language_go)
9072 {
9073 /* This is a lie, but we already lie to the caller new_symbol_full.
9074 new_symbol_full assumes we return the mangled name.
9075 This just undoes that lie until things are cleaned up. */
9076 demangled = NULL;
9077 }
9078 else
9079 {
8de20a37 9080 demangled = gdb_demangle (mangled,
9c37b5ae 9081 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
a766d390 9082 }
900e11f9
JK
9083 if (demangled)
9084 {
9085 make_cleanup (xfree, demangled);
9086 canon = demangled;
9087 }
9088 else
9089 {
9090 canon = mangled;
9091 need_copy = 0;
9092 }
9093 }
9094
9095 if (canon == NULL || check_physname)
9096 {
9097 const char *physname = dwarf2_compute_name (name, die, cu, 1);
9098
9099 if (canon != NULL && strcmp (physname, canon) != 0)
9100 {
9101 /* It may not mean a bug in GDB. The compiler could also
9102 compute DW_AT_linkage_name incorrectly. But in such case
9103 GDB would need to be bug-to-bug compatible. */
9104
9105 complaint (&symfile_complaints,
9106 _("Computed physname <%s> does not match demangled <%s> "
9107 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
9c541725 9108 physname, canon, mangled, to_underlying (die->sect_off),
4262abfb 9109 objfile_name (objfile));
900e11f9
JK
9110
9111 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9112 is available here - over computed PHYSNAME. It is safer
9113 against both buggy GDB and buggy compilers. */
9114
9115 retval = canon;
9116 }
9117 else
9118 {
9119 retval = physname;
9120 need_copy = 0;
9121 }
9122 }
9123 else
9124 retval = canon;
9125
9126 if (need_copy)
224c3ddb
SM
9127 retval = ((const char *)
9128 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9129 retval, strlen (retval)));
900e11f9
JK
9130
9131 do_cleanups (back_to);
9132 return retval;
0114d602
DJ
9133}
9134
74921315
KS
9135/* Inspect DIE in CU for a namespace alias. If one exists, record
9136 a new symbol for it.
9137
9138 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9139
9140static int
9141read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9142{
9143 struct attribute *attr;
9144
9145 /* If the die does not have a name, this is not a namespace
9146 alias. */
9147 attr = dwarf2_attr (die, DW_AT_name, cu);
9148 if (attr != NULL)
9149 {
9150 int num;
9151 struct die_info *d = die;
9152 struct dwarf2_cu *imported_cu = cu;
9153
9154 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9155 keep inspecting DIEs until we hit the underlying import. */
9156#define MAX_NESTED_IMPORTED_DECLARATIONS 100
9157 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9158 {
9159 attr = dwarf2_attr (d, DW_AT_import, cu);
9160 if (attr == NULL)
9161 break;
9162
9163 d = follow_die_ref (d, attr, &imported_cu);
9164 if (d->tag != DW_TAG_imported_declaration)
9165 break;
9166 }
9167
9168 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
9169 {
9170 complaint (&symfile_complaints,
9171 _("DIE at 0x%x has too many recursively imported "
9c541725 9172 "declarations"), to_underlying (d->sect_off));
74921315
KS
9173 return 0;
9174 }
9175
9176 if (attr != NULL)
9177 {
9178 struct type *type;
9c541725 9179 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
74921315 9180
9c541725 9181 type = get_die_type_at_offset (sect_off, cu->per_cu);
74921315
KS
9182 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9183 {
9184 /* This declaration is a global namespace alias. Add
9185 a symbol for it whose type is the aliased namespace. */
9186 new_symbol (die, type, cu);
9187 return 1;
9188 }
9189 }
9190 }
9191
9192 return 0;
9193}
9194
22cee43f
PMR
9195/* Return the using directives repository (global or local?) to use in the
9196 current context for LANGUAGE.
9197
9198 For Ada, imported declarations can materialize renamings, which *may* be
9199 global. However it is impossible (for now?) in DWARF to distinguish
9200 "external" imported declarations and "static" ones. As all imported
9201 declarations seem to be static in all other languages, make them all CU-wide
9202 global only in Ada. */
9203
9204static struct using_direct **
9205using_directives (enum language language)
9206{
9207 if (language == language_ada && context_stack_depth == 0)
9208 return &global_using_directives;
9209 else
9210 return &local_using_directives;
9211}
9212
27aa8d6a
SW
9213/* Read the import statement specified by the given die and record it. */
9214
9215static void
9216read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9217{
bb5ed363 9218 struct objfile *objfile = cu->objfile;
27aa8d6a 9219 struct attribute *import_attr;
32019081 9220 struct die_info *imported_die, *child_die;
de4affc9 9221 struct dwarf2_cu *imported_cu;
27aa8d6a 9222 const char *imported_name;
794684b6 9223 const char *imported_name_prefix;
13387711
SW
9224 const char *canonical_name;
9225 const char *import_alias;
9226 const char *imported_declaration = NULL;
794684b6 9227 const char *import_prefix;
32019081
JK
9228 VEC (const_char_ptr) *excludes = NULL;
9229 struct cleanup *cleanups;
13387711 9230
27aa8d6a
SW
9231 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9232 if (import_attr == NULL)
9233 {
9234 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9235 dwarf_tag_name (die->tag));
9236 return;
9237 }
9238
de4affc9
CC
9239 imported_cu = cu;
9240 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9241 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
9242 if (imported_name == NULL)
9243 {
9244 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9245
9246 The import in the following code:
9247 namespace A
9248 {
9249 typedef int B;
9250 }
9251
9252 int main ()
9253 {
9254 using A::B;
9255 B b;
9256 return b;
9257 }
9258
9259 ...
9260 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9261 <52> DW_AT_decl_file : 1
9262 <53> DW_AT_decl_line : 6
9263 <54> DW_AT_import : <0x75>
9264 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9265 <59> DW_AT_name : B
9266 <5b> DW_AT_decl_file : 1
9267 <5c> DW_AT_decl_line : 2
9268 <5d> DW_AT_type : <0x6e>
9269 ...
9270 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9271 <76> DW_AT_byte_size : 4
9272 <77> DW_AT_encoding : 5 (signed)
9273
9274 imports the wrong die ( 0x75 instead of 0x58 ).
9275 This case will be ignored until the gcc bug is fixed. */
9276 return;
9277 }
9278
82856980
SW
9279 /* Figure out the local name after import. */
9280 import_alias = dwarf2_name (die, cu);
27aa8d6a 9281
794684b6
SW
9282 /* Figure out where the statement is being imported to. */
9283 import_prefix = determine_prefix (die, cu);
9284
9285 /* Figure out what the scope of the imported die is and prepend it
9286 to the name of the imported die. */
de4affc9 9287 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 9288
f55ee35c
JK
9289 if (imported_die->tag != DW_TAG_namespace
9290 && imported_die->tag != DW_TAG_module)
794684b6 9291 {
13387711
SW
9292 imported_declaration = imported_name;
9293 canonical_name = imported_name_prefix;
794684b6 9294 }
13387711 9295 else if (strlen (imported_name_prefix) > 0)
12aaed36 9296 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
9297 imported_name_prefix,
9298 (cu->language == language_d ? "." : "::"),
9299 imported_name, (char *) NULL);
13387711
SW
9300 else
9301 canonical_name = imported_name;
794684b6 9302
32019081
JK
9303 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
9304
9305 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9306 for (child_die = die->child; child_die && child_die->tag;
9307 child_die = sibling_die (child_die))
9308 {
9309 /* DWARF-4: A Fortran use statement with a “rename list” may be
9310 represented by an imported module entry with an import attribute
9311 referring to the module and owned entries corresponding to those
9312 entities that are renamed as part of being imported. */
9313
9314 if (child_die->tag != DW_TAG_imported_declaration)
9315 {
9316 complaint (&symfile_complaints,
9317 _("child DW_TAG_imported_declaration expected "
9318 "- DIE at 0x%x [in module %s]"),
9c541725 9319 to_underlying (child_die->sect_off), objfile_name (objfile));
32019081
JK
9320 continue;
9321 }
9322
9323 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9324 if (import_attr == NULL)
9325 {
9326 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9327 dwarf_tag_name (child_die->tag));
9328 continue;
9329 }
9330
9331 imported_cu = cu;
9332 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9333 &imported_cu);
9334 imported_name = dwarf2_name (imported_die, imported_cu);
9335 if (imported_name == NULL)
9336 {
9337 complaint (&symfile_complaints,
9338 _("child DW_TAG_imported_declaration has unknown "
9339 "imported name - DIE at 0x%x [in module %s]"),
9c541725 9340 to_underlying (child_die->sect_off), objfile_name (objfile));
32019081
JK
9341 continue;
9342 }
9343
9344 VEC_safe_push (const_char_ptr, excludes, imported_name);
9345
9346 process_die (child_die, cu);
9347 }
9348
22cee43f
PMR
9349 add_using_directive (using_directives (cu->language),
9350 import_prefix,
9351 canonical_name,
9352 import_alias,
9353 imported_declaration,
9354 excludes,
9355 0,
9356 &objfile->objfile_obstack);
32019081
JK
9357
9358 do_cleanups (cleanups);
27aa8d6a
SW
9359}
9360
1b80a9fa
JK
9361/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9362 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9363 this, it was first present in GCC release 4.3.0. */
9364
9365static int
9366producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9367{
9368 if (!cu->checked_producer)
9369 check_producer (cu);
9370
9371 return cu->producer_is_gcc_lt_4_3;
9372}
9373
d721ba37
PA
9374static file_and_directory
9375find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9291a0cd 9376{
d721ba37
PA
9377 file_and_directory res;
9378
9291a0cd
TT
9379 /* Find the filename. Do not use dwarf2_name here, since the filename
9380 is not a source language identifier. */
d721ba37
PA
9381 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9382 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 9383
d721ba37
PA
9384 if (res.comp_dir == NULL
9385 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9386 && IS_ABSOLUTE_PATH (res.name))
9291a0cd 9387 {
d721ba37
PA
9388 res.comp_dir_storage = ldirname (res.name);
9389 if (!res.comp_dir_storage.empty ())
9390 res.comp_dir = res.comp_dir_storage.c_str ();
9291a0cd 9391 }
d721ba37 9392 if (res.comp_dir != NULL)
9291a0cd
TT
9393 {
9394 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9395 directory, get rid of it. */
d721ba37 9396 const char *cp = strchr (res.comp_dir, ':');
9291a0cd 9397
d721ba37
PA
9398 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9399 res.comp_dir = cp + 1;
9291a0cd
TT
9400 }
9401
d721ba37
PA
9402 if (res.name == NULL)
9403 res.name = "<unknown>";
9404
9405 return res;
9291a0cd
TT
9406}
9407
f4dc4d17
DE
9408/* Handle DW_AT_stmt_list for a compilation unit.
9409 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9410 COMP_DIR is the compilation directory. LOWPC is passed to
9411 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9412
9413static void
9414handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9415 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9416{
527f3840 9417 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9418 struct attribute *attr;
527f3840
JK
9419 struct line_header line_header_local;
9420 hashval_t line_header_local_hash;
9421 unsigned u;
9422 void **slot;
9423 int decode_mapping;
2ab95328 9424
f4dc4d17
DE
9425 gdb_assert (! cu->per_cu->is_debug_types);
9426
2ab95328 9427 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9428 if (attr == NULL)
9429 return;
9430
9c541725 9431 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
527f3840
JK
9432
9433 /* The line header hash table is only created if needed (it exists to
9434 prevent redundant reading of the line table for partial_units).
9435 If we're given a partial_unit, we'll need it. If we're given a
9436 compile_unit, then use the line header hash table if it's already
9437 created, but don't create one just yet. */
9438
9439 if (dwarf2_per_objfile->line_header_hash == NULL
9440 && die->tag == DW_TAG_partial_unit)
2ab95328 9441 {
527f3840
JK
9442 dwarf2_per_objfile->line_header_hash
9443 = htab_create_alloc_ex (127, line_header_hash_voidp,
9444 line_header_eq_voidp,
9445 free_line_header_voidp,
9446 &objfile->objfile_obstack,
9447 hashtab_obstack_allocate,
9448 dummy_obstack_deallocate);
9449 }
2ab95328 9450
9c541725 9451 line_header_local.sect_off = line_offset;
527f3840
JK
9452 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9453 line_header_local_hash = line_header_hash (&line_header_local);
9454 if (dwarf2_per_objfile->line_header_hash != NULL)
9455 {
9456 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9457 &line_header_local,
9458 line_header_local_hash, NO_INSERT);
9459
9460 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9461 is not present in *SLOT (since if there is something in *SLOT then
9462 it will be for a partial_unit). */
9463 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9464 {
527f3840 9465 gdb_assert (*slot != NULL);
9a3c8263 9466 cu->line_header = (struct line_header *) *slot;
527f3840 9467 return;
dee91e82 9468 }
2ab95328 9469 }
527f3840
JK
9470
9471 /* dwarf_decode_line_header does not yet provide sufficient information.
9472 We always have to call also dwarf_decode_lines for it. */
fff8551c
PA
9473 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
9474 if (lh == NULL)
527f3840 9475 return;
4c8aa72d
PA
9476
9477 cu->line_header = lh.release ();
9478 cu->line_header_die_owner = die;
527f3840
JK
9479
9480 if (dwarf2_per_objfile->line_header_hash == NULL)
9481 slot = NULL;
9482 else
9483 {
9484 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9485 &line_header_local,
9486 line_header_local_hash, INSERT);
9487 gdb_assert (slot != NULL);
9488 }
9489 if (slot != NULL && *slot == NULL)
9490 {
9491 /* This newly decoded line number information unit will be owned
9492 by line_header_hash hash table. */
9493 *slot = cu->line_header;
4c8aa72d 9494 cu->line_header_die_owner = NULL;
527f3840
JK
9495 }
9496 else
9497 {
9498 /* We cannot free any current entry in (*slot) as that struct line_header
9499 may be already used by multiple CUs. Create only temporary decoded
9500 line_header for this CU - it may happen at most once for each line
9501 number information unit. And if we're not using line_header_hash
9502 then this is what we want as well. */
9503 gdb_assert (die->tag != DW_TAG_partial_unit);
527f3840
JK
9504 }
9505 decode_mapping = (die->tag != DW_TAG_partial_unit);
9506 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9507 decode_mapping);
fff8551c 9508
2ab95328
TT
9509}
9510
95554aad 9511/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9512
c906108c 9513static void
e7c27a73 9514read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9515{
dee91e82 9516 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9517 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2acceee2 9518 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9519 CORE_ADDR highpc = ((CORE_ADDR) 0);
9520 struct attribute *attr;
c906108c 9521 struct die_info *child_die;
e142c38c 9522 CORE_ADDR baseaddr;
6e70227d 9523
e142c38c 9524 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9525
fae299cd 9526 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9527
9528 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9529 from finish_block. */
2acceee2 9530 if (lowpc == ((CORE_ADDR) -1))
c906108c 9531 lowpc = highpc;
3e29f34a 9532 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9533
d721ba37 9534 file_and_directory fnd = find_file_and_directory (die, cu);
e1024ff1 9535
95554aad 9536 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9537
f4b8a18d
KW
9538 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9539 standardised yet. As a workaround for the language detection we fall
9540 back to the DW_AT_producer string. */
9541 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9542 cu->language = language_opencl;
9543
3019eac3
DE
9544 /* Similar hack for Go. */
9545 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9546 set_cu_language (DW_LANG_Go, cu);
9547
d721ba37 9548 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
3019eac3
DE
9549
9550 /* Decode line number information if present. We do this before
9551 processing child DIEs, so that the line header table is available
9552 for DW_AT_decl_file. */
d721ba37 9553 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
3019eac3
DE
9554
9555 /* Process all dies in compilation unit. */
9556 if (die->child != NULL)
9557 {
9558 child_die = die->child;
9559 while (child_die && child_die->tag)
9560 {
9561 process_die (child_die, cu);
9562 child_die = sibling_die (child_die);
9563 }
9564 }
9565
9566 /* Decode macro information, if present. Dwarf 2 macro information
9567 refers to information in the line number info statement program
9568 header, so we can only read it if we've read the header
9569 successfully. */
0af92d60
JK
9570 attr = dwarf2_attr (die, DW_AT_macros, cu);
9571 if (attr == NULL)
9572 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
3019eac3
DE
9573 if (attr && cu->line_header)
9574 {
9575 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9576 complaint (&symfile_complaints,
0af92d60 9577 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
3019eac3 9578
43f3e411 9579 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9580 }
9581 else
9582 {
9583 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9584 if (attr && cu->line_header)
9585 {
9586 unsigned int macro_offset = DW_UNSND (attr);
9587
43f3e411 9588 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9589 }
9590 }
3019eac3
DE
9591}
9592
f4dc4d17
DE
9593/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9594 Create the set of symtabs used by this TU, or if this TU is sharing
9595 symtabs with another TU and the symtabs have already been created
9596 then restore those symtabs in the line header.
9597 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9598
9599static void
f4dc4d17 9600setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9601{
f4dc4d17
DE
9602 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9603 struct type_unit_group *tu_group;
9604 int first_time;
3019eac3 9605 struct attribute *attr;
9c541725 9606 unsigned int i;
0186c6a7 9607 struct signatured_type *sig_type;
3019eac3 9608
f4dc4d17 9609 gdb_assert (per_cu->is_debug_types);
0186c6a7 9610 sig_type = (struct signatured_type *) per_cu;
3019eac3 9611
f4dc4d17 9612 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9613
f4dc4d17 9614 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9615 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9616 if (sig_type->type_unit_group == NULL)
9617 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9618 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9619
9620 /* If we've already processed this stmt_list there's no real need to
9621 do it again, we could fake it and just recreate the part we need
9622 (file name,index -> symtab mapping). If data shows this optimization
9623 is useful we can do it then. */
43f3e411 9624 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9625
9626 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9627 debug info. */
fff8551c 9628 line_header_up lh;
f4dc4d17 9629 if (attr != NULL)
3019eac3 9630 {
9c541725 9631 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
f4dc4d17
DE
9632 lh = dwarf_decode_line_header (line_offset, cu);
9633 }
9634 if (lh == NULL)
9635 {
9636 if (first_time)
9637 dwarf2_start_symtab (cu, "", NULL, 0);
9638 else
9639 {
9640 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9641 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9642 }
f4dc4d17 9643 return;
3019eac3
DE
9644 }
9645
4c8aa72d
PA
9646 cu->line_header = lh.release ();
9647 cu->line_header_die_owner = die;
3019eac3 9648
f4dc4d17
DE
9649 if (first_time)
9650 {
43f3e411 9651 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9652
1fd60fc0
DE
9653 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9654 still initializing it, and our caller (a few levels up)
9655 process_full_type_unit still needs to know if this is the first
9656 time. */
9657
4c8aa72d
PA
9658 tu_group->num_symtabs = cu->line_header->file_names.size ();
9659 tu_group->symtabs = XNEWVEC (struct symtab *,
9660 cu->line_header->file_names.size ());
3019eac3 9661
4c8aa72d 9662 for (i = 0; i < cu->line_header->file_names.size (); ++i)
f4dc4d17 9663 {
4c8aa72d 9664 file_entry &fe = cu->line_header->file_names[i];
3019eac3 9665
4c8aa72d 9666 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
3019eac3 9667
f4dc4d17
DE
9668 if (current_subfile->symtab == NULL)
9669 {
4c8aa72d
PA
9670 /* NOTE: start_subfile will recognize when it's been
9671 passed a file it has already seen. So we can't
9672 assume there's a simple mapping from
9673 cu->line_header->file_names to subfiles, plus
9674 cu->line_header->file_names may contain dups. */
43f3e411
DE
9675 current_subfile->symtab
9676 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9677 }
9678
8c43009f
PA
9679 fe.symtab = current_subfile->symtab;
9680 tu_group->symtabs[i] = fe.symtab;
f4dc4d17
DE
9681 }
9682 }
9683 else
3019eac3 9684 {
0ab9ce85 9685 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9686
4c8aa72d 9687 for (i = 0; i < cu->line_header->file_names.size (); ++i)
f4dc4d17 9688 {
4c8aa72d 9689 file_entry &fe = cu->line_header->file_names[i];
f4dc4d17 9690
4c8aa72d 9691 fe.symtab = tu_group->symtabs[i];
f4dc4d17 9692 }
3019eac3
DE
9693 }
9694
f4dc4d17
DE
9695 /* The main symtab is allocated last. Type units don't have DW_AT_name
9696 so they don't have a "real" (so to speak) symtab anyway.
9697 There is later code that will assign the main symtab to all symbols
9698 that don't have one. We need to handle the case of a symbol with a
9699 missing symtab (DW_AT_decl_file) anyway. */
9700}
3019eac3 9701
f4dc4d17
DE
9702/* Process DW_TAG_type_unit.
9703 For TUs we want to skip the first top level sibling if it's not the
9704 actual type being defined by this TU. In this case the first top
9705 level sibling is there to provide context only. */
3019eac3 9706
f4dc4d17
DE
9707static void
9708read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9709{
9710 struct die_info *child_die;
3019eac3 9711
f4dc4d17
DE
9712 prepare_one_comp_unit (cu, die, language_minimal);
9713
9714 /* Initialize (or reinitialize) the machinery for building symtabs.
9715 We do this before processing child DIEs, so that the line header table
9716 is available for DW_AT_decl_file. */
9717 setup_type_unit_groups (die, cu);
9718
9719 if (die->child != NULL)
9720 {
9721 child_die = die->child;
9722 while (child_die && child_die->tag)
9723 {
9724 process_die (child_die, cu);
9725 child_die = sibling_die (child_die);
9726 }
9727 }
3019eac3
DE
9728}
9729\f
80626a55
DE
9730/* DWO/DWP files.
9731
9732 http://gcc.gnu.org/wiki/DebugFission
9733 http://gcc.gnu.org/wiki/DebugFissionDWP
9734
9735 To simplify handling of both DWO files ("object" files with the DWARF info)
9736 and DWP files (a file with the DWOs packaged up into one file), we treat
9737 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9738
9739static hashval_t
9740hash_dwo_file (const void *item)
9741{
9a3c8263 9742 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 9743 hashval_t hash;
3019eac3 9744
a2ce51a0
DE
9745 hash = htab_hash_string (dwo_file->dwo_name);
9746 if (dwo_file->comp_dir != NULL)
9747 hash += htab_hash_string (dwo_file->comp_dir);
9748 return hash;
3019eac3
DE
9749}
9750
9751static int
9752eq_dwo_file (const void *item_lhs, const void *item_rhs)
9753{
9a3c8263
SM
9754 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9755 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 9756
a2ce51a0
DE
9757 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9758 return 0;
9759 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9760 return lhs->comp_dir == rhs->comp_dir;
9761 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9762}
9763
9764/* Allocate a hash table for DWO files. */
9765
9766static htab_t
9767allocate_dwo_file_hash_table (void)
9768{
9769 struct objfile *objfile = dwarf2_per_objfile->objfile;
9770
9771 return htab_create_alloc_ex (41,
9772 hash_dwo_file,
9773 eq_dwo_file,
9774 NULL,
9775 &objfile->objfile_obstack,
9776 hashtab_obstack_allocate,
9777 dummy_obstack_deallocate);
9778}
9779
80626a55
DE
9780/* Lookup DWO file DWO_NAME. */
9781
9782static void **
0ac5b59e 9783lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9784{
9785 struct dwo_file find_entry;
9786 void **slot;
9787
9788 if (dwarf2_per_objfile->dwo_files == NULL)
9789 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9790
9791 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9792 find_entry.dwo_name = dwo_name;
9793 find_entry.comp_dir = comp_dir;
80626a55
DE
9794 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9795
9796 return slot;
9797}
9798
3019eac3
DE
9799static hashval_t
9800hash_dwo_unit (const void *item)
9801{
9a3c8263 9802 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
9803
9804 /* This drops the top 32 bits of the id, but is ok for a hash. */
9805 return dwo_unit->signature;
9806}
9807
9808static int
9809eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9810{
9a3c8263
SM
9811 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9812 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
9813
9814 /* The signature is assumed to be unique within the DWO file.
9815 So while object file CU dwo_id's always have the value zero,
9816 that's OK, assuming each object file DWO file has only one CU,
9817 and that's the rule for now. */
9818 return lhs->signature == rhs->signature;
9819}
9820
9821/* Allocate a hash table for DWO CUs,TUs.
9822 There is one of these tables for each of CUs,TUs for each DWO file. */
9823
9824static htab_t
9825allocate_dwo_unit_table (struct objfile *objfile)
9826{
9827 /* Start out with a pretty small number.
9828 Generally DWO files contain only one CU and maybe some TUs. */
9829 return htab_create_alloc_ex (3,
9830 hash_dwo_unit,
9831 eq_dwo_unit,
9832 NULL,
9833 &objfile->objfile_obstack,
9834 hashtab_obstack_allocate,
9835 dummy_obstack_deallocate);
9836}
9837
80626a55 9838/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9839
19c3d4c9 9840struct create_dwo_cu_data
3019eac3
DE
9841{
9842 struct dwo_file *dwo_file;
19c3d4c9 9843 struct dwo_unit dwo_unit;
3019eac3
DE
9844};
9845
19c3d4c9 9846/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9847
9848static void
19c3d4c9
DE
9849create_dwo_cu_reader (const struct die_reader_specs *reader,
9850 const gdb_byte *info_ptr,
9851 struct die_info *comp_unit_die,
9852 int has_children,
9853 void *datap)
3019eac3
DE
9854{
9855 struct dwarf2_cu *cu = reader->cu;
9c541725 9856 sect_offset sect_off = cu->per_cu->sect_off;
8a0459fd 9857 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 9858 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 9859 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9860 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9861 struct attribute *attr;
3019eac3
DE
9862
9863 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9864 if (attr == NULL)
9865 {
19c3d4c9
DE
9866 complaint (&symfile_complaints,
9867 _("Dwarf Error: debug entry at offset 0x%x is missing"
9868 " its dwo_id [in module %s]"),
9c541725 9869 to_underlying (sect_off), dwo_file->dwo_name);
3019eac3
DE
9870 return;
9871 }
9872
3019eac3
DE
9873 dwo_unit->dwo_file = dwo_file;
9874 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9875 dwo_unit->section = section;
9c541725 9876 dwo_unit->sect_off = sect_off;
3019eac3
DE
9877 dwo_unit->length = cu->per_cu->length;
9878
b4f54984 9879 if (dwarf_read_debug)
4031ecc5 9880 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9c541725
PA
9881 to_underlying (sect_off),
9882 hex_string (dwo_unit->signature));
3019eac3
DE
9883}
9884
33c5cd75 9885/* Create the dwo_units for the CUs in a DWO_FILE.
19c3d4c9 9886 Note: This function processes DWO files only, not DWP files. */
3019eac3 9887
33c5cd75
DB
9888static void
9889create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
9890 htab_t &cus_htab)
3019eac3
DE
9891{
9892 struct objfile *objfile = dwarf2_per_objfile->objfile;
33c5cd75 9893 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
d521ce57 9894 const gdb_byte *info_ptr, *end_ptr;
3019eac3 9895
33c5cd75
DB
9896 dwarf2_read_section (objfile, &section);
9897 info_ptr = section.buffer;
3019eac3
DE
9898
9899 if (info_ptr == NULL)
33c5cd75 9900 return;
3019eac3 9901
b4f54984 9902 if (dwarf_read_debug)
19c3d4c9
DE
9903 {
9904 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
33c5cd75
DB
9905 get_section_name (&section),
9906 get_section_file_name (&section));
19c3d4c9 9907 }
3019eac3 9908
33c5cd75 9909 end_ptr = info_ptr + section.size;
3019eac3
DE
9910 while (info_ptr < end_ptr)
9911 {
9912 struct dwarf2_per_cu_data per_cu;
33c5cd75
DB
9913 struct create_dwo_cu_data create_dwo_cu_data;
9914 struct dwo_unit *dwo_unit;
9915 void **slot;
9916 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
3019eac3 9917
19c3d4c9
DE
9918 memset (&create_dwo_cu_data.dwo_unit, 0,
9919 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9920 memset (&per_cu, 0, sizeof (per_cu));
9921 per_cu.objfile = objfile;
9922 per_cu.is_debug_types = 0;
33c5cd75
DB
9923 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
9924 per_cu.section = &section;
c5ed0576 9925 create_dwo_cu_data.dwo_file = &dwo_file;
33c5cd75
DB
9926
9927 init_cutu_and_read_dies_no_follow (
9928 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
9929 info_ptr += per_cu.length;
9930
9931 // If the unit could not be parsed, skip it.
9932 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
9933 continue;
3019eac3 9934
33c5cd75
DB
9935 if (cus_htab == NULL)
9936 cus_htab = allocate_dwo_unit_table (objfile);
19c3d4c9 9937
33c5cd75
DB
9938 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9939 *dwo_unit = create_dwo_cu_data.dwo_unit;
9940 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
9941 gdb_assert (slot != NULL);
9942 if (*slot != NULL)
19c3d4c9 9943 {
33c5cd75
DB
9944 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
9945 sect_offset dup_sect_off = dup_cu->sect_off;
19c3d4c9 9946
33c5cd75
DB
9947 complaint (&symfile_complaints,
9948 _("debug cu entry at offset 0x%x is duplicate to"
9949 " the entry at offset 0x%x, signature %s"),
9950 to_underlying (sect_off), to_underlying (dup_sect_off),
9951 hex_string (dwo_unit->signature));
19c3d4c9 9952 }
33c5cd75 9953 *slot = (void *)dwo_unit;
3019eac3 9954 }
3019eac3
DE
9955}
9956
80626a55
DE
9957/* DWP file .debug_{cu,tu}_index section format:
9958 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9959
d2415c6c
DE
9960 DWP Version 1:
9961
80626a55
DE
9962 Both index sections have the same format, and serve to map a 64-bit
9963 signature to a set of section numbers. Each section begins with a header,
9964 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9965 indexes, and a pool of 32-bit section numbers. The index sections will be
9966 aligned at 8-byte boundaries in the file.
9967
d2415c6c
DE
9968 The index section header consists of:
9969
9970 V, 32 bit version number
9971 -, 32 bits unused
9972 N, 32 bit number of compilation units or type units in the index
9973 M, 32 bit number of slots in the hash table
80626a55 9974
d2415c6c 9975 Numbers are recorded using the byte order of the application binary.
80626a55 9976
d2415c6c
DE
9977 The hash table begins at offset 16 in the section, and consists of an array
9978 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9979 order of the application binary). Unused slots in the hash table are 0.
9980 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9981
d2415c6c
DE
9982 The parallel table begins immediately after the hash table
9983 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9984 array of 32-bit indexes (using the byte order of the application binary),
9985 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9986 table contains a 32-bit index into the pool of section numbers. For unused
9987 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9988
73869dc2
DE
9989 The pool of section numbers begins immediately following the hash table
9990 (at offset 16 + 12 * M from the beginning of the section). The pool of
9991 section numbers consists of an array of 32-bit words (using the byte order
9992 of the application binary). Each item in the array is indexed starting
9993 from 0. The hash table entry provides the index of the first section
9994 number in the set. Additional section numbers in the set follow, and the
9995 set is terminated by a 0 entry (section number 0 is not used in ELF).
9996
9997 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9998 section must be the first entry in the set, and the .debug_abbrev.dwo must
9999 be the second entry. Other members of the set may follow in any order.
10000
10001 ---
10002
10003 DWP Version 2:
10004
10005 DWP Version 2 combines all the .debug_info, etc. sections into one,
10006 and the entries in the index tables are now offsets into these sections.
10007 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
10008 section.
10009
10010 Index Section Contents:
10011 Header
10012 Hash Table of Signatures dwp_hash_table.hash_table
10013 Parallel Table of Indices dwp_hash_table.unit_table
10014 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
10015 Table of Section Sizes dwp_hash_table.v2.sizes
10016
10017 The index section header consists of:
10018
10019 V, 32 bit version number
10020 L, 32 bit number of columns in the table of section offsets
10021 N, 32 bit number of compilation units or type units in the index
10022 M, 32 bit number of slots in the hash table
10023
10024 Numbers are recorded using the byte order of the application binary.
10025
10026 The hash table has the same format as version 1.
10027 The parallel table of indices has the same format as version 1,
10028 except that the entries are origin-1 indices into the table of sections
10029 offsets and the table of section sizes.
10030
10031 The table of offsets begins immediately following the parallel table
10032 (at offset 16 + 12 * M from the beginning of the section). The table is
10033 a two-dimensional array of 32-bit words (using the byte order of the
10034 application binary), with L columns and N+1 rows, in row-major order.
10035 Each row in the array is indexed starting from 0. The first row provides
10036 a key to the remaining rows: each column in this row provides an identifier
10037 for a debug section, and the offsets in the same column of subsequent rows
10038 refer to that section. The section identifiers are:
10039
10040 DW_SECT_INFO 1 .debug_info.dwo
10041 DW_SECT_TYPES 2 .debug_types.dwo
10042 DW_SECT_ABBREV 3 .debug_abbrev.dwo
10043 DW_SECT_LINE 4 .debug_line.dwo
10044 DW_SECT_LOC 5 .debug_loc.dwo
10045 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
10046 DW_SECT_MACINFO 7 .debug_macinfo.dwo
10047 DW_SECT_MACRO 8 .debug_macro.dwo
10048
10049 The offsets provided by the CU and TU index sections are the base offsets
10050 for the contributions made by each CU or TU to the corresponding section
10051 in the package file. Each CU and TU header contains an abbrev_offset
10052 field, used to find the abbreviations table for that CU or TU within the
10053 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
10054 be interpreted as relative to the base offset given in the index section.
10055 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
10056 should be interpreted as relative to the base offset for .debug_line.dwo,
10057 and offsets into other debug sections obtained from DWARF attributes should
10058 also be interpreted as relative to the corresponding base offset.
10059
10060 The table of sizes begins immediately following the table of offsets.
10061 Like the table of offsets, it is a two-dimensional array of 32-bit words,
10062 with L columns and N rows, in row-major order. Each row in the array is
10063 indexed starting from 1 (row 0 is shared by the two tables).
10064
10065 ---
10066
10067 Hash table lookup is handled the same in version 1 and 2:
10068
10069 We assume that N and M will not exceed 2^32 - 1.
10070 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
10071
d2415c6c
DE
10072 Given a 64-bit compilation unit signature or a type signature S, an entry
10073 in the hash table is located as follows:
80626a55 10074
d2415c6c
DE
10075 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
10076 the low-order k bits all set to 1.
80626a55 10077
d2415c6c 10078 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 10079
d2415c6c
DE
10080 3) If the hash table entry at index H matches the signature, use that
10081 entry. If the hash table entry at index H is unused (all zeroes),
10082 terminate the search: the signature is not present in the table.
80626a55 10083
d2415c6c 10084 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 10085
d2415c6c 10086 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 10087 to stop at an unused slot or find the match. */
80626a55
DE
10088
10089/* Create a hash table to map DWO IDs to their CU/TU entry in
10090 .debug_{info,types}.dwo in DWP_FILE.
10091 Returns NULL if there isn't one.
10092 Note: This function processes DWP files only, not DWO files. */
10093
10094static struct dwp_hash_table *
10095create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
10096{
10097 struct objfile *objfile = dwarf2_per_objfile->objfile;
10098 bfd *dbfd = dwp_file->dbfd;
948f8e3d 10099 const gdb_byte *index_ptr, *index_end;
80626a55 10100 struct dwarf2_section_info *index;
73869dc2 10101 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
10102 struct dwp_hash_table *htab;
10103
10104 if (is_debug_types)
10105 index = &dwp_file->sections.tu_index;
10106 else
10107 index = &dwp_file->sections.cu_index;
10108
10109 if (dwarf2_section_empty_p (index))
10110 return NULL;
10111 dwarf2_read_section (objfile, index);
10112
10113 index_ptr = index->buffer;
10114 index_end = index_ptr + index->size;
10115
10116 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
10117 index_ptr += 4;
10118 if (version == 2)
10119 nr_columns = read_4_bytes (dbfd, index_ptr);
10120 else
10121 nr_columns = 0;
10122 index_ptr += 4;
80626a55
DE
10123 nr_units = read_4_bytes (dbfd, index_ptr);
10124 index_ptr += 4;
10125 nr_slots = read_4_bytes (dbfd, index_ptr);
10126 index_ptr += 4;
10127
73869dc2 10128 if (version != 1 && version != 2)
80626a55 10129 {
21aa081e 10130 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 10131 " [in module %s]"),
21aa081e 10132 pulongest (version), dwp_file->name);
80626a55
DE
10133 }
10134 if (nr_slots != (nr_slots & -nr_slots))
10135 {
21aa081e 10136 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 10137 " is not power of 2 [in module %s]"),
21aa081e 10138 pulongest (nr_slots), dwp_file->name);
80626a55
DE
10139 }
10140
10141 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
10142 htab->version = version;
10143 htab->nr_columns = nr_columns;
80626a55
DE
10144 htab->nr_units = nr_units;
10145 htab->nr_slots = nr_slots;
10146 htab->hash_table = index_ptr;
10147 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
10148
10149 /* Exit early if the table is empty. */
10150 if (nr_slots == 0 || nr_units == 0
10151 || (version == 2 && nr_columns == 0))
10152 {
10153 /* All must be zero. */
10154 if (nr_slots != 0 || nr_units != 0
10155 || (version == 2 && nr_columns != 0))
10156 {
10157 complaint (&symfile_complaints,
10158 _("Empty DWP but nr_slots,nr_units,nr_columns not"
10159 " all zero [in modules %s]"),
10160 dwp_file->name);
10161 }
10162 return htab;
10163 }
10164
10165 if (version == 1)
10166 {
10167 htab->section_pool.v1.indices =
10168 htab->unit_table + sizeof (uint32_t) * nr_slots;
10169 /* It's harder to decide whether the section is too small in v1.
10170 V1 is deprecated anyway so we punt. */
10171 }
10172 else
10173 {
10174 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
10175 int *ids = htab->section_pool.v2.section_ids;
10176 /* Reverse map for error checking. */
10177 int ids_seen[DW_SECT_MAX + 1];
10178 int i;
10179
10180 if (nr_columns < 2)
10181 {
10182 error (_("Dwarf Error: bad DWP hash table, too few columns"
10183 " in section table [in module %s]"),
10184 dwp_file->name);
10185 }
10186 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10187 {
10188 error (_("Dwarf Error: bad DWP hash table, too many columns"
10189 " in section table [in module %s]"),
10190 dwp_file->name);
10191 }
10192 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10193 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10194 for (i = 0; i < nr_columns; ++i)
10195 {
10196 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10197
10198 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10199 {
10200 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10201 " in section table [in module %s]"),
10202 id, dwp_file->name);
10203 }
10204 if (ids_seen[id] != -1)
10205 {
10206 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10207 " id %d in section table [in module %s]"),
10208 id, dwp_file->name);
10209 }
10210 ids_seen[id] = i;
10211 ids[i] = id;
10212 }
10213 /* Must have exactly one info or types section. */
10214 if (((ids_seen[DW_SECT_INFO] != -1)
10215 + (ids_seen[DW_SECT_TYPES] != -1))
10216 != 1)
10217 {
10218 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10219 " DWO info/types section [in module %s]"),
10220 dwp_file->name);
10221 }
10222 /* Must have an abbrev section. */
10223 if (ids_seen[DW_SECT_ABBREV] == -1)
10224 {
10225 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10226 " section [in module %s]"),
10227 dwp_file->name);
10228 }
10229 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10230 htab->section_pool.v2.sizes =
10231 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10232 * nr_units * nr_columns);
10233 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10234 * nr_units * nr_columns))
10235 > index_end)
10236 {
10237 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10238 " [in module %s]"),
10239 dwp_file->name);
10240 }
10241 }
80626a55
DE
10242
10243 return htab;
10244}
10245
10246/* Update SECTIONS with the data from SECTP.
10247
10248 This function is like the other "locate" section routines that are
10249 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 10250 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
10251
10252 The result is non-zero for success, or zero if an error was found. */
10253
10254static int
73869dc2
DE
10255locate_v1_virtual_dwo_sections (asection *sectp,
10256 struct virtual_v1_dwo_sections *sections)
80626a55
DE
10257{
10258 const struct dwop_section_names *names = &dwop_section_names;
10259
10260 if (section_is_p (sectp->name, &names->abbrev_dwo))
10261 {
10262 /* There can be only one. */
049412e3 10263 if (sections->abbrev.s.section != NULL)
80626a55 10264 return 0;
049412e3 10265 sections->abbrev.s.section = sectp;
80626a55
DE
10266 sections->abbrev.size = bfd_get_section_size (sectp);
10267 }
10268 else if (section_is_p (sectp->name, &names->info_dwo)
10269 || section_is_p (sectp->name, &names->types_dwo))
10270 {
10271 /* There can be only one. */
049412e3 10272 if (sections->info_or_types.s.section != NULL)
80626a55 10273 return 0;
049412e3 10274 sections->info_or_types.s.section = sectp;
80626a55
DE
10275 sections->info_or_types.size = bfd_get_section_size (sectp);
10276 }
10277 else if (section_is_p (sectp->name, &names->line_dwo))
10278 {
10279 /* There can be only one. */
049412e3 10280 if (sections->line.s.section != NULL)
80626a55 10281 return 0;
049412e3 10282 sections->line.s.section = sectp;
80626a55
DE
10283 sections->line.size = bfd_get_section_size (sectp);
10284 }
10285 else if (section_is_p (sectp->name, &names->loc_dwo))
10286 {
10287 /* There can be only one. */
049412e3 10288 if (sections->loc.s.section != NULL)
80626a55 10289 return 0;
049412e3 10290 sections->loc.s.section = sectp;
80626a55
DE
10291 sections->loc.size = bfd_get_section_size (sectp);
10292 }
10293 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10294 {
10295 /* There can be only one. */
049412e3 10296 if (sections->macinfo.s.section != NULL)
80626a55 10297 return 0;
049412e3 10298 sections->macinfo.s.section = sectp;
80626a55
DE
10299 sections->macinfo.size = bfd_get_section_size (sectp);
10300 }
10301 else if (section_is_p (sectp->name, &names->macro_dwo))
10302 {
10303 /* There can be only one. */
049412e3 10304 if (sections->macro.s.section != NULL)
80626a55 10305 return 0;
049412e3 10306 sections->macro.s.section = sectp;
80626a55
DE
10307 sections->macro.size = bfd_get_section_size (sectp);
10308 }
10309 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10310 {
10311 /* There can be only one. */
049412e3 10312 if (sections->str_offsets.s.section != NULL)
80626a55 10313 return 0;
049412e3 10314 sections->str_offsets.s.section = sectp;
80626a55
DE
10315 sections->str_offsets.size = bfd_get_section_size (sectp);
10316 }
10317 else
10318 {
10319 /* No other kind of section is valid. */
10320 return 0;
10321 }
10322
10323 return 1;
10324}
10325
73869dc2
DE
10326/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10327 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10328 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10329 This is for DWP version 1 files. */
80626a55
DE
10330
10331static struct dwo_unit *
73869dc2
DE
10332create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10333 uint32_t unit_index,
10334 const char *comp_dir,
10335 ULONGEST signature, int is_debug_types)
80626a55
DE
10336{
10337 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10338 const struct dwp_hash_table *dwp_htab =
10339 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10340 bfd *dbfd = dwp_file->dbfd;
10341 const char *kind = is_debug_types ? "TU" : "CU";
10342 struct dwo_file *dwo_file;
10343 struct dwo_unit *dwo_unit;
73869dc2 10344 struct virtual_v1_dwo_sections sections;
80626a55
DE
10345 void **dwo_file_slot;
10346 char *virtual_dwo_name;
80626a55
DE
10347 struct cleanup *cleanups;
10348 int i;
10349
73869dc2
DE
10350 gdb_assert (dwp_file->version == 1);
10351
b4f54984 10352 if (dwarf_read_debug)
80626a55 10353 {
73869dc2 10354 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10355 kind,
73869dc2 10356 pulongest (unit_index), hex_string (signature),
80626a55
DE
10357 dwp_file->name);
10358 }
10359
19ac8c2e 10360 /* Fetch the sections of this DWO unit.
80626a55
DE
10361 Put a limit on the number of sections we look for so that bad data
10362 doesn't cause us to loop forever. */
10363
73869dc2 10364#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10365 (1 /* .debug_info or .debug_types */ \
10366 + 1 /* .debug_abbrev */ \
10367 + 1 /* .debug_line */ \
10368 + 1 /* .debug_loc */ \
10369 + 1 /* .debug_str_offsets */ \
19ac8c2e 10370 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10371 + 1 /* trailing zero */)
10372
10373 memset (&sections, 0, sizeof (sections));
10374 cleanups = make_cleanup (null_cleanup, 0);
10375
73869dc2 10376 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10377 {
10378 asection *sectp;
10379 uint32_t section_nr =
10380 read_4_bytes (dbfd,
73869dc2
DE
10381 dwp_htab->section_pool.v1.indices
10382 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10383
10384 if (section_nr == 0)
10385 break;
10386 if (section_nr >= dwp_file->num_sections)
10387 {
10388 error (_("Dwarf Error: bad DWP hash table, section number too large"
10389 " [in module %s]"),
10390 dwp_file->name);
10391 }
10392
10393 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10394 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10395 {
10396 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10397 " [in module %s]"),
10398 dwp_file->name);
10399 }
10400 }
10401
10402 if (i < 2
a32a8923
DE
10403 || dwarf2_section_empty_p (&sections.info_or_types)
10404 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10405 {
10406 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10407 " [in module %s]"),
10408 dwp_file->name);
10409 }
73869dc2 10410 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10411 {
10412 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10413 " [in module %s]"),
10414 dwp_file->name);
10415 }
10416
10417 /* It's easier for the rest of the code if we fake a struct dwo_file and
10418 have dwo_unit "live" in that. At least for now.
10419
10420 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10421 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10422 file, we can combine them back into a virtual DWO file to save space
10423 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10424 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10425
2792b94d
PM
10426 virtual_dwo_name =
10427 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10428 get_section_id (&sections.abbrev),
10429 get_section_id (&sections.line),
10430 get_section_id (&sections.loc),
10431 get_section_id (&sections.str_offsets));
80626a55
DE
10432 make_cleanup (xfree, virtual_dwo_name);
10433 /* Can we use an existing virtual DWO file? */
0ac5b59e 10434 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10435 /* Create one if necessary. */
10436 if (*dwo_file_slot == NULL)
10437 {
b4f54984 10438 if (dwarf_read_debug)
80626a55
DE
10439 {
10440 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10441 virtual_dwo_name);
10442 }
10443 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10444 dwo_file->dwo_name
10445 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10446 virtual_dwo_name,
10447 strlen (virtual_dwo_name));
0ac5b59e 10448 dwo_file->comp_dir = comp_dir;
80626a55
DE
10449 dwo_file->sections.abbrev = sections.abbrev;
10450 dwo_file->sections.line = sections.line;
10451 dwo_file->sections.loc = sections.loc;
10452 dwo_file->sections.macinfo = sections.macinfo;
10453 dwo_file->sections.macro = sections.macro;
10454 dwo_file->sections.str_offsets = sections.str_offsets;
10455 /* The "str" section is global to the entire DWP file. */
10456 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10457 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10458 there's no need to record it in dwo_file.
10459 Also, we can't simply record type sections in dwo_file because
10460 we record a pointer into the vector in dwo_unit. As we collect more
10461 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10462 for it, invalidating all copies of pointers into the previous
10463 contents. */
80626a55
DE
10464 *dwo_file_slot = dwo_file;
10465 }
10466 else
10467 {
b4f54984 10468 if (dwarf_read_debug)
80626a55
DE
10469 {
10470 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10471 virtual_dwo_name);
10472 }
9a3c8263 10473 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55
DE
10474 }
10475 do_cleanups (cleanups);
10476
10477 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10478 dwo_unit->dwo_file = dwo_file;
10479 dwo_unit->signature = signature;
8d749320
SM
10480 dwo_unit->section =
10481 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 10482 *dwo_unit->section = sections.info_or_types;
57d63ce2 10483 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10484
10485 return dwo_unit;
10486}
10487
73869dc2
DE
10488/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10489 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10490 piece within that section used by a TU/CU, return a virtual section
10491 of just that piece. */
10492
10493static struct dwarf2_section_info
10494create_dwp_v2_section (struct dwarf2_section_info *section,
10495 bfd_size_type offset, bfd_size_type size)
10496{
10497 struct dwarf2_section_info result;
10498 asection *sectp;
10499
10500 gdb_assert (section != NULL);
10501 gdb_assert (!section->is_virtual);
10502
10503 memset (&result, 0, sizeof (result));
10504 result.s.containing_section = section;
10505 result.is_virtual = 1;
10506
10507 if (size == 0)
10508 return result;
10509
10510 sectp = get_section_bfd_section (section);
10511
10512 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10513 bounds of the real section. This is a pretty-rare event, so just
10514 flag an error (easier) instead of a warning and trying to cope. */
10515 if (sectp == NULL
10516 || offset + size > bfd_get_section_size (sectp))
10517 {
10518 bfd *abfd = sectp->owner;
10519
10520 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10521 " in section %s [in module %s]"),
10522 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10523 objfile_name (dwarf2_per_objfile->objfile));
10524 }
10525
10526 result.virtual_offset = offset;
10527 result.size = size;
10528 return result;
10529}
10530
10531/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10532 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10533 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10534 This is for DWP version 2 files. */
10535
10536static struct dwo_unit *
10537create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10538 uint32_t unit_index,
10539 const char *comp_dir,
10540 ULONGEST signature, int is_debug_types)
10541{
10542 struct objfile *objfile = dwarf2_per_objfile->objfile;
10543 const struct dwp_hash_table *dwp_htab =
10544 is_debug_types ? dwp_file->tus : dwp_file->cus;
10545 bfd *dbfd = dwp_file->dbfd;
10546 const char *kind = is_debug_types ? "TU" : "CU";
10547 struct dwo_file *dwo_file;
10548 struct dwo_unit *dwo_unit;
10549 struct virtual_v2_dwo_sections sections;
10550 void **dwo_file_slot;
10551 char *virtual_dwo_name;
73869dc2
DE
10552 struct cleanup *cleanups;
10553 int i;
10554
10555 gdb_assert (dwp_file->version == 2);
10556
b4f54984 10557 if (dwarf_read_debug)
73869dc2
DE
10558 {
10559 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10560 kind,
10561 pulongest (unit_index), hex_string (signature),
10562 dwp_file->name);
10563 }
10564
10565 /* Fetch the section offsets of this DWO unit. */
10566
10567 memset (&sections, 0, sizeof (sections));
10568 cleanups = make_cleanup (null_cleanup, 0);
10569
10570 for (i = 0; i < dwp_htab->nr_columns; ++i)
10571 {
10572 uint32_t offset = read_4_bytes (dbfd,
10573 dwp_htab->section_pool.v2.offsets
10574 + (((unit_index - 1) * dwp_htab->nr_columns
10575 + i)
10576 * sizeof (uint32_t)));
10577 uint32_t size = read_4_bytes (dbfd,
10578 dwp_htab->section_pool.v2.sizes
10579 + (((unit_index - 1) * dwp_htab->nr_columns
10580 + i)
10581 * sizeof (uint32_t)));
10582
10583 switch (dwp_htab->section_pool.v2.section_ids[i])
10584 {
10585 case DW_SECT_INFO:
10586 case DW_SECT_TYPES:
10587 sections.info_or_types_offset = offset;
10588 sections.info_or_types_size = size;
10589 break;
10590 case DW_SECT_ABBREV:
10591 sections.abbrev_offset = offset;
10592 sections.abbrev_size = size;
10593 break;
10594 case DW_SECT_LINE:
10595 sections.line_offset = offset;
10596 sections.line_size = size;
10597 break;
10598 case DW_SECT_LOC:
10599 sections.loc_offset = offset;
10600 sections.loc_size = size;
10601 break;
10602 case DW_SECT_STR_OFFSETS:
10603 sections.str_offsets_offset = offset;
10604 sections.str_offsets_size = size;
10605 break;
10606 case DW_SECT_MACINFO:
10607 sections.macinfo_offset = offset;
10608 sections.macinfo_size = size;
10609 break;
10610 case DW_SECT_MACRO:
10611 sections.macro_offset = offset;
10612 sections.macro_size = size;
10613 break;
10614 }
10615 }
10616
10617 /* It's easier for the rest of the code if we fake a struct dwo_file and
10618 have dwo_unit "live" in that. At least for now.
10619
10620 The DWP file can be made up of a random collection of CUs and TUs.
10621 However, for each CU + set of TUs that came from the same original DWO
10622 file, we can combine them back into a virtual DWO file to save space
10623 (fewer struct dwo_file objects to allocate). Remember that for really
10624 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10625
10626 virtual_dwo_name =
10627 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10628 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10629 (long) (sections.line_size ? sections.line_offset : 0),
10630 (long) (sections.loc_size ? sections.loc_offset : 0),
10631 (long) (sections.str_offsets_size
10632 ? sections.str_offsets_offset : 0));
10633 make_cleanup (xfree, virtual_dwo_name);
10634 /* Can we use an existing virtual DWO file? */
10635 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10636 /* Create one if necessary. */
10637 if (*dwo_file_slot == NULL)
10638 {
b4f54984 10639 if (dwarf_read_debug)
73869dc2
DE
10640 {
10641 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10642 virtual_dwo_name);
10643 }
10644 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10645 dwo_file->dwo_name
10646 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10647 virtual_dwo_name,
10648 strlen (virtual_dwo_name));
73869dc2
DE
10649 dwo_file->comp_dir = comp_dir;
10650 dwo_file->sections.abbrev =
10651 create_dwp_v2_section (&dwp_file->sections.abbrev,
10652 sections.abbrev_offset, sections.abbrev_size);
10653 dwo_file->sections.line =
10654 create_dwp_v2_section (&dwp_file->sections.line,
10655 sections.line_offset, sections.line_size);
10656 dwo_file->sections.loc =
10657 create_dwp_v2_section (&dwp_file->sections.loc,
10658 sections.loc_offset, sections.loc_size);
10659 dwo_file->sections.macinfo =
10660 create_dwp_v2_section (&dwp_file->sections.macinfo,
10661 sections.macinfo_offset, sections.macinfo_size);
10662 dwo_file->sections.macro =
10663 create_dwp_v2_section (&dwp_file->sections.macro,
10664 sections.macro_offset, sections.macro_size);
10665 dwo_file->sections.str_offsets =
10666 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10667 sections.str_offsets_offset,
10668 sections.str_offsets_size);
10669 /* The "str" section is global to the entire DWP file. */
10670 dwo_file->sections.str = dwp_file->sections.str;
10671 /* The info or types section is assigned below to dwo_unit,
10672 there's no need to record it in dwo_file.
10673 Also, we can't simply record type sections in dwo_file because
10674 we record a pointer into the vector in dwo_unit. As we collect more
10675 types we'll grow the vector and eventually have to reallocate space
10676 for it, invalidating all copies of pointers into the previous
10677 contents. */
10678 *dwo_file_slot = dwo_file;
10679 }
10680 else
10681 {
b4f54984 10682 if (dwarf_read_debug)
73869dc2
DE
10683 {
10684 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10685 virtual_dwo_name);
10686 }
9a3c8263 10687 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2
DE
10688 }
10689 do_cleanups (cleanups);
10690
10691 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10692 dwo_unit->dwo_file = dwo_file;
10693 dwo_unit->signature = signature;
8d749320
SM
10694 dwo_unit->section =
10695 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
73869dc2
DE
10696 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10697 ? &dwp_file->sections.types
10698 : &dwp_file->sections.info,
10699 sections.info_or_types_offset,
10700 sections.info_or_types_size);
10701 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10702
10703 return dwo_unit;
10704}
10705
57d63ce2
DE
10706/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10707 Returns NULL if the signature isn't found. */
80626a55
DE
10708
10709static struct dwo_unit *
57d63ce2
DE
10710lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10711 ULONGEST signature, int is_debug_types)
80626a55 10712{
57d63ce2
DE
10713 const struct dwp_hash_table *dwp_htab =
10714 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10715 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10716 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10717 uint32_t hash = signature & mask;
10718 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10719 unsigned int i;
10720 void **slot;
870f88f7 10721 struct dwo_unit find_dwo_cu;
80626a55
DE
10722
10723 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10724 find_dwo_cu.signature = signature;
19ac8c2e
DE
10725 slot = htab_find_slot (is_debug_types
10726 ? dwp_file->loaded_tus
10727 : dwp_file->loaded_cus,
10728 &find_dwo_cu, INSERT);
80626a55
DE
10729
10730 if (*slot != NULL)
9a3c8263 10731 return (struct dwo_unit *) *slot;
80626a55
DE
10732
10733 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10734 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10735 {
10736 ULONGEST signature_in_table;
10737
10738 signature_in_table =
57d63ce2 10739 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10740 if (signature_in_table == signature)
10741 {
57d63ce2
DE
10742 uint32_t unit_index =
10743 read_4_bytes (dbfd,
10744 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10745
73869dc2
DE
10746 if (dwp_file->version == 1)
10747 {
10748 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10749 comp_dir, signature,
10750 is_debug_types);
10751 }
10752 else
10753 {
10754 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10755 comp_dir, signature,
10756 is_debug_types);
10757 }
9a3c8263 10758 return (struct dwo_unit *) *slot;
80626a55
DE
10759 }
10760 if (signature_in_table == 0)
10761 return NULL;
10762 hash = (hash + hash2) & mask;
10763 }
10764
10765 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10766 " [in module %s]"),
10767 dwp_file->name);
10768}
10769
ab5088bf 10770/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10771 Open the file specified by FILE_NAME and hand it off to BFD for
10772 preliminary analysis. Return a newly initialized bfd *, which
10773 includes a canonicalized copy of FILE_NAME.
80626a55 10774 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10775 SEARCH_CWD is true if the current directory is to be searched.
10776 It will be searched before debug-file-directory.
13aaf454
DE
10777 If successful, the file is added to the bfd include table of the
10778 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10779 If unable to find/open the file, return NULL.
3019eac3
DE
10780 NOTE: This function is derived from symfile_bfd_open. */
10781
192b62ce 10782static gdb_bfd_ref_ptr
6ac97d4c 10783try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3 10784{
80626a55 10785 int desc, flags;
3019eac3 10786 char *absolute_name;
9c02c129
DE
10787 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10788 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10789 to debug_file_directory. */
10790 char *search_path;
10791 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10792
6ac97d4c
DE
10793 if (search_cwd)
10794 {
10795 if (*debug_file_directory != '\0')
10796 search_path = concat (".", dirname_separator_string,
b36cec19 10797 debug_file_directory, (char *) NULL);
6ac97d4c
DE
10798 else
10799 search_path = xstrdup (".");
10800 }
9c02c129 10801 else
6ac97d4c 10802 search_path = xstrdup (debug_file_directory);
3019eac3 10803
492c0ab7 10804 flags = OPF_RETURN_REALPATH;
80626a55
DE
10805 if (is_dwp)
10806 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10807 desc = openp (search_path, flags, file_name,
3019eac3 10808 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10809 xfree (search_path);
3019eac3
DE
10810 if (desc < 0)
10811 return NULL;
10812
192b62ce 10813 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
a4453b7e 10814 xfree (absolute_name);
9c02c129
DE
10815 if (sym_bfd == NULL)
10816 return NULL;
192b62ce 10817 bfd_set_cacheable (sym_bfd.get (), 1);
3019eac3 10818
192b62ce
TT
10819 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10820 return NULL;
3019eac3 10821
13aaf454
DE
10822 /* Success. Record the bfd as having been included by the objfile's bfd.
10823 This is important because things like demangled_names_hash lives in the
10824 objfile's per_bfd space and may have references to things like symbol
10825 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
192b62ce 10826 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
13aaf454 10827
3019eac3
DE
10828 return sym_bfd;
10829}
10830
ab5088bf 10831/* Try to open DWO file FILE_NAME.
3019eac3
DE
10832 COMP_DIR is the DW_AT_comp_dir attribute.
10833 The result is the bfd handle of the file.
10834 If there is a problem finding or opening the file, return NULL.
10835 Upon success, the canonicalized path of the file is stored in the bfd,
10836 same as symfile_bfd_open. */
10837
192b62ce 10838static gdb_bfd_ref_ptr
ab5088bf 10839open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3 10840{
80626a55 10841 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10842 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10843
10844 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10845
10846 if (comp_dir != NULL)
10847 {
b36cec19
PA
10848 char *path_to_try = concat (comp_dir, SLASH_STRING,
10849 file_name, (char *) NULL);
3019eac3
DE
10850
10851 /* NOTE: If comp_dir is a relative path, this will also try the
10852 search path, which seems useful. */
192b62ce
TT
10853 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10854 1 /*search_cwd*/));
3019eac3
DE
10855 xfree (path_to_try);
10856 if (abfd != NULL)
10857 return abfd;
10858 }
10859
10860 /* That didn't work, try debug-file-directory, which, despite its name,
10861 is a list of paths. */
10862
10863 if (*debug_file_directory == '\0')
10864 return NULL;
10865
6ac97d4c 10866 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10867}
10868
80626a55
DE
10869/* This function is mapped across the sections and remembers the offset and
10870 size of each of the DWO debugging sections we are interested in. */
10871
10872static void
10873dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10874{
9a3c8263 10875 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
10876 const struct dwop_section_names *names = &dwop_section_names;
10877
10878 if (section_is_p (sectp->name, &names->abbrev_dwo))
10879 {
049412e3 10880 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
10881 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10882 }
10883 else if (section_is_p (sectp->name, &names->info_dwo))
10884 {
049412e3 10885 dwo_sections->info.s.section = sectp;
80626a55
DE
10886 dwo_sections->info.size = bfd_get_section_size (sectp);
10887 }
10888 else if (section_is_p (sectp->name, &names->line_dwo))
10889 {
049412e3 10890 dwo_sections->line.s.section = sectp;
80626a55
DE
10891 dwo_sections->line.size = bfd_get_section_size (sectp);
10892 }
10893 else if (section_is_p (sectp->name, &names->loc_dwo))
10894 {
049412e3 10895 dwo_sections->loc.s.section = sectp;
80626a55
DE
10896 dwo_sections->loc.size = bfd_get_section_size (sectp);
10897 }
10898 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10899 {
049412e3 10900 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
10901 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10902 }
10903 else if (section_is_p (sectp->name, &names->macro_dwo))
10904 {
049412e3 10905 dwo_sections->macro.s.section = sectp;
80626a55
DE
10906 dwo_sections->macro.size = bfd_get_section_size (sectp);
10907 }
10908 else if (section_is_p (sectp->name, &names->str_dwo))
10909 {
049412e3 10910 dwo_sections->str.s.section = sectp;
80626a55
DE
10911 dwo_sections->str.size = bfd_get_section_size (sectp);
10912 }
10913 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10914 {
049412e3 10915 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
10916 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10917 }
10918 else if (section_is_p (sectp->name, &names->types_dwo))
10919 {
10920 struct dwarf2_section_info type_section;
10921
10922 memset (&type_section, 0, sizeof (type_section));
049412e3 10923 type_section.s.section = sectp;
80626a55
DE
10924 type_section.size = bfd_get_section_size (sectp);
10925 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10926 &type_section);
10927 }
10928}
10929
ab5088bf 10930/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10931 by PER_CU. This is for the non-DWP case.
80626a55 10932 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10933
10934static struct dwo_file *
0ac5b59e
DE
10935open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10936 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10937{
10938 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55 10939 struct dwo_file *dwo_file;
3019eac3
DE
10940 struct cleanup *cleanups;
10941
192b62ce 10942 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
80626a55
DE
10943 if (dbfd == NULL)
10944 {
b4f54984 10945 if (dwarf_read_debug)
80626a55
DE
10946 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10947 return NULL;
10948 }
10949 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10950 dwo_file->dwo_name = dwo_name;
10951 dwo_file->comp_dir = comp_dir;
192b62ce 10952 dwo_file->dbfd = dbfd.release ();
3019eac3
DE
10953
10954 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10955
192b62ce
TT
10956 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10957 &dwo_file->sections);
3019eac3 10958
33c5cd75 10959 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
3019eac3 10960
78d4d2c5
JK
10961 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10962 dwo_file->tus);
3019eac3
DE
10963
10964 discard_cleanups (cleanups);
10965
b4f54984 10966 if (dwarf_read_debug)
80626a55
DE
10967 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10968
3019eac3
DE
10969 return dwo_file;
10970}
10971
80626a55 10972/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10973 size of each of the DWP debugging sections common to version 1 and 2 that
10974 we are interested in. */
3019eac3 10975
80626a55 10976static void
73869dc2
DE
10977dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10978 void *dwp_file_ptr)
3019eac3 10979{
9a3c8263 10980 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
10981 const struct dwop_section_names *names = &dwop_section_names;
10982 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10983
80626a55 10984 /* Record the ELF section number for later lookup: this is what the
73869dc2 10985 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10986 gdb_assert (elf_section_nr < dwp_file->num_sections);
10987 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10988
80626a55
DE
10989 /* Look for specific sections that we need. */
10990 if (section_is_p (sectp->name, &names->str_dwo))
10991 {
049412e3 10992 dwp_file->sections.str.s.section = sectp;
80626a55
DE
10993 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10994 }
10995 else if (section_is_p (sectp->name, &names->cu_index))
10996 {
049412e3 10997 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
10998 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10999 }
11000 else if (section_is_p (sectp->name, &names->tu_index))
11001 {
049412e3 11002 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
11003 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
11004 }
11005}
3019eac3 11006
73869dc2
DE
11007/* This function is mapped across the sections and remembers the offset and
11008 size of each of the DWP version 2 debugging sections that we are interested
11009 in. This is split into a separate function because we don't know if we
11010 have version 1 or 2 until we parse the cu_index/tu_index sections. */
11011
11012static void
11013dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
11014{
9a3c8263 11015 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
11016 const struct dwop_section_names *names = &dwop_section_names;
11017 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
11018
11019 /* Record the ELF section number for later lookup: this is what the
11020 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
11021 gdb_assert (elf_section_nr < dwp_file->num_sections);
11022 dwp_file->elf_sections[elf_section_nr] = sectp;
11023
11024 /* Look for specific sections that we need. */
11025 if (section_is_p (sectp->name, &names->abbrev_dwo))
11026 {
049412e3 11027 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
11028 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
11029 }
11030 else if (section_is_p (sectp->name, &names->info_dwo))
11031 {
049412e3 11032 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
11033 dwp_file->sections.info.size = bfd_get_section_size (sectp);
11034 }
11035 else if (section_is_p (sectp->name, &names->line_dwo))
11036 {
049412e3 11037 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
11038 dwp_file->sections.line.size = bfd_get_section_size (sectp);
11039 }
11040 else if (section_is_p (sectp->name, &names->loc_dwo))
11041 {
049412e3 11042 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
11043 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
11044 }
11045 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11046 {
049412e3 11047 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
11048 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
11049 }
11050 else if (section_is_p (sectp->name, &names->macro_dwo))
11051 {
049412e3 11052 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
11053 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
11054 }
11055 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11056 {
049412e3 11057 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
11058 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
11059 }
11060 else if (section_is_p (sectp->name, &names->types_dwo))
11061 {
049412e3 11062 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
11063 dwp_file->sections.types.size = bfd_get_section_size (sectp);
11064 }
11065}
11066
80626a55 11067/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 11068
80626a55
DE
11069static hashval_t
11070hash_dwp_loaded_cutus (const void *item)
11071{
9a3c8263 11072 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 11073
80626a55
DE
11074 /* This drops the top 32 bits of the signature, but is ok for a hash. */
11075 return dwo_unit->signature;
3019eac3
DE
11076}
11077
80626a55 11078/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 11079
80626a55
DE
11080static int
11081eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 11082{
9a3c8263
SM
11083 const struct dwo_unit *dua = (const struct dwo_unit *) a;
11084 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 11085
80626a55
DE
11086 return dua->signature == dub->signature;
11087}
3019eac3 11088
80626a55 11089/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 11090
80626a55
DE
11091static htab_t
11092allocate_dwp_loaded_cutus_table (struct objfile *objfile)
11093{
11094 return htab_create_alloc_ex (3,
11095 hash_dwp_loaded_cutus,
11096 eq_dwp_loaded_cutus,
11097 NULL,
11098 &objfile->objfile_obstack,
11099 hashtab_obstack_allocate,
11100 dummy_obstack_deallocate);
11101}
3019eac3 11102
ab5088bf
DE
11103/* Try to open DWP file FILE_NAME.
11104 The result is the bfd handle of the file.
11105 If there is a problem finding or opening the file, return NULL.
11106 Upon success, the canonicalized path of the file is stored in the bfd,
11107 same as symfile_bfd_open. */
11108
192b62ce 11109static gdb_bfd_ref_ptr
ab5088bf
DE
11110open_dwp_file (const char *file_name)
11111{
192b62ce
TT
11112 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
11113 1 /*search_cwd*/));
6ac97d4c
DE
11114 if (abfd != NULL)
11115 return abfd;
11116
11117 /* Work around upstream bug 15652.
11118 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11119 [Whether that's a "bug" is debatable, but it is getting in our way.]
11120 We have no real idea where the dwp file is, because gdb's realpath-ing
11121 of the executable's path may have discarded the needed info.
11122 [IWBN if the dwp file name was recorded in the executable, akin to
11123 .gnu_debuglink, but that doesn't exist yet.]
11124 Strip the directory from FILE_NAME and search again. */
11125 if (*debug_file_directory != '\0')
11126 {
11127 /* Don't implicitly search the current directory here.
11128 If the user wants to search "." to handle this case,
11129 it must be added to debug-file-directory. */
11130 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11131 0 /*search_cwd*/);
11132 }
11133
11134 return NULL;
ab5088bf
DE
11135}
11136
80626a55
DE
11137/* Initialize the use of the DWP file for the current objfile.
11138 By convention the name of the DWP file is ${objfile}.dwp.
11139 The result is NULL if it can't be found. */
a766d390 11140
80626a55 11141static struct dwp_file *
ab5088bf 11142open_and_init_dwp_file (void)
80626a55
DE
11143{
11144 struct objfile *objfile = dwarf2_per_objfile->objfile;
11145 struct dwp_file *dwp_file;
80626a55 11146
82bf32bc
JK
11147 /* Try to find first .dwp for the binary file before any symbolic links
11148 resolving. */
6c447423
DE
11149
11150 /* If the objfile is a debug file, find the name of the real binary
11151 file and get the name of dwp file from there. */
d721ba37 11152 std::string dwp_name;
6c447423
DE
11153 if (objfile->separate_debug_objfile_backlink != NULL)
11154 {
11155 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11156 const char *backlink_basename = lbasename (backlink->original_name);
6c447423 11157
d721ba37 11158 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
6c447423
DE
11159 }
11160 else
d721ba37
PA
11161 dwp_name = objfile->original_name;
11162
11163 dwp_name += ".dwp";
80626a55 11164
d721ba37 11165 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
82bf32bc
JK
11166 if (dbfd == NULL
11167 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
11168 {
11169 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
d721ba37
PA
11170 dwp_name = objfile_name (objfile);
11171 dwp_name += ".dwp";
11172 dbfd = open_dwp_file (dwp_name.c_str ());
82bf32bc
JK
11173 }
11174
80626a55
DE
11175 if (dbfd == NULL)
11176 {
b4f54984 11177 if (dwarf_read_debug)
d721ba37 11178 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
80626a55 11179 return NULL;
3019eac3 11180 }
80626a55 11181 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
192b62ce
TT
11182 dwp_file->name = bfd_get_filename (dbfd.get ());
11183 dwp_file->dbfd = dbfd.release ();
c906108c 11184
80626a55 11185 /* +1: section 0 is unused */
192b62ce 11186 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
80626a55
DE
11187 dwp_file->elf_sections =
11188 OBSTACK_CALLOC (&objfile->objfile_obstack,
11189 dwp_file->num_sections, asection *);
11190
192b62ce
TT
11191 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11192 dwp_file);
80626a55
DE
11193
11194 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11195
11196 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11197
73869dc2
DE
11198 /* The DWP file version is stored in the hash table. Oh well. */
11199 if (dwp_file->cus->version != dwp_file->tus->version)
11200 {
11201 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 11202 pretty bizarre. We use pulongest here because that's the established
4d65956b 11203 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
11204 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11205 " TU version %s [in DWP file %s]"),
11206 pulongest (dwp_file->cus->version),
d721ba37 11207 pulongest (dwp_file->tus->version), dwp_name.c_str ());
73869dc2
DE
11208 }
11209 dwp_file->version = dwp_file->cus->version;
11210
11211 if (dwp_file->version == 2)
192b62ce
TT
11212 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11213 dwp_file);
73869dc2 11214
19ac8c2e
DE
11215 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11216 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 11217
b4f54984 11218 if (dwarf_read_debug)
80626a55
DE
11219 {
11220 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11221 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
11222 " %s CUs, %s TUs\n",
11223 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11224 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
11225 }
11226
11227 return dwp_file;
3019eac3 11228}
c906108c 11229
ab5088bf
DE
11230/* Wrapper around open_and_init_dwp_file, only open it once. */
11231
11232static struct dwp_file *
11233get_dwp_file (void)
11234{
11235 if (! dwarf2_per_objfile->dwp_checked)
11236 {
11237 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11238 dwarf2_per_objfile->dwp_checked = 1;
11239 }
11240 return dwarf2_per_objfile->dwp_file;
11241}
11242
80626a55
DE
11243/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11244 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11245 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 11246 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
11247 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11248
11249 This is called, for example, when wanting to read a variable with a
11250 complex location. Therefore we don't want to do file i/o for every call.
11251 Therefore we don't want to look for a DWO file on every call.
11252 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11253 then we check if we've already seen DWO_NAME, and only THEN do we check
11254 for a DWO file.
11255
1c658ad5 11256 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 11257 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 11258
3019eac3 11259static struct dwo_unit *
80626a55
DE
11260lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11261 const char *dwo_name, const char *comp_dir,
11262 ULONGEST signature, int is_debug_types)
3019eac3
DE
11263{
11264 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
11265 const char *kind = is_debug_types ? "TU" : "CU";
11266 void **dwo_file_slot;
3019eac3 11267 struct dwo_file *dwo_file;
80626a55 11268 struct dwp_file *dwp_file;
cb1df416 11269
6a506a2d
DE
11270 /* First see if there's a DWP file.
11271 If we have a DWP file but didn't find the DWO inside it, don't
11272 look for the original DWO file. It makes gdb behave differently
11273 depending on whether one is debugging in the build tree. */
cf2c3c16 11274
ab5088bf 11275 dwp_file = get_dwp_file ();
80626a55 11276 if (dwp_file != NULL)
cf2c3c16 11277 {
80626a55
DE
11278 const struct dwp_hash_table *dwp_htab =
11279 is_debug_types ? dwp_file->tus : dwp_file->cus;
11280
11281 if (dwp_htab != NULL)
11282 {
11283 struct dwo_unit *dwo_cutu =
57d63ce2
DE
11284 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11285 signature, is_debug_types);
80626a55
DE
11286
11287 if (dwo_cutu != NULL)
11288 {
b4f54984 11289 if (dwarf_read_debug)
80626a55
DE
11290 {
11291 fprintf_unfiltered (gdb_stdlog,
11292 "Virtual DWO %s %s found: @%s\n",
11293 kind, hex_string (signature),
11294 host_address_to_string (dwo_cutu));
11295 }
11296 return dwo_cutu;
11297 }
11298 }
11299 }
6a506a2d 11300 else
80626a55 11301 {
6a506a2d 11302 /* No DWP file, look for the DWO file. */
80626a55 11303
6a506a2d
DE
11304 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11305 if (*dwo_file_slot == NULL)
80626a55 11306 {
6a506a2d
DE
11307 /* Read in the file and build a table of the CUs/TUs it contains. */
11308 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 11309 }
6a506a2d 11310 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 11311 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 11312
6a506a2d 11313 if (dwo_file != NULL)
19c3d4c9 11314 {
6a506a2d
DE
11315 struct dwo_unit *dwo_cutu = NULL;
11316
11317 if (is_debug_types && dwo_file->tus)
11318 {
11319 struct dwo_unit find_dwo_cutu;
11320
11321 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11322 find_dwo_cutu.signature = signature;
9a3c8263
SM
11323 dwo_cutu
11324 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d 11325 }
33c5cd75 11326 else if (!is_debug_types && dwo_file->cus)
80626a55 11327 {
33c5cd75
DB
11328 struct dwo_unit find_dwo_cutu;
11329
11330 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11331 find_dwo_cutu.signature = signature;
11332 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
11333 &find_dwo_cutu);
6a506a2d
DE
11334 }
11335
11336 if (dwo_cutu != NULL)
11337 {
b4f54984 11338 if (dwarf_read_debug)
6a506a2d
DE
11339 {
11340 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11341 kind, dwo_name, hex_string (signature),
11342 host_address_to_string (dwo_cutu));
11343 }
11344 return dwo_cutu;
80626a55
DE
11345 }
11346 }
2e276125 11347 }
9cdd5dbd 11348
80626a55
DE
11349 /* We didn't find it. This could mean a dwo_id mismatch, or
11350 someone deleted the DWO/DWP file, or the search path isn't set up
11351 correctly to find the file. */
11352
b4f54984 11353 if (dwarf_read_debug)
80626a55
DE
11354 {
11355 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11356 kind, dwo_name, hex_string (signature));
11357 }
3019eac3 11358
6656a72d
DE
11359 /* This is a warning and not a complaint because it can be caused by
11360 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11361 {
11362 /* Print the name of the DWP file if we looked there, helps the user
11363 better diagnose the problem. */
11364 char *dwp_text = NULL;
11365 struct cleanup *cleanups;
11366
11367 if (dwp_file != NULL)
11368 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11369 cleanups = make_cleanup (xfree, dwp_text);
11370
11371 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11372 " [in module %s]"),
11373 kind, dwo_name, hex_string (signature),
11374 dwp_text != NULL ? dwp_text : "",
11375 this_unit->is_debug_types ? "TU" : "CU",
9c541725 11376 to_underlying (this_unit->sect_off), objfile_name (objfile));
43942612
DE
11377
11378 do_cleanups (cleanups);
11379 }
3019eac3 11380 return NULL;
5fb290d7
DJ
11381}
11382
80626a55
DE
11383/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11384 See lookup_dwo_cutu_unit for details. */
11385
11386static struct dwo_unit *
11387lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11388 const char *dwo_name, const char *comp_dir,
11389 ULONGEST signature)
11390{
11391 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11392}
11393
11394/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11395 See lookup_dwo_cutu_unit for details. */
11396
11397static struct dwo_unit *
11398lookup_dwo_type_unit (struct signatured_type *this_tu,
11399 const char *dwo_name, const char *comp_dir)
11400{
11401 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11402}
11403
89e63ee4
DE
11404/* Traversal function for queue_and_load_all_dwo_tus. */
11405
11406static int
11407queue_and_load_dwo_tu (void **slot, void *info)
11408{
11409 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11410 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11411 ULONGEST signature = dwo_unit->signature;
11412 struct signatured_type *sig_type =
11413 lookup_dwo_signatured_type (per_cu->cu, signature);
11414
11415 if (sig_type != NULL)
11416 {
11417 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11418
11419 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11420 a real dependency of PER_CU on SIG_TYPE. That is detected later
11421 while processing PER_CU. */
11422 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11423 load_full_type_unit (sig_cu);
11424 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11425 }
11426
11427 return 1;
11428}
11429
11430/* Queue all TUs contained in the DWO of PER_CU to be read in.
11431 The DWO may have the only definition of the type, though it may not be
11432 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11433 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11434
11435static void
11436queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11437{
11438 struct dwo_unit *dwo_unit;
11439 struct dwo_file *dwo_file;
11440
11441 gdb_assert (!per_cu->is_debug_types);
11442 gdb_assert (get_dwp_file () == NULL);
11443 gdb_assert (per_cu->cu != NULL);
11444
11445 dwo_unit = per_cu->cu->dwo_unit;
11446 gdb_assert (dwo_unit != NULL);
11447
11448 dwo_file = dwo_unit->dwo_file;
11449 if (dwo_file->tus != NULL)
11450 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11451}
11452
3019eac3
DE
11453/* Free all resources associated with DWO_FILE.
11454 Close the DWO file and munmap the sections.
11455 All memory should be on the objfile obstack. */
348e048f
DE
11456
11457static void
3019eac3 11458free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11459{
348e048f 11460
5c6fa7ab 11461 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11462 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11463
3019eac3
DE
11464 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11465}
348e048f 11466
3019eac3 11467/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11468
3019eac3
DE
11469static void
11470free_dwo_file_cleanup (void *arg)
11471{
11472 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11473 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11474
3019eac3
DE
11475 free_dwo_file (dwo_file, objfile);
11476}
348e048f 11477
3019eac3 11478/* Traversal function for free_dwo_files. */
2ab95328 11479
3019eac3
DE
11480static int
11481free_dwo_file_from_slot (void **slot, void *info)
11482{
11483 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11484 struct objfile *objfile = (struct objfile *) info;
348e048f 11485
3019eac3 11486 free_dwo_file (dwo_file, objfile);
348e048f 11487
3019eac3
DE
11488 return 1;
11489}
348e048f 11490
3019eac3 11491/* Free all resources associated with DWO_FILES. */
348e048f 11492
3019eac3
DE
11493static void
11494free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11495{
11496 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11497}
3019eac3
DE
11498\f
11499/* Read in various DIEs. */
348e048f 11500
d389af10
JK
11501/* qsort helper for inherit_abstract_dies. */
11502
11503static int
11504unsigned_int_compar (const void *ap, const void *bp)
11505{
11506 unsigned int a = *(unsigned int *) ap;
11507 unsigned int b = *(unsigned int *) bp;
11508
11509 return (a > b) - (b > a);
11510}
11511
11512/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11513 Inherit only the children of the DW_AT_abstract_origin DIE not being
11514 already referenced by DW_AT_abstract_origin from the children of the
11515 current DIE. */
d389af10
JK
11516
11517static void
11518inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11519{
11520 struct die_info *child_die;
11521 unsigned die_children_count;
11522 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11523 sect_offset *offsets;
11524 sect_offset *offsets_end, *offsetp;
d389af10
JK
11525 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11526 struct die_info *origin_die;
11527 /* Iterator of the ORIGIN_DIE children. */
11528 struct die_info *origin_child_die;
11529 struct cleanup *cleanups;
11530 struct attribute *attr;
cd02d79d
PA
11531 struct dwarf2_cu *origin_cu;
11532 struct pending **origin_previous_list_in_scope;
d389af10
JK
11533
11534 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11535 if (!attr)
11536 return;
11537
cd02d79d
PA
11538 /* Note that following die references may follow to a die in a
11539 different cu. */
11540
11541 origin_cu = cu;
11542 origin_die = follow_die_ref (die, attr, &origin_cu);
11543
11544 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11545 symbols in. */
11546 origin_previous_list_in_scope = origin_cu->list_in_scope;
11547 origin_cu->list_in_scope = cu->list_in_scope;
11548
edb3359d
DJ
11549 if (die->tag != origin_die->tag
11550 && !(die->tag == DW_TAG_inlined_subroutine
11551 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11552 complaint (&symfile_complaints,
11553 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9c541725
PA
11554 to_underlying (die->sect_off),
11555 to_underlying (origin_die->sect_off));
d389af10
JK
11556
11557 child_die = die->child;
11558 die_children_count = 0;
11559 while (child_die && child_die->tag)
11560 {
11561 child_die = sibling_die (child_die);
11562 die_children_count++;
11563 }
8d749320 11564 offsets = XNEWVEC (sect_offset, die_children_count);
d389af10
JK
11565 cleanups = make_cleanup (xfree, offsets);
11566
11567 offsets_end = offsets;
3ea89b92
PMR
11568 for (child_die = die->child;
11569 child_die && child_die->tag;
11570 child_die = sibling_die (child_die))
11571 {
11572 struct die_info *child_origin_die;
11573 struct dwarf2_cu *child_origin_cu;
11574
11575 /* We are trying to process concrete instance entries:
216f72a1 11576 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
3ea89b92
PMR
11577 it's not relevant to our analysis here. i.e. detecting DIEs that are
11578 present in the abstract instance but not referenced in the concrete
11579 one. */
216f72a1
JK
11580 if (child_die->tag == DW_TAG_call_site
11581 || child_die->tag == DW_TAG_GNU_call_site)
3ea89b92
PMR
11582 continue;
11583
c38f313d
DJ
11584 /* For each CHILD_DIE, find the corresponding child of
11585 ORIGIN_DIE. If there is more than one layer of
11586 DW_AT_abstract_origin, follow them all; there shouldn't be,
11587 but GCC versions at least through 4.4 generate this (GCC PR
11588 40573). */
3ea89b92
PMR
11589 child_origin_die = child_die;
11590 child_origin_cu = cu;
c38f313d
DJ
11591 while (1)
11592 {
cd02d79d
PA
11593 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11594 child_origin_cu);
c38f313d
DJ
11595 if (attr == NULL)
11596 break;
cd02d79d
PA
11597 child_origin_die = follow_die_ref (child_origin_die, attr,
11598 &child_origin_cu);
c38f313d
DJ
11599 }
11600
d389af10
JK
11601 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11602 counterpart may exist. */
c38f313d 11603 if (child_origin_die != child_die)
d389af10 11604 {
edb3359d
DJ
11605 if (child_die->tag != child_origin_die->tag
11606 && !(child_die->tag == DW_TAG_inlined_subroutine
11607 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11608 complaint (&symfile_complaints,
11609 _("Child DIE 0x%x and its abstract origin 0x%x have "
9c541725
PA
11610 "different tags"),
11611 to_underlying (child_die->sect_off),
11612 to_underlying (child_origin_die->sect_off));
c38f313d
DJ
11613 if (child_origin_die->parent != origin_die)
11614 complaint (&symfile_complaints,
11615 _("Child DIE 0x%x and its abstract origin 0x%x have "
9c541725
PA
11616 "different parents"),
11617 to_underlying (child_die->sect_off),
11618 to_underlying (child_origin_die->sect_off));
c38f313d 11619 else
9c541725 11620 *offsets_end++ = child_origin_die->sect_off;
d389af10 11621 }
d389af10
JK
11622 }
11623 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11624 unsigned_int_compar);
11625 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9c541725 11626 if (offsetp[-1] == *offsetp)
3e43a32a
MS
11627 complaint (&symfile_complaints,
11628 _("Multiple children of DIE 0x%x refer "
11629 "to DIE 0x%x as their abstract origin"),
9c541725 11630 to_underlying (die->sect_off), to_underlying (*offsetp));
d389af10
JK
11631
11632 offsetp = offsets;
11633 origin_child_die = origin_die->child;
11634 while (origin_child_die && origin_child_die->tag)
11635 {
11636 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1 11637 while (offsetp < offsets_end
9c541725 11638 && *offsetp < origin_child_die->sect_off)
d389af10 11639 offsetp++;
b64f50a1 11640 if (offsetp >= offsets_end
9c541725 11641 || *offsetp > origin_child_die->sect_off)
d389af10 11642 {
adde2bff
DE
11643 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11644 Check whether we're already processing ORIGIN_CHILD_DIE.
11645 This can happen with mutually referenced abstract_origins.
11646 PR 16581. */
11647 if (!origin_child_die->in_process)
11648 process_die (origin_child_die, origin_cu);
d389af10
JK
11649 }
11650 origin_child_die = sibling_die (origin_child_die);
11651 }
cd02d79d 11652 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11653
11654 do_cleanups (cleanups);
11655}
11656
c906108c 11657static void
e7c27a73 11658read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11659{
e7c27a73 11660 struct objfile *objfile = cu->objfile;
3e29f34a 11661 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11662 struct context_stack *newobj;
c906108c
SS
11663 CORE_ADDR lowpc;
11664 CORE_ADDR highpc;
11665 struct die_info *child_die;
edb3359d 11666 struct attribute *attr, *call_line, *call_file;
15d034d0 11667 const char *name;
e142c38c 11668 CORE_ADDR baseaddr;
801e3a5b 11669 struct block *block;
edb3359d 11670 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11671 VEC (symbolp) *template_args = NULL;
11672 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11673
11674 if (inlined_func)
11675 {
11676 /* If we do not have call site information, we can't show the
11677 caller of this inlined function. That's too confusing, so
11678 only use the scope for local variables. */
11679 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11680 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11681 if (call_line == NULL || call_file == NULL)
11682 {
11683 read_lexical_block_scope (die, cu);
11684 return;
11685 }
11686 }
c906108c 11687
e142c38c
DJ
11688 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11689
94af9270 11690 name = dwarf2_name (die, cu);
c906108c 11691
e8d05480
JB
11692 /* Ignore functions with missing or empty names. These are actually
11693 illegal according to the DWARF standard. */
11694 if (name == NULL)
11695 {
11696 complaint (&symfile_complaints,
b64f50a1 11697 _("missing name for subprogram DIE at %d"),
9c541725 11698 to_underlying (die->sect_off));
e8d05480
JB
11699 return;
11700 }
11701
11702 /* Ignore functions with missing or invalid low and high pc attributes. */
3a2b436a 11703 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
e385593e 11704 <= PC_BOUNDS_INVALID)
e8d05480 11705 {
ae4d0c03
PM
11706 attr = dwarf2_attr (die, DW_AT_external, cu);
11707 if (!attr || !DW_UNSND (attr))
11708 complaint (&symfile_complaints,
3e43a32a
MS
11709 _("cannot get low and high bounds "
11710 "for subprogram DIE at %d"),
9c541725 11711 to_underlying (die->sect_off));
e8d05480
JB
11712 return;
11713 }
c906108c 11714
3e29f34a
MR
11715 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11716 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11717
34eaf542
TT
11718 /* If we have any template arguments, then we must allocate a
11719 different sort of symbol. */
11720 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11721 {
11722 if (child_die->tag == DW_TAG_template_type_param
11723 || child_die->tag == DW_TAG_template_value_param)
11724 {
e623cf5d 11725 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11726 templ_func->base.is_cplus_template_function = 1;
11727 break;
11728 }
11729 }
11730
fe978cb0
PA
11731 newobj = push_context (0, lowpc);
11732 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11733 (struct symbol *) templ_func);
4c2df51b 11734
4cecd739
DJ
11735 /* If there is a location expression for DW_AT_frame_base, record
11736 it. */
e142c38c 11737 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11738 if (attr)
fe978cb0 11739 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11740
63e43d3a
PMR
11741 /* If there is a location for the static link, record it. */
11742 newobj->static_link = NULL;
11743 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11744 if (attr)
11745 {
224c3ddb
SM
11746 newobj->static_link
11747 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
11748 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11749 }
11750
e142c38c 11751 cu->list_in_scope = &local_symbols;
c906108c 11752
639d11d3 11753 if (die->child != NULL)
c906108c 11754 {
639d11d3 11755 child_die = die->child;
c906108c
SS
11756 while (child_die && child_die->tag)
11757 {
34eaf542
TT
11758 if (child_die->tag == DW_TAG_template_type_param
11759 || child_die->tag == DW_TAG_template_value_param)
11760 {
11761 struct symbol *arg = new_symbol (child_die, NULL, cu);
11762
f1078f66
DJ
11763 if (arg != NULL)
11764 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11765 }
11766 else
11767 process_die (child_die, cu);
c906108c
SS
11768 child_die = sibling_die (child_die);
11769 }
11770 }
11771
d389af10
JK
11772 inherit_abstract_dies (die, cu);
11773
4a811a97
UW
11774 /* If we have a DW_AT_specification, we might need to import using
11775 directives from the context of the specification DIE. See the
11776 comment in determine_prefix. */
11777 if (cu->language == language_cplus
11778 && dwarf2_attr (die, DW_AT_specification, cu))
11779 {
11780 struct dwarf2_cu *spec_cu = cu;
11781 struct die_info *spec_die = die_specification (die, &spec_cu);
11782
11783 while (spec_die)
11784 {
11785 child_die = spec_die->child;
11786 while (child_die && child_die->tag)
11787 {
11788 if (child_die->tag == DW_TAG_imported_module)
11789 process_die (child_die, spec_cu);
11790 child_die = sibling_die (child_die);
11791 }
11792
11793 /* In some cases, GCC generates specification DIEs that
11794 themselves contain DW_AT_specification attributes. */
11795 spec_die = die_specification (spec_die, &spec_cu);
11796 }
11797 }
11798
fe978cb0 11799 newobj = pop_context ();
c906108c 11800 /* Make a block for the local symbols within. */
fe978cb0 11801 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 11802 newobj->static_link, lowpc, highpc);
801e3a5b 11803
df8a16a1 11804 /* For C++, set the block's scope. */
45280282
IB
11805 if ((cu->language == language_cplus
11806 || cu->language == language_fortran
c44af4eb
TT
11807 || cu->language == language_d
11808 || cu->language == language_rust)
4d4ec4e5 11809 && cu->processing_has_namespace_info)
195a3f6c
TT
11810 block_set_scope (block, determine_prefix (die, cu),
11811 &objfile->objfile_obstack);
df8a16a1 11812
801e3a5b
JB
11813 /* If we have address ranges, record them. */
11814 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11815
fe978cb0 11816 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11817
34eaf542
TT
11818 /* Attach template arguments to function. */
11819 if (! VEC_empty (symbolp, template_args))
11820 {
11821 gdb_assert (templ_func != NULL);
11822
11823 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11824 templ_func->template_arguments
8d749320
SM
11825 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11826 templ_func->n_template_arguments);
34eaf542
TT
11827 memcpy (templ_func->template_arguments,
11828 VEC_address (symbolp, template_args),
11829 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11830 VEC_free (symbolp, template_args);
11831 }
11832
208d8187
JB
11833 /* In C++, we can have functions nested inside functions (e.g., when
11834 a function declares a class that has methods). This means that
11835 when we finish processing a function scope, we may need to go
11836 back to building a containing block's symbol lists. */
fe978cb0 11837 local_symbols = newobj->locals;
22cee43f 11838 local_using_directives = newobj->local_using_directives;
208d8187 11839
921e78cf
JB
11840 /* If we've finished processing a top-level function, subsequent
11841 symbols go in the file symbol list. */
11842 if (outermost_context_p ())
e142c38c 11843 cu->list_in_scope = &file_symbols;
c906108c
SS
11844}
11845
11846/* Process all the DIES contained within a lexical block scope. Start
11847 a new scope, process the dies, and then close the scope. */
11848
11849static void
e7c27a73 11850read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11851{
e7c27a73 11852 struct objfile *objfile = cu->objfile;
3e29f34a 11853 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11854 struct context_stack *newobj;
c906108c
SS
11855 CORE_ADDR lowpc, highpc;
11856 struct die_info *child_die;
e142c38c
DJ
11857 CORE_ADDR baseaddr;
11858
11859 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11860
11861 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11862 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11863 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11864 be nasty. Might be easier to properly extend generic blocks to
af34e669 11865 describe ranges. */
e385593e
JK
11866 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11867 {
11868 case PC_BOUNDS_NOT_PRESENT:
11869 /* DW_TAG_lexical_block has no attributes, process its children as if
11870 there was no wrapping by that DW_TAG_lexical_block.
11871 GCC does no longer produces such DWARF since GCC r224161. */
11872 for (child_die = die->child;
11873 child_die != NULL && child_die->tag;
11874 child_die = sibling_die (child_die))
11875 process_die (child_die, cu);
11876 return;
11877 case PC_BOUNDS_INVALID:
11878 return;
11879 }
3e29f34a
MR
11880 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11881 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11882
11883 push_context (0, lowpc);
639d11d3 11884 if (die->child != NULL)
c906108c 11885 {
639d11d3 11886 child_die = die->child;
c906108c
SS
11887 while (child_die && child_die->tag)
11888 {
e7c27a73 11889 process_die (child_die, cu);
c906108c
SS
11890 child_die = sibling_die (child_die);
11891 }
11892 }
3ea89b92 11893 inherit_abstract_dies (die, cu);
fe978cb0 11894 newobj = pop_context ();
c906108c 11895
22cee43f 11896 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11897 {
801e3a5b 11898 struct block *block
63e43d3a 11899 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 11900 newobj->start_addr, highpc);
801e3a5b
JB
11901
11902 /* Note that recording ranges after traversing children, as we
11903 do here, means that recording a parent's ranges entails
11904 walking across all its children's ranges as they appear in
11905 the address map, which is quadratic behavior.
11906
11907 It would be nicer to record the parent's ranges before
11908 traversing its children, simply overriding whatever you find
11909 there. But since we don't even decide whether to create a
11910 block until after we've traversed its children, that's hard
11911 to do. */
11912 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11913 }
fe978cb0 11914 local_symbols = newobj->locals;
22cee43f 11915 local_using_directives = newobj->local_using_directives;
c906108c
SS
11916}
11917
216f72a1 11918/* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
96408a79
SA
11919
11920static void
11921read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11922{
11923 struct objfile *objfile = cu->objfile;
11924 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11925 CORE_ADDR pc, baseaddr;
11926 struct attribute *attr;
11927 struct call_site *call_site, call_site_local;
11928 void **slot;
11929 int nparams;
11930 struct die_info *child_die;
11931
11932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11933
216f72a1
JK
11934 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11935 if (attr == NULL)
11936 {
11937 /* This was a pre-DWARF-5 GNU extension alias
11938 for DW_AT_call_return_pc. */
11939 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11940 }
96408a79
SA
11941 if (!attr)
11942 {
11943 complaint (&symfile_complaints,
216f72a1 11944 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
96408a79 11945 "DIE 0x%x [in module %s]"),
9c541725 11946 to_underlying (die->sect_off), objfile_name (objfile));
96408a79
SA
11947 return;
11948 }
31aa7e4e 11949 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11950 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11951
11952 if (cu->call_site_htab == NULL)
11953 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11954 NULL, &objfile->objfile_obstack,
11955 hashtab_obstack_allocate, NULL);
11956 call_site_local.pc = pc;
11957 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11958 if (*slot != NULL)
11959 {
11960 complaint (&symfile_complaints,
216f72a1 11961 _("Duplicate PC %s for DW_TAG_call_site "
96408a79 11962 "DIE 0x%x [in module %s]"),
9c541725 11963 paddress (gdbarch, pc), to_underlying (die->sect_off),
4262abfb 11964 objfile_name (objfile));
96408a79
SA
11965 return;
11966 }
11967
11968 /* Count parameters at the caller. */
11969
11970 nparams = 0;
11971 for (child_die = die->child; child_die && child_die->tag;
11972 child_die = sibling_die (child_die))
11973 {
216f72a1
JK
11974 if (child_die->tag != DW_TAG_call_site_parameter
11975 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79
SA
11976 {
11977 complaint (&symfile_complaints,
216f72a1
JK
11978 _("Tag %d is not DW_TAG_call_site_parameter in "
11979 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725 11980 child_die->tag, to_underlying (child_die->sect_off),
4262abfb 11981 objfile_name (objfile));
96408a79
SA
11982 continue;
11983 }
11984
11985 nparams++;
11986 }
11987
224c3ddb
SM
11988 call_site
11989 = ((struct call_site *)
11990 obstack_alloc (&objfile->objfile_obstack,
11991 sizeof (*call_site)
11992 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
11993 *slot = call_site;
11994 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11995 call_site->pc = pc;
11996
216f72a1
JK
11997 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
11998 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
96408a79
SA
11999 {
12000 struct die_info *func_die;
12001
12002 /* Skip also over DW_TAG_inlined_subroutine. */
12003 for (func_die = die->parent;
12004 func_die && func_die->tag != DW_TAG_subprogram
12005 && func_die->tag != DW_TAG_subroutine_type;
12006 func_die = func_die->parent);
12007
216f72a1
JK
12008 /* DW_AT_call_all_calls is a superset
12009 of DW_AT_call_all_tail_calls. */
96408a79 12010 if (func_die
216f72a1 12011 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
96408a79 12012 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
216f72a1 12013 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
96408a79
SA
12014 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
12015 {
12016 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
12017 not complete. But keep CALL_SITE for look ups via call_site_htab,
12018 both the initial caller containing the real return address PC and
12019 the final callee containing the current PC of a chain of tail
12020 calls do not need to have the tail call list complete. But any
12021 function candidate for a virtual tail call frame searched via
12022 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
12023 determined unambiguously. */
12024 }
12025 else
12026 {
12027 struct type *func_type = NULL;
12028
12029 if (func_die)
12030 func_type = get_die_type (func_die, cu);
12031 if (func_type != NULL)
12032 {
12033 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
12034
12035 /* Enlist this call site to the function. */
12036 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
12037 TYPE_TAIL_CALL_LIST (func_type) = call_site;
12038 }
12039 else
12040 complaint (&symfile_complaints,
216f72a1 12041 _("Cannot find function owning DW_TAG_call_site "
96408a79 12042 "DIE 0x%x [in module %s]"),
9c541725 12043 to_underlying (die->sect_off), objfile_name (objfile));
96408a79
SA
12044 }
12045 }
12046
216f72a1
JK
12047 attr = dwarf2_attr (die, DW_AT_call_target, cu);
12048 if (attr == NULL)
12049 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
12050 if (attr == NULL)
12051 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
96408a79 12052 if (attr == NULL)
216f72a1
JK
12053 {
12054 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
12055 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12056 }
96408a79
SA
12057 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
12058 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
12059 /* Keep NULL DWARF_BLOCK. */;
12060 else if (attr_form_is_block (attr))
12061 {
12062 struct dwarf2_locexpr_baton *dlbaton;
12063
8d749320 12064 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
12065 dlbaton->data = DW_BLOCK (attr)->data;
12066 dlbaton->size = DW_BLOCK (attr)->size;
12067 dlbaton->per_cu = cu->per_cu;
12068
12069 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
12070 }
7771576e 12071 else if (attr_form_is_ref (attr))
96408a79 12072 {
96408a79
SA
12073 struct dwarf2_cu *target_cu = cu;
12074 struct die_info *target_die;
12075
ac9ec31b 12076 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
12077 gdb_assert (target_cu->objfile == objfile);
12078 if (die_is_declaration (target_die, target_cu))
12079 {
7d45c7c3 12080 const char *target_physname;
9112db09
JK
12081
12082 /* Prefer the mangled name; otherwise compute the demangled one. */
73b9be8b 12083 target_physname = dw2_linkage_name (target_die, target_cu);
7d45c7c3 12084 if (target_physname == NULL)
9112db09 12085 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
12086 if (target_physname == NULL)
12087 complaint (&symfile_complaints,
216f72a1 12088 _("DW_AT_call_target target DIE has invalid "
96408a79 12089 "physname, for referencing DIE 0x%x [in module %s]"),
9c541725 12090 to_underlying (die->sect_off), objfile_name (objfile));
96408a79 12091 else
7d455152 12092 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
12093 }
12094 else
12095 {
12096 CORE_ADDR lowpc;
12097
12098 /* DW_AT_entry_pc should be preferred. */
3a2b436a 12099 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
e385593e 12100 <= PC_BOUNDS_INVALID)
96408a79 12101 complaint (&symfile_complaints,
216f72a1 12102 _("DW_AT_call_target target DIE has invalid "
96408a79 12103 "low pc, for referencing DIE 0x%x [in module %s]"),
9c541725 12104 to_underlying (die->sect_off), objfile_name (objfile));
96408a79 12105 else
3e29f34a
MR
12106 {
12107 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12108 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12109 }
96408a79
SA
12110 }
12111 }
12112 else
12113 complaint (&symfile_complaints,
216f72a1 12114 _("DW_TAG_call_site DW_AT_call_target is neither "
96408a79 12115 "block nor reference, for DIE 0x%x [in module %s]"),
9c541725 12116 to_underlying (die->sect_off), objfile_name (objfile));
96408a79
SA
12117
12118 call_site->per_cu = cu->per_cu;
12119
12120 for (child_die = die->child;
12121 child_die && child_die->tag;
12122 child_die = sibling_die (child_die))
12123 {
96408a79 12124 struct call_site_parameter *parameter;
1788b2d3 12125 struct attribute *loc, *origin;
96408a79 12126
216f72a1
JK
12127 if (child_die->tag != DW_TAG_call_site_parameter
12128 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79
SA
12129 {
12130 /* Already printed the complaint above. */
12131 continue;
12132 }
12133
12134 gdb_assert (call_site->parameter_count < nparams);
12135 parameter = &call_site->parameter[call_site->parameter_count];
12136
1788b2d3
JK
12137 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12138 specifies DW_TAG_formal_parameter. Value of the data assumed for the
216f72a1 12139 register is contained in DW_AT_call_value. */
96408a79 12140
24c5c679 12141 loc = dwarf2_attr (child_die, DW_AT_location, cu);
216f72a1
JK
12142 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12143 if (origin == NULL)
12144 {
12145 /* This was a pre-DWARF-5 GNU extension alias
12146 for DW_AT_call_parameter. */
12147 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12148 }
7771576e 12149 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3 12150 {
1788b2d3 12151 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9c541725
PA
12152
12153 sect_offset sect_off
12154 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12155 if (!offset_in_cu_p (&cu->header, sect_off))
d76b7dbc
JK
12156 {
12157 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12158 binding can be done only inside one CU. Such referenced DIE
12159 therefore cannot be even moved to DW_TAG_partial_unit. */
12160 complaint (&symfile_complaints,
216f72a1
JK
12161 _("DW_AT_call_parameter offset is not in CU for "
12162 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725
PA
12163 to_underlying (child_die->sect_off),
12164 objfile_name (objfile));
d76b7dbc
JK
12165 continue;
12166 }
9c541725
PA
12167 parameter->u.param_cu_off
12168 = (cu_offset) (sect_off - cu->header.sect_off);
1788b2d3
JK
12169 }
12170 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
12171 {
12172 complaint (&symfile_complaints,
12173 _("No DW_FORM_block* DW_AT_location for "
216f72a1 12174 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725 12175 to_underlying (child_die->sect_off), objfile_name (objfile));
96408a79
SA
12176 continue;
12177 }
24c5c679 12178 else
96408a79 12179 {
24c5c679
JK
12180 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12181 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12182 if (parameter->u.dwarf_reg != -1)
12183 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12184 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12185 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12186 &parameter->u.fb_offset))
12187 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12188 else
12189 {
12190 complaint (&symfile_complaints,
12191 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12192 "for DW_FORM_block* DW_AT_location is supported for "
216f72a1 12193 "DW_TAG_call_site child DIE 0x%x "
24c5c679 12194 "[in module %s]"),
9c541725
PA
12195 to_underlying (child_die->sect_off),
12196 objfile_name (objfile));
24c5c679
JK
12197 continue;
12198 }
96408a79
SA
12199 }
12200
216f72a1
JK
12201 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12202 if (attr == NULL)
12203 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
96408a79
SA
12204 if (!attr_form_is_block (attr))
12205 {
12206 complaint (&symfile_complaints,
216f72a1
JK
12207 _("No DW_FORM_block* DW_AT_call_value for "
12208 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725
PA
12209 to_underlying (child_die->sect_off),
12210 objfile_name (objfile));
96408a79
SA
12211 continue;
12212 }
12213 parameter->value = DW_BLOCK (attr)->data;
12214 parameter->value_size = DW_BLOCK (attr)->size;
12215
12216 /* Parameters are not pre-cleared by memset above. */
12217 parameter->data_value = NULL;
12218 parameter->data_value_size = 0;
12219 call_site->parameter_count++;
12220
216f72a1
JK
12221 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12222 if (attr == NULL)
12223 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
96408a79
SA
12224 if (attr)
12225 {
12226 if (!attr_form_is_block (attr))
12227 complaint (&symfile_complaints,
216f72a1
JK
12228 _("No DW_FORM_block* DW_AT_call_data_value for "
12229 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725
PA
12230 to_underlying (child_die->sect_off),
12231 objfile_name (objfile));
96408a79
SA
12232 else
12233 {
12234 parameter->data_value = DW_BLOCK (attr)->data;
12235 parameter->data_value_size = DW_BLOCK (attr)->size;
12236 }
12237 }
12238 }
12239}
12240
43988095
JK
12241/* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12242 reading .debug_rnglists.
12243 Callback's type should be:
12244 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12245 Return true if the attributes are present and valid, otherwise,
12246 return false. */
12247
12248template <typename Callback>
12249static bool
12250dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12251 Callback &&callback)
12252{
12253 struct objfile *objfile = cu->objfile;
12254 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12255 struct comp_unit_head *cu_header = &cu->header;
12256 bfd *obfd = objfile->obfd;
12257 unsigned int addr_size = cu_header->addr_size;
12258 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12259 /* Base address selection entry. */
12260 CORE_ADDR base;
12261 int found_base;
12262 unsigned int dummy;
12263 const gdb_byte *buffer;
12264 CORE_ADDR low = 0;
12265 CORE_ADDR high = 0;
12266 CORE_ADDR baseaddr;
12267 bool overflow = false;
12268
12269 found_base = cu->base_known;
12270 base = cu->base_address;
12271
12272 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12273 if (offset >= dwarf2_per_objfile->rnglists.size)
12274 {
12275 complaint (&symfile_complaints,
12276 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12277 offset);
12278 return false;
12279 }
12280 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12281
12282 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12283
12284 while (1)
12285 {
7814882a
JK
12286 /* Initialize it due to a false compiler warning. */
12287 CORE_ADDR range_beginning = 0, range_end = 0;
43988095
JK
12288 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12289 + dwarf2_per_objfile->rnglists.size);
12290 unsigned int bytes_read;
12291
12292 if (buffer == buf_end)
12293 {
12294 overflow = true;
12295 break;
12296 }
12297 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12298 switch (rlet)
12299 {
12300 case DW_RLE_end_of_list:
12301 break;
12302 case DW_RLE_base_address:
12303 if (buffer + cu->header.addr_size > buf_end)
12304 {
12305 overflow = true;
12306 break;
12307 }
12308 base = read_address (obfd, buffer, cu, &bytes_read);
12309 found_base = 1;
12310 buffer += bytes_read;
12311 break;
12312 case DW_RLE_start_length:
12313 if (buffer + cu->header.addr_size > buf_end)
12314 {
12315 overflow = true;
12316 break;
12317 }
12318 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12319 buffer += bytes_read;
12320 range_end = (range_beginning
12321 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12322 buffer += bytes_read;
12323 if (buffer > buf_end)
12324 {
12325 overflow = true;
12326 break;
12327 }
12328 break;
12329 case DW_RLE_offset_pair:
12330 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12331 buffer += bytes_read;
12332 if (buffer > buf_end)
12333 {
12334 overflow = true;
12335 break;
12336 }
12337 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12338 buffer += bytes_read;
12339 if (buffer > buf_end)
12340 {
12341 overflow = true;
12342 break;
12343 }
12344 break;
12345 case DW_RLE_start_end:
12346 if (buffer + 2 * cu->header.addr_size > buf_end)
12347 {
12348 overflow = true;
12349 break;
12350 }
12351 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12352 buffer += bytes_read;
12353 range_end = read_address (obfd, buffer, cu, &bytes_read);
12354 buffer += bytes_read;
12355 break;
12356 default:
12357 complaint (&symfile_complaints,
12358 _("Invalid .debug_rnglists data (no base address)"));
12359 return false;
12360 }
12361 if (rlet == DW_RLE_end_of_list || overflow)
12362 break;
12363 if (rlet == DW_RLE_base_address)
12364 continue;
12365
12366 if (!found_base)
12367 {
12368 /* We have no valid base address for the ranges
12369 data. */
12370 complaint (&symfile_complaints,
12371 _("Invalid .debug_rnglists data (no base address)"));
12372 return false;
12373 }
12374
12375 if (range_beginning > range_end)
12376 {
12377 /* Inverted range entries are invalid. */
12378 complaint (&symfile_complaints,
12379 _("Invalid .debug_rnglists data (inverted range)"));
12380 return false;
12381 }
12382
12383 /* Empty range entries have no effect. */
12384 if (range_beginning == range_end)
12385 continue;
12386
12387 range_beginning += base;
12388 range_end += base;
12389
12390 /* A not-uncommon case of bad debug info.
12391 Don't pollute the addrmap with bad data. */
12392 if (range_beginning + baseaddr == 0
12393 && !dwarf2_per_objfile->has_section_at_zero)
12394 {
12395 complaint (&symfile_complaints,
12396 _(".debug_rnglists entry has start address of zero"
12397 " [in module %s]"), objfile_name (objfile));
12398 continue;
12399 }
12400
12401 callback (range_beginning, range_end);
12402 }
12403
12404 if (overflow)
12405 {
12406 complaint (&symfile_complaints,
12407 _("Offset %d is not terminated "
12408 "for DW_AT_ranges attribute"),
12409 offset);
12410 return false;
12411 }
12412
12413 return true;
12414}
12415
12416/* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12417 Callback's type should be:
12418 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
5f46c5a5 12419 Return 1 if the attributes are present and valid, otherwise, return 0. */
43039443 12420
43988095 12421template <typename Callback>
43039443 12422static int
5f46c5a5 12423dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
43988095 12424 Callback &&callback)
43039443
JK
12425{
12426 struct objfile *objfile = cu->objfile;
3e29f34a 12427 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
12428 struct comp_unit_head *cu_header = &cu->header;
12429 bfd *obfd = objfile->obfd;
12430 unsigned int addr_size = cu_header->addr_size;
12431 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12432 /* Base address selection entry. */
12433 CORE_ADDR base;
12434 int found_base;
12435 unsigned int dummy;
d521ce57 12436 const gdb_byte *buffer;
ff013f42 12437 CORE_ADDR baseaddr;
43039443 12438
43988095
JK
12439 if (cu_header->version >= 5)
12440 return dwarf2_rnglists_process (offset, cu, callback);
12441
d00adf39
DE
12442 found_base = cu->base_known;
12443 base = cu->base_address;
43039443 12444
be391dca 12445 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12446 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
12447 {
12448 complaint (&symfile_complaints,
12449 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12450 offset);
12451 return 0;
12452 }
dce234bc 12453 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 12454
e7030f15 12455 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 12456
43039443
JK
12457 while (1)
12458 {
12459 CORE_ADDR range_beginning, range_end;
12460
12461 range_beginning = read_address (obfd, buffer, cu, &dummy);
12462 buffer += addr_size;
12463 range_end = read_address (obfd, buffer, cu, &dummy);
12464 buffer += addr_size;
12465 offset += 2 * addr_size;
12466
12467 /* An end of list marker is a pair of zero addresses. */
12468 if (range_beginning == 0 && range_end == 0)
12469 /* Found the end of list entry. */
12470 break;
12471
12472 /* Each base address selection entry is a pair of 2 values.
12473 The first is the largest possible address, the second is
12474 the base address. Check for a base address here. */
12475 if ((range_beginning & mask) == mask)
12476 {
28d2bfb9
AB
12477 /* If we found the largest possible address, then we already
12478 have the base address in range_end. */
12479 base = range_end;
43039443
JK
12480 found_base = 1;
12481 continue;
12482 }
12483
12484 if (!found_base)
12485 {
12486 /* We have no valid base address for the ranges
12487 data. */
12488 complaint (&symfile_complaints,
12489 _("Invalid .debug_ranges data (no base address)"));
12490 return 0;
12491 }
12492
9277c30c
UW
12493 if (range_beginning > range_end)
12494 {
12495 /* Inverted range entries are invalid. */
12496 complaint (&symfile_complaints,
12497 _("Invalid .debug_ranges data (inverted range)"));
12498 return 0;
12499 }
12500
12501 /* Empty range entries have no effect. */
12502 if (range_beginning == range_end)
12503 continue;
12504
43039443
JK
12505 range_beginning += base;
12506 range_end += base;
12507
01093045
DE
12508 /* A not-uncommon case of bad debug info.
12509 Don't pollute the addrmap with bad data. */
12510 if (range_beginning + baseaddr == 0
12511 && !dwarf2_per_objfile->has_section_at_zero)
12512 {
12513 complaint (&symfile_complaints,
12514 _(".debug_ranges entry has start address of zero"
4262abfb 12515 " [in module %s]"), objfile_name (objfile));
01093045
DE
12516 continue;
12517 }
12518
5f46c5a5
JK
12519 callback (range_beginning, range_end);
12520 }
12521
12522 return 1;
12523}
12524
12525/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12526 Return 1 if the attributes are present and valid, otherwise, return 0.
12527 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12528
12529static int
12530dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12531 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12532 struct partial_symtab *ranges_pst)
12533{
12534 struct objfile *objfile = cu->objfile;
12535 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12536 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12537 SECT_OFF_TEXT (objfile));
12538 int low_set = 0;
12539 CORE_ADDR low = 0;
12540 CORE_ADDR high = 0;
12541 int retval;
12542
12543 retval = dwarf2_ranges_process (offset, cu,
12544 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12545 {
9277c30c 12546 if (ranges_pst != NULL)
3e29f34a
MR
12547 {
12548 CORE_ADDR lowpc;
12549 CORE_ADDR highpc;
12550
12551 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12552 range_beginning + baseaddr);
12553 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12554 range_end + baseaddr);
12555 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12556 ranges_pst);
12557 }
ff013f42 12558
43039443
JK
12559 /* FIXME: This is recording everything as a low-high
12560 segment of consecutive addresses. We should have a
12561 data structure for discontiguous block ranges
12562 instead. */
12563 if (! low_set)
12564 {
12565 low = range_beginning;
12566 high = range_end;
12567 low_set = 1;
12568 }
12569 else
12570 {
12571 if (range_beginning < low)
12572 low = range_beginning;
12573 if (range_end > high)
12574 high = range_end;
12575 }
5f46c5a5
JK
12576 });
12577 if (!retval)
12578 return 0;
43039443
JK
12579
12580 if (! low_set)
12581 /* If the first entry is an end-of-list marker, the range
12582 describes an empty scope, i.e. no instructions. */
12583 return 0;
12584
12585 if (low_return)
12586 *low_return = low;
12587 if (high_return)
12588 *high_return = high;
12589 return 1;
12590}
12591
3a2b436a
JK
12592/* Get low and high pc attributes from a die. See enum pc_bounds_kind
12593 definition for the return value. *LOWPC and *HIGHPC are set iff
e385593e 12594 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
380bca97 12595
3a2b436a 12596static enum pc_bounds_kind
af34e669 12597dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12598 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12599 struct partial_symtab *pst)
c906108c
SS
12600{
12601 struct attribute *attr;
91da1414 12602 struct attribute *attr_high;
af34e669
DJ
12603 CORE_ADDR low = 0;
12604 CORE_ADDR high = 0;
e385593e 12605 enum pc_bounds_kind ret;
c906108c 12606
91da1414
MW
12607 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12608 if (attr_high)
af34e669 12609 {
e142c38c 12610 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12611 if (attr)
91da1414 12612 {
31aa7e4e
JB
12613 low = attr_value_as_address (attr);
12614 high = attr_value_as_address (attr_high);
12615 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12616 high += low;
91da1414 12617 }
af34e669
DJ
12618 else
12619 /* Found high w/o low attribute. */
e385593e 12620 return PC_BOUNDS_INVALID;
af34e669
DJ
12621
12622 /* Found consecutive range of addresses. */
3a2b436a 12623 ret = PC_BOUNDS_HIGH_LOW;
af34e669 12624 }
c906108c 12625 else
af34e669 12626 {
e142c38c 12627 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12628 if (attr != NULL)
12629 {
ab435259
DE
12630 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12631 We take advantage of the fact that DW_AT_ranges does not appear
12632 in DW_TAG_compile_unit of DWO files. */
12633 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12634 unsigned int ranges_offset = (DW_UNSND (attr)
12635 + (need_ranges_base
12636 ? cu->ranges_base
12637 : 0));
2e3cf129 12638
af34e669 12639 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12640 .debug_ranges section. */
2e3cf129 12641 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
e385593e 12642 return PC_BOUNDS_INVALID;
43039443 12643 /* Found discontinuous range of addresses. */
3a2b436a 12644 ret = PC_BOUNDS_RANGES;
af34e669 12645 }
e385593e
JK
12646 else
12647 return PC_BOUNDS_NOT_PRESENT;
af34e669 12648 }
c906108c 12649
9373cf26
JK
12650 /* read_partial_die has also the strict LOW < HIGH requirement. */
12651 if (high <= low)
e385593e 12652 return PC_BOUNDS_INVALID;
c906108c
SS
12653
12654 /* When using the GNU linker, .gnu.linkonce. sections are used to
12655 eliminate duplicate copies of functions and vtables and such.
12656 The linker will arbitrarily choose one and discard the others.
12657 The AT_*_pc values for such functions refer to local labels in
12658 these sections. If the section from that file was discarded, the
12659 labels are not in the output, so the relocs get a value of 0.
12660 If this is a discarded function, mark the pc bounds as invalid,
12661 so that GDB will ignore it. */
72dca2f5 12662 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
e385593e 12663 return PC_BOUNDS_INVALID;
c906108c
SS
12664
12665 *lowpc = low;
96408a79
SA
12666 if (highpc)
12667 *highpc = high;
af34e669 12668 return ret;
c906108c
SS
12669}
12670
b084d499
JB
12671/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12672 its low and high PC addresses. Do nothing if these addresses could not
12673 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12674 and HIGHPC to the high address if greater than HIGHPC. */
12675
12676static void
12677dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12678 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12679 struct dwarf2_cu *cu)
12680{
12681 CORE_ADDR low, high;
12682 struct die_info *child = die->child;
12683
e385593e 12684 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
b084d499 12685 {
325fac50
PA
12686 *lowpc = std::min (*lowpc, low);
12687 *highpc = std::max (*highpc, high);
b084d499
JB
12688 }
12689
12690 /* If the language does not allow nested subprograms (either inside
12691 subprograms or lexical blocks), we're done. */
12692 if (cu->language != language_ada)
12693 return;
6e70227d 12694
b084d499
JB
12695 /* Check all the children of the given DIE. If it contains nested
12696 subprograms, then check their pc bounds. Likewise, we need to
12697 check lexical blocks as well, as they may also contain subprogram
12698 definitions. */
12699 while (child && child->tag)
12700 {
12701 if (child->tag == DW_TAG_subprogram
12702 || child->tag == DW_TAG_lexical_block)
12703 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12704 child = sibling_die (child);
12705 }
12706}
12707
fae299cd
DC
12708/* Get the low and high pc's represented by the scope DIE, and store
12709 them in *LOWPC and *HIGHPC. If the correct values can't be
12710 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12711
12712static void
12713get_scope_pc_bounds (struct die_info *die,
12714 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12715 struct dwarf2_cu *cu)
12716{
12717 CORE_ADDR best_low = (CORE_ADDR) -1;
12718 CORE_ADDR best_high = (CORE_ADDR) 0;
12719 CORE_ADDR current_low, current_high;
12720
3a2b436a 12721 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
e385593e 12722 >= PC_BOUNDS_RANGES)
fae299cd
DC
12723 {
12724 best_low = current_low;
12725 best_high = current_high;
12726 }
12727 else
12728 {
12729 struct die_info *child = die->child;
12730
12731 while (child && child->tag)
12732 {
12733 switch (child->tag) {
12734 case DW_TAG_subprogram:
b084d499 12735 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12736 break;
12737 case DW_TAG_namespace:
f55ee35c 12738 case DW_TAG_module:
fae299cd
DC
12739 /* FIXME: carlton/2004-01-16: Should we do this for
12740 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12741 that current GCC's always emit the DIEs corresponding
12742 to definitions of methods of classes as children of a
12743 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12744 the DIEs giving the declarations, which could be
12745 anywhere). But I don't see any reason why the
12746 standards says that they have to be there. */
12747 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12748
12749 if (current_low != ((CORE_ADDR) -1))
12750 {
325fac50
PA
12751 best_low = std::min (best_low, current_low);
12752 best_high = std::max (best_high, current_high);
fae299cd
DC
12753 }
12754 break;
12755 default:
0963b4bd 12756 /* Ignore. */
fae299cd
DC
12757 break;
12758 }
12759
12760 child = sibling_die (child);
12761 }
12762 }
12763
12764 *lowpc = best_low;
12765 *highpc = best_high;
12766}
12767
801e3a5b
JB
12768/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12769 in DIE. */
380bca97 12770
801e3a5b
JB
12771static void
12772dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12773 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12774{
bb5ed363 12775 struct objfile *objfile = cu->objfile;
3e29f34a 12776 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12777 struct attribute *attr;
91da1414 12778 struct attribute *attr_high;
801e3a5b 12779
91da1414
MW
12780 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12781 if (attr_high)
801e3a5b 12782 {
801e3a5b
JB
12783 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12784 if (attr)
12785 {
31aa7e4e
JB
12786 CORE_ADDR low = attr_value_as_address (attr);
12787 CORE_ADDR high = attr_value_as_address (attr_high);
12788
12789 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12790 high += low;
9a619af0 12791
3e29f34a
MR
12792 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12793 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12794 record_block_range (block, low, high - 1);
801e3a5b
JB
12795 }
12796 }
12797
12798 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12799 if (attr)
12800 {
bb5ed363 12801 bfd *obfd = objfile->obfd;
ab435259
DE
12802 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12803 We take advantage of the fact that DW_AT_ranges does not appear
12804 in DW_TAG_compile_unit of DWO files. */
12805 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12806
12807 /* The value of the DW_AT_ranges attribute is the offset of the
12808 address range list in the .debug_ranges section. */
ab435259
DE
12809 unsigned long offset = (DW_UNSND (attr)
12810 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12811 const gdb_byte *buffer;
801e3a5b
JB
12812
12813 /* For some target architectures, but not others, the
12814 read_address function sign-extends the addresses it returns.
12815 To recognize base address selection entries, we need a
12816 mask. */
12817 unsigned int addr_size = cu->header.addr_size;
12818 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12819
12820 /* The base address, to which the next pair is relative. Note
12821 that this 'base' is a DWARF concept: most entries in a range
12822 list are relative, to reduce the number of relocs against the
12823 debugging information. This is separate from this function's
12824 'baseaddr' argument, which GDB uses to relocate debugging
12825 information from a shared library based on the address at
12826 which the library was loaded. */
d00adf39
DE
12827 CORE_ADDR base = cu->base_address;
12828 int base_known = cu->base_known;
801e3a5b 12829
5f46c5a5
JK
12830 dwarf2_ranges_process (offset, cu,
12831 [&] (CORE_ADDR start, CORE_ADDR end)
12832 {
58fdfd2c
JK
12833 start += baseaddr;
12834 end += baseaddr;
5f46c5a5
JK
12835 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12836 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12837 record_block_range (block, start, end - 1);
12838 });
801e3a5b
JB
12839 }
12840}
12841
685b1105
JK
12842/* Check whether the producer field indicates either of GCC < 4.6, or the
12843 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12844
685b1105
JK
12845static void
12846check_producer (struct dwarf2_cu *cu)
60d5a603 12847{
38360086 12848 int major, minor;
60d5a603
JK
12849
12850 if (cu->producer == NULL)
12851 {
12852 /* For unknown compilers expect their behavior is DWARF version
12853 compliant.
12854
12855 GCC started to support .debug_types sections by -gdwarf-4 since
12856 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12857 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12858 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12859 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12860 }
b1ffba5a 12861 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12862 {
38360086
MW
12863 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12864 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12865 }
61012eef 12866 else if (startswith (cu->producer, "Intel(R) C"))
685b1105
JK
12867 cu->producer_is_icc = 1;
12868 else
12869 {
12870 /* For other non-GCC compilers, expect their behavior is DWARF version
12871 compliant. */
60d5a603
JK
12872 }
12873
ba919b58 12874 cu->checked_producer = 1;
685b1105 12875}
ba919b58 12876
685b1105
JK
12877/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12878 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12879 during 4.6.0 experimental. */
12880
12881static int
12882producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12883{
12884 if (!cu->checked_producer)
12885 check_producer (cu);
12886
12887 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12888}
12889
12890/* Return the default accessibility type if it is not overriden by
12891 DW_AT_accessibility. */
12892
12893static enum dwarf_access_attribute
12894dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12895{
12896 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12897 {
12898 /* The default DWARF 2 accessibility for members is public, the default
12899 accessibility for inheritance is private. */
12900
12901 if (die->tag != DW_TAG_inheritance)
12902 return DW_ACCESS_public;
12903 else
12904 return DW_ACCESS_private;
12905 }
12906 else
12907 {
12908 /* DWARF 3+ defines the default accessibility a different way. The same
12909 rules apply now for DW_TAG_inheritance as for the members and it only
12910 depends on the container kind. */
12911
12912 if (die->parent->tag == DW_TAG_class_type)
12913 return DW_ACCESS_private;
12914 else
12915 return DW_ACCESS_public;
12916 }
12917}
12918
74ac6d43
TT
12919/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12920 offset. If the attribute was not found return 0, otherwise return
12921 1. If it was found but could not properly be handled, set *OFFSET
12922 to 0. */
12923
12924static int
12925handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12926 LONGEST *offset)
12927{
12928 struct attribute *attr;
12929
12930 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12931 if (attr != NULL)
12932 {
12933 *offset = 0;
12934
12935 /* Note that we do not check for a section offset first here.
12936 This is because DW_AT_data_member_location is new in DWARF 4,
12937 so if we see it, we can assume that a constant form is really
12938 a constant and not a section offset. */
12939 if (attr_form_is_constant (attr))
12940 *offset = dwarf2_get_attr_constant_value (attr, 0);
12941 else if (attr_form_is_section_offset (attr))
12942 dwarf2_complex_location_expr_complaint ();
12943 else if (attr_form_is_block (attr))
12944 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12945 else
12946 dwarf2_complex_location_expr_complaint ();
12947
12948 return 1;
12949 }
12950
12951 return 0;
12952}
12953
c906108c
SS
12954/* Add an aggregate field to the field list. */
12955
12956static void
107d2387 12957dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12958 struct dwarf2_cu *cu)
6e70227d 12959{
e7c27a73 12960 struct objfile *objfile = cu->objfile;
5e2b427d 12961 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12962 struct nextfield *new_field;
12963 struct attribute *attr;
12964 struct field *fp;
15d034d0 12965 const char *fieldname = "";
c906108c
SS
12966
12967 /* Allocate a new field list entry and link it in. */
8d749320 12968 new_field = XNEW (struct nextfield);
b8c9b27d 12969 make_cleanup (xfree, new_field);
c906108c 12970 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12971
12972 if (die->tag == DW_TAG_inheritance)
12973 {
12974 new_field->next = fip->baseclasses;
12975 fip->baseclasses = new_field;
12976 }
12977 else
12978 {
12979 new_field->next = fip->fields;
12980 fip->fields = new_field;
12981 }
c906108c
SS
12982 fip->nfields++;
12983
e142c38c 12984 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12985 if (attr)
12986 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12987 else
12988 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12989 if (new_field->accessibility != DW_ACCESS_public)
12990 fip->non_public_fields = 1;
60d5a603 12991
e142c38c 12992 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12993 if (attr)
12994 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12995 else
12996 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12997
12998 fp = &new_field->field;
a9a9bd0f 12999
e142c38c 13000 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 13001 {
74ac6d43
TT
13002 LONGEST offset;
13003
a9a9bd0f 13004 /* Data member other than a C++ static data member. */
6e70227d 13005
c906108c 13006 /* Get type of field. */
e7c27a73 13007 fp->type = die_type (die, cu);
c906108c 13008
d6a843b5 13009 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 13010
c906108c 13011 /* Get bit size of field (zero if none). */
e142c38c 13012 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
13013 if (attr)
13014 {
13015 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
13016 }
13017 else
13018 {
13019 FIELD_BITSIZE (*fp) = 0;
13020 }
13021
13022 /* Get bit offset of field. */
74ac6d43
TT
13023 if (handle_data_member_location (die, cu, &offset))
13024 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 13025 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
13026 if (attr)
13027 {
5e2b427d 13028 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
13029 {
13030 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
13031 additional bit offset from the MSB of the containing
13032 anonymous object to the MSB of the field. We don't
13033 have to do anything special since we don't need to
13034 know the size of the anonymous object. */
f41f5e61 13035 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
13036 }
13037 else
13038 {
13039 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
13040 MSB of the anonymous object, subtract off the number of
13041 bits from the MSB of the field to the MSB of the
13042 object, and then subtract off the number of bits of
13043 the field itself. The result is the bit offset of
13044 the LSB of the field. */
c906108c
SS
13045 int anonymous_size;
13046 int bit_offset = DW_UNSND (attr);
13047
e142c38c 13048 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13049 if (attr)
13050 {
13051 /* The size of the anonymous object containing
13052 the bit field is explicit, so use the
13053 indicated size (in bytes). */
13054 anonymous_size = DW_UNSND (attr);
13055 }
13056 else
13057 {
13058 /* The size of the anonymous object containing
13059 the bit field must be inferred from the type
13060 attribute of the data member containing the
13061 bit field. */
13062 anonymous_size = TYPE_LENGTH (fp->type);
13063 }
f41f5e61
PA
13064 SET_FIELD_BITPOS (*fp,
13065 (FIELD_BITPOS (*fp)
13066 + anonymous_size * bits_per_byte
13067 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
13068 }
13069 }
da5b30da
AA
13070 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
13071 if (attr != NULL)
13072 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
13073 + dwarf2_get_attr_constant_value (attr, 0)));
c906108c
SS
13074
13075 /* Get name of field. */
39cbfefa
DJ
13076 fieldname = dwarf2_name (die, cu);
13077 if (fieldname == NULL)
13078 fieldname = "";
d8151005
DJ
13079
13080 /* The name is already allocated along with this objfile, so we don't
13081 need to duplicate it for the type. */
13082 fp->name = fieldname;
c906108c
SS
13083
13084 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 13085 pointer or virtual base class pointer) to private. */
e142c38c 13086 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 13087 {
d48cc9dd 13088 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
13089 new_field->accessibility = DW_ACCESS_private;
13090 fip->non_public_fields = 1;
13091 }
13092 }
a9a9bd0f 13093 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 13094 {
a9a9bd0f
DC
13095 /* C++ static member. */
13096
13097 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
13098 is a declaration, but all versions of G++ as of this writing
13099 (so through at least 3.2.1) incorrectly generate
13100 DW_TAG_variable tags. */
6e70227d 13101
ff355380 13102 const char *physname;
c906108c 13103
a9a9bd0f 13104 /* Get name of field. */
39cbfefa
DJ
13105 fieldname = dwarf2_name (die, cu);
13106 if (fieldname == NULL)
c906108c
SS
13107 return;
13108
254e6b9e 13109 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
13110 if (attr
13111 /* Only create a symbol if this is an external value.
13112 new_symbol checks this and puts the value in the global symbol
13113 table, which we want. If it is not external, new_symbol
13114 will try to put the value in cu->list_in_scope which is wrong. */
13115 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
13116 {
13117 /* A static const member, not much different than an enum as far as
13118 we're concerned, except that we can support more types. */
13119 new_symbol (die, NULL, cu);
13120 }
13121
2df3850c 13122 /* Get physical name. */
ff355380 13123 physname = dwarf2_physname (fieldname, die, cu);
c906108c 13124
d8151005
DJ
13125 /* The name is already allocated along with this objfile, so we don't
13126 need to duplicate it for the type. */
13127 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 13128 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 13129 FIELD_NAME (*fp) = fieldname;
c906108c
SS
13130 }
13131 else if (die->tag == DW_TAG_inheritance)
13132 {
74ac6d43 13133 LONGEST offset;
d4b96c9a 13134
74ac6d43
TT
13135 /* C++ base class field. */
13136 if (handle_data_member_location (die, cu, &offset))
13137 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 13138 FIELD_BITSIZE (*fp) = 0;
e7c27a73 13139 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
13140 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
13141 fip->nbaseclasses++;
13142 }
13143}
13144
98751a41
JK
13145/* Add a typedef defined in the scope of the FIP's class. */
13146
13147static void
13148dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
13149 struct dwarf2_cu *cu)
6e70227d 13150{
98751a41 13151 struct typedef_field_list *new_field;
98751a41 13152 struct typedef_field *fp;
98751a41
JK
13153
13154 /* Allocate a new field list entry and link it in. */
8d749320 13155 new_field = XCNEW (struct typedef_field_list);
98751a41
JK
13156 make_cleanup (xfree, new_field);
13157
13158 gdb_assert (die->tag == DW_TAG_typedef);
13159
13160 fp = &new_field->field;
13161
13162 /* Get name of field. */
13163 fp->name = dwarf2_name (die, cu);
13164 if (fp->name == NULL)
13165 return;
13166
13167 fp->type = read_type_die (die, cu);
13168
13169 new_field->next = fip->typedef_field_list;
13170 fip->typedef_field_list = new_field;
13171 fip->typedef_field_list_count++;
13172}
13173
c906108c
SS
13174/* Create the vector of fields, and attach it to the type. */
13175
13176static void
fba45db2 13177dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13178 struct dwarf2_cu *cu)
c906108c
SS
13179{
13180 int nfields = fip->nfields;
13181
13182 /* Record the field count, allocate space for the array of fields,
13183 and create blank accessibility bitfields if necessary. */
13184 TYPE_NFIELDS (type) = nfields;
13185 TYPE_FIELDS (type) = (struct field *)
13186 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13187 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13188
b4ba55a1 13189 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
13190 {
13191 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13192
13193 TYPE_FIELD_PRIVATE_BITS (type) =
13194 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13195 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13196
13197 TYPE_FIELD_PROTECTED_BITS (type) =
13198 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13199 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13200
774b6a14
TT
13201 TYPE_FIELD_IGNORE_BITS (type) =
13202 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13203 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
13204 }
13205
13206 /* If the type has baseclasses, allocate and clear a bit vector for
13207 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 13208 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
13209 {
13210 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 13211 unsigned char *pointer;
c906108c
SS
13212
13213 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 13214 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 13215 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
13216 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13217 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13218 }
13219
3e43a32a
MS
13220 /* Copy the saved-up fields into the field vector. Start from the head of
13221 the list, adding to the tail of the field array, so that they end up in
13222 the same order in the array in which they were added to the list. */
c906108c
SS
13223 while (nfields-- > 0)
13224 {
7d0ccb61
DJ
13225 struct nextfield *fieldp;
13226
13227 if (fip->fields)
13228 {
13229 fieldp = fip->fields;
13230 fip->fields = fieldp->next;
13231 }
13232 else
13233 {
13234 fieldp = fip->baseclasses;
13235 fip->baseclasses = fieldp->next;
13236 }
13237
13238 TYPE_FIELD (type, nfields) = fieldp->field;
13239 switch (fieldp->accessibility)
c906108c 13240 {
c5aa993b 13241 case DW_ACCESS_private:
b4ba55a1
JB
13242 if (cu->language != language_ada)
13243 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 13244 break;
c906108c 13245
c5aa993b 13246 case DW_ACCESS_protected:
b4ba55a1
JB
13247 if (cu->language != language_ada)
13248 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 13249 break;
c906108c 13250
c5aa993b
JM
13251 case DW_ACCESS_public:
13252 break;
c906108c 13253
c5aa993b
JM
13254 default:
13255 /* Unknown accessibility. Complain and treat it as public. */
13256 {
e2e0b3e5 13257 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 13258 fieldp->accessibility);
c5aa993b
JM
13259 }
13260 break;
c906108c
SS
13261 }
13262 if (nfields < fip->nbaseclasses)
13263 {
7d0ccb61 13264 switch (fieldp->virtuality)
c906108c 13265 {
c5aa993b
JM
13266 case DW_VIRTUALITY_virtual:
13267 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 13268 if (cu->language == language_ada)
a73c6dcd 13269 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
13270 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13271 break;
c906108c
SS
13272 }
13273 }
c906108c
SS
13274 }
13275}
13276
7d27a96d
TT
13277/* Return true if this member function is a constructor, false
13278 otherwise. */
13279
13280static int
13281dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13282{
13283 const char *fieldname;
fe978cb0 13284 const char *type_name;
7d27a96d
TT
13285 int len;
13286
13287 if (die->parent == NULL)
13288 return 0;
13289
13290 if (die->parent->tag != DW_TAG_structure_type
13291 && die->parent->tag != DW_TAG_union_type
13292 && die->parent->tag != DW_TAG_class_type)
13293 return 0;
13294
13295 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
13296 type_name = dwarf2_name (die->parent, cu);
13297 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
13298 return 0;
13299
13300 len = strlen (fieldname);
fe978cb0
PA
13301 return (strncmp (fieldname, type_name, len) == 0
13302 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
13303}
13304
c906108c
SS
13305/* Add a member function to the proper fieldlist. */
13306
13307static void
107d2387 13308dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 13309 struct type *type, struct dwarf2_cu *cu)
c906108c 13310{
e7c27a73 13311 struct objfile *objfile = cu->objfile;
c906108c
SS
13312 struct attribute *attr;
13313 struct fnfieldlist *flp;
13314 int i;
13315 struct fn_field *fnp;
15d034d0 13316 const char *fieldname;
c906108c 13317 struct nextfnfield *new_fnfield;
f792889a 13318 struct type *this_type;
60d5a603 13319 enum dwarf_access_attribute accessibility;
c906108c 13320
b4ba55a1 13321 if (cu->language == language_ada)
a73c6dcd 13322 error (_("unexpected member function in Ada type"));
b4ba55a1 13323
2df3850c 13324 /* Get name of member function. */
39cbfefa
DJ
13325 fieldname = dwarf2_name (die, cu);
13326 if (fieldname == NULL)
2df3850c 13327 return;
c906108c 13328
c906108c
SS
13329 /* Look up member function name in fieldlist. */
13330 for (i = 0; i < fip->nfnfields; i++)
13331 {
27bfe10e 13332 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
13333 break;
13334 }
13335
13336 /* Create new list element if necessary. */
13337 if (i < fip->nfnfields)
13338 flp = &fip->fnfieldlists[i];
13339 else
13340 {
13341 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13342 {
13343 fip->fnfieldlists = (struct fnfieldlist *)
13344 xrealloc (fip->fnfieldlists,
13345 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13346 * sizeof (struct fnfieldlist));
c906108c 13347 if (fip->nfnfields == 0)
c13c43fd 13348 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
13349 }
13350 flp = &fip->fnfieldlists[fip->nfnfields];
13351 flp->name = fieldname;
13352 flp->length = 0;
13353 flp->head = NULL;
3da10d80 13354 i = fip->nfnfields++;
c906108c
SS
13355 }
13356
13357 /* Create a new member function field and chain it to the field list
0963b4bd 13358 entry. */
8d749320 13359 new_fnfield = XNEW (struct nextfnfield);
b8c9b27d 13360 make_cleanup (xfree, new_fnfield);
c906108c
SS
13361 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13362 new_fnfield->next = flp->head;
13363 flp->head = new_fnfield;
13364 flp->length++;
13365
13366 /* Fill in the member function field info. */
13367 fnp = &new_fnfield->fnfield;
3da10d80
KS
13368
13369 /* Delay processing of the physname until later. */
9c37b5ae 13370 if (cu->language == language_cplus)
3da10d80
KS
13371 {
13372 add_to_method_list (type, i, flp->length - 1, fieldname,
13373 die, cu);
13374 }
13375 else
13376 {
1d06ead6 13377 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
13378 fnp->physname = physname ? physname : "";
13379 }
13380
c906108c 13381 fnp->type = alloc_type (objfile);
f792889a
DJ
13382 this_type = read_type_die (die, cu);
13383 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 13384 {
f792889a 13385 int nparams = TYPE_NFIELDS (this_type);
c906108c 13386
f792889a 13387 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
13388 of the method itself (TYPE_CODE_METHOD). */
13389 smash_to_method_type (fnp->type, type,
f792889a
DJ
13390 TYPE_TARGET_TYPE (this_type),
13391 TYPE_FIELDS (this_type),
13392 TYPE_NFIELDS (this_type),
13393 TYPE_VARARGS (this_type));
c906108c
SS
13394
13395 /* Handle static member functions.
c5aa993b 13396 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
13397 member functions. G++ helps GDB by marking the first
13398 parameter for non-static member functions (which is the this
13399 pointer) as artificial. We obtain this information from
13400 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 13401 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
13402 fnp->voffset = VOFFSET_STATIC;
13403 }
13404 else
e2e0b3e5 13405 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 13406 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
13407
13408 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 13409 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 13410 fnp->fcontext = die_containing_type (die, cu);
c906108c 13411
3e43a32a
MS
13412 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13413 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
13414
13415 /* Get accessibility. */
e142c38c 13416 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 13417 if (attr)
aead7601 13418 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
13419 else
13420 accessibility = dwarf2_default_access_attribute (die, cu);
13421 switch (accessibility)
c906108c 13422 {
60d5a603
JK
13423 case DW_ACCESS_private:
13424 fnp->is_private = 1;
13425 break;
13426 case DW_ACCESS_protected:
13427 fnp->is_protected = 1;
13428 break;
c906108c
SS
13429 }
13430
b02dede2 13431 /* Check for artificial methods. */
e142c38c 13432 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
13433 if (attr && DW_UNSND (attr) != 0)
13434 fnp->is_artificial = 1;
13435
7d27a96d
TT
13436 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13437
0d564a31 13438 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
13439 function. For older versions of GCC, this is an offset in the
13440 appropriate virtual table, as specified by DW_AT_containing_type.
13441 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
13442 to the object address. */
13443
e142c38c 13444 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 13445 if (attr)
8e19ed76 13446 {
aec5aa8b 13447 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 13448 {
aec5aa8b
TT
13449 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13450 {
13451 /* Old-style GCC. */
13452 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13453 }
13454 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13455 || (DW_BLOCK (attr)->size > 1
13456 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13457 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13458 {
aec5aa8b
TT
13459 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13460 if ((fnp->voffset % cu->header.addr_size) != 0)
13461 dwarf2_complex_location_expr_complaint ();
13462 else
13463 fnp->voffset /= cu->header.addr_size;
13464 fnp->voffset += 2;
13465 }
13466 else
13467 dwarf2_complex_location_expr_complaint ();
13468
13469 if (!fnp->fcontext)
7e993ebf
KS
13470 {
13471 /* If there is no `this' field and no DW_AT_containing_type,
13472 we cannot actually find a base class context for the
13473 vtable! */
13474 if (TYPE_NFIELDS (this_type) == 0
13475 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13476 {
13477 complaint (&symfile_complaints,
13478 _("cannot determine context for virtual member "
13479 "function \"%s\" (offset %d)"),
9c541725 13480 fieldname, to_underlying (die->sect_off));
7e993ebf
KS
13481 }
13482 else
13483 {
13484 fnp->fcontext
13485 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13486 }
13487 }
aec5aa8b 13488 }
3690dd37 13489 else if (attr_form_is_section_offset (attr))
8e19ed76 13490 {
4d3c2250 13491 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
13492 }
13493 else
13494 {
4d3c2250
KB
13495 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13496 fieldname);
8e19ed76 13497 }
0d564a31 13498 }
d48cc9dd
DJ
13499 else
13500 {
13501 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13502 if (attr && DW_UNSND (attr))
13503 {
13504 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13505 complaint (&symfile_complaints,
3e43a32a
MS
13506 _("Member function \"%s\" (offset %d) is virtual "
13507 "but the vtable offset is not specified"),
9c541725 13508 fieldname, to_underlying (die->sect_off));
9655fd1a 13509 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
13510 TYPE_CPLUS_DYNAMIC (type) = 1;
13511 }
13512 }
c906108c
SS
13513}
13514
13515/* Create the vector of member function fields, and attach it to the type. */
13516
13517static void
fba45db2 13518dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13519 struct dwarf2_cu *cu)
c906108c
SS
13520{
13521 struct fnfieldlist *flp;
c906108c
SS
13522 int i;
13523
b4ba55a1 13524 if (cu->language == language_ada)
a73c6dcd 13525 error (_("unexpected member functions in Ada type"));
b4ba55a1 13526
c906108c
SS
13527 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13528 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13529 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13530
13531 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13532 {
13533 struct nextfnfield *nfp = flp->head;
13534 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13535 int k;
13536
13537 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13538 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13539 fn_flp->fn_fields = (struct fn_field *)
13540 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13541 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13542 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13543 }
13544
13545 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13546}
13547
1168df01
JB
13548/* Returns non-zero if NAME is the name of a vtable member in CU's
13549 language, zero otherwise. */
13550static int
13551is_vtable_name (const char *name, struct dwarf2_cu *cu)
13552{
13553 static const char vptr[] = "_vptr";
987504bb 13554 static const char vtable[] = "vtable";
1168df01 13555
9c37b5ae
TT
13556 /* Look for the C++ form of the vtable. */
13557 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
1168df01
JB
13558 return 1;
13559
13560 return 0;
13561}
13562
c0dd20ea 13563/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13564 functions, with the ABI-specified layout. If TYPE describes
13565 such a structure, smash it into a member function type.
61049d3b
DJ
13566
13567 GCC shouldn't do this; it should just output pointer to member DIEs.
13568 This is GCC PR debug/28767. */
c0dd20ea 13569
0b92b5bb
TT
13570static void
13571quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13572{
09e2d7c7 13573 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13574
13575 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13576 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13577 return;
c0dd20ea
DJ
13578
13579 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13580 if (TYPE_FIELD_NAME (type, 0) == NULL
13581 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13582 || TYPE_FIELD_NAME (type, 1) == NULL
13583 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13584 return;
c0dd20ea
DJ
13585
13586 /* Find the type of the method. */
0b92b5bb 13587 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13588 if (pfn_type == NULL
13589 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13590 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13591 return;
c0dd20ea
DJ
13592
13593 /* Look for the "this" argument. */
13594 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13595 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13596 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13597 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13598 return;
c0dd20ea 13599
09e2d7c7 13600 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13601 new_type = alloc_type (objfile);
09e2d7c7 13602 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13603 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13604 TYPE_VARARGS (pfn_type));
0b92b5bb 13605 smash_to_methodptr_type (type, new_type);
c0dd20ea 13606}
1168df01 13607
685b1105
JK
13608/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13609 (icc). */
13610
13611static int
13612producer_is_icc (struct dwarf2_cu *cu)
13613{
13614 if (!cu->checked_producer)
13615 check_producer (cu);
13616
13617 return cu->producer_is_icc;
13618}
13619
c906108c 13620/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13621 (definition) to create a type for the structure or union. Fill in
13622 the type's name and general properties; the members will not be
83655187
DE
13623 processed until process_structure_scope. A symbol table entry for
13624 the type will also not be done until process_structure_scope (assuming
13625 the type has a name).
c906108c 13626
c767944b
DJ
13627 NOTE: we need to call these functions regardless of whether or not the
13628 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13629 structure or union. This gets the type entered into our set of
83655187 13630 user defined types. */
c906108c 13631
f792889a 13632static struct type *
134d01f1 13633read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13634{
e7c27a73 13635 struct objfile *objfile = cu->objfile;
c906108c
SS
13636 struct type *type;
13637 struct attribute *attr;
15d034d0 13638 const char *name;
c906108c 13639
348e048f
DE
13640 /* If the definition of this type lives in .debug_types, read that type.
13641 Don't follow DW_AT_specification though, that will take us back up
13642 the chain and we want to go down. */
45e58e77 13643 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13644 if (attr)
13645 {
ac9ec31b 13646 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13647
ac9ec31b 13648 /* The type's CU may not be the same as CU.
02142a6c 13649 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13650 return set_die_type (die, type, cu);
13651 }
13652
c0dd20ea 13653 type = alloc_type (objfile);
c906108c 13654 INIT_CPLUS_SPECIFIC (type);
93311388 13655
39cbfefa
DJ
13656 name = dwarf2_name (die, cu);
13657 if (name != NULL)
c906108c 13658 {
987504bb 13659 if (cu->language == language_cplus
c44af4eb
TT
13660 || cu->language == language_d
13661 || cu->language == language_rust)
63d06c5c 13662 {
15d034d0 13663 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13664
13665 /* dwarf2_full_name might have already finished building the DIE's
13666 type. If so, there is no need to continue. */
13667 if (get_die_type (die, cu) != NULL)
13668 return get_die_type (die, cu);
13669
13670 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13671 if (die->tag == DW_TAG_structure_type
13672 || die->tag == DW_TAG_class_type)
13673 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13674 }
13675 else
13676 {
d8151005
DJ
13677 /* The name is already allocated along with this objfile, so
13678 we don't need to duplicate it for the type. */
7d455152 13679 TYPE_TAG_NAME (type) = name;
94af9270
KS
13680 if (die->tag == DW_TAG_class_type)
13681 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13682 }
c906108c
SS
13683 }
13684
13685 if (die->tag == DW_TAG_structure_type)
13686 {
13687 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13688 }
13689 else if (die->tag == DW_TAG_union_type)
13690 {
13691 TYPE_CODE (type) = TYPE_CODE_UNION;
13692 }
13693 else
13694 {
4753d33b 13695 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13696 }
13697
0cc2414c
TT
13698 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13699 TYPE_DECLARED_CLASS (type) = 1;
13700
e142c38c 13701 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13702 if (attr)
13703 {
155bfbd3
JB
13704 if (attr_form_is_constant (attr))
13705 TYPE_LENGTH (type) = DW_UNSND (attr);
13706 else
13707 {
13708 /* For the moment, dynamic type sizes are not supported
13709 by GDB's struct type. The actual size is determined
13710 on-demand when resolving the type of a given object,
13711 so set the type's length to zero for now. Otherwise,
13712 we record an expression as the length, and that expression
13713 could lead to a very large value, which could eventually
13714 lead to us trying to allocate that much memory when creating
13715 a value of that type. */
13716 TYPE_LENGTH (type) = 0;
13717 }
c906108c
SS
13718 }
13719 else
13720 {
13721 TYPE_LENGTH (type) = 0;
13722 }
13723
422b1cb0 13724 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13725 {
13726 /* ICC does not output the required DW_AT_declaration
13727 on incomplete types, but gives them a size of zero. */
422b1cb0 13728 TYPE_STUB (type) = 1;
685b1105
JK
13729 }
13730 else
13731 TYPE_STUB_SUPPORTED (type) = 1;
13732
dc718098 13733 if (die_is_declaration (die, cu))
876cecd0 13734 TYPE_STUB (type) = 1;
a6c727b2
DJ
13735 else if (attr == NULL && die->child == NULL
13736 && producer_is_realview (cu->producer))
13737 /* RealView does not output the required DW_AT_declaration
13738 on incomplete types. */
13739 TYPE_STUB (type) = 1;
dc718098 13740
c906108c
SS
13741 /* We need to add the type field to the die immediately so we don't
13742 infinitely recurse when dealing with pointers to the structure
0963b4bd 13743 type within the structure itself. */
1c379e20 13744 set_die_type (die, type, cu);
c906108c 13745
7e314c57
JK
13746 /* set_die_type should be already done. */
13747 set_descriptive_type (type, die, cu);
13748
c767944b
DJ
13749 return type;
13750}
13751
13752/* Finish creating a structure or union type, including filling in
13753 its members and creating a symbol for it. */
13754
13755static void
13756process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13757{
13758 struct objfile *objfile = cu->objfile;
ca040673 13759 struct die_info *child_die;
c767944b
DJ
13760 struct type *type;
13761
13762 type = get_die_type (die, cu);
13763 if (type == NULL)
13764 type = read_structure_type (die, cu);
13765
e142c38c 13766 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13767 {
13768 struct field_info fi;
34eaf542 13769 VEC (symbolp) *template_args = NULL;
c767944b 13770 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13771
13772 memset (&fi, 0, sizeof (struct field_info));
13773
639d11d3 13774 child_die = die->child;
c906108c
SS
13775
13776 while (child_die && child_die->tag)
13777 {
a9a9bd0f
DC
13778 if (child_die->tag == DW_TAG_member
13779 || child_die->tag == DW_TAG_variable)
c906108c 13780 {
a9a9bd0f
DC
13781 /* NOTE: carlton/2002-11-05: A C++ static data member
13782 should be a DW_TAG_member that is a declaration, but
13783 all versions of G++ as of this writing (so through at
13784 least 3.2.1) incorrectly generate DW_TAG_variable
13785 tags for them instead. */
e7c27a73 13786 dwarf2_add_field (&fi, child_die, cu);
c906108c 13787 }
8713b1b1 13788 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13789 {
e98c9e7c
TT
13790 /* Rust doesn't have member functions in the C++ sense.
13791 However, it does emit ordinary functions as children
13792 of a struct DIE. */
13793 if (cu->language == language_rust)
13794 read_func_scope (child_die, cu);
13795 else
13796 {
13797 /* C++ member function. */
13798 dwarf2_add_member_fn (&fi, child_die, type, cu);
13799 }
c906108c
SS
13800 }
13801 else if (child_die->tag == DW_TAG_inheritance)
13802 {
13803 /* C++ base class field. */
e7c27a73 13804 dwarf2_add_field (&fi, child_die, cu);
c906108c 13805 }
98751a41
JK
13806 else if (child_die->tag == DW_TAG_typedef)
13807 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13808 else if (child_die->tag == DW_TAG_template_type_param
13809 || child_die->tag == DW_TAG_template_value_param)
13810 {
13811 struct symbol *arg = new_symbol (child_die, NULL, cu);
13812
f1078f66
DJ
13813 if (arg != NULL)
13814 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13815 }
13816
c906108c
SS
13817 child_die = sibling_die (child_die);
13818 }
13819
34eaf542
TT
13820 /* Attach template arguments to type. */
13821 if (! VEC_empty (symbolp, template_args))
13822 {
13823 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13824 TYPE_N_TEMPLATE_ARGUMENTS (type)
13825 = VEC_length (symbolp, template_args);
13826 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
13827 = XOBNEWVEC (&objfile->objfile_obstack,
13828 struct symbol *,
13829 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542
TT
13830 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13831 VEC_address (symbolp, template_args),
13832 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13833 * sizeof (struct symbol *)));
13834 VEC_free (symbolp, template_args);
13835 }
13836
c906108c
SS
13837 /* Attach fields and member functions to the type. */
13838 if (fi.nfields)
e7c27a73 13839 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13840 if (fi.nfnfields)
13841 {
e7c27a73 13842 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13843
c5aa993b 13844 /* Get the type which refers to the base class (possibly this
c906108c 13845 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13846 class from the DW_AT_containing_type attribute. This use of
13847 DW_AT_containing_type is a GNU extension. */
c906108c 13848
e142c38c 13849 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13850 {
e7c27a73 13851 struct type *t = die_containing_type (die, cu);
c906108c 13852
ae6ae975 13853 set_type_vptr_basetype (type, t);
c906108c
SS
13854 if (type == t)
13855 {
c906108c
SS
13856 int i;
13857
13858 /* Our own class provides vtbl ptr. */
13859 for (i = TYPE_NFIELDS (t) - 1;
13860 i >= TYPE_N_BASECLASSES (t);
13861 --i)
13862 {
0d5cff50 13863 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13864
1168df01 13865 if (is_vtable_name (fieldname, cu))
c906108c 13866 {
ae6ae975 13867 set_type_vptr_fieldno (type, i);
c906108c
SS
13868 break;
13869 }
13870 }
13871
13872 /* Complain if virtual function table field not found. */
13873 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13874 complaint (&symfile_complaints,
3e43a32a
MS
13875 _("virtual function table pointer "
13876 "not found when defining class '%s'"),
4d3c2250
KB
13877 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13878 "");
c906108c
SS
13879 }
13880 else
13881 {
ae6ae975 13882 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13883 }
13884 }
f6235d4c 13885 else if (cu->producer
61012eef 13886 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13887 {
13888 /* The IBM XLC compiler does not provide direct indication
13889 of the containing type, but the vtable pointer is
13890 always named __vfp. */
13891
13892 int i;
13893
13894 for (i = TYPE_NFIELDS (type) - 1;
13895 i >= TYPE_N_BASECLASSES (type);
13896 --i)
13897 {
13898 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13899 {
ae6ae975
DE
13900 set_type_vptr_fieldno (type, i);
13901 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13902 break;
13903 }
13904 }
13905 }
c906108c 13906 }
98751a41
JK
13907
13908 /* Copy fi.typedef_field_list linked list elements content into the
13909 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13910 if (fi.typedef_field_list)
13911 {
13912 int i = fi.typedef_field_list_count;
13913
a0d7a4ff 13914 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 13915 TYPE_TYPEDEF_FIELD_ARRAY (type)
224c3ddb
SM
13916 = ((struct typedef_field *)
13917 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
98751a41
JK
13918 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13919
13920 /* Reverse the list order to keep the debug info elements order. */
13921 while (--i >= 0)
13922 {
13923 struct typedef_field *dest, *src;
6e70227d 13924
98751a41
JK
13925 dest = &TYPE_TYPEDEF_FIELD (type, i);
13926 src = &fi.typedef_field_list->field;
13927 fi.typedef_field_list = fi.typedef_field_list->next;
13928 *dest = *src;
13929 }
13930 }
c767944b
DJ
13931
13932 do_cleanups (back_to);
c906108c 13933 }
63d06c5c 13934
bb5ed363 13935 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13936
90aeadfc
DC
13937 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13938 snapshots) has been known to create a die giving a declaration
13939 for a class that has, as a child, a die giving a definition for a
13940 nested class. So we have to process our children even if the
13941 current die is a declaration. Normally, of course, a declaration
13942 won't have any children at all. */
134d01f1 13943
ca040673
DE
13944 child_die = die->child;
13945
90aeadfc
DC
13946 while (child_die != NULL && child_die->tag)
13947 {
13948 if (child_die->tag == DW_TAG_member
13949 || child_die->tag == DW_TAG_variable
34eaf542
TT
13950 || child_die->tag == DW_TAG_inheritance
13951 || child_die->tag == DW_TAG_template_value_param
13952 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13953 {
90aeadfc 13954 /* Do nothing. */
134d01f1 13955 }
90aeadfc
DC
13956 else
13957 process_die (child_die, cu);
134d01f1 13958
90aeadfc 13959 child_die = sibling_die (child_die);
134d01f1
DJ
13960 }
13961
fa4028e9
JB
13962 /* Do not consider external references. According to the DWARF standard,
13963 these DIEs are identified by the fact that they have no byte_size
13964 attribute, and a declaration attribute. */
13965 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13966 || !die_is_declaration (die, cu))
c767944b 13967 new_symbol (die, type, cu);
134d01f1
DJ
13968}
13969
55426c9d
JB
13970/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13971 update TYPE using some information only available in DIE's children. */
13972
13973static void
13974update_enumeration_type_from_children (struct die_info *die,
13975 struct type *type,
13976 struct dwarf2_cu *cu)
13977{
60f7655a 13978 struct die_info *child_die;
55426c9d
JB
13979 int unsigned_enum = 1;
13980 int flag_enum = 1;
13981 ULONGEST mask = 0;
55426c9d 13982
8268c778 13983 auto_obstack obstack;
55426c9d 13984
60f7655a
DE
13985 for (child_die = die->child;
13986 child_die != NULL && child_die->tag;
13987 child_die = sibling_die (child_die))
55426c9d
JB
13988 {
13989 struct attribute *attr;
13990 LONGEST value;
13991 const gdb_byte *bytes;
13992 struct dwarf2_locexpr_baton *baton;
13993 const char *name;
60f7655a 13994
55426c9d
JB
13995 if (child_die->tag != DW_TAG_enumerator)
13996 continue;
13997
13998 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13999 if (attr == NULL)
14000 continue;
14001
14002 name = dwarf2_name (child_die, cu);
14003 if (name == NULL)
14004 name = "<anonymous enumerator>";
14005
14006 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
14007 &value, &bytes, &baton);
14008 if (value < 0)
14009 {
14010 unsigned_enum = 0;
14011 flag_enum = 0;
14012 }
14013 else if ((mask & value) != 0)
14014 flag_enum = 0;
14015 else
14016 mask |= value;
14017
14018 /* If we already know that the enum type is neither unsigned, nor
14019 a flag type, no need to look at the rest of the enumerates. */
14020 if (!unsigned_enum && !flag_enum)
14021 break;
55426c9d
JB
14022 }
14023
14024 if (unsigned_enum)
14025 TYPE_UNSIGNED (type) = 1;
14026 if (flag_enum)
14027 TYPE_FLAG_ENUM (type) = 1;
55426c9d
JB
14028}
14029
134d01f1
DJ
14030/* Given a DW_AT_enumeration_type die, set its type. We do not
14031 complete the type's fields yet, or create any symbols. */
c906108c 14032
f792889a 14033static struct type *
134d01f1 14034read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14035{
e7c27a73 14036 struct objfile *objfile = cu->objfile;
c906108c 14037 struct type *type;
c906108c 14038 struct attribute *attr;
0114d602 14039 const char *name;
134d01f1 14040
348e048f
DE
14041 /* If the definition of this type lives in .debug_types, read that type.
14042 Don't follow DW_AT_specification though, that will take us back up
14043 the chain and we want to go down. */
45e58e77 14044 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
14045 if (attr)
14046 {
ac9ec31b 14047 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 14048
ac9ec31b 14049 /* The type's CU may not be the same as CU.
02142a6c 14050 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
14051 return set_die_type (die, type, cu);
14052 }
14053
c906108c
SS
14054 type = alloc_type (objfile);
14055
14056 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 14057 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 14058 if (name != NULL)
7d455152 14059 TYPE_TAG_NAME (type) = name;
c906108c 14060
0626fc76
TT
14061 attr = dwarf2_attr (die, DW_AT_type, cu);
14062 if (attr != NULL)
14063 {
14064 struct type *underlying_type = die_type (die, cu);
14065
14066 TYPE_TARGET_TYPE (type) = underlying_type;
14067 }
14068
e142c38c 14069 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14070 if (attr)
14071 {
14072 TYPE_LENGTH (type) = DW_UNSND (attr);
14073 }
14074 else
14075 {
14076 TYPE_LENGTH (type) = 0;
14077 }
14078
137033e9
JB
14079 /* The enumeration DIE can be incomplete. In Ada, any type can be
14080 declared as private in the package spec, and then defined only
14081 inside the package body. Such types are known as Taft Amendment
14082 Types. When another package uses such a type, an incomplete DIE
14083 may be generated by the compiler. */
02eb380e 14084 if (die_is_declaration (die, cu))
876cecd0 14085 TYPE_STUB (type) = 1;
02eb380e 14086
0626fc76
TT
14087 /* Finish the creation of this type by using the enum's children.
14088 We must call this even when the underlying type has been provided
14089 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
14090 update_enumeration_type_from_children (die, type, cu);
14091
0626fc76
TT
14092 /* If this type has an underlying type that is not a stub, then we
14093 may use its attributes. We always use the "unsigned" attribute
14094 in this situation, because ordinarily we guess whether the type
14095 is unsigned -- but the guess can be wrong and the underlying type
14096 can tell us the reality. However, we defer to a local size
14097 attribute if one exists, because this lets the compiler override
14098 the underlying type if needed. */
14099 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
14100 {
14101 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
14102 if (TYPE_LENGTH (type) == 0)
14103 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
14104 }
14105
3d567982
TT
14106 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
14107
f792889a 14108 return set_die_type (die, type, cu);
134d01f1
DJ
14109}
14110
14111/* Given a pointer to a die which begins an enumeration, process all
14112 the dies that define the members of the enumeration, and create the
14113 symbol for the enumeration type.
14114
14115 NOTE: We reverse the order of the element list. */
14116
14117static void
14118process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
14119{
f792889a 14120 struct type *this_type;
134d01f1 14121
f792889a
DJ
14122 this_type = get_die_type (die, cu);
14123 if (this_type == NULL)
14124 this_type = read_enumeration_type (die, cu);
9dc481d3 14125
639d11d3 14126 if (die->child != NULL)
c906108c 14127 {
9dc481d3
DE
14128 struct die_info *child_die;
14129 struct symbol *sym;
14130 struct field *fields = NULL;
14131 int num_fields = 0;
15d034d0 14132 const char *name;
9dc481d3 14133
639d11d3 14134 child_die = die->child;
c906108c
SS
14135 while (child_die && child_die->tag)
14136 {
14137 if (child_die->tag != DW_TAG_enumerator)
14138 {
e7c27a73 14139 process_die (child_die, cu);
c906108c
SS
14140 }
14141 else
14142 {
39cbfefa
DJ
14143 name = dwarf2_name (child_die, cu);
14144 if (name)
c906108c 14145 {
f792889a 14146 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
14147
14148 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
14149 {
14150 fields = (struct field *)
14151 xrealloc (fields,
14152 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 14153 * sizeof (struct field));
c906108c
SS
14154 }
14155
3567439c 14156 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 14157 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 14158 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
14159 FIELD_BITSIZE (fields[num_fields]) = 0;
14160
14161 num_fields++;
14162 }
14163 }
14164
14165 child_die = sibling_die (child_die);
14166 }
14167
14168 if (num_fields)
14169 {
f792889a
DJ
14170 TYPE_NFIELDS (this_type) = num_fields;
14171 TYPE_FIELDS (this_type) = (struct field *)
14172 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
14173 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 14174 sizeof (struct field) * num_fields);
b8c9b27d 14175 xfree (fields);
c906108c 14176 }
c906108c 14177 }
134d01f1 14178
6c83ed52
TT
14179 /* If we are reading an enum from a .debug_types unit, and the enum
14180 is a declaration, and the enum is not the signatured type in the
14181 unit, then we do not want to add a symbol for it. Adding a
14182 symbol would in some cases obscure the true definition of the
14183 enum, giving users an incomplete type when the definition is
14184 actually available. Note that we do not want to do this for all
14185 enums which are just declarations, because C++0x allows forward
14186 enum declarations. */
3019eac3 14187 if (cu->per_cu->is_debug_types
6c83ed52
TT
14188 && die_is_declaration (die, cu))
14189 {
52dc124a 14190 struct signatured_type *sig_type;
6c83ed52 14191
c0f78cd4 14192 sig_type = (struct signatured_type *) cu->per_cu;
9c541725
PA
14193 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14194 if (sig_type->type_offset_in_section != die->sect_off)
6c83ed52
TT
14195 return;
14196 }
14197
f792889a 14198 new_symbol (die, this_type, cu);
c906108c
SS
14199}
14200
14201/* Extract all information from a DW_TAG_array_type DIE and put it in
14202 the DIE's type field. For now, this only handles one dimensional
14203 arrays. */
14204
f792889a 14205static struct type *
e7c27a73 14206read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14207{
e7c27a73 14208 struct objfile *objfile = cu->objfile;
c906108c 14209 struct die_info *child_die;
7e314c57 14210 struct type *type;
c906108c
SS
14211 struct type *element_type, *range_type, *index_type;
14212 struct type **range_types = NULL;
14213 struct attribute *attr;
14214 int ndim = 0;
14215 struct cleanup *back_to;
15d034d0 14216 const char *name;
dc53a7ad 14217 unsigned int bit_stride = 0;
c906108c 14218
e7c27a73 14219 element_type = die_type (die, cu);
c906108c 14220
7e314c57
JK
14221 /* The die_type call above may have already set the type for this DIE. */
14222 type = get_die_type (die, cu);
14223 if (type)
14224 return type;
14225
dc53a7ad
JB
14226 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14227 if (attr != NULL)
14228 bit_stride = DW_UNSND (attr) * 8;
14229
14230 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14231 if (attr != NULL)
14232 bit_stride = DW_UNSND (attr);
14233
c906108c
SS
14234 /* Irix 6.2 native cc creates array types without children for
14235 arrays with unspecified length. */
639d11d3 14236 if (die->child == NULL)
c906108c 14237 {
46bf5051 14238 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14239 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
14240 type = create_array_type_with_stride (NULL, element_type, range_type,
14241 bit_stride);
f792889a 14242 return set_die_type (die, type, cu);
c906108c
SS
14243 }
14244
14245 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 14246 child_die = die->child;
c906108c
SS
14247 while (child_die && child_die->tag)
14248 {
14249 if (child_die->tag == DW_TAG_subrange_type)
14250 {
f792889a 14251 struct type *child_type = read_type_die (child_die, cu);
9a619af0 14252
f792889a 14253 if (child_type != NULL)
a02abb62 14254 {
0963b4bd
MS
14255 /* The range type was succesfully read. Save it for the
14256 array type creation. */
a02abb62
JB
14257 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
14258 {
14259 range_types = (struct type **)
14260 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
14261 * sizeof (struct type *));
14262 if (ndim == 0)
14263 make_cleanup (free_current_contents, &range_types);
14264 }
f792889a 14265 range_types[ndim++] = child_type;
a02abb62 14266 }
c906108c
SS
14267 }
14268 child_die = sibling_die (child_die);
14269 }
14270
14271 /* Dwarf2 dimensions are output from left to right, create the
14272 necessary array types in backwards order. */
7ca2d3a3 14273
c906108c 14274 type = element_type;
7ca2d3a3
DL
14275
14276 if (read_array_order (die, cu) == DW_ORD_col_major)
14277 {
14278 int i = 0;
9a619af0 14279
7ca2d3a3 14280 while (i < ndim)
dc53a7ad
JB
14281 type = create_array_type_with_stride (NULL, type, range_types[i++],
14282 bit_stride);
7ca2d3a3
DL
14283 }
14284 else
14285 {
14286 while (ndim-- > 0)
dc53a7ad
JB
14287 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14288 bit_stride);
7ca2d3a3 14289 }
c906108c 14290
f5f8a009
EZ
14291 /* Understand Dwarf2 support for vector types (like they occur on
14292 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14293 array type. This is not part of the Dwarf2/3 standard yet, but a
14294 custom vendor extension. The main difference between a regular
14295 array and the vector variant is that vectors are passed by value
14296 to functions. */
e142c38c 14297 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 14298 if (attr)
ea37ba09 14299 make_vector_type (type);
f5f8a009 14300
dbc98a8b
KW
14301 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14302 implementation may choose to implement triple vectors using this
14303 attribute. */
14304 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14305 if (attr)
14306 {
14307 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14308 TYPE_LENGTH (type) = DW_UNSND (attr);
14309 else
3e43a32a
MS
14310 complaint (&symfile_complaints,
14311 _("DW_AT_byte_size for array type smaller "
14312 "than the total size of elements"));
dbc98a8b
KW
14313 }
14314
39cbfefa
DJ
14315 name = dwarf2_name (die, cu);
14316 if (name)
14317 TYPE_NAME (type) = name;
6e70227d 14318
0963b4bd 14319 /* Install the type in the die. */
7e314c57
JK
14320 set_die_type (die, type, cu);
14321
14322 /* set_die_type should be already done. */
b4ba55a1
JB
14323 set_descriptive_type (type, die, cu);
14324
c906108c
SS
14325 do_cleanups (back_to);
14326
7e314c57 14327 return type;
c906108c
SS
14328}
14329
7ca2d3a3 14330static enum dwarf_array_dim_ordering
6e70227d 14331read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
14332{
14333 struct attribute *attr;
14334
14335 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14336
aead7601
SM
14337 if (attr)
14338 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 14339
0963b4bd
MS
14340 /* GNU F77 is a special case, as at 08/2004 array type info is the
14341 opposite order to the dwarf2 specification, but data is still
14342 laid out as per normal fortran.
7ca2d3a3 14343
0963b4bd
MS
14344 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14345 version checking. */
7ca2d3a3 14346
905e0470
PM
14347 if (cu->language == language_fortran
14348 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
14349 {
14350 return DW_ORD_row_major;
14351 }
14352
6e70227d 14353 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
14354 {
14355 case array_column_major:
14356 return DW_ORD_col_major;
14357 case array_row_major:
14358 default:
14359 return DW_ORD_row_major;
14360 };
14361}
14362
72019c9c 14363/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 14364 the DIE's type field. */
72019c9c 14365
f792889a 14366static struct type *
72019c9c
GM
14367read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14368{
7e314c57
JK
14369 struct type *domain_type, *set_type;
14370 struct attribute *attr;
f792889a 14371
7e314c57
JK
14372 domain_type = die_type (die, cu);
14373
14374 /* The die_type call above may have already set the type for this DIE. */
14375 set_type = get_die_type (die, cu);
14376 if (set_type)
14377 return set_type;
14378
14379 set_type = create_set_type (NULL, domain_type);
14380
14381 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
14382 if (attr)
14383 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 14384
f792889a 14385 return set_die_type (die, set_type, cu);
72019c9c 14386}
7ca2d3a3 14387
0971de02
TT
14388/* A helper for read_common_block that creates a locexpr baton.
14389 SYM is the symbol which we are marking as computed.
14390 COMMON_DIE is the DIE for the common block.
14391 COMMON_LOC is the location expression attribute for the common
14392 block itself.
14393 MEMBER_LOC is the location expression attribute for the particular
14394 member of the common block that we are processing.
14395 CU is the CU from which the above come. */
14396
14397static void
14398mark_common_block_symbol_computed (struct symbol *sym,
14399 struct die_info *common_die,
14400 struct attribute *common_loc,
14401 struct attribute *member_loc,
14402 struct dwarf2_cu *cu)
14403{
14404 struct objfile *objfile = dwarf2_per_objfile->objfile;
14405 struct dwarf2_locexpr_baton *baton;
14406 gdb_byte *ptr;
14407 unsigned int cu_off;
14408 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14409 LONGEST offset = 0;
14410
14411 gdb_assert (common_loc && member_loc);
14412 gdb_assert (attr_form_is_block (common_loc));
14413 gdb_assert (attr_form_is_block (member_loc)
14414 || attr_form_is_constant (member_loc));
14415
8d749320 14416 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
14417 baton->per_cu = cu->per_cu;
14418 gdb_assert (baton->per_cu);
14419
14420 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14421
14422 if (attr_form_is_constant (member_loc))
14423 {
14424 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14425 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14426 }
14427 else
14428 baton->size += DW_BLOCK (member_loc)->size;
14429
224c3ddb 14430 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
14431 baton->data = ptr;
14432
14433 *ptr++ = DW_OP_call4;
9c541725 14434 cu_off = common_die->sect_off - cu->per_cu->sect_off;
0971de02
TT
14435 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14436 ptr += 4;
14437
14438 if (attr_form_is_constant (member_loc))
14439 {
14440 *ptr++ = DW_OP_addr;
14441 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14442 ptr += cu->header.addr_size;
14443 }
14444 else
14445 {
14446 /* We have to copy the data here, because DW_OP_call4 will only
14447 use a DW_AT_location attribute. */
14448 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14449 ptr += DW_BLOCK (member_loc)->size;
14450 }
14451
14452 *ptr++ = DW_OP_plus;
14453 gdb_assert (ptr - baton->data == baton->size);
14454
0971de02 14455 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 14456 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
14457}
14458
4357ac6c
TT
14459/* Create appropriate locally-scoped variables for all the
14460 DW_TAG_common_block entries. Also create a struct common_block
14461 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14462 is used to sepate the common blocks name namespace from regular
14463 variable names. */
c906108c
SS
14464
14465static void
e7c27a73 14466read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14467{
0971de02
TT
14468 struct attribute *attr;
14469
14470 attr = dwarf2_attr (die, DW_AT_location, cu);
14471 if (attr)
14472 {
14473 /* Support the .debug_loc offsets. */
14474 if (attr_form_is_block (attr))
14475 {
14476 /* Ok. */
14477 }
14478 else if (attr_form_is_section_offset (attr))
14479 {
14480 dwarf2_complex_location_expr_complaint ();
14481 attr = NULL;
14482 }
14483 else
14484 {
14485 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14486 "common block member");
14487 attr = NULL;
14488 }
14489 }
14490
639d11d3 14491 if (die->child != NULL)
c906108c 14492 {
4357ac6c
TT
14493 struct objfile *objfile = cu->objfile;
14494 struct die_info *child_die;
14495 size_t n_entries = 0, size;
14496 struct common_block *common_block;
14497 struct symbol *sym;
74ac6d43 14498
4357ac6c
TT
14499 for (child_die = die->child;
14500 child_die && child_die->tag;
14501 child_die = sibling_die (child_die))
14502 ++n_entries;
14503
14504 size = (sizeof (struct common_block)
14505 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
14506 common_block
14507 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14508 size);
4357ac6c
TT
14509 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14510 common_block->n_entries = 0;
14511
14512 for (child_die = die->child;
14513 child_die && child_die->tag;
14514 child_die = sibling_die (child_die))
14515 {
14516 /* Create the symbol in the DW_TAG_common_block block in the current
14517 symbol scope. */
e7c27a73 14518 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
14519 if (sym != NULL)
14520 {
14521 struct attribute *member_loc;
14522
14523 common_block->contents[common_block->n_entries++] = sym;
14524
14525 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14526 cu);
14527 if (member_loc)
14528 {
14529 /* GDB has handled this for a long time, but it is
14530 not specified by DWARF. It seems to have been
14531 emitted by gfortran at least as recently as:
14532 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14533 complaint (&symfile_complaints,
14534 _("Variable in common block has "
14535 "DW_AT_data_member_location "
14536 "- DIE at 0x%x [in module %s]"),
9c541725 14537 to_underlying (child_die->sect_off),
4262abfb 14538 objfile_name (cu->objfile));
0971de02
TT
14539
14540 if (attr_form_is_section_offset (member_loc))
14541 dwarf2_complex_location_expr_complaint ();
14542 else if (attr_form_is_constant (member_loc)
14543 || attr_form_is_block (member_loc))
14544 {
14545 if (attr)
14546 mark_common_block_symbol_computed (sym, die, attr,
14547 member_loc, cu);
14548 }
14549 else
14550 dwarf2_complex_location_expr_complaint ();
14551 }
14552 }
c906108c 14553 }
4357ac6c
TT
14554
14555 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14556 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14557 }
14558}
14559
0114d602 14560/* Create a type for a C++ namespace. */
d9fa45fe 14561
0114d602
DJ
14562static struct type *
14563read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14564{
e7c27a73 14565 struct objfile *objfile = cu->objfile;
0114d602 14566 const char *previous_prefix, *name;
9219021c 14567 int is_anonymous;
0114d602
DJ
14568 struct type *type;
14569
14570 /* For extensions, reuse the type of the original namespace. */
14571 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14572 {
14573 struct die_info *ext_die;
14574 struct dwarf2_cu *ext_cu = cu;
9a619af0 14575
0114d602
DJ
14576 ext_die = dwarf2_extension (die, &ext_cu);
14577 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14578
14579 /* EXT_CU may not be the same as CU.
02142a6c 14580 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14581 return set_die_type (die, type, cu);
14582 }
9219021c 14583
e142c38c 14584 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14585
14586 /* Now build the name of the current namespace. */
14587
0114d602
DJ
14588 previous_prefix = determine_prefix (die, cu);
14589 if (previous_prefix[0] != '\0')
14590 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14591 previous_prefix, name, 0, cu);
0114d602
DJ
14592
14593 /* Create the type. */
19f392bc 14594 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
0114d602
DJ
14595 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14596
60531b24 14597 return set_die_type (die, type, cu);
0114d602
DJ
14598}
14599
22cee43f 14600/* Read a namespace scope. */
0114d602
DJ
14601
14602static void
14603read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14604{
14605 struct objfile *objfile = cu->objfile;
0114d602 14606 int is_anonymous;
9219021c 14607
5c4e30ca
DC
14608 /* Add a symbol associated to this if we haven't seen the namespace
14609 before. Also, add a using directive if it's an anonymous
14610 namespace. */
9219021c 14611
f2f0e013 14612 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14613 {
14614 struct type *type;
14615
0114d602 14616 type = read_type_die (die, cu);
e7c27a73 14617 new_symbol (die, type, cu);
5c4e30ca 14618
e8e80198 14619 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14620 if (is_anonymous)
0114d602
DJ
14621 {
14622 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14623
22cee43f
PMR
14624 add_using_directive (using_directives (cu->language),
14625 previous_prefix, TYPE_NAME (type), NULL,
14626 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14627 }
5c4e30ca 14628 }
9219021c 14629
639d11d3 14630 if (die->child != NULL)
d9fa45fe 14631 {
639d11d3 14632 struct die_info *child_die = die->child;
6e70227d 14633
d9fa45fe
DC
14634 while (child_die && child_die->tag)
14635 {
e7c27a73 14636 process_die (child_die, cu);
d9fa45fe
DC
14637 child_die = sibling_die (child_die);
14638 }
14639 }
38d518c9
EZ
14640}
14641
f55ee35c
JK
14642/* Read a Fortran module as type. This DIE can be only a declaration used for
14643 imported module. Still we need that type as local Fortran "use ... only"
14644 declaration imports depend on the created type in determine_prefix. */
14645
14646static struct type *
14647read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14648{
14649 struct objfile *objfile = cu->objfile;
15d034d0 14650 const char *module_name;
f55ee35c
JK
14651 struct type *type;
14652
14653 module_name = dwarf2_name (die, cu);
14654 if (!module_name)
3e43a32a
MS
14655 complaint (&symfile_complaints,
14656 _("DW_TAG_module has no name, offset 0x%x"),
9c541725 14657 to_underlying (die->sect_off));
19f392bc 14658 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
f55ee35c
JK
14659
14660 /* determine_prefix uses TYPE_TAG_NAME. */
14661 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14662
14663 return set_die_type (die, type, cu);
14664}
14665
5d7cb8df
JK
14666/* Read a Fortran module. */
14667
14668static void
14669read_module (struct die_info *die, struct dwarf2_cu *cu)
14670{
14671 struct die_info *child_die = die->child;
530e8392
KB
14672 struct type *type;
14673
14674 type = read_type_die (die, cu);
14675 new_symbol (die, type, cu);
5d7cb8df 14676
5d7cb8df
JK
14677 while (child_die && child_die->tag)
14678 {
14679 process_die (child_die, cu);
14680 child_die = sibling_die (child_die);
14681 }
14682}
14683
38d518c9
EZ
14684/* Return the name of the namespace represented by DIE. Set
14685 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14686 namespace. */
14687
14688static const char *
e142c38c 14689namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14690{
14691 struct die_info *current_die;
14692 const char *name = NULL;
14693
14694 /* Loop through the extensions until we find a name. */
14695
14696 for (current_die = die;
14697 current_die != NULL;
f2f0e013 14698 current_die = dwarf2_extension (die, &cu))
38d518c9 14699 {
96553a0c
DE
14700 /* We don't use dwarf2_name here so that we can detect the absence
14701 of a name -> anonymous namespace. */
7d45c7c3 14702 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 14703
38d518c9
EZ
14704 if (name != NULL)
14705 break;
14706 }
14707
14708 /* Is it an anonymous namespace? */
14709
14710 *is_anonymous = (name == NULL);
14711 if (*is_anonymous)
2b1dbab0 14712 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14713
14714 return name;
d9fa45fe
DC
14715}
14716
c906108c
SS
14717/* Extract all information from a DW_TAG_pointer_type DIE and add to
14718 the user defined type vector. */
14719
f792889a 14720static struct type *
e7c27a73 14721read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14722{
5e2b427d 14723 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14724 struct comp_unit_head *cu_header = &cu->header;
c906108c 14725 struct type *type;
8b2dbe47
KB
14726 struct attribute *attr_byte_size;
14727 struct attribute *attr_address_class;
14728 int byte_size, addr_class;
7e314c57
JK
14729 struct type *target_type;
14730
14731 target_type = die_type (die, cu);
c906108c 14732
7e314c57
JK
14733 /* The die_type call above may have already set the type for this DIE. */
14734 type = get_die_type (die, cu);
14735 if (type)
14736 return type;
14737
14738 type = lookup_pointer_type (target_type);
8b2dbe47 14739
e142c38c 14740 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14741 if (attr_byte_size)
14742 byte_size = DW_UNSND (attr_byte_size);
c906108c 14743 else
8b2dbe47
KB
14744 byte_size = cu_header->addr_size;
14745
e142c38c 14746 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14747 if (attr_address_class)
14748 addr_class = DW_UNSND (attr_address_class);
14749 else
14750 addr_class = DW_ADDR_none;
14751
14752 /* If the pointer size or address class is different than the
14753 default, create a type variant marked as such and set the
14754 length accordingly. */
14755 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14756 {
5e2b427d 14757 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14758 {
14759 int type_flags;
14760
849957d9 14761 type_flags = gdbarch_address_class_type_flags
5e2b427d 14762 (gdbarch, byte_size, addr_class);
876cecd0
TT
14763 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14764 == 0);
8b2dbe47
KB
14765 type = make_type_with_address_space (type, type_flags);
14766 }
14767 else if (TYPE_LENGTH (type) != byte_size)
14768 {
3e43a32a
MS
14769 complaint (&symfile_complaints,
14770 _("invalid pointer size %d"), byte_size);
8b2dbe47 14771 }
6e70227d 14772 else
9a619af0
MS
14773 {
14774 /* Should we also complain about unhandled address classes? */
14775 }
c906108c 14776 }
8b2dbe47
KB
14777
14778 TYPE_LENGTH (type) = byte_size;
f792889a 14779 return set_die_type (die, type, cu);
c906108c
SS
14780}
14781
14782/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14783 the user defined type vector. */
14784
f792889a 14785static struct type *
e7c27a73 14786read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14787{
14788 struct type *type;
14789 struct type *to_type;
14790 struct type *domain;
14791
e7c27a73
DJ
14792 to_type = die_type (die, cu);
14793 domain = die_containing_type (die, cu);
0d5de010 14794
7e314c57
JK
14795 /* The calls above may have already set the type for this DIE. */
14796 type = get_die_type (die, cu);
14797 if (type)
14798 return type;
14799
0d5de010
DJ
14800 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14801 type = lookup_methodptr_type (to_type);
7078baeb
TT
14802 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14803 {
14804 struct type *new_type = alloc_type (cu->objfile);
14805
14806 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14807 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14808 TYPE_VARARGS (to_type));
14809 type = lookup_methodptr_type (new_type);
14810 }
0d5de010
DJ
14811 else
14812 type = lookup_memberptr_type (to_type, domain);
c906108c 14813
f792889a 14814 return set_die_type (die, type, cu);
c906108c
SS
14815}
14816
4297a3f0 14817/* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
c906108c
SS
14818 the user defined type vector. */
14819
f792889a 14820static struct type *
4297a3f0
AV
14821read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
14822 enum type_code refcode)
c906108c 14823{
e7c27a73 14824 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14825 struct type *type, *target_type;
c906108c
SS
14826 struct attribute *attr;
14827
4297a3f0
AV
14828 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
14829
7e314c57
JK
14830 target_type = die_type (die, cu);
14831
14832 /* The die_type call above may have already set the type for this DIE. */
14833 type = get_die_type (die, cu);
14834 if (type)
14835 return type;
14836
4297a3f0 14837 type = lookup_reference_type (target_type, refcode);
e142c38c 14838 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14839 if (attr)
14840 {
14841 TYPE_LENGTH (type) = DW_UNSND (attr);
14842 }
14843 else
14844 {
107d2387 14845 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14846 }
f792889a 14847 return set_die_type (die, type, cu);
c906108c
SS
14848}
14849
cf363f18
MW
14850/* Add the given cv-qualifiers to the element type of the array. GCC
14851 outputs DWARF type qualifiers that apply to an array, not the
14852 element type. But GDB relies on the array element type to carry
14853 the cv-qualifiers. This mimics section 6.7.3 of the C99
14854 specification. */
14855
14856static struct type *
14857add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14858 struct type *base_type, int cnst, int voltl)
14859{
14860 struct type *el_type, *inner_array;
14861
14862 base_type = copy_type (base_type);
14863 inner_array = base_type;
14864
14865 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14866 {
14867 TYPE_TARGET_TYPE (inner_array) =
14868 copy_type (TYPE_TARGET_TYPE (inner_array));
14869 inner_array = TYPE_TARGET_TYPE (inner_array);
14870 }
14871
14872 el_type = TYPE_TARGET_TYPE (inner_array);
14873 cnst |= TYPE_CONST (el_type);
14874 voltl |= TYPE_VOLATILE (el_type);
14875 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14876
14877 return set_die_type (die, base_type, cu);
14878}
14879
f792889a 14880static struct type *
e7c27a73 14881read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14882{
f792889a 14883 struct type *base_type, *cv_type;
c906108c 14884
e7c27a73 14885 base_type = die_type (die, cu);
7e314c57
JK
14886
14887 /* The die_type call above may have already set the type for this DIE. */
14888 cv_type = get_die_type (die, cu);
14889 if (cv_type)
14890 return cv_type;
14891
2f608a3a
KW
14892 /* In case the const qualifier is applied to an array type, the element type
14893 is so qualified, not the array type (section 6.7.3 of C99). */
14894 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14895 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14896
f792889a
DJ
14897 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14898 return set_die_type (die, cv_type, cu);
c906108c
SS
14899}
14900
f792889a 14901static struct type *
e7c27a73 14902read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14903{
f792889a 14904 struct type *base_type, *cv_type;
c906108c 14905
e7c27a73 14906 base_type = die_type (die, cu);
7e314c57
JK
14907
14908 /* The die_type call above may have already set the type for this DIE. */
14909 cv_type = get_die_type (die, cu);
14910 if (cv_type)
14911 return cv_type;
14912
cf363f18
MW
14913 /* In case the volatile qualifier is applied to an array type, the
14914 element type is so qualified, not the array type (section 6.7.3
14915 of C99). */
14916 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14917 return add_array_cv_type (die, cu, base_type, 0, 1);
14918
f792889a
DJ
14919 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14920 return set_die_type (die, cv_type, cu);
c906108c
SS
14921}
14922
06d66ee9
TT
14923/* Handle DW_TAG_restrict_type. */
14924
14925static struct type *
14926read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14927{
14928 struct type *base_type, *cv_type;
14929
14930 base_type = die_type (die, cu);
14931
14932 /* The die_type call above may have already set the type for this DIE. */
14933 cv_type = get_die_type (die, cu);
14934 if (cv_type)
14935 return cv_type;
14936
14937 cv_type = make_restrict_type (base_type);
14938 return set_die_type (die, cv_type, cu);
14939}
14940
a2c2acaf
MW
14941/* Handle DW_TAG_atomic_type. */
14942
14943static struct type *
14944read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14945{
14946 struct type *base_type, *cv_type;
14947
14948 base_type = die_type (die, cu);
14949
14950 /* The die_type call above may have already set the type for this DIE. */
14951 cv_type = get_die_type (die, cu);
14952 if (cv_type)
14953 return cv_type;
14954
14955 cv_type = make_atomic_type (base_type);
14956 return set_die_type (die, cv_type, cu);
14957}
14958
c906108c
SS
14959/* Extract all information from a DW_TAG_string_type DIE and add to
14960 the user defined type vector. It isn't really a user defined type,
14961 but it behaves like one, with other DIE's using an AT_user_def_type
14962 attribute to reference it. */
14963
f792889a 14964static struct type *
e7c27a73 14965read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14966{
e7c27a73 14967 struct objfile *objfile = cu->objfile;
3b7538c0 14968 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14969 struct type *type, *range_type, *index_type, *char_type;
14970 struct attribute *attr;
14971 unsigned int length;
14972
e142c38c 14973 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14974 if (attr)
14975 {
14976 length = DW_UNSND (attr);
14977 }
14978 else
14979 {
0963b4bd 14980 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14981 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14982 if (attr)
14983 {
14984 length = DW_UNSND (attr);
14985 }
14986 else
14987 {
14988 length = 1;
14989 }
c906108c 14990 }
6ccb9162 14991
46bf5051 14992 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14993 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14994 char_type = language_string_char_type (cu->language_defn, gdbarch);
14995 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14996
f792889a 14997 return set_die_type (die, type, cu);
c906108c
SS
14998}
14999
4d804846
JB
15000/* Assuming that DIE corresponds to a function, returns nonzero
15001 if the function is prototyped. */
15002
15003static int
15004prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
15005{
15006 struct attribute *attr;
15007
15008 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
15009 if (attr && (DW_UNSND (attr) != 0))
15010 return 1;
15011
15012 /* The DWARF standard implies that the DW_AT_prototyped attribute
15013 is only meaninful for C, but the concept also extends to other
15014 languages that allow unprototyped functions (Eg: Objective C).
15015 For all other languages, assume that functions are always
15016 prototyped. */
15017 if (cu->language != language_c
15018 && cu->language != language_objc
15019 && cu->language != language_opencl)
15020 return 1;
15021
15022 /* RealView does not emit DW_AT_prototyped. We can not distinguish
15023 prototyped and unprototyped functions; default to prototyped,
15024 since that is more common in modern code (and RealView warns
15025 about unprototyped functions). */
15026 if (producer_is_realview (cu->producer))
15027 return 1;
15028
15029 return 0;
15030}
15031
c906108c
SS
15032/* Handle DIES due to C code like:
15033
15034 struct foo
c5aa993b
JM
15035 {
15036 int (*funcp)(int a, long l);
15037 int b;
15038 };
c906108c 15039
0963b4bd 15040 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 15041
f792889a 15042static struct type *
e7c27a73 15043read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 15044{
bb5ed363 15045 struct objfile *objfile = cu->objfile;
0963b4bd
MS
15046 struct type *type; /* Type that this function returns. */
15047 struct type *ftype; /* Function that returns above type. */
c906108c
SS
15048 struct attribute *attr;
15049
e7c27a73 15050 type = die_type (die, cu);
7e314c57
JK
15051
15052 /* The die_type call above may have already set the type for this DIE. */
15053 ftype = get_die_type (die, cu);
15054 if (ftype)
15055 return ftype;
15056
0c8b41f1 15057 ftype = lookup_function_type (type);
c906108c 15058
4d804846 15059 if (prototyped_function_p (die, cu))
a6c727b2 15060 TYPE_PROTOTYPED (ftype) = 1;
c906108c 15061
c055b101
CV
15062 /* Store the calling convention in the type if it's available in
15063 the subroutine die. Otherwise set the calling convention to
15064 the default value DW_CC_normal. */
15065 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
15066 if (attr)
15067 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
15068 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
15069 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
15070 else
15071 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 15072
743649fd
MW
15073 /* Record whether the function returns normally to its caller or not
15074 if the DWARF producer set that information. */
15075 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
15076 if (attr && (DW_UNSND (attr) != 0))
15077 TYPE_NO_RETURN (ftype) = 1;
15078
76c10ea2
GM
15079 /* We need to add the subroutine type to the die immediately so
15080 we don't infinitely recurse when dealing with parameters
0963b4bd 15081 declared as the same subroutine type. */
76c10ea2 15082 set_die_type (die, ftype, cu);
6e70227d 15083
639d11d3 15084 if (die->child != NULL)
c906108c 15085 {
bb5ed363 15086 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 15087 struct die_info *child_die;
8072405b 15088 int nparams, iparams;
c906108c
SS
15089
15090 /* Count the number of parameters.
15091 FIXME: GDB currently ignores vararg functions, but knows about
15092 vararg member functions. */
8072405b 15093 nparams = 0;
639d11d3 15094 child_die = die->child;
c906108c
SS
15095 while (child_die && child_die->tag)
15096 {
15097 if (child_die->tag == DW_TAG_formal_parameter)
15098 nparams++;
15099 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 15100 TYPE_VARARGS (ftype) = 1;
c906108c
SS
15101 child_die = sibling_die (child_die);
15102 }
15103
15104 /* Allocate storage for parameters and fill them in. */
15105 TYPE_NFIELDS (ftype) = nparams;
15106 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 15107 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 15108
8072405b
JK
15109 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
15110 even if we error out during the parameters reading below. */
15111 for (iparams = 0; iparams < nparams; iparams++)
15112 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
15113
15114 iparams = 0;
639d11d3 15115 child_die = die->child;
c906108c
SS
15116 while (child_die && child_die->tag)
15117 {
15118 if (child_die->tag == DW_TAG_formal_parameter)
15119 {
3ce3b1ba
PA
15120 struct type *arg_type;
15121
15122 /* DWARF version 2 has no clean way to discern C++
15123 static and non-static member functions. G++ helps
15124 GDB by marking the first parameter for non-static
15125 member functions (which is the this pointer) as
15126 artificial. We pass this information to
15127 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15128
15129 DWARF version 3 added DW_AT_object_pointer, which GCC
15130 4.5 does not yet generate. */
e142c38c 15131 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
15132 if (attr)
15133 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
15134 else
9c37b5ae 15135 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
3ce3b1ba
PA
15136 arg_type = die_type (child_die, cu);
15137
15138 /* RealView does not mark THIS as const, which the testsuite
15139 expects. GCC marks THIS as const in method definitions,
15140 but not in the class specifications (GCC PR 43053). */
15141 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
15142 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
15143 {
15144 int is_this = 0;
15145 struct dwarf2_cu *arg_cu = cu;
15146 const char *name = dwarf2_name (child_die, cu);
15147
15148 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
15149 if (attr)
15150 {
15151 /* If the compiler emits this, use it. */
15152 if (follow_die_ref (die, attr, &arg_cu) == child_die)
15153 is_this = 1;
15154 }
15155 else if (name && strcmp (name, "this") == 0)
15156 /* Function definitions will have the argument names. */
15157 is_this = 1;
15158 else if (name == NULL && iparams == 0)
15159 /* Declarations may not have the names, so like
15160 elsewhere in GDB, assume an artificial first
15161 argument is "this". */
15162 is_this = 1;
15163
15164 if (is_this)
15165 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
15166 arg_type, 0);
15167 }
15168
15169 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
15170 iparams++;
15171 }
15172 child_die = sibling_die (child_die);
15173 }
15174 }
15175
76c10ea2 15176 return ftype;
c906108c
SS
15177}
15178
f792889a 15179static struct type *
e7c27a73 15180read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 15181{
e7c27a73 15182 struct objfile *objfile = cu->objfile;
0114d602 15183 const char *name = NULL;
3c8e0968 15184 struct type *this_type, *target_type;
c906108c 15185
94af9270 15186 name = dwarf2_full_name (NULL, die, cu);
19f392bc
UW
15187 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15188 TYPE_TARGET_STUB (this_type) = 1;
f792889a 15189 set_die_type (die, this_type, cu);
3c8e0968
DE
15190 target_type = die_type (die, cu);
15191 if (target_type != this_type)
15192 TYPE_TARGET_TYPE (this_type) = target_type;
15193 else
15194 {
15195 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15196 spec and cause infinite loops in GDB. */
15197 complaint (&symfile_complaints,
15198 _("Self-referential DW_TAG_typedef "
15199 "- DIE at 0x%x [in module %s]"),
9c541725 15200 to_underlying (die->sect_off), objfile_name (objfile));
3c8e0968
DE
15201 TYPE_TARGET_TYPE (this_type) = NULL;
15202 }
f792889a 15203 return this_type;
c906108c
SS
15204}
15205
9b790ce7
UW
15206/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15207 (which may be different from NAME) to the architecture back-end to allow
15208 it to guess the correct format if necessary. */
15209
15210static struct type *
15211dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15212 const char *name_hint)
15213{
15214 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15215 const struct floatformat **format;
15216 struct type *type;
15217
15218 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15219 if (format)
15220 type = init_float_type (objfile, bits, name, format);
15221 else
15222 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
15223
15224 return type;
15225}
15226
c906108c
SS
15227/* Find a representation of a given base type and install
15228 it in the TYPE field of the die. */
15229
f792889a 15230static struct type *
e7c27a73 15231read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 15232{
e7c27a73 15233 struct objfile *objfile = cu->objfile;
c906108c
SS
15234 struct type *type;
15235 struct attribute *attr;
19f392bc 15236 int encoding = 0, bits = 0;
15d034d0 15237 const char *name;
c906108c 15238
e142c38c 15239 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
15240 if (attr)
15241 {
15242 encoding = DW_UNSND (attr);
15243 }
e142c38c 15244 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
15245 if (attr)
15246 {
19f392bc 15247 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
c906108c 15248 }
39cbfefa 15249 name = dwarf2_name (die, cu);
6ccb9162 15250 if (!name)
c906108c 15251 {
6ccb9162
UW
15252 complaint (&symfile_complaints,
15253 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 15254 }
6ccb9162
UW
15255
15256 switch (encoding)
c906108c 15257 {
6ccb9162
UW
15258 case DW_ATE_address:
15259 /* Turn DW_ATE_address into a void * pointer. */
19f392bc
UW
15260 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
15261 type = init_pointer_type (objfile, bits, name, type);
6ccb9162
UW
15262 break;
15263 case DW_ATE_boolean:
19f392bc 15264 type = init_boolean_type (objfile, bits, 1, name);
6ccb9162
UW
15265 break;
15266 case DW_ATE_complex_float:
9b790ce7 15267 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
19f392bc 15268 type = init_complex_type (objfile, name, type);
6ccb9162
UW
15269 break;
15270 case DW_ATE_decimal_float:
19f392bc 15271 type = init_decfloat_type (objfile, bits, name);
6ccb9162
UW
15272 break;
15273 case DW_ATE_float:
9b790ce7 15274 type = dwarf2_init_float_type (objfile, bits, name, name);
6ccb9162
UW
15275 break;
15276 case DW_ATE_signed:
19f392bc 15277 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
15278 break;
15279 case DW_ATE_unsigned:
3b2b8fea
TT
15280 if (cu->language == language_fortran
15281 && name
61012eef 15282 && startswith (name, "character("))
19f392bc
UW
15283 type = init_character_type (objfile, bits, 1, name);
15284 else
15285 type = init_integer_type (objfile, bits, 1, name);
6ccb9162
UW
15286 break;
15287 case DW_ATE_signed_char:
6e70227d 15288 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
15289 || cu->language == language_pascal
15290 || cu->language == language_fortran)
19f392bc
UW
15291 type = init_character_type (objfile, bits, 0, name);
15292 else
15293 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
15294 break;
15295 case DW_ATE_unsigned_char:
868a0084 15296 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea 15297 || cu->language == language_pascal
c44af4eb
TT
15298 || cu->language == language_fortran
15299 || cu->language == language_rust)
19f392bc
UW
15300 type = init_character_type (objfile, bits, 1, name);
15301 else
15302 type = init_integer_type (objfile, bits, 1, name);
6ccb9162 15303 break;
75079b2b 15304 case DW_ATE_UTF:
53e710ac
PA
15305 {
15306 gdbarch *arch = get_objfile_arch (objfile);
15307
15308 if (bits == 16)
15309 type = builtin_type (arch)->builtin_char16;
15310 else if (bits == 32)
15311 type = builtin_type (arch)->builtin_char32;
15312 else
15313 {
15314 complaint (&symfile_complaints,
15315 _("unsupported DW_ATE_UTF bit size: '%d'"),
15316 bits);
15317 type = init_integer_type (objfile, bits, 1, name);
15318 }
15319 return set_die_type (die, type, cu);
15320 }
75079b2b
TT
15321 break;
15322
6ccb9162
UW
15323 default:
15324 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15325 dwarf_type_encoding_name (encoding));
19f392bc
UW
15326 type = init_type (objfile, TYPE_CODE_ERROR,
15327 bits / TARGET_CHAR_BIT, name);
6ccb9162 15328 break;
c906108c 15329 }
6ccb9162 15330
0114d602 15331 if (name && strcmp (name, "char") == 0)
876cecd0 15332 TYPE_NOSIGN (type) = 1;
0114d602 15333
f792889a 15334 return set_die_type (die, type, cu);
c906108c
SS
15335}
15336
80180f79
SA
15337/* Parse dwarf attribute if it's a block, reference or constant and put the
15338 resulting value of the attribute into struct bound_prop.
15339 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15340
15341static int
15342attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15343 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15344{
15345 struct dwarf2_property_baton *baton;
15346 struct obstack *obstack = &cu->objfile->objfile_obstack;
15347
15348 if (attr == NULL || prop == NULL)
15349 return 0;
15350
15351 if (attr_form_is_block (attr))
15352 {
8d749320 15353 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
15354 baton->referenced_type = NULL;
15355 baton->locexpr.per_cu = cu->per_cu;
15356 baton->locexpr.size = DW_BLOCK (attr)->size;
15357 baton->locexpr.data = DW_BLOCK (attr)->data;
15358 prop->data.baton = baton;
15359 prop->kind = PROP_LOCEXPR;
15360 gdb_assert (prop->data.baton != NULL);
15361 }
15362 else if (attr_form_is_ref (attr))
15363 {
15364 struct dwarf2_cu *target_cu = cu;
15365 struct die_info *target_die;
15366 struct attribute *target_attr;
15367
15368 target_die = follow_die_ref (die, attr, &target_cu);
15369 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
15370 if (target_attr == NULL)
15371 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15372 target_cu);
80180f79
SA
15373 if (target_attr == NULL)
15374 return 0;
15375
df25ebbd 15376 switch (target_attr->name)
80180f79 15377 {
df25ebbd
JB
15378 case DW_AT_location:
15379 if (attr_form_is_section_offset (target_attr))
15380 {
8d749320 15381 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
15382 baton->referenced_type = die_type (target_die, target_cu);
15383 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15384 prop->data.baton = baton;
15385 prop->kind = PROP_LOCLIST;
15386 gdb_assert (prop->data.baton != NULL);
15387 }
15388 else if (attr_form_is_block (target_attr))
15389 {
8d749320 15390 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
15391 baton->referenced_type = die_type (target_die, target_cu);
15392 baton->locexpr.per_cu = cu->per_cu;
15393 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15394 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15395 prop->data.baton = baton;
15396 prop->kind = PROP_LOCEXPR;
15397 gdb_assert (prop->data.baton != NULL);
15398 }
15399 else
15400 {
15401 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15402 "dynamic property");
15403 return 0;
15404 }
15405 break;
15406 case DW_AT_data_member_location:
15407 {
15408 LONGEST offset;
15409
15410 if (!handle_data_member_location (target_die, target_cu,
15411 &offset))
15412 return 0;
15413
8d749320 15414 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
15415 baton->referenced_type = read_type_die (target_die->parent,
15416 target_cu);
df25ebbd
JB
15417 baton->offset_info.offset = offset;
15418 baton->offset_info.type = die_type (target_die, target_cu);
15419 prop->data.baton = baton;
15420 prop->kind = PROP_ADDR_OFFSET;
15421 break;
15422 }
80180f79
SA
15423 }
15424 }
15425 else if (attr_form_is_constant (attr))
15426 {
15427 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15428 prop->kind = PROP_CONST;
15429 }
15430 else
15431 {
15432 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15433 dwarf2_name (die, cu));
15434 return 0;
15435 }
15436
15437 return 1;
15438}
15439
a02abb62
JB
15440/* Read the given DW_AT_subrange DIE. */
15441
f792889a 15442static struct type *
a02abb62
JB
15443read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15444{
4c9ad8c2 15445 struct type *base_type, *orig_base_type;
a02abb62
JB
15446 struct type *range_type;
15447 struct attribute *attr;
729efb13 15448 struct dynamic_prop low, high;
4fae6e18 15449 int low_default_is_valid;
c451ebe5 15450 int high_bound_is_count = 0;
15d034d0 15451 const char *name;
43bbcdc2 15452 LONGEST negative_mask;
e77813c8 15453
4c9ad8c2
TT
15454 orig_base_type = die_type (die, cu);
15455 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15456 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15457 creating the range type, but we use the result of check_typedef
15458 when examining properties of the type. */
15459 base_type = check_typedef (orig_base_type);
a02abb62 15460
7e314c57
JK
15461 /* The die_type call above may have already set the type for this DIE. */
15462 range_type = get_die_type (die, cu);
15463 if (range_type)
15464 return range_type;
15465
729efb13
SA
15466 low.kind = PROP_CONST;
15467 high.kind = PROP_CONST;
15468 high.data.const_val = 0;
15469
4fae6e18
JK
15470 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15471 omitting DW_AT_lower_bound. */
15472 switch (cu->language)
6e70227d 15473 {
4fae6e18
JK
15474 case language_c:
15475 case language_cplus:
729efb13 15476 low.data.const_val = 0;
4fae6e18
JK
15477 low_default_is_valid = 1;
15478 break;
15479 case language_fortran:
729efb13 15480 low.data.const_val = 1;
4fae6e18
JK
15481 low_default_is_valid = 1;
15482 break;
15483 case language_d:
4fae6e18 15484 case language_objc:
c44af4eb 15485 case language_rust:
729efb13 15486 low.data.const_val = 0;
4fae6e18
JK
15487 low_default_is_valid = (cu->header.version >= 4);
15488 break;
15489 case language_ada:
15490 case language_m2:
15491 case language_pascal:
729efb13 15492 low.data.const_val = 1;
4fae6e18
JK
15493 low_default_is_valid = (cu->header.version >= 4);
15494 break;
15495 default:
729efb13 15496 low.data.const_val = 0;
4fae6e18
JK
15497 low_default_is_valid = 0;
15498 break;
a02abb62
JB
15499 }
15500
e142c38c 15501 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 15502 if (attr)
11c1ba78 15503 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
15504 else if (!low_default_is_valid)
15505 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15506 "- DIE at 0x%x [in module %s]"),
9c541725 15507 to_underlying (die->sect_off), objfile_name (cu->objfile));
a02abb62 15508
e142c38c 15509 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 15510 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
15511 {
15512 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 15513 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 15514 {
c451ebe5
SA
15515 /* If bounds are constant do the final calculation here. */
15516 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15517 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15518 else
15519 high_bound_is_count = 1;
c2ff108b 15520 }
e77813c8
PM
15521 }
15522
15523 /* Dwarf-2 specifications explicitly allows to create subrange types
15524 without specifying a base type.
15525 In that case, the base type must be set to the type of
15526 the lower bound, upper bound or count, in that order, if any of these
15527 three attributes references an object that has a type.
15528 If no base type is found, the Dwarf-2 specifications say that
15529 a signed integer type of size equal to the size of an address should
15530 be used.
15531 For the following C code: `extern char gdb_int [];'
15532 GCC produces an empty range DIE.
15533 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 15534 high bound or count are not yet handled by this code. */
e77813c8
PM
15535 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15536 {
15537 struct objfile *objfile = cu->objfile;
15538 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15539 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15540 struct type *int_type = objfile_type (objfile)->builtin_int;
15541
15542 /* Test "int", "long int", and "long long int" objfile types,
15543 and select the first one having a size above or equal to the
15544 architecture address size. */
15545 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15546 base_type = int_type;
15547 else
15548 {
15549 int_type = objfile_type (objfile)->builtin_long;
15550 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15551 base_type = int_type;
15552 else
15553 {
15554 int_type = objfile_type (objfile)->builtin_long_long;
15555 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15556 base_type = int_type;
15557 }
15558 }
15559 }
a02abb62 15560
dbb9c2b1
JB
15561 /* Normally, the DWARF producers are expected to use a signed
15562 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15563 But this is unfortunately not always the case, as witnessed
15564 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15565 is used instead. To work around that ambiguity, we treat
15566 the bounds as signed, and thus sign-extend their values, when
15567 the base type is signed. */
6e70227d 15568 negative_mask =
66c6502d 15569 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
15570 if (low.kind == PROP_CONST
15571 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15572 low.data.const_val |= negative_mask;
15573 if (high.kind == PROP_CONST
15574 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15575 high.data.const_val |= negative_mask;
43bbcdc2 15576
729efb13 15577 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15578
c451ebe5
SA
15579 if (high_bound_is_count)
15580 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15581
c2ff108b
JK
15582 /* Ada expects an empty array on no boundary attributes. */
15583 if (attr == NULL && cu->language != language_ada)
729efb13 15584 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15585
39cbfefa
DJ
15586 name = dwarf2_name (die, cu);
15587 if (name)
15588 TYPE_NAME (range_type) = name;
6e70227d 15589
e142c38c 15590 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15591 if (attr)
15592 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15593
7e314c57
JK
15594 set_die_type (die, range_type, cu);
15595
15596 /* set_die_type should be already done. */
b4ba55a1
JB
15597 set_descriptive_type (range_type, die, cu);
15598
7e314c57 15599 return range_type;
a02abb62 15600}
6e70227d 15601
f792889a 15602static struct type *
81a17f79
JB
15603read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15604{
15605 struct type *type;
81a17f79 15606
81a17f79
JB
15607 /* For now, we only support the C meaning of an unspecified type: void. */
15608
19f392bc 15609 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
0114d602 15610 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15611
f792889a 15612 return set_die_type (die, type, cu);
81a17f79 15613}
a02abb62 15614
639d11d3
DC
15615/* Read a single die and all its descendents. Set the die's sibling
15616 field to NULL; set other fields in the die correctly, and set all
15617 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15618 location of the info_ptr after reading all of those dies. PARENT
15619 is the parent of the die in question. */
15620
15621static struct die_info *
dee91e82 15622read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15623 const gdb_byte *info_ptr,
15624 const gdb_byte **new_info_ptr,
dee91e82 15625 struct die_info *parent)
639d11d3
DC
15626{
15627 struct die_info *die;
d521ce57 15628 const gdb_byte *cur_ptr;
639d11d3
DC
15629 int has_children;
15630
bf6af496 15631 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15632 if (die == NULL)
15633 {
15634 *new_info_ptr = cur_ptr;
15635 return NULL;
15636 }
93311388 15637 store_in_ref_table (die, reader->cu);
639d11d3
DC
15638
15639 if (has_children)
bf6af496 15640 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15641 else
15642 {
15643 die->child = NULL;
15644 *new_info_ptr = cur_ptr;
15645 }
15646
15647 die->sibling = NULL;
15648 die->parent = parent;
15649 return die;
15650}
15651
15652/* Read a die, all of its descendents, and all of its siblings; set
15653 all of the fields of all of the dies correctly. Arguments are as
15654 in read_die_and_children. */
15655
15656static struct die_info *
bf6af496 15657read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15658 const gdb_byte *info_ptr,
15659 const gdb_byte **new_info_ptr,
bf6af496 15660 struct die_info *parent)
639d11d3
DC
15661{
15662 struct die_info *first_die, *last_sibling;
d521ce57 15663 const gdb_byte *cur_ptr;
639d11d3 15664
c906108c 15665 cur_ptr = info_ptr;
639d11d3
DC
15666 first_die = last_sibling = NULL;
15667
15668 while (1)
c906108c 15669 {
639d11d3 15670 struct die_info *die
dee91e82 15671 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15672
1d325ec1 15673 if (die == NULL)
c906108c 15674 {
639d11d3
DC
15675 *new_info_ptr = cur_ptr;
15676 return first_die;
c906108c 15677 }
1d325ec1
DJ
15678
15679 if (!first_die)
15680 first_die = die;
c906108c 15681 else
1d325ec1
DJ
15682 last_sibling->sibling = die;
15683
15684 last_sibling = die;
c906108c 15685 }
c906108c
SS
15686}
15687
bf6af496
DE
15688/* Read a die, all of its descendents, and all of its siblings; set
15689 all of the fields of all of the dies correctly. Arguments are as
15690 in read_die_and_children.
15691 This the main entry point for reading a DIE and all its children. */
15692
15693static struct die_info *
15694read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15695 const gdb_byte *info_ptr,
15696 const gdb_byte **new_info_ptr,
bf6af496
DE
15697 struct die_info *parent)
15698{
15699 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15700 new_info_ptr, parent);
15701
b4f54984 15702 if (dwarf_die_debug)
bf6af496
DE
15703 {
15704 fprintf_unfiltered (gdb_stdlog,
15705 "Read die from %s@0x%x of %s:\n",
a32a8923 15706 get_section_name (reader->die_section),
bf6af496
DE
15707 (unsigned) (info_ptr - reader->die_section->buffer),
15708 bfd_get_filename (reader->abfd));
b4f54984 15709 dump_die (die, dwarf_die_debug);
bf6af496
DE
15710 }
15711
15712 return die;
15713}
15714
3019eac3
DE
15715/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15716 attributes.
15717 The caller is responsible for filling in the extra attributes
15718 and updating (*DIEP)->num_attrs.
15719 Set DIEP to point to a newly allocated die with its information,
15720 except for its child, sibling, and parent fields.
15721 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15722
d521ce57 15723static const gdb_byte *
3019eac3 15724read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15725 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15726 int *has_children, int num_extra_attrs)
93311388 15727{
b64f50a1 15728 unsigned int abbrev_number, bytes_read, i;
93311388
DE
15729 struct abbrev_info *abbrev;
15730 struct die_info *die;
15731 struct dwarf2_cu *cu = reader->cu;
15732 bfd *abfd = reader->abfd;
15733
9c541725 15734 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
93311388
DE
15735 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15736 info_ptr += bytes_read;
15737 if (!abbrev_number)
15738 {
15739 *diep = NULL;
15740 *has_children = 0;
15741 return info_ptr;
15742 }
15743
433df2d4 15744 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15745 if (!abbrev)
348e048f
DE
15746 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15747 abbrev_number,
15748 bfd_get_filename (abfd));
15749
3019eac3 15750 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
9c541725 15751 die->sect_off = sect_off;
93311388
DE
15752 die->tag = abbrev->tag;
15753 die->abbrev = abbrev_number;
15754
3019eac3
DE
15755 /* Make the result usable.
15756 The caller needs to update num_attrs after adding the extra
15757 attributes. */
93311388
DE
15758 die->num_attrs = abbrev->num_attrs;
15759
15760 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15761 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15762 info_ptr);
93311388
DE
15763
15764 *diep = die;
15765 *has_children = abbrev->has_children;
15766 return info_ptr;
15767}
15768
3019eac3
DE
15769/* Read a die and all its attributes.
15770 Set DIEP to point to a newly allocated die with its information,
15771 except for its child, sibling, and parent fields.
15772 Set HAS_CHILDREN to tell whether the die has children or not. */
15773
d521ce57 15774static const gdb_byte *
3019eac3 15775read_full_die (const struct die_reader_specs *reader,
d521ce57 15776 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15777 int *has_children)
15778{
d521ce57 15779 const gdb_byte *result;
bf6af496
DE
15780
15781 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15782
b4f54984 15783 if (dwarf_die_debug)
bf6af496
DE
15784 {
15785 fprintf_unfiltered (gdb_stdlog,
15786 "Read die from %s@0x%x of %s:\n",
a32a8923 15787 get_section_name (reader->die_section),
bf6af496
DE
15788 (unsigned) (info_ptr - reader->die_section->buffer),
15789 bfd_get_filename (reader->abfd));
b4f54984 15790 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15791 }
15792
15793 return result;
3019eac3 15794}
433df2d4
DE
15795\f
15796/* Abbreviation tables.
3019eac3 15797
433df2d4 15798 In DWARF version 2, the description of the debugging information is
c906108c
SS
15799 stored in a separate .debug_abbrev section. Before we read any
15800 dies from a section we read in all abbreviations and install them
433df2d4
DE
15801 in a hash table. */
15802
15803/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15804
15805static struct abbrev_info *
15806abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15807{
15808 struct abbrev_info *abbrev;
15809
8d749320 15810 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
433df2d4 15811 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 15812
433df2d4
DE
15813 return abbrev;
15814}
15815
15816/* Add an abbreviation to the table. */
c906108c
SS
15817
15818static void
433df2d4
DE
15819abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15820 unsigned int abbrev_number,
15821 struct abbrev_info *abbrev)
15822{
15823 unsigned int hash_number;
15824
15825 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15826 abbrev->next = abbrev_table->abbrevs[hash_number];
15827 abbrev_table->abbrevs[hash_number] = abbrev;
15828}
dee91e82 15829
433df2d4
DE
15830/* Look up an abbrev in the table.
15831 Returns NULL if the abbrev is not found. */
15832
15833static struct abbrev_info *
15834abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15835 unsigned int abbrev_number)
c906108c 15836{
433df2d4
DE
15837 unsigned int hash_number;
15838 struct abbrev_info *abbrev;
15839
15840 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15841 abbrev = abbrev_table->abbrevs[hash_number];
15842
15843 while (abbrev)
15844 {
15845 if (abbrev->number == abbrev_number)
15846 return abbrev;
15847 abbrev = abbrev->next;
15848 }
15849 return NULL;
15850}
15851
15852/* Read in an abbrev table. */
15853
15854static struct abbrev_table *
15855abbrev_table_read_table (struct dwarf2_section_info *section,
9c541725 15856 sect_offset sect_off)
433df2d4
DE
15857{
15858 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15859 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15860 struct abbrev_table *abbrev_table;
d521ce57 15861 const gdb_byte *abbrev_ptr;
c906108c
SS
15862 struct abbrev_info *cur_abbrev;
15863 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15864 unsigned int abbrev_form;
f3dd6933
DJ
15865 struct attr_abbrev *cur_attrs;
15866 unsigned int allocated_attrs;
c906108c 15867
70ba0933 15868 abbrev_table = XNEW (struct abbrev_table);
9c541725 15869 abbrev_table->sect_off = sect_off;
433df2d4 15870 obstack_init (&abbrev_table->abbrev_obstack);
8d749320
SM
15871 abbrev_table->abbrevs =
15872 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15873 ABBREV_HASH_SIZE);
433df2d4
DE
15874 memset (abbrev_table->abbrevs, 0,
15875 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15876
433df2d4 15877 dwarf2_read_section (objfile, section);
9c541725 15878 abbrev_ptr = section->buffer + to_underlying (sect_off);
c906108c
SS
15879 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15880 abbrev_ptr += bytes_read;
15881
f3dd6933 15882 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 15883 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 15884
0963b4bd 15885 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15886 while (abbrev_number)
15887 {
433df2d4 15888 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15889
15890 /* read in abbrev header */
15891 cur_abbrev->number = abbrev_number;
aead7601
SM
15892 cur_abbrev->tag
15893 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15894 abbrev_ptr += bytes_read;
15895 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15896 abbrev_ptr += 1;
15897
15898 /* now read in declarations */
22d2f3ab 15899 for (;;)
c906108c 15900 {
43988095
JK
15901 LONGEST implicit_const;
15902
22d2f3ab
JK
15903 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15904 abbrev_ptr += bytes_read;
15905 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15906 abbrev_ptr += bytes_read;
43988095
JK
15907 if (abbrev_form == DW_FORM_implicit_const)
15908 {
15909 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15910 &bytes_read);
15911 abbrev_ptr += bytes_read;
15912 }
15913 else
15914 {
15915 /* Initialize it due to a false compiler warning. */
15916 implicit_const = -1;
15917 }
22d2f3ab
JK
15918
15919 if (abbrev_name == 0)
15920 break;
15921
f3dd6933 15922 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15923 {
f3dd6933
DJ
15924 allocated_attrs += ATTR_ALLOC_CHUNK;
15925 cur_attrs
224c3ddb 15926 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 15927 }
ae038cb0 15928
aead7601
SM
15929 cur_attrs[cur_abbrev->num_attrs].name
15930 = (enum dwarf_attribute) abbrev_name;
22d2f3ab 15931 cur_attrs[cur_abbrev->num_attrs].form
aead7601 15932 = (enum dwarf_form) abbrev_form;
43988095 15933 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
22d2f3ab 15934 ++cur_abbrev->num_attrs;
c906108c
SS
15935 }
15936
8d749320
SM
15937 cur_abbrev->attrs =
15938 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15939 cur_abbrev->num_attrs);
f3dd6933
DJ
15940 memcpy (cur_abbrev->attrs, cur_attrs,
15941 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15942
433df2d4 15943 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15944
15945 /* Get next abbreviation.
15946 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15947 always properly terminated with an abbrev number of 0.
15948 Exit loop if we encounter an abbreviation which we have
15949 already read (which means we are about to read the abbreviations
15950 for the next compile unit) or if the end of the abbreviation
15951 table is reached. */
433df2d4 15952 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15953 break;
15954 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15955 abbrev_ptr += bytes_read;
433df2d4 15956 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15957 break;
15958 }
f3dd6933
DJ
15959
15960 xfree (cur_attrs);
433df2d4 15961 return abbrev_table;
c906108c
SS
15962}
15963
433df2d4 15964/* Free the resources held by ABBREV_TABLE. */
c906108c 15965
c906108c 15966static void
433df2d4 15967abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15968{
433df2d4
DE
15969 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15970 xfree (abbrev_table);
c906108c
SS
15971}
15972
f4dc4d17
DE
15973/* Same as abbrev_table_free but as a cleanup.
15974 We pass in a pointer to the pointer to the table so that we can
15975 set the pointer to NULL when we're done. It also simplifies
73051182 15976 build_type_psymtabs_1. */
f4dc4d17
DE
15977
15978static void
15979abbrev_table_free_cleanup (void *table_ptr)
15980{
9a3c8263 15981 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
f4dc4d17
DE
15982
15983 if (*abbrev_table_ptr != NULL)
15984 abbrev_table_free (*abbrev_table_ptr);
15985 *abbrev_table_ptr = NULL;
15986}
15987
433df2d4
DE
15988/* Read the abbrev table for CU from ABBREV_SECTION. */
15989
15990static void
15991dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15992 struct dwarf2_section_info *abbrev_section)
c906108c 15993{
433df2d4 15994 cu->abbrev_table =
9c541725 15995 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
433df2d4 15996}
c906108c 15997
433df2d4 15998/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15999
433df2d4
DE
16000static void
16001dwarf2_free_abbrev_table (void *ptr_to_cu)
16002{
9a3c8263 16003 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
c906108c 16004
a2ce51a0
DE
16005 if (cu->abbrev_table != NULL)
16006 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
16007 /* Set this to NULL so that we SEGV if we try to read it later,
16008 and also because free_comp_unit verifies this is NULL. */
16009 cu->abbrev_table = NULL;
16010}
16011\f
72bf9492
DJ
16012/* Returns nonzero if TAG represents a type that we might generate a partial
16013 symbol for. */
16014
16015static int
16016is_type_tag_for_partial (int tag)
16017{
16018 switch (tag)
16019 {
16020#if 0
16021 /* Some types that would be reasonable to generate partial symbols for,
16022 that we don't at present. */
16023 case DW_TAG_array_type:
16024 case DW_TAG_file_type:
16025 case DW_TAG_ptr_to_member_type:
16026 case DW_TAG_set_type:
16027 case DW_TAG_string_type:
16028 case DW_TAG_subroutine_type:
16029#endif
16030 case DW_TAG_base_type:
16031 case DW_TAG_class_type:
680b30c7 16032 case DW_TAG_interface_type:
72bf9492
DJ
16033 case DW_TAG_enumeration_type:
16034 case DW_TAG_structure_type:
16035 case DW_TAG_subrange_type:
16036 case DW_TAG_typedef:
16037 case DW_TAG_union_type:
16038 return 1;
16039 default:
16040 return 0;
16041 }
16042}
16043
16044/* Load all DIEs that are interesting for partial symbols into memory. */
16045
16046static struct partial_die_info *
dee91e82 16047load_partial_dies (const struct die_reader_specs *reader,
d521ce57 16048 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 16049{
dee91e82 16050 struct dwarf2_cu *cu = reader->cu;
bb5ed363 16051 struct objfile *objfile = cu->objfile;
72bf9492
DJ
16052 struct partial_die_info *part_die;
16053 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
16054 struct abbrev_info *abbrev;
16055 unsigned int bytes_read;
5afb4e99 16056 unsigned int load_all = 0;
72bf9492
DJ
16057 int nesting_level = 1;
16058
16059 parent_die = NULL;
16060 last_die = NULL;
16061
7adf1e79
DE
16062 gdb_assert (cu->per_cu != NULL);
16063 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
16064 load_all = 1;
16065
72bf9492
DJ
16066 cu->partial_dies
16067 = htab_create_alloc_ex (cu->header.length / 12,
16068 partial_die_hash,
16069 partial_die_eq,
16070 NULL,
16071 &cu->comp_unit_obstack,
16072 hashtab_obstack_allocate,
16073 dummy_obstack_deallocate);
16074
8d749320 16075 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
16076
16077 while (1)
16078 {
16079 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
16080
16081 /* A NULL abbrev means the end of a series of children. */
16082 if (abbrev == NULL)
16083 {
16084 if (--nesting_level == 0)
16085 {
16086 /* PART_DIE was probably the last thing allocated on the
16087 comp_unit_obstack, so we could call obstack_free
16088 here. We don't do that because the waste is small,
16089 and will be cleaned up when we're done with this
16090 compilation unit. This way, we're also more robust
16091 against other users of the comp_unit_obstack. */
16092 return first_die;
16093 }
16094 info_ptr += bytes_read;
16095 last_die = parent_die;
16096 parent_die = parent_die->die_parent;
16097 continue;
16098 }
16099
98bfdba5
PA
16100 /* Check for template arguments. We never save these; if
16101 they're seen, we just mark the parent, and go on our way. */
16102 if (parent_die != NULL
16103 && cu->language == language_cplus
16104 && (abbrev->tag == DW_TAG_template_type_param
16105 || abbrev->tag == DW_TAG_template_value_param))
16106 {
16107 parent_die->has_template_arguments = 1;
16108
16109 if (!load_all)
16110 {
16111 /* We don't need a partial DIE for the template argument. */
dee91e82 16112 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
16113 continue;
16114 }
16115 }
16116
0d99eb77 16117 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
16118 Skip their other children. */
16119 if (!load_all
16120 && cu->language == language_cplus
16121 && parent_die != NULL
16122 && parent_die->tag == DW_TAG_subprogram)
16123 {
dee91e82 16124 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
16125 continue;
16126 }
16127
5afb4e99
DJ
16128 /* Check whether this DIE is interesting enough to save. Normally
16129 we would not be interested in members here, but there may be
16130 later variables referencing them via DW_AT_specification (for
16131 static members). */
16132 if (!load_all
16133 && !is_type_tag_for_partial (abbrev->tag)
72929c62 16134 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
16135 && abbrev->tag != DW_TAG_enumerator
16136 && abbrev->tag != DW_TAG_subprogram
bc30ff58 16137 && abbrev->tag != DW_TAG_lexical_block
72bf9492 16138 && abbrev->tag != DW_TAG_variable
5afb4e99 16139 && abbrev->tag != DW_TAG_namespace
f55ee35c 16140 && abbrev->tag != DW_TAG_module
95554aad 16141 && abbrev->tag != DW_TAG_member
74921315
KS
16142 && abbrev->tag != DW_TAG_imported_unit
16143 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
16144 {
16145 /* Otherwise we skip to the next sibling, if any. */
dee91e82 16146 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
16147 continue;
16148 }
16149
dee91e82
DE
16150 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
16151 info_ptr);
72bf9492
DJ
16152
16153 /* This two-pass algorithm for processing partial symbols has a
16154 high cost in cache pressure. Thus, handle some simple cases
16155 here which cover the majority of C partial symbols. DIEs
16156 which neither have specification tags in them, nor could have
16157 specification tags elsewhere pointing at them, can simply be
16158 processed and discarded.
16159
16160 This segment is also optional; scan_partial_symbols and
16161 add_partial_symbol will handle these DIEs if we chain
16162 them in normally. When compilers which do not emit large
16163 quantities of duplicate debug information are more common,
16164 this code can probably be removed. */
16165
16166 /* Any complete simple types at the top level (pretty much all
16167 of them, for a language without namespaces), can be processed
16168 directly. */
16169 if (parent_die == NULL
16170 && part_die->has_specification == 0
16171 && part_die->is_declaration == 0
d8228535 16172 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
16173 || part_die->tag == DW_TAG_base_type
16174 || part_die->tag == DW_TAG_subrange_type))
16175 {
16176 if (building_psymtab && part_die->name != NULL)
04a679b8 16177 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 16178 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 16179 &objfile->static_psymbols,
1762568f 16180 0, cu->language, objfile);
dee91e82 16181 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
16182 continue;
16183 }
16184
d8228535
JK
16185 /* The exception for DW_TAG_typedef with has_children above is
16186 a workaround of GCC PR debug/47510. In the case of this complaint
16187 type_name_no_tag_or_error will error on such types later.
16188
16189 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16190 it could not find the child DIEs referenced later, this is checked
16191 above. In correct DWARF DW_TAG_typedef should have no children. */
16192
16193 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16194 complaint (&symfile_complaints,
16195 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16196 "- DIE at 0x%x [in module %s]"),
9c541725 16197 to_underlying (part_die->sect_off), objfile_name (objfile));
d8228535 16198
72bf9492
DJ
16199 /* If we're at the second level, and we're an enumerator, and
16200 our parent has no specification (meaning possibly lives in a
16201 namespace elsewhere), then we can add the partial symbol now
16202 instead of queueing it. */
16203 if (part_die->tag == DW_TAG_enumerator
16204 && parent_die != NULL
16205 && parent_die->die_parent == NULL
16206 && parent_die->tag == DW_TAG_enumeration_type
16207 && parent_die->has_specification == 0)
16208 {
16209 if (part_die->name == NULL)
3e43a32a
MS
16210 complaint (&symfile_complaints,
16211 _("malformed enumerator DIE ignored"));
72bf9492 16212 else if (building_psymtab)
04a679b8 16213 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 16214 VAR_DOMAIN, LOC_CONST,
9c37b5ae 16215 cu->language == language_cplus
bb5ed363
DE
16216 ? &objfile->global_psymbols
16217 : &objfile->static_psymbols,
1762568f 16218 0, cu->language, objfile);
72bf9492 16219
dee91e82 16220 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
16221 continue;
16222 }
16223
16224 /* We'll save this DIE so link it in. */
16225 part_die->die_parent = parent_die;
16226 part_die->die_sibling = NULL;
16227 part_die->die_child = NULL;
16228
16229 if (last_die && last_die == parent_die)
16230 last_die->die_child = part_die;
16231 else if (last_die)
16232 last_die->die_sibling = part_die;
16233
16234 last_die = part_die;
16235
16236 if (first_die == NULL)
16237 first_die = part_die;
16238
16239 /* Maybe add the DIE to the hash table. Not all DIEs that we
16240 find interesting need to be in the hash table, because we
16241 also have the parent/sibling/child chains; only those that we
16242 might refer to by offset later during partial symbol reading.
16243
16244 For now this means things that might have be the target of a
16245 DW_AT_specification, DW_AT_abstract_origin, or
16246 DW_AT_extension. DW_AT_extension will refer only to
16247 namespaces; DW_AT_abstract_origin refers to functions (and
16248 many things under the function DIE, but we do not recurse
16249 into function DIEs during partial symbol reading) and
16250 possibly variables as well; DW_AT_specification refers to
16251 declarations. Declarations ought to have the DW_AT_declaration
16252 flag. It happens that GCC forgets to put it in sometimes, but
16253 only for functions, not for types.
16254
16255 Adding more things than necessary to the hash table is harmless
16256 except for the performance cost. Adding too few will result in
5afb4e99
DJ
16257 wasted time in find_partial_die, when we reread the compilation
16258 unit with load_all_dies set. */
72bf9492 16259
5afb4e99 16260 if (load_all
72929c62 16261 || abbrev->tag == DW_TAG_constant
5afb4e99 16262 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
16263 || abbrev->tag == DW_TAG_variable
16264 || abbrev->tag == DW_TAG_namespace
16265 || part_die->is_declaration)
16266 {
16267 void **slot;
16268
16269 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9c541725
PA
16270 to_underlying (part_die->sect_off),
16271 INSERT);
72bf9492
DJ
16272 *slot = part_die;
16273 }
16274
8d749320 16275 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
16276
16277 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 16278 we have no reason to follow the children of structures; for other
98bfdba5
PA
16279 languages we have to, so that we can get at method physnames
16280 to infer fully qualified class names, for DW_AT_specification,
16281 and for C++ template arguments. For C++, we also look one level
16282 inside functions to find template arguments (if the name of the
16283 function does not already contain the template arguments).
bc30ff58
JB
16284
16285 For Ada, we need to scan the children of subprograms and lexical
16286 blocks as well because Ada allows the definition of nested
16287 entities that could be interesting for the debugger, such as
16288 nested subprograms for instance. */
72bf9492 16289 if (last_die->has_children
5afb4e99
DJ
16290 && (load_all
16291 || last_die->tag == DW_TAG_namespace
f55ee35c 16292 || last_die->tag == DW_TAG_module
72bf9492 16293 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
16294 || (cu->language == language_cplus
16295 && last_die->tag == DW_TAG_subprogram
16296 && (last_die->name == NULL
16297 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
16298 || (cu->language != language_c
16299 && (last_die->tag == DW_TAG_class_type
680b30c7 16300 || last_die->tag == DW_TAG_interface_type
72bf9492 16301 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
16302 || last_die->tag == DW_TAG_union_type))
16303 || (cu->language == language_ada
16304 && (last_die->tag == DW_TAG_subprogram
16305 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
16306 {
16307 nesting_level++;
16308 parent_die = last_die;
16309 continue;
16310 }
16311
16312 /* Otherwise we skip to the next sibling, if any. */
dee91e82 16313 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
16314
16315 /* Back to the top, do it again. */
16316 }
16317}
16318
c906108c
SS
16319/* Read a minimal amount of information into the minimal die structure. */
16320
d521ce57 16321static const gdb_byte *
dee91e82
DE
16322read_partial_die (const struct die_reader_specs *reader,
16323 struct partial_die_info *part_die,
16324 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 16325 const gdb_byte *info_ptr)
c906108c 16326{
dee91e82 16327 struct dwarf2_cu *cu = reader->cu;
bb5ed363 16328 struct objfile *objfile = cu->objfile;
d521ce57 16329 const gdb_byte *buffer = reader->buffer;
fa238c03 16330 unsigned int i;
c906108c 16331 struct attribute attr;
c5aa993b 16332 int has_low_pc_attr = 0;
c906108c 16333 int has_high_pc_attr = 0;
91da1414 16334 int high_pc_relative = 0;
c906108c 16335
72bf9492 16336 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 16337
9c541725 16338 part_die->sect_off = (sect_offset) (info_ptr - buffer);
72bf9492
DJ
16339
16340 info_ptr += abbrev_len;
16341
16342 if (abbrev == NULL)
16343 return info_ptr;
16344
c906108c
SS
16345 part_die->tag = abbrev->tag;
16346 part_die->has_children = abbrev->has_children;
c906108c
SS
16347
16348 for (i = 0; i < abbrev->num_attrs; ++i)
16349 {
dee91e82 16350 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
16351
16352 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 16353 partial symbol table. */
c906108c
SS
16354 switch (attr.name)
16355 {
16356 case DW_AT_name:
71c25dea
TT
16357 switch (part_die->tag)
16358 {
16359 case DW_TAG_compile_unit:
95554aad 16360 case DW_TAG_partial_unit:
348e048f 16361 case DW_TAG_type_unit:
71c25dea
TT
16362 /* Compilation units have a DW_AT_name that is a filename, not
16363 a source language identifier. */
16364 case DW_TAG_enumeration_type:
16365 case DW_TAG_enumerator:
16366 /* These tags always have simple identifiers already; no need
16367 to canonicalize them. */
16368 part_die->name = DW_STRING (&attr);
16369 break;
16370 default:
16371 part_die->name
16372 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 16373 &objfile->per_bfd->storage_obstack);
71c25dea
TT
16374 break;
16375 }
c906108c 16376 break;
31ef98ae 16377 case DW_AT_linkage_name:
c906108c 16378 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
16379 /* Note that both forms of linkage name might appear. We
16380 assume they will be the same, and we only store the last
16381 one we see. */
94af9270
KS
16382 if (cu->language == language_ada)
16383 part_die->name = DW_STRING (&attr);
abc72ce4 16384 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
16385 break;
16386 case DW_AT_low_pc:
16387 has_low_pc_attr = 1;
31aa7e4e 16388 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
16389 break;
16390 case DW_AT_high_pc:
16391 has_high_pc_attr = 1;
31aa7e4e
JB
16392 part_die->highpc = attr_value_as_address (&attr);
16393 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16394 high_pc_relative = 1;
c906108c
SS
16395 break;
16396 case DW_AT_location:
0963b4bd 16397 /* Support the .debug_loc offsets. */
8e19ed76
PS
16398 if (attr_form_is_block (&attr))
16399 {
95554aad 16400 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 16401 }
3690dd37 16402 else if (attr_form_is_section_offset (&attr))
8e19ed76 16403 {
4d3c2250 16404 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
16405 }
16406 else
16407 {
4d3c2250
KB
16408 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16409 "partial symbol information");
8e19ed76 16410 }
c906108c 16411 break;
c906108c
SS
16412 case DW_AT_external:
16413 part_die->is_external = DW_UNSND (&attr);
16414 break;
16415 case DW_AT_declaration:
16416 part_die->is_declaration = DW_UNSND (&attr);
16417 break;
16418 case DW_AT_type:
16419 part_die->has_type = 1;
16420 break;
16421 case DW_AT_abstract_origin:
16422 case DW_AT_specification:
72bf9492
DJ
16423 case DW_AT_extension:
16424 part_die->has_specification = 1;
c764a876 16425 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
16426 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16427 || cu->per_cu->is_dwz);
c906108c
SS
16428 break;
16429 case DW_AT_sibling:
16430 /* Ignore absolute siblings, they might point outside of
16431 the current compile unit. */
16432 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
16433 complaint (&symfile_complaints,
16434 _("ignoring absolute DW_AT_sibling"));
c906108c 16435 else
b9502d3f 16436 {
9c541725
PA
16437 sect_offset off = dwarf2_get_ref_die_offset (&attr);
16438 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
16439
16440 if (sibling_ptr < info_ptr)
16441 complaint (&symfile_complaints,
16442 _("DW_AT_sibling points backwards"));
22869d73
KS
16443 else if (sibling_ptr > reader->buffer_end)
16444 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
16445 else
16446 part_die->sibling = sibling_ptr;
16447 }
c906108c 16448 break;
fa4028e9
JB
16449 case DW_AT_byte_size:
16450 part_die->has_byte_size = 1;
16451 break;
ff908ebf
AW
16452 case DW_AT_const_value:
16453 part_die->has_const_value = 1;
16454 break;
68511cec
CES
16455 case DW_AT_calling_convention:
16456 /* DWARF doesn't provide a way to identify a program's source-level
16457 entry point. DW_AT_calling_convention attributes are only meant
16458 to describe functions' calling conventions.
16459
16460 However, because it's a necessary piece of information in
0c1b455e
TT
16461 Fortran, and before DWARF 4 DW_CC_program was the only
16462 piece of debugging information whose definition refers to
16463 a 'main program' at all, several compilers marked Fortran
16464 main programs with DW_CC_program --- even when those
16465 functions use the standard calling conventions.
16466
16467 Although DWARF now specifies a way to provide this
16468 information, we support this practice for backward
16469 compatibility. */
68511cec 16470 if (DW_UNSND (&attr) == DW_CC_program
0c1b455e
TT
16471 && cu->language == language_fortran)
16472 part_die->main_subprogram = 1;
68511cec 16473 break;
481860b3
GB
16474 case DW_AT_inline:
16475 if (DW_UNSND (&attr) == DW_INL_inlined
16476 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16477 part_die->may_be_inlined = 1;
16478 break;
95554aad
TT
16479
16480 case DW_AT_import:
16481 if (part_die->tag == DW_TAG_imported_unit)
36586728 16482 {
9c541725 16483 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
36586728
TT
16484 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16485 || cu->per_cu->is_dwz);
16486 }
95554aad
TT
16487 break;
16488
0c1b455e
TT
16489 case DW_AT_main_subprogram:
16490 part_die->main_subprogram = DW_UNSND (&attr);
16491 break;
16492
c906108c
SS
16493 default:
16494 break;
16495 }
16496 }
16497
91da1414
MW
16498 if (high_pc_relative)
16499 part_die->highpc += part_die->lowpc;
16500
9373cf26
JK
16501 if (has_low_pc_attr && has_high_pc_attr)
16502 {
16503 /* When using the GNU linker, .gnu.linkonce. sections are used to
16504 eliminate duplicate copies of functions and vtables and such.
16505 The linker will arbitrarily choose one and discard the others.
16506 The AT_*_pc values for such functions refer to local labels in
16507 these sections. If the section from that file was discarded, the
16508 labels are not in the output, so the relocs get a value of 0.
16509 If this is a discarded function, mark the pc bounds as invalid,
16510 so that GDB will ignore it. */
16511 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16512 {
bb5ed363 16513 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16514
16515 complaint (&symfile_complaints,
16516 _("DW_AT_low_pc %s is zero "
16517 "for DIE at 0x%x [in module %s]"),
16518 paddress (gdbarch, part_die->lowpc),
9c541725 16519 to_underlying (part_die->sect_off), objfile_name (objfile));
9373cf26
JK
16520 }
16521 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16522 else if (part_die->lowpc >= part_die->highpc)
16523 {
bb5ed363 16524 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16525
16526 complaint (&symfile_complaints,
16527 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16528 "for DIE at 0x%x [in module %s]"),
16529 paddress (gdbarch, part_die->lowpc),
16530 paddress (gdbarch, part_die->highpc),
9c541725
PA
16531 to_underlying (part_die->sect_off),
16532 objfile_name (objfile));
9373cf26
JK
16533 }
16534 else
16535 part_die->has_pc_info = 1;
16536 }
85cbf3d3 16537
c906108c
SS
16538 return info_ptr;
16539}
16540
72bf9492
DJ
16541/* Find a cached partial DIE at OFFSET in CU. */
16542
16543static struct partial_die_info *
9c541725 16544find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
72bf9492
DJ
16545{
16546 struct partial_die_info *lookup_die = NULL;
16547 struct partial_die_info part_die;
16548
9c541725 16549 part_die.sect_off = sect_off;
9a3c8263
SM
16550 lookup_die = ((struct partial_die_info *)
16551 htab_find_with_hash (cu->partial_dies, &part_die,
9c541725 16552 to_underlying (sect_off)));
72bf9492 16553
72bf9492
DJ
16554 return lookup_die;
16555}
16556
348e048f
DE
16557/* Find a partial DIE at OFFSET, which may or may not be in CU,
16558 except in the case of .debug_types DIEs which do not reference
16559 outside their CU (they do however referencing other types via
55f1336d 16560 DW_FORM_ref_sig8). */
72bf9492
DJ
16561
16562static struct partial_die_info *
9c541725 16563find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 16564{
bb5ed363 16565 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16566 struct dwarf2_per_cu_data *per_cu = NULL;
16567 struct partial_die_info *pd = NULL;
72bf9492 16568
36586728 16569 if (offset_in_dwz == cu->per_cu->is_dwz
9c541725 16570 && offset_in_cu_p (&cu->header, sect_off))
5afb4e99 16571 {
9c541725 16572 pd = find_partial_die_in_comp_unit (sect_off, cu);
5afb4e99
DJ
16573 if (pd != NULL)
16574 return pd;
0d99eb77
DE
16575 /* We missed recording what we needed.
16576 Load all dies and try again. */
16577 per_cu = cu->per_cu;
5afb4e99 16578 }
0d99eb77
DE
16579 else
16580 {
16581 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16582 if (cu->per_cu->is_debug_types)
0d99eb77 16583 {
9c541725
PA
16584 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
16585 " external reference to offset 0x%x [in module %s].\n"),
16586 to_underlying (cu->header.sect_off), to_underlying (sect_off),
0d99eb77
DE
16587 bfd_get_filename (objfile->obfd));
16588 }
9c541725 16589 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
36586728 16590 objfile);
72bf9492 16591
0d99eb77
DE
16592 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16593 load_partial_comp_unit (per_cu);
ae038cb0 16594
0d99eb77 16595 per_cu->cu->last_used = 0;
9c541725 16596 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
0d99eb77 16597 }
5afb4e99 16598
dee91e82
DE
16599 /* If we didn't find it, and not all dies have been loaded,
16600 load them all and try again. */
16601
5afb4e99
DJ
16602 if (pd == NULL && per_cu->load_all_dies == 0)
16603 {
5afb4e99 16604 per_cu->load_all_dies = 1;
fd820528
DE
16605
16606 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16607 THIS_CU->cu may already be in use. So we can't just free it and
16608 replace its DIEs with the ones we read in. Instead, we leave those
16609 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16610 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16611 set. */
dee91e82 16612 load_partial_comp_unit (per_cu);
5afb4e99 16613
9c541725 16614 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
5afb4e99
DJ
16615 }
16616
16617 if (pd == NULL)
16618 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16619 _("could not find partial DIE 0x%x "
16620 "in cache [from module %s]\n"),
9c541725 16621 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
5afb4e99 16622 return pd;
72bf9492
DJ
16623}
16624
abc72ce4
DE
16625/* See if we can figure out if the class lives in a namespace. We do
16626 this by looking for a member function; its demangled name will
16627 contain namespace info, if there is any. */
16628
16629static void
16630guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16631 struct dwarf2_cu *cu)
16632{
16633 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16634 what template types look like, because the demangler
16635 frequently doesn't give the same name as the debug info. We
16636 could fix this by only using the demangled name to get the
16637 prefix (but see comment in read_structure_type). */
16638
16639 struct partial_die_info *real_pdi;
16640 struct partial_die_info *child_pdi;
16641
16642 /* If this DIE (this DIE's specification, if any) has a parent, then
16643 we should not do this. We'll prepend the parent's fully qualified
16644 name when we create the partial symbol. */
16645
16646 real_pdi = struct_pdi;
16647 while (real_pdi->has_specification)
36586728
TT
16648 real_pdi = find_partial_die (real_pdi->spec_offset,
16649 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16650
16651 if (real_pdi->die_parent != NULL)
16652 return;
16653
16654 for (child_pdi = struct_pdi->die_child;
16655 child_pdi != NULL;
16656 child_pdi = child_pdi->die_sibling)
16657 {
16658 if (child_pdi->tag == DW_TAG_subprogram
16659 && child_pdi->linkage_name != NULL)
16660 {
16661 char *actual_class_name
16662 = language_class_name_from_physname (cu->language_defn,
16663 child_pdi->linkage_name);
16664 if (actual_class_name != NULL)
16665 {
16666 struct_pdi->name
224c3ddb
SM
16667 = ((const char *)
16668 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16669 actual_class_name,
16670 strlen (actual_class_name)));
abc72ce4
DE
16671 xfree (actual_class_name);
16672 }
16673 break;
16674 }
16675 }
16676}
16677
72bf9492
DJ
16678/* Adjust PART_DIE before generating a symbol for it. This function
16679 may set the is_external flag or change the DIE's name. */
16680
16681static void
16682fixup_partial_die (struct partial_die_info *part_die,
16683 struct dwarf2_cu *cu)
16684{
abc72ce4
DE
16685 /* Once we've fixed up a die, there's no point in doing so again.
16686 This also avoids a memory leak if we were to call
16687 guess_partial_die_structure_name multiple times. */
16688 if (part_die->fixup_called)
16689 return;
16690
72bf9492
DJ
16691 /* If we found a reference attribute and the DIE has no name, try
16692 to find a name in the referred to DIE. */
16693
16694 if (part_die->name == NULL && part_die->has_specification)
16695 {
16696 struct partial_die_info *spec_die;
72bf9492 16697
36586728
TT
16698 spec_die = find_partial_die (part_die->spec_offset,
16699 part_die->spec_is_dwz, cu);
72bf9492 16700
10b3939b 16701 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16702
16703 if (spec_die->name)
16704 {
16705 part_die->name = spec_die->name;
16706
16707 /* Copy DW_AT_external attribute if it is set. */
16708 if (spec_die->is_external)
16709 part_die->is_external = spec_die->is_external;
16710 }
16711 }
16712
16713 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16714
16715 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16716 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16717
abc72ce4
DE
16718 /* If there is no parent die to provide a namespace, and there are
16719 children, see if we can determine the namespace from their linkage
122d1940 16720 name. */
abc72ce4 16721 if (cu->language == language_cplus
8b70b953 16722 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16723 && part_die->die_parent == NULL
16724 && part_die->has_children
16725 && (part_die->tag == DW_TAG_class_type
16726 || part_die->tag == DW_TAG_structure_type
16727 || part_die->tag == DW_TAG_union_type))
16728 guess_partial_die_structure_name (part_die, cu);
16729
53832f31
TT
16730 /* GCC might emit a nameless struct or union that has a linkage
16731 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16732 if (part_die->name == NULL
96408a79
SA
16733 && (part_die->tag == DW_TAG_class_type
16734 || part_die->tag == DW_TAG_interface_type
16735 || part_die->tag == DW_TAG_structure_type
16736 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16737 && part_die->linkage_name != NULL)
16738 {
16739 char *demangled;
16740
8de20a37 16741 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16742 if (demangled)
16743 {
96408a79
SA
16744 const char *base;
16745
16746 /* Strip any leading namespaces/classes, keep only the base name.
16747 DW_AT_name for named DIEs does not contain the prefixes. */
16748 base = strrchr (demangled, ':');
16749 if (base && base > demangled && base[-1] == ':')
16750 base++;
16751 else
16752 base = demangled;
16753
34a68019 16754 part_die->name
224c3ddb
SM
16755 = ((const char *)
16756 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16757 base, strlen (base)));
53832f31
TT
16758 xfree (demangled);
16759 }
16760 }
16761
abc72ce4 16762 part_die->fixup_called = 1;
72bf9492
DJ
16763}
16764
a8329558 16765/* Read an attribute value described by an attribute form. */
c906108c 16766
d521ce57 16767static const gdb_byte *
dee91e82
DE
16768read_attribute_value (const struct die_reader_specs *reader,
16769 struct attribute *attr, unsigned form,
43988095 16770 LONGEST implicit_const, const gdb_byte *info_ptr)
c906108c 16771{
dee91e82 16772 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16773 struct objfile *objfile = cu->objfile;
16774 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16775 bfd *abfd = reader->abfd;
e7c27a73 16776 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16777 unsigned int bytes_read;
16778 struct dwarf_block *blk;
16779
aead7601 16780 attr->form = (enum dwarf_form) form;
a8329558 16781 switch (form)
c906108c 16782 {
c906108c 16783 case DW_FORM_ref_addr:
ae411497 16784 if (cu->header.version == 2)
4568ecf9 16785 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16786 else
4568ecf9
DE
16787 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16788 &cu->header, &bytes_read);
ae411497
TT
16789 info_ptr += bytes_read;
16790 break;
36586728
TT
16791 case DW_FORM_GNU_ref_alt:
16792 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16793 info_ptr += bytes_read;
16794 break;
ae411497 16795 case DW_FORM_addr:
e7c27a73 16796 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16797 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16798 info_ptr += bytes_read;
c906108c
SS
16799 break;
16800 case DW_FORM_block2:
7b5a2f43 16801 blk = dwarf_alloc_block (cu);
c906108c
SS
16802 blk->size = read_2_bytes (abfd, info_ptr);
16803 info_ptr += 2;
16804 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16805 info_ptr += blk->size;
16806 DW_BLOCK (attr) = blk;
16807 break;
16808 case DW_FORM_block4:
7b5a2f43 16809 blk = dwarf_alloc_block (cu);
c906108c
SS
16810 blk->size = read_4_bytes (abfd, info_ptr);
16811 info_ptr += 4;
16812 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16813 info_ptr += blk->size;
16814 DW_BLOCK (attr) = blk;
16815 break;
16816 case DW_FORM_data2:
16817 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16818 info_ptr += 2;
16819 break;
16820 case DW_FORM_data4:
16821 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16822 info_ptr += 4;
16823 break;
16824 case DW_FORM_data8:
16825 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16826 info_ptr += 8;
16827 break;
0224619f
JK
16828 case DW_FORM_data16:
16829 blk = dwarf_alloc_block (cu);
16830 blk->size = 16;
16831 blk->data = read_n_bytes (abfd, info_ptr, 16);
16832 info_ptr += 16;
16833 DW_BLOCK (attr) = blk;
16834 break;
2dc7f7b3
TT
16835 case DW_FORM_sec_offset:
16836 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16837 info_ptr += bytes_read;
16838 break;
c906108c 16839 case DW_FORM_string:
9b1c24c8 16840 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16841 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16842 info_ptr += bytes_read;
16843 break;
4bdf3d34 16844 case DW_FORM_strp:
36586728
TT
16845 if (!cu->per_cu->is_dwz)
16846 {
16847 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16848 &bytes_read);
16849 DW_STRING_IS_CANONICAL (attr) = 0;
16850 info_ptr += bytes_read;
16851 break;
16852 }
16853 /* FALLTHROUGH */
43988095
JK
16854 case DW_FORM_line_strp:
16855 if (!cu->per_cu->is_dwz)
16856 {
16857 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16858 cu_header, &bytes_read);
16859 DW_STRING_IS_CANONICAL (attr) = 0;
16860 info_ptr += bytes_read;
16861 break;
16862 }
16863 /* FALLTHROUGH */
36586728
TT
16864 case DW_FORM_GNU_strp_alt:
16865 {
16866 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16867 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16868 &bytes_read);
16869
16870 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16871 DW_STRING_IS_CANONICAL (attr) = 0;
16872 info_ptr += bytes_read;
16873 }
4bdf3d34 16874 break;
2dc7f7b3 16875 case DW_FORM_exprloc:
c906108c 16876 case DW_FORM_block:
7b5a2f43 16877 blk = dwarf_alloc_block (cu);
c906108c
SS
16878 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16879 info_ptr += bytes_read;
16880 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16881 info_ptr += blk->size;
16882 DW_BLOCK (attr) = blk;
16883 break;
16884 case DW_FORM_block1:
7b5a2f43 16885 blk = dwarf_alloc_block (cu);
c906108c
SS
16886 blk->size = read_1_byte (abfd, info_ptr);
16887 info_ptr += 1;
16888 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16889 info_ptr += blk->size;
16890 DW_BLOCK (attr) = blk;
16891 break;
16892 case DW_FORM_data1:
16893 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16894 info_ptr += 1;
16895 break;
16896 case DW_FORM_flag:
16897 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16898 info_ptr += 1;
16899 break;
2dc7f7b3
TT
16900 case DW_FORM_flag_present:
16901 DW_UNSND (attr) = 1;
16902 break;
c906108c
SS
16903 case DW_FORM_sdata:
16904 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16905 info_ptr += bytes_read;
16906 break;
16907 case DW_FORM_udata:
16908 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16909 info_ptr += bytes_read;
16910 break;
16911 case DW_FORM_ref1:
9c541725 16912 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16913 + read_1_byte (abfd, info_ptr));
c906108c
SS
16914 info_ptr += 1;
16915 break;
16916 case DW_FORM_ref2:
9c541725 16917 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16918 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16919 info_ptr += 2;
16920 break;
16921 case DW_FORM_ref4:
9c541725 16922 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16923 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16924 info_ptr += 4;
16925 break;
613e1657 16926 case DW_FORM_ref8:
9c541725 16927 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16928 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16929 info_ptr += 8;
16930 break;
55f1336d 16931 case DW_FORM_ref_sig8:
ac9ec31b 16932 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16933 info_ptr += 8;
16934 break;
c906108c 16935 case DW_FORM_ref_udata:
9c541725 16936 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16937 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16938 info_ptr += bytes_read;
16939 break;
c906108c 16940 case DW_FORM_indirect:
a8329558
KW
16941 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16942 info_ptr += bytes_read;
43988095
JK
16943 if (form == DW_FORM_implicit_const)
16944 {
16945 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16946 info_ptr += bytes_read;
16947 }
16948 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16949 info_ptr);
16950 break;
16951 case DW_FORM_implicit_const:
16952 DW_SND (attr) = implicit_const;
a8329558 16953 break;
3019eac3
DE
16954 case DW_FORM_GNU_addr_index:
16955 if (reader->dwo_file == NULL)
16956 {
16957 /* For now flag a hard error.
16958 Later we can turn this into a complaint. */
16959 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16960 dwarf_form_name (form),
16961 bfd_get_filename (abfd));
16962 }
16963 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16964 info_ptr += bytes_read;
16965 break;
16966 case DW_FORM_GNU_str_index:
16967 if (reader->dwo_file == NULL)
16968 {
16969 /* For now flag a hard error.
16970 Later we can turn this into a complaint if warranted. */
16971 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16972 dwarf_form_name (form),
16973 bfd_get_filename (abfd));
16974 }
16975 {
16976 ULONGEST str_index =
16977 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16978
342587c4 16979 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16980 DW_STRING_IS_CANONICAL (attr) = 0;
16981 info_ptr += bytes_read;
16982 }
16983 break;
c906108c 16984 default:
8a3fe4f8 16985 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16986 dwarf_form_name (form),
16987 bfd_get_filename (abfd));
c906108c 16988 }
28e94949 16989
36586728 16990 /* Super hack. */
7771576e 16991 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16992 attr->form = DW_FORM_GNU_ref_alt;
16993
28e94949
JB
16994 /* We have seen instances where the compiler tried to emit a byte
16995 size attribute of -1 which ended up being encoded as an unsigned
16996 0xffffffff. Although 0xffffffff is technically a valid size value,
16997 an object of this size seems pretty unlikely so we can relatively
16998 safely treat these cases as if the size attribute was invalid and
16999 treat them as zero by default. */
17000 if (attr->name == DW_AT_byte_size
17001 && form == DW_FORM_data4
17002 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
17003 {
17004 complaint
17005 (&symfile_complaints,
43bbcdc2
PH
17006 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
17007 hex_string (DW_UNSND (attr)));
01c66ae6
JB
17008 DW_UNSND (attr) = 0;
17009 }
28e94949 17010
c906108c
SS
17011 return info_ptr;
17012}
17013
a8329558
KW
17014/* Read an attribute described by an abbreviated attribute. */
17015
d521ce57 17016static const gdb_byte *
dee91e82
DE
17017read_attribute (const struct die_reader_specs *reader,
17018 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 17019 const gdb_byte *info_ptr)
a8329558
KW
17020{
17021 attr->name = abbrev->name;
43988095
JK
17022 return read_attribute_value (reader, attr, abbrev->form,
17023 abbrev->implicit_const, info_ptr);
a8329558
KW
17024}
17025
0963b4bd 17026/* Read dwarf information from a buffer. */
c906108c
SS
17027
17028static unsigned int
a1855c1d 17029read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 17030{
fe1b8b76 17031 return bfd_get_8 (abfd, buf);
c906108c
SS
17032}
17033
17034static int
a1855c1d 17035read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 17036{
fe1b8b76 17037 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
17038}
17039
17040static unsigned int
a1855c1d 17041read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 17042{
fe1b8b76 17043 return bfd_get_16 (abfd, buf);
c906108c
SS
17044}
17045
21ae7a4d 17046static int
a1855c1d 17047read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
17048{
17049 return bfd_get_signed_16 (abfd, buf);
17050}
17051
c906108c 17052static unsigned int
a1855c1d 17053read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 17054{
fe1b8b76 17055 return bfd_get_32 (abfd, buf);
c906108c
SS
17056}
17057
21ae7a4d 17058static int
a1855c1d 17059read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
17060{
17061 return bfd_get_signed_32 (abfd, buf);
17062}
17063
93311388 17064static ULONGEST
a1855c1d 17065read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 17066{
fe1b8b76 17067 return bfd_get_64 (abfd, buf);
c906108c
SS
17068}
17069
17070static CORE_ADDR
d521ce57 17071read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 17072 unsigned int *bytes_read)
c906108c 17073{
e7c27a73 17074 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
17075 CORE_ADDR retval = 0;
17076
107d2387 17077 if (cu_header->signed_addr_p)
c906108c 17078 {
107d2387
AC
17079 switch (cu_header->addr_size)
17080 {
17081 case 2:
fe1b8b76 17082 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
17083 break;
17084 case 4:
fe1b8b76 17085 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
17086 break;
17087 case 8:
fe1b8b76 17088 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
17089 break;
17090 default:
8e65ff28 17091 internal_error (__FILE__, __LINE__,
e2e0b3e5 17092 _("read_address: bad switch, signed [in module %s]"),
659b0389 17093 bfd_get_filename (abfd));
107d2387
AC
17094 }
17095 }
17096 else
17097 {
17098 switch (cu_header->addr_size)
17099 {
17100 case 2:
fe1b8b76 17101 retval = bfd_get_16 (abfd, buf);
107d2387
AC
17102 break;
17103 case 4:
fe1b8b76 17104 retval = bfd_get_32 (abfd, buf);
107d2387
AC
17105 break;
17106 case 8:
fe1b8b76 17107 retval = bfd_get_64 (abfd, buf);
107d2387
AC
17108 break;
17109 default:
8e65ff28 17110 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
17111 _("read_address: bad switch, "
17112 "unsigned [in module %s]"),
659b0389 17113 bfd_get_filename (abfd));
107d2387 17114 }
c906108c 17115 }
64367e0a 17116
107d2387
AC
17117 *bytes_read = cu_header->addr_size;
17118 return retval;
c906108c
SS
17119}
17120
f7ef9339 17121/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
17122 specification allows the initial length to take up either 4 bytes
17123 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17124 bytes describe the length and all offsets will be 8 bytes in length
17125 instead of 4.
17126
f7ef9339
KB
17127 An older, non-standard 64-bit format is also handled by this
17128 function. The older format in question stores the initial length
17129 as an 8-byte quantity without an escape value. Lengths greater
17130 than 2^32 aren't very common which means that the initial 4 bytes
17131 is almost always zero. Since a length value of zero doesn't make
17132 sense for the 32-bit format, this initial zero can be considered to
17133 be an escape value which indicates the presence of the older 64-bit
17134 format. As written, the code can't detect (old format) lengths
917c78fc
MK
17135 greater than 4GB. If it becomes necessary to handle lengths
17136 somewhat larger than 4GB, we could allow other small values (such
17137 as the non-sensical values of 1, 2, and 3) to also be used as
17138 escape values indicating the presence of the old format.
f7ef9339 17139
917c78fc
MK
17140 The value returned via bytes_read should be used to increment the
17141 relevant pointer after calling read_initial_length().
c764a876 17142
613e1657
KB
17143 [ Note: read_initial_length() and read_offset() are based on the
17144 document entitled "DWARF Debugging Information Format", revision
f7ef9339 17145 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
17146 from:
17147
f7ef9339 17148 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 17149
613e1657
KB
17150 This document is only a draft and is subject to change. (So beware.)
17151
f7ef9339 17152 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
17153 determined empirically by examining 64-bit ELF files produced by
17154 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
17155
17156 - Kevin, July 16, 2002
613e1657
KB
17157 ] */
17158
17159static LONGEST
d521ce57 17160read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 17161{
fe1b8b76 17162 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 17163
dd373385 17164 if (length == 0xffffffff)
613e1657 17165 {
fe1b8b76 17166 length = bfd_get_64 (abfd, buf + 4);
613e1657 17167 *bytes_read = 12;
613e1657 17168 }
dd373385 17169 else if (length == 0)
f7ef9339 17170 {
dd373385 17171 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 17172 length = bfd_get_64 (abfd, buf);
f7ef9339 17173 *bytes_read = 8;
f7ef9339 17174 }
613e1657
KB
17175 else
17176 {
17177 *bytes_read = 4;
613e1657
KB
17178 }
17179
c764a876
DE
17180 return length;
17181}
dd373385 17182
c764a876
DE
17183/* Cover function for read_initial_length.
17184 Returns the length of the object at BUF, and stores the size of the
17185 initial length in *BYTES_READ and stores the size that offsets will be in
17186 *OFFSET_SIZE.
17187 If the initial length size is not equivalent to that specified in
17188 CU_HEADER then issue a complaint.
17189 This is useful when reading non-comp-unit headers. */
dd373385 17190
c764a876 17191static LONGEST
d521ce57 17192read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
17193 const struct comp_unit_head *cu_header,
17194 unsigned int *bytes_read,
17195 unsigned int *offset_size)
17196{
17197 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17198
17199 gdb_assert (cu_header->initial_length_size == 4
17200 || cu_header->initial_length_size == 8
17201 || cu_header->initial_length_size == 12);
17202
17203 if (cu_header->initial_length_size != *bytes_read)
17204 complaint (&symfile_complaints,
17205 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 17206
c764a876 17207 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 17208 return length;
613e1657
KB
17209}
17210
17211/* Read an offset from the data stream. The size of the offset is
917c78fc 17212 given by cu_header->offset_size. */
613e1657
KB
17213
17214static LONGEST
d521ce57
TT
17215read_offset (bfd *abfd, const gdb_byte *buf,
17216 const struct comp_unit_head *cu_header,
891d2f0b 17217 unsigned int *bytes_read)
c764a876
DE
17218{
17219 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 17220
c764a876
DE
17221 *bytes_read = cu_header->offset_size;
17222 return offset;
17223}
17224
17225/* Read an offset from the data stream. */
17226
17227static LONGEST
d521ce57 17228read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
17229{
17230 LONGEST retval = 0;
17231
c764a876 17232 switch (offset_size)
613e1657
KB
17233 {
17234 case 4:
fe1b8b76 17235 retval = bfd_get_32 (abfd, buf);
613e1657
KB
17236 break;
17237 case 8:
fe1b8b76 17238 retval = bfd_get_64 (abfd, buf);
613e1657
KB
17239 break;
17240 default:
8e65ff28 17241 internal_error (__FILE__, __LINE__,
c764a876 17242 _("read_offset_1: bad switch [in module %s]"),
659b0389 17243 bfd_get_filename (abfd));
613e1657
KB
17244 }
17245
917c78fc 17246 return retval;
613e1657
KB
17247}
17248
d521ce57
TT
17249static const gdb_byte *
17250read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
17251{
17252 /* If the size of a host char is 8 bits, we can return a pointer
17253 to the buffer, otherwise we have to copy the data to a buffer
17254 allocated on the temporary obstack. */
4bdf3d34 17255 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 17256 return buf;
c906108c
SS
17257}
17258
d521ce57
TT
17259static const char *
17260read_direct_string (bfd *abfd, const gdb_byte *buf,
17261 unsigned int *bytes_read_ptr)
c906108c
SS
17262{
17263 /* If the size of a host char is 8 bits, we can return a pointer
17264 to the string, otherwise we have to copy the string to a buffer
17265 allocated on the temporary obstack. */
4bdf3d34 17266 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
17267 if (*buf == '\0')
17268 {
17269 *bytes_read_ptr = 1;
17270 return NULL;
17271 }
d521ce57
TT
17272 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17273 return (const char *) buf;
4bdf3d34
JJ
17274}
17275
43988095
JK
17276/* Return pointer to string at section SECT offset STR_OFFSET with error
17277 reporting strings FORM_NAME and SECT_NAME. */
17278
d521ce57 17279static const char *
43988095
JK
17280read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17281 struct dwarf2_section_info *sect,
17282 const char *form_name,
17283 const char *sect_name)
17284{
17285 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17286 if (sect->buffer == NULL)
17287 error (_("%s used without %s section [in module %s]"),
17288 form_name, sect_name, bfd_get_filename (abfd));
17289 if (str_offset >= sect->size)
17290 error (_("%s pointing outside of %s section [in module %s]"),
17291 form_name, sect_name, bfd_get_filename (abfd));
4bdf3d34 17292 gdb_assert (HOST_CHAR_BIT == 8);
43988095 17293 if (sect->buffer[str_offset] == '\0')
4bdf3d34 17294 return NULL;
43988095
JK
17295 return (const char *) (sect->buffer + str_offset);
17296}
17297
17298/* Return pointer to string at .debug_str offset STR_OFFSET. */
17299
17300static const char *
17301read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17302{
17303 return read_indirect_string_at_offset_from (abfd, str_offset,
17304 &dwarf2_per_objfile->str,
17305 "DW_FORM_strp", ".debug_str");
17306}
17307
17308/* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17309
17310static const char *
17311read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17312{
17313 return read_indirect_string_at_offset_from (abfd, str_offset,
17314 &dwarf2_per_objfile->line_str,
17315 "DW_FORM_line_strp",
17316 ".debug_line_str");
c906108c
SS
17317}
17318
36586728
TT
17319/* Read a string at offset STR_OFFSET in the .debug_str section from
17320 the .dwz file DWZ. Throw an error if the offset is too large. If
17321 the string consists of a single NUL byte, return NULL; otherwise
17322 return a pointer to the string. */
17323
d521ce57 17324static const char *
36586728
TT
17325read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17326{
17327 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17328
17329 if (dwz->str.buffer == NULL)
17330 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17331 "section [in module %s]"),
17332 bfd_get_filename (dwz->dwz_bfd));
17333 if (str_offset >= dwz->str.size)
17334 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17335 ".debug_str section [in module %s]"),
17336 bfd_get_filename (dwz->dwz_bfd));
17337 gdb_assert (HOST_CHAR_BIT == 8);
17338 if (dwz->str.buffer[str_offset] == '\0')
17339 return NULL;
d521ce57 17340 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
17341}
17342
43988095
JK
17343/* Return pointer to string at .debug_str offset as read from BUF.
17344 BUF is assumed to be in a compilation unit described by CU_HEADER.
17345 Return *BYTES_READ_PTR count of bytes read from BUF. */
17346
d521ce57
TT
17347static const char *
17348read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
17349 const struct comp_unit_head *cu_header,
17350 unsigned int *bytes_read_ptr)
17351{
17352 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17353
17354 return read_indirect_string_at_offset (abfd, str_offset);
17355}
17356
43988095
JK
17357/* Return pointer to string at .debug_line_str offset as read from BUF.
17358 BUF is assumed to be in a compilation unit described by CU_HEADER.
17359 Return *BYTES_READ_PTR count of bytes read from BUF. */
17360
17361static const char *
17362read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17363 const struct comp_unit_head *cu_header,
17364 unsigned int *bytes_read_ptr)
17365{
17366 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17367
17368 return read_indirect_line_string_at_offset (abfd, str_offset);
17369}
17370
17371ULONGEST
d521ce57 17372read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
43988095 17373 unsigned int *bytes_read_ptr)
c906108c 17374{
12df843f 17375 ULONGEST result;
ce5d95e1 17376 unsigned int num_read;
870f88f7 17377 int shift;
c906108c
SS
17378 unsigned char byte;
17379
17380 result = 0;
17381 shift = 0;
17382 num_read = 0;
c906108c
SS
17383 while (1)
17384 {
fe1b8b76 17385 byte = bfd_get_8 (abfd, buf);
c906108c
SS
17386 buf++;
17387 num_read++;
12df843f 17388 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
17389 if ((byte & 128) == 0)
17390 {
17391 break;
17392 }
17393 shift += 7;
17394 }
17395 *bytes_read_ptr = num_read;
17396 return result;
17397}
17398
12df843f 17399static LONGEST
d521ce57
TT
17400read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17401 unsigned int *bytes_read_ptr)
c906108c 17402{
12df843f 17403 LONGEST result;
870f88f7 17404 int shift, num_read;
c906108c
SS
17405 unsigned char byte;
17406
17407 result = 0;
17408 shift = 0;
c906108c 17409 num_read = 0;
c906108c
SS
17410 while (1)
17411 {
fe1b8b76 17412 byte = bfd_get_8 (abfd, buf);
c906108c
SS
17413 buf++;
17414 num_read++;
12df843f 17415 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
17416 shift += 7;
17417 if ((byte & 128) == 0)
17418 {
17419 break;
17420 }
17421 }
77e0b926 17422 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 17423 result |= -(((LONGEST) 1) << shift);
c906108c
SS
17424 *bytes_read_ptr = num_read;
17425 return result;
17426}
17427
3019eac3
DE
17428/* Given index ADDR_INDEX in .debug_addr, fetch the value.
17429 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17430 ADDR_SIZE is the size of addresses from the CU header. */
17431
17432static CORE_ADDR
17433read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17434{
17435 struct objfile *objfile = dwarf2_per_objfile->objfile;
17436 bfd *abfd = objfile->obfd;
17437 const gdb_byte *info_ptr;
17438
17439 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17440 if (dwarf2_per_objfile->addr.buffer == NULL)
17441 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 17442 objfile_name (objfile));
3019eac3
DE
17443 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17444 error (_("DW_FORM_addr_index pointing outside of "
17445 ".debug_addr section [in module %s]"),
4262abfb 17446 objfile_name (objfile));
3019eac3
DE
17447 info_ptr = (dwarf2_per_objfile->addr.buffer
17448 + addr_base + addr_index * addr_size);
17449 if (addr_size == 4)
17450 return bfd_get_32 (abfd, info_ptr);
17451 else
17452 return bfd_get_64 (abfd, info_ptr);
17453}
17454
17455/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17456
17457static CORE_ADDR
17458read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17459{
17460 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17461}
17462
17463/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17464
17465static CORE_ADDR
d521ce57 17466read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
17467 unsigned int *bytes_read)
17468{
17469 bfd *abfd = cu->objfile->obfd;
17470 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17471
17472 return read_addr_index (cu, addr_index);
17473}
17474
17475/* Data structure to pass results from dwarf2_read_addr_index_reader
17476 back to dwarf2_read_addr_index. */
17477
17478struct dwarf2_read_addr_index_data
17479{
17480 ULONGEST addr_base;
17481 int addr_size;
17482};
17483
17484/* die_reader_func for dwarf2_read_addr_index. */
17485
17486static void
17487dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 17488 const gdb_byte *info_ptr,
3019eac3
DE
17489 struct die_info *comp_unit_die,
17490 int has_children,
17491 void *data)
17492{
17493 struct dwarf2_cu *cu = reader->cu;
17494 struct dwarf2_read_addr_index_data *aidata =
17495 (struct dwarf2_read_addr_index_data *) data;
17496
17497 aidata->addr_base = cu->addr_base;
17498 aidata->addr_size = cu->header.addr_size;
17499}
17500
17501/* Given an index in .debug_addr, fetch the value.
17502 NOTE: This can be called during dwarf expression evaluation,
17503 long after the debug information has been read, and thus per_cu->cu
17504 may no longer exist. */
17505
17506CORE_ADDR
17507dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17508 unsigned int addr_index)
17509{
17510 struct objfile *objfile = per_cu->objfile;
17511 struct dwarf2_cu *cu = per_cu->cu;
17512 ULONGEST addr_base;
17513 int addr_size;
17514
17515 /* This is intended to be called from outside this file. */
17516 dw2_setup (objfile);
17517
17518 /* We need addr_base and addr_size.
17519 If we don't have PER_CU->cu, we have to get it.
17520 Nasty, but the alternative is storing the needed info in PER_CU,
17521 which at this point doesn't seem justified: it's not clear how frequently
17522 it would get used and it would increase the size of every PER_CU.
17523 Entry points like dwarf2_per_cu_addr_size do a similar thing
17524 so we're not in uncharted territory here.
17525 Alas we need to be a bit more complicated as addr_base is contained
17526 in the DIE.
17527
17528 We don't need to read the entire CU(/TU).
17529 We just need the header and top level die.
a1b64ce1 17530
3019eac3 17531 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 17532 For now we skip this optimization. */
3019eac3
DE
17533
17534 if (cu != NULL)
17535 {
17536 addr_base = cu->addr_base;
17537 addr_size = cu->header.addr_size;
17538 }
17539 else
17540 {
17541 struct dwarf2_read_addr_index_data aidata;
17542
a1b64ce1
DE
17543 /* Note: We can't use init_cutu_and_read_dies_simple here,
17544 we need addr_base. */
17545 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17546 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
17547 addr_base = aidata.addr_base;
17548 addr_size = aidata.addr_size;
17549 }
17550
17551 return read_addr_index_1 (addr_index, addr_base, addr_size);
17552}
17553
57d63ce2
DE
17554/* Given a DW_FORM_GNU_str_index, fetch the string.
17555 This is only used by the Fission support. */
3019eac3 17556
d521ce57 17557static const char *
342587c4 17558read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
17559{
17560 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 17561 const char *objf_name = objfile_name (objfile);
3019eac3 17562 bfd *abfd = objfile->obfd;
342587c4 17563 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
17564 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17565 struct dwarf2_section_info *str_offsets_section =
17566 &reader->dwo_file->sections.str_offsets;
d521ce57 17567 const gdb_byte *info_ptr;
3019eac3 17568 ULONGEST str_offset;
57d63ce2 17569 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 17570
73869dc2
DE
17571 dwarf2_read_section (objfile, str_section);
17572 dwarf2_read_section (objfile, str_offsets_section);
17573 if (str_section->buffer == NULL)
57d63ce2 17574 error (_("%s used without .debug_str.dwo section"
9c541725
PA
17575 " in CU at offset 0x%x [in module %s]"),
17576 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17577 if (str_offsets_section->buffer == NULL)
57d63ce2 17578 error (_("%s used without .debug_str_offsets.dwo section"
9c541725
PA
17579 " in CU at offset 0x%x [in module %s]"),
17580 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17581 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 17582 error (_("%s pointing outside of .debug_str_offsets.dwo"
9c541725
PA
17583 " section in CU at offset 0x%x [in module %s]"),
17584 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17585 info_ptr = (str_offsets_section->buffer
3019eac3
DE
17586 + str_index * cu->header.offset_size);
17587 if (cu->header.offset_size == 4)
17588 str_offset = bfd_get_32 (abfd, info_ptr);
17589 else
17590 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 17591 if (str_offset >= str_section->size)
57d63ce2 17592 error (_("Offset from %s pointing outside of"
9c541725
PA
17593 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
17594 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17595 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
17596}
17597
3019eac3
DE
17598/* Return the length of an LEB128 number in BUF. */
17599
17600static int
17601leb128_size (const gdb_byte *buf)
17602{
17603 const gdb_byte *begin = buf;
17604 gdb_byte byte;
17605
17606 while (1)
17607 {
17608 byte = *buf++;
17609 if ((byte & 128) == 0)
17610 return buf - begin;
17611 }
17612}
17613
c906108c 17614static void
e142c38c 17615set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
17616{
17617 switch (lang)
17618 {
17619 case DW_LANG_C89:
76bee0cc 17620 case DW_LANG_C99:
0cfd832f 17621 case DW_LANG_C11:
c906108c 17622 case DW_LANG_C:
d1be3247 17623 case DW_LANG_UPC:
e142c38c 17624 cu->language = language_c;
c906108c 17625 break;
9c37b5ae 17626 case DW_LANG_Java:
c906108c 17627 case DW_LANG_C_plus_plus:
0cfd832f
MW
17628 case DW_LANG_C_plus_plus_11:
17629 case DW_LANG_C_plus_plus_14:
e142c38c 17630 cu->language = language_cplus;
c906108c 17631 break;
6aecb9c2
JB
17632 case DW_LANG_D:
17633 cu->language = language_d;
17634 break;
c906108c
SS
17635 case DW_LANG_Fortran77:
17636 case DW_LANG_Fortran90:
b21b22e0 17637 case DW_LANG_Fortran95:
f7de9aab
MW
17638 case DW_LANG_Fortran03:
17639 case DW_LANG_Fortran08:
e142c38c 17640 cu->language = language_fortran;
c906108c 17641 break;
a766d390
DE
17642 case DW_LANG_Go:
17643 cu->language = language_go;
17644 break;
c906108c 17645 case DW_LANG_Mips_Assembler:
e142c38c 17646 cu->language = language_asm;
c906108c
SS
17647 break;
17648 case DW_LANG_Ada83:
8aaf0b47 17649 case DW_LANG_Ada95:
bc5f45f8
JB
17650 cu->language = language_ada;
17651 break;
72019c9c
GM
17652 case DW_LANG_Modula2:
17653 cu->language = language_m2;
17654 break;
fe8e67fd
PM
17655 case DW_LANG_Pascal83:
17656 cu->language = language_pascal;
17657 break;
22566fbd
DJ
17658 case DW_LANG_ObjC:
17659 cu->language = language_objc;
17660 break;
c44af4eb
TT
17661 case DW_LANG_Rust:
17662 case DW_LANG_Rust_old:
17663 cu->language = language_rust;
17664 break;
c906108c
SS
17665 case DW_LANG_Cobol74:
17666 case DW_LANG_Cobol85:
c906108c 17667 default:
e142c38c 17668 cu->language = language_minimal;
c906108c
SS
17669 break;
17670 }
e142c38c 17671 cu->language_defn = language_def (cu->language);
c906108c
SS
17672}
17673
17674/* Return the named attribute or NULL if not there. */
17675
17676static struct attribute *
e142c38c 17677dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17678{
a48e046c 17679 for (;;)
c906108c 17680 {
a48e046c
TT
17681 unsigned int i;
17682 struct attribute *spec = NULL;
17683
17684 for (i = 0; i < die->num_attrs; ++i)
17685 {
17686 if (die->attrs[i].name == name)
17687 return &die->attrs[i];
17688 if (die->attrs[i].name == DW_AT_specification
17689 || die->attrs[i].name == DW_AT_abstract_origin)
17690 spec = &die->attrs[i];
17691 }
17692
17693 if (!spec)
17694 break;
c906108c 17695
f2f0e013 17696 die = follow_die_ref (die, spec, &cu);
f2f0e013 17697 }
c5aa993b 17698
c906108c
SS
17699 return NULL;
17700}
17701
348e048f
DE
17702/* Return the named attribute or NULL if not there,
17703 but do not follow DW_AT_specification, etc.
17704 This is for use in contexts where we're reading .debug_types dies.
17705 Following DW_AT_specification, DW_AT_abstract_origin will take us
17706 back up the chain, and we want to go down. */
17707
17708static struct attribute *
45e58e77 17709dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17710{
17711 unsigned int i;
17712
17713 for (i = 0; i < die->num_attrs; ++i)
17714 if (die->attrs[i].name == name)
17715 return &die->attrs[i];
17716
17717 return NULL;
17718}
17719
7d45c7c3
KB
17720/* Return the string associated with a string-typed attribute, or NULL if it
17721 is either not found or is of an incorrect type. */
17722
17723static const char *
17724dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17725{
17726 struct attribute *attr;
17727 const char *str = NULL;
17728
17729 attr = dwarf2_attr (die, name, cu);
17730
17731 if (attr != NULL)
17732 {
43988095 17733 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
b3340438
L
17734 || attr->form == DW_FORM_string
17735 || attr->form == DW_FORM_GNU_str_index
16eb6b2d 17736 || attr->form == DW_FORM_GNU_strp_alt)
7d45c7c3
KB
17737 str = DW_STRING (attr);
17738 else
17739 complaint (&symfile_complaints,
17740 _("string type expected for attribute %s for "
17741 "DIE at 0x%x in module %s"),
9c541725 17742 dwarf_attr_name (name), to_underlying (die->sect_off),
7d45c7c3
KB
17743 objfile_name (cu->objfile));
17744 }
17745
17746 return str;
17747}
17748
05cf31d1
JB
17749/* Return non-zero iff the attribute NAME is defined for the given DIE,
17750 and holds a non-zero value. This function should only be used for
2dc7f7b3 17751 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17752
17753static int
17754dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17755{
17756 struct attribute *attr = dwarf2_attr (die, name, cu);
17757
17758 return (attr && DW_UNSND (attr));
17759}
17760
3ca72b44 17761static int
e142c38c 17762die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17763{
05cf31d1
JB
17764 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17765 which value is non-zero. However, we have to be careful with
17766 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17767 (via dwarf2_flag_true_p) follows this attribute. So we may
17768 end up accidently finding a declaration attribute that belongs
17769 to a different DIE referenced by the specification attribute,
17770 even though the given DIE does not have a declaration attribute. */
17771 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17772 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17773}
17774
63d06c5c 17775/* Return the die giving the specification for DIE, if there is
f2f0e013 17776 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17777 containing the return value on output. If there is no
17778 specification, but there is an abstract origin, that is
17779 returned. */
63d06c5c
DC
17780
17781static struct die_info *
f2f0e013 17782die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17783{
f2f0e013
DJ
17784 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17785 *spec_cu);
63d06c5c 17786
edb3359d
DJ
17787 if (spec_attr == NULL)
17788 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17789
63d06c5c
DC
17790 if (spec_attr == NULL)
17791 return NULL;
17792 else
f2f0e013 17793 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17794}
c906108c 17795
527f3840
JK
17796/* Stub for free_line_header to match void * callback types. */
17797
17798static void
17799free_line_header_voidp (void *arg)
17800{
9a3c8263 17801 struct line_header *lh = (struct line_header *) arg;
527f3840 17802
fff8551c 17803 delete lh;
527f3840
JK
17804}
17805
fff8551c
PA
17806void
17807line_header::add_include_dir (const char *include_dir)
c906108c 17808{
27e0867f 17809 if (dwarf_line_debug >= 2)
fff8551c
PA
17810 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
17811 include_dirs.size () + 1, include_dir);
27e0867f 17812
fff8551c 17813 include_dirs.push_back (include_dir);
debd256d 17814}
6e70227d 17815
fff8551c
PA
17816void
17817line_header::add_file_name (const char *name,
ecfb656c 17818 dir_index d_index,
fff8551c
PA
17819 unsigned int mod_time,
17820 unsigned int length)
debd256d 17821{
27e0867f
DE
17822 if (dwarf_line_debug >= 2)
17823 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
fff8551c 17824 (unsigned) file_names.size () + 1, name);
27e0867f 17825
ecfb656c 17826 file_names.emplace_back (name, d_index, mod_time, length);
debd256d 17827}
6e70227d 17828
83769d0b 17829/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17830
17831static struct dwarf2_section_info *
17832get_debug_line_section (struct dwarf2_cu *cu)
17833{
17834 struct dwarf2_section_info *section;
17835
17836 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17837 DWO file. */
17838 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17839 section = &cu->dwo_unit->dwo_file->sections.line;
17840 else if (cu->per_cu->is_dwz)
17841 {
17842 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17843
17844 section = &dwz->line;
17845 }
17846 else
17847 section = &dwarf2_per_objfile->line;
17848
17849 return section;
17850}
17851
43988095
JK
17852/* Read directory or file name entry format, starting with byte of
17853 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17854 entries count and the entries themselves in the described entry
17855 format. */
17856
17857static void
17858read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17859 struct line_header *lh,
17860 const struct comp_unit_head *cu_header,
17861 void (*callback) (struct line_header *lh,
17862 const char *name,
ecfb656c 17863 dir_index d_index,
43988095
JK
17864 unsigned int mod_time,
17865 unsigned int length))
17866{
17867 gdb_byte format_count, formati;
17868 ULONGEST data_count, datai;
17869 const gdb_byte *buf = *bufp;
17870 const gdb_byte *format_header_data;
17871 int i;
17872 unsigned int bytes_read;
17873
17874 format_count = read_1_byte (abfd, buf);
17875 buf += 1;
17876 format_header_data = buf;
17877 for (formati = 0; formati < format_count; formati++)
17878 {
17879 read_unsigned_leb128 (abfd, buf, &bytes_read);
17880 buf += bytes_read;
17881 read_unsigned_leb128 (abfd, buf, &bytes_read);
17882 buf += bytes_read;
17883 }
17884
17885 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17886 buf += bytes_read;
17887 for (datai = 0; datai < data_count; datai++)
17888 {
17889 const gdb_byte *format = format_header_data;
17890 struct file_entry fe;
17891
43988095
JK
17892 for (formati = 0; formati < format_count; formati++)
17893 {
ecfb656c 17894 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 17895 format += bytes_read;
43988095 17896
ecfb656c 17897 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 17898 format += bytes_read;
ecfb656c
PA
17899
17900 gdb::optional<const char *> string;
17901 gdb::optional<unsigned int> uint;
17902
43988095
JK
17903 switch (form)
17904 {
17905 case DW_FORM_string:
ecfb656c 17906 string.emplace (read_direct_string (abfd, buf, &bytes_read));
43988095
JK
17907 buf += bytes_read;
17908 break;
17909
17910 case DW_FORM_line_strp:
ecfb656c
PA
17911 string.emplace (read_indirect_line_string (abfd, buf,
17912 cu_header,
17913 &bytes_read));
43988095
JK
17914 buf += bytes_read;
17915 break;
17916
17917 case DW_FORM_data1:
ecfb656c 17918 uint.emplace (read_1_byte (abfd, buf));
43988095
JK
17919 buf += 1;
17920 break;
17921
17922 case DW_FORM_data2:
ecfb656c 17923 uint.emplace (read_2_bytes (abfd, buf));
43988095
JK
17924 buf += 2;
17925 break;
17926
17927 case DW_FORM_data4:
ecfb656c 17928 uint.emplace (read_4_bytes (abfd, buf));
43988095
JK
17929 buf += 4;
17930 break;
17931
17932 case DW_FORM_data8:
ecfb656c 17933 uint.emplace (read_8_bytes (abfd, buf));
43988095
JK
17934 buf += 8;
17935 break;
17936
17937 case DW_FORM_udata:
ecfb656c 17938 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
43988095
JK
17939 buf += bytes_read;
17940 break;
17941
17942 case DW_FORM_block:
17943 /* It is valid only for DW_LNCT_timestamp which is ignored by
17944 current GDB. */
17945 break;
17946 }
ecfb656c
PA
17947
17948 switch (content_type)
17949 {
17950 case DW_LNCT_path:
17951 if (string.has_value ())
17952 fe.name = *string;
17953 break;
17954 case DW_LNCT_directory_index:
17955 if (uint.has_value ())
17956 fe.d_index = (dir_index) *uint;
17957 break;
17958 case DW_LNCT_timestamp:
17959 if (uint.has_value ())
17960 fe.mod_time = *uint;
17961 break;
17962 case DW_LNCT_size:
17963 if (uint.has_value ())
17964 fe.length = *uint;
17965 break;
17966 case DW_LNCT_MD5:
17967 break;
17968 default:
17969 complaint (&symfile_complaints,
17970 _("Unknown format content type %s"),
17971 pulongest (content_type));
17972 }
43988095
JK
17973 }
17974
ecfb656c 17975 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
43988095
JK
17976 }
17977
17978 *bufp = buf;
17979}
17980
debd256d 17981/* Read the statement program header starting at OFFSET in
3019eac3 17982 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17983 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17984 Returns NULL if there is a problem reading the header, e.g., if it
17985 has a version we don't understand.
debd256d
JB
17986
17987 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17988 the returned object point into the dwarf line section buffer,
17989 and must not be freed. */
ae2de4f8 17990
fff8551c 17991static line_header_up
9c541725 17992dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
debd256d 17993{
d521ce57 17994 const gdb_byte *line_ptr;
c764a876 17995 unsigned int bytes_read, offset_size;
debd256d 17996 int i;
d521ce57 17997 const char *cur_dir, *cur_file;
3019eac3
DE
17998 struct dwarf2_section_info *section;
17999 bfd *abfd;
18000
36586728 18001 section = get_debug_line_section (cu);
3019eac3
DE
18002 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
18003 if (section->buffer == NULL)
debd256d 18004 {
3019eac3
DE
18005 if (cu->dwo_unit && cu->per_cu->is_debug_types)
18006 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
18007 else
18008 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
18009 return 0;
18010 }
18011
fceca515
DE
18012 /* We can't do this until we know the section is non-empty.
18013 Only then do we know we have such a section. */
a32a8923 18014 abfd = get_section_bfd_owner (section);
fceca515 18015
a738430d
MK
18016 /* Make sure that at least there's room for the total_length field.
18017 That could be 12 bytes long, but we're just going to fudge that. */
9c541725 18018 if (to_underlying (sect_off) + 4 >= section->size)
debd256d 18019 {
4d3c2250 18020 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
18021 return 0;
18022 }
18023
fff8551c 18024 line_header_up lh (new line_header ());
debd256d 18025
9c541725 18026 lh->sect_off = sect_off;
527f3840
JK
18027 lh->offset_in_dwz = cu->per_cu->is_dwz;
18028
9c541725 18029 line_ptr = section->buffer + to_underlying (sect_off);
debd256d 18030
a738430d 18031 /* Read in the header. */
6e70227d 18032 lh->total_length =
c764a876
DE
18033 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
18034 &bytes_read, &offset_size);
debd256d 18035 line_ptr += bytes_read;
3019eac3 18036 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 18037 {
4d3c2250 18038 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
18039 return 0;
18040 }
18041 lh->statement_program_end = line_ptr + lh->total_length;
18042 lh->version = read_2_bytes (abfd, line_ptr);
18043 line_ptr += 2;
43988095 18044 if (lh->version > 5)
cd366ee8
DE
18045 {
18046 /* This is a version we don't understand. The format could have
18047 changed in ways we don't handle properly so just punt. */
18048 complaint (&symfile_complaints,
18049 _("unsupported version in .debug_line section"));
18050 return NULL;
18051 }
43988095
JK
18052 if (lh->version >= 5)
18053 {
18054 gdb_byte segment_selector_size;
18055
18056 /* Skip address size. */
18057 read_1_byte (abfd, line_ptr);
18058 line_ptr += 1;
18059
18060 segment_selector_size = read_1_byte (abfd, line_ptr);
18061 line_ptr += 1;
18062 if (segment_selector_size != 0)
18063 {
18064 complaint (&symfile_complaints,
18065 _("unsupported segment selector size %u "
18066 "in .debug_line section"),
18067 segment_selector_size);
18068 return NULL;
18069 }
18070 }
c764a876
DE
18071 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
18072 line_ptr += offset_size;
debd256d
JB
18073 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
18074 line_ptr += 1;
2dc7f7b3
TT
18075 if (lh->version >= 4)
18076 {
18077 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
18078 line_ptr += 1;
18079 }
18080 else
18081 lh->maximum_ops_per_instruction = 1;
18082
18083 if (lh->maximum_ops_per_instruction == 0)
18084 {
18085 lh->maximum_ops_per_instruction = 1;
18086 complaint (&symfile_complaints,
3e43a32a
MS
18087 _("invalid maximum_ops_per_instruction "
18088 "in `.debug_line' section"));
2dc7f7b3
TT
18089 }
18090
debd256d
JB
18091 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
18092 line_ptr += 1;
18093 lh->line_base = read_1_signed_byte (abfd, line_ptr);
18094 line_ptr += 1;
18095 lh->line_range = read_1_byte (abfd, line_ptr);
18096 line_ptr += 1;
18097 lh->opcode_base = read_1_byte (abfd, line_ptr);
18098 line_ptr += 1;
fff8551c 18099 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
debd256d
JB
18100
18101 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
18102 for (i = 1; i < lh->opcode_base; ++i)
18103 {
18104 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
18105 line_ptr += 1;
18106 }
18107
43988095 18108 if (lh->version >= 5)
debd256d 18109 {
43988095 18110 /* Read directory table. */
fff8551c
PA
18111 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18112 [] (struct line_header *lh, const char *name,
ecfb656c 18113 dir_index d_index, unsigned int mod_time,
fff8551c
PA
18114 unsigned int length)
18115 {
18116 lh->add_include_dir (name);
18117 });
debd256d 18118
43988095 18119 /* Read file name table. */
fff8551c
PA
18120 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18121 [] (struct line_header *lh, const char *name,
ecfb656c 18122 dir_index d_index, unsigned int mod_time,
fff8551c
PA
18123 unsigned int length)
18124 {
ecfb656c 18125 lh->add_file_name (name, d_index, mod_time, length);
fff8551c 18126 });
43988095
JK
18127 }
18128 else
debd256d 18129 {
43988095
JK
18130 /* Read directory table. */
18131 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18132 {
18133 line_ptr += bytes_read;
fff8551c 18134 lh->add_include_dir (cur_dir);
43988095 18135 }
debd256d
JB
18136 line_ptr += bytes_read;
18137
43988095
JK
18138 /* Read file name table. */
18139 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18140 {
ecfb656c
PA
18141 unsigned int mod_time, length;
18142 dir_index d_index;
43988095
JK
18143
18144 line_ptr += bytes_read;
ecfb656c 18145 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
43988095
JK
18146 line_ptr += bytes_read;
18147 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18148 line_ptr += bytes_read;
18149 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18150 line_ptr += bytes_read;
18151
ecfb656c 18152 lh->add_file_name (cur_file, d_index, mod_time, length);
43988095
JK
18153 }
18154 line_ptr += bytes_read;
debd256d 18155 }
6e70227d 18156 lh->statement_program_start = line_ptr;
debd256d 18157
3019eac3 18158 if (line_ptr > (section->buffer + section->size))
4d3c2250 18159 complaint (&symfile_complaints,
3e43a32a
MS
18160 _("line number info header doesn't "
18161 "fit in `.debug_line' section"));
debd256d 18162
debd256d
JB
18163 return lh;
18164}
c906108c 18165
c6da4cef
DE
18166/* Subroutine of dwarf_decode_lines to simplify it.
18167 Return the file name of the psymtab for included file FILE_INDEX
18168 in line header LH of PST.
18169 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18170 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
18171 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
18172
18173 The function creates dangling cleanup registration. */
c6da4cef 18174
d521ce57 18175static const char *
c6da4cef
DE
18176psymtab_include_file_name (const struct line_header *lh, int file_index,
18177 const struct partial_symtab *pst,
18178 const char *comp_dir)
18179{
8c43009f 18180 const file_entry &fe = lh->file_names[file_index];
d521ce57
TT
18181 const char *include_name = fe.name;
18182 const char *include_name_to_compare = include_name;
72b9f47f
TT
18183 const char *pst_filename;
18184 char *copied_name = NULL;
c6da4cef
DE
18185 int file_is_pst;
18186
8c43009f 18187 const char *dir_name = fe.include_dir (lh);
c6da4cef
DE
18188
18189 if (!IS_ABSOLUTE_PATH (include_name)
18190 && (dir_name != NULL || comp_dir != NULL))
18191 {
18192 /* Avoid creating a duplicate psymtab for PST.
18193 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18194 Before we do the comparison, however, we need to account
18195 for DIR_NAME and COMP_DIR.
18196 First prepend dir_name (if non-NULL). If we still don't
18197 have an absolute path prepend comp_dir (if non-NULL).
18198 However, the directory we record in the include-file's
18199 psymtab does not contain COMP_DIR (to match the
18200 corresponding symtab(s)).
18201
18202 Example:
18203
18204 bash$ cd /tmp
18205 bash$ gcc -g ./hello.c
18206 include_name = "hello.c"
18207 dir_name = "."
18208 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
18209 DW_AT_name = "./hello.c"
18210
18211 */
c6da4cef
DE
18212
18213 if (dir_name != NULL)
18214 {
d521ce57
TT
18215 char *tem = concat (dir_name, SLASH_STRING,
18216 include_name, (char *)NULL);
18217
18218 make_cleanup (xfree, tem);
18219 include_name = tem;
c6da4cef 18220 include_name_to_compare = include_name;
c6da4cef
DE
18221 }
18222 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18223 {
d521ce57
TT
18224 char *tem = concat (comp_dir, SLASH_STRING,
18225 include_name, (char *)NULL);
18226
18227 make_cleanup (xfree, tem);
18228 include_name_to_compare = tem;
c6da4cef
DE
18229 }
18230 }
18231
18232 pst_filename = pst->filename;
18233 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18234 {
72b9f47f
TT
18235 copied_name = concat (pst->dirname, SLASH_STRING,
18236 pst_filename, (char *)NULL);
18237 pst_filename = copied_name;
c6da4cef
DE
18238 }
18239
1e3fad37 18240 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 18241
72b9f47f
TT
18242 if (copied_name != NULL)
18243 xfree (copied_name);
c6da4cef
DE
18244
18245 if (file_is_pst)
18246 return NULL;
18247 return include_name;
18248}
18249
d9b3de22
DE
18250/* State machine to track the state of the line number program. */
18251
6f77053d 18252class lnp_state_machine
d9b3de22 18253{
6f77053d
PA
18254public:
18255 /* Initialize a machine state for the start of a line number
18256 program. */
18257 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18258
8c43009f
PA
18259 file_entry *current_file ()
18260 {
18261 /* lh->file_names is 0-based, but the file name numbers in the
18262 statement program are 1-based. */
6f77053d
PA
18263 return m_line_header->file_name_at (m_file);
18264 }
18265
18266 /* Record the line in the state machine. END_SEQUENCE is true if
18267 we're processing the end of a sequence. */
18268 void record_line (bool end_sequence);
18269
18270 /* Check address and if invalid nop-out the rest of the lines in this
18271 sequence. */
18272 void check_line_address (struct dwarf2_cu *cu,
18273 const gdb_byte *line_ptr,
18274 CORE_ADDR lowpc, CORE_ADDR address);
18275
18276 void handle_set_discriminator (unsigned int discriminator)
18277 {
18278 m_discriminator = discriminator;
18279 m_line_has_non_zero_discriminator |= discriminator != 0;
18280 }
18281
18282 /* Handle DW_LNE_set_address. */
18283 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18284 {
18285 m_op_index = 0;
18286 address += baseaddr;
18287 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18288 }
18289
18290 /* Handle DW_LNS_advance_pc. */
18291 void handle_advance_pc (CORE_ADDR adjust);
18292
18293 /* Handle a special opcode. */
18294 void handle_special_opcode (unsigned char op_code);
18295
18296 /* Handle DW_LNS_advance_line. */
18297 void handle_advance_line (int line_delta)
18298 {
18299 advance_line (line_delta);
18300 }
18301
18302 /* Handle DW_LNS_set_file. */
18303 void handle_set_file (file_name_index file);
18304
18305 /* Handle DW_LNS_negate_stmt. */
18306 void handle_negate_stmt ()
18307 {
18308 m_is_stmt = !m_is_stmt;
18309 }
18310
18311 /* Handle DW_LNS_const_add_pc. */
18312 void handle_const_add_pc ();
18313
18314 /* Handle DW_LNS_fixed_advance_pc. */
18315 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18316 {
18317 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18318 m_op_index = 0;
18319 }
18320
18321 /* Handle DW_LNS_copy. */
18322 void handle_copy ()
18323 {
18324 record_line (false);
18325 m_discriminator = 0;
18326 }
18327
18328 /* Handle DW_LNE_end_sequence. */
18329 void handle_end_sequence ()
18330 {
18331 m_record_line_callback = ::record_line;
18332 }
18333
18334private:
18335 /* Advance the line by LINE_DELTA. */
18336 void advance_line (int line_delta)
18337 {
18338 m_line += line_delta;
18339
18340 if (line_delta != 0)
18341 m_line_has_non_zero_discriminator = m_discriminator != 0;
8c43009f
PA
18342 }
18343
6f77053d
PA
18344 gdbarch *m_gdbarch;
18345
18346 /* True if we're recording lines.
18347 Otherwise we're building partial symtabs and are just interested in
18348 finding include files mentioned by the line number program. */
18349 bool m_record_lines_p;
18350
8c43009f 18351 /* The line number header. */
6f77053d 18352 line_header *m_line_header;
8c43009f 18353
6f77053d
PA
18354 /* These are part of the standard DWARF line number state machine,
18355 and initialized according to the DWARF spec. */
d9b3de22 18356
6f77053d 18357 unsigned char m_op_index = 0;
8c43009f 18358 /* The line table index (1-based) of the current file. */
6f77053d
PA
18359 file_name_index m_file = (file_name_index) 1;
18360 unsigned int m_line = 1;
18361
18362 /* These are initialized in the constructor. */
18363
18364 CORE_ADDR m_address;
18365 bool m_is_stmt;
18366 unsigned int m_discriminator;
d9b3de22
DE
18367
18368 /* Additional bits of state we need to track. */
18369
18370 /* The last file that we called dwarf2_start_subfile for.
18371 This is only used for TLLs. */
6f77053d 18372 unsigned int m_last_file = 0;
d9b3de22 18373 /* The last file a line number was recorded for. */
6f77053d 18374 struct subfile *m_last_subfile = NULL;
d9b3de22
DE
18375
18376 /* The function to call to record a line. */
6f77053d 18377 record_line_ftype *m_record_line_callback = NULL;
d9b3de22
DE
18378
18379 /* The last line number that was recorded, used to coalesce
18380 consecutive entries for the same line. This can happen, for
18381 example, when discriminators are present. PR 17276. */
6f77053d
PA
18382 unsigned int m_last_line = 0;
18383 bool m_line_has_non_zero_discriminator = false;
8c43009f 18384};
d9b3de22 18385
6f77053d
PA
18386void
18387lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18388{
18389 CORE_ADDR addr_adj = (((m_op_index + adjust)
18390 / m_line_header->maximum_ops_per_instruction)
18391 * m_line_header->minimum_instruction_length);
18392 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18393 m_op_index = ((m_op_index + adjust)
18394 % m_line_header->maximum_ops_per_instruction);
18395}
d9b3de22 18396
6f77053d
PA
18397void
18398lnp_state_machine::handle_special_opcode (unsigned char op_code)
d9b3de22 18399{
6f77053d
PA
18400 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18401 CORE_ADDR addr_adj = (((m_op_index
18402 + (adj_opcode / m_line_header->line_range))
18403 / m_line_header->maximum_ops_per_instruction)
18404 * m_line_header->minimum_instruction_length);
18405 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18406 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18407 % m_line_header->maximum_ops_per_instruction);
d9b3de22 18408
6f77053d
PA
18409 int line_delta = (m_line_header->line_base
18410 + (adj_opcode % m_line_header->line_range));
18411 advance_line (line_delta);
18412 record_line (false);
18413 m_discriminator = 0;
18414}
d9b3de22 18415
6f77053d
PA
18416void
18417lnp_state_machine::handle_set_file (file_name_index file)
18418{
18419 m_file = file;
18420
18421 const file_entry *fe = current_file ();
18422 if (fe == NULL)
18423 dwarf2_debug_line_missing_file_complaint ();
18424 else if (m_record_lines_p)
18425 {
18426 const char *dir = fe->include_dir (m_line_header);
18427
18428 m_last_subfile = current_subfile;
18429 m_line_has_non_zero_discriminator = m_discriminator != 0;
18430 dwarf2_start_subfile (fe->name, dir);
18431 }
18432}
18433
18434void
18435lnp_state_machine::handle_const_add_pc ()
18436{
18437 CORE_ADDR adjust
18438 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
18439
18440 CORE_ADDR addr_adj
18441 = (((m_op_index + adjust)
18442 / m_line_header->maximum_ops_per_instruction)
18443 * m_line_header->minimum_instruction_length);
18444
18445 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18446 m_op_index = ((m_op_index + adjust)
18447 % m_line_header->maximum_ops_per_instruction);
18448}
d9b3de22 18449
c91513d8
PP
18450/* Ignore this record_line request. */
18451
18452static void
18453noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18454{
18455 return;
18456}
18457
a05a36a5
DE
18458/* Return non-zero if we should add LINE to the line number table.
18459 LINE is the line to add, LAST_LINE is the last line that was added,
18460 LAST_SUBFILE is the subfile for LAST_LINE.
18461 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18462 had a non-zero discriminator.
18463
18464 We have to be careful in the presence of discriminators.
18465 E.g., for this line:
18466
18467 for (i = 0; i < 100000; i++);
18468
18469 clang can emit four line number entries for that one line,
18470 each with a different discriminator.
18471 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18472
18473 However, we want gdb to coalesce all four entries into one.
18474 Otherwise the user could stepi into the middle of the line and
18475 gdb would get confused about whether the pc really was in the
18476 middle of the line.
18477
18478 Things are further complicated by the fact that two consecutive
18479 line number entries for the same line is a heuristic used by gcc
18480 to denote the end of the prologue. So we can't just discard duplicate
18481 entries, we have to be selective about it. The heuristic we use is
18482 that we only collapse consecutive entries for the same line if at least
18483 one of those entries has a non-zero discriminator. PR 17276.
18484
18485 Note: Addresses in the line number state machine can never go backwards
18486 within one sequence, thus this coalescing is ok. */
18487
18488static int
18489dwarf_record_line_p (unsigned int line, unsigned int last_line,
18490 int line_has_non_zero_discriminator,
18491 struct subfile *last_subfile)
18492{
18493 if (current_subfile != last_subfile)
18494 return 1;
18495 if (line != last_line)
18496 return 1;
18497 /* Same line for the same file that we've seen already.
18498 As a last check, for pr 17276, only record the line if the line
18499 has never had a non-zero discriminator. */
18500 if (!line_has_non_zero_discriminator)
18501 return 1;
18502 return 0;
18503}
18504
252a6764
DE
18505/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18506 in the line table of subfile SUBFILE. */
18507
18508static void
d9b3de22
DE
18509dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18510 unsigned int line, CORE_ADDR address,
18511 record_line_ftype p_record_line)
252a6764
DE
18512{
18513 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18514
27e0867f
DE
18515 if (dwarf_line_debug)
18516 {
18517 fprintf_unfiltered (gdb_stdlog,
18518 "Recording line %u, file %s, address %s\n",
18519 line, lbasename (subfile->name),
18520 paddress (gdbarch, address));
18521 }
18522
d5962de5 18523 (*p_record_line) (subfile, line, addr);
252a6764
DE
18524}
18525
18526/* Subroutine of dwarf_decode_lines_1 to simplify it.
18527 Mark the end of a set of line number records.
d9b3de22 18528 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
18529 If SUBFILE is NULL the request is ignored. */
18530
18531static void
18532dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18533 CORE_ADDR address, record_line_ftype p_record_line)
18534{
27e0867f
DE
18535 if (subfile == NULL)
18536 return;
18537
18538 if (dwarf_line_debug)
18539 {
18540 fprintf_unfiltered (gdb_stdlog,
18541 "Finishing current line, file %s, address %s\n",
18542 lbasename (subfile->name),
18543 paddress (gdbarch, address));
18544 }
18545
d9b3de22
DE
18546 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18547}
18548
6f77053d
PA
18549void
18550lnp_state_machine::record_line (bool end_sequence)
d9b3de22 18551{
d9b3de22
DE
18552 if (dwarf_line_debug)
18553 {
18554 fprintf_unfiltered (gdb_stdlog,
18555 "Processing actual line %u: file %u,"
18556 " address %s, is_stmt %u, discrim %u\n",
6f77053d
PA
18557 m_line, to_underlying (m_file),
18558 paddress (m_gdbarch, m_address),
18559 m_is_stmt, m_discriminator);
d9b3de22
DE
18560 }
18561
6f77053d 18562 file_entry *fe = current_file ();
8c43009f
PA
18563
18564 if (fe == NULL)
d9b3de22
DE
18565 dwarf2_debug_line_missing_file_complaint ();
18566 /* For now we ignore lines not starting on an instruction boundary.
18567 But not when processing end_sequence for compatibility with the
18568 previous version of the code. */
6f77053d 18569 else if (m_op_index == 0 || end_sequence)
d9b3de22 18570 {
8c43009f 18571 fe->included_p = 1;
6f77053d 18572 if (m_record_lines_p && m_is_stmt)
d9b3de22 18573 {
6f77053d 18574 if (m_last_subfile != current_subfile || end_sequence)
d9b3de22 18575 {
6f77053d
PA
18576 dwarf_finish_line (m_gdbarch, m_last_subfile,
18577 m_address, m_record_line_callback);
d9b3de22
DE
18578 }
18579
18580 if (!end_sequence)
18581 {
6f77053d
PA
18582 if (dwarf_record_line_p (m_line, m_last_line,
18583 m_line_has_non_zero_discriminator,
18584 m_last_subfile))
d9b3de22 18585 {
6f77053d
PA
18586 dwarf_record_line_1 (m_gdbarch, current_subfile,
18587 m_line, m_address,
18588 m_record_line_callback);
d9b3de22 18589 }
6f77053d
PA
18590 m_last_subfile = current_subfile;
18591 m_last_line = m_line;
d9b3de22
DE
18592 }
18593 }
18594 }
18595}
18596
6f77053d
PA
18597lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
18598 bool record_lines_p)
d9b3de22 18599{
6f77053d
PA
18600 m_gdbarch = arch;
18601 m_record_lines_p = record_lines_p;
18602 m_line_header = lh;
d9b3de22 18603
6f77053d 18604 m_record_line_callback = ::record_line;
d9b3de22 18605
d9b3de22
DE
18606 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18607 was a line entry for it so that the backend has a chance to adjust it
18608 and also record it in case it needs it. This is currently used by MIPS
18609 code, cf. `mips_adjust_dwarf2_line'. */
6f77053d
PA
18610 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
18611 m_is_stmt = lh->default_is_stmt;
18612 m_discriminator = 0;
252a6764
DE
18613}
18614
6f77053d
PA
18615void
18616lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
18617 const gdb_byte *line_ptr,
18618 CORE_ADDR lowpc, CORE_ADDR address)
924c2928
DE
18619{
18620 /* If address < lowpc then it's not a usable value, it's outside the
18621 pc range of the CU. However, we restrict the test to only address
18622 values of zero to preserve GDB's previous behaviour which is to
18623 handle the specific case of a function being GC'd by the linker. */
18624
18625 if (address == 0 && address < lowpc)
18626 {
18627 /* This line table is for a function which has been
18628 GCd by the linker. Ignore it. PR gdb/12528 */
18629
18630 struct objfile *objfile = cu->objfile;
18631 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18632
18633 complaint (&symfile_complaints,
18634 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18635 line_offset, objfile_name (objfile));
6f77053d
PA
18636 m_record_line_callback = noop_record_line;
18637 /* Note: record_line_callback is left as noop_record_line until
18638 we see DW_LNE_end_sequence. */
924c2928
DE
18639 }
18640}
18641
f3f5162e 18642/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
18643 Process the line number information in LH.
18644 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18645 program in order to set included_p for every referenced header. */
debd256d 18646
c906108c 18647static void
43f3e411
DE
18648dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18649 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 18650{
d521ce57
TT
18651 const gdb_byte *line_ptr, *extended_end;
18652 const gdb_byte *line_end;
a8c50c1f 18653 unsigned int bytes_read, extended_len;
699ca60a 18654 unsigned char op_code, extended_op;
e142c38c
DJ
18655 CORE_ADDR baseaddr;
18656 struct objfile *objfile = cu->objfile;
f3f5162e 18657 bfd *abfd = objfile->obfd;
fbf65064 18658 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6f77053d
PA
18659 /* True if we're recording line info (as opposed to building partial
18660 symtabs and just interested in finding include files mentioned by
18661 the line number program). */
18662 bool record_lines_p = !decode_for_pst_p;
e142c38c
DJ
18663
18664 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18665
debd256d
JB
18666 line_ptr = lh->statement_program_start;
18667 line_end = lh->statement_program_end;
c906108c
SS
18668
18669 /* Read the statement sequences until there's nothing left. */
18670 while (line_ptr < line_end)
18671 {
6f77053d
PA
18672 /* The DWARF line number program state machine. Reset the state
18673 machine at the start of each sequence. */
18674 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
18675 bool end_sequence = false;
d9b3de22 18676
8c43009f 18677 if (record_lines_p)
c906108c 18678 {
8c43009f
PA
18679 /* Start a subfile for the current file of the state
18680 machine. */
18681 const file_entry *fe = state_machine.current_file ();
18682
18683 if (fe != NULL)
18684 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
c906108c
SS
18685 }
18686
a738430d 18687 /* Decode the table. */
d9b3de22 18688 while (line_ptr < line_end && !end_sequence)
c906108c
SS
18689 {
18690 op_code = read_1_byte (abfd, line_ptr);
18691 line_ptr += 1;
9aa1fe7e 18692
debd256d 18693 if (op_code >= lh->opcode_base)
6e70227d 18694 {
8e07a239 18695 /* Special opcode. */
6f77053d 18696 state_machine.handle_special_opcode (op_code);
9aa1fe7e
GK
18697 }
18698 else switch (op_code)
c906108c
SS
18699 {
18700 case DW_LNS_extended_op:
3e43a32a
MS
18701 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18702 &bytes_read);
473b7be6 18703 line_ptr += bytes_read;
a8c50c1f 18704 extended_end = line_ptr + extended_len;
c906108c
SS
18705 extended_op = read_1_byte (abfd, line_ptr);
18706 line_ptr += 1;
18707 switch (extended_op)
18708 {
18709 case DW_LNE_end_sequence:
6f77053d
PA
18710 state_machine.handle_end_sequence ();
18711 end_sequence = true;
c906108c
SS
18712 break;
18713 case DW_LNE_set_address:
d9b3de22
DE
18714 {
18715 CORE_ADDR address
18716 = read_address (abfd, line_ptr, cu, &bytes_read);
d9b3de22 18717 line_ptr += bytes_read;
6f77053d
PA
18718
18719 state_machine.check_line_address (cu, line_ptr,
18720 lowpc, address);
18721 state_machine.handle_set_address (baseaddr, address);
d9b3de22 18722 }
c906108c
SS
18723 break;
18724 case DW_LNE_define_file:
debd256d 18725 {
d521ce57 18726 const char *cur_file;
ecfb656c
PA
18727 unsigned int mod_time, length;
18728 dir_index dindex;
6e70227d 18729
3e43a32a
MS
18730 cur_file = read_direct_string (abfd, line_ptr,
18731 &bytes_read);
debd256d 18732 line_ptr += bytes_read;
ecfb656c 18733 dindex = (dir_index)
debd256d
JB
18734 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18735 line_ptr += bytes_read;
18736 mod_time =
18737 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18738 line_ptr += bytes_read;
18739 length =
18740 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18741 line_ptr += bytes_read;
ecfb656c 18742 lh->add_file_name (cur_file, dindex, mod_time, length);
debd256d 18743 }
c906108c 18744 break;
d0c6ba3d 18745 case DW_LNE_set_discriminator:
6f77053d
PA
18746 {
18747 /* The discriminator is not interesting to the
18748 debugger; just ignore it. We still need to
18749 check its value though:
18750 if there are consecutive entries for the same
18751 (non-prologue) line we want to coalesce them.
18752 PR 17276. */
18753 unsigned int discr
18754 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18755 line_ptr += bytes_read;
18756
18757 state_machine.handle_set_discriminator (discr);
18758 }
d0c6ba3d 18759 break;
c906108c 18760 default:
4d3c2250 18761 complaint (&symfile_complaints,
e2e0b3e5 18762 _("mangled .debug_line section"));
debd256d 18763 return;
c906108c 18764 }
a8c50c1f
DJ
18765 /* Make sure that we parsed the extended op correctly. If e.g.
18766 we expected a different address size than the producer used,
18767 we may have read the wrong number of bytes. */
18768 if (line_ptr != extended_end)
18769 {
18770 complaint (&symfile_complaints,
18771 _("mangled .debug_line section"));
18772 return;
18773 }
c906108c
SS
18774 break;
18775 case DW_LNS_copy:
6f77053d 18776 state_machine.handle_copy ();
c906108c
SS
18777 break;
18778 case DW_LNS_advance_pc:
2dc7f7b3
TT
18779 {
18780 CORE_ADDR adjust
18781 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
2dc7f7b3 18782 line_ptr += bytes_read;
6f77053d
PA
18783
18784 state_machine.handle_advance_pc (adjust);
2dc7f7b3 18785 }
c906108c
SS
18786 break;
18787 case DW_LNS_advance_line:
a05a36a5
DE
18788 {
18789 int line_delta
18790 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
a05a36a5 18791 line_ptr += bytes_read;
6f77053d
PA
18792
18793 state_machine.handle_advance_line (line_delta);
a05a36a5 18794 }
c906108c
SS
18795 break;
18796 case DW_LNS_set_file:
d9b3de22 18797 {
6f77053d 18798 file_name_index file
ecfb656c
PA
18799 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
18800 &bytes_read);
d9b3de22 18801 line_ptr += bytes_read;
8c43009f 18802
6f77053d 18803 state_machine.handle_set_file (file);
d9b3de22 18804 }
c906108c
SS
18805 break;
18806 case DW_LNS_set_column:
0ad93d4f 18807 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
18808 line_ptr += bytes_read;
18809 break;
18810 case DW_LNS_negate_stmt:
6f77053d 18811 state_machine.handle_negate_stmt ();
c906108c
SS
18812 break;
18813 case DW_LNS_set_basic_block:
c906108c 18814 break;
c2c6d25f
JM
18815 /* Add to the address register of the state machine the
18816 address increment value corresponding to special opcode
a738430d
MK
18817 255. I.e., this value is scaled by the minimum
18818 instruction length since special opcode 255 would have
b021a221 18819 scaled the increment. */
c906108c 18820 case DW_LNS_const_add_pc:
6f77053d 18821 state_machine.handle_const_add_pc ();
c906108c
SS
18822 break;
18823 case DW_LNS_fixed_advance_pc:
3e29f34a 18824 {
6f77053d 18825 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
3e29f34a 18826 line_ptr += 2;
6f77053d
PA
18827
18828 state_machine.handle_fixed_advance_pc (addr_adj);
3e29f34a 18829 }
c906108c 18830 break;
9aa1fe7e 18831 default:
a738430d
MK
18832 {
18833 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18834 int i;
a738430d 18835
debd256d 18836 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18837 {
18838 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18839 line_ptr += bytes_read;
18840 }
18841 }
c906108c
SS
18842 }
18843 }
d9b3de22
DE
18844
18845 if (!end_sequence)
18846 dwarf2_debug_line_missing_end_sequence_complaint ();
18847
18848 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18849 in which case we still finish recording the last line). */
6f77053d 18850 state_machine.record_line (true);
c906108c 18851 }
f3f5162e
DE
18852}
18853
18854/* Decode the Line Number Program (LNP) for the given line_header
18855 structure and CU. The actual information extracted and the type
18856 of structures created from the LNP depends on the value of PST.
18857
18858 1. If PST is NULL, then this procedure uses the data from the program
18859 to create all necessary symbol tables, and their linetables.
18860
18861 2. If PST is not NULL, this procedure reads the program to determine
18862 the list of files included by the unit represented by PST, and
18863 builds all the associated partial symbol tables.
18864
18865 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18866 It is used for relative paths in the line table.
18867 NOTE: When processing partial symtabs (pst != NULL),
18868 comp_dir == pst->dirname.
18869
18870 NOTE: It is important that psymtabs have the same file name (via strcmp)
18871 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18872 symtab we don't use it in the name of the psymtabs we create.
18873 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18874 A good testcase for this is mb-inline.exp.
18875
527f3840
JK
18876 LOWPC is the lowest address in CU (or 0 if not known).
18877
18878 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18879 for its PC<->lines mapping information. Otherwise only the filename
18880 table is read in. */
f3f5162e
DE
18881
18882static void
18883dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18884 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18885 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18886{
18887 struct objfile *objfile = cu->objfile;
18888 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18889
527f3840
JK
18890 if (decode_mapping)
18891 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18892
18893 if (decode_for_pst_p)
18894 {
18895 int file_index;
18896
18897 /* Now that we're done scanning the Line Header Program, we can
18898 create the psymtab of each included file. */
fff8551c 18899 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
aaa75496
JB
18900 if (lh->file_names[file_index].included_p == 1)
18901 {
d521ce57 18902 const char *include_name =
c6da4cef
DE
18903 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18904 if (include_name != NULL)
aaa75496
JB
18905 dwarf2_create_include_psymtab (include_name, pst, objfile);
18906 }
18907 }
cb1df416
DJ
18908 else
18909 {
18910 /* Make sure a symtab is created for every file, even files
18911 which contain only variables (i.e. no code with associated
18912 line numbers). */
43f3e411 18913 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18914 int i;
cb1df416 18915
fff8551c 18916 for (i = 0; i < lh->file_names.size (); i++)
cb1df416 18917 {
8c43009f 18918 file_entry &fe = lh->file_names[i];
9a619af0 18919
8c43009f 18920 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
cb1df416 18921
cb1df416 18922 if (current_subfile->symtab == NULL)
43f3e411
DE
18923 {
18924 current_subfile->symtab
18925 = allocate_symtab (cust, current_subfile->name);
18926 }
8c43009f 18927 fe.symtab = current_subfile->symtab;
cb1df416
DJ
18928 }
18929 }
c906108c
SS
18930}
18931
18932/* Start a subfile for DWARF. FILENAME is the name of the file and
18933 DIRNAME the name of the source directory which contains FILENAME
4d663531 18934 or NULL if not known.
c906108c
SS
18935 This routine tries to keep line numbers from identical absolute and
18936 relative file names in a common subfile.
18937
18938 Using the `list' example from the GDB testsuite, which resides in
18939 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18940 of /srcdir/list0.c yields the following debugging information for list0.c:
18941
c5aa993b 18942 DW_AT_name: /srcdir/list0.c
4d663531 18943 DW_AT_comp_dir: /compdir
357e46e7 18944 files.files[0].name: list0.h
c5aa993b 18945 files.files[0].dir: /srcdir
357e46e7 18946 files.files[1].name: list0.c
c5aa993b 18947 files.files[1].dir: /srcdir
c906108c
SS
18948
18949 The line number information for list0.c has to end up in a single
4f1520fb
FR
18950 subfile, so that `break /srcdir/list0.c:1' works as expected.
18951 start_subfile will ensure that this happens provided that we pass the
18952 concatenation of files.files[1].dir and files.files[1].name as the
18953 subfile's name. */
c906108c
SS
18954
18955static void
4d663531 18956dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18957{
d521ce57 18958 char *copy = NULL;
4f1520fb 18959
4d663531 18960 /* In order not to lose the line information directory,
4f1520fb
FR
18961 we concatenate it to the filename when it makes sense.
18962 Note that the Dwarf3 standard says (speaking of filenames in line
18963 information): ``The directory index is ignored for file names
18964 that represent full path names''. Thus ignoring dirname in the
18965 `else' branch below isn't an issue. */
c906108c 18966
d5166ae1 18967 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18968 {
18969 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18970 filename = copy;
18971 }
c906108c 18972
4d663531 18973 start_subfile (filename);
4f1520fb 18974
d521ce57
TT
18975 if (copy != NULL)
18976 xfree (copy);
c906108c
SS
18977}
18978
f4dc4d17
DE
18979/* Start a symtab for DWARF.
18980 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18981
43f3e411 18982static struct compunit_symtab *
f4dc4d17 18983dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18984 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18985{
43f3e411
DE
18986 struct compunit_symtab *cust
18987 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18988
f4dc4d17
DE
18989 record_debugformat ("DWARF 2");
18990 record_producer (cu->producer);
18991
18992 /* We assume that we're processing GCC output. */
18993 processing_gcc_compilation = 2;
18994
4d4ec4e5 18995 cu->processing_has_namespace_info = 0;
43f3e411
DE
18996
18997 return cust;
f4dc4d17
DE
18998}
18999
4c2df51b
DJ
19000static void
19001var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 19002 struct dwarf2_cu *cu)
4c2df51b 19003{
e7c27a73
DJ
19004 struct objfile *objfile = cu->objfile;
19005 struct comp_unit_head *cu_header = &cu->header;
19006
4c2df51b
DJ
19007 /* NOTE drow/2003-01-30: There used to be a comment and some special
19008 code here to turn a symbol with DW_AT_external and a
19009 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
19010 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
19011 with some versions of binutils) where shared libraries could have
19012 relocations against symbols in their debug information - the
19013 minimal symbol would have the right address, but the debug info
19014 would not. It's no longer necessary, because we will explicitly
19015 apply relocations when we read in the debug information now. */
19016
19017 /* A DW_AT_location attribute with no contents indicates that a
19018 variable has been optimized away. */
19019 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
19020 {
f1e6e072 19021 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
19022 return;
19023 }
19024
19025 /* Handle one degenerate form of location expression specially, to
19026 preserve GDB's previous behavior when section offsets are
3019eac3
DE
19027 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
19028 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
19029
19030 if (attr_form_is_block (attr)
3019eac3
DE
19031 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
19032 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
19033 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
19034 && (DW_BLOCK (attr)->size
19035 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 19036 {
891d2f0b 19037 unsigned int dummy;
4c2df51b 19038
3019eac3
DE
19039 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
19040 SYMBOL_VALUE_ADDRESS (sym) =
19041 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
19042 else
19043 SYMBOL_VALUE_ADDRESS (sym) =
19044 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 19045 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
19046 fixup_symbol_section (sym, objfile);
19047 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
19048 SYMBOL_SECTION (sym));
4c2df51b
DJ
19049 return;
19050 }
19051
19052 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
19053 expression evaluator, and use LOC_COMPUTED only when necessary
19054 (i.e. when the value of a register or memory location is
19055 referenced, or a thread-local block, etc.). Then again, it might
19056 not be worthwhile. I'm assuming that it isn't unless performance
19057 or memory numbers show me otherwise. */
19058
f1e6e072 19059 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 19060
f1e6e072 19061 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 19062 cu->has_loclist = 1;
4c2df51b
DJ
19063}
19064
c906108c
SS
19065/* Given a pointer to a DWARF information entry, figure out if we need
19066 to make a symbol table entry for it, and if so, create a new entry
19067 and return a pointer to it.
19068 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
19069 used the passed type.
19070 If SPACE is not NULL, use it to hold the new symbol. If it is
19071 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
19072
19073static struct symbol *
34eaf542
TT
19074new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
19075 struct symbol *space)
c906108c 19076{
e7c27a73 19077 struct objfile *objfile = cu->objfile;
3e29f34a 19078 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 19079 struct symbol *sym = NULL;
15d034d0 19080 const char *name;
c906108c
SS
19081 struct attribute *attr = NULL;
19082 struct attribute *attr2 = NULL;
e142c38c 19083 CORE_ADDR baseaddr;
e37fd15a
SW
19084 struct pending **list_to_add = NULL;
19085
edb3359d 19086 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
19087
19088 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 19089
94af9270 19090 name = dwarf2_name (die, cu);
c906108c
SS
19091 if (name)
19092 {
94af9270 19093 const char *linkagename;
34eaf542 19094 int suppress_add = 0;
94af9270 19095
34eaf542
TT
19096 if (space)
19097 sym = space;
19098 else
e623cf5d 19099 sym = allocate_symbol (objfile);
c906108c 19100 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
19101
19102 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 19103 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
19104 linkagename = dwarf2_physname (name, die, cu);
19105 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 19106
f55ee35c
JK
19107 /* Fortran does not have mangling standard and the mangling does differ
19108 between gfortran, iFort etc. */
19109 if (cu->language == language_fortran
b250c185 19110 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 19111 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 19112 dwarf2_full_name (name, die, cu),
29df156d 19113 NULL);
f55ee35c 19114
c906108c 19115 /* Default assumptions.
c5aa993b 19116 Use the passed type or decode it from the die. */
176620f1 19117 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 19118 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
19119 if (type != NULL)
19120 SYMBOL_TYPE (sym) = type;
19121 else
e7c27a73 19122 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
19123 attr = dwarf2_attr (die,
19124 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
19125 cu);
c906108c
SS
19126 if (attr)
19127 {
19128 SYMBOL_LINE (sym) = DW_UNSND (attr);
19129 }
cb1df416 19130
edb3359d
DJ
19131 attr = dwarf2_attr (die,
19132 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19133 cu);
cb1df416
DJ
19134 if (attr)
19135 {
ecfb656c 19136 file_name_index file_index = (file_name_index) DW_UNSND (attr);
8c43009f 19137 struct file_entry *fe;
9a619af0 19138
ecfb656c
PA
19139 if (cu->line_header != NULL)
19140 fe = cu->line_header->file_name_at (file_index);
8c43009f
PA
19141 else
19142 fe = NULL;
19143
19144 if (fe == NULL)
cb1df416
DJ
19145 complaint (&symfile_complaints,
19146 _("file index out of range"));
8c43009f
PA
19147 else
19148 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
19149 }
19150
c906108c
SS
19151 switch (die->tag)
19152 {
19153 case DW_TAG_label:
e142c38c 19154 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 19155 if (attr)
3e29f34a
MR
19156 {
19157 CORE_ADDR addr;
19158
19159 addr = attr_value_as_address (attr);
19160 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
19161 SYMBOL_VALUE_ADDRESS (sym) = addr;
19162 }
0f5238ed
TT
19163 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
19164 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 19165 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 19166 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
19167 break;
19168 case DW_TAG_subprogram:
19169 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19170 finish_block. */
f1e6e072 19171 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 19172 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
19173 if ((attr2 && (DW_UNSND (attr2) != 0))
19174 || cu->language == language_ada)
c906108c 19175 {
2cfa0c8d
JB
19176 /* Subprograms marked external are stored as a global symbol.
19177 Ada subprograms, whether marked external or not, are always
19178 stored as a global symbol, because we want to be able to
19179 access them globally. For instance, we want to be able
19180 to break on a nested subprogram without having to
19181 specify the context. */
e37fd15a 19182 list_to_add = &global_symbols;
c906108c
SS
19183 }
19184 else
19185 {
e37fd15a 19186 list_to_add = cu->list_in_scope;
c906108c
SS
19187 }
19188 break;
edb3359d
DJ
19189 case DW_TAG_inlined_subroutine:
19190 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19191 finish_block. */
f1e6e072 19192 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 19193 SYMBOL_INLINED (sym) = 1;
481860b3 19194 list_to_add = cu->list_in_scope;
edb3359d 19195 break;
34eaf542
TT
19196 case DW_TAG_template_value_param:
19197 suppress_add = 1;
19198 /* Fall through. */
72929c62 19199 case DW_TAG_constant:
c906108c 19200 case DW_TAG_variable:
254e6b9e 19201 case DW_TAG_member:
0963b4bd
MS
19202 /* Compilation with minimal debug info may result in
19203 variables with missing type entries. Change the
19204 misleading `void' type to something sensible. */
c906108c 19205 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
46a4882b 19206 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
64c50499 19207
e142c38c 19208 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
19209 /* In the case of DW_TAG_member, we should only be called for
19210 static const members. */
19211 if (die->tag == DW_TAG_member)
19212 {
3863f96c
DE
19213 /* dwarf2_add_field uses die_is_declaration,
19214 so we do the same. */
254e6b9e
DE
19215 gdb_assert (die_is_declaration (die, cu));
19216 gdb_assert (attr);
19217 }
c906108c
SS
19218 if (attr)
19219 {
e7c27a73 19220 dwarf2_const_value (attr, sym, cu);
e142c38c 19221 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 19222 if (!suppress_add)
34eaf542
TT
19223 {
19224 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 19225 list_to_add = &global_symbols;
34eaf542 19226 else
e37fd15a 19227 list_to_add = cu->list_in_scope;
34eaf542 19228 }
c906108c
SS
19229 break;
19230 }
e142c38c 19231 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
19232 if (attr)
19233 {
e7c27a73 19234 var_decode_location (attr, sym, cu);
e142c38c 19235 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
19236
19237 /* Fortran explicitly imports any global symbols to the local
19238 scope by DW_TAG_common_block. */
19239 if (cu->language == language_fortran && die->parent
19240 && die->parent->tag == DW_TAG_common_block)
19241 attr2 = NULL;
19242
caac4577
JG
19243 if (SYMBOL_CLASS (sym) == LOC_STATIC
19244 && SYMBOL_VALUE_ADDRESS (sym) == 0
19245 && !dwarf2_per_objfile->has_section_at_zero)
19246 {
19247 /* When a static variable is eliminated by the linker,
19248 the corresponding debug information is not stripped
19249 out, but the variable address is set to null;
19250 do not add such variables into symbol table. */
19251 }
19252 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 19253 {
f55ee35c
JK
19254 /* Workaround gfortran PR debug/40040 - it uses
19255 DW_AT_location for variables in -fPIC libraries which may
19256 get overriden by other libraries/executable and get
19257 a different address. Resolve it by the minimal symbol
19258 which may come from inferior's executable using copy
19259 relocation. Make this workaround only for gfortran as for
19260 other compilers GDB cannot guess the minimal symbol
19261 Fortran mangling kind. */
19262 if (cu->language == language_fortran && die->parent
19263 && die->parent->tag == DW_TAG_module
19264 && cu->producer
28586665 19265 && startswith (cu->producer, "GNU Fortran"))
f1e6e072 19266 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 19267
1c809c68
TT
19268 /* A variable with DW_AT_external is never static,
19269 but it may be block-scoped. */
19270 list_to_add = (cu->list_in_scope == &file_symbols
19271 ? &global_symbols : cu->list_in_scope);
1c809c68 19272 }
c906108c 19273 else
e37fd15a 19274 list_to_add = cu->list_in_scope;
c906108c
SS
19275 }
19276 else
19277 {
19278 /* We do not know the address of this symbol.
c5aa993b
JM
19279 If it is an external symbol and we have type information
19280 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19281 The address of the variable will then be determined from
19282 the minimal symbol table whenever the variable is
19283 referenced. */
e142c38c 19284 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
19285
19286 /* Fortran explicitly imports any global symbols to the local
19287 scope by DW_TAG_common_block. */
19288 if (cu->language == language_fortran && die->parent
19289 && die->parent->tag == DW_TAG_common_block)
19290 {
19291 /* SYMBOL_CLASS doesn't matter here because
19292 read_common_block is going to reset it. */
19293 if (!suppress_add)
19294 list_to_add = cu->list_in_scope;
19295 }
19296 else if (attr2 && (DW_UNSND (attr2) != 0)
19297 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 19298 {
0fe7935b
DJ
19299 /* A variable with DW_AT_external is never static, but it
19300 may be block-scoped. */
19301 list_to_add = (cu->list_in_scope == &file_symbols
19302 ? &global_symbols : cu->list_in_scope);
19303
f1e6e072 19304 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 19305 }
442ddf59
JK
19306 else if (!die_is_declaration (die, cu))
19307 {
19308 /* Use the default LOC_OPTIMIZED_OUT class. */
19309 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
19310 if (!suppress_add)
19311 list_to_add = cu->list_in_scope;
442ddf59 19312 }
c906108c
SS
19313 }
19314 break;
19315 case DW_TAG_formal_parameter:
edb3359d
DJ
19316 /* If we are inside a function, mark this as an argument. If
19317 not, we might be looking at an argument to an inlined function
19318 when we do not have enough information to show inlined frames;
19319 pretend it's a local variable in that case so that the user can
19320 still see it. */
19321 if (context_stack_depth > 0
19322 && context_stack[context_stack_depth - 1].name != NULL)
19323 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 19324 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
19325 if (attr)
19326 {
e7c27a73 19327 var_decode_location (attr, sym, cu);
c906108c 19328 }
e142c38c 19329 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
19330 if (attr)
19331 {
e7c27a73 19332 dwarf2_const_value (attr, sym, cu);
c906108c 19333 }
f346a30d 19334
e37fd15a 19335 list_to_add = cu->list_in_scope;
c906108c
SS
19336 break;
19337 case DW_TAG_unspecified_parameters:
19338 /* From varargs functions; gdb doesn't seem to have any
19339 interest in this information, so just ignore it for now.
19340 (FIXME?) */
19341 break;
34eaf542
TT
19342 case DW_TAG_template_type_param:
19343 suppress_add = 1;
19344 /* Fall through. */
c906108c 19345 case DW_TAG_class_type:
680b30c7 19346 case DW_TAG_interface_type:
c906108c
SS
19347 case DW_TAG_structure_type:
19348 case DW_TAG_union_type:
72019c9c 19349 case DW_TAG_set_type:
c906108c 19350 case DW_TAG_enumeration_type:
f1e6e072 19351 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 19352 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 19353
63d06c5c 19354 {
9c37b5ae 19355 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
63d06c5c
DC
19356 really ever be static objects: otherwise, if you try
19357 to, say, break of a class's method and you're in a file
19358 which doesn't mention that class, it won't work unless
19359 the check for all static symbols in lookup_symbol_aux
19360 saves you. See the OtherFileClass tests in
19361 gdb.c++/namespace.exp. */
19362
e37fd15a 19363 if (!suppress_add)
34eaf542 19364 {
34eaf542 19365 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 19366 && cu->language == language_cplus
34eaf542 19367 ? &global_symbols : cu->list_in_scope);
63d06c5c 19368
64382290 19369 /* The semantics of C++ state that "struct foo {
9c37b5ae 19370 ... }" also defines a typedef for "foo". */
64382290 19371 if (cu->language == language_cplus
45280282 19372 || cu->language == language_ada
c44af4eb
TT
19373 || cu->language == language_d
19374 || cu->language == language_rust)
64382290
TT
19375 {
19376 /* The symbol's name is already allocated along
19377 with this objfile, so we don't need to
19378 duplicate it for the type. */
19379 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19380 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19381 }
63d06c5c
DC
19382 }
19383 }
c906108c
SS
19384 break;
19385 case DW_TAG_typedef:
f1e6e072 19386 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 19387 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 19388 list_to_add = cu->list_in_scope;
63d06c5c 19389 break;
c906108c 19390 case DW_TAG_base_type:
a02abb62 19391 case DW_TAG_subrange_type:
f1e6e072 19392 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 19393 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 19394 list_to_add = cu->list_in_scope;
c906108c
SS
19395 break;
19396 case DW_TAG_enumerator:
e142c38c 19397 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
19398 if (attr)
19399 {
e7c27a73 19400 dwarf2_const_value (attr, sym, cu);
c906108c 19401 }
63d06c5c
DC
19402 {
19403 /* NOTE: carlton/2003-11-10: See comment above in the
19404 DW_TAG_class_type, etc. block. */
19405
e142c38c 19406 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 19407 && cu->language == language_cplus
e142c38c 19408 ? &global_symbols : cu->list_in_scope);
63d06c5c 19409 }
c906108c 19410 break;
74921315 19411 case DW_TAG_imported_declaration:
5c4e30ca 19412 case DW_TAG_namespace:
f1e6e072 19413 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 19414 list_to_add = &global_symbols;
5c4e30ca 19415 break;
530e8392
KB
19416 case DW_TAG_module:
19417 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19418 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19419 list_to_add = &global_symbols;
19420 break;
4357ac6c 19421 case DW_TAG_common_block:
f1e6e072 19422 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
19423 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19424 add_symbol_to_list (sym, cu->list_in_scope);
19425 break;
c906108c
SS
19426 default:
19427 /* Not a tag we recognize. Hopefully we aren't processing
19428 trash data, but since we must specifically ignore things
19429 we don't recognize, there is nothing else we should do at
0963b4bd 19430 this point. */
e2e0b3e5 19431 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 19432 dwarf_tag_name (die->tag));
c906108c
SS
19433 break;
19434 }
df8a16a1 19435
e37fd15a
SW
19436 if (suppress_add)
19437 {
19438 sym->hash_next = objfile->template_symbols;
19439 objfile->template_symbols = sym;
19440 list_to_add = NULL;
19441 }
19442
19443 if (list_to_add != NULL)
19444 add_symbol_to_list (sym, list_to_add);
19445
df8a16a1
DJ
19446 /* For the benefit of old versions of GCC, check for anonymous
19447 namespaces based on the demangled name. */
4d4ec4e5 19448 if (!cu->processing_has_namespace_info
94af9270 19449 && cu->language == language_cplus)
a10964d1 19450 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
19451 }
19452 return (sym);
19453}
19454
34eaf542
TT
19455/* A wrapper for new_symbol_full that always allocates a new symbol. */
19456
19457static struct symbol *
19458new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19459{
19460 return new_symbol_full (die, type, cu, NULL);
19461}
19462
98bfdba5
PA
19463/* Given an attr with a DW_FORM_dataN value in host byte order,
19464 zero-extend it as appropriate for the symbol's type. The DWARF
19465 standard (v4) is not entirely clear about the meaning of using
19466 DW_FORM_dataN for a constant with a signed type, where the type is
19467 wider than the data. The conclusion of a discussion on the DWARF
19468 list was that this is unspecified. We choose to always zero-extend
19469 because that is the interpretation long in use by GCC. */
c906108c 19470
98bfdba5 19471static gdb_byte *
ff39bb5e 19472dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 19473 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 19474{
e7c27a73 19475 struct objfile *objfile = cu->objfile;
e17a4113
UW
19476 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19477 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
19478 LONGEST l = DW_UNSND (attr);
19479
19480 if (bits < sizeof (*value) * 8)
19481 {
19482 l &= ((LONGEST) 1 << bits) - 1;
19483 *value = l;
19484 }
19485 else if (bits == sizeof (*value) * 8)
19486 *value = l;
19487 else
19488 {
224c3ddb 19489 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
19490 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19491 return bytes;
19492 }
19493
19494 return NULL;
19495}
19496
19497/* Read a constant value from an attribute. Either set *VALUE, or if
19498 the value does not fit in *VALUE, set *BYTES - either already
19499 allocated on the objfile obstack, or newly allocated on OBSTACK,
19500 or, set *BATON, if we translated the constant to a location
19501 expression. */
19502
19503static void
ff39bb5e 19504dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
19505 const char *name, struct obstack *obstack,
19506 struct dwarf2_cu *cu,
d521ce57 19507 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
19508 struct dwarf2_locexpr_baton **baton)
19509{
19510 struct objfile *objfile = cu->objfile;
19511 struct comp_unit_head *cu_header = &cu->header;
c906108c 19512 struct dwarf_block *blk;
98bfdba5
PA
19513 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19514 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19515
19516 *value = 0;
19517 *bytes = NULL;
19518 *baton = NULL;
c906108c
SS
19519
19520 switch (attr->form)
19521 {
19522 case DW_FORM_addr:
3019eac3 19523 case DW_FORM_GNU_addr_index:
ac56253d 19524 {
ac56253d
TT
19525 gdb_byte *data;
19526
98bfdba5
PA
19527 if (TYPE_LENGTH (type) != cu_header->addr_size)
19528 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 19529 cu_header->addr_size,
98bfdba5 19530 TYPE_LENGTH (type));
ac56253d
TT
19531 /* Symbols of this form are reasonably rare, so we just
19532 piggyback on the existing location code rather than writing
19533 a new implementation of symbol_computed_ops. */
8d749320 19534 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
19535 (*baton)->per_cu = cu->per_cu;
19536 gdb_assert ((*baton)->per_cu);
ac56253d 19537
98bfdba5 19538 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 19539 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 19540 (*baton)->data = data;
ac56253d
TT
19541
19542 data[0] = DW_OP_addr;
19543 store_unsigned_integer (&data[1], cu_header->addr_size,
19544 byte_order, DW_ADDR (attr));
19545 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 19546 }
c906108c 19547 break;
4ac36638 19548 case DW_FORM_string:
93b5768b 19549 case DW_FORM_strp:
3019eac3 19550 case DW_FORM_GNU_str_index:
36586728 19551 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
19552 /* DW_STRING is already allocated on the objfile obstack, point
19553 directly to it. */
d521ce57 19554 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 19555 break;
c906108c
SS
19556 case DW_FORM_block1:
19557 case DW_FORM_block2:
19558 case DW_FORM_block4:
19559 case DW_FORM_block:
2dc7f7b3 19560 case DW_FORM_exprloc:
0224619f 19561 case DW_FORM_data16:
c906108c 19562 blk = DW_BLOCK (attr);
98bfdba5
PA
19563 if (TYPE_LENGTH (type) != blk->size)
19564 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19565 TYPE_LENGTH (type));
19566 *bytes = blk->data;
c906108c 19567 break;
2df3850c
JM
19568
19569 /* The DW_AT_const_value attributes are supposed to carry the
19570 symbol's value "represented as it would be on the target
19571 architecture." By the time we get here, it's already been
19572 converted to host endianness, so we just need to sign- or
19573 zero-extend it as appropriate. */
19574 case DW_FORM_data1:
3aef2284 19575 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 19576 break;
c906108c 19577 case DW_FORM_data2:
3aef2284 19578 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 19579 break;
c906108c 19580 case DW_FORM_data4:
3aef2284 19581 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 19582 break;
c906108c 19583 case DW_FORM_data8:
3aef2284 19584 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
19585 break;
19586
c906108c 19587 case DW_FORM_sdata:
663c44ac 19588 case DW_FORM_implicit_const:
98bfdba5 19589 *value = DW_SND (attr);
2df3850c
JM
19590 break;
19591
c906108c 19592 case DW_FORM_udata:
98bfdba5 19593 *value = DW_UNSND (attr);
c906108c 19594 break;
2df3850c 19595
c906108c 19596 default:
4d3c2250 19597 complaint (&symfile_complaints,
e2e0b3e5 19598 _("unsupported const value attribute form: '%s'"),
4d3c2250 19599 dwarf_form_name (attr->form));
98bfdba5 19600 *value = 0;
c906108c
SS
19601 break;
19602 }
19603}
19604
2df3850c 19605
98bfdba5
PA
19606/* Copy constant value from an attribute to a symbol. */
19607
2df3850c 19608static void
ff39bb5e 19609dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 19610 struct dwarf2_cu *cu)
2df3850c 19611{
98bfdba5 19612 struct objfile *objfile = cu->objfile;
12df843f 19613 LONGEST value;
d521ce57 19614 const gdb_byte *bytes;
98bfdba5 19615 struct dwarf2_locexpr_baton *baton;
2df3850c 19616
98bfdba5
PA
19617 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19618 SYMBOL_PRINT_NAME (sym),
19619 &objfile->objfile_obstack, cu,
19620 &value, &bytes, &baton);
2df3850c 19621
98bfdba5
PA
19622 if (baton != NULL)
19623 {
98bfdba5 19624 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 19625 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
19626 }
19627 else if (bytes != NULL)
19628 {
19629 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 19630 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
19631 }
19632 else
19633 {
19634 SYMBOL_VALUE (sym) = value;
f1e6e072 19635 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 19636 }
2df3850c
JM
19637}
19638
c906108c
SS
19639/* Return the type of the die in question using its DW_AT_type attribute. */
19640
19641static struct type *
e7c27a73 19642die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19643{
c906108c 19644 struct attribute *type_attr;
c906108c 19645
e142c38c 19646 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
19647 if (!type_attr)
19648 {
19649 /* A missing DW_AT_type represents a void type. */
46bf5051 19650 return objfile_type (cu->objfile)->builtin_void;
c906108c 19651 }
348e048f 19652
673bfd45 19653 return lookup_die_type (die, type_attr, cu);
c906108c
SS
19654}
19655
b4ba55a1
JB
19656/* True iff CU's producer generates GNAT Ada auxiliary information
19657 that allows to find parallel types through that information instead
19658 of having to do expensive parallel lookups by type name. */
19659
19660static int
19661need_gnat_info (struct dwarf2_cu *cu)
19662{
19663 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19664 of GNAT produces this auxiliary information, without any indication
19665 that it is produced. Part of enhancing the FSF version of GNAT
19666 to produce that information will be to put in place an indicator
19667 that we can use in order to determine whether the descriptive type
19668 info is available or not. One suggestion that has been made is
19669 to use a new attribute, attached to the CU die. For now, assume
19670 that the descriptive type info is not available. */
19671 return 0;
19672}
19673
b4ba55a1
JB
19674/* Return the auxiliary type of the die in question using its
19675 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19676 attribute is not present. */
19677
19678static struct type *
19679die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19680{
b4ba55a1 19681 struct attribute *type_attr;
b4ba55a1
JB
19682
19683 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19684 if (!type_attr)
19685 return NULL;
19686
673bfd45 19687 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
19688}
19689
19690/* If DIE has a descriptive_type attribute, then set the TYPE's
19691 descriptive type accordingly. */
19692
19693static void
19694set_descriptive_type (struct type *type, struct die_info *die,
19695 struct dwarf2_cu *cu)
19696{
19697 struct type *descriptive_type = die_descriptive_type (die, cu);
19698
19699 if (descriptive_type)
19700 {
19701 ALLOCATE_GNAT_AUX_TYPE (type);
19702 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19703 }
19704}
19705
c906108c
SS
19706/* Return the containing type of the die in question using its
19707 DW_AT_containing_type attribute. */
19708
19709static struct type *
e7c27a73 19710die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19711{
c906108c 19712 struct attribute *type_attr;
c906108c 19713
e142c38c 19714 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
19715 if (!type_attr)
19716 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 19717 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 19718
673bfd45 19719 return lookup_die_type (die, type_attr, cu);
c906108c
SS
19720}
19721
ac9ec31b
DE
19722/* Return an error marker type to use for the ill formed type in DIE/CU. */
19723
19724static struct type *
19725build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19726{
19727 struct objfile *objfile = dwarf2_per_objfile->objfile;
19728 char *message, *saved;
19729
19730 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 19731 objfile_name (objfile),
9c541725
PA
19732 to_underlying (cu->header.sect_off),
19733 to_underlying (die->sect_off));
224c3ddb
SM
19734 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19735 message, strlen (message));
ac9ec31b
DE
19736 xfree (message);
19737
19f392bc 19738 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
ac9ec31b
DE
19739}
19740
673bfd45 19741/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
19742 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19743 DW_AT_containing_type.
673bfd45
DE
19744 If there is no type substitute an error marker. */
19745
c906108c 19746static struct type *
ff39bb5e 19747lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 19748 struct dwarf2_cu *cu)
c906108c 19749{
bb5ed363 19750 struct objfile *objfile = cu->objfile;
f792889a
DJ
19751 struct type *this_type;
19752
ac9ec31b
DE
19753 gdb_assert (attr->name == DW_AT_type
19754 || attr->name == DW_AT_GNAT_descriptive_type
19755 || attr->name == DW_AT_containing_type);
19756
673bfd45
DE
19757 /* First see if we have it cached. */
19758
36586728
TT
19759 if (attr->form == DW_FORM_GNU_ref_alt)
19760 {
19761 struct dwarf2_per_cu_data *per_cu;
9c541725 19762 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
36586728 19763
9c541725
PA
19764 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
19765 this_type = get_die_type_at_offset (sect_off, per_cu);
36586728 19766 }
7771576e 19767 else if (attr_form_is_ref (attr))
673bfd45 19768 {
9c541725 19769 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
673bfd45 19770
9c541725 19771 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
673bfd45 19772 }
55f1336d 19773 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 19774 {
ac9ec31b 19775 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 19776
ac9ec31b 19777 return get_signatured_type (die, signature, cu);
673bfd45
DE
19778 }
19779 else
19780 {
ac9ec31b
DE
19781 complaint (&symfile_complaints,
19782 _("Dwarf Error: Bad type attribute %s in DIE"
19783 " at 0x%x [in module %s]"),
9c541725 19784 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
4262abfb 19785 objfile_name (objfile));
ac9ec31b 19786 return build_error_marker_type (cu, die);
673bfd45
DE
19787 }
19788
19789 /* If not cached we need to read it in. */
19790
19791 if (this_type == NULL)
19792 {
ac9ec31b 19793 struct die_info *type_die = NULL;
673bfd45
DE
19794 struct dwarf2_cu *type_cu = cu;
19795
7771576e 19796 if (attr_form_is_ref (attr))
ac9ec31b
DE
19797 type_die = follow_die_ref (die, attr, &type_cu);
19798 if (type_die == NULL)
19799 return build_error_marker_type (cu, die);
19800 /* If we find the type now, it's probably because the type came
3019eac3
DE
19801 from an inter-CU reference and the type's CU got expanded before
19802 ours. */
ac9ec31b 19803 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19804 }
19805
19806 /* If we still don't have a type use an error marker. */
19807
19808 if (this_type == NULL)
ac9ec31b 19809 return build_error_marker_type (cu, die);
673bfd45 19810
f792889a 19811 return this_type;
c906108c
SS
19812}
19813
673bfd45
DE
19814/* Return the type in DIE, CU.
19815 Returns NULL for invalid types.
19816
02142a6c 19817 This first does a lookup in die_type_hash,
673bfd45
DE
19818 and only reads the die in if necessary.
19819
19820 NOTE: This can be called when reading in partial or full symbols. */
19821
f792889a 19822static struct type *
e7c27a73 19823read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19824{
f792889a
DJ
19825 struct type *this_type;
19826
19827 this_type = get_die_type (die, cu);
19828 if (this_type)
19829 return this_type;
19830
673bfd45
DE
19831 return read_type_die_1 (die, cu);
19832}
19833
19834/* Read the type in DIE, CU.
19835 Returns NULL for invalid types. */
19836
19837static struct type *
19838read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19839{
19840 struct type *this_type = NULL;
19841
c906108c
SS
19842 switch (die->tag)
19843 {
19844 case DW_TAG_class_type:
680b30c7 19845 case DW_TAG_interface_type:
c906108c
SS
19846 case DW_TAG_structure_type:
19847 case DW_TAG_union_type:
f792889a 19848 this_type = read_structure_type (die, cu);
c906108c
SS
19849 break;
19850 case DW_TAG_enumeration_type:
f792889a 19851 this_type = read_enumeration_type (die, cu);
c906108c
SS
19852 break;
19853 case DW_TAG_subprogram:
19854 case DW_TAG_subroutine_type:
edb3359d 19855 case DW_TAG_inlined_subroutine:
f792889a 19856 this_type = read_subroutine_type (die, cu);
c906108c
SS
19857 break;
19858 case DW_TAG_array_type:
f792889a 19859 this_type = read_array_type (die, cu);
c906108c 19860 break;
72019c9c 19861 case DW_TAG_set_type:
f792889a 19862 this_type = read_set_type (die, cu);
72019c9c 19863 break;
c906108c 19864 case DW_TAG_pointer_type:
f792889a 19865 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19866 break;
19867 case DW_TAG_ptr_to_member_type:
f792889a 19868 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19869 break;
19870 case DW_TAG_reference_type:
4297a3f0
AV
19871 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
19872 break;
19873 case DW_TAG_rvalue_reference_type:
19874 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
c906108c
SS
19875 break;
19876 case DW_TAG_const_type:
f792889a 19877 this_type = read_tag_const_type (die, cu);
c906108c
SS
19878 break;
19879 case DW_TAG_volatile_type:
f792889a 19880 this_type = read_tag_volatile_type (die, cu);
c906108c 19881 break;
06d66ee9
TT
19882 case DW_TAG_restrict_type:
19883 this_type = read_tag_restrict_type (die, cu);
19884 break;
c906108c 19885 case DW_TAG_string_type:
f792889a 19886 this_type = read_tag_string_type (die, cu);
c906108c
SS
19887 break;
19888 case DW_TAG_typedef:
f792889a 19889 this_type = read_typedef (die, cu);
c906108c 19890 break;
a02abb62 19891 case DW_TAG_subrange_type:
f792889a 19892 this_type = read_subrange_type (die, cu);
a02abb62 19893 break;
c906108c 19894 case DW_TAG_base_type:
f792889a 19895 this_type = read_base_type (die, cu);
c906108c 19896 break;
81a17f79 19897 case DW_TAG_unspecified_type:
f792889a 19898 this_type = read_unspecified_type (die, cu);
81a17f79 19899 break;
0114d602
DJ
19900 case DW_TAG_namespace:
19901 this_type = read_namespace_type (die, cu);
19902 break;
f55ee35c
JK
19903 case DW_TAG_module:
19904 this_type = read_module_type (die, cu);
19905 break;
a2c2acaf
MW
19906 case DW_TAG_atomic_type:
19907 this_type = read_tag_atomic_type (die, cu);
19908 break;
c906108c 19909 default:
3e43a32a
MS
19910 complaint (&symfile_complaints,
19911 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19912 dwarf_tag_name (die->tag));
c906108c
SS
19913 break;
19914 }
63d06c5c 19915
f792889a 19916 return this_type;
63d06c5c
DC
19917}
19918
abc72ce4
DE
19919/* See if we can figure out if the class lives in a namespace. We do
19920 this by looking for a member function; its demangled name will
19921 contain namespace info, if there is any.
19922 Return the computed name or NULL.
19923 Space for the result is allocated on the objfile's obstack.
19924 This is the full-die version of guess_partial_die_structure_name.
19925 In this case we know DIE has no useful parent. */
19926
19927static char *
19928guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19929{
19930 struct die_info *spec_die;
19931 struct dwarf2_cu *spec_cu;
19932 struct die_info *child;
19933
19934 spec_cu = cu;
19935 spec_die = die_specification (die, &spec_cu);
19936 if (spec_die != NULL)
19937 {
19938 die = spec_die;
19939 cu = spec_cu;
19940 }
19941
19942 for (child = die->child;
19943 child != NULL;
19944 child = child->sibling)
19945 {
19946 if (child->tag == DW_TAG_subprogram)
19947 {
73b9be8b 19948 const char *linkage_name = dw2_linkage_name (child, cu);
abc72ce4 19949
7d45c7c3 19950 if (linkage_name != NULL)
abc72ce4
DE
19951 {
19952 char *actual_name
19953 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 19954 linkage_name);
abc72ce4
DE
19955 char *name = NULL;
19956
19957 if (actual_name != NULL)
19958 {
15d034d0 19959 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19960
19961 if (die_name != NULL
19962 && strcmp (die_name, actual_name) != 0)
19963 {
19964 /* Strip off the class name from the full name.
19965 We want the prefix. */
19966 int die_name_len = strlen (die_name);
19967 int actual_name_len = strlen (actual_name);
19968
19969 /* Test for '::' as a sanity check. */
19970 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19971 && actual_name[actual_name_len
19972 - die_name_len - 1] == ':')
224c3ddb
SM
19973 name = (char *) obstack_copy0 (
19974 &cu->objfile->per_bfd->storage_obstack,
19975 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
19976 }
19977 }
19978 xfree (actual_name);
19979 return name;
19980 }
19981 }
19982 }
19983
19984 return NULL;
19985}
19986
96408a79
SA
19987/* GCC might emit a nameless typedef that has a linkage name. Determine the
19988 prefix part in such case. See
19989 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19990
a121b7c1 19991static const char *
96408a79
SA
19992anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19993{
19994 struct attribute *attr;
e6a959d6 19995 const char *base;
96408a79
SA
19996
19997 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19998 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19999 return NULL;
20000
7d45c7c3 20001 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
20002 return NULL;
20003
73b9be8b 20004 attr = dw2_linkage_name_attr (die, cu);
96408a79
SA
20005 if (attr == NULL || DW_STRING (attr) == NULL)
20006 return NULL;
20007
20008 /* dwarf2_name had to be already called. */
20009 gdb_assert (DW_STRING_IS_CANONICAL (attr));
20010
20011 /* Strip the base name, keep any leading namespaces/classes. */
20012 base = strrchr (DW_STRING (attr), ':');
20013 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
20014 return "";
20015
224c3ddb
SM
20016 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20017 DW_STRING (attr),
20018 &base[-1] - DW_STRING (attr));
96408a79
SA
20019}
20020
fdde2d81 20021/* Return the name of the namespace/class that DIE is defined within,
0114d602 20022 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 20023
0114d602
DJ
20024 For example, if we're within the method foo() in the following
20025 code:
20026
20027 namespace N {
20028 class C {
20029 void foo () {
20030 }
20031 };
20032 }
20033
20034 then determine_prefix on foo's die will return "N::C". */
fdde2d81 20035
0d5cff50 20036static const char *
e142c38c 20037determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 20038{
0114d602
DJ
20039 struct die_info *parent, *spec_die;
20040 struct dwarf2_cu *spec_cu;
20041 struct type *parent_type;
a121b7c1 20042 const char *retval;
63d06c5c 20043
9c37b5ae 20044 if (cu->language != language_cplus
c44af4eb
TT
20045 && cu->language != language_fortran && cu->language != language_d
20046 && cu->language != language_rust)
0114d602
DJ
20047 return "";
20048
96408a79
SA
20049 retval = anonymous_struct_prefix (die, cu);
20050 if (retval)
20051 return retval;
20052
0114d602
DJ
20053 /* We have to be careful in the presence of DW_AT_specification.
20054 For example, with GCC 3.4, given the code
20055
20056 namespace N {
20057 void foo() {
20058 // Definition of N::foo.
20059 }
20060 }
20061
20062 then we'll have a tree of DIEs like this:
20063
20064 1: DW_TAG_compile_unit
20065 2: DW_TAG_namespace // N
20066 3: DW_TAG_subprogram // declaration of N::foo
20067 4: DW_TAG_subprogram // definition of N::foo
20068 DW_AT_specification // refers to die #3
20069
20070 Thus, when processing die #4, we have to pretend that we're in
20071 the context of its DW_AT_specification, namely the contex of die
20072 #3. */
20073 spec_cu = cu;
20074 spec_die = die_specification (die, &spec_cu);
20075 if (spec_die == NULL)
20076 parent = die->parent;
20077 else
63d06c5c 20078 {
0114d602
DJ
20079 parent = spec_die->parent;
20080 cu = spec_cu;
63d06c5c 20081 }
0114d602
DJ
20082
20083 if (parent == NULL)
20084 return "";
98bfdba5
PA
20085 else if (parent->building_fullname)
20086 {
20087 const char *name;
20088 const char *parent_name;
20089
20090 /* It has been seen on RealView 2.2 built binaries,
20091 DW_TAG_template_type_param types actually _defined_ as
20092 children of the parent class:
20093
20094 enum E {};
20095 template class <class Enum> Class{};
20096 Class<enum E> class_e;
20097
20098 1: DW_TAG_class_type (Class)
20099 2: DW_TAG_enumeration_type (E)
20100 3: DW_TAG_enumerator (enum1:0)
20101 3: DW_TAG_enumerator (enum2:1)
20102 ...
20103 2: DW_TAG_template_type_param
20104 DW_AT_type DW_FORM_ref_udata (E)
20105
20106 Besides being broken debug info, it can put GDB into an
20107 infinite loop. Consider:
20108
20109 When we're building the full name for Class<E>, we'll start
20110 at Class, and go look over its template type parameters,
20111 finding E. We'll then try to build the full name of E, and
20112 reach here. We're now trying to build the full name of E,
20113 and look over the parent DIE for containing scope. In the
20114 broken case, if we followed the parent DIE of E, we'd again
20115 find Class, and once again go look at its template type
20116 arguments, etc., etc. Simply don't consider such parent die
20117 as source-level parent of this die (it can't be, the language
20118 doesn't allow it), and break the loop here. */
20119 name = dwarf2_name (die, cu);
20120 parent_name = dwarf2_name (parent, cu);
20121 complaint (&symfile_complaints,
20122 _("template param type '%s' defined within parent '%s'"),
20123 name ? name : "<unknown>",
20124 parent_name ? parent_name : "<unknown>");
20125 return "";
20126 }
63d06c5c 20127 else
0114d602
DJ
20128 switch (parent->tag)
20129 {
63d06c5c 20130 case DW_TAG_namespace:
0114d602 20131 parent_type = read_type_die (parent, cu);
acebe513
UW
20132 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20133 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20134 Work around this problem here. */
20135 if (cu->language == language_cplus
20136 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
20137 return "";
0114d602
DJ
20138 /* We give a name to even anonymous namespaces. */
20139 return TYPE_TAG_NAME (parent_type);
63d06c5c 20140 case DW_TAG_class_type:
680b30c7 20141 case DW_TAG_interface_type:
63d06c5c 20142 case DW_TAG_structure_type:
0114d602 20143 case DW_TAG_union_type:
f55ee35c 20144 case DW_TAG_module:
0114d602
DJ
20145 parent_type = read_type_die (parent, cu);
20146 if (TYPE_TAG_NAME (parent_type) != NULL)
20147 return TYPE_TAG_NAME (parent_type);
20148 else
20149 /* An anonymous structure is only allowed non-static data
20150 members; no typedefs, no member functions, et cetera.
20151 So it does not need a prefix. */
20152 return "";
abc72ce4 20153 case DW_TAG_compile_unit:
95554aad 20154 case DW_TAG_partial_unit:
abc72ce4
DE
20155 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
20156 if (cu->language == language_cplus
8b70b953 20157 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
20158 && die->child != NULL
20159 && (die->tag == DW_TAG_class_type
20160 || die->tag == DW_TAG_structure_type
20161 || die->tag == DW_TAG_union_type))
20162 {
20163 char *name = guess_full_die_structure_name (die, cu);
20164 if (name != NULL)
20165 return name;
20166 }
20167 return "";
3d567982
TT
20168 case DW_TAG_enumeration_type:
20169 parent_type = read_type_die (parent, cu);
20170 if (TYPE_DECLARED_CLASS (parent_type))
20171 {
20172 if (TYPE_TAG_NAME (parent_type) != NULL)
20173 return TYPE_TAG_NAME (parent_type);
20174 return "";
20175 }
20176 /* Fall through. */
63d06c5c 20177 default:
8176b9b8 20178 return determine_prefix (parent, cu);
63d06c5c 20179 }
63d06c5c
DC
20180}
20181
3e43a32a
MS
20182/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20183 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20184 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20185 an obconcat, otherwise allocate storage for the result. The CU argument is
20186 used to determine the language and hence, the appropriate separator. */
987504bb 20187
f55ee35c 20188#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
20189
20190static char *
f55ee35c
JK
20191typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20192 int physname, struct dwarf2_cu *cu)
63d06c5c 20193{
f55ee35c 20194 const char *lead = "";
5c315b68 20195 const char *sep;
63d06c5c 20196
3e43a32a
MS
20197 if (suffix == NULL || suffix[0] == '\0'
20198 || prefix == NULL || prefix[0] == '\0')
987504bb 20199 sep = "";
45280282
IB
20200 else if (cu->language == language_d)
20201 {
20202 /* For D, the 'main' function could be defined in any module, but it
20203 should never be prefixed. */
20204 if (strcmp (suffix, "D main") == 0)
20205 {
20206 prefix = "";
20207 sep = "";
20208 }
20209 else
20210 sep = ".";
20211 }
f55ee35c
JK
20212 else if (cu->language == language_fortran && physname)
20213 {
20214 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20215 DW_AT_MIPS_linkage_name is preferred and used instead. */
20216
20217 lead = "__";
20218 sep = "_MOD_";
20219 }
987504bb
JJ
20220 else
20221 sep = "::";
63d06c5c 20222
6dd47d34
DE
20223 if (prefix == NULL)
20224 prefix = "";
20225 if (suffix == NULL)
20226 suffix = "";
20227
987504bb
JJ
20228 if (obs == NULL)
20229 {
3e43a32a 20230 char *retval
224c3ddb
SM
20231 = ((char *)
20232 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 20233
f55ee35c
JK
20234 strcpy (retval, lead);
20235 strcat (retval, prefix);
6dd47d34
DE
20236 strcat (retval, sep);
20237 strcat (retval, suffix);
63d06c5c
DC
20238 return retval;
20239 }
987504bb
JJ
20240 else
20241 {
20242 /* We have an obstack. */
f55ee35c 20243 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 20244 }
63d06c5c
DC
20245}
20246
c906108c
SS
20247/* Return sibling of die, NULL if no sibling. */
20248
f9aca02d 20249static struct die_info *
fba45db2 20250sibling_die (struct die_info *die)
c906108c 20251{
639d11d3 20252 return die->sibling;
c906108c
SS
20253}
20254
71c25dea
TT
20255/* Get name of a die, return NULL if not found. */
20256
15d034d0
TT
20257static const char *
20258dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
20259 struct obstack *obstack)
20260{
20261 if (name && cu->language == language_cplus)
20262 {
2f408ecb 20263 std::string canon_name = cp_canonicalize_string (name);
71c25dea 20264
2f408ecb 20265 if (!canon_name.empty ())
71c25dea 20266 {
2f408ecb
PA
20267 if (canon_name != name)
20268 name = (const char *) obstack_copy0 (obstack,
20269 canon_name.c_str (),
20270 canon_name.length ());
71c25dea
TT
20271 }
20272 }
20273
20274 return name;
c906108c
SS
20275}
20276
96553a0c
DE
20277/* Get name of a die, return NULL if not found.
20278 Anonymous namespaces are converted to their magic string. */
9219021c 20279
15d034d0 20280static const char *
e142c38c 20281dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
20282{
20283 struct attribute *attr;
20284
e142c38c 20285 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 20286 if ((!attr || !DW_STRING (attr))
96553a0c 20287 && die->tag != DW_TAG_namespace
53832f31
TT
20288 && die->tag != DW_TAG_class_type
20289 && die->tag != DW_TAG_interface_type
20290 && die->tag != DW_TAG_structure_type
20291 && die->tag != DW_TAG_union_type)
71c25dea
TT
20292 return NULL;
20293
20294 switch (die->tag)
20295 {
20296 case DW_TAG_compile_unit:
95554aad 20297 case DW_TAG_partial_unit:
71c25dea
TT
20298 /* Compilation units have a DW_AT_name that is a filename, not
20299 a source language identifier. */
20300 case DW_TAG_enumeration_type:
20301 case DW_TAG_enumerator:
20302 /* These tags always have simple identifiers already; no need
20303 to canonicalize them. */
20304 return DW_STRING (attr);
907af001 20305
96553a0c
DE
20306 case DW_TAG_namespace:
20307 if (attr != NULL && DW_STRING (attr) != NULL)
20308 return DW_STRING (attr);
20309 return CP_ANONYMOUS_NAMESPACE_STR;
20310
907af001
UW
20311 case DW_TAG_class_type:
20312 case DW_TAG_interface_type:
20313 case DW_TAG_structure_type:
20314 case DW_TAG_union_type:
20315 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20316 structures or unions. These were of the form "._%d" in GCC 4.1,
20317 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20318 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 20319 if (attr && DW_STRING (attr)
61012eef
GB
20320 && (startswith (DW_STRING (attr), "._")
20321 || startswith (DW_STRING (attr), "<anonymous")))
907af001 20322 return NULL;
53832f31
TT
20323
20324 /* GCC might emit a nameless typedef that has a linkage name. See
20325 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20326 if (!attr || DW_STRING (attr) == NULL)
20327 {
df5c6c50 20328 char *demangled = NULL;
53832f31 20329
73b9be8b 20330 attr = dw2_linkage_name_attr (die, cu);
53832f31
TT
20331 if (attr == NULL || DW_STRING (attr) == NULL)
20332 return NULL;
20333
df5c6c50
JK
20334 /* Avoid demangling DW_STRING (attr) the second time on a second
20335 call for the same DIE. */
20336 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 20337 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
20338
20339 if (demangled)
20340 {
e6a959d6 20341 const char *base;
96408a79 20342
53832f31 20343 /* FIXME: we already did this for the partial symbol... */
34a68019 20344 DW_STRING (attr)
224c3ddb
SM
20345 = ((const char *)
20346 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20347 demangled, strlen (demangled)));
53832f31
TT
20348 DW_STRING_IS_CANONICAL (attr) = 1;
20349 xfree (demangled);
96408a79
SA
20350
20351 /* Strip any leading namespaces/classes, keep only the base name.
20352 DW_AT_name for named DIEs does not contain the prefixes. */
20353 base = strrchr (DW_STRING (attr), ':');
20354 if (base && base > DW_STRING (attr) && base[-1] == ':')
20355 return &base[1];
20356 else
20357 return DW_STRING (attr);
53832f31
TT
20358 }
20359 }
907af001
UW
20360 break;
20361
71c25dea 20362 default:
907af001
UW
20363 break;
20364 }
20365
20366 if (!DW_STRING_IS_CANONICAL (attr))
20367 {
20368 DW_STRING (attr)
20369 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 20370 &cu->objfile->per_bfd->storage_obstack);
907af001 20371 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 20372 }
907af001 20373 return DW_STRING (attr);
9219021c
DC
20374}
20375
20376/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
20377 is none. *EXT_CU is the CU containing DIE on input, and the CU
20378 containing the return value on output. */
9219021c
DC
20379
20380static struct die_info *
f2f0e013 20381dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
20382{
20383 struct attribute *attr;
9219021c 20384
f2f0e013 20385 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
20386 if (attr == NULL)
20387 return NULL;
20388
f2f0e013 20389 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
20390}
20391
c906108c
SS
20392/* Convert a DIE tag into its string name. */
20393
f39c6ffd 20394static const char *
aa1ee363 20395dwarf_tag_name (unsigned tag)
c906108c 20396{
f39c6ffd
TT
20397 const char *name = get_DW_TAG_name (tag);
20398
20399 if (name == NULL)
20400 return "DW_TAG_<unknown>";
20401
20402 return name;
c906108c
SS
20403}
20404
20405/* Convert a DWARF attribute code into its string name. */
20406
f39c6ffd 20407static const char *
aa1ee363 20408dwarf_attr_name (unsigned attr)
c906108c 20409{
f39c6ffd
TT
20410 const char *name;
20411
c764a876 20412#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
20413 if (attr == DW_AT_MIPS_fde)
20414 return "DW_AT_MIPS_fde";
20415#else
20416 if (attr == DW_AT_HP_block_index)
20417 return "DW_AT_HP_block_index";
c764a876 20418#endif
f39c6ffd
TT
20419
20420 name = get_DW_AT_name (attr);
20421
20422 if (name == NULL)
20423 return "DW_AT_<unknown>";
20424
20425 return name;
c906108c
SS
20426}
20427
20428/* Convert a DWARF value form code into its string name. */
20429
f39c6ffd 20430static const char *
aa1ee363 20431dwarf_form_name (unsigned form)
c906108c 20432{
f39c6ffd
TT
20433 const char *name = get_DW_FORM_name (form);
20434
20435 if (name == NULL)
20436 return "DW_FORM_<unknown>";
20437
20438 return name;
c906108c
SS
20439}
20440
a121b7c1 20441static const char *
fba45db2 20442dwarf_bool_name (unsigned mybool)
c906108c
SS
20443{
20444 if (mybool)
20445 return "TRUE";
20446 else
20447 return "FALSE";
20448}
20449
20450/* Convert a DWARF type code into its string name. */
20451
f39c6ffd 20452static const char *
aa1ee363 20453dwarf_type_encoding_name (unsigned enc)
c906108c 20454{
f39c6ffd 20455 const char *name = get_DW_ATE_name (enc);
c906108c 20456
f39c6ffd
TT
20457 if (name == NULL)
20458 return "DW_ATE_<unknown>";
c906108c 20459
f39c6ffd 20460 return name;
c906108c 20461}
c906108c 20462
f9aca02d 20463static void
d97bc12b 20464dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
20465{
20466 unsigned int i;
20467
d97bc12b
DE
20468 print_spaces (indent, f);
20469 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
9c541725
PA
20470 dwarf_tag_name (die->tag), die->abbrev,
20471 to_underlying (die->sect_off));
d97bc12b
DE
20472
20473 if (die->parent != NULL)
20474 {
20475 print_spaces (indent, f);
20476 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
9c541725 20477 to_underlying (die->parent->sect_off));
d97bc12b
DE
20478 }
20479
20480 print_spaces (indent, f);
20481 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 20482 dwarf_bool_name (die->child != NULL));
c906108c 20483
d97bc12b
DE
20484 print_spaces (indent, f);
20485 fprintf_unfiltered (f, " attributes:\n");
20486
c906108c
SS
20487 for (i = 0; i < die->num_attrs; ++i)
20488 {
d97bc12b
DE
20489 print_spaces (indent, f);
20490 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
20491 dwarf_attr_name (die->attrs[i].name),
20492 dwarf_form_name (die->attrs[i].form));
d97bc12b 20493
c906108c
SS
20494 switch (die->attrs[i].form)
20495 {
c906108c 20496 case DW_FORM_addr:
3019eac3 20497 case DW_FORM_GNU_addr_index:
d97bc12b 20498 fprintf_unfiltered (f, "address: ");
5af949e3 20499 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
20500 break;
20501 case DW_FORM_block2:
20502 case DW_FORM_block4:
20503 case DW_FORM_block:
20504 case DW_FORM_block1:
56eb65bd
SP
20505 fprintf_unfiltered (f, "block: size %s",
20506 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 20507 break;
2dc7f7b3 20508 case DW_FORM_exprloc:
56eb65bd
SP
20509 fprintf_unfiltered (f, "expression: size %s",
20510 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 20511 break;
0224619f
JK
20512 case DW_FORM_data16:
20513 fprintf_unfiltered (f, "constant of 16 bytes");
20514 break;
4568ecf9
DE
20515 case DW_FORM_ref_addr:
20516 fprintf_unfiltered (f, "ref address: ");
20517 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20518 break;
36586728
TT
20519 case DW_FORM_GNU_ref_alt:
20520 fprintf_unfiltered (f, "alt ref address: ");
20521 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20522 break;
10b3939b
DJ
20523 case DW_FORM_ref1:
20524 case DW_FORM_ref2:
20525 case DW_FORM_ref4:
4568ecf9
DE
20526 case DW_FORM_ref8:
20527 case DW_FORM_ref_udata:
d97bc12b 20528 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 20529 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 20530 break;
c906108c
SS
20531 case DW_FORM_data1:
20532 case DW_FORM_data2:
20533 case DW_FORM_data4:
ce5d95e1 20534 case DW_FORM_data8:
c906108c
SS
20535 case DW_FORM_udata:
20536 case DW_FORM_sdata:
43bbcdc2
PH
20537 fprintf_unfiltered (f, "constant: %s",
20538 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 20539 break;
2dc7f7b3
TT
20540 case DW_FORM_sec_offset:
20541 fprintf_unfiltered (f, "section offset: %s",
20542 pulongest (DW_UNSND (&die->attrs[i])));
20543 break;
55f1336d 20544 case DW_FORM_ref_sig8:
ac9ec31b
DE
20545 fprintf_unfiltered (f, "signature: %s",
20546 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 20547 break;
c906108c 20548 case DW_FORM_string:
4bdf3d34 20549 case DW_FORM_strp:
43988095 20550 case DW_FORM_line_strp:
3019eac3 20551 case DW_FORM_GNU_str_index:
36586728 20552 case DW_FORM_GNU_strp_alt:
8285870a 20553 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 20554 DW_STRING (&die->attrs[i])
8285870a
JK
20555 ? DW_STRING (&die->attrs[i]) : "",
20556 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
20557 break;
20558 case DW_FORM_flag:
20559 if (DW_UNSND (&die->attrs[i]))
d97bc12b 20560 fprintf_unfiltered (f, "flag: TRUE");
c906108c 20561 else
d97bc12b 20562 fprintf_unfiltered (f, "flag: FALSE");
c906108c 20563 break;
2dc7f7b3
TT
20564 case DW_FORM_flag_present:
20565 fprintf_unfiltered (f, "flag: TRUE");
20566 break;
a8329558 20567 case DW_FORM_indirect:
0963b4bd
MS
20568 /* The reader will have reduced the indirect form to
20569 the "base form" so this form should not occur. */
3e43a32a
MS
20570 fprintf_unfiltered (f,
20571 "unexpected attribute form: DW_FORM_indirect");
a8329558 20572 break;
663c44ac
JK
20573 case DW_FORM_implicit_const:
20574 fprintf_unfiltered (f, "constant: %s",
20575 plongest (DW_SND (&die->attrs[i])));
20576 break;
c906108c 20577 default:
d97bc12b 20578 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 20579 die->attrs[i].form);
d97bc12b 20580 break;
c906108c 20581 }
d97bc12b 20582 fprintf_unfiltered (f, "\n");
c906108c
SS
20583 }
20584}
20585
f9aca02d 20586static void
d97bc12b 20587dump_die_for_error (struct die_info *die)
c906108c 20588{
d97bc12b
DE
20589 dump_die_shallow (gdb_stderr, 0, die);
20590}
20591
20592static void
20593dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20594{
20595 int indent = level * 4;
20596
20597 gdb_assert (die != NULL);
20598
20599 if (level >= max_level)
20600 return;
20601
20602 dump_die_shallow (f, indent, die);
20603
20604 if (die->child != NULL)
c906108c 20605 {
d97bc12b
DE
20606 print_spaces (indent, f);
20607 fprintf_unfiltered (f, " Children:");
20608 if (level + 1 < max_level)
20609 {
20610 fprintf_unfiltered (f, "\n");
20611 dump_die_1 (f, level + 1, max_level, die->child);
20612 }
20613 else
20614 {
3e43a32a
MS
20615 fprintf_unfiltered (f,
20616 " [not printed, max nesting level reached]\n");
d97bc12b
DE
20617 }
20618 }
20619
20620 if (die->sibling != NULL && level > 0)
20621 {
20622 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
20623 }
20624}
20625
d97bc12b
DE
20626/* This is called from the pdie macro in gdbinit.in.
20627 It's not static so gcc will keep a copy callable from gdb. */
20628
20629void
20630dump_die (struct die_info *die, int max_level)
20631{
20632 dump_die_1 (gdb_stdlog, 0, max_level, die);
20633}
20634
f9aca02d 20635static void
51545339 20636store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 20637{
51545339 20638 void **slot;
c906108c 20639
9c541725
PA
20640 slot = htab_find_slot_with_hash (cu->die_hash, die,
20641 to_underlying (die->sect_off),
b64f50a1 20642 INSERT);
51545339
DJ
20643
20644 *slot = die;
c906108c
SS
20645}
20646
b64f50a1
JK
20647/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20648 required kind. */
20649
20650static sect_offset
ff39bb5e 20651dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 20652{
7771576e 20653 if (attr_form_is_ref (attr))
9c541725 20654 return (sect_offset) DW_UNSND (attr);
93311388
DE
20655
20656 complaint (&symfile_complaints,
20657 _("unsupported die ref attribute form: '%s'"),
20658 dwarf_form_name (attr->form));
9c541725 20659 return {};
c906108c
SS
20660}
20661
43bbcdc2
PH
20662/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20663 * the value held by the attribute is not constant. */
a02abb62 20664
43bbcdc2 20665static LONGEST
ff39bb5e 20666dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62 20667{
663c44ac 20668 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
a02abb62
JB
20669 return DW_SND (attr);
20670 else if (attr->form == DW_FORM_udata
20671 || attr->form == DW_FORM_data1
20672 || attr->form == DW_FORM_data2
20673 || attr->form == DW_FORM_data4
20674 || attr->form == DW_FORM_data8)
20675 return DW_UNSND (attr);
20676 else
20677 {
0224619f 20678 /* For DW_FORM_data16 see attr_form_is_constant. */
3e43a32a
MS
20679 complaint (&symfile_complaints,
20680 _("Attribute value is not a constant (%s)"),
a02abb62
JB
20681 dwarf_form_name (attr->form));
20682 return default_value;
20683 }
20684}
20685
348e048f
DE
20686/* Follow reference or signature attribute ATTR of SRC_DIE.
20687 On entry *REF_CU is the CU of SRC_DIE.
20688 On exit *REF_CU is the CU of the result. */
20689
20690static struct die_info *
ff39bb5e 20691follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
20692 struct dwarf2_cu **ref_cu)
20693{
20694 struct die_info *die;
20695
7771576e 20696 if (attr_form_is_ref (attr))
348e048f 20697 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 20698 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
20699 die = follow_die_sig (src_die, attr, ref_cu);
20700 else
20701 {
20702 dump_die_for_error (src_die);
20703 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 20704 objfile_name ((*ref_cu)->objfile));
348e048f
DE
20705 }
20706
20707 return die;
03dd20cc
DJ
20708}
20709
5c631832 20710/* Follow reference OFFSET.
673bfd45
DE
20711 On entry *REF_CU is the CU of the source die referencing OFFSET.
20712 On exit *REF_CU is the CU of the result.
20713 Returns NULL if OFFSET is invalid. */
f504f079 20714
f9aca02d 20715static struct die_info *
9c541725 20716follow_die_offset (sect_offset sect_off, int offset_in_dwz,
36586728 20717 struct dwarf2_cu **ref_cu)
c906108c 20718{
10b3939b 20719 struct die_info temp_die;
f2f0e013 20720 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 20721
348e048f
DE
20722 gdb_assert (cu->per_cu != NULL);
20723
98bfdba5
PA
20724 target_cu = cu;
20725
3019eac3 20726 if (cu->per_cu->is_debug_types)
348e048f
DE
20727 {
20728 /* .debug_types CUs cannot reference anything outside their CU.
20729 If they need to, they have to reference a signatured type via
55f1336d 20730 DW_FORM_ref_sig8. */
9c541725 20731 if (!offset_in_cu_p (&cu->header, sect_off))
5c631832 20732 return NULL;
348e048f 20733 }
36586728 20734 else if (offset_in_dwz != cu->per_cu->is_dwz
9c541725 20735 || !offset_in_cu_p (&cu->header, sect_off))
10b3939b
DJ
20736 {
20737 struct dwarf2_per_cu_data *per_cu;
9a619af0 20738
9c541725 20739 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
36586728 20740 cu->objfile);
03dd20cc
DJ
20741
20742 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
20743 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20744 load_full_comp_unit (per_cu, cu->language);
03dd20cc 20745
10b3939b
DJ
20746 target_cu = per_cu->cu;
20747 }
98bfdba5
PA
20748 else if (cu->dies == NULL)
20749 {
20750 /* We're loading full DIEs during partial symbol reading. */
20751 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 20752 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 20753 }
c906108c 20754
f2f0e013 20755 *ref_cu = target_cu;
9c541725 20756 temp_die.sect_off = sect_off;
9a3c8263 20757 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
9c541725
PA
20758 &temp_die,
20759 to_underlying (sect_off));
5c631832 20760}
10b3939b 20761
5c631832
JK
20762/* Follow reference attribute ATTR of SRC_DIE.
20763 On entry *REF_CU is the CU of SRC_DIE.
20764 On exit *REF_CU is the CU of the result. */
20765
20766static struct die_info *
ff39bb5e 20767follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20768 struct dwarf2_cu **ref_cu)
20769{
9c541725 20770 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20771 struct dwarf2_cu *cu = *ref_cu;
20772 struct die_info *die;
20773
9c541725 20774 die = follow_die_offset (sect_off,
36586728
TT
20775 (attr->form == DW_FORM_GNU_ref_alt
20776 || cu->per_cu->is_dwz),
20777 ref_cu);
5c631832
JK
20778 if (!die)
20779 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20780 "at 0x%x [in module %s]"),
9c541725 20781 to_underlying (sect_off), to_underlying (src_die->sect_off),
4262abfb 20782 objfile_name (cu->objfile));
348e048f 20783
5c631832
JK
20784 return die;
20785}
20786
9c541725 20787/* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
d83e736b
JK
20788 Returned value is intended for DW_OP_call*. Returned
20789 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20790
20791struct dwarf2_locexpr_baton
9c541725 20792dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
8b9737bf
TT
20793 struct dwarf2_per_cu_data *per_cu,
20794 CORE_ADDR (*get_frame_pc) (void *baton),
20795 void *baton)
5c631832 20796{
918dd910 20797 struct dwarf2_cu *cu;
5c631832
JK
20798 struct die_info *die;
20799 struct attribute *attr;
20800 struct dwarf2_locexpr_baton retval;
20801
8cf6f0b1
TT
20802 dw2_setup (per_cu->objfile);
20803
918dd910
JK
20804 if (per_cu->cu == NULL)
20805 load_cu (per_cu);
20806 cu = per_cu->cu;
cc12ce38
DE
20807 if (cu == NULL)
20808 {
20809 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20810 Instead just throw an error, not much else we can do. */
20811 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
9c541725 20812 to_underlying (sect_off), objfile_name (per_cu->objfile));
cc12ce38 20813 }
918dd910 20814
9c541725 20815 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
5c631832
JK
20816 if (!die)
20817 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
9c541725 20818 to_underlying (sect_off), objfile_name (per_cu->objfile));
5c631832
JK
20819
20820 attr = dwarf2_attr (die, DW_AT_location, cu);
20821 if (!attr)
20822 {
e103e986
JK
20823 /* DWARF: "If there is no such attribute, then there is no effect.".
20824 DATA is ignored if SIZE is 0. */
5c631832 20825
e103e986 20826 retval.data = NULL;
5c631832
JK
20827 retval.size = 0;
20828 }
8cf6f0b1
TT
20829 else if (attr_form_is_section_offset (attr))
20830 {
20831 struct dwarf2_loclist_baton loclist_baton;
20832 CORE_ADDR pc = (*get_frame_pc) (baton);
20833 size_t size;
20834
20835 fill_in_loclist_baton (cu, &loclist_baton, attr);
20836
20837 retval.data = dwarf2_find_location_expression (&loclist_baton,
20838 &size, pc);
20839 retval.size = size;
20840 }
5c631832
JK
20841 else
20842 {
20843 if (!attr_form_is_block (attr))
20844 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20845 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
9c541725 20846 to_underlying (sect_off), objfile_name (per_cu->objfile));
5c631832
JK
20847
20848 retval.data = DW_BLOCK (attr)->data;
20849 retval.size = DW_BLOCK (attr)->size;
20850 }
20851 retval.per_cu = cu->per_cu;
918dd910 20852
918dd910
JK
20853 age_cached_comp_units ();
20854
5c631832 20855 return retval;
348e048f
DE
20856}
20857
8b9737bf
TT
20858/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20859 offset. */
20860
20861struct dwarf2_locexpr_baton
20862dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20863 struct dwarf2_per_cu_data *per_cu,
20864 CORE_ADDR (*get_frame_pc) (void *baton),
20865 void *baton)
20866{
9c541725 20867 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
8b9737bf 20868
9c541725 20869 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
8b9737bf
TT
20870}
20871
b6807d98
TT
20872/* Write a constant of a given type as target-ordered bytes into
20873 OBSTACK. */
20874
20875static const gdb_byte *
20876write_constant_as_bytes (struct obstack *obstack,
20877 enum bfd_endian byte_order,
20878 struct type *type,
20879 ULONGEST value,
20880 LONGEST *len)
20881{
20882 gdb_byte *result;
20883
20884 *len = TYPE_LENGTH (type);
224c3ddb 20885 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20886 store_unsigned_integer (result, *len, byte_order, value);
20887
20888 return result;
20889}
20890
20891/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20892 pointer to the constant bytes and set LEN to the length of the
20893 data. If memory is needed, allocate it on OBSTACK. If the DIE
20894 does not have a DW_AT_const_value, return NULL. */
20895
20896const gdb_byte *
9c541725 20897dwarf2_fetch_constant_bytes (sect_offset sect_off,
b6807d98
TT
20898 struct dwarf2_per_cu_data *per_cu,
20899 struct obstack *obstack,
20900 LONGEST *len)
20901{
20902 struct dwarf2_cu *cu;
20903 struct die_info *die;
20904 struct attribute *attr;
20905 const gdb_byte *result = NULL;
20906 struct type *type;
20907 LONGEST value;
20908 enum bfd_endian byte_order;
20909
20910 dw2_setup (per_cu->objfile);
20911
20912 if (per_cu->cu == NULL)
20913 load_cu (per_cu);
20914 cu = per_cu->cu;
cc12ce38
DE
20915 if (cu == NULL)
20916 {
20917 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20918 Instead just throw an error, not much else we can do. */
20919 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
9c541725 20920 to_underlying (sect_off), objfile_name (per_cu->objfile));
cc12ce38 20921 }
b6807d98 20922
9c541725 20923 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
b6807d98
TT
20924 if (!die)
20925 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
9c541725 20926 to_underlying (sect_off), objfile_name (per_cu->objfile));
b6807d98
TT
20927
20928
20929 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20930 if (attr == NULL)
20931 return NULL;
20932
20933 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20934 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20935
20936 switch (attr->form)
20937 {
20938 case DW_FORM_addr:
20939 case DW_FORM_GNU_addr_index:
20940 {
20941 gdb_byte *tem;
20942
20943 *len = cu->header.addr_size;
224c3ddb 20944 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20945 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20946 result = tem;
20947 }
20948 break;
20949 case DW_FORM_string:
20950 case DW_FORM_strp:
20951 case DW_FORM_GNU_str_index:
20952 case DW_FORM_GNU_strp_alt:
20953 /* DW_STRING is already allocated on the objfile obstack, point
20954 directly to it. */
20955 result = (const gdb_byte *) DW_STRING (attr);
20956 *len = strlen (DW_STRING (attr));
20957 break;
20958 case DW_FORM_block1:
20959 case DW_FORM_block2:
20960 case DW_FORM_block4:
20961 case DW_FORM_block:
20962 case DW_FORM_exprloc:
0224619f 20963 case DW_FORM_data16:
b6807d98
TT
20964 result = DW_BLOCK (attr)->data;
20965 *len = DW_BLOCK (attr)->size;
20966 break;
20967
20968 /* The DW_AT_const_value attributes are supposed to carry the
20969 symbol's value "represented as it would be on the target
20970 architecture." By the time we get here, it's already been
20971 converted to host endianness, so we just need to sign- or
20972 zero-extend it as appropriate. */
20973 case DW_FORM_data1:
20974 type = die_type (die, cu);
20975 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20976 if (result == NULL)
20977 result = write_constant_as_bytes (obstack, byte_order,
20978 type, value, len);
20979 break;
20980 case DW_FORM_data2:
20981 type = die_type (die, cu);
20982 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20983 if (result == NULL)
20984 result = write_constant_as_bytes (obstack, byte_order,
20985 type, value, len);
20986 break;
20987 case DW_FORM_data4:
20988 type = die_type (die, cu);
20989 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20990 if (result == NULL)
20991 result = write_constant_as_bytes (obstack, byte_order,
20992 type, value, len);
20993 break;
20994 case DW_FORM_data8:
20995 type = die_type (die, cu);
20996 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20997 if (result == NULL)
20998 result = write_constant_as_bytes (obstack, byte_order,
20999 type, value, len);
21000 break;
21001
21002 case DW_FORM_sdata:
663c44ac 21003 case DW_FORM_implicit_const:
b6807d98
TT
21004 type = die_type (die, cu);
21005 result = write_constant_as_bytes (obstack, byte_order,
21006 type, DW_SND (attr), len);
21007 break;
21008
21009 case DW_FORM_udata:
21010 type = die_type (die, cu);
21011 result = write_constant_as_bytes (obstack, byte_order,
21012 type, DW_UNSND (attr), len);
21013 break;
21014
21015 default:
21016 complaint (&symfile_complaints,
21017 _("unsupported const value attribute form: '%s'"),
21018 dwarf_form_name (attr->form));
21019 break;
21020 }
21021
21022 return result;
21023}
21024
7942e96e
AA
21025/* Return the type of the die at OFFSET in PER_CU. Return NULL if no
21026 valid type for this die is found. */
21027
21028struct type *
9c541725 21029dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
7942e96e
AA
21030 struct dwarf2_per_cu_data *per_cu)
21031{
21032 struct dwarf2_cu *cu;
21033 struct die_info *die;
21034
21035 dw2_setup (per_cu->objfile);
21036
21037 if (per_cu->cu == NULL)
21038 load_cu (per_cu);
21039 cu = per_cu->cu;
21040 if (!cu)
21041 return NULL;
21042
9c541725 21043 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
7942e96e
AA
21044 if (!die)
21045 return NULL;
21046
21047 return die_type (die, cu);
21048}
21049
8a9b8146
TT
21050/* Return the type of the DIE at DIE_OFFSET in the CU named by
21051 PER_CU. */
21052
21053struct type *
b64f50a1 21054dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
21055 struct dwarf2_per_cu_data *per_cu)
21056{
8a9b8146 21057 dw2_setup (per_cu->objfile);
b64f50a1 21058
9c541725 21059 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
b64f50a1 21060 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
21061}
21062
ac9ec31b 21063/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 21064 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
21065 On exit *REF_CU is the CU of the result.
21066 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
21067
21068static struct die_info *
ac9ec31b
DE
21069follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
21070 struct dwarf2_cu **ref_cu)
348e048f 21071{
348e048f 21072 struct die_info temp_die;
348e048f
DE
21073 struct dwarf2_cu *sig_cu;
21074 struct die_info *die;
21075
ac9ec31b
DE
21076 /* While it might be nice to assert sig_type->type == NULL here,
21077 we can get here for DW_AT_imported_declaration where we need
21078 the DIE not the type. */
348e048f
DE
21079
21080 /* If necessary, add it to the queue and load its DIEs. */
21081
95554aad 21082 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 21083 read_signatured_type (sig_type);
348e048f 21084
348e048f 21085 sig_cu = sig_type->per_cu.cu;
69d751e3 21086 gdb_assert (sig_cu != NULL);
9c541725
PA
21087 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
21088 temp_die.sect_off = sig_type->type_offset_in_section;
9a3c8263 21089 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
9c541725 21090 to_underlying (temp_die.sect_off));
348e048f
DE
21091 if (die)
21092 {
796a7ff8
DE
21093 /* For .gdb_index version 7 keep track of included TUs.
21094 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
21095 if (dwarf2_per_objfile->index_table != NULL
21096 && dwarf2_per_objfile->index_table->version <= 7)
21097 {
21098 VEC_safe_push (dwarf2_per_cu_ptr,
21099 (*ref_cu)->per_cu->imported_symtabs,
21100 sig_cu->per_cu);
21101 }
21102
348e048f
DE
21103 *ref_cu = sig_cu;
21104 return die;
21105 }
21106
ac9ec31b
DE
21107 return NULL;
21108}
21109
21110/* Follow signatured type referenced by ATTR in SRC_DIE.
21111 On entry *REF_CU is the CU of SRC_DIE.
21112 On exit *REF_CU is the CU of the result.
21113 The result is the DIE of the type.
21114 If the referenced type cannot be found an error is thrown. */
21115
21116static struct die_info *
ff39bb5e 21117follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
21118 struct dwarf2_cu **ref_cu)
21119{
21120 ULONGEST signature = DW_SIGNATURE (attr);
21121 struct signatured_type *sig_type;
21122 struct die_info *die;
21123
21124 gdb_assert (attr->form == DW_FORM_ref_sig8);
21125
a2ce51a0 21126 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
21127 /* sig_type will be NULL if the signatured type is missing from
21128 the debug info. */
21129 if (sig_type == NULL)
21130 {
21131 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21132 " from DIE at 0x%x [in module %s]"),
9c541725 21133 hex_string (signature), to_underlying (src_die->sect_off),
4262abfb 21134 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
21135 }
21136
21137 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
21138 if (die == NULL)
21139 {
21140 dump_die_for_error (src_die);
21141 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
21142 " from DIE at 0x%x [in module %s]"),
9c541725 21143 hex_string (signature), to_underlying (src_die->sect_off),
4262abfb 21144 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
21145 }
21146
21147 return die;
21148}
21149
21150/* Get the type specified by SIGNATURE referenced in DIE/CU,
21151 reading in and processing the type unit if necessary. */
21152
21153static struct type *
21154get_signatured_type (struct die_info *die, ULONGEST signature,
21155 struct dwarf2_cu *cu)
21156{
21157 struct signatured_type *sig_type;
21158 struct dwarf2_cu *type_cu;
21159 struct die_info *type_die;
21160 struct type *type;
21161
a2ce51a0 21162 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
21163 /* sig_type will be NULL if the signatured type is missing from
21164 the debug info. */
21165 if (sig_type == NULL)
21166 {
21167 complaint (&symfile_complaints,
21168 _("Dwarf Error: Cannot find signatured DIE %s referenced"
21169 " from DIE at 0x%x [in module %s]"),
9c541725 21170 hex_string (signature), to_underlying (die->sect_off),
4262abfb 21171 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21172 return build_error_marker_type (cu, die);
21173 }
21174
21175 /* If we already know the type we're done. */
21176 if (sig_type->type != NULL)
21177 return sig_type->type;
21178
21179 type_cu = cu;
21180 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
21181 if (type_die != NULL)
21182 {
21183 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21184 is created. This is important, for example, because for c++ classes
21185 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21186 type = read_type_die (type_die, type_cu);
21187 if (type == NULL)
21188 {
21189 complaint (&symfile_complaints,
21190 _("Dwarf Error: Cannot build signatured type %s"
21191 " referenced from DIE at 0x%x [in module %s]"),
9c541725 21192 hex_string (signature), to_underlying (die->sect_off),
4262abfb 21193 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21194 type = build_error_marker_type (cu, die);
21195 }
21196 }
21197 else
21198 {
21199 complaint (&symfile_complaints,
21200 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21201 " from DIE at 0x%x [in module %s]"),
9c541725 21202 hex_string (signature), to_underlying (die->sect_off),
4262abfb 21203 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21204 type = build_error_marker_type (cu, die);
21205 }
21206 sig_type->type = type;
21207
21208 return type;
21209}
21210
21211/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21212 reading in and processing the type unit if necessary. */
21213
21214static struct type *
ff39bb5e 21215get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 21216 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
21217{
21218 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 21219 if (attr_form_is_ref (attr))
ac9ec31b
DE
21220 {
21221 struct dwarf2_cu *type_cu = cu;
21222 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21223
21224 return read_type_die (type_die, type_cu);
21225 }
21226 else if (attr->form == DW_FORM_ref_sig8)
21227 {
21228 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21229 }
21230 else
21231 {
21232 complaint (&symfile_complaints,
21233 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21234 " at 0x%x [in module %s]"),
9c541725 21235 dwarf_form_name (attr->form), to_underlying (die->sect_off),
4262abfb 21236 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21237 return build_error_marker_type (cu, die);
21238 }
348e048f
DE
21239}
21240
e5fe5e75 21241/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
21242
21243static void
e5fe5e75 21244load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 21245{
52dc124a 21246 struct signatured_type *sig_type;
348e048f 21247
f4dc4d17
DE
21248 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21249 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21250
6721b2ec
DE
21251 /* We have the per_cu, but we need the signatured_type.
21252 Fortunately this is an easy translation. */
21253 gdb_assert (per_cu->is_debug_types);
21254 sig_type = (struct signatured_type *) per_cu;
348e048f 21255
6721b2ec 21256 gdb_assert (per_cu->cu == NULL);
348e048f 21257
52dc124a 21258 read_signatured_type (sig_type);
348e048f 21259
6721b2ec 21260 gdb_assert (per_cu->cu != NULL);
348e048f
DE
21261}
21262
dee91e82
DE
21263/* die_reader_func for read_signatured_type.
21264 This is identical to load_full_comp_unit_reader,
21265 but is kept separate for now. */
348e048f
DE
21266
21267static void
dee91e82 21268read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 21269 const gdb_byte *info_ptr,
dee91e82
DE
21270 struct die_info *comp_unit_die,
21271 int has_children,
21272 void *data)
348e048f 21273{
dee91e82 21274 struct dwarf2_cu *cu = reader->cu;
348e048f 21275
dee91e82
DE
21276 gdb_assert (cu->die_hash == NULL);
21277 cu->die_hash =
21278 htab_create_alloc_ex (cu->header.length / 12,
21279 die_hash,
21280 die_eq,
21281 NULL,
21282 &cu->comp_unit_obstack,
21283 hashtab_obstack_allocate,
21284 dummy_obstack_deallocate);
348e048f 21285
dee91e82
DE
21286 if (has_children)
21287 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21288 &info_ptr, comp_unit_die);
21289 cu->dies = comp_unit_die;
21290 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
21291
21292 /* We try not to read any attributes in this function, because not
9cdd5dbd 21293 all CUs needed for references have been loaded yet, and symbol
348e048f 21294 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
21295 or we won't be able to build types correctly.
21296 Similarly, if we do not read the producer, we can not apply
21297 producer-specific interpretation. */
95554aad 21298 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 21299}
348e048f 21300
3019eac3
DE
21301/* Read in a signatured type and build its CU and DIEs.
21302 If the type is a stub for the real type in a DWO file,
21303 read in the real type from the DWO file as well. */
dee91e82
DE
21304
21305static void
21306read_signatured_type (struct signatured_type *sig_type)
21307{
21308 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 21309
3019eac3 21310 gdb_assert (per_cu->is_debug_types);
dee91e82 21311 gdb_assert (per_cu->cu == NULL);
348e048f 21312
f4dc4d17
DE
21313 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21314 read_signatured_type_reader, NULL);
7ee85ab1 21315 sig_type->per_cu.tu_read = 1;
c906108c
SS
21316}
21317
c906108c
SS
21318/* Decode simple location descriptions.
21319 Given a pointer to a dwarf block that defines a location, compute
21320 the location and return the value.
21321
4cecd739
DJ
21322 NOTE drow/2003-11-18: This function is called in two situations
21323 now: for the address of static or global variables (partial symbols
21324 only) and for offsets into structures which are expected to be
21325 (more or less) constant. The partial symbol case should go away,
21326 and only the constant case should remain. That will let this
21327 function complain more accurately. A few special modes are allowed
21328 without complaint for global variables (for instance, global
21329 register values and thread-local values).
c906108c
SS
21330
21331 A location description containing no operations indicates that the
4cecd739 21332 object is optimized out. The return value is 0 for that case.
6b992462
DJ
21333 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21334 callers will only want a very basic result and this can become a
21ae7a4d
JK
21335 complaint.
21336
21337 Note that stack[0] is unused except as a default error return. */
c906108c
SS
21338
21339static CORE_ADDR
e7c27a73 21340decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 21341{
e7c27a73 21342 struct objfile *objfile = cu->objfile;
56eb65bd
SP
21343 size_t i;
21344 size_t size = blk->size;
d521ce57 21345 const gdb_byte *data = blk->data;
21ae7a4d
JK
21346 CORE_ADDR stack[64];
21347 int stacki;
21348 unsigned int bytes_read, unsnd;
21349 gdb_byte op;
c906108c 21350
21ae7a4d
JK
21351 i = 0;
21352 stacki = 0;
21353 stack[stacki] = 0;
21354 stack[++stacki] = 0;
21355
21356 while (i < size)
21357 {
21358 op = data[i++];
21359 switch (op)
21360 {
21361 case DW_OP_lit0:
21362 case DW_OP_lit1:
21363 case DW_OP_lit2:
21364 case DW_OP_lit3:
21365 case DW_OP_lit4:
21366 case DW_OP_lit5:
21367 case DW_OP_lit6:
21368 case DW_OP_lit7:
21369 case DW_OP_lit8:
21370 case DW_OP_lit9:
21371 case DW_OP_lit10:
21372 case DW_OP_lit11:
21373 case DW_OP_lit12:
21374 case DW_OP_lit13:
21375 case DW_OP_lit14:
21376 case DW_OP_lit15:
21377 case DW_OP_lit16:
21378 case DW_OP_lit17:
21379 case DW_OP_lit18:
21380 case DW_OP_lit19:
21381 case DW_OP_lit20:
21382 case DW_OP_lit21:
21383 case DW_OP_lit22:
21384 case DW_OP_lit23:
21385 case DW_OP_lit24:
21386 case DW_OP_lit25:
21387 case DW_OP_lit26:
21388 case DW_OP_lit27:
21389 case DW_OP_lit28:
21390 case DW_OP_lit29:
21391 case DW_OP_lit30:
21392 case DW_OP_lit31:
21393 stack[++stacki] = op - DW_OP_lit0;
21394 break;
f1bea926 21395
21ae7a4d
JK
21396 case DW_OP_reg0:
21397 case DW_OP_reg1:
21398 case DW_OP_reg2:
21399 case DW_OP_reg3:
21400 case DW_OP_reg4:
21401 case DW_OP_reg5:
21402 case DW_OP_reg6:
21403 case DW_OP_reg7:
21404 case DW_OP_reg8:
21405 case DW_OP_reg9:
21406 case DW_OP_reg10:
21407 case DW_OP_reg11:
21408 case DW_OP_reg12:
21409 case DW_OP_reg13:
21410 case DW_OP_reg14:
21411 case DW_OP_reg15:
21412 case DW_OP_reg16:
21413 case DW_OP_reg17:
21414 case DW_OP_reg18:
21415 case DW_OP_reg19:
21416 case DW_OP_reg20:
21417 case DW_OP_reg21:
21418 case DW_OP_reg22:
21419 case DW_OP_reg23:
21420 case DW_OP_reg24:
21421 case DW_OP_reg25:
21422 case DW_OP_reg26:
21423 case DW_OP_reg27:
21424 case DW_OP_reg28:
21425 case DW_OP_reg29:
21426 case DW_OP_reg30:
21427 case DW_OP_reg31:
21428 stack[++stacki] = op - DW_OP_reg0;
21429 if (i < size)
21430 dwarf2_complex_location_expr_complaint ();
21431 break;
c906108c 21432
21ae7a4d
JK
21433 case DW_OP_regx:
21434 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21435 i += bytes_read;
21436 stack[++stacki] = unsnd;
21437 if (i < size)
21438 dwarf2_complex_location_expr_complaint ();
21439 break;
c906108c 21440
21ae7a4d
JK
21441 case DW_OP_addr:
21442 stack[++stacki] = read_address (objfile->obfd, &data[i],
21443 cu, &bytes_read);
21444 i += bytes_read;
21445 break;
d53d4ac5 21446
21ae7a4d
JK
21447 case DW_OP_const1u:
21448 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21449 i += 1;
21450 break;
21451
21452 case DW_OP_const1s:
21453 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21454 i += 1;
21455 break;
21456
21457 case DW_OP_const2u:
21458 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21459 i += 2;
21460 break;
21461
21462 case DW_OP_const2s:
21463 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21464 i += 2;
21465 break;
d53d4ac5 21466
21ae7a4d
JK
21467 case DW_OP_const4u:
21468 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21469 i += 4;
21470 break;
21471
21472 case DW_OP_const4s:
21473 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21474 i += 4;
21475 break;
21476
585861ea
JK
21477 case DW_OP_const8u:
21478 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21479 i += 8;
21480 break;
21481
21ae7a4d
JK
21482 case DW_OP_constu:
21483 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21484 &bytes_read);
21485 i += bytes_read;
21486 break;
21487
21488 case DW_OP_consts:
21489 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21490 i += bytes_read;
21491 break;
21492
21493 case DW_OP_dup:
21494 stack[stacki + 1] = stack[stacki];
21495 stacki++;
21496 break;
21497
21498 case DW_OP_plus:
21499 stack[stacki - 1] += stack[stacki];
21500 stacki--;
21501 break;
21502
21503 case DW_OP_plus_uconst:
21504 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21505 &bytes_read);
21506 i += bytes_read;
21507 break;
21508
21509 case DW_OP_minus:
21510 stack[stacki - 1] -= stack[stacki];
21511 stacki--;
21512 break;
21513
21514 case DW_OP_deref:
21515 /* If we're not the last op, then we definitely can't encode
21516 this using GDB's address_class enum. This is valid for partial
21517 global symbols, although the variable's address will be bogus
21518 in the psymtab. */
21519 if (i < size)
21520 dwarf2_complex_location_expr_complaint ();
21521 break;
21522
21523 case DW_OP_GNU_push_tls_address:
4aa4e28b 21524 case DW_OP_form_tls_address:
21ae7a4d
JK
21525 /* The top of the stack has the offset from the beginning
21526 of the thread control block at which the variable is located. */
21527 /* Nothing should follow this operator, so the top of stack would
21528 be returned. */
21529 /* This is valid for partial global symbols, but the variable's
585861ea
JK
21530 address will be bogus in the psymtab. Make it always at least
21531 non-zero to not look as a variable garbage collected by linker
21532 which have DW_OP_addr 0. */
21ae7a4d
JK
21533 if (i < size)
21534 dwarf2_complex_location_expr_complaint ();
585861ea 21535 stack[stacki]++;
21ae7a4d
JK
21536 break;
21537
21538 case DW_OP_GNU_uninit:
21539 break;
21540
3019eac3 21541 case DW_OP_GNU_addr_index:
49f6c839 21542 case DW_OP_GNU_const_index:
3019eac3
DE
21543 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21544 &bytes_read);
21545 i += bytes_read;
21546 break;
21547
21ae7a4d
JK
21548 default:
21549 {
f39c6ffd 21550 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
21551
21552 if (name)
21553 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21554 name);
21555 else
21556 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21557 op);
21558 }
21559
21560 return (stack[stacki]);
d53d4ac5 21561 }
3c6e0cb3 21562
21ae7a4d
JK
21563 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21564 outside of the allocated space. Also enforce minimum>0. */
21565 if (stacki >= ARRAY_SIZE (stack) - 1)
21566 {
21567 complaint (&symfile_complaints,
21568 _("location description stack overflow"));
21569 return 0;
21570 }
21571
21572 if (stacki <= 0)
21573 {
21574 complaint (&symfile_complaints,
21575 _("location description stack underflow"));
21576 return 0;
21577 }
21578 }
21579 return (stack[stacki]);
c906108c
SS
21580}
21581
21582/* memory allocation interface */
21583
c906108c 21584static struct dwarf_block *
7b5a2f43 21585dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 21586{
8d749320 21587 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
21588}
21589
c906108c 21590static struct die_info *
b60c80d6 21591dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
21592{
21593 struct die_info *die;
b60c80d6
DJ
21594 size_t size = sizeof (struct die_info);
21595
21596 if (num_attrs > 1)
21597 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 21598
b60c80d6 21599 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
21600 memset (die, 0, sizeof (struct die_info));
21601 return (die);
21602}
2e276125
JB
21603
21604\f
21605/* Macro support. */
21606
233d95b5
JK
21607/* Return file name relative to the compilation directory of file number I in
21608 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 21609 responsible for freeing it. */
233d95b5 21610
2e276125 21611static char *
233d95b5 21612file_file_name (int file, struct line_header *lh)
2e276125 21613{
6a83a1e6
EZ
21614 /* Is the file number a valid index into the line header's file name
21615 table? Remember that file numbers start with one, not zero. */
fff8551c 21616 if (1 <= file && file <= lh->file_names.size ())
6a83a1e6 21617 {
8c43009f 21618 const file_entry &fe = lh->file_names[file - 1];
6e70227d 21619
8c43009f
PA
21620 if (!IS_ABSOLUTE_PATH (fe.name))
21621 {
21622 const char *dir = fe.include_dir (lh);
21623 if (dir != NULL)
21624 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
21625 }
21626 return xstrdup (fe.name);
6a83a1e6 21627 }
2e276125
JB
21628 else
21629 {
6a83a1e6
EZ
21630 /* The compiler produced a bogus file number. We can at least
21631 record the macro definitions made in the file, even if we
21632 won't be able to find the file by name. */
21633 char fake_name[80];
9a619af0 21634
8c042590
PM
21635 xsnprintf (fake_name, sizeof (fake_name),
21636 "<bad macro file number %d>", file);
2e276125 21637
6e70227d 21638 complaint (&symfile_complaints,
6a83a1e6
EZ
21639 _("bad file number in macro information (%d)"),
21640 file);
2e276125 21641
6a83a1e6 21642 return xstrdup (fake_name);
2e276125
JB
21643 }
21644}
21645
233d95b5
JK
21646/* Return the full name of file number I in *LH's file name table.
21647 Use COMP_DIR as the name of the current directory of the
21648 compilation. The result is allocated using xmalloc; the caller is
21649 responsible for freeing it. */
21650static char *
21651file_full_name (int file, struct line_header *lh, const char *comp_dir)
21652{
21653 /* Is the file number a valid index into the line header's file name
21654 table? Remember that file numbers start with one, not zero. */
fff8551c 21655 if (1 <= file && file <= lh->file_names.size ())
233d95b5
JK
21656 {
21657 char *relative = file_file_name (file, lh);
21658
21659 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21660 return relative;
b36cec19
PA
21661 return reconcat (relative, comp_dir, SLASH_STRING,
21662 relative, (char *) NULL);
233d95b5
JK
21663 }
21664 else
21665 return file_file_name (file, lh);
21666}
21667
2e276125
JB
21668
21669static struct macro_source_file *
21670macro_start_file (int file, int line,
21671 struct macro_source_file *current_file,
43f3e411 21672 struct line_header *lh)
2e276125 21673{
233d95b5
JK
21674 /* File name relative to the compilation directory of this source file. */
21675 char *file_name = file_file_name (file, lh);
2e276125 21676
2e276125 21677 if (! current_file)
abc9d0dc 21678 {
fc474241
DE
21679 /* Note: We don't create a macro table for this compilation unit
21680 at all until we actually get a filename. */
43f3e411 21681 struct macro_table *macro_table = get_macro_table ();
fc474241 21682
abc9d0dc
TT
21683 /* If we have no current file, then this must be the start_file
21684 directive for the compilation unit's main source file. */
fc474241
DE
21685 current_file = macro_set_main (macro_table, file_name);
21686 macro_define_special (macro_table);
abc9d0dc 21687 }
2e276125 21688 else
233d95b5 21689 current_file = macro_include (current_file, line, file_name);
2e276125 21690
233d95b5 21691 xfree (file_name);
6e70227d 21692
2e276125
JB
21693 return current_file;
21694}
21695
21696
21697/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
21698 followed by a null byte. */
21699static char *
21700copy_string (const char *buf, int len)
21701{
224c3ddb 21702 char *s = (char *) xmalloc (len + 1);
9a619af0 21703
2e276125
JB
21704 memcpy (s, buf, len);
21705 s[len] = '\0';
2e276125
JB
21706 return s;
21707}
21708
21709
21710static const char *
21711consume_improper_spaces (const char *p, const char *body)
21712{
21713 if (*p == ' ')
21714 {
4d3c2250 21715 complaint (&symfile_complaints,
3e43a32a
MS
21716 _("macro definition contains spaces "
21717 "in formal argument list:\n`%s'"),
4d3c2250 21718 body);
2e276125
JB
21719
21720 while (*p == ' ')
21721 p++;
21722 }
21723
21724 return p;
21725}
21726
21727
21728static void
21729parse_macro_definition (struct macro_source_file *file, int line,
21730 const char *body)
21731{
21732 const char *p;
21733
21734 /* The body string takes one of two forms. For object-like macro
21735 definitions, it should be:
21736
21737 <macro name> " " <definition>
21738
21739 For function-like macro definitions, it should be:
21740
21741 <macro name> "() " <definition>
21742 or
21743 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21744
21745 Spaces may appear only where explicitly indicated, and in the
21746 <definition>.
21747
21748 The Dwarf 2 spec says that an object-like macro's name is always
21749 followed by a space, but versions of GCC around March 2002 omit
6e70227d 21750 the space when the macro's definition is the empty string.
2e276125
JB
21751
21752 The Dwarf 2 spec says that there should be no spaces between the
21753 formal arguments in a function-like macro's formal argument list,
21754 but versions of GCC around March 2002 include spaces after the
21755 commas. */
21756
21757
21758 /* Find the extent of the macro name. The macro name is terminated
21759 by either a space or null character (for an object-like macro) or
21760 an opening paren (for a function-like macro). */
21761 for (p = body; *p; p++)
21762 if (*p == ' ' || *p == '(')
21763 break;
21764
21765 if (*p == ' ' || *p == '\0')
21766 {
21767 /* It's an object-like macro. */
21768 int name_len = p - body;
21769 char *name = copy_string (body, name_len);
21770 const char *replacement;
21771
21772 if (*p == ' ')
21773 replacement = body + name_len + 1;
21774 else
21775 {
4d3c2250 21776 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21777 replacement = body + name_len;
21778 }
6e70227d 21779
2e276125
JB
21780 macro_define_object (file, line, name, replacement);
21781
21782 xfree (name);
21783 }
21784 else if (*p == '(')
21785 {
21786 /* It's a function-like macro. */
21787 char *name = copy_string (body, p - body);
21788 int argc = 0;
21789 int argv_size = 1;
8d749320 21790 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
21791
21792 p++;
21793
21794 p = consume_improper_spaces (p, body);
21795
21796 /* Parse the formal argument list. */
21797 while (*p && *p != ')')
21798 {
21799 /* Find the extent of the current argument name. */
21800 const char *arg_start = p;
21801
21802 while (*p && *p != ',' && *p != ')' && *p != ' ')
21803 p++;
21804
21805 if (! *p || p == arg_start)
4d3c2250 21806 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21807 else
21808 {
21809 /* Make sure argv has room for the new argument. */
21810 if (argc >= argv_size)
21811 {
21812 argv_size *= 2;
224c3ddb 21813 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
21814 }
21815
21816 argv[argc++] = copy_string (arg_start, p - arg_start);
21817 }
21818
21819 p = consume_improper_spaces (p, body);
21820
21821 /* Consume the comma, if present. */
21822 if (*p == ',')
21823 {
21824 p++;
21825
21826 p = consume_improper_spaces (p, body);
21827 }
21828 }
21829
21830 if (*p == ')')
21831 {
21832 p++;
21833
21834 if (*p == ' ')
21835 /* Perfectly formed definition, no complaints. */
21836 macro_define_function (file, line, name,
6e70227d 21837 argc, (const char **) argv,
2e276125
JB
21838 p + 1);
21839 else if (*p == '\0')
21840 {
21841 /* Complain, but do define it. */
4d3c2250 21842 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21843 macro_define_function (file, line, name,
6e70227d 21844 argc, (const char **) argv,
2e276125
JB
21845 p);
21846 }
21847 else
21848 /* Just complain. */
4d3c2250 21849 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21850 }
21851 else
21852 /* Just complain. */
4d3c2250 21853 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21854
21855 xfree (name);
21856 {
21857 int i;
21858
21859 for (i = 0; i < argc; i++)
21860 xfree (argv[i]);
21861 }
21862 xfree (argv);
21863 }
21864 else
4d3c2250 21865 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21866}
21867
cf2c3c16
TT
21868/* Skip some bytes from BYTES according to the form given in FORM.
21869 Returns the new pointer. */
2e276125 21870
d521ce57
TT
21871static const gdb_byte *
21872skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21873 enum dwarf_form form,
21874 unsigned int offset_size,
21875 struct dwarf2_section_info *section)
2e276125 21876{
cf2c3c16 21877 unsigned int bytes_read;
2e276125 21878
cf2c3c16 21879 switch (form)
2e276125 21880 {
cf2c3c16
TT
21881 case DW_FORM_data1:
21882 case DW_FORM_flag:
21883 ++bytes;
21884 break;
21885
21886 case DW_FORM_data2:
21887 bytes += 2;
21888 break;
21889
21890 case DW_FORM_data4:
21891 bytes += 4;
21892 break;
21893
21894 case DW_FORM_data8:
21895 bytes += 8;
21896 break;
21897
0224619f
JK
21898 case DW_FORM_data16:
21899 bytes += 16;
21900 break;
21901
cf2c3c16
TT
21902 case DW_FORM_string:
21903 read_direct_string (abfd, bytes, &bytes_read);
21904 bytes += bytes_read;
21905 break;
21906
21907 case DW_FORM_sec_offset:
21908 case DW_FORM_strp:
36586728 21909 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21910 bytes += offset_size;
21911 break;
21912
21913 case DW_FORM_block:
21914 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21915 bytes += bytes_read;
21916 break;
21917
21918 case DW_FORM_block1:
21919 bytes += 1 + read_1_byte (abfd, bytes);
21920 break;
21921 case DW_FORM_block2:
21922 bytes += 2 + read_2_bytes (abfd, bytes);
21923 break;
21924 case DW_FORM_block4:
21925 bytes += 4 + read_4_bytes (abfd, bytes);
21926 break;
21927
21928 case DW_FORM_sdata:
21929 case DW_FORM_udata:
3019eac3
DE
21930 case DW_FORM_GNU_addr_index:
21931 case DW_FORM_GNU_str_index:
d521ce57 21932 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21933 if (bytes == NULL)
21934 {
21935 dwarf2_section_buffer_overflow_complaint (section);
21936 return NULL;
21937 }
cf2c3c16
TT
21938 break;
21939
663c44ac
JK
21940 case DW_FORM_implicit_const:
21941 break;
21942
cf2c3c16
TT
21943 default:
21944 {
21945 complain:
21946 complaint (&symfile_complaints,
21947 _("invalid form 0x%x in `%s'"),
a32a8923 21948 form, get_section_name (section));
cf2c3c16
TT
21949 return NULL;
21950 }
2e276125
JB
21951 }
21952
cf2c3c16
TT
21953 return bytes;
21954}
757a13d0 21955
cf2c3c16
TT
21956/* A helper for dwarf_decode_macros that handles skipping an unknown
21957 opcode. Returns an updated pointer to the macro data buffer; or,
21958 on error, issues a complaint and returns NULL. */
757a13d0 21959
d521ce57 21960static const gdb_byte *
cf2c3c16 21961skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21962 const gdb_byte **opcode_definitions,
21963 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21964 bfd *abfd,
21965 unsigned int offset_size,
21966 struct dwarf2_section_info *section)
21967{
21968 unsigned int bytes_read, i;
21969 unsigned long arg;
d521ce57 21970 const gdb_byte *defn;
2e276125 21971
cf2c3c16 21972 if (opcode_definitions[opcode] == NULL)
2e276125 21973 {
cf2c3c16
TT
21974 complaint (&symfile_complaints,
21975 _("unrecognized DW_MACFINO opcode 0x%x"),
21976 opcode);
21977 return NULL;
21978 }
2e276125 21979
cf2c3c16
TT
21980 defn = opcode_definitions[opcode];
21981 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21982 defn += bytes_read;
2e276125 21983
cf2c3c16
TT
21984 for (i = 0; i < arg; ++i)
21985 {
aead7601
SM
21986 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21987 (enum dwarf_form) defn[i], offset_size,
f664829e 21988 section);
cf2c3c16
TT
21989 if (mac_ptr == NULL)
21990 {
21991 /* skip_form_bytes already issued the complaint. */
21992 return NULL;
21993 }
21994 }
757a13d0 21995
cf2c3c16
TT
21996 return mac_ptr;
21997}
757a13d0 21998
cf2c3c16
TT
21999/* A helper function which parses the header of a macro section.
22000 If the macro section is the extended (for now called "GNU") type,
22001 then this updates *OFFSET_SIZE. Returns a pointer to just after
22002 the header, or issues a complaint and returns NULL on error. */
757a13d0 22003
d521ce57
TT
22004static const gdb_byte *
22005dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 22006 bfd *abfd,
d521ce57 22007 const gdb_byte *mac_ptr,
cf2c3c16
TT
22008 unsigned int *offset_size,
22009 int section_is_gnu)
22010{
22011 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 22012
cf2c3c16
TT
22013 if (section_is_gnu)
22014 {
22015 unsigned int version, flags;
757a13d0 22016
cf2c3c16 22017 version = read_2_bytes (abfd, mac_ptr);
0af92d60 22018 if (version != 4 && version != 5)
cf2c3c16
TT
22019 {
22020 complaint (&symfile_complaints,
22021 _("unrecognized version `%d' in .debug_macro section"),
22022 version);
22023 return NULL;
22024 }
22025 mac_ptr += 2;
757a13d0 22026
cf2c3c16
TT
22027 flags = read_1_byte (abfd, mac_ptr);
22028 ++mac_ptr;
22029 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 22030
cf2c3c16
TT
22031 if ((flags & 2) != 0)
22032 /* We don't need the line table offset. */
22033 mac_ptr += *offset_size;
757a13d0 22034
cf2c3c16
TT
22035 /* Vendor opcode descriptions. */
22036 if ((flags & 4) != 0)
22037 {
22038 unsigned int i, count;
757a13d0 22039
cf2c3c16
TT
22040 count = read_1_byte (abfd, mac_ptr);
22041 ++mac_ptr;
22042 for (i = 0; i < count; ++i)
22043 {
22044 unsigned int opcode, bytes_read;
22045 unsigned long arg;
22046
22047 opcode = read_1_byte (abfd, mac_ptr);
22048 ++mac_ptr;
22049 opcode_definitions[opcode] = mac_ptr;
22050 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22051 mac_ptr += bytes_read;
22052 mac_ptr += arg;
22053 }
757a13d0 22054 }
cf2c3c16 22055 }
757a13d0 22056
cf2c3c16
TT
22057 return mac_ptr;
22058}
757a13d0 22059
cf2c3c16 22060/* A helper for dwarf_decode_macros that handles the GNU extensions,
0af92d60 22061 including DW_MACRO_import. */
cf2c3c16
TT
22062
22063static void
d521ce57
TT
22064dwarf_decode_macro_bytes (bfd *abfd,
22065 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 22066 struct macro_source_file *current_file,
43f3e411 22067 struct line_header *lh,
cf2c3c16 22068 struct dwarf2_section_info *section,
36586728 22069 int section_is_gnu, int section_is_dwz,
cf2c3c16 22070 unsigned int offset_size,
8fc3fc34 22071 htab_t include_hash)
cf2c3c16 22072{
4d663531 22073 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
22074 enum dwarf_macro_record_type macinfo_type;
22075 int at_commandline;
d521ce57 22076 const gdb_byte *opcode_definitions[256];
757a13d0 22077
cf2c3c16
TT
22078 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22079 &offset_size, section_is_gnu);
22080 if (mac_ptr == NULL)
22081 {
22082 /* We already issued a complaint. */
22083 return;
22084 }
757a13d0
JK
22085
22086 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
22087 GDB is still reading the definitions from command line. First
22088 DW_MACINFO_start_file will need to be ignored as it was already executed
22089 to create CURRENT_FILE for the main source holding also the command line
22090 definitions. On first met DW_MACINFO_start_file this flag is reset to
22091 normally execute all the remaining DW_MACINFO_start_file macinfos. */
22092
22093 at_commandline = 1;
22094
22095 do
22096 {
22097 /* Do we at least have room for a macinfo type byte? */
22098 if (mac_ptr >= mac_end)
22099 {
f664829e 22100 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
22101 break;
22102 }
22103
aead7601 22104 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
22105 mac_ptr++;
22106
cf2c3c16
TT
22107 /* Note that we rely on the fact that the corresponding GNU and
22108 DWARF constants are the same. */
757a13d0
JK
22109 switch (macinfo_type)
22110 {
22111 /* A zero macinfo type indicates the end of the macro
22112 information. */
22113 case 0:
22114 break;
2e276125 22115
0af92d60
JK
22116 case DW_MACRO_define:
22117 case DW_MACRO_undef:
22118 case DW_MACRO_define_strp:
22119 case DW_MACRO_undef_strp:
22120 case DW_MACRO_define_sup:
22121 case DW_MACRO_undef_sup:
2e276125 22122 {
891d2f0b 22123 unsigned int bytes_read;
2e276125 22124 int line;
d521ce57 22125 const char *body;
cf2c3c16 22126 int is_define;
2e276125 22127
cf2c3c16
TT
22128 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22129 mac_ptr += bytes_read;
22130
0af92d60
JK
22131 if (macinfo_type == DW_MACRO_define
22132 || macinfo_type == DW_MACRO_undef)
cf2c3c16
TT
22133 {
22134 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22135 mac_ptr += bytes_read;
22136 }
22137 else
22138 {
22139 LONGEST str_offset;
22140
22141 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22142 mac_ptr += offset_size;
2e276125 22143
0af92d60
JK
22144 if (macinfo_type == DW_MACRO_define_sup
22145 || macinfo_type == DW_MACRO_undef_sup
f7a35f02 22146 || section_is_dwz)
36586728
TT
22147 {
22148 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22149
22150 body = read_indirect_string_from_dwz (dwz, str_offset);
22151 }
22152 else
22153 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
22154 }
22155
0af92d60
JK
22156 is_define = (macinfo_type == DW_MACRO_define
22157 || macinfo_type == DW_MACRO_define_strp
22158 || macinfo_type == DW_MACRO_define_sup);
2e276125 22159 if (! current_file)
757a13d0
JK
22160 {
22161 /* DWARF violation as no main source is present. */
22162 complaint (&symfile_complaints,
22163 _("debug info with no main source gives macro %s "
22164 "on line %d: %s"),
cf2c3c16
TT
22165 is_define ? _("definition") : _("undefinition"),
22166 line, body);
757a13d0
JK
22167 break;
22168 }
3e43a32a
MS
22169 if ((line == 0 && !at_commandline)
22170 || (line != 0 && at_commandline))
4d3c2250 22171 complaint (&symfile_complaints,
757a13d0
JK
22172 _("debug info gives %s macro %s with %s line %d: %s"),
22173 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 22174 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
22175 line == 0 ? _("zero") : _("non-zero"), line, body);
22176
cf2c3c16 22177 if (is_define)
757a13d0 22178 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
22179 else
22180 {
0af92d60
JK
22181 gdb_assert (macinfo_type == DW_MACRO_undef
22182 || macinfo_type == DW_MACRO_undef_strp
22183 || macinfo_type == DW_MACRO_undef_sup);
cf2c3c16
TT
22184 macro_undef (current_file, line, body);
22185 }
2e276125
JB
22186 }
22187 break;
22188
0af92d60 22189 case DW_MACRO_start_file:
2e276125 22190 {
891d2f0b 22191 unsigned int bytes_read;
2e276125
JB
22192 int line, file;
22193
22194 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22195 mac_ptr += bytes_read;
22196 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22197 mac_ptr += bytes_read;
22198
3e43a32a
MS
22199 if ((line == 0 && !at_commandline)
22200 || (line != 0 && at_commandline))
757a13d0
JK
22201 complaint (&symfile_complaints,
22202 _("debug info gives source %d included "
22203 "from %s at %s line %d"),
22204 file, at_commandline ? _("command-line") : _("file"),
22205 line == 0 ? _("zero") : _("non-zero"), line);
22206
22207 if (at_commandline)
22208 {
0af92d60 22209 /* This DW_MACRO_start_file was executed in the
cf2c3c16 22210 pass one. */
757a13d0
JK
22211 at_commandline = 0;
22212 }
22213 else
43f3e411 22214 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
22215 }
22216 break;
22217
0af92d60 22218 case DW_MACRO_end_file:
2e276125 22219 if (! current_file)
4d3c2250 22220 complaint (&symfile_complaints,
3e43a32a
MS
22221 _("macro debug info has an unmatched "
22222 "`close_file' directive"));
2e276125
JB
22223 else
22224 {
22225 current_file = current_file->included_by;
22226 if (! current_file)
22227 {
cf2c3c16 22228 enum dwarf_macro_record_type next_type;
2e276125
JB
22229
22230 /* GCC circa March 2002 doesn't produce the zero
22231 type byte marking the end of the compilation
22232 unit. Complain if it's not there, but exit no
22233 matter what. */
22234
22235 /* Do we at least have room for a macinfo type byte? */
22236 if (mac_ptr >= mac_end)
22237 {
f664829e 22238 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
22239 return;
22240 }
22241
22242 /* We don't increment mac_ptr here, so this is just
22243 a look-ahead. */
aead7601
SM
22244 next_type
22245 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22246 mac_ptr);
2e276125 22247 if (next_type != 0)
4d3c2250 22248 complaint (&symfile_complaints,
3e43a32a
MS
22249 _("no terminating 0-type entry for "
22250 "macros in `.debug_macinfo' section"));
2e276125
JB
22251
22252 return;
22253 }
22254 }
22255 break;
22256
0af92d60
JK
22257 case DW_MACRO_import:
22258 case DW_MACRO_import_sup:
cf2c3c16
TT
22259 {
22260 LONGEST offset;
8fc3fc34 22261 void **slot;
a036ba48
TT
22262 bfd *include_bfd = abfd;
22263 struct dwarf2_section_info *include_section = section;
d521ce57 22264 const gdb_byte *include_mac_end = mac_end;
a036ba48 22265 int is_dwz = section_is_dwz;
d521ce57 22266 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
22267
22268 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22269 mac_ptr += offset_size;
22270
0af92d60 22271 if (macinfo_type == DW_MACRO_import_sup)
a036ba48
TT
22272 {
22273 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22274
4d663531 22275 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 22276
a036ba48 22277 include_section = &dwz->macro;
a32a8923 22278 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
22279 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22280 is_dwz = 1;
22281 }
22282
22283 new_mac_ptr = include_section->buffer + offset;
22284 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22285
8fc3fc34
TT
22286 if (*slot != NULL)
22287 {
22288 /* This has actually happened; see
22289 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22290 complaint (&symfile_complaints,
0af92d60 22291 _("recursive DW_MACRO_import in "
8fc3fc34
TT
22292 ".debug_macro section"));
22293 }
22294 else
22295 {
d521ce57 22296 *slot = (void *) new_mac_ptr;
36586728 22297
a036ba48 22298 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 22299 include_mac_end, current_file, lh,
36586728 22300 section, section_is_gnu, is_dwz,
4d663531 22301 offset_size, include_hash);
8fc3fc34 22302
d521ce57 22303 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 22304 }
cf2c3c16
TT
22305 }
22306 break;
22307
2e276125 22308 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
22309 if (!section_is_gnu)
22310 {
22311 unsigned int bytes_read;
2e276125 22312
ac298888
TT
22313 /* This reads the constant, but since we don't recognize
22314 any vendor extensions, we ignore it. */
22315 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
cf2c3c16
TT
22316 mac_ptr += bytes_read;
22317 read_direct_string (abfd, mac_ptr, &bytes_read);
22318 mac_ptr += bytes_read;
2e276125 22319
cf2c3c16
TT
22320 /* We don't recognize any vendor extensions. */
22321 break;
22322 }
22323 /* FALLTHROUGH */
22324
22325 default:
22326 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 22327 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
22328 section);
22329 if (mac_ptr == NULL)
22330 return;
22331 break;
2e276125 22332 }
757a13d0 22333 } while (macinfo_type != 0);
2e276125 22334}
8e19ed76 22335
cf2c3c16 22336static void
09262596 22337dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 22338 int section_is_gnu)
cf2c3c16 22339{
bb5ed363 22340 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
22341 struct line_header *lh = cu->line_header;
22342 bfd *abfd;
d521ce57 22343 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
22344 struct macro_source_file *current_file = 0;
22345 enum dwarf_macro_record_type macinfo_type;
22346 unsigned int offset_size = cu->header.offset_size;
d521ce57 22347 const gdb_byte *opcode_definitions[256];
8fc3fc34 22348 struct cleanup *cleanup;
8fc3fc34 22349 void **slot;
09262596
DE
22350 struct dwarf2_section_info *section;
22351 const char *section_name;
22352
22353 if (cu->dwo_unit != NULL)
22354 {
22355 if (section_is_gnu)
22356 {
22357 section = &cu->dwo_unit->dwo_file->sections.macro;
22358 section_name = ".debug_macro.dwo";
22359 }
22360 else
22361 {
22362 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22363 section_name = ".debug_macinfo.dwo";
22364 }
22365 }
22366 else
22367 {
22368 if (section_is_gnu)
22369 {
22370 section = &dwarf2_per_objfile->macro;
22371 section_name = ".debug_macro";
22372 }
22373 else
22374 {
22375 section = &dwarf2_per_objfile->macinfo;
22376 section_name = ".debug_macinfo";
22377 }
22378 }
cf2c3c16 22379
bb5ed363 22380 dwarf2_read_section (objfile, section);
cf2c3c16
TT
22381 if (section->buffer == NULL)
22382 {
fceca515 22383 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
22384 return;
22385 }
a32a8923 22386 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
22387
22388 /* First pass: Find the name of the base filename.
22389 This filename is needed in order to process all macros whose definition
22390 (or undefinition) comes from the command line. These macros are defined
22391 before the first DW_MACINFO_start_file entry, and yet still need to be
22392 associated to the base file.
22393
22394 To determine the base file name, we scan the macro definitions until we
22395 reach the first DW_MACINFO_start_file entry. We then initialize
22396 CURRENT_FILE accordingly so that any macro definition found before the
22397 first DW_MACINFO_start_file can still be associated to the base file. */
22398
22399 mac_ptr = section->buffer + offset;
22400 mac_end = section->buffer + section->size;
22401
22402 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22403 &offset_size, section_is_gnu);
22404 if (mac_ptr == NULL)
22405 {
22406 /* We already issued a complaint. */
22407 return;
22408 }
22409
22410 do
22411 {
22412 /* Do we at least have room for a macinfo type byte? */
22413 if (mac_ptr >= mac_end)
22414 {
22415 /* Complaint is printed during the second pass as GDB will probably
22416 stop the first pass earlier upon finding
22417 DW_MACINFO_start_file. */
22418 break;
22419 }
22420
aead7601 22421 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
22422 mac_ptr++;
22423
22424 /* Note that we rely on the fact that the corresponding GNU and
22425 DWARF constants are the same. */
22426 switch (macinfo_type)
22427 {
22428 /* A zero macinfo type indicates the end of the macro
22429 information. */
22430 case 0:
22431 break;
22432
0af92d60
JK
22433 case DW_MACRO_define:
22434 case DW_MACRO_undef:
cf2c3c16
TT
22435 /* Only skip the data by MAC_PTR. */
22436 {
22437 unsigned int bytes_read;
22438
22439 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22440 mac_ptr += bytes_read;
22441 read_direct_string (abfd, mac_ptr, &bytes_read);
22442 mac_ptr += bytes_read;
22443 }
22444 break;
22445
0af92d60 22446 case DW_MACRO_start_file:
cf2c3c16
TT
22447 {
22448 unsigned int bytes_read;
22449 int line, file;
22450
22451 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22452 mac_ptr += bytes_read;
22453 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22454 mac_ptr += bytes_read;
22455
43f3e411 22456 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
22457 }
22458 break;
22459
0af92d60 22460 case DW_MACRO_end_file:
cf2c3c16
TT
22461 /* No data to skip by MAC_PTR. */
22462 break;
22463
0af92d60
JK
22464 case DW_MACRO_define_strp:
22465 case DW_MACRO_undef_strp:
22466 case DW_MACRO_define_sup:
22467 case DW_MACRO_undef_sup:
cf2c3c16
TT
22468 {
22469 unsigned int bytes_read;
22470
22471 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22472 mac_ptr += bytes_read;
22473 mac_ptr += offset_size;
22474 }
22475 break;
22476
0af92d60
JK
22477 case DW_MACRO_import:
22478 case DW_MACRO_import_sup:
cf2c3c16 22479 /* Note that, according to the spec, a transparent include
0af92d60 22480 chain cannot call DW_MACRO_start_file. So, we can just
cf2c3c16
TT
22481 skip this opcode. */
22482 mac_ptr += offset_size;
22483 break;
22484
22485 case DW_MACINFO_vendor_ext:
22486 /* Only skip the data by MAC_PTR. */
22487 if (!section_is_gnu)
22488 {
22489 unsigned int bytes_read;
22490
22491 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22492 mac_ptr += bytes_read;
22493 read_direct_string (abfd, mac_ptr, &bytes_read);
22494 mac_ptr += bytes_read;
22495 }
22496 /* FALLTHROUGH */
22497
22498 default:
22499 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 22500 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
22501 section);
22502 if (mac_ptr == NULL)
22503 return;
22504 break;
22505 }
22506 } while (macinfo_type != 0 && current_file == NULL);
22507
22508 /* Second pass: Process all entries.
22509
22510 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22511 command-line macro definitions/undefinitions. This flag is unset when we
22512 reach the first DW_MACINFO_start_file entry. */
22513
fc4007c9
TT
22514 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22515 htab_eq_pointer,
22516 NULL, xcalloc, xfree));
8fc3fc34 22517 mac_ptr = section->buffer + offset;
fc4007c9 22518 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
d521ce57 22519 *slot = (void *) mac_ptr;
8fc3fc34 22520 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 22521 current_file, lh, section,
fc4007c9
TT
22522 section_is_gnu, 0, offset_size,
22523 include_hash.get ());
cf2c3c16
TT
22524}
22525
8e19ed76 22526/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 22527 if so return true else false. */
380bca97 22528
8e19ed76 22529static int
6e5a29e1 22530attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
22531{
22532 return (attr == NULL ? 0 :
22533 attr->form == DW_FORM_block1
22534 || attr->form == DW_FORM_block2
22535 || attr->form == DW_FORM_block4
2dc7f7b3
TT
22536 || attr->form == DW_FORM_block
22537 || attr->form == DW_FORM_exprloc);
8e19ed76 22538}
4c2df51b 22539
c6a0999f
JB
22540/* Return non-zero if ATTR's value is a section offset --- classes
22541 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22542 You may use DW_UNSND (attr) to retrieve such offsets.
22543
22544 Section 7.5.4, "Attribute Encodings", explains that no attribute
22545 may have a value that belongs to more than one of these classes; it
22546 would be ambiguous if we did, because we use the same forms for all
22547 of them. */
380bca97 22548
3690dd37 22549static int
6e5a29e1 22550attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
22551{
22552 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
22553 || attr->form == DW_FORM_data8
22554 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
22555}
22556
3690dd37
JB
22557/* Return non-zero if ATTR's value falls in the 'constant' class, or
22558 zero otherwise. When this function returns true, you can apply
22559 dwarf2_get_attr_constant_value to it.
22560
22561 However, note that for some attributes you must check
22562 attr_form_is_section_offset before using this test. DW_FORM_data4
22563 and DW_FORM_data8 are members of both the constant class, and of
22564 the classes that contain offsets into other debug sections
22565 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22566 that, if an attribute's can be either a constant or one of the
22567 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
0224619f
JK
22568 taken as section offsets, not constants.
22569
22570 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22571 cannot handle that. */
380bca97 22572
3690dd37 22573static int
6e5a29e1 22574attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
22575{
22576 switch (attr->form)
22577 {
22578 case DW_FORM_sdata:
22579 case DW_FORM_udata:
22580 case DW_FORM_data1:
22581 case DW_FORM_data2:
22582 case DW_FORM_data4:
22583 case DW_FORM_data8:
663c44ac 22584 case DW_FORM_implicit_const:
3690dd37
JB
22585 return 1;
22586 default:
22587 return 0;
22588 }
22589}
22590
7771576e
SA
22591
22592/* DW_ADDR is always stored already as sect_offset; despite for the forms
22593 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22594
22595static int
6e5a29e1 22596attr_form_is_ref (const struct attribute *attr)
7771576e
SA
22597{
22598 switch (attr->form)
22599 {
22600 case DW_FORM_ref_addr:
22601 case DW_FORM_ref1:
22602 case DW_FORM_ref2:
22603 case DW_FORM_ref4:
22604 case DW_FORM_ref8:
22605 case DW_FORM_ref_udata:
22606 case DW_FORM_GNU_ref_alt:
22607 return 1;
22608 default:
22609 return 0;
22610 }
22611}
22612
3019eac3
DE
22613/* Return the .debug_loc section to use for CU.
22614 For DWO files use .debug_loc.dwo. */
22615
22616static struct dwarf2_section_info *
22617cu_debug_loc_section (struct dwarf2_cu *cu)
22618{
22619 if (cu->dwo_unit)
43988095
JK
22620 {
22621 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22622
22623 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22624 }
22625 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22626 : &dwarf2_per_objfile->loc);
3019eac3
DE
22627}
22628
8cf6f0b1
TT
22629/* A helper function that fills in a dwarf2_loclist_baton. */
22630
22631static void
22632fill_in_loclist_baton (struct dwarf2_cu *cu,
22633 struct dwarf2_loclist_baton *baton,
ff39bb5e 22634 const struct attribute *attr)
8cf6f0b1 22635{
3019eac3
DE
22636 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22637
22638 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
22639
22640 baton->per_cu = cu->per_cu;
22641 gdb_assert (baton->per_cu);
22642 /* We don't know how long the location list is, but make sure we
22643 don't run off the edge of the section. */
3019eac3
DE
22644 baton->size = section->size - DW_UNSND (attr);
22645 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 22646 baton->base_address = cu->base_address;
f664829e 22647 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
22648}
22649
4c2df51b 22650static void
ff39bb5e 22651dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 22652 struct dwarf2_cu *cu, int is_block)
4c2df51b 22653{
bb5ed363 22654 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 22655 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 22656
3690dd37 22657 if (attr_form_is_section_offset (attr)
3019eac3 22658 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
22659 the section. If so, fall through to the complaint in the
22660 other branch. */
3019eac3 22661 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 22662 {
0d53c4c4 22663 struct dwarf2_loclist_baton *baton;
4c2df51b 22664
8d749320 22665 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 22666
8cf6f0b1 22667 fill_in_loclist_baton (cu, baton, attr);
be391dca 22668
d00adf39 22669 if (cu->base_known == 0)
0d53c4c4 22670 complaint (&symfile_complaints,
3e43a32a
MS
22671 _("Location list used without "
22672 "specifying the CU base address."));
4c2df51b 22673
f1e6e072
TT
22674 SYMBOL_ACLASS_INDEX (sym) = (is_block
22675 ? dwarf2_loclist_block_index
22676 : dwarf2_loclist_index);
0d53c4c4
DJ
22677 SYMBOL_LOCATION_BATON (sym) = baton;
22678 }
22679 else
22680 {
22681 struct dwarf2_locexpr_baton *baton;
22682
8d749320 22683 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
22684 baton->per_cu = cu->per_cu;
22685 gdb_assert (baton->per_cu);
0d53c4c4
DJ
22686
22687 if (attr_form_is_block (attr))
22688 {
22689 /* Note that we're just copying the block's data pointer
22690 here, not the actual data. We're still pointing into the
6502dd73
DJ
22691 info_buffer for SYM's objfile; right now we never release
22692 that buffer, but when we do clean up properly this may
22693 need to change. */
0d53c4c4
DJ
22694 baton->size = DW_BLOCK (attr)->size;
22695 baton->data = DW_BLOCK (attr)->data;
22696 }
22697 else
22698 {
22699 dwarf2_invalid_attrib_class_complaint ("location description",
22700 SYMBOL_NATURAL_NAME (sym));
22701 baton->size = 0;
0d53c4c4 22702 }
6e70227d 22703
f1e6e072
TT
22704 SYMBOL_ACLASS_INDEX (sym) = (is_block
22705 ? dwarf2_locexpr_block_index
22706 : dwarf2_locexpr_index);
0d53c4c4
DJ
22707 SYMBOL_LOCATION_BATON (sym) = baton;
22708 }
4c2df51b 22709}
6502dd73 22710
9aa1f1e3
TT
22711/* Return the OBJFILE associated with the compilation unit CU. If CU
22712 came from a separate debuginfo file, then the master objfile is
22713 returned. */
ae0d2f24
UW
22714
22715struct objfile *
22716dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22717{
9291a0cd 22718 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
22719
22720 /* Return the master objfile, so that we can report and look up the
22721 correct file containing this variable. */
22722 if (objfile->separate_debug_objfile_backlink)
22723 objfile = objfile->separate_debug_objfile_backlink;
22724
22725 return objfile;
22726}
22727
96408a79
SA
22728/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22729 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22730 CU_HEADERP first. */
22731
22732static const struct comp_unit_head *
22733per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22734 struct dwarf2_per_cu_data *per_cu)
22735{
d521ce57 22736 const gdb_byte *info_ptr;
96408a79
SA
22737
22738 if (per_cu->cu)
22739 return &per_cu->cu->header;
22740
9c541725 22741 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
96408a79
SA
22742
22743 memset (cu_headerp, 0, sizeof (*cu_headerp));
43988095
JK
22744 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22745 rcuh_kind::COMPILE);
96408a79
SA
22746
22747 return cu_headerp;
22748}
22749
ae0d2f24
UW
22750/* Return the address size given in the compilation unit header for CU. */
22751
98714339 22752int
ae0d2f24
UW
22753dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22754{
96408a79
SA
22755 struct comp_unit_head cu_header_local;
22756 const struct comp_unit_head *cu_headerp;
c471e790 22757
96408a79
SA
22758 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22759
22760 return cu_headerp->addr_size;
ae0d2f24
UW
22761}
22762
9eae7c52
TT
22763/* Return the offset size given in the compilation unit header for CU. */
22764
22765int
22766dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22767{
96408a79
SA
22768 struct comp_unit_head cu_header_local;
22769 const struct comp_unit_head *cu_headerp;
9c6c53f7 22770
96408a79
SA
22771 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22772
22773 return cu_headerp->offset_size;
22774}
22775
22776/* See its dwarf2loc.h declaration. */
22777
22778int
22779dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22780{
22781 struct comp_unit_head cu_header_local;
22782 const struct comp_unit_head *cu_headerp;
22783
22784 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22785
22786 if (cu_headerp->version == 2)
22787 return cu_headerp->addr_size;
22788 else
22789 return cu_headerp->offset_size;
181cebd4
JK
22790}
22791
9aa1f1e3
TT
22792/* Return the text offset of the CU. The returned offset comes from
22793 this CU's objfile. If this objfile came from a separate debuginfo
22794 file, then the offset may be different from the corresponding
22795 offset in the parent objfile. */
22796
22797CORE_ADDR
22798dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22799{
bb3fa9d0 22800 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
22801
22802 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22803}
22804
43988095
JK
22805/* Return DWARF version number of PER_CU. */
22806
22807short
22808dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22809{
22810 return per_cu->dwarf_version;
22811}
22812
348e048f
DE
22813/* Locate the .debug_info compilation unit from CU's objfile which contains
22814 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22815
22816static struct dwarf2_per_cu_data *
9c541725 22817dwarf2_find_containing_comp_unit (sect_offset sect_off,
36586728 22818 unsigned int offset_in_dwz,
ae038cb0
DJ
22819 struct objfile *objfile)
22820{
22821 struct dwarf2_per_cu_data *this_cu;
22822 int low, high;
36586728 22823 const sect_offset *cu_off;
ae038cb0 22824
ae038cb0
DJ
22825 low = 0;
22826 high = dwarf2_per_objfile->n_comp_units - 1;
22827 while (high > low)
22828 {
36586728 22829 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22830 int mid = low + (high - low) / 2;
9a619af0 22831
36586728 22832 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
9c541725 22833 cu_off = &mid_cu->sect_off;
36586728 22834 if (mid_cu->is_dwz > offset_in_dwz
9c541725 22835 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
ae038cb0
DJ
22836 high = mid;
22837 else
22838 low = mid + 1;
22839 }
22840 gdb_assert (low == high);
36586728 22841 this_cu = dwarf2_per_objfile->all_comp_units[low];
9c541725
PA
22842 cu_off = &this_cu->sect_off;
22843 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
ae038cb0 22844 {
36586728 22845 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8 22846 error (_("Dwarf Error: could not find partial DIE containing "
9c541725
PA
22847 "offset 0x%x [in module %s]"),
22848 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
10b3939b 22849
9c541725
PA
22850 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
22851 <= sect_off);
ae038cb0
DJ
22852 return dwarf2_per_objfile->all_comp_units[low-1];
22853 }
22854 else
22855 {
22856 this_cu = dwarf2_per_objfile->all_comp_units[low];
22857 if (low == dwarf2_per_objfile->n_comp_units - 1
9c541725
PA
22858 && sect_off >= this_cu->sect_off + this_cu->length)
22859 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
22860 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
ae038cb0
DJ
22861 return this_cu;
22862 }
22863}
22864
23745b47 22865/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22866
9816fde3 22867static void
23745b47 22868init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22869{
9816fde3 22870 memset (cu, 0, sizeof (*cu));
23745b47
DE
22871 per_cu->cu = cu;
22872 cu->per_cu = per_cu;
22873 cu->objfile = per_cu->objfile;
93311388 22874 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22875}
22876
22877/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22878
22879static void
95554aad
TT
22880prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22881 enum language pretend_language)
9816fde3
JK
22882{
22883 struct attribute *attr;
22884
22885 /* Set the language we're debugging. */
22886 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22887 if (attr)
22888 set_cu_language (DW_UNSND (attr), cu);
22889 else
9cded63f 22890 {
95554aad 22891 cu->language = pretend_language;
9cded63f
TT
22892 cu->language_defn = language_def (cu->language);
22893 }
dee91e82 22894
7d45c7c3 22895 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
22896}
22897
ae038cb0
DJ
22898/* Release one cached compilation unit, CU. We unlink it from the tree
22899 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22900 the caller is responsible for that.
22901 NOTE: DATA is a void * because this function is also used as a
22902 cleanup routine. */
ae038cb0
DJ
22903
22904static void
68dc6402 22905free_heap_comp_unit (void *data)
ae038cb0 22906{
9a3c8263 22907 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
ae038cb0 22908
23745b47
DE
22909 gdb_assert (cu->per_cu != NULL);
22910 cu->per_cu->cu = NULL;
ae038cb0
DJ
22911 cu->per_cu = NULL;
22912
22913 obstack_free (&cu->comp_unit_obstack, NULL);
22914
22915 xfree (cu);
22916}
22917
72bf9492 22918/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22919 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22920 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22921
22922static void
22923free_stack_comp_unit (void *data)
22924{
9a3c8263 22925 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
72bf9492 22926
23745b47
DE
22927 gdb_assert (cu->per_cu != NULL);
22928 cu->per_cu->cu = NULL;
22929 cu->per_cu = NULL;
22930
72bf9492
DJ
22931 obstack_free (&cu->comp_unit_obstack, NULL);
22932 cu->partial_dies = NULL;
ae038cb0
DJ
22933}
22934
22935/* Free all cached compilation units. */
22936
22937static void
22938free_cached_comp_units (void *data)
22939{
330cdd98 22940 dwarf2_per_objfile->free_cached_comp_units ();
ae038cb0
DJ
22941}
22942
22943/* Increase the age counter on each cached compilation unit, and free
22944 any that are too old. */
22945
22946static void
22947age_cached_comp_units (void)
22948{
22949 struct dwarf2_per_cu_data *per_cu, **last_chain;
22950
22951 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22952 per_cu = dwarf2_per_objfile->read_in_chain;
22953 while (per_cu != NULL)
22954 {
22955 per_cu->cu->last_used ++;
b4f54984 22956 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22957 dwarf2_mark (per_cu->cu);
22958 per_cu = per_cu->cu->read_in_chain;
22959 }
22960
22961 per_cu = dwarf2_per_objfile->read_in_chain;
22962 last_chain = &dwarf2_per_objfile->read_in_chain;
22963 while (per_cu != NULL)
22964 {
22965 struct dwarf2_per_cu_data *next_cu;
22966
22967 next_cu = per_cu->cu->read_in_chain;
22968
22969 if (!per_cu->cu->mark)
22970 {
68dc6402 22971 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22972 *last_chain = next_cu;
22973 }
22974 else
22975 last_chain = &per_cu->cu->read_in_chain;
22976
22977 per_cu = next_cu;
22978 }
22979}
22980
22981/* Remove a single compilation unit from the cache. */
22982
22983static void
dee91e82 22984free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22985{
22986 struct dwarf2_per_cu_data *per_cu, **last_chain;
22987
22988 per_cu = dwarf2_per_objfile->read_in_chain;
22989 last_chain = &dwarf2_per_objfile->read_in_chain;
22990 while (per_cu != NULL)
22991 {
22992 struct dwarf2_per_cu_data *next_cu;
22993
22994 next_cu = per_cu->cu->read_in_chain;
22995
dee91e82 22996 if (per_cu == target_per_cu)
ae038cb0 22997 {
68dc6402 22998 free_heap_comp_unit (per_cu->cu);
dee91e82 22999 per_cu->cu = NULL;
ae038cb0
DJ
23000 *last_chain = next_cu;
23001 break;
23002 }
23003 else
23004 last_chain = &per_cu->cu->read_in_chain;
23005
23006 per_cu = next_cu;
23007 }
23008}
23009
fe3e1990
DJ
23010/* Release all extra memory associated with OBJFILE. */
23011
23012void
23013dwarf2_free_objfile (struct objfile *objfile)
23014{
9a3c8263
SM
23015 dwarf2_per_objfile
23016 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23017 dwarf2_objfile_data_key);
fe3e1990
DJ
23018
23019 if (dwarf2_per_objfile == NULL)
23020 return;
23021
330cdd98 23022 dwarf2_per_objfile->~dwarf2_per_objfile ();
fe3e1990
DJ
23023}
23024
dee91e82
DE
23025/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
23026 We store these in a hash table separate from the DIEs, and preserve them
23027 when the DIEs are flushed out of cache.
23028
23029 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 23030 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
23031 or the type may come from a DWO file. Furthermore, while it's more logical
23032 to use per_cu->section+offset, with Fission the section with the data is in
23033 the DWO file but we don't know that section at the point we need it.
23034 We have to use something in dwarf2_per_cu_data (or the pointer to it)
23035 because we can enter the lookup routine, get_die_type_at_offset, from
23036 outside this file, and thus won't necessarily have PER_CU->cu.
23037 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 23038
dee91e82 23039struct dwarf2_per_cu_offset_and_type
1c379e20 23040{
dee91e82 23041 const struct dwarf2_per_cu_data *per_cu;
9c541725 23042 sect_offset sect_off;
1c379e20
DJ
23043 struct type *type;
23044};
23045
dee91e82 23046/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
23047
23048static hashval_t
dee91e82 23049per_cu_offset_and_type_hash (const void *item)
1c379e20 23050{
9a3c8263
SM
23051 const struct dwarf2_per_cu_offset_and_type *ofs
23052 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 23053
9c541725 23054 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
1c379e20
DJ
23055}
23056
dee91e82 23057/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
23058
23059static int
dee91e82 23060per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 23061{
9a3c8263
SM
23062 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23063 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23064 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23065 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 23066
dee91e82 23067 return (ofs_lhs->per_cu == ofs_rhs->per_cu
9c541725 23068 && ofs_lhs->sect_off == ofs_rhs->sect_off);
1c379e20
DJ
23069}
23070
23071/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
23072 table if necessary. For convenience, return TYPE.
23073
23074 The DIEs reading must have careful ordering to:
23075 * Not cause infite loops trying to read in DIEs as a prerequisite for
23076 reading current DIE.
23077 * Not trying to dereference contents of still incompletely read in types
23078 while reading in other DIEs.
23079 * Enable referencing still incompletely read in types just by a pointer to
23080 the type without accessing its fields.
23081
23082 Therefore caller should follow these rules:
23083 * Try to fetch any prerequisite types we may need to build this DIE type
23084 before building the type and calling set_die_type.
e71ec853 23085 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
23086 possible before fetching more types to complete the current type.
23087 * Make the type as complete as possible before fetching more types. */
1c379e20 23088
f792889a 23089static struct type *
1c379e20
DJ
23090set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23091{
dee91e82 23092 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 23093 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
23094 struct attribute *attr;
23095 struct dynamic_prop prop;
1c379e20 23096
b4ba55a1
JB
23097 /* For Ada types, make sure that the gnat-specific data is always
23098 initialized (if not already set). There are a few types where
23099 we should not be doing so, because the type-specific area is
23100 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23101 where the type-specific area is used to store the floatformat).
23102 But this is not a problem, because the gnat-specific information
23103 is actually not needed for these types. */
23104 if (need_gnat_info (cu)
23105 && TYPE_CODE (type) != TYPE_CODE_FUNC
23106 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
23107 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23108 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23109 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
23110 && !HAVE_GNAT_AUX_INFO (type))
23111 INIT_GNAT_SPECIFIC (type);
23112
3f2f83dd
KB
23113 /* Read DW_AT_allocated and set in type. */
23114 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23115 if (attr_form_is_block (attr))
23116 {
23117 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23118 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
23119 }
23120 else if (attr != NULL)
23121 {
23122 complaint (&symfile_complaints,
9c541725
PA
23123 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
23124 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23125 to_underlying (die->sect_off));
3f2f83dd
KB
23126 }
23127
23128 /* Read DW_AT_associated and set in type. */
23129 attr = dwarf2_attr (die, DW_AT_associated, cu);
23130 if (attr_form_is_block (attr))
23131 {
23132 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23133 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23134 }
23135 else if (attr != NULL)
23136 {
23137 complaint (&symfile_complaints,
9c541725
PA
23138 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23139 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23140 to_underlying (die->sect_off));
3f2f83dd
KB
23141 }
23142
3cdcd0ce
JB
23143 /* Read DW_AT_data_location and set in type. */
23144 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23145 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 23146 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 23147
dee91e82 23148 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 23149 {
dee91e82
DE
23150 dwarf2_per_objfile->die_type_hash =
23151 htab_create_alloc_ex (127,
23152 per_cu_offset_and_type_hash,
23153 per_cu_offset_and_type_eq,
23154 NULL,
23155 &objfile->objfile_obstack,
23156 hashtab_obstack_allocate,
23157 dummy_obstack_deallocate);
f792889a 23158 }
1c379e20 23159
dee91e82 23160 ofs.per_cu = cu->per_cu;
9c541725 23161 ofs.sect_off = die->sect_off;
1c379e20 23162 ofs.type = type;
dee91e82
DE
23163 slot = (struct dwarf2_per_cu_offset_and_type **)
23164 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
23165 if (*slot)
23166 complaint (&symfile_complaints,
23167 _("A problem internal to GDB: DIE 0x%x has type already set"),
9c541725 23168 to_underlying (die->sect_off));
8d749320
SM
23169 *slot = XOBNEW (&objfile->objfile_obstack,
23170 struct dwarf2_per_cu_offset_and_type);
1c379e20 23171 **slot = ofs;
f792889a 23172 return type;
1c379e20
DJ
23173}
23174
9c541725 23175/* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
02142a6c 23176 or return NULL if the die does not have a saved type. */
1c379e20
DJ
23177
23178static struct type *
9c541725 23179get_die_type_at_offset (sect_offset sect_off,
673bfd45 23180 struct dwarf2_per_cu_data *per_cu)
1c379e20 23181{
dee91e82 23182 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 23183
dee91e82 23184 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 23185 return NULL;
1c379e20 23186
dee91e82 23187 ofs.per_cu = per_cu;
9c541725 23188 ofs.sect_off = sect_off;
9a3c8263
SM
23189 slot = ((struct dwarf2_per_cu_offset_and_type *)
23190 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
23191 if (slot)
23192 return slot->type;
23193 else
23194 return NULL;
23195}
23196
02142a6c 23197/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
23198 or return NULL if DIE does not have a saved type. */
23199
23200static struct type *
23201get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23202{
9c541725 23203 return get_die_type_at_offset (die->sect_off, cu->per_cu);
673bfd45
DE
23204}
23205
10b3939b
DJ
23206/* Add a dependence relationship from CU to REF_PER_CU. */
23207
23208static void
23209dwarf2_add_dependence (struct dwarf2_cu *cu,
23210 struct dwarf2_per_cu_data *ref_per_cu)
23211{
23212 void **slot;
23213
23214 if (cu->dependencies == NULL)
23215 cu->dependencies
23216 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23217 NULL, &cu->comp_unit_obstack,
23218 hashtab_obstack_allocate,
23219 dummy_obstack_deallocate);
23220
23221 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23222 if (*slot == NULL)
23223 *slot = ref_per_cu;
23224}
1c379e20 23225
f504f079
DE
23226/* Subroutine of dwarf2_mark to pass to htab_traverse.
23227 Set the mark field in every compilation unit in the
ae038cb0
DJ
23228 cache that we must keep because we are keeping CU. */
23229
10b3939b
DJ
23230static int
23231dwarf2_mark_helper (void **slot, void *data)
23232{
23233 struct dwarf2_per_cu_data *per_cu;
23234
23235 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
23236
23237 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23238 reading of the chain. As such dependencies remain valid it is not much
23239 useful to track and undo them during QUIT cleanups. */
23240 if (per_cu->cu == NULL)
23241 return 1;
23242
10b3939b
DJ
23243 if (per_cu->cu->mark)
23244 return 1;
23245 per_cu->cu->mark = 1;
23246
23247 if (per_cu->cu->dependencies != NULL)
23248 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23249
23250 return 1;
23251}
23252
f504f079
DE
23253/* Set the mark field in CU and in every other compilation unit in the
23254 cache that we must keep because we are keeping CU. */
23255
ae038cb0
DJ
23256static void
23257dwarf2_mark (struct dwarf2_cu *cu)
23258{
23259 if (cu->mark)
23260 return;
23261 cu->mark = 1;
10b3939b
DJ
23262 if (cu->dependencies != NULL)
23263 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
23264}
23265
23266static void
23267dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23268{
23269 while (per_cu)
23270 {
23271 per_cu->cu->mark = 0;
23272 per_cu = per_cu->cu->read_in_chain;
23273 }
72bf9492
DJ
23274}
23275
72bf9492
DJ
23276/* Trivial hash function for partial_die_info: the hash value of a DIE
23277 is its offset in .debug_info for this objfile. */
23278
23279static hashval_t
23280partial_die_hash (const void *item)
23281{
9a3c8263
SM
23282 const struct partial_die_info *part_die
23283 = (const struct partial_die_info *) item;
9a619af0 23284
9c541725 23285 return to_underlying (part_die->sect_off);
72bf9492
DJ
23286}
23287
23288/* Trivial comparison function for partial_die_info structures: two DIEs
23289 are equal if they have the same offset. */
23290
23291static int
23292partial_die_eq (const void *item_lhs, const void *item_rhs)
23293{
9a3c8263
SM
23294 const struct partial_die_info *part_die_lhs
23295 = (const struct partial_die_info *) item_lhs;
23296 const struct partial_die_info *part_die_rhs
23297 = (const struct partial_die_info *) item_rhs;
9a619af0 23298
9c541725 23299 return part_die_lhs->sect_off == part_die_rhs->sect_off;
72bf9492
DJ
23300}
23301
b4f54984
DE
23302static struct cmd_list_element *set_dwarf_cmdlist;
23303static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
23304
23305static void
b4f54984 23306set_dwarf_cmd (char *args, int from_tty)
ae038cb0 23307{
b4f54984 23308 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 23309 gdb_stdout);
ae038cb0
DJ
23310}
23311
23312static void
b4f54984 23313show_dwarf_cmd (char *args, int from_tty)
6e70227d 23314{
b4f54984 23315 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
23316}
23317
4bf44c1c 23318/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
23319
23320static void
c1bd65d0 23321dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc 23322{
9a3c8263 23323 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
8b70b953 23324 int ix;
8b70b953 23325
626f2d1c
TT
23326 /* Make sure we don't accidentally use dwarf2_per_objfile while
23327 cleaning up. */
23328 dwarf2_per_objfile = NULL;
23329
59b0c7c1
JB
23330 for (ix = 0; ix < data->n_comp_units; ++ix)
23331 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 23332
59b0c7c1 23333 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 23334 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
23335 data->all_type_units[ix]->per_cu.imported_symtabs);
23336 xfree (data->all_type_units);
95554aad 23337
8b70b953 23338 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
23339
23340 if (data->dwo_files)
23341 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
23342 if (data->dwp_file)
23343 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
23344
23345 if (data->dwz_file && data->dwz_file->dwz_bfd)
23346 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
23347}
23348
23349\f
ae2de4f8 23350/* The "save gdb-index" command. */
9291a0cd 23351
bc8f2430
JK
23352/* In-memory buffer to prepare data to be written later to a file. */
23353class data_buf
9291a0cd 23354{
bc8f2430 23355public:
bc8f2430
JK
23356 /* Copy DATA to the end of the buffer. */
23357 template<typename T>
23358 void append_data (const T &data)
23359 {
23360 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23361 reinterpret_cast<const gdb_byte *> (&data + 1),
c2f134ac 23362 grow (sizeof (data)));
bc8f2430 23363 }
b89be57b 23364
c2f134ac
PA
23365 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23366 terminating zero is appended too. */
bc8f2430
JK
23367 void append_cstr0 (const char *cstr)
23368 {
23369 const size_t size = strlen (cstr) + 1;
c2f134ac
PA
23370 std::copy (cstr, cstr + size, grow (size));
23371 }
23372
23373 /* Accept a host-format integer in VAL and append it to the buffer
23374 as a target-format integer which is LEN bytes long. */
23375 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23376 {
23377 ::store_unsigned_integer (grow (len), len, byte_order, val);
bc8f2430 23378 }
9291a0cd 23379
bc8f2430
JK
23380 /* Return the size of the buffer. */
23381 size_t size () const
23382 {
23383 return m_vec.size ();
23384 }
23385
23386 /* Write the buffer to FILE. */
23387 void file_write (FILE *file) const
23388 {
a81e6d4d
PA
23389 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23390 error (_("couldn't write data to file"));
bc8f2430
JK
23391 }
23392
23393private:
c2f134ac
PA
23394 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23395 the start of the new block. */
23396 gdb_byte *grow (size_t size)
23397 {
23398 m_vec.resize (m_vec.size () + size);
23399 return &*m_vec.end () - size;
23400 }
23401
d5722aa2 23402 gdb::byte_vector m_vec;
bc8f2430 23403};
9291a0cd
TT
23404
23405/* An entry in the symbol table. */
23406struct symtab_index_entry
23407{
23408 /* The name of the symbol. */
23409 const char *name;
23410 /* The offset of the name in the constant pool. */
23411 offset_type index_offset;
23412 /* A sorted vector of the indices of all the CUs that hold an object
23413 of this name. */
bc8f2430 23414 std::vector<offset_type> cu_indices;
9291a0cd
TT
23415};
23416
23417/* The symbol table. This is a power-of-2-sized hash table. */
23418struct mapped_symtab
23419{
bc8f2430
JK
23420 mapped_symtab ()
23421 {
23422 data.resize (1024);
23423 }
b89be57b 23424
bc8f2430 23425 offset_type n_elements = 0;
4b76cda9 23426 std::vector<symtab_index_entry> data;
bc8f2430 23427};
9291a0cd 23428
bc8f2430 23429/* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
559a7a62
JK
23430 the slot.
23431
23432 Function is used only during write_hash_table so no index format backward
23433 compatibility is needed. */
b89be57b 23434
4b76cda9 23435static symtab_index_entry &
9291a0cd
TT
23436find_slot (struct mapped_symtab *symtab, const char *name)
23437{
559a7a62 23438 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd 23439
bc8f2430
JK
23440 index = hash & (symtab->data.size () - 1);
23441 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
9291a0cd
TT
23442
23443 for (;;)
23444 {
4b76cda9
PA
23445 if (symtab->data[index].name == NULL
23446 || strcmp (name, symtab->data[index].name) == 0)
bc8f2430
JK
23447 return symtab->data[index];
23448 index = (index + step) & (symtab->data.size () - 1);
9291a0cd
TT
23449 }
23450}
23451
23452/* Expand SYMTAB's hash table. */
b89be57b 23453
9291a0cd
TT
23454static void
23455hash_expand (struct mapped_symtab *symtab)
23456{
bc8f2430 23457 auto old_entries = std::move (symtab->data);
9291a0cd 23458
bc8f2430
JK
23459 symtab->data.clear ();
23460 symtab->data.resize (old_entries.size () * 2);
9291a0cd 23461
bc8f2430 23462 for (auto &it : old_entries)
4b76cda9 23463 if (it.name != NULL)
bc8f2430 23464 {
4b76cda9 23465 auto &ref = find_slot (symtab, it.name);
bc8f2430
JK
23466 ref = std::move (it);
23467 }
9291a0cd
TT
23468}
23469
156942c7
DE
23470/* Add an entry to SYMTAB. NAME is the name of the symbol.
23471 CU_INDEX is the index of the CU in which the symbol appears.
23472 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 23473
9291a0cd
TT
23474static void
23475add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 23476 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
23477 offset_type cu_index)
23478{
156942c7 23479 offset_type cu_index_and_attrs;
9291a0cd
TT
23480
23481 ++symtab->n_elements;
bc8f2430 23482 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
9291a0cd
TT
23483 hash_expand (symtab);
23484
4b76cda9
PA
23485 symtab_index_entry &slot = find_slot (symtab, name);
23486 if (slot.name == NULL)
9291a0cd 23487 {
4b76cda9 23488 slot.name = name;
156942c7 23489 /* index_offset is set later. */
9291a0cd 23490 }
156942c7
DE
23491
23492 cu_index_and_attrs = 0;
23493 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23494 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23495 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23496
23497 /* We don't want to record an index value twice as we want to avoid the
23498 duplication.
23499 We process all global symbols and then all static symbols
23500 (which would allow us to avoid the duplication by only having to check
23501 the last entry pushed), but a symbol could have multiple kinds in one CU.
23502 To keep things simple we don't worry about the duplication here and
23503 sort and uniqufy the list after we've processed all symbols. */
4b76cda9 23504 slot.cu_indices.push_back (cu_index_and_attrs);
156942c7
DE
23505}
23506
23507/* Sort and remove duplicates of all symbols' cu_indices lists. */
23508
23509static void
23510uniquify_cu_indices (struct mapped_symtab *symtab)
23511{
4b76cda9 23512 for (auto &entry : symtab->data)
156942c7 23513 {
4b76cda9 23514 if (entry.name != NULL && !entry.cu_indices.empty ())
156942c7 23515 {
4b76cda9 23516 auto &cu_indices = entry.cu_indices;
6fd931f2
PA
23517 std::sort (cu_indices.begin (), cu_indices.end ());
23518 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
23519 cu_indices.erase (from, cu_indices.end ());
156942c7
DE
23520 }
23521 }
9291a0cd
TT
23522}
23523
bc8f2430
JK
23524/* A form of 'const char *' suitable for container keys. Only the
23525 pointer is stored. The strings themselves are compared, not the
23526 pointers. */
23527class c_str_view
9291a0cd 23528{
bc8f2430
JK
23529public:
23530 c_str_view (const char *cstr)
23531 : m_cstr (cstr)
23532 {}
9291a0cd 23533
bc8f2430
JK
23534 bool operator== (const c_str_view &other) const
23535 {
23536 return strcmp (m_cstr, other.m_cstr) == 0;
23537 }
9291a0cd 23538
bc8f2430
JK
23539private:
23540 friend class c_str_view_hasher;
23541 const char *const m_cstr;
23542};
9291a0cd 23543
bc8f2430
JK
23544/* A std::unordered_map::hasher for c_str_view that uses the right
23545 hash function for strings in a mapped index. */
23546class c_str_view_hasher
23547{
23548public:
23549 size_t operator () (const c_str_view &x) const
23550 {
23551 return mapped_index_string_hash (INT_MAX, x.m_cstr);
23552 }
23553};
b89be57b 23554
bc8f2430
JK
23555/* A std::unordered_map::hasher for std::vector<>. */
23556template<typename T>
23557class vector_hasher
9291a0cd 23558{
bc8f2430
JK
23559public:
23560 size_t operator () (const std::vector<T> &key) const
23561 {
23562 return iterative_hash (key.data (),
23563 sizeof (key.front ()) * key.size (), 0);
23564 }
23565};
9291a0cd 23566
bc8f2430
JK
23567/* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
23568 constant pool entries going into the data buffer CPOOL. */
3876f04e 23569
bc8f2430
JK
23570static void
23571write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
23572{
23573 {
23574 /* Elements are sorted vectors of the indices of all the CUs that
23575 hold an object of this name. */
23576 std::unordered_map<std::vector<offset_type>, offset_type,
23577 vector_hasher<offset_type>>
23578 symbol_hash_table;
23579
23580 /* We add all the index vectors to the constant pool first, to
23581 ensure alignment is ok. */
4b76cda9 23582 for (symtab_index_entry &entry : symtab->data)
bc8f2430 23583 {
4b76cda9 23584 if (entry.name == NULL)
bc8f2430 23585 continue;
4b76cda9 23586 gdb_assert (entry.index_offset == 0);
70a1152b
PA
23587
23588 /* Finding before inserting is faster than always trying to
23589 insert, because inserting always allocates a node, does the
23590 lookup, and then destroys the new node if another node
23591 already had the same key. C++17 try_emplace will avoid
23592 this. */
23593 const auto found
4b76cda9 23594 = symbol_hash_table.find (entry.cu_indices);
70a1152b
PA
23595 if (found != symbol_hash_table.end ())
23596 {
4b76cda9 23597 entry.index_offset = found->second;
70a1152b
PA
23598 continue;
23599 }
23600
4b76cda9
PA
23601 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
23602 entry.index_offset = cpool.size ();
23603 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
23604 for (const auto index : entry.cu_indices)
23605 cpool.append_data (MAYBE_SWAP (index));
bc8f2430
JK
23606 }
23607 }
9291a0cd
TT
23608
23609 /* Now write out the hash table. */
bc8f2430 23610 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
4b76cda9 23611 for (const auto &entry : symtab->data)
9291a0cd
TT
23612 {
23613 offset_type str_off, vec_off;
23614
4b76cda9 23615 if (entry.name != NULL)
9291a0cd 23616 {
4b76cda9 23617 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
bc8f2430 23618 if (insertpair.second)
4b76cda9 23619 cpool.append_cstr0 (entry.name);
bc8f2430 23620 str_off = insertpair.first->second;
4b76cda9 23621 vec_off = entry.index_offset;
9291a0cd
TT
23622 }
23623 else
23624 {
23625 /* While 0 is a valid constant pool index, it is not valid
23626 to have 0 for both offsets. */
23627 str_off = 0;
23628 vec_off = 0;
23629 }
23630
bc8f2430
JK
23631 output.append_data (MAYBE_SWAP (str_off));
23632 output.append_data (MAYBE_SWAP (vec_off));
9291a0cd 23633 }
9291a0cd
TT
23634}
23635
bc8f2430 23636typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
0a5429f6
DE
23637
23638/* Helper struct for building the address table. */
23639struct addrmap_index_data
23640{
bc8f2430
JK
23641 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
23642 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
23643 {}
23644
0a5429f6 23645 struct objfile *objfile;
bc8f2430
JK
23646 data_buf &addr_vec;
23647 psym_index_map &cu_index_htab;
0a5429f6
DE
23648
23649 /* Non-zero if the previous_* fields are valid.
23650 We can't write an entry until we see the next entry (since it is only then
23651 that we know the end of the entry). */
23652 int previous_valid;
23653 /* Index of the CU in the table of all CUs in the index file. */
23654 unsigned int previous_cu_index;
0963b4bd 23655 /* Start address of the CU. */
0a5429f6
DE
23656 CORE_ADDR previous_cu_start;
23657};
23658
bc8f2430 23659/* Write an address entry to ADDR_VEC. */
b89be57b 23660
9291a0cd 23661static void
bc8f2430 23662add_address_entry (struct objfile *objfile, data_buf &addr_vec,
0a5429f6 23663 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 23664{
9291a0cd
TT
23665 CORE_ADDR baseaddr;
23666
23667 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23668
c2f134ac
PA
23669 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
23670 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
bc8f2430 23671 addr_vec.append_data (MAYBE_SWAP (cu_index));
0a5429f6
DE
23672}
23673
23674/* Worker function for traversing an addrmap to build the address table. */
23675
23676static int
23677add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23678{
9a3c8263
SM
23679 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23680 struct partial_symtab *pst = (struct partial_symtab *) obj;
0a5429f6
DE
23681
23682 if (data->previous_valid)
bc8f2430 23683 add_address_entry (data->objfile, data->addr_vec,
0a5429f6
DE
23684 data->previous_cu_start, start_addr,
23685 data->previous_cu_index);
23686
23687 data->previous_cu_start = start_addr;
23688 if (pst != NULL)
23689 {
bc8f2430
JK
23690 const auto it = data->cu_index_htab.find (pst);
23691 gdb_assert (it != data->cu_index_htab.cend ());
23692 data->previous_cu_index = it->second;
0a5429f6
DE
23693 data->previous_valid = 1;
23694 }
23695 else
bc8f2430 23696 data->previous_valid = 0;
0a5429f6
DE
23697
23698 return 0;
23699}
23700
bc8f2430 23701/* Write OBJFILE's address map to ADDR_VEC.
0a5429f6
DE
23702 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23703 in the index file. */
23704
23705static void
bc8f2430
JK
23706write_address_map (struct objfile *objfile, data_buf &addr_vec,
23707 psym_index_map &cu_index_htab)
0a5429f6 23708{
bc8f2430 23709 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
0a5429f6
DE
23710
23711 /* When writing the address table, we have to cope with the fact that
23712 the addrmap iterator only provides the start of a region; we have to
23713 wait until the next invocation to get the start of the next region. */
23714
23715 addrmap_index_data.objfile = objfile;
0a5429f6
DE
23716 addrmap_index_data.previous_valid = 0;
23717
23718 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23719 &addrmap_index_data);
23720
23721 /* It's highly unlikely the last entry (end address = 0xff...ff)
23722 is valid, but we should still handle it.
23723 The end address is recorded as the start of the next region, but that
23724 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23725 anyway. */
23726 if (addrmap_index_data.previous_valid)
bc8f2430 23727 add_address_entry (objfile, addr_vec,
0a5429f6
DE
23728 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23729 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23730}
23731
156942c7
DE
23732/* Return the symbol kind of PSYM. */
23733
23734static gdb_index_symbol_kind
23735symbol_kind (struct partial_symbol *psym)
23736{
23737 domain_enum domain = PSYMBOL_DOMAIN (psym);
23738 enum address_class aclass = PSYMBOL_CLASS (psym);
23739
23740 switch (domain)
23741 {
23742 case VAR_DOMAIN:
23743 switch (aclass)
23744 {
23745 case LOC_BLOCK:
23746 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23747 case LOC_TYPEDEF:
23748 return GDB_INDEX_SYMBOL_KIND_TYPE;
23749 case LOC_COMPUTED:
23750 case LOC_CONST_BYTES:
23751 case LOC_OPTIMIZED_OUT:
23752 case LOC_STATIC:
23753 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23754 case LOC_CONST:
23755 /* Note: It's currently impossible to recognize psyms as enum values
23756 short of reading the type info. For now punt. */
23757 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23758 default:
23759 /* There are other LOC_FOO values that one might want to classify
23760 as variables, but dwarf2read.c doesn't currently use them. */
23761 return GDB_INDEX_SYMBOL_KIND_OTHER;
23762 }
23763 case STRUCT_DOMAIN:
23764 return GDB_INDEX_SYMBOL_KIND_TYPE;
23765 default:
23766 return GDB_INDEX_SYMBOL_KIND_OTHER;
23767 }
23768}
23769
9291a0cd 23770/* Add a list of partial symbols to SYMTAB. */
b89be57b 23771
9291a0cd
TT
23772static void
23773write_psymbols (struct mapped_symtab *symtab,
bc8f2430 23774 std::unordered_set<partial_symbol *> &psyms_seen,
9291a0cd
TT
23775 struct partial_symbol **psymp,
23776 int count,
987d643c
TT
23777 offset_type cu_index,
23778 int is_static)
9291a0cd
TT
23779{
23780 for (; count-- > 0; ++psymp)
23781 {
156942c7 23782 struct partial_symbol *psym = *psymp;
987d643c 23783
156942c7 23784 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23785 error (_("Ada is not currently supported by the index"));
987d643c 23786
987d643c 23787 /* Only add a given psymbol once. */
bc8f2430 23788 if (psyms_seen.insert (psym).second)
987d643c 23789 {
156942c7
DE
23790 gdb_index_symbol_kind kind = symbol_kind (psym);
23791
156942c7
DE
23792 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23793 is_static, kind, cu_index);
987d643c 23794 }
9291a0cd
TT
23795 }
23796}
23797
1fd400ff
TT
23798/* A helper struct used when iterating over debug_types. */
23799struct signatured_type_index_data
23800{
bc8f2430
JK
23801 signatured_type_index_data (data_buf &types_list_,
23802 std::unordered_set<partial_symbol *> &psyms_seen_)
23803 : types_list (types_list_), psyms_seen (psyms_seen_)
23804 {}
23805
1fd400ff
TT
23806 struct objfile *objfile;
23807 struct mapped_symtab *symtab;
bc8f2430
JK
23808 data_buf &types_list;
23809 std::unordered_set<partial_symbol *> &psyms_seen;
1fd400ff
TT
23810 int cu_index;
23811};
23812
23813/* A helper function that writes a single signatured_type to an
23814 obstack. */
b89be57b 23815
1fd400ff
TT
23816static int
23817write_one_signatured_type (void **slot, void *d)
23818{
9a3c8263
SM
23819 struct signatured_type_index_data *info
23820 = (struct signatured_type_index_data *) d;
1fd400ff 23821 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23822 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23823
23824 write_psymbols (info->symtab,
987d643c 23825 info->psyms_seen,
3e43a32a
MS
23826 info->objfile->global_psymbols.list
23827 + psymtab->globals_offset,
987d643c
TT
23828 psymtab->n_global_syms, info->cu_index,
23829 0);
1fd400ff 23830 write_psymbols (info->symtab,
987d643c 23831 info->psyms_seen,
3e43a32a
MS
23832 info->objfile->static_psymbols.list
23833 + psymtab->statics_offset,
987d643c
TT
23834 psymtab->n_static_syms, info->cu_index,
23835 1);
1fd400ff 23836
c2f134ac
PA
23837 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23838 to_underlying (entry->per_cu.sect_off));
23839 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23840 to_underlying (entry->type_offset_in_tu));
23841 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
1fd400ff
TT
23842
23843 ++info->cu_index;
23844
23845 return 1;
23846}
23847
e8f8bcb3
PA
23848/* Recurse into all "included" dependencies and count their symbols as
23849 if they appeared in this psymtab. */
23850
23851static void
23852recursively_count_psymbols (struct partial_symtab *psymtab,
23853 size_t &psyms_seen)
23854{
23855 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
23856 if (psymtab->dependencies[i]->user != NULL)
23857 recursively_count_psymbols (psymtab->dependencies[i],
23858 psyms_seen);
23859
23860 psyms_seen += psymtab->n_global_syms;
23861 psyms_seen += psymtab->n_static_syms;
23862}
23863
95554aad
TT
23864/* Recurse into all "included" dependencies and write their symbols as
23865 if they appeared in this psymtab. */
23866
23867static void
23868recursively_write_psymbols (struct objfile *objfile,
23869 struct partial_symtab *psymtab,
23870 struct mapped_symtab *symtab,
bc8f2430 23871 std::unordered_set<partial_symbol *> &psyms_seen,
95554aad
TT
23872 offset_type cu_index)
23873{
23874 int i;
23875
23876 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23877 if (psymtab->dependencies[i]->user != NULL)
23878 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23879 symtab, psyms_seen, cu_index);
23880
23881 write_psymbols (symtab,
23882 psyms_seen,
23883 objfile->global_psymbols.list + psymtab->globals_offset,
23884 psymtab->n_global_syms, cu_index,
23885 0);
23886 write_psymbols (symtab,
23887 psyms_seen,
23888 objfile->static_psymbols.list + psymtab->statics_offset,
23889 psymtab->n_static_syms, cu_index,
23890 1);
23891}
23892
9291a0cd 23893/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23894
9291a0cd
TT
23895static void
23896write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23897{
9291a0cd
TT
23898 if (dwarf2_per_objfile->using_index)
23899 error (_("Cannot use an index to create the index"));
23900
8b70b953
TT
23901 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23902 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23903
260b681b
DE
23904 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23905 return;
23906
bc8f2430 23907 struct stat st;
4262abfb
JK
23908 if (stat (objfile_name (objfile), &st) < 0)
23909 perror_with_name (objfile_name (objfile));
9291a0cd 23910
bc8f2430
JK
23911 std::string filename (std::string (dir) + SLASH_STRING
23912 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
9291a0cd 23913
d419f42d 23914 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
9291a0cd 23915 if (!out_file)
bc8f2430 23916 error (_("Can't open `%s' for writing"), filename.c_str ());
9291a0cd 23917
16b7a719
PA
23918 /* Order matters here; we want FILE to be closed before FILENAME is
23919 unlinked, because on MS-Windows one cannot delete a file that is
23920 still open. (Don't call anything here that might throw until
23921 file_closer is created.) */
bc8f2430 23922 gdb::unlinker unlink_file (filename.c_str ());
d419f42d 23923 gdb_file_up close_out_file (out_file);
9291a0cd 23924
bc8f2430
JK
23925 mapped_symtab symtab;
23926 data_buf cu_list;
987d643c 23927
0a5429f6
DE
23928 /* While we're scanning CU's create a table that maps a psymtab pointer
23929 (which is what addrmap records) to its index (which is what is recorded
23930 in the index file). This will later be needed to write the address
23931 table. */
bc8f2430
JK
23932 psym_index_map cu_index_htab;
23933 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
0a5429f6
DE
23934
23935 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23936 work here. Also, the debug_types entries do not appear in
23937 all_comp_units, but only in their own hash table. */
e8f8bcb3
PA
23938
23939 /* The psyms_seen set is potentially going to be largish (~40k
23940 elements when indexing a -g3 build of GDB itself). Estimate the
23941 number of elements in order to avoid too many rehashes, which
23942 require rebuilding buckets and thus many trips to
23943 malloc/free. */
23944 size_t psyms_count = 0;
23945 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23946 {
23947 struct dwarf2_per_cu_data *per_cu
23948 = dwarf2_per_objfile->all_comp_units[i];
23949 struct partial_symtab *psymtab = per_cu->v.psymtab;
23950
23951 if (psymtab != NULL && psymtab->user == NULL)
23952 recursively_count_psymbols (psymtab, psyms_count);
23953 }
23954 /* Generating an index for gdb itself shows a ratio of
23955 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
23956 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
bc8f2430 23957 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd 23958 {
3e43a32a
MS
23959 struct dwarf2_per_cu_data *per_cu
23960 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23961 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23962
92fac807
JK
23963 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23964 It may be referenced from a local scope but in such case it does not
23965 need to be present in .gdb_index. */
23966 if (psymtab == NULL)
23967 continue;
23968
95554aad 23969 if (psymtab->user == NULL)
bc8f2430
JK
23970 recursively_write_psymbols (objfile, psymtab, &symtab,
23971 psyms_seen, i);
9291a0cd 23972
bc8f2430
JK
23973 const auto insertpair = cu_index_htab.emplace (psymtab, i);
23974 gdb_assert (insertpair.second);
9291a0cd 23975
c2f134ac
PA
23976 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
23977 to_underlying (per_cu->sect_off));
23978 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23979 }
23980
0a5429f6 23981 /* Dump the address map. */
bc8f2430
JK
23982 data_buf addr_vec;
23983 write_address_map (objfile, addr_vec, cu_index_htab);
0a5429f6 23984
1fd400ff 23985 /* Write out the .debug_type entries, if any. */
bc8f2430 23986 data_buf types_cu_list;
1fd400ff
TT
23987 if (dwarf2_per_objfile->signatured_types)
23988 {
bc8f2430
JK
23989 signatured_type_index_data sig_data (types_cu_list,
23990 psyms_seen);
1fd400ff
TT
23991
23992 sig_data.objfile = objfile;
bc8f2430 23993 sig_data.symtab = &symtab;
1fd400ff
TT
23994 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23995 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23996 write_one_signatured_type, &sig_data);
23997 }
23998
156942c7
DE
23999 /* Now that we've processed all symbols we can shrink their cu_indices
24000 lists. */
bc8f2430 24001 uniquify_cu_indices (&symtab);
156942c7 24002
bc8f2430
JK
24003 data_buf symtab_vec, constant_pool;
24004 write_hash_table (&symtab, symtab_vec, constant_pool);
9291a0cd 24005
bc8f2430
JK
24006 data_buf contents;
24007 const offset_type size_of_contents = 6 * sizeof (offset_type);
24008 offset_type total_len = size_of_contents;
9291a0cd
TT
24009
24010 /* The version number. */
bc8f2430 24011 contents.append_data (MAYBE_SWAP (8));
9291a0cd
TT
24012
24013 /* The offset of the CU list from the start of the file. */
bc8f2430
JK
24014 contents.append_data (MAYBE_SWAP (total_len));
24015 total_len += cu_list.size ();
9291a0cd 24016
1fd400ff 24017 /* The offset of the types CU list from the start of the file. */
bc8f2430
JK
24018 contents.append_data (MAYBE_SWAP (total_len));
24019 total_len += types_cu_list.size ();
1fd400ff 24020
9291a0cd 24021 /* The offset of the address table from the start of the file. */
bc8f2430
JK
24022 contents.append_data (MAYBE_SWAP (total_len));
24023 total_len += addr_vec.size ();
9291a0cd
TT
24024
24025 /* The offset of the symbol table from the start of the file. */
bc8f2430
JK
24026 contents.append_data (MAYBE_SWAP (total_len));
24027 total_len += symtab_vec.size ();
9291a0cd
TT
24028
24029 /* The offset of the constant pool from the start of the file. */
bc8f2430
JK
24030 contents.append_data (MAYBE_SWAP (total_len));
24031 total_len += constant_pool.size ();
9291a0cd 24032
bc8f2430 24033 gdb_assert (contents.size () == size_of_contents);
9291a0cd 24034
bc8f2430
JK
24035 contents.file_write (out_file);
24036 cu_list.file_write (out_file);
24037 types_cu_list.file_write (out_file);
24038 addr_vec.file_write (out_file);
24039 symtab_vec.file_write (out_file);
24040 constant_pool.file_write (out_file);
9291a0cd 24041
bef155c3
TT
24042 /* We want to keep the file. */
24043 unlink_file.keep ();
9291a0cd
TT
24044}
24045
90476074
TT
24046/* Implementation of the `save gdb-index' command.
24047
24048 Note that the file format used by this command is documented in the
24049 GDB manual. Any changes here must be documented there. */
11570e71 24050
9291a0cd
TT
24051static void
24052save_gdb_index_command (char *arg, int from_tty)
24053{
24054 struct objfile *objfile;
24055
24056 if (!arg || !*arg)
96d19272 24057 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
24058
24059 ALL_OBJFILES (objfile)
24060 {
24061 struct stat st;
24062
24063 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 24064 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
24065 continue;
24066
9a3c8263
SM
24067 dwarf2_per_objfile
24068 = (struct dwarf2_per_objfile *) objfile_data (objfile,
24069 dwarf2_objfile_data_key);
9291a0cd
TT
24070 if (dwarf2_per_objfile)
24071 {
9291a0cd 24072
492d29ea 24073 TRY
9291a0cd
TT
24074 {
24075 write_psymtabs_to_index (objfile, arg);
24076 }
492d29ea
PA
24077 CATCH (except, RETURN_MASK_ERROR)
24078 {
24079 exception_fprintf (gdb_stderr, except,
24080 _("Error while writing index for `%s': "),
24081 objfile_name (objfile));
24082 }
24083 END_CATCH
9291a0cd
TT
24084 }
24085 }
dce234bc
PP
24086}
24087
9291a0cd
TT
24088\f
24089
b4f54984 24090int dwarf_always_disassemble;
9eae7c52
TT
24091
24092static void
b4f54984
DE
24093show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
24094 struct cmd_list_element *c, const char *value)
9eae7c52 24095{
3e43a32a
MS
24096 fprintf_filtered (file,
24097 _("Whether to always disassemble "
24098 "DWARF expressions is %s.\n"),
9eae7c52
TT
24099 value);
24100}
24101
900e11f9
JK
24102static void
24103show_check_physname (struct ui_file *file, int from_tty,
24104 struct cmd_list_element *c, const char *value)
24105{
24106 fprintf_filtered (file,
24107 _("Whether to check \"physname\" is %s.\n"),
24108 value);
24109}
24110
6502dd73
DJ
24111void _initialize_dwarf2_read (void);
24112
24113void
24114_initialize_dwarf2_read (void)
24115{
96d19272
JK
24116 struct cmd_list_element *c;
24117
dce234bc 24118 dwarf2_objfile_data_key
c1bd65d0 24119 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 24120
b4f54984
DE
24121 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24122Set DWARF specific variables.\n\
24123Configure DWARF variables such as the cache size"),
24124 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
24125 0/*allow-unknown*/, &maintenance_set_cmdlist);
24126
b4f54984
DE
24127 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24128Show DWARF specific variables\n\
24129Show DWARF variables such as the cache size"),
24130 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
24131 0/*allow-unknown*/, &maintenance_show_cmdlist);
24132
24133 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
24134 &dwarf_max_cache_age, _("\
24135Set the upper bound on the age of cached DWARF compilation units."), _("\
24136Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
24137A higher limit means that cached compilation units will be stored\n\
24138in memory longer, and more total memory will be used. Zero disables\n\
24139caching, which can slow down startup."),
2c5b56ce 24140 NULL,
b4f54984
DE
24141 show_dwarf_max_cache_age,
24142 &set_dwarf_cmdlist,
24143 &show_dwarf_cmdlist);
d97bc12b 24144
9eae7c52 24145 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 24146 &dwarf_always_disassemble, _("\
9eae7c52
TT
24147Set whether `info address' always disassembles DWARF expressions."), _("\
24148Show whether `info address' always disassembles DWARF expressions."), _("\
24149When enabled, DWARF expressions are always printed in an assembly-like\n\
24150syntax. When disabled, expressions will be printed in a more\n\
24151conversational style, when possible."),
24152 NULL,
b4f54984
DE
24153 show_dwarf_always_disassemble,
24154 &set_dwarf_cmdlist,
24155 &show_dwarf_cmdlist);
24156
24157 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24158Set debugging of the DWARF reader."), _("\
24159Show debugging of the DWARF reader."), _("\
24160When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
24161reading and symtab expansion. A value of 1 (one) provides basic\n\
24162information. A value greater than 1 provides more verbose information."),
45cfd468
DE
24163 NULL,
24164 NULL,
24165 &setdebuglist, &showdebuglist);
24166
b4f54984
DE
24167 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24168Set debugging of the DWARF DIE reader."), _("\
24169Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
24170When enabled (non-zero), DIEs are dumped after they are read in.\n\
24171The value is the maximum depth to print."),
ccce17b0
YQ
24172 NULL,
24173 NULL,
24174 &setdebuglist, &showdebuglist);
9291a0cd 24175
27e0867f
DE
24176 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24177Set debugging of the dwarf line reader."), _("\
24178Show debugging of the dwarf line reader."), _("\
24179When enabled (non-zero), line number entries are dumped as they are read in.\n\
24180A value of 1 (one) provides basic information.\n\
24181A value greater than 1 provides more verbose information."),
24182 NULL,
24183 NULL,
24184 &setdebuglist, &showdebuglist);
24185
900e11f9
JK
24186 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24187Set cross-checking of \"physname\" code against demangler."), _("\
24188Show cross-checking of \"physname\" code against demangler."), _("\
24189When enabled, GDB's internal \"physname\" code is checked against\n\
24190the demangler."),
24191 NULL, show_check_physname,
24192 &setdebuglist, &showdebuglist);
24193
e615022a
DE
24194 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24195 no_class, &use_deprecated_index_sections, _("\
24196Set whether to use deprecated gdb_index sections."), _("\
24197Show whether to use deprecated gdb_index sections."), _("\
24198When enabled, deprecated .gdb_index sections are used anyway.\n\
24199Normally they are ignored either because of a missing feature or\n\
24200performance issue.\n\
24201Warning: This option must be enabled before gdb reads the file."),
24202 NULL,
24203 NULL,
24204 &setlist, &showlist);
24205
96d19272 24206 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 24207 _("\
fc1a9d6e 24208Save a gdb-index file.\n\
11570e71 24209Usage: save gdb-index DIRECTORY"),
96d19272
JK
24210 &save_cmdlist);
24211 set_cmd_completer (c, filename_completer);
f1e6e072
TT
24212
24213 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24214 &dwarf2_locexpr_funcs);
24215 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24216 &dwarf2_loclist_funcs);
24217
24218 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24219 &dwarf2_block_frame_base_locexpr_funcs);
24220 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24221 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 24222}
This page took 4.407107 seconds and 4 git commands to generate.