Use std::string in ppscm_make_pp_type_error_exception
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
e2882c85 3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c 31#include "defs.h"
cd4fb1b2
SM
32#include "dwarf2read.h"
33#include "dwarf-index-common.h"
c906108c 34#include "bfd.h"
80626a55 35#include "elf-bfd.h"
c906108c
SS
36#include "symtab.h"
37#include "gdbtypes.h"
c906108c 38#include "objfiles.h"
fa8f86ff 39#include "dwarf2.h"
c906108c
SS
40#include "buildsym.h"
41#include "demangle.h"
50f182aa 42#include "gdb-demangle.h"
c906108c 43#include "expression.h"
d5166ae1 44#include "filenames.h" /* for DOSish file names */
2e276125 45#include "macrotab.h"
c906108c
SS
46#include "language.h"
47#include "complaints.h"
357e46e7 48#include "bcache.h"
4c2df51b
DJ
49#include "dwarf2expr.h"
50#include "dwarf2loc.h"
9219021c 51#include "cp-support.h"
72bf9492 52#include "hashtab.h"
ae038cb0
DJ
53#include "command.h"
54#include "gdbcmd.h"
edb3359d 55#include "block.h"
ff013f42 56#include "addrmap.h"
94af9270 57#include "typeprint.h"
ccefe4c4 58#include "psympriv.h"
53ce3c39 59#include <sys/stat.h>
96d19272 60#include "completer.h"
34eaf542 61#include "vec.h"
98bfdba5 62#include "c-lang.h"
a766d390 63#include "go-lang.h"
98bfdba5 64#include "valprint.h"
3019eac3 65#include "gdbcore.h" /* for gnutarget */
156942c7 66#include "gdb/gdb-index.h"
60d5a603 67#include <ctype.h>
cbb099e8 68#include "gdb_bfd.h"
4357ac6c 69#include "f-lang.h"
05cba821 70#include "source.h"
614c279d 71#include "filestuff.h"
dc294be5 72#include "build-id.h"
22cee43f 73#include "namespace.h"
bef155c3 74#include "common/gdb_unlinker.h"
14bc53a8 75#include "common/function-view.h"
ecfb656c
PA
76#include "common/gdb_optional.h"
77#include "common/underlying.h"
d5722aa2 78#include "common/byte-vector.h"
927aa2e7 79#include "common/hash_enum.h"
bbf2f4df 80#include "filename-seen-cache.h"
b32b108a 81#include "producer.h"
c906108c 82#include <fcntl.h>
c906108c 83#include <sys/types.h>
325fac50 84#include <algorithm>
bc8f2430
JK
85#include <unordered_set>
86#include <unordered_map>
c62446b1 87#include "selftest.h"
437afbb8
JK
88#include <cmath>
89#include <set>
90#include <forward_list>
c9317f21 91#include "rust-lang.h"
b4987c95 92#include "common/pathstuff.h"
437afbb8 93
73be47f5
DE
94/* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
b4f54984
DE
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97static unsigned int dwarf_read_debug = 0;
45cfd468 98
d97bc12b 99/* When non-zero, dump DIEs after they are read in. */
b4f54984 100static unsigned int dwarf_die_debug = 0;
d97bc12b 101
27e0867f
DE
102/* When non-zero, dump line number entries as they are read in. */
103static unsigned int dwarf_line_debug = 0;
104
900e11f9
JK
105/* When non-zero, cross-check physname against demangler. */
106static int check_physname = 0;
107
481860b3 108/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 109static int use_deprecated_index_sections = 0;
481860b3 110
6502dd73
DJ
111static const struct objfile_data *dwarf2_objfile_data_key;
112
f1e6e072
TT
113/* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115static int dwarf2_locexpr_index;
116static int dwarf2_loclist_index;
117static int dwarf2_locexpr_block_index;
118static int dwarf2_loclist_block_index;
119
3f563c84
PA
120/* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133struct name_component
134{
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143};
144
44ed8f3e
PA
145/* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148struct mapped_index_base
149{
22ca247e
TT
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
44ed8f3e
PA
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185protected:
186 ~mapped_index_base() = default;
187};
188
9291a0cd
TT
189/* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
fc898b42 191struct mapped_index final : public mapped_index_base
9291a0cd 192{
f00a2de2
PA
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
559a7a62 200 /* Index data format version. */
3063847f 201 int version = 0;
559a7a62 202
f00a2de2
PA
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
b11b1f88 205
3876f04e 206 /* The symbol table, implemented as a hash table. */
f00a2de2 207 gdb::array_view<symbol_table_slot> symbol_table;
b11b1f88 208
9291a0cd 209 /* A pointer to the constant pool. */
3063847f 210 const char *constant_pool = nullptr;
3f563c84 211
44ed8f3e
PA
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
5c58de74 217
3f563c84
PA
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
44ed8f3e 220 const char *symbol_name_at (offset_type idx) const override
f00a2de2 221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
5c58de74 222
44ed8f3e
PA
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
9291a0cd
TT
225};
226
927aa2e7
JK
227/* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
fc898b42 229struct mapped_debug_names final : public mapped_index_base
927aa2e7 230{
ed2dc618
SM
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
927aa2e7
JK
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
44ed8f3e
PA
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
927aa2e7
JK
277};
278
cd4fb1b2 279/* See dwarf2read.h. */
ed2dc618 280
cd4fb1b2 281dwarf2_per_objfile *
ed2dc618
SM
282get_dwarf2_per_objfile (struct objfile *objfile)
283{
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286}
287
288/* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290void
291set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293{
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296}
c906108c 297
251d32d9 298/* Default names of the debugging sections. */
c906108c 299
233a11ab
CS
300/* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
9cdd5dbd
DE
303static const struct dwarf2_debug_sections dwarf2_elf_names =
304{
251d32d9
TG
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
43988095 309 { ".debug_loclists", ".zdebug_loclists" },
251d32d9 310 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 311 { ".debug_macro", ".zdebug_macro" },
251d32d9 312 { ".debug_str", ".zdebug_str" },
43988095 313 { ".debug_line_str", ".zdebug_line_str" },
251d32d9 314 { ".debug_ranges", ".zdebug_ranges" },
43988095 315 { ".debug_rnglists", ".zdebug_rnglists" },
251d32d9 316 { ".debug_types", ".zdebug_types" },
3019eac3 317 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
24d3216f 320 { ".gdb_index", ".zgdb_index" },
927aa2e7
JK
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
24d3216f 323 23
251d32d9 324};
c906108c 325
80626a55 326/* List of DWO/DWP sections. */
3019eac3 327
80626a55 328static const struct dwop_section_names
3019eac3
DE
329{
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
43988095 334 struct dwarf2_section_names loclists_dwo;
09262596
DE
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
3019eac3
DE
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
80626a55
DE
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
3019eac3 342}
80626a55 343dwop_section_names =
3019eac3
DE
344{
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
43988095 349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
09262596
DE
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
357};
358
c906108c
SS
359/* local data types */
360
107d2387
AC
361/* The data in a compilation unit header, after target2host
362 translation, looks like this. */
c906108c 363struct comp_unit_head
a738430d 364{
c764a876 365 unsigned int length;
a738430d 366 short version;
a738430d
MK
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
9c541725 369 sect_offset abbrev_sect_off;
57349743 370
a738430d
MK
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
57349743 373
a738430d
MK
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
57349743 376
43988095
JK
377 enum dwarf_unit_type unit_type;
378
a738430d
MK
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
9c541725 381 sect_offset sect_off;
57349743 382
d00adf39
DE
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
9c541725 385 cu_offset first_die_cu_offset;
43988095
JK
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
9c541725 392 cu_offset type_cu_offset_in_tu;
a738430d 393};
c906108c 394
3da10d80
KS
395/* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397struct delayed_method_info
398{
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413};
414
e7c27a73
DJ
415/* Internal state when decoding a particular compilation unit. */
416struct dwarf2_cu
417{
fcd3b13d
SM
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
d00adf39 423 /* The header of the compilation unit. */
fcd3b13d 424 struct comp_unit_head header {};
e142c38c 425
d00adf39 426 /* Base address of this compilation unit. */
fcd3b13d 427 CORE_ADDR base_address = 0;
d00adf39
DE
428
429 /* Non-zero if base_address has been set. */
fcd3b13d 430 int base_known = 0;
d00adf39 431
e142c38c 432 /* The language we are debugging. */
fcd3b13d
SM
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
e142c38c 435
fcd3b13d 436 const char *producer = nullptr;
b0f35d58 437
e142c38c
DJ
438 /* The generic symbol table building routines have separate lists for
439 file scope symbols and all all other scopes (local scopes). So
440 we need to select the right one to pass to add_symbol_to_list().
441 We do it by keeping a pointer to the correct list in list_in_scope.
442
443 FIXME: The original dwarf code just treated the file scope as the
444 first local scope, and all other local scopes as nested local
445 scopes, and worked fine. Check to see if we really need to
446 distinguish these in buildsym.c. */
fcd3b13d 447 struct pending **list_in_scope = nullptr;
e142c38c 448
b64f50a1
JK
449 /* Hash table holding all the loaded partial DIEs
450 with partial_die->offset.SECT_OFF as hash. */
fcd3b13d 451 htab_t partial_dies = nullptr;
72bf9492
DJ
452
453 /* Storage for things with the same lifetime as this read-in compilation
454 unit, including partial DIEs. */
fcd3b13d 455 auto_obstack comp_unit_obstack;
72bf9492 456
ae038cb0
DJ
457 /* When multiple dwarf2_cu structures are living in memory, this field
458 chains them all together, so that they can be released efficiently.
459 We will probably also want a generation counter so that most-recently-used
460 compilation units are cached... */
fcd3b13d 461 struct dwarf2_per_cu_data *read_in_chain = nullptr;
ae038cb0 462
69d751e3 463 /* Backlink to our per_cu entry. */
ae038cb0
DJ
464 struct dwarf2_per_cu_data *per_cu;
465
466 /* How many compilation units ago was this CU last referenced? */
fcd3b13d 467 int last_used = 0;
ae038cb0 468
b64f50a1
JK
469 /* A hash table of DIE cu_offset for following references with
470 die_info->offset.sect_off as hash. */
fcd3b13d 471 htab_t die_hash = nullptr;
10b3939b
DJ
472
473 /* Full DIEs if read in. */
fcd3b13d 474 struct die_info *dies = nullptr;
10b3939b
DJ
475
476 /* A set of pointers to dwarf2_per_cu_data objects for compilation
477 units referenced by this one. Only set during full symbol processing;
478 partial symbol tables do not have dependencies. */
fcd3b13d 479 htab_t dependencies = nullptr;
10b3939b 480
cb1df416 481 /* Header data from the line table, during full symbol processing. */
fcd3b13d 482 struct line_header *line_header = nullptr;
4c8aa72d
PA
483 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
484 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
485 this is the DW_TAG_compile_unit die for this CU. We'll hold on
486 to the line header as long as this DIE is being processed. See
487 process_die_scope. */
fcd3b13d 488 die_info *line_header_die_owner = nullptr;
cb1df416 489
3da10d80
KS
490 /* A list of methods which need to have physnames computed
491 after all type information has been read. */
c89b44cd 492 std::vector<delayed_method_info> method_list;
3da10d80 493
96408a79 494 /* To be copied to symtab->call_site_htab. */
fcd3b13d 495 htab_t call_site_htab = nullptr;
96408a79 496
034e5797
DE
497 /* Non-NULL if this CU came from a DWO file.
498 There is an invariant here that is important to remember:
499 Except for attributes copied from the top level DIE in the "main"
500 (or "stub") file in preparation for reading the DWO file
501 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
502 Either there isn't a DWO file (in which case this is NULL and the point
503 is moot), or there is and either we're not going to read it (in which
504 case this is NULL) or there is and we are reading it (in which case this
505 is non-NULL). */
fcd3b13d 506 struct dwo_unit *dwo_unit = nullptr;
3019eac3
DE
507
508 /* The DW_AT_addr_base attribute if present, zero otherwise
509 (zero is a valid value though).
1dbab08b 510 Note this value comes from the Fission stub CU/TU's DIE. */
fcd3b13d 511 ULONGEST addr_base = 0;
3019eac3 512
2e3cf129
DE
513 /* The DW_AT_ranges_base attribute if present, zero otherwise
514 (zero is a valid value though).
1dbab08b 515 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 516 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
517 be used without needing to know whether DWO files are in use or not.
518 N.B. This does not apply to DW_AT_ranges appearing in
519 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
520 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
521 DW_AT_ranges_base *would* have to be applied, and we'd have to care
522 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
fcd3b13d 523 ULONGEST ranges_base = 0;
2e3cf129 524
c9317f21
TT
525 /* When reading debug info generated by older versions of rustc, we
526 have to rewrite some union types to be struct types with a
527 variant part. This rewriting must be done after the CU is fully
528 read in, because otherwise at the point of rewriting some struct
529 type might not have been fully processed. So, we keep a list of
530 all such types here and process them after expansion. */
531 std::vector<struct type *> rust_unions;
532
ae038cb0
DJ
533 /* Mark used when releasing cached dies. */
534 unsigned int mark : 1;
535
8be455d7
JK
536 /* This CU references .debug_loc. See the symtab->locations_valid field.
537 This test is imperfect as there may exist optimized debug code not using
538 any location list and still facing inlining issues if handled as
539 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 540 unsigned int has_loclist : 1;
ba919b58 541
1b80a9fa
JK
542 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
543 if all the producer_is_* fields are valid. This information is cached
544 because profiling CU expansion showed excessive time spent in
545 producer_is_gxx_lt_4_6. */
ba919b58
TT
546 unsigned int checked_producer : 1;
547 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 548 unsigned int producer_is_gcc_lt_4_3 : 1;
5230b05a 549 unsigned int producer_is_icc_lt_14 : 1;
4d4ec4e5
TT
550
551 /* When set, the file that we're processing is known to have
552 debugging info for C++ namespaces. GCC 3.3.x did not produce
553 this information, but later versions do. */
554
555 unsigned int processing_has_namespace_info : 1;
d590ff25
YQ
556
557 struct partial_die_info *find_partial_die (sect_offset sect_off);
e7c27a73
DJ
558};
559
094b34ac
DE
560/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
561 This includes type_unit_group and quick_file_names. */
562
563struct stmt_list_hash
564{
565 /* The DWO unit this table is from or NULL if there is none. */
566 struct dwo_unit *dwo_unit;
567
568 /* Offset in .debug_line or .debug_line.dwo. */
9c541725 569 sect_offset line_sect_off;
094b34ac
DE
570};
571
f4dc4d17
DE
572/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
573 an object of this type. */
574
575struct type_unit_group
576{
0186c6a7 577 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
578 To simplify things we create an artificial CU that "includes" all the
579 type units using this stmt_list so that the rest of the code still has
580 a "per_cu" handle on the symtab.
581 This PER_CU is recognized by having no section. */
8a0459fd 582#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
583 struct dwarf2_per_cu_data per_cu;
584
0186c6a7
DE
585 /* The TUs that share this DW_AT_stmt_list entry.
586 This is added to while parsing type units to build partial symtabs,
587 and is deleted afterwards and not used again. */
588 VEC (sig_type_ptr) *tus;
f4dc4d17 589
43f3e411 590 /* The compunit symtab.
094b34ac 591 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
592 so we create an essentially anonymous symtab as the compunit symtab. */
593 struct compunit_symtab *compunit_symtab;
f4dc4d17 594
094b34ac
DE
595 /* The data used to construct the hash key. */
596 struct stmt_list_hash hash;
f4dc4d17
DE
597
598 /* The number of symtabs from the line header.
599 The value here must match line_header.num_file_names. */
600 unsigned int num_symtabs;
601
602 /* The symbol tables for this TU (obtained from the files listed in
603 DW_AT_stmt_list).
604 WARNING: The order of entries here must match the order of entries
605 in the line header. After the first TU using this type_unit_group, the
606 line header for the subsequent TUs is recreated from this. This is done
607 because we need to use the same symtabs for each TU using the same
608 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
609 there's no guarantee the line header doesn't have duplicate entries. */
610 struct symtab **symtabs;
611};
612
73869dc2 613/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
614
615struct dwo_sections
616{
617 struct dwarf2_section_info abbrev;
3019eac3
DE
618 struct dwarf2_section_info line;
619 struct dwarf2_section_info loc;
43988095 620 struct dwarf2_section_info loclists;
09262596
DE
621 struct dwarf2_section_info macinfo;
622 struct dwarf2_section_info macro;
3019eac3
DE
623 struct dwarf2_section_info str;
624 struct dwarf2_section_info str_offsets;
80626a55
DE
625 /* In the case of a virtual DWO file, these two are unused. */
626 struct dwarf2_section_info info;
3019eac3
DE
627 VEC (dwarf2_section_info_def) *types;
628};
629
c88ee1f0 630/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
631
632struct dwo_unit
633{
634 /* Backlink to the containing struct dwo_file. */
635 struct dwo_file *dwo_file;
636
637 /* The "id" that distinguishes this CU/TU.
638 .debug_info calls this "dwo_id", .debug_types calls this "signature".
639 Since signatures came first, we stick with it for consistency. */
640 ULONGEST signature;
641
642 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 643 struct dwarf2_section_info *section;
3019eac3 644
9c541725
PA
645 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
646 sect_offset sect_off;
3019eac3
DE
647 unsigned int length;
648
649 /* For types, offset in the type's DIE of the type defined by this TU. */
650 cu_offset type_offset_in_tu;
651};
652
73869dc2
DE
653/* include/dwarf2.h defines the DWP section codes.
654 It defines a max value but it doesn't define a min value, which we
655 use for error checking, so provide one. */
656
657enum dwp_v2_section_ids
658{
659 DW_SECT_MIN = 1
660};
661
80626a55 662/* Data for one DWO file.
57d63ce2
DE
663
664 This includes virtual DWO files (a virtual DWO file is a DWO file as it
665 appears in a DWP file). DWP files don't really have DWO files per se -
666 comdat folding of types "loses" the DWO file they came from, and from
667 a high level view DWP files appear to contain a mass of random types.
668 However, to maintain consistency with the non-DWP case we pretend DWP
669 files contain virtual DWO files, and we assign each TU with one virtual
670 DWO file (generally based on the line and abbrev section offsets -
671 a heuristic that seems to work in practice). */
3019eac3
DE
672
673struct dwo_file
674{
0ac5b59e 675 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
676 For virtual DWO files the name is constructed from the section offsets
677 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
678 from related CU+TUs. */
0ac5b59e
DE
679 const char *dwo_name;
680
681 /* The DW_AT_comp_dir attribute. */
682 const char *comp_dir;
3019eac3 683
80626a55
DE
684 /* The bfd, when the file is open. Otherwise this is NULL.
685 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
686 bfd *dbfd;
3019eac3 687
73869dc2
DE
688 /* The sections that make up this DWO file.
689 Remember that for virtual DWO files in DWP V2, these are virtual
690 sections (for lack of a better name). */
3019eac3
DE
691 struct dwo_sections sections;
692
33c5cd75
DB
693 /* The CUs in the file.
694 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
695 an extension to handle LLVM's Link Time Optimization output (where
696 multiple source files may be compiled into a single object/dwo pair). */
697 htab_t cus;
3019eac3
DE
698
699 /* Table of TUs in the file.
700 Each element is a struct dwo_unit. */
701 htab_t tus;
702};
703
80626a55
DE
704/* These sections are what may appear in a DWP file. */
705
706struct dwp_sections
707{
73869dc2 708 /* These are used by both DWP version 1 and 2. */
80626a55
DE
709 struct dwarf2_section_info str;
710 struct dwarf2_section_info cu_index;
711 struct dwarf2_section_info tu_index;
73869dc2
DE
712
713 /* These are only used by DWP version 2 files.
714 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
715 sections are referenced by section number, and are not recorded here.
716 In DWP version 2 there is at most one copy of all these sections, each
717 section being (effectively) comprised of the concatenation of all of the
718 individual sections that exist in the version 1 format.
719 To keep the code simple we treat each of these concatenated pieces as a
720 section itself (a virtual section?). */
721 struct dwarf2_section_info abbrev;
722 struct dwarf2_section_info info;
723 struct dwarf2_section_info line;
724 struct dwarf2_section_info loc;
725 struct dwarf2_section_info macinfo;
726 struct dwarf2_section_info macro;
727 struct dwarf2_section_info str_offsets;
728 struct dwarf2_section_info types;
80626a55
DE
729};
730
73869dc2
DE
731/* These sections are what may appear in a virtual DWO file in DWP version 1.
732 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 733
73869dc2 734struct virtual_v1_dwo_sections
80626a55
DE
735{
736 struct dwarf2_section_info abbrev;
737 struct dwarf2_section_info line;
738 struct dwarf2_section_info loc;
739 struct dwarf2_section_info macinfo;
740 struct dwarf2_section_info macro;
741 struct dwarf2_section_info str_offsets;
742 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 743 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
744 struct dwarf2_section_info info_or_types;
745};
746
73869dc2
DE
747/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
748 In version 2, the sections of the DWO files are concatenated together
749 and stored in one section of that name. Thus each ELF section contains
750 several "virtual" sections. */
751
752struct virtual_v2_dwo_sections
753{
754 bfd_size_type abbrev_offset;
755 bfd_size_type abbrev_size;
756
757 bfd_size_type line_offset;
758 bfd_size_type line_size;
759
760 bfd_size_type loc_offset;
761 bfd_size_type loc_size;
762
763 bfd_size_type macinfo_offset;
764 bfd_size_type macinfo_size;
765
766 bfd_size_type macro_offset;
767 bfd_size_type macro_size;
768
769 bfd_size_type str_offsets_offset;
770 bfd_size_type str_offsets_size;
771
772 /* Each DWP hash table entry records one CU or one TU.
773 That is recorded here, and copied to dwo_unit.section. */
774 bfd_size_type info_or_types_offset;
775 bfd_size_type info_or_types_size;
776};
777
80626a55
DE
778/* Contents of DWP hash tables. */
779
780struct dwp_hash_table
781{
73869dc2 782 uint32_t version, nr_columns;
80626a55 783 uint32_t nr_units, nr_slots;
73869dc2
DE
784 const gdb_byte *hash_table, *unit_table;
785 union
786 {
787 struct
788 {
789 const gdb_byte *indices;
790 } v1;
791 struct
792 {
793 /* This is indexed by column number and gives the id of the section
794 in that column. */
795#define MAX_NR_V2_DWO_SECTIONS \
796 (1 /* .debug_info or .debug_types */ \
797 + 1 /* .debug_abbrev */ \
798 + 1 /* .debug_line */ \
799 + 1 /* .debug_loc */ \
800 + 1 /* .debug_str_offsets */ \
801 + 1 /* .debug_macro or .debug_macinfo */)
802 int section_ids[MAX_NR_V2_DWO_SECTIONS];
803 const gdb_byte *offsets;
804 const gdb_byte *sizes;
805 } v2;
806 } section_pool;
80626a55
DE
807};
808
809/* Data for one DWP file. */
810
811struct dwp_file
812{
400174b1
TT
813 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
814 : name (name_),
815 dbfd (std::move (abfd))
816 {
817 }
818
80626a55
DE
819 /* Name of the file. */
820 const char *name;
821
73869dc2 822 /* File format version. */
400174b1 823 int version = 0;
73869dc2 824
93417882 825 /* The bfd. */
400174b1 826 gdb_bfd_ref_ptr dbfd;
80626a55
DE
827
828 /* Section info for this file. */
400174b1 829 struct dwp_sections sections {};
80626a55 830
57d63ce2 831 /* Table of CUs in the file. */
400174b1 832 const struct dwp_hash_table *cus = nullptr;
80626a55
DE
833
834 /* Table of TUs in the file. */
400174b1 835 const struct dwp_hash_table *tus = nullptr;
80626a55 836
19ac8c2e 837 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
400174b1
TT
838 htab_t loaded_cus {};
839 htab_t loaded_tus {};
80626a55 840
73869dc2
DE
841 /* Table to map ELF section numbers to their sections.
842 This is only needed for the DWP V1 file format. */
400174b1
TT
843 unsigned int num_sections = 0;
844 asection **elf_sections = nullptr;
80626a55
DE
845};
846
36586728
TT
847/* This represents a '.dwz' file. */
848
849struct dwz_file
850{
7ff8cb8c
TT
851 dwz_file (gdb_bfd_ref_ptr &&bfd)
852 : dwz_bfd (std::move (bfd))
853 {
854 }
855
36586728 856 /* A dwz file can only contain a few sections. */
7ff8cb8c
TT
857 struct dwarf2_section_info abbrev {};
858 struct dwarf2_section_info info {};
859 struct dwarf2_section_info str {};
860 struct dwarf2_section_info line {};
861 struct dwarf2_section_info macro {};
862 struct dwarf2_section_info gdb_index {};
863 struct dwarf2_section_info debug_names {};
36586728
TT
864
865 /* The dwz's BFD. */
7ff8cb8c 866 gdb_bfd_ref_ptr dwz_bfd;
36586728
TT
867};
868
0963b4bd
MS
869/* Struct used to pass misc. parameters to read_die_and_children, et
870 al. which are used for both .debug_info and .debug_types dies.
871 All parameters here are unchanging for the life of the call. This
dee91e82 872 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
873
874struct die_reader_specs
875{
a32a8923 876 /* The bfd of die_section. */
93311388
DE
877 bfd* abfd;
878
879 /* The CU of the DIE we are parsing. */
880 struct dwarf2_cu *cu;
881
80626a55 882 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
883 struct dwo_file *dwo_file;
884
dee91e82 885 /* The section the die comes from.
3019eac3 886 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
887 struct dwarf2_section_info *die_section;
888
889 /* die_section->buffer. */
d521ce57 890 const gdb_byte *buffer;
f664829e
DE
891
892 /* The end of the buffer. */
893 const gdb_byte *buffer_end;
a2ce51a0
DE
894
895 /* The value of the DW_AT_comp_dir attribute. */
896 const char *comp_dir;
685af9cd
TT
897
898 /* The abbreviation table to use when reading the DIEs. */
899 struct abbrev_table *abbrev_table;
93311388
DE
900};
901
fd820528 902/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 903typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 904 const gdb_byte *info_ptr,
dee91e82
DE
905 struct die_info *comp_unit_die,
906 int has_children,
907 void *data);
908
ecfb656c
PA
909/* A 1-based directory index. This is a strong typedef to prevent
910 accidentally using a directory index as a 0-based index into an
911 array/vector. */
912enum class dir_index : unsigned int {};
913
914/* Likewise, a 1-based file name index. */
915enum class file_name_index : unsigned int {};
916
52059ffd
TT
917struct file_entry
918{
fff8551c
PA
919 file_entry () = default;
920
ecfb656c 921 file_entry (const char *name_, dir_index d_index_,
fff8551c
PA
922 unsigned int mod_time_, unsigned int length_)
923 : name (name_),
ecfb656c 924 d_index (d_index_),
fff8551c
PA
925 mod_time (mod_time_),
926 length (length_)
927 {}
928
ecfb656c
PA
929 /* Return the include directory at D_INDEX stored in LH. Returns
930 NULL if D_INDEX is out of bounds. */
8c43009f
PA
931 const char *include_dir (const line_header *lh) const;
932
fff8551c
PA
933 /* The file name. Note this is an observing pointer. The memory is
934 owned by debug_line_buffer. */
935 const char *name {};
936
8c43009f 937 /* The directory index (1-based). */
ecfb656c 938 dir_index d_index {};
fff8551c
PA
939
940 unsigned int mod_time {};
941
942 unsigned int length {};
943
944 /* True if referenced by the Line Number Program. */
945 bool included_p {};
946
83769d0b 947 /* The associated symbol table, if any. */
fff8551c 948 struct symtab *symtab {};
52059ffd
TT
949};
950
debd256d
JB
951/* The line number information for a compilation unit (found in the
952 .debug_line section) begins with a "statement program header",
953 which contains the following information. */
954struct line_header
955{
fff8551c
PA
956 line_header ()
957 : offset_in_dwz {}
958 {}
959
960 /* Add an entry to the include directory table. */
961 void add_include_dir (const char *include_dir);
962
963 /* Add an entry to the file name table. */
ecfb656c 964 void add_file_name (const char *name, dir_index d_index,
fff8551c
PA
965 unsigned int mod_time, unsigned int length);
966
ecfb656c 967 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
8c43009f 968 is out of bounds. */
ecfb656c 969 const char *include_dir_at (dir_index index) const
8c43009f 970 {
ecfb656c
PA
971 /* Convert directory index number (1-based) to vector index
972 (0-based). */
973 size_t vec_index = to_underlying (index) - 1;
974
975 if (vec_index >= include_dirs.size ())
8c43009f 976 return NULL;
ecfb656c 977 return include_dirs[vec_index];
8c43009f
PA
978 }
979
ecfb656c 980 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
8c43009f 981 is out of bounds. */
ecfb656c 982 file_entry *file_name_at (file_name_index index)
8c43009f 983 {
ecfb656c
PA
984 /* Convert file name index number (1-based) to vector index
985 (0-based). */
986 size_t vec_index = to_underlying (index) - 1;
987
988 if (vec_index >= file_names.size ())
fff8551c 989 return NULL;
ecfb656c 990 return &file_names[vec_index];
fff8551c
PA
991 }
992
993 /* Const version of the above. */
994 const file_entry *file_name_at (unsigned int index) const
995 {
996 if (index >= file_names.size ())
8c43009f
PA
997 return NULL;
998 return &file_names[index];
999 }
1000
527f3840 1001 /* Offset of line number information in .debug_line section. */
9c541725 1002 sect_offset sect_off {};
527f3840
JK
1003
1004 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
fff8551c
PA
1005 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1006
1007 unsigned int total_length {};
1008 unsigned short version {};
1009 unsigned int header_length {};
1010 unsigned char minimum_instruction_length {};
1011 unsigned char maximum_ops_per_instruction {};
1012 unsigned char default_is_stmt {};
1013 int line_base {};
1014 unsigned char line_range {};
1015 unsigned char opcode_base {};
debd256d
JB
1016
1017 /* standard_opcode_lengths[i] is the number of operands for the
1018 standard opcode whose value is i. This means that
1019 standard_opcode_lengths[0] is unused, and the last meaningful
1020 element is standard_opcode_lengths[opcode_base - 1]. */
fff8551c 1021 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
debd256d 1022
fff8551c
PA
1023 /* The include_directories table. Note these are observing
1024 pointers. The memory is owned by debug_line_buffer. */
1025 std::vector<const char *> include_dirs;
debd256d 1026
fff8551c
PA
1027 /* The file_names table. */
1028 std::vector<file_entry> file_names;
debd256d
JB
1029
1030 /* The start and end of the statement program following this
6502dd73 1031 header. These point into dwarf2_per_objfile->line_buffer. */
fff8551c 1032 const gdb_byte *statement_program_start {}, *statement_program_end {};
debd256d 1033};
c906108c 1034
fff8551c
PA
1035typedef std::unique_ptr<line_header> line_header_up;
1036
8c43009f
PA
1037const char *
1038file_entry::include_dir (const line_header *lh) const
1039{
ecfb656c 1040 return lh->include_dir_at (d_index);
8c43009f
PA
1041}
1042
c906108c 1043/* When we construct a partial symbol table entry we only
0963b4bd 1044 need this much information. */
6f06d47b 1045struct partial_die_info : public allocate_on_obstack
c906108c 1046 {
6f06d47b
YQ
1047 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1048
1049 /* Disable assign but still keep copy ctor, which is needed
1050 load_partial_dies. */
1051 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1052
52356b79
YQ
1053 /* Adjust the partial die before generating a symbol for it. This
1054 function may set the is_external flag or change the DIE's
1055 name. */
1056 void fixup (struct dwarf2_cu *cu);
1057
48fbe735
YQ
1058 /* Read a minimal amount of information into the minimal die
1059 structure. */
1060 const gdb_byte *read (const struct die_reader_specs *reader,
1061 const struct abbrev_info &abbrev,
1062 const gdb_byte *info_ptr);
1063
72bf9492 1064 /* Offset of this DIE. */
6f06d47b 1065 const sect_offset sect_off;
72bf9492
DJ
1066
1067 /* DWARF-2 tag for this DIE. */
6f06d47b 1068 const ENUM_BITFIELD(dwarf_tag) tag : 16;
72bf9492 1069
72bf9492 1070 /* Assorted flags describing the data found in this DIE. */
6f06d47b
YQ
1071 const unsigned int has_children : 1;
1072
72bf9492
DJ
1073 unsigned int is_external : 1;
1074 unsigned int is_declaration : 1;
1075 unsigned int has_type : 1;
1076 unsigned int has_specification : 1;
1077 unsigned int has_pc_info : 1;
481860b3 1078 unsigned int may_be_inlined : 1;
72bf9492 1079
0c1b455e
TT
1080 /* This DIE has been marked DW_AT_main_subprogram. */
1081 unsigned int main_subprogram : 1;
1082
72bf9492
DJ
1083 /* Flag set if the SCOPE field of this structure has been
1084 computed. */
1085 unsigned int scope_set : 1;
1086
fa4028e9
JB
1087 /* Flag set if the DIE has a byte_size attribute. */
1088 unsigned int has_byte_size : 1;
1089
ff908ebf
AW
1090 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1091 unsigned int has_const_value : 1;
1092
98bfdba5
PA
1093 /* Flag set if any of the DIE's children are template arguments. */
1094 unsigned int has_template_arguments : 1;
1095
52356b79 1096 /* Flag set if fixup has been called on this die. */
abc72ce4
DE
1097 unsigned int fixup_called : 1;
1098
36586728
TT
1099 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1100 unsigned int is_dwz : 1;
1101
1102 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1103 unsigned int spec_is_dwz : 1;
1104
72bf9492 1105 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1106 sometimes a default name for unnamed DIEs. */
6f06d47b 1107 const char *name = nullptr;
72bf9492 1108
abc72ce4 1109 /* The linkage name, if present. */
6f06d47b 1110 const char *linkage_name = nullptr;
abc72ce4 1111
72bf9492
DJ
1112 /* The scope to prepend to our children. This is generally
1113 allocated on the comp_unit_obstack, so will disappear
1114 when this compilation unit leaves the cache. */
6f06d47b 1115 const char *scope = nullptr;
72bf9492 1116
95554aad
TT
1117 /* Some data associated with the partial DIE. The tag determines
1118 which field is live. */
1119 union
1120 {
1121 /* The location description associated with this DIE, if any. */
1122 struct dwarf_block *locdesc;
1123 /* The offset of an import, for DW_TAG_imported_unit. */
9c541725 1124 sect_offset sect_off;
6f06d47b 1125 } d {};
72bf9492
DJ
1126
1127 /* If HAS_PC_INFO, the PC range associated with this DIE. */
6f06d47b
YQ
1128 CORE_ADDR lowpc = 0;
1129 CORE_ADDR highpc = 0;
72bf9492 1130
93311388 1131 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1132 DW_AT_sibling, if any. */
48fbe735
YQ
1133 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1134 could return DW_AT_sibling values to its caller load_partial_dies. */
6f06d47b 1135 const gdb_byte *sibling = nullptr;
72bf9492
DJ
1136
1137 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1138 DW_AT_specification (or DW_AT_abstract_origin or
1139 DW_AT_extension). */
6f06d47b 1140 sect_offset spec_offset {};
72bf9492
DJ
1141
1142 /* Pointers to this DIE's parent, first child, and next sibling,
1143 if any. */
6f06d47b
YQ
1144 struct partial_die_info *die_parent = nullptr;
1145 struct partial_die_info *die_child = nullptr;
1146 struct partial_die_info *die_sibling = nullptr;
1147
1148 friend struct partial_die_info *
1149 dwarf2_cu::find_partial_die (sect_offset sect_off);
1150
1151 private:
1152 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1153 partial_die_info (sect_offset sect_off)
1154 : partial_die_info (sect_off, DW_TAG_padding, 0)
1155 {
1156 }
1157
1158 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1159 int has_children_)
1160 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1161 {
1162 is_external = 0;
1163 is_declaration = 0;
1164 has_type = 0;
1165 has_specification = 0;
1166 has_pc_info = 0;
1167 may_be_inlined = 0;
1168 main_subprogram = 0;
1169 scope_set = 0;
1170 has_byte_size = 0;
1171 has_const_value = 0;
1172 has_template_arguments = 0;
1173 fixup_called = 0;
1174 is_dwz = 0;
1175 spec_is_dwz = 0;
1176 }
c906108c
SS
1177 };
1178
0963b4bd 1179/* This data structure holds the information of an abbrev. */
c906108c
SS
1180struct abbrev_info
1181 {
1182 unsigned int number; /* number identifying abbrev */
1183 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1184 unsigned short has_children; /* boolean */
1185 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1186 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1187 struct abbrev_info *next; /* next in chain */
1188 };
1189
1190struct attr_abbrev
1191 {
9d25dd43
DE
1192 ENUM_BITFIELD(dwarf_attribute) name : 16;
1193 ENUM_BITFIELD(dwarf_form) form : 16;
43988095
JK
1194
1195 /* It is valid only if FORM is DW_FORM_implicit_const. */
1196 LONGEST implicit_const;
c906108c
SS
1197 };
1198
433df2d4
DE
1199/* Size of abbrev_table.abbrev_hash_table. */
1200#define ABBREV_HASH_SIZE 121
1201
1202/* Top level data structure to contain an abbreviation table. */
1203
1204struct abbrev_table
1205{
685af9cd
TT
1206 explicit abbrev_table (sect_offset off)
1207 : sect_off (off)
1208 {
4a17f768 1209 m_abbrevs =
685af9cd 1210 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
4a17f768 1211 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
685af9cd
TT
1212 }
1213
1214 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1215
1216 /* Allocate space for a struct abbrev_info object in
1217 ABBREV_TABLE. */
1218 struct abbrev_info *alloc_abbrev ();
1219
1220 /* Add an abbreviation to the table. */
1221 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1222
1223 /* Look up an abbrev in the table.
1224 Returns NULL if the abbrev is not found. */
1225
1226 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1227
1228
f4dc4d17
DE
1229 /* Where the abbrev table came from.
1230 This is used as a sanity check when the table is used. */
685af9cd 1231 const sect_offset sect_off;
433df2d4
DE
1232
1233 /* Storage for the abbrev table. */
685af9cd 1234 auto_obstack abbrev_obstack;
433df2d4 1235
4a17f768
YQ
1236private:
1237
433df2d4
DE
1238 /* Hash table of abbrevs.
1239 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1240 It could be statically allocated, but the previous code didn't so we
1241 don't either. */
4a17f768 1242 struct abbrev_info **m_abbrevs;
433df2d4
DE
1243};
1244
685af9cd
TT
1245typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1246
0963b4bd 1247/* Attributes have a name and a value. */
b60c80d6
DJ
1248struct attribute
1249 {
9d25dd43 1250 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1251 ENUM_BITFIELD(dwarf_form) form : 15;
1252
1253 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1254 field should be in u.str (existing only for DW_STRING) but it is kept
1255 here for better struct attribute alignment. */
1256 unsigned int string_is_canonical : 1;
1257
b60c80d6
DJ
1258 union
1259 {
15d034d0 1260 const char *str;
b60c80d6 1261 struct dwarf_block *blk;
43bbcdc2
PH
1262 ULONGEST unsnd;
1263 LONGEST snd;
b60c80d6 1264 CORE_ADDR addr;
ac9ec31b 1265 ULONGEST signature;
b60c80d6
DJ
1266 }
1267 u;
1268 };
1269
0963b4bd 1270/* This data structure holds a complete die structure. */
c906108c
SS
1271struct die_info
1272 {
76815b17
DE
1273 /* DWARF-2 tag for this DIE. */
1274 ENUM_BITFIELD(dwarf_tag) tag : 16;
1275
1276 /* Number of attributes */
98bfdba5
PA
1277 unsigned char num_attrs;
1278
1279 /* True if we're presently building the full type name for the
1280 type derived from this DIE. */
1281 unsigned char building_fullname : 1;
76815b17 1282
adde2bff
DE
1283 /* True if this die is in process. PR 16581. */
1284 unsigned char in_process : 1;
1285
76815b17
DE
1286 /* Abbrev number */
1287 unsigned int abbrev;
1288
93311388 1289 /* Offset in .debug_info or .debug_types section. */
9c541725 1290 sect_offset sect_off;
78ba4af6
JB
1291
1292 /* The dies in a compilation unit form an n-ary tree. PARENT
1293 points to this die's parent; CHILD points to the first child of
1294 this node; and all the children of a given node are chained
4950bc1c 1295 together via their SIBLING fields. */
639d11d3
DC
1296 struct die_info *child; /* Its first child, if any. */
1297 struct die_info *sibling; /* Its next sibling, if any. */
1298 struct die_info *parent; /* Its parent, if any. */
c906108c 1299
b60c80d6
DJ
1300 /* An array of attributes, with NUM_ATTRS elements. There may be
1301 zero, but it's not common and zero-sized arrays are not
1302 sufficiently portable C. */
1303 struct attribute attrs[1];
c906108c
SS
1304 };
1305
0963b4bd 1306/* Get at parts of an attribute structure. */
c906108c
SS
1307
1308#define DW_STRING(attr) ((attr)->u.str)
8285870a 1309#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1310#define DW_UNSND(attr) ((attr)->u.unsnd)
1311#define DW_BLOCK(attr) ((attr)->u.blk)
1312#define DW_SND(attr) ((attr)->u.snd)
1313#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1314#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1315
0963b4bd 1316/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1317struct dwarf_block
1318 {
56eb65bd 1319 size_t size;
1d6edc3c
JK
1320
1321 /* Valid only if SIZE is not zero. */
d521ce57 1322 const gdb_byte *data;
c906108c
SS
1323 };
1324
c906108c
SS
1325#ifndef ATTR_ALLOC_CHUNK
1326#define ATTR_ALLOC_CHUNK 4
1327#endif
1328
c906108c
SS
1329/* Allocate fields for structs, unions and enums in this size. */
1330#ifndef DW_FIELD_ALLOC_CHUNK
1331#define DW_FIELD_ALLOC_CHUNK 4
1332#endif
1333
c906108c
SS
1334/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1335 but this would require a corresponding change in unpack_field_as_long
1336 and friends. */
1337static int bits_per_byte = 8;
1338
2ddeaf8a
TT
1339/* When reading a variant or variant part, we track a bit more
1340 information about the field, and store it in an object of this
1341 type. */
1342
1343struct variant_field
1344{
1345 /* If we see a DW_TAG_variant, then this will be the discriminant
1346 value. */
1347 ULONGEST discriminant_value;
1348 /* If we see a DW_TAG_variant, then this will be set if this is the
1349 default branch. */
1350 bool default_branch;
1351 /* While reading a DW_TAG_variant_part, this will be set if this
1352 field is the discriminant. */
1353 bool is_discriminant;
1354};
1355
52059ffd
TT
1356struct nextfield
1357{
be2daae6
TT
1358 int accessibility = 0;
1359 int virtuality = 0;
2ddeaf8a 1360 /* Extra information to describe a variant or variant part. */
be2daae6
TT
1361 struct variant_field variant {};
1362 struct field field {};
52059ffd
TT
1363};
1364
1365struct fnfieldlist
1366{
be2daae6
TT
1367 const char *name = nullptr;
1368 std::vector<struct fn_field> fnfields;
52059ffd
TT
1369};
1370
c906108c
SS
1371/* The routines that read and process dies for a C struct or C++ class
1372 pass lists of data member fields and lists of member function fields
1373 in an instance of a field_info structure, as defined below. */
1374struct field_info
c5aa993b 1375 {
0963b4bd 1376 /* List of data member and baseclasses fields. */
be2daae6
TT
1377 std::vector<struct nextfield> fields;
1378 std::vector<struct nextfield> baseclasses;
c906108c 1379
7d0ccb61 1380 /* Number of fields (including baseclasses). */
be2daae6 1381 int nfields = 0;
c906108c 1382
c5aa993b 1383 /* Set if the accesibility of one of the fields is not public. */
be2daae6 1384 int non_public_fields = 0;
c906108c 1385
c5aa993b
JM
1386 /* Member function fieldlist array, contains name of possibly overloaded
1387 member function, number of overloaded member functions and a pointer
1388 to the head of the member function field chain. */
be2daae6 1389 std::vector<struct fnfieldlist> fnfieldlists;
98751a41
JK
1390
1391 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1392 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
be2daae6 1393 std::vector<struct decl_field> typedef_field_list;
883fd55a
KS
1394
1395 /* Nested types defined by this class and the number of elements in this
1396 list. */
be2daae6 1397 std::vector<struct decl_field> nested_types_list;
c5aa993b 1398 };
c906108c 1399
10b3939b
DJ
1400/* One item on the queue of compilation units to read in full symbols
1401 for. */
1402struct dwarf2_queue_item
1403{
1404 struct dwarf2_per_cu_data *per_cu;
95554aad 1405 enum language pretend_language;
10b3939b
DJ
1406 struct dwarf2_queue_item *next;
1407};
1408
1409/* The current queue. */
1410static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1411
ae038cb0
DJ
1412/* Loaded secondary compilation units are kept in memory until they
1413 have not been referenced for the processing of this many
1414 compilation units. Set this to zero to disable caching. Cache
1415 sizes of up to at least twenty will improve startup time for
1416 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1417static int dwarf_max_cache_age = 5;
920d2a44 1418static void
b4f54984
DE
1419show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1420 struct cmd_list_element *c, const char *value)
920d2a44 1421{
3e43a32a 1422 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1423 "DWARF compilation units is %s.\n"),
920d2a44
AC
1424 value);
1425}
4390d890 1426\f
c906108c
SS
1427/* local function prototypes */
1428
a32a8923
DE
1429static const char *get_section_name (const struct dwarf2_section_info *);
1430
1431static const char *get_section_file_name (const struct dwarf2_section_info *);
1432
918dd910
JK
1433static void dwarf2_find_base_address (struct die_info *die,
1434 struct dwarf2_cu *cu);
1435
0018ea6f
DE
1436static struct partial_symtab *create_partial_symtab
1437 (struct dwarf2_per_cu_data *per_cu, const char *name);
1438
f1902523
JK
1439static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1440 const gdb_byte *info_ptr,
1441 struct die_info *type_unit_die,
1442 int has_children, void *data);
1443
ed2dc618
SM
1444static void dwarf2_build_psymtabs_hard
1445 (struct dwarf2_per_objfile *dwarf2_per_objfile);
c906108c 1446
72bf9492
DJ
1447static void scan_partial_symbols (struct partial_die_info *,
1448 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1449 int, struct dwarf2_cu *);
c906108c 1450
72bf9492
DJ
1451static void add_partial_symbol (struct partial_die_info *,
1452 struct dwarf2_cu *);
63d06c5c 1453
72bf9492
DJ
1454static void add_partial_namespace (struct partial_die_info *pdi,
1455 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1456 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1457
5d7cb8df 1458static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1459 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1460 struct dwarf2_cu *cu);
1461
72bf9492
DJ
1462static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1463 struct dwarf2_cu *cu);
91c24f0a 1464
bc30ff58
JB
1465static void add_partial_subprogram (struct partial_die_info *pdi,
1466 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1467 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1468
257e7a09
YQ
1469static void dwarf2_read_symtab (struct partial_symtab *,
1470 struct objfile *);
c906108c 1471
a14ed312 1472static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1473
685af9cd 1474static abbrev_table_up abbrev_table_read_table
ed2dc618
SM
1475 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1476 sect_offset);
433df2d4 1477
d521ce57 1478static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1479
dee91e82 1480static struct partial_die_info *load_partial_dies
d521ce57 1481 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1482
36586728 1483static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1484 struct dwarf2_cu *);
72bf9492 1485
d521ce57
TT
1486static const gdb_byte *read_attribute (const struct die_reader_specs *,
1487 struct attribute *, struct attr_abbrev *,
1488 const gdb_byte *);
a8329558 1489
a1855c1d 1490static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1491
a1855c1d 1492static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1493
a1855c1d 1494static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1495
a1855c1d 1496static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1497
a1855c1d 1498static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1499
d521ce57 1500static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1501 unsigned int *);
c906108c 1502
d521ce57 1503static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1504
1505static LONGEST read_checked_initial_length_and_offset
d521ce57 1506 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1507 unsigned int *, unsigned int *);
613e1657 1508
d521ce57
TT
1509static LONGEST read_offset (bfd *, const gdb_byte *,
1510 const struct comp_unit_head *,
c764a876
DE
1511 unsigned int *);
1512
d521ce57 1513static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1514
ed2dc618
SM
1515static sect_offset read_abbrev_offset
1516 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1517 struct dwarf2_section_info *, sect_offset);
f4dc4d17 1518
d521ce57 1519static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1520
d521ce57 1521static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1522
ed2dc618
SM
1523static const char *read_indirect_string
1524 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1525 const struct comp_unit_head *, unsigned int *);
4bdf3d34 1526
ed2dc618
SM
1527static const char *read_indirect_line_string
1528 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1529 const struct comp_unit_head *, unsigned int *);
36586728 1530
ed2dc618
SM
1531static const char *read_indirect_string_at_offset
1532 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1533 LONGEST str_offset);
927aa2e7 1534
ed2dc618
SM
1535static const char *read_indirect_string_from_dwz
1536 (struct objfile *objfile, struct dwz_file *, LONGEST);
c906108c 1537
d521ce57 1538static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1539
d521ce57
TT
1540static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1541 const gdb_byte *,
3019eac3
DE
1542 unsigned int *);
1543
d521ce57 1544static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1545 ULONGEST str_index);
3019eac3 1546
e142c38c 1547static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1548
e142c38c
DJ
1549static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1550 struct dwarf2_cu *);
c906108c 1551
348e048f 1552static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1553 unsigned int);
348e048f 1554
7d45c7c3
KB
1555static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1556 struct dwarf2_cu *cu);
1557
05cf31d1
JB
1558static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1559 struct dwarf2_cu *cu);
1560
e142c38c 1561static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1562
e142c38c 1563static struct die_info *die_specification (struct die_info *die,
f2f0e013 1564 struct dwarf2_cu **);
63d06c5c 1565
9c541725 1566static line_header_up dwarf_decode_line_header (sect_offset sect_off,
fff8551c 1567 struct dwarf2_cu *cu);
debd256d 1568
f3f5162e 1569static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1570 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1571 CORE_ADDR, int decode_mapping);
c906108c 1572
4d663531 1573static void dwarf2_start_subfile (const char *, const char *);
c906108c 1574
43f3e411
DE
1575static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1576 const char *, const char *,
1577 CORE_ADDR);
f4dc4d17 1578
a14ed312 1579static struct symbol *new_symbol (struct die_info *, struct type *,
5e2db402 1580 struct dwarf2_cu *, struct symbol * = NULL);
34eaf542 1581
ff39bb5e 1582static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1583 struct dwarf2_cu *);
c906108c 1584
ff39bb5e 1585static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1586 struct type *type,
1587 const char *name,
1588 struct obstack *obstack,
12df843f 1589 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1590 const gdb_byte **bytes,
98bfdba5 1591 struct dwarf2_locexpr_baton **baton);
2df3850c 1592
e7c27a73 1593static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1594
b4ba55a1
JB
1595static int need_gnat_info (struct dwarf2_cu *);
1596
3e43a32a
MS
1597static struct type *die_descriptive_type (struct die_info *,
1598 struct dwarf2_cu *);
b4ba55a1
JB
1599
1600static void set_descriptive_type (struct type *, struct die_info *,
1601 struct dwarf2_cu *);
1602
e7c27a73
DJ
1603static struct type *die_containing_type (struct die_info *,
1604 struct dwarf2_cu *);
c906108c 1605
ff39bb5e 1606static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1607 struct dwarf2_cu *);
c906108c 1608
f792889a 1609static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1610
673bfd45
DE
1611static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1612
0d5cff50 1613static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1614
6e70227d 1615static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1616 const char *suffix, int physname,
1617 struct dwarf2_cu *cu);
63d06c5c 1618
e7c27a73 1619static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1620
348e048f
DE
1621static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1622
e7c27a73 1623static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1624
e7c27a73 1625static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1626
96408a79
SA
1627static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1628
71a3c369
TT
1629static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1630
ff013f42
JK
1631static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1632 struct dwarf2_cu *, struct partial_symtab *);
1633
3a2b436a 1634/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
e385593e 1635 values. Keep the items ordered with increasing constraints compliance. */
3a2b436a
JK
1636enum pc_bounds_kind
1637{
e385593e 1638 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
3a2b436a
JK
1639 PC_BOUNDS_NOT_PRESENT,
1640
e385593e
JK
1641 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1642 were present but they do not form a valid range of PC addresses. */
1643 PC_BOUNDS_INVALID,
1644
3a2b436a
JK
1645 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1646 PC_BOUNDS_RANGES,
1647
1648 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1649 PC_BOUNDS_HIGH_LOW,
1650};
1651
1652static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1653 CORE_ADDR *, CORE_ADDR *,
1654 struct dwarf2_cu *,
1655 struct partial_symtab *);
c906108c 1656
fae299cd
DC
1657static void get_scope_pc_bounds (struct die_info *,
1658 CORE_ADDR *, CORE_ADDR *,
1659 struct dwarf2_cu *);
1660
801e3a5b
JB
1661static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1662 CORE_ADDR, struct dwarf2_cu *);
1663
a14ed312 1664static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1665 struct dwarf2_cu *);
c906108c 1666
a14ed312 1667static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1668 struct type *, struct dwarf2_cu *);
c906108c 1669
a14ed312 1670static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1671 struct die_info *, struct type *,
e7c27a73 1672 struct dwarf2_cu *);
c906108c 1673
a14ed312 1674static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1675 struct type *,
1676 struct dwarf2_cu *);
c906108c 1677
134d01f1 1678static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1679
e7c27a73 1680static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1681
e7c27a73 1682static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1683
5d7cb8df
JK
1684static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1685
22cee43f
PMR
1686static struct using_direct **using_directives (enum language);
1687
27aa8d6a
SW
1688static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1689
74921315
KS
1690static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1691
f55ee35c
JK
1692static struct type *read_module_type (struct die_info *die,
1693 struct dwarf2_cu *cu);
1694
38d518c9 1695static const char *namespace_name (struct die_info *die,
e142c38c 1696 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1697
134d01f1 1698static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1699
e7c27a73 1700static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1701
6e70227d 1702static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1703 struct dwarf2_cu *);
1704
bf6af496 1705static struct die_info *read_die_and_siblings_1
d521ce57 1706 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1707 struct die_info *);
639d11d3 1708
dee91e82 1709static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1710 const gdb_byte *info_ptr,
1711 const gdb_byte **new_info_ptr,
639d11d3
DC
1712 struct die_info *parent);
1713
d521ce57
TT
1714static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1715 struct die_info **, const gdb_byte *,
1716 int *, int);
3019eac3 1717
d521ce57
TT
1718static const gdb_byte *read_full_die (const struct die_reader_specs *,
1719 struct die_info **, const gdb_byte *,
1720 int *);
93311388 1721
e7c27a73 1722static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1723
15d034d0
TT
1724static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1725 struct obstack *);
71c25dea 1726
15d034d0 1727static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1728
15d034d0 1729static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1730 struct die_info *die,
1731 struct dwarf2_cu *cu);
1732
ca69b9e6
DE
1733static const char *dwarf2_physname (const char *name, struct die_info *die,
1734 struct dwarf2_cu *cu);
1735
e142c38c 1736static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1737 struct dwarf2_cu **);
9219021c 1738
f39c6ffd 1739static const char *dwarf_tag_name (unsigned int);
c906108c 1740
f39c6ffd 1741static const char *dwarf_attr_name (unsigned int);
c906108c 1742
f39c6ffd 1743static const char *dwarf_form_name (unsigned int);
c906108c 1744
a121b7c1 1745static const char *dwarf_bool_name (unsigned int);
c906108c 1746
f39c6ffd 1747static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1748
f9aca02d 1749static struct die_info *sibling_die (struct die_info *);
c906108c 1750
d97bc12b
DE
1751static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1752
1753static void dump_die_for_error (struct die_info *);
1754
1755static void dump_die_1 (struct ui_file *, int level, int max_level,
1756 struct die_info *);
c906108c 1757
d97bc12b 1758/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1759
51545339 1760static void store_in_ref_table (struct die_info *,
10b3939b 1761 struct dwarf2_cu *);
c906108c 1762
ff39bb5e 1763static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1764
ff39bb5e 1765static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1766
348e048f 1767static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1768 const struct attribute *,
348e048f
DE
1769 struct dwarf2_cu **);
1770
10b3939b 1771static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1772 const struct attribute *,
f2f0e013 1773 struct dwarf2_cu **);
c906108c 1774
348e048f 1775static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1776 const struct attribute *,
348e048f
DE
1777 struct dwarf2_cu **);
1778
ac9ec31b
DE
1779static struct type *get_signatured_type (struct die_info *, ULONGEST,
1780 struct dwarf2_cu *);
1781
1782static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1783 const struct attribute *,
ac9ec31b
DE
1784 struct dwarf2_cu *);
1785
e5fe5e75 1786static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1787
52dc124a 1788static void read_signatured_type (struct signatured_type *);
348e048f 1789
63e43d3a
PMR
1790static int attr_to_dynamic_prop (const struct attribute *attr,
1791 struct die_info *die, struct dwarf2_cu *cu,
1792 struct dynamic_prop *prop);
1793
c906108c
SS
1794/* memory allocation interface */
1795
7b5a2f43 1796static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1797
b60c80d6 1798static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1799
43f3e411 1800static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1801
6e5a29e1 1802static int attr_form_is_block (const struct attribute *);
8e19ed76 1803
6e5a29e1 1804static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1805
6e5a29e1 1806static int attr_form_is_constant (const struct attribute *);
3690dd37 1807
6e5a29e1 1808static int attr_form_is_ref (const struct attribute *);
7771576e 1809
8cf6f0b1
TT
1810static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1811 struct dwarf2_loclist_baton *baton,
ff39bb5e 1812 const struct attribute *attr);
8cf6f0b1 1813
ff39bb5e 1814static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1815 struct symbol *sym,
f1e6e072
TT
1816 struct dwarf2_cu *cu,
1817 int is_block);
4c2df51b 1818
d521ce57
TT
1819static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1820 const gdb_byte *info_ptr,
1821 struct abbrev_info *abbrev);
4bb7a0a7 1822
72bf9492
DJ
1823static hashval_t partial_die_hash (const void *item);
1824
1825static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1826
ae038cb0 1827static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
ed2dc618
SM
1828 (sect_offset sect_off, unsigned int offset_in_dwz,
1829 struct dwarf2_per_objfile *dwarf2_per_objfile);
ae038cb0 1830
9816fde3 1831static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1832 struct die_info *comp_unit_die,
1833 enum language pretend_language);
93311388 1834
ed2dc618 1835static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
ae038cb0 1836
dee91e82 1837static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1838
f792889a
DJ
1839static struct type *set_die_type (struct die_info *, struct type *,
1840 struct dwarf2_cu *);
1c379e20 1841
ed2dc618 1842static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
ae038cb0 1843
ed2dc618 1844static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1fd400ff 1845
58f0c718 1846static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
95554aad 1847 enum language);
10b3939b 1848
95554aad
TT
1849static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1850 enum language);
10b3939b 1851
f4dc4d17
DE
1852static void process_full_type_unit (struct dwarf2_per_cu_data *,
1853 enum language);
1854
10b3939b
DJ
1855static void dwarf2_add_dependence (struct dwarf2_cu *,
1856 struct dwarf2_per_cu_data *);
1857
ae038cb0
DJ
1858static void dwarf2_mark (struct dwarf2_cu *);
1859
1860static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1861
b64f50a1 1862static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1863 struct dwarf2_per_cu_data *);
673bfd45 1864
f792889a 1865static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1866
95554aad
TT
1867static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1868 enum language pretend_language);
1869
ed2dc618 1870static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
9291a0cd 1871
b303c6f6
AB
1872/* Class, the destructor of which frees all allocated queue entries. This
1873 will only have work to do if an error was thrown while processing the
1874 dwarf. If no error was thrown then the queue entries should have all
1875 been processed, and freed, as we went along. */
1876
1877class dwarf2_queue_guard
1878{
1879public:
1880 dwarf2_queue_guard () = default;
1881
1882 /* Free any entries remaining on the queue. There should only be
1883 entries left if we hit an error while processing the dwarf. */
1884 ~dwarf2_queue_guard ()
1885 {
1886 struct dwarf2_queue_item *item, *last;
1887
1888 item = dwarf2_queue;
1889 while (item)
1890 {
1891 /* Anything still marked queued is likely to be in an
1892 inconsistent state, so discard it. */
1893 if (item->per_cu->queued)
1894 {
1895 if (item->per_cu->cu != NULL)
1896 free_one_cached_comp_unit (item->per_cu);
1897 item->per_cu->queued = 0;
1898 }
1899
1900 last = item;
1901 item = item->next;
1902 xfree (last);
1903 }
1904
1905 dwarf2_queue = dwarf2_queue_tail = NULL;
1906 }
1907};
1908
d721ba37
PA
1909/* The return type of find_file_and_directory. Note, the enclosed
1910 string pointers are only valid while this object is valid. */
1911
1912struct file_and_directory
1913{
1914 /* The filename. This is never NULL. */
1915 const char *name;
1916
1917 /* The compilation directory. NULL if not known. If we needed to
1918 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1919 points directly to the DW_AT_comp_dir string attribute owned by
1920 the obstack that owns the DIE. */
1921 const char *comp_dir;
1922
1923 /* If we needed to build a new string for comp_dir, this is what
1924 owns the storage. */
1925 std::string comp_dir_storage;
1926};
1927
1928static file_and_directory find_file_and_directory (struct die_info *die,
1929 struct dwarf2_cu *cu);
9291a0cd
TT
1930
1931static char *file_full_name (int file, struct line_header *lh,
1932 const char *comp_dir);
1933
43988095
JK
1934/* Expected enum dwarf_unit_type for read_comp_unit_head. */
1935enum class rcuh_kind { COMPILE, TYPE };
1936
d521ce57 1937static const gdb_byte *read_and_check_comp_unit_head
ed2dc618
SM
1938 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1939 struct comp_unit_head *header,
36586728 1940 struct dwarf2_section_info *section,
d521ce57 1941 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
43988095 1942 rcuh_kind section_kind);
36586728 1943
fd820528 1944static void init_cutu_and_read_dies
f4dc4d17 1945 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
58f0c718 1946 int use_existing_cu, int keep, bool skip_partial,
3019eac3
DE
1947 die_reader_func_ftype *die_reader_func, void *data);
1948
dee91e82
DE
1949static void init_cutu_and_read_dies_simple
1950 (struct dwarf2_per_cu_data *this_cu,
1951 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1952
673bfd45 1953static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1954
3019eac3
DE
1955static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1956
57d63ce2 1957static struct dwo_unit *lookup_dwo_unit_in_dwp
ed2dc618
SM
1958 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1959 struct dwp_file *dwp_file, const char *comp_dir,
57d63ce2 1960 ULONGEST signature, int is_debug_types);
a2ce51a0 1961
ed2dc618
SM
1962static struct dwp_file *get_dwp_file
1963 (struct dwarf2_per_objfile *dwarf2_per_objfile);
a2ce51a0 1964
3019eac3 1965static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1966 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1967
1968static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1969 (struct signatured_type *, const char *, const char *);
3019eac3 1970
89e63ee4
DE
1971static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1972
263db9a1 1973static void free_dwo_file (struct dwo_file *);
3019eac3 1974
263db9a1
TT
1975/* A unique_ptr helper to free a dwo_file. */
1976
1977struct dwo_file_deleter
ed2dc618 1978{
263db9a1
TT
1979 void operator() (struct dwo_file *df) const
1980 {
1981 free_dwo_file (df);
1982 }
ed2dc618
SM
1983};
1984
263db9a1
TT
1985/* A unique pointer to a dwo_file. */
1986
1987typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1988
ed2dc618 1989static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
95554aad 1990
1b80a9fa 1991static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
1992
1993static void free_line_header_voidp (void *arg);
4390d890
DE
1994\f
1995/* Various complaints about symbol reading that don't abort the process. */
1996
1997static void
1998dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1999{
b98664d3 2000 complaint (_("statement list doesn't fit in .debug_line section"));
4390d890
DE
2001}
2002
2003static void
2004dwarf2_debug_line_missing_file_complaint (void)
2005{
b98664d3 2006 complaint (_(".debug_line section has line data without a file"));
4390d890
DE
2007}
2008
2009static void
2010dwarf2_debug_line_missing_end_sequence_complaint (void)
2011{
b98664d3 2012 complaint (_(".debug_line section has line "
4390d890
DE
2013 "program sequence without an end"));
2014}
2015
2016static void
2017dwarf2_complex_location_expr_complaint (void)
2018{
b98664d3 2019 complaint (_("location expression too complex"));
4390d890
DE
2020}
2021
2022static void
2023dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2024 int arg3)
2025{
b98664d3 2026 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
4390d890
DE
2027 arg1, arg2, arg3);
2028}
2029
2030static void
2031dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2032{
b98664d3 2033 complaint (_("debug info runs off end of %s section"
4390d890 2034 " [in module %s]"),
a32a8923
DE
2035 get_section_name (section),
2036 get_section_file_name (section));
4390d890 2037}
1b80a9fa 2038
4390d890
DE
2039static void
2040dwarf2_macro_malformed_definition_complaint (const char *arg1)
2041{
b98664d3 2042 complaint (_("macro debug info contains a "
4390d890
DE
2043 "malformed macro definition:\n`%s'"),
2044 arg1);
2045}
2046
2047static void
2048dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2049{
b98664d3 2050 complaint (_("invalid attribute class or form for '%s' in '%s'"),
4390d890
DE
2051 arg1, arg2);
2052}
527f3840
JK
2053
2054/* Hash function for line_header_hash. */
2055
2056static hashval_t
2057line_header_hash (const struct line_header *ofs)
2058{
9c541725 2059 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
527f3840
JK
2060}
2061
2062/* Hash function for htab_create_alloc_ex for line_header_hash. */
2063
2064static hashval_t
2065line_header_hash_voidp (const void *item)
2066{
9a3c8263 2067 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
2068
2069 return line_header_hash (ofs);
2070}
2071
2072/* Equality function for line_header_hash. */
2073
2074static int
2075line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2076{
9a3c8263
SM
2077 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2078 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840 2079
9c541725 2080 return (ofs_lhs->sect_off == ofs_rhs->sect_off
527f3840
JK
2081 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2082}
2083
4390d890 2084\f
9291a0cd 2085
31aa7e4e
JB
2086/* Read the given attribute value as an address, taking the attribute's
2087 form into account. */
2088
2089static CORE_ADDR
2090attr_value_as_address (struct attribute *attr)
2091{
2092 CORE_ADDR addr;
2093
2094 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2095 {
2096 /* Aside from a few clearly defined exceptions, attributes that
2097 contain an address must always be in DW_FORM_addr form.
2098 Unfortunately, some compilers happen to be violating this
2099 requirement by encoding addresses using other forms, such
2100 as DW_FORM_data4 for example. For those broken compilers,
2101 we try to do our best, without any guarantee of success,
2102 to interpret the address correctly. It would also be nice
2103 to generate a complaint, but that would require us to maintain
2104 a list of legitimate cases where a non-address form is allowed,
2105 as well as update callers to pass in at least the CU's DWARF
2106 version. This is more overhead than what we're willing to
2107 expand for a pretty rare case. */
2108 addr = DW_UNSND (attr);
2109 }
2110 else
2111 addr = DW_ADDR (attr);
2112
2113 return addr;
2114}
2115
330cdd98
PA
2116/* See declaration. */
2117
2118dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2119 const dwarf2_debug_sections *names)
2120 : objfile (objfile_)
2121{
2122 if (names == NULL)
2123 names = &dwarf2_elf_names;
2124
2125 bfd *obfd = objfile->obfd;
2126
2127 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2128 locate_sections (obfd, sec, *names);
2129}
2130
fc8e7e75
SM
2131static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2132
330cdd98
PA
2133dwarf2_per_objfile::~dwarf2_per_objfile ()
2134{
2135 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2136 free_cached_comp_units ();
2137
2138 if (quick_file_names_table)
2139 htab_delete (quick_file_names_table);
2140
2141 if (line_header_hash)
2142 htab_delete (line_header_hash);
2143
b76e467d
SM
2144 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2145 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
fc8e7e75 2146
b2bdb8cf
SM
2147 for (signatured_type *sig_type : all_type_units)
2148 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
fc8e7e75
SM
2149
2150 VEC_free (dwarf2_section_info_def, types);
2151
2152 if (dwo_files != NULL)
2153 free_dwo_files (dwo_files, objfile);
fc8e7e75 2154
330cdd98
PA
2155 /* Everything else should be on the objfile obstack. */
2156}
2157
2158/* See declaration. */
2159
2160void
2161dwarf2_per_objfile::free_cached_comp_units ()
2162{
2163 dwarf2_per_cu_data *per_cu = read_in_chain;
2164 dwarf2_per_cu_data **last_chain = &read_in_chain;
2165 while (per_cu != NULL)
2166 {
2167 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2168
fcd3b13d 2169 delete per_cu->cu;
330cdd98
PA
2170 *last_chain = next_cu;
2171 per_cu = next_cu;
2172 }
2173}
2174
11ed8cad
TT
2175/* A helper class that calls free_cached_comp_units on
2176 destruction. */
2177
2178class free_cached_comp_units
2179{
2180public:
2181
2182 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2183 : m_per_objfile (per_objfile)
2184 {
2185 }
2186
2187 ~free_cached_comp_units ()
2188 {
2189 m_per_objfile->free_cached_comp_units ();
2190 }
2191
2192 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2193
2194private:
2195
2196 dwarf2_per_objfile *m_per_objfile;
2197};
2198
c906108c 2199/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2200 information and return true if we have enough to do something.
2201 NAMES points to the dwarf2 section names, or is NULL if the standard
2202 ELF names are used. */
c906108c
SS
2203
2204int
251d32d9
TG
2205dwarf2_has_info (struct objfile *objfile,
2206 const struct dwarf2_debug_sections *names)
c906108c 2207{
97cbe998
SDJ
2208 if (objfile->flags & OBJF_READNEVER)
2209 return 0;
2210
ed2dc618
SM
2211 struct dwarf2_per_objfile *dwarf2_per_objfile
2212 = get_dwarf2_per_objfile (objfile);
2213
2214 if (dwarf2_per_objfile == NULL)
be391dca
TT
2215 {
2216 /* Initialize per-objfile state. */
fd90ace4
YQ
2217 dwarf2_per_objfile
2218 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2219 names);
ed2dc618 2220 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
be391dca 2221 }
73869dc2 2222 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2223 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2224 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2225 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2226}
2227
2228/* Return the containing section of virtual section SECTION. */
2229
2230static struct dwarf2_section_info *
2231get_containing_section (const struct dwarf2_section_info *section)
2232{
2233 gdb_assert (section->is_virtual);
2234 return section->s.containing_section;
c906108c
SS
2235}
2236
a32a8923
DE
2237/* Return the bfd owner of SECTION. */
2238
2239static struct bfd *
2240get_section_bfd_owner (const struct dwarf2_section_info *section)
2241{
73869dc2
DE
2242 if (section->is_virtual)
2243 {
2244 section = get_containing_section (section);
2245 gdb_assert (!section->is_virtual);
2246 }
049412e3 2247 return section->s.section->owner;
a32a8923
DE
2248}
2249
2250/* Return the bfd section of SECTION.
2251 Returns NULL if the section is not present. */
2252
2253static asection *
2254get_section_bfd_section (const struct dwarf2_section_info *section)
2255{
73869dc2
DE
2256 if (section->is_virtual)
2257 {
2258 section = get_containing_section (section);
2259 gdb_assert (!section->is_virtual);
2260 }
049412e3 2261 return section->s.section;
a32a8923
DE
2262}
2263
2264/* Return the name of SECTION. */
2265
2266static const char *
2267get_section_name (const struct dwarf2_section_info *section)
2268{
2269 asection *sectp = get_section_bfd_section (section);
2270
2271 gdb_assert (sectp != NULL);
2272 return bfd_section_name (get_section_bfd_owner (section), sectp);
2273}
2274
2275/* Return the name of the file SECTION is in. */
2276
2277static const char *
2278get_section_file_name (const struct dwarf2_section_info *section)
2279{
2280 bfd *abfd = get_section_bfd_owner (section);
2281
2282 return bfd_get_filename (abfd);
2283}
2284
2285/* Return the id of SECTION.
2286 Returns 0 if SECTION doesn't exist. */
2287
2288static int
2289get_section_id (const struct dwarf2_section_info *section)
2290{
2291 asection *sectp = get_section_bfd_section (section);
2292
2293 if (sectp == NULL)
2294 return 0;
2295 return sectp->id;
2296}
2297
2298/* Return the flags of SECTION.
73869dc2 2299 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2300
2301static int
2302get_section_flags (const struct dwarf2_section_info *section)
2303{
2304 asection *sectp = get_section_bfd_section (section);
2305
2306 gdb_assert (sectp != NULL);
2307 return bfd_get_section_flags (sectp->owner, sectp);
2308}
2309
251d32d9
TG
2310/* When loading sections, we look either for uncompressed section or for
2311 compressed section names. */
233a11ab
CS
2312
2313static int
251d32d9
TG
2314section_is_p (const char *section_name,
2315 const struct dwarf2_section_names *names)
233a11ab 2316{
251d32d9
TG
2317 if (names->normal != NULL
2318 && strcmp (section_name, names->normal) == 0)
2319 return 1;
2320 if (names->compressed != NULL
2321 && strcmp (section_name, names->compressed) == 0)
2322 return 1;
2323 return 0;
233a11ab
CS
2324}
2325
330cdd98 2326/* See declaration. */
c906108c 2327
330cdd98
PA
2328void
2329dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2330 const dwarf2_debug_sections &names)
c906108c 2331{
dc7650b8 2332 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9 2333
dc7650b8
JK
2334 if ((aflag & SEC_HAS_CONTENTS) == 0)
2335 {
2336 }
330cdd98 2337 else if (section_is_p (sectp->name, &names.info))
c906108c 2338 {
330cdd98
PA
2339 this->info.s.section = sectp;
2340 this->info.size = bfd_get_section_size (sectp);
c906108c 2341 }
330cdd98 2342 else if (section_is_p (sectp->name, &names.abbrev))
c906108c 2343 {
330cdd98
PA
2344 this->abbrev.s.section = sectp;
2345 this->abbrev.size = bfd_get_section_size (sectp);
c906108c 2346 }
330cdd98 2347 else if (section_is_p (sectp->name, &names.line))
c906108c 2348 {
330cdd98
PA
2349 this->line.s.section = sectp;
2350 this->line.size = bfd_get_section_size (sectp);
c906108c 2351 }
330cdd98 2352 else if (section_is_p (sectp->name, &names.loc))
c906108c 2353 {
330cdd98
PA
2354 this->loc.s.section = sectp;
2355 this->loc.size = bfd_get_section_size (sectp);
c906108c 2356 }
330cdd98 2357 else if (section_is_p (sectp->name, &names.loclists))
43988095 2358 {
330cdd98
PA
2359 this->loclists.s.section = sectp;
2360 this->loclists.size = bfd_get_section_size (sectp);
43988095 2361 }
330cdd98 2362 else if (section_is_p (sectp->name, &names.macinfo))
c906108c 2363 {
330cdd98
PA
2364 this->macinfo.s.section = sectp;
2365 this->macinfo.size = bfd_get_section_size (sectp);
c906108c 2366 }
330cdd98 2367 else if (section_is_p (sectp->name, &names.macro))
cf2c3c16 2368 {
330cdd98
PA
2369 this->macro.s.section = sectp;
2370 this->macro.size = bfd_get_section_size (sectp);
cf2c3c16 2371 }
330cdd98 2372 else if (section_is_p (sectp->name, &names.str))
c906108c 2373 {
330cdd98
PA
2374 this->str.s.section = sectp;
2375 this->str.size = bfd_get_section_size (sectp);
c906108c 2376 }
330cdd98 2377 else if (section_is_p (sectp->name, &names.line_str))
43988095 2378 {
330cdd98
PA
2379 this->line_str.s.section = sectp;
2380 this->line_str.size = bfd_get_section_size (sectp);
43988095 2381 }
330cdd98 2382 else if (section_is_p (sectp->name, &names.addr))
3019eac3 2383 {
330cdd98
PA
2384 this->addr.s.section = sectp;
2385 this->addr.size = bfd_get_section_size (sectp);
3019eac3 2386 }
330cdd98 2387 else if (section_is_p (sectp->name, &names.frame))
b6af0555 2388 {
330cdd98
PA
2389 this->frame.s.section = sectp;
2390 this->frame.size = bfd_get_section_size (sectp);
b6af0555 2391 }
330cdd98 2392 else if (section_is_p (sectp->name, &names.eh_frame))
b6af0555 2393 {
330cdd98
PA
2394 this->eh_frame.s.section = sectp;
2395 this->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2396 }
330cdd98 2397 else if (section_is_p (sectp->name, &names.ranges))
af34e669 2398 {
330cdd98
PA
2399 this->ranges.s.section = sectp;
2400 this->ranges.size = bfd_get_section_size (sectp);
af34e669 2401 }
330cdd98 2402 else if (section_is_p (sectp->name, &names.rnglists))
43988095 2403 {
330cdd98
PA
2404 this->rnglists.s.section = sectp;
2405 this->rnglists.size = bfd_get_section_size (sectp);
43988095 2406 }
330cdd98 2407 else if (section_is_p (sectp->name, &names.types))
348e048f 2408 {
8b70b953
TT
2409 struct dwarf2_section_info type_section;
2410
2411 memset (&type_section, 0, sizeof (type_section));
049412e3 2412 type_section.s.section = sectp;
8b70b953
TT
2413 type_section.size = bfd_get_section_size (sectp);
2414
330cdd98 2415 VEC_safe_push (dwarf2_section_info_def, this->types,
8b70b953 2416 &type_section);
348e048f 2417 }
330cdd98 2418 else if (section_is_p (sectp->name, &names.gdb_index))
9291a0cd 2419 {
330cdd98
PA
2420 this->gdb_index.s.section = sectp;
2421 this->gdb_index.size = bfd_get_section_size (sectp);
9291a0cd 2422 }
927aa2e7
JK
2423 else if (section_is_p (sectp->name, &names.debug_names))
2424 {
2425 this->debug_names.s.section = sectp;
2426 this->debug_names.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.debug_aranges))
2429 {
2430 this->debug_aranges.s.section = sectp;
2431 this->debug_aranges.size = bfd_get_section_size (sectp);
2432 }
dce234bc 2433
b4e1fd61 2434 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5 2435 && bfd_section_vma (abfd, sectp) == 0)
330cdd98 2436 this->has_section_at_zero = true;
c906108c
SS
2437}
2438
fceca515
DE
2439/* A helper function that decides whether a section is empty,
2440 or not present. */
9e0ac564
TT
2441
2442static int
19ac8c2e 2443dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2444{
73869dc2
DE
2445 if (section->is_virtual)
2446 return section->size == 0;
049412e3 2447 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2448}
2449
cd4fb1b2 2450/* See dwarf2read.h. */
c906108c 2451
cd4fb1b2
SM
2452void
2453dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
c906108c 2454{
a32a8923 2455 asection *sectp;
3019eac3 2456 bfd *abfd;
dce234bc 2457 gdb_byte *buf, *retbuf;
c906108c 2458
be391dca
TT
2459 if (info->readin)
2460 return;
dce234bc 2461 info->buffer = NULL;
be391dca 2462 info->readin = 1;
188dd5d6 2463
9e0ac564 2464 if (dwarf2_section_empty_p (info))
dce234bc 2465 return;
c906108c 2466
a32a8923 2467 sectp = get_section_bfd_section (info);
3019eac3 2468
73869dc2
DE
2469 /* If this is a virtual section we need to read in the real one first. */
2470 if (info->is_virtual)
2471 {
2472 struct dwarf2_section_info *containing_section =
2473 get_containing_section (info);
2474
2475 gdb_assert (sectp != NULL);
2476 if ((sectp->flags & SEC_RELOC) != 0)
2477 {
2478 error (_("Dwarf Error: DWP format V2 with relocations is not"
2479 " supported in section %s [in module %s]"),
2480 get_section_name (info), get_section_file_name (info));
2481 }
2482 dwarf2_read_section (objfile, containing_section);
2483 /* Other code should have already caught virtual sections that don't
2484 fit. */
2485 gdb_assert (info->virtual_offset + info->size
2486 <= containing_section->size);
2487 /* If the real section is empty or there was a problem reading the
2488 section we shouldn't get here. */
2489 gdb_assert (containing_section->buffer != NULL);
2490 info->buffer = containing_section->buffer + info->virtual_offset;
2491 return;
2492 }
2493
4bf44c1c
TT
2494 /* If the section has relocations, we must read it ourselves.
2495 Otherwise we attach it to the BFD. */
2496 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2497 {
d521ce57 2498 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2499 return;
dce234bc 2500 }
dce234bc 2501
224c3ddb 2502 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2503 info->buffer = buf;
dce234bc
PP
2504
2505 /* When debugging .o files, we may need to apply relocations; see
2506 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2507 We never compress sections in .o files, so we only need to
2508 try this when the section is not compressed. */
ac8035ab 2509 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2510 if (retbuf != NULL)
2511 {
2512 info->buffer = retbuf;
2513 return;
2514 }
2515
a32a8923
DE
2516 abfd = get_section_bfd_owner (info);
2517 gdb_assert (abfd != NULL);
2518
dce234bc
PP
2519 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2520 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2521 {
2522 error (_("Dwarf Error: Can't read DWARF data"
2523 " in section %s [in module %s]"),
2524 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2525 }
dce234bc
PP
2526}
2527
9e0ac564
TT
2528/* A helper function that returns the size of a section in a safe way.
2529 If you are positive that the section has been read before using the
2530 size, then it is safe to refer to the dwarf2_section_info object's
2531 "size" field directly. In other cases, you must call this
2532 function, because for compressed sections the size field is not set
2533 correctly until the section has been read. */
2534
2535static bfd_size_type
2536dwarf2_section_size (struct objfile *objfile,
2537 struct dwarf2_section_info *info)
2538{
2539 if (!info->readin)
2540 dwarf2_read_section (objfile, info);
2541 return info->size;
2542}
2543
dce234bc 2544/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2545 SECTION_NAME. */
af34e669 2546
dce234bc 2547void
3017a003
TG
2548dwarf2_get_section_info (struct objfile *objfile,
2549 enum dwarf2_section_enum sect,
d521ce57 2550 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2551 bfd_size_type *sizep)
2552{
2553 struct dwarf2_per_objfile *data
9a3c8263
SM
2554 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2555 dwarf2_objfile_data_key);
dce234bc 2556 struct dwarf2_section_info *info;
a3b2a86b
TT
2557
2558 /* We may see an objfile without any DWARF, in which case we just
2559 return nothing. */
2560 if (data == NULL)
2561 {
2562 *sectp = NULL;
2563 *bufp = NULL;
2564 *sizep = 0;
2565 return;
2566 }
3017a003
TG
2567 switch (sect)
2568 {
2569 case DWARF2_DEBUG_FRAME:
2570 info = &data->frame;
2571 break;
2572 case DWARF2_EH_FRAME:
2573 info = &data->eh_frame;
2574 break;
2575 default:
2576 gdb_assert_not_reached ("unexpected section");
2577 }
dce234bc 2578
9e0ac564 2579 dwarf2_read_section (objfile, info);
dce234bc 2580
a32a8923 2581 *sectp = get_section_bfd_section (info);
dce234bc
PP
2582 *bufp = info->buffer;
2583 *sizep = info->size;
2584}
2585
36586728
TT
2586/* A helper function to find the sections for a .dwz file. */
2587
2588static void
2589locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2590{
9a3c8263 2591 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2592
2593 /* Note that we only support the standard ELF names, because .dwz
2594 is ELF-only (at the time of writing). */
2595 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2596 {
049412e3 2597 dwz_file->abbrev.s.section = sectp;
36586728
TT
2598 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2599 }
2600 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2601 {
049412e3 2602 dwz_file->info.s.section = sectp;
36586728
TT
2603 dwz_file->info.size = bfd_get_section_size (sectp);
2604 }
2605 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2606 {
049412e3 2607 dwz_file->str.s.section = sectp;
36586728
TT
2608 dwz_file->str.size = bfd_get_section_size (sectp);
2609 }
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2611 {
049412e3 2612 dwz_file->line.s.section = sectp;
36586728
TT
2613 dwz_file->line.size = bfd_get_section_size (sectp);
2614 }
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2616 {
049412e3 2617 dwz_file->macro.s.section = sectp;
36586728
TT
2618 dwz_file->macro.size = bfd_get_section_size (sectp);
2619 }
2ec9a5e0
TT
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2621 {
049412e3 2622 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2623 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2624 }
927aa2e7
JK
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2626 {
2627 dwz_file->debug_names.s.section = sectp;
2628 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2629 }
36586728
TT
2630}
2631
4db1a1dc
TT
2632/* Open the separate '.dwz' debug file, if needed. Return NULL if
2633 there is no .gnu_debugaltlink section in the file. Error if there
2634 is such a section but the file cannot be found. */
36586728
TT
2635
2636static struct dwz_file *
ed2dc618 2637dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
36586728 2638{
36586728 2639 const char *filename;
acd13123 2640 bfd_size_type buildid_len_arg;
dc294be5
TT
2641 size_t buildid_len;
2642 bfd_byte *buildid;
36586728
TT
2643
2644 if (dwarf2_per_objfile->dwz_file != NULL)
7ff8cb8c 2645 return dwarf2_per_objfile->dwz_file.get ();
36586728 2646
4db1a1dc 2647 bfd_set_error (bfd_error_no_error);
791afaa2
TT
2648 gdb::unique_xmalloc_ptr<char> data
2649 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2650 &buildid_len_arg, &buildid));
4db1a1dc
TT
2651 if (data == NULL)
2652 {
2653 if (bfd_get_error () == bfd_error_no_error)
2654 return NULL;
2655 error (_("could not read '.gnu_debugaltlink' section: %s"),
2656 bfd_errmsg (bfd_get_error ()));
2657 }
791afaa2
TT
2658
2659 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
36586728 2660
acd13123
TT
2661 buildid_len = (size_t) buildid_len_arg;
2662
791afaa2 2663 filename = data.get ();
d721ba37
PA
2664
2665 std::string abs_storage;
36586728
TT
2666 if (!IS_ABSOLUTE_PATH (filename))
2667 {
14278e1f
TT
2668 gdb::unique_xmalloc_ptr<char> abs
2669 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728 2670
14278e1f 2671 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
d721ba37 2672 filename = abs_storage.c_str ();
36586728
TT
2673 }
2674
dc294be5
TT
2675 /* First try the file name given in the section. If that doesn't
2676 work, try to use the build-id instead. */
192b62ce 2677 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
dc294be5 2678 if (dwz_bfd != NULL)
36586728 2679 {
192b62ce
TT
2680 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2681 dwz_bfd.release ();
36586728
TT
2682 }
2683
dc294be5
TT
2684 if (dwz_bfd == NULL)
2685 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2686
2687 if (dwz_bfd == NULL)
2688 error (_("could not find '.gnu_debugaltlink' file for %s"),
2689 objfile_name (dwarf2_per_objfile->objfile));
2690
7ff8cb8c
TT
2691 std::unique_ptr<struct dwz_file> result
2692 (new struct dwz_file (std::move (dwz_bfd)));
36586728 2693
7ff8cb8c
TT
2694 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2695 result.get ());
36586728 2696
7ff8cb8c
TT
2697 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2698 result->dwz_bfd.get ());
2699 dwarf2_per_objfile->dwz_file = std::move (result);
2700 return dwarf2_per_objfile->dwz_file.get ();
36586728 2701}
9291a0cd 2702\f
7b9f3c50
DE
2703/* DWARF quick_symbols_functions support. */
2704
2705/* TUs can share .debug_line entries, and there can be a lot more TUs than
2706 unique line tables, so we maintain a separate table of all .debug_line
2707 derived entries to support the sharing.
2708 All the quick functions need is the list of file names. We discard the
2709 line_header when we're done and don't need to record it here. */
2710struct quick_file_names
2711{
094b34ac
DE
2712 /* The data used to construct the hash key. */
2713 struct stmt_list_hash hash;
7b9f3c50
DE
2714
2715 /* The number of entries in file_names, real_names. */
2716 unsigned int num_file_names;
2717
2718 /* The file names from the line table, after being run through
2719 file_full_name. */
2720 const char **file_names;
2721
2722 /* The file names from the line table after being run through
2723 gdb_realpath. These are computed lazily. */
2724 const char **real_names;
2725};
2726
2727/* When using the index (and thus not using psymtabs), each CU has an
2728 object of this type. This is used to hold information needed by
2729 the various "quick" methods. */
2730struct dwarf2_per_cu_quick_data
2731{
2732 /* The file table. This can be NULL if there was no file table
2733 or it's currently not read in.
2734 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2735 struct quick_file_names *file_names;
2736
2737 /* The corresponding symbol table. This is NULL if symbols for this
2738 CU have not yet been read. */
43f3e411 2739 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2740
2741 /* A temporary mark bit used when iterating over all CUs in
2742 expand_symtabs_matching. */
2743 unsigned int mark : 1;
2744
2745 /* True if we've tried to read the file table and found there isn't one.
2746 There will be no point in trying to read it again next time. */
2747 unsigned int no_file_data : 1;
2748};
2749
094b34ac
DE
2750/* Utility hash function for a stmt_list_hash. */
2751
2752static hashval_t
2753hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2754{
2755 hashval_t v = 0;
2756
2757 if (stmt_list_hash->dwo_unit != NULL)
2758 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
9c541725 2759 v += to_underlying (stmt_list_hash->line_sect_off);
094b34ac
DE
2760 return v;
2761}
2762
2763/* Utility equality function for a stmt_list_hash. */
2764
2765static int
2766eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2767 const struct stmt_list_hash *rhs)
2768{
2769 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2770 return 0;
2771 if (lhs->dwo_unit != NULL
2772 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2773 return 0;
2774
9c541725 2775 return lhs->line_sect_off == rhs->line_sect_off;
094b34ac
DE
2776}
2777
7b9f3c50
DE
2778/* Hash function for a quick_file_names. */
2779
2780static hashval_t
2781hash_file_name_entry (const void *e)
2782{
9a3c8263
SM
2783 const struct quick_file_names *file_data
2784 = (const struct quick_file_names *) e;
7b9f3c50 2785
094b34ac 2786 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2787}
2788
2789/* Equality function for a quick_file_names. */
2790
2791static int
2792eq_file_name_entry (const void *a, const void *b)
2793{
9a3c8263
SM
2794 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2795 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2796
094b34ac 2797 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2798}
2799
2800/* Delete function for a quick_file_names. */
2801
2802static void
2803delete_file_name_entry (void *e)
2804{
9a3c8263 2805 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2806 int i;
2807
2808 for (i = 0; i < file_data->num_file_names; ++i)
2809 {
2810 xfree ((void*) file_data->file_names[i]);
2811 if (file_data->real_names)
2812 xfree ((void*) file_data->real_names[i]);
2813 }
2814
2815 /* The space for the struct itself lives on objfile_obstack,
2816 so we don't free it here. */
2817}
2818
2819/* Create a quick_file_names hash table. */
2820
2821static htab_t
2822create_quick_file_names_table (unsigned int nr_initial_entries)
2823{
2824 return htab_create_alloc (nr_initial_entries,
2825 hash_file_name_entry, eq_file_name_entry,
2826 delete_file_name_entry, xcalloc, xfree);
2827}
9291a0cd 2828
918dd910
JK
2829/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2830 have to be created afterwards. You should call age_cached_comp_units after
2831 processing PER_CU->CU. dw2_setup must have been already called. */
2832
2833static void
58f0c718 2834load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
918dd910 2835{
3019eac3 2836 if (per_cu->is_debug_types)
e5fe5e75 2837 load_full_type_unit (per_cu);
918dd910 2838 else
58f0c718 2839 load_full_comp_unit (per_cu, skip_partial, language_minimal);
918dd910 2840
cc12ce38
DE
2841 if (per_cu->cu == NULL)
2842 return; /* Dummy CU. */
2dc860c0
DE
2843
2844 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2845}
2846
a0f42c21 2847/* Read in the symbols for PER_CU. */
2fdf6df6 2848
9291a0cd 2849static void
58f0c718 2850dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
9291a0cd 2851{
ed2dc618 2852 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9291a0cd 2853
f4dc4d17
DE
2854 /* Skip type_unit_groups, reading the type units they contain
2855 is handled elsewhere. */
2856 if (IS_TYPE_UNIT_GROUP (per_cu))
2857 return;
2858
b303c6f6
AB
2859 /* The destructor of dwarf2_queue_guard frees any entries left on
2860 the queue. After this point we're guaranteed to leave this function
2861 with the dwarf queue empty. */
2862 dwarf2_queue_guard q_guard;
9291a0cd 2863
95554aad 2864 if (dwarf2_per_objfile->using_index
43f3e411 2865 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2866 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2867 {
2868 queue_comp_unit (per_cu, language_minimal);
58f0c718 2869 load_cu (per_cu, skip_partial);
89e63ee4
DE
2870
2871 /* If we just loaded a CU from a DWO, and we're working with an index
2872 that may badly handle TUs, load all the TUs in that DWO as well.
2873 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2874 if (!per_cu->is_debug_types
cc12ce38 2875 && per_cu->cu != NULL
89e63ee4
DE
2876 && per_cu->cu->dwo_unit != NULL
2877 && dwarf2_per_objfile->index_table != NULL
2878 && dwarf2_per_objfile->index_table->version <= 7
2879 /* DWP files aren't supported yet. */
ed2dc618 2880 && get_dwp_file (dwarf2_per_objfile) == NULL)
89e63ee4 2881 queue_and_load_all_dwo_tus (per_cu);
95554aad 2882 }
9291a0cd 2883
ed2dc618 2884 process_queue (dwarf2_per_objfile);
9291a0cd
TT
2885
2886 /* Age the cache, releasing compilation units that have not
2887 been used recently. */
ed2dc618 2888 age_cached_comp_units (dwarf2_per_objfile);
9291a0cd
TT
2889}
2890
2891/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2892 the objfile from which this CU came. Returns the resulting symbol
2893 table. */
2fdf6df6 2894
43f3e411 2895static struct compunit_symtab *
58f0c718 2896dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
9291a0cd 2897{
ed2dc618
SM
2898 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2899
95554aad 2900 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2901 if (!per_cu->v.quick->compunit_symtab)
9291a0cd 2902 {
11ed8cad 2903 free_cached_comp_units freer (dwarf2_per_objfile);
c83dd867 2904 scoped_restore decrementer = increment_reading_symtab ();
58f0c718 2905 dw2_do_instantiate_symtab (per_cu, skip_partial);
ed2dc618 2906 process_cu_includes (dwarf2_per_objfile);
9291a0cd 2907 }
f194fefb 2908
43f3e411 2909 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2910}
2911
ff4c9fec 2912/* See declaration. */
f4dc4d17 2913
ff4c9fec
SM
2914dwarf2_per_cu_data *
2915dwarf2_per_objfile::get_cutu (int index)
2916{
b76e467d 2917 if (index >= this->all_comp_units.size ())
ff4c9fec 2918 {
b76e467d 2919 index -= this->all_comp_units.size ();
b2bdb8cf 2920 gdb_assert (index < this->all_type_units.size ());
ff4c9fec
SM
2921 return &this->all_type_units[index]->per_cu;
2922 }
f4dc4d17 2923
ff4c9fec
SM
2924 return this->all_comp_units[index];
2925}
f4dc4d17 2926
ff4c9fec 2927/* See declaration. */
2fdf6df6 2928
ff4c9fec
SM
2929dwarf2_per_cu_data *
2930dwarf2_per_objfile::get_cu (int index)
1fd400ff 2931{
b76e467d 2932 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
f4dc4d17 2933
ff4c9fec 2934 return this->all_comp_units[index];
f4dc4d17
DE
2935}
2936
ff4c9fec 2937/* See declaration. */
f4dc4d17 2938
ff4c9fec
SM
2939signatured_type *
2940dwarf2_per_objfile::get_tu (int index)
f4dc4d17 2941{
b2bdb8cf 2942 gdb_assert (index >= 0 && index < this->all_type_units.size ());
f4dc4d17 2943
ff4c9fec 2944 return this->all_type_units[index];
1fd400ff
TT
2945}
2946
4b514bc8
JK
2947/* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2948 objfile_obstack, and constructed with the specified field
2949 values. */
2950
2951static dwarf2_per_cu_data *
ed2dc618 2952create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
4b514bc8
JK
2953 struct dwarf2_section_info *section,
2954 int is_dwz,
2955 sect_offset sect_off, ULONGEST length)
2956{
ed2dc618 2957 struct objfile *objfile = dwarf2_per_objfile->objfile;
4b514bc8
JK
2958 dwarf2_per_cu_data *the_cu
2959 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2960 struct dwarf2_per_cu_data);
2961 the_cu->sect_off = sect_off;
2962 the_cu->length = length;
e3b94546 2963 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
4b514bc8
JK
2964 the_cu->section = section;
2965 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2966 struct dwarf2_per_cu_quick_data);
2967 the_cu->is_dwz = is_dwz;
2968 return the_cu;
2969}
2970
2ec9a5e0
TT
2971/* A helper for create_cus_from_index that handles a given list of
2972 CUs. */
2fdf6df6 2973
74a0d9f6 2974static void
12359b5e 2975create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2ec9a5e0
TT
2976 const gdb_byte *cu_list, offset_type n_elements,
2977 struct dwarf2_section_info *section,
b76e467d 2978 int is_dwz)
9291a0cd 2979{
12359b5e 2980 for (offset_type i = 0; i < n_elements; i += 2)
9291a0cd 2981 {
74a0d9f6 2982 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
2983
2984 sect_offset sect_off
2985 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2986 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2987 cu_list += 2 * 8;
2988
b76e467d 2989 dwarf2_per_cu_data *per_cu
ed2dc618
SM
2990 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2991 sect_off, length);
b76e467d 2992 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
9291a0cd 2993 }
9291a0cd
TT
2994}
2995
2ec9a5e0 2996/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2997 the CU objects for this objfile. */
2ec9a5e0 2998
74a0d9f6 2999static void
12359b5e 3000create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2ec9a5e0
TT
3001 const gdb_byte *cu_list, offset_type cu_list_elements,
3002 const gdb_byte *dwz_list, offset_type dwz_elements)
3003{
b76e467d
SM
3004 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3005 dwarf2_per_objfile->all_comp_units.reserve
3006 ((cu_list_elements + dwz_elements) / 2);
2ec9a5e0 3007
12359b5e 3008 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
b76e467d 3009 &dwarf2_per_objfile->info, 0);
2ec9a5e0
TT
3010
3011 if (dwz_elements == 0)
74a0d9f6 3012 return;
2ec9a5e0 3013
12359b5e
SM
3014 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3015 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
b76e467d 3016 &dwz->info, 1);
2ec9a5e0
TT
3017}
3018
1fd400ff 3019/* Create the signatured type hash table from the index. */
673bfd45 3020
74a0d9f6 3021static void
12359b5e
SM
3022create_signatured_type_table_from_index
3023 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3024 struct dwarf2_section_info *section,
3025 const gdb_byte *bytes,
3026 offset_type elements)
1fd400ff 3027{
12359b5e 3028 struct objfile *objfile = dwarf2_per_objfile->objfile;
1fd400ff 3029
b2bdb8cf
SM
3030 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3031 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
1fd400ff 3032
12359b5e 3033 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff 3034
12359b5e 3035 for (offset_type i = 0; i < elements; i += 3)
1fd400ff 3036 {
52dc124a 3037 struct signatured_type *sig_type;
9c541725 3038 ULONGEST signature;
1fd400ff 3039 void **slot;
9c541725 3040 cu_offset type_offset_in_tu;
1fd400ff 3041
74a0d9f6 3042 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
3043 sect_offset sect_off
3044 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3045 type_offset_in_tu
3046 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3047 BFD_ENDIAN_LITTLE);
1fd400ff
TT
3048 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3049 bytes += 3 * 8;
3050
52dc124a 3051 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 3052 struct signatured_type);
52dc124a 3053 sig_type->signature = signature;
9c541725 3054 sig_type->type_offset_in_tu = type_offset_in_tu;
3019eac3 3055 sig_type->per_cu.is_debug_types = 1;
8a0459fd 3056 sig_type->per_cu.section = section;
9c541725 3057 sig_type->per_cu.sect_off = sect_off;
e3b94546 3058 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
52dc124a 3059 sig_type->per_cu.v.quick
1fd400ff
TT
3060 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3061 struct dwarf2_per_cu_quick_data);
3062
52dc124a
DE
3063 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3064 *slot = sig_type;
1fd400ff 3065
b2bdb8cf 3066 dwarf2_per_objfile->all_type_units.push_back (sig_type);
1fd400ff
TT
3067 }
3068
673bfd45 3069 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
3070}
3071
927aa2e7
JK
3072/* Create the signatured type hash table from .debug_names. */
3073
3074static void
3075create_signatured_type_table_from_debug_names
ed2dc618 3076 (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
3077 const mapped_debug_names &map,
3078 struct dwarf2_section_info *section,
3079 struct dwarf2_section_info *abbrev_section)
3080{
ed2dc618
SM
3081 struct objfile *objfile = dwarf2_per_objfile->objfile;
3082
927aa2e7
JK
3083 dwarf2_read_section (objfile, section);
3084 dwarf2_read_section (objfile, abbrev_section);
3085
b2bdb8cf
SM
3086 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3087 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
927aa2e7
JK
3088
3089 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3090
3091 for (uint32_t i = 0; i < map.tu_count; ++i)
3092 {
3093 struct signatured_type *sig_type;
927aa2e7 3094 void **slot;
927aa2e7
JK
3095
3096 sect_offset sect_off
3097 = (sect_offset) (extract_unsigned_integer
3098 (map.tu_table_reordered + i * map.offset_size,
3099 map.offset_size,
3100 map.dwarf5_byte_order));
3101
3102 comp_unit_head cu_header;
ed2dc618
SM
3103 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3104 abbrev_section,
927aa2e7
JK
3105 section->buffer + to_underlying (sect_off),
3106 rcuh_kind::TYPE);
3107
3108 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3109 struct signatured_type);
3110 sig_type->signature = cu_header.signature;
3111 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3112 sig_type->per_cu.is_debug_types = 1;
3113 sig_type->per_cu.section = section;
3114 sig_type->per_cu.sect_off = sect_off;
e3b94546 3115 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
927aa2e7
JK
3116 sig_type->per_cu.v.quick
3117 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3118 struct dwarf2_per_cu_quick_data);
3119
3120 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3121 *slot = sig_type;
3122
b2bdb8cf 3123 dwarf2_per_objfile->all_type_units.push_back (sig_type);
927aa2e7
JK
3124 }
3125
3126 dwarf2_per_objfile->signatured_types = sig_types_hash;
3127}
3128
9291a0cd
TT
3129/* Read the address map data from the mapped index, and use it to
3130 populate the objfile's psymtabs_addrmap. */
2fdf6df6 3131
9291a0cd 3132static void
ed2dc618
SM
3133create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3134 struct mapped_index *index)
9291a0cd 3135{
ed2dc618 3136 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 3137 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd 3138 const gdb_byte *iter, *end;
9291a0cd 3139 struct addrmap *mutable_map;
9291a0cd
TT
3140 CORE_ADDR baseaddr;
3141
8268c778
PA
3142 auto_obstack temp_obstack;
3143
9291a0cd
TT
3144 mutable_map = addrmap_create_mutable (&temp_obstack);
3145
f00a2de2
PA
3146 iter = index->address_table.data ();
3147 end = iter + index->address_table.size ();
9291a0cd
TT
3148
3149 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3150
3151 while (iter < end)
3152 {
3153 ULONGEST hi, lo, cu_index;
3154 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3155 iter += 8;
3156 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3157 iter += 8;
3158 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3159 iter += 4;
f652bce2 3160
24a55014 3161 if (lo > hi)
f652bce2 3162 {
b98664d3 3163 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 3164 hex_string (lo), hex_string (hi));
24a55014 3165 continue;
f652bce2 3166 }
24a55014 3167
b76e467d 3168 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
f652bce2 3169 {
b98664d3 3170 complaint (_(".gdb_index address table has invalid CU number %u"),
f652bce2 3171 (unsigned) cu_index);
24a55014 3172 continue;
f652bce2 3173 }
24a55014 3174
3e29f34a
MR
3175 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3176 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
ed2dc618 3177 addrmap_set_empty (mutable_map, lo, hi - 1,
ff4c9fec 3178 dwarf2_per_objfile->get_cu (cu_index));
9291a0cd
TT
3179 }
3180
3181 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3182 &objfile->objfile_obstack);
9291a0cd
TT
3183}
3184
927aa2e7
JK
3185/* Read the address map data from DWARF-5 .debug_aranges, and use it to
3186 populate the objfile's psymtabs_addrmap. */
3187
3188static void
ed2dc618 3189create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
3190 struct dwarf2_section_info *section)
3191{
ed2dc618 3192 struct objfile *objfile = dwarf2_per_objfile->objfile;
927aa2e7
JK
3193 bfd *abfd = objfile->obfd;
3194 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3195 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3196 SECT_OFF_TEXT (objfile));
3197
3198 auto_obstack temp_obstack;
3199 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3200
3201 std::unordered_map<sect_offset,
3202 dwarf2_per_cu_data *,
3203 gdb::hash_enum<sect_offset>>
3204 debug_info_offset_to_per_cu;
b76e467d 3205 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 3206 {
927aa2e7
JK
3207 const auto insertpair
3208 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3209 if (!insertpair.second)
3210 {
3211 warning (_("Section .debug_aranges in %s has duplicate "
9d8780f0
SM
3212 "debug_info_offset %s, ignoring .debug_aranges."),
3213 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
927aa2e7
JK
3214 return;
3215 }
3216 }
3217
3218 dwarf2_read_section (objfile, section);
3219
3220 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3221
3222 const gdb_byte *addr = section->buffer;
3223
3224 while (addr < section->buffer + section->size)
3225 {
3226 const gdb_byte *const entry_addr = addr;
3227 unsigned int bytes_read;
3228
3229 const LONGEST entry_length = read_initial_length (abfd, addr,
3230 &bytes_read);
3231 addr += bytes_read;
3232
3233 const gdb_byte *const entry_end = addr + entry_length;
3234 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3235 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3236 if (addr + entry_length > section->buffer + section->size)
3237 {
3238 warning (_("Section .debug_aranges in %s entry at offset %zu "
3239 "length %s exceeds section length %s, "
3240 "ignoring .debug_aranges."),
3241 objfile_name (objfile), entry_addr - section->buffer,
3242 plongest (bytes_read + entry_length),
3243 pulongest (section->size));
3244 return;
3245 }
3246
3247 /* The version number. */
3248 const uint16_t version = read_2_bytes (abfd, addr);
3249 addr += 2;
3250 if (version != 2)
3251 {
3252 warning (_("Section .debug_aranges in %s entry at offset %zu "
3253 "has unsupported version %d, ignoring .debug_aranges."),
3254 objfile_name (objfile), entry_addr - section->buffer,
3255 version);
3256 return;
3257 }
3258
3259 const uint64_t debug_info_offset
3260 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3261 addr += offset_size;
3262 const auto per_cu_it
3263 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3264 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3265 {
3266 warning (_("Section .debug_aranges in %s entry at offset %zu "
3267 "debug_info_offset %s does not exists, "
3268 "ignoring .debug_aranges."),
3269 objfile_name (objfile), entry_addr - section->buffer,
3270 pulongest (debug_info_offset));
3271 return;
3272 }
3273 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3274
3275 const uint8_t address_size = *addr++;
3276 if (address_size < 1 || address_size > 8)
3277 {
3278 warning (_("Section .debug_aranges in %s entry at offset %zu "
3279 "address_size %u is invalid, ignoring .debug_aranges."),
3280 objfile_name (objfile), entry_addr - section->buffer,
3281 address_size);
3282 return;
3283 }
3284
3285 const uint8_t segment_selector_size = *addr++;
3286 if (segment_selector_size != 0)
3287 {
3288 warning (_("Section .debug_aranges in %s entry at offset %zu "
3289 "segment_selector_size %u is not supported, "
3290 "ignoring .debug_aranges."),
3291 objfile_name (objfile), entry_addr - section->buffer,
3292 segment_selector_size);
3293 return;
3294 }
3295
3296 /* Must pad to an alignment boundary that is twice the address
3297 size. It is undocumented by the DWARF standard but GCC does
3298 use it. */
3299 for (size_t padding = ((-(addr - section->buffer))
3300 & (2 * address_size - 1));
3301 padding > 0; padding--)
3302 if (*addr++ != 0)
3303 {
3304 warning (_("Section .debug_aranges in %s entry at offset %zu "
3305 "padding is not zero, ignoring .debug_aranges."),
3306 objfile_name (objfile), entry_addr - section->buffer);
3307 return;
3308 }
3309
3310 for (;;)
3311 {
3312 if (addr + 2 * address_size > entry_end)
3313 {
3314 warning (_("Section .debug_aranges in %s entry at offset %zu "
3315 "address list is not properly terminated, "
3316 "ignoring .debug_aranges."),
3317 objfile_name (objfile), entry_addr - section->buffer);
3318 return;
3319 }
3320 ULONGEST start = extract_unsigned_integer (addr, address_size,
3321 dwarf5_byte_order);
3322 addr += address_size;
3323 ULONGEST length = extract_unsigned_integer (addr, address_size,
3324 dwarf5_byte_order);
3325 addr += address_size;
3326 if (start == 0 && length == 0)
3327 break;
3328 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3329 {
3330 /* Symbol was eliminated due to a COMDAT group. */
3331 continue;
3332 }
3333 ULONGEST end = start + length;
3334 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3335 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3336 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3337 }
3338 }
3339
3340 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3341 &objfile->objfile_obstack);
3342}
3343
9291a0cd
TT
3344/* Find a slot in the mapped index INDEX for the object named NAME.
3345 If NAME is found, set *VEC_OUT to point to the CU vector in the
109483d9
PA
3346 constant pool and return true. If NAME cannot be found, return
3347 false. */
2fdf6df6 3348
109483d9 3349static bool
9291a0cd
TT
3350find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3351 offset_type **vec_out)
3352{
0cf03b49 3353 offset_type hash;
9291a0cd 3354 offset_type slot, step;
559a7a62 3355 int (*cmp) (const char *, const char *);
9291a0cd 3356
791afaa2 3357 gdb::unique_xmalloc_ptr<char> without_params;
0cf03b49 3358 if (current_language->la_language == language_cplus
45280282
IB
3359 || current_language->la_language == language_fortran
3360 || current_language->la_language == language_d)
0cf03b49
JK
3361 {
3362 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3363 not contain any. */
a8719064 3364
72998fb3 3365 if (strchr (name, '(') != NULL)
0cf03b49 3366 {
109483d9 3367 without_params = cp_remove_params (name);
0cf03b49 3368
72998fb3 3369 if (without_params != NULL)
791afaa2 3370 name = without_params.get ();
0cf03b49
JK
3371 }
3372 }
3373
559a7a62 3374 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3375 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3376 simulate our NAME being searched is also lowercased. */
3377 hash = mapped_index_string_hash ((index->version == 4
3378 && case_sensitivity == case_sensitive_off
3379 ? 5 : index->version),
3380 name);
3381
f00a2de2
PA
3382 slot = hash & (index->symbol_table.size () - 1);
3383 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
559a7a62 3384 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3385
3386 for (;;)
3387 {
9291a0cd 3388 const char *str;
f00a2de2
PA
3389
3390 const auto &bucket = index->symbol_table[slot];
3391 if (bucket.name == 0 && bucket.vec == 0)
109483d9 3392 return false;
9291a0cd 3393
f00a2de2 3394 str = index->constant_pool + MAYBE_SWAP (bucket.name);
559a7a62 3395 if (!cmp (name, str))
9291a0cd
TT
3396 {
3397 *vec_out = (offset_type *) (index->constant_pool
f00a2de2 3398 + MAYBE_SWAP (bucket.vec));
109483d9 3399 return true;
9291a0cd
TT
3400 }
3401
f00a2de2 3402 slot = (slot + step) & (index->symbol_table.size () - 1);
9291a0cd
TT
3403 }
3404}
3405
2ec9a5e0
TT
3406/* A helper function that reads the .gdb_index from SECTION and fills
3407 in MAP. FILENAME is the name of the file containing the section;
d33bc52e 3408 it is used for error reporting. DEPRECATED_OK is true if it is
2ec9a5e0
TT
3409 ok to use deprecated sections.
3410
3411 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3412 out parameters that are filled in with information about the CU and
3413 TU lists in the section.
3414
3415 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3416
d33bc52e 3417static bool
7b23e087
SM
3418read_gdb_index_from_section (struct objfile *objfile,
3419 const char *filename,
3420 bool deprecated_ok,
3421 struct dwarf2_section_info *section,
3422 struct mapped_index *map,
3423 const gdb_byte **cu_list,
3424 offset_type *cu_list_elements,
3425 const gdb_byte **types_list,
3426 offset_type *types_list_elements)
9291a0cd 3427{
948f8e3d 3428 const gdb_byte *addr;
2ec9a5e0 3429 offset_type version;
b3b272e1 3430 offset_type *metadata;
1fd400ff 3431 int i;
9291a0cd 3432
2ec9a5e0 3433 if (dwarf2_section_empty_p (section))
9291a0cd 3434 return 0;
82430852
JK
3435
3436 /* Older elfutils strip versions could keep the section in the main
3437 executable while splitting it for the separate debug info file. */
a32a8923 3438 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3439 return 0;
3440
2ec9a5e0 3441 dwarf2_read_section (objfile, section);
9291a0cd 3442
2ec9a5e0 3443 addr = section->buffer;
9291a0cd 3444 /* Version check. */
1fd400ff 3445 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3446 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3447 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3448 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3449 indices. */
831adc1f 3450 if (version < 4)
481860b3
GB
3451 {
3452 static int warning_printed = 0;
3453 if (!warning_printed)
3454 {
3455 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3456 filename);
481860b3
GB
3457 warning_printed = 1;
3458 }
3459 return 0;
3460 }
3461 /* Index version 4 uses a different hash function than index version
3462 5 and later.
3463
3464 Versions earlier than 6 did not emit psymbols for inlined
3465 functions. Using these files will cause GDB not to be able to
3466 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3467 indices unless the user has done
3468 "set use-deprecated-index-sections on". */
2ec9a5e0 3469 if (version < 6 && !deprecated_ok)
481860b3
GB
3470 {
3471 static int warning_printed = 0;
3472 if (!warning_printed)
3473 {
e615022a
DE
3474 warning (_("\
3475Skipping deprecated .gdb_index section in %s.\n\
3476Do \"set use-deprecated-index-sections on\" before the file is read\n\
3477to use the section anyway."),
2ec9a5e0 3478 filename);
481860b3
GB
3479 warning_printed = 1;
3480 }
3481 return 0;
3482 }
796a7ff8 3483 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3484 of the TU (for symbols coming from TUs),
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3486 Plus gold-generated indices can have duplicate entries for global symbols,
3487 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3488 These are just performance bugs, and we can't distinguish gdb-generated
3489 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3490
481860b3 3491 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3492 longer backward compatible. */
796a7ff8 3493 if (version > 8)
594e8718 3494 return 0;
9291a0cd 3495
559a7a62 3496 map->version = version;
9291a0cd
TT
3497
3498 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3499
3500 i = 0;
2ec9a5e0
TT
3501 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3502 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3503 / 8);
1fd400ff
TT
3504 ++i;
3505
2ec9a5e0
TT
3506 *types_list = addr + MAYBE_SWAP (metadata[i]);
3507 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3508 - MAYBE_SWAP (metadata[i]))
3509 / 8);
987d643c 3510 ++i;
1fd400ff 3511
f00a2de2
PA
3512 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3513 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3514 map->address_table
3515 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
1fd400ff
TT
3516 ++i;
3517
f00a2de2
PA
3518 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3519 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3520 map->symbol_table
3521 = gdb::array_view<mapped_index::symbol_table_slot>
3522 ((mapped_index::symbol_table_slot *) symbol_table,
3523 (mapped_index::symbol_table_slot *) symbol_table_end);
9291a0cd 3524
f00a2de2 3525 ++i;
f9d83a0b 3526 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3527
2ec9a5e0
TT
3528 return 1;
3529}
3530
927aa2e7 3531/* Read .gdb_index. If everything went ok, initialize the "quick"
2ec9a5e0
TT
3532 elements of all the CUs and return 1. Otherwise, return 0. */
3533
3534static int
7b23e087 3535dwarf2_read_gdb_index (struct dwarf2_per_objfile *dwarf2_per_objfile)
2ec9a5e0 3536{
2ec9a5e0
TT
3537 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3538 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3539 struct dwz_file *dwz;
12359b5e 3540 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ec9a5e0 3541
3063847f 3542 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
7b23e087
SM
3543 if (!read_gdb_index_from_section (objfile, objfile_name (objfile),
3544 use_deprecated_index_sections,
3545 &dwarf2_per_objfile->gdb_index, map.get (),
3546 &cu_list, &cu_list_elements,
3547 &types_list, &types_list_elements))
2ec9a5e0
TT
3548 return 0;
3549
0fefef59 3550 /* Don't use the index if it's empty. */
3063847f 3551 if (map->symbol_table.empty ())
0fefef59
DE
3552 return 0;
3553
2ec9a5e0
TT
3554 /* If there is a .dwz file, read it so we can get its CU list as
3555 well. */
ed2dc618 3556 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
4db1a1dc 3557 if (dwz != NULL)
2ec9a5e0 3558 {
2ec9a5e0
TT
3559 struct mapped_index dwz_map;
3560 const gdb_byte *dwz_types_ignore;
3561 offset_type dwz_types_elements_ignore;
3562
7b23e087
SM
3563 if (!read_gdb_index_from_section (objfile,
3564 bfd_get_filename (dwz->dwz_bfd), 1,
3565 &dwz->gdb_index, &dwz_map,
3566 &dwz_list, &dwz_list_elements,
3567 &dwz_types_ignore,
3568 &dwz_types_elements_ignore))
2ec9a5e0
TT
3569 {
3570 warning (_("could not read '.gdb_index' section from %s; skipping"),
3571 bfd_get_filename (dwz->dwz_bfd));
3572 return 0;
3573 }
3574 }
3575
12359b5e
SM
3576 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3577 dwz_list, dwz_list_elements);
1fd400ff 3578
8b70b953
TT
3579 if (types_list_elements)
3580 {
3581 struct dwarf2_section_info *section;
3582
3583 /* We can only handle a single .debug_types when we have an
3584 index. */
3585 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3586 return 0;
3587
3588 section = VEC_index (dwarf2_section_info_def,
3589 dwarf2_per_objfile->types, 0);
3590
12359b5e
SM
3591 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3592 types_list, types_list_elements);
8b70b953 3593 }
9291a0cd 3594
3063847f 3595 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
9291a0cd 3596
3063847f 3597 dwarf2_per_objfile->index_table = std::move (map);
9291a0cd 3598 dwarf2_per_objfile->using_index = 1;
7b9f3c50 3599 dwarf2_per_objfile->quick_file_names_table =
b76e467d 3600 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
9291a0cd
TT
3601
3602 return 1;
3603}
3604
dee91e82 3605/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3606
dee91e82
DE
3607static void
3608dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3609 const gdb_byte *info_ptr,
dee91e82
DE
3610 struct die_info *comp_unit_die,
3611 int has_children,
3612 void *data)
9291a0cd 3613{
dee91e82 3614 struct dwarf2_cu *cu = reader->cu;
ed2dc618 3615 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
518817b3
SM
3616 struct dwarf2_per_objfile *dwarf2_per_objfile
3617 = cu->per_cu->dwarf2_per_objfile;
dee91e82 3618 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3619 struct dwarf2_per_cu_data *lh_cu;
9291a0cd 3620 struct attribute *attr;
dee91e82 3621 int i;
7b9f3c50
DE
3622 void **slot;
3623 struct quick_file_names *qfn;
9291a0cd 3624
0186c6a7
DE
3625 gdb_assert (! this_cu->is_debug_types);
3626
07261596
TT
3627 /* Our callers never want to match partial units -- instead they
3628 will match the enclosing full CU. */
3629 if (comp_unit_die->tag == DW_TAG_partial_unit)
3630 {
3631 this_cu->v.quick->no_file_data = 1;
3632 return;
3633 }
3634
0186c6a7 3635 lh_cu = this_cu;
7b9f3c50 3636 slot = NULL;
dee91e82 3637
fff8551c 3638 line_header_up lh;
9c541725 3639 sect_offset line_offset {};
fff8551c 3640
dee91e82 3641 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3642 if (attr)
3643 {
7b9f3c50
DE
3644 struct quick_file_names find_entry;
3645
9c541725 3646 line_offset = (sect_offset) DW_UNSND (attr);
7b9f3c50
DE
3647
3648 /* We may have already read in this line header (TU line header sharing).
3649 If we have we're done. */
094b34ac 3650 find_entry.hash.dwo_unit = cu->dwo_unit;
9c541725 3651 find_entry.hash.line_sect_off = line_offset;
7b9f3c50
DE
3652 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3653 &find_entry, INSERT);
3654 if (*slot != NULL)
3655 {
9a3c8263 3656 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3657 return;
7b9f3c50
DE
3658 }
3659
3019eac3 3660 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3661 }
3662 if (lh == NULL)
3663 {
094b34ac 3664 lh_cu->v.quick->no_file_data = 1;
dee91e82 3665 return;
9291a0cd
TT
3666 }
3667
8d749320 3668 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac 3669 qfn->hash.dwo_unit = cu->dwo_unit;
9c541725 3670 qfn->hash.line_sect_off = line_offset;
7b9f3c50
DE
3671 gdb_assert (slot != NULL);
3672 *slot = qfn;
9291a0cd 3673
d721ba37 3674 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
9291a0cd 3675
fff8551c 3676 qfn->num_file_names = lh->file_names.size ();
8d749320 3677 qfn->file_names =
fff8551c
PA
3678 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3679 for (i = 0; i < lh->file_names.size (); ++i)
3680 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
7b9f3c50 3681 qfn->real_names = NULL;
9291a0cd 3682
094b34ac 3683 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3684}
3685
3686/* A helper for the "quick" functions which attempts to read the line
3687 table for THIS_CU. */
3688
3689static struct quick_file_names *
e4a48d9d 3690dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3691{
0186c6a7
DE
3692 /* This should never be called for TUs. */
3693 gdb_assert (! this_cu->is_debug_types);
3694 /* Nor type unit groups. */
3695 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3696
dee91e82
DE
3697 if (this_cu->v.quick->file_names != NULL)
3698 return this_cu->v.quick->file_names;
3699 /* If we know there is no line data, no point in looking again. */
3700 if (this_cu->v.quick->no_file_data)
3701 return NULL;
3702
0186c6a7 3703 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3704
3705 if (this_cu->v.quick->no_file_data)
3706 return NULL;
3707 return this_cu->v.quick->file_names;
9291a0cd
TT
3708}
3709
3710/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3711 real path for a given file name from the line table. */
2fdf6df6 3712
9291a0cd 3713static const char *
7b9f3c50
DE
3714dw2_get_real_path (struct objfile *objfile,
3715 struct quick_file_names *qfn, int index)
9291a0cd 3716{
7b9f3c50
DE
3717 if (qfn->real_names == NULL)
3718 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3719 qfn->num_file_names, const char *);
9291a0cd 3720
7b9f3c50 3721 if (qfn->real_names[index] == NULL)
14278e1f 3722 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
9291a0cd 3723
7b9f3c50 3724 return qfn->real_names[index];
9291a0cd
TT
3725}
3726
3727static struct symtab *
3728dw2_find_last_source_symtab (struct objfile *objfile)
3729{
ed2dc618
SM
3730 struct dwarf2_per_objfile *dwarf2_per_objfile
3731 = get_dwarf2_per_objfile (objfile);
b76e467d 3732 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
58f0c718 3733 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
ae2de4f8 3734
43f3e411
DE
3735 if (cust == NULL)
3736 return NULL;
ed2dc618 3737
43f3e411 3738 return compunit_primary_filetab (cust);
9291a0cd
TT
3739}
3740
7b9f3c50
DE
3741/* Traversal function for dw2_forget_cached_source_info. */
3742
3743static int
3744dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3745{
7b9f3c50 3746 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3747
7b9f3c50 3748 if (file_data->real_names)
9291a0cd 3749 {
7b9f3c50 3750 int i;
9291a0cd 3751
7b9f3c50 3752 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3753 {
7b9f3c50
DE
3754 xfree ((void*) file_data->real_names[i]);
3755 file_data->real_names[i] = NULL;
9291a0cd
TT
3756 }
3757 }
7b9f3c50
DE
3758
3759 return 1;
3760}
3761
3762static void
3763dw2_forget_cached_source_info (struct objfile *objfile)
3764{
ed2dc618
SM
3765 struct dwarf2_per_objfile *dwarf2_per_objfile
3766 = get_dwarf2_per_objfile (objfile);
7b9f3c50
DE
3767
3768 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3769 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3770}
3771
f8eba3c6
TT
3772/* Helper function for dw2_map_symtabs_matching_filename that expands
3773 the symtabs and calls the iterator. */
3774
3775static int
3776dw2_map_expand_apply (struct objfile *objfile,
3777 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3778 const char *name, const char *real_path,
14bc53a8 3779 gdb::function_view<bool (symtab *)> callback)
f8eba3c6 3780{
43f3e411 3781 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3782
3783 /* Don't visit already-expanded CUs. */
43f3e411 3784 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3785 return 0;
3786
3787 /* This may expand more than one symtab, and we want to iterate over
3788 all of them. */
58f0c718 3789 dw2_instantiate_symtab (per_cu, false);
f8eba3c6 3790
14bc53a8
PA
3791 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3792 last_made, callback);
f8eba3c6
TT
3793}
3794
3795/* Implementation of the map_symtabs_matching_filename method. */
3796
14bc53a8
PA
3797static bool
3798dw2_map_symtabs_matching_filename
3799 (struct objfile *objfile, const char *name, const char *real_path,
3800 gdb::function_view<bool (symtab *)> callback)
9291a0cd 3801{
c011a4f4 3802 const char *name_basename = lbasename (name);
ed2dc618
SM
3803 struct dwarf2_per_objfile *dwarf2_per_objfile
3804 = get_dwarf2_per_objfile (objfile);
ae2de4f8 3805
848e3e78
DE
3806 /* The rule is CUs specify all the files, including those used by
3807 any TU, so there's no need to scan TUs here. */
f4dc4d17 3808
b76e467d 3809 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
9291a0cd 3810 {
3d7bb9d9 3811 /* We only need to look at symtabs not already expanded. */
43f3e411 3812 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3813 continue;
3814
b76e467d 3815 quick_file_names *file_data = dw2_get_file_names (per_cu);
7b9f3c50 3816 if (file_data == NULL)
9291a0cd
TT
3817 continue;
3818
b76e467d 3819 for (int j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3820 {
7b9f3c50 3821 const char *this_name = file_data->file_names[j];
da235a7c 3822 const char *this_real_name;
9291a0cd 3823
af529f8f 3824 if (compare_filenames_for_search (this_name, name))
9291a0cd 3825 {
f5b95b50 3826 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3827 callback))
3828 return true;
288e77a7 3829 continue;
4aac40c8 3830 }
9291a0cd 3831
c011a4f4
DE
3832 /* Before we invoke realpath, which can get expensive when many
3833 files are involved, do a quick comparison of the basenames. */
3834 if (! basenames_may_differ
3835 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3836 continue;
3837
da235a7c
JK
3838 this_real_name = dw2_get_real_path (objfile, file_data, j);
3839 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3840 {
da235a7c 3841 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3842 callback))
3843 return true;
288e77a7 3844 continue;
da235a7c 3845 }
9291a0cd 3846
da235a7c
JK
3847 if (real_path != NULL)
3848 {
af529f8f
JK
3849 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3850 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3851 if (this_real_name != NULL
af529f8f 3852 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3853 {
f5b95b50 3854 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3855 callback))
3856 return true;
288e77a7 3857 continue;
9291a0cd
TT
3858 }
3859 }
3860 }
3861 }
3862
14bc53a8 3863 return false;
9291a0cd
TT
3864}
3865
da51c347
DE
3866/* Struct used to manage iterating over all CUs looking for a symbol. */
3867
3868struct dw2_symtab_iterator
9291a0cd 3869{
ed2dc618
SM
3870 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3871 struct dwarf2_per_objfile *dwarf2_per_objfile;
da51c347
DE
3872 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3873 int want_specific_block;
3874 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3875 Unused if !WANT_SPECIFIC_BLOCK. */
3876 int block_index;
3877 /* The kind of symbol we're looking for. */
3878 domain_enum domain;
3879 /* The list of CUs from the index entry of the symbol,
3880 or NULL if not found. */
3881 offset_type *vec;
3882 /* The next element in VEC to look at. */
3883 int next;
3884 /* The number of elements in VEC, or zero if there is no match. */
3885 int length;
8943b874
DE
3886 /* Have we seen a global version of the symbol?
3887 If so we can ignore all further global instances.
3888 This is to work around gold/15646, inefficient gold-generated
3889 indices. */
3890 int global_seen;
da51c347 3891};
9291a0cd 3892
da51c347
DE
3893/* Initialize the index symtab iterator ITER.
3894 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3895 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3896
9291a0cd 3897static void
da51c347 3898dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
ed2dc618 3899 struct dwarf2_per_objfile *dwarf2_per_objfile,
da51c347
DE
3900 int want_specific_block,
3901 int block_index,
3902 domain_enum domain,
3903 const char *name)
3904{
ed2dc618 3905 iter->dwarf2_per_objfile = dwarf2_per_objfile;
da51c347
DE
3906 iter->want_specific_block = want_specific_block;
3907 iter->block_index = block_index;
3908 iter->domain = domain;
3909 iter->next = 0;
8943b874 3910 iter->global_seen = 0;
da51c347 3911
3063847f 3912 mapped_index *index = dwarf2_per_objfile->index_table.get ();
ed2dc618
SM
3913
3914 /* index is NULL if OBJF_READNOW. */
3915 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
da51c347
DE
3916 iter->length = MAYBE_SWAP (*iter->vec);
3917 else
3918 {
3919 iter->vec = NULL;
3920 iter->length = 0;
3921 }
3922}
3923
3924/* Return the next matching CU or NULL if there are no more. */
3925
3926static struct dwarf2_per_cu_data *
3927dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3928{
ed2dc618
SM
3929 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3930
da51c347
DE
3931 for ( ; iter->next < iter->length; ++iter->next)
3932 {
3933 offset_type cu_index_and_attrs =
3934 MAYBE_SWAP (iter->vec[iter->next + 1]);
3935 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
da51c347
DE
3936 int want_static = iter->block_index != GLOBAL_BLOCK;
3937 /* This value is only valid for index versions >= 7. */
3938 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3939 gdb_index_symbol_kind symbol_kind =
3940 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3941 /* Only check the symbol attributes if they're present.
3942 Indices prior to version 7 don't record them,
3943 and indices >= 7 may elide them for certain symbols
3944 (gold does this). */
3945 int attrs_valid =
ed2dc618 3946 (dwarf2_per_objfile->index_table->version >= 7
da51c347
DE
3947 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3948
3190f0c6 3949 /* Don't crash on bad data. */
b76e467d 3950 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 3951 + dwarf2_per_objfile->all_type_units.size ()))
3190f0c6 3952 {
b98664d3 3953 complaint (_(".gdb_index entry has bad CU index"
4262abfb
JK
3954 " [in module %s]"),
3955 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3956 continue;
3957 }
3958
ff4c9fec 3959 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3190f0c6 3960
da51c347 3961 /* Skip if already read in. */
43f3e411 3962 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3963 continue;
3964
8943b874
DE
3965 /* Check static vs global. */
3966 if (attrs_valid)
3967 {
3968 if (iter->want_specific_block
3969 && want_static != is_static)
3970 continue;
3971 /* Work around gold/15646. */
3972 if (!is_static && iter->global_seen)
3973 continue;
3974 if (!is_static)
3975 iter->global_seen = 1;
3976 }
da51c347
DE
3977
3978 /* Only check the symbol's kind if it has one. */
3979 if (attrs_valid)
3980 {
3981 switch (iter->domain)
3982 {
3983 case VAR_DOMAIN:
3984 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3985 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3986 /* Some types are also in VAR_DOMAIN. */
3987 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3988 continue;
3989 break;
3990 case STRUCT_DOMAIN:
3991 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3992 continue;
3993 break;
3994 case LABEL_DOMAIN:
3995 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3996 continue;
3997 break;
3998 default:
3999 break;
4000 }
4001 }
4002
4003 ++iter->next;
4004 return per_cu;
4005 }
4006
4007 return NULL;
4008}
4009
43f3e411 4010static struct compunit_symtab *
da51c347
DE
4011dw2_lookup_symbol (struct objfile *objfile, int block_index,
4012 const char *name, domain_enum domain)
9291a0cd 4013{
43f3e411 4014 struct compunit_symtab *stab_best = NULL;
ed2dc618
SM
4015 struct dwarf2_per_objfile *dwarf2_per_objfile
4016 = get_dwarf2_per_objfile (objfile);
9291a0cd 4017
b5ec771e
PA
4018 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4019
ed2dc618
SM
4020 struct dw2_symtab_iterator iter;
4021 struct dwarf2_per_cu_data *per_cu;
da51c347 4022
ed2dc618 4023 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
9291a0cd 4024
ed2dc618
SM
4025 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4026 {
4027 struct symbol *sym, *with_opaque = NULL;
58f0c718 4028 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
ed2dc618
SM
4029 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4030 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 4031
ed2dc618
SM
4032 sym = block_find_symbol (block, name, domain,
4033 block_find_non_opaque_type_preferred,
4034 &with_opaque);
b2e2f908 4035
ed2dc618
SM
4036 /* Some caution must be observed with overloaded functions
4037 and methods, since the index will not contain any overload
4038 information (but NAME might contain it). */
da51c347 4039
ed2dc618
SM
4040 if (sym != NULL
4041 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4042 return stab;
4043 if (with_opaque != NULL
4044 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4045 stab_best = stab;
da51c347 4046
ed2dc618 4047 /* Keep looking through other CUs. */
9291a0cd 4048 }
9291a0cd 4049
da51c347 4050 return stab_best;
9291a0cd
TT
4051}
4052
4053static void
4054dw2_print_stats (struct objfile *objfile)
4055{
ed2dc618
SM
4056 struct dwarf2_per_objfile *dwarf2_per_objfile
4057 = get_dwarf2_per_objfile (objfile);
b76e467d 4058 int total = (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 4059 + dwarf2_per_objfile->all_type_units.size ());
ed2dc618 4060 int count = 0;
9291a0cd 4061
ed2dc618 4062 for (int i = 0; i < total; ++i)
9291a0cd 4063 {
ff4c9fec 4064 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
9291a0cd 4065
43f3e411 4066 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4067 ++count;
4068 }
e4a48d9d 4069 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
4070 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4071}
4072
779bd270
DE
4073/* This dumps minimal information about the index.
4074 It is called via "mt print objfiles".
4075 One use is to verify .gdb_index has been loaded by the
4076 gdb.dwarf2/gdb-index.exp testcase. */
4077
9291a0cd
TT
4078static void
4079dw2_dump (struct objfile *objfile)
4080{
ed2dc618
SM
4081 struct dwarf2_per_objfile *dwarf2_per_objfile
4082 = get_dwarf2_per_objfile (objfile);
4083
779bd270
DE
4084 gdb_assert (dwarf2_per_objfile->using_index);
4085 printf_filtered (".gdb_index:");
4086 if (dwarf2_per_objfile->index_table != NULL)
4087 {
4088 printf_filtered (" version %d\n",
4089 dwarf2_per_objfile->index_table->version);
4090 }
4091 else
4092 printf_filtered (" faked for \"readnow\"\n");
4093 printf_filtered ("\n");
9291a0cd
TT
4094}
4095
4096static void
3189cb12
DE
4097dw2_relocate (struct objfile *objfile,
4098 const struct section_offsets *new_offsets,
4099 const struct section_offsets *delta)
9291a0cd
TT
4100{
4101 /* There's nothing to relocate here. */
4102}
4103
4104static void
4105dw2_expand_symtabs_for_function (struct objfile *objfile,
4106 const char *func_name)
4107{
ed2dc618
SM
4108 struct dwarf2_per_objfile *dwarf2_per_objfile
4109 = get_dwarf2_per_objfile (objfile);
da51c347 4110
ed2dc618
SM
4111 struct dw2_symtab_iterator iter;
4112 struct dwarf2_per_cu_data *per_cu;
da51c347 4113
ed2dc618
SM
4114 /* Note: It doesn't matter what we pass for block_index here. */
4115 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4116 func_name);
da51c347 4117
ed2dc618 4118 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
58f0c718 4119 dw2_instantiate_symtab (per_cu, false);
da51c347 4120
9291a0cd
TT
4121}
4122
4123static void
4124dw2_expand_all_symtabs (struct objfile *objfile)
4125{
ed2dc618
SM
4126 struct dwarf2_per_objfile *dwarf2_per_objfile
4127 = get_dwarf2_per_objfile (objfile);
b76e467d 4128 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 4129 + dwarf2_per_objfile->all_type_units.size ());
9291a0cd 4130
ed2dc618 4131 for (int i = 0; i < total_units; ++i)
9291a0cd 4132 {
ff4c9fec 4133 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
9291a0cd 4134
58f0c718
TT
4135 /* We don't want to directly expand a partial CU, because if we
4136 read it with the wrong language, then assertion failures can
4137 be triggered later on. See PR symtab/23010. So, tell
4138 dw2_instantiate_symtab to skip partial CUs -- any important
4139 partial CU will be read via DW_TAG_imported_unit anyway. */
4140 dw2_instantiate_symtab (per_cu, true);
9291a0cd
TT
4141 }
4142}
4143
4144static void
652a8996
JK
4145dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4146 const char *fullname)
9291a0cd 4147{
ed2dc618
SM
4148 struct dwarf2_per_objfile *dwarf2_per_objfile
4149 = get_dwarf2_per_objfile (objfile);
d4637a04
DE
4150
4151 /* We don't need to consider type units here.
4152 This is only called for examining code, e.g. expand_line_sal.
4153 There can be an order of magnitude (or more) more type units
4154 than comp units, and we avoid them if we can. */
4155
b76e467d 4156 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
9291a0cd 4157 {
3d7bb9d9 4158 /* We only need to look at symtabs not already expanded. */
43f3e411 4159 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4160 continue;
4161
b76e467d 4162 quick_file_names *file_data = dw2_get_file_names (per_cu);
7b9f3c50 4163 if (file_data == NULL)
9291a0cd
TT
4164 continue;
4165
b76e467d 4166 for (int j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4167 {
652a8996
JK
4168 const char *this_fullname = file_data->file_names[j];
4169
4170 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 4171 {
58f0c718 4172 dw2_instantiate_symtab (per_cu, false);
9291a0cd
TT
4173 break;
4174 }
4175 }
4176 }
4177}
4178
9291a0cd 4179static void
ade7ed9e 4180dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 4181 const char * name, domain_enum domain,
ade7ed9e 4182 int global,
40658b94
PH
4183 int (*callback) (struct block *,
4184 struct symbol *, void *),
b5ec771e 4185 void *data, symbol_name_match_type match,
2edb89d3 4186 symbol_compare_ftype *ordered_compare)
9291a0cd 4187{
40658b94 4188 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
4189 current language is Ada for a non-Ada objfile using GNU index. As Ada
4190 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
4191}
4192
b5ec771e
PA
4193/* Symbol name matcher for .gdb_index names.
4194
4195 Symbol names in .gdb_index have a few particularities:
4196
4197 - There's no indication of which is the language of each symbol.
4198
4199 Since each language has its own symbol name matching algorithm,
4200 and we don't know which language is the right one, we must match
3f563c84
PA
4201 each symbol against all languages. This would be a potential
4202 performance problem if it were not mitigated by the
4203 mapped_index::name_components lookup table, which significantly
4204 reduces the number of times we need to call into this matcher,
4205 making it a non-issue.
b5ec771e
PA
4206
4207 - Symbol names in the index have no overload (parameter)
4208 information. I.e., in C++, "foo(int)" and "foo(long)" both
4209 appear as "foo" in the index, for example.
4210
4211 This means that the lookup names passed to the symbol name
4212 matcher functions must have no parameter information either
4213 because (e.g.) symbol search name "foo" does not match
4214 lookup-name "foo(int)" [while swapping search name for lookup
4215 name would match].
4216*/
4217class gdb_index_symbol_name_matcher
4218{
4219public:
4220 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4221 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4222
4223 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4224 Returns true if any matcher matches. */
4225 bool matches (const char *symbol_name);
4226
4227private:
4228 /* A reference to the lookup name we're matching against. */
4229 const lookup_name_info &m_lookup_name;
4230
4231 /* A vector holding all the different symbol name matchers, for all
4232 languages. */
4233 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4234};
4235
4236gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4237 (const lookup_name_info &lookup_name)
4238 : m_lookup_name (lookup_name)
4239{
4240 /* Prepare the vector of comparison functions upfront, to avoid
4241 doing the same work for each symbol. Care is taken to avoid
4242 matching with the same matcher more than once if/when multiple
4243 languages use the same matcher function. */
4244 auto &matchers = m_symbol_name_matcher_funcs;
4245 matchers.reserve (nr_languages);
4246
4247 matchers.push_back (default_symbol_name_matcher);
4248
4249 for (int i = 0; i < nr_languages; i++)
4250 {
4251 const language_defn *lang = language_def ((enum language) i);
c63d3e8d 4252 symbol_name_matcher_ftype *name_matcher
618daa93 4253 = get_symbol_name_matcher (lang, m_lookup_name);
c63d3e8d
PA
4254
4255 /* Don't insert the same comparison routine more than once.
4256 Note that we do this linear walk instead of a seemingly
4257 cheaper sorted insert, or use a std::set or something like
4258 that, because relative order of function addresses is not
4259 stable. This is not a problem in practice because the number
4260 of supported languages is low, and the cost here is tiny
4261 compared to the number of searches we'll do afterwards using
4262 this object. */
4263 if (name_matcher != default_symbol_name_matcher
4264 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4265 == matchers.end ()))
4266 matchers.push_back (name_matcher);
b5ec771e
PA
4267 }
4268}
4269
4270bool
4271gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4272{
4273 for (auto matches_name : m_symbol_name_matcher_funcs)
4274 if (matches_name (symbol_name, m_lookup_name, NULL))
4275 return true;
4276
4277 return false;
4278}
4279
e1ef7d7a
PA
4280/* Starting from a search name, return the string that finds the upper
4281 bound of all strings that start with SEARCH_NAME in a sorted name
4282 list. Returns the empty string to indicate that the upper bound is
4283 the end of the list. */
4284
4285static std::string
4286make_sort_after_prefix_name (const char *search_name)
4287{
4288 /* When looking to complete "func", we find the upper bound of all
4289 symbols that start with "func" by looking for where we'd insert
4290 the closest string that would follow "func" in lexicographical
4291 order. Usually, that's "func"-with-last-character-incremented,
4292 i.e. "fund". Mind non-ASCII characters, though. Usually those
4293 will be UTF-8 multi-byte sequences, but we can't be certain.
4294 Especially mind the 0xff character, which is a valid character in
4295 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4296 rule out compilers allowing it in identifiers. Note that
4297 conveniently, strcmp/strcasecmp are specified to compare
4298 characters interpreted as unsigned char. So what we do is treat
4299 the whole string as a base 256 number composed of a sequence of
4300 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4301 to 0, and carries 1 to the following more-significant position.
4302 If the very first character in SEARCH_NAME ends up incremented
4303 and carries/overflows, then the upper bound is the end of the
4304 list. The string after the empty string is also the empty
4305 string.
4306
4307 Some examples of this operation:
4308
4309 SEARCH_NAME => "+1" RESULT
4310
4311 "abc" => "abd"
4312 "ab\xff" => "ac"
4313 "\xff" "a" "\xff" => "\xff" "b"
4314 "\xff" => ""
4315 "\xff\xff" => ""
4316 "" => ""
4317
4318 Then, with these symbols for example:
4319
4320 func
4321 func1
4322 fund
4323
4324 completing "func" looks for symbols between "func" and
4325 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4326 which finds "func" and "func1", but not "fund".
4327
4328 And with:
4329
4330 funcÿ (Latin1 'ÿ' [0xff])
4331 funcÿ1
4332 fund
4333
4334 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4335 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4336
4337 And with:
4338
4339 ÿÿ (Latin1 'ÿ' [0xff])
4340 ÿÿ1
4341
4342 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4343 the end of the list.
4344 */
4345 std::string after = search_name;
4346 while (!after.empty () && (unsigned char) after.back () == 0xff)
4347 after.pop_back ();
4348 if (!after.empty ())
4349 after.back () = (unsigned char) after.back () + 1;
4350 return after;
4351}
4352
5c58de74 4353/* See declaration. */
61d96d7e 4354
5c58de74
PA
4355std::pair<std::vector<name_component>::const_iterator,
4356 std::vector<name_component>::const_iterator>
44ed8f3e 4357mapped_index_base::find_name_components_bounds
5c58de74 4358 (const lookup_name_info &lookup_name_without_params) const
3f563c84 4359{
5c58de74
PA
4360 auto *name_cmp
4361 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3f563c84
PA
4362
4363 const char *cplus
c62446b1 4364 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
9291a0cd 4365
3f563c84
PA
4366 /* Comparison function object for lower_bound that matches against a
4367 given symbol name. */
4368 auto lookup_compare_lower = [&] (const name_component &elem,
4369 const char *name)
4370 {
5c58de74 4371 const char *elem_qualified = this->symbol_name_at (elem.idx);
3f563c84
PA
4372 const char *elem_name = elem_qualified + elem.name_offset;
4373 return name_cmp (elem_name, name) < 0;
4374 };
4375
4376 /* Comparison function object for upper_bound that matches against a
4377 given symbol name. */
4378 auto lookup_compare_upper = [&] (const char *name,
4379 const name_component &elem)
4380 {
5c58de74 4381 const char *elem_qualified = this->symbol_name_at (elem.idx);
3f563c84
PA
4382 const char *elem_name = elem_qualified + elem.name_offset;
4383 return name_cmp (name, elem_name) < 0;
4384 };
4385
5c58de74
PA
4386 auto begin = this->name_components.begin ();
4387 auto end = this->name_components.end ();
3f563c84
PA
4388
4389 /* Find the lower bound. */
4390 auto lower = [&] ()
4391 {
5c58de74 4392 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
3f563c84
PA
4393 return begin;
4394 else
4395 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4396 } ();
4397
4398 /* Find the upper bound. */
4399 auto upper = [&] ()
4400 {
5c58de74 4401 if (lookup_name_without_params.completion_mode ())
3f563c84 4402 {
e1ef7d7a
PA
4403 /* In completion mode, we want UPPER to point past all
4404 symbols names that have the same prefix. I.e., with
4405 these symbols, and completing "func":
4406
4407 function << lower bound
4408 function1
4409 other_function << upper bound
4410
4411 We find the upper bound by looking for the insertion
4412 point of "func"-with-last-character-incremented,
4413 i.e. "fund". */
4414 std::string after = make_sort_after_prefix_name (cplus);
4415 if (after.empty ())
3f563c84 4416 return end;
e6b2f5ef
PA
4417 return std::lower_bound (lower, end, after.c_str (),
4418 lookup_compare_lower);
3f563c84
PA
4419 }
4420 else
4421 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4422 } ();
4423
5c58de74
PA
4424 return {lower, upper};
4425}
4426
4427/* See declaration. */
4428
4429void
44ed8f3e 4430mapped_index_base::build_name_components ()
5c58de74
PA
4431{
4432 if (!this->name_components.empty ())
4433 return;
4434
4435 this->name_components_casing = case_sensitivity;
4436 auto *name_cmp
4437 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4438
4439 /* The code below only knows how to break apart components of C++
4440 symbol names (and other languages that use '::' as
4441 namespace/module separator). If we add support for wild matching
4442 to some language that uses some other operator (E.g., Ada, Go and
4443 D use '.'), then we'll need to try splitting the symbol name
4444 according to that language too. Note that Ada does support wild
4445 matching, but doesn't currently support .gdb_index. */
44ed8f3e
PA
4446 auto count = this->symbol_name_count ();
4447 for (offset_type idx = 0; idx < count; idx++)
5c58de74 4448 {
44ed8f3e 4449 if (this->symbol_name_slot_invalid (idx))
5c58de74
PA
4450 continue;
4451
4452 const char *name = this->symbol_name_at (idx);
4453
4454 /* Add each name component to the name component table. */
4455 unsigned int previous_len = 0;
4456 for (unsigned int current_len = cp_find_first_component (name);
4457 name[current_len] != '\0';
4458 current_len += cp_find_first_component (name + current_len))
4459 {
4460 gdb_assert (name[current_len] == ':');
4461 this->name_components.push_back ({previous_len, idx});
4462 /* Skip the '::'. */
4463 current_len += 2;
4464 previous_len = current_len;
4465 }
4466 this->name_components.push_back ({previous_len, idx});
4467 }
4468
4469 /* Sort name_components elements by name. */
4470 auto name_comp_compare = [&] (const name_component &left,
4471 const name_component &right)
4472 {
4473 const char *left_qualified = this->symbol_name_at (left.idx);
4474 const char *right_qualified = this->symbol_name_at (right.idx);
4475
4476 const char *left_name = left_qualified + left.name_offset;
4477 const char *right_name = right_qualified + right.name_offset;
4478
4479 return name_cmp (left_name, right_name) < 0;
4480 };
4481
4482 std::sort (this->name_components.begin (),
4483 this->name_components.end (),
4484 name_comp_compare);
4485}
4486
4487/* Helper for dw2_expand_symtabs_matching that works with a
44ed8f3e
PA
4488 mapped_index_base instead of the containing objfile. This is split
4489 to a separate function in order to be able to unit test the
4490 name_components matching using a mock mapped_index_base. For each
5c58de74 4491 symbol name that matches, calls MATCH_CALLBACK, passing it the
44ed8f3e 4492 symbol's index in the mapped_index_base symbol table. */
5c58de74
PA
4493
4494static void
4495dw2_expand_symtabs_matching_symbol
44ed8f3e 4496 (mapped_index_base &index,
5c58de74
PA
4497 const lookup_name_info &lookup_name_in,
4498 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4499 enum search_domain kind,
4500 gdb::function_view<void (offset_type)> match_callback)
4501{
4502 lookup_name_info lookup_name_without_params
4503 = lookup_name_in.make_ignore_params ();
4504 gdb_index_symbol_name_matcher lookup_name_matcher
4505 (lookup_name_without_params);
4506
4507 /* Build the symbol name component sorted vector, if we haven't
4508 yet. */
4509 index.build_name_components ();
4510
4511 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4512
3f563c84
PA
4513 /* Now for each symbol name in range, check to see if we have a name
4514 match, and if so, call the MATCH_CALLBACK callback. */
4515
4516 /* The same symbol may appear more than once in the range though.
4517 E.g., if we're looking for symbols that complete "w", and we have
4518 a symbol named "w1::w2", we'll find the two name components for
4519 that same symbol in the range. To be sure we only call the
4520 callback once per symbol, we first collect the symbol name
4521 indexes that matched in a temporary vector and ignore
4522 duplicates. */
4523 std::vector<offset_type> matches;
5c58de74 4524 matches.reserve (std::distance (bounds.first, bounds.second));
3f563c84 4525
5c58de74 4526 for (; bounds.first != bounds.second; ++bounds.first)
3f563c84 4527 {
5c58de74 4528 const char *qualified = index.symbol_name_at (bounds.first->idx);
3f563c84
PA
4529
4530 if (!lookup_name_matcher.matches (qualified)
4531 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
9291a0cd
TT
4532 continue;
4533
5c58de74 4534 matches.push_back (bounds.first->idx);
3f563c84
PA
4535 }
4536
4537 std::sort (matches.begin (), matches.end ());
4538
4539 /* Finally call the callback, once per match. */
4540 ULONGEST prev = -1;
4541 for (offset_type idx : matches)
4542 {
4543 if (prev != idx)
4544 {
4545 match_callback (idx);
4546 prev = idx;
4547 }
4548 }
4549
4550 /* Above we use a type wider than idx's for 'prev', since 0 and
4551 (offset_type)-1 are both possible values. */
4552 static_assert (sizeof (prev) > sizeof (offset_type), "");
4553}
4554
c62446b1
PA
4555#if GDB_SELF_TEST
4556
4557namespace selftests { namespace dw2_expand_symtabs_matching {
4558
a3c5fafd
PA
4559/* A mock .gdb_index/.debug_names-like name index table, enough to
4560 exercise dw2_expand_symtabs_matching_symbol, which works with the
4561 mapped_index_base interface. Builds an index from the symbol list
4562 passed as parameter to the constructor. */
4563class mock_mapped_index : public mapped_index_base
c62446b1
PA
4564{
4565public:
a3c5fafd
PA
4566 mock_mapped_index (gdb::array_view<const char *> symbols)
4567 : m_symbol_table (symbols)
c62446b1
PA
4568 {}
4569
a3c5fafd 4570 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
c62446b1 4571
a3c5fafd 4572 /* Return the number of names in the symbol table. */
632e107b 4573 size_t symbol_name_count () const override
c62446b1 4574 {
a3c5fafd 4575 return m_symbol_table.size ();
c62446b1
PA
4576 }
4577
a3c5fafd 4578 /* Get the name of the symbol at IDX in the symbol table. */
632e107b 4579 const char *symbol_name_at (offset_type idx) const override
a3c5fafd
PA
4580 {
4581 return m_symbol_table[idx];
4582 }
c62446b1 4583
a3c5fafd
PA
4584private:
4585 gdb::array_view<const char *> m_symbol_table;
c62446b1
PA
4586};
4587
4588/* Convenience function that converts a NULL pointer to a "<null>"
4589 string, to pass to print routines. */
4590
4591static const char *
4592string_or_null (const char *str)
4593{
4594 return str != NULL ? str : "<null>";
4595}
4596
4597/* Check if a lookup_name_info built from
4598 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4599 index. EXPECTED_LIST is the list of expected matches, in expected
4600 matching order. If no match expected, then an empty list is
4601 specified. Returns true on success. On failure prints a warning
4602 indicating the file:line that failed, and returns false. */
4603
4604static bool
4605check_match (const char *file, int line,
4606 mock_mapped_index &mock_index,
4607 const char *name, symbol_name_match_type match_type,
4608 bool completion_mode,
4609 std::initializer_list<const char *> expected_list)
4610{
4611 lookup_name_info lookup_name (name, match_type, completion_mode);
4612
4613 bool matched = true;
4614
4615 auto mismatch = [&] (const char *expected_str,
4616 const char *got)
4617 {
4618 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4619 "expected=\"%s\", got=\"%s\"\n"),
4620 file, line,
4621 (match_type == symbol_name_match_type::FULL
4622 ? "FULL" : "WILD"),
4623 name, string_or_null (expected_str), string_or_null (got));
4624 matched = false;
4625 };
4626
4627 auto expected_it = expected_list.begin ();
4628 auto expected_end = expected_list.end ();
4629
a3c5fafd 4630 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
c62446b1
PA
4631 NULL, ALL_DOMAIN,
4632 [&] (offset_type idx)
4633 {
a3c5fafd 4634 const char *matched_name = mock_index.symbol_name_at (idx);
c62446b1
PA
4635 const char *expected_str
4636 = expected_it == expected_end ? NULL : *expected_it++;
4637
4638 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4639 mismatch (expected_str, matched_name);
4640 });
4641
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644 if (expected_str != NULL)
4645 mismatch (expected_str, NULL);
4646
4647 return matched;
4648}
4649
4650/* The symbols added to the mock mapped_index for testing (in
4651 canonical form). */
4652static const char *test_symbols[] = {
4653 "function",
4654 "std::bar",
4655 "std::zfunction",
4656 "std::zfunction2",
4657 "w1::w2",
4658 "ns::foo<char*>",
4659 "ns::foo<int>",
4660 "ns::foo<long>",
a20714ff
PA
4661 "ns2::tmpl<int>::foo2",
4662 "(anonymous namespace)::A::B::C",
c62446b1 4663
e1ef7d7a
PA
4664 /* These are used to check that the increment-last-char in the
4665 matching algorithm for completion doesn't match "t1_fund" when
4666 completing "t1_func". */
4667 "t1_func",
4668 "t1_func1",
4669 "t1_fund",
4670 "t1_fund1",
4671
4672 /* A UTF-8 name with multi-byte sequences to make sure that
4673 cp-name-parser understands this as a single identifier ("função"
4674 is "function" in PT). */
4675 u8"u8função",
4676
4677 /* \377 (0xff) is Latin1 'ÿ'. */
4678 "yfunc\377",
4679
4680 /* \377 (0xff) is Latin1 'ÿ'. */
4681 "\377",
4682 "\377\377123",
4683
c62446b1
PA
4684 /* A name with all sorts of complications. Starts with "z" to make
4685 it easier for the completion tests below. */
4686#define Z_SYM_NAME \
4687 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4688 "::tuple<(anonymous namespace)::ui*, " \
4689 "std::default_delete<(anonymous namespace)::ui>, void>"
4690
4691 Z_SYM_NAME
4692};
4693
a3c5fafd
PA
4694/* Returns true if the mapped_index_base::find_name_component_bounds
4695 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4696 in completion mode. */
5c58de74
PA
4697
4698static bool
a3c5fafd 4699check_find_bounds_finds (mapped_index_base &index,
5c58de74
PA
4700 const char *search_name,
4701 gdb::array_view<const char *> expected_syms)
4702{
4703 lookup_name_info lookup_name (search_name,
4704 symbol_name_match_type::FULL, true);
4705
4706 auto bounds = index.find_name_components_bounds (lookup_name);
4707
4708 size_t distance = std::distance (bounds.first, bounds.second);
4709 if (distance != expected_syms.size ())
4710 return false;
4711
4712 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4713 {
4714 auto nc_elem = bounds.first + exp_elem;
4715 const char *qualified = index.symbol_name_at (nc_elem->idx);
4716 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4717 return false;
4718 }
4719
4720 return true;
4721}
4722
4723/* Test the lower-level mapped_index::find_name_component_bounds
4724 method. */
4725
c62446b1 4726static void
5c58de74
PA
4727test_mapped_index_find_name_component_bounds ()
4728{
4729 mock_mapped_index mock_index (test_symbols);
4730
a3c5fafd 4731 mock_index.build_name_components ();
5c58de74
PA
4732
4733 /* Test the lower-level mapped_index::find_name_component_bounds
4734 method in completion mode. */
4735 {
4736 static const char *expected_syms[] = {
4737 "t1_func",
4738 "t1_func1",
5c58de74
PA
4739 };
4740
a3c5fafd 4741 SELF_CHECK (check_find_bounds_finds (mock_index,
5c58de74
PA
4742 "t1_func", expected_syms));
4743 }
4744
4745 /* Check that the increment-last-char in the name matching algorithm
4746 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4747 {
4748 static const char *expected_syms1[] = {
4749 "\377",
4750 "\377\377123",
4751 };
a3c5fafd 4752 SELF_CHECK (check_find_bounds_finds (mock_index,
5c58de74
PA
4753 "\377", expected_syms1));
4754
4755 static const char *expected_syms2[] = {
4756 "\377\377123",
4757 };
a3c5fafd 4758 SELF_CHECK (check_find_bounds_finds (mock_index,
5c58de74
PA
4759 "\377\377", expected_syms2));
4760 }
4761}
4762
4763/* Test dw2_expand_symtabs_matching_symbol. */
4764
4765static void
4766test_dw2_expand_symtabs_matching_symbol ()
c62446b1
PA
4767{
4768 mock_mapped_index mock_index (test_symbols);
4769
4770 /* We let all tests run until the end even if some fails, for debug
4771 convenience. */
4772 bool any_mismatch = false;
4773
4774 /* Create the expected symbols list (an initializer_list). Needed
4775 because lists have commas, and we need to pass them to CHECK,
4776 which is a macro. */
4777#define EXPECT(...) { __VA_ARGS__ }
4778
4779 /* Wrapper for check_match that passes down the current
4780 __FILE__/__LINE__. */
4781#define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4782 any_mismatch |= !check_match (__FILE__, __LINE__, \
4783 mock_index, \
4784 NAME, MATCH_TYPE, COMPLETION_MODE, \
4785 EXPECTED_LIST)
4786
4787 /* Identity checks. */
4788 for (const char *sym : test_symbols)
4789 {
4790 /* Should be able to match all existing symbols. */
4791 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4792 EXPECT (sym));
4793
4794 /* Should be able to match all existing symbols with
4795 parameters. */
4796 std::string with_params = std::string (sym) + "(int)";
4797 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4798 EXPECT (sym));
4799
4800 /* Should be able to match all existing symbols with
4801 parameters and qualifiers. */
4802 with_params = std::string (sym) + " ( int ) const";
4803 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4804 EXPECT (sym));
4805
4806 /* This should really find sym, but cp-name-parser.y doesn't
4807 know about lvalue/rvalue qualifiers yet. */
4808 with_params = std::string (sym) + " ( int ) &&";
4809 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4810 {});
4811 }
4812
e1ef7d7a
PA
4813 /* Check that the name matching algorithm for completion doesn't get
4814 confused with Latin1 'ÿ' / 0xff. */
4815 {
4816 static const char str[] = "\377";
4817 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4818 EXPECT ("\377", "\377\377123"));
4819 }
4820
4821 /* Check that the increment-last-char in the matching algorithm for
4822 completion doesn't match "t1_fund" when completing "t1_func". */
4823 {
4824 static const char str[] = "t1_func";
4825 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4826 EXPECT ("t1_func", "t1_func1"));
4827 }
4828
c62446b1
PA
4829 /* Check that completion mode works at each prefix of the expected
4830 symbol name. */
4831 {
4832 static const char str[] = "function(int)";
4833 size_t len = strlen (str);
4834 std::string lookup;
4835
4836 for (size_t i = 1; i < len; i++)
4837 {
4838 lookup.assign (str, i);
4839 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4840 EXPECT ("function"));
4841 }
4842 }
4843
4844 /* While "w" is a prefix of both components, the match function
4845 should still only be called once. */
4846 {
4847 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4848 EXPECT ("w1::w2"));
a20714ff
PA
4849 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4850 EXPECT ("w1::w2"));
c62446b1
PA
4851 }
4852
4853 /* Same, with a "complicated" symbol. */
4854 {
4855 static const char str[] = Z_SYM_NAME;
4856 size_t len = strlen (str);
4857 std::string lookup;
4858
4859 for (size_t i = 1; i < len; i++)
4860 {
4861 lookup.assign (str, i);
4862 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4863 EXPECT (Z_SYM_NAME));
4864 }
4865 }
4866
4867 /* In FULL mode, an incomplete symbol doesn't match. */
4868 {
4869 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4870 {});
4871 }
4872
4873 /* A complete symbol with parameters matches any overload, since the
4874 index has no overload info. */
4875 {
4876 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4877 EXPECT ("std::zfunction", "std::zfunction2"));
a20714ff
PA
4878 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4879 EXPECT ("std::zfunction", "std::zfunction2"));
4880 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4881 EXPECT ("std::zfunction", "std::zfunction2"));
c62446b1
PA
4882 }
4883
4884 /* Check that whitespace is ignored appropriately. A symbol with a
4885 template argument list. */
4886 {
4887 static const char expected[] = "ns::foo<int>";
4888 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4889 EXPECT (expected));
a20714ff
PA
4890 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4891 EXPECT (expected));
c62446b1
PA
4892 }
4893
4894 /* Check that whitespace is ignored appropriately. A symbol with a
4895 template argument list that includes a pointer. */
4896 {
4897 static const char expected[] = "ns::foo<char*>";
4898 /* Try both completion and non-completion modes. */
4899 static const bool completion_mode[2] = {false, true};
4900 for (size_t i = 0; i < 2; i++)
4901 {
4902 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4903 completion_mode[i], EXPECT (expected));
a20714ff
PA
4904 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4905 completion_mode[i], EXPECT (expected));
c62446b1
PA
4906
4907 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4908 completion_mode[i], EXPECT (expected));
a20714ff
PA
4909 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4910 completion_mode[i], EXPECT (expected));
c62446b1
PA
4911 }
4912 }
4913
4914 {
4915 /* Check method qualifiers are ignored. */
4916 static const char expected[] = "ns::foo<char*>";
4917 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4918 symbol_name_match_type::FULL, true, EXPECT (expected));
4919 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4920 symbol_name_match_type::FULL, true, EXPECT (expected));
a20714ff
PA
4921 CHECK_MATCH ("foo < char * > ( int ) const",
4922 symbol_name_match_type::WILD, true, EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > ( int ) &&",
4924 symbol_name_match_type::WILD, true, EXPECT (expected));
c62446b1
PA
4925 }
4926
4927 /* Test lookup names that don't match anything. */
4928 {
a20714ff
PA
4929 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4930 {});
4931
c62446b1
PA
4932 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4933 {});
4934 }
4935
a20714ff
PA
4936 /* Some wild matching tests, exercising "(anonymous namespace)",
4937 which should not be confused with a parameter list. */
4938 {
4939 static const char *syms[] = {
4940 "A::B::C",
4941 "B::C",
4942 "C",
4943 "A :: B :: C ( int )",
4944 "B :: C ( int )",
4945 "C ( int )",
4946 };
4947
4948 for (const char *s : syms)
4949 {
4950 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4951 EXPECT ("(anonymous namespace)::A::B::C"));
4952 }
4953 }
4954
4955 {
4956 static const char expected[] = "ns2::tmpl<int>::foo2";
4957 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4958 EXPECT (expected));
4959 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4960 EXPECT (expected));
4961 }
4962
c62446b1
PA
4963 SELF_CHECK (!any_mismatch);
4964
4965#undef EXPECT
4966#undef CHECK_MATCH
4967}
4968
5c58de74
PA
4969static void
4970run_test ()
4971{
4972 test_mapped_index_find_name_component_bounds ();
4973 test_dw2_expand_symtabs_matching_symbol ();
4974}
4975
c62446b1
PA
4976}} // namespace selftests::dw2_expand_symtabs_matching
4977
4978#endif /* GDB_SELF_TEST */
4979
4b514bc8
JK
4980/* If FILE_MATCHER is NULL or if PER_CU has
4981 dwarf2_per_cu_quick_data::MARK set (see
4982 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4983 EXPANSION_NOTIFY on it. */
4984
4985static void
4986dw2_expand_symtabs_matching_one
4987 (struct dwarf2_per_cu_data *per_cu,
4988 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4989 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4990{
4991 if (file_matcher == NULL || per_cu->v.quick->mark)
4992 {
4993 bool symtab_was_null
4994 = (per_cu->v.quick->compunit_symtab == NULL);
4995
58f0c718 4996 dw2_instantiate_symtab (per_cu, false);
4b514bc8
JK
4997
4998 if (expansion_notify != NULL
4999 && symtab_was_null
5000 && per_cu->v.quick->compunit_symtab != NULL)
5001 expansion_notify (per_cu->v.quick->compunit_symtab);
5002 }
5003}
5004
3f563c84
PA
5005/* Helper for dw2_expand_matching symtabs. Called on each symbol
5006 matched, to expand corresponding CUs that were marked. IDX is the
5007 index of the symbol name that matched. */
5008
5009static void
5010dw2_expand_marked_cus
ed2dc618 5011 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
3f563c84
PA
5012 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5013 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5014 search_domain kind)
5015{
3f563c84
PA
5016 offset_type *vec, vec_len, vec_idx;
5017 bool global_seen = false;
ed2dc618 5018 mapped_index &index = *dwarf2_per_objfile->index_table;
3f563c84 5019
61920122 5020 vec = (offset_type *) (index.constant_pool
f00a2de2 5021 + MAYBE_SWAP (index.symbol_table[idx].vec));
61920122
PA
5022 vec_len = MAYBE_SWAP (vec[0]);
5023 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5024 {
61920122
PA
5025 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5026 /* This value is only valid for index versions >= 7. */
5027 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5028 gdb_index_symbol_kind symbol_kind =
5029 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5030 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5031 /* Only check the symbol attributes if they're present.
5032 Indices prior to version 7 don't record them,
5033 and indices >= 7 may elide them for certain symbols
5034 (gold does this). */
5035 int attrs_valid =
5036 (index.version >= 7
5037 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5038
5039 /* Work around gold/15646. */
5040 if (attrs_valid)
9291a0cd 5041 {
61920122
PA
5042 if (!is_static && global_seen)
5043 continue;
5044 if (!is_static)
5045 global_seen = true;
5046 }
3190f0c6 5047
61920122
PA
5048 /* Only check the symbol's kind if it has one. */
5049 if (attrs_valid)
5050 {
5051 switch (kind)
8943b874 5052 {
61920122
PA
5053 case VARIABLES_DOMAIN:
5054 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5055 continue;
5056 break;
5057 case FUNCTIONS_DOMAIN:
5058 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
8943b874 5059 continue;
61920122
PA
5060 break;
5061 case TYPES_DOMAIN:
5062 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5063 continue;
5064 break;
5065 default:
5066 break;
8943b874 5067 }
61920122 5068 }
8943b874 5069
61920122 5070 /* Don't crash on bad data. */
b76e467d 5071 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 5072 + dwarf2_per_objfile->all_type_units.size ()))
61920122 5073 {
b98664d3 5074 complaint (_(".gdb_index entry has bad CU index"
ed2dc618
SM
5075 " [in module %s]"),
5076 objfile_name (dwarf2_per_objfile->objfile));
61920122
PA
5077 continue;
5078 }
5079
ff4c9fec 5080 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4b514bc8
JK
5081 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5082 expansion_notify);
61920122
PA
5083 }
5084}
5085
4b514bc8
JK
5086/* If FILE_MATCHER is non-NULL, set all the
5087 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5088 that match FILE_MATCHER. */
5089
61920122 5090static void
4b514bc8 5091dw_expand_symtabs_matching_file_matcher
ed2dc618
SM
5092 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5093 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
61920122 5094{
4b514bc8 5095 if (file_matcher == NULL)
61920122
PA
5096 return;
5097
4b514bc8
JK
5098 objfile *const objfile = dwarf2_per_objfile->objfile;
5099
5100 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5101 htab_eq_pointer,
5102 NULL, xcalloc, xfree));
5103 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
61920122
PA
5104 htab_eq_pointer,
5105 NULL, xcalloc, xfree));
61920122 5106
4b514bc8
JK
5107 /* The rule is CUs specify all the files, including those used by
5108 any TU, so there's no need to scan TUs here. */
61920122 5109
b76e467d 5110 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 5111 {
927aa2e7
JK
5112 QUIT;
5113
5114 per_cu->v.quick->mark = 0;
5115
5116 /* We only need to look at symtabs not already expanded. */
5117 if (per_cu->v.quick->compunit_symtab)
5118 continue;
5119
b76e467d 5120 quick_file_names *file_data = dw2_get_file_names (per_cu);
927aa2e7
JK
5121 if (file_data == NULL)
5122 continue;
5123
5124 if (htab_find (visited_not_found.get (), file_data) != NULL)
5125 continue;
5126 else if (htab_find (visited_found.get (), file_data) != NULL)
5127 {
5128 per_cu->v.quick->mark = 1;
5129 continue;
5130 }
5131
b76e467d 5132 for (int j = 0; j < file_data->num_file_names; ++j)
927aa2e7
JK
5133 {
5134 const char *this_real_name;
5135
5136 if (file_matcher (file_data->file_names[j], false))
5137 {
5138 per_cu->v.quick->mark = 1;
5139 break;
5140 }
5141
5142 /* Before we invoke realpath, which can get expensive when many
5143 files are involved, do a quick comparison of the basenames. */
5144 if (!basenames_may_differ
5145 && !file_matcher (lbasename (file_data->file_names[j]),
5146 true))
5147 continue;
5148
5149 this_real_name = dw2_get_real_path (objfile, file_data, j);
5150 if (file_matcher (this_real_name, false))
5151 {
5152 per_cu->v.quick->mark = 1;
5153 break;
5154 }
5155 }
5156
b76e467d
SM
5157 void **slot = htab_find_slot (per_cu->v.quick->mark
5158 ? visited_found.get ()
5159 : visited_not_found.get (),
5160 file_data, INSERT);
927aa2e7
JK
5161 *slot = file_data;
5162 }
5163}
5164
5165static void
5166dw2_expand_symtabs_matching
5167 (struct objfile *objfile,
5168 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5169 const lookup_name_info &lookup_name,
5170 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5171 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5172 enum search_domain kind)
5173{
ed2dc618
SM
5174 struct dwarf2_per_objfile *dwarf2_per_objfile
5175 = get_dwarf2_per_objfile (objfile);
927aa2e7
JK
5176
5177 /* index_table is NULL if OBJF_READNOW. */
5178 if (!dwarf2_per_objfile->index_table)
5179 return;
5180
ed2dc618 5181 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
927aa2e7
JK
5182
5183 mapped_index &index = *dwarf2_per_objfile->index_table;
5184
5185 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5186 symbol_matcher,
5187 kind, [&] (offset_type idx)
5188 {
ed2dc618 5189 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
927aa2e7
JK
5190 expansion_notify, kind);
5191 });
5192}
5193
5194/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5195 symtab. */
5196
5197static struct compunit_symtab *
5198recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5199 CORE_ADDR pc)
5200{
5201 int i;
5202
5203 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5204 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5205 return cust;
5206
5207 if (cust->includes == NULL)
5208 return NULL;
5209
5210 for (i = 0; cust->includes[i]; ++i)
5211 {
5212 struct compunit_symtab *s = cust->includes[i];
5213
5214 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5215 if (s != NULL)
5216 return s;
5217 }
5218
5219 return NULL;
5220}
5221
5222static struct compunit_symtab *
5223dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5224 struct bound_minimal_symbol msymbol,
5225 CORE_ADDR pc,
5226 struct obj_section *section,
5227 int warn_if_readin)
5228{
5229 struct dwarf2_per_cu_data *data;
5230 struct compunit_symtab *result;
5231
927aa2e7
JK
5232 if (!objfile->psymtabs_addrmap)
5233 return NULL;
5234
5235 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5236 pc);
5237 if (!data)
5238 return NULL;
5239
5240 if (warn_if_readin && data->v.quick->compunit_symtab)
5241 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5242 paddress (get_objfile_arch (objfile), pc));
5243
5244 result
58f0c718
TT
5245 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5246 false),
927aa2e7
JK
5247 pc);
5248 gdb_assert (result != NULL);
5249 return result;
5250}
5251
5252static void
5253dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5254 void *data, int need_fullname)
5255{
ed2dc618
SM
5256 struct dwarf2_per_objfile *dwarf2_per_objfile
5257 = get_dwarf2_per_objfile (objfile);
927aa2e7
JK
5258
5259 if (!dwarf2_per_objfile->filenames_cache)
5260 {
5261 dwarf2_per_objfile->filenames_cache.emplace ();
5262
5263 htab_up visited (htab_create_alloc (10,
5264 htab_hash_pointer, htab_eq_pointer,
5265 NULL, xcalloc, xfree));
5266
5267 /* The rule is CUs specify all the files, including those used
5268 by any TU, so there's no need to scan TUs here. We can
5269 ignore file names coming from already-expanded CUs. */
5270
b76e467d 5271 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 5272 {
927aa2e7
JK
5273 if (per_cu->v.quick->compunit_symtab)
5274 {
5275 void **slot = htab_find_slot (visited.get (),
5276 per_cu->v.quick->file_names,
5277 INSERT);
5278
5279 *slot = per_cu->v.quick->file_names;
5280 }
5281 }
5282
b76e467d 5283 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 5284 {
927aa2e7
JK
5285 /* We only need to look at symtabs not already expanded. */
5286 if (per_cu->v.quick->compunit_symtab)
5287 continue;
5288
b76e467d 5289 quick_file_names *file_data = dw2_get_file_names (per_cu);
927aa2e7
JK
5290 if (file_data == NULL)
5291 continue;
5292
b76e467d 5293 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
927aa2e7
JK
5294 if (*slot)
5295 {
5296 /* Already visited. */
5297 continue;
5298 }
5299 *slot = file_data;
5300
5301 for (int j = 0; j < file_data->num_file_names; ++j)
5302 {
5303 const char *filename = file_data->file_names[j];
5304 dwarf2_per_objfile->filenames_cache->seen (filename);
5305 }
5306 }
5307 }
5308
5309 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5310 {
5311 gdb::unique_xmalloc_ptr<char> this_real_name;
5312
5313 if (need_fullname)
5314 this_real_name = gdb_realpath (filename);
5315 (*fun) (filename, this_real_name.get (), data);
5316 });
5317}
5318
5319static int
5320dw2_has_symbols (struct objfile *objfile)
5321{
5322 return 1;
5323}
5324
5325const struct quick_symbol_functions dwarf2_gdb_index_functions =
5326{
5327 dw2_has_symbols,
5328 dw2_find_last_source_symtab,
5329 dw2_forget_cached_source_info,
5330 dw2_map_symtabs_matching_filename,
5331 dw2_lookup_symbol,
5332 dw2_print_stats,
5333 dw2_dump,
5334 dw2_relocate,
5335 dw2_expand_symtabs_for_function,
5336 dw2_expand_all_symtabs,
5337 dw2_expand_symtabs_with_fullname,
5338 dw2_map_matching_symbols,
5339 dw2_expand_symtabs_matching,
5340 dw2_find_pc_sect_compunit_symtab,
5341 NULL,
5342 dw2_map_symbol_filenames
5343};
5344
5345/* DWARF-5 debug_names reader. */
5346
5347/* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5348static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5349
5350/* A helper function that reads the .debug_names section in SECTION
5351 and fills in MAP. FILENAME is the name of the file containing the
5352 section; it is used for error reporting.
5353
5354 Returns true if all went well, false otherwise. */
5355
5356static bool
5357read_debug_names_from_section (struct objfile *objfile,
5358 const char *filename,
5359 struct dwarf2_section_info *section,
5360 mapped_debug_names &map)
5361{
5362 if (dwarf2_section_empty_p (section))
5363 return false;
5364
5365 /* Older elfutils strip versions could keep the section in the main
5366 executable while splitting it for the separate debug info file. */
5367 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5368 return false;
5369
5370 dwarf2_read_section (objfile, section);
5371
5372 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5373
5374 const gdb_byte *addr = section->buffer;
5375
5376 bfd *const abfd = get_section_bfd_owner (section);
5377
5378 unsigned int bytes_read;
5379 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5380 addr += bytes_read;
5381
5382 map.dwarf5_is_dwarf64 = bytes_read != 4;
5383 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5384 if (bytes_read + length != section->size)
5385 {
5386 /* There may be multiple per-CU indices. */
5387 warning (_("Section .debug_names in %s length %s does not match "
5388 "section length %s, ignoring .debug_names."),
5389 filename, plongest (bytes_read + length),
5390 pulongest (section->size));
5391 return false;
5392 }
5393
5394 /* The version number. */
5395 uint16_t version = read_2_bytes (abfd, addr);
5396 addr += 2;
5397 if (version != 5)
5398 {
5399 warning (_("Section .debug_names in %s has unsupported version %d, "
5400 "ignoring .debug_names."),
5401 filename, version);
5402 return false;
5403 }
5404
5405 /* Padding. */
5406 uint16_t padding = read_2_bytes (abfd, addr);
5407 addr += 2;
5408 if (padding != 0)
5409 {
5410 warning (_("Section .debug_names in %s has unsupported padding %d, "
5411 "ignoring .debug_names."),
5412 filename, padding);
5413 return false;
5414 }
5415
5416 /* comp_unit_count - The number of CUs in the CU list. */
5417 map.cu_count = read_4_bytes (abfd, addr);
5418 addr += 4;
5419
5420 /* local_type_unit_count - The number of TUs in the local TU
5421 list. */
5422 map.tu_count = read_4_bytes (abfd, addr);
5423 addr += 4;
5424
5425 /* foreign_type_unit_count - The number of TUs in the foreign TU
5426 list. */
5427 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5428 addr += 4;
5429 if (foreign_tu_count != 0)
5430 {
5431 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5432 "ignoring .debug_names."),
5433 filename, static_cast<unsigned long> (foreign_tu_count));
5434 return false;
5435 }
5436
5437 /* bucket_count - The number of hash buckets in the hash lookup
5438 table. */
5439 map.bucket_count = read_4_bytes (abfd, addr);
5440 addr += 4;
5441
5442 /* name_count - The number of unique names in the index. */
5443 map.name_count = read_4_bytes (abfd, addr);
5444 addr += 4;
5445
5446 /* abbrev_table_size - The size in bytes of the abbreviations
5447 table. */
5448 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5449 addr += 4;
5450
5451 /* augmentation_string_size - The size in bytes of the augmentation
5452 string. This value is rounded up to a multiple of 4. */
5453 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5454 addr += 4;
5455 map.augmentation_is_gdb = ((augmentation_string_size
5456 == sizeof (dwarf5_augmentation))
5457 && memcmp (addr, dwarf5_augmentation,
5458 sizeof (dwarf5_augmentation)) == 0);
5459 augmentation_string_size += (-augmentation_string_size) & 3;
5460 addr += augmentation_string_size;
5461
5462 /* List of CUs */
5463 map.cu_table_reordered = addr;
5464 addr += map.cu_count * map.offset_size;
5465
5466 /* List of Local TUs */
5467 map.tu_table_reordered = addr;
5468 addr += map.tu_count * map.offset_size;
5469
5470 /* Hash Lookup Table */
5471 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5472 addr += map.bucket_count * 4;
5473 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5474 addr += map.name_count * 4;
5475
5476 /* Name Table */
5477 map.name_table_string_offs_reordered = addr;
5478 addr += map.name_count * map.offset_size;
5479 map.name_table_entry_offs_reordered = addr;
5480 addr += map.name_count * map.offset_size;
5481
5482 const gdb_byte *abbrev_table_start = addr;
5483 for (;;)
5484 {
5485 unsigned int bytes_read;
5486 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5487 addr += bytes_read;
5488 if (index_num == 0)
5489 break;
5490
5491 const auto insertpair
5492 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5493 if (!insertpair.second)
5494 {
5495 warning (_("Section .debug_names in %s has duplicate index %s, "
5496 "ignoring .debug_names."),
5497 filename, pulongest (index_num));
5498 return false;
5499 }
5500 mapped_debug_names::index_val &indexval = insertpair.first->second;
5501 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503
5504 for (;;)
5505 {
5506 mapped_debug_names::index_val::attr attr;
5507 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5508 addr += bytes_read;
5509 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5510 addr += bytes_read;
5511 if (attr.form == DW_FORM_implicit_const)
5512 {
5513 attr.implicit_const = read_signed_leb128 (abfd, addr,
5514 &bytes_read);
5515 addr += bytes_read;
5516 }
5517 if (attr.dw_idx == 0 && attr.form == 0)
5518 break;
5519 indexval.attr_vec.push_back (std::move (attr));
5520 }
5521 }
5522 if (addr != abbrev_table_start + abbrev_table_size)
5523 {
5524 warning (_("Section .debug_names in %s has abbreviation_table "
5525 "of size %zu vs. written as %u, ignoring .debug_names."),
5526 filename, addr - abbrev_table_start, abbrev_table_size);
5527 return false;
5528 }
5529 map.entry_pool = addr;
5530
5531 return true;
5532}
5533
5534/* A helper for create_cus_from_debug_names that handles the MAP's CU
5535 list. */
5536
5537static void
ed2dc618 5538create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
5539 const mapped_debug_names &map,
5540 dwarf2_section_info &section,
b76e467d 5541 bool is_dwz)
927aa2e7
JK
5542{
5543 sect_offset sect_off_prev;
5544 for (uint32_t i = 0; i <= map.cu_count; ++i)
5545 {
5546 sect_offset sect_off_next;
5547 if (i < map.cu_count)
5548 {
5549 sect_off_next
5550 = (sect_offset) (extract_unsigned_integer
5551 (map.cu_table_reordered + i * map.offset_size,
5552 map.offset_size,
5553 map.dwarf5_byte_order));
5554 }
5555 else
5556 sect_off_next = (sect_offset) section.size;
5557 if (i >= 1)
5558 {
5559 const ULONGEST length = sect_off_next - sect_off_prev;
b76e467d 5560 dwarf2_per_cu_data *per_cu
ed2dc618 5561 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
927aa2e7 5562 sect_off_prev, length);
b76e467d 5563 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
927aa2e7
JK
5564 }
5565 sect_off_prev = sect_off_next;
5566 }
5567}
5568
5569/* Read the CU list from the mapped index, and use it to create all
ed2dc618 5570 the CU objects for this dwarf2_per_objfile. */
927aa2e7
JK
5571
5572static void
ed2dc618 5573create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
5574 const mapped_debug_names &map,
5575 const mapped_debug_names &dwz_map)
5576{
b76e467d
SM
5577 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5578 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
927aa2e7 5579
ed2dc618
SM
5580 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5581 dwarf2_per_objfile->info,
b76e467d 5582 false /* is_dwz */);
927aa2e7
JK
5583
5584 if (dwz_map.cu_count == 0)
5585 return;
5586
ed2dc618
SM
5587 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5588 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
b76e467d 5589 true /* is_dwz */);
927aa2e7
JK
5590}
5591
5592/* Read .debug_names. If everything went ok, initialize the "quick"
5593 elements of all the CUs and return true. Otherwise, return false. */
5594
5595static bool
ed2dc618 5596dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
927aa2e7 5597{
22ca247e
TT
5598 std::unique_ptr<mapped_debug_names> map
5599 (new mapped_debug_names (dwarf2_per_objfile));
ed2dc618
SM
5600 mapped_debug_names dwz_map (dwarf2_per_objfile);
5601 struct objfile *objfile = dwarf2_per_objfile->objfile;
927aa2e7
JK
5602
5603 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5604 &dwarf2_per_objfile->debug_names,
22ca247e 5605 *map))
927aa2e7
JK
5606 return false;
5607
5608 /* Don't use the index if it's empty. */
22ca247e 5609 if (map->name_count == 0)
927aa2e7
JK
5610 return false;
5611
5612 /* If there is a .dwz file, read it so we can get its CU list as
5613 well. */
ed2dc618 5614 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
927aa2e7
JK
5615 if (dwz != NULL)
5616 {
5617 if (!read_debug_names_from_section (objfile,
5618 bfd_get_filename (dwz->dwz_bfd),
5619 &dwz->debug_names, dwz_map))
5620 {
5621 warning (_("could not read '.debug_names' section from %s; skipping"),
5622 bfd_get_filename (dwz->dwz_bfd));
5623 return false;
5624 }
5625 }
5626
22ca247e 5627 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
927aa2e7 5628
22ca247e 5629 if (map->tu_count != 0)
927aa2e7
JK
5630 {
5631 /* We can only handle a single .debug_types when we have an
5632 index. */
5633 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5634 return false;
5635
5636 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5637 dwarf2_per_objfile->types, 0);
5638
5639 create_signatured_type_table_from_debug_names
22ca247e 5640 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
927aa2e7
JK
5641 }
5642
ed2dc618
SM
5643 create_addrmap_from_aranges (dwarf2_per_objfile,
5644 &dwarf2_per_objfile->debug_aranges);
927aa2e7 5645
22ca247e 5646 dwarf2_per_objfile->debug_names_table = std::move (map);
927aa2e7
JK
5647 dwarf2_per_objfile->using_index = 1;
5648 dwarf2_per_objfile->quick_file_names_table =
b76e467d 5649 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
927aa2e7
JK
5650
5651 return true;
5652}
5653
927aa2e7
JK
5654/* Type used to manage iterating over all CUs looking for a symbol for
5655 .debug_names. */
5656
5657class dw2_debug_names_iterator
5658{
5659public:
5660 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5661 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5662 dw2_debug_names_iterator (const mapped_debug_names &map,
5663 bool want_specific_block,
5664 block_enum block_index, domain_enum domain,
5665 const char *name)
5666 : m_map (map), m_want_specific_block (want_specific_block),
5667 m_block_index (block_index), m_domain (domain),
5668 m_addr (find_vec_in_debug_names (map, name))
5669 {}
5670
5671 dw2_debug_names_iterator (const mapped_debug_names &map,
5672 search_domain search, uint32_t namei)
5673 : m_map (map),
5674 m_search (search),
5675 m_addr (find_vec_in_debug_names (map, namei))
5676 {}
5677
5678 /* Return the next matching CU or NULL if there are no more. */
5679 dwarf2_per_cu_data *next ();
5680
5681private:
5682 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5683 const char *name);
5684 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5685 uint32_t namei);
5686
5687 /* The internalized form of .debug_names. */
5688 const mapped_debug_names &m_map;
5689
5690 /* If true, only look for symbols that match BLOCK_INDEX. */
5691 const bool m_want_specific_block = false;
5692
5693 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5694 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5695 value. */
5696 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5697
5698 /* The kind of symbol we're looking for. */
5699 const domain_enum m_domain = UNDEF_DOMAIN;
5700 const search_domain m_search = ALL_DOMAIN;
5701
5702 /* The list of CUs from the index entry of the symbol, or NULL if
5703 not found. */
5704 const gdb_byte *m_addr;
5705};
5706
5707const char *
5708mapped_debug_names::namei_to_name (uint32_t namei) const
5709{
5710 const ULONGEST namei_string_offs
5711 = extract_unsigned_integer ((name_table_string_offs_reordered
5712 + namei * offset_size),
5713 offset_size,
5714 dwarf5_byte_order);
5715 return read_indirect_string_at_offset
ed2dc618 5716 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
927aa2e7
JK
5717}
5718
5719/* Find a slot in .debug_names for the object named NAME. If NAME is
5720 found, return pointer to its pool data. If NAME cannot be found,
5721 return NULL. */
5722
5723const gdb_byte *
5724dw2_debug_names_iterator::find_vec_in_debug_names
5725 (const mapped_debug_names &map, const char *name)
5726{
5727 int (*cmp) (const char *, const char *);
5728
5729 if (current_language->la_language == language_cplus
5730 || current_language->la_language == language_fortran
5731 || current_language->la_language == language_d)
5732 {
5733 /* NAME is already canonical. Drop any qualifiers as
5734 .debug_names does not contain any. */
5735
5736 if (strchr (name, '(') != NULL)
5737 {
5738 gdb::unique_xmalloc_ptr<char> without_params
5739 = cp_remove_params (name);
5740
5741 if (without_params != NULL)
5742 {
5743 name = without_params.get();
5744 }
5745 }
5746 }
5747
5748 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5749
5750 const uint32_t full_hash = dwarf5_djb_hash (name);
5751 uint32_t namei
5752 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5753 (map.bucket_table_reordered
5754 + (full_hash % map.bucket_count)), 4,
5755 map.dwarf5_byte_order);
5756 if (namei == 0)
5757 return NULL;
5758 --namei;
5759 if (namei >= map.name_count)
5760 {
b98664d3 5761 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
927aa2e7
JK
5762 "[in module %s]"),
5763 namei, map.name_count,
ed2dc618 5764 objfile_name (map.dwarf2_per_objfile->objfile));
927aa2e7
JK
5765 return NULL;
5766 }
5767
5768 for (;;)
5769 {
5770 const uint32_t namei_full_hash
5771 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5772 (map.hash_table_reordered + namei), 4,
5773 map.dwarf5_byte_order);
5774 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5775 return NULL;
5776
5777 if (full_hash == namei_full_hash)
5778 {
5779 const char *const namei_string = map.namei_to_name (namei);
5780
5781#if 0 /* An expensive sanity check. */
5782 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5783 {
b98664d3 5784 complaint (_("Wrong .debug_names hash for string at index %u "
927aa2e7
JK
5785 "[in module %s]"),
5786 namei, objfile_name (dwarf2_per_objfile->objfile));
5787 return NULL;
5788 }
5789#endif
5790
5791 if (cmp (namei_string, name) == 0)
5792 {
5793 const ULONGEST namei_entry_offs
5794 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5795 + namei * map.offset_size),
5796 map.offset_size, map.dwarf5_byte_order);
5797 return map.entry_pool + namei_entry_offs;
5798 }
5799 }
5800
5801 ++namei;
5802 if (namei >= map.name_count)
5803 return NULL;
5804 }
5805}
5806
5807const gdb_byte *
5808dw2_debug_names_iterator::find_vec_in_debug_names
5809 (const mapped_debug_names &map, uint32_t namei)
5810{
5811 if (namei >= map.name_count)
5812 {
b98664d3 5813 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
927aa2e7
JK
5814 "[in module %s]"),
5815 namei, map.name_count,
ed2dc618 5816 objfile_name (map.dwarf2_per_objfile->objfile));
927aa2e7
JK
5817 return NULL;
5818 }
5819
5820 const ULONGEST namei_entry_offs
5821 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5822 + namei * map.offset_size),
5823 map.offset_size, map.dwarf5_byte_order);
5824 return map.entry_pool + namei_entry_offs;
5825}
5826
5827/* See dw2_debug_names_iterator. */
5828
5829dwarf2_per_cu_data *
5830dw2_debug_names_iterator::next ()
5831{
5832 if (m_addr == NULL)
5833 return NULL;
5834
ed2dc618
SM
5835 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5836 struct objfile *objfile = dwarf2_per_objfile->objfile;
5837 bfd *const abfd = objfile->obfd;
927aa2e7
JK
5838
5839 again:
5840
5841 unsigned int bytes_read;
5842 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5843 m_addr += bytes_read;
5844 if (abbrev == 0)
5845 return NULL;
5846
5847 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5848 if (indexval_it == m_map.abbrev_map.cend ())
5849 {
b98664d3 5850 complaint (_("Wrong .debug_names undefined abbrev code %s "
927aa2e7 5851 "[in module %s]"),
ed2dc618 5852 pulongest (abbrev), objfile_name (objfile));
927aa2e7
JK
5853 return NULL;
5854 }
5855 const mapped_debug_names::index_val &indexval = indexval_it->second;
5856 bool have_is_static = false;
5857 bool is_static;
5858 dwarf2_per_cu_data *per_cu = NULL;
5859 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5860 {
5861 ULONGEST ull;
5862 switch (attr.form)
5863 {
5864 case DW_FORM_implicit_const:
5865 ull = attr.implicit_const;
5866 break;
5867 case DW_FORM_flag_present:
5868 ull = 1;
5869 break;
5870 case DW_FORM_udata:
5871 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5872 m_addr += bytes_read;
5873 break;
5874 default:
b98664d3 5875 complaint (_("Unsupported .debug_names form %s [in module %s]"),
927aa2e7 5876 dwarf_form_name (attr.form),
ed2dc618 5877 objfile_name (objfile));
927aa2e7
JK
5878 return NULL;
5879 }
5880 switch (attr.dw_idx)
5881 {
5882 case DW_IDX_compile_unit:
5883 /* Don't crash on bad data. */
b76e467d 5884 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
927aa2e7 5885 {
b98664d3 5886 complaint (_(".debug_names entry has bad CU index %s"
927aa2e7
JK
5887 " [in module %s]"),
5888 pulongest (ull),
5889 objfile_name (dwarf2_per_objfile->objfile));
5890 continue;
5891 }
ff4c9fec 5892 per_cu = dwarf2_per_objfile->get_cutu (ull);
927aa2e7 5893 break;
8af5c486
JK
5894 case DW_IDX_type_unit:
5895 /* Don't crash on bad data. */
b2bdb8cf 5896 if (ull >= dwarf2_per_objfile->all_type_units.size ())
8af5c486 5897 {
b98664d3 5898 complaint (_(".debug_names entry has bad TU index %s"
8af5c486
JK
5899 " [in module %s]"),
5900 pulongest (ull),
5901 objfile_name (dwarf2_per_objfile->objfile));
5902 continue;
5903 }
ff4c9fec 5904 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
8af5c486 5905 break;
927aa2e7
JK
5906 case DW_IDX_GNU_internal:
5907 if (!m_map.augmentation_is_gdb)
5908 break;
5909 have_is_static = true;
5910 is_static = true;
5911 break;
5912 case DW_IDX_GNU_external:
5913 if (!m_map.augmentation_is_gdb)
5914 break;
5915 have_is_static = true;
5916 is_static = false;
5917 break;
5918 }
5919 }
5920
5921 /* Skip if already read in. */
5922 if (per_cu->v.quick->compunit_symtab)
5923 goto again;
5924
5925 /* Check static vs global. */
5926 if (have_is_static)
5927 {
5928 const bool want_static = m_block_index != GLOBAL_BLOCK;
5929 if (m_want_specific_block && want_static != is_static)
5930 goto again;
5931 }
5932
5933 /* Match dw2_symtab_iter_next, symbol_kind
5934 and debug_names::psymbol_tag. */
5935 switch (m_domain)
5936 {
5937 case VAR_DOMAIN:
5938 switch (indexval.dwarf_tag)
5939 {
5940 case DW_TAG_variable:
5941 case DW_TAG_subprogram:
5942 /* Some types are also in VAR_DOMAIN. */
5943 case DW_TAG_typedef:
5944 case DW_TAG_structure_type:
5945 break;
5946 default:
5947 goto again;
5948 }
5949 break;
5950 case STRUCT_DOMAIN:
5951 switch (indexval.dwarf_tag)
5952 {
5953 case DW_TAG_typedef:
5954 case DW_TAG_structure_type:
5955 break;
5956 default:
5957 goto again;
5958 }
5959 break;
5960 case LABEL_DOMAIN:
5961 switch (indexval.dwarf_tag)
5962 {
5963 case 0:
5964 case DW_TAG_variable:
5965 break;
5966 default:
5967 goto again;
5968 }
5969 break;
5970 default:
5971 break;
5972 }
5973
5974 /* Match dw2_expand_symtabs_matching, symbol_kind and
5975 debug_names::psymbol_tag. */
5976 switch (m_search)
4b514bc8 5977 {
927aa2e7
JK
5978 case VARIABLES_DOMAIN:
5979 switch (indexval.dwarf_tag)
4b514bc8 5980 {
927aa2e7
JK
5981 case DW_TAG_variable:
5982 break;
5983 default:
5984 goto again;
4b514bc8 5985 }
927aa2e7
JK
5986 break;
5987 case FUNCTIONS_DOMAIN:
5988 switch (indexval.dwarf_tag)
4b514bc8 5989 {
927aa2e7
JK
5990 case DW_TAG_subprogram:
5991 break;
5992 default:
5993 goto again;
4b514bc8 5994 }
927aa2e7
JK
5995 break;
5996 case TYPES_DOMAIN:
5997 switch (indexval.dwarf_tag)
5998 {
5999 case DW_TAG_typedef:
6000 case DW_TAG_structure_type:
6001 break;
6002 default:
6003 goto again;
6004 }
6005 break;
6006 default:
6007 break;
4b514bc8 6008 }
927aa2e7
JK
6009
6010 return per_cu;
4b514bc8 6011}
61920122 6012
927aa2e7
JK
6013static struct compunit_symtab *
6014dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6015 const char *name, domain_enum domain)
4b514bc8 6016{
927aa2e7 6017 const block_enum block_index = static_cast<block_enum> (block_index_int);
ed2dc618
SM
6018 struct dwarf2_per_objfile *dwarf2_per_objfile
6019 = get_dwarf2_per_objfile (objfile);
61920122 6020
927aa2e7
JK
6021 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6022 if (!mapp)
61920122 6023 {
927aa2e7
JK
6024 /* index is NULL if OBJF_READNOW. */
6025 return NULL;
6026 }
6027 const auto &map = *mapp;
9291a0cd 6028
927aa2e7
JK
6029 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6030 block_index, domain, name);
9703b513 6031
927aa2e7
JK
6032 struct compunit_symtab *stab_best = NULL;
6033 struct dwarf2_per_cu_data *per_cu;
6034 while ((per_cu = iter.next ()) != NULL)
6035 {
6036 struct symbol *sym, *with_opaque = NULL;
58f0c718 6037 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
927aa2e7
JK
6038 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6039 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
9703b513 6040
927aa2e7
JK
6041 sym = block_find_symbol (block, name, domain,
6042 block_find_non_opaque_type_preferred,
6043 &with_opaque);
9703b513 6044
927aa2e7
JK
6045 /* Some caution must be observed with overloaded functions and
6046 methods, since the index will not contain any overload
6047 information (but NAME might contain it). */
a3ec0bb1 6048
927aa2e7
JK
6049 if (sym != NULL
6050 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6051 return stab;
6052 if (with_opaque != NULL
6053 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6054 stab_best = stab;
9703b513 6055
927aa2e7 6056 /* Keep looking through other CUs. */
9703b513
TT
6057 }
6058
927aa2e7 6059 return stab_best;
9703b513
TT
6060}
6061
927aa2e7
JK
6062/* This dumps minimal information about .debug_names. It is called
6063 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6064 uses this to verify that .debug_names has been loaded. */
9291a0cd 6065
927aa2e7
JK
6066static void
6067dw2_debug_names_dump (struct objfile *objfile)
6068{
ed2dc618
SM
6069 struct dwarf2_per_objfile *dwarf2_per_objfile
6070 = get_dwarf2_per_objfile (objfile);
6071
927aa2e7
JK
6072 gdb_assert (dwarf2_per_objfile->using_index);
6073 printf_filtered (".debug_names:");
6074 if (dwarf2_per_objfile->debug_names_table)
6075 printf_filtered (" exists\n");
6076 else
6077 printf_filtered (" faked for \"readnow\"\n");
6078 printf_filtered ("\n");
9291a0cd
TT
6079}
6080
9291a0cd 6081static void
927aa2e7
JK
6082dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6083 const char *func_name)
9291a0cd 6084{
ed2dc618
SM
6085 struct dwarf2_per_objfile *dwarf2_per_objfile
6086 = get_dwarf2_per_objfile (objfile);
ae2de4f8 6087
927aa2e7
JK
6088 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6089 if (dwarf2_per_objfile->debug_names_table)
24c79950 6090 {
927aa2e7 6091 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
24c79950 6092
927aa2e7
JK
6093 /* Note: It doesn't matter what we pass for block_index here. */
6094 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6095 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
24c79950 6096
927aa2e7
JK
6097 struct dwarf2_per_cu_data *per_cu;
6098 while ((per_cu = iter.next ()) != NULL)
58f0c718 6099 dw2_instantiate_symtab (per_cu, false);
927aa2e7
JK
6100 }
6101}
24c79950 6102
927aa2e7
JK
6103static void
6104dw2_debug_names_expand_symtabs_matching
6105 (struct objfile *objfile,
6106 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6107 const lookup_name_info &lookup_name,
6108 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6109 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6110 enum search_domain kind)
6111{
ed2dc618
SM
6112 struct dwarf2_per_objfile *dwarf2_per_objfile
6113 = get_dwarf2_per_objfile (objfile);
9291a0cd 6114
927aa2e7
JK
6115 /* debug_names_table is NULL if OBJF_READNOW. */
6116 if (!dwarf2_per_objfile->debug_names_table)
6117 return;
9291a0cd 6118
ed2dc618 6119 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
24c79950 6120
44ed8f3e 6121 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
bbf2f4df 6122
44ed8f3e
PA
6123 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6124 symbol_matcher,
6125 kind, [&] (offset_type namei)
927aa2e7 6126 {
927aa2e7
JK
6127 /* The name was matched, now expand corresponding CUs that were
6128 marked. */
6129 dw2_debug_names_iterator iter (map, kind, namei);
bbf2f4df 6130
927aa2e7
JK
6131 struct dwarf2_per_cu_data *per_cu;
6132 while ((per_cu = iter.next ()) != NULL)
6133 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6134 expansion_notify);
44ed8f3e 6135 });
9291a0cd
TT
6136}
6137
927aa2e7 6138const struct quick_symbol_functions dwarf2_debug_names_functions =
9291a0cd
TT
6139{
6140 dw2_has_symbols,
6141 dw2_find_last_source_symtab,
6142 dw2_forget_cached_source_info,
f8eba3c6 6143 dw2_map_symtabs_matching_filename,
927aa2e7 6144 dw2_debug_names_lookup_symbol,
9291a0cd 6145 dw2_print_stats,
927aa2e7 6146 dw2_debug_names_dump,
9291a0cd 6147 dw2_relocate,
927aa2e7 6148 dw2_debug_names_expand_symtabs_for_function,
9291a0cd 6149 dw2_expand_all_symtabs,
652a8996 6150 dw2_expand_symtabs_with_fullname,
40658b94 6151 dw2_map_matching_symbols,
927aa2e7 6152 dw2_debug_names_expand_symtabs_matching,
43f3e411 6153 dw2_find_pc_sect_compunit_symtab,
71a3c369 6154 NULL,
9291a0cd
TT
6155 dw2_map_symbol_filenames
6156};
6157
3c0aa29a 6158/* See symfile.h. */
9291a0cd 6159
3c0aa29a
PA
6160bool
6161dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
9291a0cd 6162{
ed2dc618
SM
6163 struct dwarf2_per_objfile *dwarf2_per_objfile
6164 = get_dwarf2_per_objfile (objfile);
6165
9291a0cd
TT
6166 /* If we're about to read full symbols, don't bother with the
6167 indices. In this case we also don't care if some other debug
6168 format is making psymtabs, because they are all about to be
6169 expanded anyway. */
6170 if ((objfile->flags & OBJF_READNOW))
6171 {
9291a0cd 6172 dwarf2_per_objfile->using_index = 1;
ed2dc618
SM
6173 create_all_comp_units (dwarf2_per_objfile);
6174 create_all_type_units (dwarf2_per_objfile);
b76e467d
SM
6175 dwarf2_per_objfile->quick_file_names_table
6176 = create_quick_file_names_table
6177 (dwarf2_per_objfile->all_comp_units.size ());
9291a0cd 6178
b76e467d 6179 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 6180 + dwarf2_per_objfile->all_type_units.size ()); ++i)
9291a0cd 6181 {
ff4c9fec 6182 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
9291a0cd 6183
e254ef6a
DE
6184 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6185 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
6186 }
6187
6188 /* Return 1 so that gdb sees the "quick" functions. However,
6189 these functions will be no-ops because we will have expanded
6190 all symtabs. */
3c0aa29a
PA
6191 *index_kind = dw_index_kind::GDB_INDEX;
6192 return true;
9291a0cd
TT
6193 }
6194
ed2dc618 6195 if (dwarf2_read_debug_names (dwarf2_per_objfile))
3c0aa29a
PA
6196 {
6197 *index_kind = dw_index_kind::DEBUG_NAMES;
6198 return true;
6199 }
927aa2e7 6200
7b23e087 6201 if (dwarf2_read_gdb_index (dwarf2_per_objfile))
3c0aa29a
PA
6202 {
6203 *index_kind = dw_index_kind::GDB_INDEX;
6204 return true;
6205 }
9291a0cd 6206
3c0aa29a 6207 return false;
9291a0cd
TT
6208}
6209
6210\f
6211
dce234bc
PP
6212/* Build a partial symbol table. */
6213
6214void
f29dff0a 6215dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 6216{
ed2dc618
SM
6217 struct dwarf2_per_objfile *dwarf2_per_objfile
6218 = get_dwarf2_per_objfile (objfile);
c9bf0622 6219
af5bf4ad
SM
6220 if (objfile->global_psymbols.capacity () == 0
6221 && objfile->static_psymbols.capacity () == 0)
6222 init_psymbol_list (objfile, 1024);
c906108c 6223
492d29ea 6224 TRY
c9bf0622
TT
6225 {
6226 /* This isn't really ideal: all the data we allocate on the
6227 objfile's obstack is still uselessly kept around. However,
6228 freeing it seems unsafe. */
906768f9 6229 psymtab_discarder psymtabs (objfile);
ed2dc618 6230 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
906768f9 6231 psymtabs.keep ();
c9bf0622 6232 }
492d29ea
PA
6233 CATCH (except, RETURN_MASK_ERROR)
6234 {
6235 exception_print (gdb_stderr, except);
6236 }
6237 END_CATCH
c906108c 6238}
c906108c 6239
1ce1cefd
DE
6240/* Return the total length of the CU described by HEADER. */
6241
6242static unsigned int
6243get_cu_length (const struct comp_unit_head *header)
6244{
6245 return header->initial_length_size + header->length;
6246}
6247
9c541725 6248/* Return TRUE if SECT_OFF is within CU_HEADER. */
45452591 6249
9c541725
PA
6250static inline bool
6251offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
45452591 6252{
9c541725
PA
6253 sect_offset bottom = cu_header->sect_off;
6254 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
9a619af0 6255
9c541725 6256 return sect_off >= bottom && sect_off < top;
45452591
DE
6257}
6258
3b80fe9b
DE
6259/* Find the base address of the compilation unit for range lists and
6260 location lists. It will normally be specified by DW_AT_low_pc.
6261 In DWARF-3 draft 4, the base address could be overridden by
6262 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6263 compilation units with discontinuous ranges. */
6264
6265static void
6266dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6267{
6268 struct attribute *attr;
6269
6270 cu->base_known = 0;
6271 cu->base_address = 0;
6272
6273 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6274 if (attr)
6275 {
31aa7e4e 6276 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
6277 cu->base_known = 1;
6278 }
6279 else
6280 {
6281 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6282 if (attr)
6283 {
31aa7e4e 6284 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
6285 cu->base_known = 1;
6286 }
6287 }
6288}
6289
93311388 6290/* Read in the comp unit header information from the debug_info at info_ptr.
43988095 6291 Use rcuh_kind::COMPILE as the default type if not known by the caller.
93311388
DE
6292 NOTE: This leaves members offset, first_die_offset to be filled in
6293 by the caller. */
107d2387 6294
d521ce57 6295static const gdb_byte *
107d2387 6296read_comp_unit_head (struct comp_unit_head *cu_header,
43988095
JK
6297 const gdb_byte *info_ptr,
6298 struct dwarf2_section_info *section,
6299 rcuh_kind section_kind)
107d2387
AC
6300{
6301 int signed_addr;
891d2f0b 6302 unsigned int bytes_read;
43988095
JK
6303 const char *filename = get_section_file_name (section);
6304 bfd *abfd = get_section_bfd_owner (section);
c764a876
DE
6305
6306 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6307 cu_header->initial_length_size = bytes_read;
6308 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 6309 info_ptr += bytes_read;
107d2387 6310 cu_header->version = read_2_bytes (abfd, info_ptr);
1ea5da02
TV
6311 if (cu_header->version < 2 || cu_header->version > 5)
6312 error (_("Dwarf Error: wrong version in compilation unit header "
6313 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6314 cu_header->version, filename);
107d2387 6315 info_ptr += 2;
43988095
JK
6316 if (cu_header->version < 5)
6317 switch (section_kind)
6318 {
6319 case rcuh_kind::COMPILE:
6320 cu_header->unit_type = DW_UT_compile;
6321 break;
6322 case rcuh_kind::TYPE:
6323 cu_header->unit_type = DW_UT_type;
6324 break;
6325 default:
6326 internal_error (__FILE__, __LINE__,
6327 _("read_comp_unit_head: invalid section_kind"));
6328 }
6329 else
6330 {
6331 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6332 (read_1_byte (abfd, info_ptr));
6333 info_ptr += 1;
6334 switch (cu_header->unit_type)
6335 {
6336 case DW_UT_compile:
6337 if (section_kind != rcuh_kind::COMPILE)
6338 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6339 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6340 filename);
6341 break;
6342 case DW_UT_type:
6343 section_kind = rcuh_kind::TYPE;
6344 break;
6345 default:
6346 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6347 "(is %d, should be %d or %d) [in module %s]"),
6348 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6349 }
6350
6351 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6352 info_ptr += 1;
6353 }
9c541725
PA
6354 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6355 cu_header,
6356 &bytes_read);
613e1657 6357 info_ptr += bytes_read;
43988095
JK
6358 if (cu_header->version < 5)
6359 {
6360 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6361 info_ptr += 1;
6362 }
107d2387
AC
6363 signed_addr = bfd_get_sign_extend_vma (abfd);
6364 if (signed_addr < 0)
8e65ff28 6365 internal_error (__FILE__, __LINE__,
e2e0b3e5 6366 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 6367 cu_header->signed_addr_p = signed_addr;
c764a876 6368
43988095
JK
6369 if (section_kind == rcuh_kind::TYPE)
6370 {
6371 LONGEST type_offset;
6372
6373 cu_header->signature = read_8_bytes (abfd, info_ptr);
6374 info_ptr += 8;
6375
6376 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6377 info_ptr += bytes_read;
9c541725
PA
6378 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6379 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
43988095
JK
6380 error (_("Dwarf Error: Too big type_offset in compilation unit "
6381 "header (is %s) [in module %s]"), plongest (type_offset),
6382 filename);
6383 }
6384
107d2387
AC
6385 return info_ptr;
6386}
6387
36586728
TT
6388/* Helper function that returns the proper abbrev section for
6389 THIS_CU. */
6390
6391static struct dwarf2_section_info *
6392get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6393{
6394 struct dwarf2_section_info *abbrev;
ed2dc618 6395 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
36586728
TT
6396
6397 if (this_cu->is_dwz)
ed2dc618 6398 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
36586728
TT
6399 else
6400 abbrev = &dwarf2_per_objfile->abbrev;
6401
6402 return abbrev;
6403}
6404
9ff913ba
DE
6405/* Subroutine of read_and_check_comp_unit_head and
6406 read_and_check_type_unit_head to simplify them.
6407 Perform various error checking on the header. */
6408
6409static void
ed2dc618
SM
6410error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6411 struct comp_unit_head *header,
4bdcc0c1
DE
6412 struct dwarf2_section_info *section,
6413 struct dwarf2_section_info *abbrev_section)
9ff913ba 6414{
a32a8923 6415 const char *filename = get_section_file_name (section);
9ff913ba 6416
9c541725 6417 if (to_underlying (header->abbrev_sect_off)
36586728 6418 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9d8780f0
SM
6419 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6420 "(offset %s + 6) [in module %s]"),
6421 sect_offset_str (header->abbrev_sect_off),
6422 sect_offset_str (header->sect_off),
9ff913ba
DE
6423 filename);
6424
9c541725 6425 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
9ff913ba 6426 avoid potential 32-bit overflow. */
9c541725 6427 if (((ULONGEST) header->sect_off + get_cu_length (header))
9ff913ba 6428 > section->size)
9c541725 6429 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
9d8780f0
SM
6430 "(offset %s + 0) [in module %s]"),
6431 header->length, sect_offset_str (header->sect_off),
9ff913ba
DE
6432 filename);
6433}
6434
6435/* Read in a CU/TU header and perform some basic error checking.
6436 The contents of the header are stored in HEADER.
6437 The result is a pointer to the start of the first DIE. */
adabb602 6438
d521ce57 6439static const gdb_byte *
ed2dc618
SM
6440read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6441 struct comp_unit_head *header,
9ff913ba 6442 struct dwarf2_section_info *section,
4bdcc0c1 6443 struct dwarf2_section_info *abbrev_section,
d521ce57 6444 const gdb_byte *info_ptr,
43988095 6445 rcuh_kind section_kind)
72bf9492 6446{
d521ce57 6447 const gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492 6448
9c541725 6449 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
adabb602 6450
43988095 6451 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
9ff913ba 6452
9c541725 6453 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
348e048f 6454
ed2dc618
SM
6455 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6456 abbrev_section);
9ff913ba
DE
6457
6458 return info_ptr;
348e048f
DE
6459}
6460
f4dc4d17
DE
6461/* Fetch the abbreviation table offset from a comp or type unit header. */
6462
6463static sect_offset
ed2dc618
SM
6464read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6465 struct dwarf2_section_info *section,
9c541725 6466 sect_offset sect_off)
f4dc4d17 6467{
a32a8923 6468 bfd *abfd = get_section_bfd_owner (section);
d521ce57 6469 const gdb_byte *info_ptr;
ac298888 6470 unsigned int initial_length_size, offset_size;
43988095 6471 uint16_t version;
f4dc4d17
DE
6472
6473 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
9c541725 6474 info_ptr = section->buffer + to_underlying (sect_off);
ac298888 6475 read_initial_length (abfd, info_ptr, &initial_length_size);
f4dc4d17 6476 offset_size = initial_length_size == 4 ? 4 : 8;
43988095
JK
6477 info_ptr += initial_length_size;
6478
6479 version = read_2_bytes (abfd, info_ptr);
6480 info_ptr += 2;
6481 if (version >= 5)
6482 {
6483 /* Skip unit type and address size. */
6484 info_ptr += 2;
6485 }
6486
9c541725 6487 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
f4dc4d17
DE
6488}
6489
aaa75496
JB
6490/* Allocate a new partial symtab for file named NAME and mark this new
6491 partial symtab as being an include of PST. */
6492
6493static void
d521ce57 6494dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
6495 struct objfile *objfile)
6496{
6497 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6498
fbd9ab74
JK
6499 if (!IS_ABSOLUTE_PATH (subpst->filename))
6500 {
6501 /* It shares objfile->objfile_obstack. */
6502 subpst->dirname = pst->dirname;
6503 }
6504
aaa75496
JB
6505 subpst->textlow = 0;
6506 subpst->texthigh = 0;
6507
8d749320
SM
6508 subpst->dependencies
6509 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
6510 subpst->dependencies[0] = pst;
6511 subpst->number_of_dependencies = 1;
6512
6513 subpst->globals_offset = 0;
6514 subpst->n_global_syms = 0;
6515 subpst->statics_offset = 0;
6516 subpst->n_static_syms = 0;
43f3e411 6517 subpst->compunit_symtab = NULL;
aaa75496
JB
6518 subpst->read_symtab = pst->read_symtab;
6519 subpst->readin = 0;
6520
6521 /* No private part is necessary for include psymtabs. This property
6522 can be used to differentiate between such include psymtabs and
10b3939b 6523 the regular ones. */
58a9656e 6524 subpst->read_symtab_private = NULL;
aaa75496
JB
6525}
6526
6527/* Read the Line Number Program data and extract the list of files
6528 included by the source file represented by PST. Build an include
d85a05f0 6529 partial symtab for each of these included files. */
aaa75496
JB
6530
6531static void
6532dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
6533 struct die_info *die,
6534 struct partial_symtab *pst)
aaa75496 6535{
fff8551c 6536 line_header_up lh;
d85a05f0 6537 struct attribute *attr;
aaa75496 6538
d85a05f0
DJ
6539 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6540 if (attr)
9c541725 6541 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
aaa75496
JB
6542 if (lh == NULL)
6543 return; /* No linetable, so no includes. */
6544
c6da4cef 6545 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
fff8551c 6546 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
6547}
6548
348e048f 6549static hashval_t
52dc124a 6550hash_signatured_type (const void *item)
348e048f 6551{
9a3c8263
SM
6552 const struct signatured_type *sig_type
6553 = (const struct signatured_type *) item;
9a619af0 6554
348e048f 6555 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 6556 return sig_type->signature;
348e048f
DE
6557}
6558
6559static int
52dc124a 6560eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 6561{
9a3c8263
SM
6562 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6563 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 6564
348e048f
DE
6565 return lhs->signature == rhs->signature;
6566}
6567
1fd400ff
TT
6568/* Allocate a hash table for signatured types. */
6569
6570static htab_t
673bfd45 6571allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
6572{
6573 return htab_create_alloc_ex (41,
52dc124a
DE
6574 hash_signatured_type,
6575 eq_signatured_type,
1fd400ff
TT
6576 NULL,
6577 &objfile->objfile_obstack,
6578 hashtab_obstack_allocate,
6579 dummy_obstack_deallocate);
6580}
6581
d467dd73 6582/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
6583
6584static int
d467dd73 6585add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 6586{
9a3c8263 6587 struct signatured_type *sigt = (struct signatured_type *) *slot;
b2bdb8cf
SM
6588 std::vector<signatured_type *> *all_type_units
6589 = (std::vector<signatured_type *> *) datum;
1fd400ff 6590
b2bdb8cf 6591 all_type_units->push_back (sigt);
1fd400ff
TT
6592
6593 return 1;
6594}
6595
78d4d2c5 6596/* A helper for create_debug_types_hash_table. Read types from SECTION
43988095
JK
6597 and fill them into TYPES_HTAB. It will process only type units,
6598 therefore DW_UT_type. */
c88ee1f0 6599
78d4d2c5 6600static void
ed2dc618
SM
6601create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6602 struct dwo_file *dwo_file,
43988095
JK
6603 dwarf2_section_info *section, htab_t &types_htab,
6604 rcuh_kind section_kind)
348e048f 6605{
3019eac3 6606 struct objfile *objfile = dwarf2_per_objfile->objfile;
4bdcc0c1 6607 struct dwarf2_section_info *abbrev_section;
78d4d2c5
JK
6608 bfd *abfd;
6609 const gdb_byte *info_ptr, *end_ptr;
348e048f 6610
4bdcc0c1
DE
6611 abbrev_section = (dwo_file != NULL
6612 ? &dwo_file->sections.abbrev
6613 : &dwarf2_per_objfile->abbrev);
6614
b4f54984 6615 if (dwarf_read_debug)
43988095
JK
6616 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6617 get_section_name (section),
a32a8923 6618 get_section_file_name (abbrev_section));
09406207 6619
78d4d2c5
JK
6620 dwarf2_read_section (objfile, section);
6621 info_ptr = section->buffer;
348e048f 6622
78d4d2c5
JK
6623 if (info_ptr == NULL)
6624 return;
348e048f 6625
78d4d2c5
JK
6626 /* We can't set abfd until now because the section may be empty or
6627 not present, in which case the bfd is unknown. */
6628 abfd = get_section_bfd_owner (section);
348e048f 6629
78d4d2c5
JK
6630 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6631 because we don't need to read any dies: the signature is in the
6632 header. */
3019eac3 6633
78d4d2c5
JK
6634 end_ptr = info_ptr + section->size;
6635 while (info_ptr < end_ptr)
6636 {
78d4d2c5
JK
6637 struct signatured_type *sig_type;
6638 struct dwo_unit *dwo_tu;
6639 void **slot;
6640 const gdb_byte *ptr = info_ptr;
6641 struct comp_unit_head header;
6642 unsigned int length;
8b70b953 6643
9c541725 6644 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
348e048f 6645
a49dd8dd
JK
6646 /* Initialize it due to a false compiler warning. */
6647 header.signature = -1;
9c541725 6648 header.type_cu_offset_in_tu = (cu_offset) -1;
a49dd8dd 6649
78d4d2c5
JK
6650 /* We need to read the type's signature in order to build the hash
6651 table, but we don't need anything else just yet. */
348e048f 6652
ed2dc618 6653 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
43988095 6654 abbrev_section, ptr, section_kind);
348e048f 6655
78d4d2c5 6656 length = get_cu_length (&header);
6caca83c 6657
78d4d2c5
JK
6658 /* Skip dummy type units. */
6659 if (ptr >= info_ptr + length
43988095
JK
6660 || peek_abbrev_code (abfd, ptr) == 0
6661 || header.unit_type != DW_UT_type)
78d4d2c5
JK
6662 {
6663 info_ptr += length;
6664 continue;
6665 }
dee91e82 6666
78d4d2c5
JK
6667 if (types_htab == NULL)
6668 {
6669 if (dwo_file)
6670 types_htab = allocate_dwo_unit_table (objfile);
6671 else
6672 types_htab = allocate_signatured_type_table (objfile);
6673 }
8b70b953 6674
78d4d2c5
JK
6675 if (dwo_file)
6676 {
6677 sig_type = NULL;
6678 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6679 struct dwo_unit);
6680 dwo_tu->dwo_file = dwo_file;
43988095 6681 dwo_tu->signature = header.signature;
9c541725 6682 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
78d4d2c5 6683 dwo_tu->section = section;
9c541725 6684 dwo_tu->sect_off = sect_off;
78d4d2c5
JK
6685 dwo_tu->length = length;
6686 }
6687 else
6688 {
6689 /* N.B.: type_offset is not usable if this type uses a DWO file.
6690 The real type_offset is in the DWO file. */
6691 dwo_tu = NULL;
6692 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6693 struct signatured_type);
43988095 6694 sig_type->signature = header.signature;
9c541725 6695 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
e3b94546 6696 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
78d4d2c5
JK
6697 sig_type->per_cu.is_debug_types = 1;
6698 sig_type->per_cu.section = section;
9c541725 6699 sig_type->per_cu.sect_off = sect_off;
78d4d2c5
JK
6700 sig_type->per_cu.length = length;
6701 }
6702
6703 slot = htab_find_slot (types_htab,
6704 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6705 INSERT);
6706 gdb_assert (slot != NULL);
6707 if (*slot != NULL)
6708 {
9c541725 6709 sect_offset dup_sect_off;
0349ea22 6710
3019eac3
DE
6711 if (dwo_file)
6712 {
78d4d2c5
JK
6713 const struct dwo_unit *dup_tu
6714 = (const struct dwo_unit *) *slot;
6715
9c541725 6716 dup_sect_off = dup_tu->sect_off;
3019eac3
DE
6717 }
6718 else
6719 {
78d4d2c5
JK
6720 const struct signatured_type *dup_tu
6721 = (const struct signatured_type *) *slot;
6722
9c541725 6723 dup_sect_off = dup_tu->per_cu.sect_off;
3019eac3 6724 }
8b70b953 6725
b98664d3 6726 complaint (_("debug type entry at offset %s is duplicate to"
9d8780f0
SM
6727 " the entry at offset %s, signature %s"),
6728 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
43988095 6729 hex_string (header.signature));
78d4d2c5
JK
6730 }
6731 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
3019eac3 6732
78d4d2c5 6733 if (dwarf_read_debug > 1)
9d8780f0
SM
6734 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6735 sect_offset_str (sect_off),
43988095 6736 hex_string (header.signature));
3019eac3 6737
78d4d2c5
JK
6738 info_ptr += length;
6739 }
6740}
3019eac3 6741
78d4d2c5
JK
6742/* Create the hash table of all entries in the .debug_types
6743 (or .debug_types.dwo) section(s).
6744 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6745 otherwise it is NULL.
b3c8eb43 6746
78d4d2c5 6747 The result is a pointer to the hash table or NULL if there are no types.
348e048f 6748
78d4d2c5 6749 Note: This function processes DWO files only, not DWP files. */
348e048f 6750
78d4d2c5 6751static void
ed2dc618
SM
6752create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6753 struct dwo_file *dwo_file,
78d4d2c5
JK
6754 VEC (dwarf2_section_info_def) *types,
6755 htab_t &types_htab)
6756{
6757 int ix;
6758 struct dwarf2_section_info *section;
6759
6760 if (VEC_empty (dwarf2_section_info_def, types))
6761 return;
348e048f 6762
78d4d2c5
JK
6763 for (ix = 0;
6764 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6765 ++ix)
ed2dc618
SM
6766 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6767 types_htab, rcuh_kind::TYPE);
3019eac3
DE
6768}
6769
6770/* Create the hash table of all entries in the .debug_types section,
6771 and initialize all_type_units.
6772 The result is zero if there is an error (e.g. missing .debug_types section),
6773 otherwise non-zero. */
6774
6775static int
ed2dc618 6776create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
3019eac3 6777{
78d4d2c5 6778 htab_t types_htab = NULL;
3019eac3 6779
ed2dc618
SM
6780 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6781 &dwarf2_per_objfile->info, types_htab,
43988095 6782 rcuh_kind::COMPILE);
ed2dc618
SM
6783 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6784 dwarf2_per_objfile->types, types_htab);
3019eac3
DE
6785 if (types_htab == NULL)
6786 {
6787 dwarf2_per_objfile->signatured_types = NULL;
6788 return 0;
6789 }
6790
348e048f
DE
6791 dwarf2_per_objfile->signatured_types = types_htab;
6792
b2bdb8cf
SM
6793 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6794 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6795
6796 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6797 &dwarf2_per_objfile->all_type_units);
1fd400ff 6798
348e048f
DE
6799 return 1;
6800}
6801
6aa5f3a6
DE
6802/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6803 If SLOT is non-NULL, it is the entry to use in the hash table.
6804 Otherwise we find one. */
6805
6806static struct signatured_type *
ed2dc618
SM
6807add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6808 void **slot)
6aa5f3a6
DE
6809{
6810 struct objfile *objfile = dwarf2_per_objfile->objfile;
6aa5f3a6 6811
b2bdb8cf
SM
6812 if (dwarf2_per_objfile->all_type_units.size ()
6813 == dwarf2_per_objfile->all_type_units.capacity ())
6814 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6aa5f3a6 6815
b2bdb8cf
SM
6816 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6817 struct signatured_type);
6818
6819 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6aa5f3a6
DE
6820 sig_type->signature = sig;
6821 sig_type->per_cu.is_debug_types = 1;
6822 if (dwarf2_per_objfile->using_index)
6823 {
6824 sig_type->per_cu.v.quick =
6825 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6826 struct dwarf2_per_cu_quick_data);
6827 }
6828
6829 if (slot == NULL)
6830 {
6831 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6832 sig_type, INSERT);
6833 }
6834 gdb_assert (*slot == NULL);
6835 *slot = sig_type;
6836 /* The rest of sig_type must be filled in by the caller. */
6837 return sig_type;
6838}
6839
a2ce51a0
DE
6840/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6841 Fill in SIG_ENTRY with DWO_ENTRY. */
6842
6843static void
ed2dc618 6844fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
a2ce51a0
DE
6845 struct signatured_type *sig_entry,
6846 struct dwo_unit *dwo_entry)
6847{
7ee85ab1 6848 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
6849 gdb_assert (! sig_entry->per_cu.queued);
6850 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
6851 if (dwarf2_per_objfile->using_index)
6852 {
6853 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 6854 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
6855 }
6856 else
6857 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0 6858 gdb_assert (sig_entry->signature == dwo_entry->signature);
9c541725 6859 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
a2ce51a0 6860 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
6861 gdb_assert (sig_entry->dwo_unit == NULL);
6862
6863 sig_entry->per_cu.section = dwo_entry->section;
9c541725 6864 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7ee85ab1
DE
6865 sig_entry->per_cu.length = dwo_entry->length;
6866 sig_entry->per_cu.reading_dwo_directly = 1;
e3b94546 6867 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
a2ce51a0
DE
6868 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6869 sig_entry->dwo_unit = dwo_entry;
6870}
6871
6872/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
6873 If we haven't read the TU yet, create the signatured_type data structure
6874 for a TU to be read in directly from a DWO file, bypassing the stub.
6875 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6876 using .gdb_index, then when reading a CU we want to stay in the DWO file
6877 containing that CU. Otherwise we could end up reading several other DWO
6878 files (due to comdat folding) to process the transitive closure of all the
6879 mentioned TUs, and that can be slow. The current DWO file will have every
6880 type signature that it needs.
a2ce51a0
DE
6881 We only do this for .gdb_index because in the psymtab case we already have
6882 to read all the DWOs to build the type unit groups. */
6883
6884static struct signatured_type *
6885lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6886{
518817b3
SM
6887 struct dwarf2_per_objfile *dwarf2_per_objfile
6888 = cu->per_cu->dwarf2_per_objfile;
a2ce51a0
DE
6889 struct objfile *objfile = dwarf2_per_objfile->objfile;
6890 struct dwo_file *dwo_file;
6891 struct dwo_unit find_dwo_entry, *dwo_entry;
6892 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 6893 void **slot;
a2ce51a0
DE
6894
6895 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6896
6aa5f3a6
DE
6897 /* If TU skeletons have been removed then we may not have read in any
6898 TUs yet. */
6899 if (dwarf2_per_objfile->signatured_types == NULL)
6900 {
6901 dwarf2_per_objfile->signatured_types
6902 = allocate_signatured_type_table (objfile);
6903 }
a2ce51a0
DE
6904
6905 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
6906 Use the global signatured_types array to do our own comdat-folding
6907 of types. If this is the first time we're reading this TU, and
6908 the TU has an entry in .gdb_index, replace the recorded data from
6909 .gdb_index with this TU. */
a2ce51a0 6910
a2ce51a0 6911 find_sig_entry.signature = sig;
6aa5f3a6
DE
6912 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6913 &find_sig_entry, INSERT);
9a3c8263 6914 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
6915
6916 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
6917 read. Don't reassign the global entry to point to this DWO if that's
6918 the case. Also note that if the TU is already being read, it may not
6919 have come from a DWO, the program may be a mix of Fission-compiled
6920 code and non-Fission-compiled code. */
6921
6922 /* Have we already tried to read this TU?
6923 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6924 needn't exist in the global table yet). */
6925 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
6926 return sig_entry;
6927
6aa5f3a6
DE
6928 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6929 dwo_unit of the TU itself. */
6930 dwo_file = cu->dwo_unit->dwo_file;
6931
a2ce51a0
DE
6932 /* Ok, this is the first time we're reading this TU. */
6933 if (dwo_file->tus == NULL)
6934 return NULL;
6935 find_dwo_entry.signature = sig;
9a3c8263 6936 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
6937 if (dwo_entry == NULL)
6938 return NULL;
6939
6aa5f3a6
DE
6940 /* If the global table doesn't have an entry for this TU, add one. */
6941 if (sig_entry == NULL)
ed2dc618 6942 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6aa5f3a6 6943
ed2dc618 6944 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
89e63ee4 6945 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
6946 return sig_entry;
6947}
6948
a2ce51a0
DE
6949/* Subroutine of lookup_signatured_type.
6950 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
6951 then try the DWP file. If the TU stub (skeleton) has been removed then
6952 it won't be in .gdb_index. */
a2ce51a0
DE
6953
6954static struct signatured_type *
6955lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6956{
518817b3
SM
6957 struct dwarf2_per_objfile *dwarf2_per_objfile
6958 = cu->per_cu->dwarf2_per_objfile;
a2ce51a0 6959 struct objfile *objfile = dwarf2_per_objfile->objfile;
ed2dc618 6960 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
a2ce51a0
DE
6961 struct dwo_unit *dwo_entry;
6962 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 6963 void **slot;
a2ce51a0
DE
6964
6965 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6966 gdb_assert (dwp_file != NULL);
6967
6aa5f3a6
DE
6968 /* If TU skeletons have been removed then we may not have read in any
6969 TUs yet. */
6970 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 6971 {
6aa5f3a6
DE
6972 dwarf2_per_objfile->signatured_types
6973 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
6974 }
6975
6aa5f3a6
DE
6976 find_sig_entry.signature = sig;
6977 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6978 &find_sig_entry, INSERT);
9a3c8263 6979 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
6980
6981 /* Have we already tried to read this TU?
6982 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6983 needn't exist in the global table yet). */
6984 if (sig_entry != NULL)
6985 return sig_entry;
6986
a2ce51a0
DE
6987 if (dwp_file->tus == NULL)
6988 return NULL;
ed2dc618 6989 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
57d63ce2 6990 sig, 1 /* is_debug_types */);
a2ce51a0
DE
6991 if (dwo_entry == NULL)
6992 return NULL;
6993
ed2dc618
SM
6994 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6995 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
a2ce51a0 6996
a2ce51a0
DE
6997 return sig_entry;
6998}
6999
380bca97 7000/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
7001 Returns NULL if signature SIG is not present in the table.
7002 It is up to the caller to complain about this. */
348e048f
DE
7003
7004static struct signatured_type *
a2ce51a0 7005lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 7006{
518817b3
SM
7007 struct dwarf2_per_objfile *dwarf2_per_objfile
7008 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 7009
a2ce51a0
DE
7010 if (cu->dwo_unit
7011 && dwarf2_per_objfile->using_index)
7012 {
7013 /* We're in a DWO/DWP file, and we're using .gdb_index.
7014 These cases require special processing. */
ed2dc618 7015 if (get_dwp_file (dwarf2_per_objfile) == NULL)
a2ce51a0
DE
7016 return lookup_dwo_signatured_type (cu, sig);
7017 else
7018 return lookup_dwp_signatured_type (cu, sig);
7019 }
7020 else
7021 {
7022 struct signatured_type find_entry, *entry;
348e048f 7023
a2ce51a0
DE
7024 if (dwarf2_per_objfile->signatured_types == NULL)
7025 return NULL;
7026 find_entry.signature = sig;
9a3c8263
SM
7027 entry = ((struct signatured_type *)
7028 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
7029 return entry;
7030 }
348e048f 7031}
42e7ad6c
DE
7032\f
7033/* Low level DIE reading support. */
348e048f 7034
d85a05f0
DJ
7035/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7036
7037static void
7038init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 7039 struct dwarf2_cu *cu,
3019eac3 7040 struct dwarf2_section_info *section,
685af9cd
TT
7041 struct dwo_file *dwo_file,
7042 struct abbrev_table *abbrev_table)
d85a05f0 7043{
fceca515 7044 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 7045 reader->abfd = get_section_bfd_owner (section);
d85a05f0 7046 reader->cu = cu;
3019eac3 7047 reader->dwo_file = dwo_file;
dee91e82
DE
7048 reader->die_section = section;
7049 reader->buffer = section->buffer;
f664829e 7050 reader->buffer_end = section->buffer + section->size;
a2ce51a0 7051 reader->comp_dir = NULL;
685af9cd 7052 reader->abbrev_table = abbrev_table;
d85a05f0
DJ
7053}
7054
b0c7bfa9
DE
7055/* Subroutine of init_cutu_and_read_dies to simplify it.
7056 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7057 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7058 already.
7059
7060 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7061 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
7062 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7063 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
7064 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7065 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
7066 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7067 are filled in with the info of the DIE from the DWO file.
685af9cd
TT
7068 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7069 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7070 kept around for at least as long as *RESULT_READER.
7071
b0c7bfa9
DE
7072 The result is non-zero if a valid (non-dummy) DIE was found. */
7073
7074static int
7075read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7076 struct dwo_unit *dwo_unit,
b0c7bfa9 7077 struct die_info *stub_comp_unit_die,
a2ce51a0 7078 const char *stub_comp_dir,
b0c7bfa9 7079 struct die_reader_specs *result_reader,
d521ce57 7080 const gdb_byte **result_info_ptr,
b0c7bfa9 7081 struct die_info **result_comp_unit_die,
685af9cd
TT
7082 int *result_has_children,
7083 abbrev_table_up *result_dwo_abbrev_table)
b0c7bfa9 7084{
ed2dc618 7085 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
b0c7bfa9
DE
7086 struct objfile *objfile = dwarf2_per_objfile->objfile;
7087 struct dwarf2_cu *cu = this_cu->cu;
b0c7bfa9 7088 bfd *abfd;
d521ce57 7089 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
7090 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7091 int i,num_extra_attrs;
7092 struct dwarf2_section_info *dwo_abbrev_section;
7093 struct attribute *attr;
7094 struct die_info *comp_unit_die;
7095
b0aeadb3
DE
7096 /* At most one of these may be provided. */
7097 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 7098
b0c7bfa9
DE
7099 /* These attributes aren't processed until later:
7100 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
7101 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7102 referenced later. However, these attributes are found in the stub
7103 which we won't have later. In order to not impose this complication
7104 on the rest of the code, we read them here and copy them to the
7105 DWO CU/TU die. */
b0c7bfa9
DE
7106
7107 stmt_list = NULL;
7108 low_pc = NULL;
7109 high_pc = NULL;
7110 ranges = NULL;
7111 comp_dir = NULL;
7112
7113 if (stub_comp_unit_die != NULL)
7114 {
7115 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7116 DWO file. */
7117 if (! this_cu->is_debug_types)
7118 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7119 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7120 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7121 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7122 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7123
7124 /* There should be a DW_AT_addr_base attribute here (if needed).
7125 We need the value before we can process DW_FORM_GNU_addr_index. */
7126 cu->addr_base = 0;
7127 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7128 if (attr)
7129 cu->addr_base = DW_UNSND (attr);
7130
7131 /* There should be a DW_AT_ranges_base attribute here (if needed).
7132 We need the value before we can process DW_AT_ranges. */
7133 cu->ranges_base = 0;
7134 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7135 if (attr)
7136 cu->ranges_base = DW_UNSND (attr);
7137 }
a2ce51a0
DE
7138 else if (stub_comp_dir != NULL)
7139 {
7140 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 7141 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
7142 comp_dir->name = DW_AT_comp_dir;
7143 comp_dir->form = DW_FORM_string;
7144 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7145 DW_STRING (comp_dir) = stub_comp_dir;
7146 }
b0c7bfa9
DE
7147
7148 /* Set up for reading the DWO CU/TU. */
7149 cu->dwo_unit = dwo_unit;
685af9cd 7150 dwarf2_section_info *section = dwo_unit->section;
b0c7bfa9 7151 dwarf2_read_section (objfile, section);
a32a8923 7152 abfd = get_section_bfd_owner (section);
9c541725
PA
7153 begin_info_ptr = info_ptr = (section->buffer
7154 + to_underlying (dwo_unit->sect_off));
b0c7bfa9 7155 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
b0c7bfa9
DE
7156
7157 if (this_cu->is_debug_types)
7158 {
b0c7bfa9
DE
7159 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7160
ed2dc618
SM
7161 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7162 &cu->header, section,
b0c7bfa9 7163 dwo_abbrev_section,
43988095 7164 info_ptr, rcuh_kind::TYPE);
a2ce51a0 7165 /* This is not an assert because it can be caused by bad debug info. */
43988095 7166 if (sig_type->signature != cu->header.signature)
a2ce51a0
DE
7167 {
7168 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
9d8780f0 7169 " TU at offset %s [in module %s]"),
a2ce51a0 7170 hex_string (sig_type->signature),
43988095 7171 hex_string (cu->header.signature),
9d8780f0 7172 sect_offset_str (dwo_unit->sect_off),
a2ce51a0
DE
7173 bfd_get_filename (abfd));
7174 }
9c541725 7175 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
7176 /* For DWOs coming from DWP files, we don't know the CU length
7177 nor the type's offset in the TU until now. */
7178 dwo_unit->length = get_cu_length (&cu->header);
9c541725 7179 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
b0c7bfa9
DE
7180
7181 /* Establish the type offset that can be used to lookup the type.
7182 For DWO files, we don't know it until now. */
9c541725
PA
7183 sig_type->type_offset_in_section
7184 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
b0c7bfa9
DE
7185 }
7186 else
7187 {
ed2dc618
SM
7188 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7189 &cu->header, section,
b0c7bfa9 7190 dwo_abbrev_section,
43988095 7191 info_ptr, rcuh_kind::COMPILE);
9c541725 7192 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
7193 /* For DWOs coming from DWP files, we don't know the CU length
7194 until now. */
7195 dwo_unit->length = get_cu_length (&cu->header);
7196 }
7197
685af9cd
TT
7198 *result_dwo_abbrev_table
7199 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7200 cu->header.abbrev_sect_off);
7201 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7202 result_dwo_abbrev_table->get ());
b0c7bfa9
DE
7203
7204 /* Read in the die, but leave space to copy over the attributes
7205 from the stub. This has the benefit of simplifying the rest of
7206 the code - all the work to maintain the illusion of a single
7207 DW_TAG_{compile,type}_unit DIE is done here. */
7208 num_extra_attrs = ((stmt_list != NULL)
7209 + (low_pc != NULL)
7210 + (high_pc != NULL)
7211 + (ranges != NULL)
7212 + (comp_dir != NULL));
7213 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7214 result_has_children, num_extra_attrs);
7215
7216 /* Copy over the attributes from the stub to the DIE we just read in. */
7217 comp_unit_die = *result_comp_unit_die;
7218 i = comp_unit_die->num_attrs;
7219 if (stmt_list != NULL)
7220 comp_unit_die->attrs[i++] = *stmt_list;
7221 if (low_pc != NULL)
7222 comp_unit_die->attrs[i++] = *low_pc;
7223 if (high_pc != NULL)
7224 comp_unit_die->attrs[i++] = *high_pc;
7225 if (ranges != NULL)
7226 comp_unit_die->attrs[i++] = *ranges;
7227 if (comp_dir != NULL)
7228 comp_unit_die->attrs[i++] = *comp_dir;
7229 comp_unit_die->num_attrs += num_extra_attrs;
7230
b4f54984 7231 if (dwarf_die_debug)
bf6af496
DE
7232 {
7233 fprintf_unfiltered (gdb_stdlog,
7234 "Read die from %s@0x%x of %s:\n",
a32a8923 7235 get_section_name (section),
bf6af496
DE
7236 (unsigned) (begin_info_ptr - section->buffer),
7237 bfd_get_filename (abfd));
b4f54984 7238 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
7239 }
7240
a2ce51a0
DE
7241 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7242 TUs by skipping the stub and going directly to the entry in the DWO file.
7243 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7244 to get it via circuitous means. Blech. */
7245 if (comp_dir != NULL)
7246 result_reader->comp_dir = DW_STRING (comp_dir);
7247
b0c7bfa9
DE
7248 /* Skip dummy compilation units. */
7249 if (info_ptr >= begin_info_ptr + dwo_unit->length
7250 || peek_abbrev_code (abfd, info_ptr) == 0)
7251 return 0;
7252
7253 *result_info_ptr = info_ptr;
7254 return 1;
7255}
7256
7257/* Subroutine of init_cutu_and_read_dies to simplify it.
7258 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 7259 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
7260
7261static struct dwo_unit *
7262lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7263 struct die_info *comp_unit_die)
7264{
7265 struct dwarf2_cu *cu = this_cu->cu;
b0c7bfa9
DE
7266 ULONGEST signature;
7267 struct dwo_unit *dwo_unit;
7268 const char *comp_dir, *dwo_name;
7269
a2ce51a0
DE
7270 gdb_assert (cu != NULL);
7271
b0c7bfa9 7272 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
7273 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7274 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
7275
7276 if (this_cu->is_debug_types)
7277 {
7278 struct signatured_type *sig_type;
7279
7280 /* Since this_cu is the first member of struct signatured_type,
7281 we can go from a pointer to one to a pointer to the other. */
7282 sig_type = (struct signatured_type *) this_cu;
7283 signature = sig_type->signature;
7284 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7285 }
7286 else
7287 {
7288 struct attribute *attr;
7289
7290 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7291 if (! attr)
7292 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7293 " [in module %s]"),
e3b94546 7294 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
b0c7bfa9
DE
7295 signature = DW_UNSND (attr);
7296 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7297 signature);
7298 }
7299
b0c7bfa9
DE
7300 return dwo_unit;
7301}
7302
a2ce51a0 7303/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6 7304 See it for a description of the parameters.
fcd3b13d 7305 Read a TU directly from a DWO file, bypassing the stub. */
a2ce51a0
DE
7306
7307static void
6aa5f3a6
DE
7308init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7309 int use_existing_cu, int keep,
a2ce51a0
DE
7310 die_reader_func_ftype *die_reader_func,
7311 void *data)
7312{
fcd3b13d 7313 std::unique_ptr<dwarf2_cu> new_cu;
a2ce51a0 7314 struct signatured_type *sig_type;
a2ce51a0
DE
7315 struct die_reader_specs reader;
7316 const gdb_byte *info_ptr;
7317 struct die_info *comp_unit_die;
7318 int has_children;
ed2dc618 7319 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
a2ce51a0
DE
7320
7321 /* Verify we can do the following downcast, and that we have the
7322 data we need. */
7323 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7324 sig_type = (struct signatured_type *) this_cu;
7325 gdb_assert (sig_type->dwo_unit != NULL);
7326
6aa5f3a6
DE
7327 if (use_existing_cu && this_cu->cu != NULL)
7328 {
7329 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6aa5f3a6
DE
7330 /* There's no need to do the rereading_dwo_cu handling that
7331 init_cutu_and_read_dies does since we don't read the stub. */
7332 }
7333 else
7334 {
7335 /* If !use_existing_cu, this_cu->cu must be NULL. */
7336 gdb_assert (this_cu->cu == NULL);
fcd3b13d 7337 new_cu.reset (new dwarf2_cu (this_cu));
6aa5f3a6
DE
7338 }
7339
7340 /* A future optimization, if needed, would be to use an existing
7341 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7342 could share abbrev tables. */
a2ce51a0 7343
685af9cd
TT
7344 /* The abbreviation table used by READER, this must live at least as long as
7345 READER. */
7346 abbrev_table_up dwo_abbrev_table;
7347
a2ce51a0 7348 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
a2ce51a0
DE
7349 NULL /* stub_comp_unit_die */,
7350 sig_type->dwo_unit->dwo_file->comp_dir,
7351 &reader, &info_ptr,
685af9cd
TT
7352 &comp_unit_die, &has_children,
7353 &dwo_abbrev_table) == 0)
a2ce51a0
DE
7354 {
7355 /* Dummy die. */
a2ce51a0
DE
7356 return;
7357 }
7358
7359 /* All the "real" work is done here. */
7360 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7361
6aa5f3a6 7362 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
7363 but the alternative is making the latter more complex.
7364 This function is only for the special case of using DWO files directly:
7365 no point in overly complicating the general case just to handle this. */
fcd3b13d 7366 if (new_cu != NULL && keep)
a2ce51a0 7367 {
fcd3b13d
SM
7368 /* Link this CU into read_in_chain. */
7369 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7370 dwarf2_per_objfile->read_in_chain = this_cu;
7371 /* The chain owns it now. */
7372 new_cu.release ();
a2ce51a0 7373 }
a2ce51a0
DE
7374}
7375
fd820528 7376/* Initialize a CU (or TU) and read its DIEs.
3019eac3 7377 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 7378
f4dc4d17
DE
7379 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7380 Otherwise the table specified in the comp unit header is read in and used.
7381 This is an optimization for when we already have the abbrev table.
7382
dee91e82
DE
7383 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7384 Otherwise, a new CU is allocated with xmalloc.
7385
7386 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7387 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7388
7389 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 7390 linker) then DIE_READER_FUNC will not get called. */
aaa75496 7391
70221824 7392static void
fd820528 7393init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 7394 struct abbrev_table *abbrev_table,
fd820528 7395 int use_existing_cu, int keep,
58f0c718 7396 bool skip_partial,
fd820528
DE
7397 die_reader_func_ftype *die_reader_func,
7398 void *data)
c906108c 7399{
ed2dc618 7400 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
dee91e82 7401 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 7402 struct dwarf2_section_info *section = this_cu->section;
a32a8923 7403 bfd *abfd = get_section_bfd_owner (section);
dee91e82 7404 struct dwarf2_cu *cu;
d521ce57 7405 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 7406 struct die_reader_specs reader;
d85a05f0 7407 struct die_info *comp_unit_die;
dee91e82 7408 int has_children;
d85a05f0 7409 struct attribute *attr;
dee91e82 7410 struct signatured_type *sig_type = NULL;
4bdcc0c1 7411 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
7412 /* Non-zero if CU currently points to a DWO file and we need to
7413 reread it. When this happens we need to reread the skeleton die
a2ce51a0 7414 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 7415 int rereading_dwo_cu = 0;
c906108c 7416
b4f54984 7417 if (dwarf_die_debug)
9d8780f0 7418 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
09406207 7419 this_cu->is_debug_types ? "type" : "comp",
9d8780f0 7420 sect_offset_str (this_cu->sect_off));
09406207 7421
dee91e82
DE
7422 if (use_existing_cu)
7423 gdb_assert (keep);
23745b47 7424
a2ce51a0
DE
7425 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7426 file (instead of going through the stub), short-circuit all of this. */
7427 if (this_cu->reading_dwo_directly)
7428 {
7429 /* Narrow down the scope of possibilities to have to understand. */
7430 gdb_assert (this_cu->is_debug_types);
7431 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
7432 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7433 die_reader_func, data);
a2ce51a0
DE
7434 return;
7435 }
7436
dee91e82
DE
7437 /* This is cheap if the section is already read in. */
7438 dwarf2_read_section (objfile, section);
7439
9c541725 7440 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
36586728
TT
7441
7442 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82 7443
fcd3b13d 7444 std::unique_ptr<dwarf2_cu> new_cu;
dee91e82
DE
7445 if (use_existing_cu && this_cu->cu != NULL)
7446 {
7447 cu = this_cu->cu;
42e7ad6c
DE
7448 /* If this CU is from a DWO file we need to start over, we need to
7449 refetch the attributes from the skeleton CU.
7450 This could be optimized by retrieving those attributes from when we
7451 were here the first time: the previous comp_unit_die was stored in
7452 comp_unit_obstack. But there's no data yet that we need this
7453 optimization. */
7454 if (cu->dwo_unit != NULL)
7455 rereading_dwo_cu = 1;
dee91e82
DE
7456 }
7457 else
7458 {
7459 /* If !use_existing_cu, this_cu->cu must be NULL. */
7460 gdb_assert (this_cu->cu == NULL);
fcd3b13d
SM
7461 new_cu.reset (new dwarf2_cu (this_cu));
7462 cu = new_cu.get ();
42e7ad6c 7463 }
dee91e82 7464
b0c7bfa9 7465 /* Get the header. */
9c541725 7466 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
42e7ad6c
DE
7467 {
7468 /* We already have the header, there's no need to read it in again. */
9c541725 7469 info_ptr += to_underlying (cu->header.first_die_cu_offset);
42e7ad6c
DE
7470 }
7471 else
7472 {
3019eac3 7473 if (this_cu->is_debug_types)
dee91e82 7474 {
ed2dc618
SM
7475 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7476 &cu->header, section,
4bdcc0c1 7477 abbrev_section, info_ptr,
43988095 7478 rcuh_kind::TYPE);
dee91e82 7479
42e7ad6c
DE
7480 /* Since per_cu is the first member of struct signatured_type,
7481 we can go from a pointer to one to a pointer to the other. */
7482 sig_type = (struct signatured_type *) this_cu;
43988095 7483 gdb_assert (sig_type->signature == cu->header.signature);
9c541725
PA
7484 gdb_assert (sig_type->type_offset_in_tu
7485 == cu->header.type_cu_offset_in_tu);
7486 gdb_assert (this_cu->sect_off == cu->header.sect_off);
dee91e82 7487
42e7ad6c
DE
7488 /* LENGTH has not been set yet for type units if we're
7489 using .gdb_index. */
1ce1cefd 7490 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
7491
7492 /* Establish the type offset that can be used to lookup the type. */
9c541725
PA
7493 sig_type->type_offset_in_section =
7494 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
43988095
JK
7495
7496 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
7497 }
7498 else
7499 {
ed2dc618
SM
7500 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7501 &cu->header, section,
4bdcc0c1 7502 abbrev_section,
43988095
JK
7503 info_ptr,
7504 rcuh_kind::COMPILE);
dee91e82 7505
9c541725 7506 gdb_assert (this_cu->sect_off == cu->header.sect_off);
1ce1cefd 7507 gdb_assert (this_cu->length == get_cu_length (&cu->header));
43988095 7508 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
7509 }
7510 }
10b3939b 7511
6caca83c 7512 /* Skip dummy compilation units. */
dee91e82 7513 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c 7514 || peek_abbrev_code (abfd, info_ptr) == 0)
fcd3b13d 7515 return;
6caca83c 7516
433df2d4
DE
7517 /* If we don't have them yet, read the abbrevs for this compilation unit.
7518 And if we need to read them now, make sure they're freed when we're
685af9cd
TT
7519 done (own the table through ABBREV_TABLE_HOLDER). */
7520 abbrev_table_up abbrev_table_holder;
f4dc4d17 7521 if (abbrev_table != NULL)
685af9cd
TT
7522 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7523 else
f4dc4d17 7524 {
685af9cd
TT
7525 abbrev_table_holder
7526 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7527 cu->header.abbrev_sect_off);
7528 abbrev_table = abbrev_table_holder.get ();
42e7ad6c 7529 }
af703f96 7530
dee91e82 7531 /* Read the top level CU/TU die. */
685af9cd 7532 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
dee91e82 7533 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 7534
58f0c718
TT
7535 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7536 return;
7537
b0c7bfa9 7538 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
685af9cd
TT
7539 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7540 table from the DWO file and pass the ownership over to us. It will be
7541 referenced from READER, so we must make sure to free it after we're done
7542 with READER.
7543
b0c7bfa9
DE
7544 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7545 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3 7546 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
685af9cd 7547 abbrev_table_up dwo_abbrev_table;
3019eac3
DE
7548 if (attr)
7549 {
3019eac3 7550 struct dwo_unit *dwo_unit;
b0c7bfa9 7551 struct die_info *dwo_comp_unit_die;
3019eac3
DE
7552
7553 if (has_children)
6a506a2d 7554 {
b98664d3 7555 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
9d8780f0
SM
7556 " has children (offset %s) [in module %s]"),
7557 sect_offset_str (this_cu->sect_off),
7558 bfd_get_filename (abfd));
6a506a2d 7559 }
b0c7bfa9 7560 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 7561 if (dwo_unit != NULL)
3019eac3 7562 {
6a506a2d 7563 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
a2ce51a0 7564 comp_unit_die, NULL,
6a506a2d 7565 &reader, &info_ptr,
685af9cd
TT
7566 &dwo_comp_unit_die, &has_children,
7567 &dwo_abbrev_table) == 0)
6a506a2d
DE
7568 {
7569 /* Dummy die. */
6a506a2d
DE
7570 return;
7571 }
7572 comp_unit_die = dwo_comp_unit_die;
7573 }
7574 else
7575 {
7576 /* Yikes, we couldn't find the rest of the DIE, we only have
7577 the stub. A complaint has already been logged. There's
7578 not much more we can do except pass on the stub DIE to
7579 die_reader_func. We don't want to throw an error on bad
7580 debug info. */
3019eac3
DE
7581 }
7582 }
7583
b0c7bfa9 7584 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
7585 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7586
b0c7bfa9 7587 /* Done, clean up. */
fcd3b13d 7588 if (new_cu != NULL && keep)
348e048f 7589 {
fcd3b13d
SM
7590 /* Link this CU into read_in_chain. */
7591 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7592 dwarf2_per_objfile->read_in_chain = this_cu;
7593 /* The chain owns it now. */
7594 new_cu.release ();
348e048f 7595 }
dee91e82
DE
7596}
7597
33e80786
DE
7598/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7599 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7600 to have already done the lookup to find the DWO file).
dee91e82
DE
7601
7602 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 7603 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
7604
7605 We fill in THIS_CU->length.
7606
7607 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7608 linker) then DIE_READER_FUNC will not get called.
7609
7610 THIS_CU->cu is always freed when done.
3019eac3
DE
7611 This is done in order to not leave THIS_CU->cu in a state where we have
7612 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
7613
7614static void
7615init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 7616 struct dwo_file *dwo_file,
dee91e82
DE
7617 die_reader_func_ftype *die_reader_func,
7618 void *data)
7619{
ed2dc618 7620 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
dee91e82 7621 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 7622 struct dwarf2_section_info *section = this_cu->section;
a32a8923 7623 bfd *abfd = get_section_bfd_owner (section);
33e80786 7624 struct dwarf2_section_info *abbrev_section;
d521ce57 7625 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 7626 struct die_reader_specs reader;
dee91e82
DE
7627 struct die_info *comp_unit_die;
7628 int has_children;
7629
b4f54984 7630 if (dwarf_die_debug)
9d8780f0 7631 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
09406207 7632 this_cu->is_debug_types ? "type" : "comp",
9d8780f0 7633 sect_offset_str (this_cu->sect_off));
09406207 7634
dee91e82
DE
7635 gdb_assert (this_cu->cu == NULL);
7636
33e80786
DE
7637 abbrev_section = (dwo_file != NULL
7638 ? &dwo_file->sections.abbrev
7639 : get_abbrev_section_for_cu (this_cu));
7640
dee91e82
DE
7641 /* This is cheap if the section is already read in. */
7642 dwarf2_read_section (objfile, section);
7643
fcd3b13d 7644 struct dwarf2_cu cu (this_cu);
dee91e82 7645
9c541725 7646 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
ed2dc618
SM
7647 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7648 &cu.header, section,
4bdcc0c1 7649 abbrev_section, info_ptr,
43988095
JK
7650 (this_cu->is_debug_types
7651 ? rcuh_kind::TYPE
7652 : rcuh_kind::COMPILE));
dee91e82 7653
1ce1cefd 7654 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
7655
7656 /* Skip dummy compilation units. */
7657 if (info_ptr >= begin_info_ptr + this_cu->length
7658 || peek_abbrev_code (abfd, info_ptr) == 0)
fcd3b13d 7659 return;
72bf9492 7660
685af9cd
TT
7661 abbrev_table_up abbrev_table
7662 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7663 cu.header.abbrev_sect_off);
dee91e82 7664
685af9cd 7665 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
dee91e82
DE
7666 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7667
7668 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
dee91e82
DE
7669}
7670
3019eac3
DE
7671/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7672 does not lookup the specified DWO file.
7673 This cannot be used to read DWO files.
dee91e82
DE
7674
7675 THIS_CU->cu is always freed when done.
3019eac3
DE
7676 This is done in order to not leave THIS_CU->cu in a state where we have
7677 to care whether it refers to the "main" CU or the DWO CU.
7678 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
7679
7680static void
7681init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7682 die_reader_func_ftype *die_reader_func,
7683 void *data)
7684{
33e80786 7685 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 7686}
0018ea6f
DE
7687\f
7688/* Type Unit Groups.
dee91e82 7689
0018ea6f
DE
7690 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7691 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7692 so that all types coming from the same compilation (.o file) are grouped
7693 together. A future step could be to put the types in the same symtab as
7694 the CU the types ultimately came from. */
ff013f42 7695
f4dc4d17
DE
7696static hashval_t
7697hash_type_unit_group (const void *item)
7698{
9a3c8263
SM
7699 const struct type_unit_group *tu_group
7700 = (const struct type_unit_group *) item;
f4dc4d17 7701
094b34ac 7702 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 7703}
348e048f
DE
7704
7705static int
f4dc4d17 7706eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 7707{
9a3c8263
SM
7708 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7709 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 7710
094b34ac 7711 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 7712}
348e048f 7713
f4dc4d17
DE
7714/* Allocate a hash table for type unit groups. */
7715
7716static htab_t
ed2dc618 7717allocate_type_unit_groups_table (struct objfile *objfile)
f4dc4d17
DE
7718{
7719 return htab_create_alloc_ex (3,
7720 hash_type_unit_group,
7721 eq_type_unit_group,
7722 NULL,
ed2dc618 7723 &objfile->objfile_obstack,
f4dc4d17
DE
7724 hashtab_obstack_allocate,
7725 dummy_obstack_deallocate);
7726}
dee91e82 7727
f4dc4d17
DE
7728/* Type units that don't have DW_AT_stmt_list are grouped into their own
7729 partial symtabs. We combine several TUs per psymtab to not let the size
7730 of any one psymtab grow too big. */
7731#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7732#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 7733
094b34ac 7734/* Helper routine for get_type_unit_group.
f4dc4d17
DE
7735 Create the type_unit_group object used to hold one or more TUs. */
7736
7737static struct type_unit_group *
094b34ac 7738create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17 7739{
518817b3
SM
7740 struct dwarf2_per_objfile *dwarf2_per_objfile
7741 = cu->per_cu->dwarf2_per_objfile;
f4dc4d17 7742 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 7743 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 7744 struct type_unit_group *tu_group;
f4dc4d17
DE
7745
7746 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7747 struct type_unit_group);
094b34ac 7748 per_cu = &tu_group->per_cu;
518817b3 7749 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
f4dc4d17 7750
094b34ac
DE
7751 if (dwarf2_per_objfile->using_index)
7752 {
7753 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7754 struct dwarf2_per_cu_quick_data);
094b34ac
DE
7755 }
7756 else
7757 {
9c541725 7758 unsigned int line_offset = to_underlying (line_offset_struct);
094b34ac
DE
7759 struct partial_symtab *pst;
7760 char *name;
7761
7762 /* Give the symtab a useful name for debug purposes. */
7763 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7764 name = xstrprintf ("<type_units_%d>",
7765 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7766 else
7767 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
7768
7769 pst = create_partial_symtab (per_cu, name);
7770 pst->anonymous = 1;
f4dc4d17 7771
094b34ac
DE
7772 xfree (name);
7773 }
f4dc4d17 7774
094b34ac 7775 tu_group->hash.dwo_unit = cu->dwo_unit;
9c541725 7776 tu_group->hash.line_sect_off = line_offset_struct;
f4dc4d17
DE
7777
7778 return tu_group;
7779}
7780
094b34ac
DE
7781/* Look up the type_unit_group for type unit CU, and create it if necessary.
7782 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
7783
7784static struct type_unit_group *
ff39bb5e 7785get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17 7786{
518817b3
SM
7787 struct dwarf2_per_objfile *dwarf2_per_objfile
7788 = cu->per_cu->dwarf2_per_objfile;
f4dc4d17
DE
7789 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7790 struct type_unit_group *tu_group;
7791 void **slot;
7792 unsigned int line_offset;
7793 struct type_unit_group type_unit_group_for_lookup;
7794
7795 if (dwarf2_per_objfile->type_unit_groups == NULL)
7796 {
7797 dwarf2_per_objfile->type_unit_groups =
ed2dc618 7798 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
f4dc4d17
DE
7799 }
7800
7801 /* Do we need to create a new group, or can we use an existing one? */
7802
7803 if (stmt_list)
7804 {
7805 line_offset = DW_UNSND (stmt_list);
7806 ++tu_stats->nr_symtab_sharers;
7807 }
7808 else
7809 {
7810 /* Ugh, no stmt_list. Rare, but we have to handle it.
7811 We can do various things here like create one group per TU or
7812 spread them over multiple groups to split up the expansion work.
7813 To avoid worst case scenarios (too many groups or too large groups)
7814 we, umm, group them in bunches. */
7815 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7816 | (tu_stats->nr_stmt_less_type_units
7817 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7818 ++tu_stats->nr_stmt_less_type_units;
7819 }
7820
094b34ac 7821 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
9c541725 7822 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
f4dc4d17
DE
7823 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7824 &type_unit_group_for_lookup, INSERT);
7825 if (*slot != NULL)
7826 {
9a3c8263 7827 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
7828 gdb_assert (tu_group != NULL);
7829 }
7830 else
7831 {
9c541725 7832 sect_offset line_offset_struct = (sect_offset) line_offset;
094b34ac 7833 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
7834 *slot = tu_group;
7835 ++tu_stats->nr_symtabs;
7836 }
7837
7838 return tu_group;
7839}
0018ea6f
DE
7840\f
7841/* Partial symbol tables. */
7842
7843/* Create a psymtab named NAME and assign it to PER_CU.
7844
7845 The caller must fill in the following details:
7846 dirname, textlow, texthigh. */
7847
7848static struct partial_symtab *
7849create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7850{
e3b94546 7851 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
0018ea6f
DE
7852 struct partial_symtab *pst;
7853
18a94d75 7854 pst = start_psymtab_common (objfile, name, 0,
af5bf4ad
SM
7855 objfile->global_psymbols,
7856 objfile->static_psymbols);
0018ea6f
DE
7857
7858 pst->psymtabs_addrmap_supported = 1;
7859
7860 /* This is the glue that links PST into GDB's symbol API. */
7861 pst->read_symtab_private = per_cu;
7862 pst->read_symtab = dwarf2_read_symtab;
7863 per_cu->v.psymtab = pst;
7864
7865 return pst;
7866}
7867
b93601f3
TT
7868/* The DATA object passed to process_psymtab_comp_unit_reader has this
7869 type. */
7870
7871struct process_psymtab_comp_unit_data
7872{
7873 /* True if we are reading a DW_TAG_partial_unit. */
7874
7875 int want_partial_unit;
7876
7877 /* The "pretend" language that is used if the CU doesn't declare a
7878 language. */
7879
7880 enum language pretend_language;
7881};
7882
0018ea6f
DE
7883/* die_reader_func for process_psymtab_comp_unit. */
7884
7885static void
7886process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7887 const gdb_byte *info_ptr,
0018ea6f
DE
7888 struct die_info *comp_unit_die,
7889 int has_children,
7890 void *data)
7891{
7892 struct dwarf2_cu *cu = reader->cu;
518817b3 7893 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 7894 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 7895 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
7896 CORE_ADDR baseaddr;
7897 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7898 struct partial_symtab *pst;
3a2b436a 7899 enum pc_bounds_kind cu_bounds_kind;
0018ea6f 7900 const char *filename;
9a3c8263
SM
7901 struct process_psymtab_comp_unit_data *info
7902 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 7903
b93601f3 7904 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
7905 return;
7906
7907 gdb_assert (! per_cu->is_debug_types);
7908
b93601f3 7909 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
7910
7911 cu->list_in_scope = &file_symbols;
7912
7913 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
7914 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7915 if (filename == NULL)
0018ea6f 7916 filename = "";
0018ea6f
DE
7917
7918 pst = create_partial_symtab (per_cu, filename);
7919
7920 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 7921 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
7922
7923 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7924
7925 dwarf2_find_base_address (comp_unit_die, cu);
7926
7927 /* Possibly set the default values of LOWPC and HIGHPC from
7928 `DW_AT_ranges'. */
3a2b436a
JK
7929 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7930 &best_highpc, cu, pst);
7931 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
0018ea6f
DE
7932 /* Store the contiguous range if it is not empty; it can be empty for
7933 CUs with no code. */
7934 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
7935 gdbarch_adjust_dwarf2_addr (gdbarch,
7936 best_lowpc + baseaddr),
7937 gdbarch_adjust_dwarf2_addr (gdbarch,
7938 best_highpc + baseaddr) - 1,
7939 pst);
0018ea6f
DE
7940
7941 /* Check if comp unit has_children.
7942 If so, read the rest of the partial symbols from this comp unit.
7943 If not, there's no more debug_info for this comp unit. */
7944 if (has_children)
7945 {
7946 struct partial_die_info *first_die;
7947 CORE_ADDR lowpc, highpc;
7948
7949 lowpc = ((CORE_ADDR) -1);
7950 highpc = ((CORE_ADDR) 0);
7951
7952 first_die = load_partial_dies (reader, info_ptr, 1);
7953
7954 scan_partial_symbols (first_die, &lowpc, &highpc,
e385593e 7955 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
0018ea6f
DE
7956
7957 /* If we didn't find a lowpc, set it to highpc to avoid
7958 complaints from `maint check'. */
7959 if (lowpc == ((CORE_ADDR) -1))
7960 lowpc = highpc;
7961
7962 /* If the compilation unit didn't have an explicit address range,
7963 then use the information extracted from its child dies. */
e385593e 7964 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
0018ea6f
DE
7965 {
7966 best_lowpc = lowpc;
7967 best_highpc = highpc;
7968 }
7969 }
3e29f34a
MR
7970 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
7971 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 7972
8763cede 7973 end_psymtab_common (objfile, pst);
0018ea6f
DE
7974
7975 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
7976 {
7977 int i;
7978 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7979 struct dwarf2_per_cu_data *iter;
7980
7981 /* Fill in 'dependencies' here; we fill in 'users' in a
7982 post-pass. */
7983 pst->number_of_dependencies = len;
8d749320
SM
7984 pst->dependencies =
7985 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
7986 for (i = 0;
7987 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7988 i, iter);
7989 ++i)
7990 pst->dependencies[i] = iter->v.psymtab;
7991
7992 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7993 }
7994
7995 /* Get the list of files included in the current compilation unit,
7996 and build a psymtab for each of them. */
7997 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7998
b4f54984 7999 if (dwarf_read_debug)
0018ea6f
DE
8000 {
8001 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8002
8003 fprintf_unfiltered (gdb_stdlog,
9d8780f0 8004 "Psymtab for %s unit @%s: %s - %s"
0018ea6f
DE
8005 ", %d global, %d static syms\n",
8006 per_cu->is_debug_types ? "type" : "comp",
9d8780f0 8007 sect_offset_str (per_cu->sect_off),
0018ea6f
DE
8008 paddress (gdbarch, pst->textlow),
8009 paddress (gdbarch, pst->texthigh),
8010 pst->n_global_syms, pst->n_static_syms);
8011 }
8012}
8013
8014/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8015 Process compilation unit THIS_CU for a psymtab. */
8016
8017static void
8018process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
8019 int want_partial_unit,
8020 enum language pretend_language)
0018ea6f
DE
8021{
8022 /* If this compilation unit was already read in, free the
8023 cached copy in order to read it in again. This is
8024 necessary because we skipped some symbols when we first
8025 read in the compilation unit (see load_partial_dies).
8026 This problem could be avoided, but the benefit is unclear. */
8027 if (this_cu->cu != NULL)
8028 free_one_cached_comp_unit (this_cu);
8029
f1902523 8030 if (this_cu->is_debug_types)
58f0c718
TT
8031 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8032 build_type_psymtabs_reader, NULL);
f1902523
JK
8033 else
8034 {
8035 process_psymtab_comp_unit_data info;
8036 info.want_partial_unit = want_partial_unit;
8037 info.pretend_language = pretend_language;
58f0c718 8038 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
f1902523
JK
8039 process_psymtab_comp_unit_reader, &info);
8040 }
0018ea6f
DE
8041
8042 /* Age out any secondary CUs. */
ed2dc618 8043 age_cached_comp_units (this_cu->dwarf2_per_objfile);
0018ea6f 8044}
f4dc4d17
DE
8045
8046/* Reader function for build_type_psymtabs. */
8047
8048static void
8049build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 8050 const gdb_byte *info_ptr,
f4dc4d17
DE
8051 struct die_info *type_unit_die,
8052 int has_children,
8053 void *data)
8054{
ed2dc618 8055 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 8056 = reader->cu->per_cu->dwarf2_per_objfile;
f4dc4d17
DE
8057 struct objfile *objfile = dwarf2_per_objfile->objfile;
8058 struct dwarf2_cu *cu = reader->cu;
8059 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 8060 struct signatured_type *sig_type;
f4dc4d17
DE
8061 struct type_unit_group *tu_group;
8062 struct attribute *attr;
8063 struct partial_die_info *first_die;
8064 CORE_ADDR lowpc, highpc;
8065 struct partial_symtab *pst;
8066
8067 gdb_assert (data == NULL);
0186c6a7
DE
8068 gdb_assert (per_cu->is_debug_types);
8069 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8070
8071 if (! has_children)
8072 return;
8073
8074 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 8075 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 8076
0186c6a7 8077 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
8078
8079 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8080 cu->list_in_scope = &file_symbols;
8081 pst = create_partial_symtab (per_cu, "");
8082 pst->anonymous = 1;
8083
8084 first_die = load_partial_dies (reader, info_ptr, 1);
8085
8086 lowpc = (CORE_ADDR) -1;
8087 highpc = (CORE_ADDR) 0;
8088 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8089
8763cede 8090 end_psymtab_common (objfile, pst);
f4dc4d17
DE
8091}
8092
73051182
DE
8093/* Struct used to sort TUs by their abbreviation table offset. */
8094
8095struct tu_abbrev_offset
8096{
b2bdb8cf
SM
8097 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8098 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8099 {}
8100
8101 signatured_type *sig_type;
73051182
DE
8102 sect_offset abbrev_offset;
8103};
8104
484cf504 8105/* Helper routine for build_type_psymtabs_1, passed to std::sort. */
73051182 8106
484cf504
TT
8107static bool
8108sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8109 const struct tu_abbrev_offset &b)
73051182 8110{
484cf504 8111 return a.abbrev_offset < b.abbrev_offset;
73051182
DE
8112}
8113
8114/* Efficiently read all the type units.
8115 This does the bulk of the work for build_type_psymtabs.
8116
8117 The efficiency is because we sort TUs by the abbrev table they use and
8118 only read each abbrev table once. In one program there are 200K TUs
8119 sharing 8K abbrev tables.
8120
8121 The main purpose of this function is to support building the
8122 dwarf2_per_objfile->type_unit_groups table.
8123 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8124 can collapse the search space by grouping them by stmt_list.
8125 The savings can be significant, in the same program from above the 200K TUs
8126 share 8K stmt_list tables.
8127
8128 FUNC is expected to call get_type_unit_group, which will create the
8129 struct type_unit_group if necessary and add it to
8130 dwarf2_per_objfile->type_unit_groups. */
8131
8132static void
ed2dc618 8133build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
73051182 8134{
73051182 8135 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
685af9cd 8136 abbrev_table_up abbrev_table;
73051182 8137 sect_offset abbrev_offset;
73051182
DE
8138
8139 /* It's up to the caller to not call us multiple times. */
8140 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8141
b2bdb8cf 8142 if (dwarf2_per_objfile->all_type_units.empty ())
73051182
DE
8143 return;
8144
8145 /* TUs typically share abbrev tables, and there can be way more TUs than
8146 abbrev tables. Sort by abbrev table to reduce the number of times we
8147 read each abbrev table in.
8148 Alternatives are to punt or to maintain a cache of abbrev tables.
8149 This is simpler and efficient enough for now.
8150
8151 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8152 symtab to use). Typically TUs with the same abbrev offset have the same
8153 stmt_list value too so in practice this should work well.
8154
8155 The basic algorithm here is:
8156
8157 sort TUs by abbrev table
8158 for each TU with same abbrev table:
8159 read abbrev table if first user
8160 read TU top level DIE
8161 [IWBN if DWO skeletons had DW_AT_stmt_list]
8162 call FUNC */
8163
b4f54984 8164 if (dwarf_read_debug)
73051182
DE
8165 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8166
8167 /* Sort in a separate table to maintain the order of all_type_units
8168 for .gdb_index: TU indices directly index all_type_units. */
b2bdb8cf
SM
8169 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8170 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8171
8172 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8173 sorted_by_abbrev.emplace_back
8174 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8175 sig_type->per_cu.section,
8176 sig_type->per_cu.sect_off));
73051182 8177
484cf504
TT
8178 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8179 sort_tu_by_abbrev_offset);
73051182 8180
9c541725 8181 abbrev_offset = (sect_offset) ~(unsigned) 0;
73051182 8182
b2bdb8cf 8183 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
73051182 8184 {
73051182
DE
8185 /* Switch to the next abbrev table if necessary. */
8186 if (abbrev_table == NULL
b2bdb8cf 8187 || tu.abbrev_offset != abbrev_offset)
73051182 8188 {
b2bdb8cf 8189 abbrev_offset = tu.abbrev_offset;
73051182 8190 abbrev_table =
ed2dc618
SM
8191 abbrev_table_read_table (dwarf2_per_objfile,
8192 &dwarf2_per_objfile->abbrev,
73051182
DE
8193 abbrev_offset);
8194 ++tu_stats->nr_uniq_abbrev_tables;
8195 }
8196
b2bdb8cf 8197 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
58f0c718 8198 0, 0, false, build_type_psymtabs_reader, NULL);
73051182 8199 }
6aa5f3a6 8200}
73051182 8201
6aa5f3a6
DE
8202/* Print collected type unit statistics. */
8203
8204static void
ed2dc618 8205print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
6aa5f3a6
DE
8206{
8207 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8208
8209 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
b2bdb8cf
SM
8210 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8211 dwarf2_per_objfile->all_type_units.size ());
6aa5f3a6
DE
8212 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8213 tu_stats->nr_uniq_abbrev_tables);
8214 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8215 tu_stats->nr_symtabs);
8216 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8217 tu_stats->nr_symtab_sharers);
8218 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8219 tu_stats->nr_stmt_less_type_units);
8220 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8221 tu_stats->nr_all_type_units_reallocs);
73051182
DE
8222}
8223
f4dc4d17
DE
8224/* Traversal function for build_type_psymtabs. */
8225
8226static int
8227build_type_psymtab_dependencies (void **slot, void *info)
8228{
ed2dc618
SM
8229 struct dwarf2_per_objfile *dwarf2_per_objfile
8230 = (struct dwarf2_per_objfile *) info;
f4dc4d17
DE
8231 struct objfile *objfile = dwarf2_per_objfile->objfile;
8232 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 8233 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 8234 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
8235 int len = VEC_length (sig_type_ptr, tu_group->tus);
8236 struct signatured_type *iter;
f4dc4d17
DE
8237 int i;
8238
8239 gdb_assert (len > 0);
0186c6a7 8240 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
8241
8242 pst->number_of_dependencies = len;
8d749320
SM
8243 pst->dependencies =
8244 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 8245 for (i = 0;
0186c6a7 8246 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
8247 ++i)
8248 {
0186c6a7
DE
8249 gdb_assert (iter->per_cu.is_debug_types);
8250 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 8251 iter->type_unit_group = tu_group;
f4dc4d17
DE
8252 }
8253
0186c6a7 8254 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
8255
8256 return 1;
8257}
8258
8259/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8260 Build partial symbol tables for the .debug_types comp-units. */
8261
8262static void
ed2dc618 8263build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
348e048f 8264{
ed2dc618 8265 if (! create_all_type_units (dwarf2_per_objfile))
348e048f
DE
8266 return;
8267
ed2dc618 8268 build_type_psymtabs_1 (dwarf2_per_objfile);
6aa5f3a6 8269}
f4dc4d17 8270
6aa5f3a6
DE
8271/* Traversal function for process_skeletonless_type_unit.
8272 Read a TU in a DWO file and build partial symbols for it. */
8273
8274static int
8275process_skeletonless_type_unit (void **slot, void *info)
8276{
8277 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
ed2dc618
SM
8278 struct dwarf2_per_objfile *dwarf2_per_objfile
8279 = (struct dwarf2_per_objfile *) info;
6aa5f3a6
DE
8280 struct signatured_type find_entry, *entry;
8281
8282 /* If this TU doesn't exist in the global table, add it and read it in. */
8283
8284 if (dwarf2_per_objfile->signatured_types == NULL)
8285 {
8286 dwarf2_per_objfile->signatured_types
ed2dc618 8287 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
6aa5f3a6
DE
8288 }
8289
8290 find_entry.signature = dwo_unit->signature;
8291 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8292 INSERT);
8293 /* If we've already seen this type there's nothing to do. What's happening
8294 is we're doing our own version of comdat-folding here. */
8295 if (*slot != NULL)
8296 return 1;
8297
8298 /* This does the job that create_all_type_units would have done for
8299 this TU. */
ed2dc618
SM
8300 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8301 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
6aa5f3a6
DE
8302 *slot = entry;
8303
8304 /* This does the job that build_type_psymtabs_1 would have done. */
58f0c718 8305 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
6aa5f3a6
DE
8306 build_type_psymtabs_reader, NULL);
8307
8308 return 1;
8309}
8310
8311/* Traversal function for process_skeletonless_type_units. */
8312
8313static int
8314process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8315{
8316 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8317
8318 if (dwo_file->tus != NULL)
8319 {
8320 htab_traverse_noresize (dwo_file->tus,
8321 process_skeletonless_type_unit, info);
8322 }
8323
8324 return 1;
8325}
8326
8327/* Scan all TUs of DWO files, verifying we've processed them.
8328 This is needed in case a TU was emitted without its skeleton.
8329 Note: This can't be done until we know what all the DWO files are. */
8330
8331static void
ed2dc618 8332process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6aa5f3a6
DE
8333{
8334 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
ed2dc618 8335 if (get_dwp_file (dwarf2_per_objfile) == NULL
6aa5f3a6
DE
8336 && dwarf2_per_objfile->dwo_files != NULL)
8337 {
8338 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8339 process_dwo_file_for_skeletonless_type_units,
ed2dc618 8340 dwarf2_per_objfile);
6aa5f3a6 8341 }
348e048f
DE
8342}
8343
ed2dc618 8344/* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
95554aad
TT
8345
8346static void
ed2dc618 8347set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
95554aad 8348{
b76e467d 8349 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
95554aad 8350 {
95554aad 8351 struct partial_symtab *pst = per_cu->v.psymtab;
95554aad 8352
36586728
TT
8353 if (pst == NULL)
8354 continue;
8355
b76e467d 8356 for (int j = 0; j < pst->number_of_dependencies; ++j)
95554aad
TT
8357 {
8358 /* Set the 'user' field only if it is not already set. */
8359 if (pst->dependencies[j]->user == NULL)
8360 pst->dependencies[j]->user = pst;
8361 }
8362 }
8363}
8364
93311388
DE
8365/* Build the partial symbol table by doing a quick pass through the
8366 .debug_info and .debug_abbrev sections. */
72bf9492 8367
93311388 8368static void
ed2dc618 8369dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
93311388 8370{
ed2dc618 8371 struct objfile *objfile = dwarf2_per_objfile->objfile;
93311388 8372
b4f54984 8373 if (dwarf_read_debug)
45cfd468
DE
8374 {
8375 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 8376 objfile_name (objfile));
45cfd468
DE
8377 }
8378
98bfdba5
PA
8379 dwarf2_per_objfile->reading_partial_symbols = 1;
8380
be391dca 8381 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 8382
93311388
DE
8383 /* Any cached compilation units will be linked by the per-objfile
8384 read_in_chain. Make sure to free them when we're done. */
11ed8cad 8385 free_cached_comp_units freer (dwarf2_per_objfile);
72bf9492 8386
ed2dc618 8387 build_type_psymtabs (dwarf2_per_objfile);
348e048f 8388
ed2dc618 8389 create_all_comp_units (dwarf2_per_objfile);
c906108c 8390
60606b2c
TT
8391 /* Create a temporary address map on a temporary obstack. We later
8392 copy this to the final obstack. */
8268c778 8393 auto_obstack temp_obstack;
791afaa2
TT
8394
8395 scoped_restore save_psymtabs_addrmap
8396 = make_scoped_restore (&objfile->psymtabs_addrmap,
8397 addrmap_create_mutable (&temp_obstack));
72bf9492 8398
b76e467d
SM
8399 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8400 process_psymtab_comp_unit (per_cu, 0, language_minimal);
ff013f42 8401
6aa5f3a6 8402 /* This has to wait until we read the CUs, we need the list of DWOs. */
ed2dc618 8403 process_skeletonless_type_units (dwarf2_per_objfile);
6aa5f3a6
DE
8404
8405 /* Now that all TUs have been processed we can fill in the dependencies. */
8406 if (dwarf2_per_objfile->type_unit_groups != NULL)
8407 {
8408 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
ed2dc618 8409 build_type_psymtab_dependencies, dwarf2_per_objfile);
6aa5f3a6
DE
8410 }
8411
b4f54984 8412 if (dwarf_read_debug)
ed2dc618 8413 print_tu_stats (dwarf2_per_objfile);
6aa5f3a6 8414
ed2dc618 8415 set_partial_user (dwarf2_per_objfile);
95554aad 8416
ff013f42
JK
8417 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8418 &objfile->objfile_obstack);
791afaa2
TT
8419 /* At this point we want to keep the address map. */
8420 save_psymtabs_addrmap.release ();
ff013f42 8421
b4f54984 8422 if (dwarf_read_debug)
45cfd468 8423 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 8424 objfile_name (objfile));
ae038cb0
DJ
8425}
8426
3019eac3 8427/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
8428
8429static void
dee91e82 8430load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 8431 const gdb_byte *info_ptr,
dee91e82
DE
8432 struct die_info *comp_unit_die,
8433 int has_children,
8434 void *data)
ae038cb0 8435{
dee91e82 8436 struct dwarf2_cu *cu = reader->cu;
ae038cb0 8437
95554aad 8438 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 8439
ae038cb0
DJ
8440 /* Check if comp unit has_children.
8441 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 8442 If not, there's no more debug_info for this comp unit. */
d85a05f0 8443 if (has_children)
dee91e82
DE
8444 load_partial_dies (reader, info_ptr, 0);
8445}
98bfdba5 8446
dee91e82
DE
8447/* Load the partial DIEs for a secondary CU into memory.
8448 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 8449
dee91e82
DE
8450static void
8451load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8452{
58f0c718 8453 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
f4dc4d17 8454 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
8455}
8456
ae038cb0 8457static void
ed2dc618 8458read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
36586728 8459 struct dwarf2_section_info *section,
f1902523 8460 struct dwarf2_section_info *abbrev_section,
b76e467d 8461 unsigned int is_dwz)
ae038cb0 8462{
d521ce57 8463 const gdb_byte *info_ptr;
ed2dc618 8464 struct objfile *objfile = dwarf2_per_objfile->objfile;
be391dca 8465
b4f54984 8466 if (dwarf_read_debug)
bf6af496 8467 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
8468 get_section_name (section),
8469 get_section_file_name (section));
bf6af496 8470
36586728 8471 dwarf2_read_section (objfile, section);
ae038cb0 8472
36586728 8473 info_ptr = section->buffer;
6e70227d 8474
36586728 8475 while (info_ptr < section->buffer + section->size)
ae038cb0 8476 {
ae038cb0 8477 struct dwarf2_per_cu_data *this_cu;
ae038cb0 8478
9c541725 8479 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
ae038cb0 8480
f1902523 8481 comp_unit_head cu_header;
ed2dc618
SM
8482 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8483 abbrev_section, info_ptr,
8484 rcuh_kind::COMPILE);
ae038cb0
DJ
8485
8486 /* Save the compilation unit for later lookup. */
f1902523
JK
8487 if (cu_header.unit_type != DW_UT_type)
8488 {
8489 this_cu = XOBNEW (&objfile->objfile_obstack,
8490 struct dwarf2_per_cu_data);
8491 memset (this_cu, 0, sizeof (*this_cu));
8492 }
8493 else
8494 {
8495 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8496 struct signatured_type);
8497 memset (sig_type, 0, sizeof (*sig_type));
8498 sig_type->signature = cu_header.signature;
8499 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8500 this_cu = &sig_type->per_cu;
8501 }
8502 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
9c541725 8503 this_cu->sect_off = sect_off;
f1902523 8504 this_cu->length = cu_header.length + cu_header.initial_length_size;
36586728 8505 this_cu->is_dwz = is_dwz;
e3b94546 8506 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8a0459fd 8507 this_cu->section = section;
ae038cb0 8508
b76e467d 8509 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
ae038cb0
DJ
8510
8511 info_ptr = info_ptr + this_cu->length;
8512 }
36586728
TT
8513}
8514
8515/* Create a list of all compilation units in OBJFILE.
8516 This is only done for -readnow and building partial symtabs. */
8517
8518static void
ed2dc618 8519create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
36586728 8520{
b76e467d 8521 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
ed2dc618 8522 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
b76e467d 8523 &dwarf2_per_objfile->abbrev, 0);
36586728 8524
b76e467d 8525 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
4db1a1dc 8526 if (dwz != NULL)
ed2dc618 8527 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
b76e467d 8528 1);
c906108c
SS
8529}
8530
5734ee8b 8531/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 8532 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 8533 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
8534 DW_AT_ranges). See the comments of add_partial_subprogram on how
8535 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 8536
72bf9492
DJ
8537static void
8538scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
8539 CORE_ADDR *highpc, int set_addrmap,
8540 struct dwarf2_cu *cu)
c906108c 8541{
72bf9492 8542 struct partial_die_info *pdi;
c906108c 8543
91c24f0a
DC
8544 /* Now, march along the PDI's, descending into ones which have
8545 interesting children but skipping the children of the other ones,
8546 until we reach the end of the compilation unit. */
c906108c 8547
72bf9492 8548 pdi = first_die;
91c24f0a 8549
72bf9492
DJ
8550 while (pdi != NULL)
8551 {
52356b79 8552 pdi->fixup (cu);
c906108c 8553
f55ee35c 8554 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
8555 children, so we need to look at them. Ditto for anonymous
8556 enums. */
933c6fe4 8557
72bf9492 8558 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad 8559 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
b1dc1806
XR
8560 || pdi->tag == DW_TAG_imported_unit
8561 || pdi->tag == DW_TAG_inlined_subroutine)
c906108c 8562 {
72bf9492 8563 switch (pdi->tag)
c906108c
SS
8564 {
8565 case DW_TAG_subprogram:
b1dc1806 8566 case DW_TAG_inlined_subroutine:
cdc07690 8567 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 8568 break;
72929c62 8569 case DW_TAG_constant:
c906108c
SS
8570 case DW_TAG_variable:
8571 case DW_TAG_typedef:
91c24f0a 8572 case DW_TAG_union_type:
72bf9492 8573 if (!pdi->is_declaration)
63d06c5c 8574 {
72bf9492 8575 add_partial_symbol (pdi, cu);
63d06c5c
DC
8576 }
8577 break;
c906108c 8578 case DW_TAG_class_type:
680b30c7 8579 case DW_TAG_interface_type:
c906108c 8580 case DW_TAG_structure_type:
72bf9492 8581 if (!pdi->is_declaration)
c906108c 8582 {
72bf9492 8583 add_partial_symbol (pdi, cu);
c906108c 8584 }
b7fee5a3
KS
8585 if ((cu->language == language_rust
8586 || cu->language == language_cplus) && pdi->has_children)
e98c9e7c
TT
8587 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8588 set_addrmap, cu);
c906108c 8589 break;
91c24f0a 8590 case DW_TAG_enumeration_type:
72bf9492
DJ
8591 if (!pdi->is_declaration)
8592 add_partial_enumeration (pdi, cu);
c906108c
SS
8593 break;
8594 case DW_TAG_base_type:
a02abb62 8595 case DW_TAG_subrange_type:
c906108c 8596 /* File scope base type definitions are added to the partial
c5aa993b 8597 symbol table. */
72bf9492 8598 add_partial_symbol (pdi, cu);
c906108c 8599 break;
d9fa45fe 8600 case DW_TAG_namespace:
cdc07690 8601 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 8602 break;
5d7cb8df 8603 case DW_TAG_module:
cdc07690 8604 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 8605 break;
95554aad
TT
8606 case DW_TAG_imported_unit:
8607 {
8608 struct dwarf2_per_cu_data *per_cu;
8609
f4dc4d17
DE
8610 /* For now we don't handle imported units in type units. */
8611 if (cu->per_cu->is_debug_types)
8612 {
8613 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8614 " supported in type units [in module %s]"),
518817b3 8615 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
f4dc4d17
DE
8616 }
8617
e3b94546
SM
8618 per_cu = dwarf2_find_containing_comp_unit
8619 (pdi->d.sect_off, pdi->is_dwz,
518817b3 8620 cu->per_cu->dwarf2_per_objfile);
95554aad
TT
8621
8622 /* Go read the partial unit, if needed. */
8623 if (per_cu->v.psymtab == NULL)
b93601f3 8624 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 8625
f4dc4d17 8626 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 8627 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
8628 }
8629 break;
74921315
KS
8630 case DW_TAG_imported_declaration:
8631 add_partial_symbol (pdi, cu);
8632 break;
c906108c
SS
8633 default:
8634 break;
8635 }
8636 }
8637
72bf9492
DJ
8638 /* If the die has a sibling, skip to the sibling. */
8639
8640 pdi = pdi->die_sibling;
8641 }
8642}
8643
8644/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 8645
72bf9492 8646 Normally, this is simple. For C++, the parent DIE's fully scoped
9c37b5ae 8647 name is concatenated with "::" and the partial DIE's name.
72bf9492
DJ
8648 Enumerators are an exception; they use the scope of their parent
8649 enumeration type, i.e. the name of the enumeration type is not
8650 prepended to the enumerator.
91c24f0a 8651
72bf9492
DJ
8652 There are two complexities. One is DW_AT_specification; in this
8653 case "parent" means the parent of the target of the specification,
8654 instead of the direct parent of the DIE. The other is compilers
8655 which do not emit DW_TAG_namespace; in this case we try to guess
8656 the fully qualified name of structure types from their members'
8657 linkage names. This must be done using the DIE's children rather
8658 than the children of any DW_AT_specification target. We only need
8659 to do this for structures at the top level, i.e. if the target of
8660 any DW_AT_specification (if any; otherwise the DIE itself) does not
8661 have a parent. */
8662
8663/* Compute the scope prefix associated with PDI's parent, in
8664 compilation unit CU. The result will be allocated on CU's
8665 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8666 field. NULL is returned if no prefix is necessary. */
15d034d0 8667static const char *
72bf9492
DJ
8668partial_die_parent_scope (struct partial_die_info *pdi,
8669 struct dwarf2_cu *cu)
8670{
15d034d0 8671 const char *grandparent_scope;
72bf9492 8672 struct partial_die_info *parent, *real_pdi;
91c24f0a 8673
72bf9492
DJ
8674 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8675 then this means the parent of the specification DIE. */
8676
8677 real_pdi = pdi;
72bf9492 8678 while (real_pdi->has_specification)
36586728
TT
8679 real_pdi = find_partial_die (real_pdi->spec_offset,
8680 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
8681
8682 parent = real_pdi->die_parent;
8683 if (parent == NULL)
8684 return NULL;
8685
8686 if (parent->scope_set)
8687 return parent->scope;
8688
52356b79 8689 parent->fixup (cu);
72bf9492 8690
10b3939b 8691 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 8692
acebe513
UW
8693 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8694 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8695 Work around this problem here. */
8696 if (cu->language == language_cplus
6e70227d 8697 && parent->tag == DW_TAG_namespace
acebe513
UW
8698 && strcmp (parent->name, "::") == 0
8699 && grandparent_scope == NULL)
8700 {
8701 parent->scope = NULL;
8702 parent->scope_set = 1;
8703 return NULL;
8704 }
8705
9c6c53f7
SA
8706 if (pdi->tag == DW_TAG_enumerator)
8707 /* Enumerators should not get the name of the enumeration as a prefix. */
8708 parent->scope = grandparent_scope;
8709 else if (parent->tag == DW_TAG_namespace
f55ee35c 8710 || parent->tag == DW_TAG_module
72bf9492
DJ
8711 || parent->tag == DW_TAG_structure_type
8712 || parent->tag == DW_TAG_class_type
680b30c7 8713 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
8714 || parent->tag == DW_TAG_union_type
8715 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
8716 {
8717 if (grandparent_scope == NULL)
8718 parent->scope = parent->name;
8719 else
3e43a32a
MS
8720 parent->scope = typename_concat (&cu->comp_unit_obstack,
8721 grandparent_scope,
f55ee35c 8722 parent->name, 0, cu);
72bf9492 8723 }
72bf9492
DJ
8724 else
8725 {
8726 /* FIXME drow/2004-04-01: What should we be doing with
8727 function-local names? For partial symbols, we should probably be
8728 ignoring them. */
b98664d3 8729 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
9d8780f0 8730 parent->tag, sect_offset_str (pdi->sect_off));
72bf9492 8731 parent->scope = grandparent_scope;
c906108c
SS
8732 }
8733
72bf9492
DJ
8734 parent->scope_set = 1;
8735 return parent->scope;
8736}
8737
8738/* Return the fully scoped name associated with PDI, from compilation unit
8739 CU. The result will be allocated with malloc. */
4568ecf9 8740
72bf9492
DJ
8741static char *
8742partial_die_full_name (struct partial_die_info *pdi,
8743 struct dwarf2_cu *cu)
8744{
15d034d0 8745 const char *parent_scope;
72bf9492 8746
98bfdba5
PA
8747 /* If this is a template instantiation, we can not work out the
8748 template arguments from partial DIEs. So, unfortunately, we have
8749 to go through the full DIEs. At least any work we do building
8750 types here will be reused if full symbols are loaded later. */
8751 if (pdi->has_template_arguments)
8752 {
52356b79 8753 pdi->fixup (cu);
98bfdba5
PA
8754
8755 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8756 {
8757 struct die_info *die;
8758 struct attribute attr;
8759 struct dwarf2_cu *ref_cu = cu;
8760
b64f50a1 8761 /* DW_FORM_ref_addr is using section offset. */
b4069958 8762 attr.name = (enum dwarf_attribute) 0;
98bfdba5 8763 attr.form = DW_FORM_ref_addr;
9c541725 8764 attr.u.unsnd = to_underlying (pdi->sect_off);
98bfdba5
PA
8765 die = follow_die_ref (NULL, &attr, &ref_cu);
8766
8767 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8768 }
8769 }
8770
72bf9492
DJ
8771 parent_scope = partial_die_parent_scope (pdi, cu);
8772 if (parent_scope == NULL)
8773 return NULL;
8774 else
f55ee35c 8775 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
8776}
8777
8778static void
72bf9492 8779add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 8780{
518817b3
SM
8781 struct dwarf2_per_objfile *dwarf2_per_objfile
8782 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 8783 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 8784 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 8785 CORE_ADDR addr = 0;
15d034d0 8786 const char *actual_name = NULL;
e142c38c 8787 CORE_ADDR baseaddr;
15d034d0 8788 char *built_actual_name;
e142c38c
DJ
8789
8790 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8791
15d034d0
TT
8792 built_actual_name = partial_die_full_name (pdi, cu);
8793 if (built_actual_name != NULL)
8794 actual_name = built_actual_name;
63d06c5c 8795
72bf9492
DJ
8796 if (actual_name == NULL)
8797 actual_name = pdi->name;
8798
c906108c
SS
8799 switch (pdi->tag)
8800 {
b1dc1806 8801 case DW_TAG_inlined_subroutine:
c906108c 8802 case DW_TAG_subprogram:
3e29f34a 8803 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 8804 if (pdi->is_external || cu->language == language_ada)
c906108c 8805 {
2cfa0c8d
JB
8806 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8807 of the global scope. But in Ada, we want to be able to access
8808 nested procedures globally. So all Ada subprograms are stored
8809 in the global scope. */
f47fb265 8810 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8811 built_actual_name != NULL,
f47fb265
MS
8812 VAR_DOMAIN, LOC_BLOCK,
8813 &objfile->global_psymbols,
1762568f 8814 addr, cu->language, objfile);
c906108c
SS
8815 }
8816 else
8817 {
f47fb265 8818 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8819 built_actual_name != NULL,
f47fb265
MS
8820 VAR_DOMAIN, LOC_BLOCK,
8821 &objfile->static_psymbols,
1762568f 8822 addr, cu->language, objfile);
c906108c 8823 }
0c1b455e
TT
8824
8825 if (pdi->main_subprogram && actual_name != NULL)
8826 set_objfile_main_name (objfile, actual_name, cu->language);
c906108c 8827 break;
72929c62
JB
8828 case DW_TAG_constant:
8829 {
af5bf4ad 8830 std::vector<partial_symbol *> *list;
72929c62
JB
8831
8832 if (pdi->is_external)
8833 list = &objfile->global_psymbols;
8834 else
8835 list = &objfile->static_psymbols;
f47fb265 8836 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8837 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 8838 list, 0, cu->language, objfile);
72929c62
JB
8839 }
8840 break;
c906108c 8841 case DW_TAG_variable:
95554aad
TT
8842 if (pdi->d.locdesc)
8843 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 8844
95554aad 8845 if (pdi->d.locdesc
caac4577
JG
8846 && addr == 0
8847 && !dwarf2_per_objfile->has_section_at_zero)
8848 {
8849 /* A global or static variable may also have been stripped
8850 out by the linker if unused, in which case its address
8851 will be nullified; do not add such variables into partial
8852 symbol table then. */
8853 }
8854 else if (pdi->is_external)
c906108c
SS
8855 {
8856 /* Global Variable.
8857 Don't enter into the minimal symbol tables as there is
8858 a minimal symbol table entry from the ELF symbols already.
8859 Enter into partial symbol table if it has a location
8860 descriptor or a type.
8861 If the location descriptor is missing, new_symbol will create
8862 a LOC_UNRESOLVED symbol, the address of the variable will then
8863 be determined from the minimal symbol table whenever the variable
8864 is referenced.
8865 The address for the partial symbol table entry is not
8866 used by GDB, but it comes in handy for debugging partial symbol
8867 table building. */
8868
95554aad 8869 if (pdi->d.locdesc || pdi->has_type)
f47fb265 8870 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8871 built_actual_name != NULL,
f47fb265
MS
8872 VAR_DOMAIN, LOC_STATIC,
8873 &objfile->global_psymbols,
1762568f 8874 addr + baseaddr,
f47fb265 8875 cu->language, objfile);
c906108c
SS
8876 }
8877 else
8878 {
ff908ebf
AW
8879 int has_loc = pdi->d.locdesc != NULL;
8880
8881 /* Static Variable. Skip symbols whose value we cannot know (those
8882 without location descriptors or constant values). */
8883 if (!has_loc && !pdi->has_const_value)
decbce07 8884 {
15d034d0 8885 xfree (built_actual_name);
decbce07
MS
8886 return;
8887 }
ff908ebf 8888
f47fb265 8889 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8890 built_actual_name != NULL,
f47fb265
MS
8891 VAR_DOMAIN, LOC_STATIC,
8892 &objfile->static_psymbols,
ff908ebf 8893 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 8894 cu->language, objfile);
c906108c
SS
8895 }
8896 break;
8897 case DW_TAG_typedef:
8898 case DW_TAG_base_type:
a02abb62 8899 case DW_TAG_subrange_type:
38d518c9 8900 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8901 built_actual_name != NULL,
176620f1 8902 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 8903 &objfile->static_psymbols,
1762568f 8904 0, cu->language, objfile);
c906108c 8905 break;
74921315 8906 case DW_TAG_imported_declaration:
72bf9492
DJ
8907 case DW_TAG_namespace:
8908 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8909 built_actual_name != NULL,
72bf9492
DJ
8910 VAR_DOMAIN, LOC_TYPEDEF,
8911 &objfile->global_psymbols,
1762568f 8912 0, cu->language, objfile);
72bf9492 8913 break;
530e8392
KB
8914 case DW_TAG_module:
8915 add_psymbol_to_list (actual_name, strlen (actual_name),
8916 built_actual_name != NULL,
8917 MODULE_DOMAIN, LOC_TYPEDEF,
8918 &objfile->global_psymbols,
1762568f 8919 0, cu->language, objfile);
530e8392 8920 break;
c906108c 8921 case DW_TAG_class_type:
680b30c7 8922 case DW_TAG_interface_type:
c906108c
SS
8923 case DW_TAG_structure_type:
8924 case DW_TAG_union_type:
8925 case DW_TAG_enumeration_type:
fa4028e9
JB
8926 /* Skip external references. The DWARF standard says in the section
8927 about "Structure, Union, and Class Type Entries": "An incomplete
8928 structure, union or class type is represented by a structure,
8929 union or class entry that does not have a byte size attribute
8930 and that has a DW_AT_declaration attribute." */
8931 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 8932 {
15d034d0 8933 xfree (built_actual_name);
decbce07
MS
8934 return;
8935 }
fa4028e9 8936
63d06c5c
DC
8937 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8938 static vs. global. */
38d518c9 8939 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8940 built_actual_name != NULL,
176620f1 8941 STRUCT_DOMAIN, LOC_TYPEDEF,
9c37b5ae 8942 cu->language == language_cplus
63d06c5c
DC
8943 ? &objfile->global_psymbols
8944 : &objfile->static_psymbols,
1762568f 8945 0, cu->language, objfile);
c906108c 8946
c906108c
SS
8947 break;
8948 case DW_TAG_enumerator:
38d518c9 8949 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8950 built_actual_name != NULL,
176620f1 8951 VAR_DOMAIN, LOC_CONST,
9c37b5ae 8952 cu->language == language_cplus
f6fe98ef
DJ
8953 ? &objfile->global_psymbols
8954 : &objfile->static_psymbols,
1762568f 8955 0, cu->language, objfile);
c906108c
SS
8956 break;
8957 default:
8958 break;
8959 }
5c4e30ca 8960
15d034d0 8961 xfree (built_actual_name);
c906108c
SS
8962}
8963
5c4e30ca
DC
8964/* Read a partial die corresponding to a namespace; also, add a symbol
8965 corresponding to that namespace to the symbol table. NAMESPACE is
8966 the name of the enclosing namespace. */
91c24f0a 8967
72bf9492
DJ
8968static void
8969add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 8970 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 8971 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 8972{
72bf9492 8973 /* Add a symbol for the namespace. */
e7c27a73 8974
72bf9492 8975 add_partial_symbol (pdi, cu);
5c4e30ca
DC
8976
8977 /* Now scan partial symbols in that namespace. */
8978
91c24f0a 8979 if (pdi->has_children)
cdc07690 8980 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
8981}
8982
5d7cb8df
JK
8983/* Read a partial die corresponding to a Fortran module. */
8984
8985static void
8986add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 8987 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 8988{
530e8392
KB
8989 /* Add a symbol for the namespace. */
8990
8991 add_partial_symbol (pdi, cu);
8992
f55ee35c 8993 /* Now scan partial symbols in that module. */
5d7cb8df
JK
8994
8995 if (pdi->has_children)
cdc07690 8996 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
8997}
8998
b1dc1806
XR
8999/* Read a partial die corresponding to a subprogram or an inlined
9000 subprogram and create a partial symbol for that subprogram.
9001 When the CU language allows it, this routine also defines a partial
9002 symbol for each nested subprogram that this subprogram contains.
9003 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9004 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
6e70227d 9005
cdc07690
YQ
9006 PDI may also be a lexical block, in which case we simply search
9007 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
9008 Again, this is only performed when the CU language allows this
9009 type of definitions. */
9010
9011static void
9012add_partial_subprogram (struct partial_die_info *pdi,
9013 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 9014 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58 9015{
b1dc1806 9016 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
bc30ff58
JB
9017 {
9018 if (pdi->has_pc_info)
9019 {
9020 if (pdi->lowpc < *lowpc)
9021 *lowpc = pdi->lowpc;
9022 if (pdi->highpc > *highpc)
9023 *highpc = pdi->highpc;
cdc07690 9024 if (set_addrmap)
5734ee8b 9025 {
518817b3 9026 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a
MR
9027 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9028 CORE_ADDR baseaddr;
9029 CORE_ADDR highpc;
9030 CORE_ADDR lowpc;
5734ee8b
DJ
9031
9032 baseaddr = ANOFFSET (objfile->section_offsets,
9033 SECT_OFF_TEXT (objfile));
3e29f34a
MR
9034 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9035 pdi->lowpc + baseaddr);
9036 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9037 pdi->highpc + baseaddr);
9038 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 9039 cu->per_cu->v.psymtab);
5734ee8b 9040 }
481860b3
GB
9041 }
9042
9043 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9044 {
bc30ff58 9045 if (!pdi->is_declaration)
e8d05480
JB
9046 /* Ignore subprogram DIEs that do not have a name, they are
9047 illegal. Do not emit a complaint at this point, we will
9048 do so when we convert this psymtab into a symtab. */
9049 if (pdi->name)
9050 add_partial_symbol (pdi, cu);
bc30ff58
JB
9051 }
9052 }
6e70227d 9053
bc30ff58
JB
9054 if (! pdi->has_children)
9055 return;
9056
9057 if (cu->language == language_ada)
9058 {
9059 pdi = pdi->die_child;
9060 while (pdi != NULL)
9061 {
52356b79 9062 pdi->fixup (cu);
bc30ff58 9063 if (pdi->tag == DW_TAG_subprogram
b1dc1806 9064 || pdi->tag == DW_TAG_inlined_subroutine
bc30ff58 9065 || pdi->tag == DW_TAG_lexical_block)
cdc07690 9066 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
9067 pdi = pdi->die_sibling;
9068 }
9069 }
9070}
9071
91c24f0a
DC
9072/* Read a partial die corresponding to an enumeration type. */
9073
72bf9492
DJ
9074static void
9075add_partial_enumeration (struct partial_die_info *enum_pdi,
9076 struct dwarf2_cu *cu)
91c24f0a 9077{
72bf9492 9078 struct partial_die_info *pdi;
91c24f0a
DC
9079
9080 if (enum_pdi->name != NULL)
72bf9492
DJ
9081 add_partial_symbol (enum_pdi, cu);
9082
9083 pdi = enum_pdi->die_child;
9084 while (pdi)
91c24f0a 9085 {
72bf9492 9086 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
b98664d3 9087 complaint (_("malformed enumerator DIE ignored"));
91c24f0a 9088 else
72bf9492
DJ
9089 add_partial_symbol (pdi, cu);
9090 pdi = pdi->die_sibling;
91c24f0a 9091 }
91c24f0a
DC
9092}
9093
6caca83c
CC
9094/* Return the initial uleb128 in the die at INFO_PTR. */
9095
9096static unsigned int
d521ce57 9097peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
9098{
9099 unsigned int bytes_read;
9100
9101 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9102}
9103
685af9cd
TT
9104/* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9105 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9106
4bb7a0a7
DJ
9107 Return the corresponding abbrev, or NULL if the number is zero (indicating
9108 an empty DIE). In either case *BYTES_READ will be set to the length of
9109 the initial number. */
9110
9111static struct abbrev_info *
685af9cd
TT
9112peek_die_abbrev (const die_reader_specs &reader,
9113 const gdb_byte *info_ptr, unsigned int *bytes_read)
4bb7a0a7 9114{
685af9cd 9115 dwarf2_cu *cu = reader.cu;
518817b3 9116 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
685af9cd
TT
9117 unsigned int abbrev_number
9118 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4bb7a0a7
DJ
9119
9120 if (abbrev_number == 0)
9121 return NULL;
9122
685af9cd 9123 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
4bb7a0a7
DJ
9124 if (!abbrev)
9125 {
422b9917 9126 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9d8780f0 9127 " at offset %s [in module %s]"),
422b9917 9128 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9d8780f0 9129 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
4bb7a0a7
DJ
9130 }
9131
9132 return abbrev;
9133}
9134
93311388
DE
9135/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9136 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
9137 DIE. Any children of the skipped DIEs will also be skipped. */
9138
d521ce57
TT
9139static const gdb_byte *
9140skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 9141{
4bb7a0a7
DJ
9142 while (1)
9143 {
685af9cd
TT
9144 unsigned int bytes_read;
9145 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9146
4bb7a0a7
DJ
9147 if (abbrev == NULL)
9148 return info_ptr + bytes_read;
9149 else
dee91e82 9150 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
9151 }
9152}
9153
93311388
DE
9154/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9155 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
9156 abbrev corresponding to that skipped uleb128 should be passed in
9157 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9158 children. */
9159
d521ce57
TT
9160static const gdb_byte *
9161skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 9162 struct abbrev_info *abbrev)
4bb7a0a7
DJ
9163{
9164 unsigned int bytes_read;
9165 struct attribute attr;
dee91e82
DE
9166 bfd *abfd = reader->abfd;
9167 struct dwarf2_cu *cu = reader->cu;
d521ce57 9168 const gdb_byte *buffer = reader->buffer;
f664829e 9169 const gdb_byte *buffer_end = reader->buffer_end;
4bb7a0a7
DJ
9170 unsigned int form, i;
9171
9172 for (i = 0; i < abbrev->num_attrs; i++)
9173 {
9174 /* The only abbrev we care about is DW_AT_sibling. */
9175 if (abbrev->attrs[i].name == DW_AT_sibling)
9176 {
dee91e82 9177 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 9178 if (attr.form == DW_FORM_ref_addr)
b98664d3 9179 complaint (_("ignoring absolute DW_AT_sibling"));
4bb7a0a7 9180 else
b9502d3f 9181 {
9c541725
PA
9182 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9183 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
9184
9185 if (sibling_ptr < info_ptr)
b98664d3 9186 complaint (_("DW_AT_sibling points backwards"));
22869d73
KS
9187 else if (sibling_ptr > reader->buffer_end)
9188 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
9189 else
9190 return sibling_ptr;
9191 }
4bb7a0a7
DJ
9192 }
9193
9194 /* If it isn't DW_AT_sibling, skip this attribute. */
9195 form = abbrev->attrs[i].form;
9196 skip_attribute:
9197 switch (form)
9198 {
4bb7a0a7 9199 case DW_FORM_ref_addr:
ae411497
TT
9200 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9201 and later it is offset sized. */
9202 if (cu->header.version == 2)
9203 info_ptr += cu->header.addr_size;
9204 else
9205 info_ptr += cu->header.offset_size;
9206 break;
36586728
TT
9207 case DW_FORM_GNU_ref_alt:
9208 info_ptr += cu->header.offset_size;
9209 break;
ae411497 9210 case DW_FORM_addr:
4bb7a0a7
DJ
9211 info_ptr += cu->header.addr_size;
9212 break;
9213 case DW_FORM_data1:
9214 case DW_FORM_ref1:
9215 case DW_FORM_flag:
9216 info_ptr += 1;
9217 break;
2dc7f7b3 9218 case DW_FORM_flag_present:
43988095 9219 case DW_FORM_implicit_const:
2dc7f7b3 9220 break;
4bb7a0a7
DJ
9221 case DW_FORM_data2:
9222 case DW_FORM_ref2:
9223 info_ptr += 2;
9224 break;
9225 case DW_FORM_data4:
9226 case DW_FORM_ref4:
9227 info_ptr += 4;
9228 break;
9229 case DW_FORM_data8:
9230 case DW_FORM_ref8:
55f1336d 9231 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
9232 info_ptr += 8;
9233 break;
0224619f
JK
9234 case DW_FORM_data16:
9235 info_ptr += 16;
9236 break;
4bb7a0a7 9237 case DW_FORM_string:
9b1c24c8 9238 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
9239 info_ptr += bytes_read;
9240 break;
2dc7f7b3 9241 case DW_FORM_sec_offset:
4bb7a0a7 9242 case DW_FORM_strp:
36586728 9243 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
9244 info_ptr += cu->header.offset_size;
9245 break;
2dc7f7b3 9246 case DW_FORM_exprloc:
4bb7a0a7
DJ
9247 case DW_FORM_block:
9248 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9249 info_ptr += bytes_read;
9250 break;
9251 case DW_FORM_block1:
9252 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9253 break;
9254 case DW_FORM_block2:
9255 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9256 break;
9257 case DW_FORM_block4:
9258 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9259 break;
9260 case DW_FORM_sdata:
9261 case DW_FORM_udata:
9262 case DW_FORM_ref_udata:
3019eac3
DE
9263 case DW_FORM_GNU_addr_index:
9264 case DW_FORM_GNU_str_index:
d521ce57 9265 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
9266 break;
9267 case DW_FORM_indirect:
9268 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9269 info_ptr += bytes_read;
9270 /* We need to continue parsing from here, so just go back to
9271 the top. */
9272 goto skip_attribute;
9273
9274 default:
3e43a32a
MS
9275 error (_("Dwarf Error: Cannot handle %s "
9276 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
9277 dwarf_form_name (form),
9278 bfd_get_filename (abfd));
9279 }
9280 }
9281
9282 if (abbrev->has_children)
dee91e82 9283 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
9284 else
9285 return info_ptr;
9286}
9287
93311388 9288/* Locate ORIG_PDI's sibling.
dee91e82 9289 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 9290
d521ce57 9291static const gdb_byte *
dee91e82
DE
9292locate_pdi_sibling (const struct die_reader_specs *reader,
9293 struct partial_die_info *orig_pdi,
d521ce57 9294 const gdb_byte *info_ptr)
91c24f0a
DC
9295{
9296 /* Do we know the sibling already? */
72bf9492 9297
91c24f0a
DC
9298 if (orig_pdi->sibling)
9299 return orig_pdi->sibling;
9300
9301 /* Are there any children to deal with? */
9302
9303 if (!orig_pdi->has_children)
9304 return info_ptr;
9305
4bb7a0a7 9306 /* Skip the children the long way. */
91c24f0a 9307
dee91e82 9308 return skip_children (reader, info_ptr);
91c24f0a
DC
9309}
9310
257e7a09 9311/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 9312 not NULL. */
c906108c
SS
9313
9314static void
257e7a09
YQ
9315dwarf2_read_symtab (struct partial_symtab *self,
9316 struct objfile *objfile)
c906108c 9317{
ed2dc618
SM
9318 struct dwarf2_per_objfile *dwarf2_per_objfile
9319 = get_dwarf2_per_objfile (objfile);
9320
257e7a09 9321 if (self->readin)
c906108c 9322 {
442e4d9c 9323 warning (_("bug: psymtab for %s is already read in."),
257e7a09 9324 self->filename);
442e4d9c
YQ
9325 }
9326 else
9327 {
9328 if (info_verbose)
c906108c 9329 {
442e4d9c 9330 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 9331 self->filename);
442e4d9c 9332 gdb_flush (gdb_stdout);
c906108c 9333 }
c906108c 9334
442e4d9c
YQ
9335 /* If this psymtab is constructed from a debug-only objfile, the
9336 has_section_at_zero flag will not necessarily be correct. We
9337 can get the correct value for this flag by looking at the data
9338 associated with the (presumably stripped) associated objfile. */
9339 if (objfile->separate_debug_objfile_backlink)
9340 {
9341 struct dwarf2_per_objfile *dpo_backlink
ed2dc618 9342 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9a619af0 9343
442e4d9c
YQ
9344 dwarf2_per_objfile->has_section_at_zero
9345 = dpo_backlink->has_section_at_zero;
9346 }
b2ab525c 9347
442e4d9c 9348 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 9349
257e7a09 9350 psymtab_to_symtab_1 (self);
c906108c 9351
442e4d9c
YQ
9352 /* Finish up the debug error message. */
9353 if (info_verbose)
9354 printf_filtered (_("done.\n"));
c906108c 9355 }
95554aad 9356
ed2dc618 9357 process_cu_includes (dwarf2_per_objfile);
c906108c 9358}
9cdd5dbd
DE
9359\f
9360/* Reading in full CUs. */
c906108c 9361
10b3939b
DJ
9362/* Add PER_CU to the queue. */
9363
9364static void
95554aad
TT
9365queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9366 enum language pretend_language)
10b3939b
DJ
9367{
9368 struct dwarf2_queue_item *item;
9369
9370 per_cu->queued = 1;
8d749320 9371 item = XNEW (struct dwarf2_queue_item);
10b3939b 9372 item->per_cu = per_cu;
95554aad 9373 item->pretend_language = pretend_language;
10b3939b
DJ
9374 item->next = NULL;
9375
9376 if (dwarf2_queue == NULL)
9377 dwarf2_queue = item;
9378 else
9379 dwarf2_queue_tail->next = item;
9380
9381 dwarf2_queue_tail = item;
9382}
9383
89e63ee4
DE
9384/* If PER_CU is not yet queued, add it to the queue.
9385 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9386 dependency.
0907af0c 9387 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
9388 meaning either PER_CU is already queued or it is already loaded.
9389
9390 N.B. There is an invariant here that if a CU is queued then it is loaded.
9391 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
9392
9393static int
89e63ee4 9394maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
9395 struct dwarf2_per_cu_data *per_cu,
9396 enum language pretend_language)
9397{
9398 /* We may arrive here during partial symbol reading, if we need full
9399 DIEs to process an unusual case (e.g. template arguments). Do
9400 not queue PER_CU, just tell our caller to load its DIEs. */
ed2dc618 9401 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
0907af0c
DE
9402 {
9403 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9404 return 1;
9405 return 0;
9406 }
9407
9408 /* Mark the dependence relation so that we don't flush PER_CU
9409 too early. */
89e63ee4
DE
9410 if (dependent_cu != NULL)
9411 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
9412
9413 /* If it's already on the queue, we have nothing to do. */
9414 if (per_cu->queued)
9415 return 0;
9416
9417 /* If the compilation unit is already loaded, just mark it as
9418 used. */
9419 if (per_cu->cu != NULL)
9420 {
9421 per_cu->cu->last_used = 0;
9422 return 0;
9423 }
9424
9425 /* Add it to the queue. */
9426 queue_comp_unit (per_cu, pretend_language);
9427
9428 return 1;
9429}
9430
10b3939b
DJ
9431/* Process the queue. */
9432
9433static void
ed2dc618 9434process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
10b3939b
DJ
9435{
9436 struct dwarf2_queue_item *item, *next_item;
9437
b4f54984 9438 if (dwarf_read_debug)
45cfd468
DE
9439 {
9440 fprintf_unfiltered (gdb_stdlog,
9441 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 9442 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
9443 }
9444
03dd20cc
DJ
9445 /* The queue starts out with one item, but following a DIE reference
9446 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
9447 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9448 {
cc12ce38
DE
9449 if ((dwarf2_per_objfile->using_index
9450 ? !item->per_cu->v.quick->compunit_symtab
9451 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9452 /* Skip dummy CUs. */
9453 && item->per_cu->cu != NULL)
f4dc4d17
DE
9454 {
9455 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 9456 unsigned int debug_print_threshold;
247f5c4f 9457 char buf[100];
f4dc4d17 9458
247f5c4f 9459 if (per_cu->is_debug_types)
f4dc4d17 9460 {
247f5c4f
DE
9461 struct signatured_type *sig_type =
9462 (struct signatured_type *) per_cu;
9463
9d8780f0 9464 sprintf (buf, "TU %s at offset %s",
73be47f5 9465 hex_string (sig_type->signature),
9d8780f0 9466 sect_offset_str (per_cu->sect_off));
73be47f5
DE
9467 /* There can be 100s of TUs.
9468 Only print them in verbose mode. */
9469 debug_print_threshold = 2;
f4dc4d17 9470 }
247f5c4f 9471 else
73be47f5 9472 {
9d8780f0
SM
9473 sprintf (buf, "CU at offset %s",
9474 sect_offset_str (per_cu->sect_off));
73be47f5
DE
9475 debug_print_threshold = 1;
9476 }
247f5c4f 9477
b4f54984 9478 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 9479 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
9480
9481 if (per_cu->is_debug_types)
9482 process_full_type_unit (per_cu, item->pretend_language);
9483 else
9484 process_full_comp_unit (per_cu, item->pretend_language);
9485
b4f54984 9486 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 9487 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 9488 }
10b3939b
DJ
9489
9490 item->per_cu->queued = 0;
9491 next_item = item->next;
9492 xfree (item);
9493 }
9494
9495 dwarf2_queue_tail = NULL;
45cfd468 9496
b4f54984 9497 if (dwarf_read_debug)
45cfd468
DE
9498 {
9499 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 9500 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 9501 }
10b3939b
DJ
9502}
9503
10b3939b
DJ
9504/* Read in full symbols for PST, and anything it depends on. */
9505
c906108c 9506static void
fba45db2 9507psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 9508{
10b3939b 9509 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
9510 int i;
9511
95554aad
TT
9512 if (pst->readin)
9513 return;
9514
aaa75496 9515 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
9516 if (!pst->dependencies[i]->readin
9517 && pst->dependencies[i]->user == NULL)
aaa75496
JB
9518 {
9519 /* Inform about additional files that need to be read in. */
9520 if (info_verbose)
9521 {
a3f17187 9522 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
9523 fputs_filtered (" ", gdb_stdout);
9524 wrap_here ("");
9525 fputs_filtered ("and ", gdb_stdout);
9526 wrap_here ("");
9527 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 9528 wrap_here (""); /* Flush output. */
aaa75496
JB
9529 gdb_flush (gdb_stdout);
9530 }
9531 psymtab_to_symtab_1 (pst->dependencies[i]);
9532 }
9533
9a3c8263 9534 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
9535
9536 if (per_cu == NULL)
aaa75496
JB
9537 {
9538 /* It's an include file, no symbols to read for it.
9539 Everything is in the parent symtab. */
9540 pst->readin = 1;
9541 return;
9542 }
c906108c 9543
58f0c718 9544 dw2_do_instantiate_symtab (per_cu, false);
10b3939b
DJ
9545}
9546
dee91e82
DE
9547/* Trivial hash function for die_info: the hash value of a DIE
9548 is its offset in .debug_info for this objfile. */
10b3939b 9549
dee91e82
DE
9550static hashval_t
9551die_hash (const void *item)
10b3939b 9552{
9a3c8263 9553 const struct die_info *die = (const struct die_info *) item;
6502dd73 9554
9c541725 9555 return to_underlying (die->sect_off);
dee91e82 9556}
63d06c5c 9557
dee91e82
DE
9558/* Trivial comparison function for die_info structures: two DIEs
9559 are equal if they have the same offset. */
98bfdba5 9560
dee91e82
DE
9561static int
9562die_eq (const void *item_lhs, const void *item_rhs)
9563{
9a3c8263
SM
9564 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9565 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 9566
9c541725 9567 return die_lhs->sect_off == die_rhs->sect_off;
dee91e82 9568}
c906108c 9569
dee91e82
DE
9570/* die_reader_func for load_full_comp_unit.
9571 This is identical to read_signatured_type_reader,
9572 but is kept separate for now. */
c906108c 9573
dee91e82
DE
9574static void
9575load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 9576 const gdb_byte *info_ptr,
dee91e82
DE
9577 struct die_info *comp_unit_die,
9578 int has_children,
9579 void *data)
9580{
9581 struct dwarf2_cu *cu = reader->cu;
9a3c8263 9582 enum language *language_ptr = (enum language *) data;
6caca83c 9583
dee91e82
DE
9584 gdb_assert (cu->die_hash == NULL);
9585 cu->die_hash =
9586 htab_create_alloc_ex (cu->header.length / 12,
9587 die_hash,
9588 die_eq,
9589 NULL,
9590 &cu->comp_unit_obstack,
9591 hashtab_obstack_allocate,
9592 dummy_obstack_deallocate);
e142c38c 9593
dee91e82
DE
9594 if (has_children)
9595 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9596 &info_ptr, comp_unit_die);
9597 cu->dies = comp_unit_die;
9598 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
9599
9600 /* We try not to read any attributes in this function, because not
9cdd5dbd 9601 all CUs needed for references have been loaded yet, and symbol
10b3939b 9602 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
9603 or we won't be able to build types correctly.
9604 Similarly, if we do not read the producer, we can not apply
9605 producer-specific interpretation. */
95554aad 9606 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 9607}
10b3939b 9608
dee91e82 9609/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 9610
dee91e82 9611static void
95554aad 9612load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
58f0c718 9613 bool skip_partial,
95554aad 9614 enum language pretend_language)
dee91e82 9615{
3019eac3 9616 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 9617
58f0c718 9618 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
f4dc4d17 9619 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
9620}
9621
3da10d80
KS
9622/* Add a DIE to the delayed physname list. */
9623
9624static void
9625add_to_method_list (struct type *type, int fnfield_index, int index,
9626 const char *name, struct die_info *die,
9627 struct dwarf2_cu *cu)
9628{
9629 struct delayed_method_info mi;
9630 mi.type = type;
9631 mi.fnfield_index = fnfield_index;
9632 mi.index = index;
9633 mi.name = name;
9634 mi.die = die;
c89b44cd 9635 cu->method_list.push_back (mi);
3da10d80
KS
9636}
9637
3693fdb3
PA
9638/* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9639 "const" / "volatile". If so, decrements LEN by the length of the
9640 modifier and return true. Otherwise return false. */
9641
9642template<size_t N>
9643static bool
9644check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9645{
9646 size_t mod_len = sizeof (mod) - 1;
9647 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9648 {
9649 len -= mod_len;
9650 return true;
9651 }
9652 return false;
9653}
9654
3da10d80
KS
9655/* Compute the physnames of any methods on the CU's method list.
9656
9657 The computation of method physnames is delayed in order to avoid the
9658 (bad) condition that one of the method's formal parameters is of an as yet
9659 incomplete type. */
9660
9661static void
9662compute_delayed_physnames (struct dwarf2_cu *cu)
9663{
3693fdb3 9664 /* Only C++ delays computing physnames. */
c89b44cd 9665 if (cu->method_list.empty ())
3693fdb3
PA
9666 return;
9667 gdb_assert (cu->language == language_cplus);
9668
52941706 9669 for (const delayed_method_info &mi : cu->method_list)
3da10d80 9670 {
1d06ead6 9671 const char *physname;
3da10d80 9672 struct fn_fieldlist *fn_flp
c89b44cd
TT
9673 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9674 physname = dwarf2_physname (mi.name, mi.die, cu);
9675 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
005e54bb 9676 = physname ? physname : "";
3693fdb3
PA
9677
9678 /* Since there's no tag to indicate whether a method is a
9679 const/volatile overload, extract that information out of the
9680 demangled name. */
9681 if (physname != NULL)
9682 {
9683 size_t len = strlen (physname);
9684
9685 while (1)
9686 {
9687 if (physname[len] == ')') /* shortcut */
9688 break;
9689 else if (check_modifier (physname, len, " const"))
c89b44cd 9690 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
3693fdb3 9691 else if (check_modifier (physname, len, " volatile"))
c89b44cd 9692 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
3693fdb3
PA
9693 else
9694 break;
9695 }
9696 }
3da10d80 9697 }
c89b44cd
TT
9698
9699 /* The list is no longer needed. */
9700 cu->method_list.clear ();
3da10d80
KS
9701}
9702
a766d390
DE
9703/* Go objects should be embedded in a DW_TAG_module DIE,
9704 and it's not clear if/how imported objects will appear.
9705 To keep Go support simple until that's worked out,
9706 go back through what we've read and create something usable.
9707 We could do this while processing each DIE, and feels kinda cleaner,
9708 but that way is more invasive.
9709 This is to, for example, allow the user to type "p var" or "b main"
9710 without having to specify the package name, and allow lookups
9711 of module.object to work in contexts that use the expression
9712 parser. */
9713
9714static void
9715fixup_go_packaging (struct dwarf2_cu *cu)
9716{
9717 char *package_name = NULL;
9718 struct pending *list;
9719 int i;
9720
9721 for (list = global_symbols; list != NULL; list = list->next)
9722 {
9723 for (i = 0; i < list->nsyms; ++i)
9724 {
9725 struct symbol *sym = list->symbol[i];
9726
9727 if (SYMBOL_LANGUAGE (sym) == language_go
9728 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9729 {
9730 char *this_package_name = go_symbol_package_name (sym);
9731
9732 if (this_package_name == NULL)
9733 continue;
9734 if (package_name == NULL)
9735 package_name = this_package_name;
9736 else
9737 {
518817b3
SM
9738 struct objfile *objfile
9739 = cu->per_cu->dwarf2_per_objfile->objfile;
a766d390 9740 if (strcmp (package_name, this_package_name) != 0)
b98664d3 9741 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
9742 (symbol_symtab (sym) != NULL
9743 ? symtab_to_filename_for_display
9744 (symbol_symtab (sym))
e3b94546 9745 : objfile_name (objfile)),
a766d390
DE
9746 this_package_name, package_name);
9747 xfree (this_package_name);
9748 }
9749 }
9750 }
9751 }
9752
9753 if (package_name != NULL)
9754 {
518817b3 9755 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
34a68019 9756 const char *saved_package_name
224c3ddb
SM
9757 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9758 package_name,
9759 strlen (package_name));
19f392bc
UW
9760 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9761 saved_package_name);
a766d390
DE
9762 struct symbol *sym;
9763
e623cf5d 9764 sym = allocate_symbol (objfile);
f85f34ed 9765 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
9766 SYMBOL_SET_NAMES (sym, saved_package_name,
9767 strlen (saved_package_name), 0, objfile);
a766d390
DE
9768 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9769 e.g., "main" finds the "main" module and not C's main(). */
9770 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 9771 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
9772 SYMBOL_TYPE (sym) = type;
9773
9774 add_symbol_to_list (sym, &global_symbols);
9775
9776 xfree (package_name);
9777 }
9778}
9779
c9317f21
TT
9780/* Allocate a fully-qualified name consisting of the two parts on the
9781 obstack. */
9782
9783static const char *
9784rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9785{
9786 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9787}
9788
9789/* A helper that allocates a struct discriminant_info to attach to a
9790 union type. */
9791
9792static struct discriminant_info *
9793alloc_discriminant_info (struct type *type, int discriminant_index,
9794 int default_index)
9795{
9796 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
c7b15a66
TT
9797 gdb_assert (discriminant_index == -1
9798 || (discriminant_index >= 0
9799 && discriminant_index < TYPE_NFIELDS (type)));
c9317f21 9800 gdb_assert (default_index == -1
c7b15a66 9801 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
c9317f21
TT
9802
9803 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9804
9805 struct discriminant_info *disc
9806 = ((struct discriminant_info *)
9807 TYPE_ZALLOC (type,
9808 offsetof (struct discriminant_info, discriminants)
9809 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9810 disc->default_index = default_index;
9811 disc->discriminant_index = discriminant_index;
9812
9813 struct dynamic_prop prop;
9814 prop.kind = PROP_UNDEFINED;
9815 prop.data.baton = disc;
9816
9817 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9818
9819 return disc;
9820}
9821
9822/* Some versions of rustc emitted enums in an unusual way.
9823
9824 Ordinary enums were emitted as unions. The first element of each
9825 structure in the union was named "RUST$ENUM$DISR". This element
9826 held the discriminant.
9827
9828 These versions of Rust also implemented the "non-zero"
9829 optimization. When the enum had two values, and one is empty and
9830 the other holds a pointer that cannot be zero, the pointer is used
9831 as the discriminant, with a zero value meaning the empty variant.
9832 Here, the union's first member is of the form
9833 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9834 where the fieldnos are the indices of the fields that should be
9835 traversed in order to find the field (which may be several fields deep)
9836 and the variantname is the name of the variant of the case when the
9837 field is zero.
9838
9839 This function recognizes whether TYPE is of one of these forms,
9840 and, if so, smashes it to be a variant type. */
9841
9842static void
9843quirk_rust_enum (struct type *type, struct objfile *objfile)
9844{
9845 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9846
9847 /* We don't need to deal with empty enums. */
9848 if (TYPE_NFIELDS (type) == 0)
9849 return;
9850
9851#define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9852 if (TYPE_NFIELDS (type) == 1
9853 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9854 {
9855 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9856
9857 /* Decode the field name to find the offset of the
9858 discriminant. */
9859 ULONGEST bit_offset = 0;
9860 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9861 while (name[0] >= '0' && name[0] <= '9')
9862 {
9863 char *tail;
9864 unsigned long index = strtoul (name, &tail, 10);
9865 name = tail;
9866 if (*name != '$'
9867 || index >= TYPE_NFIELDS (field_type)
9868 || (TYPE_FIELD_LOC_KIND (field_type, index)
9869 != FIELD_LOC_KIND_BITPOS))
9870 {
b98664d3 9871 complaint (_("Could not parse Rust enum encoding string \"%s\""
c9317f21
TT
9872 "[in module %s]"),
9873 TYPE_FIELD_NAME (type, 0),
9874 objfile_name (objfile));
9875 return;
9876 }
9877 ++name;
9878
9879 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9880 field_type = TYPE_FIELD_TYPE (field_type, index);
9881 }
9882
9883 /* Make a union to hold the variants. */
9884 struct type *union_type = alloc_type (objfile);
9885 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9886 TYPE_NFIELDS (union_type) = 3;
9887 TYPE_FIELDS (union_type)
9888 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9889 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
2b4424c3 9890 set_type_align (union_type, TYPE_RAW_ALIGN (type));
c9317f21
TT
9891
9892 /* Put the discriminant must at index 0. */
9893 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9894 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9895 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9896 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9897
9898 /* The order of fields doesn't really matter, so put the real
9899 field at index 1 and the data-less field at index 2. */
9900 struct discriminant_info *disc
9901 = alloc_discriminant_info (union_type, 0, 1);
9902 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9903 TYPE_FIELD_NAME (union_type, 1)
9904 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9905 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9906 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9907 TYPE_FIELD_NAME (union_type, 1));
9908
9909 const char *dataless_name
9910 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9911 name);
9912 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9913 dataless_name);
9914 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9915 /* NAME points into the original discriminant name, which
9916 already has the correct lifetime. */
9917 TYPE_FIELD_NAME (union_type, 2) = name;
9918 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9919 disc->discriminants[2] = 0;
9920
9921 /* Smash this type to be a structure type. We have to do this
9922 because the type has already been recorded. */
9923 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9924 TYPE_NFIELDS (type) = 1;
9925 TYPE_FIELDS (type)
9926 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9927
9928 /* Install the variant part. */
9929 TYPE_FIELD_TYPE (type, 0) = union_type;
9930 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9931 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9932 }
9933 else if (TYPE_NFIELDS (type) == 1)
9934 {
9935 /* We assume that a union with a single field is a univariant
9936 enum. */
9937 /* Smash this type to be a structure type. We have to do this
9938 because the type has already been recorded. */
9939 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9940
9941 /* Make a union to hold the variants. */
9942 struct type *union_type = alloc_type (objfile);
9943 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9944 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9945 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
2b4424c3 9946 set_type_align (union_type, TYPE_RAW_ALIGN (type));
c9317f21
TT
9947 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9948
9949 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9950 const char *variant_name
9951 = rust_last_path_segment (TYPE_NAME (field_type));
9952 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9953 TYPE_NAME (field_type)
9954 = rust_fully_qualify (&objfile->objfile_obstack,
c7b15a66 9955 TYPE_NAME (type), variant_name);
c9317f21
TT
9956
9957 /* Install the union in the outer struct type. */
9958 TYPE_NFIELDS (type) = 1;
9959 TYPE_FIELDS (type)
9960 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9961 TYPE_FIELD_TYPE (type, 0) = union_type;
9962 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9963 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9964
9965 alloc_discriminant_info (union_type, -1, 0);
9966 }
9967 else
9968 {
9969 struct type *disr_type = nullptr;
9970 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9971 {
9972 disr_type = TYPE_FIELD_TYPE (type, i);
9973
a037790e
TT
9974 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9975 {
9976 /* All fields of a true enum will be structs. */
9977 return;
9978 }
9979 else if (TYPE_NFIELDS (disr_type) == 0)
c9317f21
TT
9980 {
9981 /* Could be data-less variant, so keep going. */
a037790e 9982 disr_type = nullptr;
c9317f21
TT
9983 }
9984 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9985 "RUST$ENUM$DISR") != 0)
9986 {
9987 /* Not a Rust enum. */
9988 return;
9989 }
9990 else
9991 {
9992 /* Found one. */
9993 break;
9994 }
9995 }
9996
9997 /* If we got here without a discriminant, then it's probably
9998 just a union. */
9999 if (disr_type == nullptr)
10000 return;
10001
10002 /* Smash this type to be a structure type. We have to do this
10003 because the type has already been recorded. */
10004 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10005
10006 /* Make a union to hold the variants. */
10007 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10008 struct type *union_type = alloc_type (objfile);
10009 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10010 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10011 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
2b4424c3 10012 set_type_align (union_type, TYPE_RAW_ALIGN (type));
c9317f21
TT
10013 TYPE_FIELDS (union_type)
10014 = (struct field *) TYPE_ZALLOC (union_type,
10015 (TYPE_NFIELDS (union_type)
10016 * sizeof (struct field)));
10017
10018 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10019 TYPE_NFIELDS (type) * sizeof (struct field));
10020
10021 /* Install the discriminant at index 0 in the union. */
10022 TYPE_FIELD (union_type, 0) = *disr_field;
10023 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10024 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10025
10026 /* Install the union in the outer struct type. */
10027 TYPE_FIELD_TYPE (type, 0) = union_type;
10028 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10029 TYPE_NFIELDS (type) = 1;
10030
10031 /* Set the size and offset of the union type. */
10032 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10033
10034 /* We need a way to find the correct discriminant given a
10035 variant name. For convenience we build a map here. */
10036 struct type *enum_type = FIELD_TYPE (*disr_field);
10037 std::unordered_map<std::string, ULONGEST> discriminant_map;
10038 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10039 {
10040 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10041 {
10042 const char *name
10043 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10044 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10045 }
10046 }
10047
10048 int n_fields = TYPE_NFIELDS (union_type);
10049 struct discriminant_info *disc
10050 = alloc_discriminant_info (union_type, 0, -1);
10051 /* Skip the discriminant here. */
10052 for (int i = 1; i < n_fields; ++i)
10053 {
10054 /* Find the final word in the name of this variant's type.
10055 That name can be used to look up the correct
10056 discriminant. */
10057 const char *variant_name
10058 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10059 i)));
10060
10061 auto iter = discriminant_map.find (variant_name);
10062 if (iter != discriminant_map.end ())
10063 disc->discriminants[i] = iter->second;
10064
bedda9ac 10065 /* Remove the discriminant field, if it exists. */
c9317f21 10066 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
bedda9ac
TT
10067 if (TYPE_NFIELDS (sub_type) > 0)
10068 {
10069 --TYPE_NFIELDS (sub_type);
10070 ++TYPE_FIELDS (sub_type);
10071 }
c9317f21
TT
10072 TYPE_FIELD_NAME (union_type, i) = variant_name;
10073 TYPE_NAME (sub_type)
10074 = rust_fully_qualify (&objfile->objfile_obstack,
10075 TYPE_NAME (type), variant_name);
10076 }
10077 }
10078}
10079
10080/* Rewrite some Rust unions to be structures with variants parts. */
10081
10082static void
10083rust_union_quirks (struct dwarf2_cu *cu)
10084{
10085 gdb_assert (cu->language == language_rust);
52941706
SM
10086 for (type *type_ : cu->rust_unions)
10087 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
2d79090e
TT
10088 /* We don't need this any more. */
10089 cu->rust_unions.clear ();
c9317f21
TT
10090}
10091
95554aad
TT
10092/* Return the symtab for PER_CU. This works properly regardless of
10093 whether we're using the index or psymtabs. */
10094
43f3e411
DE
10095static struct compunit_symtab *
10096get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad 10097{
ed2dc618 10098 return (per_cu->dwarf2_per_objfile->using_index
43f3e411
DE
10099 ? per_cu->v.quick->compunit_symtab
10100 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
10101}
10102
10103/* A helper function for computing the list of all symbol tables
10104 included by PER_CU. */
10105
10106static void
43f3e411 10107recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 10108 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 10109 struct dwarf2_per_cu_data *per_cu,
43f3e411 10110 struct compunit_symtab *immediate_parent)
95554aad
TT
10111{
10112 void **slot;
10113 int ix;
43f3e411 10114 struct compunit_symtab *cust;
95554aad
TT
10115 struct dwarf2_per_cu_data *iter;
10116
10117 slot = htab_find_slot (all_children, per_cu, INSERT);
10118 if (*slot != NULL)
10119 {
10120 /* This inclusion and its children have been processed. */
10121 return;
10122 }
10123
10124 *slot = per_cu;
10125 /* Only add a CU if it has a symbol table. */
43f3e411
DE
10126 cust = get_compunit_symtab (per_cu);
10127 if (cust != NULL)
ec94af83
DE
10128 {
10129 /* If this is a type unit only add its symbol table if we haven't
10130 seen it yet (type unit per_cu's can share symtabs). */
10131 if (per_cu->is_debug_types)
10132 {
43f3e411 10133 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
10134 if (*slot == NULL)
10135 {
43f3e411
DE
10136 *slot = cust;
10137 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10138 if (cust->user == NULL)
10139 cust->user = immediate_parent;
ec94af83
DE
10140 }
10141 }
10142 else
f9125b6c 10143 {
43f3e411
DE
10144 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10145 if (cust->user == NULL)
10146 cust->user = immediate_parent;
f9125b6c 10147 }
ec94af83 10148 }
95554aad
TT
10149
10150 for (ix = 0;
796a7ff8 10151 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 10152 ++ix)
ec94af83
DE
10153 {
10154 recursively_compute_inclusions (result, all_children,
43f3e411 10155 all_type_symtabs, iter, cust);
ec94af83 10156 }
95554aad
TT
10157}
10158
43f3e411 10159/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
10160 PER_CU. */
10161
10162static void
43f3e411 10163compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 10164{
f4dc4d17
DE
10165 gdb_assert (! per_cu->is_debug_types);
10166
796a7ff8 10167 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
10168 {
10169 int ix, len;
ec94af83 10170 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
10171 struct compunit_symtab *compunit_symtab_iter;
10172 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 10173 htab_t all_children, all_type_symtabs;
43f3e411 10174 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
10175
10176 /* If we don't have a symtab, we can just skip this case. */
43f3e411 10177 if (cust == NULL)
95554aad
TT
10178 return;
10179
10180 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10181 NULL, xcalloc, xfree);
ec94af83
DE
10182 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10183 NULL, xcalloc, xfree);
95554aad
TT
10184
10185 for (ix = 0;
796a7ff8 10186 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 10187 ix, per_cu_iter);
95554aad 10188 ++ix)
ec94af83
DE
10189 {
10190 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 10191 all_type_symtabs, per_cu_iter,
43f3e411 10192 cust);
ec94af83 10193 }
95554aad 10194
ec94af83 10195 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
10196 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10197 cust->includes
ed2dc618 10198 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
8d749320 10199 struct compunit_symtab *, len + 1);
95554aad 10200 for (ix = 0;
43f3e411
DE
10201 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10202 compunit_symtab_iter);
95554aad 10203 ++ix)
43f3e411
DE
10204 cust->includes[ix] = compunit_symtab_iter;
10205 cust->includes[len] = NULL;
95554aad 10206
43f3e411 10207 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 10208 htab_delete (all_children);
ec94af83 10209 htab_delete (all_type_symtabs);
95554aad
TT
10210 }
10211}
10212
10213/* Compute the 'includes' field for the symtabs of all the CUs we just
10214 read. */
10215
10216static void
ed2dc618 10217process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
95554aad 10218{
71b73764 10219 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
f4dc4d17
DE
10220 {
10221 if (! iter->is_debug_types)
43f3e411 10222 compute_compunit_symtab_includes (iter);
f4dc4d17 10223 }
95554aad 10224
c5d0225d 10225 dwarf2_per_objfile->just_read_cus.clear ();
95554aad
TT
10226}
10227
9cdd5dbd 10228/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
10229 already been loaded into memory. */
10230
10231static void
95554aad
TT
10232process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10233 enum language pretend_language)
10b3939b 10234{
10b3939b 10235 struct dwarf2_cu *cu = per_cu->cu;
ed2dc618
SM
10236 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10237 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 10238 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 10239 CORE_ADDR lowpc, highpc;
43f3e411 10240 struct compunit_symtab *cust;
10b3939b 10241 CORE_ADDR baseaddr;
4359dff1 10242 struct block *static_block;
3e29f34a 10243 CORE_ADDR addr;
10b3939b
DJ
10244
10245 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10246
10b3939b 10247 buildsym_init ();
33c7c59d 10248 scoped_free_pendings free_pending;
c89b44cd
TT
10249
10250 /* Clear the list here in case something was left over. */
10251 cu->method_list.clear ();
10b3939b
DJ
10252
10253 cu->list_in_scope = &file_symbols;
c906108c 10254
95554aad
TT
10255 cu->language = pretend_language;
10256 cu->language_defn = language_def (cu->language);
10257
c906108c 10258 /* Do line number decoding in read_file_scope () */
10b3939b 10259 process_die (cu->dies, cu);
c906108c 10260
a766d390
DE
10261 /* For now fudge the Go package. */
10262 if (cu->language == language_go)
10263 fixup_go_packaging (cu);
10264
3da10d80
KS
10265 /* Now that we have processed all the DIEs in the CU, all the types
10266 should be complete, and it should now be safe to compute all of the
10267 physnames. */
10268 compute_delayed_physnames (cu);
3da10d80 10269
c9317f21
TT
10270 if (cu->language == language_rust)
10271 rust_union_quirks (cu);
10272
fae299cd
DC
10273 /* Some compilers don't define a DW_AT_high_pc attribute for the
10274 compilation unit. If the DW_AT_high_pc is missing, synthesize
10275 it, by scanning the DIE's below the compilation unit. */
10b3939b 10276 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 10277
3e29f34a
MR
10278 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10279 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
10280
10281 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10282 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10283 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10284 addrmap to help ensure it has an accurate map of pc values belonging to
10285 this comp unit. */
10286 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10287
43f3e411
DE
10288 cust = end_symtab_from_static_block (static_block,
10289 SECT_OFF_TEXT (objfile), 0);
c906108c 10290
43f3e411 10291 if (cust != NULL)
c906108c 10292 {
df15bd07 10293 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 10294
8be455d7
JK
10295 /* Set symtab language to language from DW_AT_language. If the
10296 compilation is from a C file generated by language preprocessors, do
10297 not set the language if it was already deduced by start_subfile. */
43f3e411 10298 if (!(cu->language == language_c
40e3ad0e 10299 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 10300 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
10301
10302 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10303 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
10304 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10305 there were bugs in prologue debug info, fixed later in GCC-4.5
10306 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
10307
10308 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10309 needed, it would be wrong due to missing DW_AT_producer there.
10310
10311 Still one can confuse GDB by using non-standard GCC compilation
10312 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10313 */
ab260dad 10314 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 10315 cust->locations_valid = 1;
e0d00bc7
JK
10316
10317 if (gcc_4_minor >= 5)
43f3e411 10318 cust->epilogue_unwind_valid = 1;
96408a79 10319
43f3e411 10320 cust->call_site_htab = cu->call_site_htab;
c906108c 10321 }
9291a0cd
TT
10322
10323 if (dwarf2_per_objfile->using_index)
43f3e411 10324 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
10325 else
10326 {
10327 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 10328 pst->compunit_symtab = cust;
9291a0cd
TT
10329 pst->readin = 1;
10330 }
c906108c 10331
95554aad 10332 /* Push it for inclusion processing later. */
c5d0225d 10333 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
f4dc4d17 10334}
45cfd468 10335
f4dc4d17
DE
10336/* Generate full symbol information for type unit PER_CU, whose DIEs have
10337 already been loaded into memory. */
10338
10339static void
10340process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10341 enum language pretend_language)
10342{
10343 struct dwarf2_cu *cu = per_cu->cu;
ed2dc618
SM
10344 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10345 struct objfile *objfile = dwarf2_per_objfile->objfile;
43f3e411 10346 struct compunit_symtab *cust;
0186c6a7
DE
10347 struct signatured_type *sig_type;
10348
10349 gdb_assert (per_cu->is_debug_types);
10350 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
10351
10352 buildsym_init ();
33c7c59d 10353 scoped_free_pendings free_pending;
c89b44cd
TT
10354
10355 /* Clear the list here in case something was left over. */
10356 cu->method_list.clear ();
f4dc4d17
DE
10357
10358 cu->list_in_scope = &file_symbols;
10359
10360 cu->language = pretend_language;
10361 cu->language_defn = language_def (cu->language);
10362
10363 /* The symbol tables are set up in read_type_unit_scope. */
10364 process_die (cu->dies, cu);
10365
10366 /* For now fudge the Go package. */
10367 if (cu->language == language_go)
10368 fixup_go_packaging (cu);
10369
10370 /* Now that we have processed all the DIEs in the CU, all the types
10371 should be complete, and it should now be safe to compute all of the
10372 physnames. */
10373 compute_delayed_physnames (cu);
f4dc4d17 10374
c9317f21
TT
10375 if (cu->language == language_rust)
10376 rust_union_quirks (cu);
10377
f4dc4d17
DE
10378 /* TUs share symbol tables.
10379 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
10380 of it with end_expandable_symtab. Otherwise, complete the addition of
10381 this TU's symbols to the existing symtab. */
43f3e411 10382 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 10383 {
43f3e411
DE
10384 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10385 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 10386
43f3e411 10387 if (cust != NULL)
f4dc4d17
DE
10388 {
10389 /* Set symtab language to language from DW_AT_language. If the
10390 compilation is from a C file generated by language preprocessors,
10391 do not set the language if it was already deduced by
10392 start_subfile. */
43f3e411
DE
10393 if (!(cu->language == language_c
10394 && COMPUNIT_FILETABS (cust)->language != language_c))
10395 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
10396 }
10397 }
10398 else
10399 {
0ab9ce85 10400 augment_type_symtab ();
43f3e411 10401 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
10402 }
10403
10404 if (dwarf2_per_objfile->using_index)
43f3e411 10405 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
10406 else
10407 {
10408 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 10409 pst->compunit_symtab = cust;
f4dc4d17 10410 pst->readin = 1;
45cfd468 10411 }
c906108c
SS
10412}
10413
95554aad
TT
10414/* Process an imported unit DIE. */
10415
10416static void
10417process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10418{
10419 struct attribute *attr;
10420
f4dc4d17
DE
10421 /* For now we don't handle imported units in type units. */
10422 if (cu->per_cu->is_debug_types)
10423 {
10424 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10425 " supported in type units [in module %s]"),
518817b3 10426 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
f4dc4d17
DE
10427 }
10428
95554aad
TT
10429 attr = dwarf2_attr (die, DW_AT_import, cu);
10430 if (attr != NULL)
10431 {
9c541725
PA
10432 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10433 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10434 dwarf2_per_cu_data *per_cu
e3b94546 10435 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
518817b3 10436 cu->per_cu->dwarf2_per_objfile);
95554aad 10437
69d751e3 10438 /* If necessary, add it to the queue and load its DIEs. */
95554aad 10439 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
58f0c718 10440 load_full_comp_unit (per_cu, false, cu->language);
95554aad 10441
796a7ff8 10442 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
10443 per_cu);
10444 }
10445}
10446
4c8aa72d
PA
10447/* RAII object that represents a process_die scope: i.e.,
10448 starts/finishes processing a DIE. */
10449class process_die_scope
adde2bff 10450{
4c8aa72d
PA
10451public:
10452 process_die_scope (die_info *die, dwarf2_cu *cu)
10453 : m_die (die), m_cu (cu)
10454 {
10455 /* We should only be processing DIEs not already in process. */
10456 gdb_assert (!m_die->in_process);
10457 m_die->in_process = true;
10458 }
8c3cb9fa 10459
4c8aa72d
PA
10460 ~process_die_scope ()
10461 {
10462 m_die->in_process = false;
10463
10464 /* If we're done processing the DIE for the CU that owns the line
10465 header, we don't need the line header anymore. */
10466 if (m_cu->line_header_die_owner == m_die)
10467 {
10468 delete m_cu->line_header;
10469 m_cu->line_header = NULL;
10470 m_cu->line_header_die_owner = NULL;
10471 }
10472 }
10473
10474private:
10475 die_info *m_die;
10476 dwarf2_cu *m_cu;
10477};
adde2bff 10478
c906108c
SS
10479/* Process a die and its children. */
10480
10481static void
e7c27a73 10482process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10483{
4c8aa72d 10484 process_die_scope scope (die, cu);
adde2bff 10485
c906108c
SS
10486 switch (die->tag)
10487 {
10488 case DW_TAG_padding:
10489 break;
10490 case DW_TAG_compile_unit:
95554aad 10491 case DW_TAG_partial_unit:
e7c27a73 10492 read_file_scope (die, cu);
c906108c 10493 break;
348e048f
DE
10494 case DW_TAG_type_unit:
10495 read_type_unit_scope (die, cu);
10496 break;
c906108c 10497 case DW_TAG_subprogram:
c906108c 10498 case DW_TAG_inlined_subroutine:
edb3359d 10499 read_func_scope (die, cu);
c906108c
SS
10500 break;
10501 case DW_TAG_lexical_block:
14898363
L
10502 case DW_TAG_try_block:
10503 case DW_TAG_catch_block:
e7c27a73 10504 read_lexical_block_scope (die, cu);
c906108c 10505 break;
216f72a1 10506 case DW_TAG_call_site:
96408a79
SA
10507 case DW_TAG_GNU_call_site:
10508 read_call_site_scope (die, cu);
10509 break;
c906108c 10510 case DW_TAG_class_type:
680b30c7 10511 case DW_TAG_interface_type:
c906108c
SS
10512 case DW_TAG_structure_type:
10513 case DW_TAG_union_type:
134d01f1 10514 process_structure_scope (die, cu);
c906108c
SS
10515 break;
10516 case DW_TAG_enumeration_type:
134d01f1 10517 process_enumeration_scope (die, cu);
c906108c 10518 break;
134d01f1 10519
f792889a
DJ
10520 /* These dies have a type, but processing them does not create
10521 a symbol or recurse to process the children. Therefore we can
10522 read them on-demand through read_type_die. */
c906108c 10523 case DW_TAG_subroutine_type:
72019c9c 10524 case DW_TAG_set_type:
c906108c 10525 case DW_TAG_array_type:
c906108c 10526 case DW_TAG_pointer_type:
c906108c 10527 case DW_TAG_ptr_to_member_type:
c906108c 10528 case DW_TAG_reference_type:
4297a3f0 10529 case DW_TAG_rvalue_reference_type:
c906108c 10530 case DW_TAG_string_type:
c906108c 10531 break;
134d01f1 10532
c906108c 10533 case DW_TAG_base_type:
a02abb62 10534 case DW_TAG_subrange_type:
cb249c71 10535 case DW_TAG_typedef:
134d01f1
DJ
10536 /* Add a typedef symbol for the type definition, if it has a
10537 DW_AT_name. */
f792889a 10538 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 10539 break;
c906108c 10540 case DW_TAG_common_block:
e7c27a73 10541 read_common_block (die, cu);
c906108c
SS
10542 break;
10543 case DW_TAG_common_inclusion:
10544 break;
d9fa45fe 10545 case DW_TAG_namespace:
4d4ec4e5 10546 cu->processing_has_namespace_info = 1;
e7c27a73 10547 read_namespace (die, cu);
d9fa45fe 10548 break;
5d7cb8df 10549 case DW_TAG_module:
4d4ec4e5 10550 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
10551 read_module (die, cu);
10552 break;
d9fa45fe 10553 case DW_TAG_imported_declaration:
74921315
KS
10554 cu->processing_has_namespace_info = 1;
10555 if (read_namespace_alias (die, cu))
10556 break;
86a73007
TT
10557 /* The declaration is not a global namespace alias. */
10558 /* Fall through. */
d9fa45fe 10559 case DW_TAG_imported_module:
4d4ec4e5 10560 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
10561 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10562 || cu->language != language_fortran))
b98664d3 10563 complaint (_("Tag '%s' has unexpected children"),
27aa8d6a
SW
10564 dwarf_tag_name (die->tag));
10565 read_import_statement (die, cu);
d9fa45fe 10566 break;
95554aad
TT
10567
10568 case DW_TAG_imported_unit:
10569 process_imported_unit_die (die, cu);
10570 break;
10571
71a3c369
TT
10572 case DW_TAG_variable:
10573 read_variable (die, cu);
10574 break;
10575
c906108c 10576 default:
e7c27a73 10577 new_symbol (die, NULL, cu);
c906108c
SS
10578 break;
10579 }
10580}
ca69b9e6
DE
10581\f
10582/* DWARF name computation. */
c906108c 10583
94af9270
KS
10584/* A helper function for dwarf2_compute_name which determines whether DIE
10585 needs to have the name of the scope prepended to the name listed in the
10586 die. */
10587
10588static int
10589die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10590{
1c809c68
TT
10591 struct attribute *attr;
10592
94af9270
KS
10593 switch (die->tag)
10594 {
10595 case DW_TAG_namespace:
10596 case DW_TAG_typedef:
10597 case DW_TAG_class_type:
10598 case DW_TAG_interface_type:
10599 case DW_TAG_structure_type:
10600 case DW_TAG_union_type:
10601 case DW_TAG_enumeration_type:
10602 case DW_TAG_enumerator:
10603 case DW_TAG_subprogram:
08a76f8a 10604 case DW_TAG_inlined_subroutine:
94af9270 10605 case DW_TAG_member:
74921315 10606 case DW_TAG_imported_declaration:
94af9270
KS
10607 return 1;
10608
10609 case DW_TAG_variable:
c2b0a229 10610 case DW_TAG_constant:
94af9270
KS
10611 /* We only need to prefix "globally" visible variables. These include
10612 any variable marked with DW_AT_external or any variable that
10613 lives in a namespace. [Variables in anonymous namespaces
10614 require prefixing, but they are not DW_AT_external.] */
10615
10616 if (dwarf2_attr (die, DW_AT_specification, cu))
10617 {
10618 struct dwarf2_cu *spec_cu = cu;
9a619af0 10619
94af9270
KS
10620 return die_needs_namespace (die_specification (die, &spec_cu),
10621 spec_cu);
10622 }
10623
1c809c68 10624 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
10625 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10626 && die->parent->tag != DW_TAG_module)
1c809c68
TT
10627 return 0;
10628 /* A variable in a lexical block of some kind does not need a
10629 namespace, even though in C++ such variables may be external
10630 and have a mangled name. */
10631 if (die->parent->tag == DW_TAG_lexical_block
10632 || die->parent->tag == DW_TAG_try_block
1054b214
TT
10633 || die->parent->tag == DW_TAG_catch_block
10634 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
10635 return 0;
10636 return 1;
94af9270
KS
10637
10638 default:
10639 return 0;
10640 }
10641}
10642
73b9be8b
KS
10643/* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10644 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10645 defined for the given DIE. */
10646
10647static struct attribute *
10648dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10649{
10650 struct attribute *attr;
10651
10652 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10653 if (attr == NULL)
10654 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10655
10656 return attr;
10657}
10658
10659/* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10660 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10661 defined for the given DIE. */
10662
10663static const char *
10664dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10665{
10666 const char *linkage_name;
10667
10668 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10669 if (linkage_name == NULL)
10670 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10671
10672 return linkage_name;
10673}
10674
94af9270 10675/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390 10676 compute the physname for the object, which include a method's:
9c37b5ae 10677 - formal parameters (C++),
a766d390 10678 - receiver type (Go),
a766d390
DE
10679
10680 The term "physname" is a bit confusing.
10681 For C++, for example, it is the demangled name.
10682 For Go, for example, it's the mangled name.
94af9270 10683
af6b7be1
JB
10684 For Ada, return the DIE's linkage name rather than the fully qualified
10685 name. PHYSNAME is ignored..
10686
94af9270
KS
10687 The result is allocated on the objfile_obstack and canonicalized. */
10688
10689static const char *
15d034d0
TT
10690dwarf2_compute_name (const char *name,
10691 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
10692 int physname)
10693{
518817b3 10694 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
bb5ed363 10695
94af9270
KS
10696 if (name == NULL)
10697 name = dwarf2_name (die, cu);
10698
2ee7123e
DE
10699 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10700 but otherwise compute it by typename_concat inside GDB.
10701 FIXME: Actually this is not really true, or at least not always true.
10702 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
5e2db402 10703 Fortran names because there is no mangling standard. So new_symbol
2ee7123e
DE
10704 will set the demangled name to the result of dwarf2_full_name, and it is
10705 the demangled name that GDB uses if it exists. */
f55ee35c
JK
10706 if (cu->language == language_ada
10707 || (cu->language == language_fortran && physname))
10708 {
10709 /* For Ada unit, we prefer the linkage name over the name, as
10710 the former contains the exported name, which the user expects
10711 to be able to reference. Ideally, we want the user to be able
10712 to reference this entity using either natural or linkage name,
10713 but we haven't started looking at this enhancement yet. */
73b9be8b 10714 const char *linkage_name = dw2_linkage_name (die, cu);
f55ee35c 10715
2ee7123e
DE
10716 if (linkage_name != NULL)
10717 return linkage_name;
f55ee35c
JK
10718 }
10719
94af9270
KS
10720 /* These are the only languages we know how to qualify names in. */
10721 if (name != NULL
9c37b5ae 10722 && (cu->language == language_cplus
c44af4eb
TT
10723 || cu->language == language_fortran || cu->language == language_d
10724 || cu->language == language_rust))
94af9270
KS
10725 {
10726 if (die_needs_namespace (die, cu))
10727 {
0d5cff50 10728 const char *prefix;
34a68019 10729 const char *canonical_name = NULL;
94af9270 10730
d7e74731
PA
10731 string_file buf;
10732
94af9270 10733 prefix = determine_prefix (die, cu);
94af9270
KS
10734 if (*prefix != '\0')
10735 {
f55ee35c
JK
10736 char *prefixed_name = typename_concat (NULL, prefix, name,
10737 physname, cu);
9a619af0 10738
d7e74731 10739 buf.puts (prefixed_name);
94af9270
KS
10740 xfree (prefixed_name);
10741 }
10742 else
d7e74731 10743 buf.puts (name);
94af9270 10744
98bfdba5
PA
10745 /* Template parameters may be specified in the DIE's DW_AT_name, or
10746 as children with DW_TAG_template_type_param or
10747 DW_TAG_value_type_param. If the latter, add them to the name
10748 here. If the name already has template parameters, then
10749 skip this step; some versions of GCC emit both, and
10750 it is more efficient to use the pre-computed name.
10751
10752 Something to keep in mind about this process: it is very
10753 unlikely, or in some cases downright impossible, to produce
10754 something that will match the mangled name of a function.
10755 If the definition of the function has the same debug info,
10756 we should be able to match up with it anyway. But fallbacks
10757 using the minimal symbol, for instance to find a method
10758 implemented in a stripped copy of libstdc++, will not work.
10759 If we do not have debug info for the definition, we will have to
10760 match them up some other way.
10761
10762 When we do name matching there is a related problem with function
10763 templates; two instantiated function templates are allowed to
10764 differ only by their return types, which we do not add here. */
10765
10766 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10767 {
10768 struct attribute *attr;
10769 struct die_info *child;
10770 int first = 1;
10771
10772 die->building_fullname = 1;
10773
10774 for (child = die->child; child != NULL; child = child->sibling)
10775 {
10776 struct type *type;
12df843f 10777 LONGEST value;
d521ce57 10778 const gdb_byte *bytes;
98bfdba5
PA
10779 struct dwarf2_locexpr_baton *baton;
10780 struct value *v;
10781
10782 if (child->tag != DW_TAG_template_type_param
10783 && child->tag != DW_TAG_template_value_param)
10784 continue;
10785
10786 if (first)
10787 {
d7e74731 10788 buf.puts ("<");
98bfdba5
PA
10789 first = 0;
10790 }
10791 else
d7e74731 10792 buf.puts (", ");
98bfdba5
PA
10793
10794 attr = dwarf2_attr (child, DW_AT_type, cu);
10795 if (attr == NULL)
10796 {
b98664d3 10797 complaint (_("template parameter missing DW_AT_type"));
d7e74731 10798 buf.puts ("UNKNOWN_TYPE");
98bfdba5
PA
10799 continue;
10800 }
10801 type = die_type (child, cu);
10802
10803 if (child->tag == DW_TAG_template_type_param)
10804 {
c1ec8cea
TT
10805 c_print_type (type, "", &buf, -1, 0, cu->language,
10806 &type_print_raw_options);
98bfdba5
PA
10807 continue;
10808 }
10809
10810 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10811 if (attr == NULL)
10812 {
b98664d3 10813 complaint (_("template parameter missing "
3e43a32a 10814 "DW_AT_const_value"));
d7e74731 10815 buf.puts ("UNKNOWN_VALUE");
98bfdba5
PA
10816 continue;
10817 }
10818
10819 dwarf2_const_value_attr (attr, type, name,
10820 &cu->comp_unit_obstack, cu,
10821 &value, &bytes, &baton);
10822
10823 if (TYPE_NOSIGN (type))
10824 /* GDB prints characters as NUMBER 'CHAR'. If that's
10825 changed, this can use value_print instead. */
d7e74731 10826 c_printchar (value, type, &buf);
98bfdba5
PA
10827 else
10828 {
10829 struct value_print_options opts;
10830
10831 if (baton != NULL)
10832 v = dwarf2_evaluate_loc_desc (type, NULL,
10833 baton->data,
10834 baton->size,
10835 baton->per_cu);
10836 else if (bytes != NULL)
10837 {
10838 v = allocate_value (type);
10839 memcpy (value_contents_writeable (v), bytes,
10840 TYPE_LENGTH (type));
10841 }
10842 else
10843 v = value_from_longest (type, value);
10844
3e43a32a
MS
10845 /* Specify decimal so that we do not depend on
10846 the radix. */
98bfdba5
PA
10847 get_formatted_print_options (&opts, 'd');
10848 opts.raw = 1;
d7e74731 10849 value_print (v, &buf, &opts);
98bfdba5 10850 release_value (v);
98bfdba5
PA
10851 }
10852 }
10853
10854 die->building_fullname = 0;
10855
10856 if (!first)
10857 {
10858 /* Close the argument list, with a space if necessary
10859 (nested templates). */
d7e74731
PA
10860 if (!buf.empty () && buf.string ().back () == '>')
10861 buf.puts (" >");
98bfdba5 10862 else
d7e74731 10863 buf.puts (">");
98bfdba5
PA
10864 }
10865 }
10866
9c37b5ae 10867 /* For C++ methods, append formal parameter type
94af9270 10868 information, if PHYSNAME. */
6e70227d 10869
94af9270 10870 if (physname && die->tag == DW_TAG_subprogram
9c37b5ae 10871 && cu->language == language_cplus)
94af9270
KS
10872 {
10873 struct type *type = read_type_die (die, cu);
10874
d7e74731 10875 c_type_print_args (type, &buf, 1, cu->language,
79d43c61 10876 &type_print_raw_options);
94af9270 10877
9c37b5ae 10878 if (cu->language == language_cplus)
94af9270 10879 {
60430eff
DJ
10880 /* Assume that an artificial first parameter is
10881 "this", but do not crash if it is not. RealView
10882 marks unnamed (and thus unused) parameters as
10883 artificial; there is no way to differentiate
10884 the two cases. */
94af9270
KS
10885 if (TYPE_NFIELDS (type) > 0
10886 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 10887 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
10888 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10889 0))))
d7e74731 10890 buf.puts (" const");
94af9270
KS
10891 }
10892 }
10893
d7e74731 10894 const std::string &intermediate_name = buf.string ();
94af9270
KS
10895
10896 if (cu->language == language_cplus)
34a68019 10897 canonical_name
322a8516 10898 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
34a68019
TT
10899 &objfile->per_bfd->storage_obstack);
10900
10901 /* If we only computed INTERMEDIATE_NAME, or if
10902 INTERMEDIATE_NAME is already canonical, then we need to
10903 copy it to the appropriate obstack. */
322a8516 10904 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
224c3ddb
SM
10905 name = ((const char *)
10906 obstack_copy0 (&objfile->per_bfd->storage_obstack,
322a8516
PA
10907 intermediate_name.c_str (),
10908 intermediate_name.length ()));
34a68019
TT
10909 else
10910 name = canonical_name;
94af9270
KS
10911 }
10912 }
10913
10914 return name;
10915}
10916
0114d602
DJ
10917/* Return the fully qualified name of DIE, based on its DW_AT_name.
10918 If scope qualifiers are appropriate they will be added. The result
34a68019 10919 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
10920 not have a name. NAME may either be from a previous call to
10921 dwarf2_name or NULL.
10922
9c37b5ae 10923 The output string will be canonicalized (if C++). */
0114d602
DJ
10924
10925static const char *
15d034d0 10926dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 10927{
94af9270
KS
10928 return dwarf2_compute_name (name, die, cu, 0);
10929}
0114d602 10930
94af9270
KS
10931/* Construct a physname for the given DIE in CU. NAME may either be
10932 from a previous call to dwarf2_name or NULL. The result will be
10933 allocated on the objfile_objstack or NULL if the DIE does not have a
10934 name.
0114d602 10935
9c37b5ae 10936 The output string will be canonicalized (if C++). */
0114d602 10937
94af9270 10938static const char *
15d034d0 10939dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 10940{
518817b3 10941 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
900e11f9 10942 const char *retval, *mangled = NULL, *canon = NULL;
900e11f9
JK
10943 int need_copy = 1;
10944
10945 /* In this case dwarf2_compute_name is just a shortcut not building anything
10946 on its own. */
10947 if (!die_needs_namespace (die, cu))
10948 return dwarf2_compute_name (name, die, cu, 1);
10949
73b9be8b 10950 mangled = dw2_linkage_name (die, cu);
900e11f9 10951
e98c9e7c
TT
10952 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10953 See https://github.com/rust-lang/rust/issues/32925. */
10954 if (cu->language == language_rust && mangled != NULL
10955 && strchr (mangled, '{') != NULL)
10956 mangled = NULL;
10957
900e11f9
JK
10958 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10959 has computed. */
791afaa2 10960 gdb::unique_xmalloc_ptr<char> demangled;
7d45c7c3 10961 if (mangled != NULL)
900e11f9 10962 {
900e11f9 10963
59cc4834
JB
10964 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10965 {
10966 /* Do nothing (do not demangle the symbol name). */
10967 }
10968 else if (cu->language == language_go)
a766d390 10969 {
5e2db402
TT
10970 /* This is a lie, but we already lie to the caller new_symbol.
10971 new_symbol assumes we return the mangled name.
a766d390 10972 This just undoes that lie until things are cleaned up. */
a766d390
DE
10973 }
10974 else
10975 {
0eb876f5
JB
10976 /* Use DMGL_RET_DROP for C++ template functions to suppress
10977 their return type. It is easier for GDB users to search
10978 for such functions as `name(params)' than `long name(params)'.
10979 In such case the minimal symbol names do not match the full
10980 symbol names but for template functions there is never a need
10981 to look up their definition from their declaration so
10982 the only disadvantage remains the minimal symbol variant
10983 `long name(params)' does not have the proper inferior type. */
791afaa2
TT
10984 demangled.reset (gdb_demangle (mangled,
10985 (DMGL_PARAMS | DMGL_ANSI
10986 | DMGL_RET_DROP)));
a766d390 10987 }
900e11f9 10988 if (demangled)
791afaa2 10989 canon = demangled.get ();
900e11f9
JK
10990 else
10991 {
10992 canon = mangled;
10993 need_copy = 0;
10994 }
10995 }
10996
10997 if (canon == NULL || check_physname)
10998 {
10999 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11000
11001 if (canon != NULL && strcmp (physname, canon) != 0)
11002 {
11003 /* It may not mean a bug in GDB. The compiler could also
11004 compute DW_AT_linkage_name incorrectly. But in such case
11005 GDB would need to be bug-to-bug compatible. */
11006
b98664d3 11007 complaint (_("Computed physname <%s> does not match demangled <%s> "
9d8780f0
SM
11008 "(from linkage <%s>) - DIE at %s [in module %s]"),
11009 physname, canon, mangled, sect_offset_str (die->sect_off),
4262abfb 11010 objfile_name (objfile));
900e11f9
JK
11011
11012 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11013 is available here - over computed PHYSNAME. It is safer
11014 against both buggy GDB and buggy compilers. */
11015
11016 retval = canon;
11017 }
11018 else
11019 {
11020 retval = physname;
11021 need_copy = 0;
11022 }
11023 }
11024 else
11025 retval = canon;
11026
11027 if (need_copy)
224c3ddb
SM
11028 retval = ((const char *)
11029 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11030 retval, strlen (retval)));
900e11f9 11031
900e11f9 11032 return retval;
0114d602
DJ
11033}
11034
74921315
KS
11035/* Inspect DIE in CU for a namespace alias. If one exists, record
11036 a new symbol for it.
11037
11038 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11039
11040static int
11041read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11042{
11043 struct attribute *attr;
11044
11045 /* If the die does not have a name, this is not a namespace
11046 alias. */
11047 attr = dwarf2_attr (die, DW_AT_name, cu);
11048 if (attr != NULL)
11049 {
11050 int num;
11051 struct die_info *d = die;
11052 struct dwarf2_cu *imported_cu = cu;
11053
11054 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11055 keep inspecting DIEs until we hit the underlying import. */
11056#define MAX_NESTED_IMPORTED_DECLARATIONS 100
11057 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11058 {
11059 attr = dwarf2_attr (d, DW_AT_import, cu);
11060 if (attr == NULL)
11061 break;
11062
11063 d = follow_die_ref (d, attr, &imported_cu);
11064 if (d->tag != DW_TAG_imported_declaration)
11065 break;
11066 }
11067
11068 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11069 {
b98664d3 11070 complaint (_("DIE at %s has too many recursively imported "
9d8780f0 11071 "declarations"), sect_offset_str (d->sect_off));
74921315
KS
11072 return 0;
11073 }
11074
11075 if (attr != NULL)
11076 {
11077 struct type *type;
9c541725 11078 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
74921315 11079
9c541725 11080 type = get_die_type_at_offset (sect_off, cu->per_cu);
74921315
KS
11081 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11082 {
11083 /* This declaration is a global namespace alias. Add
11084 a symbol for it whose type is the aliased namespace. */
11085 new_symbol (die, type, cu);
11086 return 1;
11087 }
11088 }
11089 }
11090
11091 return 0;
11092}
11093
22cee43f
PMR
11094/* Return the using directives repository (global or local?) to use in the
11095 current context for LANGUAGE.
11096
11097 For Ada, imported declarations can materialize renamings, which *may* be
11098 global. However it is impossible (for now?) in DWARF to distinguish
11099 "external" imported declarations and "static" ones. As all imported
11100 declarations seem to be static in all other languages, make them all CU-wide
11101 global only in Ada. */
11102
11103static struct using_direct **
11104using_directives (enum language language)
11105{
edb0470b 11106 if (language == language_ada && outermost_context_p ())
6cccc9a8 11107 return get_global_using_directives ();
22cee43f 11108 else
6cccc9a8 11109 return get_local_using_directives ();
22cee43f
PMR
11110}
11111
27aa8d6a
SW
11112/* Read the import statement specified by the given die and record it. */
11113
11114static void
11115read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11116{
518817b3 11117 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
27aa8d6a 11118 struct attribute *import_attr;
32019081 11119 struct die_info *imported_die, *child_die;
de4affc9 11120 struct dwarf2_cu *imported_cu;
27aa8d6a 11121 const char *imported_name;
794684b6 11122 const char *imported_name_prefix;
13387711
SW
11123 const char *canonical_name;
11124 const char *import_alias;
11125 const char *imported_declaration = NULL;
794684b6 11126 const char *import_prefix;
eb1e02fd 11127 std::vector<const char *> excludes;
13387711 11128
27aa8d6a
SW
11129 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11130 if (import_attr == NULL)
11131 {
b98664d3 11132 complaint (_("Tag '%s' has no DW_AT_import"),
27aa8d6a
SW
11133 dwarf_tag_name (die->tag));
11134 return;
11135 }
11136
de4affc9
CC
11137 imported_cu = cu;
11138 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11139 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
11140 if (imported_name == NULL)
11141 {
11142 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11143
11144 The import in the following code:
11145 namespace A
11146 {
11147 typedef int B;
11148 }
11149
11150 int main ()
11151 {
11152 using A::B;
11153 B b;
11154 return b;
11155 }
11156
11157 ...
11158 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11159 <52> DW_AT_decl_file : 1
11160 <53> DW_AT_decl_line : 6
11161 <54> DW_AT_import : <0x75>
11162 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11163 <59> DW_AT_name : B
11164 <5b> DW_AT_decl_file : 1
11165 <5c> DW_AT_decl_line : 2
11166 <5d> DW_AT_type : <0x6e>
11167 ...
11168 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11169 <76> DW_AT_byte_size : 4
11170 <77> DW_AT_encoding : 5 (signed)
11171
11172 imports the wrong die ( 0x75 instead of 0x58 ).
11173 This case will be ignored until the gcc bug is fixed. */
11174 return;
11175 }
11176
82856980
SW
11177 /* Figure out the local name after import. */
11178 import_alias = dwarf2_name (die, cu);
27aa8d6a 11179
794684b6
SW
11180 /* Figure out where the statement is being imported to. */
11181 import_prefix = determine_prefix (die, cu);
11182
11183 /* Figure out what the scope of the imported die is and prepend it
11184 to the name of the imported die. */
de4affc9 11185 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 11186
f55ee35c
JK
11187 if (imported_die->tag != DW_TAG_namespace
11188 && imported_die->tag != DW_TAG_module)
794684b6 11189 {
13387711
SW
11190 imported_declaration = imported_name;
11191 canonical_name = imported_name_prefix;
794684b6 11192 }
13387711 11193 else if (strlen (imported_name_prefix) > 0)
12aaed36 11194 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
11195 imported_name_prefix,
11196 (cu->language == language_d ? "." : "::"),
11197 imported_name, (char *) NULL);
13387711
SW
11198 else
11199 canonical_name = imported_name;
794684b6 11200
32019081
JK
11201 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11202 for (child_die = die->child; child_die && child_die->tag;
11203 child_die = sibling_die (child_die))
11204 {
11205 /* DWARF-4: A Fortran use statement with a “rename list” may be
11206 represented by an imported module entry with an import attribute
11207 referring to the module and owned entries corresponding to those
11208 entities that are renamed as part of being imported. */
11209
11210 if (child_die->tag != DW_TAG_imported_declaration)
11211 {
b98664d3 11212 complaint (_("child DW_TAG_imported_declaration expected "
9d8780f0
SM
11213 "- DIE at %s [in module %s]"),
11214 sect_offset_str (child_die->sect_off),
11215 objfile_name (objfile));
32019081
JK
11216 continue;
11217 }
11218
11219 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11220 if (import_attr == NULL)
11221 {
b98664d3 11222 complaint (_("Tag '%s' has no DW_AT_import"),
32019081
JK
11223 dwarf_tag_name (child_die->tag));
11224 continue;
11225 }
11226
11227 imported_cu = cu;
11228 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11229 &imported_cu);
11230 imported_name = dwarf2_name (imported_die, imported_cu);
11231 if (imported_name == NULL)
11232 {
b98664d3 11233 complaint (_("child DW_TAG_imported_declaration has unknown "
9d8780f0
SM
11234 "imported name - DIE at %s [in module %s]"),
11235 sect_offset_str (child_die->sect_off),
11236 objfile_name (objfile));
32019081
JK
11237 continue;
11238 }
11239
eb1e02fd 11240 excludes.push_back (imported_name);
32019081
JK
11241
11242 process_die (child_die, cu);
11243 }
11244
22cee43f
PMR
11245 add_using_directive (using_directives (cu->language),
11246 import_prefix,
11247 canonical_name,
11248 import_alias,
11249 imported_declaration,
11250 excludes,
11251 0,
11252 &objfile->objfile_obstack);
27aa8d6a
SW
11253}
11254
5230b05a
WT
11255/* ICC<14 does not output the required DW_AT_declaration on incomplete
11256 types, but gives them a size of zero. Starting with version 14,
11257 ICC is compatible with GCC. */
11258
11259static int
11260producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11261{
11262 if (!cu->checked_producer)
11263 check_producer (cu);
11264
11265 return cu->producer_is_icc_lt_14;
11266}
11267
1b80a9fa
JK
11268/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11269 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11270 this, it was first present in GCC release 4.3.0. */
11271
11272static int
11273producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11274{
11275 if (!cu->checked_producer)
11276 check_producer (cu);
11277
11278 return cu->producer_is_gcc_lt_4_3;
11279}
11280
d721ba37
PA
11281static file_and_directory
11282find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9291a0cd 11283{
d721ba37
PA
11284 file_and_directory res;
11285
9291a0cd
TT
11286 /* Find the filename. Do not use dwarf2_name here, since the filename
11287 is not a source language identifier. */
d721ba37
PA
11288 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11289 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 11290
d721ba37
PA
11291 if (res.comp_dir == NULL
11292 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11293 && IS_ABSOLUTE_PATH (res.name))
9291a0cd 11294 {
d721ba37
PA
11295 res.comp_dir_storage = ldirname (res.name);
11296 if (!res.comp_dir_storage.empty ())
11297 res.comp_dir = res.comp_dir_storage.c_str ();
9291a0cd 11298 }
d721ba37 11299 if (res.comp_dir != NULL)
9291a0cd
TT
11300 {
11301 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11302 directory, get rid of it. */
d721ba37 11303 const char *cp = strchr (res.comp_dir, ':');
9291a0cd 11304
d721ba37
PA
11305 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11306 res.comp_dir = cp + 1;
9291a0cd
TT
11307 }
11308
d721ba37
PA
11309 if (res.name == NULL)
11310 res.name = "<unknown>";
11311
11312 return res;
9291a0cd
TT
11313}
11314
f4dc4d17
DE
11315/* Handle DW_AT_stmt_list for a compilation unit.
11316 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
11317 COMP_DIR is the compilation directory. LOWPC is passed to
11318 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
11319
11320static void
11321handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 11322 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 11323{
518817b3
SM
11324 struct dwarf2_per_objfile *dwarf2_per_objfile
11325 = cu->per_cu->dwarf2_per_objfile;
527f3840 11326 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 11327 struct attribute *attr;
527f3840
JK
11328 struct line_header line_header_local;
11329 hashval_t line_header_local_hash;
527f3840
JK
11330 void **slot;
11331 int decode_mapping;
2ab95328 11332
f4dc4d17
DE
11333 gdb_assert (! cu->per_cu->is_debug_types);
11334
2ab95328 11335 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
11336 if (attr == NULL)
11337 return;
11338
9c541725 11339 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
527f3840
JK
11340
11341 /* The line header hash table is only created if needed (it exists to
11342 prevent redundant reading of the line table for partial_units).
11343 If we're given a partial_unit, we'll need it. If we're given a
11344 compile_unit, then use the line header hash table if it's already
11345 created, but don't create one just yet. */
11346
11347 if (dwarf2_per_objfile->line_header_hash == NULL
11348 && die->tag == DW_TAG_partial_unit)
2ab95328 11349 {
527f3840
JK
11350 dwarf2_per_objfile->line_header_hash
11351 = htab_create_alloc_ex (127, line_header_hash_voidp,
11352 line_header_eq_voidp,
11353 free_line_header_voidp,
11354 &objfile->objfile_obstack,
11355 hashtab_obstack_allocate,
11356 dummy_obstack_deallocate);
11357 }
2ab95328 11358
9c541725 11359 line_header_local.sect_off = line_offset;
527f3840
JK
11360 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11361 line_header_local_hash = line_header_hash (&line_header_local);
11362 if (dwarf2_per_objfile->line_header_hash != NULL)
11363 {
11364 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11365 &line_header_local,
11366 line_header_local_hash, NO_INSERT);
11367
11368 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11369 is not present in *SLOT (since if there is something in *SLOT then
11370 it will be for a partial_unit). */
11371 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 11372 {
527f3840 11373 gdb_assert (*slot != NULL);
9a3c8263 11374 cu->line_header = (struct line_header *) *slot;
527f3840 11375 return;
dee91e82 11376 }
2ab95328 11377 }
527f3840
JK
11378
11379 /* dwarf_decode_line_header does not yet provide sufficient information.
11380 We always have to call also dwarf_decode_lines for it. */
fff8551c
PA
11381 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11382 if (lh == NULL)
527f3840 11383 return;
4c8aa72d
PA
11384
11385 cu->line_header = lh.release ();
11386 cu->line_header_die_owner = die;
527f3840
JK
11387
11388 if (dwarf2_per_objfile->line_header_hash == NULL)
11389 slot = NULL;
11390 else
11391 {
11392 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11393 &line_header_local,
11394 line_header_local_hash, INSERT);
11395 gdb_assert (slot != NULL);
11396 }
11397 if (slot != NULL && *slot == NULL)
11398 {
11399 /* This newly decoded line number information unit will be owned
11400 by line_header_hash hash table. */
11401 *slot = cu->line_header;
4c8aa72d 11402 cu->line_header_die_owner = NULL;
527f3840
JK
11403 }
11404 else
11405 {
11406 /* We cannot free any current entry in (*slot) as that struct line_header
11407 may be already used by multiple CUs. Create only temporary decoded
11408 line_header for this CU - it may happen at most once for each line
11409 number information unit. And if we're not using line_header_hash
11410 then this is what we want as well. */
11411 gdb_assert (die->tag != DW_TAG_partial_unit);
527f3840
JK
11412 }
11413 decode_mapping = (die->tag != DW_TAG_partial_unit);
11414 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11415 decode_mapping);
fff8551c 11416
2ab95328
TT
11417}
11418
95554aad 11419/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 11420
c906108c 11421static void
e7c27a73 11422read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11423{
518817b3
SM
11424 struct dwarf2_per_objfile *dwarf2_per_objfile
11425 = cu->per_cu->dwarf2_per_objfile;
dee91e82 11426 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 11427 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2acceee2 11428 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
11429 CORE_ADDR highpc = ((CORE_ADDR) 0);
11430 struct attribute *attr;
c906108c 11431 struct die_info *child_die;
e142c38c 11432 CORE_ADDR baseaddr;
6e70227d 11433
e142c38c 11434 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 11435
fae299cd 11436 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
11437
11438 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11439 from finish_block. */
2acceee2 11440 if (lowpc == ((CORE_ADDR) -1))
c906108c 11441 lowpc = highpc;
3e29f34a 11442 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 11443
d721ba37 11444 file_and_directory fnd = find_file_and_directory (die, cu);
e1024ff1 11445
95554aad 11446 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 11447
f4b8a18d
KW
11448 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11449 standardised yet. As a workaround for the language detection we fall
11450 back to the DW_AT_producer string. */
11451 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11452 cu->language = language_opencl;
11453
3019eac3
DE
11454 /* Similar hack for Go. */
11455 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11456 set_cu_language (DW_LANG_Go, cu);
11457
d721ba37 11458 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
3019eac3
DE
11459
11460 /* Decode line number information if present. We do this before
11461 processing child DIEs, so that the line header table is available
11462 for DW_AT_decl_file. */
d721ba37 11463 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
3019eac3
DE
11464
11465 /* Process all dies in compilation unit. */
11466 if (die->child != NULL)
11467 {
11468 child_die = die->child;
11469 while (child_die && child_die->tag)
11470 {
11471 process_die (child_die, cu);
11472 child_die = sibling_die (child_die);
11473 }
11474 }
11475
11476 /* Decode macro information, if present. Dwarf 2 macro information
11477 refers to information in the line number info statement program
11478 header, so we can only read it if we've read the header
11479 successfully. */
0af92d60
JK
11480 attr = dwarf2_attr (die, DW_AT_macros, cu);
11481 if (attr == NULL)
11482 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
3019eac3
DE
11483 if (attr && cu->line_header)
11484 {
11485 if (dwarf2_attr (die, DW_AT_macro_info, cu))
b98664d3 11486 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
3019eac3 11487
43f3e411 11488 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
11489 }
11490 else
11491 {
11492 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11493 if (attr && cu->line_header)
11494 {
11495 unsigned int macro_offset = DW_UNSND (attr);
11496
43f3e411 11497 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
11498 }
11499 }
3019eac3
DE
11500}
11501
f4dc4d17
DE
11502/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11503 Create the set of symtabs used by this TU, or if this TU is sharing
11504 symtabs with another TU and the symtabs have already been created
11505 then restore those symtabs in the line header.
11506 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
11507
11508static void
f4dc4d17 11509setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 11510{
f4dc4d17
DE
11511 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11512 struct type_unit_group *tu_group;
11513 int first_time;
3019eac3 11514 struct attribute *attr;
9c541725 11515 unsigned int i;
0186c6a7 11516 struct signatured_type *sig_type;
3019eac3 11517
f4dc4d17 11518 gdb_assert (per_cu->is_debug_types);
0186c6a7 11519 sig_type = (struct signatured_type *) per_cu;
3019eac3 11520
f4dc4d17 11521 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 11522
f4dc4d17 11523 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 11524 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
11525 if (sig_type->type_unit_group == NULL)
11526 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11527 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
11528
11529 /* If we've already processed this stmt_list there's no real need to
11530 do it again, we could fake it and just recreate the part we need
11531 (file name,index -> symtab mapping). If data shows this optimization
11532 is useful we can do it then. */
43f3e411 11533 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
11534
11535 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11536 debug info. */
fff8551c 11537 line_header_up lh;
f4dc4d17 11538 if (attr != NULL)
3019eac3 11539 {
9c541725 11540 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
f4dc4d17
DE
11541 lh = dwarf_decode_line_header (line_offset, cu);
11542 }
11543 if (lh == NULL)
11544 {
11545 if (first_time)
11546 dwarf2_start_symtab (cu, "", NULL, 0);
11547 else
11548 {
11549 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 11550 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 11551 }
f4dc4d17 11552 return;
3019eac3
DE
11553 }
11554
4c8aa72d
PA
11555 cu->line_header = lh.release ();
11556 cu->line_header_die_owner = die;
3019eac3 11557
f4dc4d17
DE
11558 if (first_time)
11559 {
43f3e411 11560 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 11561
1fd60fc0
DE
11562 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11563 still initializing it, and our caller (a few levels up)
11564 process_full_type_unit still needs to know if this is the first
11565 time. */
11566
4c8aa72d
PA
11567 tu_group->num_symtabs = cu->line_header->file_names.size ();
11568 tu_group->symtabs = XNEWVEC (struct symtab *,
11569 cu->line_header->file_names.size ());
3019eac3 11570
4c8aa72d 11571 for (i = 0; i < cu->line_header->file_names.size (); ++i)
f4dc4d17 11572 {
4c8aa72d 11573 file_entry &fe = cu->line_header->file_names[i];
3019eac3 11574
4c8aa72d 11575 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
3019eac3 11576
f4dc4d17
DE
11577 if (current_subfile->symtab == NULL)
11578 {
4c8aa72d
PA
11579 /* NOTE: start_subfile will recognize when it's been
11580 passed a file it has already seen. So we can't
11581 assume there's a simple mapping from
11582 cu->line_header->file_names to subfiles, plus
11583 cu->line_header->file_names may contain dups. */
43f3e411
DE
11584 current_subfile->symtab
11585 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
11586 }
11587
8c43009f
PA
11588 fe.symtab = current_subfile->symtab;
11589 tu_group->symtabs[i] = fe.symtab;
f4dc4d17
DE
11590 }
11591 }
11592 else
3019eac3 11593 {
0ab9ce85 11594 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 11595
4c8aa72d 11596 for (i = 0; i < cu->line_header->file_names.size (); ++i)
f4dc4d17 11597 {
4c8aa72d 11598 file_entry &fe = cu->line_header->file_names[i];
f4dc4d17 11599
4c8aa72d 11600 fe.symtab = tu_group->symtabs[i];
f4dc4d17 11601 }
3019eac3
DE
11602 }
11603
f4dc4d17
DE
11604 /* The main symtab is allocated last. Type units don't have DW_AT_name
11605 so they don't have a "real" (so to speak) symtab anyway.
11606 There is later code that will assign the main symtab to all symbols
11607 that don't have one. We need to handle the case of a symbol with a
11608 missing symtab (DW_AT_decl_file) anyway. */
11609}
3019eac3 11610
f4dc4d17
DE
11611/* Process DW_TAG_type_unit.
11612 For TUs we want to skip the first top level sibling if it's not the
11613 actual type being defined by this TU. In this case the first top
11614 level sibling is there to provide context only. */
3019eac3 11615
f4dc4d17
DE
11616static void
11617read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11618{
11619 struct die_info *child_die;
3019eac3 11620
f4dc4d17
DE
11621 prepare_one_comp_unit (cu, die, language_minimal);
11622
11623 /* Initialize (or reinitialize) the machinery for building symtabs.
11624 We do this before processing child DIEs, so that the line header table
11625 is available for DW_AT_decl_file. */
11626 setup_type_unit_groups (die, cu);
11627
11628 if (die->child != NULL)
11629 {
11630 child_die = die->child;
11631 while (child_die && child_die->tag)
11632 {
11633 process_die (child_die, cu);
11634 child_die = sibling_die (child_die);
11635 }
11636 }
3019eac3
DE
11637}
11638\f
80626a55
DE
11639/* DWO/DWP files.
11640
11641 http://gcc.gnu.org/wiki/DebugFission
11642 http://gcc.gnu.org/wiki/DebugFissionDWP
11643
11644 To simplify handling of both DWO files ("object" files with the DWARF info)
11645 and DWP files (a file with the DWOs packaged up into one file), we treat
11646 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
11647
11648static hashval_t
11649hash_dwo_file (const void *item)
11650{
9a3c8263 11651 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 11652 hashval_t hash;
3019eac3 11653
a2ce51a0
DE
11654 hash = htab_hash_string (dwo_file->dwo_name);
11655 if (dwo_file->comp_dir != NULL)
11656 hash += htab_hash_string (dwo_file->comp_dir);
11657 return hash;
3019eac3
DE
11658}
11659
11660static int
11661eq_dwo_file (const void *item_lhs, const void *item_rhs)
11662{
9a3c8263
SM
11663 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11664 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 11665
a2ce51a0
DE
11666 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11667 return 0;
11668 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11669 return lhs->comp_dir == rhs->comp_dir;
11670 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
11671}
11672
11673/* Allocate a hash table for DWO files. */
11674
11675static htab_t
ed2dc618 11676allocate_dwo_file_hash_table (struct objfile *objfile)
3019eac3 11677{
3019eac3
DE
11678 return htab_create_alloc_ex (41,
11679 hash_dwo_file,
11680 eq_dwo_file,
11681 NULL,
11682 &objfile->objfile_obstack,
11683 hashtab_obstack_allocate,
11684 dummy_obstack_deallocate);
11685}
11686
80626a55
DE
11687/* Lookup DWO file DWO_NAME. */
11688
11689static void **
ed2dc618
SM
11690lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11691 const char *dwo_name,
11692 const char *comp_dir)
80626a55
DE
11693{
11694 struct dwo_file find_entry;
11695 void **slot;
11696
11697 if (dwarf2_per_objfile->dwo_files == NULL)
ed2dc618
SM
11698 dwarf2_per_objfile->dwo_files
11699 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
80626a55
DE
11700
11701 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
11702 find_entry.dwo_name = dwo_name;
11703 find_entry.comp_dir = comp_dir;
80626a55
DE
11704 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11705
11706 return slot;
11707}
11708
3019eac3
DE
11709static hashval_t
11710hash_dwo_unit (const void *item)
11711{
9a3c8263 11712 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
11713
11714 /* This drops the top 32 bits of the id, but is ok for a hash. */
11715 return dwo_unit->signature;
11716}
11717
11718static int
11719eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11720{
9a3c8263
SM
11721 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11722 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
11723
11724 /* The signature is assumed to be unique within the DWO file.
11725 So while object file CU dwo_id's always have the value zero,
11726 that's OK, assuming each object file DWO file has only one CU,
11727 and that's the rule for now. */
11728 return lhs->signature == rhs->signature;
11729}
11730
11731/* Allocate a hash table for DWO CUs,TUs.
11732 There is one of these tables for each of CUs,TUs for each DWO file. */
11733
11734static htab_t
11735allocate_dwo_unit_table (struct objfile *objfile)
11736{
11737 /* Start out with a pretty small number.
11738 Generally DWO files contain only one CU and maybe some TUs. */
11739 return htab_create_alloc_ex (3,
11740 hash_dwo_unit,
11741 eq_dwo_unit,
11742 NULL,
11743 &objfile->objfile_obstack,
11744 hashtab_obstack_allocate,
11745 dummy_obstack_deallocate);
11746}
11747
80626a55 11748/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 11749
19c3d4c9 11750struct create_dwo_cu_data
3019eac3
DE
11751{
11752 struct dwo_file *dwo_file;
19c3d4c9 11753 struct dwo_unit dwo_unit;
3019eac3
DE
11754};
11755
19c3d4c9 11756/* die_reader_func for create_dwo_cu. */
3019eac3
DE
11757
11758static void
19c3d4c9
DE
11759create_dwo_cu_reader (const struct die_reader_specs *reader,
11760 const gdb_byte *info_ptr,
11761 struct die_info *comp_unit_die,
11762 int has_children,
11763 void *datap)
3019eac3
DE
11764{
11765 struct dwarf2_cu *cu = reader->cu;
9c541725 11766 sect_offset sect_off = cu->per_cu->sect_off;
8a0459fd 11767 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 11768 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 11769 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 11770 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 11771 struct attribute *attr;
3019eac3
DE
11772
11773 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11774 if (attr == NULL)
11775 {
b98664d3 11776 complaint (_("Dwarf Error: debug entry at offset %s is missing"
19c3d4c9 11777 " its dwo_id [in module %s]"),
9d8780f0 11778 sect_offset_str (sect_off), dwo_file->dwo_name);
3019eac3
DE
11779 return;
11780 }
11781
3019eac3
DE
11782 dwo_unit->dwo_file = dwo_file;
11783 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 11784 dwo_unit->section = section;
9c541725 11785 dwo_unit->sect_off = sect_off;
3019eac3
DE
11786 dwo_unit->length = cu->per_cu->length;
11787
b4f54984 11788 if (dwarf_read_debug)
9d8780f0
SM
11789 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11790 sect_offset_str (sect_off),
9c541725 11791 hex_string (dwo_unit->signature));
3019eac3
DE
11792}
11793
33c5cd75 11794/* Create the dwo_units for the CUs in a DWO_FILE.
19c3d4c9 11795 Note: This function processes DWO files only, not DWP files. */
3019eac3 11796
33c5cd75 11797static void
ed2dc618
SM
11798create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11799 struct dwo_file &dwo_file, dwarf2_section_info &section,
33c5cd75 11800 htab_t &cus_htab)
3019eac3
DE
11801{
11802 struct objfile *objfile = dwarf2_per_objfile->objfile;
d521ce57 11803 const gdb_byte *info_ptr, *end_ptr;
3019eac3 11804
33c5cd75
DB
11805 dwarf2_read_section (objfile, &section);
11806 info_ptr = section.buffer;
3019eac3
DE
11807
11808 if (info_ptr == NULL)
33c5cd75 11809 return;
3019eac3 11810
b4f54984 11811 if (dwarf_read_debug)
19c3d4c9
DE
11812 {
11813 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
33c5cd75
DB
11814 get_section_name (&section),
11815 get_section_file_name (&section));
19c3d4c9 11816 }
3019eac3 11817
33c5cd75 11818 end_ptr = info_ptr + section.size;
3019eac3
DE
11819 while (info_ptr < end_ptr)
11820 {
11821 struct dwarf2_per_cu_data per_cu;
33c5cd75
DB
11822 struct create_dwo_cu_data create_dwo_cu_data;
11823 struct dwo_unit *dwo_unit;
11824 void **slot;
11825 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
3019eac3 11826
19c3d4c9
DE
11827 memset (&create_dwo_cu_data.dwo_unit, 0,
11828 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3 11829 memset (&per_cu, 0, sizeof (per_cu));
e3b94546 11830 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3019eac3 11831 per_cu.is_debug_types = 0;
33c5cd75
DB
11832 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11833 per_cu.section = &section;
c5ed0576 11834 create_dwo_cu_data.dwo_file = &dwo_file;
33c5cd75
DB
11835
11836 init_cutu_and_read_dies_no_follow (
11837 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11838 info_ptr += per_cu.length;
11839
11840 // If the unit could not be parsed, skip it.
11841 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11842 continue;
3019eac3 11843
33c5cd75
DB
11844 if (cus_htab == NULL)
11845 cus_htab = allocate_dwo_unit_table (objfile);
19c3d4c9 11846
33c5cd75
DB
11847 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11848 *dwo_unit = create_dwo_cu_data.dwo_unit;
11849 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11850 gdb_assert (slot != NULL);
11851 if (*slot != NULL)
19c3d4c9 11852 {
33c5cd75
DB
11853 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11854 sect_offset dup_sect_off = dup_cu->sect_off;
19c3d4c9 11855
b98664d3 11856 complaint (_("debug cu entry at offset %s is duplicate to"
9d8780f0
SM
11857 " the entry at offset %s, signature %s"),
11858 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
33c5cd75 11859 hex_string (dwo_unit->signature));
19c3d4c9 11860 }
33c5cd75 11861 *slot = (void *)dwo_unit;
3019eac3 11862 }
3019eac3
DE
11863}
11864
80626a55
DE
11865/* DWP file .debug_{cu,tu}_index section format:
11866 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11867
d2415c6c
DE
11868 DWP Version 1:
11869
80626a55
DE
11870 Both index sections have the same format, and serve to map a 64-bit
11871 signature to a set of section numbers. Each section begins with a header,
11872 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11873 indexes, and a pool of 32-bit section numbers. The index sections will be
11874 aligned at 8-byte boundaries in the file.
11875
d2415c6c
DE
11876 The index section header consists of:
11877
11878 V, 32 bit version number
11879 -, 32 bits unused
11880 N, 32 bit number of compilation units or type units in the index
11881 M, 32 bit number of slots in the hash table
80626a55 11882
d2415c6c 11883 Numbers are recorded using the byte order of the application binary.
80626a55 11884
d2415c6c
DE
11885 The hash table begins at offset 16 in the section, and consists of an array
11886 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11887 order of the application binary). Unused slots in the hash table are 0.
11888 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 11889
d2415c6c
DE
11890 The parallel table begins immediately after the hash table
11891 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11892 array of 32-bit indexes (using the byte order of the application binary),
11893 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11894 table contains a 32-bit index into the pool of section numbers. For unused
11895 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 11896
73869dc2
DE
11897 The pool of section numbers begins immediately following the hash table
11898 (at offset 16 + 12 * M from the beginning of the section). The pool of
11899 section numbers consists of an array of 32-bit words (using the byte order
11900 of the application binary). Each item in the array is indexed starting
11901 from 0. The hash table entry provides the index of the first section
11902 number in the set. Additional section numbers in the set follow, and the
11903 set is terminated by a 0 entry (section number 0 is not used in ELF).
11904
11905 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11906 section must be the first entry in the set, and the .debug_abbrev.dwo must
11907 be the second entry. Other members of the set may follow in any order.
11908
11909 ---
11910
11911 DWP Version 2:
11912
11913 DWP Version 2 combines all the .debug_info, etc. sections into one,
11914 and the entries in the index tables are now offsets into these sections.
11915 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11916 section.
11917
11918 Index Section Contents:
11919 Header
11920 Hash Table of Signatures dwp_hash_table.hash_table
11921 Parallel Table of Indices dwp_hash_table.unit_table
11922 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11923 Table of Section Sizes dwp_hash_table.v2.sizes
11924
11925 The index section header consists of:
11926
11927 V, 32 bit version number
11928 L, 32 bit number of columns in the table of section offsets
11929 N, 32 bit number of compilation units or type units in the index
11930 M, 32 bit number of slots in the hash table
11931
11932 Numbers are recorded using the byte order of the application binary.
11933
11934 The hash table has the same format as version 1.
11935 The parallel table of indices has the same format as version 1,
11936 except that the entries are origin-1 indices into the table of sections
11937 offsets and the table of section sizes.
11938
11939 The table of offsets begins immediately following the parallel table
11940 (at offset 16 + 12 * M from the beginning of the section). The table is
11941 a two-dimensional array of 32-bit words (using the byte order of the
11942 application binary), with L columns and N+1 rows, in row-major order.
11943 Each row in the array is indexed starting from 0. The first row provides
11944 a key to the remaining rows: each column in this row provides an identifier
11945 for a debug section, and the offsets in the same column of subsequent rows
11946 refer to that section. The section identifiers are:
11947
11948 DW_SECT_INFO 1 .debug_info.dwo
11949 DW_SECT_TYPES 2 .debug_types.dwo
11950 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11951 DW_SECT_LINE 4 .debug_line.dwo
11952 DW_SECT_LOC 5 .debug_loc.dwo
11953 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11954 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11955 DW_SECT_MACRO 8 .debug_macro.dwo
11956
11957 The offsets provided by the CU and TU index sections are the base offsets
11958 for the contributions made by each CU or TU to the corresponding section
11959 in the package file. Each CU and TU header contains an abbrev_offset
11960 field, used to find the abbreviations table for that CU or TU within the
11961 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11962 be interpreted as relative to the base offset given in the index section.
11963 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11964 should be interpreted as relative to the base offset for .debug_line.dwo,
11965 and offsets into other debug sections obtained from DWARF attributes should
11966 also be interpreted as relative to the corresponding base offset.
11967
11968 The table of sizes begins immediately following the table of offsets.
11969 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11970 with L columns and N rows, in row-major order. Each row in the array is
11971 indexed starting from 1 (row 0 is shared by the two tables).
11972
11973 ---
11974
11975 Hash table lookup is handled the same in version 1 and 2:
11976
11977 We assume that N and M will not exceed 2^32 - 1.
11978 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11979
d2415c6c
DE
11980 Given a 64-bit compilation unit signature or a type signature S, an entry
11981 in the hash table is located as follows:
80626a55 11982
d2415c6c
DE
11983 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11984 the low-order k bits all set to 1.
80626a55 11985
d2415c6c 11986 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 11987
d2415c6c
DE
11988 3) If the hash table entry at index H matches the signature, use that
11989 entry. If the hash table entry at index H is unused (all zeroes),
11990 terminate the search: the signature is not present in the table.
80626a55 11991
d2415c6c 11992 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 11993
d2415c6c 11994 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 11995 to stop at an unused slot or find the match. */
80626a55
DE
11996
11997/* Create a hash table to map DWO IDs to their CU/TU entry in
11998 .debug_{info,types}.dwo in DWP_FILE.
11999 Returns NULL if there isn't one.
12000 Note: This function processes DWP files only, not DWO files. */
12001
12002static struct dwp_hash_table *
ed2dc618
SM
12003create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12004 struct dwp_file *dwp_file, int is_debug_types)
80626a55
DE
12005{
12006 struct objfile *objfile = dwarf2_per_objfile->objfile;
400174b1 12007 bfd *dbfd = dwp_file->dbfd.get ();
948f8e3d 12008 const gdb_byte *index_ptr, *index_end;
80626a55 12009 struct dwarf2_section_info *index;
73869dc2 12010 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
12011 struct dwp_hash_table *htab;
12012
12013 if (is_debug_types)
12014 index = &dwp_file->sections.tu_index;
12015 else
12016 index = &dwp_file->sections.cu_index;
12017
12018 if (dwarf2_section_empty_p (index))
12019 return NULL;
12020 dwarf2_read_section (objfile, index);
12021
12022 index_ptr = index->buffer;
12023 index_end = index_ptr + index->size;
12024
12025 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
12026 index_ptr += 4;
12027 if (version == 2)
12028 nr_columns = read_4_bytes (dbfd, index_ptr);
12029 else
12030 nr_columns = 0;
12031 index_ptr += 4;
80626a55
DE
12032 nr_units = read_4_bytes (dbfd, index_ptr);
12033 index_ptr += 4;
12034 nr_slots = read_4_bytes (dbfd, index_ptr);
12035 index_ptr += 4;
12036
73869dc2 12037 if (version != 1 && version != 2)
80626a55 12038 {
21aa081e 12039 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 12040 " [in module %s]"),
21aa081e 12041 pulongest (version), dwp_file->name);
80626a55
DE
12042 }
12043 if (nr_slots != (nr_slots & -nr_slots))
12044 {
21aa081e 12045 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 12046 " is not power of 2 [in module %s]"),
21aa081e 12047 pulongest (nr_slots), dwp_file->name);
80626a55
DE
12048 }
12049
12050 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
12051 htab->version = version;
12052 htab->nr_columns = nr_columns;
80626a55
DE
12053 htab->nr_units = nr_units;
12054 htab->nr_slots = nr_slots;
12055 htab->hash_table = index_ptr;
12056 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
12057
12058 /* Exit early if the table is empty. */
12059 if (nr_slots == 0 || nr_units == 0
12060 || (version == 2 && nr_columns == 0))
12061 {
12062 /* All must be zero. */
12063 if (nr_slots != 0 || nr_units != 0
12064 || (version == 2 && nr_columns != 0))
12065 {
b98664d3 12066 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
73869dc2
DE
12067 " all zero [in modules %s]"),
12068 dwp_file->name);
12069 }
12070 return htab;
12071 }
12072
12073 if (version == 1)
12074 {
12075 htab->section_pool.v1.indices =
12076 htab->unit_table + sizeof (uint32_t) * nr_slots;
12077 /* It's harder to decide whether the section is too small in v1.
12078 V1 is deprecated anyway so we punt. */
12079 }
12080 else
12081 {
12082 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12083 int *ids = htab->section_pool.v2.section_ids;
12084 /* Reverse map for error checking. */
12085 int ids_seen[DW_SECT_MAX + 1];
12086 int i;
12087
12088 if (nr_columns < 2)
12089 {
12090 error (_("Dwarf Error: bad DWP hash table, too few columns"
12091 " in section table [in module %s]"),
12092 dwp_file->name);
12093 }
12094 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12095 {
12096 error (_("Dwarf Error: bad DWP hash table, too many columns"
12097 " in section table [in module %s]"),
12098 dwp_file->name);
12099 }
12100 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12101 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12102 for (i = 0; i < nr_columns; ++i)
12103 {
12104 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12105
12106 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12107 {
12108 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12109 " in section table [in module %s]"),
12110 id, dwp_file->name);
12111 }
12112 if (ids_seen[id] != -1)
12113 {
12114 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12115 " id %d in section table [in module %s]"),
12116 id, dwp_file->name);
12117 }
12118 ids_seen[id] = i;
12119 ids[i] = id;
12120 }
12121 /* Must have exactly one info or types section. */
12122 if (((ids_seen[DW_SECT_INFO] != -1)
12123 + (ids_seen[DW_SECT_TYPES] != -1))
12124 != 1)
12125 {
12126 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12127 " DWO info/types section [in module %s]"),
12128 dwp_file->name);
12129 }
12130 /* Must have an abbrev section. */
12131 if (ids_seen[DW_SECT_ABBREV] == -1)
12132 {
12133 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12134 " section [in module %s]"),
12135 dwp_file->name);
12136 }
12137 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12138 htab->section_pool.v2.sizes =
12139 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12140 * nr_units * nr_columns);
12141 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12142 * nr_units * nr_columns))
12143 > index_end)
12144 {
12145 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12146 " [in module %s]"),
12147 dwp_file->name);
12148 }
12149 }
80626a55
DE
12150
12151 return htab;
12152}
12153
12154/* Update SECTIONS with the data from SECTP.
12155
12156 This function is like the other "locate" section routines that are
12157 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 12158 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
12159
12160 The result is non-zero for success, or zero if an error was found. */
12161
12162static int
73869dc2
DE
12163locate_v1_virtual_dwo_sections (asection *sectp,
12164 struct virtual_v1_dwo_sections *sections)
80626a55
DE
12165{
12166 const struct dwop_section_names *names = &dwop_section_names;
12167
12168 if (section_is_p (sectp->name, &names->abbrev_dwo))
12169 {
12170 /* There can be only one. */
049412e3 12171 if (sections->abbrev.s.section != NULL)
80626a55 12172 return 0;
049412e3 12173 sections->abbrev.s.section = sectp;
80626a55
DE
12174 sections->abbrev.size = bfd_get_section_size (sectp);
12175 }
12176 else if (section_is_p (sectp->name, &names->info_dwo)
12177 || section_is_p (sectp->name, &names->types_dwo))
12178 {
12179 /* There can be only one. */
049412e3 12180 if (sections->info_or_types.s.section != NULL)
80626a55 12181 return 0;
049412e3 12182 sections->info_or_types.s.section = sectp;
80626a55
DE
12183 sections->info_or_types.size = bfd_get_section_size (sectp);
12184 }
12185 else if (section_is_p (sectp->name, &names->line_dwo))
12186 {
12187 /* There can be only one. */
049412e3 12188 if (sections->line.s.section != NULL)
80626a55 12189 return 0;
049412e3 12190 sections->line.s.section = sectp;
80626a55
DE
12191 sections->line.size = bfd_get_section_size (sectp);
12192 }
12193 else if (section_is_p (sectp->name, &names->loc_dwo))
12194 {
12195 /* There can be only one. */
049412e3 12196 if (sections->loc.s.section != NULL)
80626a55 12197 return 0;
049412e3 12198 sections->loc.s.section = sectp;
80626a55
DE
12199 sections->loc.size = bfd_get_section_size (sectp);
12200 }
12201 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12202 {
12203 /* There can be only one. */
049412e3 12204 if (sections->macinfo.s.section != NULL)
80626a55 12205 return 0;
049412e3 12206 sections->macinfo.s.section = sectp;
80626a55
DE
12207 sections->macinfo.size = bfd_get_section_size (sectp);
12208 }
12209 else if (section_is_p (sectp->name, &names->macro_dwo))
12210 {
12211 /* There can be only one. */
049412e3 12212 if (sections->macro.s.section != NULL)
80626a55 12213 return 0;
049412e3 12214 sections->macro.s.section = sectp;
80626a55
DE
12215 sections->macro.size = bfd_get_section_size (sectp);
12216 }
12217 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12218 {
12219 /* There can be only one. */
049412e3 12220 if (sections->str_offsets.s.section != NULL)
80626a55 12221 return 0;
049412e3 12222 sections->str_offsets.s.section = sectp;
80626a55
DE
12223 sections->str_offsets.size = bfd_get_section_size (sectp);
12224 }
12225 else
12226 {
12227 /* No other kind of section is valid. */
12228 return 0;
12229 }
12230
12231 return 1;
12232}
12233
73869dc2
DE
12234/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12235 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12236 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12237 This is for DWP version 1 files. */
80626a55
DE
12238
12239static struct dwo_unit *
ed2dc618
SM
12240create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12241 struct dwp_file *dwp_file,
73869dc2
DE
12242 uint32_t unit_index,
12243 const char *comp_dir,
12244 ULONGEST signature, int is_debug_types)
80626a55
DE
12245{
12246 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
12247 const struct dwp_hash_table *dwp_htab =
12248 is_debug_types ? dwp_file->tus : dwp_file->cus;
400174b1 12249 bfd *dbfd = dwp_file->dbfd.get ();
80626a55
DE
12250 const char *kind = is_debug_types ? "TU" : "CU";
12251 struct dwo_file *dwo_file;
12252 struct dwo_unit *dwo_unit;
73869dc2 12253 struct virtual_v1_dwo_sections sections;
80626a55 12254 void **dwo_file_slot;
80626a55
DE
12255 int i;
12256
73869dc2
DE
12257 gdb_assert (dwp_file->version == 1);
12258
b4f54984 12259 if (dwarf_read_debug)
80626a55 12260 {
73869dc2 12261 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 12262 kind,
73869dc2 12263 pulongest (unit_index), hex_string (signature),
80626a55
DE
12264 dwp_file->name);
12265 }
12266
19ac8c2e 12267 /* Fetch the sections of this DWO unit.
80626a55
DE
12268 Put a limit on the number of sections we look for so that bad data
12269 doesn't cause us to loop forever. */
12270
73869dc2 12271#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
12272 (1 /* .debug_info or .debug_types */ \
12273 + 1 /* .debug_abbrev */ \
12274 + 1 /* .debug_line */ \
12275 + 1 /* .debug_loc */ \
12276 + 1 /* .debug_str_offsets */ \
19ac8c2e 12277 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
12278 + 1 /* trailing zero */)
12279
12280 memset (&sections, 0, sizeof (sections));
80626a55 12281
73869dc2 12282 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
12283 {
12284 asection *sectp;
12285 uint32_t section_nr =
12286 read_4_bytes (dbfd,
73869dc2
DE
12287 dwp_htab->section_pool.v1.indices
12288 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
12289
12290 if (section_nr == 0)
12291 break;
12292 if (section_nr >= dwp_file->num_sections)
12293 {
12294 error (_("Dwarf Error: bad DWP hash table, section number too large"
12295 " [in module %s]"),
12296 dwp_file->name);
12297 }
12298
12299 sectp = dwp_file->elf_sections[section_nr];
73869dc2 12300 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
12301 {
12302 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12303 " [in module %s]"),
12304 dwp_file->name);
12305 }
12306 }
12307
12308 if (i < 2
a32a8923
DE
12309 || dwarf2_section_empty_p (&sections.info_or_types)
12310 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
12311 {
12312 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12313 " [in module %s]"),
12314 dwp_file->name);
12315 }
73869dc2 12316 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
12317 {
12318 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12319 " [in module %s]"),
12320 dwp_file->name);
12321 }
12322
12323 /* It's easier for the rest of the code if we fake a struct dwo_file and
12324 have dwo_unit "live" in that. At least for now.
12325
12326 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 12327 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
12328 file, we can combine them back into a virtual DWO file to save space
12329 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
12330 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12331
791afaa2
TT
12332 std::string virtual_dwo_name =
12333 string_printf ("virtual-dwo/%d-%d-%d-%d",
12334 get_section_id (&sections.abbrev),
12335 get_section_id (&sections.line),
12336 get_section_id (&sections.loc),
12337 get_section_id (&sections.str_offsets));
80626a55 12338 /* Can we use an existing virtual DWO file? */
ed2dc618
SM
12339 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12340 virtual_dwo_name.c_str (),
12341 comp_dir);
80626a55
DE
12342 /* Create one if necessary. */
12343 if (*dwo_file_slot == NULL)
12344 {
b4f54984 12345 if (dwarf_read_debug)
80626a55
DE
12346 {
12347 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
791afaa2 12348 virtual_dwo_name.c_str ());
80626a55
DE
12349 }
12350 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
12351 dwo_file->dwo_name
12352 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
791afaa2
TT
12353 virtual_dwo_name.c_str (),
12354 virtual_dwo_name.size ());
0ac5b59e 12355 dwo_file->comp_dir = comp_dir;
80626a55
DE
12356 dwo_file->sections.abbrev = sections.abbrev;
12357 dwo_file->sections.line = sections.line;
12358 dwo_file->sections.loc = sections.loc;
12359 dwo_file->sections.macinfo = sections.macinfo;
12360 dwo_file->sections.macro = sections.macro;
12361 dwo_file->sections.str_offsets = sections.str_offsets;
12362 /* The "str" section is global to the entire DWP file. */
12363 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 12364 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
12365 there's no need to record it in dwo_file.
12366 Also, we can't simply record type sections in dwo_file because
12367 we record a pointer into the vector in dwo_unit. As we collect more
12368 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
12369 for it, invalidating all copies of pointers into the previous
12370 contents. */
80626a55
DE
12371 *dwo_file_slot = dwo_file;
12372 }
12373 else
12374 {
b4f54984 12375 if (dwarf_read_debug)
80626a55
DE
12376 {
12377 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
791afaa2 12378 virtual_dwo_name.c_str ());
80626a55 12379 }
9a3c8263 12380 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55 12381 }
80626a55
DE
12382
12383 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12384 dwo_unit->dwo_file = dwo_file;
12385 dwo_unit->signature = signature;
8d749320
SM
12386 dwo_unit->section =
12387 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 12388 *dwo_unit->section = sections.info_or_types;
57d63ce2 12389 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
12390
12391 return dwo_unit;
12392}
12393
73869dc2
DE
12394/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12395 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12396 piece within that section used by a TU/CU, return a virtual section
12397 of just that piece. */
12398
12399static struct dwarf2_section_info
ed2dc618
SM
12400create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12401 struct dwarf2_section_info *section,
73869dc2
DE
12402 bfd_size_type offset, bfd_size_type size)
12403{
12404 struct dwarf2_section_info result;
12405 asection *sectp;
12406
12407 gdb_assert (section != NULL);
12408 gdb_assert (!section->is_virtual);
12409
12410 memset (&result, 0, sizeof (result));
12411 result.s.containing_section = section;
12412 result.is_virtual = 1;
12413
12414 if (size == 0)
12415 return result;
12416
12417 sectp = get_section_bfd_section (section);
12418
12419 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12420 bounds of the real section. This is a pretty-rare event, so just
12421 flag an error (easier) instead of a warning and trying to cope. */
12422 if (sectp == NULL
12423 || offset + size > bfd_get_section_size (sectp))
12424 {
73869dc2
DE
12425 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12426 " in section %s [in module %s]"),
12427 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12428 objfile_name (dwarf2_per_objfile->objfile));
12429 }
12430
12431 result.virtual_offset = offset;
12432 result.size = size;
12433 return result;
12434}
12435
12436/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12437 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12438 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12439 This is for DWP version 2 files. */
12440
12441static struct dwo_unit *
ed2dc618
SM
12442create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12443 struct dwp_file *dwp_file,
73869dc2
DE
12444 uint32_t unit_index,
12445 const char *comp_dir,
12446 ULONGEST signature, int is_debug_types)
12447{
12448 struct objfile *objfile = dwarf2_per_objfile->objfile;
12449 const struct dwp_hash_table *dwp_htab =
12450 is_debug_types ? dwp_file->tus : dwp_file->cus;
400174b1 12451 bfd *dbfd = dwp_file->dbfd.get ();
73869dc2
DE
12452 const char *kind = is_debug_types ? "TU" : "CU";
12453 struct dwo_file *dwo_file;
12454 struct dwo_unit *dwo_unit;
12455 struct virtual_v2_dwo_sections sections;
12456 void **dwo_file_slot;
73869dc2
DE
12457 int i;
12458
12459 gdb_assert (dwp_file->version == 2);
12460
b4f54984 12461 if (dwarf_read_debug)
73869dc2
DE
12462 {
12463 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12464 kind,
12465 pulongest (unit_index), hex_string (signature),
12466 dwp_file->name);
12467 }
12468
12469 /* Fetch the section offsets of this DWO unit. */
12470
12471 memset (&sections, 0, sizeof (sections));
73869dc2
DE
12472
12473 for (i = 0; i < dwp_htab->nr_columns; ++i)
12474 {
12475 uint32_t offset = read_4_bytes (dbfd,
12476 dwp_htab->section_pool.v2.offsets
12477 + (((unit_index - 1) * dwp_htab->nr_columns
12478 + i)
12479 * sizeof (uint32_t)));
12480 uint32_t size = read_4_bytes (dbfd,
12481 dwp_htab->section_pool.v2.sizes
12482 + (((unit_index - 1) * dwp_htab->nr_columns
12483 + i)
12484 * sizeof (uint32_t)));
12485
12486 switch (dwp_htab->section_pool.v2.section_ids[i])
12487 {
12488 case DW_SECT_INFO:
12489 case DW_SECT_TYPES:
12490 sections.info_or_types_offset = offset;
12491 sections.info_or_types_size = size;
12492 break;
12493 case DW_SECT_ABBREV:
12494 sections.abbrev_offset = offset;
12495 sections.abbrev_size = size;
12496 break;
12497 case DW_SECT_LINE:
12498 sections.line_offset = offset;
12499 sections.line_size = size;
12500 break;
12501 case DW_SECT_LOC:
12502 sections.loc_offset = offset;
12503 sections.loc_size = size;
12504 break;
12505 case DW_SECT_STR_OFFSETS:
12506 sections.str_offsets_offset = offset;
12507 sections.str_offsets_size = size;
12508 break;
12509 case DW_SECT_MACINFO:
12510 sections.macinfo_offset = offset;
12511 sections.macinfo_size = size;
12512 break;
12513 case DW_SECT_MACRO:
12514 sections.macro_offset = offset;
12515 sections.macro_size = size;
12516 break;
12517 }
12518 }
12519
12520 /* It's easier for the rest of the code if we fake a struct dwo_file and
12521 have dwo_unit "live" in that. At least for now.
12522
12523 The DWP file can be made up of a random collection of CUs and TUs.
12524 However, for each CU + set of TUs that came from the same original DWO
12525 file, we can combine them back into a virtual DWO file to save space
12526 (fewer struct dwo_file objects to allocate). Remember that for really
12527 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12528
791afaa2
TT
12529 std::string virtual_dwo_name =
12530 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12531 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12532 (long) (sections.line_size ? sections.line_offset : 0),
12533 (long) (sections.loc_size ? sections.loc_offset : 0),
12534 (long) (sections.str_offsets_size
12535 ? sections.str_offsets_offset : 0));
73869dc2 12536 /* Can we use an existing virtual DWO file? */
ed2dc618
SM
12537 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12538 virtual_dwo_name.c_str (),
12539 comp_dir);
73869dc2
DE
12540 /* Create one if necessary. */
12541 if (*dwo_file_slot == NULL)
12542 {
b4f54984 12543 if (dwarf_read_debug)
73869dc2
DE
12544 {
12545 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
791afaa2 12546 virtual_dwo_name.c_str ());
73869dc2
DE
12547 }
12548 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
12549 dwo_file->dwo_name
12550 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
791afaa2
TT
12551 virtual_dwo_name.c_str (),
12552 virtual_dwo_name.size ());
73869dc2
DE
12553 dwo_file->comp_dir = comp_dir;
12554 dwo_file->sections.abbrev =
ed2dc618 12555 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
73869dc2
DE
12556 sections.abbrev_offset, sections.abbrev_size);
12557 dwo_file->sections.line =
ed2dc618 12558 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
73869dc2
DE
12559 sections.line_offset, sections.line_size);
12560 dwo_file->sections.loc =
ed2dc618 12561 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
73869dc2
DE
12562 sections.loc_offset, sections.loc_size);
12563 dwo_file->sections.macinfo =
ed2dc618 12564 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
73869dc2
DE
12565 sections.macinfo_offset, sections.macinfo_size);
12566 dwo_file->sections.macro =
ed2dc618 12567 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
73869dc2
DE
12568 sections.macro_offset, sections.macro_size);
12569 dwo_file->sections.str_offsets =
ed2dc618
SM
12570 create_dwp_v2_section (dwarf2_per_objfile,
12571 &dwp_file->sections.str_offsets,
73869dc2
DE
12572 sections.str_offsets_offset,
12573 sections.str_offsets_size);
12574 /* The "str" section is global to the entire DWP file. */
12575 dwo_file->sections.str = dwp_file->sections.str;
12576 /* The info or types section is assigned below to dwo_unit,
12577 there's no need to record it in dwo_file.
12578 Also, we can't simply record type sections in dwo_file because
12579 we record a pointer into the vector in dwo_unit. As we collect more
12580 types we'll grow the vector and eventually have to reallocate space
12581 for it, invalidating all copies of pointers into the previous
12582 contents. */
12583 *dwo_file_slot = dwo_file;
12584 }
12585 else
12586 {
b4f54984 12587 if (dwarf_read_debug)
73869dc2
DE
12588 {
12589 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
791afaa2 12590 virtual_dwo_name.c_str ());
73869dc2 12591 }
9a3c8263 12592 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2 12593 }
73869dc2
DE
12594
12595 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12596 dwo_unit->dwo_file = dwo_file;
12597 dwo_unit->signature = signature;
8d749320
SM
12598 dwo_unit->section =
12599 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
ed2dc618
SM
12600 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12601 is_debug_types
73869dc2
DE
12602 ? &dwp_file->sections.types
12603 : &dwp_file->sections.info,
12604 sections.info_or_types_offset,
12605 sections.info_or_types_size);
12606 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12607
12608 return dwo_unit;
12609}
12610
57d63ce2
DE
12611/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12612 Returns NULL if the signature isn't found. */
80626a55
DE
12613
12614static struct dwo_unit *
ed2dc618
SM
12615lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12616 struct dwp_file *dwp_file, const char *comp_dir,
57d63ce2 12617 ULONGEST signature, int is_debug_types)
80626a55 12618{
57d63ce2
DE
12619 const struct dwp_hash_table *dwp_htab =
12620 is_debug_types ? dwp_file->tus : dwp_file->cus;
400174b1 12621 bfd *dbfd = dwp_file->dbfd.get ();
57d63ce2 12622 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
12623 uint32_t hash = signature & mask;
12624 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12625 unsigned int i;
12626 void **slot;
870f88f7 12627 struct dwo_unit find_dwo_cu;
80626a55
DE
12628
12629 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12630 find_dwo_cu.signature = signature;
19ac8c2e
DE
12631 slot = htab_find_slot (is_debug_types
12632 ? dwp_file->loaded_tus
12633 : dwp_file->loaded_cus,
12634 &find_dwo_cu, INSERT);
80626a55
DE
12635
12636 if (*slot != NULL)
9a3c8263 12637 return (struct dwo_unit *) *slot;
80626a55
DE
12638
12639 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 12640 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
12641 {
12642 ULONGEST signature_in_table;
12643
12644 signature_in_table =
57d63ce2 12645 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
12646 if (signature_in_table == signature)
12647 {
57d63ce2
DE
12648 uint32_t unit_index =
12649 read_4_bytes (dbfd,
12650 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 12651
73869dc2
DE
12652 if (dwp_file->version == 1)
12653 {
ed2dc618
SM
12654 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12655 dwp_file, unit_index,
73869dc2
DE
12656 comp_dir, signature,
12657 is_debug_types);
12658 }
12659 else
12660 {
ed2dc618
SM
12661 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12662 dwp_file, unit_index,
73869dc2
DE
12663 comp_dir, signature,
12664 is_debug_types);
12665 }
9a3c8263 12666 return (struct dwo_unit *) *slot;
80626a55
DE
12667 }
12668 if (signature_in_table == 0)
12669 return NULL;
12670 hash = (hash + hash2) & mask;
12671 }
12672
12673 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12674 " [in module %s]"),
12675 dwp_file->name);
12676}
12677
ab5088bf 12678/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
12679 Open the file specified by FILE_NAME and hand it off to BFD for
12680 preliminary analysis. Return a newly initialized bfd *, which
12681 includes a canonicalized copy of FILE_NAME.
80626a55 12682 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
12683 SEARCH_CWD is true if the current directory is to be searched.
12684 It will be searched before debug-file-directory.
13aaf454
DE
12685 If successful, the file is added to the bfd include table of the
12686 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 12687 If unable to find/open the file, return NULL.
3019eac3
DE
12688 NOTE: This function is derived from symfile_bfd_open. */
12689
192b62ce 12690static gdb_bfd_ref_ptr
ed2dc618
SM
12691try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12692 const char *file_name, int is_dwp, int search_cwd)
3019eac3 12693{
24b9144d 12694 int desc;
9c02c129
DE
12695 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12696 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12697 to debug_file_directory. */
e0cc99a6 12698 const char *search_path;
9c02c129
DE
12699 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12700
e0cc99a6 12701 gdb::unique_xmalloc_ptr<char> search_path_holder;
6ac97d4c
DE
12702 if (search_cwd)
12703 {
12704 if (*debug_file_directory != '\0')
e0cc99a6
TT
12705 {
12706 search_path_holder.reset (concat (".", dirname_separator_string,
12707 debug_file_directory,
12708 (char *) NULL));
12709 search_path = search_path_holder.get ();
12710 }
6ac97d4c 12711 else
e0cc99a6 12712 search_path = ".";
6ac97d4c 12713 }
9c02c129 12714 else
e0cc99a6 12715 search_path = debug_file_directory;
3019eac3 12716
24b9144d 12717 openp_flags flags = OPF_RETURN_REALPATH;
80626a55
DE
12718 if (is_dwp)
12719 flags |= OPF_SEARCH_IN_PATH;
e0cc99a6
TT
12720
12721 gdb::unique_xmalloc_ptr<char> absolute_name;
9c02c129 12722 desc = openp (search_path, flags, file_name,
3019eac3
DE
12723 O_RDONLY | O_BINARY, &absolute_name);
12724 if (desc < 0)
12725 return NULL;
12726
e0cc99a6
TT
12727 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12728 gnutarget, desc));
9c02c129
DE
12729 if (sym_bfd == NULL)
12730 return NULL;
192b62ce 12731 bfd_set_cacheable (sym_bfd.get (), 1);
3019eac3 12732
192b62ce
TT
12733 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12734 return NULL;
3019eac3 12735
13aaf454
DE
12736 /* Success. Record the bfd as having been included by the objfile's bfd.
12737 This is important because things like demangled_names_hash lives in the
12738 objfile's per_bfd space and may have references to things like symbol
12739 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
192b62ce 12740 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
13aaf454 12741
3019eac3
DE
12742 return sym_bfd;
12743}
12744
ab5088bf 12745/* Try to open DWO file FILE_NAME.
3019eac3
DE
12746 COMP_DIR is the DW_AT_comp_dir attribute.
12747 The result is the bfd handle of the file.
12748 If there is a problem finding or opening the file, return NULL.
12749 Upon success, the canonicalized path of the file is stored in the bfd,
12750 same as symfile_bfd_open. */
12751
192b62ce 12752static gdb_bfd_ref_ptr
ed2dc618
SM
12753open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12754 const char *file_name, const char *comp_dir)
3019eac3 12755{
80626a55 12756 if (IS_ABSOLUTE_PATH (file_name))
ed2dc618
SM
12757 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12758 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
12759
12760 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12761
12762 if (comp_dir != NULL)
12763 {
b36cec19
PA
12764 char *path_to_try = concat (comp_dir, SLASH_STRING,
12765 file_name, (char *) NULL);
3019eac3
DE
12766
12767 /* NOTE: If comp_dir is a relative path, this will also try the
12768 search path, which seems useful. */
ed2dc618
SM
12769 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12770 path_to_try,
12771 0 /*is_dwp*/,
192b62ce 12772 1 /*search_cwd*/));
3019eac3
DE
12773 xfree (path_to_try);
12774 if (abfd != NULL)
12775 return abfd;
12776 }
12777
12778 /* That didn't work, try debug-file-directory, which, despite its name,
12779 is a list of paths. */
12780
12781 if (*debug_file_directory == '\0')
12782 return NULL;
12783
ed2dc618
SM
12784 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12785 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
12786}
12787
80626a55
DE
12788/* This function is mapped across the sections and remembers the offset and
12789 size of each of the DWO debugging sections we are interested in. */
12790
12791static void
12792dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12793{
9a3c8263 12794 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
12795 const struct dwop_section_names *names = &dwop_section_names;
12796
12797 if (section_is_p (sectp->name, &names->abbrev_dwo))
12798 {
049412e3 12799 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
12800 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12801 }
12802 else if (section_is_p (sectp->name, &names->info_dwo))
12803 {
049412e3 12804 dwo_sections->info.s.section = sectp;
80626a55
DE
12805 dwo_sections->info.size = bfd_get_section_size (sectp);
12806 }
12807 else if (section_is_p (sectp->name, &names->line_dwo))
12808 {
049412e3 12809 dwo_sections->line.s.section = sectp;
80626a55
DE
12810 dwo_sections->line.size = bfd_get_section_size (sectp);
12811 }
12812 else if (section_is_p (sectp->name, &names->loc_dwo))
12813 {
049412e3 12814 dwo_sections->loc.s.section = sectp;
80626a55
DE
12815 dwo_sections->loc.size = bfd_get_section_size (sectp);
12816 }
12817 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12818 {
049412e3 12819 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
12820 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12821 }
12822 else if (section_is_p (sectp->name, &names->macro_dwo))
12823 {
049412e3 12824 dwo_sections->macro.s.section = sectp;
80626a55
DE
12825 dwo_sections->macro.size = bfd_get_section_size (sectp);
12826 }
12827 else if (section_is_p (sectp->name, &names->str_dwo))
12828 {
049412e3 12829 dwo_sections->str.s.section = sectp;
80626a55
DE
12830 dwo_sections->str.size = bfd_get_section_size (sectp);
12831 }
12832 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12833 {
049412e3 12834 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
12835 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12836 }
12837 else if (section_is_p (sectp->name, &names->types_dwo))
12838 {
12839 struct dwarf2_section_info type_section;
12840
12841 memset (&type_section, 0, sizeof (type_section));
049412e3 12842 type_section.s.section = sectp;
80626a55
DE
12843 type_section.size = bfd_get_section_size (sectp);
12844 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12845 &type_section);
12846 }
12847}
12848
ab5088bf 12849/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 12850 by PER_CU. This is for the non-DWP case.
80626a55 12851 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
12852
12853static struct dwo_file *
0ac5b59e
DE
12854open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12855 const char *dwo_name, const char *comp_dir)
3019eac3 12856{
ed2dc618 12857 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3019eac3 12858 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 12859
ed2dc618 12860 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
80626a55
DE
12861 if (dbfd == NULL)
12862 {
b4f54984 12863 if (dwarf_read_debug)
80626a55
DE
12864 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12865 return NULL;
12866 }
263db9a1
TT
12867
12868 /* We use a unique pointer here, despite the obstack allocation,
12869 because a dwo_file needs some cleanup if it is abandoned. */
12870 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12871 struct dwo_file));
0ac5b59e
DE
12872 dwo_file->dwo_name = dwo_name;
12873 dwo_file->comp_dir = comp_dir;
192b62ce 12874 dwo_file->dbfd = dbfd.release ();
3019eac3 12875
192b62ce
TT
12876 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12877 &dwo_file->sections);
3019eac3 12878
ed2dc618
SM
12879 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12880 dwo_file->cus);
3019eac3 12881
263db9a1 12882 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
ed2dc618 12883 dwo_file->sections.types, dwo_file->tus);
3019eac3 12884
b4f54984 12885 if (dwarf_read_debug)
80626a55
DE
12886 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12887
263db9a1 12888 return dwo_file.release ();
3019eac3
DE
12889}
12890
80626a55 12891/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
12892 size of each of the DWP debugging sections common to version 1 and 2 that
12893 we are interested in. */
3019eac3 12894
80626a55 12895static void
73869dc2
DE
12896dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12897 void *dwp_file_ptr)
3019eac3 12898{
9a3c8263 12899 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
12900 const struct dwop_section_names *names = &dwop_section_names;
12901 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 12902
80626a55 12903 /* Record the ELF section number for later lookup: this is what the
73869dc2 12904 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
12905 gdb_assert (elf_section_nr < dwp_file->num_sections);
12906 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 12907
80626a55
DE
12908 /* Look for specific sections that we need. */
12909 if (section_is_p (sectp->name, &names->str_dwo))
12910 {
049412e3 12911 dwp_file->sections.str.s.section = sectp;
80626a55
DE
12912 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12913 }
12914 else if (section_is_p (sectp->name, &names->cu_index))
12915 {
049412e3 12916 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
12917 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12918 }
12919 else if (section_is_p (sectp->name, &names->tu_index))
12920 {
049412e3 12921 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
12922 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12923 }
12924}
3019eac3 12925
73869dc2
DE
12926/* This function is mapped across the sections and remembers the offset and
12927 size of each of the DWP version 2 debugging sections that we are interested
12928 in. This is split into a separate function because we don't know if we
12929 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12930
12931static void
12932dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12933{
9a3c8263 12934 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
12935 const struct dwop_section_names *names = &dwop_section_names;
12936 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12937
12938 /* Record the ELF section number for later lookup: this is what the
12939 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12940 gdb_assert (elf_section_nr < dwp_file->num_sections);
12941 dwp_file->elf_sections[elf_section_nr] = sectp;
12942
12943 /* Look for specific sections that we need. */
12944 if (section_is_p (sectp->name, &names->abbrev_dwo))
12945 {
049412e3 12946 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
12947 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
12948 }
12949 else if (section_is_p (sectp->name, &names->info_dwo))
12950 {
049412e3 12951 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
12952 dwp_file->sections.info.size = bfd_get_section_size (sectp);
12953 }
12954 else if (section_is_p (sectp->name, &names->line_dwo))
12955 {
049412e3 12956 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
12957 dwp_file->sections.line.size = bfd_get_section_size (sectp);
12958 }
12959 else if (section_is_p (sectp->name, &names->loc_dwo))
12960 {
049412e3 12961 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
12962 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
12963 }
12964 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12965 {
049412e3 12966 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
12967 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
12968 }
12969 else if (section_is_p (sectp->name, &names->macro_dwo))
12970 {
049412e3 12971 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
12972 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
12973 }
12974 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12975 {
049412e3 12976 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
12977 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
12978 }
12979 else if (section_is_p (sectp->name, &names->types_dwo))
12980 {
049412e3 12981 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
12982 dwp_file->sections.types.size = bfd_get_section_size (sectp);
12983 }
12984}
12985
80626a55 12986/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 12987
80626a55
DE
12988static hashval_t
12989hash_dwp_loaded_cutus (const void *item)
12990{
9a3c8263 12991 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 12992
80626a55
DE
12993 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12994 return dwo_unit->signature;
3019eac3
DE
12995}
12996
80626a55 12997/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 12998
80626a55
DE
12999static int
13000eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 13001{
9a3c8263
SM
13002 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13003 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 13004
80626a55
DE
13005 return dua->signature == dub->signature;
13006}
3019eac3 13007
80626a55 13008/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 13009
80626a55
DE
13010static htab_t
13011allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13012{
13013 return htab_create_alloc_ex (3,
13014 hash_dwp_loaded_cutus,
13015 eq_dwp_loaded_cutus,
13016 NULL,
13017 &objfile->objfile_obstack,
13018 hashtab_obstack_allocate,
13019 dummy_obstack_deallocate);
13020}
3019eac3 13021
ab5088bf
DE
13022/* Try to open DWP file FILE_NAME.
13023 The result is the bfd handle of the file.
13024 If there is a problem finding or opening the file, return NULL.
13025 Upon success, the canonicalized path of the file is stored in the bfd,
13026 same as symfile_bfd_open. */
13027
192b62ce 13028static gdb_bfd_ref_ptr
ed2dc618
SM
13029open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13030 const char *file_name)
ab5088bf 13031{
ed2dc618
SM
13032 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13033 1 /*is_dwp*/,
192b62ce 13034 1 /*search_cwd*/));
6ac97d4c
DE
13035 if (abfd != NULL)
13036 return abfd;
13037
13038 /* Work around upstream bug 15652.
13039 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13040 [Whether that's a "bug" is debatable, but it is getting in our way.]
13041 We have no real idea where the dwp file is, because gdb's realpath-ing
13042 of the executable's path may have discarded the needed info.
13043 [IWBN if the dwp file name was recorded in the executable, akin to
13044 .gnu_debuglink, but that doesn't exist yet.]
13045 Strip the directory from FILE_NAME and search again. */
13046 if (*debug_file_directory != '\0')
13047 {
13048 /* Don't implicitly search the current directory here.
13049 If the user wants to search "." to handle this case,
13050 it must be added to debug-file-directory. */
ed2dc618
SM
13051 return try_open_dwop_file (dwarf2_per_objfile,
13052 lbasename (file_name), 1 /*is_dwp*/,
6ac97d4c
DE
13053 0 /*search_cwd*/);
13054 }
13055
13056 return NULL;
ab5088bf
DE
13057}
13058
80626a55
DE
13059/* Initialize the use of the DWP file for the current objfile.
13060 By convention the name of the DWP file is ${objfile}.dwp.
13061 The result is NULL if it can't be found. */
a766d390 13062
400174b1 13063static std::unique_ptr<struct dwp_file>
ed2dc618 13064open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
80626a55
DE
13065{
13066 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55 13067
82bf32bc
JK
13068 /* Try to find first .dwp for the binary file before any symbolic links
13069 resolving. */
6c447423
DE
13070
13071 /* If the objfile is a debug file, find the name of the real binary
13072 file and get the name of dwp file from there. */
d721ba37 13073 std::string dwp_name;
6c447423
DE
13074 if (objfile->separate_debug_objfile_backlink != NULL)
13075 {
13076 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13077 const char *backlink_basename = lbasename (backlink->original_name);
6c447423 13078
d721ba37 13079 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
6c447423
DE
13080 }
13081 else
d721ba37
PA
13082 dwp_name = objfile->original_name;
13083
13084 dwp_name += ".dwp";
80626a55 13085
ed2dc618 13086 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
82bf32bc
JK
13087 if (dbfd == NULL
13088 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13089 {
13090 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
d721ba37
PA
13091 dwp_name = objfile_name (objfile);
13092 dwp_name += ".dwp";
ed2dc618 13093 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
82bf32bc
JK
13094 }
13095
80626a55
DE
13096 if (dbfd == NULL)
13097 {
b4f54984 13098 if (dwarf_read_debug)
d721ba37 13099 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
400174b1 13100 return std::unique_ptr<dwp_file> ();
3019eac3 13101 }
400174b1
TT
13102
13103 const char *name = bfd_get_filename (dbfd.get ());
13104 std::unique_ptr<struct dwp_file> dwp_file
13105 (new struct dwp_file (name, std::move (dbfd)));
c906108c 13106
80626a55 13107 /* +1: section 0 is unused */
192b62ce 13108 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
80626a55
DE
13109 dwp_file->elf_sections =
13110 OBSTACK_CALLOC (&objfile->objfile_obstack,
13111 dwp_file->num_sections, asection *);
13112
400174b1
TT
13113 bfd_map_over_sections (dwp_file->dbfd.get (),
13114 dwarf2_locate_common_dwp_sections,
13115 dwp_file.get ());
80626a55 13116
400174b1
TT
13117 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13118 0);
80626a55 13119
400174b1
TT
13120 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13121 1);
80626a55 13122
73869dc2 13123 /* The DWP file version is stored in the hash table. Oh well. */
08302ed2
DE
13124 if (dwp_file->cus && dwp_file->tus
13125 && dwp_file->cus->version != dwp_file->tus->version)
73869dc2
DE
13126 {
13127 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 13128 pretty bizarre. We use pulongest here because that's the established
4d65956b 13129 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
13130 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13131 " TU version %s [in DWP file %s]"),
13132 pulongest (dwp_file->cus->version),
d721ba37 13133 pulongest (dwp_file->tus->version), dwp_name.c_str ());
73869dc2 13134 }
08302ed2
DE
13135
13136 if (dwp_file->cus)
13137 dwp_file->version = dwp_file->cus->version;
13138 else if (dwp_file->tus)
13139 dwp_file->version = dwp_file->tus->version;
13140 else
13141 dwp_file->version = 2;
73869dc2
DE
13142
13143 if (dwp_file->version == 2)
400174b1
TT
13144 bfd_map_over_sections (dwp_file->dbfd.get (),
13145 dwarf2_locate_v2_dwp_sections,
13146 dwp_file.get ());
73869dc2 13147
19ac8c2e
DE
13148 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13149 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 13150
b4f54984 13151 if (dwarf_read_debug)
80626a55
DE
13152 {
13153 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13154 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
13155 " %s CUs, %s TUs\n",
13156 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13157 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
13158 }
13159
13160 return dwp_file;
3019eac3 13161}
c906108c 13162
ab5088bf
DE
13163/* Wrapper around open_and_init_dwp_file, only open it once. */
13164
13165static struct dwp_file *
ed2dc618 13166get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
ab5088bf
DE
13167{
13168 if (! dwarf2_per_objfile->dwp_checked)
13169 {
ed2dc618
SM
13170 dwarf2_per_objfile->dwp_file
13171 = open_and_init_dwp_file (dwarf2_per_objfile);
ab5088bf
DE
13172 dwarf2_per_objfile->dwp_checked = 1;
13173 }
400174b1 13174 return dwarf2_per_objfile->dwp_file.get ();
ab5088bf
DE
13175}
13176
80626a55
DE
13177/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13178 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13179 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 13180 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
13181 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13182
13183 This is called, for example, when wanting to read a variable with a
13184 complex location. Therefore we don't want to do file i/o for every call.
13185 Therefore we don't want to look for a DWO file on every call.
13186 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13187 then we check if we've already seen DWO_NAME, and only THEN do we check
13188 for a DWO file.
13189
1c658ad5 13190 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 13191 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 13192
3019eac3 13193static struct dwo_unit *
80626a55
DE
13194lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13195 const char *dwo_name, const char *comp_dir,
13196 ULONGEST signature, int is_debug_types)
3019eac3 13197{
ed2dc618 13198 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
3019eac3 13199 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
13200 const char *kind = is_debug_types ? "TU" : "CU";
13201 void **dwo_file_slot;
3019eac3 13202 struct dwo_file *dwo_file;
80626a55 13203 struct dwp_file *dwp_file;
cb1df416 13204
6a506a2d
DE
13205 /* First see if there's a DWP file.
13206 If we have a DWP file but didn't find the DWO inside it, don't
13207 look for the original DWO file. It makes gdb behave differently
13208 depending on whether one is debugging in the build tree. */
cf2c3c16 13209
ed2dc618 13210 dwp_file = get_dwp_file (dwarf2_per_objfile);
80626a55 13211 if (dwp_file != NULL)
cf2c3c16 13212 {
80626a55
DE
13213 const struct dwp_hash_table *dwp_htab =
13214 is_debug_types ? dwp_file->tus : dwp_file->cus;
13215
13216 if (dwp_htab != NULL)
13217 {
13218 struct dwo_unit *dwo_cutu =
ed2dc618 13219 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
57d63ce2 13220 signature, is_debug_types);
80626a55
DE
13221
13222 if (dwo_cutu != NULL)
13223 {
b4f54984 13224 if (dwarf_read_debug)
80626a55
DE
13225 {
13226 fprintf_unfiltered (gdb_stdlog,
13227 "Virtual DWO %s %s found: @%s\n",
13228 kind, hex_string (signature),
13229 host_address_to_string (dwo_cutu));
13230 }
13231 return dwo_cutu;
13232 }
13233 }
13234 }
6a506a2d 13235 else
80626a55 13236 {
6a506a2d 13237 /* No DWP file, look for the DWO file. */
80626a55 13238
ed2dc618
SM
13239 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13240 dwo_name, comp_dir);
6a506a2d 13241 if (*dwo_file_slot == NULL)
80626a55 13242 {
6a506a2d
DE
13243 /* Read in the file and build a table of the CUs/TUs it contains. */
13244 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 13245 }
6a506a2d 13246 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 13247 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 13248
6a506a2d 13249 if (dwo_file != NULL)
19c3d4c9 13250 {
6a506a2d
DE
13251 struct dwo_unit *dwo_cutu = NULL;
13252
13253 if (is_debug_types && dwo_file->tus)
13254 {
13255 struct dwo_unit find_dwo_cutu;
13256
13257 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13258 find_dwo_cutu.signature = signature;
9a3c8263
SM
13259 dwo_cutu
13260 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d 13261 }
33c5cd75 13262 else if (!is_debug_types && dwo_file->cus)
80626a55 13263 {
33c5cd75
DB
13264 struct dwo_unit find_dwo_cutu;
13265
13266 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13267 find_dwo_cutu.signature = signature;
13268 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13269 &find_dwo_cutu);
6a506a2d
DE
13270 }
13271
13272 if (dwo_cutu != NULL)
13273 {
b4f54984 13274 if (dwarf_read_debug)
6a506a2d
DE
13275 {
13276 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13277 kind, dwo_name, hex_string (signature),
13278 host_address_to_string (dwo_cutu));
13279 }
13280 return dwo_cutu;
80626a55
DE
13281 }
13282 }
2e276125 13283 }
9cdd5dbd 13284
80626a55
DE
13285 /* We didn't find it. This could mean a dwo_id mismatch, or
13286 someone deleted the DWO/DWP file, or the search path isn't set up
13287 correctly to find the file. */
13288
b4f54984 13289 if (dwarf_read_debug)
80626a55
DE
13290 {
13291 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13292 kind, dwo_name, hex_string (signature));
13293 }
3019eac3 13294
6656a72d
DE
13295 /* This is a warning and not a complaint because it can be caused by
13296 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
13297 {
13298 /* Print the name of the DWP file if we looked there, helps the user
13299 better diagnose the problem. */
791afaa2 13300 std::string dwp_text;
43942612
DE
13301
13302 if (dwp_file != NULL)
791afaa2
TT
13303 dwp_text = string_printf (" [in DWP file %s]",
13304 lbasename (dwp_file->name));
43942612 13305
9d8780f0 13306 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
43942612
DE
13307 " [in module %s]"),
13308 kind, dwo_name, hex_string (signature),
791afaa2 13309 dwp_text.c_str (),
43942612 13310 this_unit->is_debug_types ? "TU" : "CU",
9d8780f0 13311 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
43942612 13312 }
3019eac3 13313 return NULL;
5fb290d7
DJ
13314}
13315
80626a55
DE
13316/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13317 See lookup_dwo_cutu_unit for details. */
13318
13319static struct dwo_unit *
13320lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13321 const char *dwo_name, const char *comp_dir,
13322 ULONGEST signature)
13323{
13324 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13325}
13326
13327/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13328 See lookup_dwo_cutu_unit for details. */
13329
13330static struct dwo_unit *
13331lookup_dwo_type_unit (struct signatured_type *this_tu,
13332 const char *dwo_name, const char *comp_dir)
13333{
13334 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13335}
13336
89e63ee4
DE
13337/* Traversal function for queue_and_load_all_dwo_tus. */
13338
13339static int
13340queue_and_load_dwo_tu (void **slot, void *info)
13341{
13342 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13343 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13344 ULONGEST signature = dwo_unit->signature;
13345 struct signatured_type *sig_type =
13346 lookup_dwo_signatured_type (per_cu->cu, signature);
13347
13348 if (sig_type != NULL)
13349 {
13350 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13351
13352 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13353 a real dependency of PER_CU on SIG_TYPE. That is detected later
13354 while processing PER_CU. */
13355 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13356 load_full_type_unit (sig_cu);
13357 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13358 }
13359
13360 return 1;
13361}
13362
13363/* Queue all TUs contained in the DWO of PER_CU to be read in.
13364 The DWO may have the only definition of the type, though it may not be
13365 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13366 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13367
13368static void
13369queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13370{
13371 struct dwo_unit *dwo_unit;
13372 struct dwo_file *dwo_file;
13373
13374 gdb_assert (!per_cu->is_debug_types);
ed2dc618 13375 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
89e63ee4
DE
13376 gdb_assert (per_cu->cu != NULL);
13377
13378 dwo_unit = per_cu->cu->dwo_unit;
13379 gdb_assert (dwo_unit != NULL);
13380
13381 dwo_file = dwo_unit->dwo_file;
13382 if (dwo_file->tus != NULL)
13383 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13384}
13385
3019eac3 13386/* Free all resources associated with DWO_FILE.
5dafb3d1 13387 Close the DWO file and munmap the sections. */
348e048f
DE
13388
13389static void
5dafb3d1 13390free_dwo_file (struct dwo_file *dwo_file)
348e048f 13391{
5c6fa7ab 13392 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 13393 gdb_bfd_unref (dwo_file->dbfd);
348e048f 13394
3019eac3
DE
13395 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13396}
348e048f 13397
3019eac3 13398/* Traversal function for free_dwo_files. */
2ab95328 13399
3019eac3
DE
13400static int
13401free_dwo_file_from_slot (void **slot, void *info)
13402{
13403 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
348e048f 13404
5dafb3d1 13405 free_dwo_file (dwo_file);
348e048f 13406
3019eac3
DE
13407 return 1;
13408}
348e048f 13409
3019eac3 13410/* Free all resources associated with DWO_FILES. */
348e048f 13411
3019eac3
DE
13412static void
13413free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13414{
13415 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 13416}
3019eac3
DE
13417\f
13418/* Read in various DIEs. */
348e048f 13419
d389af10 13420/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
13421 Inherit only the children of the DW_AT_abstract_origin DIE not being
13422 already referenced by DW_AT_abstract_origin from the children of the
13423 current DIE. */
d389af10
JK
13424
13425static void
13426inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13427{
13428 struct die_info *child_die;
791afaa2 13429 sect_offset *offsetp;
d389af10
JK
13430 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13431 struct die_info *origin_die;
13432 /* Iterator of the ORIGIN_DIE children. */
13433 struct die_info *origin_child_die;
d389af10 13434 struct attribute *attr;
cd02d79d
PA
13435 struct dwarf2_cu *origin_cu;
13436 struct pending **origin_previous_list_in_scope;
d389af10
JK
13437
13438 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13439 if (!attr)
13440 return;
13441
cd02d79d
PA
13442 /* Note that following die references may follow to a die in a
13443 different cu. */
13444
13445 origin_cu = cu;
13446 origin_die = follow_die_ref (die, attr, &origin_cu);
13447
13448 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13449 symbols in. */
13450 origin_previous_list_in_scope = origin_cu->list_in_scope;
13451 origin_cu->list_in_scope = cu->list_in_scope;
13452
edb3359d
DJ
13453 if (die->tag != origin_die->tag
13454 && !(die->tag == DW_TAG_inlined_subroutine
13455 && origin_die->tag == DW_TAG_subprogram))
b98664d3 13456 complaint (_("DIE %s and its abstract origin %s have different tags"),
9d8780f0
SM
13457 sect_offset_str (die->sect_off),
13458 sect_offset_str (origin_die->sect_off));
d389af10 13459
791afaa2 13460 std::vector<sect_offset> offsets;
d389af10 13461
3ea89b92
PMR
13462 for (child_die = die->child;
13463 child_die && child_die->tag;
13464 child_die = sibling_die (child_die))
13465 {
13466 struct die_info *child_origin_die;
13467 struct dwarf2_cu *child_origin_cu;
13468
13469 /* We are trying to process concrete instance entries:
216f72a1 13470 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
3ea89b92
PMR
13471 it's not relevant to our analysis here. i.e. detecting DIEs that are
13472 present in the abstract instance but not referenced in the concrete
13473 one. */
216f72a1
JK
13474 if (child_die->tag == DW_TAG_call_site
13475 || child_die->tag == DW_TAG_GNU_call_site)
3ea89b92
PMR
13476 continue;
13477
c38f313d
DJ
13478 /* For each CHILD_DIE, find the corresponding child of
13479 ORIGIN_DIE. If there is more than one layer of
13480 DW_AT_abstract_origin, follow them all; there shouldn't be,
13481 but GCC versions at least through 4.4 generate this (GCC PR
13482 40573). */
3ea89b92
PMR
13483 child_origin_die = child_die;
13484 child_origin_cu = cu;
c38f313d
DJ
13485 while (1)
13486 {
cd02d79d
PA
13487 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13488 child_origin_cu);
c38f313d
DJ
13489 if (attr == NULL)
13490 break;
cd02d79d
PA
13491 child_origin_die = follow_die_ref (child_origin_die, attr,
13492 &child_origin_cu);
c38f313d
DJ
13493 }
13494
d389af10
JK
13495 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13496 counterpart may exist. */
c38f313d 13497 if (child_origin_die != child_die)
d389af10 13498 {
edb3359d
DJ
13499 if (child_die->tag != child_origin_die->tag
13500 && !(child_die->tag == DW_TAG_inlined_subroutine
13501 && child_origin_die->tag == DW_TAG_subprogram))
b98664d3 13502 complaint (_("Child DIE %s and its abstract origin %s have "
9c541725 13503 "different tags"),
9d8780f0
SM
13504 sect_offset_str (child_die->sect_off),
13505 sect_offset_str (child_origin_die->sect_off));
c38f313d 13506 if (child_origin_die->parent != origin_die)
b98664d3 13507 complaint (_("Child DIE %s and its abstract origin %s have "
9c541725 13508 "different parents"),
9d8780f0
SM
13509 sect_offset_str (child_die->sect_off),
13510 sect_offset_str (child_origin_die->sect_off));
c38f313d 13511 else
791afaa2 13512 offsets.push_back (child_origin_die->sect_off);
d389af10 13513 }
d389af10 13514 }
791afaa2
TT
13515 std::sort (offsets.begin (), offsets.end ());
13516 sect_offset *offsets_end = offsets.data () + offsets.size ();
13517 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
9c541725 13518 if (offsetp[-1] == *offsetp)
b98664d3 13519 complaint (_("Multiple children of DIE %s refer "
9d8780f0
SM
13520 "to DIE %s as their abstract origin"),
13521 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
d389af10 13522
791afaa2 13523 offsetp = offsets.data ();
d389af10
JK
13524 origin_child_die = origin_die->child;
13525 while (origin_child_die && origin_child_die->tag)
13526 {
13527 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1 13528 while (offsetp < offsets_end
9c541725 13529 && *offsetp < origin_child_die->sect_off)
d389af10 13530 offsetp++;
b64f50a1 13531 if (offsetp >= offsets_end
9c541725 13532 || *offsetp > origin_child_die->sect_off)
d389af10 13533 {
adde2bff
DE
13534 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13535 Check whether we're already processing ORIGIN_CHILD_DIE.
13536 This can happen with mutually referenced abstract_origins.
13537 PR 16581. */
13538 if (!origin_child_die->in_process)
13539 process_die (origin_child_die, origin_cu);
d389af10
JK
13540 }
13541 origin_child_die = sibling_die (origin_child_die);
13542 }
cd02d79d 13543 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
13544}
13545
c906108c 13546static void
e7c27a73 13547read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13548{
518817b3 13549 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 13550 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 13551 struct context_stack *newobj;
c906108c
SS
13552 CORE_ADDR lowpc;
13553 CORE_ADDR highpc;
13554 struct die_info *child_die;
edb3359d 13555 struct attribute *attr, *call_line, *call_file;
15d034d0 13556 const char *name;
e142c38c 13557 CORE_ADDR baseaddr;
801e3a5b 13558 struct block *block;
edb3359d 13559 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
2f4732b0 13560 std::vector<struct symbol *> template_args;
34eaf542 13561 struct template_symbol *templ_func = NULL;
edb3359d
DJ
13562
13563 if (inlined_func)
13564 {
13565 /* If we do not have call site information, we can't show the
13566 caller of this inlined function. That's too confusing, so
13567 only use the scope for local variables. */
13568 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13569 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13570 if (call_line == NULL || call_file == NULL)
13571 {
13572 read_lexical_block_scope (die, cu);
13573 return;
13574 }
13575 }
c906108c 13576
e142c38c
DJ
13577 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13578
94af9270 13579 name = dwarf2_name (die, cu);
c906108c 13580
e8d05480
JB
13581 /* Ignore functions with missing or empty names. These are actually
13582 illegal according to the DWARF standard. */
13583 if (name == NULL)
13584 {
b98664d3 13585 complaint (_("missing name for subprogram DIE at %s"),
9d8780f0 13586 sect_offset_str (die->sect_off));
e8d05480
JB
13587 return;
13588 }
13589
13590 /* Ignore functions with missing or invalid low and high pc attributes. */
3a2b436a 13591 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
e385593e 13592 <= PC_BOUNDS_INVALID)
e8d05480 13593 {
ae4d0c03
PM
13594 attr = dwarf2_attr (die, DW_AT_external, cu);
13595 if (!attr || !DW_UNSND (attr))
b98664d3 13596 complaint (_("cannot get low and high bounds "
9d8780f0
SM
13597 "for subprogram DIE at %s"),
13598 sect_offset_str (die->sect_off));
e8d05480
JB
13599 return;
13600 }
c906108c 13601
3e29f34a
MR
13602 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13603 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 13604
34eaf542
TT
13605 /* If we have any template arguments, then we must allocate a
13606 different sort of symbol. */
13607 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13608 {
13609 if (child_die->tag == DW_TAG_template_type_param
13610 || child_die->tag == DW_TAG_template_value_param)
13611 {
e623cf5d 13612 templ_func = allocate_template_symbol (objfile);
cf724bc9 13613 templ_func->subclass = SYMBOL_TEMPLATE;
34eaf542
TT
13614 break;
13615 }
13616 }
13617
fe978cb0 13618 newobj = push_context (0, lowpc);
5e2db402
TT
13619 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13620 (struct symbol *) templ_func);
4c2df51b 13621
4cecd739
DJ
13622 /* If there is a location expression for DW_AT_frame_base, record
13623 it. */
e142c38c 13624 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 13625 if (attr)
fe978cb0 13626 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 13627
63e43d3a
PMR
13628 /* If there is a location for the static link, record it. */
13629 newobj->static_link = NULL;
13630 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13631 if (attr)
13632 {
224c3ddb
SM
13633 newobj->static_link
13634 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
13635 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13636 }
13637
e142c38c 13638 cu->list_in_scope = &local_symbols;
c906108c 13639
639d11d3 13640 if (die->child != NULL)
c906108c 13641 {
639d11d3 13642 child_die = die->child;
c906108c
SS
13643 while (child_die && child_die->tag)
13644 {
34eaf542
TT
13645 if (child_die->tag == DW_TAG_template_type_param
13646 || child_die->tag == DW_TAG_template_value_param)
13647 {
13648 struct symbol *arg = new_symbol (child_die, NULL, cu);
13649
f1078f66 13650 if (arg != NULL)
2f4732b0 13651 template_args.push_back (arg);
34eaf542
TT
13652 }
13653 else
13654 process_die (child_die, cu);
c906108c
SS
13655 child_die = sibling_die (child_die);
13656 }
13657 }
13658
d389af10
JK
13659 inherit_abstract_dies (die, cu);
13660
4a811a97
UW
13661 /* If we have a DW_AT_specification, we might need to import using
13662 directives from the context of the specification DIE. See the
13663 comment in determine_prefix. */
13664 if (cu->language == language_cplus
13665 && dwarf2_attr (die, DW_AT_specification, cu))
13666 {
13667 struct dwarf2_cu *spec_cu = cu;
13668 struct die_info *spec_die = die_specification (die, &spec_cu);
13669
13670 while (spec_die)
13671 {
13672 child_die = spec_die->child;
13673 while (child_die && child_die->tag)
13674 {
13675 if (child_die->tag == DW_TAG_imported_module)
13676 process_die (child_die, spec_cu);
13677 child_die = sibling_die (child_die);
13678 }
13679
13680 /* In some cases, GCC generates specification DIEs that
13681 themselves contain DW_AT_specification attributes. */
13682 spec_die = die_specification (spec_die, &spec_cu);
13683 }
13684 }
13685
fe978cb0 13686 newobj = pop_context ();
c906108c 13687 /* Make a block for the local symbols within. */
fe978cb0 13688 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 13689 newobj->static_link, lowpc, highpc);
801e3a5b 13690
df8a16a1 13691 /* For C++, set the block's scope. */
45280282
IB
13692 if ((cu->language == language_cplus
13693 || cu->language == language_fortran
c44af4eb
TT
13694 || cu->language == language_d
13695 || cu->language == language_rust)
4d4ec4e5 13696 && cu->processing_has_namespace_info)
195a3f6c
TT
13697 block_set_scope (block, determine_prefix (die, cu),
13698 &objfile->objfile_obstack);
df8a16a1 13699
801e3a5b
JB
13700 /* If we have address ranges, record them. */
13701 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 13702
fe978cb0 13703 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 13704
34eaf542 13705 /* Attach template arguments to function. */
2f4732b0 13706 if (!template_args.empty ())
34eaf542
TT
13707 {
13708 gdb_assert (templ_func != NULL);
13709
2f4732b0 13710 templ_func->n_template_arguments = template_args.size ();
34eaf542 13711 templ_func->template_arguments
8d749320
SM
13712 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13713 templ_func->n_template_arguments);
34eaf542 13714 memcpy (templ_func->template_arguments,
2f4732b0 13715 template_args.data (),
34eaf542 13716 (templ_func->n_template_arguments * sizeof (struct symbol *)));
34eaf542
TT
13717 }
13718
208d8187
JB
13719 /* In C++, we can have functions nested inside functions (e.g., when
13720 a function declares a class that has methods). This means that
13721 when we finish processing a function scope, we may need to go
13722 back to building a containing block's symbol lists. */
fe978cb0 13723 local_symbols = newobj->locals;
6cccc9a8 13724 set_local_using_directives (newobj->local_using_directives);
208d8187 13725
921e78cf
JB
13726 /* If we've finished processing a top-level function, subsequent
13727 symbols go in the file symbol list. */
13728 if (outermost_context_p ())
e142c38c 13729 cu->list_in_scope = &file_symbols;
c906108c
SS
13730}
13731
13732/* Process all the DIES contained within a lexical block scope. Start
13733 a new scope, process the dies, and then close the scope. */
13734
13735static void
e7c27a73 13736read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13737{
518817b3 13738 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 13739 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 13740 struct context_stack *newobj;
c906108c
SS
13741 CORE_ADDR lowpc, highpc;
13742 struct die_info *child_die;
e142c38c
DJ
13743 CORE_ADDR baseaddr;
13744
13745 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
13746
13747 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
13748 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13749 as multiple lexical blocks? Handling children in a sane way would
6e70227d 13750 be nasty. Might be easier to properly extend generic blocks to
af34e669 13751 describe ranges. */
e385593e
JK
13752 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13753 {
13754 case PC_BOUNDS_NOT_PRESENT:
13755 /* DW_TAG_lexical_block has no attributes, process its children as if
13756 there was no wrapping by that DW_TAG_lexical_block.
13757 GCC does no longer produces such DWARF since GCC r224161. */
13758 for (child_die = die->child;
13759 child_die != NULL && child_die->tag;
13760 child_die = sibling_die (child_die))
13761 process_die (child_die, cu);
13762 return;
13763 case PC_BOUNDS_INVALID:
13764 return;
13765 }
3e29f34a
MR
13766 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13767 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
13768
13769 push_context (0, lowpc);
639d11d3 13770 if (die->child != NULL)
c906108c 13771 {
639d11d3 13772 child_die = die->child;
c906108c
SS
13773 while (child_die && child_die->tag)
13774 {
e7c27a73 13775 process_die (child_die, cu);
c906108c
SS
13776 child_die = sibling_die (child_die);
13777 }
13778 }
3ea89b92 13779 inherit_abstract_dies (die, cu);
fe978cb0 13780 newobj = pop_context ();
c906108c 13781
6cccc9a8 13782 if (local_symbols != NULL || (*get_local_using_directives ()) != NULL)
c906108c 13783 {
801e3a5b 13784 struct block *block
63e43d3a 13785 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 13786 newobj->start_addr, highpc);
801e3a5b
JB
13787
13788 /* Note that recording ranges after traversing children, as we
13789 do here, means that recording a parent's ranges entails
13790 walking across all its children's ranges as they appear in
13791 the address map, which is quadratic behavior.
13792
13793 It would be nicer to record the parent's ranges before
13794 traversing its children, simply overriding whatever you find
13795 there. But since we don't even decide whether to create a
13796 block until after we've traversed its children, that's hard
13797 to do. */
13798 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 13799 }
fe978cb0 13800 local_symbols = newobj->locals;
6cccc9a8 13801 set_local_using_directives (newobj->local_using_directives);
c906108c
SS
13802}
13803
216f72a1 13804/* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
96408a79
SA
13805
13806static void
13807read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13808{
518817b3 13809 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
96408a79
SA
13810 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13811 CORE_ADDR pc, baseaddr;
13812 struct attribute *attr;
13813 struct call_site *call_site, call_site_local;
13814 void **slot;
13815 int nparams;
13816 struct die_info *child_die;
13817
13818 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13819
216f72a1
JK
13820 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13821 if (attr == NULL)
13822 {
13823 /* This was a pre-DWARF-5 GNU extension alias
13824 for DW_AT_call_return_pc. */
13825 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13826 }
96408a79
SA
13827 if (!attr)
13828 {
b98664d3 13829 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
9d8780f0
SM
13830 "DIE %s [in module %s]"),
13831 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79
SA
13832 return;
13833 }
31aa7e4e 13834 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 13835 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
13836
13837 if (cu->call_site_htab == NULL)
13838 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13839 NULL, &objfile->objfile_obstack,
13840 hashtab_obstack_allocate, NULL);
13841 call_site_local.pc = pc;
13842 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13843 if (*slot != NULL)
13844 {
b98664d3 13845 complaint (_("Duplicate PC %s for DW_TAG_call_site "
9d8780f0
SM
13846 "DIE %s [in module %s]"),
13847 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
4262abfb 13848 objfile_name (objfile));
96408a79
SA
13849 return;
13850 }
13851
13852 /* Count parameters at the caller. */
13853
13854 nparams = 0;
13855 for (child_die = die->child; child_die && child_die->tag;
13856 child_die = sibling_die (child_die))
13857 {
216f72a1
JK
13858 if (child_die->tag != DW_TAG_call_site_parameter
13859 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79 13860 {
b98664d3 13861 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
9d8780f0
SM
13862 "DW_TAG_call_site child DIE %s [in module %s]"),
13863 child_die->tag, sect_offset_str (child_die->sect_off),
4262abfb 13864 objfile_name (objfile));
96408a79
SA
13865 continue;
13866 }
13867
13868 nparams++;
13869 }
13870
224c3ddb
SM
13871 call_site
13872 = ((struct call_site *)
13873 obstack_alloc (&objfile->objfile_obstack,
13874 sizeof (*call_site)
13875 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
13876 *slot = call_site;
13877 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13878 call_site->pc = pc;
13879
216f72a1
JK
13880 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13881 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
96408a79
SA
13882 {
13883 struct die_info *func_die;
13884
13885 /* Skip also over DW_TAG_inlined_subroutine. */
13886 for (func_die = die->parent;
13887 func_die && func_die->tag != DW_TAG_subprogram
13888 && func_die->tag != DW_TAG_subroutine_type;
13889 func_die = func_die->parent);
13890
216f72a1
JK
13891 /* DW_AT_call_all_calls is a superset
13892 of DW_AT_call_all_tail_calls. */
96408a79 13893 if (func_die
216f72a1 13894 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
96408a79 13895 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
216f72a1 13896 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
96408a79
SA
13897 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13898 {
13899 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13900 not complete. But keep CALL_SITE for look ups via call_site_htab,
13901 both the initial caller containing the real return address PC and
13902 the final callee containing the current PC of a chain of tail
13903 calls do not need to have the tail call list complete. But any
13904 function candidate for a virtual tail call frame searched via
13905 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13906 determined unambiguously. */
13907 }
13908 else
13909 {
13910 struct type *func_type = NULL;
13911
13912 if (func_die)
13913 func_type = get_die_type (func_die, cu);
13914 if (func_type != NULL)
13915 {
13916 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13917
13918 /* Enlist this call site to the function. */
13919 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13920 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13921 }
13922 else
b98664d3 13923 complaint (_("Cannot find function owning DW_TAG_call_site "
9d8780f0
SM
13924 "DIE %s [in module %s]"),
13925 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79
SA
13926 }
13927 }
13928
216f72a1
JK
13929 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13930 if (attr == NULL)
13931 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13932 if (attr == NULL)
13933 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
96408a79 13934 if (attr == NULL)
216f72a1
JK
13935 {
13936 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13937 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13938 }
96408a79
SA
13939 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13940 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13941 /* Keep NULL DWARF_BLOCK. */;
13942 else if (attr_form_is_block (attr))
13943 {
13944 struct dwarf2_locexpr_baton *dlbaton;
13945
8d749320 13946 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
13947 dlbaton->data = DW_BLOCK (attr)->data;
13948 dlbaton->size = DW_BLOCK (attr)->size;
13949 dlbaton->per_cu = cu->per_cu;
13950
13951 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13952 }
7771576e 13953 else if (attr_form_is_ref (attr))
96408a79 13954 {
96408a79
SA
13955 struct dwarf2_cu *target_cu = cu;
13956 struct die_info *target_die;
13957
ac9ec31b 13958 target_die = follow_die_ref (die, attr, &target_cu);
518817b3 13959 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
96408a79
SA
13960 if (die_is_declaration (target_die, target_cu))
13961 {
7d45c7c3 13962 const char *target_physname;
9112db09
JK
13963
13964 /* Prefer the mangled name; otherwise compute the demangled one. */
73b9be8b 13965 target_physname = dw2_linkage_name (target_die, target_cu);
7d45c7c3 13966 if (target_physname == NULL)
9112db09 13967 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79 13968 if (target_physname == NULL)
b98664d3 13969 complaint (_("DW_AT_call_target target DIE has invalid "
9d8780f0
SM
13970 "physname, for referencing DIE %s [in module %s]"),
13971 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79 13972 else
7d455152 13973 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
13974 }
13975 else
13976 {
13977 CORE_ADDR lowpc;
13978
13979 /* DW_AT_entry_pc should be preferred. */
3a2b436a 13980 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
e385593e 13981 <= PC_BOUNDS_INVALID)
b98664d3 13982 complaint (_("DW_AT_call_target target DIE has invalid "
9d8780f0
SM
13983 "low pc, for referencing DIE %s [in module %s]"),
13984 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79 13985 else
3e29f34a
MR
13986 {
13987 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13988 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13989 }
96408a79
SA
13990 }
13991 }
13992 else
b98664d3 13993 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
9d8780f0
SM
13994 "block nor reference, for DIE %s [in module %s]"),
13995 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79
SA
13996
13997 call_site->per_cu = cu->per_cu;
13998
13999 for (child_die = die->child;
14000 child_die && child_die->tag;
14001 child_die = sibling_die (child_die))
14002 {
96408a79 14003 struct call_site_parameter *parameter;
1788b2d3 14004 struct attribute *loc, *origin;
96408a79 14005
216f72a1
JK
14006 if (child_die->tag != DW_TAG_call_site_parameter
14007 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79
SA
14008 {
14009 /* Already printed the complaint above. */
14010 continue;
14011 }
14012
14013 gdb_assert (call_site->parameter_count < nparams);
14014 parameter = &call_site->parameter[call_site->parameter_count];
14015
1788b2d3
JK
14016 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14017 specifies DW_TAG_formal_parameter. Value of the data assumed for the
216f72a1 14018 register is contained in DW_AT_call_value. */
96408a79 14019
24c5c679 14020 loc = dwarf2_attr (child_die, DW_AT_location, cu);
216f72a1
JK
14021 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14022 if (origin == NULL)
14023 {
14024 /* This was a pre-DWARF-5 GNU extension alias
14025 for DW_AT_call_parameter. */
14026 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14027 }
7771576e 14028 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3 14029 {
1788b2d3 14030 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9c541725
PA
14031
14032 sect_offset sect_off
14033 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14034 if (!offset_in_cu_p (&cu->header, sect_off))
d76b7dbc
JK
14035 {
14036 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14037 binding can be done only inside one CU. Such referenced DIE
14038 therefore cannot be even moved to DW_TAG_partial_unit. */
b98664d3 14039 complaint (_("DW_AT_call_parameter offset is not in CU for "
9d8780f0
SM
14040 "DW_TAG_call_site child DIE %s [in module %s]"),
14041 sect_offset_str (child_die->sect_off),
9c541725 14042 objfile_name (objfile));
d76b7dbc
JK
14043 continue;
14044 }
9c541725
PA
14045 parameter->u.param_cu_off
14046 = (cu_offset) (sect_off - cu->header.sect_off);
1788b2d3
JK
14047 }
14048 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79 14049 {
b98664d3 14050 complaint (_("No DW_FORM_block* DW_AT_location for "
9d8780f0
SM
14051 "DW_TAG_call_site child DIE %s [in module %s]"),
14052 sect_offset_str (child_die->sect_off), objfile_name (objfile));
96408a79
SA
14053 continue;
14054 }
24c5c679 14055 else
96408a79 14056 {
24c5c679
JK
14057 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14058 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14059 if (parameter->u.dwarf_reg != -1)
14060 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14061 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14062 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14063 &parameter->u.fb_offset))
14064 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14065 else
14066 {
b98664d3 14067 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
24c5c679 14068 "for DW_FORM_block* DW_AT_location is supported for "
9d8780f0 14069 "DW_TAG_call_site child DIE %s "
24c5c679 14070 "[in module %s]"),
9d8780f0 14071 sect_offset_str (child_die->sect_off),
9c541725 14072 objfile_name (objfile));
24c5c679
JK
14073 continue;
14074 }
96408a79
SA
14075 }
14076
216f72a1
JK
14077 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14078 if (attr == NULL)
14079 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
96408a79
SA
14080 if (!attr_form_is_block (attr))
14081 {
b98664d3 14082 complaint (_("No DW_FORM_block* DW_AT_call_value for "
9d8780f0
SM
14083 "DW_TAG_call_site child DIE %s [in module %s]"),
14084 sect_offset_str (child_die->sect_off),
9c541725 14085 objfile_name (objfile));
96408a79
SA
14086 continue;
14087 }
14088 parameter->value = DW_BLOCK (attr)->data;
14089 parameter->value_size = DW_BLOCK (attr)->size;
14090
14091 /* Parameters are not pre-cleared by memset above. */
14092 parameter->data_value = NULL;
14093 parameter->data_value_size = 0;
14094 call_site->parameter_count++;
14095
216f72a1
JK
14096 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14097 if (attr == NULL)
14098 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
96408a79
SA
14099 if (attr)
14100 {
14101 if (!attr_form_is_block (attr))
b98664d3 14102 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
9d8780f0
SM
14103 "DW_TAG_call_site child DIE %s [in module %s]"),
14104 sect_offset_str (child_die->sect_off),
9c541725 14105 objfile_name (objfile));
96408a79
SA
14106 else
14107 {
14108 parameter->data_value = DW_BLOCK (attr)->data;
14109 parameter->data_value_size = DW_BLOCK (attr)->size;
14110 }
14111 }
14112 }
14113}
14114
71a3c369
TT
14115/* Helper function for read_variable. If DIE represents a virtual
14116 table, then return the type of the concrete object that is
14117 associated with the virtual table. Otherwise, return NULL. */
14118
14119static struct type *
14120rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14121{
14122 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14123 if (attr == NULL)
14124 return NULL;
14125
14126 /* Find the type DIE. */
14127 struct die_info *type_die = NULL;
14128 struct dwarf2_cu *type_cu = cu;
14129
14130 if (attr_form_is_ref (attr))
14131 type_die = follow_die_ref (die, attr, &type_cu);
14132 if (type_die == NULL)
14133 return NULL;
14134
14135 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14136 return NULL;
14137 return die_containing_type (type_die, type_cu);
14138}
14139
14140/* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14141
14142static void
14143read_variable (struct die_info *die, struct dwarf2_cu *cu)
14144{
14145 struct rust_vtable_symbol *storage = NULL;
14146
14147 if (cu->language == language_rust)
14148 {
14149 struct type *containing_type = rust_containing_type (die, cu);
14150
14151 if (containing_type != NULL)
14152 {
518817b3 14153 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
71a3c369
TT
14154
14155 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14156 struct rust_vtable_symbol);
14157 initialize_objfile_symbol (storage);
14158 storage->concrete_type = containing_type;
cf724bc9 14159 storage->subclass = SYMBOL_RUST_VTABLE;
71a3c369
TT
14160 }
14161 }
14162
5e2db402 14163 new_symbol (die, NULL, cu, storage);
71a3c369
TT
14164}
14165
43988095
JK
14166/* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14167 reading .debug_rnglists.
14168 Callback's type should be:
14169 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14170 Return true if the attributes are present and valid, otherwise,
14171 return false. */
14172
14173template <typename Callback>
14174static bool
14175dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14176 Callback &&callback)
14177{
ed2dc618 14178 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 14179 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 14180 struct objfile *objfile = dwarf2_per_objfile->objfile;
43988095 14181 bfd *obfd = objfile->obfd;
43988095
JK
14182 /* Base address selection entry. */
14183 CORE_ADDR base;
14184 int found_base;
43988095 14185 const gdb_byte *buffer;
43988095
JK
14186 CORE_ADDR baseaddr;
14187 bool overflow = false;
14188
14189 found_base = cu->base_known;
14190 base = cu->base_address;
14191
14192 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14193 if (offset >= dwarf2_per_objfile->rnglists.size)
14194 {
b98664d3 14195 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
43988095
JK
14196 offset);
14197 return false;
14198 }
14199 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14200
14201 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14202
14203 while (1)
14204 {
7814882a
JK
14205 /* Initialize it due to a false compiler warning. */
14206 CORE_ADDR range_beginning = 0, range_end = 0;
43988095
JK
14207 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14208 + dwarf2_per_objfile->rnglists.size);
14209 unsigned int bytes_read;
14210
14211 if (buffer == buf_end)
14212 {
14213 overflow = true;
14214 break;
14215 }
14216 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14217 switch (rlet)
14218 {
14219 case DW_RLE_end_of_list:
14220 break;
14221 case DW_RLE_base_address:
14222 if (buffer + cu->header.addr_size > buf_end)
14223 {
14224 overflow = true;
14225 break;
14226 }
14227 base = read_address (obfd, buffer, cu, &bytes_read);
14228 found_base = 1;
14229 buffer += bytes_read;
14230 break;
14231 case DW_RLE_start_length:
14232 if (buffer + cu->header.addr_size > buf_end)
14233 {
14234 overflow = true;
14235 break;
14236 }
14237 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14238 buffer += bytes_read;
14239 range_end = (range_beginning
14240 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14241 buffer += bytes_read;
14242 if (buffer > buf_end)
14243 {
14244 overflow = true;
14245 break;
14246 }
14247 break;
14248 case DW_RLE_offset_pair:
14249 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14250 buffer += bytes_read;
14251 if (buffer > buf_end)
14252 {
14253 overflow = true;
14254 break;
14255 }
14256 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14257 buffer += bytes_read;
14258 if (buffer > buf_end)
14259 {
14260 overflow = true;
14261 break;
14262 }
14263 break;
14264 case DW_RLE_start_end:
14265 if (buffer + 2 * cu->header.addr_size > buf_end)
14266 {
14267 overflow = true;
14268 break;
14269 }
14270 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14271 buffer += bytes_read;
14272 range_end = read_address (obfd, buffer, cu, &bytes_read);
14273 buffer += bytes_read;
14274 break;
14275 default:
b98664d3 14276 complaint (_("Invalid .debug_rnglists data (no base address)"));
43988095
JK
14277 return false;
14278 }
14279 if (rlet == DW_RLE_end_of_list || overflow)
14280 break;
14281 if (rlet == DW_RLE_base_address)
14282 continue;
14283
14284 if (!found_base)
14285 {
14286 /* We have no valid base address for the ranges
14287 data. */
b98664d3 14288 complaint (_("Invalid .debug_rnglists data (no base address)"));
43988095
JK
14289 return false;
14290 }
14291
14292 if (range_beginning > range_end)
14293 {
14294 /* Inverted range entries are invalid. */
b98664d3 14295 complaint (_("Invalid .debug_rnglists data (inverted range)"));
43988095
JK
14296 return false;
14297 }
14298
14299 /* Empty range entries have no effect. */
14300 if (range_beginning == range_end)
14301 continue;
14302
14303 range_beginning += base;
14304 range_end += base;
14305
14306 /* A not-uncommon case of bad debug info.
14307 Don't pollute the addrmap with bad data. */
14308 if (range_beginning + baseaddr == 0
14309 && !dwarf2_per_objfile->has_section_at_zero)
14310 {
b98664d3 14311 complaint (_(".debug_rnglists entry has start address of zero"
43988095
JK
14312 " [in module %s]"), objfile_name (objfile));
14313 continue;
14314 }
14315
14316 callback (range_beginning, range_end);
14317 }
14318
14319 if (overflow)
14320 {
b98664d3 14321 complaint (_("Offset %d is not terminated "
43988095
JK
14322 "for DW_AT_ranges attribute"),
14323 offset);
14324 return false;
14325 }
14326
14327 return true;
14328}
14329
14330/* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14331 Callback's type should be:
14332 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
5f46c5a5 14333 Return 1 if the attributes are present and valid, otherwise, return 0. */
43039443 14334
43988095 14335template <typename Callback>
43039443 14336static int
5f46c5a5 14337dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
43988095 14338 Callback &&callback)
43039443 14339{
ed2dc618 14340 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 14341 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 14342 struct objfile *objfile = dwarf2_per_objfile->objfile;
43039443
JK
14343 struct comp_unit_head *cu_header = &cu->header;
14344 bfd *obfd = objfile->obfd;
14345 unsigned int addr_size = cu_header->addr_size;
14346 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14347 /* Base address selection entry. */
14348 CORE_ADDR base;
14349 int found_base;
14350 unsigned int dummy;
d521ce57 14351 const gdb_byte *buffer;
ff013f42 14352 CORE_ADDR baseaddr;
43039443 14353
43988095
JK
14354 if (cu_header->version >= 5)
14355 return dwarf2_rnglists_process (offset, cu, callback);
14356
d00adf39
DE
14357 found_base = cu->base_known;
14358 base = cu->base_address;
43039443 14359
be391dca 14360 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 14361 if (offset >= dwarf2_per_objfile->ranges.size)
43039443 14362 {
b98664d3 14363 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
43039443
JK
14364 offset);
14365 return 0;
14366 }
dce234bc 14367 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 14368
e7030f15 14369 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 14370
43039443
JK
14371 while (1)
14372 {
14373 CORE_ADDR range_beginning, range_end;
14374
14375 range_beginning = read_address (obfd, buffer, cu, &dummy);
14376 buffer += addr_size;
14377 range_end = read_address (obfd, buffer, cu, &dummy);
14378 buffer += addr_size;
14379 offset += 2 * addr_size;
14380
14381 /* An end of list marker is a pair of zero addresses. */
14382 if (range_beginning == 0 && range_end == 0)
14383 /* Found the end of list entry. */
14384 break;
14385
14386 /* Each base address selection entry is a pair of 2 values.
14387 The first is the largest possible address, the second is
14388 the base address. Check for a base address here. */
14389 if ((range_beginning & mask) == mask)
14390 {
28d2bfb9
AB
14391 /* If we found the largest possible address, then we already
14392 have the base address in range_end. */
14393 base = range_end;
43039443
JK
14394 found_base = 1;
14395 continue;
14396 }
14397
14398 if (!found_base)
14399 {
14400 /* We have no valid base address for the ranges
14401 data. */
b98664d3 14402 complaint (_("Invalid .debug_ranges data (no base address)"));
43039443
JK
14403 return 0;
14404 }
14405
9277c30c
UW
14406 if (range_beginning > range_end)
14407 {
14408 /* Inverted range entries are invalid. */
b98664d3 14409 complaint (_("Invalid .debug_ranges data (inverted range)"));
9277c30c
UW
14410 return 0;
14411 }
14412
14413 /* Empty range entries have no effect. */
14414 if (range_beginning == range_end)
14415 continue;
14416
43039443
JK
14417 range_beginning += base;
14418 range_end += base;
14419
01093045
DE
14420 /* A not-uncommon case of bad debug info.
14421 Don't pollute the addrmap with bad data. */
14422 if (range_beginning + baseaddr == 0
14423 && !dwarf2_per_objfile->has_section_at_zero)
14424 {
b98664d3 14425 complaint (_(".debug_ranges entry has start address of zero"
4262abfb 14426 " [in module %s]"), objfile_name (objfile));
01093045
DE
14427 continue;
14428 }
14429
5f46c5a5
JK
14430 callback (range_beginning, range_end);
14431 }
14432
14433 return 1;
14434}
14435
14436/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14437 Return 1 if the attributes are present and valid, otherwise, return 0.
14438 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14439
14440static int
14441dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14442 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14443 struct partial_symtab *ranges_pst)
14444{
518817b3 14445 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
5f46c5a5
JK
14446 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14447 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14448 SECT_OFF_TEXT (objfile));
14449 int low_set = 0;
14450 CORE_ADDR low = 0;
14451 CORE_ADDR high = 0;
14452 int retval;
14453
14454 retval = dwarf2_ranges_process (offset, cu,
14455 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14456 {
9277c30c 14457 if (ranges_pst != NULL)
3e29f34a
MR
14458 {
14459 CORE_ADDR lowpc;
14460 CORE_ADDR highpc;
14461
14462 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14463 range_beginning + baseaddr);
14464 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14465 range_end + baseaddr);
14466 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14467 ranges_pst);
14468 }
ff013f42 14469
43039443
JK
14470 /* FIXME: This is recording everything as a low-high
14471 segment of consecutive addresses. We should have a
14472 data structure for discontiguous block ranges
14473 instead. */
14474 if (! low_set)
14475 {
14476 low = range_beginning;
14477 high = range_end;
14478 low_set = 1;
14479 }
14480 else
14481 {
14482 if (range_beginning < low)
14483 low = range_beginning;
14484 if (range_end > high)
14485 high = range_end;
14486 }
5f46c5a5
JK
14487 });
14488 if (!retval)
14489 return 0;
43039443
JK
14490
14491 if (! low_set)
14492 /* If the first entry is an end-of-list marker, the range
14493 describes an empty scope, i.e. no instructions. */
14494 return 0;
14495
14496 if (low_return)
14497 *low_return = low;
14498 if (high_return)
14499 *high_return = high;
14500 return 1;
14501}
14502
3a2b436a
JK
14503/* Get low and high pc attributes from a die. See enum pc_bounds_kind
14504 definition for the return value. *LOWPC and *HIGHPC are set iff
e385593e 14505 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
380bca97 14506
3a2b436a 14507static enum pc_bounds_kind
af34e669 14508dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
14509 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14510 struct partial_symtab *pst)
c906108c 14511{
518817b3
SM
14512 struct dwarf2_per_objfile *dwarf2_per_objfile
14513 = cu->per_cu->dwarf2_per_objfile;
c906108c 14514 struct attribute *attr;
91da1414 14515 struct attribute *attr_high;
af34e669
DJ
14516 CORE_ADDR low = 0;
14517 CORE_ADDR high = 0;
e385593e 14518 enum pc_bounds_kind ret;
c906108c 14519
91da1414
MW
14520 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14521 if (attr_high)
af34e669 14522 {
e142c38c 14523 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 14524 if (attr)
91da1414 14525 {
31aa7e4e
JB
14526 low = attr_value_as_address (attr);
14527 high = attr_value_as_address (attr_high);
14528 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14529 high += low;
91da1414 14530 }
af34e669
DJ
14531 else
14532 /* Found high w/o low attribute. */
e385593e 14533 return PC_BOUNDS_INVALID;
af34e669
DJ
14534
14535 /* Found consecutive range of addresses. */
3a2b436a 14536 ret = PC_BOUNDS_HIGH_LOW;
af34e669 14537 }
c906108c 14538 else
af34e669 14539 {
e142c38c 14540 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
14541 if (attr != NULL)
14542 {
ab435259
DE
14543 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14544 We take advantage of the fact that DW_AT_ranges does not appear
14545 in DW_TAG_compile_unit of DWO files. */
14546 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14547 unsigned int ranges_offset = (DW_UNSND (attr)
14548 + (need_ranges_base
14549 ? cu->ranges_base
14550 : 0));
2e3cf129 14551
af34e669 14552 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 14553 .debug_ranges section. */
2e3cf129 14554 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
e385593e 14555 return PC_BOUNDS_INVALID;
43039443 14556 /* Found discontinuous range of addresses. */
3a2b436a 14557 ret = PC_BOUNDS_RANGES;
af34e669 14558 }
e385593e
JK
14559 else
14560 return PC_BOUNDS_NOT_PRESENT;
af34e669 14561 }
c906108c 14562
48fbe735 14563 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
9373cf26 14564 if (high <= low)
e385593e 14565 return PC_BOUNDS_INVALID;
c906108c
SS
14566
14567 /* When using the GNU linker, .gnu.linkonce. sections are used to
14568 eliminate duplicate copies of functions and vtables and such.
14569 The linker will arbitrarily choose one and discard the others.
14570 The AT_*_pc values for such functions refer to local labels in
14571 these sections. If the section from that file was discarded, the
14572 labels are not in the output, so the relocs get a value of 0.
14573 If this is a discarded function, mark the pc bounds as invalid,
14574 so that GDB will ignore it. */
72dca2f5 14575 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
e385593e 14576 return PC_BOUNDS_INVALID;
c906108c
SS
14577
14578 *lowpc = low;
96408a79
SA
14579 if (highpc)
14580 *highpc = high;
af34e669 14581 return ret;
c906108c
SS
14582}
14583
b084d499
JB
14584/* Assuming that DIE represents a subprogram DIE or a lexical block, get
14585 its low and high PC addresses. Do nothing if these addresses could not
14586 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14587 and HIGHPC to the high address if greater than HIGHPC. */
14588
14589static void
14590dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14591 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14592 struct dwarf2_cu *cu)
14593{
14594 CORE_ADDR low, high;
14595 struct die_info *child = die->child;
14596
e385593e 14597 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
b084d499 14598 {
325fac50
PA
14599 *lowpc = std::min (*lowpc, low);
14600 *highpc = std::max (*highpc, high);
b084d499
JB
14601 }
14602
14603 /* If the language does not allow nested subprograms (either inside
14604 subprograms or lexical blocks), we're done. */
14605 if (cu->language != language_ada)
14606 return;
6e70227d 14607
b084d499
JB
14608 /* Check all the children of the given DIE. If it contains nested
14609 subprograms, then check their pc bounds. Likewise, we need to
14610 check lexical blocks as well, as they may also contain subprogram
14611 definitions. */
14612 while (child && child->tag)
14613 {
14614 if (child->tag == DW_TAG_subprogram
14615 || child->tag == DW_TAG_lexical_block)
14616 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14617 child = sibling_die (child);
14618 }
14619}
14620
fae299cd
DC
14621/* Get the low and high pc's represented by the scope DIE, and store
14622 them in *LOWPC and *HIGHPC. If the correct values can't be
14623 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14624
14625static void
14626get_scope_pc_bounds (struct die_info *die,
14627 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14628 struct dwarf2_cu *cu)
14629{
14630 CORE_ADDR best_low = (CORE_ADDR) -1;
14631 CORE_ADDR best_high = (CORE_ADDR) 0;
14632 CORE_ADDR current_low, current_high;
14633
3a2b436a 14634 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
e385593e 14635 >= PC_BOUNDS_RANGES)
fae299cd
DC
14636 {
14637 best_low = current_low;
14638 best_high = current_high;
14639 }
14640 else
14641 {
14642 struct die_info *child = die->child;
14643
14644 while (child && child->tag)
14645 {
14646 switch (child->tag) {
14647 case DW_TAG_subprogram:
b084d499 14648 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
14649 break;
14650 case DW_TAG_namespace:
f55ee35c 14651 case DW_TAG_module:
fae299cd
DC
14652 /* FIXME: carlton/2004-01-16: Should we do this for
14653 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14654 that current GCC's always emit the DIEs corresponding
14655 to definitions of methods of classes as children of a
14656 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14657 the DIEs giving the declarations, which could be
14658 anywhere). But I don't see any reason why the
14659 standards says that they have to be there. */
14660 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14661
14662 if (current_low != ((CORE_ADDR) -1))
14663 {
325fac50
PA
14664 best_low = std::min (best_low, current_low);
14665 best_high = std::max (best_high, current_high);
fae299cd
DC
14666 }
14667 break;
14668 default:
0963b4bd 14669 /* Ignore. */
fae299cd
DC
14670 break;
14671 }
14672
14673 child = sibling_die (child);
14674 }
14675 }
14676
14677 *lowpc = best_low;
14678 *highpc = best_high;
14679}
14680
801e3a5b
JB
14681/* Record the address ranges for BLOCK, offset by BASEADDR, as given
14682 in DIE. */
380bca97 14683
801e3a5b
JB
14684static void
14685dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14686 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14687{
518817b3 14688 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 14689 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 14690 struct attribute *attr;
91da1414 14691 struct attribute *attr_high;
801e3a5b 14692
91da1414
MW
14693 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14694 if (attr_high)
801e3a5b 14695 {
801e3a5b
JB
14696 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14697 if (attr)
14698 {
31aa7e4e
JB
14699 CORE_ADDR low = attr_value_as_address (attr);
14700 CORE_ADDR high = attr_value_as_address (attr_high);
14701
14702 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14703 high += low;
9a619af0 14704
3e29f34a
MR
14705 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14706 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14707 record_block_range (block, low, high - 1);
801e3a5b
JB
14708 }
14709 }
14710
14711 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14712 if (attr)
14713 {
ab435259
DE
14714 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14715 We take advantage of the fact that DW_AT_ranges does not appear
14716 in DW_TAG_compile_unit of DWO files. */
14717 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
14718
14719 /* The value of the DW_AT_ranges attribute is the offset of the
14720 address range list in the .debug_ranges section. */
ab435259
DE
14721 unsigned long offset = (DW_UNSND (attr)
14722 + (need_ranges_base ? cu->ranges_base : 0));
801e3a5b 14723
5f46c5a5
JK
14724 dwarf2_ranges_process (offset, cu,
14725 [&] (CORE_ADDR start, CORE_ADDR end)
14726 {
58fdfd2c
JK
14727 start += baseaddr;
14728 end += baseaddr;
5f46c5a5
JK
14729 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14730 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14731 record_block_range (block, start, end - 1);
14732 });
801e3a5b
JB
14733 }
14734}
14735
685b1105
JK
14736/* Check whether the producer field indicates either of GCC < 4.6, or the
14737 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 14738
685b1105
JK
14739static void
14740check_producer (struct dwarf2_cu *cu)
60d5a603 14741{
38360086 14742 int major, minor;
60d5a603
JK
14743
14744 if (cu->producer == NULL)
14745 {
14746 /* For unknown compilers expect their behavior is DWARF version
14747 compliant.
14748
14749 GCC started to support .debug_types sections by -gdwarf-4 since
14750 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14751 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14752 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14753 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 14754 }
b1ffba5a 14755 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 14756 {
38360086
MW
14757 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14758 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 14759 }
5230b05a
WT
14760 else if (producer_is_icc (cu->producer, &major, &minor))
14761 cu->producer_is_icc_lt_14 = major < 14;
685b1105
JK
14762 else
14763 {
14764 /* For other non-GCC compilers, expect their behavior is DWARF version
14765 compliant. */
60d5a603
JK
14766 }
14767
ba919b58 14768 cu->checked_producer = 1;
685b1105 14769}
ba919b58 14770
685b1105
JK
14771/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14772 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14773 during 4.6.0 experimental. */
14774
14775static int
14776producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14777{
14778 if (!cu->checked_producer)
14779 check_producer (cu);
14780
14781 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
14782}
14783
14784/* Return the default accessibility type if it is not overriden by
14785 DW_AT_accessibility. */
14786
14787static enum dwarf_access_attribute
14788dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14789{
14790 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14791 {
14792 /* The default DWARF 2 accessibility for members is public, the default
14793 accessibility for inheritance is private. */
14794
14795 if (die->tag != DW_TAG_inheritance)
14796 return DW_ACCESS_public;
14797 else
14798 return DW_ACCESS_private;
14799 }
14800 else
14801 {
14802 /* DWARF 3+ defines the default accessibility a different way. The same
14803 rules apply now for DW_TAG_inheritance as for the members and it only
14804 depends on the container kind. */
14805
14806 if (die->parent->tag == DW_TAG_class_type)
14807 return DW_ACCESS_private;
14808 else
14809 return DW_ACCESS_public;
14810 }
14811}
14812
74ac6d43
TT
14813/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14814 offset. If the attribute was not found return 0, otherwise return
14815 1. If it was found but could not properly be handled, set *OFFSET
14816 to 0. */
14817
14818static int
14819handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14820 LONGEST *offset)
14821{
14822 struct attribute *attr;
14823
14824 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14825 if (attr != NULL)
14826 {
14827 *offset = 0;
14828
14829 /* Note that we do not check for a section offset first here.
14830 This is because DW_AT_data_member_location is new in DWARF 4,
14831 so if we see it, we can assume that a constant form is really
14832 a constant and not a section offset. */
14833 if (attr_form_is_constant (attr))
14834 *offset = dwarf2_get_attr_constant_value (attr, 0);
14835 else if (attr_form_is_section_offset (attr))
14836 dwarf2_complex_location_expr_complaint ();
14837 else if (attr_form_is_block (attr))
14838 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14839 else
14840 dwarf2_complex_location_expr_complaint ();
14841
14842 return 1;
14843 }
14844
14845 return 0;
14846}
14847
c906108c
SS
14848/* Add an aggregate field to the field list. */
14849
14850static void
107d2387 14851dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 14852 struct dwarf2_cu *cu)
6e70227d 14853{
518817b3 14854 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
5e2b427d 14855 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14856 struct nextfield *new_field;
14857 struct attribute *attr;
14858 struct field *fp;
15d034d0 14859 const char *fieldname = "";
c906108c 14860
7d0ccb61
DJ
14861 if (die->tag == DW_TAG_inheritance)
14862 {
be2daae6
TT
14863 fip->baseclasses.emplace_back ();
14864 new_field = &fip->baseclasses.back ();
7d0ccb61
DJ
14865 }
14866 else
14867 {
be2daae6
TT
14868 fip->fields.emplace_back ();
14869 new_field = &fip->fields.back ();
7d0ccb61 14870 }
be2daae6 14871
c906108c
SS
14872 fip->nfields++;
14873
e142c38c 14874 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
14875 if (attr)
14876 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
14877 else
14878 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
14879 if (new_field->accessibility != DW_ACCESS_public)
14880 fip->non_public_fields = 1;
60d5a603 14881
e142c38c 14882 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
14883 if (attr)
14884 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
14885 else
14886 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
14887
14888 fp = &new_field->field;
a9a9bd0f 14889
e142c38c 14890 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 14891 {
74ac6d43
TT
14892 LONGEST offset;
14893
a9a9bd0f 14894 /* Data member other than a C++ static data member. */
6e70227d 14895
c906108c 14896 /* Get type of field. */
e7c27a73 14897 fp->type = die_type (die, cu);
c906108c 14898
d6a843b5 14899 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 14900
c906108c 14901 /* Get bit size of field (zero if none). */
e142c38c 14902 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
14903 if (attr)
14904 {
14905 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14906 }
14907 else
14908 {
14909 FIELD_BITSIZE (*fp) = 0;
14910 }
14911
14912 /* Get bit offset of field. */
74ac6d43
TT
14913 if (handle_data_member_location (die, cu, &offset))
14914 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 14915 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
14916 if (attr)
14917 {
5e2b427d 14918 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
14919 {
14920 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
14921 additional bit offset from the MSB of the containing
14922 anonymous object to the MSB of the field. We don't
14923 have to do anything special since we don't need to
14924 know the size of the anonymous object. */
f41f5e61 14925 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
14926 }
14927 else
14928 {
14929 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
14930 MSB of the anonymous object, subtract off the number of
14931 bits from the MSB of the field to the MSB of the
14932 object, and then subtract off the number of bits of
14933 the field itself. The result is the bit offset of
14934 the LSB of the field. */
c906108c
SS
14935 int anonymous_size;
14936 int bit_offset = DW_UNSND (attr);
14937
e142c38c 14938 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14939 if (attr)
14940 {
14941 /* The size of the anonymous object containing
14942 the bit field is explicit, so use the
14943 indicated size (in bytes). */
14944 anonymous_size = DW_UNSND (attr);
14945 }
14946 else
14947 {
14948 /* The size of the anonymous object containing
14949 the bit field must be inferred from the type
14950 attribute of the data member containing the
14951 bit field. */
14952 anonymous_size = TYPE_LENGTH (fp->type);
14953 }
f41f5e61
PA
14954 SET_FIELD_BITPOS (*fp,
14955 (FIELD_BITPOS (*fp)
14956 + anonymous_size * bits_per_byte
14957 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
14958 }
14959 }
da5b30da
AA
14960 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14961 if (attr != NULL)
14962 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14963 + dwarf2_get_attr_constant_value (attr, 0)));
c906108c
SS
14964
14965 /* Get name of field. */
39cbfefa
DJ
14966 fieldname = dwarf2_name (die, cu);
14967 if (fieldname == NULL)
14968 fieldname = "";
d8151005
DJ
14969
14970 /* The name is already allocated along with this objfile, so we don't
14971 need to duplicate it for the type. */
14972 fp->name = fieldname;
c906108c
SS
14973
14974 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 14975 pointer or virtual base class pointer) to private. */
e142c38c 14976 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 14977 {
d48cc9dd 14978 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
14979 new_field->accessibility = DW_ACCESS_private;
14980 fip->non_public_fields = 1;
14981 }
14982 }
a9a9bd0f 14983 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 14984 {
a9a9bd0f
DC
14985 /* C++ static member. */
14986
14987 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14988 is a declaration, but all versions of G++ as of this writing
14989 (so through at least 3.2.1) incorrectly generate
14990 DW_TAG_variable tags. */
6e70227d 14991
ff355380 14992 const char *physname;
c906108c 14993
a9a9bd0f 14994 /* Get name of field. */
39cbfefa
DJ
14995 fieldname = dwarf2_name (die, cu);
14996 if (fieldname == NULL)
c906108c
SS
14997 return;
14998
254e6b9e 14999 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
15000 if (attr
15001 /* Only create a symbol if this is an external value.
15002 new_symbol checks this and puts the value in the global symbol
15003 table, which we want. If it is not external, new_symbol
15004 will try to put the value in cu->list_in_scope which is wrong. */
15005 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
15006 {
15007 /* A static const member, not much different than an enum as far as
15008 we're concerned, except that we can support more types. */
15009 new_symbol (die, NULL, cu);
15010 }
15011
2df3850c 15012 /* Get physical name. */
ff355380 15013 physname = dwarf2_physname (fieldname, die, cu);
c906108c 15014
d8151005
DJ
15015 /* The name is already allocated along with this objfile, so we don't
15016 need to duplicate it for the type. */
15017 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 15018 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 15019 FIELD_NAME (*fp) = fieldname;
c906108c
SS
15020 }
15021 else if (die->tag == DW_TAG_inheritance)
15022 {
74ac6d43 15023 LONGEST offset;
d4b96c9a 15024
74ac6d43
TT
15025 /* C++ base class field. */
15026 if (handle_data_member_location (die, cu, &offset))
15027 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 15028 FIELD_BITSIZE (*fp) = 0;
e7c27a73 15029 FIELD_TYPE (*fp) = die_type (die, cu);
a737d952 15030 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
c906108c 15031 }
2ddeaf8a
TT
15032 else if (die->tag == DW_TAG_variant_part)
15033 {
15034 /* process_structure_scope will treat this DIE as a union. */
15035 process_structure_scope (die, cu);
15036
15037 /* The variant part is relative to the start of the enclosing
15038 structure. */
15039 SET_FIELD_BITPOS (*fp, 0);
15040 fp->type = get_die_type (die, cu);
15041 fp->artificial = 1;
15042 fp->name = "<<variant>>";
15043 }
15044 else
15045 gdb_assert_not_reached ("missing case in dwarf2_add_field");
c906108c
SS
15046}
15047
883fd55a
KS
15048/* Can the type given by DIE define another type? */
15049
15050static bool
15051type_can_define_types (const struct die_info *die)
15052{
15053 switch (die->tag)
15054 {
15055 case DW_TAG_typedef:
15056 case DW_TAG_class_type:
15057 case DW_TAG_structure_type:
15058 case DW_TAG_union_type:
15059 case DW_TAG_enumeration_type:
15060 return true;
15061
15062 default:
15063 return false;
15064 }
15065}
15066
15067/* Add a type definition defined in the scope of the FIP's class. */
98751a41
JK
15068
15069static void
883fd55a
KS
15070dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15071 struct dwarf2_cu *cu)
6e70227d 15072{
be2daae6
TT
15073 struct decl_field fp;
15074 memset (&fp, 0, sizeof (fp));
98751a41 15075
883fd55a 15076 gdb_assert (type_can_define_types (die));
98751a41 15077
883fd55a 15078 /* Get name of field. NULL is okay here, meaning an anonymous type. */
be2daae6
TT
15079 fp.name = dwarf2_name (die, cu);
15080 fp.type = read_type_die (die, cu);
98751a41 15081
c191a687
KS
15082 /* Save accessibility. */
15083 enum dwarf_access_attribute accessibility;
15084 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15085 if (attr != NULL)
15086 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15087 else
15088 accessibility = dwarf2_default_access_attribute (die, cu);
15089 switch (accessibility)
15090 {
15091 case DW_ACCESS_public:
15092 /* The assumed value if neither private nor protected. */
15093 break;
15094 case DW_ACCESS_private:
be2daae6 15095 fp.is_private = 1;
c191a687
KS
15096 break;
15097 case DW_ACCESS_protected:
be2daae6 15098 fp.is_protected = 1;
c191a687
KS
15099 break;
15100 default:
b98664d3 15101 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
c191a687
KS
15102 }
15103
883fd55a 15104 if (die->tag == DW_TAG_typedef)
be2daae6 15105 fip->typedef_field_list.push_back (fp);
883fd55a 15106 else
be2daae6 15107 fip->nested_types_list.push_back (fp);
98751a41
JK
15108}
15109
c906108c
SS
15110/* Create the vector of fields, and attach it to the type. */
15111
15112static void
fba45db2 15113dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 15114 struct dwarf2_cu *cu)
c906108c
SS
15115{
15116 int nfields = fip->nfields;
15117
15118 /* Record the field count, allocate space for the array of fields,
15119 and create blank accessibility bitfields if necessary. */
15120 TYPE_NFIELDS (type) = nfields;
15121 TYPE_FIELDS (type) = (struct field *)
be2daae6 15122 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
c906108c 15123
b4ba55a1 15124 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
15125 {
15126 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15127
15128 TYPE_FIELD_PRIVATE_BITS (type) =
15129 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15130 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15131
15132 TYPE_FIELD_PROTECTED_BITS (type) =
15133 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15134 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15135
774b6a14
TT
15136 TYPE_FIELD_IGNORE_BITS (type) =
15137 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15138 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
15139 }
15140
15141 /* If the type has baseclasses, allocate and clear a bit vector for
15142 TYPE_FIELD_VIRTUAL_BITS. */
be2daae6 15143 if (!fip->baseclasses.empty () && cu->language != language_ada)
c906108c 15144 {
be2daae6 15145 int num_bytes = B_BYTES (fip->baseclasses.size ());
fe1b8b76 15146 unsigned char *pointer;
c906108c
SS
15147
15148 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 15149 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 15150 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
be2daae6
TT
15151 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15152 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
c906108c
SS
15153 }
15154
2ddeaf8a
TT
15155 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15156 {
15157 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15158
be2daae6 15159 for (int index = 0; index < nfields; ++index)
2ddeaf8a 15160 {
be2daae6
TT
15161 struct nextfield &field = fip->fields[index];
15162
15163 if (field.variant.is_discriminant)
2ddeaf8a 15164 di->discriminant_index = index;
be2daae6 15165 else if (field.variant.default_branch)
2ddeaf8a
TT
15166 di->default_index = index;
15167 else
be2daae6 15168 di->discriminants[index] = field.variant.discriminant_value;
2ddeaf8a
TT
15169 }
15170 }
15171
be2daae6
TT
15172 /* Copy the saved-up fields into the field vector. */
15173 for (int i = 0; i < nfields; ++i)
c906108c 15174 {
be2daae6
TT
15175 struct nextfield &field
15176 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15177 : fip->fields[i - fip->baseclasses.size ()]);
7d0ccb61 15178
be2daae6
TT
15179 TYPE_FIELD (type, i) = field.field;
15180 switch (field.accessibility)
c906108c 15181 {
c5aa993b 15182 case DW_ACCESS_private:
b4ba55a1 15183 if (cu->language != language_ada)
be2daae6 15184 SET_TYPE_FIELD_PRIVATE (type, i);
c5aa993b 15185 break;
c906108c 15186
c5aa993b 15187 case DW_ACCESS_protected:
b4ba55a1 15188 if (cu->language != language_ada)
be2daae6 15189 SET_TYPE_FIELD_PROTECTED (type, i);
c5aa993b 15190 break;
c906108c 15191
c5aa993b
JM
15192 case DW_ACCESS_public:
15193 break;
c906108c 15194
c5aa993b
JM
15195 default:
15196 /* Unknown accessibility. Complain and treat it as public. */
15197 {
b98664d3 15198 complaint (_("unsupported accessibility %d"),
be2daae6 15199 field.accessibility);
c5aa993b
JM
15200 }
15201 break;
c906108c 15202 }
be2daae6 15203 if (i < fip->baseclasses.size ())
c906108c 15204 {
be2daae6 15205 switch (field.virtuality)
c906108c 15206 {
c5aa993b
JM
15207 case DW_VIRTUALITY_virtual:
15208 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 15209 if (cu->language == language_ada)
a73c6dcd 15210 error (_("unexpected virtuality in component of Ada type"));
be2daae6 15211 SET_TYPE_FIELD_VIRTUAL (type, i);
c5aa993b 15212 break;
c906108c
SS
15213 }
15214 }
c906108c
SS
15215 }
15216}
15217
7d27a96d
TT
15218/* Return true if this member function is a constructor, false
15219 otherwise. */
15220
15221static int
15222dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15223{
15224 const char *fieldname;
fe978cb0 15225 const char *type_name;
7d27a96d
TT
15226 int len;
15227
15228 if (die->parent == NULL)
15229 return 0;
15230
15231 if (die->parent->tag != DW_TAG_structure_type
15232 && die->parent->tag != DW_TAG_union_type
15233 && die->parent->tag != DW_TAG_class_type)
15234 return 0;
15235
15236 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
15237 type_name = dwarf2_name (die->parent, cu);
15238 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
15239 return 0;
15240
15241 len = strlen (fieldname);
fe978cb0
PA
15242 return (strncmp (fieldname, type_name, len) == 0
15243 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
15244}
15245
c906108c
SS
15246/* Add a member function to the proper fieldlist. */
15247
15248static void
107d2387 15249dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 15250 struct type *type, struct dwarf2_cu *cu)
c906108c 15251{
518817b3 15252 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 15253 struct attribute *attr;
c906108c 15254 int i;
be2daae6 15255 struct fnfieldlist *flp = nullptr;
c906108c 15256 struct fn_field *fnp;
15d034d0 15257 const char *fieldname;
f792889a 15258 struct type *this_type;
60d5a603 15259 enum dwarf_access_attribute accessibility;
c906108c 15260
b4ba55a1 15261 if (cu->language == language_ada)
a73c6dcd 15262 error (_("unexpected member function in Ada type"));
b4ba55a1 15263
2df3850c 15264 /* Get name of member function. */
39cbfefa
DJ
15265 fieldname = dwarf2_name (die, cu);
15266 if (fieldname == NULL)
2df3850c 15267 return;
c906108c 15268
c906108c 15269 /* Look up member function name in fieldlist. */
be2daae6 15270 for (i = 0; i < fip->fnfieldlists.size (); i++)
c906108c 15271 {
27bfe10e 15272 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
be2daae6
TT
15273 {
15274 flp = &fip->fnfieldlists[i];
15275 break;
15276 }
c906108c
SS
15277 }
15278
be2daae6
TT
15279 /* Create a new fnfieldlist if necessary. */
15280 if (flp == nullptr)
c906108c 15281 {
be2daae6
TT
15282 fip->fnfieldlists.emplace_back ();
15283 flp = &fip->fnfieldlists.back ();
c906108c 15284 flp->name = fieldname;
be2daae6 15285 i = fip->fnfieldlists.size () - 1;
c906108c
SS
15286 }
15287
be2daae6
TT
15288 /* Create a new member function field and add it to the vector of
15289 fnfieldlists. */
15290 flp->fnfields.emplace_back ();
15291 fnp = &flp->fnfields.back ();
3da10d80
KS
15292
15293 /* Delay processing of the physname until later. */
9c37b5ae 15294 if (cu->language == language_cplus)
be2daae6
TT
15295 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15296 die, cu);
3da10d80
KS
15297 else
15298 {
1d06ead6 15299 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
15300 fnp->physname = physname ? physname : "";
15301 }
15302
c906108c 15303 fnp->type = alloc_type (objfile);
f792889a
DJ
15304 this_type = read_type_die (die, cu);
15305 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 15306 {
f792889a 15307 int nparams = TYPE_NFIELDS (this_type);
c906108c 15308
f792889a 15309 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
15310 of the method itself (TYPE_CODE_METHOD). */
15311 smash_to_method_type (fnp->type, type,
f792889a
DJ
15312 TYPE_TARGET_TYPE (this_type),
15313 TYPE_FIELDS (this_type),
15314 TYPE_NFIELDS (this_type),
15315 TYPE_VARARGS (this_type));
c906108c
SS
15316
15317 /* Handle static member functions.
c5aa993b 15318 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
15319 member functions. G++ helps GDB by marking the first
15320 parameter for non-static member functions (which is the this
15321 pointer) as artificial. We obtain this information from
15322 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 15323 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
15324 fnp->voffset = VOFFSET_STATIC;
15325 }
15326 else
b98664d3 15327 complaint (_("member function type missing for '%s'"),
3da10d80 15328 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
15329
15330 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 15331 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 15332 fnp->fcontext = die_containing_type (die, cu);
c906108c 15333
3e43a32a
MS
15334 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15335 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
15336
15337 /* Get accessibility. */
e142c38c 15338 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 15339 if (attr)
aead7601 15340 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
15341 else
15342 accessibility = dwarf2_default_access_attribute (die, cu);
15343 switch (accessibility)
c906108c 15344 {
60d5a603
JK
15345 case DW_ACCESS_private:
15346 fnp->is_private = 1;
15347 break;
15348 case DW_ACCESS_protected:
15349 fnp->is_protected = 1;
15350 break;
c906108c
SS
15351 }
15352
b02dede2 15353 /* Check for artificial methods. */
e142c38c 15354 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
15355 if (attr && DW_UNSND (attr) != 0)
15356 fnp->is_artificial = 1;
15357
7d27a96d
TT
15358 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15359
0d564a31 15360 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
15361 function. For older versions of GCC, this is an offset in the
15362 appropriate virtual table, as specified by DW_AT_containing_type.
15363 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
15364 to the object address. */
15365
e142c38c 15366 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 15367 if (attr)
8e19ed76 15368 {
aec5aa8b 15369 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 15370 {
aec5aa8b
TT
15371 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15372 {
15373 /* Old-style GCC. */
15374 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15375 }
15376 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15377 || (DW_BLOCK (attr)->size > 1
15378 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15379 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15380 {
aec5aa8b
TT
15381 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15382 if ((fnp->voffset % cu->header.addr_size) != 0)
15383 dwarf2_complex_location_expr_complaint ();
15384 else
15385 fnp->voffset /= cu->header.addr_size;
15386 fnp->voffset += 2;
15387 }
15388 else
15389 dwarf2_complex_location_expr_complaint ();
15390
15391 if (!fnp->fcontext)
7e993ebf
KS
15392 {
15393 /* If there is no `this' field and no DW_AT_containing_type,
15394 we cannot actually find a base class context for the
15395 vtable! */
15396 if (TYPE_NFIELDS (this_type) == 0
15397 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15398 {
b98664d3 15399 complaint (_("cannot determine context for virtual member "
9d8780f0
SM
15400 "function \"%s\" (offset %s)"),
15401 fieldname, sect_offset_str (die->sect_off));
7e993ebf
KS
15402 }
15403 else
15404 {
15405 fnp->fcontext
15406 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15407 }
15408 }
aec5aa8b 15409 }
3690dd37 15410 else if (attr_form_is_section_offset (attr))
8e19ed76 15411 {
4d3c2250 15412 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15413 }
15414 else
15415 {
4d3c2250
KB
15416 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15417 fieldname);
8e19ed76 15418 }
0d564a31 15419 }
d48cc9dd
DJ
15420 else
15421 {
15422 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15423 if (attr && DW_UNSND (attr))
15424 {
15425 /* GCC does this, as of 2008-08-25; PR debug/37237. */
b98664d3 15426 complaint (_("Member function \"%s\" (offset %s) is virtual "
3e43a32a 15427 "but the vtable offset is not specified"),
9d8780f0 15428 fieldname, sect_offset_str (die->sect_off));
9655fd1a 15429 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
15430 TYPE_CPLUS_DYNAMIC (type) = 1;
15431 }
15432 }
c906108c
SS
15433}
15434
15435/* Create the vector of member function fields, and attach it to the type. */
15436
15437static void
fba45db2 15438dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 15439 struct dwarf2_cu *cu)
c906108c 15440{
b4ba55a1 15441 if (cu->language == language_ada)
a73c6dcd 15442 error (_("unexpected member functions in Ada type"));
b4ba55a1 15443
c906108c
SS
15444 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15445 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
be2daae6
TT
15446 TYPE_ALLOC (type,
15447 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
c906108c 15448
be2daae6 15449 for (int i = 0; i < fip->fnfieldlists.size (); i++)
c906108c 15450 {
be2daae6 15451 struct fnfieldlist &nf = fip->fnfieldlists[i];
c906108c 15452 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
c906108c 15453
be2daae6
TT
15454 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15455 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
c906108c 15456 fn_flp->fn_fields = (struct fn_field *)
be2daae6
TT
15457 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15458
15459 for (int k = 0; k < nf.fnfields.size (); ++k)
15460 fn_flp->fn_fields[k] = nf.fnfields[k];
c906108c
SS
15461 }
15462
be2daae6 15463 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
c906108c
SS
15464}
15465
1168df01
JB
15466/* Returns non-zero if NAME is the name of a vtable member in CU's
15467 language, zero otherwise. */
15468static int
15469is_vtable_name (const char *name, struct dwarf2_cu *cu)
15470{
15471 static const char vptr[] = "_vptr";
15472
9c37b5ae
TT
15473 /* Look for the C++ form of the vtable. */
15474 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
1168df01
JB
15475 return 1;
15476
15477 return 0;
15478}
15479
c0dd20ea 15480/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
15481 functions, with the ABI-specified layout. If TYPE describes
15482 such a structure, smash it into a member function type.
61049d3b
DJ
15483
15484 GCC shouldn't do this; it should just output pointer to member DIEs.
15485 This is GCC PR debug/28767. */
c0dd20ea 15486
0b92b5bb
TT
15487static void
15488quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 15489{
09e2d7c7 15490 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
15491
15492 /* Check for a structure with no name and two children. */
0b92b5bb
TT
15493 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15494 return;
c0dd20ea
DJ
15495
15496 /* Check for __pfn and __delta members. */
0b92b5bb
TT
15497 if (TYPE_FIELD_NAME (type, 0) == NULL
15498 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15499 || TYPE_FIELD_NAME (type, 1) == NULL
15500 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15501 return;
c0dd20ea
DJ
15502
15503 /* Find the type of the method. */
0b92b5bb 15504 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
15505 if (pfn_type == NULL
15506 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15507 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 15508 return;
c0dd20ea
DJ
15509
15510 /* Look for the "this" argument. */
15511 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15512 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 15513 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 15514 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 15515 return;
c0dd20ea 15516
09e2d7c7 15517 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 15518 new_type = alloc_type (objfile);
09e2d7c7 15519 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
15520 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15521 TYPE_VARARGS (pfn_type));
0b92b5bb 15522 smash_to_methodptr_type (type, new_type);
c0dd20ea 15523}
1168df01 15524
2b4424c3
TT
15525/* If the DIE has a DW_AT_alignment attribute, return its value, doing
15526 appropriate error checking and issuing complaints if there is a
15527 problem. */
15528
15529static ULONGEST
15530get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15531{
15532 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15533
15534 if (attr == nullptr)
15535 return 0;
15536
15537 if (!attr_form_is_constant (attr))
15538 {
b98664d3 15539 complaint (_("DW_AT_alignment must have constant form"
2b4424c3
TT
15540 " - DIE at %s [in module %s]"),
15541 sect_offset_str (die->sect_off),
15542 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15543 return 0;
15544 }
15545
15546 ULONGEST align;
15547 if (attr->form == DW_FORM_sdata)
15548 {
15549 LONGEST val = DW_SND (attr);
15550 if (val < 0)
15551 {
b98664d3 15552 complaint (_("DW_AT_alignment value must not be negative"
2b4424c3
TT
15553 " - DIE at %s [in module %s]"),
15554 sect_offset_str (die->sect_off),
15555 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15556 return 0;
15557 }
15558 align = val;
15559 }
15560 else
15561 align = DW_UNSND (attr);
15562
15563 if (align == 0)
15564 {
b98664d3 15565 complaint (_("DW_AT_alignment value must not be zero"
2b4424c3
TT
15566 " - DIE at %s [in module %s]"),
15567 sect_offset_str (die->sect_off),
15568 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15569 return 0;
15570 }
15571 if ((align & (align - 1)) != 0)
15572 {
b98664d3 15573 complaint (_("DW_AT_alignment value must be a power of 2"
2b4424c3
TT
15574 " - DIE at %s [in module %s]"),
15575 sect_offset_str (die->sect_off),
15576 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15577 return 0;
15578 }
15579
15580 return align;
15581}
15582
15583/* If the DIE has a DW_AT_alignment attribute, use its value to set
15584 the alignment for TYPE. */
15585
15586static void
15587maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15588 struct type *type)
15589{
15590 if (!set_type_align (type, get_alignment (cu, die)))
b98664d3 15591 complaint (_("DW_AT_alignment value too large"
2b4424c3
TT
15592 " - DIE at %s [in module %s]"),
15593 sect_offset_str (die->sect_off),
15594 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15595}
685b1105 15596
c906108c 15597/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
15598 (definition) to create a type for the structure or union. Fill in
15599 the type's name and general properties; the members will not be
83655187
DE
15600 processed until process_structure_scope. A symbol table entry for
15601 the type will also not be done until process_structure_scope (assuming
15602 the type has a name).
c906108c 15603
c767944b
DJ
15604 NOTE: we need to call these functions regardless of whether or not the
15605 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 15606 structure or union. This gets the type entered into our set of
83655187 15607 user defined types. */
c906108c 15608
f792889a 15609static struct type *
134d01f1 15610read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 15611{
518817b3 15612 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c
SS
15613 struct type *type;
15614 struct attribute *attr;
15d034d0 15615 const char *name;
c906108c 15616
348e048f
DE
15617 /* If the definition of this type lives in .debug_types, read that type.
15618 Don't follow DW_AT_specification though, that will take us back up
15619 the chain and we want to go down. */
45e58e77 15620 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
15621 if (attr)
15622 {
ac9ec31b 15623 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 15624
ac9ec31b 15625 /* The type's CU may not be the same as CU.
02142a6c 15626 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
15627 return set_die_type (die, type, cu);
15628 }
15629
c0dd20ea 15630 type = alloc_type (objfile);
c906108c 15631 INIT_CPLUS_SPECIFIC (type);
93311388 15632
39cbfefa
DJ
15633 name = dwarf2_name (die, cu);
15634 if (name != NULL)
c906108c 15635 {
987504bb 15636 if (cu->language == language_cplus
c44af4eb
TT
15637 || cu->language == language_d
15638 || cu->language == language_rust)
63d06c5c 15639 {
15d034d0 15640 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
15641
15642 /* dwarf2_full_name might have already finished building the DIE's
15643 type. If so, there is no need to continue. */
15644 if (get_die_type (die, cu) != NULL)
15645 return get_die_type (die, cu);
15646
e86ca25f 15647 TYPE_NAME (type) = full_name;
63d06c5c
DC
15648 }
15649 else
15650 {
d8151005
DJ
15651 /* The name is already allocated along with this objfile, so
15652 we don't need to duplicate it for the type. */
e86ca25f 15653 TYPE_NAME (type) = name;
63d06c5c 15654 }
c906108c
SS
15655 }
15656
15657 if (die->tag == DW_TAG_structure_type)
15658 {
15659 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15660 }
15661 else if (die->tag == DW_TAG_union_type)
15662 {
15663 TYPE_CODE (type) = TYPE_CODE_UNION;
15664 }
2ddeaf8a
TT
15665 else if (die->tag == DW_TAG_variant_part)
15666 {
15667 TYPE_CODE (type) = TYPE_CODE_UNION;
15668 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15669 }
c906108c
SS
15670 else
15671 {
4753d33b 15672 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
15673 }
15674
0cc2414c
TT
15675 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15676 TYPE_DECLARED_CLASS (type) = 1;
15677
e142c38c 15678 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
15679 if (attr)
15680 {
155bfbd3
JB
15681 if (attr_form_is_constant (attr))
15682 TYPE_LENGTH (type) = DW_UNSND (attr);
15683 else
15684 {
15685 /* For the moment, dynamic type sizes are not supported
15686 by GDB's struct type. The actual size is determined
15687 on-demand when resolving the type of a given object,
15688 so set the type's length to zero for now. Otherwise,
15689 we record an expression as the length, and that expression
15690 could lead to a very large value, which could eventually
15691 lead to us trying to allocate that much memory when creating
15692 a value of that type. */
15693 TYPE_LENGTH (type) = 0;
15694 }
c906108c
SS
15695 }
15696 else
15697 {
15698 TYPE_LENGTH (type) = 0;
15699 }
15700
2b4424c3
TT
15701 maybe_set_alignment (cu, die, type);
15702
5230b05a 15703 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
685b1105 15704 {
5230b05a
WT
15705 /* ICC<14 does not output the required DW_AT_declaration on
15706 incomplete types, but gives them a size of zero. */
422b1cb0 15707 TYPE_STUB (type) = 1;
685b1105
JK
15708 }
15709 else
15710 TYPE_STUB_SUPPORTED (type) = 1;
15711
dc718098 15712 if (die_is_declaration (die, cu))
876cecd0 15713 TYPE_STUB (type) = 1;
a6c727b2
DJ
15714 else if (attr == NULL && die->child == NULL
15715 && producer_is_realview (cu->producer))
15716 /* RealView does not output the required DW_AT_declaration
15717 on incomplete types. */
15718 TYPE_STUB (type) = 1;
dc718098 15719
c906108c
SS
15720 /* We need to add the type field to the die immediately so we don't
15721 infinitely recurse when dealing with pointers to the structure
0963b4bd 15722 type within the structure itself. */
1c379e20 15723 set_die_type (die, type, cu);
c906108c 15724
7e314c57
JK
15725 /* set_die_type should be already done. */
15726 set_descriptive_type (type, die, cu);
15727
c767944b
DJ
15728 return type;
15729}
15730
2ddeaf8a
TT
15731/* A helper for process_structure_scope that handles a single member
15732 DIE. */
15733
15734static void
15735handle_struct_member_die (struct die_info *child_die, struct type *type,
15736 struct field_info *fi,
15737 std::vector<struct symbol *> *template_args,
15738 struct dwarf2_cu *cu)
15739{
15740 if (child_die->tag == DW_TAG_member
15741 || child_die->tag == DW_TAG_variable
15742 || child_die->tag == DW_TAG_variant_part)
15743 {
15744 /* NOTE: carlton/2002-11-05: A C++ static data member
15745 should be a DW_TAG_member that is a declaration, but
15746 all versions of G++ as of this writing (so through at
15747 least 3.2.1) incorrectly generate DW_TAG_variable
15748 tags for them instead. */
15749 dwarf2_add_field (fi, child_die, cu);
15750 }
15751 else if (child_die->tag == DW_TAG_subprogram)
15752 {
15753 /* Rust doesn't have member functions in the C++ sense.
15754 However, it does emit ordinary functions as children
15755 of a struct DIE. */
15756 if (cu->language == language_rust)
15757 read_func_scope (child_die, cu);
15758 else
15759 {
15760 /* C++ member function. */
15761 dwarf2_add_member_fn (fi, child_die, type, cu);
15762 }
15763 }
15764 else if (child_die->tag == DW_TAG_inheritance)
15765 {
15766 /* C++ base class field. */
15767 dwarf2_add_field (fi, child_die, cu);
15768 }
15769 else if (type_can_define_types (child_die))
15770 dwarf2_add_type_defn (fi, child_die, cu);
15771 else if (child_die->tag == DW_TAG_template_type_param
15772 || child_die->tag == DW_TAG_template_value_param)
15773 {
15774 struct symbol *arg = new_symbol (child_die, NULL, cu);
15775
15776 if (arg != NULL)
15777 template_args->push_back (arg);
15778 }
15779 else if (child_die->tag == DW_TAG_variant)
15780 {
15781 /* In a variant we want to get the discriminant and also add a
15782 field for our sole member child. */
15783 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15784
15785 for (struct die_info *variant_child = child_die->child;
15786 variant_child != NULL;
15787 variant_child = sibling_die (variant_child))
15788 {
15789 if (variant_child->tag == DW_TAG_member)
15790 {
15791 handle_struct_member_die (variant_child, type, fi,
15792 template_args, cu);
15793 /* Only handle the one. */
15794 break;
15795 }
15796 }
15797
15798 /* We don't handle this but we might as well report it if we see
15799 it. */
15800 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
b98664d3 15801 complaint (_("DW_AT_discr_list is not supported yet"
2ddeaf8a
TT
15802 " - DIE at %s [in module %s]"),
15803 sect_offset_str (child_die->sect_off),
15804 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15805
15806 /* The first field was just added, so we can stash the
15807 discriminant there. */
be2daae6 15808 gdb_assert (!fi->fields.empty ());
2ddeaf8a 15809 if (discr == NULL)
be2daae6 15810 fi->fields.back ().variant.default_branch = true;
2ddeaf8a 15811 else
be2daae6 15812 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
2ddeaf8a
TT
15813 }
15814}
15815
c767944b
DJ
15816/* Finish creating a structure or union type, including filling in
15817 its members and creating a symbol for it. */
15818
15819static void
15820process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15821{
518817b3 15822 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
ca040673 15823 struct die_info *child_die;
c767944b
DJ
15824 struct type *type;
15825
15826 type = get_die_type (die, cu);
15827 if (type == NULL)
15828 type = read_structure_type (die, cu);
15829
2ddeaf8a
TT
15830 /* When reading a DW_TAG_variant_part, we need to notice when we
15831 read the discriminant member, so we can record it later in the
15832 discriminant_info. */
15833 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15834 sect_offset discr_offset;
15835
15836 if (is_variant_part)
15837 {
15838 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15839 if (discr == NULL)
15840 {
15841 /* Maybe it's a univariant form, an extension we support.
15842 In this case arrange not to check the offset. */
15843 is_variant_part = false;
15844 }
15845 else if (attr_form_is_ref (discr))
15846 {
15847 struct dwarf2_cu *target_cu = cu;
15848 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15849
15850 discr_offset = target_die->sect_off;
15851 }
15852 else
15853 {
b98664d3 15854 complaint (_("DW_AT_discr does not have DIE reference form"
2ddeaf8a
TT
15855 " - DIE at %s [in module %s]"),
15856 sect_offset_str (die->sect_off),
15857 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15858 is_variant_part = false;
15859 }
15860 }
15861
e142c38c 15862 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
15863 {
15864 struct field_info fi;
2f4732b0 15865 std::vector<struct symbol *> template_args;
c906108c 15866
639d11d3 15867 child_die = die->child;
c906108c
SS
15868
15869 while (child_die && child_die->tag)
15870 {
2ddeaf8a 15871 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
34eaf542 15872
2ddeaf8a 15873 if (is_variant_part && discr_offset == child_die->sect_off)
be2daae6 15874 fi.fields.back ().variant.is_discriminant = true;
34eaf542 15875
c906108c
SS
15876 child_die = sibling_die (child_die);
15877 }
15878
34eaf542 15879 /* Attach template arguments to type. */
2f4732b0 15880 if (!template_args.empty ())
34eaf542
TT
15881 {
15882 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2f4732b0 15883 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
34eaf542 15884 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
15885 = XOBNEWVEC (&objfile->objfile_obstack,
15886 struct symbol *,
15887 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542 15888 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
2f4732b0 15889 template_args.data (),
34eaf542
TT
15890 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15891 * sizeof (struct symbol *)));
34eaf542
TT
15892 }
15893
c906108c
SS
15894 /* Attach fields and member functions to the type. */
15895 if (fi.nfields)
e7c27a73 15896 dwarf2_attach_fields_to_type (&fi, type, cu);
be2daae6 15897 if (!fi.fnfieldlists.empty ())
c906108c 15898 {
e7c27a73 15899 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 15900
c5aa993b 15901 /* Get the type which refers to the base class (possibly this
c906108c 15902 class itself) which contains the vtable pointer for the current
0d564a31
DJ
15903 class from the DW_AT_containing_type attribute. This use of
15904 DW_AT_containing_type is a GNU extension. */
c906108c 15905
e142c38c 15906 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 15907 {
e7c27a73 15908 struct type *t = die_containing_type (die, cu);
c906108c 15909
ae6ae975 15910 set_type_vptr_basetype (type, t);
c906108c
SS
15911 if (type == t)
15912 {
c906108c
SS
15913 int i;
15914
15915 /* Our own class provides vtbl ptr. */
15916 for (i = TYPE_NFIELDS (t) - 1;
15917 i >= TYPE_N_BASECLASSES (t);
15918 --i)
15919 {
0d5cff50 15920 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 15921
1168df01 15922 if (is_vtable_name (fieldname, cu))
c906108c 15923 {
ae6ae975 15924 set_type_vptr_fieldno (type, i);
c906108c
SS
15925 break;
15926 }
15927 }
15928
15929 /* Complain if virtual function table field not found. */
15930 if (i < TYPE_N_BASECLASSES (t))
b98664d3 15931 complaint (_("virtual function table pointer "
3e43a32a 15932 "not found when defining class '%s'"),
e86ca25f 15933 TYPE_NAME (type) ? TYPE_NAME (type) : "");
c906108c
SS
15934 }
15935 else
15936 {
ae6ae975 15937 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
15938 }
15939 }
f6235d4c 15940 else if (cu->producer
61012eef 15941 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
15942 {
15943 /* The IBM XLC compiler does not provide direct indication
15944 of the containing type, but the vtable pointer is
15945 always named __vfp. */
15946
15947 int i;
15948
15949 for (i = TYPE_NFIELDS (type) - 1;
15950 i >= TYPE_N_BASECLASSES (type);
15951 --i)
15952 {
15953 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15954 {
ae6ae975
DE
15955 set_type_vptr_fieldno (type, i);
15956 set_type_vptr_basetype (type, type);
f6235d4c
EZ
15957 break;
15958 }
15959 }
15960 }
c906108c 15961 }
98751a41
JK
15962
15963 /* Copy fi.typedef_field_list linked list elements content into the
15964 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
be2daae6 15965 if (!fi.typedef_field_list.empty ())
98751a41 15966 {
be2daae6 15967 int count = fi.typedef_field_list.size ();
98751a41 15968
a0d7a4ff 15969 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 15970 TYPE_TYPEDEF_FIELD_ARRAY (type)
883fd55a 15971 = ((struct decl_field *)
be2daae6
TT
15972 TYPE_ALLOC (type,
15973 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15974 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
6e70227d 15975
be2daae6
TT
15976 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15977 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
98751a41 15978 }
c767944b 15979
883fd55a
KS
15980 /* Copy fi.nested_types_list linked list elements content into the
15981 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
be2daae6 15982 if (!fi.nested_types_list.empty () && cu->language != language_ada)
883fd55a 15983 {
be2daae6 15984 int count = fi.nested_types_list.size ();
883fd55a
KS
15985
15986 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15987 TYPE_NESTED_TYPES_ARRAY (type)
15988 = ((struct decl_field *)
be2daae6
TT
15989 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15990 TYPE_NESTED_TYPES_COUNT (type) = count;
883fd55a 15991
be2daae6
TT
15992 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15993 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
883fd55a 15994 }
c906108c 15995 }
63d06c5c 15996
bb5ed363 15997 quirk_gcc_member_function_pointer (type, objfile);
c9317f21
TT
15998 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15999 cu->rust_unions.push_back (type);
0b92b5bb 16000
90aeadfc
DC
16001 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16002 snapshots) has been known to create a die giving a declaration
16003 for a class that has, as a child, a die giving a definition for a
16004 nested class. So we have to process our children even if the
16005 current die is a declaration. Normally, of course, a declaration
16006 won't have any children at all. */
134d01f1 16007
ca040673
DE
16008 child_die = die->child;
16009
90aeadfc
DC
16010 while (child_die != NULL && child_die->tag)
16011 {
16012 if (child_die->tag == DW_TAG_member
16013 || child_die->tag == DW_TAG_variable
34eaf542
TT
16014 || child_die->tag == DW_TAG_inheritance
16015 || child_die->tag == DW_TAG_template_value_param
16016 || child_die->tag == DW_TAG_template_type_param)
134d01f1 16017 {
90aeadfc 16018 /* Do nothing. */
134d01f1 16019 }
90aeadfc
DC
16020 else
16021 process_die (child_die, cu);
134d01f1 16022
90aeadfc 16023 child_die = sibling_die (child_die);
134d01f1
DJ
16024 }
16025
fa4028e9
JB
16026 /* Do not consider external references. According to the DWARF standard,
16027 these DIEs are identified by the fact that they have no byte_size
16028 attribute, and a declaration attribute. */
16029 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16030 || !die_is_declaration (die, cu))
c767944b 16031 new_symbol (die, type, cu);
134d01f1
DJ
16032}
16033
55426c9d
JB
16034/* Assuming DIE is an enumeration type, and TYPE is its associated type,
16035 update TYPE using some information only available in DIE's children. */
16036
16037static void
16038update_enumeration_type_from_children (struct die_info *die,
16039 struct type *type,
16040 struct dwarf2_cu *cu)
16041{
60f7655a 16042 struct die_info *child_die;
55426c9d
JB
16043 int unsigned_enum = 1;
16044 int flag_enum = 1;
16045 ULONGEST mask = 0;
55426c9d 16046
8268c778 16047 auto_obstack obstack;
55426c9d 16048
60f7655a
DE
16049 for (child_die = die->child;
16050 child_die != NULL && child_die->tag;
16051 child_die = sibling_die (child_die))
55426c9d
JB
16052 {
16053 struct attribute *attr;
16054 LONGEST value;
16055 const gdb_byte *bytes;
16056 struct dwarf2_locexpr_baton *baton;
16057 const char *name;
60f7655a 16058
55426c9d
JB
16059 if (child_die->tag != DW_TAG_enumerator)
16060 continue;
16061
16062 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16063 if (attr == NULL)
16064 continue;
16065
16066 name = dwarf2_name (child_die, cu);
16067 if (name == NULL)
16068 name = "<anonymous enumerator>";
16069
16070 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16071 &value, &bytes, &baton);
16072 if (value < 0)
16073 {
16074 unsigned_enum = 0;
16075 flag_enum = 0;
16076 }
16077 else if ((mask & value) != 0)
16078 flag_enum = 0;
16079 else
16080 mask |= value;
16081
16082 /* If we already know that the enum type is neither unsigned, nor
16083 a flag type, no need to look at the rest of the enumerates. */
16084 if (!unsigned_enum && !flag_enum)
16085 break;
55426c9d
JB
16086 }
16087
16088 if (unsigned_enum)
16089 TYPE_UNSIGNED (type) = 1;
16090 if (flag_enum)
16091 TYPE_FLAG_ENUM (type) = 1;
55426c9d
JB
16092}
16093
134d01f1
DJ
16094/* Given a DW_AT_enumeration_type die, set its type. We do not
16095 complete the type's fields yet, or create any symbols. */
c906108c 16096
f792889a 16097static struct type *
134d01f1 16098read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16099{
518817b3 16100 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 16101 struct type *type;
c906108c 16102 struct attribute *attr;
0114d602 16103 const char *name;
134d01f1 16104
348e048f
DE
16105 /* If the definition of this type lives in .debug_types, read that type.
16106 Don't follow DW_AT_specification though, that will take us back up
16107 the chain and we want to go down. */
45e58e77 16108 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
16109 if (attr)
16110 {
ac9ec31b 16111 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 16112
ac9ec31b 16113 /* The type's CU may not be the same as CU.
02142a6c 16114 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
16115 return set_die_type (die, type, cu);
16116 }
16117
c906108c
SS
16118 type = alloc_type (objfile);
16119
16120 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 16121 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 16122 if (name != NULL)
e86ca25f 16123 TYPE_NAME (type) = name;
c906108c 16124
0626fc76
TT
16125 attr = dwarf2_attr (die, DW_AT_type, cu);
16126 if (attr != NULL)
16127 {
16128 struct type *underlying_type = die_type (die, cu);
16129
16130 TYPE_TARGET_TYPE (type) = underlying_type;
16131 }
16132
e142c38c 16133 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
16134 if (attr)
16135 {
16136 TYPE_LENGTH (type) = DW_UNSND (attr);
16137 }
16138 else
16139 {
16140 TYPE_LENGTH (type) = 0;
16141 }
16142
2b4424c3
TT
16143 maybe_set_alignment (cu, die, type);
16144
137033e9
JB
16145 /* The enumeration DIE can be incomplete. In Ada, any type can be
16146 declared as private in the package spec, and then defined only
16147 inside the package body. Such types are known as Taft Amendment
16148 Types. When another package uses such a type, an incomplete DIE
16149 may be generated by the compiler. */
02eb380e 16150 if (die_is_declaration (die, cu))
876cecd0 16151 TYPE_STUB (type) = 1;
02eb380e 16152
0626fc76
TT
16153 /* Finish the creation of this type by using the enum's children.
16154 We must call this even when the underlying type has been provided
16155 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
16156 update_enumeration_type_from_children (die, type, cu);
16157
0626fc76
TT
16158 /* If this type has an underlying type that is not a stub, then we
16159 may use its attributes. We always use the "unsigned" attribute
16160 in this situation, because ordinarily we guess whether the type
16161 is unsigned -- but the guess can be wrong and the underlying type
16162 can tell us the reality. However, we defer to a local size
16163 attribute if one exists, because this lets the compiler override
16164 the underlying type if needed. */
16165 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16166 {
16167 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16168 if (TYPE_LENGTH (type) == 0)
16169 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
2b4424c3
TT
16170 if (TYPE_RAW_ALIGN (type) == 0
16171 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16172 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
0626fc76
TT
16173 }
16174
3d567982
TT
16175 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16176
f792889a 16177 return set_die_type (die, type, cu);
134d01f1
DJ
16178}
16179
16180/* Given a pointer to a die which begins an enumeration, process all
16181 the dies that define the members of the enumeration, and create the
16182 symbol for the enumeration type.
16183
16184 NOTE: We reverse the order of the element list. */
16185
16186static void
16187process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16188{
f792889a 16189 struct type *this_type;
134d01f1 16190
f792889a
DJ
16191 this_type = get_die_type (die, cu);
16192 if (this_type == NULL)
16193 this_type = read_enumeration_type (die, cu);
9dc481d3 16194
639d11d3 16195 if (die->child != NULL)
c906108c 16196 {
9dc481d3
DE
16197 struct die_info *child_die;
16198 struct symbol *sym;
16199 struct field *fields = NULL;
16200 int num_fields = 0;
15d034d0 16201 const char *name;
9dc481d3 16202
639d11d3 16203 child_die = die->child;
c906108c
SS
16204 while (child_die && child_die->tag)
16205 {
16206 if (child_die->tag != DW_TAG_enumerator)
16207 {
e7c27a73 16208 process_die (child_die, cu);
c906108c
SS
16209 }
16210 else
16211 {
39cbfefa
DJ
16212 name = dwarf2_name (child_die, cu);
16213 if (name)
c906108c 16214 {
f792889a 16215 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
16216
16217 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16218 {
16219 fields = (struct field *)
16220 xrealloc (fields,
16221 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 16222 * sizeof (struct field));
c906108c
SS
16223 }
16224
3567439c 16225 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 16226 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 16227 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
16228 FIELD_BITSIZE (fields[num_fields]) = 0;
16229
16230 num_fields++;
16231 }
16232 }
16233
16234 child_die = sibling_die (child_die);
16235 }
16236
16237 if (num_fields)
16238 {
f792889a
DJ
16239 TYPE_NFIELDS (this_type) = num_fields;
16240 TYPE_FIELDS (this_type) = (struct field *)
16241 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16242 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 16243 sizeof (struct field) * num_fields);
b8c9b27d 16244 xfree (fields);
c906108c 16245 }
c906108c 16246 }
134d01f1 16247
6c83ed52
TT
16248 /* If we are reading an enum from a .debug_types unit, and the enum
16249 is a declaration, and the enum is not the signatured type in the
16250 unit, then we do not want to add a symbol for it. Adding a
16251 symbol would in some cases obscure the true definition of the
16252 enum, giving users an incomplete type when the definition is
16253 actually available. Note that we do not want to do this for all
16254 enums which are just declarations, because C++0x allows forward
16255 enum declarations. */
3019eac3 16256 if (cu->per_cu->is_debug_types
6c83ed52
TT
16257 && die_is_declaration (die, cu))
16258 {
52dc124a 16259 struct signatured_type *sig_type;
6c83ed52 16260
c0f78cd4 16261 sig_type = (struct signatured_type *) cu->per_cu;
9c541725
PA
16262 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16263 if (sig_type->type_offset_in_section != die->sect_off)
6c83ed52
TT
16264 return;
16265 }
16266
f792889a 16267 new_symbol (die, this_type, cu);
c906108c
SS
16268}
16269
16270/* Extract all information from a DW_TAG_array_type DIE and put it in
16271 the DIE's type field. For now, this only handles one dimensional
16272 arrays. */
16273
f792889a 16274static struct type *
e7c27a73 16275read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16276{
518817b3 16277 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 16278 struct die_info *child_die;
7e314c57 16279 struct type *type;
c906108c 16280 struct type *element_type, *range_type, *index_type;
c906108c 16281 struct attribute *attr;
15d034d0 16282 const char *name;
a405673c 16283 struct dynamic_prop *byte_stride_prop = NULL;
dc53a7ad 16284 unsigned int bit_stride = 0;
c906108c 16285
e7c27a73 16286 element_type = die_type (die, cu);
c906108c 16287
7e314c57
JK
16288 /* The die_type call above may have already set the type for this DIE. */
16289 type = get_die_type (die, cu);
16290 if (type)
16291 return type;
16292
dc53a7ad
JB
16293 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16294 if (attr != NULL)
a405673c
JB
16295 {
16296 int stride_ok;
16297
16298 byte_stride_prop
16299 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16300 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16301 if (!stride_ok)
16302 {
b98664d3 16303 complaint (_("unable to read array DW_AT_byte_stride "
9d8780f0
SM
16304 " - DIE at %s [in module %s]"),
16305 sect_offset_str (die->sect_off),
518817b3 16306 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
a405673c
JB
16307 /* Ignore this attribute. We will likely not be able to print
16308 arrays of this type correctly, but there is little we can do
16309 to help if we cannot read the attribute's value. */
16310 byte_stride_prop = NULL;
16311 }
16312 }
dc53a7ad
JB
16313
16314 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16315 if (attr != NULL)
16316 bit_stride = DW_UNSND (attr);
16317
c906108c
SS
16318 /* Irix 6.2 native cc creates array types without children for
16319 arrays with unspecified length. */
639d11d3 16320 if (die->child == NULL)
c906108c 16321 {
46bf5051 16322 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 16323 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad 16324 type = create_array_type_with_stride (NULL, element_type, range_type,
a405673c 16325 byte_stride_prop, bit_stride);
f792889a 16326 return set_die_type (die, type, cu);
c906108c
SS
16327 }
16328
791afaa2 16329 std::vector<struct type *> range_types;
639d11d3 16330 child_die = die->child;
c906108c
SS
16331 while (child_die && child_die->tag)
16332 {
16333 if (child_die->tag == DW_TAG_subrange_type)
16334 {
f792889a 16335 struct type *child_type = read_type_die (child_die, cu);
9a619af0 16336
f792889a 16337 if (child_type != NULL)
a02abb62 16338 {
0963b4bd
MS
16339 /* The range type was succesfully read. Save it for the
16340 array type creation. */
791afaa2 16341 range_types.push_back (child_type);
a02abb62 16342 }
c906108c
SS
16343 }
16344 child_die = sibling_die (child_die);
16345 }
16346
16347 /* Dwarf2 dimensions are output from left to right, create the
16348 necessary array types in backwards order. */
7ca2d3a3 16349
c906108c 16350 type = element_type;
7ca2d3a3
DL
16351
16352 if (read_array_order (die, cu) == DW_ORD_col_major)
16353 {
16354 int i = 0;
9a619af0 16355
791afaa2 16356 while (i < range_types.size ())
dc53a7ad 16357 type = create_array_type_with_stride (NULL, type, range_types[i++],
a405673c 16358 byte_stride_prop, bit_stride);
7ca2d3a3
DL
16359 }
16360 else
16361 {
791afaa2 16362 size_t ndim = range_types.size ();
7ca2d3a3 16363 while (ndim-- > 0)
dc53a7ad 16364 type = create_array_type_with_stride (NULL, type, range_types[ndim],
a405673c 16365 byte_stride_prop, bit_stride);
7ca2d3a3 16366 }
c906108c 16367
f5f8a009
EZ
16368 /* Understand Dwarf2 support for vector types (like they occur on
16369 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16370 array type. This is not part of the Dwarf2/3 standard yet, but a
16371 custom vendor extension. The main difference between a regular
16372 array and the vector variant is that vectors are passed by value
16373 to functions. */
e142c38c 16374 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 16375 if (attr)
ea37ba09 16376 make_vector_type (type);
f5f8a009 16377
dbc98a8b
KW
16378 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16379 implementation may choose to implement triple vectors using this
16380 attribute. */
16381 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16382 if (attr)
16383 {
16384 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16385 TYPE_LENGTH (type) = DW_UNSND (attr);
16386 else
b98664d3 16387 complaint (_("DW_AT_byte_size for array type smaller "
3e43a32a 16388 "than the total size of elements"));
dbc98a8b
KW
16389 }
16390
39cbfefa
DJ
16391 name = dwarf2_name (die, cu);
16392 if (name)
16393 TYPE_NAME (type) = name;
6e70227d 16394
2b4424c3
TT
16395 maybe_set_alignment (cu, die, type);
16396
0963b4bd 16397 /* Install the type in the die. */
7e314c57
JK
16398 set_die_type (die, type, cu);
16399
16400 /* set_die_type should be already done. */
b4ba55a1
JB
16401 set_descriptive_type (type, die, cu);
16402
7e314c57 16403 return type;
c906108c
SS
16404}
16405
7ca2d3a3 16406static enum dwarf_array_dim_ordering
6e70227d 16407read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
16408{
16409 struct attribute *attr;
16410
16411 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16412
aead7601
SM
16413 if (attr)
16414 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 16415
0963b4bd
MS
16416 /* GNU F77 is a special case, as at 08/2004 array type info is the
16417 opposite order to the dwarf2 specification, but data is still
16418 laid out as per normal fortran.
7ca2d3a3 16419
0963b4bd
MS
16420 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16421 version checking. */
7ca2d3a3 16422
905e0470
PM
16423 if (cu->language == language_fortran
16424 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
16425 {
16426 return DW_ORD_row_major;
16427 }
16428
6e70227d 16429 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
16430 {
16431 case array_column_major:
16432 return DW_ORD_col_major;
16433 case array_row_major:
16434 default:
16435 return DW_ORD_row_major;
16436 };
16437}
16438
72019c9c 16439/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 16440 the DIE's type field. */
72019c9c 16441
f792889a 16442static struct type *
72019c9c
GM
16443read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16444{
7e314c57
JK
16445 struct type *domain_type, *set_type;
16446 struct attribute *attr;
f792889a 16447
7e314c57
JK
16448 domain_type = die_type (die, cu);
16449
16450 /* The die_type call above may have already set the type for this DIE. */
16451 set_type = get_die_type (die, cu);
16452 if (set_type)
16453 return set_type;
16454
16455 set_type = create_set_type (NULL, domain_type);
16456
16457 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
16458 if (attr)
16459 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 16460
2b4424c3
TT
16461 maybe_set_alignment (cu, die, set_type);
16462
f792889a 16463 return set_die_type (die, set_type, cu);
72019c9c 16464}
7ca2d3a3 16465
0971de02
TT
16466/* A helper for read_common_block that creates a locexpr baton.
16467 SYM is the symbol which we are marking as computed.
16468 COMMON_DIE is the DIE for the common block.
16469 COMMON_LOC is the location expression attribute for the common
16470 block itself.
16471 MEMBER_LOC is the location expression attribute for the particular
16472 member of the common block that we are processing.
16473 CU is the CU from which the above come. */
16474
16475static void
16476mark_common_block_symbol_computed (struct symbol *sym,
16477 struct die_info *common_die,
16478 struct attribute *common_loc,
16479 struct attribute *member_loc,
16480 struct dwarf2_cu *cu)
16481{
518817b3
SM
16482 struct dwarf2_per_objfile *dwarf2_per_objfile
16483 = cu->per_cu->dwarf2_per_objfile;
0971de02
TT
16484 struct objfile *objfile = dwarf2_per_objfile->objfile;
16485 struct dwarf2_locexpr_baton *baton;
16486 gdb_byte *ptr;
16487 unsigned int cu_off;
16488 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16489 LONGEST offset = 0;
16490
16491 gdb_assert (common_loc && member_loc);
16492 gdb_assert (attr_form_is_block (common_loc));
16493 gdb_assert (attr_form_is_block (member_loc)
16494 || attr_form_is_constant (member_loc));
16495
8d749320 16496 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
16497 baton->per_cu = cu->per_cu;
16498 gdb_assert (baton->per_cu);
16499
16500 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16501
16502 if (attr_form_is_constant (member_loc))
16503 {
16504 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16505 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16506 }
16507 else
16508 baton->size += DW_BLOCK (member_loc)->size;
16509
224c3ddb 16510 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
16511 baton->data = ptr;
16512
16513 *ptr++ = DW_OP_call4;
9c541725 16514 cu_off = common_die->sect_off - cu->per_cu->sect_off;
0971de02
TT
16515 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16516 ptr += 4;
16517
16518 if (attr_form_is_constant (member_loc))
16519 {
16520 *ptr++ = DW_OP_addr;
16521 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16522 ptr += cu->header.addr_size;
16523 }
16524 else
16525 {
16526 /* We have to copy the data here, because DW_OP_call4 will only
16527 use a DW_AT_location attribute. */
16528 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16529 ptr += DW_BLOCK (member_loc)->size;
16530 }
16531
16532 *ptr++ = DW_OP_plus;
16533 gdb_assert (ptr - baton->data == baton->size);
16534
0971de02 16535 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 16536 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
16537}
16538
4357ac6c
TT
16539/* Create appropriate locally-scoped variables for all the
16540 DW_TAG_common_block entries. Also create a struct common_block
16541 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16542 is used to sepate the common blocks name namespace from regular
16543 variable names. */
c906108c
SS
16544
16545static void
e7c27a73 16546read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16547{
0971de02
TT
16548 struct attribute *attr;
16549
16550 attr = dwarf2_attr (die, DW_AT_location, cu);
16551 if (attr)
16552 {
16553 /* Support the .debug_loc offsets. */
16554 if (attr_form_is_block (attr))
16555 {
16556 /* Ok. */
16557 }
16558 else if (attr_form_is_section_offset (attr))
16559 {
16560 dwarf2_complex_location_expr_complaint ();
16561 attr = NULL;
16562 }
16563 else
16564 {
16565 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16566 "common block member");
16567 attr = NULL;
16568 }
16569 }
16570
639d11d3 16571 if (die->child != NULL)
c906108c 16572 {
518817b3 16573 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
4357ac6c
TT
16574 struct die_info *child_die;
16575 size_t n_entries = 0, size;
16576 struct common_block *common_block;
16577 struct symbol *sym;
74ac6d43 16578
4357ac6c
TT
16579 for (child_die = die->child;
16580 child_die && child_die->tag;
16581 child_die = sibling_die (child_die))
16582 ++n_entries;
16583
16584 size = (sizeof (struct common_block)
16585 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
16586 common_block
16587 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16588 size);
4357ac6c
TT
16589 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16590 common_block->n_entries = 0;
16591
16592 for (child_die = die->child;
16593 child_die && child_die->tag;
16594 child_die = sibling_die (child_die))
16595 {
16596 /* Create the symbol in the DW_TAG_common_block block in the current
16597 symbol scope. */
e7c27a73 16598 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
16599 if (sym != NULL)
16600 {
16601 struct attribute *member_loc;
16602
16603 common_block->contents[common_block->n_entries++] = sym;
16604
16605 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16606 cu);
16607 if (member_loc)
16608 {
16609 /* GDB has handled this for a long time, but it is
16610 not specified by DWARF. It seems to have been
16611 emitted by gfortran at least as recently as:
16612 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
b98664d3 16613 complaint (_("Variable in common block has "
0971de02 16614 "DW_AT_data_member_location "
9d8780f0
SM
16615 "- DIE at %s [in module %s]"),
16616 sect_offset_str (child_die->sect_off),
518817b3 16617 objfile_name (objfile));
0971de02
TT
16618
16619 if (attr_form_is_section_offset (member_loc))
16620 dwarf2_complex_location_expr_complaint ();
16621 else if (attr_form_is_constant (member_loc)
16622 || attr_form_is_block (member_loc))
16623 {
16624 if (attr)
16625 mark_common_block_symbol_computed (sym, die, attr,
16626 member_loc, cu);
16627 }
16628 else
16629 dwarf2_complex_location_expr_complaint ();
16630 }
16631 }
c906108c 16632 }
4357ac6c
TT
16633
16634 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16635 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
16636 }
16637}
16638
0114d602 16639/* Create a type for a C++ namespace. */
d9fa45fe 16640
0114d602
DJ
16641static struct type *
16642read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 16643{
518817b3 16644 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0114d602 16645 const char *previous_prefix, *name;
9219021c 16646 int is_anonymous;
0114d602
DJ
16647 struct type *type;
16648
16649 /* For extensions, reuse the type of the original namespace. */
16650 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16651 {
16652 struct die_info *ext_die;
16653 struct dwarf2_cu *ext_cu = cu;
9a619af0 16654
0114d602
DJ
16655 ext_die = dwarf2_extension (die, &ext_cu);
16656 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
16657
16658 /* EXT_CU may not be the same as CU.
02142a6c 16659 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
16660 return set_die_type (die, type, cu);
16661 }
9219021c 16662
e142c38c 16663 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
16664
16665 /* Now build the name of the current namespace. */
16666
0114d602
DJ
16667 previous_prefix = determine_prefix (die, cu);
16668 if (previous_prefix[0] != '\0')
16669 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 16670 previous_prefix, name, 0, cu);
0114d602
DJ
16671
16672 /* Create the type. */
19f392bc 16673 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
0114d602 16674
60531b24 16675 return set_die_type (die, type, cu);
0114d602
DJ
16676}
16677
22cee43f 16678/* Read a namespace scope. */
0114d602
DJ
16679
16680static void
16681read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16682{
518817b3 16683 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0114d602 16684 int is_anonymous;
9219021c 16685
5c4e30ca
DC
16686 /* Add a symbol associated to this if we haven't seen the namespace
16687 before. Also, add a using directive if it's an anonymous
16688 namespace. */
9219021c 16689
f2f0e013 16690 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
16691 {
16692 struct type *type;
16693
0114d602 16694 type = read_type_die (die, cu);
e7c27a73 16695 new_symbol (die, type, cu);
5c4e30ca 16696
e8e80198 16697 namespace_name (die, &is_anonymous, cu);
5c4e30ca 16698 if (is_anonymous)
0114d602
DJ
16699 {
16700 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 16701
eb1e02fd 16702 std::vector<const char *> excludes;
22cee43f
PMR
16703 add_using_directive (using_directives (cu->language),
16704 previous_prefix, TYPE_NAME (type), NULL,
eb1e02fd 16705 NULL, excludes, 0, &objfile->objfile_obstack);
0114d602 16706 }
5c4e30ca 16707 }
9219021c 16708
639d11d3 16709 if (die->child != NULL)
d9fa45fe 16710 {
639d11d3 16711 struct die_info *child_die = die->child;
6e70227d 16712
d9fa45fe
DC
16713 while (child_die && child_die->tag)
16714 {
e7c27a73 16715 process_die (child_die, cu);
d9fa45fe
DC
16716 child_die = sibling_die (child_die);
16717 }
16718 }
38d518c9
EZ
16719}
16720
f55ee35c
JK
16721/* Read a Fortran module as type. This DIE can be only a declaration used for
16722 imported module. Still we need that type as local Fortran "use ... only"
16723 declaration imports depend on the created type in determine_prefix. */
16724
16725static struct type *
16726read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16727{
518817b3 16728 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15d034d0 16729 const char *module_name;
f55ee35c
JK
16730 struct type *type;
16731
16732 module_name = dwarf2_name (die, cu);
16733 if (!module_name)
b98664d3 16734 complaint (_("DW_TAG_module has no name, offset %s"),
9d8780f0 16735 sect_offset_str (die->sect_off));
19f392bc 16736 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
f55ee35c 16737
f55ee35c
JK
16738 return set_die_type (die, type, cu);
16739}
16740
5d7cb8df
JK
16741/* Read a Fortran module. */
16742
16743static void
16744read_module (struct die_info *die, struct dwarf2_cu *cu)
16745{
16746 struct die_info *child_die = die->child;
530e8392
KB
16747 struct type *type;
16748
16749 type = read_type_die (die, cu);
16750 new_symbol (die, type, cu);
5d7cb8df 16751
5d7cb8df
JK
16752 while (child_die && child_die->tag)
16753 {
16754 process_die (child_die, cu);
16755 child_die = sibling_die (child_die);
16756 }
16757}
16758
38d518c9
EZ
16759/* Return the name of the namespace represented by DIE. Set
16760 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16761 namespace. */
16762
16763static const char *
e142c38c 16764namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
16765{
16766 struct die_info *current_die;
16767 const char *name = NULL;
16768
16769 /* Loop through the extensions until we find a name. */
16770
16771 for (current_die = die;
16772 current_die != NULL;
f2f0e013 16773 current_die = dwarf2_extension (die, &cu))
38d518c9 16774 {
96553a0c
DE
16775 /* We don't use dwarf2_name here so that we can detect the absence
16776 of a name -> anonymous namespace. */
7d45c7c3 16777 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 16778
38d518c9
EZ
16779 if (name != NULL)
16780 break;
16781 }
16782
16783 /* Is it an anonymous namespace? */
16784
16785 *is_anonymous = (name == NULL);
16786 if (*is_anonymous)
2b1dbab0 16787 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
16788
16789 return name;
d9fa45fe
DC
16790}
16791
c906108c
SS
16792/* Extract all information from a DW_TAG_pointer_type DIE and add to
16793 the user defined type vector. */
16794
f792889a 16795static struct type *
e7c27a73 16796read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16797{
518817b3
SM
16798 struct gdbarch *gdbarch
16799 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
e7c27a73 16800 struct comp_unit_head *cu_header = &cu->header;
c906108c 16801 struct type *type;
8b2dbe47
KB
16802 struct attribute *attr_byte_size;
16803 struct attribute *attr_address_class;
16804 int byte_size, addr_class;
7e314c57
JK
16805 struct type *target_type;
16806
16807 target_type = die_type (die, cu);
c906108c 16808
7e314c57
JK
16809 /* The die_type call above may have already set the type for this DIE. */
16810 type = get_die_type (die, cu);
16811 if (type)
16812 return type;
16813
16814 type = lookup_pointer_type (target_type);
8b2dbe47 16815
e142c38c 16816 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
16817 if (attr_byte_size)
16818 byte_size = DW_UNSND (attr_byte_size);
c906108c 16819 else
8b2dbe47
KB
16820 byte_size = cu_header->addr_size;
16821
e142c38c 16822 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
16823 if (attr_address_class)
16824 addr_class = DW_UNSND (attr_address_class);
16825 else
16826 addr_class = DW_ADDR_none;
16827
2b4424c3
TT
16828 ULONGEST alignment = get_alignment (cu, die);
16829
16830 /* If the pointer size, alignment, or address class is different
16831 than the default, create a type variant marked as such and set
16832 the length accordingly. */
16833 if (TYPE_LENGTH (type) != byte_size
16834 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16835 && alignment != TYPE_RAW_ALIGN (type))
16836 || addr_class != DW_ADDR_none)
c906108c 16837 {
5e2b427d 16838 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
16839 {
16840 int type_flags;
16841
849957d9 16842 type_flags = gdbarch_address_class_type_flags
5e2b427d 16843 (gdbarch, byte_size, addr_class);
876cecd0
TT
16844 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16845 == 0);
8b2dbe47
KB
16846 type = make_type_with_address_space (type, type_flags);
16847 }
16848 else if (TYPE_LENGTH (type) != byte_size)
16849 {
b98664d3 16850 complaint (_("invalid pointer size %d"), byte_size);
8b2dbe47 16851 }
2b4424c3
TT
16852 else if (TYPE_RAW_ALIGN (type) != alignment)
16853 {
b98664d3 16854 complaint (_("Invalid DW_AT_alignment"
2b4424c3
TT
16855 " - DIE at %s [in module %s]"),
16856 sect_offset_str (die->sect_off),
16857 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16858 }
6e70227d 16859 else
9a619af0
MS
16860 {
16861 /* Should we also complain about unhandled address classes? */
16862 }
c906108c 16863 }
8b2dbe47
KB
16864
16865 TYPE_LENGTH (type) = byte_size;
2b4424c3 16866 set_type_align (type, alignment);
f792889a 16867 return set_die_type (die, type, cu);
c906108c
SS
16868}
16869
16870/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16871 the user defined type vector. */
16872
f792889a 16873static struct type *
e7c27a73 16874read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
16875{
16876 struct type *type;
16877 struct type *to_type;
16878 struct type *domain;
16879
e7c27a73
DJ
16880 to_type = die_type (die, cu);
16881 domain = die_containing_type (die, cu);
0d5de010 16882
7e314c57
JK
16883 /* The calls above may have already set the type for this DIE. */
16884 type = get_die_type (die, cu);
16885 if (type)
16886 return type;
16887
0d5de010
DJ
16888 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16889 type = lookup_methodptr_type (to_type);
7078baeb
TT
16890 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16891 {
518817b3
SM
16892 struct type *new_type
16893 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
7078baeb
TT
16894
16895 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16896 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16897 TYPE_VARARGS (to_type));
16898 type = lookup_methodptr_type (new_type);
16899 }
0d5de010
DJ
16900 else
16901 type = lookup_memberptr_type (to_type, domain);
c906108c 16902
f792889a 16903 return set_die_type (die, type, cu);
c906108c
SS
16904}
16905
4297a3f0 16906/* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
c906108c
SS
16907 the user defined type vector. */
16908
f792889a 16909static struct type *
4297a3f0
AV
16910read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16911 enum type_code refcode)
c906108c 16912{
e7c27a73 16913 struct comp_unit_head *cu_header = &cu->header;
7e314c57 16914 struct type *type, *target_type;
c906108c
SS
16915 struct attribute *attr;
16916
4297a3f0
AV
16917 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16918
7e314c57
JK
16919 target_type = die_type (die, cu);
16920
16921 /* The die_type call above may have already set the type for this DIE. */
16922 type = get_die_type (die, cu);
16923 if (type)
16924 return type;
16925
4297a3f0 16926 type = lookup_reference_type (target_type, refcode);
e142c38c 16927 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
16928 if (attr)
16929 {
16930 TYPE_LENGTH (type) = DW_UNSND (attr);
16931 }
16932 else
16933 {
107d2387 16934 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 16935 }
2b4424c3 16936 maybe_set_alignment (cu, die, type);
f792889a 16937 return set_die_type (die, type, cu);
c906108c
SS
16938}
16939
cf363f18
MW
16940/* Add the given cv-qualifiers to the element type of the array. GCC
16941 outputs DWARF type qualifiers that apply to an array, not the
16942 element type. But GDB relies on the array element type to carry
16943 the cv-qualifiers. This mimics section 6.7.3 of the C99
16944 specification. */
16945
16946static struct type *
16947add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16948 struct type *base_type, int cnst, int voltl)
16949{
16950 struct type *el_type, *inner_array;
16951
16952 base_type = copy_type (base_type);
16953 inner_array = base_type;
16954
16955 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16956 {
16957 TYPE_TARGET_TYPE (inner_array) =
16958 copy_type (TYPE_TARGET_TYPE (inner_array));
16959 inner_array = TYPE_TARGET_TYPE (inner_array);
16960 }
16961
16962 el_type = TYPE_TARGET_TYPE (inner_array);
16963 cnst |= TYPE_CONST (el_type);
16964 voltl |= TYPE_VOLATILE (el_type);
16965 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16966
16967 return set_die_type (die, base_type, cu);
16968}
16969
f792889a 16970static struct type *
e7c27a73 16971read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16972{
f792889a 16973 struct type *base_type, *cv_type;
c906108c 16974
e7c27a73 16975 base_type = die_type (die, cu);
7e314c57
JK
16976
16977 /* The die_type call above may have already set the type for this DIE. */
16978 cv_type = get_die_type (die, cu);
16979 if (cv_type)
16980 return cv_type;
16981
2f608a3a
KW
16982 /* In case the const qualifier is applied to an array type, the element type
16983 is so qualified, not the array type (section 6.7.3 of C99). */
16984 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 16985 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 16986
f792889a
DJ
16987 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16988 return set_die_type (die, cv_type, cu);
c906108c
SS
16989}
16990
f792889a 16991static struct type *
e7c27a73 16992read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16993{
f792889a 16994 struct type *base_type, *cv_type;
c906108c 16995
e7c27a73 16996 base_type = die_type (die, cu);
7e314c57
JK
16997
16998 /* The die_type call above may have already set the type for this DIE. */
16999 cv_type = get_die_type (die, cu);
17000 if (cv_type)
17001 return cv_type;
17002
cf363f18
MW
17003 /* In case the volatile qualifier is applied to an array type, the
17004 element type is so qualified, not the array type (section 6.7.3
17005 of C99). */
17006 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17007 return add_array_cv_type (die, cu, base_type, 0, 1);
17008
f792889a
DJ
17009 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17010 return set_die_type (die, cv_type, cu);
c906108c
SS
17011}
17012
06d66ee9
TT
17013/* Handle DW_TAG_restrict_type. */
17014
17015static struct type *
17016read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17017{
17018 struct type *base_type, *cv_type;
17019
17020 base_type = die_type (die, cu);
17021
17022 /* The die_type call above may have already set the type for this DIE. */
17023 cv_type = get_die_type (die, cu);
17024 if (cv_type)
17025 return cv_type;
17026
17027 cv_type = make_restrict_type (base_type);
17028 return set_die_type (die, cv_type, cu);
17029}
17030
a2c2acaf
MW
17031/* Handle DW_TAG_atomic_type. */
17032
17033static struct type *
17034read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17035{
17036 struct type *base_type, *cv_type;
17037
17038 base_type = die_type (die, cu);
17039
17040 /* The die_type call above may have already set the type for this DIE. */
17041 cv_type = get_die_type (die, cu);
17042 if (cv_type)
17043 return cv_type;
17044
17045 cv_type = make_atomic_type (base_type);
17046 return set_die_type (die, cv_type, cu);
17047}
17048
c906108c
SS
17049/* Extract all information from a DW_TAG_string_type DIE and add to
17050 the user defined type vector. It isn't really a user defined type,
17051 but it behaves like one, with other DIE's using an AT_user_def_type
17052 attribute to reference it. */
17053
f792889a 17054static struct type *
e7c27a73 17055read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17056{
518817b3 17057 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3b7538c0 17058 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
17059 struct type *type, *range_type, *index_type, *char_type;
17060 struct attribute *attr;
17061 unsigned int length;
17062
e142c38c 17063 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
17064 if (attr)
17065 {
17066 length = DW_UNSND (attr);
17067 }
17068 else
17069 {
0963b4bd 17070 /* Check for the DW_AT_byte_size attribute. */
e142c38c 17071 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
17072 if (attr)
17073 {
17074 length = DW_UNSND (attr);
17075 }
17076 else
17077 {
17078 length = 1;
17079 }
c906108c 17080 }
6ccb9162 17081
46bf5051 17082 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 17083 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
17084 char_type = language_string_char_type (cu->language_defn, gdbarch);
17085 type = create_string_type (NULL, char_type, range_type);
6ccb9162 17086
f792889a 17087 return set_die_type (die, type, cu);
c906108c
SS
17088}
17089
4d804846
JB
17090/* Assuming that DIE corresponds to a function, returns nonzero
17091 if the function is prototyped. */
17092
17093static int
17094prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17095{
17096 struct attribute *attr;
17097
17098 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17099 if (attr && (DW_UNSND (attr) != 0))
17100 return 1;
17101
17102 /* The DWARF standard implies that the DW_AT_prototyped attribute
17103 is only meaninful for C, but the concept also extends to other
17104 languages that allow unprototyped functions (Eg: Objective C).
17105 For all other languages, assume that functions are always
17106 prototyped. */
17107 if (cu->language != language_c
17108 && cu->language != language_objc
17109 && cu->language != language_opencl)
17110 return 1;
17111
17112 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17113 prototyped and unprototyped functions; default to prototyped,
17114 since that is more common in modern code (and RealView warns
17115 about unprototyped functions). */
17116 if (producer_is_realview (cu->producer))
17117 return 1;
17118
17119 return 0;
17120}
17121
c906108c
SS
17122/* Handle DIES due to C code like:
17123
17124 struct foo
c5aa993b
JM
17125 {
17126 int (*funcp)(int a, long l);
17127 int b;
17128 };
c906108c 17129
0963b4bd 17130 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 17131
f792889a 17132static struct type *
e7c27a73 17133read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17134{
518817b3 17135 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0963b4bd
MS
17136 struct type *type; /* Type that this function returns. */
17137 struct type *ftype; /* Function that returns above type. */
c906108c
SS
17138 struct attribute *attr;
17139
e7c27a73 17140 type = die_type (die, cu);
7e314c57
JK
17141
17142 /* The die_type call above may have already set the type for this DIE. */
17143 ftype = get_die_type (die, cu);
17144 if (ftype)
17145 return ftype;
17146
0c8b41f1 17147 ftype = lookup_function_type (type);
c906108c 17148
4d804846 17149 if (prototyped_function_p (die, cu))
a6c727b2 17150 TYPE_PROTOTYPED (ftype) = 1;
c906108c 17151
c055b101
CV
17152 /* Store the calling convention in the type if it's available in
17153 the subroutine die. Otherwise set the calling convention to
17154 the default value DW_CC_normal. */
17155 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
17156 if (attr)
17157 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17158 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17159 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17160 else
17161 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 17162
743649fd
MW
17163 /* Record whether the function returns normally to its caller or not
17164 if the DWARF producer set that information. */
17165 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17166 if (attr && (DW_UNSND (attr) != 0))
17167 TYPE_NO_RETURN (ftype) = 1;
17168
76c10ea2
GM
17169 /* We need to add the subroutine type to the die immediately so
17170 we don't infinitely recurse when dealing with parameters
0963b4bd 17171 declared as the same subroutine type. */
76c10ea2 17172 set_die_type (die, ftype, cu);
6e70227d 17173
639d11d3 17174 if (die->child != NULL)
c906108c 17175 {
bb5ed363 17176 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 17177 struct die_info *child_die;
8072405b 17178 int nparams, iparams;
c906108c
SS
17179
17180 /* Count the number of parameters.
17181 FIXME: GDB currently ignores vararg functions, but knows about
17182 vararg member functions. */
8072405b 17183 nparams = 0;
639d11d3 17184 child_die = die->child;
c906108c
SS
17185 while (child_die && child_die->tag)
17186 {
17187 if (child_die->tag == DW_TAG_formal_parameter)
17188 nparams++;
17189 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 17190 TYPE_VARARGS (ftype) = 1;
c906108c
SS
17191 child_die = sibling_die (child_die);
17192 }
17193
17194 /* Allocate storage for parameters and fill them in. */
17195 TYPE_NFIELDS (ftype) = nparams;
17196 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 17197 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 17198
8072405b
JK
17199 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17200 even if we error out during the parameters reading below. */
17201 for (iparams = 0; iparams < nparams; iparams++)
17202 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17203
17204 iparams = 0;
639d11d3 17205 child_die = die->child;
c906108c
SS
17206 while (child_die && child_die->tag)
17207 {
17208 if (child_die->tag == DW_TAG_formal_parameter)
17209 {
3ce3b1ba
PA
17210 struct type *arg_type;
17211
17212 /* DWARF version 2 has no clean way to discern C++
17213 static and non-static member functions. G++ helps
17214 GDB by marking the first parameter for non-static
17215 member functions (which is the this pointer) as
17216 artificial. We pass this information to
17217 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17218
17219 DWARF version 3 added DW_AT_object_pointer, which GCC
17220 4.5 does not yet generate. */
e142c38c 17221 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
17222 if (attr)
17223 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17224 else
9c37b5ae 17225 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
3ce3b1ba
PA
17226 arg_type = die_type (child_die, cu);
17227
17228 /* RealView does not mark THIS as const, which the testsuite
17229 expects. GCC marks THIS as const in method definitions,
17230 but not in the class specifications (GCC PR 43053). */
17231 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17232 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17233 {
17234 int is_this = 0;
17235 struct dwarf2_cu *arg_cu = cu;
17236 const char *name = dwarf2_name (child_die, cu);
17237
17238 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17239 if (attr)
17240 {
17241 /* If the compiler emits this, use it. */
17242 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17243 is_this = 1;
17244 }
17245 else if (name && strcmp (name, "this") == 0)
17246 /* Function definitions will have the argument names. */
17247 is_this = 1;
17248 else if (name == NULL && iparams == 0)
17249 /* Declarations may not have the names, so like
17250 elsewhere in GDB, assume an artificial first
17251 argument is "this". */
17252 is_this = 1;
17253
17254 if (is_this)
17255 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17256 arg_type, 0);
17257 }
17258
17259 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
17260 iparams++;
17261 }
17262 child_die = sibling_die (child_die);
17263 }
17264 }
17265
76c10ea2 17266 return ftype;
c906108c
SS
17267}
17268
f792889a 17269static struct type *
e7c27a73 17270read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17271{
518817b3 17272 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0114d602 17273 const char *name = NULL;
3c8e0968 17274 struct type *this_type, *target_type;
c906108c 17275
94af9270 17276 name = dwarf2_full_name (NULL, die, cu);
19f392bc
UW
17277 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17278 TYPE_TARGET_STUB (this_type) = 1;
f792889a 17279 set_die_type (die, this_type, cu);
3c8e0968
DE
17280 target_type = die_type (die, cu);
17281 if (target_type != this_type)
17282 TYPE_TARGET_TYPE (this_type) = target_type;
17283 else
17284 {
17285 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17286 spec and cause infinite loops in GDB. */
b98664d3 17287 complaint (_("Self-referential DW_TAG_typedef "
9d8780f0
SM
17288 "- DIE at %s [in module %s]"),
17289 sect_offset_str (die->sect_off), objfile_name (objfile));
3c8e0968
DE
17290 TYPE_TARGET_TYPE (this_type) = NULL;
17291 }
f792889a 17292 return this_type;
c906108c
SS
17293}
17294
9b790ce7
UW
17295/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17296 (which may be different from NAME) to the architecture back-end to allow
17297 it to guess the correct format if necessary. */
17298
17299static struct type *
17300dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17301 const char *name_hint)
17302{
17303 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17304 const struct floatformat **format;
17305 struct type *type;
17306
17307 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17308 if (format)
17309 type = init_float_type (objfile, bits, name, format);
17310 else
77b7c781 17311 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
9b790ce7
UW
17312
17313 return type;
17314}
17315
c906108c
SS
17316/* Find a representation of a given base type and install
17317 it in the TYPE field of the die. */
17318
f792889a 17319static struct type *
e7c27a73 17320read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17321{
518817b3 17322 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c
SS
17323 struct type *type;
17324 struct attribute *attr;
19f392bc 17325 int encoding = 0, bits = 0;
15d034d0 17326 const char *name;
c906108c 17327
e142c38c 17328 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
17329 if (attr)
17330 {
17331 encoding = DW_UNSND (attr);
17332 }
e142c38c 17333 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
17334 if (attr)
17335 {
19f392bc 17336 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
c906108c 17337 }
39cbfefa 17338 name = dwarf2_name (die, cu);
6ccb9162 17339 if (!name)
c906108c 17340 {
b98664d3 17341 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
c906108c 17342 }
6ccb9162
UW
17343
17344 switch (encoding)
c906108c 17345 {
6ccb9162
UW
17346 case DW_ATE_address:
17347 /* Turn DW_ATE_address into a void * pointer. */
77b7c781 17348 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
19f392bc 17349 type = init_pointer_type (objfile, bits, name, type);
6ccb9162
UW
17350 break;
17351 case DW_ATE_boolean:
19f392bc 17352 type = init_boolean_type (objfile, bits, 1, name);
6ccb9162
UW
17353 break;
17354 case DW_ATE_complex_float:
9b790ce7 17355 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
19f392bc 17356 type = init_complex_type (objfile, name, type);
6ccb9162
UW
17357 break;
17358 case DW_ATE_decimal_float:
19f392bc 17359 type = init_decfloat_type (objfile, bits, name);
6ccb9162
UW
17360 break;
17361 case DW_ATE_float:
9b790ce7 17362 type = dwarf2_init_float_type (objfile, bits, name, name);
6ccb9162
UW
17363 break;
17364 case DW_ATE_signed:
19f392bc 17365 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
17366 break;
17367 case DW_ATE_unsigned:
3b2b8fea
TT
17368 if (cu->language == language_fortran
17369 && name
61012eef 17370 && startswith (name, "character("))
19f392bc
UW
17371 type = init_character_type (objfile, bits, 1, name);
17372 else
17373 type = init_integer_type (objfile, bits, 1, name);
6ccb9162
UW
17374 break;
17375 case DW_ATE_signed_char:
6e70227d 17376 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
17377 || cu->language == language_pascal
17378 || cu->language == language_fortran)
19f392bc
UW
17379 type = init_character_type (objfile, bits, 0, name);
17380 else
17381 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
17382 break;
17383 case DW_ATE_unsigned_char:
868a0084 17384 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea 17385 || cu->language == language_pascal
c44af4eb
TT
17386 || cu->language == language_fortran
17387 || cu->language == language_rust)
19f392bc
UW
17388 type = init_character_type (objfile, bits, 1, name);
17389 else
17390 type = init_integer_type (objfile, bits, 1, name);
6ccb9162 17391 break;
75079b2b 17392 case DW_ATE_UTF:
53e710ac
PA
17393 {
17394 gdbarch *arch = get_objfile_arch (objfile);
17395
17396 if (bits == 16)
17397 type = builtin_type (arch)->builtin_char16;
17398 else if (bits == 32)
17399 type = builtin_type (arch)->builtin_char32;
17400 else
17401 {
b98664d3 17402 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
53e710ac
PA
17403 bits);
17404 type = init_integer_type (objfile, bits, 1, name);
17405 }
17406 return set_die_type (die, type, cu);
17407 }
75079b2b
TT
17408 break;
17409
6ccb9162 17410 default:
b98664d3 17411 complaint (_("unsupported DW_AT_encoding: '%s'"),
6ccb9162 17412 dwarf_type_encoding_name (encoding));
77b7c781 17413 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
6ccb9162 17414 break;
c906108c 17415 }
6ccb9162 17416
0114d602 17417 if (name && strcmp (name, "char") == 0)
876cecd0 17418 TYPE_NOSIGN (type) = 1;
0114d602 17419
2b4424c3
TT
17420 maybe_set_alignment (cu, die, type);
17421
f792889a 17422 return set_die_type (die, type, cu);
c906108c
SS
17423}
17424
80180f79
SA
17425/* Parse dwarf attribute if it's a block, reference or constant and put the
17426 resulting value of the attribute into struct bound_prop.
17427 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17428
17429static int
17430attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17431 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17432{
17433 struct dwarf2_property_baton *baton;
518817b3
SM
17434 struct obstack *obstack
17435 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
80180f79
SA
17436
17437 if (attr == NULL || prop == NULL)
17438 return 0;
17439
17440 if (attr_form_is_block (attr))
17441 {
8d749320 17442 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
17443 baton->referenced_type = NULL;
17444 baton->locexpr.per_cu = cu->per_cu;
17445 baton->locexpr.size = DW_BLOCK (attr)->size;
17446 baton->locexpr.data = DW_BLOCK (attr)->data;
17447 prop->data.baton = baton;
17448 prop->kind = PROP_LOCEXPR;
17449 gdb_assert (prop->data.baton != NULL);
17450 }
17451 else if (attr_form_is_ref (attr))
17452 {
17453 struct dwarf2_cu *target_cu = cu;
17454 struct die_info *target_die;
17455 struct attribute *target_attr;
17456
17457 target_die = follow_die_ref (die, attr, &target_cu);
17458 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
17459 if (target_attr == NULL)
17460 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17461 target_cu);
80180f79
SA
17462 if (target_attr == NULL)
17463 return 0;
17464
df25ebbd 17465 switch (target_attr->name)
80180f79 17466 {
df25ebbd
JB
17467 case DW_AT_location:
17468 if (attr_form_is_section_offset (target_attr))
17469 {
8d749320 17470 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
17471 baton->referenced_type = die_type (target_die, target_cu);
17472 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17473 prop->data.baton = baton;
17474 prop->kind = PROP_LOCLIST;
17475 gdb_assert (prop->data.baton != NULL);
17476 }
17477 else if (attr_form_is_block (target_attr))
17478 {
8d749320 17479 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
17480 baton->referenced_type = die_type (target_die, target_cu);
17481 baton->locexpr.per_cu = cu->per_cu;
17482 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17483 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17484 prop->data.baton = baton;
17485 prop->kind = PROP_LOCEXPR;
17486 gdb_assert (prop->data.baton != NULL);
17487 }
17488 else
17489 {
17490 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17491 "dynamic property");
17492 return 0;
17493 }
17494 break;
17495 case DW_AT_data_member_location:
17496 {
17497 LONGEST offset;
17498
17499 if (!handle_data_member_location (target_die, target_cu,
17500 &offset))
17501 return 0;
17502
8d749320 17503 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
17504 baton->referenced_type = read_type_die (target_die->parent,
17505 target_cu);
df25ebbd
JB
17506 baton->offset_info.offset = offset;
17507 baton->offset_info.type = die_type (target_die, target_cu);
17508 prop->data.baton = baton;
17509 prop->kind = PROP_ADDR_OFFSET;
17510 break;
17511 }
80180f79
SA
17512 }
17513 }
17514 else if (attr_form_is_constant (attr))
17515 {
17516 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17517 prop->kind = PROP_CONST;
17518 }
17519 else
17520 {
17521 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17522 dwarf2_name (die, cu));
17523 return 0;
17524 }
17525
17526 return 1;
17527}
17528
a02abb62
JB
17529/* Read the given DW_AT_subrange DIE. */
17530
f792889a 17531static struct type *
a02abb62
JB
17532read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17533{
4c9ad8c2 17534 struct type *base_type, *orig_base_type;
a02abb62
JB
17535 struct type *range_type;
17536 struct attribute *attr;
729efb13 17537 struct dynamic_prop low, high;
4fae6e18 17538 int low_default_is_valid;
c451ebe5 17539 int high_bound_is_count = 0;
15d034d0 17540 const char *name;
43bbcdc2 17541 LONGEST negative_mask;
e77813c8 17542
4c9ad8c2
TT
17543 orig_base_type = die_type (die, cu);
17544 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17545 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17546 creating the range type, but we use the result of check_typedef
17547 when examining properties of the type. */
17548 base_type = check_typedef (orig_base_type);
a02abb62 17549
7e314c57
JK
17550 /* The die_type call above may have already set the type for this DIE. */
17551 range_type = get_die_type (die, cu);
17552 if (range_type)
17553 return range_type;
17554
729efb13
SA
17555 low.kind = PROP_CONST;
17556 high.kind = PROP_CONST;
17557 high.data.const_val = 0;
17558
4fae6e18
JK
17559 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17560 omitting DW_AT_lower_bound. */
17561 switch (cu->language)
6e70227d 17562 {
4fae6e18
JK
17563 case language_c:
17564 case language_cplus:
729efb13 17565 low.data.const_val = 0;
4fae6e18
JK
17566 low_default_is_valid = 1;
17567 break;
17568 case language_fortran:
729efb13 17569 low.data.const_val = 1;
4fae6e18
JK
17570 low_default_is_valid = 1;
17571 break;
17572 case language_d:
4fae6e18 17573 case language_objc:
c44af4eb 17574 case language_rust:
729efb13 17575 low.data.const_val = 0;
4fae6e18
JK
17576 low_default_is_valid = (cu->header.version >= 4);
17577 break;
17578 case language_ada:
17579 case language_m2:
17580 case language_pascal:
729efb13 17581 low.data.const_val = 1;
4fae6e18
JK
17582 low_default_is_valid = (cu->header.version >= 4);
17583 break;
17584 default:
729efb13 17585 low.data.const_val = 0;
4fae6e18
JK
17586 low_default_is_valid = 0;
17587 break;
a02abb62
JB
17588 }
17589
e142c38c 17590 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 17591 if (attr)
11c1ba78 17592 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18 17593 else if (!low_default_is_valid)
b98664d3 17594 complaint (_("Missing DW_AT_lower_bound "
9d8780f0
SM
17595 "- DIE at %s [in module %s]"),
17596 sect_offset_str (die->sect_off),
518817b3 17597 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
a02abb62 17598
e142c38c 17599 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 17600 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
17601 {
17602 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 17603 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 17604 {
c451ebe5
SA
17605 /* If bounds are constant do the final calculation here. */
17606 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17607 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17608 else
17609 high_bound_is_count = 1;
c2ff108b 17610 }
e77813c8
PM
17611 }
17612
17613 /* Dwarf-2 specifications explicitly allows to create subrange types
17614 without specifying a base type.
17615 In that case, the base type must be set to the type of
17616 the lower bound, upper bound or count, in that order, if any of these
17617 three attributes references an object that has a type.
17618 If no base type is found, the Dwarf-2 specifications say that
17619 a signed integer type of size equal to the size of an address should
17620 be used.
17621 For the following C code: `extern char gdb_int [];'
17622 GCC produces an empty range DIE.
17623 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 17624 high bound or count are not yet handled by this code. */
e77813c8
PM
17625 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17626 {
518817b3 17627 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
e77813c8
PM
17628 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17629 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17630 struct type *int_type = objfile_type (objfile)->builtin_int;
17631
17632 /* Test "int", "long int", and "long long int" objfile types,
17633 and select the first one having a size above or equal to the
17634 architecture address size. */
17635 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17636 base_type = int_type;
17637 else
17638 {
17639 int_type = objfile_type (objfile)->builtin_long;
17640 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17641 base_type = int_type;
17642 else
17643 {
17644 int_type = objfile_type (objfile)->builtin_long_long;
17645 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17646 base_type = int_type;
17647 }
17648 }
17649 }
a02abb62 17650
dbb9c2b1
JB
17651 /* Normally, the DWARF producers are expected to use a signed
17652 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17653 But this is unfortunately not always the case, as witnessed
17654 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17655 is used instead. To work around that ambiguity, we treat
17656 the bounds as signed, and thus sign-extend their values, when
17657 the base type is signed. */
6e70227d 17658 negative_mask =
66c6502d 17659 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
17660 if (low.kind == PROP_CONST
17661 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17662 low.data.const_val |= negative_mask;
17663 if (high.kind == PROP_CONST
17664 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17665 high.data.const_val |= negative_mask;
43bbcdc2 17666
729efb13 17667 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 17668
c451ebe5
SA
17669 if (high_bound_is_count)
17670 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17671
c2ff108b
JK
17672 /* Ada expects an empty array on no boundary attributes. */
17673 if (attr == NULL && cu->language != language_ada)
729efb13 17674 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 17675
39cbfefa
DJ
17676 name = dwarf2_name (die, cu);
17677 if (name)
17678 TYPE_NAME (range_type) = name;
6e70227d 17679
e142c38c 17680 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
17681 if (attr)
17682 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17683
2b4424c3
TT
17684 maybe_set_alignment (cu, die, range_type);
17685
7e314c57
JK
17686 set_die_type (die, range_type, cu);
17687
17688 /* set_die_type should be already done. */
b4ba55a1
JB
17689 set_descriptive_type (range_type, die, cu);
17690
7e314c57 17691 return range_type;
a02abb62 17692}
6e70227d 17693
f792889a 17694static struct type *
81a17f79
JB
17695read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17696{
17697 struct type *type;
81a17f79 17698
518817b3
SM
17699 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17700 NULL);
0114d602 17701 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 17702
74a2f8ff
JB
17703 /* In Ada, an unspecified type is typically used when the description
17704 of the type is defered to a different unit. When encountering
17705 such a type, we treat it as a stub, and try to resolve it later on,
17706 when needed. */
17707 if (cu->language == language_ada)
17708 TYPE_STUB (type) = 1;
17709
f792889a 17710 return set_die_type (die, type, cu);
81a17f79 17711}
a02abb62 17712
639d11d3
DC
17713/* Read a single die and all its descendents. Set the die's sibling
17714 field to NULL; set other fields in the die correctly, and set all
17715 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17716 location of the info_ptr after reading all of those dies. PARENT
17717 is the parent of the die in question. */
17718
17719static struct die_info *
dee91e82 17720read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
17721 const gdb_byte *info_ptr,
17722 const gdb_byte **new_info_ptr,
dee91e82 17723 struct die_info *parent)
639d11d3
DC
17724{
17725 struct die_info *die;
d521ce57 17726 const gdb_byte *cur_ptr;
639d11d3
DC
17727 int has_children;
17728
bf6af496 17729 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
17730 if (die == NULL)
17731 {
17732 *new_info_ptr = cur_ptr;
17733 return NULL;
17734 }
93311388 17735 store_in_ref_table (die, reader->cu);
639d11d3
DC
17736
17737 if (has_children)
bf6af496 17738 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
17739 else
17740 {
17741 die->child = NULL;
17742 *new_info_ptr = cur_ptr;
17743 }
17744
17745 die->sibling = NULL;
17746 die->parent = parent;
17747 return die;
17748}
17749
17750/* Read a die, all of its descendents, and all of its siblings; set
17751 all of the fields of all of the dies correctly. Arguments are as
17752 in read_die_and_children. */
17753
17754static struct die_info *
bf6af496 17755read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
17756 const gdb_byte *info_ptr,
17757 const gdb_byte **new_info_ptr,
bf6af496 17758 struct die_info *parent)
639d11d3
DC
17759{
17760 struct die_info *first_die, *last_sibling;
d521ce57 17761 const gdb_byte *cur_ptr;
639d11d3 17762
c906108c 17763 cur_ptr = info_ptr;
639d11d3
DC
17764 first_die = last_sibling = NULL;
17765
17766 while (1)
c906108c 17767 {
639d11d3 17768 struct die_info *die
dee91e82 17769 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 17770
1d325ec1 17771 if (die == NULL)
c906108c 17772 {
639d11d3
DC
17773 *new_info_ptr = cur_ptr;
17774 return first_die;
c906108c 17775 }
1d325ec1
DJ
17776
17777 if (!first_die)
17778 first_die = die;
c906108c 17779 else
1d325ec1
DJ
17780 last_sibling->sibling = die;
17781
17782 last_sibling = die;
c906108c 17783 }
c906108c
SS
17784}
17785
bf6af496
DE
17786/* Read a die, all of its descendents, and all of its siblings; set
17787 all of the fields of all of the dies correctly. Arguments are as
17788 in read_die_and_children.
17789 This the main entry point for reading a DIE and all its children. */
17790
17791static struct die_info *
17792read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
17793 const gdb_byte *info_ptr,
17794 const gdb_byte **new_info_ptr,
bf6af496
DE
17795 struct die_info *parent)
17796{
17797 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17798 new_info_ptr, parent);
17799
b4f54984 17800 if (dwarf_die_debug)
bf6af496
DE
17801 {
17802 fprintf_unfiltered (gdb_stdlog,
17803 "Read die from %s@0x%x of %s:\n",
a32a8923 17804 get_section_name (reader->die_section),
bf6af496
DE
17805 (unsigned) (info_ptr - reader->die_section->buffer),
17806 bfd_get_filename (reader->abfd));
b4f54984 17807 dump_die (die, dwarf_die_debug);
bf6af496
DE
17808 }
17809
17810 return die;
17811}
17812
3019eac3
DE
17813/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17814 attributes.
17815 The caller is responsible for filling in the extra attributes
17816 and updating (*DIEP)->num_attrs.
17817 Set DIEP to point to a newly allocated die with its information,
17818 except for its child, sibling, and parent fields.
17819 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 17820
d521ce57 17821static const gdb_byte *
3019eac3 17822read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 17823 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 17824 int *has_children, int num_extra_attrs)
93311388 17825{
b64f50a1 17826 unsigned int abbrev_number, bytes_read, i;
93311388
DE
17827 struct abbrev_info *abbrev;
17828 struct die_info *die;
17829 struct dwarf2_cu *cu = reader->cu;
17830 bfd *abfd = reader->abfd;
17831
9c541725 17832 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
93311388
DE
17833 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17834 info_ptr += bytes_read;
17835 if (!abbrev_number)
17836 {
17837 *diep = NULL;
17838 *has_children = 0;
17839 return info_ptr;
17840 }
17841
685af9cd 17842 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
93311388 17843 if (!abbrev)
348e048f
DE
17844 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17845 abbrev_number,
17846 bfd_get_filename (abfd));
17847
3019eac3 17848 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
9c541725 17849 die->sect_off = sect_off;
93311388
DE
17850 die->tag = abbrev->tag;
17851 die->abbrev = abbrev_number;
17852
3019eac3
DE
17853 /* Make the result usable.
17854 The caller needs to update num_attrs after adding the extra
17855 attributes. */
93311388
DE
17856 die->num_attrs = abbrev->num_attrs;
17857
17858 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
17859 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17860 info_ptr);
93311388
DE
17861
17862 *diep = die;
17863 *has_children = abbrev->has_children;
17864 return info_ptr;
17865}
17866
3019eac3
DE
17867/* Read a die and all its attributes.
17868 Set DIEP to point to a newly allocated die with its information,
17869 except for its child, sibling, and parent fields.
17870 Set HAS_CHILDREN to tell whether the die has children or not. */
17871
d521ce57 17872static const gdb_byte *
3019eac3 17873read_full_die (const struct die_reader_specs *reader,
d521ce57 17874 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
17875 int *has_children)
17876{
d521ce57 17877 const gdb_byte *result;
bf6af496
DE
17878
17879 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17880
b4f54984 17881 if (dwarf_die_debug)
bf6af496
DE
17882 {
17883 fprintf_unfiltered (gdb_stdlog,
17884 "Read die from %s@0x%x of %s:\n",
a32a8923 17885 get_section_name (reader->die_section),
bf6af496
DE
17886 (unsigned) (info_ptr - reader->die_section->buffer),
17887 bfd_get_filename (reader->abfd));
b4f54984 17888 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
17889 }
17890
17891 return result;
3019eac3 17892}
433df2d4
DE
17893\f
17894/* Abbreviation tables.
3019eac3 17895
433df2d4 17896 In DWARF version 2, the description of the debugging information is
c906108c
SS
17897 stored in a separate .debug_abbrev section. Before we read any
17898 dies from a section we read in all abbreviations and install them
433df2d4
DE
17899 in a hash table. */
17900
17901/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
17902
685af9cd
TT
17903struct abbrev_info *
17904abbrev_table::alloc_abbrev ()
433df2d4
DE
17905{
17906 struct abbrev_info *abbrev;
17907
685af9cd 17908 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
433df2d4 17909 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 17910
433df2d4
DE
17911 return abbrev;
17912}
17913
17914/* Add an abbreviation to the table. */
c906108c 17915
685af9cd
TT
17916void
17917abbrev_table::add_abbrev (unsigned int abbrev_number,
17918 struct abbrev_info *abbrev)
433df2d4
DE
17919{
17920 unsigned int hash_number;
17921
17922 hash_number = abbrev_number % ABBREV_HASH_SIZE;
4a17f768
YQ
17923 abbrev->next = m_abbrevs[hash_number];
17924 m_abbrevs[hash_number] = abbrev;
433df2d4 17925}
dee91e82 17926
433df2d4
DE
17927/* Look up an abbrev in the table.
17928 Returns NULL if the abbrev is not found. */
17929
685af9cd
TT
17930struct abbrev_info *
17931abbrev_table::lookup_abbrev (unsigned int abbrev_number)
c906108c 17932{
433df2d4
DE
17933 unsigned int hash_number;
17934 struct abbrev_info *abbrev;
17935
17936 hash_number = abbrev_number % ABBREV_HASH_SIZE;
4a17f768 17937 abbrev = m_abbrevs[hash_number];
433df2d4
DE
17938
17939 while (abbrev)
17940 {
17941 if (abbrev->number == abbrev_number)
17942 return abbrev;
17943 abbrev = abbrev->next;
17944 }
17945 return NULL;
17946}
17947
17948/* Read in an abbrev table. */
17949
685af9cd 17950static abbrev_table_up
ed2dc618
SM
17951abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
17952 struct dwarf2_section_info *section,
9c541725 17953 sect_offset sect_off)
433df2d4
DE
17954{
17955 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 17956 bfd *abfd = get_section_bfd_owner (section);
d521ce57 17957 const gdb_byte *abbrev_ptr;
c906108c
SS
17958 struct abbrev_info *cur_abbrev;
17959 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 17960 unsigned int abbrev_form;
f3dd6933
DJ
17961 struct attr_abbrev *cur_attrs;
17962 unsigned int allocated_attrs;
c906108c 17963
685af9cd 17964 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
c906108c 17965
433df2d4 17966 dwarf2_read_section (objfile, section);
9c541725 17967 abbrev_ptr = section->buffer + to_underlying (sect_off);
c906108c
SS
17968 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17969 abbrev_ptr += bytes_read;
17970
f3dd6933 17971 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 17972 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 17973
0963b4bd 17974 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
17975 while (abbrev_number)
17976 {
685af9cd 17977 cur_abbrev = abbrev_table->alloc_abbrev ();
c906108c
SS
17978
17979 /* read in abbrev header */
17980 cur_abbrev->number = abbrev_number;
aead7601
SM
17981 cur_abbrev->tag
17982 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
17983 abbrev_ptr += bytes_read;
17984 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
17985 abbrev_ptr += 1;
17986
17987 /* now read in declarations */
22d2f3ab 17988 for (;;)
c906108c 17989 {
43988095
JK
17990 LONGEST implicit_const;
17991
22d2f3ab
JK
17992 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17993 abbrev_ptr += bytes_read;
17994 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17995 abbrev_ptr += bytes_read;
43988095
JK
17996 if (abbrev_form == DW_FORM_implicit_const)
17997 {
17998 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
17999 &bytes_read);
18000 abbrev_ptr += bytes_read;
18001 }
18002 else
18003 {
18004 /* Initialize it due to a false compiler warning. */
18005 implicit_const = -1;
18006 }
22d2f3ab
JK
18007
18008 if (abbrev_name == 0)
18009 break;
18010
f3dd6933 18011 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 18012 {
f3dd6933
DJ
18013 allocated_attrs += ATTR_ALLOC_CHUNK;
18014 cur_attrs
224c3ddb 18015 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 18016 }
ae038cb0 18017
aead7601
SM
18018 cur_attrs[cur_abbrev->num_attrs].name
18019 = (enum dwarf_attribute) abbrev_name;
22d2f3ab 18020 cur_attrs[cur_abbrev->num_attrs].form
aead7601 18021 = (enum dwarf_form) abbrev_form;
43988095 18022 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
22d2f3ab 18023 ++cur_abbrev->num_attrs;
c906108c
SS
18024 }
18025
8d749320
SM
18026 cur_abbrev->attrs =
18027 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18028 cur_abbrev->num_attrs);
f3dd6933
DJ
18029 memcpy (cur_abbrev->attrs, cur_attrs,
18030 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18031
685af9cd 18032 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
c906108c
SS
18033
18034 /* Get next abbreviation.
18035 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
18036 always properly terminated with an abbrev number of 0.
18037 Exit loop if we encounter an abbreviation which we have
18038 already read (which means we are about to read the abbreviations
18039 for the next compile unit) or if the end of the abbreviation
18040 table is reached. */
433df2d4 18041 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
18042 break;
18043 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18044 abbrev_ptr += bytes_read;
685af9cd 18045 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
c906108c
SS
18046 break;
18047 }
f3dd6933
DJ
18048
18049 xfree (cur_attrs);
433df2d4 18050 return abbrev_table;
c906108c
SS
18051}
18052
72bf9492
DJ
18053/* Returns nonzero if TAG represents a type that we might generate a partial
18054 symbol for. */
18055
18056static int
18057is_type_tag_for_partial (int tag)
18058{
18059 switch (tag)
18060 {
18061#if 0
18062 /* Some types that would be reasonable to generate partial symbols for,
18063 that we don't at present. */
18064 case DW_TAG_array_type:
18065 case DW_TAG_file_type:
18066 case DW_TAG_ptr_to_member_type:
18067 case DW_TAG_set_type:
18068 case DW_TAG_string_type:
18069 case DW_TAG_subroutine_type:
18070#endif
18071 case DW_TAG_base_type:
18072 case DW_TAG_class_type:
680b30c7 18073 case DW_TAG_interface_type:
72bf9492
DJ
18074 case DW_TAG_enumeration_type:
18075 case DW_TAG_structure_type:
18076 case DW_TAG_subrange_type:
18077 case DW_TAG_typedef:
18078 case DW_TAG_union_type:
18079 return 1;
18080 default:
18081 return 0;
18082 }
18083}
18084
18085/* Load all DIEs that are interesting for partial symbols into memory. */
18086
18087static struct partial_die_info *
dee91e82 18088load_partial_dies (const struct die_reader_specs *reader,
d521ce57 18089 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 18090{
dee91e82 18091 struct dwarf2_cu *cu = reader->cu;
518817b3 18092 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
72bf9492 18093 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
72bf9492 18094 unsigned int bytes_read;
5afb4e99 18095 unsigned int load_all = 0;
72bf9492
DJ
18096 int nesting_level = 1;
18097
18098 parent_die = NULL;
18099 last_die = NULL;
18100
7adf1e79
DE
18101 gdb_assert (cu->per_cu != NULL);
18102 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
18103 load_all = 1;
18104
72bf9492
DJ
18105 cu->partial_dies
18106 = htab_create_alloc_ex (cu->header.length / 12,
18107 partial_die_hash,
18108 partial_die_eq,
18109 NULL,
18110 &cu->comp_unit_obstack,
18111 hashtab_obstack_allocate,
18112 dummy_obstack_deallocate);
18113
72bf9492
DJ
18114 while (1)
18115 {
685af9cd 18116 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
72bf9492
DJ
18117
18118 /* A NULL abbrev means the end of a series of children. */
18119 if (abbrev == NULL)
18120 {
18121 if (--nesting_level == 0)
cd9983dd
YQ
18122 return first_die;
18123
72bf9492
DJ
18124 info_ptr += bytes_read;
18125 last_die = parent_die;
18126 parent_die = parent_die->die_parent;
18127 continue;
18128 }
18129
98bfdba5
PA
18130 /* Check for template arguments. We never save these; if
18131 they're seen, we just mark the parent, and go on our way. */
18132 if (parent_die != NULL
18133 && cu->language == language_cplus
18134 && (abbrev->tag == DW_TAG_template_type_param
18135 || abbrev->tag == DW_TAG_template_value_param))
18136 {
18137 parent_die->has_template_arguments = 1;
18138
18139 if (!load_all)
18140 {
18141 /* We don't need a partial DIE for the template argument. */
dee91e82 18142 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
18143 continue;
18144 }
18145 }
18146
0d99eb77 18147 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
18148 Skip their other children. */
18149 if (!load_all
18150 && cu->language == language_cplus
18151 && parent_die != NULL
18152 && parent_die->tag == DW_TAG_subprogram)
18153 {
dee91e82 18154 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
18155 continue;
18156 }
18157
5afb4e99
DJ
18158 /* Check whether this DIE is interesting enough to save. Normally
18159 we would not be interested in members here, but there may be
18160 later variables referencing them via DW_AT_specification (for
18161 static members). */
18162 if (!load_all
18163 && !is_type_tag_for_partial (abbrev->tag)
72929c62 18164 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
18165 && abbrev->tag != DW_TAG_enumerator
18166 && abbrev->tag != DW_TAG_subprogram
b1dc1806 18167 && abbrev->tag != DW_TAG_inlined_subroutine
bc30ff58 18168 && abbrev->tag != DW_TAG_lexical_block
72bf9492 18169 && abbrev->tag != DW_TAG_variable
5afb4e99 18170 && abbrev->tag != DW_TAG_namespace
f55ee35c 18171 && abbrev->tag != DW_TAG_module
95554aad 18172 && abbrev->tag != DW_TAG_member
74921315
KS
18173 && abbrev->tag != DW_TAG_imported_unit
18174 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
18175 {
18176 /* Otherwise we skip to the next sibling, if any. */
dee91e82 18177 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
18178 continue;
18179 }
18180
6f06d47b
YQ
18181 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18182 abbrev);
cd9983dd 18183
48fbe735 18184 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
72bf9492
DJ
18185
18186 /* This two-pass algorithm for processing partial symbols has a
18187 high cost in cache pressure. Thus, handle some simple cases
18188 here which cover the majority of C partial symbols. DIEs
18189 which neither have specification tags in them, nor could have
18190 specification tags elsewhere pointing at them, can simply be
18191 processed and discarded.
18192
18193 This segment is also optional; scan_partial_symbols and
18194 add_partial_symbol will handle these DIEs if we chain
18195 them in normally. When compilers which do not emit large
18196 quantities of duplicate debug information are more common,
18197 this code can probably be removed. */
18198
18199 /* Any complete simple types at the top level (pretty much all
18200 of them, for a language without namespaces), can be processed
18201 directly. */
18202 if (parent_die == NULL
cd9983dd
YQ
18203 && pdi.has_specification == 0
18204 && pdi.is_declaration == 0
18205 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18206 || pdi.tag == DW_TAG_base_type
18207 || pdi.tag == DW_TAG_subrange_type))
72bf9492 18208 {
cd9983dd
YQ
18209 if (building_psymtab && pdi.name != NULL)
18210 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
72bf9492 18211 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 18212 &objfile->static_psymbols,
1762568f 18213 0, cu->language, objfile);
cd9983dd 18214 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
72bf9492
DJ
18215 continue;
18216 }
18217
d8228535
JK
18218 /* The exception for DW_TAG_typedef with has_children above is
18219 a workaround of GCC PR debug/47510. In the case of this complaint
a737d952 18220 type_name_or_error will error on such types later.
d8228535
JK
18221
18222 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18223 it could not find the child DIEs referenced later, this is checked
18224 above. In correct DWARF DW_TAG_typedef should have no children. */
18225
cd9983dd 18226 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
b98664d3 18227 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
9d8780f0 18228 "- DIE at %s [in module %s]"),
cd9983dd 18229 sect_offset_str (pdi.sect_off), objfile_name (objfile));
d8228535 18230
72bf9492
DJ
18231 /* If we're at the second level, and we're an enumerator, and
18232 our parent has no specification (meaning possibly lives in a
18233 namespace elsewhere), then we can add the partial symbol now
18234 instead of queueing it. */
cd9983dd 18235 if (pdi.tag == DW_TAG_enumerator
72bf9492
DJ
18236 && parent_die != NULL
18237 && parent_die->die_parent == NULL
18238 && parent_die->tag == DW_TAG_enumeration_type
18239 && parent_die->has_specification == 0)
18240 {
cd9983dd 18241 if (pdi.name == NULL)
b98664d3 18242 complaint (_("malformed enumerator DIE ignored"));
72bf9492 18243 else if (building_psymtab)
cd9983dd 18244 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
72bf9492 18245 VAR_DOMAIN, LOC_CONST,
9c37b5ae 18246 cu->language == language_cplus
bb5ed363
DE
18247 ? &objfile->global_psymbols
18248 : &objfile->static_psymbols,
1762568f 18249 0, cu->language, objfile);
72bf9492 18250
cd9983dd 18251 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
72bf9492
DJ
18252 continue;
18253 }
18254
cd9983dd 18255 struct partial_die_info *part_die
6f06d47b 18256 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
cd9983dd 18257
72bf9492
DJ
18258 /* We'll save this DIE so link it in. */
18259 part_die->die_parent = parent_die;
18260 part_die->die_sibling = NULL;
18261 part_die->die_child = NULL;
18262
18263 if (last_die && last_die == parent_die)
18264 last_die->die_child = part_die;
18265 else if (last_die)
18266 last_die->die_sibling = part_die;
18267
18268 last_die = part_die;
18269
18270 if (first_die == NULL)
18271 first_die = part_die;
18272
18273 /* Maybe add the DIE to the hash table. Not all DIEs that we
18274 find interesting need to be in the hash table, because we
18275 also have the parent/sibling/child chains; only those that we
18276 might refer to by offset later during partial symbol reading.
18277
18278 For now this means things that might have be the target of a
18279 DW_AT_specification, DW_AT_abstract_origin, or
18280 DW_AT_extension. DW_AT_extension will refer only to
18281 namespaces; DW_AT_abstract_origin refers to functions (and
18282 many things under the function DIE, but we do not recurse
18283 into function DIEs during partial symbol reading) and
18284 possibly variables as well; DW_AT_specification refers to
18285 declarations. Declarations ought to have the DW_AT_declaration
18286 flag. It happens that GCC forgets to put it in sometimes, but
18287 only for functions, not for types.
18288
18289 Adding more things than necessary to the hash table is harmless
18290 except for the performance cost. Adding too few will result in
5afb4e99
DJ
18291 wasted time in find_partial_die, when we reread the compilation
18292 unit with load_all_dies set. */
72bf9492 18293
5afb4e99 18294 if (load_all
72929c62 18295 || abbrev->tag == DW_TAG_constant
5afb4e99 18296 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
18297 || abbrev->tag == DW_TAG_variable
18298 || abbrev->tag == DW_TAG_namespace
18299 || part_die->is_declaration)
18300 {
18301 void **slot;
18302
18303 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9c541725
PA
18304 to_underlying (part_die->sect_off),
18305 INSERT);
72bf9492
DJ
18306 *slot = part_die;
18307 }
18308
72bf9492 18309 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 18310 we have no reason to follow the children of structures; for other
98bfdba5
PA
18311 languages we have to, so that we can get at method physnames
18312 to infer fully qualified class names, for DW_AT_specification,
18313 and for C++ template arguments. For C++, we also look one level
18314 inside functions to find template arguments (if the name of the
18315 function does not already contain the template arguments).
bc30ff58
JB
18316
18317 For Ada, we need to scan the children of subprograms and lexical
18318 blocks as well because Ada allows the definition of nested
18319 entities that could be interesting for the debugger, such as
18320 nested subprograms for instance. */
72bf9492 18321 if (last_die->has_children
5afb4e99
DJ
18322 && (load_all
18323 || last_die->tag == DW_TAG_namespace
f55ee35c 18324 || last_die->tag == DW_TAG_module
72bf9492 18325 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
18326 || (cu->language == language_cplus
18327 && last_die->tag == DW_TAG_subprogram
18328 && (last_die->name == NULL
18329 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
18330 || (cu->language != language_c
18331 && (last_die->tag == DW_TAG_class_type
680b30c7 18332 || last_die->tag == DW_TAG_interface_type
72bf9492 18333 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
18334 || last_die->tag == DW_TAG_union_type))
18335 || (cu->language == language_ada
18336 && (last_die->tag == DW_TAG_subprogram
18337 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
18338 {
18339 nesting_level++;
18340 parent_die = last_die;
18341 continue;
18342 }
18343
18344 /* Otherwise we skip to the next sibling, if any. */
dee91e82 18345 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
18346
18347 /* Back to the top, do it again. */
18348 }
18349}
18350
6f06d47b
YQ
18351partial_die_info::partial_die_info (sect_offset sect_off_,
18352 struct abbrev_info *abbrev)
18353 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18354{
18355}
18356
35cc7ed7
YQ
18357/* Read a minimal amount of information into the minimal die structure.
18358 INFO_PTR should point just after the initial uleb128 of a DIE. */
c906108c 18359
48fbe735
YQ
18360const gdb_byte *
18361partial_die_info::read (const struct die_reader_specs *reader,
18362 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
c906108c 18363{
dee91e82 18364 struct dwarf2_cu *cu = reader->cu;
518817b3
SM
18365 struct dwarf2_per_objfile *dwarf2_per_objfile
18366 = cu->per_cu->dwarf2_per_objfile;
fa238c03 18367 unsigned int i;
c5aa993b 18368 int has_low_pc_attr = 0;
c906108c 18369 int has_high_pc_attr = 0;
91da1414 18370 int high_pc_relative = 0;
c906108c 18371
fd0a254f 18372 for (i = 0; i < abbrev.num_attrs; ++i)
c906108c 18373 {
48fbe735
YQ
18374 struct attribute attr;
18375
fd0a254f 18376 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
c906108c
SS
18377
18378 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 18379 partial symbol table. */
c906108c
SS
18380 switch (attr.name)
18381 {
18382 case DW_AT_name:
48fbe735 18383 switch (tag)
71c25dea
TT
18384 {
18385 case DW_TAG_compile_unit:
95554aad 18386 case DW_TAG_partial_unit:
348e048f 18387 case DW_TAG_type_unit:
71c25dea
TT
18388 /* Compilation units have a DW_AT_name that is a filename, not
18389 a source language identifier. */
18390 case DW_TAG_enumeration_type:
18391 case DW_TAG_enumerator:
18392 /* These tags always have simple identifiers already; no need
18393 to canonicalize them. */
48fbe735 18394 name = DW_STRING (&attr);
71c25dea
TT
18395 break;
18396 default:
48fbe735
YQ
18397 {
18398 struct objfile *objfile = dwarf2_per_objfile->objfile;
18399
18400 name
18401 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18402 &objfile->per_bfd->storage_obstack);
18403 }
71c25dea
TT
18404 break;
18405 }
c906108c 18406 break;
31ef98ae 18407 case DW_AT_linkage_name:
c906108c 18408 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
18409 /* Note that both forms of linkage name might appear. We
18410 assume they will be the same, and we only store the last
18411 one we see. */
94af9270 18412 if (cu->language == language_ada)
48fbe735
YQ
18413 name = DW_STRING (&attr);
18414 linkage_name = DW_STRING (&attr);
c906108c
SS
18415 break;
18416 case DW_AT_low_pc:
18417 has_low_pc_attr = 1;
48fbe735 18418 lowpc = attr_value_as_address (&attr);
c906108c
SS
18419 break;
18420 case DW_AT_high_pc:
18421 has_high_pc_attr = 1;
48fbe735 18422 highpc = attr_value_as_address (&attr);
31aa7e4e
JB
18423 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18424 high_pc_relative = 1;
c906108c
SS
18425 break;
18426 case DW_AT_location:
0963b4bd 18427 /* Support the .debug_loc offsets. */
8e19ed76
PS
18428 if (attr_form_is_block (&attr))
18429 {
48fbe735 18430 d.locdesc = DW_BLOCK (&attr);
8e19ed76 18431 }
3690dd37 18432 else if (attr_form_is_section_offset (&attr))
8e19ed76 18433 {
4d3c2250 18434 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
18435 }
18436 else
18437 {
4d3c2250
KB
18438 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18439 "partial symbol information");
8e19ed76 18440 }
c906108c 18441 break;
c906108c 18442 case DW_AT_external:
48fbe735 18443 is_external = DW_UNSND (&attr);
c906108c
SS
18444 break;
18445 case DW_AT_declaration:
48fbe735 18446 is_declaration = DW_UNSND (&attr);
c906108c
SS
18447 break;
18448 case DW_AT_type:
48fbe735 18449 has_type = 1;
c906108c
SS
18450 break;
18451 case DW_AT_abstract_origin:
18452 case DW_AT_specification:
72bf9492 18453 case DW_AT_extension:
48fbe735
YQ
18454 has_specification = 1;
18455 spec_offset = dwarf2_get_ref_die_offset (&attr);
18456 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
36586728 18457 || cu->per_cu->is_dwz);
c906108c
SS
18458 break;
18459 case DW_AT_sibling:
18460 /* Ignore absolute siblings, they might point outside of
18461 the current compile unit. */
18462 if (attr.form == DW_FORM_ref_addr)
b98664d3 18463 complaint (_("ignoring absolute DW_AT_sibling"));
c906108c 18464 else
b9502d3f 18465 {
48fbe735 18466 const gdb_byte *buffer = reader->buffer;
9c541725
PA
18467 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18468 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
18469
18470 if (sibling_ptr < info_ptr)
b98664d3 18471 complaint (_("DW_AT_sibling points backwards"));
22869d73
KS
18472 else if (sibling_ptr > reader->buffer_end)
18473 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f 18474 else
48fbe735 18475 sibling = sibling_ptr;
b9502d3f 18476 }
c906108c 18477 break;
fa4028e9 18478 case DW_AT_byte_size:
48fbe735 18479 has_byte_size = 1;
fa4028e9 18480 break;
ff908ebf 18481 case DW_AT_const_value:
48fbe735 18482 has_const_value = 1;
ff908ebf 18483 break;
68511cec
CES
18484 case DW_AT_calling_convention:
18485 /* DWARF doesn't provide a way to identify a program's source-level
18486 entry point. DW_AT_calling_convention attributes are only meant
18487 to describe functions' calling conventions.
18488
18489 However, because it's a necessary piece of information in
0c1b455e
TT
18490 Fortran, and before DWARF 4 DW_CC_program was the only
18491 piece of debugging information whose definition refers to
18492 a 'main program' at all, several compilers marked Fortran
18493 main programs with DW_CC_program --- even when those
18494 functions use the standard calling conventions.
18495
18496 Although DWARF now specifies a way to provide this
18497 information, we support this practice for backward
18498 compatibility. */
68511cec 18499 if (DW_UNSND (&attr) == DW_CC_program
0c1b455e 18500 && cu->language == language_fortran)
48fbe735 18501 main_subprogram = 1;
68511cec 18502 break;
481860b3
GB
18503 case DW_AT_inline:
18504 if (DW_UNSND (&attr) == DW_INL_inlined
18505 || DW_UNSND (&attr) == DW_INL_declared_inlined)
48fbe735 18506 may_be_inlined = 1;
481860b3 18507 break;
95554aad
TT
18508
18509 case DW_AT_import:
48fbe735 18510 if (tag == DW_TAG_imported_unit)
36586728 18511 {
48fbe735
YQ
18512 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18513 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
36586728
TT
18514 || cu->per_cu->is_dwz);
18515 }
95554aad
TT
18516 break;
18517
0c1b455e 18518 case DW_AT_main_subprogram:
48fbe735 18519 main_subprogram = DW_UNSND (&attr);
0c1b455e
TT
18520 break;
18521
c906108c
SS
18522 default:
18523 break;
18524 }
18525 }
18526
91da1414 18527 if (high_pc_relative)
48fbe735 18528 highpc += lowpc;
91da1414 18529
9373cf26
JK
18530 if (has_low_pc_attr && has_high_pc_attr)
18531 {
18532 /* When using the GNU linker, .gnu.linkonce. sections are used to
18533 eliminate duplicate copies of functions and vtables and such.
18534 The linker will arbitrarily choose one and discard the others.
18535 The AT_*_pc values for such functions refer to local labels in
18536 these sections. If the section from that file was discarded, the
18537 labels are not in the output, so the relocs get a value of 0.
18538 If this is a discarded function, mark the pc bounds as invalid,
18539 so that GDB will ignore it. */
48fbe735 18540 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
9373cf26 18541 {
48fbe735 18542 struct objfile *objfile = dwarf2_per_objfile->objfile;
bb5ed363 18543 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26 18544
b98664d3 18545 complaint (_("DW_AT_low_pc %s is zero "
9d8780f0 18546 "for DIE at %s [in module %s]"),
48fbe735
YQ
18547 paddress (gdbarch, lowpc),
18548 sect_offset_str (sect_off),
9d8780f0 18549 objfile_name (objfile));
9373cf26
JK
18550 }
18551 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
48fbe735 18552 else if (lowpc >= highpc)
9373cf26 18553 {
48fbe735 18554 struct objfile *objfile = dwarf2_per_objfile->objfile;
bb5ed363 18555 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26 18556
b98664d3 18557 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
9d8780f0 18558 "for DIE at %s [in module %s]"),
48fbe735
YQ
18559 paddress (gdbarch, lowpc),
18560 paddress (gdbarch, highpc),
18561 sect_offset_str (sect_off),
9c541725 18562 objfile_name (objfile));
9373cf26
JK
18563 }
18564 else
48fbe735 18565 has_pc_info = 1;
9373cf26 18566 }
85cbf3d3 18567
c906108c
SS
18568 return info_ptr;
18569}
18570
72bf9492
DJ
18571/* Find a cached partial DIE at OFFSET in CU. */
18572
d590ff25
YQ
18573struct partial_die_info *
18574dwarf2_cu::find_partial_die (sect_offset sect_off)
72bf9492
DJ
18575{
18576 struct partial_die_info *lookup_die = NULL;
6f06d47b 18577 struct partial_die_info part_die (sect_off);
72bf9492 18578
9a3c8263 18579 lookup_die = ((struct partial_die_info *)
d590ff25 18580 htab_find_with_hash (partial_dies, &part_die,
9c541725 18581 to_underlying (sect_off)));
72bf9492 18582
72bf9492
DJ
18583 return lookup_die;
18584}
18585
348e048f
DE
18586/* Find a partial DIE at OFFSET, which may or may not be in CU,
18587 except in the case of .debug_types DIEs which do not reference
18588 outside their CU (they do however referencing other types via
55f1336d 18589 DW_FORM_ref_sig8). */
72bf9492
DJ
18590
18591static struct partial_die_info *
9c541725 18592find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 18593{
518817b3
SM
18594 struct dwarf2_per_objfile *dwarf2_per_objfile
18595 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 18596 struct objfile *objfile = dwarf2_per_objfile->objfile;
5afb4e99
DJ
18597 struct dwarf2_per_cu_data *per_cu = NULL;
18598 struct partial_die_info *pd = NULL;
72bf9492 18599
36586728 18600 if (offset_in_dwz == cu->per_cu->is_dwz
9c541725 18601 && offset_in_cu_p (&cu->header, sect_off))
5afb4e99 18602 {
d590ff25 18603 pd = cu->find_partial_die (sect_off);
5afb4e99
DJ
18604 if (pd != NULL)
18605 return pd;
0d99eb77
DE
18606 /* We missed recording what we needed.
18607 Load all dies and try again. */
18608 per_cu = cu->per_cu;
5afb4e99 18609 }
0d99eb77
DE
18610 else
18611 {
18612 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 18613 if (cu->per_cu->is_debug_types)
0d99eb77 18614 {
9d8780f0
SM
18615 error (_("Dwarf Error: Type Unit at offset %s contains"
18616 " external reference to offset %s [in module %s].\n"),
18617 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
0d99eb77
DE
18618 bfd_get_filename (objfile->obfd));
18619 }
9c541725 18620 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
ed2dc618 18621 dwarf2_per_objfile);
72bf9492 18622
0d99eb77
DE
18623 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18624 load_partial_comp_unit (per_cu);
ae038cb0 18625
0d99eb77 18626 per_cu->cu->last_used = 0;
d590ff25 18627 pd = per_cu->cu->find_partial_die (sect_off);
0d99eb77 18628 }
5afb4e99 18629
dee91e82
DE
18630 /* If we didn't find it, and not all dies have been loaded,
18631 load them all and try again. */
18632
5afb4e99
DJ
18633 if (pd == NULL && per_cu->load_all_dies == 0)
18634 {
5afb4e99 18635 per_cu->load_all_dies = 1;
fd820528
DE
18636
18637 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18638 THIS_CU->cu may already be in use. So we can't just free it and
18639 replace its DIEs with the ones we read in. Instead, we leave those
18640 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18641 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18642 set. */
dee91e82 18643 load_partial_comp_unit (per_cu);
5afb4e99 18644
d590ff25 18645 pd = per_cu->cu->find_partial_die (sect_off);
5afb4e99
DJ
18646 }
18647
18648 if (pd == NULL)
18649 internal_error (__FILE__, __LINE__,
9d8780f0 18650 _("could not find partial DIE %s "
3e43a32a 18651 "in cache [from module %s]\n"),
9d8780f0 18652 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
5afb4e99 18653 return pd;
72bf9492
DJ
18654}
18655
abc72ce4
DE
18656/* See if we can figure out if the class lives in a namespace. We do
18657 this by looking for a member function; its demangled name will
18658 contain namespace info, if there is any. */
18659
18660static void
18661guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18662 struct dwarf2_cu *cu)
18663{
18664 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18665 what template types look like, because the demangler
18666 frequently doesn't give the same name as the debug info. We
18667 could fix this by only using the demangled name to get the
18668 prefix (but see comment in read_structure_type). */
18669
18670 struct partial_die_info *real_pdi;
18671 struct partial_die_info *child_pdi;
18672
18673 /* If this DIE (this DIE's specification, if any) has a parent, then
18674 we should not do this. We'll prepend the parent's fully qualified
18675 name when we create the partial symbol. */
18676
18677 real_pdi = struct_pdi;
18678 while (real_pdi->has_specification)
36586728
TT
18679 real_pdi = find_partial_die (real_pdi->spec_offset,
18680 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
18681
18682 if (real_pdi->die_parent != NULL)
18683 return;
18684
18685 for (child_pdi = struct_pdi->die_child;
18686 child_pdi != NULL;
18687 child_pdi = child_pdi->die_sibling)
18688 {
18689 if (child_pdi->tag == DW_TAG_subprogram
18690 && child_pdi->linkage_name != NULL)
18691 {
18692 char *actual_class_name
18693 = language_class_name_from_physname (cu->language_defn,
18694 child_pdi->linkage_name);
18695 if (actual_class_name != NULL)
18696 {
518817b3 18697 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
abc72ce4 18698 struct_pdi->name
224c3ddb 18699 = ((const char *)
e3b94546 18700 obstack_copy0 (&objfile->per_bfd->storage_obstack,
224c3ddb
SM
18701 actual_class_name,
18702 strlen (actual_class_name)));
abc72ce4
DE
18703 xfree (actual_class_name);
18704 }
18705 break;
18706 }
18707 }
18708}
18709
52356b79
YQ
18710void
18711partial_die_info::fixup (struct dwarf2_cu *cu)
72bf9492 18712{
abc72ce4
DE
18713 /* Once we've fixed up a die, there's no point in doing so again.
18714 This also avoids a memory leak if we were to call
18715 guess_partial_die_structure_name multiple times. */
52356b79 18716 if (fixup_called)
abc72ce4
DE
18717 return;
18718
72bf9492
DJ
18719 /* If we found a reference attribute and the DIE has no name, try
18720 to find a name in the referred to DIE. */
18721
52356b79 18722 if (name == NULL && has_specification)
72bf9492
DJ
18723 {
18724 struct partial_die_info *spec_die;
72bf9492 18725
52356b79 18726 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
72bf9492 18727
52356b79 18728 spec_die->fixup (cu);
72bf9492
DJ
18729
18730 if (spec_die->name)
18731 {
52356b79 18732 name = spec_die->name;
72bf9492
DJ
18733
18734 /* Copy DW_AT_external attribute if it is set. */
18735 if (spec_die->is_external)
52356b79 18736 is_external = spec_die->is_external;
72bf9492
DJ
18737 }
18738 }
18739
18740 /* Set default names for some unnamed DIEs. */
72bf9492 18741
52356b79
YQ
18742 if (name == NULL && tag == DW_TAG_namespace)
18743 name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 18744
abc72ce4
DE
18745 /* If there is no parent die to provide a namespace, and there are
18746 children, see if we can determine the namespace from their linkage
122d1940 18747 name. */
abc72ce4 18748 if (cu->language == language_cplus
518817b3
SM
18749 && !VEC_empty (dwarf2_section_info_def,
18750 cu->per_cu->dwarf2_per_objfile->types)
52356b79
YQ
18751 && die_parent == NULL
18752 && has_children
18753 && (tag == DW_TAG_class_type
18754 || tag == DW_TAG_structure_type
18755 || tag == DW_TAG_union_type))
18756 guess_partial_die_structure_name (this, cu);
abc72ce4 18757
53832f31
TT
18758 /* GCC might emit a nameless struct or union that has a linkage
18759 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
52356b79
YQ
18760 if (name == NULL
18761 && (tag == DW_TAG_class_type
18762 || tag == DW_TAG_interface_type
18763 || tag == DW_TAG_structure_type
18764 || tag == DW_TAG_union_type)
18765 && linkage_name != NULL)
53832f31
TT
18766 {
18767 char *demangled;
18768
52356b79 18769 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
53832f31
TT
18770 if (demangled)
18771 {
96408a79
SA
18772 const char *base;
18773
18774 /* Strip any leading namespaces/classes, keep only the base name.
18775 DW_AT_name for named DIEs does not contain the prefixes. */
18776 base = strrchr (demangled, ':');
18777 if (base && base > demangled && base[-1] == ':')
18778 base++;
18779 else
18780 base = demangled;
18781
518817b3 18782 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
52356b79 18783 name
224c3ddb 18784 = ((const char *)
e3b94546 18785 obstack_copy0 (&objfile->per_bfd->storage_obstack,
224c3ddb 18786 base, strlen (base)));
53832f31
TT
18787 xfree (demangled);
18788 }
18789 }
18790
52356b79 18791 fixup_called = 1;
72bf9492
DJ
18792}
18793
a8329558 18794/* Read an attribute value described by an attribute form. */
c906108c 18795
d521ce57 18796static const gdb_byte *
dee91e82
DE
18797read_attribute_value (const struct die_reader_specs *reader,
18798 struct attribute *attr, unsigned form,
43988095 18799 LONGEST implicit_const, const gdb_byte *info_ptr)
c906108c 18800{
dee91e82 18801 struct dwarf2_cu *cu = reader->cu;
518817b3
SM
18802 struct dwarf2_per_objfile *dwarf2_per_objfile
18803 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 18804 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 18805 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 18806 bfd *abfd = reader->abfd;
e7c27a73 18807 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
18808 unsigned int bytes_read;
18809 struct dwarf_block *blk;
18810
aead7601 18811 attr->form = (enum dwarf_form) form;
a8329558 18812 switch (form)
c906108c 18813 {
c906108c 18814 case DW_FORM_ref_addr:
ae411497 18815 if (cu->header.version == 2)
4568ecf9 18816 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 18817 else
4568ecf9
DE
18818 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18819 &cu->header, &bytes_read);
ae411497
TT
18820 info_ptr += bytes_read;
18821 break;
36586728
TT
18822 case DW_FORM_GNU_ref_alt:
18823 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18824 info_ptr += bytes_read;
18825 break;
ae411497 18826 case DW_FORM_addr:
e7c27a73 18827 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 18828 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 18829 info_ptr += bytes_read;
c906108c
SS
18830 break;
18831 case DW_FORM_block2:
7b5a2f43 18832 blk = dwarf_alloc_block (cu);
c906108c
SS
18833 blk->size = read_2_bytes (abfd, info_ptr);
18834 info_ptr += 2;
18835 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18836 info_ptr += blk->size;
18837 DW_BLOCK (attr) = blk;
18838 break;
18839 case DW_FORM_block4:
7b5a2f43 18840 blk = dwarf_alloc_block (cu);
c906108c
SS
18841 blk->size = read_4_bytes (abfd, info_ptr);
18842 info_ptr += 4;
18843 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18844 info_ptr += blk->size;
18845 DW_BLOCK (attr) = blk;
18846 break;
18847 case DW_FORM_data2:
18848 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18849 info_ptr += 2;
18850 break;
18851 case DW_FORM_data4:
18852 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18853 info_ptr += 4;
18854 break;
18855 case DW_FORM_data8:
18856 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18857 info_ptr += 8;
18858 break;
0224619f
JK
18859 case DW_FORM_data16:
18860 blk = dwarf_alloc_block (cu);
18861 blk->size = 16;
18862 blk->data = read_n_bytes (abfd, info_ptr, 16);
18863 info_ptr += 16;
18864 DW_BLOCK (attr) = blk;
18865 break;
2dc7f7b3
TT
18866 case DW_FORM_sec_offset:
18867 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18868 info_ptr += bytes_read;
18869 break;
c906108c 18870 case DW_FORM_string:
9b1c24c8 18871 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 18872 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
18873 info_ptr += bytes_read;
18874 break;
4bdf3d34 18875 case DW_FORM_strp:
36586728
TT
18876 if (!cu->per_cu->is_dwz)
18877 {
ed2dc618
SM
18878 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18879 abfd, info_ptr, cu_header,
36586728
TT
18880 &bytes_read);
18881 DW_STRING_IS_CANONICAL (attr) = 0;
18882 info_ptr += bytes_read;
18883 break;
18884 }
18885 /* FALLTHROUGH */
43988095
JK
18886 case DW_FORM_line_strp:
18887 if (!cu->per_cu->is_dwz)
18888 {
ed2dc618
SM
18889 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18890 abfd, info_ptr,
43988095
JK
18891 cu_header, &bytes_read);
18892 DW_STRING_IS_CANONICAL (attr) = 0;
18893 info_ptr += bytes_read;
18894 break;
18895 }
18896 /* FALLTHROUGH */
36586728
TT
18897 case DW_FORM_GNU_strp_alt:
18898 {
ed2dc618 18899 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
36586728
TT
18900 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
18901 &bytes_read);
18902
ed2dc618
SM
18903 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18904 dwz, str_offset);
36586728
TT
18905 DW_STRING_IS_CANONICAL (attr) = 0;
18906 info_ptr += bytes_read;
18907 }
4bdf3d34 18908 break;
2dc7f7b3 18909 case DW_FORM_exprloc:
c906108c 18910 case DW_FORM_block:
7b5a2f43 18911 blk = dwarf_alloc_block (cu);
c906108c
SS
18912 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18913 info_ptr += bytes_read;
18914 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18915 info_ptr += blk->size;
18916 DW_BLOCK (attr) = blk;
18917 break;
18918 case DW_FORM_block1:
7b5a2f43 18919 blk = dwarf_alloc_block (cu);
c906108c
SS
18920 blk->size = read_1_byte (abfd, info_ptr);
18921 info_ptr += 1;
18922 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18923 info_ptr += blk->size;
18924 DW_BLOCK (attr) = blk;
18925 break;
18926 case DW_FORM_data1:
18927 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18928 info_ptr += 1;
18929 break;
18930 case DW_FORM_flag:
18931 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18932 info_ptr += 1;
18933 break;
2dc7f7b3
TT
18934 case DW_FORM_flag_present:
18935 DW_UNSND (attr) = 1;
18936 break;
c906108c
SS
18937 case DW_FORM_sdata:
18938 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18939 info_ptr += bytes_read;
18940 break;
18941 case DW_FORM_udata:
18942 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18943 info_ptr += bytes_read;
18944 break;
18945 case DW_FORM_ref1:
9c541725 18946 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 18947 + read_1_byte (abfd, info_ptr));
c906108c
SS
18948 info_ptr += 1;
18949 break;
18950 case DW_FORM_ref2:
9c541725 18951 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 18952 + read_2_bytes (abfd, info_ptr));
c906108c
SS
18953 info_ptr += 2;
18954 break;
18955 case DW_FORM_ref4:
9c541725 18956 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 18957 + read_4_bytes (abfd, info_ptr));
c906108c
SS
18958 info_ptr += 4;
18959 break;
613e1657 18960 case DW_FORM_ref8:
9c541725 18961 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 18962 + read_8_bytes (abfd, info_ptr));
613e1657
KB
18963 info_ptr += 8;
18964 break;
55f1336d 18965 case DW_FORM_ref_sig8:
ac9ec31b 18966 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
18967 info_ptr += 8;
18968 break;
c906108c 18969 case DW_FORM_ref_udata:
9c541725 18970 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 18971 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
18972 info_ptr += bytes_read;
18973 break;
c906108c 18974 case DW_FORM_indirect:
a8329558
KW
18975 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18976 info_ptr += bytes_read;
43988095
JK
18977 if (form == DW_FORM_implicit_const)
18978 {
18979 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18980 info_ptr += bytes_read;
18981 }
18982 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
18983 info_ptr);
18984 break;
18985 case DW_FORM_implicit_const:
18986 DW_SND (attr) = implicit_const;
a8329558 18987 break;
3019eac3
DE
18988 case DW_FORM_GNU_addr_index:
18989 if (reader->dwo_file == NULL)
18990 {
18991 /* For now flag a hard error.
18992 Later we can turn this into a complaint. */
18993 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
18994 dwarf_form_name (form),
18995 bfd_get_filename (abfd));
18996 }
18997 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
18998 info_ptr += bytes_read;
18999 break;
19000 case DW_FORM_GNU_str_index:
19001 if (reader->dwo_file == NULL)
19002 {
19003 /* For now flag a hard error.
19004 Later we can turn this into a complaint if warranted. */
19005 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19006 dwarf_form_name (form),
19007 bfd_get_filename (abfd));
19008 }
19009 {
19010 ULONGEST str_index =
19011 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19012
342587c4 19013 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
19014 DW_STRING_IS_CANONICAL (attr) = 0;
19015 info_ptr += bytes_read;
19016 }
19017 break;
c906108c 19018 default:
8a3fe4f8 19019 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
19020 dwarf_form_name (form),
19021 bfd_get_filename (abfd));
c906108c 19022 }
28e94949 19023
36586728 19024 /* Super hack. */
7771576e 19025 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
19026 attr->form = DW_FORM_GNU_ref_alt;
19027
28e94949
JB
19028 /* We have seen instances where the compiler tried to emit a byte
19029 size attribute of -1 which ended up being encoded as an unsigned
19030 0xffffffff. Although 0xffffffff is technically a valid size value,
19031 an object of this size seems pretty unlikely so we can relatively
19032 safely treat these cases as if the size attribute was invalid and
19033 treat them as zero by default. */
19034 if (attr->name == DW_AT_byte_size
19035 && form == DW_FORM_data4
19036 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
19037 {
19038 complaint
b98664d3 19039 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
43bbcdc2 19040 hex_string (DW_UNSND (attr)));
01c66ae6
JB
19041 DW_UNSND (attr) = 0;
19042 }
28e94949 19043
c906108c
SS
19044 return info_ptr;
19045}
19046
a8329558
KW
19047/* Read an attribute described by an abbreviated attribute. */
19048
d521ce57 19049static const gdb_byte *
dee91e82
DE
19050read_attribute (const struct die_reader_specs *reader,
19051 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 19052 const gdb_byte *info_ptr)
a8329558
KW
19053{
19054 attr->name = abbrev->name;
43988095
JK
19055 return read_attribute_value (reader, attr, abbrev->form,
19056 abbrev->implicit_const, info_ptr);
a8329558
KW
19057}
19058
0963b4bd 19059/* Read dwarf information from a buffer. */
c906108c
SS
19060
19061static unsigned int
a1855c1d 19062read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 19063{
fe1b8b76 19064 return bfd_get_8 (abfd, buf);
c906108c
SS
19065}
19066
19067static int
a1855c1d 19068read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 19069{
fe1b8b76 19070 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
19071}
19072
19073static unsigned int
a1855c1d 19074read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 19075{
fe1b8b76 19076 return bfd_get_16 (abfd, buf);
c906108c
SS
19077}
19078
21ae7a4d 19079static int
a1855c1d 19080read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
19081{
19082 return bfd_get_signed_16 (abfd, buf);
19083}
19084
c906108c 19085static unsigned int
a1855c1d 19086read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 19087{
fe1b8b76 19088 return bfd_get_32 (abfd, buf);
c906108c
SS
19089}
19090
21ae7a4d 19091static int
a1855c1d 19092read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
19093{
19094 return bfd_get_signed_32 (abfd, buf);
19095}
19096
93311388 19097static ULONGEST
a1855c1d 19098read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 19099{
fe1b8b76 19100 return bfd_get_64 (abfd, buf);
c906108c
SS
19101}
19102
19103static CORE_ADDR
d521ce57 19104read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 19105 unsigned int *bytes_read)
c906108c 19106{
e7c27a73 19107 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
19108 CORE_ADDR retval = 0;
19109
107d2387 19110 if (cu_header->signed_addr_p)
c906108c 19111 {
107d2387
AC
19112 switch (cu_header->addr_size)
19113 {
19114 case 2:
fe1b8b76 19115 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
19116 break;
19117 case 4:
fe1b8b76 19118 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
19119 break;
19120 case 8:
fe1b8b76 19121 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
19122 break;
19123 default:
8e65ff28 19124 internal_error (__FILE__, __LINE__,
e2e0b3e5 19125 _("read_address: bad switch, signed [in module %s]"),
659b0389 19126 bfd_get_filename (abfd));
107d2387
AC
19127 }
19128 }
19129 else
19130 {
19131 switch (cu_header->addr_size)
19132 {
19133 case 2:
fe1b8b76 19134 retval = bfd_get_16 (abfd, buf);
107d2387
AC
19135 break;
19136 case 4:
fe1b8b76 19137 retval = bfd_get_32 (abfd, buf);
107d2387
AC
19138 break;
19139 case 8:
fe1b8b76 19140 retval = bfd_get_64 (abfd, buf);
107d2387
AC
19141 break;
19142 default:
8e65ff28 19143 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
19144 _("read_address: bad switch, "
19145 "unsigned [in module %s]"),
659b0389 19146 bfd_get_filename (abfd));
107d2387 19147 }
c906108c 19148 }
64367e0a 19149
107d2387
AC
19150 *bytes_read = cu_header->addr_size;
19151 return retval;
c906108c
SS
19152}
19153
f7ef9339 19154/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
19155 specification allows the initial length to take up either 4 bytes
19156 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19157 bytes describe the length and all offsets will be 8 bytes in length
19158 instead of 4.
19159
f7ef9339
KB
19160 An older, non-standard 64-bit format is also handled by this
19161 function. The older format in question stores the initial length
19162 as an 8-byte quantity without an escape value. Lengths greater
19163 than 2^32 aren't very common which means that the initial 4 bytes
19164 is almost always zero. Since a length value of zero doesn't make
19165 sense for the 32-bit format, this initial zero can be considered to
19166 be an escape value which indicates the presence of the older 64-bit
19167 format. As written, the code can't detect (old format) lengths
917c78fc
MK
19168 greater than 4GB. If it becomes necessary to handle lengths
19169 somewhat larger than 4GB, we could allow other small values (such
19170 as the non-sensical values of 1, 2, and 3) to also be used as
19171 escape values indicating the presence of the old format.
f7ef9339 19172
917c78fc
MK
19173 The value returned via bytes_read should be used to increment the
19174 relevant pointer after calling read_initial_length().
c764a876 19175
613e1657
KB
19176 [ Note: read_initial_length() and read_offset() are based on the
19177 document entitled "DWARF Debugging Information Format", revision
f7ef9339 19178 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
19179 from:
19180
f7ef9339 19181 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 19182
613e1657
KB
19183 This document is only a draft and is subject to change. (So beware.)
19184
f7ef9339 19185 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
19186 determined empirically by examining 64-bit ELF files produced by
19187 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
19188
19189 - Kevin, July 16, 2002
613e1657
KB
19190 ] */
19191
19192static LONGEST
d521ce57 19193read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 19194{
fe1b8b76 19195 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 19196
dd373385 19197 if (length == 0xffffffff)
613e1657 19198 {
fe1b8b76 19199 length = bfd_get_64 (abfd, buf + 4);
613e1657 19200 *bytes_read = 12;
613e1657 19201 }
dd373385 19202 else if (length == 0)
f7ef9339 19203 {
dd373385 19204 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 19205 length = bfd_get_64 (abfd, buf);
f7ef9339 19206 *bytes_read = 8;
f7ef9339 19207 }
613e1657
KB
19208 else
19209 {
19210 *bytes_read = 4;
613e1657
KB
19211 }
19212
c764a876
DE
19213 return length;
19214}
dd373385 19215
c764a876
DE
19216/* Cover function for read_initial_length.
19217 Returns the length of the object at BUF, and stores the size of the
19218 initial length in *BYTES_READ and stores the size that offsets will be in
19219 *OFFSET_SIZE.
19220 If the initial length size is not equivalent to that specified in
19221 CU_HEADER then issue a complaint.
19222 This is useful when reading non-comp-unit headers. */
dd373385 19223
c764a876 19224static LONGEST
d521ce57 19225read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
19226 const struct comp_unit_head *cu_header,
19227 unsigned int *bytes_read,
19228 unsigned int *offset_size)
19229{
19230 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19231
19232 gdb_assert (cu_header->initial_length_size == 4
19233 || cu_header->initial_length_size == 8
19234 || cu_header->initial_length_size == 12);
19235
19236 if (cu_header->initial_length_size != *bytes_read)
b98664d3 19237 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 19238
c764a876 19239 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 19240 return length;
613e1657
KB
19241}
19242
19243/* Read an offset from the data stream. The size of the offset is
917c78fc 19244 given by cu_header->offset_size. */
613e1657
KB
19245
19246static LONGEST
d521ce57
TT
19247read_offset (bfd *abfd, const gdb_byte *buf,
19248 const struct comp_unit_head *cu_header,
891d2f0b 19249 unsigned int *bytes_read)
c764a876
DE
19250{
19251 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 19252
c764a876
DE
19253 *bytes_read = cu_header->offset_size;
19254 return offset;
19255}
19256
19257/* Read an offset from the data stream. */
19258
19259static LONGEST
d521ce57 19260read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
19261{
19262 LONGEST retval = 0;
19263
c764a876 19264 switch (offset_size)
613e1657
KB
19265 {
19266 case 4:
fe1b8b76 19267 retval = bfd_get_32 (abfd, buf);
613e1657
KB
19268 break;
19269 case 8:
fe1b8b76 19270 retval = bfd_get_64 (abfd, buf);
613e1657
KB
19271 break;
19272 default:
8e65ff28 19273 internal_error (__FILE__, __LINE__,
c764a876 19274 _("read_offset_1: bad switch [in module %s]"),
659b0389 19275 bfd_get_filename (abfd));
613e1657
KB
19276 }
19277
917c78fc 19278 return retval;
613e1657
KB
19279}
19280
d521ce57
TT
19281static const gdb_byte *
19282read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
19283{
19284 /* If the size of a host char is 8 bits, we can return a pointer
19285 to the buffer, otherwise we have to copy the data to a buffer
19286 allocated on the temporary obstack. */
4bdf3d34 19287 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 19288 return buf;
c906108c
SS
19289}
19290
d521ce57
TT
19291static const char *
19292read_direct_string (bfd *abfd, const gdb_byte *buf,
19293 unsigned int *bytes_read_ptr)
c906108c
SS
19294{
19295 /* If the size of a host char is 8 bits, we can return a pointer
19296 to the string, otherwise we have to copy the string to a buffer
19297 allocated on the temporary obstack. */
4bdf3d34 19298 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
19299 if (*buf == '\0')
19300 {
19301 *bytes_read_ptr = 1;
19302 return NULL;
19303 }
d521ce57
TT
19304 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19305 return (const char *) buf;
4bdf3d34
JJ
19306}
19307
43988095
JK
19308/* Return pointer to string at section SECT offset STR_OFFSET with error
19309 reporting strings FORM_NAME and SECT_NAME. */
19310
d521ce57 19311static const char *
ed2dc618
SM
19312read_indirect_string_at_offset_from (struct objfile *objfile,
19313 bfd *abfd, LONGEST str_offset,
43988095
JK
19314 struct dwarf2_section_info *sect,
19315 const char *form_name,
19316 const char *sect_name)
19317{
ed2dc618 19318 dwarf2_read_section (objfile, sect);
43988095
JK
19319 if (sect->buffer == NULL)
19320 error (_("%s used without %s section [in module %s]"),
19321 form_name, sect_name, bfd_get_filename (abfd));
19322 if (str_offset >= sect->size)
19323 error (_("%s pointing outside of %s section [in module %s]"),
19324 form_name, sect_name, bfd_get_filename (abfd));
4bdf3d34 19325 gdb_assert (HOST_CHAR_BIT == 8);
43988095 19326 if (sect->buffer[str_offset] == '\0')
4bdf3d34 19327 return NULL;
43988095
JK
19328 return (const char *) (sect->buffer + str_offset);
19329}
19330
19331/* Return pointer to string at .debug_str offset STR_OFFSET. */
19332
19333static const char *
ed2dc618
SM
19334read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19335 bfd *abfd, LONGEST str_offset)
43988095 19336{
ed2dc618
SM
19337 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19338 abfd, str_offset,
43988095
JK
19339 &dwarf2_per_objfile->str,
19340 "DW_FORM_strp", ".debug_str");
19341}
19342
19343/* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19344
19345static const char *
ed2dc618
SM
19346read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19347 bfd *abfd, LONGEST str_offset)
43988095 19348{
ed2dc618
SM
19349 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19350 abfd, str_offset,
43988095
JK
19351 &dwarf2_per_objfile->line_str,
19352 "DW_FORM_line_strp",
19353 ".debug_line_str");
c906108c
SS
19354}
19355
36586728
TT
19356/* Read a string at offset STR_OFFSET in the .debug_str section from
19357 the .dwz file DWZ. Throw an error if the offset is too large. If
19358 the string consists of a single NUL byte, return NULL; otherwise
19359 return a pointer to the string. */
19360
d521ce57 19361static const char *
ed2dc618
SM
19362read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19363 LONGEST str_offset)
36586728 19364{
ed2dc618 19365 dwarf2_read_section (objfile, &dwz->str);
36586728
TT
19366
19367 if (dwz->str.buffer == NULL)
19368 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19369 "section [in module %s]"),
19370 bfd_get_filename (dwz->dwz_bfd));
19371 if (str_offset >= dwz->str.size)
19372 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19373 ".debug_str section [in module %s]"),
19374 bfd_get_filename (dwz->dwz_bfd));
19375 gdb_assert (HOST_CHAR_BIT == 8);
19376 if (dwz->str.buffer[str_offset] == '\0')
19377 return NULL;
d521ce57 19378 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
19379}
19380
43988095
JK
19381/* Return pointer to string at .debug_str offset as read from BUF.
19382 BUF is assumed to be in a compilation unit described by CU_HEADER.
19383 Return *BYTES_READ_PTR count of bytes read from BUF. */
19384
d521ce57 19385static const char *
ed2dc618
SM
19386read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19387 const gdb_byte *buf,
cf2c3c16
TT
19388 const struct comp_unit_head *cu_header,
19389 unsigned int *bytes_read_ptr)
19390{
19391 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19392
ed2dc618 19393 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
cf2c3c16
TT
19394}
19395
43988095
JK
19396/* Return pointer to string at .debug_line_str offset as read from BUF.
19397 BUF is assumed to be in a compilation unit described by CU_HEADER.
19398 Return *BYTES_READ_PTR count of bytes read from BUF. */
19399
19400static const char *
ed2dc618
SM
19401read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19402 bfd *abfd, const gdb_byte *buf,
43988095
JK
19403 const struct comp_unit_head *cu_header,
19404 unsigned int *bytes_read_ptr)
19405{
19406 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19407
ed2dc618
SM
19408 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19409 str_offset);
43988095
JK
19410}
19411
19412ULONGEST
d521ce57 19413read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
43988095 19414 unsigned int *bytes_read_ptr)
c906108c 19415{
12df843f 19416 ULONGEST result;
ce5d95e1 19417 unsigned int num_read;
870f88f7 19418 int shift;
c906108c
SS
19419 unsigned char byte;
19420
19421 result = 0;
19422 shift = 0;
19423 num_read = 0;
c906108c
SS
19424 while (1)
19425 {
fe1b8b76 19426 byte = bfd_get_8 (abfd, buf);
c906108c
SS
19427 buf++;
19428 num_read++;
12df843f 19429 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
19430 if ((byte & 128) == 0)
19431 {
19432 break;
19433 }
19434 shift += 7;
19435 }
19436 *bytes_read_ptr = num_read;
19437 return result;
19438}
19439
12df843f 19440static LONGEST
d521ce57
TT
19441read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19442 unsigned int *bytes_read_ptr)
c906108c 19443{
12df843f 19444 LONGEST result;
870f88f7 19445 int shift, num_read;
c906108c
SS
19446 unsigned char byte;
19447
19448 result = 0;
19449 shift = 0;
c906108c 19450 num_read = 0;
c906108c
SS
19451 while (1)
19452 {
fe1b8b76 19453 byte = bfd_get_8 (abfd, buf);
c906108c
SS
19454 buf++;
19455 num_read++;
12df843f 19456 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
19457 shift += 7;
19458 if ((byte & 128) == 0)
19459 {
19460 break;
19461 }
19462 }
77e0b926 19463 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 19464 result |= -(((LONGEST) 1) << shift);
c906108c
SS
19465 *bytes_read_ptr = num_read;
19466 return result;
19467}
19468
3019eac3
DE
19469/* Given index ADDR_INDEX in .debug_addr, fetch the value.
19470 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19471 ADDR_SIZE is the size of addresses from the CU header. */
19472
19473static CORE_ADDR
ed2dc618
SM
19474read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19475 unsigned int addr_index, ULONGEST addr_base, int addr_size)
3019eac3
DE
19476{
19477 struct objfile *objfile = dwarf2_per_objfile->objfile;
19478 bfd *abfd = objfile->obfd;
19479 const gdb_byte *info_ptr;
19480
19481 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19482 if (dwarf2_per_objfile->addr.buffer == NULL)
19483 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 19484 objfile_name (objfile));
3019eac3
DE
19485 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19486 error (_("DW_FORM_addr_index pointing outside of "
19487 ".debug_addr section [in module %s]"),
4262abfb 19488 objfile_name (objfile));
3019eac3
DE
19489 info_ptr = (dwarf2_per_objfile->addr.buffer
19490 + addr_base + addr_index * addr_size);
19491 if (addr_size == 4)
19492 return bfd_get_32 (abfd, info_ptr);
19493 else
19494 return bfd_get_64 (abfd, info_ptr);
19495}
19496
19497/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19498
19499static CORE_ADDR
19500read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19501{
518817b3
SM
19502 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19503 cu->addr_base, cu->header.addr_size);
3019eac3
DE
19504}
19505
19506/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19507
19508static CORE_ADDR
d521ce57 19509read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
19510 unsigned int *bytes_read)
19511{
518817b3 19512 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
3019eac3
DE
19513 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19514
19515 return read_addr_index (cu, addr_index);
19516}
19517
19518/* Data structure to pass results from dwarf2_read_addr_index_reader
19519 back to dwarf2_read_addr_index. */
19520
19521struct dwarf2_read_addr_index_data
19522{
19523 ULONGEST addr_base;
19524 int addr_size;
19525};
19526
19527/* die_reader_func for dwarf2_read_addr_index. */
19528
19529static void
19530dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 19531 const gdb_byte *info_ptr,
3019eac3
DE
19532 struct die_info *comp_unit_die,
19533 int has_children,
19534 void *data)
19535{
19536 struct dwarf2_cu *cu = reader->cu;
19537 struct dwarf2_read_addr_index_data *aidata =
19538 (struct dwarf2_read_addr_index_data *) data;
19539
19540 aidata->addr_base = cu->addr_base;
19541 aidata->addr_size = cu->header.addr_size;
19542}
19543
19544/* Given an index in .debug_addr, fetch the value.
19545 NOTE: This can be called during dwarf expression evaluation,
19546 long after the debug information has been read, and thus per_cu->cu
19547 may no longer exist. */
19548
19549CORE_ADDR
19550dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19551 unsigned int addr_index)
19552{
ed2dc618 19553 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3019eac3
DE
19554 struct dwarf2_cu *cu = per_cu->cu;
19555 ULONGEST addr_base;
19556 int addr_size;
19557
3019eac3
DE
19558 /* We need addr_base and addr_size.
19559 If we don't have PER_CU->cu, we have to get it.
19560 Nasty, but the alternative is storing the needed info in PER_CU,
19561 which at this point doesn't seem justified: it's not clear how frequently
19562 it would get used and it would increase the size of every PER_CU.
19563 Entry points like dwarf2_per_cu_addr_size do a similar thing
19564 so we're not in uncharted territory here.
19565 Alas we need to be a bit more complicated as addr_base is contained
19566 in the DIE.
19567
19568 We don't need to read the entire CU(/TU).
19569 We just need the header and top level die.
a1b64ce1 19570
3019eac3 19571 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 19572 For now we skip this optimization. */
3019eac3
DE
19573
19574 if (cu != NULL)
19575 {
19576 addr_base = cu->addr_base;
19577 addr_size = cu->header.addr_size;
19578 }
19579 else
19580 {
19581 struct dwarf2_read_addr_index_data aidata;
19582
a1b64ce1
DE
19583 /* Note: We can't use init_cutu_and_read_dies_simple here,
19584 we need addr_base. */
58f0c718 19585 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
a1b64ce1 19586 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
19587 addr_base = aidata.addr_base;
19588 addr_size = aidata.addr_size;
19589 }
19590
ed2dc618
SM
19591 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19592 addr_size);
3019eac3
DE
19593}
19594
57d63ce2
DE
19595/* Given a DW_FORM_GNU_str_index, fetch the string.
19596 This is only used by the Fission support. */
3019eac3 19597
d521ce57 19598static const char *
342587c4 19599read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3 19600{
ed2dc618 19601 struct dwarf2_cu *cu = reader->cu;
518817b3
SM
19602 struct dwarf2_per_objfile *dwarf2_per_objfile
19603 = cu->per_cu->dwarf2_per_objfile;
3019eac3 19604 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 19605 const char *objf_name = objfile_name (objfile);
3019eac3 19606 bfd *abfd = objfile->obfd;
73869dc2
DE
19607 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19608 struct dwarf2_section_info *str_offsets_section =
19609 &reader->dwo_file->sections.str_offsets;
d521ce57 19610 const gdb_byte *info_ptr;
3019eac3 19611 ULONGEST str_offset;
57d63ce2 19612 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 19613
73869dc2
DE
19614 dwarf2_read_section (objfile, str_section);
19615 dwarf2_read_section (objfile, str_offsets_section);
19616 if (str_section->buffer == NULL)
57d63ce2 19617 error (_("%s used without .debug_str.dwo section"
9d8780f0
SM
19618 " in CU at offset %s [in module %s]"),
19619 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 19620 if (str_offsets_section->buffer == NULL)
57d63ce2 19621 error (_("%s used without .debug_str_offsets.dwo section"
9d8780f0
SM
19622 " in CU at offset %s [in module %s]"),
19623 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 19624 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 19625 error (_("%s pointing outside of .debug_str_offsets.dwo"
9d8780f0
SM
19626 " section in CU at offset %s [in module %s]"),
19627 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 19628 info_ptr = (str_offsets_section->buffer
3019eac3
DE
19629 + str_index * cu->header.offset_size);
19630 if (cu->header.offset_size == 4)
19631 str_offset = bfd_get_32 (abfd, info_ptr);
19632 else
19633 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 19634 if (str_offset >= str_section->size)
57d63ce2 19635 error (_("Offset from %s pointing outside of"
9d8780f0
SM
19636 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19637 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 19638 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
19639}
19640
3019eac3
DE
19641/* Return the length of an LEB128 number in BUF. */
19642
19643static int
19644leb128_size (const gdb_byte *buf)
19645{
19646 const gdb_byte *begin = buf;
19647 gdb_byte byte;
19648
19649 while (1)
19650 {
19651 byte = *buf++;
19652 if ((byte & 128) == 0)
19653 return buf - begin;
19654 }
19655}
19656
c906108c 19657static void
e142c38c 19658set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
19659{
19660 switch (lang)
19661 {
19662 case DW_LANG_C89:
76bee0cc 19663 case DW_LANG_C99:
0cfd832f 19664 case DW_LANG_C11:
c906108c 19665 case DW_LANG_C:
d1be3247 19666 case DW_LANG_UPC:
e142c38c 19667 cu->language = language_c;
c906108c 19668 break;
9c37b5ae 19669 case DW_LANG_Java:
c906108c 19670 case DW_LANG_C_plus_plus:
0cfd832f
MW
19671 case DW_LANG_C_plus_plus_11:
19672 case DW_LANG_C_plus_plus_14:
e142c38c 19673 cu->language = language_cplus;
c906108c 19674 break;
6aecb9c2
JB
19675 case DW_LANG_D:
19676 cu->language = language_d;
19677 break;
c906108c
SS
19678 case DW_LANG_Fortran77:
19679 case DW_LANG_Fortran90:
b21b22e0 19680 case DW_LANG_Fortran95:
f7de9aab
MW
19681 case DW_LANG_Fortran03:
19682 case DW_LANG_Fortran08:
e142c38c 19683 cu->language = language_fortran;
c906108c 19684 break;
a766d390
DE
19685 case DW_LANG_Go:
19686 cu->language = language_go;
19687 break;
c906108c 19688 case DW_LANG_Mips_Assembler:
e142c38c 19689 cu->language = language_asm;
c906108c
SS
19690 break;
19691 case DW_LANG_Ada83:
8aaf0b47 19692 case DW_LANG_Ada95:
bc5f45f8
JB
19693 cu->language = language_ada;
19694 break;
72019c9c
GM
19695 case DW_LANG_Modula2:
19696 cu->language = language_m2;
19697 break;
fe8e67fd
PM
19698 case DW_LANG_Pascal83:
19699 cu->language = language_pascal;
19700 break;
22566fbd
DJ
19701 case DW_LANG_ObjC:
19702 cu->language = language_objc;
19703 break;
c44af4eb
TT
19704 case DW_LANG_Rust:
19705 case DW_LANG_Rust_old:
19706 cu->language = language_rust;
19707 break;
c906108c
SS
19708 case DW_LANG_Cobol74:
19709 case DW_LANG_Cobol85:
c906108c 19710 default:
e142c38c 19711 cu->language = language_minimal;
c906108c
SS
19712 break;
19713 }
e142c38c 19714 cu->language_defn = language_def (cu->language);
c906108c
SS
19715}
19716
19717/* Return the named attribute or NULL if not there. */
19718
19719static struct attribute *
e142c38c 19720dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 19721{
a48e046c 19722 for (;;)
c906108c 19723 {
a48e046c
TT
19724 unsigned int i;
19725 struct attribute *spec = NULL;
19726
19727 for (i = 0; i < die->num_attrs; ++i)
19728 {
19729 if (die->attrs[i].name == name)
19730 return &die->attrs[i];
19731 if (die->attrs[i].name == DW_AT_specification
19732 || die->attrs[i].name == DW_AT_abstract_origin)
19733 spec = &die->attrs[i];
19734 }
19735
19736 if (!spec)
19737 break;
c906108c 19738
f2f0e013 19739 die = follow_die_ref (die, spec, &cu);
f2f0e013 19740 }
c5aa993b 19741
c906108c
SS
19742 return NULL;
19743}
19744
348e048f
DE
19745/* Return the named attribute or NULL if not there,
19746 but do not follow DW_AT_specification, etc.
19747 This is for use in contexts where we're reading .debug_types dies.
19748 Following DW_AT_specification, DW_AT_abstract_origin will take us
19749 back up the chain, and we want to go down. */
19750
19751static struct attribute *
45e58e77 19752dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
19753{
19754 unsigned int i;
19755
19756 for (i = 0; i < die->num_attrs; ++i)
19757 if (die->attrs[i].name == name)
19758 return &die->attrs[i];
19759
19760 return NULL;
19761}
19762
7d45c7c3
KB
19763/* Return the string associated with a string-typed attribute, or NULL if it
19764 is either not found or is of an incorrect type. */
19765
19766static const char *
19767dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19768{
19769 struct attribute *attr;
19770 const char *str = NULL;
19771
19772 attr = dwarf2_attr (die, name, cu);
19773
19774 if (attr != NULL)
19775 {
43988095 19776 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
b3340438
L
19777 || attr->form == DW_FORM_string
19778 || attr->form == DW_FORM_GNU_str_index
16eb6b2d 19779 || attr->form == DW_FORM_GNU_strp_alt)
7d45c7c3
KB
19780 str = DW_STRING (attr);
19781 else
b98664d3 19782 complaint (_("string type expected for attribute %s for "
9d8780f0
SM
19783 "DIE at %s in module %s"),
19784 dwarf_attr_name (name), sect_offset_str (die->sect_off),
518817b3 19785 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
7d45c7c3
KB
19786 }
19787
19788 return str;
19789}
19790
05cf31d1
JB
19791/* Return non-zero iff the attribute NAME is defined for the given DIE,
19792 and holds a non-zero value. This function should only be used for
2dc7f7b3 19793 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
19794
19795static int
19796dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19797{
19798 struct attribute *attr = dwarf2_attr (die, name, cu);
19799
19800 return (attr && DW_UNSND (attr));
19801}
19802
3ca72b44 19803static int
e142c38c 19804die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 19805{
05cf31d1
JB
19806 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19807 which value is non-zero. However, we have to be careful with
19808 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19809 (via dwarf2_flag_true_p) follows this attribute. So we may
19810 end up accidently finding a declaration attribute that belongs
19811 to a different DIE referenced by the specification attribute,
19812 even though the given DIE does not have a declaration attribute. */
19813 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19814 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
19815}
19816
63d06c5c 19817/* Return the die giving the specification for DIE, if there is
f2f0e013 19818 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
19819 containing the return value on output. If there is no
19820 specification, but there is an abstract origin, that is
19821 returned. */
63d06c5c
DC
19822
19823static struct die_info *
f2f0e013 19824die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 19825{
f2f0e013
DJ
19826 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19827 *spec_cu);
63d06c5c 19828
edb3359d
DJ
19829 if (spec_attr == NULL)
19830 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19831
63d06c5c
DC
19832 if (spec_attr == NULL)
19833 return NULL;
19834 else
f2f0e013 19835 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 19836}
c906108c 19837
527f3840
JK
19838/* Stub for free_line_header to match void * callback types. */
19839
19840static void
19841free_line_header_voidp (void *arg)
19842{
9a3c8263 19843 struct line_header *lh = (struct line_header *) arg;
527f3840 19844
fff8551c 19845 delete lh;
527f3840
JK
19846}
19847
fff8551c
PA
19848void
19849line_header::add_include_dir (const char *include_dir)
c906108c 19850{
27e0867f 19851 if (dwarf_line_debug >= 2)
fff8551c
PA
19852 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19853 include_dirs.size () + 1, include_dir);
27e0867f 19854
fff8551c 19855 include_dirs.push_back (include_dir);
debd256d 19856}
6e70227d 19857
fff8551c
PA
19858void
19859line_header::add_file_name (const char *name,
ecfb656c 19860 dir_index d_index,
fff8551c
PA
19861 unsigned int mod_time,
19862 unsigned int length)
debd256d 19863{
27e0867f
DE
19864 if (dwarf_line_debug >= 2)
19865 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
fff8551c 19866 (unsigned) file_names.size () + 1, name);
27e0867f 19867
ecfb656c 19868 file_names.emplace_back (name, d_index, mod_time, length);
debd256d 19869}
6e70227d 19870
83769d0b 19871/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
19872
19873static struct dwarf2_section_info *
19874get_debug_line_section (struct dwarf2_cu *cu)
19875{
19876 struct dwarf2_section_info *section;
518817b3
SM
19877 struct dwarf2_per_objfile *dwarf2_per_objfile
19878 = cu->per_cu->dwarf2_per_objfile;
36586728
TT
19879
19880 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19881 DWO file. */
19882 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19883 section = &cu->dwo_unit->dwo_file->sections.line;
19884 else if (cu->per_cu->is_dwz)
19885 {
ed2dc618 19886 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
36586728
TT
19887
19888 section = &dwz->line;
19889 }
19890 else
19891 section = &dwarf2_per_objfile->line;
19892
19893 return section;
19894}
19895
43988095
JK
19896/* Read directory or file name entry format, starting with byte of
19897 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19898 entries count and the entries themselves in the described entry
19899 format. */
19900
19901static void
ed2dc618
SM
19902read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19903 bfd *abfd, const gdb_byte **bufp,
43988095
JK
19904 struct line_header *lh,
19905 const struct comp_unit_head *cu_header,
19906 void (*callback) (struct line_header *lh,
19907 const char *name,
ecfb656c 19908 dir_index d_index,
43988095
JK
19909 unsigned int mod_time,
19910 unsigned int length))
19911{
19912 gdb_byte format_count, formati;
19913 ULONGEST data_count, datai;
19914 const gdb_byte *buf = *bufp;
19915 const gdb_byte *format_header_data;
43988095
JK
19916 unsigned int bytes_read;
19917
19918 format_count = read_1_byte (abfd, buf);
19919 buf += 1;
19920 format_header_data = buf;
19921 for (formati = 0; formati < format_count; formati++)
19922 {
19923 read_unsigned_leb128 (abfd, buf, &bytes_read);
19924 buf += bytes_read;
19925 read_unsigned_leb128 (abfd, buf, &bytes_read);
19926 buf += bytes_read;
19927 }
19928
19929 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19930 buf += bytes_read;
19931 for (datai = 0; datai < data_count; datai++)
19932 {
19933 const gdb_byte *format = format_header_data;
19934 struct file_entry fe;
19935
43988095
JK
19936 for (formati = 0; formati < format_count; formati++)
19937 {
ecfb656c 19938 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 19939 format += bytes_read;
43988095 19940
ecfb656c 19941 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 19942 format += bytes_read;
ecfb656c
PA
19943
19944 gdb::optional<const char *> string;
19945 gdb::optional<unsigned int> uint;
19946
43988095
JK
19947 switch (form)
19948 {
19949 case DW_FORM_string:
ecfb656c 19950 string.emplace (read_direct_string (abfd, buf, &bytes_read));
43988095
JK
19951 buf += bytes_read;
19952 break;
19953
19954 case DW_FORM_line_strp:
ed2dc618
SM
19955 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19956 abfd, buf,
ecfb656c
PA
19957 cu_header,
19958 &bytes_read));
43988095
JK
19959 buf += bytes_read;
19960 break;
19961
19962 case DW_FORM_data1:
ecfb656c 19963 uint.emplace (read_1_byte (abfd, buf));
43988095
JK
19964 buf += 1;
19965 break;
19966
19967 case DW_FORM_data2:
ecfb656c 19968 uint.emplace (read_2_bytes (abfd, buf));
43988095
JK
19969 buf += 2;
19970 break;
19971
19972 case DW_FORM_data4:
ecfb656c 19973 uint.emplace (read_4_bytes (abfd, buf));
43988095
JK
19974 buf += 4;
19975 break;
19976
19977 case DW_FORM_data8:
ecfb656c 19978 uint.emplace (read_8_bytes (abfd, buf));
43988095
JK
19979 buf += 8;
19980 break;
19981
19982 case DW_FORM_udata:
ecfb656c 19983 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
43988095
JK
19984 buf += bytes_read;
19985 break;
19986
19987 case DW_FORM_block:
19988 /* It is valid only for DW_LNCT_timestamp which is ignored by
19989 current GDB. */
19990 break;
19991 }
ecfb656c
PA
19992
19993 switch (content_type)
19994 {
19995 case DW_LNCT_path:
19996 if (string.has_value ())
19997 fe.name = *string;
19998 break;
19999 case DW_LNCT_directory_index:
20000 if (uint.has_value ())
20001 fe.d_index = (dir_index) *uint;
20002 break;
20003 case DW_LNCT_timestamp:
20004 if (uint.has_value ())
20005 fe.mod_time = *uint;
20006 break;
20007 case DW_LNCT_size:
20008 if (uint.has_value ())
20009 fe.length = *uint;
20010 break;
20011 case DW_LNCT_MD5:
20012 break;
20013 default:
b98664d3 20014 complaint (_("Unknown format content type %s"),
ecfb656c
PA
20015 pulongest (content_type));
20016 }
43988095
JK
20017 }
20018
ecfb656c 20019 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
43988095
JK
20020 }
20021
20022 *bufp = buf;
20023}
20024
debd256d 20025/* Read the statement program header starting at OFFSET in
3019eac3 20026 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 20027 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
20028 Returns NULL if there is a problem reading the header, e.g., if it
20029 has a version we don't understand.
debd256d
JB
20030
20031 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
20032 the returned object point into the dwarf line section buffer,
20033 and must not be freed. */
ae2de4f8 20034
fff8551c 20035static line_header_up
9c541725 20036dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
debd256d 20037{
d521ce57 20038 const gdb_byte *line_ptr;
c764a876 20039 unsigned int bytes_read, offset_size;
debd256d 20040 int i;
d521ce57 20041 const char *cur_dir, *cur_file;
3019eac3
DE
20042 struct dwarf2_section_info *section;
20043 bfd *abfd;
518817b3
SM
20044 struct dwarf2_per_objfile *dwarf2_per_objfile
20045 = cu->per_cu->dwarf2_per_objfile;
3019eac3 20046
36586728 20047 section = get_debug_line_section (cu);
3019eac3
DE
20048 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20049 if (section->buffer == NULL)
debd256d 20050 {
3019eac3 20051 if (cu->dwo_unit && cu->per_cu->is_debug_types)
b98664d3 20052 complaint (_("missing .debug_line.dwo section"));
3019eac3 20053 else
b98664d3 20054 complaint (_("missing .debug_line section"));
debd256d
JB
20055 return 0;
20056 }
20057
fceca515
DE
20058 /* We can't do this until we know the section is non-empty.
20059 Only then do we know we have such a section. */
a32a8923 20060 abfd = get_section_bfd_owner (section);
fceca515 20061
a738430d
MK
20062 /* Make sure that at least there's room for the total_length field.
20063 That could be 12 bytes long, but we're just going to fudge that. */
9c541725 20064 if (to_underlying (sect_off) + 4 >= section->size)
debd256d 20065 {
4d3c2250 20066 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
20067 return 0;
20068 }
20069
fff8551c 20070 line_header_up lh (new line_header ());
debd256d 20071
9c541725 20072 lh->sect_off = sect_off;
527f3840
JK
20073 lh->offset_in_dwz = cu->per_cu->is_dwz;
20074
9c541725 20075 line_ptr = section->buffer + to_underlying (sect_off);
debd256d 20076
a738430d 20077 /* Read in the header. */
6e70227d 20078 lh->total_length =
c764a876
DE
20079 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20080 &bytes_read, &offset_size);
debd256d 20081 line_ptr += bytes_read;
3019eac3 20082 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 20083 {
4d3c2250 20084 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
20085 return 0;
20086 }
20087 lh->statement_program_end = line_ptr + lh->total_length;
20088 lh->version = read_2_bytes (abfd, line_ptr);
20089 line_ptr += 2;
43988095 20090 if (lh->version > 5)
cd366ee8
DE
20091 {
20092 /* This is a version we don't understand. The format could have
20093 changed in ways we don't handle properly so just punt. */
b98664d3 20094 complaint (_("unsupported version in .debug_line section"));
cd366ee8
DE
20095 return NULL;
20096 }
43988095
JK
20097 if (lh->version >= 5)
20098 {
20099 gdb_byte segment_selector_size;
20100
20101 /* Skip address size. */
20102 read_1_byte (abfd, line_ptr);
20103 line_ptr += 1;
20104
20105 segment_selector_size = read_1_byte (abfd, line_ptr);
20106 line_ptr += 1;
20107 if (segment_selector_size != 0)
20108 {
b98664d3 20109 complaint (_("unsupported segment selector size %u "
43988095
JK
20110 "in .debug_line section"),
20111 segment_selector_size);
20112 return NULL;
20113 }
20114 }
c764a876
DE
20115 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20116 line_ptr += offset_size;
debd256d
JB
20117 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20118 line_ptr += 1;
2dc7f7b3
TT
20119 if (lh->version >= 4)
20120 {
20121 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20122 line_ptr += 1;
20123 }
20124 else
20125 lh->maximum_ops_per_instruction = 1;
20126
20127 if (lh->maximum_ops_per_instruction == 0)
20128 {
20129 lh->maximum_ops_per_instruction = 1;
b98664d3 20130 complaint (_("invalid maximum_ops_per_instruction "
3e43a32a 20131 "in `.debug_line' section"));
2dc7f7b3
TT
20132 }
20133
debd256d
JB
20134 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20135 line_ptr += 1;
20136 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20137 line_ptr += 1;
20138 lh->line_range = read_1_byte (abfd, line_ptr);
20139 line_ptr += 1;
20140 lh->opcode_base = read_1_byte (abfd, line_ptr);
20141 line_ptr += 1;
fff8551c 20142 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
debd256d
JB
20143
20144 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20145 for (i = 1; i < lh->opcode_base; ++i)
20146 {
20147 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20148 line_ptr += 1;
20149 }
20150
43988095 20151 if (lh->version >= 5)
debd256d 20152 {
43988095 20153 /* Read directory table. */
ed2dc618
SM
20154 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20155 &cu->header,
fff8551c 20156 [] (struct line_header *lh, const char *name,
ecfb656c 20157 dir_index d_index, unsigned int mod_time,
fff8551c
PA
20158 unsigned int length)
20159 {
20160 lh->add_include_dir (name);
20161 });
debd256d 20162
43988095 20163 /* Read file name table. */
ed2dc618
SM
20164 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20165 &cu->header,
fff8551c 20166 [] (struct line_header *lh, const char *name,
ecfb656c 20167 dir_index d_index, unsigned int mod_time,
fff8551c
PA
20168 unsigned int length)
20169 {
ecfb656c 20170 lh->add_file_name (name, d_index, mod_time, length);
fff8551c 20171 });
43988095
JK
20172 }
20173 else
debd256d 20174 {
43988095
JK
20175 /* Read directory table. */
20176 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20177 {
20178 line_ptr += bytes_read;
fff8551c 20179 lh->add_include_dir (cur_dir);
43988095 20180 }
debd256d
JB
20181 line_ptr += bytes_read;
20182
43988095
JK
20183 /* Read file name table. */
20184 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20185 {
ecfb656c
PA
20186 unsigned int mod_time, length;
20187 dir_index d_index;
43988095
JK
20188
20189 line_ptr += bytes_read;
ecfb656c 20190 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
43988095
JK
20191 line_ptr += bytes_read;
20192 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20193 line_ptr += bytes_read;
20194 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20195 line_ptr += bytes_read;
20196
ecfb656c 20197 lh->add_file_name (cur_file, d_index, mod_time, length);
43988095
JK
20198 }
20199 line_ptr += bytes_read;
debd256d 20200 }
6e70227d 20201 lh->statement_program_start = line_ptr;
debd256d 20202
3019eac3 20203 if (line_ptr > (section->buffer + section->size))
b98664d3 20204 complaint (_("line number info header doesn't "
3e43a32a 20205 "fit in `.debug_line' section"));
debd256d 20206
debd256d
JB
20207 return lh;
20208}
c906108c 20209
c6da4cef
DE
20210/* Subroutine of dwarf_decode_lines to simplify it.
20211 Return the file name of the psymtab for included file FILE_INDEX
20212 in line header LH of PST.
20213 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
c89b44cd
TT
20214 If space for the result is malloc'd, *NAME_HOLDER will be set.
20215 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
c6da4cef 20216
d521ce57 20217static const char *
c6da4cef
DE
20218psymtab_include_file_name (const struct line_header *lh, int file_index,
20219 const struct partial_symtab *pst,
c89b44cd
TT
20220 const char *comp_dir,
20221 gdb::unique_xmalloc_ptr<char> *name_holder)
c6da4cef 20222{
8c43009f 20223 const file_entry &fe = lh->file_names[file_index];
d521ce57
TT
20224 const char *include_name = fe.name;
20225 const char *include_name_to_compare = include_name;
72b9f47f 20226 const char *pst_filename;
c6da4cef
DE
20227 int file_is_pst;
20228
8c43009f 20229 const char *dir_name = fe.include_dir (lh);
c6da4cef 20230
c89b44cd 20231 gdb::unique_xmalloc_ptr<char> hold_compare;
c6da4cef
DE
20232 if (!IS_ABSOLUTE_PATH (include_name)
20233 && (dir_name != NULL || comp_dir != NULL))
20234 {
20235 /* Avoid creating a duplicate psymtab for PST.
20236 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20237 Before we do the comparison, however, we need to account
20238 for DIR_NAME and COMP_DIR.
20239 First prepend dir_name (if non-NULL). If we still don't
20240 have an absolute path prepend comp_dir (if non-NULL).
20241 However, the directory we record in the include-file's
20242 psymtab does not contain COMP_DIR (to match the
20243 corresponding symtab(s)).
20244
20245 Example:
20246
20247 bash$ cd /tmp
20248 bash$ gcc -g ./hello.c
20249 include_name = "hello.c"
20250 dir_name = "."
20251 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
20252 DW_AT_name = "./hello.c"
20253
20254 */
c6da4cef
DE
20255
20256 if (dir_name != NULL)
20257 {
c89b44cd
TT
20258 name_holder->reset (concat (dir_name, SLASH_STRING,
20259 include_name, (char *) NULL));
20260 include_name = name_holder->get ();
c6da4cef 20261 include_name_to_compare = include_name;
c6da4cef
DE
20262 }
20263 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20264 {
c89b44cd
TT
20265 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20266 include_name, (char *) NULL));
20267 include_name_to_compare = hold_compare.get ();
c6da4cef
DE
20268 }
20269 }
20270
20271 pst_filename = pst->filename;
c89b44cd 20272 gdb::unique_xmalloc_ptr<char> copied_name;
c6da4cef
DE
20273 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20274 {
c89b44cd
TT
20275 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20276 pst_filename, (char *) NULL));
20277 pst_filename = copied_name.get ();
c6da4cef
DE
20278 }
20279
1e3fad37 20280 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 20281
c6da4cef
DE
20282 if (file_is_pst)
20283 return NULL;
20284 return include_name;
20285}
20286
d9b3de22
DE
20287/* State machine to track the state of the line number program. */
20288
6f77053d 20289class lnp_state_machine
d9b3de22 20290{
6f77053d
PA
20291public:
20292 /* Initialize a machine state for the start of a line number
20293 program. */
20294 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20295
8c43009f
PA
20296 file_entry *current_file ()
20297 {
20298 /* lh->file_names is 0-based, but the file name numbers in the
20299 statement program are 1-based. */
6f77053d
PA
20300 return m_line_header->file_name_at (m_file);
20301 }
20302
20303 /* Record the line in the state machine. END_SEQUENCE is true if
20304 we're processing the end of a sequence. */
20305 void record_line (bool end_sequence);
20306
7ab6656f
OJ
20307 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20308 nop-out rest of the lines in this sequence. */
6f77053d
PA
20309 void check_line_address (struct dwarf2_cu *cu,
20310 const gdb_byte *line_ptr,
7ab6656f 20311 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
6f77053d
PA
20312
20313 void handle_set_discriminator (unsigned int discriminator)
20314 {
20315 m_discriminator = discriminator;
20316 m_line_has_non_zero_discriminator |= discriminator != 0;
20317 }
20318
20319 /* Handle DW_LNE_set_address. */
20320 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20321 {
20322 m_op_index = 0;
20323 address += baseaddr;
20324 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20325 }
20326
20327 /* Handle DW_LNS_advance_pc. */
20328 void handle_advance_pc (CORE_ADDR adjust);
20329
20330 /* Handle a special opcode. */
20331 void handle_special_opcode (unsigned char op_code);
20332
20333 /* Handle DW_LNS_advance_line. */
20334 void handle_advance_line (int line_delta)
20335 {
20336 advance_line (line_delta);
20337 }
20338
20339 /* Handle DW_LNS_set_file. */
20340 void handle_set_file (file_name_index file);
20341
20342 /* Handle DW_LNS_negate_stmt. */
20343 void handle_negate_stmt ()
20344 {
20345 m_is_stmt = !m_is_stmt;
20346 }
20347
20348 /* Handle DW_LNS_const_add_pc. */
20349 void handle_const_add_pc ();
20350
20351 /* Handle DW_LNS_fixed_advance_pc. */
20352 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20353 {
20354 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20355 m_op_index = 0;
20356 }
20357
20358 /* Handle DW_LNS_copy. */
20359 void handle_copy ()
20360 {
20361 record_line (false);
20362 m_discriminator = 0;
20363 }
20364
20365 /* Handle DW_LNE_end_sequence. */
20366 void handle_end_sequence ()
20367 {
20368 m_record_line_callback = ::record_line;
20369 }
20370
20371private:
20372 /* Advance the line by LINE_DELTA. */
20373 void advance_line (int line_delta)
20374 {
20375 m_line += line_delta;
20376
20377 if (line_delta != 0)
20378 m_line_has_non_zero_discriminator = m_discriminator != 0;
8c43009f
PA
20379 }
20380
6f77053d
PA
20381 gdbarch *m_gdbarch;
20382
20383 /* True if we're recording lines.
20384 Otherwise we're building partial symtabs and are just interested in
20385 finding include files mentioned by the line number program. */
20386 bool m_record_lines_p;
20387
8c43009f 20388 /* The line number header. */
6f77053d 20389 line_header *m_line_header;
8c43009f 20390
6f77053d
PA
20391 /* These are part of the standard DWARF line number state machine,
20392 and initialized according to the DWARF spec. */
d9b3de22 20393
6f77053d 20394 unsigned char m_op_index = 0;
8c43009f 20395 /* The line table index (1-based) of the current file. */
6f77053d
PA
20396 file_name_index m_file = (file_name_index) 1;
20397 unsigned int m_line = 1;
20398
20399 /* These are initialized in the constructor. */
20400
20401 CORE_ADDR m_address;
20402 bool m_is_stmt;
20403 unsigned int m_discriminator;
d9b3de22
DE
20404
20405 /* Additional bits of state we need to track. */
20406
20407 /* The last file that we called dwarf2_start_subfile for.
20408 This is only used for TLLs. */
6f77053d 20409 unsigned int m_last_file = 0;
d9b3de22 20410 /* The last file a line number was recorded for. */
6f77053d 20411 struct subfile *m_last_subfile = NULL;
d9b3de22
DE
20412
20413 /* The function to call to record a line. */
6f77053d 20414 record_line_ftype *m_record_line_callback = NULL;
d9b3de22
DE
20415
20416 /* The last line number that was recorded, used to coalesce
20417 consecutive entries for the same line. This can happen, for
20418 example, when discriminators are present. PR 17276. */
6f77053d
PA
20419 unsigned int m_last_line = 0;
20420 bool m_line_has_non_zero_discriminator = false;
8c43009f 20421};
d9b3de22 20422
6f77053d
PA
20423void
20424lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20425{
20426 CORE_ADDR addr_adj = (((m_op_index + adjust)
20427 / m_line_header->maximum_ops_per_instruction)
20428 * m_line_header->minimum_instruction_length);
20429 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20430 m_op_index = ((m_op_index + adjust)
20431 % m_line_header->maximum_ops_per_instruction);
20432}
d9b3de22 20433
6f77053d
PA
20434void
20435lnp_state_machine::handle_special_opcode (unsigned char op_code)
d9b3de22 20436{
6f77053d
PA
20437 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20438 CORE_ADDR addr_adj = (((m_op_index
20439 + (adj_opcode / m_line_header->line_range))
20440 / m_line_header->maximum_ops_per_instruction)
20441 * m_line_header->minimum_instruction_length);
20442 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20443 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20444 % m_line_header->maximum_ops_per_instruction);
d9b3de22 20445
6f77053d
PA
20446 int line_delta = (m_line_header->line_base
20447 + (adj_opcode % m_line_header->line_range));
20448 advance_line (line_delta);
20449 record_line (false);
20450 m_discriminator = 0;
20451}
d9b3de22 20452
6f77053d
PA
20453void
20454lnp_state_machine::handle_set_file (file_name_index file)
20455{
20456 m_file = file;
20457
20458 const file_entry *fe = current_file ();
20459 if (fe == NULL)
20460 dwarf2_debug_line_missing_file_complaint ();
20461 else if (m_record_lines_p)
20462 {
20463 const char *dir = fe->include_dir (m_line_header);
20464
20465 m_last_subfile = current_subfile;
20466 m_line_has_non_zero_discriminator = m_discriminator != 0;
20467 dwarf2_start_subfile (fe->name, dir);
20468 }
20469}
20470
20471void
20472lnp_state_machine::handle_const_add_pc ()
20473{
20474 CORE_ADDR adjust
20475 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20476
20477 CORE_ADDR addr_adj
20478 = (((m_op_index + adjust)
20479 / m_line_header->maximum_ops_per_instruction)
20480 * m_line_header->minimum_instruction_length);
20481
20482 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20483 m_op_index = ((m_op_index + adjust)
20484 % m_line_header->maximum_ops_per_instruction);
20485}
d9b3de22 20486
c91513d8
PP
20487/* Ignore this record_line request. */
20488
20489static void
20490noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20491{
20492 return;
20493}
20494
a05a36a5
DE
20495/* Return non-zero if we should add LINE to the line number table.
20496 LINE is the line to add, LAST_LINE is the last line that was added,
20497 LAST_SUBFILE is the subfile for LAST_LINE.
20498 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20499 had a non-zero discriminator.
20500
20501 We have to be careful in the presence of discriminators.
20502 E.g., for this line:
20503
20504 for (i = 0; i < 100000; i++);
20505
20506 clang can emit four line number entries for that one line,
20507 each with a different discriminator.
20508 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20509
20510 However, we want gdb to coalesce all four entries into one.
20511 Otherwise the user could stepi into the middle of the line and
20512 gdb would get confused about whether the pc really was in the
20513 middle of the line.
20514
20515 Things are further complicated by the fact that two consecutive
20516 line number entries for the same line is a heuristic used by gcc
20517 to denote the end of the prologue. So we can't just discard duplicate
20518 entries, we have to be selective about it. The heuristic we use is
20519 that we only collapse consecutive entries for the same line if at least
20520 one of those entries has a non-zero discriminator. PR 17276.
20521
20522 Note: Addresses in the line number state machine can never go backwards
20523 within one sequence, thus this coalescing is ok. */
20524
20525static int
20526dwarf_record_line_p (unsigned int line, unsigned int last_line,
20527 int line_has_non_zero_discriminator,
20528 struct subfile *last_subfile)
20529{
20530 if (current_subfile != last_subfile)
20531 return 1;
20532 if (line != last_line)
20533 return 1;
20534 /* Same line for the same file that we've seen already.
20535 As a last check, for pr 17276, only record the line if the line
20536 has never had a non-zero discriminator. */
20537 if (!line_has_non_zero_discriminator)
20538 return 1;
20539 return 0;
20540}
20541
252a6764
DE
20542/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20543 in the line table of subfile SUBFILE. */
20544
20545static void
d9b3de22
DE
20546dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20547 unsigned int line, CORE_ADDR address,
20548 record_line_ftype p_record_line)
252a6764
DE
20549{
20550 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20551
27e0867f
DE
20552 if (dwarf_line_debug)
20553 {
20554 fprintf_unfiltered (gdb_stdlog,
20555 "Recording line %u, file %s, address %s\n",
20556 line, lbasename (subfile->name),
20557 paddress (gdbarch, address));
20558 }
20559
d5962de5 20560 (*p_record_line) (subfile, line, addr);
252a6764
DE
20561}
20562
20563/* Subroutine of dwarf_decode_lines_1 to simplify it.
20564 Mark the end of a set of line number records.
d9b3de22 20565 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
20566 If SUBFILE is NULL the request is ignored. */
20567
20568static void
20569dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20570 CORE_ADDR address, record_line_ftype p_record_line)
20571{
27e0867f
DE
20572 if (subfile == NULL)
20573 return;
20574
20575 if (dwarf_line_debug)
20576 {
20577 fprintf_unfiltered (gdb_stdlog,
20578 "Finishing current line, file %s, address %s\n",
20579 lbasename (subfile->name),
20580 paddress (gdbarch, address));
20581 }
20582
d9b3de22
DE
20583 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20584}
20585
6f77053d
PA
20586void
20587lnp_state_machine::record_line (bool end_sequence)
d9b3de22 20588{
d9b3de22
DE
20589 if (dwarf_line_debug)
20590 {
20591 fprintf_unfiltered (gdb_stdlog,
20592 "Processing actual line %u: file %u,"
20593 " address %s, is_stmt %u, discrim %u\n",
6f77053d
PA
20594 m_line, to_underlying (m_file),
20595 paddress (m_gdbarch, m_address),
20596 m_is_stmt, m_discriminator);
d9b3de22
DE
20597 }
20598
6f77053d 20599 file_entry *fe = current_file ();
8c43009f
PA
20600
20601 if (fe == NULL)
d9b3de22
DE
20602 dwarf2_debug_line_missing_file_complaint ();
20603 /* For now we ignore lines not starting on an instruction boundary.
20604 But not when processing end_sequence for compatibility with the
20605 previous version of the code. */
6f77053d 20606 else if (m_op_index == 0 || end_sequence)
d9b3de22 20607 {
8c43009f 20608 fe->included_p = 1;
6f77053d 20609 if (m_record_lines_p && m_is_stmt)
d9b3de22 20610 {
6f77053d 20611 if (m_last_subfile != current_subfile || end_sequence)
d9b3de22 20612 {
6f77053d
PA
20613 dwarf_finish_line (m_gdbarch, m_last_subfile,
20614 m_address, m_record_line_callback);
d9b3de22
DE
20615 }
20616
20617 if (!end_sequence)
20618 {
6f77053d
PA
20619 if (dwarf_record_line_p (m_line, m_last_line,
20620 m_line_has_non_zero_discriminator,
20621 m_last_subfile))
d9b3de22 20622 {
6f77053d
PA
20623 dwarf_record_line_1 (m_gdbarch, current_subfile,
20624 m_line, m_address,
20625 m_record_line_callback);
d9b3de22 20626 }
6f77053d
PA
20627 m_last_subfile = current_subfile;
20628 m_last_line = m_line;
d9b3de22
DE
20629 }
20630 }
20631 }
20632}
20633
6f77053d
PA
20634lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20635 bool record_lines_p)
d9b3de22 20636{
6f77053d
PA
20637 m_gdbarch = arch;
20638 m_record_lines_p = record_lines_p;
20639 m_line_header = lh;
d9b3de22 20640
6f77053d 20641 m_record_line_callback = ::record_line;
d9b3de22 20642
d9b3de22
DE
20643 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20644 was a line entry for it so that the backend has a chance to adjust it
20645 and also record it in case it needs it. This is currently used by MIPS
20646 code, cf. `mips_adjust_dwarf2_line'. */
6f77053d
PA
20647 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20648 m_is_stmt = lh->default_is_stmt;
20649 m_discriminator = 0;
252a6764
DE
20650}
20651
6f77053d
PA
20652void
20653lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20654 const gdb_byte *line_ptr,
7ab6656f 20655 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
924c2928 20656{
7ab6656f
OJ
20657 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20658 the pc range of the CU. However, we restrict the test to only ADDRESS
20659 values of zero to preserve GDB's previous behaviour which is to handle
20660 the specific case of a function being GC'd by the linker. */
924c2928 20661
7ab6656f 20662 if (address == 0 && address < unrelocated_lowpc)
924c2928
DE
20663 {
20664 /* This line table is for a function which has been
20665 GCd by the linker. Ignore it. PR gdb/12528 */
20666
518817b3 20667 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
924c2928
DE
20668 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20669
b98664d3 20670 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
924c2928 20671 line_offset, objfile_name (objfile));
6f77053d
PA
20672 m_record_line_callback = noop_record_line;
20673 /* Note: record_line_callback is left as noop_record_line until
20674 we see DW_LNE_end_sequence. */
924c2928
DE
20675 }
20676}
20677
f3f5162e 20678/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
20679 Process the line number information in LH.
20680 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20681 program in order to set included_p for every referenced header. */
debd256d 20682
c906108c 20683static void
43f3e411
DE
20684dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20685 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 20686{
d521ce57
TT
20687 const gdb_byte *line_ptr, *extended_end;
20688 const gdb_byte *line_end;
a8c50c1f 20689 unsigned int bytes_read, extended_len;
699ca60a 20690 unsigned char op_code, extended_op;
e142c38c 20691 CORE_ADDR baseaddr;
518817b3 20692 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
f3f5162e 20693 bfd *abfd = objfile->obfd;
fbf65064 20694 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6f77053d
PA
20695 /* True if we're recording line info (as opposed to building partial
20696 symtabs and just interested in finding include files mentioned by
20697 the line number program). */
20698 bool record_lines_p = !decode_for_pst_p;
e142c38c
DJ
20699
20700 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 20701
debd256d
JB
20702 line_ptr = lh->statement_program_start;
20703 line_end = lh->statement_program_end;
c906108c
SS
20704
20705 /* Read the statement sequences until there's nothing left. */
20706 while (line_ptr < line_end)
20707 {
6f77053d
PA
20708 /* The DWARF line number program state machine. Reset the state
20709 machine at the start of each sequence. */
20710 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20711 bool end_sequence = false;
d9b3de22 20712
8c43009f 20713 if (record_lines_p)
c906108c 20714 {
8c43009f
PA
20715 /* Start a subfile for the current file of the state
20716 machine. */
20717 const file_entry *fe = state_machine.current_file ();
20718
20719 if (fe != NULL)
20720 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
c906108c
SS
20721 }
20722
a738430d 20723 /* Decode the table. */
d9b3de22 20724 while (line_ptr < line_end && !end_sequence)
c906108c
SS
20725 {
20726 op_code = read_1_byte (abfd, line_ptr);
20727 line_ptr += 1;
9aa1fe7e 20728
debd256d 20729 if (op_code >= lh->opcode_base)
6e70227d 20730 {
8e07a239 20731 /* Special opcode. */
6f77053d 20732 state_machine.handle_special_opcode (op_code);
9aa1fe7e
GK
20733 }
20734 else switch (op_code)
c906108c
SS
20735 {
20736 case DW_LNS_extended_op:
3e43a32a
MS
20737 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20738 &bytes_read);
473b7be6 20739 line_ptr += bytes_read;
a8c50c1f 20740 extended_end = line_ptr + extended_len;
c906108c
SS
20741 extended_op = read_1_byte (abfd, line_ptr);
20742 line_ptr += 1;
20743 switch (extended_op)
20744 {
20745 case DW_LNE_end_sequence:
6f77053d
PA
20746 state_machine.handle_end_sequence ();
20747 end_sequence = true;
c906108c
SS
20748 break;
20749 case DW_LNE_set_address:
d9b3de22
DE
20750 {
20751 CORE_ADDR address
20752 = read_address (abfd, line_ptr, cu, &bytes_read);
d9b3de22 20753 line_ptr += bytes_read;
6f77053d
PA
20754
20755 state_machine.check_line_address (cu, line_ptr,
7ab6656f 20756 lowpc - baseaddr, address);
6f77053d 20757 state_machine.handle_set_address (baseaddr, address);
d9b3de22 20758 }
c906108c
SS
20759 break;
20760 case DW_LNE_define_file:
debd256d 20761 {
d521ce57 20762 const char *cur_file;
ecfb656c
PA
20763 unsigned int mod_time, length;
20764 dir_index dindex;
6e70227d 20765
3e43a32a
MS
20766 cur_file = read_direct_string (abfd, line_ptr,
20767 &bytes_read);
debd256d 20768 line_ptr += bytes_read;
ecfb656c 20769 dindex = (dir_index)
debd256d
JB
20770 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20771 line_ptr += bytes_read;
20772 mod_time =
20773 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20774 line_ptr += bytes_read;
20775 length =
20776 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20777 line_ptr += bytes_read;
ecfb656c 20778 lh->add_file_name (cur_file, dindex, mod_time, length);
debd256d 20779 }
c906108c 20780 break;
d0c6ba3d 20781 case DW_LNE_set_discriminator:
6f77053d
PA
20782 {
20783 /* The discriminator is not interesting to the
20784 debugger; just ignore it. We still need to
20785 check its value though:
20786 if there are consecutive entries for the same
20787 (non-prologue) line we want to coalesce them.
20788 PR 17276. */
20789 unsigned int discr
20790 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20791 line_ptr += bytes_read;
20792
20793 state_machine.handle_set_discriminator (discr);
20794 }
d0c6ba3d 20795 break;
c906108c 20796 default:
b98664d3 20797 complaint (_("mangled .debug_line section"));
debd256d 20798 return;
c906108c 20799 }
a8c50c1f
DJ
20800 /* Make sure that we parsed the extended op correctly. If e.g.
20801 we expected a different address size than the producer used,
20802 we may have read the wrong number of bytes. */
20803 if (line_ptr != extended_end)
20804 {
b98664d3 20805 complaint (_("mangled .debug_line section"));
a8c50c1f
DJ
20806 return;
20807 }
c906108c
SS
20808 break;
20809 case DW_LNS_copy:
6f77053d 20810 state_machine.handle_copy ();
c906108c
SS
20811 break;
20812 case DW_LNS_advance_pc:
2dc7f7b3
TT
20813 {
20814 CORE_ADDR adjust
20815 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
2dc7f7b3 20816 line_ptr += bytes_read;
6f77053d
PA
20817
20818 state_machine.handle_advance_pc (adjust);
2dc7f7b3 20819 }
c906108c
SS
20820 break;
20821 case DW_LNS_advance_line:
a05a36a5
DE
20822 {
20823 int line_delta
20824 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
a05a36a5 20825 line_ptr += bytes_read;
6f77053d
PA
20826
20827 state_machine.handle_advance_line (line_delta);
a05a36a5 20828 }
c906108c
SS
20829 break;
20830 case DW_LNS_set_file:
d9b3de22 20831 {
6f77053d 20832 file_name_index file
ecfb656c
PA
20833 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20834 &bytes_read);
d9b3de22 20835 line_ptr += bytes_read;
8c43009f 20836
6f77053d 20837 state_machine.handle_set_file (file);
d9b3de22 20838 }
c906108c
SS
20839 break;
20840 case DW_LNS_set_column:
0ad93d4f 20841 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
20842 line_ptr += bytes_read;
20843 break;
20844 case DW_LNS_negate_stmt:
6f77053d 20845 state_machine.handle_negate_stmt ();
c906108c
SS
20846 break;
20847 case DW_LNS_set_basic_block:
c906108c 20848 break;
c2c6d25f
JM
20849 /* Add to the address register of the state machine the
20850 address increment value corresponding to special opcode
a738430d
MK
20851 255. I.e., this value is scaled by the minimum
20852 instruction length since special opcode 255 would have
b021a221 20853 scaled the increment. */
c906108c 20854 case DW_LNS_const_add_pc:
6f77053d 20855 state_machine.handle_const_add_pc ();
c906108c
SS
20856 break;
20857 case DW_LNS_fixed_advance_pc:
3e29f34a 20858 {
6f77053d 20859 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
3e29f34a 20860 line_ptr += 2;
6f77053d
PA
20861
20862 state_machine.handle_fixed_advance_pc (addr_adj);
3e29f34a 20863 }
c906108c 20864 break;
9aa1fe7e 20865 default:
a738430d
MK
20866 {
20867 /* Unknown standard opcode, ignore it. */
9aa1fe7e 20868 int i;
a738430d 20869
debd256d 20870 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
20871 {
20872 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20873 line_ptr += bytes_read;
20874 }
20875 }
c906108c
SS
20876 }
20877 }
d9b3de22
DE
20878
20879 if (!end_sequence)
20880 dwarf2_debug_line_missing_end_sequence_complaint ();
20881
20882 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20883 in which case we still finish recording the last line). */
6f77053d 20884 state_machine.record_line (true);
c906108c 20885 }
f3f5162e
DE
20886}
20887
20888/* Decode the Line Number Program (LNP) for the given line_header
20889 structure and CU. The actual information extracted and the type
20890 of structures created from the LNP depends on the value of PST.
20891
20892 1. If PST is NULL, then this procedure uses the data from the program
20893 to create all necessary symbol tables, and their linetables.
20894
20895 2. If PST is not NULL, this procedure reads the program to determine
20896 the list of files included by the unit represented by PST, and
20897 builds all the associated partial symbol tables.
20898
20899 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20900 It is used for relative paths in the line table.
20901 NOTE: When processing partial symtabs (pst != NULL),
20902 comp_dir == pst->dirname.
20903
20904 NOTE: It is important that psymtabs have the same file name (via strcmp)
20905 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20906 symtab we don't use it in the name of the psymtabs we create.
20907 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
20908 A good testcase for this is mb-inline.exp.
20909
527f3840
JK
20910 LOWPC is the lowest address in CU (or 0 if not known).
20911
20912 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20913 for its PC<->lines mapping information. Otherwise only the filename
20914 table is read in. */
f3f5162e
DE
20915
20916static void
20917dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 20918 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 20919 CORE_ADDR lowpc, int decode_mapping)
f3f5162e 20920{
518817b3 20921 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
f3f5162e 20922 const int decode_for_pst_p = (pst != NULL);
f3f5162e 20923
527f3840
JK
20924 if (decode_mapping)
20925 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
20926
20927 if (decode_for_pst_p)
20928 {
20929 int file_index;
20930
20931 /* Now that we're done scanning the Line Header Program, we can
20932 create the psymtab of each included file. */
fff8551c 20933 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
aaa75496
JB
20934 if (lh->file_names[file_index].included_p == 1)
20935 {
c89b44cd 20936 gdb::unique_xmalloc_ptr<char> name_holder;
d521ce57 20937 const char *include_name =
c89b44cd
TT
20938 psymtab_include_file_name (lh, file_index, pst, comp_dir,
20939 &name_holder);
c6da4cef 20940 if (include_name != NULL)
aaa75496
JB
20941 dwarf2_create_include_psymtab (include_name, pst, objfile);
20942 }
20943 }
cb1df416
DJ
20944 else
20945 {
20946 /* Make sure a symtab is created for every file, even files
20947 which contain only variables (i.e. no code with associated
20948 line numbers). */
43f3e411 20949 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 20950 int i;
cb1df416 20951
fff8551c 20952 for (i = 0; i < lh->file_names.size (); i++)
cb1df416 20953 {
8c43009f 20954 file_entry &fe = lh->file_names[i];
9a619af0 20955
8c43009f 20956 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
cb1df416 20957
cb1df416 20958 if (current_subfile->symtab == NULL)
43f3e411
DE
20959 {
20960 current_subfile->symtab
20961 = allocate_symtab (cust, current_subfile->name);
20962 }
8c43009f 20963 fe.symtab = current_subfile->symtab;
cb1df416
DJ
20964 }
20965 }
c906108c
SS
20966}
20967
20968/* Start a subfile for DWARF. FILENAME is the name of the file and
20969 DIRNAME the name of the source directory which contains FILENAME
4d663531 20970 or NULL if not known.
c906108c
SS
20971 This routine tries to keep line numbers from identical absolute and
20972 relative file names in a common subfile.
20973
20974 Using the `list' example from the GDB testsuite, which resides in
20975 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20976 of /srcdir/list0.c yields the following debugging information for list0.c:
20977
c5aa993b 20978 DW_AT_name: /srcdir/list0.c
4d663531 20979 DW_AT_comp_dir: /compdir
357e46e7 20980 files.files[0].name: list0.h
c5aa993b 20981 files.files[0].dir: /srcdir
357e46e7 20982 files.files[1].name: list0.c
c5aa993b 20983 files.files[1].dir: /srcdir
c906108c
SS
20984
20985 The line number information for list0.c has to end up in a single
4f1520fb
FR
20986 subfile, so that `break /srcdir/list0.c:1' works as expected.
20987 start_subfile will ensure that this happens provided that we pass the
20988 concatenation of files.files[1].dir and files.files[1].name as the
20989 subfile's name. */
c906108c
SS
20990
20991static void
4d663531 20992dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 20993{
d521ce57 20994 char *copy = NULL;
4f1520fb 20995
4d663531 20996 /* In order not to lose the line information directory,
4f1520fb
FR
20997 we concatenate it to the filename when it makes sense.
20998 Note that the Dwarf3 standard says (speaking of filenames in line
20999 information): ``The directory index is ignored for file names
21000 that represent full path names''. Thus ignoring dirname in the
21001 `else' branch below isn't an issue. */
c906108c 21002
d5166ae1 21003 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
21004 {
21005 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21006 filename = copy;
21007 }
c906108c 21008
4d663531 21009 start_subfile (filename);
4f1520fb 21010
d521ce57
TT
21011 if (copy != NULL)
21012 xfree (copy);
c906108c
SS
21013}
21014
f4dc4d17
DE
21015/* Start a symtab for DWARF.
21016 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21017
43f3e411 21018static struct compunit_symtab *
f4dc4d17 21019dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 21020 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 21021{
43f3e411 21022 struct compunit_symtab *cust
518817b3
SM
21023 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21024 low_pc, cu->language);
43f3e411 21025
f4dc4d17
DE
21026 record_debugformat ("DWARF 2");
21027 record_producer (cu->producer);
21028
4d4ec4e5 21029 cu->processing_has_namespace_info = 0;
43f3e411
DE
21030
21031 return cust;
f4dc4d17
DE
21032}
21033
4c2df51b
DJ
21034static void
21035var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 21036 struct dwarf2_cu *cu)
4c2df51b 21037{
518817b3 21038 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
e7c27a73
DJ
21039 struct comp_unit_head *cu_header = &cu->header;
21040
4c2df51b
DJ
21041 /* NOTE drow/2003-01-30: There used to be a comment and some special
21042 code here to turn a symbol with DW_AT_external and a
21043 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21044 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21045 with some versions of binutils) where shared libraries could have
21046 relocations against symbols in their debug information - the
21047 minimal symbol would have the right address, but the debug info
21048 would not. It's no longer necessary, because we will explicitly
21049 apply relocations when we read in the debug information now. */
21050
21051 /* A DW_AT_location attribute with no contents indicates that a
21052 variable has been optimized away. */
21053 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21054 {
f1e6e072 21055 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
21056 return;
21057 }
21058
21059 /* Handle one degenerate form of location expression specially, to
21060 preserve GDB's previous behavior when section offsets are
3019eac3
DE
21061 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21062 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
21063
21064 if (attr_form_is_block (attr)
3019eac3
DE
21065 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21066 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21067 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21068 && (DW_BLOCK (attr)->size
21069 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 21070 {
891d2f0b 21071 unsigned int dummy;
4c2df51b 21072
3019eac3
DE
21073 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21074 SYMBOL_VALUE_ADDRESS (sym) =
21075 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21076 else
21077 SYMBOL_VALUE_ADDRESS (sym) =
21078 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 21079 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
21080 fixup_symbol_section (sym, objfile);
21081 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21082 SYMBOL_SECTION (sym));
4c2df51b
DJ
21083 return;
21084 }
21085
21086 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21087 expression evaluator, and use LOC_COMPUTED only when necessary
21088 (i.e. when the value of a register or memory location is
21089 referenced, or a thread-local block, etc.). Then again, it might
21090 not be worthwhile. I'm assuming that it isn't unless performance
21091 or memory numbers show me otherwise. */
21092
f1e6e072 21093 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 21094
f1e6e072 21095 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 21096 cu->has_loclist = 1;
4c2df51b
DJ
21097}
21098
c906108c
SS
21099/* Given a pointer to a DWARF information entry, figure out if we need
21100 to make a symbol table entry for it, and if so, create a new entry
21101 and return a pointer to it.
21102 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
21103 used the passed type.
21104 If SPACE is not NULL, use it to hold the new symbol. If it is
21105 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
21106
21107static struct symbol *
5e2db402
TT
21108new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21109 struct symbol *space)
c906108c 21110{
518817b3
SM
21111 struct dwarf2_per_objfile *dwarf2_per_objfile
21112 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 21113 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 21114 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 21115 struct symbol *sym = NULL;
15d034d0 21116 const char *name;
c906108c
SS
21117 struct attribute *attr = NULL;
21118 struct attribute *attr2 = NULL;
e142c38c 21119 CORE_ADDR baseaddr;
e37fd15a
SW
21120 struct pending **list_to_add = NULL;
21121
edb3359d 21122 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
21123
21124 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 21125
94af9270 21126 name = dwarf2_name (die, cu);
c906108c
SS
21127 if (name)
21128 {
94af9270 21129 const char *linkagename;
34eaf542 21130 int suppress_add = 0;
94af9270 21131
34eaf542
TT
21132 if (space)
21133 sym = space;
21134 else
e623cf5d 21135 sym = allocate_symbol (objfile);
c906108c 21136 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
21137
21138 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 21139 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
21140 linkagename = dwarf2_physname (name, die, cu);
21141 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 21142
f55ee35c
JK
21143 /* Fortran does not have mangling standard and the mangling does differ
21144 between gfortran, iFort etc. */
21145 if (cu->language == language_fortran
b250c185 21146 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 21147 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 21148 dwarf2_full_name (name, die, cu),
29df156d 21149 NULL);
f55ee35c 21150
c906108c 21151 /* Default assumptions.
c5aa993b 21152 Use the passed type or decode it from the die. */
176620f1 21153 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 21154 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
21155 if (type != NULL)
21156 SYMBOL_TYPE (sym) = type;
21157 else
e7c27a73 21158 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
21159 attr = dwarf2_attr (die,
21160 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21161 cu);
c906108c
SS
21162 if (attr)
21163 {
21164 SYMBOL_LINE (sym) = DW_UNSND (attr);
21165 }
cb1df416 21166
edb3359d
DJ
21167 attr = dwarf2_attr (die,
21168 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21169 cu);
cb1df416
DJ
21170 if (attr)
21171 {
ecfb656c 21172 file_name_index file_index = (file_name_index) DW_UNSND (attr);
8c43009f 21173 struct file_entry *fe;
9a619af0 21174
ecfb656c
PA
21175 if (cu->line_header != NULL)
21176 fe = cu->line_header->file_name_at (file_index);
8c43009f
PA
21177 else
21178 fe = NULL;
21179
21180 if (fe == NULL)
b98664d3 21181 complaint (_("file index out of range"));
8c43009f
PA
21182 else
21183 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
21184 }
21185
c906108c
SS
21186 switch (die->tag)
21187 {
21188 case DW_TAG_label:
e142c38c 21189 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 21190 if (attr)
3e29f34a
MR
21191 {
21192 CORE_ADDR addr;
21193
21194 addr = attr_value_as_address (attr);
21195 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21196 SYMBOL_VALUE_ADDRESS (sym) = addr;
21197 }
0f5238ed
TT
21198 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21199 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 21200 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 21201 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
21202 break;
21203 case DW_TAG_subprogram:
21204 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21205 finish_block. */
f1e6e072 21206 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 21207 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
21208 if ((attr2 && (DW_UNSND (attr2) != 0))
21209 || cu->language == language_ada)
c906108c 21210 {
2cfa0c8d
JB
21211 /* Subprograms marked external are stored as a global symbol.
21212 Ada subprograms, whether marked external or not, are always
21213 stored as a global symbol, because we want to be able to
21214 access them globally. For instance, we want to be able
21215 to break on a nested subprogram without having to
21216 specify the context. */
e37fd15a 21217 list_to_add = &global_symbols;
c906108c
SS
21218 }
21219 else
21220 {
e37fd15a 21221 list_to_add = cu->list_in_scope;
c906108c
SS
21222 }
21223 break;
edb3359d
DJ
21224 case DW_TAG_inlined_subroutine:
21225 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21226 finish_block. */
f1e6e072 21227 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 21228 SYMBOL_INLINED (sym) = 1;
481860b3 21229 list_to_add = cu->list_in_scope;
edb3359d 21230 break;
34eaf542
TT
21231 case DW_TAG_template_value_param:
21232 suppress_add = 1;
21233 /* Fall through. */
72929c62 21234 case DW_TAG_constant:
c906108c 21235 case DW_TAG_variable:
254e6b9e 21236 case DW_TAG_member:
0963b4bd
MS
21237 /* Compilation with minimal debug info may result in
21238 variables with missing type entries. Change the
21239 misleading `void' type to something sensible. */
c906108c 21240 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
46a4882b 21241 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
64c50499 21242
e142c38c 21243 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
21244 /* In the case of DW_TAG_member, we should only be called for
21245 static const members. */
21246 if (die->tag == DW_TAG_member)
21247 {
3863f96c
DE
21248 /* dwarf2_add_field uses die_is_declaration,
21249 so we do the same. */
254e6b9e
DE
21250 gdb_assert (die_is_declaration (die, cu));
21251 gdb_assert (attr);
21252 }
c906108c
SS
21253 if (attr)
21254 {
e7c27a73 21255 dwarf2_const_value (attr, sym, cu);
e142c38c 21256 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 21257 if (!suppress_add)
34eaf542
TT
21258 {
21259 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 21260 list_to_add = &global_symbols;
34eaf542 21261 else
e37fd15a 21262 list_to_add = cu->list_in_scope;
34eaf542 21263 }
c906108c
SS
21264 break;
21265 }
e142c38c 21266 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
21267 if (attr)
21268 {
e7c27a73 21269 var_decode_location (attr, sym, cu);
e142c38c 21270 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
21271
21272 /* Fortran explicitly imports any global symbols to the local
21273 scope by DW_TAG_common_block. */
21274 if (cu->language == language_fortran && die->parent
21275 && die->parent->tag == DW_TAG_common_block)
21276 attr2 = NULL;
21277
caac4577
JG
21278 if (SYMBOL_CLASS (sym) == LOC_STATIC
21279 && SYMBOL_VALUE_ADDRESS (sym) == 0
21280 && !dwarf2_per_objfile->has_section_at_zero)
21281 {
21282 /* When a static variable is eliminated by the linker,
21283 the corresponding debug information is not stripped
21284 out, but the variable address is set to null;
21285 do not add such variables into symbol table. */
21286 }
21287 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 21288 {
f55ee35c
JK
21289 /* Workaround gfortran PR debug/40040 - it uses
21290 DW_AT_location for variables in -fPIC libraries which may
21291 get overriden by other libraries/executable and get
21292 a different address. Resolve it by the minimal symbol
21293 which may come from inferior's executable using copy
21294 relocation. Make this workaround only for gfortran as for
21295 other compilers GDB cannot guess the minimal symbol
21296 Fortran mangling kind. */
21297 if (cu->language == language_fortran && die->parent
21298 && die->parent->tag == DW_TAG_module
21299 && cu->producer
28586665 21300 && startswith (cu->producer, "GNU Fortran"))
f1e6e072 21301 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 21302
1c809c68
TT
21303 /* A variable with DW_AT_external is never static,
21304 but it may be block-scoped. */
21305 list_to_add = (cu->list_in_scope == &file_symbols
21306 ? &global_symbols : cu->list_in_scope);
1c809c68 21307 }
c906108c 21308 else
e37fd15a 21309 list_to_add = cu->list_in_scope;
c906108c
SS
21310 }
21311 else
21312 {
21313 /* We do not know the address of this symbol.
c5aa993b
JM
21314 If it is an external symbol and we have type information
21315 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21316 The address of the variable will then be determined from
21317 the minimal symbol table whenever the variable is
21318 referenced. */
e142c38c 21319 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
21320
21321 /* Fortran explicitly imports any global symbols to the local
21322 scope by DW_TAG_common_block. */
21323 if (cu->language == language_fortran && die->parent
21324 && die->parent->tag == DW_TAG_common_block)
21325 {
21326 /* SYMBOL_CLASS doesn't matter here because
21327 read_common_block is going to reset it. */
21328 if (!suppress_add)
21329 list_to_add = cu->list_in_scope;
21330 }
21331 else if (attr2 && (DW_UNSND (attr2) != 0)
21332 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 21333 {
0fe7935b
DJ
21334 /* A variable with DW_AT_external is never static, but it
21335 may be block-scoped. */
21336 list_to_add = (cu->list_in_scope == &file_symbols
21337 ? &global_symbols : cu->list_in_scope);
21338
f1e6e072 21339 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 21340 }
442ddf59
JK
21341 else if (!die_is_declaration (die, cu))
21342 {
21343 /* Use the default LOC_OPTIMIZED_OUT class. */
21344 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
21345 if (!suppress_add)
21346 list_to_add = cu->list_in_scope;
442ddf59 21347 }
c906108c
SS
21348 }
21349 break;
21350 case DW_TAG_formal_parameter:
edb3359d
DJ
21351 /* If we are inside a function, mark this as an argument. If
21352 not, we might be looking at an argument to an inlined function
21353 when we do not have enough information to show inlined frames;
21354 pretend it's a local variable in that case so that the user can
21355 still see it. */
edb0470b 21356 if (!outermost_context_p ()
edb3359d
DJ
21357 && context_stack[context_stack_depth - 1].name != NULL)
21358 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 21359 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
21360 if (attr)
21361 {
e7c27a73 21362 var_decode_location (attr, sym, cu);
c906108c 21363 }
e142c38c 21364 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
21365 if (attr)
21366 {
e7c27a73 21367 dwarf2_const_value (attr, sym, cu);
c906108c 21368 }
f346a30d 21369
e37fd15a 21370 list_to_add = cu->list_in_scope;
c906108c
SS
21371 break;
21372 case DW_TAG_unspecified_parameters:
21373 /* From varargs functions; gdb doesn't seem to have any
21374 interest in this information, so just ignore it for now.
21375 (FIXME?) */
21376 break;
34eaf542
TT
21377 case DW_TAG_template_type_param:
21378 suppress_add = 1;
21379 /* Fall through. */
c906108c 21380 case DW_TAG_class_type:
680b30c7 21381 case DW_TAG_interface_type:
c906108c
SS
21382 case DW_TAG_structure_type:
21383 case DW_TAG_union_type:
72019c9c 21384 case DW_TAG_set_type:
c906108c 21385 case DW_TAG_enumeration_type:
f1e6e072 21386 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 21387 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 21388
63d06c5c 21389 {
9c37b5ae 21390 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
63d06c5c
DC
21391 really ever be static objects: otherwise, if you try
21392 to, say, break of a class's method and you're in a file
21393 which doesn't mention that class, it won't work unless
21394 the check for all static symbols in lookup_symbol_aux
21395 saves you. See the OtherFileClass tests in
21396 gdb.c++/namespace.exp. */
21397
e37fd15a 21398 if (!suppress_add)
34eaf542 21399 {
34eaf542 21400 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 21401 && cu->language == language_cplus
34eaf542 21402 ? &global_symbols : cu->list_in_scope);
63d06c5c 21403
64382290 21404 /* The semantics of C++ state that "struct foo {
9c37b5ae 21405 ... }" also defines a typedef for "foo". */
64382290 21406 if (cu->language == language_cplus
45280282 21407 || cu->language == language_ada
c44af4eb
TT
21408 || cu->language == language_d
21409 || cu->language == language_rust)
64382290
TT
21410 {
21411 /* The symbol's name is already allocated along
21412 with this objfile, so we don't need to
21413 duplicate it for the type. */
21414 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21415 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21416 }
63d06c5c
DC
21417 }
21418 }
c906108c
SS
21419 break;
21420 case DW_TAG_typedef:
f1e6e072 21421 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 21422 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 21423 list_to_add = cu->list_in_scope;
63d06c5c 21424 break;
c906108c 21425 case DW_TAG_base_type:
a02abb62 21426 case DW_TAG_subrange_type:
f1e6e072 21427 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 21428 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 21429 list_to_add = cu->list_in_scope;
c906108c
SS
21430 break;
21431 case DW_TAG_enumerator:
e142c38c 21432 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
21433 if (attr)
21434 {
e7c27a73 21435 dwarf2_const_value (attr, sym, cu);
c906108c 21436 }
63d06c5c
DC
21437 {
21438 /* NOTE: carlton/2003-11-10: See comment above in the
21439 DW_TAG_class_type, etc. block. */
21440
e142c38c 21441 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 21442 && cu->language == language_cplus
e142c38c 21443 ? &global_symbols : cu->list_in_scope);
63d06c5c 21444 }
c906108c 21445 break;
74921315 21446 case DW_TAG_imported_declaration:
5c4e30ca 21447 case DW_TAG_namespace:
f1e6e072 21448 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 21449 list_to_add = &global_symbols;
5c4e30ca 21450 break;
530e8392
KB
21451 case DW_TAG_module:
21452 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21453 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21454 list_to_add = &global_symbols;
21455 break;
4357ac6c 21456 case DW_TAG_common_block:
f1e6e072 21457 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
21458 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21459 add_symbol_to_list (sym, cu->list_in_scope);
21460 break;
c906108c
SS
21461 default:
21462 /* Not a tag we recognize. Hopefully we aren't processing
21463 trash data, but since we must specifically ignore things
21464 we don't recognize, there is nothing else we should do at
0963b4bd 21465 this point. */
b98664d3 21466 complaint (_("unsupported tag: '%s'"),
4d3c2250 21467 dwarf_tag_name (die->tag));
c906108c
SS
21468 break;
21469 }
df8a16a1 21470
e37fd15a
SW
21471 if (suppress_add)
21472 {
21473 sym->hash_next = objfile->template_symbols;
21474 objfile->template_symbols = sym;
21475 list_to_add = NULL;
21476 }
21477
21478 if (list_to_add != NULL)
21479 add_symbol_to_list (sym, list_to_add);
21480
df8a16a1
DJ
21481 /* For the benefit of old versions of GCC, check for anonymous
21482 namespaces based on the demangled name. */
4d4ec4e5 21483 if (!cu->processing_has_namespace_info
94af9270 21484 && cu->language == language_cplus)
a10964d1 21485 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
21486 }
21487 return (sym);
21488}
21489
98bfdba5
PA
21490/* Given an attr with a DW_FORM_dataN value in host byte order,
21491 zero-extend it as appropriate for the symbol's type. The DWARF
21492 standard (v4) is not entirely clear about the meaning of using
21493 DW_FORM_dataN for a constant with a signed type, where the type is
21494 wider than the data. The conclusion of a discussion on the DWARF
21495 list was that this is unspecified. We choose to always zero-extend
21496 because that is the interpretation long in use by GCC. */
c906108c 21497
98bfdba5 21498static gdb_byte *
ff39bb5e 21499dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 21500 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 21501{
518817b3 21502 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
e17a4113
UW
21503 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21504 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
21505 LONGEST l = DW_UNSND (attr);
21506
21507 if (bits < sizeof (*value) * 8)
21508 {
21509 l &= ((LONGEST) 1 << bits) - 1;
21510 *value = l;
21511 }
21512 else if (bits == sizeof (*value) * 8)
21513 *value = l;
21514 else
21515 {
224c3ddb 21516 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
21517 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21518 return bytes;
21519 }
21520
21521 return NULL;
21522}
21523
21524/* Read a constant value from an attribute. Either set *VALUE, or if
21525 the value does not fit in *VALUE, set *BYTES - either already
21526 allocated on the objfile obstack, or newly allocated on OBSTACK,
21527 or, set *BATON, if we translated the constant to a location
21528 expression. */
21529
21530static void
ff39bb5e 21531dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
21532 const char *name, struct obstack *obstack,
21533 struct dwarf2_cu *cu,
d521ce57 21534 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
21535 struct dwarf2_locexpr_baton **baton)
21536{
518817b3 21537 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
98bfdba5 21538 struct comp_unit_head *cu_header = &cu->header;
c906108c 21539 struct dwarf_block *blk;
98bfdba5
PA
21540 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21541 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21542
21543 *value = 0;
21544 *bytes = NULL;
21545 *baton = NULL;
c906108c
SS
21546
21547 switch (attr->form)
21548 {
21549 case DW_FORM_addr:
3019eac3 21550 case DW_FORM_GNU_addr_index:
ac56253d 21551 {
ac56253d
TT
21552 gdb_byte *data;
21553
98bfdba5
PA
21554 if (TYPE_LENGTH (type) != cu_header->addr_size)
21555 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 21556 cu_header->addr_size,
98bfdba5 21557 TYPE_LENGTH (type));
ac56253d
TT
21558 /* Symbols of this form are reasonably rare, so we just
21559 piggyback on the existing location code rather than writing
21560 a new implementation of symbol_computed_ops. */
8d749320 21561 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
21562 (*baton)->per_cu = cu->per_cu;
21563 gdb_assert ((*baton)->per_cu);
ac56253d 21564
98bfdba5 21565 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 21566 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 21567 (*baton)->data = data;
ac56253d
TT
21568
21569 data[0] = DW_OP_addr;
21570 store_unsigned_integer (&data[1], cu_header->addr_size,
21571 byte_order, DW_ADDR (attr));
21572 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 21573 }
c906108c 21574 break;
4ac36638 21575 case DW_FORM_string:
93b5768b 21576 case DW_FORM_strp:
3019eac3 21577 case DW_FORM_GNU_str_index:
36586728 21578 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
21579 /* DW_STRING is already allocated on the objfile obstack, point
21580 directly to it. */
d521ce57 21581 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 21582 break;
c906108c
SS
21583 case DW_FORM_block1:
21584 case DW_FORM_block2:
21585 case DW_FORM_block4:
21586 case DW_FORM_block:
2dc7f7b3 21587 case DW_FORM_exprloc:
0224619f 21588 case DW_FORM_data16:
c906108c 21589 blk = DW_BLOCK (attr);
98bfdba5
PA
21590 if (TYPE_LENGTH (type) != blk->size)
21591 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21592 TYPE_LENGTH (type));
21593 *bytes = blk->data;
c906108c 21594 break;
2df3850c
JM
21595
21596 /* The DW_AT_const_value attributes are supposed to carry the
21597 symbol's value "represented as it would be on the target
21598 architecture." By the time we get here, it's already been
21599 converted to host endianness, so we just need to sign- or
21600 zero-extend it as appropriate. */
21601 case DW_FORM_data1:
3aef2284 21602 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 21603 break;
c906108c 21604 case DW_FORM_data2:
3aef2284 21605 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 21606 break;
c906108c 21607 case DW_FORM_data4:
3aef2284 21608 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 21609 break;
c906108c 21610 case DW_FORM_data8:
3aef2284 21611 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
21612 break;
21613
c906108c 21614 case DW_FORM_sdata:
663c44ac 21615 case DW_FORM_implicit_const:
98bfdba5 21616 *value = DW_SND (attr);
2df3850c
JM
21617 break;
21618
c906108c 21619 case DW_FORM_udata:
98bfdba5 21620 *value = DW_UNSND (attr);
c906108c 21621 break;
2df3850c 21622
c906108c 21623 default:
b98664d3 21624 complaint (_("unsupported const value attribute form: '%s'"),
4d3c2250 21625 dwarf_form_name (attr->form));
98bfdba5 21626 *value = 0;
c906108c
SS
21627 break;
21628 }
21629}
21630
2df3850c 21631
98bfdba5
PA
21632/* Copy constant value from an attribute to a symbol. */
21633
2df3850c 21634static void
ff39bb5e 21635dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 21636 struct dwarf2_cu *cu)
2df3850c 21637{
518817b3 21638 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
12df843f 21639 LONGEST value;
d521ce57 21640 const gdb_byte *bytes;
98bfdba5 21641 struct dwarf2_locexpr_baton *baton;
2df3850c 21642
98bfdba5
PA
21643 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21644 SYMBOL_PRINT_NAME (sym),
21645 &objfile->objfile_obstack, cu,
21646 &value, &bytes, &baton);
2df3850c 21647
98bfdba5
PA
21648 if (baton != NULL)
21649 {
98bfdba5 21650 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 21651 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
21652 }
21653 else if (bytes != NULL)
21654 {
21655 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 21656 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
21657 }
21658 else
21659 {
21660 SYMBOL_VALUE (sym) = value;
f1e6e072 21661 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 21662 }
2df3850c
JM
21663}
21664
c906108c
SS
21665/* Return the type of the die in question using its DW_AT_type attribute. */
21666
21667static struct type *
e7c27a73 21668die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 21669{
c906108c 21670 struct attribute *type_attr;
c906108c 21671
e142c38c 21672 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
21673 if (!type_attr)
21674 {
518817b3 21675 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 21676 /* A missing DW_AT_type represents a void type. */
518817b3 21677 return objfile_type (objfile)->builtin_void;
c906108c 21678 }
348e048f 21679
673bfd45 21680 return lookup_die_type (die, type_attr, cu);
c906108c
SS
21681}
21682
b4ba55a1
JB
21683/* True iff CU's producer generates GNAT Ada auxiliary information
21684 that allows to find parallel types through that information instead
21685 of having to do expensive parallel lookups by type name. */
21686
21687static int
21688need_gnat_info (struct dwarf2_cu *cu)
21689{
de4cb04a
JB
21690 /* Assume that the Ada compiler was GNAT, which always produces
21691 the auxiliary information. */
21692 return (cu->language == language_ada);
b4ba55a1
JB
21693}
21694
b4ba55a1
JB
21695/* Return the auxiliary type of the die in question using its
21696 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21697 attribute is not present. */
21698
21699static struct type *
21700die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21701{
b4ba55a1 21702 struct attribute *type_attr;
b4ba55a1
JB
21703
21704 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21705 if (!type_attr)
21706 return NULL;
21707
673bfd45 21708 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
21709}
21710
21711/* If DIE has a descriptive_type attribute, then set the TYPE's
21712 descriptive type accordingly. */
21713
21714static void
21715set_descriptive_type (struct type *type, struct die_info *die,
21716 struct dwarf2_cu *cu)
21717{
21718 struct type *descriptive_type = die_descriptive_type (die, cu);
21719
21720 if (descriptive_type)
21721 {
21722 ALLOCATE_GNAT_AUX_TYPE (type);
21723 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21724 }
21725}
21726
c906108c
SS
21727/* Return the containing type of the die in question using its
21728 DW_AT_containing_type attribute. */
21729
21730static struct type *
e7c27a73 21731die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 21732{
c906108c 21733 struct attribute *type_attr;
518817b3 21734 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 21735
e142c38c 21736 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
21737 if (!type_attr)
21738 error (_("Dwarf Error: Problem turning containing type into gdb type "
518817b3 21739 "[in module %s]"), objfile_name (objfile));
33ac96f0 21740
673bfd45 21741 return lookup_die_type (die, type_attr, cu);
c906108c
SS
21742}
21743
ac9ec31b
DE
21744/* Return an error marker type to use for the ill formed type in DIE/CU. */
21745
21746static struct type *
21747build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21748{
518817b3
SM
21749 struct dwarf2_per_objfile *dwarf2_per_objfile
21750 = cu->per_cu->dwarf2_per_objfile;
ac9ec31b
DE
21751 struct objfile *objfile = dwarf2_per_objfile->objfile;
21752 char *message, *saved;
21753
9d8780f0 21754 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
4262abfb 21755 objfile_name (objfile),
9d8780f0
SM
21756 sect_offset_str (cu->header.sect_off),
21757 sect_offset_str (die->sect_off));
224c3ddb
SM
21758 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21759 message, strlen (message));
ac9ec31b
DE
21760 xfree (message);
21761
19f392bc 21762 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
ac9ec31b
DE
21763}
21764
673bfd45 21765/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
21766 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21767 DW_AT_containing_type.
673bfd45
DE
21768 If there is no type substitute an error marker. */
21769
c906108c 21770static struct type *
ff39bb5e 21771lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 21772 struct dwarf2_cu *cu)
c906108c 21773{
518817b3
SM
21774 struct dwarf2_per_objfile *dwarf2_per_objfile
21775 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 21776 struct objfile *objfile = dwarf2_per_objfile->objfile;
f792889a
DJ
21777 struct type *this_type;
21778
ac9ec31b
DE
21779 gdb_assert (attr->name == DW_AT_type
21780 || attr->name == DW_AT_GNAT_descriptive_type
21781 || attr->name == DW_AT_containing_type);
21782
673bfd45
DE
21783 /* First see if we have it cached. */
21784
36586728
TT
21785 if (attr->form == DW_FORM_GNU_ref_alt)
21786 {
21787 struct dwarf2_per_cu_data *per_cu;
9c541725 21788 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
36586728 21789
ed2dc618
SM
21790 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21791 dwarf2_per_objfile);
9c541725 21792 this_type = get_die_type_at_offset (sect_off, per_cu);
36586728 21793 }
7771576e 21794 else if (attr_form_is_ref (attr))
673bfd45 21795 {
9c541725 21796 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
673bfd45 21797
9c541725 21798 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
673bfd45 21799 }
55f1336d 21800 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 21801 {
ac9ec31b 21802 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 21803
ac9ec31b 21804 return get_signatured_type (die, signature, cu);
673bfd45
DE
21805 }
21806 else
21807 {
b98664d3 21808 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
9d8780f0
SM
21809 " at %s [in module %s]"),
21810 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
4262abfb 21811 objfile_name (objfile));
ac9ec31b 21812 return build_error_marker_type (cu, die);
673bfd45
DE
21813 }
21814
21815 /* If not cached we need to read it in. */
21816
21817 if (this_type == NULL)
21818 {
ac9ec31b 21819 struct die_info *type_die = NULL;
673bfd45
DE
21820 struct dwarf2_cu *type_cu = cu;
21821
7771576e 21822 if (attr_form_is_ref (attr))
ac9ec31b
DE
21823 type_die = follow_die_ref (die, attr, &type_cu);
21824 if (type_die == NULL)
21825 return build_error_marker_type (cu, die);
21826 /* If we find the type now, it's probably because the type came
3019eac3
DE
21827 from an inter-CU reference and the type's CU got expanded before
21828 ours. */
ac9ec31b 21829 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
21830 }
21831
21832 /* If we still don't have a type use an error marker. */
21833
21834 if (this_type == NULL)
ac9ec31b 21835 return build_error_marker_type (cu, die);
673bfd45 21836
f792889a 21837 return this_type;
c906108c
SS
21838}
21839
673bfd45
DE
21840/* Return the type in DIE, CU.
21841 Returns NULL for invalid types.
21842
02142a6c 21843 This first does a lookup in die_type_hash,
673bfd45
DE
21844 and only reads the die in if necessary.
21845
21846 NOTE: This can be called when reading in partial or full symbols. */
21847
f792889a 21848static struct type *
e7c27a73 21849read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 21850{
f792889a
DJ
21851 struct type *this_type;
21852
21853 this_type = get_die_type (die, cu);
21854 if (this_type)
21855 return this_type;
21856
673bfd45
DE
21857 return read_type_die_1 (die, cu);
21858}
21859
21860/* Read the type in DIE, CU.
21861 Returns NULL for invalid types. */
21862
21863static struct type *
21864read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21865{
21866 struct type *this_type = NULL;
21867
c906108c
SS
21868 switch (die->tag)
21869 {
21870 case DW_TAG_class_type:
680b30c7 21871 case DW_TAG_interface_type:
c906108c
SS
21872 case DW_TAG_structure_type:
21873 case DW_TAG_union_type:
f792889a 21874 this_type = read_structure_type (die, cu);
c906108c
SS
21875 break;
21876 case DW_TAG_enumeration_type:
f792889a 21877 this_type = read_enumeration_type (die, cu);
c906108c
SS
21878 break;
21879 case DW_TAG_subprogram:
21880 case DW_TAG_subroutine_type:
edb3359d 21881 case DW_TAG_inlined_subroutine:
f792889a 21882 this_type = read_subroutine_type (die, cu);
c906108c
SS
21883 break;
21884 case DW_TAG_array_type:
f792889a 21885 this_type = read_array_type (die, cu);
c906108c 21886 break;
72019c9c 21887 case DW_TAG_set_type:
f792889a 21888 this_type = read_set_type (die, cu);
72019c9c 21889 break;
c906108c 21890 case DW_TAG_pointer_type:
f792889a 21891 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
21892 break;
21893 case DW_TAG_ptr_to_member_type:
f792889a 21894 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
21895 break;
21896 case DW_TAG_reference_type:
4297a3f0
AV
21897 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21898 break;
21899 case DW_TAG_rvalue_reference_type:
21900 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
c906108c
SS
21901 break;
21902 case DW_TAG_const_type:
f792889a 21903 this_type = read_tag_const_type (die, cu);
c906108c
SS
21904 break;
21905 case DW_TAG_volatile_type:
f792889a 21906 this_type = read_tag_volatile_type (die, cu);
c906108c 21907 break;
06d66ee9
TT
21908 case DW_TAG_restrict_type:
21909 this_type = read_tag_restrict_type (die, cu);
21910 break;
c906108c 21911 case DW_TAG_string_type:
f792889a 21912 this_type = read_tag_string_type (die, cu);
c906108c
SS
21913 break;
21914 case DW_TAG_typedef:
f792889a 21915 this_type = read_typedef (die, cu);
c906108c 21916 break;
a02abb62 21917 case DW_TAG_subrange_type:
f792889a 21918 this_type = read_subrange_type (die, cu);
a02abb62 21919 break;
c906108c 21920 case DW_TAG_base_type:
f792889a 21921 this_type = read_base_type (die, cu);
c906108c 21922 break;
81a17f79 21923 case DW_TAG_unspecified_type:
f792889a 21924 this_type = read_unspecified_type (die, cu);
81a17f79 21925 break;
0114d602
DJ
21926 case DW_TAG_namespace:
21927 this_type = read_namespace_type (die, cu);
21928 break;
f55ee35c
JK
21929 case DW_TAG_module:
21930 this_type = read_module_type (die, cu);
21931 break;
a2c2acaf
MW
21932 case DW_TAG_atomic_type:
21933 this_type = read_tag_atomic_type (die, cu);
21934 break;
c906108c 21935 default:
b98664d3 21936 complaint (_("unexpected tag in read_type_die: '%s'"),
4d3c2250 21937 dwarf_tag_name (die->tag));
c906108c
SS
21938 break;
21939 }
63d06c5c 21940
f792889a 21941 return this_type;
63d06c5c
DC
21942}
21943
abc72ce4
DE
21944/* See if we can figure out if the class lives in a namespace. We do
21945 this by looking for a member function; its demangled name will
21946 contain namespace info, if there is any.
21947 Return the computed name or NULL.
21948 Space for the result is allocated on the objfile's obstack.
21949 This is the full-die version of guess_partial_die_structure_name.
21950 In this case we know DIE has no useful parent. */
21951
21952static char *
21953guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21954{
21955 struct die_info *spec_die;
21956 struct dwarf2_cu *spec_cu;
21957 struct die_info *child;
518817b3 21958 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
abc72ce4
DE
21959
21960 spec_cu = cu;
21961 spec_die = die_specification (die, &spec_cu);
21962 if (spec_die != NULL)
21963 {
21964 die = spec_die;
21965 cu = spec_cu;
21966 }
21967
21968 for (child = die->child;
21969 child != NULL;
21970 child = child->sibling)
21971 {
21972 if (child->tag == DW_TAG_subprogram)
21973 {
73b9be8b 21974 const char *linkage_name = dw2_linkage_name (child, cu);
abc72ce4 21975
7d45c7c3 21976 if (linkage_name != NULL)
abc72ce4
DE
21977 {
21978 char *actual_name
21979 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 21980 linkage_name);
abc72ce4
DE
21981 char *name = NULL;
21982
21983 if (actual_name != NULL)
21984 {
15d034d0 21985 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
21986
21987 if (die_name != NULL
21988 && strcmp (die_name, actual_name) != 0)
21989 {
21990 /* Strip off the class name from the full name.
21991 We want the prefix. */
21992 int die_name_len = strlen (die_name);
21993 int actual_name_len = strlen (actual_name);
21994
21995 /* Test for '::' as a sanity check. */
21996 if (actual_name_len > die_name_len + 2
3e43a32a
MS
21997 && actual_name[actual_name_len
21998 - die_name_len - 1] == ':')
224c3ddb 21999 name = (char *) obstack_copy0 (
e3b94546 22000 &objfile->per_bfd->storage_obstack,
224c3ddb 22001 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
22002 }
22003 }
22004 xfree (actual_name);
22005 return name;
22006 }
22007 }
22008 }
22009
22010 return NULL;
22011}
22012
96408a79
SA
22013/* GCC might emit a nameless typedef that has a linkage name. Determine the
22014 prefix part in such case. See
22015 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22016
a121b7c1 22017static const char *
96408a79
SA
22018anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22019{
22020 struct attribute *attr;
e6a959d6 22021 const char *base;
96408a79
SA
22022
22023 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22024 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22025 return NULL;
22026
7d45c7c3 22027 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
22028 return NULL;
22029
73b9be8b 22030 attr = dw2_linkage_name_attr (die, cu);
96408a79
SA
22031 if (attr == NULL || DW_STRING (attr) == NULL)
22032 return NULL;
22033
22034 /* dwarf2_name had to be already called. */
22035 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22036
22037 /* Strip the base name, keep any leading namespaces/classes. */
22038 base = strrchr (DW_STRING (attr), ':');
22039 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22040 return "";
22041
518817b3 22042 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
e3b94546 22043 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
224c3ddb
SM
22044 DW_STRING (attr),
22045 &base[-1] - DW_STRING (attr));
96408a79
SA
22046}
22047
fdde2d81 22048/* Return the name of the namespace/class that DIE is defined within,
0114d602 22049 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 22050
0114d602
DJ
22051 For example, if we're within the method foo() in the following
22052 code:
22053
22054 namespace N {
22055 class C {
22056 void foo () {
22057 }
22058 };
22059 }
22060
22061 then determine_prefix on foo's die will return "N::C". */
fdde2d81 22062
0d5cff50 22063static const char *
e142c38c 22064determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 22065{
518817b3
SM
22066 struct dwarf2_per_objfile *dwarf2_per_objfile
22067 = cu->per_cu->dwarf2_per_objfile;
0114d602
DJ
22068 struct die_info *parent, *spec_die;
22069 struct dwarf2_cu *spec_cu;
22070 struct type *parent_type;
a121b7c1 22071 const char *retval;
63d06c5c 22072
9c37b5ae 22073 if (cu->language != language_cplus
c44af4eb
TT
22074 && cu->language != language_fortran && cu->language != language_d
22075 && cu->language != language_rust)
0114d602
DJ
22076 return "";
22077
96408a79
SA
22078 retval = anonymous_struct_prefix (die, cu);
22079 if (retval)
22080 return retval;
22081
0114d602
DJ
22082 /* We have to be careful in the presence of DW_AT_specification.
22083 For example, with GCC 3.4, given the code
22084
22085 namespace N {
22086 void foo() {
22087 // Definition of N::foo.
22088 }
22089 }
22090
22091 then we'll have a tree of DIEs like this:
22092
22093 1: DW_TAG_compile_unit
22094 2: DW_TAG_namespace // N
22095 3: DW_TAG_subprogram // declaration of N::foo
22096 4: DW_TAG_subprogram // definition of N::foo
22097 DW_AT_specification // refers to die #3
22098
22099 Thus, when processing die #4, we have to pretend that we're in
22100 the context of its DW_AT_specification, namely the contex of die
22101 #3. */
22102 spec_cu = cu;
22103 spec_die = die_specification (die, &spec_cu);
22104 if (spec_die == NULL)
22105 parent = die->parent;
22106 else
63d06c5c 22107 {
0114d602
DJ
22108 parent = spec_die->parent;
22109 cu = spec_cu;
63d06c5c 22110 }
0114d602
DJ
22111
22112 if (parent == NULL)
22113 return "";
98bfdba5
PA
22114 else if (parent->building_fullname)
22115 {
22116 const char *name;
22117 const char *parent_name;
22118
22119 /* It has been seen on RealView 2.2 built binaries,
22120 DW_TAG_template_type_param types actually _defined_ as
22121 children of the parent class:
22122
22123 enum E {};
22124 template class <class Enum> Class{};
22125 Class<enum E> class_e;
22126
22127 1: DW_TAG_class_type (Class)
22128 2: DW_TAG_enumeration_type (E)
22129 3: DW_TAG_enumerator (enum1:0)
22130 3: DW_TAG_enumerator (enum2:1)
22131 ...
22132 2: DW_TAG_template_type_param
22133 DW_AT_type DW_FORM_ref_udata (E)
22134
22135 Besides being broken debug info, it can put GDB into an
22136 infinite loop. Consider:
22137
22138 When we're building the full name for Class<E>, we'll start
22139 at Class, and go look over its template type parameters,
22140 finding E. We'll then try to build the full name of E, and
22141 reach here. We're now trying to build the full name of E,
22142 and look over the parent DIE for containing scope. In the
22143 broken case, if we followed the parent DIE of E, we'd again
22144 find Class, and once again go look at its template type
22145 arguments, etc., etc. Simply don't consider such parent die
22146 as source-level parent of this die (it can't be, the language
22147 doesn't allow it), and break the loop here. */
22148 name = dwarf2_name (die, cu);
22149 parent_name = dwarf2_name (parent, cu);
b98664d3 22150 complaint (_("template param type '%s' defined within parent '%s'"),
98bfdba5
PA
22151 name ? name : "<unknown>",
22152 parent_name ? parent_name : "<unknown>");
22153 return "";
22154 }
63d06c5c 22155 else
0114d602
DJ
22156 switch (parent->tag)
22157 {
63d06c5c 22158 case DW_TAG_namespace:
0114d602 22159 parent_type = read_type_die (parent, cu);
acebe513
UW
22160 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22161 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22162 Work around this problem here. */
22163 if (cu->language == language_cplus
e86ca25f 22164 && strcmp (TYPE_NAME (parent_type), "::") == 0)
acebe513 22165 return "";
0114d602 22166 /* We give a name to even anonymous namespaces. */
e86ca25f 22167 return TYPE_NAME (parent_type);
63d06c5c 22168 case DW_TAG_class_type:
680b30c7 22169 case DW_TAG_interface_type:
63d06c5c 22170 case DW_TAG_structure_type:
0114d602 22171 case DW_TAG_union_type:
f55ee35c 22172 case DW_TAG_module:
0114d602 22173 parent_type = read_type_die (parent, cu);
e86ca25f
TT
22174 if (TYPE_NAME (parent_type) != NULL)
22175 return TYPE_NAME (parent_type);
0114d602
DJ
22176 else
22177 /* An anonymous structure is only allowed non-static data
22178 members; no typedefs, no member functions, et cetera.
22179 So it does not need a prefix. */
22180 return "";
abc72ce4 22181 case DW_TAG_compile_unit:
95554aad 22182 case DW_TAG_partial_unit:
abc72ce4
DE
22183 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22184 if (cu->language == language_cplus
8b70b953 22185 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
22186 && die->child != NULL
22187 && (die->tag == DW_TAG_class_type
22188 || die->tag == DW_TAG_structure_type
22189 || die->tag == DW_TAG_union_type))
22190 {
22191 char *name = guess_full_die_structure_name (die, cu);
22192 if (name != NULL)
22193 return name;
22194 }
22195 return "";
3d567982
TT
22196 case DW_TAG_enumeration_type:
22197 parent_type = read_type_die (parent, cu);
22198 if (TYPE_DECLARED_CLASS (parent_type))
22199 {
e86ca25f
TT
22200 if (TYPE_NAME (parent_type) != NULL)
22201 return TYPE_NAME (parent_type);
3d567982
TT
22202 return "";
22203 }
22204 /* Fall through. */
63d06c5c 22205 default:
8176b9b8 22206 return determine_prefix (parent, cu);
63d06c5c 22207 }
63d06c5c
DC
22208}
22209
3e43a32a
MS
22210/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22211 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22212 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22213 an obconcat, otherwise allocate storage for the result. The CU argument is
22214 used to determine the language and hence, the appropriate separator. */
987504bb 22215
f55ee35c 22216#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
22217
22218static char *
f55ee35c
JK
22219typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22220 int physname, struct dwarf2_cu *cu)
63d06c5c 22221{
f55ee35c 22222 const char *lead = "";
5c315b68 22223 const char *sep;
63d06c5c 22224
3e43a32a
MS
22225 if (suffix == NULL || suffix[0] == '\0'
22226 || prefix == NULL || prefix[0] == '\0')
987504bb 22227 sep = "";
45280282
IB
22228 else if (cu->language == language_d)
22229 {
22230 /* For D, the 'main' function could be defined in any module, but it
22231 should never be prefixed. */
22232 if (strcmp (suffix, "D main") == 0)
22233 {
22234 prefix = "";
22235 sep = "";
22236 }
22237 else
22238 sep = ".";
22239 }
f55ee35c
JK
22240 else if (cu->language == language_fortran && physname)
22241 {
22242 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22243 DW_AT_MIPS_linkage_name is preferred and used instead. */
22244
22245 lead = "__";
22246 sep = "_MOD_";
22247 }
987504bb
JJ
22248 else
22249 sep = "::";
63d06c5c 22250
6dd47d34
DE
22251 if (prefix == NULL)
22252 prefix = "";
22253 if (suffix == NULL)
22254 suffix = "";
22255
987504bb
JJ
22256 if (obs == NULL)
22257 {
3e43a32a 22258 char *retval
224c3ddb
SM
22259 = ((char *)
22260 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 22261
f55ee35c
JK
22262 strcpy (retval, lead);
22263 strcat (retval, prefix);
6dd47d34
DE
22264 strcat (retval, sep);
22265 strcat (retval, suffix);
63d06c5c
DC
22266 return retval;
22267 }
987504bb
JJ
22268 else
22269 {
22270 /* We have an obstack. */
f55ee35c 22271 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 22272 }
63d06c5c
DC
22273}
22274
c906108c
SS
22275/* Return sibling of die, NULL if no sibling. */
22276
f9aca02d 22277static struct die_info *
fba45db2 22278sibling_die (struct die_info *die)
c906108c 22279{
639d11d3 22280 return die->sibling;
c906108c
SS
22281}
22282
71c25dea
TT
22283/* Get name of a die, return NULL if not found. */
22284
15d034d0
TT
22285static const char *
22286dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
22287 struct obstack *obstack)
22288{
22289 if (name && cu->language == language_cplus)
22290 {
2f408ecb 22291 std::string canon_name = cp_canonicalize_string (name);
71c25dea 22292
2f408ecb 22293 if (!canon_name.empty ())
71c25dea 22294 {
2f408ecb
PA
22295 if (canon_name != name)
22296 name = (const char *) obstack_copy0 (obstack,
22297 canon_name.c_str (),
22298 canon_name.length ());
71c25dea
TT
22299 }
22300 }
22301
22302 return name;
c906108c
SS
22303}
22304
96553a0c
DE
22305/* Get name of a die, return NULL if not found.
22306 Anonymous namespaces are converted to their magic string. */
9219021c 22307
15d034d0 22308static const char *
e142c38c 22309dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
22310{
22311 struct attribute *attr;
518817b3 22312 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9219021c 22313
e142c38c 22314 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 22315 if ((!attr || !DW_STRING (attr))
96553a0c 22316 && die->tag != DW_TAG_namespace
53832f31
TT
22317 && die->tag != DW_TAG_class_type
22318 && die->tag != DW_TAG_interface_type
22319 && die->tag != DW_TAG_structure_type
22320 && die->tag != DW_TAG_union_type)
71c25dea
TT
22321 return NULL;
22322
22323 switch (die->tag)
22324 {
22325 case DW_TAG_compile_unit:
95554aad 22326 case DW_TAG_partial_unit:
71c25dea
TT
22327 /* Compilation units have a DW_AT_name that is a filename, not
22328 a source language identifier. */
22329 case DW_TAG_enumeration_type:
22330 case DW_TAG_enumerator:
22331 /* These tags always have simple identifiers already; no need
22332 to canonicalize them. */
22333 return DW_STRING (attr);
907af001 22334
96553a0c
DE
22335 case DW_TAG_namespace:
22336 if (attr != NULL && DW_STRING (attr) != NULL)
22337 return DW_STRING (attr);
22338 return CP_ANONYMOUS_NAMESPACE_STR;
22339
907af001
UW
22340 case DW_TAG_class_type:
22341 case DW_TAG_interface_type:
22342 case DW_TAG_structure_type:
22343 case DW_TAG_union_type:
22344 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22345 structures or unions. These were of the form "._%d" in GCC 4.1,
22346 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22347 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 22348 if (attr && DW_STRING (attr)
61012eef
GB
22349 && (startswith (DW_STRING (attr), "._")
22350 || startswith (DW_STRING (attr), "<anonymous")))
907af001 22351 return NULL;
53832f31
TT
22352
22353 /* GCC might emit a nameless typedef that has a linkage name. See
22354 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22355 if (!attr || DW_STRING (attr) == NULL)
22356 {
df5c6c50 22357 char *demangled = NULL;
53832f31 22358
73b9be8b 22359 attr = dw2_linkage_name_attr (die, cu);
53832f31
TT
22360 if (attr == NULL || DW_STRING (attr) == NULL)
22361 return NULL;
22362
df5c6c50
JK
22363 /* Avoid demangling DW_STRING (attr) the second time on a second
22364 call for the same DIE. */
22365 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 22366 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
22367
22368 if (demangled)
22369 {
e6a959d6 22370 const char *base;
96408a79 22371
53832f31 22372 /* FIXME: we already did this for the partial symbol... */
34a68019 22373 DW_STRING (attr)
224c3ddb 22374 = ((const char *)
e3b94546 22375 obstack_copy0 (&objfile->per_bfd->storage_obstack,
224c3ddb 22376 demangled, strlen (demangled)));
53832f31
TT
22377 DW_STRING_IS_CANONICAL (attr) = 1;
22378 xfree (demangled);
96408a79
SA
22379
22380 /* Strip any leading namespaces/classes, keep only the base name.
22381 DW_AT_name for named DIEs does not contain the prefixes. */
22382 base = strrchr (DW_STRING (attr), ':');
22383 if (base && base > DW_STRING (attr) && base[-1] == ':')
22384 return &base[1];
22385 else
22386 return DW_STRING (attr);
53832f31
TT
22387 }
22388 }
907af001
UW
22389 break;
22390
71c25dea 22391 default:
907af001
UW
22392 break;
22393 }
22394
22395 if (!DW_STRING_IS_CANONICAL (attr))
22396 {
22397 DW_STRING (attr)
22398 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
e3b94546 22399 &objfile->per_bfd->storage_obstack);
907af001 22400 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 22401 }
907af001 22402 return DW_STRING (attr);
9219021c
DC
22403}
22404
22405/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
22406 is none. *EXT_CU is the CU containing DIE on input, and the CU
22407 containing the return value on output. */
9219021c
DC
22408
22409static struct die_info *
f2f0e013 22410dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
22411{
22412 struct attribute *attr;
9219021c 22413
f2f0e013 22414 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
22415 if (attr == NULL)
22416 return NULL;
22417
f2f0e013 22418 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
22419}
22420
c906108c
SS
22421/* Convert a DIE tag into its string name. */
22422
f39c6ffd 22423static const char *
aa1ee363 22424dwarf_tag_name (unsigned tag)
c906108c 22425{
f39c6ffd
TT
22426 const char *name = get_DW_TAG_name (tag);
22427
22428 if (name == NULL)
22429 return "DW_TAG_<unknown>";
22430
22431 return name;
c906108c
SS
22432}
22433
22434/* Convert a DWARF attribute code into its string name. */
22435
f39c6ffd 22436static const char *
aa1ee363 22437dwarf_attr_name (unsigned attr)
c906108c 22438{
f39c6ffd
TT
22439 const char *name;
22440
c764a876 22441#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
22442 if (attr == DW_AT_MIPS_fde)
22443 return "DW_AT_MIPS_fde";
22444#else
22445 if (attr == DW_AT_HP_block_index)
22446 return "DW_AT_HP_block_index";
c764a876 22447#endif
f39c6ffd
TT
22448
22449 name = get_DW_AT_name (attr);
22450
22451 if (name == NULL)
22452 return "DW_AT_<unknown>";
22453
22454 return name;
c906108c
SS
22455}
22456
22457/* Convert a DWARF value form code into its string name. */
22458
f39c6ffd 22459static const char *
aa1ee363 22460dwarf_form_name (unsigned form)
c906108c 22461{
f39c6ffd
TT
22462 const char *name = get_DW_FORM_name (form);
22463
22464 if (name == NULL)
22465 return "DW_FORM_<unknown>";
22466
22467 return name;
c906108c
SS
22468}
22469
a121b7c1 22470static const char *
fba45db2 22471dwarf_bool_name (unsigned mybool)
c906108c
SS
22472{
22473 if (mybool)
22474 return "TRUE";
22475 else
22476 return "FALSE";
22477}
22478
22479/* Convert a DWARF type code into its string name. */
22480
f39c6ffd 22481static const char *
aa1ee363 22482dwarf_type_encoding_name (unsigned enc)
c906108c 22483{
f39c6ffd 22484 const char *name = get_DW_ATE_name (enc);
c906108c 22485
f39c6ffd
TT
22486 if (name == NULL)
22487 return "DW_ATE_<unknown>";
c906108c 22488
f39c6ffd 22489 return name;
c906108c 22490}
c906108c 22491
f9aca02d 22492static void
d97bc12b 22493dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
22494{
22495 unsigned int i;
22496
d97bc12b 22497 print_spaces (indent, f);
9d8780f0 22498 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
9c541725 22499 dwarf_tag_name (die->tag), die->abbrev,
9d8780f0 22500 sect_offset_str (die->sect_off));
d97bc12b
DE
22501
22502 if (die->parent != NULL)
22503 {
22504 print_spaces (indent, f);
9d8780f0
SM
22505 fprintf_unfiltered (f, " parent at offset: %s\n",
22506 sect_offset_str (die->parent->sect_off));
d97bc12b
DE
22507 }
22508
22509 print_spaces (indent, f);
22510 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 22511 dwarf_bool_name (die->child != NULL));
c906108c 22512
d97bc12b
DE
22513 print_spaces (indent, f);
22514 fprintf_unfiltered (f, " attributes:\n");
22515
c906108c
SS
22516 for (i = 0; i < die->num_attrs; ++i)
22517 {
d97bc12b
DE
22518 print_spaces (indent, f);
22519 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
22520 dwarf_attr_name (die->attrs[i].name),
22521 dwarf_form_name (die->attrs[i].form));
d97bc12b 22522
c906108c
SS
22523 switch (die->attrs[i].form)
22524 {
c906108c 22525 case DW_FORM_addr:
3019eac3 22526 case DW_FORM_GNU_addr_index:
d97bc12b 22527 fprintf_unfiltered (f, "address: ");
5af949e3 22528 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
22529 break;
22530 case DW_FORM_block2:
22531 case DW_FORM_block4:
22532 case DW_FORM_block:
22533 case DW_FORM_block1:
56eb65bd
SP
22534 fprintf_unfiltered (f, "block: size %s",
22535 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 22536 break;
2dc7f7b3 22537 case DW_FORM_exprloc:
56eb65bd
SP
22538 fprintf_unfiltered (f, "expression: size %s",
22539 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 22540 break;
0224619f
JK
22541 case DW_FORM_data16:
22542 fprintf_unfiltered (f, "constant of 16 bytes");
22543 break;
4568ecf9
DE
22544 case DW_FORM_ref_addr:
22545 fprintf_unfiltered (f, "ref address: ");
22546 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22547 break;
36586728
TT
22548 case DW_FORM_GNU_ref_alt:
22549 fprintf_unfiltered (f, "alt ref address: ");
22550 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22551 break;
10b3939b
DJ
22552 case DW_FORM_ref1:
22553 case DW_FORM_ref2:
22554 case DW_FORM_ref4:
4568ecf9
DE
22555 case DW_FORM_ref8:
22556 case DW_FORM_ref_udata:
d97bc12b 22557 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 22558 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 22559 break;
c906108c
SS
22560 case DW_FORM_data1:
22561 case DW_FORM_data2:
22562 case DW_FORM_data4:
ce5d95e1 22563 case DW_FORM_data8:
c906108c
SS
22564 case DW_FORM_udata:
22565 case DW_FORM_sdata:
43bbcdc2
PH
22566 fprintf_unfiltered (f, "constant: %s",
22567 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 22568 break;
2dc7f7b3
TT
22569 case DW_FORM_sec_offset:
22570 fprintf_unfiltered (f, "section offset: %s",
22571 pulongest (DW_UNSND (&die->attrs[i])));
22572 break;
55f1336d 22573 case DW_FORM_ref_sig8:
ac9ec31b
DE
22574 fprintf_unfiltered (f, "signature: %s",
22575 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 22576 break;
c906108c 22577 case DW_FORM_string:
4bdf3d34 22578 case DW_FORM_strp:
43988095 22579 case DW_FORM_line_strp:
3019eac3 22580 case DW_FORM_GNU_str_index:
36586728 22581 case DW_FORM_GNU_strp_alt:
8285870a 22582 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 22583 DW_STRING (&die->attrs[i])
8285870a
JK
22584 ? DW_STRING (&die->attrs[i]) : "",
22585 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
22586 break;
22587 case DW_FORM_flag:
22588 if (DW_UNSND (&die->attrs[i]))
d97bc12b 22589 fprintf_unfiltered (f, "flag: TRUE");
c906108c 22590 else
d97bc12b 22591 fprintf_unfiltered (f, "flag: FALSE");
c906108c 22592 break;
2dc7f7b3
TT
22593 case DW_FORM_flag_present:
22594 fprintf_unfiltered (f, "flag: TRUE");
22595 break;
a8329558 22596 case DW_FORM_indirect:
0963b4bd
MS
22597 /* The reader will have reduced the indirect form to
22598 the "base form" so this form should not occur. */
3e43a32a
MS
22599 fprintf_unfiltered (f,
22600 "unexpected attribute form: DW_FORM_indirect");
a8329558 22601 break;
663c44ac
JK
22602 case DW_FORM_implicit_const:
22603 fprintf_unfiltered (f, "constant: %s",
22604 plongest (DW_SND (&die->attrs[i])));
22605 break;
c906108c 22606 default:
d97bc12b 22607 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 22608 die->attrs[i].form);
d97bc12b 22609 break;
c906108c 22610 }
d97bc12b 22611 fprintf_unfiltered (f, "\n");
c906108c
SS
22612 }
22613}
22614
f9aca02d 22615static void
d97bc12b 22616dump_die_for_error (struct die_info *die)
c906108c 22617{
d97bc12b
DE
22618 dump_die_shallow (gdb_stderr, 0, die);
22619}
22620
22621static void
22622dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22623{
22624 int indent = level * 4;
22625
22626 gdb_assert (die != NULL);
22627
22628 if (level >= max_level)
22629 return;
22630
22631 dump_die_shallow (f, indent, die);
22632
22633 if (die->child != NULL)
c906108c 22634 {
d97bc12b
DE
22635 print_spaces (indent, f);
22636 fprintf_unfiltered (f, " Children:");
22637 if (level + 1 < max_level)
22638 {
22639 fprintf_unfiltered (f, "\n");
22640 dump_die_1 (f, level + 1, max_level, die->child);
22641 }
22642 else
22643 {
3e43a32a
MS
22644 fprintf_unfiltered (f,
22645 " [not printed, max nesting level reached]\n");
d97bc12b
DE
22646 }
22647 }
22648
22649 if (die->sibling != NULL && level > 0)
22650 {
22651 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
22652 }
22653}
22654
d97bc12b
DE
22655/* This is called from the pdie macro in gdbinit.in.
22656 It's not static so gcc will keep a copy callable from gdb. */
22657
22658void
22659dump_die (struct die_info *die, int max_level)
22660{
22661 dump_die_1 (gdb_stdlog, 0, max_level, die);
22662}
22663
f9aca02d 22664static void
51545339 22665store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 22666{
51545339 22667 void **slot;
c906108c 22668
9c541725
PA
22669 slot = htab_find_slot_with_hash (cu->die_hash, die,
22670 to_underlying (die->sect_off),
b64f50a1 22671 INSERT);
51545339
DJ
22672
22673 *slot = die;
c906108c
SS
22674}
22675
b64f50a1
JK
22676/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22677 required kind. */
22678
22679static sect_offset
ff39bb5e 22680dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 22681{
7771576e 22682 if (attr_form_is_ref (attr))
9c541725 22683 return (sect_offset) DW_UNSND (attr);
93311388 22684
b98664d3 22685 complaint (_("unsupported die ref attribute form: '%s'"),
93311388 22686 dwarf_form_name (attr->form));
9c541725 22687 return {};
c906108c
SS
22688}
22689
43bbcdc2
PH
22690/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22691 * the value held by the attribute is not constant. */
a02abb62 22692
43bbcdc2 22693static LONGEST
ff39bb5e 22694dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62 22695{
663c44ac 22696 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
a02abb62
JB
22697 return DW_SND (attr);
22698 else if (attr->form == DW_FORM_udata
22699 || attr->form == DW_FORM_data1
22700 || attr->form == DW_FORM_data2
22701 || attr->form == DW_FORM_data4
22702 || attr->form == DW_FORM_data8)
22703 return DW_UNSND (attr);
22704 else
22705 {
0224619f 22706 /* For DW_FORM_data16 see attr_form_is_constant. */
b98664d3 22707 complaint (_("Attribute value is not a constant (%s)"),
a02abb62
JB
22708 dwarf_form_name (attr->form));
22709 return default_value;
22710 }
22711}
22712
348e048f
DE
22713/* Follow reference or signature attribute ATTR of SRC_DIE.
22714 On entry *REF_CU is the CU of SRC_DIE.
22715 On exit *REF_CU is the CU of the result. */
22716
22717static struct die_info *
ff39bb5e 22718follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
22719 struct dwarf2_cu **ref_cu)
22720{
22721 struct die_info *die;
22722
7771576e 22723 if (attr_form_is_ref (attr))
348e048f 22724 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 22725 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
22726 die = follow_die_sig (src_die, attr, ref_cu);
22727 else
22728 {
22729 dump_die_for_error (src_die);
22730 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
518817b3 22731 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
348e048f
DE
22732 }
22733
22734 return die;
03dd20cc
DJ
22735}
22736
5c631832 22737/* Follow reference OFFSET.
673bfd45
DE
22738 On entry *REF_CU is the CU of the source die referencing OFFSET.
22739 On exit *REF_CU is the CU of the result.
22740 Returns NULL if OFFSET is invalid. */
f504f079 22741
f9aca02d 22742static struct die_info *
9c541725 22743follow_die_offset (sect_offset sect_off, int offset_in_dwz,
36586728 22744 struct dwarf2_cu **ref_cu)
c906108c 22745{
10b3939b 22746 struct die_info temp_die;
f2f0e013 22747 struct dwarf2_cu *target_cu, *cu = *ref_cu;
518817b3
SM
22748 struct dwarf2_per_objfile *dwarf2_per_objfile
22749 = cu->per_cu->dwarf2_per_objfile;
10b3939b 22750
348e048f
DE
22751 gdb_assert (cu->per_cu != NULL);
22752
98bfdba5
PA
22753 target_cu = cu;
22754
3019eac3 22755 if (cu->per_cu->is_debug_types)
348e048f
DE
22756 {
22757 /* .debug_types CUs cannot reference anything outside their CU.
22758 If they need to, they have to reference a signatured type via
55f1336d 22759 DW_FORM_ref_sig8. */
9c541725 22760 if (!offset_in_cu_p (&cu->header, sect_off))
5c631832 22761 return NULL;
348e048f 22762 }
36586728 22763 else if (offset_in_dwz != cu->per_cu->is_dwz
9c541725 22764 || !offset_in_cu_p (&cu->header, sect_off))
10b3939b
DJ
22765 {
22766 struct dwarf2_per_cu_data *per_cu;
9a619af0 22767
9c541725 22768 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
ed2dc618 22769 dwarf2_per_objfile);
03dd20cc
DJ
22770
22771 /* If necessary, add it to the queue and load its DIEs. */
95554aad 22772 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
58f0c718 22773 load_full_comp_unit (per_cu, false, cu->language);
03dd20cc 22774
10b3939b
DJ
22775 target_cu = per_cu->cu;
22776 }
98bfdba5
PA
22777 else if (cu->dies == NULL)
22778 {
22779 /* We're loading full DIEs during partial symbol reading. */
22780 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
58f0c718 22781 load_full_comp_unit (cu->per_cu, false, language_minimal);
98bfdba5 22782 }
c906108c 22783
f2f0e013 22784 *ref_cu = target_cu;
9c541725 22785 temp_die.sect_off = sect_off;
9a3c8263 22786 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
9c541725
PA
22787 &temp_die,
22788 to_underlying (sect_off));
5c631832 22789}
10b3939b 22790
5c631832
JK
22791/* Follow reference attribute ATTR of SRC_DIE.
22792 On entry *REF_CU is the CU of SRC_DIE.
22793 On exit *REF_CU is the CU of the result. */
22794
22795static struct die_info *
ff39bb5e 22796follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
22797 struct dwarf2_cu **ref_cu)
22798{
9c541725 22799 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
5c631832
JK
22800 struct dwarf2_cu *cu = *ref_cu;
22801 struct die_info *die;
22802
9c541725 22803 die = follow_die_offset (sect_off,
36586728
TT
22804 (attr->form == DW_FORM_GNU_ref_alt
22805 || cu->per_cu->is_dwz),
22806 ref_cu);
5c631832 22807 if (!die)
9d8780f0
SM
22808 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22809 "at %s [in module %s]"),
22810 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
518817b3 22811 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
348e048f 22812
5c631832
JK
22813 return die;
22814}
22815
9c541725 22816/* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
d83e736b 22817 Returned value is intended for DW_OP_call*. Returned
e3b94546
SM
22818 dwarf2_locexpr_baton->data has lifetime of
22819 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
5c631832
JK
22820
22821struct dwarf2_locexpr_baton
9c541725 22822dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
8b9737bf
TT
22823 struct dwarf2_per_cu_data *per_cu,
22824 CORE_ADDR (*get_frame_pc) (void *baton),
22825 void *baton)
5c631832 22826{
918dd910 22827 struct dwarf2_cu *cu;
5c631832
JK
22828 struct die_info *die;
22829 struct attribute *attr;
22830 struct dwarf2_locexpr_baton retval;
12359b5e
SM
22831 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22832 struct objfile *objfile = dwarf2_per_objfile->objfile;
8cf6f0b1 22833
918dd910 22834 if (per_cu->cu == NULL)
58f0c718 22835 load_cu (per_cu, false);
918dd910 22836 cu = per_cu->cu;
cc12ce38
DE
22837 if (cu == NULL)
22838 {
22839 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22840 Instead just throw an error, not much else we can do. */
9d8780f0
SM
22841 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22842 sect_offset_str (sect_off), objfile_name (objfile));
cc12ce38 22843 }
918dd910 22844
9c541725 22845 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
5c631832 22846 if (!die)
9d8780f0
SM
22847 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22848 sect_offset_str (sect_off), objfile_name (objfile));
5c631832
JK
22849
22850 attr = dwarf2_attr (die, DW_AT_location, cu);
22851 if (!attr)
22852 {
e103e986
JK
22853 /* DWARF: "If there is no such attribute, then there is no effect.".
22854 DATA is ignored if SIZE is 0. */
5c631832 22855
e103e986 22856 retval.data = NULL;
5c631832
JK
22857 retval.size = 0;
22858 }
8cf6f0b1
TT
22859 else if (attr_form_is_section_offset (attr))
22860 {
22861 struct dwarf2_loclist_baton loclist_baton;
22862 CORE_ADDR pc = (*get_frame_pc) (baton);
22863 size_t size;
22864
22865 fill_in_loclist_baton (cu, &loclist_baton, attr);
22866
22867 retval.data = dwarf2_find_location_expression (&loclist_baton,
22868 &size, pc);
22869 retval.size = size;
22870 }
5c631832
JK
22871 else
22872 {
22873 if (!attr_form_is_block (attr))
9d8780f0 22874 error (_("Dwarf Error: DIE at %s referenced in module %s "
5c631832 22875 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
9d8780f0 22876 sect_offset_str (sect_off), objfile_name (objfile));
5c631832
JK
22877
22878 retval.data = DW_BLOCK (attr)->data;
22879 retval.size = DW_BLOCK (attr)->size;
22880 }
22881 retval.per_cu = cu->per_cu;
918dd910 22882
ed2dc618 22883 age_cached_comp_units (dwarf2_per_objfile);
918dd910 22884
5c631832 22885 return retval;
348e048f
DE
22886}
22887
8b9737bf
TT
22888/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
22889 offset. */
22890
22891struct dwarf2_locexpr_baton
22892dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22893 struct dwarf2_per_cu_data *per_cu,
22894 CORE_ADDR (*get_frame_pc) (void *baton),
22895 void *baton)
22896{
9c541725 22897 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
8b9737bf 22898
9c541725 22899 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
8b9737bf
TT
22900}
22901
b6807d98
TT
22902/* Write a constant of a given type as target-ordered bytes into
22903 OBSTACK. */
22904
22905static const gdb_byte *
22906write_constant_as_bytes (struct obstack *obstack,
22907 enum bfd_endian byte_order,
22908 struct type *type,
22909 ULONGEST value,
22910 LONGEST *len)
22911{
22912 gdb_byte *result;
22913
22914 *len = TYPE_LENGTH (type);
224c3ddb 22915 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
22916 store_unsigned_integer (result, *len, byte_order, value);
22917
22918 return result;
22919}
22920
22921/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
22922 pointer to the constant bytes and set LEN to the length of the
22923 data. If memory is needed, allocate it on OBSTACK. If the DIE
22924 does not have a DW_AT_const_value, return NULL. */
22925
22926const gdb_byte *
9c541725 22927dwarf2_fetch_constant_bytes (sect_offset sect_off,
b6807d98
TT
22928 struct dwarf2_per_cu_data *per_cu,
22929 struct obstack *obstack,
22930 LONGEST *len)
22931{
22932 struct dwarf2_cu *cu;
22933 struct die_info *die;
22934 struct attribute *attr;
22935 const gdb_byte *result = NULL;
22936 struct type *type;
22937 LONGEST value;
22938 enum bfd_endian byte_order;
e3b94546 22939 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
b6807d98 22940
b6807d98 22941 if (per_cu->cu == NULL)
58f0c718 22942 load_cu (per_cu, false);
b6807d98 22943 cu = per_cu->cu;
cc12ce38
DE
22944 if (cu == NULL)
22945 {
22946 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22947 Instead just throw an error, not much else we can do. */
9d8780f0
SM
22948 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22949 sect_offset_str (sect_off), objfile_name (objfile));
cc12ce38 22950 }
b6807d98 22951
9c541725 22952 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
b6807d98 22953 if (!die)
9d8780f0
SM
22954 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22955 sect_offset_str (sect_off), objfile_name (objfile));
b6807d98
TT
22956
22957 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22958 if (attr == NULL)
22959 return NULL;
22960
e3b94546 22961 byte_order = (bfd_big_endian (objfile->obfd)
b6807d98
TT
22962 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22963
22964 switch (attr->form)
22965 {
22966 case DW_FORM_addr:
22967 case DW_FORM_GNU_addr_index:
22968 {
22969 gdb_byte *tem;
22970
22971 *len = cu->header.addr_size;
224c3ddb 22972 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
22973 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22974 result = tem;
22975 }
22976 break;
22977 case DW_FORM_string:
22978 case DW_FORM_strp:
22979 case DW_FORM_GNU_str_index:
22980 case DW_FORM_GNU_strp_alt:
22981 /* DW_STRING is already allocated on the objfile obstack, point
22982 directly to it. */
22983 result = (const gdb_byte *) DW_STRING (attr);
22984 *len = strlen (DW_STRING (attr));
22985 break;
22986 case DW_FORM_block1:
22987 case DW_FORM_block2:
22988 case DW_FORM_block4:
22989 case DW_FORM_block:
22990 case DW_FORM_exprloc:
0224619f 22991 case DW_FORM_data16:
b6807d98
TT
22992 result = DW_BLOCK (attr)->data;
22993 *len = DW_BLOCK (attr)->size;
22994 break;
22995
22996 /* The DW_AT_const_value attributes are supposed to carry the
22997 symbol's value "represented as it would be on the target
22998 architecture." By the time we get here, it's already been
22999 converted to host endianness, so we just need to sign- or
23000 zero-extend it as appropriate. */
23001 case DW_FORM_data1:
23002 type = die_type (die, cu);
23003 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23004 if (result == NULL)
23005 result = write_constant_as_bytes (obstack, byte_order,
23006 type, value, len);
23007 break;
23008 case DW_FORM_data2:
23009 type = die_type (die, cu);
23010 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23011 if (result == NULL)
23012 result = write_constant_as_bytes (obstack, byte_order,
23013 type, value, len);
23014 break;
23015 case DW_FORM_data4:
23016 type = die_type (die, cu);
23017 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23018 if (result == NULL)
23019 result = write_constant_as_bytes (obstack, byte_order,
23020 type, value, len);
23021 break;
23022 case DW_FORM_data8:
23023 type = die_type (die, cu);
23024 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23025 if (result == NULL)
23026 result = write_constant_as_bytes (obstack, byte_order,
23027 type, value, len);
23028 break;
23029
23030 case DW_FORM_sdata:
663c44ac 23031 case DW_FORM_implicit_const:
b6807d98
TT
23032 type = die_type (die, cu);
23033 result = write_constant_as_bytes (obstack, byte_order,
23034 type, DW_SND (attr), len);
23035 break;
23036
23037 case DW_FORM_udata:
23038 type = die_type (die, cu);
23039 result = write_constant_as_bytes (obstack, byte_order,
23040 type, DW_UNSND (attr), len);
23041 break;
23042
23043 default:
b98664d3 23044 complaint (_("unsupported const value attribute form: '%s'"),
b6807d98
TT
23045 dwarf_form_name (attr->form));
23046 break;
23047 }
23048
23049 return result;
23050}
23051
7942e96e
AA
23052/* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23053 valid type for this die is found. */
23054
23055struct type *
9c541725 23056dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
7942e96e
AA
23057 struct dwarf2_per_cu_data *per_cu)
23058{
23059 struct dwarf2_cu *cu;
23060 struct die_info *die;
23061
7942e96e 23062 if (per_cu->cu == NULL)
58f0c718 23063 load_cu (per_cu, false);
7942e96e
AA
23064 cu = per_cu->cu;
23065 if (!cu)
23066 return NULL;
23067
9c541725 23068 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
7942e96e
AA
23069 if (!die)
23070 return NULL;
23071
23072 return die_type (die, cu);
23073}
23074
8a9b8146
TT
23075/* Return the type of the DIE at DIE_OFFSET in the CU named by
23076 PER_CU. */
23077
23078struct type *
b64f50a1 23079dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
23080 struct dwarf2_per_cu_data *per_cu)
23081{
9c541725 23082 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
b64f50a1 23083 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
23084}
23085
ac9ec31b 23086/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 23087 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
23088 On exit *REF_CU is the CU of the result.
23089 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
23090
23091static struct die_info *
ac9ec31b
DE
23092follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23093 struct dwarf2_cu **ref_cu)
348e048f 23094{
348e048f 23095 struct die_info temp_die;
348e048f
DE
23096 struct dwarf2_cu *sig_cu;
23097 struct die_info *die;
23098
ac9ec31b
DE
23099 /* While it might be nice to assert sig_type->type == NULL here,
23100 we can get here for DW_AT_imported_declaration where we need
23101 the DIE not the type. */
348e048f
DE
23102
23103 /* If necessary, add it to the queue and load its DIEs. */
23104
95554aad 23105 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 23106 read_signatured_type (sig_type);
348e048f 23107
348e048f 23108 sig_cu = sig_type->per_cu.cu;
69d751e3 23109 gdb_assert (sig_cu != NULL);
9c541725
PA
23110 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23111 temp_die.sect_off = sig_type->type_offset_in_section;
9a3c8263 23112 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
9c541725 23113 to_underlying (temp_die.sect_off));
348e048f
DE
23114 if (die)
23115 {
ed2dc618 23116 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 23117 = (*ref_cu)->per_cu->dwarf2_per_objfile;
ed2dc618 23118
796a7ff8
DE
23119 /* For .gdb_index version 7 keep track of included TUs.
23120 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23121 if (dwarf2_per_objfile->index_table != NULL
23122 && dwarf2_per_objfile->index_table->version <= 7)
23123 {
23124 VEC_safe_push (dwarf2_per_cu_ptr,
23125 (*ref_cu)->per_cu->imported_symtabs,
23126 sig_cu->per_cu);
23127 }
23128
348e048f
DE
23129 *ref_cu = sig_cu;
23130 return die;
23131 }
23132
ac9ec31b
DE
23133 return NULL;
23134}
23135
23136/* Follow signatured type referenced by ATTR in SRC_DIE.
23137 On entry *REF_CU is the CU of SRC_DIE.
23138 On exit *REF_CU is the CU of the result.
23139 The result is the DIE of the type.
23140 If the referenced type cannot be found an error is thrown. */
23141
23142static struct die_info *
ff39bb5e 23143follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
23144 struct dwarf2_cu **ref_cu)
23145{
23146 ULONGEST signature = DW_SIGNATURE (attr);
23147 struct signatured_type *sig_type;
23148 struct die_info *die;
23149
23150 gdb_assert (attr->form == DW_FORM_ref_sig8);
23151
a2ce51a0 23152 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
23153 /* sig_type will be NULL if the signatured type is missing from
23154 the debug info. */
23155 if (sig_type == NULL)
23156 {
23157 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
9d8780f0
SM
23158 " from DIE at %s [in module %s]"),
23159 hex_string (signature), sect_offset_str (src_die->sect_off),
518817b3 23160 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
ac9ec31b
DE
23161 }
23162
23163 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23164 if (die == NULL)
23165 {
23166 dump_die_for_error (src_die);
23167 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
9d8780f0
SM
23168 " from DIE at %s [in module %s]"),
23169 hex_string (signature), sect_offset_str (src_die->sect_off),
518817b3 23170 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
ac9ec31b
DE
23171 }
23172
23173 return die;
23174}
23175
23176/* Get the type specified by SIGNATURE referenced in DIE/CU,
23177 reading in and processing the type unit if necessary. */
23178
23179static struct type *
23180get_signatured_type (struct die_info *die, ULONGEST signature,
23181 struct dwarf2_cu *cu)
23182{
518817b3
SM
23183 struct dwarf2_per_objfile *dwarf2_per_objfile
23184 = cu->per_cu->dwarf2_per_objfile;
ac9ec31b
DE
23185 struct signatured_type *sig_type;
23186 struct dwarf2_cu *type_cu;
23187 struct die_info *type_die;
23188 struct type *type;
23189
a2ce51a0 23190 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
23191 /* sig_type will be NULL if the signatured type is missing from
23192 the debug info. */
23193 if (sig_type == NULL)
23194 {
b98664d3 23195 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
9d8780f0
SM
23196 " from DIE at %s [in module %s]"),
23197 hex_string (signature), sect_offset_str (die->sect_off),
4262abfb 23198 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
23199 return build_error_marker_type (cu, die);
23200 }
23201
23202 /* If we already know the type we're done. */
23203 if (sig_type->type != NULL)
23204 return sig_type->type;
23205
23206 type_cu = cu;
23207 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23208 if (type_die != NULL)
23209 {
23210 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23211 is created. This is important, for example, because for c++ classes
23212 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23213 type = read_type_die (type_die, type_cu);
23214 if (type == NULL)
23215 {
b98664d3 23216 complaint (_("Dwarf Error: Cannot build signatured type %s"
9d8780f0
SM
23217 " referenced from DIE at %s [in module %s]"),
23218 hex_string (signature), sect_offset_str (die->sect_off),
4262abfb 23219 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
23220 type = build_error_marker_type (cu, die);
23221 }
23222 }
23223 else
23224 {
b98664d3 23225 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
9d8780f0
SM
23226 " from DIE at %s [in module %s]"),
23227 hex_string (signature), sect_offset_str (die->sect_off),
4262abfb 23228 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
23229 type = build_error_marker_type (cu, die);
23230 }
23231 sig_type->type = type;
23232
23233 return type;
23234}
23235
23236/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23237 reading in and processing the type unit if necessary. */
23238
23239static struct type *
ff39bb5e 23240get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 23241 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
23242{
23243 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 23244 if (attr_form_is_ref (attr))
ac9ec31b
DE
23245 {
23246 struct dwarf2_cu *type_cu = cu;
23247 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23248
23249 return read_type_die (type_die, type_cu);
23250 }
23251 else if (attr->form == DW_FORM_ref_sig8)
23252 {
23253 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23254 }
23255 else
23256 {
518817b3
SM
23257 struct dwarf2_per_objfile *dwarf2_per_objfile
23258 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 23259
b98664d3 23260 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
9d8780f0
SM
23261 " at %s [in module %s]"),
23262 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
4262abfb 23263 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
23264 return build_error_marker_type (cu, die);
23265 }
348e048f
DE
23266}
23267
e5fe5e75 23268/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
23269
23270static void
e5fe5e75 23271load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 23272{
52dc124a 23273 struct signatured_type *sig_type;
348e048f 23274
f4dc4d17
DE
23275 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23276 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23277
6721b2ec
DE
23278 /* We have the per_cu, but we need the signatured_type.
23279 Fortunately this is an easy translation. */
23280 gdb_assert (per_cu->is_debug_types);
23281 sig_type = (struct signatured_type *) per_cu;
348e048f 23282
6721b2ec 23283 gdb_assert (per_cu->cu == NULL);
348e048f 23284
52dc124a 23285 read_signatured_type (sig_type);
348e048f 23286
6721b2ec 23287 gdb_assert (per_cu->cu != NULL);
348e048f
DE
23288}
23289
dee91e82
DE
23290/* die_reader_func for read_signatured_type.
23291 This is identical to load_full_comp_unit_reader,
23292 but is kept separate for now. */
348e048f
DE
23293
23294static void
dee91e82 23295read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 23296 const gdb_byte *info_ptr,
dee91e82
DE
23297 struct die_info *comp_unit_die,
23298 int has_children,
23299 void *data)
348e048f 23300{
dee91e82 23301 struct dwarf2_cu *cu = reader->cu;
348e048f 23302
dee91e82
DE
23303 gdb_assert (cu->die_hash == NULL);
23304 cu->die_hash =
23305 htab_create_alloc_ex (cu->header.length / 12,
23306 die_hash,
23307 die_eq,
23308 NULL,
23309 &cu->comp_unit_obstack,
23310 hashtab_obstack_allocate,
23311 dummy_obstack_deallocate);
348e048f 23312
dee91e82
DE
23313 if (has_children)
23314 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23315 &info_ptr, comp_unit_die);
23316 cu->dies = comp_unit_die;
23317 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
23318
23319 /* We try not to read any attributes in this function, because not
9cdd5dbd 23320 all CUs needed for references have been loaded yet, and symbol
348e048f 23321 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
23322 or we won't be able to build types correctly.
23323 Similarly, if we do not read the producer, we can not apply
23324 producer-specific interpretation. */
95554aad 23325 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 23326}
348e048f 23327
3019eac3
DE
23328/* Read in a signatured type and build its CU and DIEs.
23329 If the type is a stub for the real type in a DWO file,
23330 read in the real type from the DWO file as well. */
dee91e82
DE
23331
23332static void
23333read_signatured_type (struct signatured_type *sig_type)
23334{
23335 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 23336
3019eac3 23337 gdb_assert (per_cu->is_debug_types);
dee91e82 23338 gdb_assert (per_cu->cu == NULL);
348e048f 23339
58f0c718 23340 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
f4dc4d17 23341 read_signatured_type_reader, NULL);
7ee85ab1 23342 sig_type->per_cu.tu_read = 1;
c906108c
SS
23343}
23344
c906108c
SS
23345/* Decode simple location descriptions.
23346 Given a pointer to a dwarf block that defines a location, compute
23347 the location and return the value.
23348
4cecd739
DJ
23349 NOTE drow/2003-11-18: This function is called in two situations
23350 now: for the address of static or global variables (partial symbols
23351 only) and for offsets into structures which are expected to be
23352 (more or less) constant. The partial symbol case should go away,
23353 and only the constant case should remain. That will let this
23354 function complain more accurately. A few special modes are allowed
23355 without complaint for global variables (for instance, global
23356 register values and thread-local values).
c906108c
SS
23357
23358 A location description containing no operations indicates that the
4cecd739 23359 object is optimized out. The return value is 0 for that case.
6b992462
DJ
23360 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23361 callers will only want a very basic result and this can become a
21ae7a4d
JK
23362 complaint.
23363
23364 Note that stack[0] is unused except as a default error return. */
c906108c
SS
23365
23366static CORE_ADDR
e7c27a73 23367decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 23368{
518817b3 23369 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
56eb65bd
SP
23370 size_t i;
23371 size_t size = blk->size;
d521ce57 23372 const gdb_byte *data = blk->data;
21ae7a4d
JK
23373 CORE_ADDR stack[64];
23374 int stacki;
23375 unsigned int bytes_read, unsnd;
23376 gdb_byte op;
c906108c 23377
21ae7a4d
JK
23378 i = 0;
23379 stacki = 0;
23380 stack[stacki] = 0;
23381 stack[++stacki] = 0;
23382
23383 while (i < size)
23384 {
23385 op = data[i++];
23386 switch (op)
23387 {
23388 case DW_OP_lit0:
23389 case DW_OP_lit1:
23390 case DW_OP_lit2:
23391 case DW_OP_lit3:
23392 case DW_OP_lit4:
23393 case DW_OP_lit5:
23394 case DW_OP_lit6:
23395 case DW_OP_lit7:
23396 case DW_OP_lit8:
23397 case DW_OP_lit9:
23398 case DW_OP_lit10:
23399 case DW_OP_lit11:
23400 case DW_OP_lit12:
23401 case DW_OP_lit13:
23402 case DW_OP_lit14:
23403 case DW_OP_lit15:
23404 case DW_OP_lit16:
23405 case DW_OP_lit17:
23406 case DW_OP_lit18:
23407 case DW_OP_lit19:
23408 case DW_OP_lit20:
23409 case DW_OP_lit21:
23410 case DW_OP_lit22:
23411 case DW_OP_lit23:
23412 case DW_OP_lit24:
23413 case DW_OP_lit25:
23414 case DW_OP_lit26:
23415 case DW_OP_lit27:
23416 case DW_OP_lit28:
23417 case DW_OP_lit29:
23418 case DW_OP_lit30:
23419 case DW_OP_lit31:
23420 stack[++stacki] = op - DW_OP_lit0;
23421 break;
f1bea926 23422
21ae7a4d
JK
23423 case DW_OP_reg0:
23424 case DW_OP_reg1:
23425 case DW_OP_reg2:
23426 case DW_OP_reg3:
23427 case DW_OP_reg4:
23428 case DW_OP_reg5:
23429 case DW_OP_reg6:
23430 case DW_OP_reg7:
23431 case DW_OP_reg8:
23432 case DW_OP_reg9:
23433 case DW_OP_reg10:
23434 case DW_OP_reg11:
23435 case DW_OP_reg12:
23436 case DW_OP_reg13:
23437 case DW_OP_reg14:
23438 case DW_OP_reg15:
23439 case DW_OP_reg16:
23440 case DW_OP_reg17:
23441 case DW_OP_reg18:
23442 case DW_OP_reg19:
23443 case DW_OP_reg20:
23444 case DW_OP_reg21:
23445 case DW_OP_reg22:
23446 case DW_OP_reg23:
23447 case DW_OP_reg24:
23448 case DW_OP_reg25:
23449 case DW_OP_reg26:
23450 case DW_OP_reg27:
23451 case DW_OP_reg28:
23452 case DW_OP_reg29:
23453 case DW_OP_reg30:
23454 case DW_OP_reg31:
23455 stack[++stacki] = op - DW_OP_reg0;
23456 if (i < size)
23457 dwarf2_complex_location_expr_complaint ();
23458 break;
c906108c 23459
21ae7a4d
JK
23460 case DW_OP_regx:
23461 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23462 i += bytes_read;
23463 stack[++stacki] = unsnd;
23464 if (i < size)
23465 dwarf2_complex_location_expr_complaint ();
23466 break;
c906108c 23467
21ae7a4d
JK
23468 case DW_OP_addr:
23469 stack[++stacki] = read_address (objfile->obfd, &data[i],
23470 cu, &bytes_read);
23471 i += bytes_read;
23472 break;
d53d4ac5 23473
21ae7a4d
JK
23474 case DW_OP_const1u:
23475 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23476 i += 1;
23477 break;
23478
23479 case DW_OP_const1s:
23480 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23481 i += 1;
23482 break;
23483
23484 case DW_OP_const2u:
23485 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23486 i += 2;
23487 break;
23488
23489 case DW_OP_const2s:
23490 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23491 i += 2;
23492 break;
d53d4ac5 23493
21ae7a4d
JK
23494 case DW_OP_const4u:
23495 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23496 i += 4;
23497 break;
23498
23499 case DW_OP_const4s:
23500 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23501 i += 4;
23502 break;
23503
585861ea
JK
23504 case DW_OP_const8u:
23505 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23506 i += 8;
23507 break;
23508
21ae7a4d
JK
23509 case DW_OP_constu:
23510 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23511 &bytes_read);
23512 i += bytes_read;
23513 break;
23514
23515 case DW_OP_consts:
23516 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23517 i += bytes_read;
23518 break;
23519
23520 case DW_OP_dup:
23521 stack[stacki + 1] = stack[stacki];
23522 stacki++;
23523 break;
23524
23525 case DW_OP_plus:
23526 stack[stacki - 1] += stack[stacki];
23527 stacki--;
23528 break;
23529
23530 case DW_OP_plus_uconst:
23531 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23532 &bytes_read);
23533 i += bytes_read;
23534 break;
23535
23536 case DW_OP_minus:
23537 stack[stacki - 1] -= stack[stacki];
23538 stacki--;
23539 break;
23540
23541 case DW_OP_deref:
23542 /* If we're not the last op, then we definitely can't encode
23543 this using GDB's address_class enum. This is valid for partial
23544 global symbols, although the variable's address will be bogus
23545 in the psymtab. */
23546 if (i < size)
23547 dwarf2_complex_location_expr_complaint ();
23548 break;
23549
23550 case DW_OP_GNU_push_tls_address:
4aa4e28b 23551 case DW_OP_form_tls_address:
21ae7a4d
JK
23552 /* The top of the stack has the offset from the beginning
23553 of the thread control block at which the variable is located. */
23554 /* Nothing should follow this operator, so the top of stack would
23555 be returned. */
23556 /* This is valid for partial global symbols, but the variable's
585861ea
JK
23557 address will be bogus in the psymtab. Make it always at least
23558 non-zero to not look as a variable garbage collected by linker
23559 which have DW_OP_addr 0. */
21ae7a4d
JK
23560 if (i < size)
23561 dwarf2_complex_location_expr_complaint ();
585861ea 23562 stack[stacki]++;
21ae7a4d
JK
23563 break;
23564
23565 case DW_OP_GNU_uninit:
23566 break;
23567
3019eac3 23568 case DW_OP_GNU_addr_index:
49f6c839 23569 case DW_OP_GNU_const_index:
3019eac3
DE
23570 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23571 &bytes_read);
23572 i += bytes_read;
23573 break;
23574
21ae7a4d
JK
23575 default:
23576 {
f39c6ffd 23577 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
23578
23579 if (name)
b98664d3 23580 complaint (_("unsupported stack op: '%s'"),
21ae7a4d
JK
23581 name);
23582 else
b98664d3 23583 complaint (_("unsupported stack op: '%02x'"),
21ae7a4d
JK
23584 op);
23585 }
23586
23587 return (stack[stacki]);
d53d4ac5 23588 }
3c6e0cb3 23589
21ae7a4d
JK
23590 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23591 outside of the allocated space. Also enforce minimum>0. */
23592 if (stacki >= ARRAY_SIZE (stack) - 1)
23593 {
b98664d3 23594 complaint (_("location description stack overflow"));
21ae7a4d
JK
23595 return 0;
23596 }
23597
23598 if (stacki <= 0)
23599 {
b98664d3 23600 complaint (_("location description stack underflow"));
21ae7a4d
JK
23601 return 0;
23602 }
23603 }
23604 return (stack[stacki]);
c906108c
SS
23605}
23606
23607/* memory allocation interface */
23608
c906108c 23609static struct dwarf_block *
7b5a2f43 23610dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 23611{
8d749320 23612 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
23613}
23614
c906108c 23615static struct die_info *
b60c80d6 23616dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
23617{
23618 struct die_info *die;
b60c80d6
DJ
23619 size_t size = sizeof (struct die_info);
23620
23621 if (num_attrs > 1)
23622 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 23623
b60c80d6 23624 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
23625 memset (die, 0, sizeof (struct die_info));
23626 return (die);
23627}
2e276125
JB
23628
23629\f
23630/* Macro support. */
23631
233d95b5
JK
23632/* Return file name relative to the compilation directory of file number I in
23633 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 23634 responsible for freeing it. */
233d95b5 23635
2e276125 23636static char *
233d95b5 23637file_file_name (int file, struct line_header *lh)
2e276125 23638{
6a83a1e6
EZ
23639 /* Is the file number a valid index into the line header's file name
23640 table? Remember that file numbers start with one, not zero. */
fff8551c 23641 if (1 <= file && file <= lh->file_names.size ())
6a83a1e6 23642 {
8c43009f 23643 const file_entry &fe = lh->file_names[file - 1];
6e70227d 23644
8c43009f
PA
23645 if (!IS_ABSOLUTE_PATH (fe.name))
23646 {
23647 const char *dir = fe.include_dir (lh);
23648 if (dir != NULL)
23649 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23650 }
23651 return xstrdup (fe.name);
6a83a1e6 23652 }
2e276125
JB
23653 else
23654 {
6a83a1e6
EZ
23655 /* The compiler produced a bogus file number. We can at least
23656 record the macro definitions made in the file, even if we
23657 won't be able to find the file by name. */
23658 char fake_name[80];
9a619af0 23659
8c042590
PM
23660 xsnprintf (fake_name, sizeof (fake_name),
23661 "<bad macro file number %d>", file);
2e276125 23662
b98664d3 23663 complaint (_("bad file number in macro information (%d)"),
6a83a1e6 23664 file);
2e276125 23665
6a83a1e6 23666 return xstrdup (fake_name);
2e276125
JB
23667 }
23668}
23669
233d95b5
JK
23670/* Return the full name of file number I in *LH's file name table.
23671 Use COMP_DIR as the name of the current directory of the
23672 compilation. The result is allocated using xmalloc; the caller is
23673 responsible for freeing it. */
23674static char *
23675file_full_name (int file, struct line_header *lh, const char *comp_dir)
23676{
23677 /* Is the file number a valid index into the line header's file name
23678 table? Remember that file numbers start with one, not zero. */
fff8551c 23679 if (1 <= file && file <= lh->file_names.size ())
233d95b5
JK
23680 {
23681 char *relative = file_file_name (file, lh);
23682
23683 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23684 return relative;
b36cec19
PA
23685 return reconcat (relative, comp_dir, SLASH_STRING,
23686 relative, (char *) NULL);
233d95b5
JK
23687 }
23688 else
23689 return file_file_name (file, lh);
23690}
23691
2e276125
JB
23692
23693static struct macro_source_file *
23694macro_start_file (int file, int line,
23695 struct macro_source_file *current_file,
43f3e411 23696 struct line_header *lh)
2e276125 23697{
233d95b5
JK
23698 /* File name relative to the compilation directory of this source file. */
23699 char *file_name = file_file_name (file, lh);
2e276125 23700
2e276125 23701 if (! current_file)
abc9d0dc 23702 {
fc474241
DE
23703 /* Note: We don't create a macro table for this compilation unit
23704 at all until we actually get a filename. */
43f3e411 23705 struct macro_table *macro_table = get_macro_table ();
fc474241 23706
abc9d0dc
TT
23707 /* If we have no current file, then this must be the start_file
23708 directive for the compilation unit's main source file. */
fc474241
DE
23709 current_file = macro_set_main (macro_table, file_name);
23710 macro_define_special (macro_table);
abc9d0dc 23711 }
2e276125 23712 else
233d95b5 23713 current_file = macro_include (current_file, line, file_name);
2e276125 23714
233d95b5 23715 xfree (file_name);
6e70227d 23716
2e276125
JB
23717 return current_file;
23718}
23719
2e276125
JB
23720static const char *
23721consume_improper_spaces (const char *p, const char *body)
23722{
23723 if (*p == ' ')
23724 {
b98664d3 23725 complaint (_("macro definition contains spaces "
3e43a32a 23726 "in formal argument list:\n`%s'"),
4d3c2250 23727 body);
2e276125
JB
23728
23729 while (*p == ' ')
23730 p++;
23731 }
23732
23733 return p;
23734}
23735
23736
23737static void
23738parse_macro_definition (struct macro_source_file *file, int line,
23739 const char *body)
23740{
23741 const char *p;
23742
23743 /* The body string takes one of two forms. For object-like macro
23744 definitions, it should be:
23745
23746 <macro name> " " <definition>
23747
23748 For function-like macro definitions, it should be:
23749
23750 <macro name> "() " <definition>
23751 or
23752 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23753
23754 Spaces may appear only where explicitly indicated, and in the
23755 <definition>.
23756
23757 The Dwarf 2 spec says that an object-like macro's name is always
23758 followed by a space, but versions of GCC around March 2002 omit
6e70227d 23759 the space when the macro's definition is the empty string.
2e276125
JB
23760
23761 The Dwarf 2 spec says that there should be no spaces between the
23762 formal arguments in a function-like macro's formal argument list,
23763 but versions of GCC around March 2002 include spaces after the
23764 commas. */
23765
23766
23767 /* Find the extent of the macro name. The macro name is terminated
23768 by either a space or null character (for an object-like macro) or
23769 an opening paren (for a function-like macro). */
23770 for (p = body; *p; p++)
23771 if (*p == ' ' || *p == '(')
23772 break;
23773
23774 if (*p == ' ' || *p == '\0')
23775 {
23776 /* It's an object-like macro. */
23777 int name_len = p - body;
3f8a7804 23778 char *name = savestring (body, name_len);
2e276125
JB
23779 const char *replacement;
23780
23781 if (*p == ' ')
23782 replacement = body + name_len + 1;
23783 else
23784 {
4d3c2250 23785 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
23786 replacement = body + name_len;
23787 }
6e70227d 23788
2e276125
JB
23789 macro_define_object (file, line, name, replacement);
23790
23791 xfree (name);
23792 }
23793 else if (*p == '(')
23794 {
23795 /* It's a function-like macro. */
3f8a7804 23796 char *name = savestring (body, p - body);
2e276125
JB
23797 int argc = 0;
23798 int argv_size = 1;
8d749320 23799 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
23800
23801 p++;
23802
23803 p = consume_improper_spaces (p, body);
23804
23805 /* Parse the formal argument list. */
23806 while (*p && *p != ')')
23807 {
23808 /* Find the extent of the current argument name. */
23809 const char *arg_start = p;
23810
23811 while (*p && *p != ',' && *p != ')' && *p != ' ')
23812 p++;
23813
23814 if (! *p || p == arg_start)
4d3c2250 23815 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
23816 else
23817 {
23818 /* Make sure argv has room for the new argument. */
23819 if (argc >= argv_size)
23820 {
23821 argv_size *= 2;
224c3ddb 23822 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
23823 }
23824
3f8a7804 23825 argv[argc++] = savestring (arg_start, p - arg_start);
2e276125
JB
23826 }
23827
23828 p = consume_improper_spaces (p, body);
23829
23830 /* Consume the comma, if present. */
23831 if (*p == ',')
23832 {
23833 p++;
23834
23835 p = consume_improper_spaces (p, body);
23836 }
23837 }
23838
23839 if (*p == ')')
23840 {
23841 p++;
23842
23843 if (*p == ' ')
23844 /* Perfectly formed definition, no complaints. */
23845 macro_define_function (file, line, name,
6e70227d 23846 argc, (const char **) argv,
2e276125
JB
23847 p + 1);
23848 else if (*p == '\0')
23849 {
23850 /* Complain, but do define it. */
4d3c2250 23851 dwarf2_macro_malformed_definition_complaint (body);
2e276125 23852 macro_define_function (file, line, name,
6e70227d 23853 argc, (const char **) argv,
2e276125
JB
23854 p);
23855 }
23856 else
23857 /* Just complain. */
4d3c2250 23858 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
23859 }
23860 else
23861 /* Just complain. */
4d3c2250 23862 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
23863
23864 xfree (name);
23865 {
23866 int i;
23867
23868 for (i = 0; i < argc; i++)
23869 xfree (argv[i]);
23870 }
23871 xfree (argv);
23872 }
23873 else
4d3c2250 23874 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
23875}
23876
cf2c3c16
TT
23877/* Skip some bytes from BYTES according to the form given in FORM.
23878 Returns the new pointer. */
2e276125 23879
d521ce57
TT
23880static const gdb_byte *
23881skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
23882 enum dwarf_form form,
23883 unsigned int offset_size,
23884 struct dwarf2_section_info *section)
2e276125 23885{
cf2c3c16 23886 unsigned int bytes_read;
2e276125 23887
cf2c3c16 23888 switch (form)
2e276125 23889 {
cf2c3c16
TT
23890 case DW_FORM_data1:
23891 case DW_FORM_flag:
23892 ++bytes;
23893 break;
23894
23895 case DW_FORM_data2:
23896 bytes += 2;
23897 break;
23898
23899 case DW_FORM_data4:
23900 bytes += 4;
23901 break;
23902
23903 case DW_FORM_data8:
23904 bytes += 8;
23905 break;
23906
0224619f
JK
23907 case DW_FORM_data16:
23908 bytes += 16;
23909 break;
23910
cf2c3c16
TT
23911 case DW_FORM_string:
23912 read_direct_string (abfd, bytes, &bytes_read);
23913 bytes += bytes_read;
23914 break;
23915
23916 case DW_FORM_sec_offset:
23917 case DW_FORM_strp:
36586728 23918 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
23919 bytes += offset_size;
23920 break;
23921
23922 case DW_FORM_block:
23923 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
23924 bytes += bytes_read;
23925 break;
23926
23927 case DW_FORM_block1:
23928 bytes += 1 + read_1_byte (abfd, bytes);
23929 break;
23930 case DW_FORM_block2:
23931 bytes += 2 + read_2_bytes (abfd, bytes);
23932 break;
23933 case DW_FORM_block4:
23934 bytes += 4 + read_4_bytes (abfd, bytes);
23935 break;
23936
23937 case DW_FORM_sdata:
23938 case DW_FORM_udata:
3019eac3
DE
23939 case DW_FORM_GNU_addr_index:
23940 case DW_FORM_GNU_str_index:
d521ce57 23941 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
23942 if (bytes == NULL)
23943 {
23944 dwarf2_section_buffer_overflow_complaint (section);
23945 return NULL;
23946 }
cf2c3c16
TT
23947 break;
23948
663c44ac
JK
23949 case DW_FORM_implicit_const:
23950 break;
23951
cf2c3c16
TT
23952 default:
23953 {
b98664d3 23954 complaint (_("invalid form 0x%x in `%s'"),
a32a8923 23955 form, get_section_name (section));
cf2c3c16
TT
23956 return NULL;
23957 }
2e276125
JB
23958 }
23959
cf2c3c16
TT
23960 return bytes;
23961}
757a13d0 23962
cf2c3c16
TT
23963/* A helper for dwarf_decode_macros that handles skipping an unknown
23964 opcode. Returns an updated pointer to the macro data buffer; or,
23965 on error, issues a complaint and returns NULL. */
757a13d0 23966
d521ce57 23967static const gdb_byte *
cf2c3c16 23968skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
23969 const gdb_byte **opcode_definitions,
23970 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
23971 bfd *abfd,
23972 unsigned int offset_size,
23973 struct dwarf2_section_info *section)
23974{
23975 unsigned int bytes_read, i;
23976 unsigned long arg;
d521ce57 23977 const gdb_byte *defn;
2e276125 23978
cf2c3c16 23979 if (opcode_definitions[opcode] == NULL)
2e276125 23980 {
b98664d3 23981 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
cf2c3c16
TT
23982 opcode);
23983 return NULL;
23984 }
2e276125 23985
cf2c3c16
TT
23986 defn = opcode_definitions[opcode];
23987 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
23988 defn += bytes_read;
2e276125 23989
cf2c3c16
TT
23990 for (i = 0; i < arg; ++i)
23991 {
aead7601
SM
23992 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
23993 (enum dwarf_form) defn[i], offset_size,
f664829e 23994 section);
cf2c3c16
TT
23995 if (mac_ptr == NULL)
23996 {
23997 /* skip_form_bytes already issued the complaint. */
23998 return NULL;
23999 }
24000 }
757a13d0 24001
cf2c3c16
TT
24002 return mac_ptr;
24003}
757a13d0 24004
cf2c3c16
TT
24005/* A helper function which parses the header of a macro section.
24006 If the macro section is the extended (for now called "GNU") type,
24007 then this updates *OFFSET_SIZE. Returns a pointer to just after
24008 the header, or issues a complaint and returns NULL on error. */
757a13d0 24009
d521ce57
TT
24010static const gdb_byte *
24011dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 24012 bfd *abfd,
d521ce57 24013 const gdb_byte *mac_ptr,
cf2c3c16
TT
24014 unsigned int *offset_size,
24015 int section_is_gnu)
24016{
24017 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 24018
cf2c3c16
TT
24019 if (section_is_gnu)
24020 {
24021 unsigned int version, flags;
757a13d0 24022
cf2c3c16 24023 version = read_2_bytes (abfd, mac_ptr);
0af92d60 24024 if (version != 4 && version != 5)
cf2c3c16 24025 {
b98664d3 24026 complaint (_("unrecognized version `%d' in .debug_macro section"),
cf2c3c16
TT
24027 version);
24028 return NULL;
24029 }
24030 mac_ptr += 2;
757a13d0 24031
cf2c3c16
TT
24032 flags = read_1_byte (abfd, mac_ptr);
24033 ++mac_ptr;
24034 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 24035
cf2c3c16
TT
24036 if ((flags & 2) != 0)
24037 /* We don't need the line table offset. */
24038 mac_ptr += *offset_size;
757a13d0 24039
cf2c3c16
TT
24040 /* Vendor opcode descriptions. */
24041 if ((flags & 4) != 0)
24042 {
24043 unsigned int i, count;
757a13d0 24044
cf2c3c16
TT
24045 count = read_1_byte (abfd, mac_ptr);
24046 ++mac_ptr;
24047 for (i = 0; i < count; ++i)
24048 {
24049 unsigned int opcode, bytes_read;
24050 unsigned long arg;
24051
24052 opcode = read_1_byte (abfd, mac_ptr);
24053 ++mac_ptr;
24054 opcode_definitions[opcode] = mac_ptr;
24055 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24056 mac_ptr += bytes_read;
24057 mac_ptr += arg;
24058 }
757a13d0 24059 }
cf2c3c16 24060 }
757a13d0 24061
cf2c3c16
TT
24062 return mac_ptr;
24063}
757a13d0 24064
cf2c3c16 24065/* A helper for dwarf_decode_macros that handles the GNU extensions,
0af92d60 24066 including DW_MACRO_import. */
cf2c3c16
TT
24067
24068static void
ed2dc618
SM
24069dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24070 bfd *abfd,
d521ce57 24071 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 24072 struct macro_source_file *current_file,
43f3e411 24073 struct line_header *lh,
cf2c3c16 24074 struct dwarf2_section_info *section,
36586728 24075 int section_is_gnu, int section_is_dwz,
cf2c3c16 24076 unsigned int offset_size,
8fc3fc34 24077 htab_t include_hash)
cf2c3c16 24078{
4d663531 24079 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
24080 enum dwarf_macro_record_type macinfo_type;
24081 int at_commandline;
d521ce57 24082 const gdb_byte *opcode_definitions[256];
757a13d0 24083
cf2c3c16
TT
24084 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24085 &offset_size, section_is_gnu);
24086 if (mac_ptr == NULL)
24087 {
24088 /* We already issued a complaint. */
24089 return;
24090 }
757a13d0
JK
24091
24092 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24093 GDB is still reading the definitions from command line. First
24094 DW_MACINFO_start_file will need to be ignored as it was already executed
24095 to create CURRENT_FILE for the main source holding also the command line
24096 definitions. On first met DW_MACINFO_start_file this flag is reset to
24097 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24098
24099 at_commandline = 1;
24100
24101 do
24102 {
24103 /* Do we at least have room for a macinfo type byte? */
24104 if (mac_ptr >= mac_end)
24105 {
f664829e 24106 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
24107 break;
24108 }
24109
aead7601 24110 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
24111 mac_ptr++;
24112
cf2c3c16
TT
24113 /* Note that we rely on the fact that the corresponding GNU and
24114 DWARF constants are the same. */
132448f8
SM
24115 DIAGNOSTIC_PUSH
24116 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
757a13d0
JK
24117 switch (macinfo_type)
24118 {
24119 /* A zero macinfo type indicates the end of the macro
24120 information. */
24121 case 0:
24122 break;
2e276125 24123
0af92d60
JK
24124 case DW_MACRO_define:
24125 case DW_MACRO_undef:
24126 case DW_MACRO_define_strp:
24127 case DW_MACRO_undef_strp:
24128 case DW_MACRO_define_sup:
24129 case DW_MACRO_undef_sup:
2e276125 24130 {
891d2f0b 24131 unsigned int bytes_read;
2e276125 24132 int line;
d521ce57 24133 const char *body;
cf2c3c16 24134 int is_define;
2e276125 24135
cf2c3c16
TT
24136 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24137 mac_ptr += bytes_read;
24138
0af92d60
JK
24139 if (macinfo_type == DW_MACRO_define
24140 || macinfo_type == DW_MACRO_undef)
cf2c3c16
TT
24141 {
24142 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24143 mac_ptr += bytes_read;
24144 }
24145 else
24146 {
24147 LONGEST str_offset;
24148
24149 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24150 mac_ptr += offset_size;
2e276125 24151
0af92d60
JK
24152 if (macinfo_type == DW_MACRO_define_sup
24153 || macinfo_type == DW_MACRO_undef_sup
f7a35f02 24154 || section_is_dwz)
36586728 24155 {
ed2dc618
SM
24156 struct dwz_file *dwz
24157 = dwarf2_get_dwz_file (dwarf2_per_objfile);
36586728 24158
ed2dc618
SM
24159 body = read_indirect_string_from_dwz (objfile,
24160 dwz, str_offset);
36586728
TT
24161 }
24162 else
ed2dc618
SM
24163 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24164 abfd, str_offset);
cf2c3c16
TT
24165 }
24166
0af92d60
JK
24167 is_define = (macinfo_type == DW_MACRO_define
24168 || macinfo_type == DW_MACRO_define_strp
24169 || macinfo_type == DW_MACRO_define_sup);
2e276125 24170 if (! current_file)
757a13d0
JK
24171 {
24172 /* DWARF violation as no main source is present. */
b98664d3 24173 complaint (_("debug info with no main source gives macro %s "
757a13d0 24174 "on line %d: %s"),
cf2c3c16
TT
24175 is_define ? _("definition") : _("undefinition"),
24176 line, body);
757a13d0
JK
24177 break;
24178 }
3e43a32a
MS
24179 if ((line == 0 && !at_commandline)
24180 || (line != 0 && at_commandline))
b98664d3 24181 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
757a13d0 24182 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 24183 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
24184 line == 0 ? _("zero") : _("non-zero"), line, body);
24185
cf2c3c16 24186 if (is_define)
757a13d0 24187 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
24188 else
24189 {
0af92d60
JK
24190 gdb_assert (macinfo_type == DW_MACRO_undef
24191 || macinfo_type == DW_MACRO_undef_strp
24192 || macinfo_type == DW_MACRO_undef_sup);
cf2c3c16
TT
24193 macro_undef (current_file, line, body);
24194 }
2e276125
JB
24195 }
24196 break;
24197
0af92d60 24198 case DW_MACRO_start_file:
2e276125 24199 {
891d2f0b 24200 unsigned int bytes_read;
2e276125
JB
24201 int line, file;
24202
24203 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24204 mac_ptr += bytes_read;
24205 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24206 mac_ptr += bytes_read;
24207
3e43a32a
MS
24208 if ((line == 0 && !at_commandline)
24209 || (line != 0 && at_commandline))
b98664d3 24210 complaint (_("debug info gives source %d included "
757a13d0
JK
24211 "from %s at %s line %d"),
24212 file, at_commandline ? _("command-line") : _("file"),
24213 line == 0 ? _("zero") : _("non-zero"), line);
24214
24215 if (at_commandline)
24216 {
0af92d60 24217 /* This DW_MACRO_start_file was executed in the
cf2c3c16 24218 pass one. */
757a13d0
JK
24219 at_commandline = 0;
24220 }
24221 else
43f3e411 24222 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
24223 }
24224 break;
24225
0af92d60 24226 case DW_MACRO_end_file:
2e276125 24227 if (! current_file)
b98664d3 24228 complaint (_("macro debug info has an unmatched "
3e43a32a 24229 "`close_file' directive"));
2e276125
JB
24230 else
24231 {
24232 current_file = current_file->included_by;
24233 if (! current_file)
24234 {
cf2c3c16 24235 enum dwarf_macro_record_type next_type;
2e276125
JB
24236
24237 /* GCC circa March 2002 doesn't produce the zero
24238 type byte marking the end of the compilation
24239 unit. Complain if it's not there, but exit no
24240 matter what. */
24241
24242 /* Do we at least have room for a macinfo type byte? */
24243 if (mac_ptr >= mac_end)
24244 {
f664829e 24245 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
24246 return;
24247 }
24248
24249 /* We don't increment mac_ptr here, so this is just
24250 a look-ahead. */
aead7601
SM
24251 next_type
24252 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24253 mac_ptr);
2e276125 24254 if (next_type != 0)
b98664d3 24255 complaint (_("no terminating 0-type entry for "
3e43a32a 24256 "macros in `.debug_macinfo' section"));
2e276125
JB
24257
24258 return;
24259 }
24260 }
24261 break;
24262
0af92d60
JK
24263 case DW_MACRO_import:
24264 case DW_MACRO_import_sup:
cf2c3c16
TT
24265 {
24266 LONGEST offset;
8fc3fc34 24267 void **slot;
a036ba48
TT
24268 bfd *include_bfd = abfd;
24269 struct dwarf2_section_info *include_section = section;
d521ce57 24270 const gdb_byte *include_mac_end = mac_end;
a036ba48 24271 int is_dwz = section_is_dwz;
d521ce57 24272 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
24273
24274 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24275 mac_ptr += offset_size;
24276
0af92d60 24277 if (macinfo_type == DW_MACRO_import_sup)
a036ba48 24278 {
ed2dc618 24279 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
a036ba48 24280
4d663531 24281 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 24282
a036ba48 24283 include_section = &dwz->macro;
a32a8923 24284 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
24285 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24286 is_dwz = 1;
24287 }
24288
24289 new_mac_ptr = include_section->buffer + offset;
24290 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24291
8fc3fc34
TT
24292 if (*slot != NULL)
24293 {
24294 /* This has actually happened; see
24295 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
b98664d3 24296 complaint (_("recursive DW_MACRO_import in "
8fc3fc34
TT
24297 ".debug_macro section"));
24298 }
24299 else
24300 {
d521ce57 24301 *slot = (void *) new_mac_ptr;
36586728 24302
ed2dc618
SM
24303 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24304 include_bfd, new_mac_ptr,
43f3e411 24305 include_mac_end, current_file, lh,
36586728 24306 section, section_is_gnu, is_dwz,
4d663531 24307 offset_size, include_hash);
8fc3fc34 24308
d521ce57 24309 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 24310 }
cf2c3c16
TT
24311 }
24312 break;
24313
2e276125 24314 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
24315 if (!section_is_gnu)
24316 {
24317 unsigned int bytes_read;
2e276125 24318
ac298888
TT
24319 /* This reads the constant, but since we don't recognize
24320 any vendor extensions, we ignore it. */
24321 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
cf2c3c16
TT
24322 mac_ptr += bytes_read;
24323 read_direct_string (abfd, mac_ptr, &bytes_read);
24324 mac_ptr += bytes_read;
2e276125 24325
cf2c3c16
TT
24326 /* We don't recognize any vendor extensions. */
24327 break;
24328 }
24329 /* FALLTHROUGH */
24330
24331 default:
24332 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 24333 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
24334 section);
24335 if (mac_ptr == NULL)
24336 return;
24337 break;
2e276125 24338 }
132448f8 24339 DIAGNOSTIC_POP
757a13d0 24340 } while (macinfo_type != 0);
2e276125 24341}
8e19ed76 24342
cf2c3c16 24343static void
09262596 24344dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 24345 int section_is_gnu)
cf2c3c16 24346{
518817b3
SM
24347 struct dwarf2_per_objfile *dwarf2_per_objfile
24348 = cu->per_cu->dwarf2_per_objfile;
bb5ed363 24349 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
24350 struct line_header *lh = cu->line_header;
24351 bfd *abfd;
d521ce57 24352 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
24353 struct macro_source_file *current_file = 0;
24354 enum dwarf_macro_record_type macinfo_type;
24355 unsigned int offset_size = cu->header.offset_size;
d521ce57 24356 const gdb_byte *opcode_definitions[256];
8fc3fc34 24357 void **slot;
09262596
DE
24358 struct dwarf2_section_info *section;
24359 const char *section_name;
24360
24361 if (cu->dwo_unit != NULL)
24362 {
24363 if (section_is_gnu)
24364 {
24365 section = &cu->dwo_unit->dwo_file->sections.macro;
24366 section_name = ".debug_macro.dwo";
24367 }
24368 else
24369 {
24370 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24371 section_name = ".debug_macinfo.dwo";
24372 }
24373 }
24374 else
24375 {
24376 if (section_is_gnu)
24377 {
24378 section = &dwarf2_per_objfile->macro;
24379 section_name = ".debug_macro";
24380 }
24381 else
24382 {
24383 section = &dwarf2_per_objfile->macinfo;
24384 section_name = ".debug_macinfo";
24385 }
24386 }
cf2c3c16 24387
bb5ed363 24388 dwarf2_read_section (objfile, section);
cf2c3c16
TT
24389 if (section->buffer == NULL)
24390 {
b98664d3 24391 complaint (_("missing %s section"), section_name);
cf2c3c16
TT
24392 return;
24393 }
a32a8923 24394 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
24395
24396 /* First pass: Find the name of the base filename.
24397 This filename is needed in order to process all macros whose definition
24398 (or undefinition) comes from the command line. These macros are defined
24399 before the first DW_MACINFO_start_file entry, and yet still need to be
24400 associated to the base file.
24401
24402 To determine the base file name, we scan the macro definitions until we
24403 reach the first DW_MACINFO_start_file entry. We then initialize
24404 CURRENT_FILE accordingly so that any macro definition found before the
24405 first DW_MACINFO_start_file can still be associated to the base file. */
24406
24407 mac_ptr = section->buffer + offset;
24408 mac_end = section->buffer + section->size;
24409
24410 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24411 &offset_size, section_is_gnu);
24412 if (mac_ptr == NULL)
24413 {
24414 /* We already issued a complaint. */
24415 return;
24416 }
24417
24418 do
24419 {
24420 /* Do we at least have room for a macinfo type byte? */
24421 if (mac_ptr >= mac_end)
24422 {
24423 /* Complaint is printed during the second pass as GDB will probably
24424 stop the first pass earlier upon finding
24425 DW_MACINFO_start_file. */
24426 break;
24427 }
24428
aead7601 24429 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
24430 mac_ptr++;
24431
24432 /* Note that we rely on the fact that the corresponding GNU and
24433 DWARF constants are the same. */
132448f8
SM
24434 DIAGNOSTIC_PUSH
24435 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
cf2c3c16
TT
24436 switch (macinfo_type)
24437 {
24438 /* A zero macinfo type indicates the end of the macro
24439 information. */
24440 case 0:
24441 break;
24442
0af92d60
JK
24443 case DW_MACRO_define:
24444 case DW_MACRO_undef:
cf2c3c16
TT
24445 /* Only skip the data by MAC_PTR. */
24446 {
24447 unsigned int bytes_read;
24448
24449 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24450 mac_ptr += bytes_read;
24451 read_direct_string (abfd, mac_ptr, &bytes_read);
24452 mac_ptr += bytes_read;
24453 }
24454 break;
24455
0af92d60 24456 case DW_MACRO_start_file:
cf2c3c16
TT
24457 {
24458 unsigned int bytes_read;
24459 int line, file;
24460
24461 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24462 mac_ptr += bytes_read;
24463 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24464 mac_ptr += bytes_read;
24465
43f3e411 24466 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
24467 }
24468 break;
24469
0af92d60 24470 case DW_MACRO_end_file:
cf2c3c16
TT
24471 /* No data to skip by MAC_PTR. */
24472 break;
24473
0af92d60
JK
24474 case DW_MACRO_define_strp:
24475 case DW_MACRO_undef_strp:
24476 case DW_MACRO_define_sup:
24477 case DW_MACRO_undef_sup:
cf2c3c16
TT
24478 {
24479 unsigned int bytes_read;
24480
24481 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24482 mac_ptr += bytes_read;
24483 mac_ptr += offset_size;
24484 }
24485 break;
24486
0af92d60
JK
24487 case DW_MACRO_import:
24488 case DW_MACRO_import_sup:
cf2c3c16 24489 /* Note that, according to the spec, a transparent include
0af92d60 24490 chain cannot call DW_MACRO_start_file. So, we can just
cf2c3c16
TT
24491 skip this opcode. */
24492 mac_ptr += offset_size;
24493 break;
24494
24495 case DW_MACINFO_vendor_ext:
24496 /* Only skip the data by MAC_PTR. */
24497 if (!section_is_gnu)
24498 {
24499 unsigned int bytes_read;
24500
24501 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24502 mac_ptr += bytes_read;
24503 read_direct_string (abfd, mac_ptr, &bytes_read);
24504 mac_ptr += bytes_read;
24505 }
24506 /* FALLTHROUGH */
24507
24508 default:
24509 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 24510 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
24511 section);
24512 if (mac_ptr == NULL)
24513 return;
24514 break;
24515 }
132448f8 24516 DIAGNOSTIC_POP
cf2c3c16
TT
24517 } while (macinfo_type != 0 && current_file == NULL);
24518
24519 /* Second pass: Process all entries.
24520
24521 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24522 command-line macro definitions/undefinitions. This flag is unset when we
24523 reach the first DW_MACINFO_start_file entry. */
24524
fc4007c9
TT
24525 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24526 htab_eq_pointer,
24527 NULL, xcalloc, xfree));
8fc3fc34 24528 mac_ptr = section->buffer + offset;
fc4007c9 24529 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
d521ce57 24530 *slot = (void *) mac_ptr;
ed2dc618
SM
24531 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24532 abfd, mac_ptr, mac_end,
43f3e411 24533 current_file, lh, section,
fc4007c9
TT
24534 section_is_gnu, 0, offset_size,
24535 include_hash.get ());
cf2c3c16
TT
24536}
24537
8e19ed76 24538/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 24539 if so return true else false. */
380bca97 24540
8e19ed76 24541static int
6e5a29e1 24542attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
24543{
24544 return (attr == NULL ? 0 :
24545 attr->form == DW_FORM_block1
24546 || attr->form == DW_FORM_block2
24547 || attr->form == DW_FORM_block4
2dc7f7b3
TT
24548 || attr->form == DW_FORM_block
24549 || attr->form == DW_FORM_exprloc);
8e19ed76 24550}
4c2df51b 24551
c6a0999f
JB
24552/* Return non-zero if ATTR's value is a section offset --- classes
24553 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24554 You may use DW_UNSND (attr) to retrieve such offsets.
24555
24556 Section 7.5.4, "Attribute Encodings", explains that no attribute
24557 may have a value that belongs to more than one of these classes; it
24558 would be ambiguous if we did, because we use the same forms for all
24559 of them. */
380bca97 24560
3690dd37 24561static int
6e5a29e1 24562attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
24563{
24564 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
24565 || attr->form == DW_FORM_data8
24566 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
24567}
24568
3690dd37
JB
24569/* Return non-zero if ATTR's value falls in the 'constant' class, or
24570 zero otherwise. When this function returns true, you can apply
24571 dwarf2_get_attr_constant_value to it.
24572
24573 However, note that for some attributes you must check
24574 attr_form_is_section_offset before using this test. DW_FORM_data4
24575 and DW_FORM_data8 are members of both the constant class, and of
24576 the classes that contain offsets into other debug sections
24577 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24578 that, if an attribute's can be either a constant or one of the
24579 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
0224619f
JK
24580 taken as section offsets, not constants.
24581
24582 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24583 cannot handle that. */
380bca97 24584
3690dd37 24585static int
6e5a29e1 24586attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
24587{
24588 switch (attr->form)
24589 {
24590 case DW_FORM_sdata:
24591 case DW_FORM_udata:
24592 case DW_FORM_data1:
24593 case DW_FORM_data2:
24594 case DW_FORM_data4:
24595 case DW_FORM_data8:
663c44ac 24596 case DW_FORM_implicit_const:
3690dd37
JB
24597 return 1;
24598 default:
24599 return 0;
24600 }
24601}
24602
7771576e
SA
24603
24604/* DW_ADDR is always stored already as sect_offset; despite for the forms
24605 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24606
24607static int
6e5a29e1 24608attr_form_is_ref (const struct attribute *attr)
7771576e
SA
24609{
24610 switch (attr->form)
24611 {
24612 case DW_FORM_ref_addr:
24613 case DW_FORM_ref1:
24614 case DW_FORM_ref2:
24615 case DW_FORM_ref4:
24616 case DW_FORM_ref8:
24617 case DW_FORM_ref_udata:
24618 case DW_FORM_GNU_ref_alt:
24619 return 1;
24620 default:
24621 return 0;
24622 }
24623}
24624
3019eac3
DE
24625/* Return the .debug_loc section to use for CU.
24626 For DWO files use .debug_loc.dwo. */
24627
24628static struct dwarf2_section_info *
24629cu_debug_loc_section (struct dwarf2_cu *cu)
24630{
518817b3
SM
24631 struct dwarf2_per_objfile *dwarf2_per_objfile
24632 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 24633
3019eac3 24634 if (cu->dwo_unit)
43988095
JK
24635 {
24636 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24637
24638 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24639 }
24640 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24641 : &dwarf2_per_objfile->loc);
3019eac3
DE
24642}
24643
8cf6f0b1
TT
24644/* A helper function that fills in a dwarf2_loclist_baton. */
24645
24646static void
24647fill_in_loclist_baton (struct dwarf2_cu *cu,
24648 struct dwarf2_loclist_baton *baton,
ff39bb5e 24649 const struct attribute *attr)
8cf6f0b1 24650{
518817b3
SM
24651 struct dwarf2_per_objfile *dwarf2_per_objfile
24652 = cu->per_cu->dwarf2_per_objfile;
3019eac3
DE
24653 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24654
24655 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
24656
24657 baton->per_cu = cu->per_cu;
24658 gdb_assert (baton->per_cu);
24659 /* We don't know how long the location list is, but make sure we
24660 don't run off the edge of the section. */
3019eac3
DE
24661 baton->size = section->size - DW_UNSND (attr);
24662 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 24663 baton->base_address = cu->base_address;
f664829e 24664 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
24665}
24666
4c2df51b 24667static void
ff39bb5e 24668dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 24669 struct dwarf2_cu *cu, int is_block)
4c2df51b 24670{
518817b3
SM
24671 struct dwarf2_per_objfile *dwarf2_per_objfile
24672 = cu->per_cu->dwarf2_per_objfile;
bb5ed363 24673 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 24674 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 24675
3690dd37 24676 if (attr_form_is_section_offset (attr)
3019eac3 24677 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
24678 the section. If so, fall through to the complaint in the
24679 other branch. */
3019eac3 24680 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 24681 {
0d53c4c4 24682 struct dwarf2_loclist_baton *baton;
4c2df51b 24683
8d749320 24684 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 24685
8cf6f0b1 24686 fill_in_loclist_baton (cu, baton, attr);
be391dca 24687
d00adf39 24688 if (cu->base_known == 0)
b98664d3 24689 complaint (_("Location list used without "
3e43a32a 24690 "specifying the CU base address."));
4c2df51b 24691
f1e6e072
TT
24692 SYMBOL_ACLASS_INDEX (sym) = (is_block
24693 ? dwarf2_loclist_block_index
24694 : dwarf2_loclist_index);
0d53c4c4
DJ
24695 SYMBOL_LOCATION_BATON (sym) = baton;
24696 }
24697 else
24698 {
24699 struct dwarf2_locexpr_baton *baton;
24700
8d749320 24701 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
24702 baton->per_cu = cu->per_cu;
24703 gdb_assert (baton->per_cu);
0d53c4c4
DJ
24704
24705 if (attr_form_is_block (attr))
24706 {
24707 /* Note that we're just copying the block's data pointer
24708 here, not the actual data. We're still pointing into the
6502dd73
DJ
24709 info_buffer for SYM's objfile; right now we never release
24710 that buffer, but when we do clean up properly this may
24711 need to change. */
0d53c4c4
DJ
24712 baton->size = DW_BLOCK (attr)->size;
24713 baton->data = DW_BLOCK (attr)->data;
24714 }
24715 else
24716 {
24717 dwarf2_invalid_attrib_class_complaint ("location description",
24718 SYMBOL_NATURAL_NAME (sym));
24719 baton->size = 0;
0d53c4c4 24720 }
6e70227d 24721
f1e6e072
TT
24722 SYMBOL_ACLASS_INDEX (sym) = (is_block
24723 ? dwarf2_locexpr_block_index
24724 : dwarf2_locexpr_index);
0d53c4c4
DJ
24725 SYMBOL_LOCATION_BATON (sym) = baton;
24726 }
4c2df51b 24727}
6502dd73 24728
9aa1f1e3
TT
24729/* Return the OBJFILE associated with the compilation unit CU. If CU
24730 came from a separate debuginfo file, then the master objfile is
24731 returned. */
ae0d2f24
UW
24732
24733struct objfile *
24734dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24735{
e3b94546 24736 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
ae0d2f24
UW
24737
24738 /* Return the master objfile, so that we can report and look up the
24739 correct file containing this variable. */
24740 if (objfile->separate_debug_objfile_backlink)
24741 objfile = objfile->separate_debug_objfile_backlink;
24742
24743 return objfile;
24744}
24745
96408a79
SA
24746/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24747 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24748 CU_HEADERP first. */
24749
24750static const struct comp_unit_head *
24751per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24752 struct dwarf2_per_cu_data *per_cu)
24753{
d521ce57 24754 const gdb_byte *info_ptr;
96408a79
SA
24755
24756 if (per_cu->cu)
24757 return &per_cu->cu->header;
24758
9c541725 24759 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
96408a79
SA
24760
24761 memset (cu_headerp, 0, sizeof (*cu_headerp));
43988095
JK
24762 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24763 rcuh_kind::COMPILE);
96408a79
SA
24764
24765 return cu_headerp;
24766}
24767
ae0d2f24
UW
24768/* Return the address size given in the compilation unit header for CU. */
24769
98714339 24770int
ae0d2f24
UW
24771dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24772{
96408a79
SA
24773 struct comp_unit_head cu_header_local;
24774 const struct comp_unit_head *cu_headerp;
c471e790 24775
96408a79
SA
24776 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24777
24778 return cu_headerp->addr_size;
ae0d2f24
UW
24779}
24780
9eae7c52
TT
24781/* Return the offset size given in the compilation unit header for CU. */
24782
24783int
24784dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24785{
96408a79
SA
24786 struct comp_unit_head cu_header_local;
24787 const struct comp_unit_head *cu_headerp;
9c6c53f7 24788
96408a79
SA
24789 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24790
24791 return cu_headerp->offset_size;
24792}
24793
24794/* See its dwarf2loc.h declaration. */
24795
24796int
24797dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24798{
24799 struct comp_unit_head cu_header_local;
24800 const struct comp_unit_head *cu_headerp;
24801
24802 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24803
24804 if (cu_headerp->version == 2)
24805 return cu_headerp->addr_size;
24806 else
24807 return cu_headerp->offset_size;
181cebd4
JK
24808}
24809
9aa1f1e3
TT
24810/* Return the text offset of the CU. The returned offset comes from
24811 this CU's objfile. If this objfile came from a separate debuginfo
24812 file, then the offset may be different from the corresponding
24813 offset in the parent objfile. */
24814
24815CORE_ADDR
24816dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24817{
e3b94546 24818 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
9aa1f1e3
TT
24819
24820 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24821}
24822
43988095
JK
24823/* Return DWARF version number of PER_CU. */
24824
24825short
24826dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24827{
24828 return per_cu->dwarf_version;
24829}
24830
348e048f
DE
24831/* Locate the .debug_info compilation unit from CU's objfile which contains
24832 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
24833
24834static struct dwarf2_per_cu_data *
9c541725 24835dwarf2_find_containing_comp_unit (sect_offset sect_off,
36586728 24836 unsigned int offset_in_dwz,
ed2dc618 24837 struct dwarf2_per_objfile *dwarf2_per_objfile)
ae038cb0
DJ
24838{
24839 struct dwarf2_per_cu_data *this_cu;
24840 int low, high;
36586728 24841 const sect_offset *cu_off;
ae038cb0 24842
ae038cb0 24843 low = 0;
b76e467d 24844 high = dwarf2_per_objfile->all_comp_units.size () - 1;
ae038cb0
DJ
24845 while (high > low)
24846 {
36586728 24847 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 24848 int mid = low + (high - low) / 2;
9a619af0 24849
36586728 24850 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
9c541725 24851 cu_off = &mid_cu->sect_off;
36586728 24852 if (mid_cu->is_dwz > offset_in_dwz
9c541725 24853 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
ae038cb0
DJ
24854 high = mid;
24855 else
24856 low = mid + 1;
24857 }
24858 gdb_assert (low == high);
36586728 24859 this_cu = dwarf2_per_objfile->all_comp_units[low];
9c541725
PA
24860 cu_off = &this_cu->sect_off;
24861 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
ae038cb0 24862 {
36586728 24863 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8 24864 error (_("Dwarf Error: could not find partial DIE containing "
9d8780f0
SM
24865 "offset %s [in module %s]"),
24866 sect_offset_str (sect_off),
ed2dc618 24867 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
10b3939b 24868
9c541725
PA
24869 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24870 <= sect_off);
ae038cb0
DJ
24871 return dwarf2_per_objfile->all_comp_units[low-1];
24872 }
24873 else
24874 {
24875 this_cu = dwarf2_per_objfile->all_comp_units[low];
b76e467d 24876 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
9c541725 24877 && sect_off >= this_cu->sect_off + this_cu->length)
9d8780f0 24878 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
9c541725 24879 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
ae038cb0
DJ
24880 return this_cu;
24881 }
24882}
24883
23745b47 24884/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 24885
fcd3b13d
SM
24886dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24887 : per_cu (per_cu_),
24888 mark (0),
24889 has_loclist (0),
24890 checked_producer (0),
24891 producer_is_gxx_lt_4_6 (0),
24892 producer_is_gcc_lt_4_3 (0),
24893 producer_is_icc_lt_14 (0),
24894 processing_has_namespace_info (0)
93311388 24895{
fcd3b13d
SM
24896 per_cu->cu = this;
24897}
24898
24899/* Destroy a dwarf2_cu. */
24900
24901dwarf2_cu::~dwarf2_cu ()
24902{
24903 per_cu->cu = NULL;
9816fde3
JK
24904}
24905
24906/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24907
24908static void
95554aad
TT
24909prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24910 enum language pretend_language)
9816fde3
JK
24911{
24912 struct attribute *attr;
24913
24914 /* Set the language we're debugging. */
24915 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24916 if (attr)
24917 set_cu_language (DW_UNSND (attr), cu);
24918 else
9cded63f 24919 {
95554aad 24920 cu->language = pretend_language;
9cded63f
TT
24921 cu->language_defn = language_def (cu->language);
24922 }
dee91e82 24923
7d45c7c3 24924 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
24925}
24926
ae038cb0
DJ
24927/* Increase the age counter on each cached compilation unit, and free
24928 any that are too old. */
24929
24930static void
ed2dc618 24931age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
ae038cb0
DJ
24932{
24933 struct dwarf2_per_cu_data *per_cu, **last_chain;
24934
24935 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24936 per_cu = dwarf2_per_objfile->read_in_chain;
24937 while (per_cu != NULL)
24938 {
24939 per_cu->cu->last_used ++;
b4f54984 24940 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
24941 dwarf2_mark (per_cu->cu);
24942 per_cu = per_cu->cu->read_in_chain;
24943 }
24944
24945 per_cu = dwarf2_per_objfile->read_in_chain;
24946 last_chain = &dwarf2_per_objfile->read_in_chain;
24947 while (per_cu != NULL)
24948 {
24949 struct dwarf2_per_cu_data *next_cu;
24950
24951 next_cu = per_cu->cu->read_in_chain;
24952
24953 if (!per_cu->cu->mark)
24954 {
fcd3b13d 24955 delete per_cu->cu;
ae038cb0
DJ
24956 *last_chain = next_cu;
24957 }
24958 else
24959 last_chain = &per_cu->cu->read_in_chain;
24960
24961 per_cu = next_cu;
24962 }
24963}
24964
24965/* Remove a single compilation unit from the cache. */
24966
24967static void
dee91e82 24968free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
24969{
24970 struct dwarf2_per_cu_data *per_cu, **last_chain;
ed2dc618
SM
24971 struct dwarf2_per_objfile *dwarf2_per_objfile
24972 = target_per_cu->dwarf2_per_objfile;
ae038cb0
DJ
24973
24974 per_cu = dwarf2_per_objfile->read_in_chain;
24975 last_chain = &dwarf2_per_objfile->read_in_chain;
24976 while (per_cu != NULL)
24977 {
24978 struct dwarf2_per_cu_data *next_cu;
24979
24980 next_cu = per_cu->cu->read_in_chain;
24981
dee91e82 24982 if (per_cu == target_per_cu)
ae038cb0 24983 {
fcd3b13d 24984 delete per_cu->cu;
dee91e82 24985 per_cu->cu = NULL;
ae038cb0
DJ
24986 *last_chain = next_cu;
24987 break;
24988 }
24989 else
24990 last_chain = &per_cu->cu->read_in_chain;
24991
24992 per_cu = next_cu;
24993 }
24994}
24995
d95d3aef 24996/* Cleanup function for the dwarf2_per_objfile data. */
fe3e1990 24997
d95d3aef
TT
24998static void
24999dwarf2_free_objfile (struct objfile *objfile, void *datum)
fe3e1990 25000{
ed2dc618 25001 struct dwarf2_per_objfile *dwarf2_per_objfile
d95d3aef 25002 = static_cast<struct dwarf2_per_objfile *> (datum);
fe3e1990 25003
fd90ace4 25004 delete dwarf2_per_objfile;
fe3e1990
DJ
25005}
25006
dee91e82
DE
25007/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25008 We store these in a hash table separate from the DIEs, and preserve them
25009 when the DIEs are flushed out of cache.
25010
25011 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 25012 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
25013 or the type may come from a DWO file. Furthermore, while it's more logical
25014 to use per_cu->section+offset, with Fission the section with the data is in
25015 the DWO file but we don't know that section at the point we need it.
25016 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25017 because we can enter the lookup routine, get_die_type_at_offset, from
25018 outside this file, and thus won't necessarily have PER_CU->cu.
25019 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 25020
dee91e82 25021struct dwarf2_per_cu_offset_and_type
1c379e20 25022{
dee91e82 25023 const struct dwarf2_per_cu_data *per_cu;
9c541725 25024 sect_offset sect_off;
1c379e20
DJ
25025 struct type *type;
25026};
25027
dee91e82 25028/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
25029
25030static hashval_t
dee91e82 25031per_cu_offset_and_type_hash (const void *item)
1c379e20 25032{
9a3c8263
SM
25033 const struct dwarf2_per_cu_offset_and_type *ofs
25034 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 25035
9c541725 25036 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
1c379e20
DJ
25037}
25038
dee91e82 25039/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
25040
25041static int
dee91e82 25042per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 25043{
9a3c8263
SM
25044 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25045 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25046 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25047 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 25048
dee91e82 25049 return (ofs_lhs->per_cu == ofs_rhs->per_cu
9c541725 25050 && ofs_lhs->sect_off == ofs_rhs->sect_off);
1c379e20
DJ
25051}
25052
25053/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
25054 table if necessary. For convenience, return TYPE.
25055
25056 The DIEs reading must have careful ordering to:
25057 * Not cause infite loops trying to read in DIEs as a prerequisite for
25058 reading current DIE.
25059 * Not trying to dereference contents of still incompletely read in types
25060 while reading in other DIEs.
25061 * Enable referencing still incompletely read in types just by a pointer to
25062 the type without accessing its fields.
25063
25064 Therefore caller should follow these rules:
25065 * Try to fetch any prerequisite types we may need to build this DIE type
25066 before building the type and calling set_die_type.
e71ec853 25067 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
25068 possible before fetching more types to complete the current type.
25069 * Make the type as complete as possible before fetching more types. */
1c379e20 25070
f792889a 25071static struct type *
1c379e20
DJ
25072set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25073{
518817b3
SM
25074 struct dwarf2_per_objfile *dwarf2_per_objfile
25075 = cu->per_cu->dwarf2_per_objfile;
dee91e82 25076 struct dwarf2_per_cu_offset_and_type **slot, ofs;
ed2dc618 25077 struct objfile *objfile = dwarf2_per_objfile->objfile;
3cdcd0ce
JB
25078 struct attribute *attr;
25079 struct dynamic_prop prop;
1c379e20 25080
b4ba55a1
JB
25081 /* For Ada types, make sure that the gnat-specific data is always
25082 initialized (if not already set). There are a few types where
25083 we should not be doing so, because the type-specific area is
25084 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25085 where the type-specific area is used to store the floatformat).
25086 But this is not a problem, because the gnat-specific information
25087 is actually not needed for these types. */
25088 if (need_gnat_info (cu)
25089 && TYPE_CODE (type) != TYPE_CODE_FUNC
25090 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
25091 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25092 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25093 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
25094 && !HAVE_GNAT_AUX_INFO (type))
25095 INIT_GNAT_SPECIFIC (type);
25096
3f2f83dd
KB
25097 /* Read DW_AT_allocated and set in type. */
25098 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25099 if (attr_form_is_block (attr))
25100 {
25101 if (attr_to_dynamic_prop (attr, die, cu, &prop))
50a82047 25102 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
3f2f83dd
KB
25103 }
25104 else if (attr != NULL)
25105 {
b98664d3 25106 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
9c541725 25107 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
9d8780f0 25108 sect_offset_str (die->sect_off));
3f2f83dd
KB
25109 }
25110
25111 /* Read DW_AT_associated and set in type. */
25112 attr = dwarf2_attr (die, DW_AT_associated, cu);
25113 if (attr_form_is_block (attr))
25114 {
25115 if (attr_to_dynamic_prop (attr, die, cu, &prop))
50a82047 25116 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
3f2f83dd
KB
25117 }
25118 else if (attr != NULL)
25119 {
b98664d3 25120 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
9c541725 25121 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
9d8780f0 25122 sect_offset_str (die->sect_off));
3f2f83dd
KB
25123 }
25124
3cdcd0ce
JB
25125 /* Read DW_AT_data_location and set in type. */
25126 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25127 if (attr_to_dynamic_prop (attr, die, cu, &prop))
50a82047 25128 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
3cdcd0ce 25129
dee91e82 25130 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 25131 {
dee91e82
DE
25132 dwarf2_per_objfile->die_type_hash =
25133 htab_create_alloc_ex (127,
25134 per_cu_offset_and_type_hash,
25135 per_cu_offset_and_type_eq,
25136 NULL,
25137 &objfile->objfile_obstack,
25138 hashtab_obstack_allocate,
25139 dummy_obstack_deallocate);
f792889a 25140 }
1c379e20 25141
dee91e82 25142 ofs.per_cu = cu->per_cu;
9c541725 25143 ofs.sect_off = die->sect_off;
1c379e20 25144 ofs.type = type;
dee91e82
DE
25145 slot = (struct dwarf2_per_cu_offset_and_type **)
25146 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57 25147 if (*slot)
b98664d3 25148 complaint (_("A problem internal to GDB: DIE %s has type already set"),
9d8780f0 25149 sect_offset_str (die->sect_off));
8d749320
SM
25150 *slot = XOBNEW (&objfile->objfile_obstack,
25151 struct dwarf2_per_cu_offset_and_type);
1c379e20 25152 **slot = ofs;
f792889a 25153 return type;
1c379e20
DJ
25154}
25155
9c541725 25156/* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
02142a6c 25157 or return NULL if the die does not have a saved type. */
1c379e20
DJ
25158
25159static struct type *
9c541725 25160get_die_type_at_offset (sect_offset sect_off,
673bfd45 25161 struct dwarf2_per_cu_data *per_cu)
1c379e20 25162{
dee91e82 25163 struct dwarf2_per_cu_offset_and_type *slot, ofs;
ed2dc618 25164 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
f792889a 25165
dee91e82 25166 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 25167 return NULL;
1c379e20 25168
dee91e82 25169 ofs.per_cu = per_cu;
9c541725 25170 ofs.sect_off = sect_off;
9a3c8263
SM
25171 slot = ((struct dwarf2_per_cu_offset_and_type *)
25172 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
25173 if (slot)
25174 return slot->type;
25175 else
25176 return NULL;
25177}
25178
02142a6c 25179/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
25180 or return NULL if DIE does not have a saved type. */
25181
25182static struct type *
25183get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25184{
9c541725 25185 return get_die_type_at_offset (die->sect_off, cu->per_cu);
673bfd45
DE
25186}
25187
10b3939b
DJ
25188/* Add a dependence relationship from CU to REF_PER_CU. */
25189
25190static void
25191dwarf2_add_dependence (struct dwarf2_cu *cu,
25192 struct dwarf2_per_cu_data *ref_per_cu)
25193{
25194 void **slot;
25195
25196 if (cu->dependencies == NULL)
25197 cu->dependencies
25198 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25199 NULL, &cu->comp_unit_obstack,
25200 hashtab_obstack_allocate,
25201 dummy_obstack_deallocate);
25202
25203 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25204 if (*slot == NULL)
25205 *slot = ref_per_cu;
25206}
1c379e20 25207
f504f079
DE
25208/* Subroutine of dwarf2_mark to pass to htab_traverse.
25209 Set the mark field in every compilation unit in the
ae038cb0
DJ
25210 cache that we must keep because we are keeping CU. */
25211
10b3939b
DJ
25212static int
25213dwarf2_mark_helper (void **slot, void *data)
25214{
25215 struct dwarf2_per_cu_data *per_cu;
25216
25217 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
25218
25219 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25220 reading of the chain. As such dependencies remain valid it is not much
25221 useful to track and undo them during QUIT cleanups. */
25222 if (per_cu->cu == NULL)
25223 return 1;
25224
10b3939b
DJ
25225 if (per_cu->cu->mark)
25226 return 1;
25227 per_cu->cu->mark = 1;
25228
25229 if (per_cu->cu->dependencies != NULL)
25230 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25231
25232 return 1;
25233}
25234
f504f079
DE
25235/* Set the mark field in CU and in every other compilation unit in the
25236 cache that we must keep because we are keeping CU. */
25237
ae038cb0
DJ
25238static void
25239dwarf2_mark (struct dwarf2_cu *cu)
25240{
25241 if (cu->mark)
25242 return;
25243 cu->mark = 1;
10b3939b
DJ
25244 if (cu->dependencies != NULL)
25245 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
25246}
25247
25248static void
25249dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25250{
25251 while (per_cu)
25252 {
25253 per_cu->cu->mark = 0;
25254 per_cu = per_cu->cu->read_in_chain;
25255 }
72bf9492
DJ
25256}
25257
72bf9492
DJ
25258/* Trivial hash function for partial_die_info: the hash value of a DIE
25259 is its offset in .debug_info for this objfile. */
25260
25261static hashval_t
25262partial_die_hash (const void *item)
25263{
9a3c8263
SM
25264 const struct partial_die_info *part_die
25265 = (const struct partial_die_info *) item;
9a619af0 25266
9c541725 25267 return to_underlying (part_die->sect_off);
72bf9492
DJ
25268}
25269
25270/* Trivial comparison function for partial_die_info structures: two DIEs
25271 are equal if they have the same offset. */
25272
25273static int
25274partial_die_eq (const void *item_lhs, const void *item_rhs)
25275{
9a3c8263
SM
25276 const struct partial_die_info *part_die_lhs
25277 = (const struct partial_die_info *) item_lhs;
25278 const struct partial_die_info *part_die_rhs
25279 = (const struct partial_die_info *) item_rhs;
9a619af0 25280
9c541725 25281 return part_die_lhs->sect_off == part_die_rhs->sect_off;
72bf9492
DJ
25282}
25283
b4f54984
DE
25284static struct cmd_list_element *set_dwarf_cmdlist;
25285static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
25286
25287static void
981a3fb3 25288set_dwarf_cmd (const char *args, int from_tty)
ae038cb0 25289{
b4f54984 25290 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 25291 gdb_stdout);
ae038cb0
DJ
25292}
25293
25294static void
981a3fb3 25295show_dwarf_cmd (const char *args, int from_tty)
6e70227d 25296{
b4f54984 25297 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
25298}
25299
cd4fb1b2 25300int dwarf_always_disassemble;
437afbb8 25301
437afbb8 25302static void
cd4fb1b2
SM
25303show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25304 struct cmd_list_element *c, const char *value)
9291a0cd 25305{
cd4fb1b2
SM
25306 fprintf_filtered (file,
25307 _("Whether to always disassemble "
25308 "DWARF expressions is %s.\n"),
25309 value);
9291a0cd
TT
25310}
25311
9291a0cd 25312static void
cd4fb1b2
SM
25313show_check_physname (struct ui_file *file, int from_tty,
25314 struct cmd_list_element *c, const char *value)
9291a0cd 25315{
cd4fb1b2
SM
25316 fprintf_filtered (file,
25317 _("Whether to check \"physname\" is %s.\n"),
25318 value);
9291a0cd
TT
25319}
25320
cd4fb1b2
SM
25321void
25322_initialize_dwarf2_read (void)
9291a0cd 25323{
d95d3aef
TT
25324 dwarf2_objfile_data_key
25325 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
156942c7 25326
cd4fb1b2
SM
25327 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25328Set DWARF specific variables.\n\
25329Configure DWARF variables such as the cache size"),
25330 &set_dwarf_cmdlist, "maintenance set dwarf ",
25331 0/*allow-unknown*/, &maintenance_set_cmdlist);
156942c7 25332
cd4fb1b2
SM
25333 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25334Show DWARF specific variables\n\
25335Show DWARF variables such as the cache size"),
25336 &show_dwarf_cmdlist, "maintenance show dwarf ",
25337 0/*allow-unknown*/, &maintenance_show_cmdlist);
156942c7 25338
cd4fb1b2
SM
25339 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25340 &dwarf_max_cache_age, _("\
25341Set the upper bound on the age of cached DWARF compilation units."), _("\
25342Show the upper bound on the age of cached DWARF compilation units."), _("\
25343A higher limit means that cached compilation units will be stored\n\
25344in memory longer, and more total memory will be used. Zero disables\n\
25345caching, which can slow down startup."),
25346 NULL,
25347 show_dwarf_max_cache_age,
25348 &set_dwarf_cmdlist,
25349 &show_dwarf_cmdlist);
156942c7 25350
cd4fb1b2
SM
25351 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25352 &dwarf_always_disassemble, _("\
25353Set whether `info address' always disassembles DWARF expressions."), _("\
25354Show whether `info address' always disassembles DWARF expressions."), _("\
25355When enabled, DWARF expressions are always printed in an assembly-like\n\
25356syntax. When disabled, expressions will be printed in a more\n\
25357conversational style, when possible."),
25358 NULL,
25359 show_dwarf_always_disassemble,
25360 &set_dwarf_cmdlist,
25361 &show_dwarf_cmdlist);
9291a0cd 25362
cd4fb1b2
SM
25363 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25364Set debugging of the DWARF reader."), _("\
25365Show debugging of the DWARF reader."), _("\
25366When enabled (non-zero), debugging messages are printed during DWARF\n\
25367reading and symtab expansion. A value of 1 (one) provides basic\n\
25368information. A value greater than 1 provides more verbose information."),
25369 NULL,
25370 NULL,
25371 &setdebuglist, &showdebuglist);
9291a0cd 25372
cd4fb1b2
SM
25373 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25374Set debugging of the DWARF DIE reader."), _("\
25375Show debugging of the DWARF DIE reader."), _("\
25376When enabled (non-zero), DIEs are dumped after they are read in.\n\
25377The value is the maximum depth to print."),
25378 NULL,
25379 NULL,
25380 &setdebuglist, &showdebuglist);
9291a0cd 25381
cd4fb1b2
SM
25382 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25383Set debugging of the dwarf line reader."), _("\
25384Show debugging of the dwarf line reader."), _("\
25385When enabled (non-zero), line number entries are dumped as they are read in.\n\
25386A value of 1 (one) provides basic information.\n\
25387A value greater than 1 provides more verbose information."),
25388 NULL,
25389 NULL,
25390 &setdebuglist, &showdebuglist);
437afbb8 25391
cd4fb1b2
SM
25392 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25393Set cross-checking of \"physname\" code against demangler."), _("\
25394Show cross-checking of \"physname\" code against demangler."), _("\
25395When enabled, GDB's internal \"physname\" code is checked against\n\
25396the demangler."),
25397 NULL, show_check_physname,
25398 &setdebuglist, &showdebuglist);
900e11f9 25399
e615022a
DE
25400 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25401 no_class, &use_deprecated_index_sections, _("\
25402Set whether to use deprecated gdb_index sections."), _("\
25403Show whether to use deprecated gdb_index sections."), _("\
25404When enabled, deprecated .gdb_index sections are used anyway.\n\
25405Normally they are ignored either because of a missing feature or\n\
25406performance issue.\n\
25407Warning: This option must be enabled before gdb reads the file."),
25408 NULL,
25409 NULL,
25410 &setlist, &showlist);
25411
f1e6e072
TT
25412 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25413 &dwarf2_locexpr_funcs);
25414 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25415 &dwarf2_loclist_funcs);
25416
25417 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25418 &dwarf2_block_frame_base_locexpr_funcs);
25419 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25420 &dwarf2_block_frame_base_loclist_funcs);
c62446b1
PA
25421
25422#if GDB_SELF_TEST
25423 selftests::register_test ("dw2_expand_symtabs_matching",
25424 selftests::dw2_expand_symtabs_matching::run_test);
25425#endif
6502dd73 25426}
This page took 6.084251 seconds and 4 git commands to generate.