* python/py-param.c (compute_enum_values): Decref 'item'.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
28e7fd62 3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
9291a0cd
TT
58#include "exceptions.h"
59#include "gdb_stat.h"
96d19272 60#include "completer.h"
34eaf542 61#include "vec.h"
98bfdba5 62#include "c-lang.h"
a766d390 63#include "go-lang.h"
98bfdba5 64#include "valprint.h"
3019eac3 65#include "gdbcore.h" /* for gnutarget */
156942c7 66#include "gdb/gdb-index.h"
60d5a603 67#include <ctype.h>
cbb099e8 68#include "gdb_bfd.h"
4357ac6c 69#include "f-lang.h"
05cba821 70#include "source.h"
614c279d 71#include "filestuff.h"
4c2df51b 72
c906108c
SS
73#include <fcntl.h>
74#include "gdb_string.h"
4bdf3d34 75#include "gdb_assert.h"
c906108c 76#include <sys/types.h>
d8151005 77
34eaf542
TT
78typedef struct symbol *symbolp;
79DEF_VEC_P (symbolp);
80
45cfd468
DE
81/* When non-zero, print basic high level tracing messages.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83static int dwarf2_read_debug = 0;
84
d97bc12b 85/* When non-zero, dump DIEs after they are read in. */
ccce17b0 86static unsigned int dwarf2_die_debug = 0;
d97bc12b 87
900e11f9
JK
88/* When non-zero, cross-check physname against demangler. */
89static int check_physname = 0;
90
481860b3 91/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 92static int use_deprecated_index_sections = 0;
481860b3 93
6502dd73
DJ
94static const struct objfile_data *dwarf2_objfile_data_key;
95
f1e6e072
TT
96/* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98static int dwarf2_locexpr_index;
99static int dwarf2_loclist_index;
100static int dwarf2_locexpr_block_index;
101static int dwarf2_loclist_block_index;
102
dce234bc
PP
103struct dwarf2_section_info
104{
105 asection *asection;
d521ce57 106 const gdb_byte *buffer;
dce234bc 107 bfd_size_type size;
be391dca
TT
108 /* True if we have tried to read this section. */
109 int readin;
dce234bc
PP
110};
111
8b70b953
TT
112typedef struct dwarf2_section_info dwarf2_section_info_def;
113DEF_VEC_O (dwarf2_section_info_def);
114
9291a0cd
TT
115/* All offsets in the index are of this type. It must be
116 architecture-independent. */
117typedef uint32_t offset_type;
118
119DEF_VEC_I (offset_type);
120
156942c7
DE
121/* Ensure only legit values are used. */
122#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
123 do { \
124 gdb_assert ((unsigned int) (value) <= 1); \
125 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
126 } while (0)
127
128/* Ensure only legit values are used. */
129#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
130 do { \
131 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
132 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
133 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
134 } while (0)
135
136/* Ensure we don't use more than the alloted nuber of bits for the CU. */
137#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
138 do { \
139 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
140 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
141 } while (0)
142
9291a0cd
TT
143/* A description of the mapped index. The file format is described in
144 a comment by the code that writes the index. */
145struct mapped_index
146{
559a7a62
JK
147 /* Index data format version. */
148 int version;
149
9291a0cd
TT
150 /* The total length of the buffer. */
151 off_t total_size;
b11b1f88 152
9291a0cd
TT
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
b11b1f88 155
9291a0cd
TT
156 /* Size of the address table data in bytes. */
157 offset_type address_table_size;
b11b1f88 158
3876f04e
DE
159 /* The symbol table, implemented as a hash table. */
160 const offset_type *symbol_table;
b11b1f88 161
9291a0cd 162 /* Size in slots, each slot is 2 offset_types. */
3876f04e 163 offset_type symbol_table_slots;
b11b1f88 164
9291a0cd
TT
165 /* A pointer to the constant pool. */
166 const char *constant_pool;
167};
168
95554aad
TT
169typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
170DEF_VEC_P (dwarf2_per_cu_ptr);
171
9cdd5dbd
DE
172/* Collection of data recorded per objfile.
173 This hangs off of dwarf2_objfile_data_key. */
174
6502dd73
DJ
175struct dwarf2_per_objfile
176{
dce234bc
PP
177 struct dwarf2_section_info info;
178 struct dwarf2_section_info abbrev;
179 struct dwarf2_section_info line;
dce234bc
PP
180 struct dwarf2_section_info loc;
181 struct dwarf2_section_info macinfo;
cf2c3c16 182 struct dwarf2_section_info macro;
dce234bc
PP
183 struct dwarf2_section_info str;
184 struct dwarf2_section_info ranges;
3019eac3 185 struct dwarf2_section_info addr;
dce234bc
PP
186 struct dwarf2_section_info frame;
187 struct dwarf2_section_info eh_frame;
9291a0cd 188 struct dwarf2_section_info gdb_index;
ae038cb0 189
8b70b953
TT
190 VEC (dwarf2_section_info_def) *types;
191
be391dca
TT
192 /* Back link. */
193 struct objfile *objfile;
194
d467dd73 195 /* Table of all the compilation units. This is used to locate
10b3939b 196 the target compilation unit of a particular reference. */
ae038cb0
DJ
197 struct dwarf2_per_cu_data **all_comp_units;
198
199 /* The number of compilation units in ALL_COMP_UNITS. */
200 int n_comp_units;
201
1fd400ff 202 /* The number of .debug_types-related CUs. */
d467dd73 203 int n_type_units;
1fd400ff 204
a2ce51a0
DE
205 /* The .debug_types-related CUs (TUs).
206 This is stored in malloc space because we may realloc it. */
b4dd5633 207 struct signatured_type **all_type_units;
1fd400ff 208
f4dc4d17
DE
209 /* The number of entries in all_type_unit_groups. */
210 int n_type_unit_groups;
211
212 /* Table of type unit groups.
213 This exists to make it easy to iterate over all CUs and TU groups. */
214 struct type_unit_group **all_type_unit_groups;
215
216 /* Table of struct type_unit_group objects.
217 The hash key is the DW_AT_stmt_list value. */
218 htab_t type_unit_groups;
72dca2f5 219
348e048f
DE
220 /* A table mapping .debug_types signatures to its signatured_type entry.
221 This is NULL if the .debug_types section hasn't been read in yet. */
222 htab_t signatured_types;
223
f4dc4d17
DE
224 /* Type unit statistics, to see how well the scaling improvements
225 are doing. */
226 struct tu_stats
227 {
228 int nr_uniq_abbrev_tables;
229 int nr_symtabs;
230 int nr_symtab_sharers;
231 int nr_stmt_less_type_units;
232 } tu_stats;
233
234 /* A chain of compilation units that are currently read in, so that
235 they can be freed later. */
236 struct dwarf2_per_cu_data *read_in_chain;
237
3019eac3
DE
238 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
239 This is NULL if the table hasn't been allocated yet. */
240 htab_t dwo_files;
241
80626a55
DE
242 /* Non-zero if we've check for whether there is a DWP file. */
243 int dwp_checked;
244
245 /* The DWP file if there is one, or NULL. */
246 struct dwp_file *dwp_file;
247
36586728
TT
248 /* The shared '.dwz' file, if one exists. This is used when the
249 original data was compressed using 'dwz -m'. */
250 struct dwz_file *dwz_file;
251
72dca2f5
FR
252 /* A flag indicating wether this objfile has a section loaded at a
253 VMA of 0. */
254 int has_section_at_zero;
9291a0cd 255
ae2de4f8
DE
256 /* True if we are using the mapped index,
257 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
258 unsigned char using_index;
259
ae2de4f8 260 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 261 struct mapped_index *index_table;
98bfdba5 262
7b9f3c50 263 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
264 TUs typically share line table entries with a CU, so we maintain a
265 separate table of all line table entries to support the sharing.
266 Note that while there can be way more TUs than CUs, we've already
267 sorted all the TUs into "type unit groups", grouped by their
268 DW_AT_stmt_list value. Therefore the only sharing done here is with a
269 CU and its associated TU group if there is one. */
7b9f3c50
DE
270 htab_t quick_file_names_table;
271
98bfdba5
PA
272 /* Set during partial symbol reading, to prevent queueing of full
273 symbols. */
274 int reading_partial_symbols;
673bfd45 275
dee91e82 276 /* Table mapping type DIEs to their struct type *.
673bfd45 277 This is NULL if not allocated yet.
02142a6c 278 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 279 htab_t die_type_hash;
95554aad
TT
280
281 /* The CUs we recently read. */
282 VEC (dwarf2_per_cu_ptr) *just_read_cus;
6502dd73
DJ
283};
284
285static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 286
251d32d9 287/* Default names of the debugging sections. */
c906108c 288
233a11ab
CS
289/* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
9cdd5dbd
DE
292static const struct dwarf2_debug_sections dwarf2_elf_names =
293{
251d32d9
TG
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 299 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
300 { ".debug_str", ".zdebug_str" },
301 { ".debug_ranges", ".zdebug_ranges" },
302 { ".debug_types", ".zdebug_types" },
3019eac3 303 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
304 { ".debug_frame", ".zdebug_frame" },
305 { ".eh_frame", NULL },
24d3216f
TT
306 { ".gdb_index", ".zgdb_index" },
307 23
251d32d9 308};
c906108c 309
80626a55 310/* List of DWO/DWP sections. */
3019eac3 311
80626a55 312static const struct dwop_section_names
3019eac3
DE
313{
314 struct dwarf2_section_names abbrev_dwo;
315 struct dwarf2_section_names info_dwo;
316 struct dwarf2_section_names line_dwo;
317 struct dwarf2_section_names loc_dwo;
09262596
DE
318 struct dwarf2_section_names macinfo_dwo;
319 struct dwarf2_section_names macro_dwo;
3019eac3
DE
320 struct dwarf2_section_names str_dwo;
321 struct dwarf2_section_names str_offsets_dwo;
322 struct dwarf2_section_names types_dwo;
80626a55
DE
323 struct dwarf2_section_names cu_index;
324 struct dwarf2_section_names tu_index;
3019eac3 325}
80626a55 326dwop_section_names =
3019eac3
DE
327{
328 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
329 { ".debug_info.dwo", ".zdebug_info.dwo" },
330 { ".debug_line.dwo", ".zdebug_line.dwo" },
331 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
332 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
333 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
334 { ".debug_str.dwo", ".zdebug_str.dwo" },
335 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
336 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
337 { ".debug_cu_index", ".zdebug_cu_index" },
338 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
339};
340
c906108c
SS
341/* local data types */
342
107d2387
AC
343/* The data in a compilation unit header, after target2host
344 translation, looks like this. */
c906108c 345struct comp_unit_head
a738430d 346{
c764a876 347 unsigned int length;
a738430d 348 short version;
a738430d
MK
349 unsigned char addr_size;
350 unsigned char signed_addr_p;
b64f50a1 351 sect_offset abbrev_offset;
57349743 352
a738430d
MK
353 /* Size of file offsets; either 4 or 8. */
354 unsigned int offset_size;
57349743 355
a738430d
MK
356 /* Size of the length field; either 4 or 12. */
357 unsigned int initial_length_size;
57349743 358
a738430d
MK
359 /* Offset to the first byte of this compilation unit header in the
360 .debug_info section, for resolving relative reference dies. */
b64f50a1 361 sect_offset offset;
57349743 362
d00adf39
DE
363 /* Offset to first die in this cu from the start of the cu.
364 This will be the first byte following the compilation unit header. */
b64f50a1 365 cu_offset first_die_offset;
a738430d 366};
c906108c 367
3da10d80
KS
368/* Type used for delaying computation of method physnames.
369 See comments for compute_delayed_physnames. */
370struct delayed_method_info
371{
372 /* The type to which the method is attached, i.e., its parent class. */
373 struct type *type;
374
375 /* The index of the method in the type's function fieldlists. */
376 int fnfield_index;
377
378 /* The index of the method in the fieldlist. */
379 int index;
380
381 /* The name of the DIE. */
382 const char *name;
383
384 /* The DIE associated with this method. */
385 struct die_info *die;
386};
387
388typedef struct delayed_method_info delayed_method_info;
389DEF_VEC_O (delayed_method_info);
390
e7c27a73
DJ
391/* Internal state when decoding a particular compilation unit. */
392struct dwarf2_cu
393{
394 /* The objfile containing this compilation unit. */
395 struct objfile *objfile;
396
d00adf39 397 /* The header of the compilation unit. */
e7c27a73 398 struct comp_unit_head header;
e142c38c 399
d00adf39
DE
400 /* Base address of this compilation unit. */
401 CORE_ADDR base_address;
402
403 /* Non-zero if base_address has been set. */
404 int base_known;
405
e142c38c
DJ
406 /* The language we are debugging. */
407 enum language language;
408 const struct language_defn *language_defn;
409
b0f35d58
DL
410 const char *producer;
411
e142c38c
DJ
412 /* The generic symbol table building routines have separate lists for
413 file scope symbols and all all other scopes (local scopes). So
414 we need to select the right one to pass to add_symbol_to_list().
415 We do it by keeping a pointer to the correct list in list_in_scope.
416
417 FIXME: The original dwarf code just treated the file scope as the
418 first local scope, and all other local scopes as nested local
419 scopes, and worked fine. Check to see if we really need to
420 distinguish these in buildsym.c. */
421 struct pending **list_in_scope;
422
433df2d4
DE
423 /* The abbrev table for this CU.
424 Normally this points to the abbrev table in the objfile.
425 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
426 struct abbrev_table *abbrev_table;
72bf9492 427
b64f50a1
JK
428 /* Hash table holding all the loaded partial DIEs
429 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
430 htab_t partial_dies;
431
432 /* Storage for things with the same lifetime as this read-in compilation
433 unit, including partial DIEs. */
434 struct obstack comp_unit_obstack;
435
ae038cb0
DJ
436 /* When multiple dwarf2_cu structures are living in memory, this field
437 chains them all together, so that they can be released efficiently.
438 We will probably also want a generation counter so that most-recently-used
439 compilation units are cached... */
440 struct dwarf2_per_cu_data *read_in_chain;
441
442 /* Backchain to our per_cu entry if the tree has been built. */
443 struct dwarf2_per_cu_data *per_cu;
444
445 /* How many compilation units ago was this CU last referenced? */
446 int last_used;
447
b64f50a1
JK
448 /* A hash table of DIE cu_offset for following references with
449 die_info->offset.sect_off as hash. */
51545339 450 htab_t die_hash;
10b3939b
DJ
451
452 /* Full DIEs if read in. */
453 struct die_info *dies;
454
455 /* A set of pointers to dwarf2_per_cu_data objects for compilation
456 units referenced by this one. Only set during full symbol processing;
457 partial symbol tables do not have dependencies. */
458 htab_t dependencies;
459
cb1df416
DJ
460 /* Header data from the line table, during full symbol processing. */
461 struct line_header *line_header;
462
3da10d80
KS
463 /* A list of methods which need to have physnames computed
464 after all type information has been read. */
465 VEC (delayed_method_info) *method_list;
466
96408a79
SA
467 /* To be copied to symtab->call_site_htab. */
468 htab_t call_site_htab;
469
034e5797
DE
470 /* Non-NULL if this CU came from a DWO file.
471 There is an invariant here that is important to remember:
472 Except for attributes copied from the top level DIE in the "main"
473 (or "stub") file in preparation for reading the DWO file
474 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
475 Either there isn't a DWO file (in which case this is NULL and the point
476 is moot), or there is and either we're not going to read it (in which
477 case this is NULL) or there is and we are reading it (in which case this
478 is non-NULL). */
3019eac3
DE
479 struct dwo_unit *dwo_unit;
480
481 /* The DW_AT_addr_base attribute if present, zero otherwise
482 (zero is a valid value though).
483 Note this value comes from the stub CU/TU's DIE. */
484 ULONGEST addr_base;
485
2e3cf129
DE
486 /* The DW_AT_ranges_base attribute if present, zero otherwise
487 (zero is a valid value though).
488 Note this value comes from the stub CU/TU's DIE.
489 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
490 be used without needing to know whether DWO files are in use or not.
491 N.B. This does not apply to DW_AT_ranges appearing in
492 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
493 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
494 DW_AT_ranges_base *would* have to be applied, and we'd have to care
495 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
496 ULONGEST ranges_base;
497
ae038cb0
DJ
498 /* Mark used when releasing cached dies. */
499 unsigned int mark : 1;
500
8be455d7
JK
501 /* This CU references .debug_loc. See the symtab->locations_valid field.
502 This test is imperfect as there may exist optimized debug code not using
503 any location list and still facing inlining issues if handled as
504 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 505 unsigned int has_loclist : 1;
ba919b58 506
1b80a9fa
JK
507 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
508 if all the producer_is_* fields are valid. This information is cached
509 because profiling CU expansion showed excessive time spent in
510 producer_is_gxx_lt_4_6. */
ba919b58
TT
511 unsigned int checked_producer : 1;
512 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 513 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 514 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
515
516 /* When set, the file that we're processing is known to have
517 debugging info for C++ namespaces. GCC 3.3.x did not produce
518 this information, but later versions do. */
519
520 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
521};
522
10b3939b
DJ
523/* Persistent data held for a compilation unit, even when not
524 processing it. We put a pointer to this structure in the
28dee7f5 525 read_symtab_private field of the psymtab. */
10b3939b 526
ae038cb0
DJ
527struct dwarf2_per_cu_data
528{
36586728 529 /* The start offset and length of this compilation unit.
45452591 530 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
531 initial_length_size.
532 If the DIE refers to a DWO file, this is always of the original die,
533 not the DWO file. */
b64f50a1 534 sect_offset offset;
36586728 535 unsigned int length;
ae038cb0
DJ
536
537 /* Flag indicating this compilation unit will be read in before
538 any of the current compilation units are processed. */
c764a876 539 unsigned int queued : 1;
ae038cb0 540
0d99eb77
DE
541 /* This flag will be set when reading partial DIEs if we need to load
542 absolutely all DIEs for this compilation unit, instead of just the ones
543 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
544 hash table and don't find it. */
545 unsigned int load_all_dies : 1;
546
0186c6a7
DE
547 /* Non-zero if this CU is from .debug_types.
548 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
549 this is non-zero. */
3019eac3
DE
550 unsigned int is_debug_types : 1;
551
36586728
TT
552 /* Non-zero if this CU is from the .dwz file. */
553 unsigned int is_dwz : 1;
554
a2ce51a0
DE
555 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
556 This flag is only valid if is_debug_types is true.
557 We can't read a CU directly from a DWO file: There are required
558 attributes in the stub. */
559 unsigned int reading_dwo_directly : 1;
560
3019eac3
DE
561 /* The section this CU/TU lives in.
562 If the DIE refers to a DWO file, this is always the original die,
563 not the DWO file. */
8a0459fd 564 struct dwarf2_section_info *section;
348e048f 565
17ea53c3
JK
566 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
567 of the CU cache it gets reset to NULL again. */
ae038cb0 568 struct dwarf2_cu *cu;
1c379e20 569
9cdd5dbd
DE
570 /* The corresponding objfile.
571 Normally we can get the objfile from dwarf2_per_objfile.
572 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
573 struct objfile *objfile;
574
575 /* When using partial symbol tables, the 'psymtab' field is active.
576 Otherwise the 'quick' field is active. */
577 union
578 {
579 /* The partial symbol table associated with this compilation unit,
95554aad 580 or NULL for unread partial units. */
9291a0cd
TT
581 struct partial_symtab *psymtab;
582
583 /* Data needed by the "quick" functions. */
584 struct dwarf2_per_cu_quick_data *quick;
585 } v;
95554aad 586
796a7ff8
DE
587 /* The CUs we import using DW_TAG_imported_unit. This is filled in
588 while reading psymtabs, used to compute the psymtab dependencies,
589 and then cleared. Then it is filled in again while reading full
590 symbols, and only deleted when the objfile is destroyed.
591
592 This is also used to work around a difference between the way gold
593 generates .gdb_index version <=7 and the way gdb does. Arguably this
594 is a gold bug. For symbols coming from TUs, gold records in the index
595 the CU that includes the TU instead of the TU itself. This breaks
596 dw2_lookup_symbol: It assumes that if the index says symbol X lives
597 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
598 will find X. Alas TUs live in their own symtab, so after expanding CU Y
599 we need to look in TU Z to find X. Fortunately, this is akin to
600 DW_TAG_imported_unit, so we just use the same mechanism: For
601 .gdb_index version <=7 this also records the TUs that the CU referred
602 to. Concurrently with this change gdb was modified to emit version 8
603 indices so we only pay a price for gold generated indices. */
604 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
605};
606
348e048f
DE
607/* Entry in the signatured_types hash table. */
608
609struct signatured_type
610{
42e7ad6c 611 /* The "per_cu" object of this type.
ac9ec31b 612 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
613 N.B.: This is the first member so that it's easy to convert pointers
614 between them. */
615 struct dwarf2_per_cu_data per_cu;
616
3019eac3 617 /* The type's signature. */
348e048f
DE
618 ULONGEST signature;
619
3019eac3 620 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
621 If this TU is a DWO stub and the definition lives in a DWO file
622 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
623 cu_offset type_offset_in_tu;
624
625 /* Offset in the section of the type's DIE.
626 If the definition lives in a DWO file, this is the offset in the
627 .debug_types.dwo section.
628 The value is zero until the actual value is known.
629 Zero is otherwise not a valid section offset. */
630 sect_offset type_offset_in_section;
0186c6a7
DE
631
632 /* Type units are grouped by their DW_AT_stmt_list entry so that they
633 can share them. This points to the containing symtab. */
634 struct type_unit_group *type_unit_group;
ac9ec31b
DE
635
636 /* The type.
637 The first time we encounter this type we fully read it in and install it
638 in the symbol tables. Subsequent times we only need the type. */
639 struct type *type;
a2ce51a0
DE
640
641 /* Containing DWO unit.
642 This field is valid iff per_cu.reading_dwo_directly. */
643 struct dwo_unit *dwo_unit;
348e048f
DE
644};
645
0186c6a7
DE
646typedef struct signatured_type *sig_type_ptr;
647DEF_VEC_P (sig_type_ptr);
648
094b34ac
DE
649/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
650 This includes type_unit_group and quick_file_names. */
651
652struct stmt_list_hash
653{
654 /* The DWO unit this table is from or NULL if there is none. */
655 struct dwo_unit *dwo_unit;
656
657 /* Offset in .debug_line or .debug_line.dwo. */
658 sect_offset line_offset;
659};
660
f4dc4d17
DE
661/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
662 an object of this type. */
663
664struct type_unit_group
665{
0186c6a7 666 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
667 To simplify things we create an artificial CU that "includes" all the
668 type units using this stmt_list so that the rest of the code still has
669 a "per_cu" handle on the symtab.
670 This PER_CU is recognized by having no section. */
8a0459fd 671#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
672 struct dwarf2_per_cu_data per_cu;
673
0186c6a7
DE
674 /* The TUs that share this DW_AT_stmt_list entry.
675 This is added to while parsing type units to build partial symtabs,
676 and is deleted afterwards and not used again. */
677 VEC (sig_type_ptr) *tus;
f4dc4d17
DE
678
679 /* The primary symtab.
094b34ac
DE
680 Type units in a group needn't all be defined in the same source file,
681 so we create an essentially anonymous symtab as the primary symtab. */
f4dc4d17
DE
682 struct symtab *primary_symtab;
683
094b34ac
DE
684 /* The data used to construct the hash key. */
685 struct stmt_list_hash hash;
f4dc4d17
DE
686
687 /* The number of symtabs from the line header.
688 The value here must match line_header.num_file_names. */
689 unsigned int num_symtabs;
690
691 /* The symbol tables for this TU (obtained from the files listed in
692 DW_AT_stmt_list).
693 WARNING: The order of entries here must match the order of entries
694 in the line header. After the first TU using this type_unit_group, the
695 line header for the subsequent TUs is recreated from this. This is done
696 because we need to use the same symtabs for each TU using the same
697 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
698 there's no guarantee the line header doesn't have duplicate entries. */
699 struct symtab **symtabs;
700};
701
80626a55 702/* These sections are what may appear in a DWO file. */
3019eac3
DE
703
704struct dwo_sections
705{
706 struct dwarf2_section_info abbrev;
3019eac3
DE
707 struct dwarf2_section_info line;
708 struct dwarf2_section_info loc;
09262596
DE
709 struct dwarf2_section_info macinfo;
710 struct dwarf2_section_info macro;
3019eac3
DE
711 struct dwarf2_section_info str;
712 struct dwarf2_section_info str_offsets;
80626a55
DE
713 /* In the case of a virtual DWO file, these two are unused. */
714 struct dwarf2_section_info info;
3019eac3
DE
715 VEC (dwarf2_section_info_def) *types;
716};
717
c88ee1f0 718/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
719
720struct dwo_unit
721{
722 /* Backlink to the containing struct dwo_file. */
723 struct dwo_file *dwo_file;
724
725 /* The "id" that distinguishes this CU/TU.
726 .debug_info calls this "dwo_id", .debug_types calls this "signature".
727 Since signatures came first, we stick with it for consistency. */
728 ULONGEST signature;
729
730 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 731 struct dwarf2_section_info *section;
3019eac3
DE
732
733 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
734 sect_offset offset;
735 unsigned int length;
736
737 /* For types, offset in the type's DIE of the type defined by this TU. */
738 cu_offset type_offset_in_tu;
739};
740
80626a55
DE
741/* Data for one DWO file.
742 This includes virtual DWO files that have been packaged into a
743 DWP file. */
3019eac3
DE
744
745struct dwo_file
746{
0ac5b59e 747 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
748 For virtual DWO files the name is constructed from the section offsets
749 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
750 from related CU+TUs. */
0ac5b59e
DE
751 const char *dwo_name;
752
753 /* The DW_AT_comp_dir attribute. */
754 const char *comp_dir;
3019eac3 755
80626a55
DE
756 /* The bfd, when the file is open. Otherwise this is NULL.
757 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
758 bfd *dbfd;
3019eac3
DE
759
760 /* Section info for this file. */
761 struct dwo_sections sections;
762
19c3d4c9
DE
763 /* The CU in the file.
764 We only support one because having more than one requires hacking the
765 dwo_name of each to match, which is highly unlikely to happen.
766 Doing this means all TUs can share comp_dir: We also assume that
767 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
768 struct dwo_unit *cu;
3019eac3
DE
769
770 /* Table of TUs in the file.
771 Each element is a struct dwo_unit. */
772 htab_t tus;
773};
774
80626a55
DE
775/* These sections are what may appear in a DWP file. */
776
777struct dwp_sections
778{
779 struct dwarf2_section_info str;
780 struct dwarf2_section_info cu_index;
781 struct dwarf2_section_info tu_index;
782 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
783 by section number. We don't need to record them here. */
784};
785
786/* These sections are what may appear in a virtual DWO file. */
787
788struct virtual_dwo_sections
789{
790 struct dwarf2_section_info abbrev;
791 struct dwarf2_section_info line;
792 struct dwarf2_section_info loc;
793 struct dwarf2_section_info macinfo;
794 struct dwarf2_section_info macro;
795 struct dwarf2_section_info str_offsets;
796 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 797 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
798 struct dwarf2_section_info info_or_types;
799};
800
801/* Contents of DWP hash tables. */
802
803struct dwp_hash_table
804{
805 uint32_t nr_units, nr_slots;
806 const gdb_byte *hash_table, *unit_table, *section_pool;
807};
808
809/* Data for one DWP file. */
810
811struct dwp_file
812{
813 /* Name of the file. */
814 const char *name;
815
816 /* The bfd, when the file is open. Otherwise this is NULL. */
817 bfd *dbfd;
818
819 /* Section info for this file. */
820 struct dwp_sections sections;
821
822 /* Table of CUs in the file. */
823 const struct dwp_hash_table *cus;
824
825 /* Table of TUs in the file. */
826 const struct dwp_hash_table *tus;
827
828 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
829 htab_t loaded_cutus;
830
831 /* Table to map ELF section numbers to their sections. */
832 unsigned int num_sections;
833 asection **elf_sections;
834};
835
36586728
TT
836/* This represents a '.dwz' file. */
837
838struct dwz_file
839{
840 /* A dwz file can only contain a few sections. */
841 struct dwarf2_section_info abbrev;
842 struct dwarf2_section_info info;
843 struct dwarf2_section_info str;
844 struct dwarf2_section_info line;
845 struct dwarf2_section_info macro;
2ec9a5e0 846 struct dwarf2_section_info gdb_index;
36586728
TT
847
848 /* The dwz's BFD. */
849 bfd *dwz_bfd;
850};
851
0963b4bd
MS
852/* Struct used to pass misc. parameters to read_die_and_children, et
853 al. which are used for both .debug_info and .debug_types dies.
854 All parameters here are unchanging for the life of the call. This
dee91e82 855 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
856
857struct die_reader_specs
858{
dee91e82 859 /* die_section->asection->owner. */
93311388
DE
860 bfd* abfd;
861
862 /* The CU of the DIE we are parsing. */
863 struct dwarf2_cu *cu;
864
80626a55 865 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
866 struct dwo_file *dwo_file;
867
dee91e82 868 /* The section the die comes from.
3019eac3 869 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
870 struct dwarf2_section_info *die_section;
871
872 /* die_section->buffer. */
d521ce57 873 const gdb_byte *buffer;
f664829e
DE
874
875 /* The end of the buffer. */
876 const gdb_byte *buffer_end;
a2ce51a0
DE
877
878 /* The value of the DW_AT_comp_dir attribute. */
879 const char *comp_dir;
93311388
DE
880};
881
fd820528 882/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 883typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 884 const gdb_byte *info_ptr,
dee91e82
DE
885 struct die_info *comp_unit_die,
886 int has_children,
887 void *data);
888
debd256d
JB
889/* The line number information for a compilation unit (found in the
890 .debug_line section) begins with a "statement program header",
891 which contains the following information. */
892struct line_header
893{
894 unsigned int total_length;
895 unsigned short version;
896 unsigned int header_length;
897 unsigned char minimum_instruction_length;
2dc7f7b3 898 unsigned char maximum_ops_per_instruction;
debd256d
JB
899 unsigned char default_is_stmt;
900 int line_base;
901 unsigned char line_range;
902 unsigned char opcode_base;
903
904 /* standard_opcode_lengths[i] is the number of operands for the
905 standard opcode whose value is i. This means that
906 standard_opcode_lengths[0] is unused, and the last meaningful
907 element is standard_opcode_lengths[opcode_base - 1]. */
908 unsigned char *standard_opcode_lengths;
909
910 /* The include_directories table. NOTE! These strings are not
911 allocated with xmalloc; instead, they are pointers into
912 debug_line_buffer. If you try to free them, `free' will get
913 indigestion. */
914 unsigned int num_include_dirs, include_dirs_size;
d521ce57 915 const char **include_dirs;
debd256d
JB
916
917 /* The file_names table. NOTE! These strings are not allocated
918 with xmalloc; instead, they are pointers into debug_line_buffer.
919 Don't try to free them directly. */
920 unsigned int num_file_names, file_names_size;
921 struct file_entry
c906108c 922 {
d521ce57 923 const char *name;
debd256d
JB
924 unsigned int dir_index;
925 unsigned int mod_time;
926 unsigned int length;
aaa75496 927 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 928 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
929 } *file_names;
930
931 /* The start and end of the statement program following this
6502dd73 932 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 933 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 934};
c906108c
SS
935
936/* When we construct a partial symbol table entry we only
0963b4bd 937 need this much information. */
c906108c
SS
938struct partial_die_info
939 {
72bf9492 940 /* Offset of this DIE. */
b64f50a1 941 sect_offset offset;
72bf9492
DJ
942
943 /* DWARF-2 tag for this DIE. */
944 ENUM_BITFIELD(dwarf_tag) tag : 16;
945
72bf9492
DJ
946 /* Assorted flags describing the data found in this DIE. */
947 unsigned int has_children : 1;
948 unsigned int is_external : 1;
949 unsigned int is_declaration : 1;
950 unsigned int has_type : 1;
951 unsigned int has_specification : 1;
952 unsigned int has_pc_info : 1;
481860b3 953 unsigned int may_be_inlined : 1;
72bf9492
DJ
954
955 /* Flag set if the SCOPE field of this structure has been
956 computed. */
957 unsigned int scope_set : 1;
958
fa4028e9
JB
959 /* Flag set if the DIE has a byte_size attribute. */
960 unsigned int has_byte_size : 1;
961
98bfdba5
PA
962 /* Flag set if any of the DIE's children are template arguments. */
963 unsigned int has_template_arguments : 1;
964
abc72ce4
DE
965 /* Flag set if fixup_partial_die has been called on this die. */
966 unsigned int fixup_called : 1;
967
36586728
TT
968 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
969 unsigned int is_dwz : 1;
970
971 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
972 unsigned int spec_is_dwz : 1;
973
72bf9492 974 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 975 sometimes a default name for unnamed DIEs. */
15d034d0 976 const char *name;
72bf9492 977
abc72ce4
DE
978 /* The linkage name, if present. */
979 const char *linkage_name;
980
72bf9492
DJ
981 /* The scope to prepend to our children. This is generally
982 allocated on the comp_unit_obstack, so will disappear
983 when this compilation unit leaves the cache. */
15d034d0 984 const char *scope;
72bf9492 985
95554aad
TT
986 /* Some data associated with the partial DIE. The tag determines
987 which field is live. */
988 union
989 {
990 /* The location description associated with this DIE, if any. */
991 struct dwarf_block *locdesc;
992 /* The offset of an import, for DW_TAG_imported_unit. */
993 sect_offset offset;
994 } d;
72bf9492
DJ
995
996 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
997 CORE_ADDR lowpc;
998 CORE_ADDR highpc;
72bf9492 999
93311388 1000 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1001 DW_AT_sibling, if any. */
abc72ce4
DE
1002 /* NOTE: This member isn't strictly necessary, read_partial_die could
1003 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1004 const gdb_byte *sibling;
72bf9492
DJ
1005
1006 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1007 DW_AT_specification (or DW_AT_abstract_origin or
1008 DW_AT_extension). */
b64f50a1 1009 sect_offset spec_offset;
72bf9492
DJ
1010
1011 /* Pointers to this DIE's parent, first child, and next sibling,
1012 if any. */
1013 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1014 };
1015
0963b4bd 1016/* This data structure holds the information of an abbrev. */
c906108c
SS
1017struct abbrev_info
1018 {
1019 unsigned int number; /* number identifying abbrev */
1020 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1021 unsigned short has_children; /* boolean */
1022 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1023 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1024 struct abbrev_info *next; /* next in chain */
1025 };
1026
1027struct attr_abbrev
1028 {
9d25dd43
DE
1029 ENUM_BITFIELD(dwarf_attribute) name : 16;
1030 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1031 };
1032
433df2d4
DE
1033/* Size of abbrev_table.abbrev_hash_table. */
1034#define ABBREV_HASH_SIZE 121
1035
1036/* Top level data structure to contain an abbreviation table. */
1037
1038struct abbrev_table
1039{
f4dc4d17
DE
1040 /* Where the abbrev table came from.
1041 This is used as a sanity check when the table is used. */
433df2d4
DE
1042 sect_offset offset;
1043
1044 /* Storage for the abbrev table. */
1045 struct obstack abbrev_obstack;
1046
1047 /* Hash table of abbrevs.
1048 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1049 It could be statically allocated, but the previous code didn't so we
1050 don't either. */
1051 struct abbrev_info **abbrevs;
1052};
1053
0963b4bd 1054/* Attributes have a name and a value. */
b60c80d6
DJ
1055struct attribute
1056 {
9d25dd43 1057 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1058 ENUM_BITFIELD(dwarf_form) form : 15;
1059
1060 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1061 field should be in u.str (existing only for DW_STRING) but it is kept
1062 here for better struct attribute alignment. */
1063 unsigned int string_is_canonical : 1;
1064
b60c80d6
DJ
1065 union
1066 {
15d034d0 1067 const char *str;
b60c80d6 1068 struct dwarf_block *blk;
43bbcdc2
PH
1069 ULONGEST unsnd;
1070 LONGEST snd;
b60c80d6 1071 CORE_ADDR addr;
ac9ec31b 1072 ULONGEST signature;
b60c80d6
DJ
1073 }
1074 u;
1075 };
1076
0963b4bd 1077/* This data structure holds a complete die structure. */
c906108c
SS
1078struct die_info
1079 {
76815b17
DE
1080 /* DWARF-2 tag for this DIE. */
1081 ENUM_BITFIELD(dwarf_tag) tag : 16;
1082
1083 /* Number of attributes */
98bfdba5
PA
1084 unsigned char num_attrs;
1085
1086 /* True if we're presently building the full type name for the
1087 type derived from this DIE. */
1088 unsigned char building_fullname : 1;
76815b17
DE
1089
1090 /* Abbrev number */
1091 unsigned int abbrev;
1092
93311388 1093 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1094 sect_offset offset;
78ba4af6
JB
1095
1096 /* The dies in a compilation unit form an n-ary tree. PARENT
1097 points to this die's parent; CHILD points to the first child of
1098 this node; and all the children of a given node are chained
4950bc1c 1099 together via their SIBLING fields. */
639d11d3
DC
1100 struct die_info *child; /* Its first child, if any. */
1101 struct die_info *sibling; /* Its next sibling, if any. */
1102 struct die_info *parent; /* Its parent, if any. */
c906108c 1103
b60c80d6
DJ
1104 /* An array of attributes, with NUM_ATTRS elements. There may be
1105 zero, but it's not common and zero-sized arrays are not
1106 sufficiently portable C. */
1107 struct attribute attrs[1];
c906108c
SS
1108 };
1109
0963b4bd 1110/* Get at parts of an attribute structure. */
c906108c
SS
1111
1112#define DW_STRING(attr) ((attr)->u.str)
8285870a 1113#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1114#define DW_UNSND(attr) ((attr)->u.unsnd)
1115#define DW_BLOCK(attr) ((attr)->u.blk)
1116#define DW_SND(attr) ((attr)->u.snd)
1117#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1118#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1119
0963b4bd 1120/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1121struct dwarf_block
1122 {
56eb65bd 1123 size_t size;
1d6edc3c
JK
1124
1125 /* Valid only if SIZE is not zero. */
d521ce57 1126 const gdb_byte *data;
c906108c
SS
1127 };
1128
c906108c
SS
1129#ifndef ATTR_ALLOC_CHUNK
1130#define ATTR_ALLOC_CHUNK 4
1131#endif
1132
c906108c
SS
1133/* Allocate fields for structs, unions and enums in this size. */
1134#ifndef DW_FIELD_ALLOC_CHUNK
1135#define DW_FIELD_ALLOC_CHUNK 4
1136#endif
1137
c906108c
SS
1138/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1139 but this would require a corresponding change in unpack_field_as_long
1140 and friends. */
1141static int bits_per_byte = 8;
1142
1143/* The routines that read and process dies for a C struct or C++ class
1144 pass lists of data member fields and lists of member function fields
1145 in an instance of a field_info structure, as defined below. */
1146struct field_info
c5aa993b 1147 {
0963b4bd 1148 /* List of data member and baseclasses fields. */
c5aa993b
JM
1149 struct nextfield
1150 {
1151 struct nextfield *next;
1152 int accessibility;
1153 int virtuality;
1154 struct field field;
1155 }
7d0ccb61 1156 *fields, *baseclasses;
c906108c 1157
7d0ccb61 1158 /* Number of fields (including baseclasses). */
c5aa993b 1159 int nfields;
c906108c 1160
c5aa993b
JM
1161 /* Number of baseclasses. */
1162 int nbaseclasses;
c906108c 1163
c5aa993b
JM
1164 /* Set if the accesibility of one of the fields is not public. */
1165 int non_public_fields;
c906108c 1166
c5aa993b
JM
1167 /* Member function fields array, entries are allocated in the order they
1168 are encountered in the object file. */
1169 struct nextfnfield
1170 {
1171 struct nextfnfield *next;
1172 struct fn_field fnfield;
1173 }
1174 *fnfields;
c906108c 1175
c5aa993b
JM
1176 /* Member function fieldlist array, contains name of possibly overloaded
1177 member function, number of overloaded member functions and a pointer
1178 to the head of the member function field chain. */
1179 struct fnfieldlist
1180 {
15d034d0 1181 const char *name;
c5aa993b
JM
1182 int length;
1183 struct nextfnfield *head;
1184 }
1185 *fnfieldlists;
c906108c 1186
c5aa993b
JM
1187 /* Number of entries in the fnfieldlists array. */
1188 int nfnfields;
98751a41
JK
1189
1190 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1191 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1192 struct typedef_field_list
1193 {
1194 struct typedef_field field;
1195 struct typedef_field_list *next;
1196 }
1197 *typedef_field_list;
1198 unsigned typedef_field_list_count;
c5aa993b 1199 };
c906108c 1200
10b3939b
DJ
1201/* One item on the queue of compilation units to read in full symbols
1202 for. */
1203struct dwarf2_queue_item
1204{
1205 struct dwarf2_per_cu_data *per_cu;
95554aad 1206 enum language pretend_language;
10b3939b
DJ
1207 struct dwarf2_queue_item *next;
1208};
1209
1210/* The current queue. */
1211static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1212
ae038cb0
DJ
1213/* Loaded secondary compilation units are kept in memory until they
1214 have not been referenced for the processing of this many
1215 compilation units. Set this to zero to disable caching. Cache
1216 sizes of up to at least twenty will improve startup time for
1217 typical inter-CU-reference binaries, at an obvious memory cost. */
1218static int dwarf2_max_cache_age = 5;
920d2a44
AC
1219static void
1220show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1221 struct cmd_list_element *c, const char *value)
1222{
3e43a32a
MS
1223 fprintf_filtered (file, _("The upper bound on the age of cached "
1224 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
1225 value);
1226}
1227
ae038cb0 1228
0963b4bd 1229/* Various complaints about symbol reading that don't abort the process. */
c906108c 1230
4d3c2250
KB
1231static void
1232dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 1233{
4d3c2250 1234 complaint (&symfile_complaints,
e2e0b3e5 1235 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
1236}
1237
25e43795
DJ
1238static void
1239dwarf2_debug_line_missing_file_complaint (void)
1240{
1241 complaint (&symfile_complaints,
1242 _(".debug_line section has line data without a file"));
1243}
1244
59205f5a
JB
1245static void
1246dwarf2_debug_line_missing_end_sequence_complaint (void)
1247{
1248 complaint (&symfile_complaints,
3e43a32a
MS
1249 _(".debug_line section has line "
1250 "program sequence without an end"));
59205f5a
JB
1251}
1252
4d3c2250
KB
1253static void
1254dwarf2_complex_location_expr_complaint (void)
2e276125 1255{
e2e0b3e5 1256 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
1257}
1258
4d3c2250
KB
1259static void
1260dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1261 int arg3)
2e276125 1262{
4d3c2250 1263 complaint (&symfile_complaints,
3e43a32a
MS
1264 _("const value length mismatch for '%s', got %d, expected %d"),
1265 arg1, arg2, arg3);
4d3c2250
KB
1266}
1267
1268static void
f664829e 1269dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2e276125 1270{
4d3c2250 1271 complaint (&symfile_complaints,
f664829e
DE
1272 _("debug info runs off end of %s section"
1273 " [in module %s]"),
1274 section->asection->name,
1275 bfd_get_filename (section->asection->owner));
4d3c2250
KB
1276}
1277
1278static void
1279dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 1280{
4d3c2250 1281 complaint (&symfile_complaints,
3e43a32a
MS
1282 _("macro debug info contains a "
1283 "malformed macro definition:\n`%s'"),
4d3c2250
KB
1284 arg1);
1285}
1286
1287static void
1288dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 1289{
4d3c2250 1290 complaint (&symfile_complaints,
3e43a32a
MS
1291 _("invalid attribute class or form for '%s' in '%s'"),
1292 arg1, arg2);
4d3c2250 1293}
c906108c 1294
c906108c
SS
1295/* local function prototypes */
1296
4efb68b1 1297static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1298
918dd910
JK
1299static void dwarf2_find_base_address (struct die_info *die,
1300 struct dwarf2_cu *cu);
1301
0018ea6f
DE
1302static struct partial_symtab *create_partial_symtab
1303 (struct dwarf2_per_cu_data *per_cu, const char *name);
1304
c67a9c90 1305static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1306
72bf9492
DJ
1307static void scan_partial_symbols (struct partial_die_info *,
1308 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1309 int, struct dwarf2_cu *);
c906108c 1310
72bf9492
DJ
1311static void add_partial_symbol (struct partial_die_info *,
1312 struct dwarf2_cu *);
63d06c5c 1313
72bf9492
DJ
1314static void add_partial_namespace (struct partial_die_info *pdi,
1315 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1316 int need_pc, struct dwarf2_cu *cu);
63d06c5c 1317
5d7cb8df
JK
1318static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1319 CORE_ADDR *highpc, int need_pc,
1320 struct dwarf2_cu *cu);
1321
72bf9492
DJ
1322static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1323 struct dwarf2_cu *cu);
91c24f0a 1324
bc30ff58
JB
1325static void add_partial_subprogram (struct partial_die_info *pdi,
1326 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1327 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1328
257e7a09
YQ
1329static void dwarf2_read_symtab (struct partial_symtab *,
1330 struct objfile *);
c906108c 1331
a14ed312 1332static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1333
433df2d4
DE
1334static struct abbrev_info *abbrev_table_lookup_abbrev
1335 (const struct abbrev_table *, unsigned int);
1336
1337static struct abbrev_table *abbrev_table_read_table
1338 (struct dwarf2_section_info *, sect_offset);
1339
1340static void abbrev_table_free (struct abbrev_table *);
1341
f4dc4d17
DE
1342static void abbrev_table_free_cleanup (void *);
1343
dee91e82
DE
1344static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1345 struct dwarf2_section_info *);
c906108c 1346
f3dd6933 1347static void dwarf2_free_abbrev_table (void *);
c906108c 1348
d521ce57 1349static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1350
dee91e82 1351static struct partial_die_info *load_partial_dies
d521ce57 1352 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1353
d521ce57
TT
1354static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1355 struct partial_die_info *,
1356 struct abbrev_info *,
1357 unsigned int,
1358 const gdb_byte *);
c906108c 1359
36586728 1360static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1361 struct dwarf2_cu *);
72bf9492
DJ
1362
1363static void fixup_partial_die (struct partial_die_info *,
1364 struct dwarf2_cu *);
1365
d521ce57
TT
1366static const gdb_byte *read_attribute (const struct die_reader_specs *,
1367 struct attribute *, struct attr_abbrev *,
1368 const gdb_byte *);
a8329558 1369
a1855c1d 1370static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1371
a1855c1d 1372static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1373
a1855c1d 1374static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1375
a1855c1d 1376static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1377
a1855c1d 1378static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1379
d521ce57 1380static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1381 unsigned int *);
c906108c 1382
d521ce57 1383static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1384
1385static LONGEST read_checked_initial_length_and_offset
d521ce57 1386 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1387 unsigned int *, unsigned int *);
613e1657 1388
d521ce57
TT
1389static LONGEST read_offset (bfd *, const gdb_byte *,
1390 const struct comp_unit_head *,
c764a876
DE
1391 unsigned int *);
1392
d521ce57 1393static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1394
f4dc4d17
DE
1395static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1396 sect_offset);
1397
d521ce57 1398static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1399
d521ce57 1400static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1401
d521ce57
TT
1402static const char *read_indirect_string (bfd *, const gdb_byte *,
1403 const struct comp_unit_head *,
1404 unsigned int *);
4bdf3d34 1405
d521ce57 1406static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1407
d521ce57 1408static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1409
d521ce57 1410static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1411
d521ce57
TT
1412static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1413 const gdb_byte *,
3019eac3
DE
1414 unsigned int *);
1415
d521ce57
TT
1416static const char *read_str_index (const struct die_reader_specs *reader,
1417 struct dwarf2_cu *cu, ULONGEST str_index);
3019eac3 1418
e142c38c 1419static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1420
e142c38c
DJ
1421static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1422 struct dwarf2_cu *);
c906108c 1423
348e048f 1424static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1425 unsigned int);
348e048f 1426
05cf31d1
JB
1427static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1428 struct dwarf2_cu *cu);
1429
e142c38c 1430static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1431
e142c38c 1432static struct die_info *die_specification (struct die_info *die,
f2f0e013 1433 struct dwarf2_cu **);
63d06c5c 1434
debd256d
JB
1435static void free_line_header (struct line_header *lh);
1436
3019eac3
DE
1437static struct line_header *dwarf_decode_line_header (unsigned int offset,
1438 struct dwarf2_cu *cu);
debd256d 1439
f3f5162e
DE
1440static void dwarf_decode_lines (struct line_header *, const char *,
1441 struct dwarf2_cu *, struct partial_symtab *,
1442 int);
c906108c 1443
d521ce57 1444static void dwarf2_start_subfile (const char *, const char *, const char *);
c906108c 1445
f4dc4d17 1446static void dwarf2_start_symtab (struct dwarf2_cu *,
15d034d0 1447 const char *, const char *, CORE_ADDR);
f4dc4d17 1448
a14ed312 1449static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1450 struct dwarf2_cu *);
c906108c 1451
34eaf542
TT
1452static struct symbol *new_symbol_full (struct die_info *, struct type *,
1453 struct dwarf2_cu *, struct symbol *);
1454
a14ed312 1455static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 1456 struct dwarf2_cu *);
c906108c 1457
98bfdba5
PA
1458static void dwarf2_const_value_attr (struct attribute *attr,
1459 struct type *type,
1460 const char *name,
1461 struct obstack *obstack,
12df843f 1462 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1463 const gdb_byte **bytes,
98bfdba5 1464 struct dwarf2_locexpr_baton **baton);
2df3850c 1465
e7c27a73 1466static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1467
b4ba55a1
JB
1468static int need_gnat_info (struct dwarf2_cu *);
1469
3e43a32a
MS
1470static struct type *die_descriptive_type (struct die_info *,
1471 struct dwarf2_cu *);
b4ba55a1
JB
1472
1473static void set_descriptive_type (struct type *, struct die_info *,
1474 struct dwarf2_cu *);
1475
e7c27a73
DJ
1476static struct type *die_containing_type (struct die_info *,
1477 struct dwarf2_cu *);
c906108c 1478
673bfd45
DE
1479static struct type *lookup_die_type (struct die_info *, struct attribute *,
1480 struct dwarf2_cu *);
c906108c 1481
f792889a 1482static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1483
673bfd45
DE
1484static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1485
0d5cff50 1486static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1487
6e70227d 1488static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1489 const char *suffix, int physname,
1490 struct dwarf2_cu *cu);
63d06c5c 1491
e7c27a73 1492static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1493
348e048f
DE
1494static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1495
e7c27a73 1496static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1497
e7c27a73 1498static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1499
96408a79
SA
1500static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1501
ff013f42
JK
1502static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1503 struct dwarf2_cu *, struct partial_symtab *);
1504
a14ed312 1505static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1506 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1507 struct partial_symtab *);
c906108c 1508
fae299cd
DC
1509static void get_scope_pc_bounds (struct die_info *,
1510 CORE_ADDR *, CORE_ADDR *,
1511 struct dwarf2_cu *);
1512
801e3a5b
JB
1513static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1514 CORE_ADDR, struct dwarf2_cu *);
1515
a14ed312 1516static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1517 struct dwarf2_cu *);
c906108c 1518
a14ed312 1519static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1520 struct type *, struct dwarf2_cu *);
c906108c 1521
a14ed312 1522static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1523 struct die_info *, struct type *,
e7c27a73 1524 struct dwarf2_cu *);
c906108c 1525
a14ed312 1526static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1527 struct type *,
1528 struct dwarf2_cu *);
c906108c 1529
134d01f1 1530static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1531
e7c27a73 1532static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1533
e7c27a73 1534static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1535
5d7cb8df
JK
1536static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1537
27aa8d6a
SW
1538static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1539
f55ee35c
JK
1540static struct type *read_module_type (struct die_info *die,
1541 struct dwarf2_cu *cu);
1542
38d518c9 1543static const char *namespace_name (struct die_info *die,
e142c38c 1544 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1545
134d01f1 1546static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1547
e7c27a73 1548static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1549
6e70227d 1550static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1551 struct dwarf2_cu *);
1552
bf6af496 1553static struct die_info *read_die_and_siblings_1
d521ce57 1554 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1555 struct die_info *);
639d11d3 1556
dee91e82 1557static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1558 const gdb_byte *info_ptr,
1559 const gdb_byte **new_info_ptr,
639d11d3
DC
1560 struct die_info *parent);
1561
d521ce57
TT
1562static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1563 struct die_info **, const gdb_byte *,
1564 int *, int);
3019eac3 1565
d521ce57
TT
1566static const gdb_byte *read_full_die (const struct die_reader_specs *,
1567 struct die_info **, const gdb_byte *,
1568 int *);
93311388 1569
e7c27a73 1570static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1571
15d034d0
TT
1572static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1573 struct obstack *);
71c25dea 1574
15d034d0 1575static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1576
15d034d0 1577static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1578 struct die_info *die,
1579 struct dwarf2_cu *cu);
1580
ca69b9e6
DE
1581static const char *dwarf2_physname (const char *name, struct die_info *die,
1582 struct dwarf2_cu *cu);
1583
e142c38c 1584static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1585 struct dwarf2_cu **);
9219021c 1586
f39c6ffd 1587static const char *dwarf_tag_name (unsigned int);
c906108c 1588
f39c6ffd 1589static const char *dwarf_attr_name (unsigned int);
c906108c 1590
f39c6ffd 1591static const char *dwarf_form_name (unsigned int);
c906108c 1592
a14ed312 1593static char *dwarf_bool_name (unsigned int);
c906108c 1594
f39c6ffd 1595static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1596
f9aca02d 1597static struct die_info *sibling_die (struct die_info *);
c906108c 1598
d97bc12b
DE
1599static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1600
1601static void dump_die_for_error (struct die_info *);
1602
1603static void dump_die_1 (struct ui_file *, int level, int max_level,
1604 struct die_info *);
c906108c 1605
d97bc12b 1606/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1607
51545339 1608static void store_in_ref_table (struct die_info *,
10b3939b 1609 struct dwarf2_cu *);
c906108c 1610
93311388
DE
1611static int is_ref_attr (struct attribute *);
1612
b64f50a1 1613static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
c906108c 1614
43bbcdc2 1615static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
a02abb62 1616
348e048f
DE
1617static struct die_info *follow_die_ref_or_sig (struct die_info *,
1618 struct attribute *,
1619 struct dwarf2_cu **);
1620
10b3939b
DJ
1621static struct die_info *follow_die_ref (struct die_info *,
1622 struct attribute *,
f2f0e013 1623 struct dwarf2_cu **);
c906108c 1624
348e048f
DE
1625static struct die_info *follow_die_sig (struct die_info *,
1626 struct attribute *,
1627 struct dwarf2_cu **);
1628
ac9ec31b
DE
1629static struct type *get_signatured_type (struct die_info *, ULONGEST,
1630 struct dwarf2_cu *);
1631
1632static struct type *get_DW_AT_signature_type (struct die_info *,
1633 struct attribute *,
1634 struct dwarf2_cu *);
1635
e5fe5e75 1636static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1637
52dc124a 1638static void read_signatured_type (struct signatured_type *);
348e048f 1639
f4dc4d17 1640static struct type_unit_group *get_type_unit_group
094b34ac 1641 (struct dwarf2_cu *, struct attribute *);
f4dc4d17
DE
1642
1643static void build_type_unit_groups (die_reader_func_ftype *, void *);
1644
c906108c
SS
1645/* memory allocation interface */
1646
7b5a2f43 1647static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1648
b60c80d6 1649static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1650
09262596 1651static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
15d034d0 1652 const char *, int);
2e276125 1653
8e19ed76
PS
1654static int attr_form_is_block (struct attribute *);
1655
3690dd37
JB
1656static int attr_form_is_section_offset (struct attribute *);
1657
1658static int attr_form_is_constant (struct attribute *);
1659
8cf6f0b1
TT
1660static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1661 struct dwarf2_loclist_baton *baton,
1662 struct attribute *attr);
1663
93e7bd98
DJ
1664static void dwarf2_symbol_mark_computed (struct attribute *attr,
1665 struct symbol *sym,
f1e6e072
TT
1666 struct dwarf2_cu *cu,
1667 int is_block);
4c2df51b 1668
d521ce57
TT
1669static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1670 const gdb_byte *info_ptr,
1671 struct abbrev_info *abbrev);
4bb7a0a7 1672
72bf9492
DJ
1673static void free_stack_comp_unit (void *);
1674
72bf9492
DJ
1675static hashval_t partial_die_hash (const void *item);
1676
1677static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1678
ae038cb0 1679static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1680 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1681
9816fde3 1682static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1683 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1684
1685static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1686 struct die_info *comp_unit_die,
1687 enum language pretend_language);
93311388 1688
68dc6402 1689static void free_heap_comp_unit (void *);
ae038cb0
DJ
1690
1691static void free_cached_comp_units (void *);
1692
1693static void age_cached_comp_units (void);
1694
dee91e82 1695static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1696
f792889a
DJ
1697static struct type *set_die_type (struct die_info *, struct type *,
1698 struct dwarf2_cu *);
1c379e20 1699
ae038cb0
DJ
1700static void create_all_comp_units (struct objfile *);
1701
0e50663e 1702static int create_all_type_units (struct objfile *);
1fd400ff 1703
95554aad
TT
1704static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1705 enum language);
10b3939b 1706
95554aad
TT
1707static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1708 enum language);
10b3939b 1709
f4dc4d17
DE
1710static void process_full_type_unit (struct dwarf2_per_cu_data *,
1711 enum language);
1712
10b3939b
DJ
1713static void dwarf2_add_dependence (struct dwarf2_cu *,
1714 struct dwarf2_per_cu_data *);
1715
ae038cb0
DJ
1716static void dwarf2_mark (struct dwarf2_cu *);
1717
1718static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1719
b64f50a1 1720static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1721 struct dwarf2_per_cu_data *);
673bfd45 1722
f792889a 1723static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1724
9291a0cd
TT
1725static void dwarf2_release_queue (void *dummy);
1726
95554aad
TT
1727static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1728 enum language pretend_language);
1729
1730static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1731 struct dwarf2_per_cu_data *per_cu,
1732 enum language pretend_language);
9291a0cd 1733
a0f42c21 1734static void process_queue (void);
9291a0cd
TT
1735
1736static void find_file_and_directory (struct die_info *die,
1737 struct dwarf2_cu *cu,
15d034d0 1738 const char **name, const char **comp_dir);
9291a0cd
TT
1739
1740static char *file_full_name (int file, struct line_header *lh,
1741 const char *comp_dir);
1742
d521ce57 1743static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1744 (struct comp_unit_head *header,
1745 struct dwarf2_section_info *section,
d521ce57 1746 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1747 int is_debug_types_section);
1748
fd820528 1749static void init_cutu_and_read_dies
f4dc4d17
DE
1750 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1751 int use_existing_cu, int keep,
3019eac3
DE
1752 die_reader_func_ftype *die_reader_func, void *data);
1753
dee91e82
DE
1754static void init_cutu_and_read_dies_simple
1755 (struct dwarf2_per_cu_data *this_cu,
1756 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1757
673bfd45 1758static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1759
3019eac3
DE
1760static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1761
a2ce51a0
DE
1762static struct dwo_unit *lookup_dwo_in_dwp
1763 (struct dwp_file *dwp_file, const struct dwp_hash_table *htab,
1764 const char *comp_dir, ULONGEST signature, int is_debug_types);
1765
1766static struct dwp_file *get_dwp_file (void);
1767
3019eac3 1768static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1769 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1770
1771static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1772 (struct signatured_type *, const char *, const char *);
3019eac3
DE
1773
1774static void free_dwo_file_cleanup (void *);
1775
95554aad
TT
1776static void process_cu_includes (void);
1777
1b80a9fa
JK
1778static void check_producer (struct dwarf2_cu *cu);
1779
9291a0cd
TT
1780#if WORDS_BIGENDIAN
1781
1782/* Convert VALUE between big- and little-endian. */
1783static offset_type
1784byte_swap (offset_type value)
1785{
1786 offset_type result;
1787
1788 result = (value & 0xff) << 24;
1789 result |= (value & 0xff00) << 8;
1790 result |= (value & 0xff0000) >> 8;
1791 result |= (value & 0xff000000) >> 24;
1792 return result;
1793}
1794
1795#define MAYBE_SWAP(V) byte_swap (V)
1796
1797#else
1798#define MAYBE_SWAP(V) (V)
1799#endif /* WORDS_BIGENDIAN */
1800
1801/* The suffix for an index file. */
1802#define INDEX_SUFFIX ".gdb-index"
1803
c906108c 1804/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
1805 information and return true if we have enough to do something.
1806 NAMES points to the dwarf2 section names, or is NULL if the standard
1807 ELF names are used. */
c906108c
SS
1808
1809int
251d32d9
TG
1810dwarf2_has_info (struct objfile *objfile,
1811 const struct dwarf2_debug_sections *names)
c906108c 1812{
be391dca
TT
1813 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1814 if (!dwarf2_per_objfile)
1815 {
1816 /* Initialize per-objfile state. */
1817 struct dwarf2_per_objfile *data
1818 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1819
be391dca
TT
1820 memset (data, 0, sizeof (*data));
1821 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1822 dwarf2_per_objfile = data;
6502dd73 1823
251d32d9
TG
1824 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1825 (void *) names);
be391dca
TT
1826 dwarf2_per_objfile->objfile = objfile;
1827 }
1828 return (dwarf2_per_objfile->info.asection != NULL
1829 && dwarf2_per_objfile->abbrev.asection != NULL);
c906108c
SS
1830}
1831
251d32d9
TG
1832/* When loading sections, we look either for uncompressed section or for
1833 compressed section names. */
233a11ab
CS
1834
1835static int
251d32d9
TG
1836section_is_p (const char *section_name,
1837 const struct dwarf2_section_names *names)
233a11ab 1838{
251d32d9
TG
1839 if (names->normal != NULL
1840 && strcmp (section_name, names->normal) == 0)
1841 return 1;
1842 if (names->compressed != NULL
1843 && strcmp (section_name, names->compressed) == 0)
1844 return 1;
1845 return 0;
233a11ab
CS
1846}
1847
c906108c
SS
1848/* This function is mapped across the sections and remembers the
1849 offset and size of each of the debugging sections we are interested
1850 in. */
1851
1852static void
251d32d9 1853dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 1854{
251d32d9 1855 const struct dwarf2_debug_sections *names;
dc7650b8 1856 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
1857
1858 if (vnames == NULL)
1859 names = &dwarf2_elf_names;
1860 else
1861 names = (const struct dwarf2_debug_sections *) vnames;
1862
dc7650b8
JK
1863 if ((aflag & SEC_HAS_CONTENTS) == 0)
1864 {
1865 }
1866 else if (section_is_p (sectp->name, &names->info))
c906108c 1867 {
dce234bc
PP
1868 dwarf2_per_objfile->info.asection = sectp;
1869 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 1870 }
251d32d9 1871 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 1872 {
dce234bc
PP
1873 dwarf2_per_objfile->abbrev.asection = sectp;
1874 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 1875 }
251d32d9 1876 else if (section_is_p (sectp->name, &names->line))
c906108c 1877 {
dce234bc
PP
1878 dwarf2_per_objfile->line.asection = sectp;
1879 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 1880 }
251d32d9 1881 else if (section_is_p (sectp->name, &names->loc))
c906108c 1882 {
dce234bc
PP
1883 dwarf2_per_objfile->loc.asection = sectp;
1884 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 1885 }
251d32d9 1886 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 1887 {
dce234bc
PP
1888 dwarf2_per_objfile->macinfo.asection = sectp;
1889 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 1890 }
cf2c3c16
TT
1891 else if (section_is_p (sectp->name, &names->macro))
1892 {
1893 dwarf2_per_objfile->macro.asection = sectp;
1894 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1895 }
251d32d9 1896 else if (section_is_p (sectp->name, &names->str))
c906108c 1897 {
dce234bc
PP
1898 dwarf2_per_objfile->str.asection = sectp;
1899 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 1900 }
3019eac3
DE
1901 else if (section_is_p (sectp->name, &names->addr))
1902 {
1903 dwarf2_per_objfile->addr.asection = sectp;
1904 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1905 }
251d32d9 1906 else if (section_is_p (sectp->name, &names->frame))
b6af0555 1907 {
dce234bc
PP
1908 dwarf2_per_objfile->frame.asection = sectp;
1909 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 1910 }
251d32d9 1911 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 1912 {
dc7650b8
JK
1913 dwarf2_per_objfile->eh_frame.asection = sectp;
1914 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 1915 }
251d32d9 1916 else if (section_is_p (sectp->name, &names->ranges))
af34e669 1917 {
dce234bc
PP
1918 dwarf2_per_objfile->ranges.asection = sectp;
1919 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 1920 }
251d32d9 1921 else if (section_is_p (sectp->name, &names->types))
348e048f 1922 {
8b70b953
TT
1923 struct dwarf2_section_info type_section;
1924
1925 memset (&type_section, 0, sizeof (type_section));
1926 type_section.asection = sectp;
1927 type_section.size = bfd_get_section_size (sectp);
1928
1929 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1930 &type_section);
348e048f 1931 }
251d32d9 1932 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd
TT
1933 {
1934 dwarf2_per_objfile->gdb_index.asection = sectp;
1935 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1936 }
dce234bc 1937
72dca2f5
FR
1938 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1939 && bfd_section_vma (abfd, sectp) == 0)
1940 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1941}
1942
fceca515
DE
1943/* A helper function that decides whether a section is empty,
1944 or not present. */
9e0ac564
TT
1945
1946static int
1947dwarf2_section_empty_p (struct dwarf2_section_info *info)
1948{
1949 return info->asection == NULL || info->size == 0;
1950}
1951
3019eac3
DE
1952/* Read the contents of the section INFO.
1953 OBJFILE is the main object file, but not necessarily the file where
1954 the section comes from. E.g., for DWO files INFO->asection->owner
1955 is the bfd of the DWO file.
dce234bc 1956 If the section is compressed, uncompress it before returning. */
c906108c 1957
dce234bc
PP
1958static void
1959dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 1960{
dce234bc 1961 asection *sectp = info->asection;
3019eac3 1962 bfd *abfd;
dce234bc
PP
1963 gdb_byte *buf, *retbuf;
1964 unsigned char header[4];
c906108c 1965
be391dca
TT
1966 if (info->readin)
1967 return;
dce234bc 1968 info->buffer = NULL;
be391dca 1969 info->readin = 1;
188dd5d6 1970
9e0ac564 1971 if (dwarf2_section_empty_p (info))
dce234bc 1972 return;
c906108c 1973
3019eac3
DE
1974 abfd = sectp->owner;
1975
4bf44c1c
TT
1976 /* If the section has relocations, we must read it ourselves.
1977 Otherwise we attach it to the BFD. */
1978 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 1979 {
d521ce57 1980 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 1981 return;
dce234bc 1982 }
dce234bc 1983
4bf44c1c
TT
1984 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1985 info->buffer = buf;
dce234bc
PP
1986
1987 /* When debugging .o files, we may need to apply relocations; see
1988 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1989 We never compress sections in .o files, so we only need to
1990 try this when the section is not compressed. */
ac8035ab 1991 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
1992 if (retbuf != NULL)
1993 {
1994 info->buffer = retbuf;
1995 return;
1996 }
1997
1998 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1999 || bfd_bread (buf, info->size, abfd) != info->size)
2000 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
2001 bfd_get_filename (abfd));
2002}
2003
9e0ac564
TT
2004/* A helper function that returns the size of a section in a safe way.
2005 If you are positive that the section has been read before using the
2006 size, then it is safe to refer to the dwarf2_section_info object's
2007 "size" field directly. In other cases, you must call this
2008 function, because for compressed sections the size field is not set
2009 correctly until the section has been read. */
2010
2011static bfd_size_type
2012dwarf2_section_size (struct objfile *objfile,
2013 struct dwarf2_section_info *info)
2014{
2015 if (!info->readin)
2016 dwarf2_read_section (objfile, info);
2017 return info->size;
2018}
2019
dce234bc 2020/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2021 SECTION_NAME. */
af34e669 2022
dce234bc 2023void
3017a003
TG
2024dwarf2_get_section_info (struct objfile *objfile,
2025 enum dwarf2_section_enum sect,
d521ce57 2026 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2027 bfd_size_type *sizep)
2028{
2029 struct dwarf2_per_objfile *data
2030 = objfile_data (objfile, dwarf2_objfile_data_key);
2031 struct dwarf2_section_info *info;
a3b2a86b
TT
2032
2033 /* We may see an objfile without any DWARF, in which case we just
2034 return nothing. */
2035 if (data == NULL)
2036 {
2037 *sectp = NULL;
2038 *bufp = NULL;
2039 *sizep = 0;
2040 return;
2041 }
3017a003
TG
2042 switch (sect)
2043 {
2044 case DWARF2_DEBUG_FRAME:
2045 info = &data->frame;
2046 break;
2047 case DWARF2_EH_FRAME:
2048 info = &data->eh_frame;
2049 break;
2050 default:
2051 gdb_assert_not_reached ("unexpected section");
2052 }
dce234bc 2053
9e0ac564 2054 dwarf2_read_section (objfile, info);
dce234bc
PP
2055
2056 *sectp = info->asection;
2057 *bufp = info->buffer;
2058 *sizep = info->size;
2059}
2060
36586728
TT
2061/* A helper function to find the sections for a .dwz file. */
2062
2063static void
2064locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2065{
2066 struct dwz_file *dwz_file = arg;
2067
2068 /* Note that we only support the standard ELF names, because .dwz
2069 is ELF-only (at the time of writing). */
2070 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2071 {
2072 dwz_file->abbrev.asection = sectp;
2073 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2074 }
2075 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2076 {
2077 dwz_file->info.asection = sectp;
2078 dwz_file->info.size = bfd_get_section_size (sectp);
2079 }
2080 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2081 {
2082 dwz_file->str.asection = sectp;
2083 dwz_file->str.size = bfd_get_section_size (sectp);
2084 }
2085 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2086 {
2087 dwz_file->line.asection = sectp;
2088 dwz_file->line.size = bfd_get_section_size (sectp);
2089 }
2090 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2091 {
2092 dwz_file->macro.asection = sectp;
2093 dwz_file->macro.size = bfd_get_section_size (sectp);
2094 }
2ec9a5e0
TT
2095 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2096 {
2097 dwz_file->gdb_index.asection = sectp;
2098 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2099 }
36586728
TT
2100}
2101
2102/* Open the separate '.dwz' debug file, if needed. Error if the file
2103 cannot be found. */
2104
2105static struct dwz_file *
2106dwarf2_get_dwz_file (void)
2107{
2108 bfd *abfd, *dwz_bfd;
2109 asection *section;
2110 gdb_byte *data;
2111 struct cleanup *cleanup;
2112 const char *filename;
2113 struct dwz_file *result;
2114
2115 if (dwarf2_per_objfile->dwz_file != NULL)
2116 return dwarf2_per_objfile->dwz_file;
2117
2118 abfd = dwarf2_per_objfile->objfile->obfd;
2119 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2120 if (section == NULL)
2121 error (_("could not find '.gnu_debugaltlink' section"));
2122 if (!bfd_malloc_and_get_section (abfd, section, &data))
2123 error (_("could not read '.gnu_debugaltlink' section: %s"),
2124 bfd_errmsg (bfd_get_error ()));
2125 cleanup = make_cleanup (xfree, data);
2126
f9d83a0b 2127 filename = (const char *) data;
36586728
TT
2128 if (!IS_ABSOLUTE_PATH (filename))
2129 {
2130 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2131 char *rel;
2132
2133 make_cleanup (xfree, abs);
2134 abs = ldirname (abs);
2135 make_cleanup (xfree, abs);
2136
2137 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2138 make_cleanup (xfree, rel);
2139 filename = rel;
2140 }
2141
2142 /* The format is just a NUL-terminated file name, followed by the
2143 build-id. For now, though, we ignore the build-id. */
2144 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2145 if (dwz_bfd == NULL)
2146 error (_("could not read '%s': %s"), filename,
2147 bfd_errmsg (bfd_get_error ()));
2148
2149 if (!bfd_check_format (dwz_bfd, bfd_object))
2150 {
2151 gdb_bfd_unref (dwz_bfd);
2152 error (_("file '%s' was not usable: %s"), filename,
2153 bfd_errmsg (bfd_get_error ()));
2154 }
2155
2156 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2157 struct dwz_file);
2158 result->dwz_bfd = dwz_bfd;
2159
2160 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2161
2162 do_cleanups (cleanup);
2163
8d2cc612 2164 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2165 return result;
2166}
9291a0cd 2167\f
7b9f3c50
DE
2168/* DWARF quick_symbols_functions support. */
2169
2170/* TUs can share .debug_line entries, and there can be a lot more TUs than
2171 unique line tables, so we maintain a separate table of all .debug_line
2172 derived entries to support the sharing.
2173 All the quick functions need is the list of file names. We discard the
2174 line_header when we're done and don't need to record it here. */
2175struct quick_file_names
2176{
094b34ac
DE
2177 /* The data used to construct the hash key. */
2178 struct stmt_list_hash hash;
7b9f3c50
DE
2179
2180 /* The number of entries in file_names, real_names. */
2181 unsigned int num_file_names;
2182
2183 /* The file names from the line table, after being run through
2184 file_full_name. */
2185 const char **file_names;
2186
2187 /* The file names from the line table after being run through
2188 gdb_realpath. These are computed lazily. */
2189 const char **real_names;
2190};
2191
2192/* When using the index (and thus not using psymtabs), each CU has an
2193 object of this type. This is used to hold information needed by
2194 the various "quick" methods. */
2195struct dwarf2_per_cu_quick_data
2196{
2197 /* The file table. This can be NULL if there was no file table
2198 or it's currently not read in.
2199 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2200 struct quick_file_names *file_names;
2201
2202 /* The corresponding symbol table. This is NULL if symbols for this
2203 CU have not yet been read. */
2204 struct symtab *symtab;
2205
2206 /* A temporary mark bit used when iterating over all CUs in
2207 expand_symtabs_matching. */
2208 unsigned int mark : 1;
2209
2210 /* True if we've tried to read the file table and found there isn't one.
2211 There will be no point in trying to read it again next time. */
2212 unsigned int no_file_data : 1;
2213};
2214
094b34ac
DE
2215/* Utility hash function for a stmt_list_hash. */
2216
2217static hashval_t
2218hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2219{
2220 hashval_t v = 0;
2221
2222 if (stmt_list_hash->dwo_unit != NULL)
2223 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2224 v += stmt_list_hash->line_offset.sect_off;
2225 return v;
2226}
2227
2228/* Utility equality function for a stmt_list_hash. */
2229
2230static int
2231eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2232 const struct stmt_list_hash *rhs)
2233{
2234 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2235 return 0;
2236 if (lhs->dwo_unit != NULL
2237 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2238 return 0;
2239
2240 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2241}
2242
7b9f3c50
DE
2243/* Hash function for a quick_file_names. */
2244
2245static hashval_t
2246hash_file_name_entry (const void *e)
2247{
2248 const struct quick_file_names *file_data = e;
2249
094b34ac 2250 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2251}
2252
2253/* Equality function for a quick_file_names. */
2254
2255static int
2256eq_file_name_entry (const void *a, const void *b)
2257{
2258 const struct quick_file_names *ea = a;
2259 const struct quick_file_names *eb = b;
2260
094b34ac 2261 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2262}
2263
2264/* Delete function for a quick_file_names. */
2265
2266static void
2267delete_file_name_entry (void *e)
2268{
2269 struct quick_file_names *file_data = e;
2270 int i;
2271
2272 for (i = 0; i < file_data->num_file_names; ++i)
2273 {
2274 xfree ((void*) file_data->file_names[i]);
2275 if (file_data->real_names)
2276 xfree ((void*) file_data->real_names[i]);
2277 }
2278
2279 /* The space for the struct itself lives on objfile_obstack,
2280 so we don't free it here. */
2281}
2282
2283/* Create a quick_file_names hash table. */
2284
2285static htab_t
2286create_quick_file_names_table (unsigned int nr_initial_entries)
2287{
2288 return htab_create_alloc (nr_initial_entries,
2289 hash_file_name_entry, eq_file_name_entry,
2290 delete_file_name_entry, xcalloc, xfree);
2291}
9291a0cd 2292
918dd910
JK
2293/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2294 have to be created afterwards. You should call age_cached_comp_units after
2295 processing PER_CU->CU. dw2_setup must have been already called. */
2296
2297static void
2298load_cu (struct dwarf2_per_cu_data *per_cu)
2299{
3019eac3 2300 if (per_cu->is_debug_types)
e5fe5e75 2301 load_full_type_unit (per_cu);
918dd910 2302 else
95554aad 2303 load_full_comp_unit (per_cu, language_minimal);
918dd910 2304
918dd910 2305 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
2306
2307 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2308}
2309
a0f42c21 2310/* Read in the symbols for PER_CU. */
2fdf6df6 2311
9291a0cd 2312static void
a0f42c21 2313dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2314{
2315 struct cleanup *back_to;
2316
f4dc4d17
DE
2317 /* Skip type_unit_groups, reading the type units they contain
2318 is handled elsewhere. */
2319 if (IS_TYPE_UNIT_GROUP (per_cu))
2320 return;
2321
9291a0cd
TT
2322 back_to = make_cleanup (dwarf2_release_queue, NULL);
2323
95554aad
TT
2324 if (dwarf2_per_objfile->using_index
2325 ? per_cu->v.quick->symtab == NULL
2326 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2327 {
2328 queue_comp_unit (per_cu, language_minimal);
2329 load_cu (per_cu);
2330 }
9291a0cd 2331
a0f42c21 2332 process_queue ();
9291a0cd
TT
2333
2334 /* Age the cache, releasing compilation units that have not
2335 been used recently. */
2336 age_cached_comp_units ();
2337
2338 do_cleanups (back_to);
2339}
2340
2341/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2342 the objfile from which this CU came. Returns the resulting symbol
2343 table. */
2fdf6df6 2344
9291a0cd 2345static struct symtab *
a0f42c21 2346dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2347{
95554aad 2348 gdb_assert (dwarf2_per_objfile->using_index);
9291a0cd
TT
2349 if (!per_cu->v.quick->symtab)
2350 {
2351 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2352 increment_reading_symtab ();
a0f42c21 2353 dw2_do_instantiate_symtab (per_cu);
95554aad 2354 process_cu_includes ();
9291a0cd
TT
2355 do_cleanups (back_to);
2356 }
2357 return per_cu->v.quick->symtab;
2358}
2359
f4dc4d17
DE
2360/* Return the CU given its index.
2361
2362 This is intended for loops like:
2363
2364 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2365 + dwarf2_per_objfile->n_type_units); ++i)
2366 {
2367 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2368
2369 ...;
2370 }
2371*/
2fdf6df6 2372
1fd400ff
TT
2373static struct dwarf2_per_cu_data *
2374dw2_get_cu (int index)
2375{
2376 if (index >= dwarf2_per_objfile->n_comp_units)
2377 {
f4dc4d17 2378 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2379 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2380 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2381 }
2382
2383 return dwarf2_per_objfile->all_comp_units[index];
2384}
2385
2386/* Return the primary CU given its index.
2387 The difference between this function and dw2_get_cu is in the handling
2388 of type units (TUs). Here we return the type_unit_group object.
2389
2390 This is intended for loops like:
2391
2392 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2393 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2394 {
2395 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2396
2397 ...;
2398 }
2399*/
2400
2401static struct dwarf2_per_cu_data *
2402dw2_get_primary_cu (int index)
2403{
2404 if (index >= dwarf2_per_objfile->n_comp_units)
2405 {
1fd400ff 2406 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2407 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2408 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
1fd400ff 2409 }
f4dc4d17 2410
1fd400ff
TT
2411 return dwarf2_per_objfile->all_comp_units[index];
2412}
2413
2ec9a5e0
TT
2414/* A helper for create_cus_from_index that handles a given list of
2415 CUs. */
2fdf6df6 2416
74a0d9f6 2417static void
2ec9a5e0
TT
2418create_cus_from_index_list (struct objfile *objfile,
2419 const gdb_byte *cu_list, offset_type n_elements,
2420 struct dwarf2_section_info *section,
2421 int is_dwz,
2422 int base_offset)
9291a0cd
TT
2423{
2424 offset_type i;
9291a0cd 2425
2ec9a5e0 2426 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2427 {
2428 struct dwarf2_per_cu_data *the_cu;
2429 ULONGEST offset, length;
2430
74a0d9f6
JK
2431 gdb_static_assert (sizeof (ULONGEST) >= 8);
2432 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2433 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2434 cu_list += 2 * 8;
2435
2436 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2437 struct dwarf2_per_cu_data);
b64f50a1 2438 the_cu->offset.sect_off = offset;
9291a0cd
TT
2439 the_cu->length = length;
2440 the_cu->objfile = objfile;
8a0459fd 2441 the_cu->section = section;
9291a0cd
TT
2442 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2443 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2444 the_cu->is_dwz = is_dwz;
2445 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2446 }
9291a0cd
TT
2447}
2448
2ec9a5e0 2449/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2450 the CU objects for this objfile. */
2ec9a5e0 2451
74a0d9f6 2452static void
2ec9a5e0
TT
2453create_cus_from_index (struct objfile *objfile,
2454 const gdb_byte *cu_list, offset_type cu_list_elements,
2455 const gdb_byte *dwz_list, offset_type dwz_elements)
2456{
2457 struct dwz_file *dwz;
2458
2459 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2460 dwarf2_per_objfile->all_comp_units
2461 = obstack_alloc (&objfile->objfile_obstack,
2462 dwarf2_per_objfile->n_comp_units
2463 * sizeof (struct dwarf2_per_cu_data *));
2464
74a0d9f6
JK
2465 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2466 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2467
2468 if (dwz_elements == 0)
74a0d9f6 2469 return;
2ec9a5e0
TT
2470
2471 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2472 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2473 cu_list_elements / 2);
2ec9a5e0
TT
2474}
2475
1fd400ff 2476/* Create the signatured type hash table from the index. */
673bfd45 2477
74a0d9f6 2478static void
673bfd45 2479create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2480 struct dwarf2_section_info *section,
673bfd45
DE
2481 const gdb_byte *bytes,
2482 offset_type elements)
1fd400ff
TT
2483{
2484 offset_type i;
673bfd45 2485 htab_t sig_types_hash;
1fd400ff 2486
d467dd73
DE
2487 dwarf2_per_objfile->n_type_units = elements / 3;
2488 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
2489 = xmalloc (dwarf2_per_objfile->n_type_units
2490 * sizeof (struct signatured_type *));
1fd400ff 2491
673bfd45 2492 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2493
2494 for (i = 0; i < elements; i += 3)
2495 {
52dc124a
DE
2496 struct signatured_type *sig_type;
2497 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2498 void **slot;
2499
74a0d9f6
JK
2500 gdb_static_assert (sizeof (ULONGEST) >= 8);
2501 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2502 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2503 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2504 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2505 bytes += 3 * 8;
2506
52dc124a 2507 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2508 struct signatured_type);
52dc124a 2509 sig_type->signature = signature;
3019eac3
DE
2510 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2511 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2512 sig_type->per_cu.section = section;
52dc124a
DE
2513 sig_type->per_cu.offset.sect_off = offset;
2514 sig_type->per_cu.objfile = objfile;
2515 sig_type->per_cu.v.quick
1fd400ff
TT
2516 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2517 struct dwarf2_per_cu_quick_data);
2518
52dc124a
DE
2519 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2520 *slot = sig_type;
1fd400ff 2521
b4dd5633 2522 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2523 }
2524
673bfd45 2525 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2526}
2527
9291a0cd
TT
2528/* Read the address map data from the mapped index, and use it to
2529 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2530
9291a0cd
TT
2531static void
2532create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2533{
2534 const gdb_byte *iter, *end;
2535 struct obstack temp_obstack;
2536 struct addrmap *mutable_map;
2537 struct cleanup *cleanup;
2538 CORE_ADDR baseaddr;
2539
2540 obstack_init (&temp_obstack);
2541 cleanup = make_cleanup_obstack_free (&temp_obstack);
2542 mutable_map = addrmap_create_mutable (&temp_obstack);
2543
2544 iter = index->address_table;
2545 end = iter + index->address_table_size;
2546
2547 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2548
2549 while (iter < end)
2550 {
2551 ULONGEST hi, lo, cu_index;
2552 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2553 iter += 8;
2554 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2555 iter += 8;
2556 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2557 iter += 4;
f652bce2
DE
2558
2559 if (cu_index < dwarf2_per_objfile->n_comp_units)
2560 {
2561 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2562 dw2_get_cu (cu_index));
2563 }
2564 else
2565 {
2566 complaint (&symfile_complaints,
2567 _(".gdb_index address table has invalid CU number %u"),
2568 (unsigned) cu_index);
2569 }
9291a0cd
TT
2570 }
2571
2572 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2573 &objfile->objfile_obstack);
2574 do_cleanups (cleanup);
2575}
2576
59d7bcaf
JK
2577/* The hash function for strings in the mapped index. This is the same as
2578 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2579 implementation. This is necessary because the hash function is tied to the
2580 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2581 SYMBOL_HASH_NEXT.
2582
2583 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2584
9291a0cd 2585static hashval_t
559a7a62 2586mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2587{
2588 const unsigned char *str = (const unsigned char *) p;
2589 hashval_t r = 0;
2590 unsigned char c;
2591
2592 while ((c = *str++) != 0)
559a7a62
JK
2593 {
2594 if (index_version >= 5)
2595 c = tolower (c);
2596 r = r * 67 + c - 113;
2597 }
9291a0cd
TT
2598
2599 return r;
2600}
2601
2602/* Find a slot in the mapped index INDEX for the object named NAME.
2603 If NAME is found, set *VEC_OUT to point to the CU vector in the
2604 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2605
9291a0cd
TT
2606static int
2607find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2608 offset_type **vec_out)
2609{
0cf03b49
JK
2610 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2611 offset_type hash;
9291a0cd 2612 offset_type slot, step;
559a7a62 2613 int (*cmp) (const char *, const char *);
9291a0cd 2614
0cf03b49
JK
2615 if (current_language->la_language == language_cplus
2616 || current_language->la_language == language_java
2617 || current_language->la_language == language_fortran)
2618 {
2619 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2620 not contain any. */
2621 const char *paren = strchr (name, '(');
2622
2623 if (paren)
2624 {
2625 char *dup;
2626
2627 dup = xmalloc (paren - name + 1);
2628 memcpy (dup, name, paren - name);
2629 dup[paren - name] = 0;
2630
2631 make_cleanup (xfree, dup);
2632 name = dup;
2633 }
2634 }
2635
559a7a62 2636 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2637 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2638 simulate our NAME being searched is also lowercased. */
2639 hash = mapped_index_string_hash ((index->version == 4
2640 && case_sensitivity == case_sensitive_off
2641 ? 5 : index->version),
2642 name);
2643
3876f04e
DE
2644 slot = hash & (index->symbol_table_slots - 1);
2645 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2646 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2647
2648 for (;;)
2649 {
2650 /* Convert a slot number to an offset into the table. */
2651 offset_type i = 2 * slot;
2652 const char *str;
3876f04e 2653 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2654 {
2655 do_cleanups (back_to);
2656 return 0;
2657 }
9291a0cd 2658
3876f04e 2659 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 2660 if (!cmp (name, str))
9291a0cd
TT
2661 {
2662 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2663 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 2664 do_cleanups (back_to);
9291a0cd
TT
2665 return 1;
2666 }
2667
3876f04e 2668 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2669 }
2670}
2671
2ec9a5e0
TT
2672/* A helper function that reads the .gdb_index from SECTION and fills
2673 in MAP. FILENAME is the name of the file containing the section;
2674 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2675 ok to use deprecated sections.
2676
2677 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2678 out parameters that are filled in with information about the CU and
2679 TU lists in the section.
2680
2681 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 2682
9291a0cd 2683static int
2ec9a5e0
TT
2684read_index_from_section (struct objfile *objfile,
2685 const char *filename,
2686 int deprecated_ok,
2687 struct dwarf2_section_info *section,
2688 struct mapped_index *map,
2689 const gdb_byte **cu_list,
2690 offset_type *cu_list_elements,
2691 const gdb_byte **types_list,
2692 offset_type *types_list_elements)
9291a0cd 2693{
948f8e3d 2694 const gdb_byte *addr;
2ec9a5e0 2695 offset_type version;
b3b272e1 2696 offset_type *metadata;
1fd400ff 2697 int i;
9291a0cd 2698
2ec9a5e0 2699 if (dwarf2_section_empty_p (section))
9291a0cd 2700 return 0;
82430852
JK
2701
2702 /* Older elfutils strip versions could keep the section in the main
2703 executable while splitting it for the separate debug info file. */
2ec9a5e0 2704 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
82430852
JK
2705 return 0;
2706
2ec9a5e0 2707 dwarf2_read_section (objfile, section);
9291a0cd 2708
2ec9a5e0 2709 addr = section->buffer;
9291a0cd 2710 /* Version check. */
1fd400ff 2711 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 2712 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 2713 causes the index to behave very poorly for certain requests. Version 3
831adc1f 2714 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 2715 indices. */
831adc1f 2716 if (version < 4)
481860b3
GB
2717 {
2718 static int warning_printed = 0;
2719 if (!warning_printed)
2720 {
2721 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 2722 filename);
481860b3
GB
2723 warning_printed = 1;
2724 }
2725 return 0;
2726 }
2727 /* Index version 4 uses a different hash function than index version
2728 5 and later.
2729
2730 Versions earlier than 6 did not emit psymbols for inlined
2731 functions. Using these files will cause GDB not to be able to
2732 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
2733 indices unless the user has done
2734 "set use-deprecated-index-sections on". */
2ec9a5e0 2735 if (version < 6 && !deprecated_ok)
481860b3
GB
2736 {
2737 static int warning_printed = 0;
2738 if (!warning_printed)
2739 {
e615022a
DE
2740 warning (_("\
2741Skipping deprecated .gdb_index section in %s.\n\
2742Do \"set use-deprecated-index-sections on\" before the file is read\n\
2743to use the section anyway."),
2ec9a5e0 2744 filename);
481860b3
GB
2745 warning_printed = 1;
2746 }
2747 return 0;
2748 }
796a7ff8
DE
2749 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2750 of the TU (for symbols coming from TUs). It's just a performance bug, and
2751 we can't distinguish gdb-generated indices from gold-generated ones, so
2752 nothing to do here. */
2753
481860b3 2754 /* Indexes with higher version than the one supported by GDB may be no
594e8718 2755 longer backward compatible. */
796a7ff8 2756 if (version > 8)
594e8718 2757 return 0;
9291a0cd 2758
559a7a62 2759 map->version = version;
2ec9a5e0 2760 map->total_size = section->size;
9291a0cd
TT
2761
2762 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
2763
2764 i = 0;
2ec9a5e0
TT
2765 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2766 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2767 / 8);
1fd400ff
TT
2768 ++i;
2769
2ec9a5e0
TT
2770 *types_list = addr + MAYBE_SWAP (metadata[i]);
2771 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2772 - MAYBE_SWAP (metadata[i]))
2773 / 8);
987d643c 2774 ++i;
1fd400ff
TT
2775
2776 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2777 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2778 - MAYBE_SWAP (metadata[i]));
2779 ++i;
2780
3876f04e
DE
2781 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2782 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2783 - MAYBE_SWAP (metadata[i]))
2784 / (2 * sizeof (offset_type)));
1fd400ff 2785 ++i;
9291a0cd 2786
f9d83a0b 2787 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 2788
2ec9a5e0
TT
2789 return 1;
2790}
2791
2792
2793/* Read the index file. If everything went ok, initialize the "quick"
2794 elements of all the CUs and return 1. Otherwise, return 0. */
2795
2796static int
2797dwarf2_read_index (struct objfile *objfile)
2798{
2799 struct mapped_index local_map, *map;
2800 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2801 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2802
2803 if (!read_index_from_section (objfile, objfile->name,
2804 use_deprecated_index_sections,
2805 &dwarf2_per_objfile->gdb_index, &local_map,
2806 &cu_list, &cu_list_elements,
2807 &types_list, &types_list_elements))
2808 return 0;
2809
0fefef59 2810 /* Don't use the index if it's empty. */
2ec9a5e0 2811 if (local_map.symbol_table_slots == 0)
0fefef59
DE
2812 return 0;
2813
2ec9a5e0
TT
2814 /* If there is a .dwz file, read it so we can get its CU list as
2815 well. */
2816 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2817 {
2818 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2819 struct mapped_index dwz_map;
2820 const gdb_byte *dwz_types_ignore;
2821 offset_type dwz_types_elements_ignore;
2822
2823 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2824 1,
2825 &dwz->gdb_index, &dwz_map,
2826 &dwz_list, &dwz_list_elements,
2827 &dwz_types_ignore,
2828 &dwz_types_elements_ignore))
2829 {
2830 warning (_("could not read '.gdb_index' section from %s; skipping"),
2831 bfd_get_filename (dwz->dwz_bfd));
2832 return 0;
2833 }
2834 }
2835
74a0d9f6
JK
2836 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2837 dwz_list_elements);
1fd400ff 2838
8b70b953
TT
2839 if (types_list_elements)
2840 {
2841 struct dwarf2_section_info *section;
2842
2843 /* We can only handle a single .debug_types when we have an
2844 index. */
2845 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2846 return 0;
2847
2848 section = VEC_index (dwarf2_section_info_def,
2849 dwarf2_per_objfile->types, 0);
2850
74a0d9f6
JK
2851 create_signatured_type_table_from_index (objfile, section, types_list,
2852 types_list_elements);
8b70b953 2853 }
9291a0cd 2854
2ec9a5e0
TT
2855 create_addrmap_from_index (objfile, &local_map);
2856
2857 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2858 *map = local_map;
9291a0cd
TT
2859
2860 dwarf2_per_objfile->index_table = map;
2861 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
2862 dwarf2_per_objfile->quick_file_names_table =
2863 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
2864
2865 return 1;
2866}
2867
2868/* A helper for the "quick" functions which sets the global
2869 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 2870
9291a0cd
TT
2871static void
2872dw2_setup (struct objfile *objfile)
2873{
2874 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2875 gdb_assert (dwarf2_per_objfile);
2876}
2877
dee91e82 2878/* die_reader_func for dw2_get_file_names. */
2fdf6df6 2879
dee91e82
DE
2880static void
2881dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 2882 const gdb_byte *info_ptr,
dee91e82
DE
2883 struct die_info *comp_unit_die,
2884 int has_children,
2885 void *data)
9291a0cd 2886{
dee91e82
DE
2887 struct dwarf2_cu *cu = reader->cu;
2888 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2889 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 2890 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 2891 struct line_header *lh;
9291a0cd 2892 struct attribute *attr;
dee91e82 2893 int i;
15d034d0 2894 const char *name, *comp_dir;
7b9f3c50
DE
2895 void **slot;
2896 struct quick_file_names *qfn;
2897 unsigned int line_offset;
9291a0cd 2898
0186c6a7
DE
2899 gdb_assert (! this_cu->is_debug_types);
2900
07261596
TT
2901 /* Our callers never want to match partial units -- instead they
2902 will match the enclosing full CU. */
2903 if (comp_unit_die->tag == DW_TAG_partial_unit)
2904 {
2905 this_cu->v.quick->no_file_data = 1;
2906 return;
2907 }
2908
0186c6a7 2909 lh_cu = this_cu;
7b9f3c50
DE
2910 lh = NULL;
2911 slot = NULL;
2912 line_offset = 0;
dee91e82
DE
2913
2914 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
2915 if (attr)
2916 {
7b9f3c50
DE
2917 struct quick_file_names find_entry;
2918
2919 line_offset = DW_UNSND (attr);
2920
2921 /* We may have already read in this line header (TU line header sharing).
2922 If we have we're done. */
094b34ac
DE
2923 find_entry.hash.dwo_unit = cu->dwo_unit;
2924 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
2925 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2926 &find_entry, INSERT);
2927 if (*slot != NULL)
2928 {
094b34ac 2929 lh_cu->v.quick->file_names = *slot;
dee91e82 2930 return;
7b9f3c50
DE
2931 }
2932
3019eac3 2933 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
2934 }
2935 if (lh == NULL)
2936 {
094b34ac 2937 lh_cu->v.quick->no_file_data = 1;
dee91e82 2938 return;
9291a0cd
TT
2939 }
2940
7b9f3c50 2941 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
2942 qfn->hash.dwo_unit = cu->dwo_unit;
2943 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
2944 gdb_assert (slot != NULL);
2945 *slot = qfn;
9291a0cd 2946
dee91e82 2947 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 2948
7b9f3c50
DE
2949 qfn->num_file_names = lh->num_file_names;
2950 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2951 lh->num_file_names * sizeof (char *));
9291a0cd 2952 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
2953 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2954 qfn->real_names = NULL;
9291a0cd 2955
7b9f3c50 2956 free_line_header (lh);
7b9f3c50 2957
094b34ac 2958 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
2959}
2960
2961/* A helper for the "quick" functions which attempts to read the line
2962 table for THIS_CU. */
2963
2964static struct quick_file_names *
e4a48d9d 2965dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 2966{
0186c6a7
DE
2967 /* This should never be called for TUs. */
2968 gdb_assert (! this_cu->is_debug_types);
2969 /* Nor type unit groups. */
2970 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 2971
dee91e82
DE
2972 if (this_cu->v.quick->file_names != NULL)
2973 return this_cu->v.quick->file_names;
2974 /* If we know there is no line data, no point in looking again. */
2975 if (this_cu->v.quick->no_file_data)
2976 return NULL;
2977
0186c6a7 2978 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
2979
2980 if (this_cu->v.quick->no_file_data)
2981 return NULL;
2982 return this_cu->v.quick->file_names;
9291a0cd
TT
2983}
2984
2985/* A helper for the "quick" functions which computes and caches the
7b9f3c50 2986 real path for a given file name from the line table. */
2fdf6df6 2987
9291a0cd 2988static const char *
7b9f3c50
DE
2989dw2_get_real_path (struct objfile *objfile,
2990 struct quick_file_names *qfn, int index)
9291a0cd 2991{
7b9f3c50
DE
2992 if (qfn->real_names == NULL)
2993 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2994 qfn->num_file_names, sizeof (char *));
9291a0cd 2995
7b9f3c50
DE
2996 if (qfn->real_names[index] == NULL)
2997 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 2998
7b9f3c50 2999 return qfn->real_names[index];
9291a0cd
TT
3000}
3001
3002static struct symtab *
3003dw2_find_last_source_symtab (struct objfile *objfile)
3004{
3005 int index;
ae2de4f8 3006
9291a0cd
TT
3007 dw2_setup (objfile);
3008 index = dwarf2_per_objfile->n_comp_units - 1;
a0f42c21 3009 return dw2_instantiate_symtab (dw2_get_cu (index));
9291a0cd
TT
3010}
3011
7b9f3c50
DE
3012/* Traversal function for dw2_forget_cached_source_info. */
3013
3014static int
3015dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3016{
7b9f3c50 3017 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3018
7b9f3c50 3019 if (file_data->real_names)
9291a0cd 3020 {
7b9f3c50 3021 int i;
9291a0cd 3022
7b9f3c50 3023 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3024 {
7b9f3c50
DE
3025 xfree ((void*) file_data->real_names[i]);
3026 file_data->real_names[i] = NULL;
9291a0cd
TT
3027 }
3028 }
7b9f3c50
DE
3029
3030 return 1;
3031}
3032
3033static void
3034dw2_forget_cached_source_info (struct objfile *objfile)
3035{
3036 dw2_setup (objfile);
3037
3038 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3039 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3040}
3041
f8eba3c6
TT
3042/* Helper function for dw2_map_symtabs_matching_filename that expands
3043 the symtabs and calls the iterator. */
3044
3045static int
3046dw2_map_expand_apply (struct objfile *objfile,
3047 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3048 const char *name, const char *real_path,
f8eba3c6
TT
3049 int (*callback) (struct symtab *, void *),
3050 void *data)
3051{
3052 struct symtab *last_made = objfile->symtabs;
3053
3054 /* Don't visit already-expanded CUs. */
3055 if (per_cu->v.quick->symtab)
3056 return 0;
3057
3058 /* This may expand more than one symtab, and we want to iterate over
3059 all of them. */
a0f42c21 3060 dw2_instantiate_symtab (per_cu);
f8eba3c6 3061
f5b95b50 3062 return iterate_over_some_symtabs (name, real_path, callback, data,
f8eba3c6
TT
3063 objfile->symtabs, last_made);
3064}
3065
3066/* Implementation of the map_symtabs_matching_filename method. */
3067
9291a0cd 3068static int
f8eba3c6 3069dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3070 const char *real_path,
f8eba3c6
TT
3071 int (*callback) (struct symtab *, void *),
3072 void *data)
9291a0cd
TT
3073{
3074 int i;
c011a4f4 3075 const char *name_basename = lbasename (name);
9291a0cd
TT
3076
3077 dw2_setup (objfile);
ae2de4f8 3078
848e3e78
DE
3079 /* The rule is CUs specify all the files, including those used by
3080 any TU, so there's no need to scan TUs here. */
f4dc4d17 3081
848e3e78 3082 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3083 {
3084 int j;
f4dc4d17 3085 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 3086 struct quick_file_names *file_data;
9291a0cd 3087
3d7bb9d9 3088 /* We only need to look at symtabs not already expanded. */
e254ef6a 3089 if (per_cu->v.quick->symtab)
9291a0cd
TT
3090 continue;
3091
e4a48d9d 3092 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3093 if (file_data == NULL)
9291a0cd
TT
3094 continue;
3095
7b9f3c50 3096 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3097 {
7b9f3c50 3098 const char *this_name = file_data->file_names[j];
da235a7c 3099 const char *this_real_name;
9291a0cd 3100
af529f8f 3101 if (compare_filenames_for_search (this_name, name))
9291a0cd 3102 {
f5b95b50 3103 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3104 callback, data))
3105 return 1;
288e77a7 3106 continue;
4aac40c8 3107 }
9291a0cd 3108
c011a4f4
DE
3109 /* Before we invoke realpath, which can get expensive when many
3110 files are involved, do a quick comparison of the basenames. */
3111 if (! basenames_may_differ
3112 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3113 continue;
3114
da235a7c
JK
3115 this_real_name = dw2_get_real_path (objfile, file_data, j);
3116 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3117 {
da235a7c
JK
3118 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3119 callback, data))
3120 return 1;
288e77a7 3121 continue;
da235a7c 3122 }
9291a0cd 3123
da235a7c
JK
3124 if (real_path != NULL)
3125 {
af529f8f
JK
3126 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3127 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3128 if (this_real_name != NULL
af529f8f 3129 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3130 {
f5b95b50 3131 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3132 callback, data))
3133 return 1;
288e77a7 3134 continue;
9291a0cd
TT
3135 }
3136 }
3137 }
3138 }
3139
9291a0cd
TT
3140 return 0;
3141}
3142
da51c347
DE
3143/* Struct used to manage iterating over all CUs looking for a symbol. */
3144
3145struct dw2_symtab_iterator
9291a0cd 3146{
da51c347
DE
3147 /* The internalized form of .gdb_index. */
3148 struct mapped_index *index;
3149 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3150 int want_specific_block;
3151 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3152 Unused if !WANT_SPECIFIC_BLOCK. */
3153 int block_index;
3154 /* The kind of symbol we're looking for. */
3155 domain_enum domain;
3156 /* The list of CUs from the index entry of the symbol,
3157 or NULL if not found. */
3158 offset_type *vec;
3159 /* The next element in VEC to look at. */
3160 int next;
3161 /* The number of elements in VEC, or zero if there is no match. */
3162 int length;
3163};
9291a0cd 3164
da51c347
DE
3165/* Initialize the index symtab iterator ITER.
3166 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3167 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3168
9291a0cd 3169static void
da51c347
DE
3170dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3171 struct mapped_index *index,
3172 int want_specific_block,
3173 int block_index,
3174 domain_enum domain,
3175 const char *name)
3176{
3177 iter->index = index;
3178 iter->want_specific_block = want_specific_block;
3179 iter->block_index = block_index;
3180 iter->domain = domain;
3181 iter->next = 0;
3182
3183 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3184 iter->length = MAYBE_SWAP (*iter->vec);
3185 else
3186 {
3187 iter->vec = NULL;
3188 iter->length = 0;
3189 }
3190}
3191
3192/* Return the next matching CU or NULL if there are no more. */
3193
3194static struct dwarf2_per_cu_data *
3195dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3196{
3197 for ( ; iter->next < iter->length; ++iter->next)
3198 {
3199 offset_type cu_index_and_attrs =
3200 MAYBE_SWAP (iter->vec[iter->next + 1]);
3201 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3202 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3203 int want_static = iter->block_index != GLOBAL_BLOCK;
3204 /* This value is only valid for index versions >= 7. */
3205 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3206 gdb_index_symbol_kind symbol_kind =
3207 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3208 /* Only check the symbol attributes if they're present.
3209 Indices prior to version 7 don't record them,
3210 and indices >= 7 may elide them for certain symbols
3211 (gold does this). */
3212 int attrs_valid =
3213 (iter->index->version >= 7
3214 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3215
3216 /* Skip if already read in. */
3217 if (per_cu->v.quick->symtab)
3218 continue;
3219
3220 if (attrs_valid
3221 && iter->want_specific_block
3222 && want_static != is_static)
3223 continue;
3224
3225 /* Only check the symbol's kind if it has one. */
3226 if (attrs_valid)
3227 {
3228 switch (iter->domain)
3229 {
3230 case VAR_DOMAIN:
3231 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3232 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3233 /* Some types are also in VAR_DOMAIN. */
3234 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3235 continue;
3236 break;
3237 case STRUCT_DOMAIN:
3238 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3239 continue;
3240 break;
3241 case LABEL_DOMAIN:
3242 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3243 continue;
3244 break;
3245 default:
3246 break;
3247 }
3248 }
3249
3250 ++iter->next;
3251 return per_cu;
3252 }
3253
3254 return NULL;
3255}
3256
3257static struct symtab *
3258dw2_lookup_symbol (struct objfile *objfile, int block_index,
3259 const char *name, domain_enum domain)
9291a0cd 3260{
da51c347 3261 struct symtab *stab_best = NULL;
156942c7
DE
3262 struct mapped_index *index;
3263
9291a0cd
TT
3264 dw2_setup (objfile);
3265
156942c7
DE
3266 index = dwarf2_per_objfile->index_table;
3267
da51c347 3268 /* index is NULL if OBJF_READNOW. */
156942c7 3269 if (index)
9291a0cd 3270 {
da51c347
DE
3271 struct dw2_symtab_iterator iter;
3272 struct dwarf2_per_cu_data *per_cu;
3273
3274 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3275
da51c347 3276 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3277 {
da51c347
DE
3278 struct symbol *sym = NULL;
3279 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3280
3281 /* Some caution must be observed with overloaded functions
3282 and methods, since the index will not contain any overload
3283 information (but NAME might contain it). */
3284 if (stab->primary)
9291a0cd 3285 {
da51c347
DE
3286 struct blockvector *bv = BLOCKVECTOR (stab);
3287 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
156942c7 3288
da51c347
DE
3289 sym = lookup_block_symbol (block, name, domain);
3290 }
1fd400ff 3291
da51c347
DE
3292 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3293 {
3294 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3295 return stab;
3296
3297 stab_best = stab;
9291a0cd 3298 }
da51c347
DE
3299
3300 /* Keep looking through other CUs. */
9291a0cd
TT
3301 }
3302 }
9291a0cd 3303
da51c347 3304 return stab_best;
9291a0cd
TT
3305}
3306
3307static void
3308dw2_print_stats (struct objfile *objfile)
3309{
e4a48d9d 3310 int i, total, count;
9291a0cd
TT
3311
3312 dw2_setup (objfile);
e4a48d9d 3313 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3314 count = 0;
e4a48d9d 3315 for (i = 0; i < total; ++i)
9291a0cd 3316 {
e254ef6a 3317 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3318
e254ef6a 3319 if (!per_cu->v.quick->symtab)
9291a0cd
TT
3320 ++count;
3321 }
e4a48d9d 3322 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3323 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3324}
3325
3326static void
3327dw2_dump (struct objfile *objfile)
3328{
3329 /* Nothing worth printing. */
3330}
3331
3332static void
3189cb12
DE
3333dw2_relocate (struct objfile *objfile,
3334 const struct section_offsets *new_offsets,
3335 const struct section_offsets *delta)
9291a0cd
TT
3336{
3337 /* There's nothing to relocate here. */
3338}
3339
3340static void
3341dw2_expand_symtabs_for_function (struct objfile *objfile,
3342 const char *func_name)
3343{
da51c347
DE
3344 struct mapped_index *index;
3345
3346 dw2_setup (objfile);
3347
3348 index = dwarf2_per_objfile->index_table;
3349
3350 /* index is NULL if OBJF_READNOW. */
3351 if (index)
3352 {
3353 struct dw2_symtab_iterator iter;
3354 struct dwarf2_per_cu_data *per_cu;
3355
3356 /* Note: It doesn't matter what we pass for block_index here. */
3357 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3358 func_name);
3359
3360 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3361 dw2_instantiate_symtab (per_cu);
3362 }
9291a0cd
TT
3363}
3364
3365static void
3366dw2_expand_all_symtabs (struct objfile *objfile)
3367{
3368 int i;
3369
3370 dw2_setup (objfile);
1fd400ff
TT
3371
3372 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3373 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3374 {
e254ef6a 3375 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3376
a0f42c21 3377 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3378 }
3379}
3380
3381static void
652a8996
JK
3382dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3383 const char *fullname)
9291a0cd
TT
3384{
3385 int i;
3386
3387 dw2_setup (objfile);
d4637a04
DE
3388
3389 /* We don't need to consider type units here.
3390 This is only called for examining code, e.g. expand_line_sal.
3391 There can be an order of magnitude (or more) more type units
3392 than comp units, and we avoid them if we can. */
3393
3394 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3395 {
3396 int j;
e254ef6a 3397 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3398 struct quick_file_names *file_data;
9291a0cd 3399
3d7bb9d9 3400 /* We only need to look at symtabs not already expanded. */
e254ef6a 3401 if (per_cu->v.quick->symtab)
9291a0cd
TT
3402 continue;
3403
e4a48d9d 3404 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3405 if (file_data == NULL)
9291a0cd
TT
3406 continue;
3407
7b9f3c50 3408 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3409 {
652a8996
JK
3410 const char *this_fullname = file_data->file_names[j];
3411
3412 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3413 {
a0f42c21 3414 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3415 break;
3416 }
3417 }
3418 }
3419}
3420
356d9f9d
TT
3421/* A helper function for dw2_find_symbol_file that finds the primary
3422 file name for a given CU. This is a die_reader_func. */
3423
3424static void
3425dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
d521ce57 3426 const gdb_byte *info_ptr,
356d9f9d
TT
3427 struct die_info *comp_unit_die,
3428 int has_children,
3429 void *data)
3430{
3431 const char **result_ptr = data;
3432 struct dwarf2_cu *cu = reader->cu;
3433 struct attribute *attr;
3434
3435 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3436 if (attr == NULL)
3437 *result_ptr = NULL;
3438 else
3439 *result_ptr = DW_STRING (attr);
3440}
3441
dd786858 3442static const char *
9291a0cd
TT
3443dw2_find_symbol_file (struct objfile *objfile, const char *name)
3444{
e254ef6a 3445 struct dwarf2_per_cu_data *per_cu;
9291a0cd 3446 offset_type *vec;
356d9f9d 3447 const char *filename;
9291a0cd
TT
3448
3449 dw2_setup (objfile);
3450
ae2de4f8 3451 /* index_table is NULL if OBJF_READNOW. */
9291a0cd 3452 if (!dwarf2_per_objfile->index_table)
96408a79
SA
3453 {
3454 struct symtab *s;
3455
d790cf0a
DE
3456 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3457 {
3458 struct blockvector *bv = BLOCKVECTOR (s);
3459 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3460 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3461
3462 if (sym)
652a8996
JK
3463 {
3464 /* Only file extension of returned filename is recognized. */
3465 return SYMBOL_SYMTAB (sym)->filename;
3466 }
d790cf0a 3467 }
96408a79
SA
3468 return NULL;
3469 }
9291a0cd
TT
3470
3471 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3472 name, &vec))
3473 return NULL;
3474
3475 /* Note that this just looks at the very first one named NAME -- but
3476 actually we are looking for a function. find_main_filename
3477 should be rewritten so that it doesn't require a custom hook. It
3478 could just use the ordinary symbol tables. */
3479 /* vec[0] is the length, which must always be >0. */
156942c7 3480 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
9291a0cd 3481
356d9f9d 3482 if (per_cu->v.quick->symtab != NULL)
652a8996
JK
3483 {
3484 /* Only file extension of returned filename is recognized. */
3485 return per_cu->v.quick->symtab->filename;
3486 }
356d9f9d 3487
a98c29a0
DE
3488 /* Initialize filename in case there's a problem reading the DWARF,
3489 dw2_get_primary_filename_reader may not get called. */
3490 filename = NULL;
f4dc4d17
DE
3491 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3492 dw2_get_primary_filename_reader, &filename);
9291a0cd 3493
652a8996 3494 /* Only file extension of returned filename is recognized. */
356d9f9d 3495 return filename;
9291a0cd
TT
3496}
3497
3498static void
40658b94
PH
3499dw2_map_matching_symbols (const char * name, domain_enum namespace,
3500 struct objfile *objfile, int global,
3501 int (*callback) (struct block *,
3502 struct symbol *, void *),
2edb89d3
JK
3503 void *data, symbol_compare_ftype *match,
3504 symbol_compare_ftype *ordered_compare)
9291a0cd 3505{
40658b94 3506 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3507 current language is Ada for a non-Ada objfile using GNU index. As Ada
3508 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3509}
3510
3511static void
f8eba3c6
TT
3512dw2_expand_symtabs_matching
3513 (struct objfile *objfile,
fbd9ab74 3514 int (*file_matcher) (const char *, void *, int basenames),
e078317b 3515 int (*name_matcher) (const char *, void *),
f8eba3c6
TT
3516 enum search_domain kind,
3517 void *data)
9291a0cd
TT
3518{
3519 int i;
3520 offset_type iter;
4b5246aa 3521 struct mapped_index *index;
9291a0cd
TT
3522
3523 dw2_setup (objfile);
ae2de4f8
DE
3524
3525 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3526 if (!dwarf2_per_objfile->index_table)
3527 return;
4b5246aa 3528 index = dwarf2_per_objfile->index_table;
9291a0cd 3529
7b08b9eb 3530 if (file_matcher != NULL)
24c79950
TT
3531 {
3532 struct cleanup *cleanup;
3533 htab_t visited_found, visited_not_found;
3534
3535 visited_found = htab_create_alloc (10,
3536 htab_hash_pointer, htab_eq_pointer,
3537 NULL, xcalloc, xfree);
3538 cleanup = make_cleanup_htab_delete (visited_found);
3539 visited_not_found = htab_create_alloc (10,
3540 htab_hash_pointer, htab_eq_pointer,
3541 NULL, xcalloc, xfree);
3542 make_cleanup_htab_delete (visited_not_found);
3543
848e3e78
DE
3544 /* The rule is CUs specify all the files, including those used by
3545 any TU, so there's no need to scan TUs here. */
3546
3547 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3548 {
3549 int j;
f4dc4d17 3550 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
24c79950
TT
3551 struct quick_file_names *file_data;
3552 void **slot;
7b08b9eb 3553
24c79950 3554 per_cu->v.quick->mark = 0;
3d7bb9d9 3555
24c79950
TT
3556 /* We only need to look at symtabs not already expanded. */
3557 if (per_cu->v.quick->symtab)
3558 continue;
7b08b9eb 3559
e4a48d9d 3560 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3561 if (file_data == NULL)
3562 continue;
7b08b9eb 3563
24c79950
TT
3564 if (htab_find (visited_not_found, file_data) != NULL)
3565 continue;
3566 else if (htab_find (visited_found, file_data) != NULL)
3567 {
3568 per_cu->v.quick->mark = 1;
3569 continue;
3570 }
3571
3572 for (j = 0; j < file_data->num_file_names; ++j)
3573 {
da235a7c
JK
3574 const char *this_real_name;
3575
fbd9ab74 3576 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3577 {
3578 per_cu->v.quick->mark = 1;
3579 break;
3580 }
da235a7c
JK
3581
3582 /* Before we invoke realpath, which can get expensive when many
3583 files are involved, do a quick comparison of the basenames. */
3584 if (!basenames_may_differ
3585 && !file_matcher (lbasename (file_data->file_names[j]),
3586 data, 1))
3587 continue;
3588
3589 this_real_name = dw2_get_real_path (objfile, file_data, j);
3590 if (file_matcher (this_real_name, data, 0))
3591 {
3592 per_cu->v.quick->mark = 1;
3593 break;
3594 }
24c79950
TT
3595 }
3596
3597 slot = htab_find_slot (per_cu->v.quick->mark
3598 ? visited_found
3599 : visited_not_found,
3600 file_data, INSERT);
3601 *slot = file_data;
3602 }
3603
3604 do_cleanups (cleanup);
3605 }
9291a0cd 3606
3876f04e 3607 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3608 {
3609 offset_type idx = 2 * iter;
3610 const char *name;
3611 offset_type *vec, vec_len, vec_idx;
3612
3876f04e 3613 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3614 continue;
3615
3876f04e 3616 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3617
e078317b 3618 if (! (*name_matcher) (name, data))
9291a0cd
TT
3619 continue;
3620
3621 /* The name was matched, now expand corresponding CUs that were
3622 marked. */
4b5246aa 3623 vec = (offset_type *) (index->constant_pool
3876f04e 3624 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3625 vec_len = MAYBE_SWAP (vec[0]);
3626 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3627 {
e254ef6a 3628 struct dwarf2_per_cu_data *per_cu;
156942c7
DE
3629 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3630 gdb_index_symbol_kind symbol_kind =
3631 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3632 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3633
3634 /* Don't crash on bad data. */
3635 if (cu_index >= (dwarf2_per_objfile->n_comp_units
667e0a4b 3636 + dwarf2_per_objfile->n_type_units))
156942c7 3637 continue;
1fd400ff 3638
156942c7
DE
3639 /* Only check the symbol's kind if it has one.
3640 Indices prior to version 7 don't record it. */
3641 if (index->version >= 7)
3642 {
3643 switch (kind)
3644 {
3645 case VARIABLES_DOMAIN:
3646 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3647 continue;
3648 break;
3649 case FUNCTIONS_DOMAIN:
3650 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3651 continue;
3652 break;
3653 case TYPES_DOMAIN:
3654 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3655 continue;
3656 break;
3657 default:
3658 break;
3659 }
3660 }
3661
3662 per_cu = dw2_get_cu (cu_index);
7b08b9eb 3663 if (file_matcher == NULL || per_cu->v.quick->mark)
a0f42c21 3664 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3665 }
3666 }
3667}
3668
9703b513
TT
3669/* A helper for dw2_find_pc_sect_symtab which finds the most specific
3670 symtab. */
3671
3672static struct symtab *
3673recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3674{
3675 int i;
3676
3677 if (BLOCKVECTOR (symtab) != NULL
3678 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3679 return symtab;
3680
a3ec0bb1
DE
3681 if (symtab->includes == NULL)
3682 return NULL;
3683
9703b513
TT
3684 for (i = 0; symtab->includes[i]; ++i)
3685 {
a3ec0bb1 3686 struct symtab *s = symtab->includes[i];
9703b513
TT
3687
3688 s = recursively_find_pc_sect_symtab (s, pc);
3689 if (s != NULL)
3690 return s;
3691 }
3692
3693 return NULL;
3694}
3695
9291a0cd
TT
3696static struct symtab *
3697dw2_find_pc_sect_symtab (struct objfile *objfile,
3698 struct minimal_symbol *msymbol,
3699 CORE_ADDR pc,
3700 struct obj_section *section,
3701 int warn_if_readin)
3702{
3703 struct dwarf2_per_cu_data *data;
9703b513 3704 struct symtab *result;
9291a0cd
TT
3705
3706 dw2_setup (objfile);
3707
3708 if (!objfile->psymtabs_addrmap)
3709 return NULL;
3710
3711 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3712 if (!data)
3713 return NULL;
3714
3715 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 3716 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
3717 paddress (get_objfile_arch (objfile), pc));
3718
9703b513
TT
3719 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3720 gdb_assert (result != NULL);
3721 return result;
9291a0cd
TT
3722}
3723
9291a0cd 3724static void
44b13c5a 3725dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 3726 void *data, int need_fullname)
9291a0cd
TT
3727{
3728 int i;
24c79950
TT
3729 struct cleanup *cleanup;
3730 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3731 NULL, xcalloc, xfree);
9291a0cd 3732
24c79950 3733 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 3734 dw2_setup (objfile);
ae2de4f8 3735
848e3e78
DE
3736 /* The rule is CUs specify all the files, including those used by
3737 any TU, so there's no need to scan TUs here.
3738 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 3739
848e3e78 3740 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3741 {
3742 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3743
3744 if (per_cu->v.quick->symtab)
3745 {
3746 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3747 INSERT);
3748
3749 *slot = per_cu->v.quick->file_names;
3750 }
3751 }
3752
848e3e78 3753 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3754 {
3755 int j;
f4dc4d17 3756 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 3757 struct quick_file_names *file_data;
24c79950 3758 void **slot;
9291a0cd 3759
3d7bb9d9 3760 /* We only need to look at symtabs not already expanded. */
e254ef6a 3761 if (per_cu->v.quick->symtab)
9291a0cd
TT
3762 continue;
3763
e4a48d9d 3764 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3765 if (file_data == NULL)
9291a0cd
TT
3766 continue;
3767
24c79950
TT
3768 slot = htab_find_slot (visited, file_data, INSERT);
3769 if (*slot)
3770 {
3771 /* Already visited. */
3772 continue;
3773 }
3774 *slot = file_data;
3775
7b9f3c50 3776 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3777 {
74e2f255
DE
3778 const char *this_real_name;
3779
3780 if (need_fullname)
3781 this_real_name = dw2_get_real_path (objfile, file_data, j);
3782 else
3783 this_real_name = NULL;
7b9f3c50 3784 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
3785 }
3786 }
24c79950
TT
3787
3788 do_cleanups (cleanup);
9291a0cd
TT
3789}
3790
3791static int
3792dw2_has_symbols (struct objfile *objfile)
3793{
3794 return 1;
3795}
3796
3797const struct quick_symbol_functions dwarf2_gdb_index_functions =
3798{
3799 dw2_has_symbols,
3800 dw2_find_last_source_symtab,
3801 dw2_forget_cached_source_info,
f8eba3c6 3802 dw2_map_symtabs_matching_filename,
9291a0cd 3803 dw2_lookup_symbol,
9291a0cd
TT
3804 dw2_print_stats,
3805 dw2_dump,
3806 dw2_relocate,
3807 dw2_expand_symtabs_for_function,
3808 dw2_expand_all_symtabs,
652a8996 3809 dw2_expand_symtabs_with_fullname,
9291a0cd 3810 dw2_find_symbol_file,
40658b94 3811 dw2_map_matching_symbols,
9291a0cd
TT
3812 dw2_expand_symtabs_matching,
3813 dw2_find_pc_sect_symtab,
9291a0cd
TT
3814 dw2_map_symbol_filenames
3815};
3816
3817/* Initialize for reading DWARF for this objfile. Return 0 if this
3818 file will use psymtabs, or 1 if using the GNU index. */
3819
3820int
3821dwarf2_initialize_objfile (struct objfile *objfile)
3822{
3823 /* If we're about to read full symbols, don't bother with the
3824 indices. In this case we also don't care if some other debug
3825 format is making psymtabs, because they are all about to be
3826 expanded anyway. */
3827 if ((objfile->flags & OBJF_READNOW))
3828 {
3829 int i;
3830
3831 dwarf2_per_objfile->using_index = 1;
3832 create_all_comp_units (objfile);
0e50663e 3833 create_all_type_units (objfile);
7b9f3c50
DE
3834 dwarf2_per_objfile->quick_file_names_table =
3835 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 3836
1fd400ff 3837 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3838 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3839 {
e254ef6a 3840 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3841
e254ef6a
DE
3842 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3843 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
3844 }
3845
3846 /* Return 1 so that gdb sees the "quick" functions. However,
3847 these functions will be no-ops because we will have expanded
3848 all symtabs. */
3849 return 1;
3850 }
3851
3852 if (dwarf2_read_index (objfile))
3853 return 1;
3854
9291a0cd
TT
3855 return 0;
3856}
3857
3858\f
3859
dce234bc
PP
3860/* Build a partial symbol table. */
3861
3862void
f29dff0a 3863dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 3864{
c9bf0622
TT
3865 volatile struct gdb_exception except;
3866
f29dff0a 3867 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
3868 {
3869 init_psymbol_list (objfile, 1024);
3870 }
3871
c9bf0622
TT
3872 TRY_CATCH (except, RETURN_MASK_ERROR)
3873 {
3874 /* This isn't really ideal: all the data we allocate on the
3875 objfile's obstack is still uselessly kept around. However,
3876 freeing it seems unsafe. */
3877 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3878
3879 dwarf2_build_psymtabs_hard (objfile);
3880 discard_cleanups (cleanups);
3881 }
3882 if (except.reason < 0)
3883 exception_print (gdb_stderr, except);
c906108c 3884}
c906108c 3885
1ce1cefd
DE
3886/* Return the total length of the CU described by HEADER. */
3887
3888static unsigned int
3889get_cu_length (const struct comp_unit_head *header)
3890{
3891 return header->initial_length_size + header->length;
3892}
3893
45452591
DE
3894/* Return TRUE if OFFSET is within CU_HEADER. */
3895
3896static inline int
b64f50a1 3897offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 3898{
b64f50a1 3899 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 3900 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 3901
b64f50a1 3902 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
3903}
3904
3b80fe9b
DE
3905/* Find the base address of the compilation unit for range lists and
3906 location lists. It will normally be specified by DW_AT_low_pc.
3907 In DWARF-3 draft 4, the base address could be overridden by
3908 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3909 compilation units with discontinuous ranges. */
3910
3911static void
3912dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3913{
3914 struct attribute *attr;
3915
3916 cu->base_known = 0;
3917 cu->base_address = 0;
3918
3919 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3920 if (attr)
3921 {
3922 cu->base_address = DW_ADDR (attr);
3923 cu->base_known = 1;
3924 }
3925 else
3926 {
3927 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3928 if (attr)
3929 {
3930 cu->base_address = DW_ADDR (attr);
3931 cu->base_known = 1;
3932 }
3933 }
3934}
3935
93311388
DE
3936/* Read in the comp unit header information from the debug_info at info_ptr.
3937 NOTE: This leaves members offset, first_die_offset to be filled in
3938 by the caller. */
107d2387 3939
d521ce57 3940static const gdb_byte *
107d2387 3941read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 3942 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
3943{
3944 int signed_addr;
891d2f0b 3945 unsigned int bytes_read;
c764a876
DE
3946
3947 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3948 cu_header->initial_length_size = bytes_read;
3949 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 3950 info_ptr += bytes_read;
107d2387
AC
3951 cu_header->version = read_2_bytes (abfd, info_ptr);
3952 info_ptr += 2;
b64f50a1
JK
3953 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3954 &bytes_read);
613e1657 3955 info_ptr += bytes_read;
107d2387
AC
3956 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3957 info_ptr += 1;
3958 signed_addr = bfd_get_sign_extend_vma (abfd);
3959 if (signed_addr < 0)
8e65ff28 3960 internal_error (__FILE__, __LINE__,
e2e0b3e5 3961 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 3962 cu_header->signed_addr_p = signed_addr;
c764a876 3963
107d2387
AC
3964 return info_ptr;
3965}
3966
36586728
TT
3967/* Helper function that returns the proper abbrev section for
3968 THIS_CU. */
3969
3970static struct dwarf2_section_info *
3971get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3972{
3973 struct dwarf2_section_info *abbrev;
3974
3975 if (this_cu->is_dwz)
3976 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3977 else
3978 abbrev = &dwarf2_per_objfile->abbrev;
3979
3980 return abbrev;
3981}
3982
9ff913ba
DE
3983/* Subroutine of read_and_check_comp_unit_head and
3984 read_and_check_type_unit_head to simplify them.
3985 Perform various error checking on the header. */
3986
3987static void
3988error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
3989 struct dwarf2_section_info *section,
3990 struct dwarf2_section_info *abbrev_section)
9ff913ba
DE
3991{
3992 bfd *abfd = section->asection->owner;
3993 const char *filename = bfd_get_filename (abfd);
3994
3995 if (header->version != 2 && header->version != 3 && header->version != 4)
3996 error (_("Dwarf Error: wrong version in compilation unit header "
3997 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3998 filename);
3999
b64f50a1 4000 if (header->abbrev_offset.sect_off
36586728 4001 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4002 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4003 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4004 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4005 filename);
4006
4007 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4008 avoid potential 32-bit overflow. */
1ce1cefd 4009 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4010 > section->size)
4011 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4012 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4013 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4014 filename);
4015}
4016
4017/* Read in a CU/TU header and perform some basic error checking.
4018 The contents of the header are stored in HEADER.
4019 The result is a pointer to the start of the first DIE. */
adabb602 4020
d521ce57 4021static const gdb_byte *
9ff913ba
DE
4022read_and_check_comp_unit_head (struct comp_unit_head *header,
4023 struct dwarf2_section_info *section,
4bdcc0c1 4024 struct dwarf2_section_info *abbrev_section,
d521ce57 4025 const gdb_byte *info_ptr,
9ff913ba 4026 int is_debug_types_section)
72bf9492 4027{
d521ce57 4028 const gdb_byte *beg_of_comp_unit = info_ptr;
9ff913ba 4029 bfd *abfd = section->asection->owner;
72bf9492 4030
b64f50a1 4031 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4032
72bf9492
DJ
4033 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4034
460c1c54
CC
4035 /* If we're reading a type unit, skip over the signature and
4036 type_offset fields. */
b0df02fd 4037 if (is_debug_types_section)
460c1c54
CC
4038 info_ptr += 8 /*signature*/ + header->offset_size;
4039
b64f50a1 4040 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4041
4bdcc0c1 4042 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4043
4044 return info_ptr;
4045}
4046
348e048f
DE
4047/* Read in the types comp unit header information from .debug_types entry at
4048 types_ptr. The result is a pointer to one past the end of the header. */
4049
d521ce57 4050static const gdb_byte *
9ff913ba
DE
4051read_and_check_type_unit_head (struct comp_unit_head *header,
4052 struct dwarf2_section_info *section,
4bdcc0c1 4053 struct dwarf2_section_info *abbrev_section,
d521ce57 4054 const gdb_byte *info_ptr,
dee91e82
DE
4055 ULONGEST *signature,
4056 cu_offset *type_offset_in_tu)
348e048f 4057{
d521ce57 4058 const gdb_byte *beg_of_comp_unit = info_ptr;
9ff913ba 4059 bfd *abfd = section->asection->owner;
348e048f 4060
b64f50a1 4061 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4062
9ff913ba 4063 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4064
9ff913ba
DE
4065 /* If we're reading a type unit, skip over the signature and
4066 type_offset fields. */
4067 if (signature != NULL)
4068 *signature = read_8_bytes (abfd, info_ptr);
4069 info_ptr += 8;
dee91e82
DE
4070 if (type_offset_in_tu != NULL)
4071 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4072 header->offset_size);
9ff913ba
DE
4073 info_ptr += header->offset_size;
4074
b64f50a1 4075 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4076
4bdcc0c1 4077 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4078
4079 return info_ptr;
348e048f
DE
4080}
4081
f4dc4d17
DE
4082/* Fetch the abbreviation table offset from a comp or type unit header. */
4083
4084static sect_offset
4085read_abbrev_offset (struct dwarf2_section_info *section,
4086 sect_offset offset)
4087{
4088 bfd *abfd = section->asection->owner;
d521ce57 4089 const gdb_byte *info_ptr;
f4dc4d17
DE
4090 unsigned int length, initial_length_size, offset_size;
4091 sect_offset abbrev_offset;
4092
4093 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4094 info_ptr = section->buffer + offset.sect_off;
4095 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4096 offset_size = initial_length_size == 4 ? 4 : 8;
4097 info_ptr += initial_length_size + 2 /*version*/;
4098 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4099 return abbrev_offset;
4100}
4101
aaa75496
JB
4102/* Allocate a new partial symtab for file named NAME and mark this new
4103 partial symtab as being an include of PST. */
4104
4105static void
d521ce57 4106dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4107 struct objfile *objfile)
4108{
4109 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4110
fbd9ab74
JK
4111 if (!IS_ABSOLUTE_PATH (subpst->filename))
4112 {
4113 /* It shares objfile->objfile_obstack. */
4114 subpst->dirname = pst->dirname;
4115 }
4116
aaa75496
JB
4117 subpst->section_offsets = pst->section_offsets;
4118 subpst->textlow = 0;
4119 subpst->texthigh = 0;
4120
4121 subpst->dependencies = (struct partial_symtab **)
4122 obstack_alloc (&objfile->objfile_obstack,
4123 sizeof (struct partial_symtab *));
4124 subpst->dependencies[0] = pst;
4125 subpst->number_of_dependencies = 1;
4126
4127 subpst->globals_offset = 0;
4128 subpst->n_global_syms = 0;
4129 subpst->statics_offset = 0;
4130 subpst->n_static_syms = 0;
4131 subpst->symtab = NULL;
4132 subpst->read_symtab = pst->read_symtab;
4133 subpst->readin = 0;
4134
4135 /* No private part is necessary for include psymtabs. This property
4136 can be used to differentiate between such include psymtabs and
10b3939b 4137 the regular ones. */
58a9656e 4138 subpst->read_symtab_private = NULL;
aaa75496
JB
4139}
4140
4141/* Read the Line Number Program data and extract the list of files
4142 included by the source file represented by PST. Build an include
d85a05f0 4143 partial symtab for each of these included files. */
aaa75496
JB
4144
4145static void
4146dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4147 struct die_info *die,
4148 struct partial_symtab *pst)
aaa75496 4149{
d85a05f0
DJ
4150 struct line_header *lh = NULL;
4151 struct attribute *attr;
aaa75496 4152
d85a05f0
DJ
4153 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4154 if (attr)
3019eac3 4155 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4156 if (lh == NULL)
4157 return; /* No linetable, so no includes. */
4158
c6da4cef 4159 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
f3f5162e 4160 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
aaa75496
JB
4161
4162 free_line_header (lh);
4163}
4164
348e048f 4165static hashval_t
52dc124a 4166hash_signatured_type (const void *item)
348e048f 4167{
52dc124a 4168 const struct signatured_type *sig_type = item;
9a619af0 4169
348e048f 4170 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4171 return sig_type->signature;
348e048f
DE
4172}
4173
4174static int
52dc124a 4175eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4176{
4177 const struct signatured_type *lhs = item_lhs;
4178 const struct signatured_type *rhs = item_rhs;
9a619af0 4179
348e048f
DE
4180 return lhs->signature == rhs->signature;
4181}
4182
1fd400ff
TT
4183/* Allocate a hash table for signatured types. */
4184
4185static htab_t
673bfd45 4186allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4187{
4188 return htab_create_alloc_ex (41,
52dc124a
DE
4189 hash_signatured_type,
4190 eq_signatured_type,
1fd400ff
TT
4191 NULL,
4192 &objfile->objfile_obstack,
4193 hashtab_obstack_allocate,
4194 dummy_obstack_deallocate);
4195}
4196
d467dd73 4197/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4198
4199static int
d467dd73 4200add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4201{
4202 struct signatured_type *sigt = *slot;
b4dd5633 4203 struct signatured_type ***datap = datum;
1fd400ff 4204
b4dd5633 4205 **datap = sigt;
1fd400ff
TT
4206 ++*datap;
4207
4208 return 1;
4209}
4210
c88ee1f0
DE
4211/* Create the hash table of all entries in the .debug_types
4212 (or .debug_types.dwo) section(s).
4213 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4214 otherwise it is NULL.
4215
4216 The result is a pointer to the hash table or NULL if there are no types.
4217
4218 Note: This function processes DWO files only, not DWP files. */
348e048f 4219
3019eac3
DE
4220static htab_t
4221create_debug_types_hash_table (struct dwo_file *dwo_file,
4222 VEC (dwarf2_section_info_def) *types)
348e048f 4223{
3019eac3 4224 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4225 htab_t types_htab = NULL;
8b70b953
TT
4226 int ix;
4227 struct dwarf2_section_info *section;
4bdcc0c1 4228 struct dwarf2_section_info *abbrev_section;
348e048f 4229
3019eac3
DE
4230 if (VEC_empty (dwarf2_section_info_def, types))
4231 return NULL;
348e048f 4232
4bdcc0c1
DE
4233 abbrev_section = (dwo_file != NULL
4234 ? &dwo_file->sections.abbrev
4235 : &dwarf2_per_objfile->abbrev);
4236
09406207
DE
4237 if (dwarf2_read_debug)
4238 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4239 dwo_file ? ".dwo" : "",
4240 bfd_get_filename (abbrev_section->asection->owner));
4241
8b70b953 4242 for (ix = 0;
3019eac3 4243 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4244 ++ix)
4245 {
3019eac3 4246 bfd *abfd;
d521ce57 4247 const gdb_byte *info_ptr, *end_ptr;
36586728 4248 struct dwarf2_section_info *abbrev_section;
348e048f 4249
8b70b953
TT
4250 dwarf2_read_section (objfile, section);
4251 info_ptr = section->buffer;
348e048f 4252
8b70b953
TT
4253 if (info_ptr == NULL)
4254 continue;
348e048f 4255
3019eac3
DE
4256 /* We can't set abfd until now because the section may be empty or
4257 not present, in which case section->asection will be NULL. */
4258 abfd = section->asection->owner;
4259
36586728
TT
4260 if (dwo_file)
4261 abbrev_section = &dwo_file->sections.abbrev;
4262 else
4263 abbrev_section = &dwarf2_per_objfile->abbrev;
4264
dee91e82
DE
4265 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4266 because we don't need to read any dies: the signature is in the
4267 header. */
8b70b953
TT
4268
4269 end_ptr = info_ptr + section->size;
4270 while (info_ptr < end_ptr)
4271 {
b64f50a1 4272 sect_offset offset;
3019eac3 4273 cu_offset type_offset_in_tu;
8b70b953 4274 ULONGEST signature;
52dc124a 4275 struct signatured_type *sig_type;
3019eac3 4276 struct dwo_unit *dwo_tu;
8b70b953 4277 void **slot;
d521ce57 4278 const gdb_byte *ptr = info_ptr;
9ff913ba 4279 struct comp_unit_head header;
dee91e82 4280 unsigned int length;
348e048f 4281
b64f50a1 4282 offset.sect_off = ptr - section->buffer;
348e048f 4283
8b70b953 4284 /* We need to read the type's signature in order to build the hash
9ff913ba 4285 table, but we don't need anything else just yet. */
348e048f 4286
4bdcc0c1
DE
4287 ptr = read_and_check_type_unit_head (&header, section,
4288 abbrev_section, ptr,
3019eac3 4289 &signature, &type_offset_in_tu);
6caca83c 4290
1ce1cefd 4291 length = get_cu_length (&header);
dee91e82 4292
6caca83c 4293 /* Skip dummy type units. */
dee91e82
DE
4294 if (ptr >= info_ptr + length
4295 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4296 {
1ce1cefd 4297 info_ptr += length;
6caca83c
CC
4298 continue;
4299 }
8b70b953 4300
0349ea22
DE
4301 if (types_htab == NULL)
4302 {
4303 if (dwo_file)
4304 types_htab = allocate_dwo_unit_table (objfile);
4305 else
4306 types_htab = allocate_signatured_type_table (objfile);
4307 }
4308
3019eac3
DE
4309 if (dwo_file)
4310 {
4311 sig_type = NULL;
4312 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4313 struct dwo_unit);
4314 dwo_tu->dwo_file = dwo_file;
4315 dwo_tu->signature = signature;
4316 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4317 dwo_tu->section = section;
3019eac3
DE
4318 dwo_tu->offset = offset;
4319 dwo_tu->length = length;
4320 }
4321 else
4322 {
4323 /* N.B.: type_offset is not usable if this type uses a DWO file.
4324 The real type_offset is in the DWO file. */
4325 dwo_tu = NULL;
4326 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4327 struct signatured_type);
4328 sig_type->signature = signature;
4329 sig_type->type_offset_in_tu = type_offset_in_tu;
4330 sig_type->per_cu.objfile = objfile;
4331 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4332 sig_type->per_cu.section = section;
3019eac3
DE
4333 sig_type->per_cu.offset = offset;
4334 sig_type->per_cu.length = length;
4335 }
8b70b953 4336
3019eac3
DE
4337 slot = htab_find_slot (types_htab,
4338 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4339 INSERT);
8b70b953
TT
4340 gdb_assert (slot != NULL);
4341 if (*slot != NULL)
4342 {
3019eac3
DE
4343 sect_offset dup_offset;
4344
4345 if (dwo_file)
4346 {
4347 const struct dwo_unit *dup_tu = *slot;
4348
4349 dup_offset = dup_tu->offset;
4350 }
4351 else
4352 {
4353 const struct signatured_type *dup_tu = *slot;
4354
4355 dup_offset = dup_tu->per_cu.offset;
4356 }
b3c8eb43 4357
8b70b953 4358 complaint (&symfile_complaints,
c88ee1f0 4359 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4360 " the entry at offset 0x%x, signature %s"),
3019eac3 4361 offset.sect_off, dup_offset.sect_off,
4031ecc5 4362 hex_string (signature));
8b70b953 4363 }
3019eac3 4364 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4365
09406207 4366 if (dwarf2_read_debug)
4031ecc5 4367 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4368 offset.sect_off,
4031ecc5 4369 hex_string (signature));
348e048f 4370
dee91e82 4371 info_ptr += length;
8b70b953 4372 }
348e048f
DE
4373 }
4374
3019eac3
DE
4375 return types_htab;
4376}
4377
4378/* Create the hash table of all entries in the .debug_types section,
4379 and initialize all_type_units.
4380 The result is zero if there is an error (e.g. missing .debug_types section),
4381 otherwise non-zero. */
4382
4383static int
4384create_all_type_units (struct objfile *objfile)
4385{
4386 htab_t types_htab;
b4dd5633 4387 struct signatured_type **iter;
3019eac3
DE
4388
4389 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4390 if (types_htab == NULL)
4391 {
4392 dwarf2_per_objfile->signatured_types = NULL;
4393 return 0;
4394 }
4395
348e048f
DE
4396 dwarf2_per_objfile->signatured_types = types_htab;
4397
d467dd73
DE
4398 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4399 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
4400 = xmalloc (dwarf2_per_objfile->n_type_units
4401 * sizeof (struct signatured_type *));
d467dd73
DE
4402 iter = &dwarf2_per_objfile->all_type_units[0];
4403 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4404 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4405 == dwarf2_per_objfile->n_type_units);
1fd400ff 4406
348e048f
DE
4407 return 1;
4408}
4409
a2ce51a0
DE
4410/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4411 Fill in SIG_ENTRY with DWO_ENTRY. */
4412
4413static void
4414fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4415 struct signatured_type *sig_entry,
4416 struct dwo_unit *dwo_entry)
4417{
4418 sig_entry->per_cu.section = dwo_entry->section;
4419 sig_entry->per_cu.offset = dwo_entry->offset;
4420 sig_entry->per_cu.length = dwo_entry->length;
4421 sig_entry->per_cu.reading_dwo_directly = 1;
4422 sig_entry->per_cu.objfile = objfile;
4423 gdb_assert (! sig_entry->per_cu.queued);
4424 gdb_assert (sig_entry->per_cu.cu == NULL);
4425 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4426 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4427 gdb_assert (sig_entry->signature == dwo_entry->signature);
4428 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4429 gdb_assert (sig_entry->type_unit_group == NULL);
4430 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4431 sig_entry->dwo_unit = dwo_entry;
4432}
4433
4434/* Subroutine of lookup_signatured_type.
4435 Create the signatured_type data structure for a TU to be read in
4436 directly from a DWO file, bypassing the stub.
4437 We do this for the case where there is no DWP file and we're using
4438 .gdb_index: When reading a CU we want to stay in the DWO file containing
4439 that CU. Otherwise we could end up reading several other DWO files (due
4440 to comdat folding) to process the transitive closure of all the mentioned
4441 TUs, and that can be slow. The current DWO file will have every type
4442 signature that it needs.
4443 We only do this for .gdb_index because in the psymtab case we already have
4444 to read all the DWOs to build the type unit groups. */
4445
4446static struct signatured_type *
4447lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4448{
4449 struct objfile *objfile = dwarf2_per_objfile->objfile;
4450 struct dwo_file *dwo_file;
4451 struct dwo_unit find_dwo_entry, *dwo_entry;
4452 struct signatured_type find_sig_entry, *sig_entry;
4453
4454 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4455
4456 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4457 dwo_unit of the TU itself. */
4458 dwo_file = cu->dwo_unit->dwo_file;
4459
4460 /* We only ever need to read in one copy of a signatured type.
4461 Just use the global signatured_types array. If this is the first time
4462 we're reading this type, replace the recorded data from .gdb_index with
4463 this TU. */
4464
4465 if (dwarf2_per_objfile->signatured_types == NULL)
4466 return NULL;
4467 find_sig_entry.signature = sig;
4468 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4469 if (sig_entry == NULL)
4470 return NULL;
4471 /* Have we already tried to read this TU? */
4472 if (sig_entry->dwo_unit != NULL)
4473 return sig_entry;
4474
4475 /* Ok, this is the first time we're reading this TU. */
4476 if (dwo_file->tus == NULL)
4477 return NULL;
4478 find_dwo_entry.signature = sig;
4479 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4480 if (dwo_entry == NULL)
4481 return NULL;
4482
4483 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4484 return sig_entry;
4485}
4486
4487/* Subroutine of lookup_dwp_signatured_type.
4488 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4489
4490static struct signatured_type *
4491add_type_unit (ULONGEST sig)
4492{
4493 struct objfile *objfile = dwarf2_per_objfile->objfile;
4494 int n_type_units = dwarf2_per_objfile->n_type_units;
4495 struct signatured_type *sig_type;
4496 void **slot;
4497
4498 ++n_type_units;
4499 dwarf2_per_objfile->all_type_units =
4500 xrealloc (dwarf2_per_objfile->all_type_units,
4501 n_type_units * sizeof (struct signatured_type *));
4502 dwarf2_per_objfile->n_type_units = n_type_units;
4503 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4504 struct signatured_type);
4505 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4506 sig_type->signature = sig;
4507 sig_type->per_cu.is_debug_types = 1;
4508 sig_type->per_cu.v.quick =
4509 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4510 struct dwarf2_per_cu_quick_data);
4511 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4512 sig_type, INSERT);
4513 gdb_assert (*slot == NULL);
4514 *slot = sig_type;
4515 /* The rest of sig_type must be filled in by the caller. */
4516 return sig_type;
4517}
4518
4519/* Subroutine of lookup_signatured_type.
4520 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4521 then try the DWP file.
4522 Normally this "can't happen", but if there's a bug in signature
4523 generation and/or the DWP file is built incorrectly, it can happen.
4524 Using the type directly from the DWP file means we don't have the stub
4525 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4526 not critical. [Eventually the stub may go away for type units anyway.] */
4527
4528static struct signatured_type *
4529lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4530{
4531 struct objfile *objfile = dwarf2_per_objfile->objfile;
4532 struct dwp_file *dwp_file = get_dwp_file ();
4533 struct dwo_unit *dwo_entry;
4534 struct signatured_type find_sig_entry, *sig_entry;
4535
4536 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4537 gdb_assert (dwp_file != NULL);
4538
4539 if (dwarf2_per_objfile->signatured_types != NULL)
4540 {
4541 find_sig_entry.signature = sig;
4542 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4543 &find_sig_entry);
4544 if (sig_entry != NULL)
4545 return sig_entry;
4546 }
4547
4548 /* This is the "shouldn't happen" case.
4549 Try the DWP file and hope for the best. */
4550 if (dwp_file->tus == NULL)
4551 return NULL;
4552 dwo_entry = lookup_dwo_in_dwp (dwp_file, dwp_file->tus, NULL,
4553 sig, 1 /* is_debug_types */);
4554 if (dwo_entry == NULL)
4555 return NULL;
4556
4557 sig_entry = add_type_unit (sig);
4558 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4559
4560 /* The caller will signal a complaint if we return NULL.
4561 Here we don't return NULL but we still want to complain. */
4562 complaint (&symfile_complaints,
4563 _("Bad type signature %s referenced by %s at 0x%x,"
4564 " coping by using copy in DWP [in module %s]"),
4565 hex_string (sig),
4566 cu->per_cu->is_debug_types ? "TU" : "CU",
4567 cu->per_cu->offset.sect_off,
4568 objfile->name);
4569
4570 return sig_entry;
4571}
4572
380bca97 4573/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4574 Returns NULL if signature SIG is not present in the table.
4575 It is up to the caller to complain about this. */
348e048f
DE
4576
4577static struct signatured_type *
a2ce51a0 4578lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 4579{
a2ce51a0
DE
4580 if (cu->dwo_unit
4581 && dwarf2_per_objfile->using_index)
4582 {
4583 /* We're in a DWO/DWP file, and we're using .gdb_index.
4584 These cases require special processing. */
4585 if (get_dwp_file () == NULL)
4586 return lookup_dwo_signatured_type (cu, sig);
4587 else
4588 return lookup_dwp_signatured_type (cu, sig);
4589 }
4590 else
4591 {
4592 struct signatured_type find_entry, *entry;
348e048f 4593
a2ce51a0
DE
4594 if (dwarf2_per_objfile->signatured_types == NULL)
4595 return NULL;
4596 find_entry.signature = sig;
4597 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4598 return entry;
4599 }
348e048f 4600}
42e7ad6c
DE
4601\f
4602/* Low level DIE reading support. */
348e048f 4603
d85a05f0
DJ
4604/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4605
4606static void
4607init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 4608 struct dwarf2_cu *cu,
3019eac3
DE
4609 struct dwarf2_section_info *section,
4610 struct dwo_file *dwo_file)
d85a05f0 4611{
fceca515 4612 gdb_assert (section->readin && section->buffer != NULL);
dee91e82 4613 reader->abfd = section->asection->owner;
d85a05f0 4614 reader->cu = cu;
3019eac3 4615 reader->dwo_file = dwo_file;
dee91e82
DE
4616 reader->die_section = section;
4617 reader->buffer = section->buffer;
f664829e 4618 reader->buffer_end = section->buffer + section->size;
a2ce51a0 4619 reader->comp_dir = NULL;
d85a05f0
DJ
4620}
4621
b0c7bfa9
DE
4622/* Subroutine of init_cutu_and_read_dies to simplify it.
4623 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4624 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4625 already.
4626
4627 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4628 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
4629 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4630 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4631 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4632 COMP_DIR must be non-NULL.
b0c7bfa9
DE
4633 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4634 are filled in with the info of the DIE from the DWO file.
4635 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4636 provided an abbrev table to use.
4637 The result is non-zero if a valid (non-dummy) DIE was found. */
4638
4639static int
4640read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4641 struct dwo_unit *dwo_unit,
4642 int abbrev_table_provided,
4643 struct die_info *stub_comp_unit_die,
a2ce51a0 4644 const char *stub_comp_dir,
b0c7bfa9 4645 struct die_reader_specs *result_reader,
d521ce57 4646 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
4647 struct die_info **result_comp_unit_die,
4648 int *result_has_children)
4649{
4650 struct objfile *objfile = dwarf2_per_objfile->objfile;
4651 struct dwarf2_cu *cu = this_cu->cu;
4652 struct dwarf2_section_info *section;
4653 bfd *abfd;
d521ce57 4654 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
4655 const char *comp_dir_string;
4656 ULONGEST signature; /* Or dwo_id. */
4657 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4658 int i,num_extra_attrs;
4659 struct dwarf2_section_info *dwo_abbrev_section;
4660 struct attribute *attr;
a2ce51a0 4661 struct attribute comp_dir_attr;
b0c7bfa9
DE
4662 struct die_info *comp_unit_die;
4663
a2ce51a0
DE
4664 /* Both can't be provided. */
4665 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4666
b0c7bfa9
DE
4667 /* These attributes aren't processed until later:
4668 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4669 However, the attribute is found in the stub which we won't have later.
4670 In order to not impose this complication on the rest of the code,
4671 we read them here and copy them to the DWO CU/TU die. */
4672
4673 stmt_list = NULL;
4674 low_pc = NULL;
4675 high_pc = NULL;
4676 ranges = NULL;
4677 comp_dir = NULL;
4678
4679 if (stub_comp_unit_die != NULL)
4680 {
4681 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4682 DWO file. */
4683 if (! this_cu->is_debug_types)
4684 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4685 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4686 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4687 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4688 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4689
4690 /* There should be a DW_AT_addr_base attribute here (if needed).
4691 We need the value before we can process DW_FORM_GNU_addr_index. */
4692 cu->addr_base = 0;
4693 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4694 if (attr)
4695 cu->addr_base = DW_UNSND (attr);
4696
4697 /* There should be a DW_AT_ranges_base attribute here (if needed).
4698 We need the value before we can process DW_AT_ranges. */
4699 cu->ranges_base = 0;
4700 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4701 if (attr)
4702 cu->ranges_base = DW_UNSND (attr);
4703 }
a2ce51a0
DE
4704 else if (stub_comp_dir != NULL)
4705 {
4706 /* Reconstruct the comp_dir attribute to simplify the code below. */
4707 comp_dir = (struct attribute *)
4708 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4709 comp_dir->name = DW_AT_comp_dir;
4710 comp_dir->form = DW_FORM_string;
4711 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4712 DW_STRING (comp_dir) = stub_comp_dir;
4713 }
b0c7bfa9
DE
4714
4715 /* Set up for reading the DWO CU/TU. */
4716 cu->dwo_unit = dwo_unit;
4717 section = dwo_unit->section;
4718 dwarf2_read_section (objfile, section);
4719 abfd = section->asection->owner;
4720 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4721 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4722 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4723
4724 if (this_cu->is_debug_types)
4725 {
4726 ULONGEST header_signature;
4727 cu_offset type_offset_in_tu;
4728 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4729
4730 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4731 dwo_abbrev_section,
4732 info_ptr,
4733 &header_signature,
4734 &type_offset_in_tu);
a2ce51a0
DE
4735 /* This is not an assert because it can be caused by bad debug info. */
4736 if (sig_type->signature != header_signature)
4737 {
4738 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
4739 " TU at offset 0x%x [in module %s]"),
4740 hex_string (sig_type->signature),
4741 hex_string (header_signature),
4742 dwo_unit->offset.sect_off,
4743 bfd_get_filename (abfd));
4744 }
b0c7bfa9
DE
4745 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4746 /* For DWOs coming from DWP files, we don't know the CU length
4747 nor the type's offset in the TU until now. */
4748 dwo_unit->length = get_cu_length (&cu->header);
4749 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4750
4751 /* Establish the type offset that can be used to lookup the type.
4752 For DWO files, we don't know it until now. */
4753 sig_type->type_offset_in_section.sect_off =
4754 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4755 }
4756 else
4757 {
4758 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4759 dwo_abbrev_section,
4760 info_ptr, 0);
4761 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4762 /* For DWOs coming from DWP files, we don't know the CU length
4763 until now. */
4764 dwo_unit->length = get_cu_length (&cu->header);
4765 }
4766
02142a6c
DE
4767 /* Replace the CU's original abbrev table with the DWO's.
4768 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
4769 if (abbrev_table_provided)
4770 {
4771 /* Don't free the provided abbrev table, the caller of
4772 init_cutu_and_read_dies owns it. */
4773 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 4774 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
4775 make_cleanup (dwarf2_free_abbrev_table, cu);
4776 }
4777 else
4778 {
4779 dwarf2_free_abbrev_table (cu);
4780 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 4781 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
4782 }
4783
4784 /* Read in the die, but leave space to copy over the attributes
4785 from the stub. This has the benefit of simplifying the rest of
4786 the code - all the work to maintain the illusion of a single
4787 DW_TAG_{compile,type}_unit DIE is done here. */
4788 num_extra_attrs = ((stmt_list != NULL)
4789 + (low_pc != NULL)
4790 + (high_pc != NULL)
4791 + (ranges != NULL)
4792 + (comp_dir != NULL));
4793 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
4794 result_has_children, num_extra_attrs);
4795
4796 /* Copy over the attributes from the stub to the DIE we just read in. */
4797 comp_unit_die = *result_comp_unit_die;
4798 i = comp_unit_die->num_attrs;
4799 if (stmt_list != NULL)
4800 comp_unit_die->attrs[i++] = *stmt_list;
4801 if (low_pc != NULL)
4802 comp_unit_die->attrs[i++] = *low_pc;
4803 if (high_pc != NULL)
4804 comp_unit_die->attrs[i++] = *high_pc;
4805 if (ranges != NULL)
4806 comp_unit_die->attrs[i++] = *ranges;
4807 if (comp_dir != NULL)
4808 comp_unit_die->attrs[i++] = *comp_dir;
4809 comp_unit_die->num_attrs += num_extra_attrs;
4810
bf6af496
DE
4811 if (dwarf2_die_debug)
4812 {
4813 fprintf_unfiltered (gdb_stdlog,
4814 "Read die from %s@0x%x of %s:\n",
4815 bfd_section_name (abfd, section->asection),
4816 (unsigned) (begin_info_ptr - section->buffer),
4817 bfd_get_filename (abfd));
4818 dump_die (comp_unit_die, dwarf2_die_debug);
4819 }
4820
a2ce51a0
DE
4821 /* Save the comp_dir attribute. If there is no DWP file then we'll read
4822 TUs by skipping the stub and going directly to the entry in the DWO file.
4823 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
4824 to get it via circuitous means. Blech. */
4825 if (comp_dir != NULL)
4826 result_reader->comp_dir = DW_STRING (comp_dir);
4827
b0c7bfa9
DE
4828 /* Skip dummy compilation units. */
4829 if (info_ptr >= begin_info_ptr + dwo_unit->length
4830 || peek_abbrev_code (abfd, info_ptr) == 0)
4831 return 0;
4832
4833 *result_info_ptr = info_ptr;
4834 return 1;
4835}
4836
4837/* Subroutine of init_cutu_and_read_dies to simplify it.
4838 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 4839 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
4840
4841static struct dwo_unit *
4842lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
4843 struct die_info *comp_unit_die)
4844{
4845 struct dwarf2_cu *cu = this_cu->cu;
4846 struct attribute *attr;
4847 ULONGEST signature;
4848 struct dwo_unit *dwo_unit;
4849 const char *comp_dir, *dwo_name;
4850
a2ce51a0
DE
4851 gdb_assert (cu != NULL);
4852
b0c7bfa9
DE
4853 /* Yeah, we look dwo_name up again, but it simplifies the code. */
4854 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4855 gdb_assert (attr != NULL);
4856 dwo_name = DW_STRING (attr);
4857 comp_dir = NULL;
4858 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4859 if (attr)
4860 comp_dir = DW_STRING (attr);
4861
4862 if (this_cu->is_debug_types)
4863 {
4864 struct signatured_type *sig_type;
4865
4866 /* Since this_cu is the first member of struct signatured_type,
4867 we can go from a pointer to one to a pointer to the other. */
4868 sig_type = (struct signatured_type *) this_cu;
4869 signature = sig_type->signature;
4870 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
4871 }
4872 else
4873 {
4874 struct attribute *attr;
4875
4876 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4877 if (! attr)
4878 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
4879 " [in module %s]"),
4880 dwo_name, this_cu->objfile->name);
4881 signature = DW_UNSND (attr);
4882 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
4883 signature);
4884 }
4885
b0c7bfa9
DE
4886 return dwo_unit;
4887}
4888
a2ce51a0
DE
4889/* Subroutine of init_cutu_and_read_dies to simplify it.
4890 Read a TU directly from a DWO file, bypassing the stub. */
4891
4892static void
4893init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
4894 die_reader_func_ftype *die_reader_func,
4895 void *data)
4896{
4897 struct dwarf2_cu *cu;
4898 struct signatured_type *sig_type;
4899 struct cleanup *cleanups, *free_cu_cleanup;
4900 struct die_reader_specs reader;
4901 const gdb_byte *info_ptr;
4902 struct die_info *comp_unit_die;
4903 int has_children;
4904
4905 /* Verify we can do the following downcast, and that we have the
4906 data we need. */
4907 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
4908 sig_type = (struct signatured_type *) this_cu;
4909 gdb_assert (sig_type->dwo_unit != NULL);
4910
4911 cleanups = make_cleanup (null_cleanup, NULL);
4912
4913 gdb_assert (this_cu->cu == NULL);
4914 cu = xmalloc (sizeof (*cu));
4915 init_one_comp_unit (cu, this_cu);
4916 /* If an error occurs while loading, release our storage. */
4917 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4918
4919 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
4920 0 /* abbrev_table_provided */,
4921 NULL /* stub_comp_unit_die */,
4922 sig_type->dwo_unit->dwo_file->comp_dir,
4923 &reader, &info_ptr,
4924 &comp_unit_die, &has_children) == 0)
4925 {
4926 /* Dummy die. */
4927 do_cleanups (cleanups);
4928 return;
4929 }
4930
4931 /* All the "real" work is done here. */
4932 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4933
4934 /* This duplicates some code in init_cutu_and_read_dies,
4935 but the alternative is making the latter more complex.
4936 This function is only for the special case of using DWO files directly:
4937 no point in overly complicating the general case just to handle this. */
4938 if (keep)
4939 {
4940 /* We've successfully allocated this compilation unit. Let our
4941 caller clean it up when finished with it. */
4942 discard_cleanups (free_cu_cleanup);
4943
4944 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4945 So we have to manually free the abbrev table. */
4946 dwarf2_free_abbrev_table (cu);
4947
4948 /* Link this CU into read_in_chain. */
4949 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4950 dwarf2_per_objfile->read_in_chain = this_cu;
4951 }
4952 else
4953 do_cleanups (free_cu_cleanup);
4954
4955 do_cleanups (cleanups);
4956}
4957
fd820528 4958/* Initialize a CU (or TU) and read its DIEs.
3019eac3 4959 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 4960
f4dc4d17
DE
4961 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4962 Otherwise the table specified in the comp unit header is read in and used.
4963 This is an optimization for when we already have the abbrev table.
4964
dee91e82
DE
4965 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4966 Otherwise, a new CU is allocated with xmalloc.
4967
4968 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4969 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4970
4971 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 4972 linker) then DIE_READER_FUNC will not get called. */
aaa75496 4973
70221824 4974static void
fd820528 4975init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 4976 struct abbrev_table *abbrev_table,
fd820528
DE
4977 int use_existing_cu, int keep,
4978 die_reader_func_ftype *die_reader_func,
4979 void *data)
c906108c 4980{
dee91e82 4981 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 4982 struct dwarf2_section_info *section = this_cu->section;
3019eac3 4983 bfd *abfd = section->asection->owner;
dee91e82 4984 struct dwarf2_cu *cu;
d521ce57 4985 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 4986 struct die_reader_specs reader;
d85a05f0 4987 struct die_info *comp_unit_die;
dee91e82 4988 int has_children;
d85a05f0 4989 struct attribute *attr;
dee91e82
DE
4990 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4991 struct signatured_type *sig_type = NULL;
4bdcc0c1 4992 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
4993 /* Non-zero if CU currently points to a DWO file and we need to
4994 reread it. When this happens we need to reread the skeleton die
a2ce51a0 4995 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 4996 int rereading_dwo_cu = 0;
c906108c 4997
09406207
DE
4998 if (dwarf2_die_debug)
4999 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5000 this_cu->is_debug_types ? "type" : "comp",
5001 this_cu->offset.sect_off);
5002
dee91e82
DE
5003 if (use_existing_cu)
5004 gdb_assert (keep);
23745b47 5005
a2ce51a0
DE
5006 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5007 file (instead of going through the stub), short-circuit all of this. */
5008 if (this_cu->reading_dwo_directly)
5009 {
5010 /* Narrow down the scope of possibilities to have to understand. */
5011 gdb_assert (this_cu->is_debug_types);
5012 gdb_assert (abbrev_table == NULL);
5013 gdb_assert (!use_existing_cu);
5014 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5015 return;
5016 }
5017
dee91e82
DE
5018 cleanups = make_cleanup (null_cleanup, NULL);
5019
5020 /* This is cheap if the section is already read in. */
5021 dwarf2_read_section (objfile, section);
5022
5023 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5024
5025 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5026
5027 if (use_existing_cu && this_cu->cu != NULL)
5028 {
5029 cu = this_cu->cu;
42e7ad6c
DE
5030
5031 /* If this CU is from a DWO file we need to start over, we need to
5032 refetch the attributes from the skeleton CU.
5033 This could be optimized by retrieving those attributes from when we
5034 were here the first time: the previous comp_unit_die was stored in
5035 comp_unit_obstack. But there's no data yet that we need this
5036 optimization. */
5037 if (cu->dwo_unit != NULL)
5038 rereading_dwo_cu = 1;
dee91e82
DE
5039 }
5040 else
5041 {
5042 /* If !use_existing_cu, this_cu->cu must be NULL. */
5043 gdb_assert (this_cu->cu == NULL);
5044
5045 cu = xmalloc (sizeof (*cu));
5046 init_one_comp_unit (cu, this_cu);
5047
5048 /* If an error occurs while loading, release our storage. */
5049 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5050 }
dee91e82 5051
b0c7bfa9 5052 /* Get the header. */
42e7ad6c
DE
5053 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5054 {
5055 /* We already have the header, there's no need to read it in again. */
5056 info_ptr += cu->header.first_die_offset.cu_off;
5057 }
5058 else
5059 {
3019eac3 5060 if (this_cu->is_debug_types)
dee91e82
DE
5061 {
5062 ULONGEST signature;
42e7ad6c 5063 cu_offset type_offset_in_tu;
dee91e82 5064
4bdcc0c1
DE
5065 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5066 abbrev_section, info_ptr,
42e7ad6c
DE
5067 &signature,
5068 &type_offset_in_tu);
dee91e82 5069
42e7ad6c
DE
5070 /* Since per_cu is the first member of struct signatured_type,
5071 we can go from a pointer to one to a pointer to the other. */
5072 sig_type = (struct signatured_type *) this_cu;
5073 gdb_assert (sig_type->signature == signature);
5074 gdb_assert (sig_type->type_offset_in_tu.cu_off
5075 == type_offset_in_tu.cu_off);
dee91e82
DE
5076 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5077
42e7ad6c
DE
5078 /* LENGTH has not been set yet for type units if we're
5079 using .gdb_index. */
1ce1cefd 5080 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5081
5082 /* Establish the type offset that can be used to lookup the type. */
5083 sig_type->type_offset_in_section.sect_off =
5084 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5085 }
5086 else
5087 {
4bdcc0c1
DE
5088 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5089 abbrev_section,
5090 info_ptr, 0);
dee91e82
DE
5091
5092 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5093 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5094 }
5095 }
10b3939b 5096
6caca83c 5097 /* Skip dummy compilation units. */
dee91e82 5098 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5099 || peek_abbrev_code (abfd, info_ptr) == 0)
5100 {
dee91e82 5101 do_cleanups (cleanups);
21b2bd31 5102 return;
6caca83c
CC
5103 }
5104
433df2d4
DE
5105 /* If we don't have them yet, read the abbrevs for this compilation unit.
5106 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5107 done. Note that it's important that if the CU had an abbrev table
5108 on entry we don't free it when we're done: Somewhere up the call stack
5109 it may be in use. */
f4dc4d17
DE
5110 if (abbrev_table != NULL)
5111 {
5112 gdb_assert (cu->abbrev_table == NULL);
5113 gdb_assert (cu->header.abbrev_offset.sect_off
5114 == abbrev_table->offset.sect_off);
5115 cu->abbrev_table = abbrev_table;
5116 }
5117 else if (cu->abbrev_table == NULL)
dee91e82 5118 {
4bdcc0c1 5119 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5120 make_cleanup (dwarf2_free_abbrev_table, cu);
5121 }
42e7ad6c
DE
5122 else if (rereading_dwo_cu)
5123 {
5124 dwarf2_free_abbrev_table (cu);
5125 dwarf2_read_abbrevs (cu, abbrev_section);
5126 }
af703f96 5127
dee91e82 5128 /* Read the top level CU/TU die. */
3019eac3 5129 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5130 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5131
b0c7bfa9
DE
5132 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5133 from the DWO file.
5134 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5135 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5136 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5137 if (attr)
5138 {
3019eac3 5139 struct dwo_unit *dwo_unit;
b0c7bfa9 5140 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5141
5142 if (has_children)
6a506a2d
DE
5143 {
5144 complaint (&symfile_complaints,
5145 _("compilation unit with DW_AT_GNU_dwo_name"
5146 " has children (offset 0x%x) [in module %s]"),
5147 this_cu->offset.sect_off, bfd_get_filename (abfd));
5148 }
b0c7bfa9 5149 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5150 if (dwo_unit != NULL)
3019eac3 5151 {
6a506a2d
DE
5152 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5153 abbrev_table != NULL,
a2ce51a0 5154 comp_unit_die, NULL,
6a506a2d
DE
5155 &reader, &info_ptr,
5156 &dwo_comp_unit_die, &has_children) == 0)
5157 {
5158 /* Dummy die. */
5159 do_cleanups (cleanups);
5160 return;
5161 }
5162 comp_unit_die = dwo_comp_unit_die;
5163 }
5164 else
5165 {
5166 /* Yikes, we couldn't find the rest of the DIE, we only have
5167 the stub. A complaint has already been logged. There's
5168 not much more we can do except pass on the stub DIE to
5169 die_reader_func. We don't want to throw an error on bad
5170 debug info. */
3019eac3
DE
5171 }
5172 }
5173
b0c7bfa9 5174 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5175 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5176
b0c7bfa9 5177 /* Done, clean up. */
dee91e82 5178 if (free_cu_cleanup != NULL)
348e048f 5179 {
dee91e82
DE
5180 if (keep)
5181 {
5182 /* We've successfully allocated this compilation unit. Let our
5183 caller clean it up when finished with it. */
5184 discard_cleanups (free_cu_cleanup);
5185
5186 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5187 So we have to manually free the abbrev table. */
5188 dwarf2_free_abbrev_table (cu);
5189
5190 /* Link this CU into read_in_chain. */
5191 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5192 dwarf2_per_objfile->read_in_chain = this_cu;
5193 }
5194 else
5195 do_cleanups (free_cu_cleanup);
348e048f 5196 }
dee91e82
DE
5197
5198 do_cleanups (cleanups);
5199}
5200
3019eac3
DE
5201/* Read CU/TU THIS_CU in section SECTION,
5202 but do not follow DW_AT_GNU_dwo_name if present.
80626a55
DE
5203 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5204 to have already done the lookup to find the DWO/DWP file).
dee91e82
DE
5205
5206 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5207 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5208
5209 We fill in THIS_CU->length.
5210
5211 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5212 linker) then DIE_READER_FUNC will not get called.
5213
5214 THIS_CU->cu is always freed when done.
3019eac3
DE
5215 This is done in order to not leave THIS_CU->cu in a state where we have
5216 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5217
5218static void
5219init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5220 struct dwarf2_section_info *abbrev_section,
3019eac3 5221 struct dwo_file *dwo_file,
dee91e82
DE
5222 die_reader_func_ftype *die_reader_func,
5223 void *data)
5224{
5225 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5226 struct dwarf2_section_info *section = this_cu->section;
3019eac3 5227 bfd *abfd = section->asection->owner;
dee91e82 5228 struct dwarf2_cu cu;
d521ce57 5229 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5230 struct die_reader_specs reader;
5231 struct cleanup *cleanups;
5232 struct die_info *comp_unit_die;
5233 int has_children;
5234
09406207
DE
5235 if (dwarf2_die_debug)
5236 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5237 this_cu->is_debug_types ? "type" : "comp",
5238 this_cu->offset.sect_off);
5239
dee91e82
DE
5240 gdb_assert (this_cu->cu == NULL);
5241
dee91e82
DE
5242 /* This is cheap if the section is already read in. */
5243 dwarf2_read_section (objfile, section);
5244
5245 init_one_comp_unit (&cu, this_cu);
5246
5247 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5248
5249 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5250 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5251 abbrev_section, info_ptr,
3019eac3 5252 this_cu->is_debug_types);
dee91e82 5253
1ce1cefd 5254 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5255
5256 /* Skip dummy compilation units. */
5257 if (info_ptr >= begin_info_ptr + this_cu->length
5258 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5259 {
dee91e82 5260 do_cleanups (cleanups);
21b2bd31 5261 return;
93311388 5262 }
72bf9492 5263
dee91e82
DE
5264 dwarf2_read_abbrevs (&cu, abbrev_section);
5265 make_cleanup (dwarf2_free_abbrev_table, &cu);
5266
3019eac3 5267 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5268 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5269
5270 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5271
5272 do_cleanups (cleanups);
5273}
5274
3019eac3
DE
5275/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5276 does not lookup the specified DWO file.
5277 This cannot be used to read DWO files.
dee91e82
DE
5278
5279 THIS_CU->cu is always freed when done.
3019eac3
DE
5280 This is done in order to not leave THIS_CU->cu in a state where we have
5281 to care whether it refers to the "main" CU or the DWO CU.
5282 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5283
5284static void
5285init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5286 die_reader_func_ftype *die_reader_func,
5287 void *data)
5288{
5289 init_cutu_and_read_dies_no_follow (this_cu,
36586728 5290 get_abbrev_section_for_cu (this_cu),
3019eac3 5291 NULL,
dee91e82
DE
5292 die_reader_func, data);
5293}
0018ea6f
DE
5294\f
5295/* Type Unit Groups.
dee91e82 5296
0018ea6f
DE
5297 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5298 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5299 so that all types coming from the same compilation (.o file) are grouped
5300 together. A future step could be to put the types in the same symtab as
5301 the CU the types ultimately came from. */
ff013f42 5302
f4dc4d17
DE
5303static hashval_t
5304hash_type_unit_group (const void *item)
5305{
094b34ac 5306 const struct type_unit_group *tu_group = item;
f4dc4d17 5307
094b34ac 5308 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5309}
348e048f
DE
5310
5311static int
f4dc4d17 5312eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5313{
f4dc4d17
DE
5314 const struct type_unit_group *lhs = item_lhs;
5315 const struct type_unit_group *rhs = item_rhs;
348e048f 5316
094b34ac 5317 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5318}
348e048f 5319
f4dc4d17
DE
5320/* Allocate a hash table for type unit groups. */
5321
5322static htab_t
5323allocate_type_unit_groups_table (void)
5324{
5325 return htab_create_alloc_ex (3,
5326 hash_type_unit_group,
5327 eq_type_unit_group,
5328 NULL,
5329 &dwarf2_per_objfile->objfile->objfile_obstack,
5330 hashtab_obstack_allocate,
5331 dummy_obstack_deallocate);
5332}
dee91e82 5333
f4dc4d17
DE
5334/* Type units that don't have DW_AT_stmt_list are grouped into their own
5335 partial symtabs. We combine several TUs per psymtab to not let the size
5336 of any one psymtab grow too big. */
5337#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5338#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5339
094b34ac 5340/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5341 Create the type_unit_group object used to hold one or more TUs. */
5342
5343static struct type_unit_group *
094b34ac 5344create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5345{
5346 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5347 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5348 struct type_unit_group *tu_group;
f4dc4d17
DE
5349
5350 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5351 struct type_unit_group);
094b34ac 5352 per_cu = &tu_group->per_cu;
f4dc4d17 5353 per_cu->objfile = objfile;
f4dc4d17 5354
094b34ac
DE
5355 if (dwarf2_per_objfile->using_index)
5356 {
5357 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5358 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5359 }
5360 else
5361 {
5362 unsigned int line_offset = line_offset_struct.sect_off;
5363 struct partial_symtab *pst;
5364 char *name;
5365
5366 /* Give the symtab a useful name for debug purposes. */
5367 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5368 name = xstrprintf ("<type_units_%d>",
5369 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5370 else
5371 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5372
5373 pst = create_partial_symtab (per_cu, name);
5374 pst->anonymous = 1;
f4dc4d17 5375
094b34ac
DE
5376 xfree (name);
5377 }
f4dc4d17 5378
094b34ac
DE
5379 tu_group->hash.dwo_unit = cu->dwo_unit;
5380 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5381
5382 return tu_group;
5383}
5384
094b34ac
DE
5385/* Look up the type_unit_group for type unit CU, and create it if necessary.
5386 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5387
5388static struct type_unit_group *
094b34ac 5389get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
f4dc4d17
DE
5390{
5391 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5392 struct type_unit_group *tu_group;
5393 void **slot;
5394 unsigned int line_offset;
5395 struct type_unit_group type_unit_group_for_lookup;
5396
5397 if (dwarf2_per_objfile->type_unit_groups == NULL)
5398 {
5399 dwarf2_per_objfile->type_unit_groups =
5400 allocate_type_unit_groups_table ();
5401 }
5402
5403 /* Do we need to create a new group, or can we use an existing one? */
5404
5405 if (stmt_list)
5406 {
5407 line_offset = DW_UNSND (stmt_list);
5408 ++tu_stats->nr_symtab_sharers;
5409 }
5410 else
5411 {
5412 /* Ugh, no stmt_list. Rare, but we have to handle it.
5413 We can do various things here like create one group per TU or
5414 spread them over multiple groups to split up the expansion work.
5415 To avoid worst case scenarios (too many groups or too large groups)
5416 we, umm, group them in bunches. */
5417 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5418 | (tu_stats->nr_stmt_less_type_units
5419 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5420 ++tu_stats->nr_stmt_less_type_units;
5421 }
5422
094b34ac
DE
5423 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5424 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5425 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5426 &type_unit_group_for_lookup, INSERT);
5427 if (*slot != NULL)
5428 {
5429 tu_group = *slot;
5430 gdb_assert (tu_group != NULL);
5431 }
5432 else
5433 {
5434 sect_offset line_offset_struct;
5435
5436 line_offset_struct.sect_off = line_offset;
094b34ac 5437 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5438 *slot = tu_group;
5439 ++tu_stats->nr_symtabs;
5440 }
5441
5442 return tu_group;
5443}
5444
5445/* Struct used to sort TUs by their abbreviation table offset. */
5446
5447struct tu_abbrev_offset
5448{
5449 struct signatured_type *sig_type;
5450 sect_offset abbrev_offset;
5451};
5452
5453/* Helper routine for build_type_unit_groups, passed to qsort. */
5454
5455static int
5456sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5457{
5458 const struct tu_abbrev_offset * const *a = ap;
5459 const struct tu_abbrev_offset * const *b = bp;
5460 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5461 unsigned int boff = (*b)->abbrev_offset.sect_off;
5462
5463 return (aoff > boff) - (aoff < boff);
5464}
5465
5466/* A helper function to add a type_unit_group to a table. */
5467
5468static int
5469add_type_unit_group_to_table (void **slot, void *datum)
5470{
5471 struct type_unit_group *tu_group = *slot;
5472 struct type_unit_group ***datap = datum;
5473
5474 **datap = tu_group;
5475 ++*datap;
5476
5477 return 1;
5478}
5479
5480/* Efficiently read all the type units, calling init_cutu_and_read_dies on
5481 each one passing FUNC,DATA.
5482
5483 The efficiency is because we sort TUs by the abbrev table they use and
5484 only read each abbrev table once. In one program there are 200K TUs
5485 sharing 8K abbrev tables.
5486
5487 The main purpose of this function is to support building the
5488 dwarf2_per_objfile->type_unit_groups table.
5489 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5490 can collapse the search space by grouping them by stmt_list.
5491 The savings can be significant, in the same program from above the 200K TUs
5492 share 8K stmt_list tables.
5493
5494 FUNC is expected to call get_type_unit_group, which will create the
5495 struct type_unit_group if necessary and add it to
5496 dwarf2_per_objfile->type_unit_groups. */
5497
5498static void
5499build_type_unit_groups (die_reader_func_ftype *func, void *data)
5500{
5501 struct objfile *objfile = dwarf2_per_objfile->objfile;
5502 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5503 struct cleanup *cleanups;
5504 struct abbrev_table *abbrev_table;
5505 sect_offset abbrev_offset;
5506 struct tu_abbrev_offset *sorted_by_abbrev;
5507 struct type_unit_group **iter;
5508 int i;
5509
5510 /* It's up to the caller to not call us multiple times. */
5511 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5512
5513 if (dwarf2_per_objfile->n_type_units == 0)
5514 return;
5515
5516 /* TUs typically share abbrev tables, and there can be way more TUs than
5517 abbrev tables. Sort by abbrev table to reduce the number of times we
5518 read each abbrev table in.
5519 Alternatives are to punt or to maintain a cache of abbrev tables.
5520 This is simpler and efficient enough for now.
5521
5522 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5523 symtab to use). Typically TUs with the same abbrev offset have the same
5524 stmt_list value too so in practice this should work well.
5525
5526 The basic algorithm here is:
5527
5528 sort TUs by abbrev table
5529 for each TU with same abbrev table:
5530 read abbrev table if first user
5531 read TU top level DIE
5532 [IWBN if DWO skeletons had DW_AT_stmt_list]
5533 call FUNC */
5534
5535 if (dwarf2_read_debug)
5536 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5537
5538 /* Sort in a separate table to maintain the order of all_type_units
5539 for .gdb_index: TU indices directly index all_type_units. */
5540 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5541 dwarf2_per_objfile->n_type_units);
5542 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5543 {
5544 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5545
5546 sorted_by_abbrev[i].sig_type = sig_type;
5547 sorted_by_abbrev[i].abbrev_offset =
8a0459fd 5548 read_abbrev_offset (sig_type->per_cu.section,
f4dc4d17
DE
5549 sig_type->per_cu.offset);
5550 }
5551 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5552 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5553 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5554
094b34ac
DE
5555 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5556 called any number of times, so we don't reset tu_stats here. */
5557
f4dc4d17
DE
5558 abbrev_offset.sect_off = ~(unsigned) 0;
5559 abbrev_table = NULL;
5560 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5561
5562 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5563 {
5564 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5565
5566 /* Switch to the next abbrev table if necessary. */
5567 if (abbrev_table == NULL
5568 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5569 {
5570 if (abbrev_table != NULL)
5571 {
5572 abbrev_table_free (abbrev_table);
5573 /* Reset to NULL in case abbrev_table_read_table throws
5574 an error: abbrev_table_free_cleanup will get called. */
5575 abbrev_table = NULL;
5576 }
5577 abbrev_offset = tu->abbrev_offset;
5578 abbrev_table =
5579 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5580 abbrev_offset);
5581 ++tu_stats->nr_uniq_abbrev_tables;
5582 }
5583
5584 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5585 func, data);
5586 }
5587
a2ce51a0
DE
5588 /* type_unit_groups can be NULL if there is an error in the debug info.
5589 Just create an empty table so the rest of gdb doesn't have to watch
5590 for this error case. */
5591 if (dwarf2_per_objfile->type_unit_groups == NULL)
5592 {
5593 dwarf2_per_objfile->type_unit_groups =
5594 allocate_type_unit_groups_table ();
5595 dwarf2_per_objfile->n_type_unit_groups = 0;
5596 }
5597
f4dc4d17
DE
5598 /* Create a vector of pointers to primary type units to make it easy to
5599 iterate over them and CUs. See dw2_get_primary_cu. */
5600 dwarf2_per_objfile->n_type_unit_groups =
5601 htab_elements (dwarf2_per_objfile->type_unit_groups);
5602 dwarf2_per_objfile->all_type_unit_groups =
5603 obstack_alloc (&objfile->objfile_obstack,
5604 dwarf2_per_objfile->n_type_unit_groups
5605 * sizeof (struct type_unit_group *));
5606 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5607 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5608 add_type_unit_group_to_table, &iter);
5609 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5610 == dwarf2_per_objfile->n_type_unit_groups);
5611
5612 do_cleanups (cleanups);
5613
5614 if (dwarf2_read_debug)
5615 {
5616 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5617 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5618 dwarf2_per_objfile->n_type_units);
5619 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5620 tu_stats->nr_uniq_abbrev_tables);
5621 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5622 tu_stats->nr_symtabs);
5623 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5624 tu_stats->nr_symtab_sharers);
5625 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5626 tu_stats->nr_stmt_less_type_units);
5627 }
5628}
0018ea6f
DE
5629\f
5630/* Partial symbol tables. */
5631
5632/* Create a psymtab named NAME and assign it to PER_CU.
5633
5634 The caller must fill in the following details:
5635 dirname, textlow, texthigh. */
5636
5637static struct partial_symtab *
5638create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5639{
5640 struct objfile *objfile = per_cu->objfile;
5641 struct partial_symtab *pst;
5642
5643 pst = start_psymtab_common (objfile, objfile->section_offsets,
5644 name, 0,
5645 objfile->global_psymbols.next,
5646 objfile->static_psymbols.next);
5647
5648 pst->psymtabs_addrmap_supported = 1;
5649
5650 /* This is the glue that links PST into GDB's symbol API. */
5651 pst->read_symtab_private = per_cu;
5652 pst->read_symtab = dwarf2_read_symtab;
5653 per_cu->v.psymtab = pst;
5654
5655 return pst;
5656}
5657
5658/* die_reader_func for process_psymtab_comp_unit. */
5659
5660static void
5661process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5662 const gdb_byte *info_ptr,
0018ea6f
DE
5663 struct die_info *comp_unit_die,
5664 int has_children,
5665 void *data)
5666{
5667 struct dwarf2_cu *cu = reader->cu;
5668 struct objfile *objfile = cu->objfile;
5669 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5670 struct attribute *attr;
5671 CORE_ADDR baseaddr;
5672 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5673 struct partial_symtab *pst;
5674 int has_pc_info;
5675 const char *filename;
5676 int *want_partial_unit_ptr = data;
5677
5678 if (comp_unit_die->tag == DW_TAG_partial_unit
5679 && (want_partial_unit_ptr == NULL
5680 || !*want_partial_unit_ptr))
5681 return;
5682
5683 gdb_assert (! per_cu->is_debug_types);
5684
5685 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5686
5687 cu->list_in_scope = &file_symbols;
5688
5689 /* Allocate a new partial symbol table structure. */
5690 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5691 if (attr == NULL || !DW_STRING (attr))
5692 filename = "";
5693 else
5694 filename = DW_STRING (attr);
5695
5696 pst = create_partial_symtab (per_cu, filename);
5697
5698 /* This must be done before calling dwarf2_build_include_psymtabs. */
5699 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5700 if (attr != NULL)
5701 pst->dirname = DW_STRING (attr);
5702
5703 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5704
5705 dwarf2_find_base_address (comp_unit_die, cu);
5706
5707 /* Possibly set the default values of LOWPC and HIGHPC from
5708 `DW_AT_ranges'. */
5709 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5710 &best_highpc, cu, pst);
5711 if (has_pc_info == 1 && best_lowpc < best_highpc)
5712 /* Store the contiguous range if it is not empty; it can be empty for
5713 CUs with no code. */
5714 addrmap_set_empty (objfile->psymtabs_addrmap,
5715 best_lowpc + baseaddr,
5716 best_highpc + baseaddr - 1, pst);
5717
5718 /* Check if comp unit has_children.
5719 If so, read the rest of the partial symbols from this comp unit.
5720 If not, there's no more debug_info for this comp unit. */
5721 if (has_children)
5722 {
5723 struct partial_die_info *first_die;
5724 CORE_ADDR lowpc, highpc;
5725
5726 lowpc = ((CORE_ADDR) -1);
5727 highpc = ((CORE_ADDR) 0);
5728
5729 first_die = load_partial_dies (reader, info_ptr, 1);
5730
5731 scan_partial_symbols (first_die, &lowpc, &highpc,
5732 ! has_pc_info, cu);
5733
5734 /* If we didn't find a lowpc, set it to highpc to avoid
5735 complaints from `maint check'. */
5736 if (lowpc == ((CORE_ADDR) -1))
5737 lowpc = highpc;
5738
5739 /* If the compilation unit didn't have an explicit address range,
5740 then use the information extracted from its child dies. */
5741 if (! has_pc_info)
5742 {
5743 best_lowpc = lowpc;
5744 best_highpc = highpc;
5745 }
5746 }
5747 pst->textlow = best_lowpc + baseaddr;
5748 pst->texthigh = best_highpc + baseaddr;
5749
5750 pst->n_global_syms = objfile->global_psymbols.next -
5751 (objfile->global_psymbols.list + pst->globals_offset);
5752 pst->n_static_syms = objfile->static_psymbols.next -
5753 (objfile->static_psymbols.list + pst->statics_offset);
5754 sort_pst_symbols (objfile, pst);
5755
5756 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5757 {
5758 int i;
5759 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5760 struct dwarf2_per_cu_data *iter;
5761
5762 /* Fill in 'dependencies' here; we fill in 'users' in a
5763 post-pass. */
5764 pst->number_of_dependencies = len;
5765 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5766 len * sizeof (struct symtab *));
5767 for (i = 0;
5768 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5769 i, iter);
5770 ++i)
5771 pst->dependencies[i] = iter->v.psymtab;
5772
5773 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5774 }
5775
5776 /* Get the list of files included in the current compilation unit,
5777 and build a psymtab for each of them. */
5778 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5779
5780 if (dwarf2_read_debug)
5781 {
5782 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5783
5784 fprintf_unfiltered (gdb_stdlog,
5785 "Psymtab for %s unit @0x%x: %s - %s"
5786 ", %d global, %d static syms\n",
5787 per_cu->is_debug_types ? "type" : "comp",
5788 per_cu->offset.sect_off,
5789 paddress (gdbarch, pst->textlow),
5790 paddress (gdbarch, pst->texthigh),
5791 pst->n_global_syms, pst->n_static_syms);
5792 }
5793}
5794
5795/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5796 Process compilation unit THIS_CU for a psymtab. */
5797
5798static void
5799process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5800 int want_partial_unit)
5801{
5802 /* If this compilation unit was already read in, free the
5803 cached copy in order to read it in again. This is
5804 necessary because we skipped some symbols when we first
5805 read in the compilation unit (see load_partial_dies).
5806 This problem could be avoided, but the benefit is unclear. */
5807 if (this_cu->cu != NULL)
5808 free_one_cached_comp_unit (this_cu);
5809
5810 gdb_assert (! this_cu->is_debug_types);
5811 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5812 process_psymtab_comp_unit_reader,
5813 &want_partial_unit);
5814
5815 /* Age out any secondary CUs. */
5816 age_cached_comp_units ();
5817}
f4dc4d17
DE
5818
5819/* Reader function for build_type_psymtabs. */
5820
5821static void
5822build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 5823 const gdb_byte *info_ptr,
f4dc4d17
DE
5824 struct die_info *type_unit_die,
5825 int has_children,
5826 void *data)
5827{
5828 struct objfile *objfile = dwarf2_per_objfile->objfile;
5829 struct dwarf2_cu *cu = reader->cu;
5830 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 5831 struct signatured_type *sig_type;
f4dc4d17
DE
5832 struct type_unit_group *tu_group;
5833 struct attribute *attr;
5834 struct partial_die_info *first_die;
5835 CORE_ADDR lowpc, highpc;
5836 struct partial_symtab *pst;
5837
5838 gdb_assert (data == NULL);
0186c6a7
DE
5839 gdb_assert (per_cu->is_debug_types);
5840 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
5841
5842 if (! has_children)
5843 return;
5844
5845 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 5846 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 5847
0186c6a7 5848 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
5849
5850 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5851 cu->list_in_scope = &file_symbols;
5852 pst = create_partial_symtab (per_cu, "");
5853 pst->anonymous = 1;
5854
5855 first_die = load_partial_dies (reader, info_ptr, 1);
5856
5857 lowpc = (CORE_ADDR) -1;
5858 highpc = (CORE_ADDR) 0;
5859 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5860
5861 pst->n_global_syms = objfile->global_psymbols.next -
5862 (objfile->global_psymbols.list + pst->globals_offset);
5863 pst->n_static_syms = objfile->static_psymbols.next -
5864 (objfile->static_psymbols.list + pst->statics_offset);
5c80ed9d 5865 sort_pst_symbols (objfile, pst);
f4dc4d17
DE
5866}
5867
5868/* Traversal function for build_type_psymtabs. */
5869
5870static int
5871build_type_psymtab_dependencies (void **slot, void *info)
5872{
5873 struct objfile *objfile = dwarf2_per_objfile->objfile;
5874 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 5875 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 5876 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
5877 int len = VEC_length (sig_type_ptr, tu_group->tus);
5878 struct signatured_type *iter;
f4dc4d17
DE
5879 int i;
5880
5881 gdb_assert (len > 0);
0186c6a7 5882 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
5883
5884 pst->number_of_dependencies = len;
5885 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5886 len * sizeof (struct psymtab *));
5887 for (i = 0;
0186c6a7 5888 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
5889 ++i)
5890 {
0186c6a7
DE
5891 gdb_assert (iter->per_cu.is_debug_types);
5892 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 5893 iter->type_unit_group = tu_group;
f4dc4d17
DE
5894 }
5895
0186c6a7 5896 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
5897
5898 return 1;
5899}
5900
5901/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5902 Build partial symbol tables for the .debug_types comp-units. */
5903
5904static void
5905build_type_psymtabs (struct objfile *objfile)
5906{
0e50663e 5907 if (! create_all_type_units (objfile))
348e048f
DE
5908 return;
5909
f4dc4d17
DE
5910 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5911
5912 /* Now that all TUs have been processed we can fill in the dependencies. */
5913 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5914 build_type_psymtab_dependencies, NULL);
348e048f
DE
5915}
5916
60606b2c
TT
5917/* A cleanup function that clears objfile's psymtabs_addrmap field. */
5918
5919static void
5920psymtabs_addrmap_cleanup (void *o)
5921{
5922 struct objfile *objfile = o;
ec61707d 5923
60606b2c
TT
5924 objfile->psymtabs_addrmap = NULL;
5925}
5926
95554aad
TT
5927/* Compute the 'user' field for each psymtab in OBJFILE. */
5928
5929static void
5930set_partial_user (struct objfile *objfile)
5931{
5932 int i;
5933
5934 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5935 {
5936 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5937 struct partial_symtab *pst = per_cu->v.psymtab;
5938 int j;
5939
36586728
TT
5940 if (pst == NULL)
5941 continue;
5942
95554aad
TT
5943 for (j = 0; j < pst->number_of_dependencies; ++j)
5944 {
5945 /* Set the 'user' field only if it is not already set. */
5946 if (pst->dependencies[j]->user == NULL)
5947 pst->dependencies[j]->user = pst;
5948 }
5949 }
5950}
5951
93311388
DE
5952/* Build the partial symbol table by doing a quick pass through the
5953 .debug_info and .debug_abbrev sections. */
72bf9492 5954
93311388 5955static void
c67a9c90 5956dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 5957{
60606b2c
TT
5958 struct cleanup *back_to, *addrmap_cleanup;
5959 struct obstack temp_obstack;
21b2bd31 5960 int i;
93311388 5961
45cfd468
DE
5962 if (dwarf2_read_debug)
5963 {
5964 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5965 objfile->name);
5966 }
5967
98bfdba5
PA
5968 dwarf2_per_objfile->reading_partial_symbols = 1;
5969
be391dca 5970 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 5971
93311388
DE
5972 /* Any cached compilation units will be linked by the per-objfile
5973 read_in_chain. Make sure to free them when we're done. */
5974 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 5975
348e048f
DE
5976 build_type_psymtabs (objfile);
5977
93311388 5978 create_all_comp_units (objfile);
c906108c 5979
60606b2c
TT
5980 /* Create a temporary address map on a temporary obstack. We later
5981 copy this to the final obstack. */
5982 obstack_init (&temp_obstack);
5983 make_cleanup_obstack_free (&temp_obstack);
5984 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5985 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 5986
21b2bd31 5987 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 5988 {
21b2bd31 5989 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
aaa75496 5990
95554aad 5991 process_psymtab_comp_unit (per_cu, 0);
c906108c 5992 }
ff013f42 5993
95554aad
TT
5994 set_partial_user (objfile);
5995
ff013f42
JK
5996 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5997 &objfile->objfile_obstack);
60606b2c 5998 discard_cleanups (addrmap_cleanup);
ff013f42 5999
ae038cb0 6000 do_cleanups (back_to);
45cfd468
DE
6001
6002 if (dwarf2_read_debug)
6003 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6004 objfile->name);
ae038cb0
DJ
6005}
6006
3019eac3 6007/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6008
6009static void
dee91e82 6010load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6011 const gdb_byte *info_ptr,
dee91e82
DE
6012 struct die_info *comp_unit_die,
6013 int has_children,
6014 void *data)
ae038cb0 6015{
dee91e82 6016 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6017
95554aad 6018 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6019
ae038cb0
DJ
6020 /* Check if comp unit has_children.
6021 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6022 If not, there's no more debug_info for this comp unit. */
d85a05f0 6023 if (has_children)
dee91e82
DE
6024 load_partial_dies (reader, info_ptr, 0);
6025}
98bfdba5 6026
dee91e82
DE
6027/* Load the partial DIEs for a secondary CU into memory.
6028 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6029
dee91e82
DE
6030static void
6031load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6032{
f4dc4d17
DE
6033 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6034 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6035}
6036
ae038cb0 6037static void
36586728
TT
6038read_comp_units_from_section (struct objfile *objfile,
6039 struct dwarf2_section_info *section,
6040 unsigned int is_dwz,
6041 int *n_allocated,
6042 int *n_comp_units,
6043 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6044{
d521ce57 6045 const gdb_byte *info_ptr;
36586728 6046 bfd *abfd = section->asection->owner;
be391dca 6047
bf6af496
DE
6048 if (dwarf2_read_debug)
6049 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6050 section->asection->name, bfd_get_filename (abfd));
6051
36586728 6052 dwarf2_read_section (objfile, section);
ae038cb0 6053
36586728 6054 info_ptr = section->buffer;
6e70227d 6055
36586728 6056 while (info_ptr < section->buffer + section->size)
ae038cb0 6057 {
c764a876 6058 unsigned int length, initial_length_size;
ae038cb0 6059 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6060 sect_offset offset;
ae038cb0 6061
36586728 6062 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6063
6064 /* Read just enough information to find out where the next
6065 compilation unit is. */
36586728 6066 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6067
6068 /* Save the compilation unit for later lookup. */
6069 this_cu = obstack_alloc (&objfile->objfile_obstack,
6070 sizeof (struct dwarf2_per_cu_data));
6071 memset (this_cu, 0, sizeof (*this_cu));
6072 this_cu->offset = offset;
c764a876 6073 this_cu->length = length + initial_length_size;
36586728 6074 this_cu->is_dwz = is_dwz;
9291a0cd 6075 this_cu->objfile = objfile;
8a0459fd 6076 this_cu->section = section;
ae038cb0 6077
36586728 6078 if (*n_comp_units == *n_allocated)
ae038cb0 6079 {
36586728
TT
6080 *n_allocated *= 2;
6081 *all_comp_units = xrealloc (*all_comp_units,
6082 *n_allocated
6083 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 6084 }
36586728
TT
6085 (*all_comp_units)[*n_comp_units] = this_cu;
6086 ++*n_comp_units;
ae038cb0
DJ
6087
6088 info_ptr = info_ptr + this_cu->length;
6089 }
36586728
TT
6090}
6091
6092/* Create a list of all compilation units in OBJFILE.
6093 This is only done for -readnow and building partial symtabs. */
6094
6095static void
6096create_all_comp_units (struct objfile *objfile)
6097{
6098 int n_allocated;
6099 int n_comp_units;
6100 struct dwarf2_per_cu_data **all_comp_units;
6101
6102 n_comp_units = 0;
6103 n_allocated = 10;
6104 all_comp_units = xmalloc (n_allocated
6105 * sizeof (struct dwarf2_per_cu_data *));
6106
6107 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6108 &n_allocated, &n_comp_units, &all_comp_units);
6109
6110 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
6111 {
6112 struct dwz_file *dwz = dwarf2_get_dwz_file ();
6113
6114 read_comp_units_from_section (objfile, &dwz->info, 1,
6115 &n_allocated, &n_comp_units,
6116 &all_comp_units);
6117 }
ae038cb0
DJ
6118
6119 dwarf2_per_objfile->all_comp_units
6120 = obstack_alloc (&objfile->objfile_obstack,
6121 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6122 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6123 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6124 xfree (all_comp_units);
6125 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6126}
6127
5734ee8b
DJ
6128/* Process all loaded DIEs for compilation unit CU, starting at
6129 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6130 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6131 DW_AT_ranges). If NEED_PC is set, then this function will set
6132 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6133 and record the covered ranges in the addrmap. */
c906108c 6134
72bf9492
DJ
6135static void
6136scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 6137 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 6138{
72bf9492 6139 struct partial_die_info *pdi;
c906108c 6140
91c24f0a
DC
6141 /* Now, march along the PDI's, descending into ones which have
6142 interesting children but skipping the children of the other ones,
6143 until we reach the end of the compilation unit. */
c906108c 6144
72bf9492 6145 pdi = first_die;
91c24f0a 6146
72bf9492
DJ
6147 while (pdi != NULL)
6148 {
6149 fixup_partial_die (pdi, cu);
c906108c 6150
f55ee35c 6151 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6152 children, so we need to look at them. Ditto for anonymous
6153 enums. */
933c6fe4 6154
72bf9492 6155 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6156 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6157 || pdi->tag == DW_TAG_imported_unit)
c906108c 6158 {
72bf9492 6159 switch (pdi->tag)
c906108c
SS
6160 {
6161 case DW_TAG_subprogram:
5734ee8b 6162 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 6163 break;
72929c62 6164 case DW_TAG_constant:
c906108c
SS
6165 case DW_TAG_variable:
6166 case DW_TAG_typedef:
91c24f0a 6167 case DW_TAG_union_type:
72bf9492 6168 if (!pdi->is_declaration)
63d06c5c 6169 {
72bf9492 6170 add_partial_symbol (pdi, cu);
63d06c5c
DC
6171 }
6172 break;
c906108c 6173 case DW_TAG_class_type:
680b30c7 6174 case DW_TAG_interface_type:
c906108c 6175 case DW_TAG_structure_type:
72bf9492 6176 if (!pdi->is_declaration)
c906108c 6177 {
72bf9492 6178 add_partial_symbol (pdi, cu);
c906108c
SS
6179 }
6180 break;
91c24f0a 6181 case DW_TAG_enumeration_type:
72bf9492
DJ
6182 if (!pdi->is_declaration)
6183 add_partial_enumeration (pdi, cu);
c906108c
SS
6184 break;
6185 case DW_TAG_base_type:
a02abb62 6186 case DW_TAG_subrange_type:
c906108c 6187 /* File scope base type definitions are added to the partial
c5aa993b 6188 symbol table. */
72bf9492 6189 add_partial_symbol (pdi, cu);
c906108c 6190 break;
d9fa45fe 6191 case DW_TAG_namespace:
5734ee8b 6192 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 6193 break;
5d7cb8df
JK
6194 case DW_TAG_module:
6195 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6196 break;
95554aad
TT
6197 case DW_TAG_imported_unit:
6198 {
6199 struct dwarf2_per_cu_data *per_cu;
6200
f4dc4d17
DE
6201 /* For now we don't handle imported units in type units. */
6202 if (cu->per_cu->is_debug_types)
6203 {
6204 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6205 " supported in type units [in module %s]"),
6206 cu->objfile->name);
6207 }
6208
95554aad 6209 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6210 pdi->is_dwz,
95554aad
TT
6211 cu->objfile);
6212
6213 /* Go read the partial unit, if needed. */
6214 if (per_cu->v.psymtab == NULL)
6215 process_psymtab_comp_unit (per_cu, 1);
6216
f4dc4d17 6217 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6218 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6219 }
6220 break;
c906108c
SS
6221 default:
6222 break;
6223 }
6224 }
6225
72bf9492
DJ
6226 /* If the die has a sibling, skip to the sibling. */
6227
6228 pdi = pdi->die_sibling;
6229 }
6230}
6231
6232/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6233
72bf9492 6234 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6235 name is concatenated with "::" and the partial DIE's name. For
6236 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6237 Enumerators are an exception; they use the scope of their parent
6238 enumeration type, i.e. the name of the enumeration type is not
6239 prepended to the enumerator.
91c24f0a 6240
72bf9492
DJ
6241 There are two complexities. One is DW_AT_specification; in this
6242 case "parent" means the parent of the target of the specification,
6243 instead of the direct parent of the DIE. The other is compilers
6244 which do not emit DW_TAG_namespace; in this case we try to guess
6245 the fully qualified name of structure types from their members'
6246 linkage names. This must be done using the DIE's children rather
6247 than the children of any DW_AT_specification target. We only need
6248 to do this for structures at the top level, i.e. if the target of
6249 any DW_AT_specification (if any; otherwise the DIE itself) does not
6250 have a parent. */
6251
6252/* Compute the scope prefix associated with PDI's parent, in
6253 compilation unit CU. The result will be allocated on CU's
6254 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6255 field. NULL is returned if no prefix is necessary. */
15d034d0 6256static const char *
72bf9492
DJ
6257partial_die_parent_scope (struct partial_die_info *pdi,
6258 struct dwarf2_cu *cu)
6259{
15d034d0 6260 const char *grandparent_scope;
72bf9492 6261 struct partial_die_info *parent, *real_pdi;
91c24f0a 6262
72bf9492
DJ
6263 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6264 then this means the parent of the specification DIE. */
6265
6266 real_pdi = pdi;
72bf9492 6267 while (real_pdi->has_specification)
36586728
TT
6268 real_pdi = find_partial_die (real_pdi->spec_offset,
6269 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6270
6271 parent = real_pdi->die_parent;
6272 if (parent == NULL)
6273 return NULL;
6274
6275 if (parent->scope_set)
6276 return parent->scope;
6277
6278 fixup_partial_die (parent, cu);
6279
10b3939b 6280 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6281
acebe513
UW
6282 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6283 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6284 Work around this problem here. */
6285 if (cu->language == language_cplus
6e70227d 6286 && parent->tag == DW_TAG_namespace
acebe513
UW
6287 && strcmp (parent->name, "::") == 0
6288 && grandparent_scope == NULL)
6289 {
6290 parent->scope = NULL;
6291 parent->scope_set = 1;
6292 return NULL;
6293 }
6294
9c6c53f7
SA
6295 if (pdi->tag == DW_TAG_enumerator)
6296 /* Enumerators should not get the name of the enumeration as a prefix. */
6297 parent->scope = grandparent_scope;
6298 else if (parent->tag == DW_TAG_namespace
f55ee35c 6299 || parent->tag == DW_TAG_module
72bf9492
DJ
6300 || parent->tag == DW_TAG_structure_type
6301 || parent->tag == DW_TAG_class_type
680b30c7 6302 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6303 || parent->tag == DW_TAG_union_type
6304 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6305 {
6306 if (grandparent_scope == NULL)
6307 parent->scope = parent->name;
6308 else
3e43a32a
MS
6309 parent->scope = typename_concat (&cu->comp_unit_obstack,
6310 grandparent_scope,
f55ee35c 6311 parent->name, 0, cu);
72bf9492 6312 }
72bf9492
DJ
6313 else
6314 {
6315 /* FIXME drow/2004-04-01: What should we be doing with
6316 function-local names? For partial symbols, we should probably be
6317 ignoring them. */
6318 complaint (&symfile_complaints,
e2e0b3e5 6319 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6320 parent->tag, pdi->offset.sect_off);
72bf9492 6321 parent->scope = grandparent_scope;
c906108c
SS
6322 }
6323
72bf9492
DJ
6324 parent->scope_set = 1;
6325 return parent->scope;
6326}
6327
6328/* Return the fully scoped name associated with PDI, from compilation unit
6329 CU. The result will be allocated with malloc. */
4568ecf9 6330
72bf9492
DJ
6331static char *
6332partial_die_full_name (struct partial_die_info *pdi,
6333 struct dwarf2_cu *cu)
6334{
15d034d0 6335 const char *parent_scope;
72bf9492 6336
98bfdba5
PA
6337 /* If this is a template instantiation, we can not work out the
6338 template arguments from partial DIEs. So, unfortunately, we have
6339 to go through the full DIEs. At least any work we do building
6340 types here will be reused if full symbols are loaded later. */
6341 if (pdi->has_template_arguments)
6342 {
6343 fixup_partial_die (pdi, cu);
6344
6345 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6346 {
6347 struct die_info *die;
6348 struct attribute attr;
6349 struct dwarf2_cu *ref_cu = cu;
6350
b64f50a1 6351 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6352 attr.name = 0;
6353 attr.form = DW_FORM_ref_addr;
4568ecf9 6354 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6355 die = follow_die_ref (NULL, &attr, &ref_cu);
6356
6357 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6358 }
6359 }
6360
72bf9492
DJ
6361 parent_scope = partial_die_parent_scope (pdi, cu);
6362 if (parent_scope == NULL)
6363 return NULL;
6364 else
f55ee35c 6365 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6366}
6367
6368static void
72bf9492 6369add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6370{
e7c27a73 6371 struct objfile *objfile = cu->objfile;
c906108c 6372 CORE_ADDR addr = 0;
15d034d0 6373 const char *actual_name = NULL;
e142c38c 6374 CORE_ADDR baseaddr;
15d034d0 6375 char *built_actual_name;
e142c38c
DJ
6376
6377 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6378
15d034d0
TT
6379 built_actual_name = partial_die_full_name (pdi, cu);
6380 if (built_actual_name != NULL)
6381 actual_name = built_actual_name;
63d06c5c 6382
72bf9492
DJ
6383 if (actual_name == NULL)
6384 actual_name = pdi->name;
6385
c906108c
SS
6386 switch (pdi->tag)
6387 {
6388 case DW_TAG_subprogram:
2cfa0c8d 6389 if (pdi->is_external || cu->language == language_ada)
c906108c 6390 {
2cfa0c8d
JB
6391 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6392 of the global scope. But in Ada, we want to be able to access
6393 nested procedures globally. So all Ada subprograms are stored
6394 in the global scope. */
f47fb265 6395 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6396 mst_text, objfile); */
f47fb265 6397 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6398 built_actual_name != NULL,
f47fb265
MS
6399 VAR_DOMAIN, LOC_BLOCK,
6400 &objfile->global_psymbols,
6401 0, pdi->lowpc + baseaddr,
6402 cu->language, objfile);
c906108c
SS
6403 }
6404 else
6405 {
f47fb265 6406 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6407 mst_file_text, objfile); */
f47fb265 6408 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6409 built_actual_name != NULL,
f47fb265
MS
6410 VAR_DOMAIN, LOC_BLOCK,
6411 &objfile->static_psymbols,
6412 0, pdi->lowpc + baseaddr,
6413 cu->language, objfile);
c906108c
SS
6414 }
6415 break;
72929c62
JB
6416 case DW_TAG_constant:
6417 {
6418 struct psymbol_allocation_list *list;
6419
6420 if (pdi->is_external)
6421 list = &objfile->global_psymbols;
6422 else
6423 list = &objfile->static_psymbols;
f47fb265 6424 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6425 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
f47fb265 6426 list, 0, 0, cu->language, objfile);
72929c62
JB
6427 }
6428 break;
c906108c 6429 case DW_TAG_variable:
95554aad
TT
6430 if (pdi->d.locdesc)
6431 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6432
95554aad 6433 if (pdi->d.locdesc
caac4577
JG
6434 && addr == 0
6435 && !dwarf2_per_objfile->has_section_at_zero)
6436 {
6437 /* A global or static variable may also have been stripped
6438 out by the linker if unused, in which case its address
6439 will be nullified; do not add such variables into partial
6440 symbol table then. */
6441 }
6442 else if (pdi->is_external)
c906108c
SS
6443 {
6444 /* Global Variable.
6445 Don't enter into the minimal symbol tables as there is
6446 a minimal symbol table entry from the ELF symbols already.
6447 Enter into partial symbol table if it has a location
6448 descriptor or a type.
6449 If the location descriptor is missing, new_symbol will create
6450 a LOC_UNRESOLVED symbol, the address of the variable will then
6451 be determined from the minimal symbol table whenever the variable
6452 is referenced.
6453 The address for the partial symbol table entry is not
6454 used by GDB, but it comes in handy for debugging partial symbol
6455 table building. */
6456
95554aad 6457 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6458 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6459 built_actual_name != NULL,
f47fb265
MS
6460 VAR_DOMAIN, LOC_STATIC,
6461 &objfile->global_psymbols,
6462 0, addr + baseaddr,
6463 cu->language, objfile);
c906108c
SS
6464 }
6465 else
6466 {
0963b4bd 6467 /* Static Variable. Skip symbols without location descriptors. */
95554aad 6468 if (pdi->d.locdesc == NULL)
decbce07 6469 {
15d034d0 6470 xfree (built_actual_name);
decbce07
MS
6471 return;
6472 }
f47fb265 6473 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 6474 mst_file_data, objfile); */
f47fb265 6475 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6476 built_actual_name != NULL,
f47fb265
MS
6477 VAR_DOMAIN, LOC_STATIC,
6478 &objfile->static_psymbols,
6479 0, addr + baseaddr,
6480 cu->language, objfile);
c906108c
SS
6481 }
6482 break;
6483 case DW_TAG_typedef:
6484 case DW_TAG_base_type:
a02abb62 6485 case DW_TAG_subrange_type:
38d518c9 6486 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6487 built_actual_name != NULL,
176620f1 6488 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6489 &objfile->static_psymbols,
e142c38c 6490 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6491 break;
72bf9492
DJ
6492 case DW_TAG_namespace:
6493 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6494 built_actual_name != NULL,
72bf9492
DJ
6495 VAR_DOMAIN, LOC_TYPEDEF,
6496 &objfile->global_psymbols,
6497 0, (CORE_ADDR) 0, cu->language, objfile);
6498 break;
c906108c 6499 case DW_TAG_class_type:
680b30c7 6500 case DW_TAG_interface_type:
c906108c
SS
6501 case DW_TAG_structure_type:
6502 case DW_TAG_union_type:
6503 case DW_TAG_enumeration_type:
fa4028e9
JB
6504 /* Skip external references. The DWARF standard says in the section
6505 about "Structure, Union, and Class Type Entries": "An incomplete
6506 structure, union or class type is represented by a structure,
6507 union or class entry that does not have a byte size attribute
6508 and that has a DW_AT_declaration attribute." */
6509 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 6510 {
15d034d0 6511 xfree (built_actual_name);
decbce07
MS
6512 return;
6513 }
fa4028e9 6514
63d06c5c
DC
6515 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6516 static vs. global. */
38d518c9 6517 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6518 built_actual_name != NULL,
176620f1 6519 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
6520 (cu->language == language_cplus
6521 || cu->language == language_java)
63d06c5c
DC
6522 ? &objfile->global_psymbols
6523 : &objfile->static_psymbols,
e142c38c 6524 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6525
c906108c
SS
6526 break;
6527 case DW_TAG_enumerator:
38d518c9 6528 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6529 built_actual_name != NULL,
176620f1 6530 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6531 (cu->language == language_cplus
6532 || cu->language == language_java)
f6fe98ef
DJ
6533 ? &objfile->global_psymbols
6534 : &objfile->static_psymbols,
e142c38c 6535 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
6536 break;
6537 default:
6538 break;
6539 }
5c4e30ca 6540
15d034d0 6541 xfree (built_actual_name);
c906108c
SS
6542}
6543
5c4e30ca
DC
6544/* Read a partial die corresponding to a namespace; also, add a symbol
6545 corresponding to that namespace to the symbol table. NAMESPACE is
6546 the name of the enclosing namespace. */
91c24f0a 6547
72bf9492
DJ
6548static void
6549add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 6550 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6551 int need_pc, struct dwarf2_cu *cu)
91c24f0a 6552{
72bf9492 6553 /* Add a symbol for the namespace. */
e7c27a73 6554
72bf9492 6555 add_partial_symbol (pdi, cu);
5c4e30ca
DC
6556
6557 /* Now scan partial symbols in that namespace. */
6558
91c24f0a 6559 if (pdi->has_children)
5734ee8b 6560 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
6561}
6562
5d7cb8df
JK
6563/* Read a partial die corresponding to a Fortran module. */
6564
6565static void
6566add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6567 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6568{
f55ee35c 6569 /* Now scan partial symbols in that module. */
5d7cb8df
JK
6570
6571 if (pdi->has_children)
6572 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6573}
6574
bc30ff58
JB
6575/* Read a partial die corresponding to a subprogram and create a partial
6576 symbol for that subprogram. When the CU language allows it, this
6577 routine also defines a partial symbol for each nested subprogram
6578 that this subprogram contains.
6e70227d 6579
bc30ff58
JB
6580 DIE my also be a lexical block, in which case we simply search
6581 recursively for suprograms defined inside that lexical block.
6582 Again, this is only performed when the CU language allows this
6583 type of definitions. */
6584
6585static void
6586add_partial_subprogram (struct partial_die_info *pdi,
6587 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6588 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
6589{
6590 if (pdi->tag == DW_TAG_subprogram)
6591 {
6592 if (pdi->has_pc_info)
6593 {
6594 if (pdi->lowpc < *lowpc)
6595 *lowpc = pdi->lowpc;
6596 if (pdi->highpc > *highpc)
6597 *highpc = pdi->highpc;
5734ee8b
DJ
6598 if (need_pc)
6599 {
6600 CORE_ADDR baseaddr;
6601 struct objfile *objfile = cu->objfile;
6602
6603 baseaddr = ANOFFSET (objfile->section_offsets,
6604 SECT_OFF_TEXT (objfile));
6605 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
6606 pdi->lowpc + baseaddr,
6607 pdi->highpc - 1 + baseaddr,
9291a0cd 6608 cu->per_cu->v.psymtab);
5734ee8b 6609 }
481860b3
GB
6610 }
6611
6612 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6613 {
bc30ff58 6614 if (!pdi->is_declaration)
e8d05480
JB
6615 /* Ignore subprogram DIEs that do not have a name, they are
6616 illegal. Do not emit a complaint at this point, we will
6617 do so when we convert this psymtab into a symtab. */
6618 if (pdi->name)
6619 add_partial_symbol (pdi, cu);
bc30ff58
JB
6620 }
6621 }
6e70227d 6622
bc30ff58
JB
6623 if (! pdi->has_children)
6624 return;
6625
6626 if (cu->language == language_ada)
6627 {
6628 pdi = pdi->die_child;
6629 while (pdi != NULL)
6630 {
6631 fixup_partial_die (pdi, cu);
6632 if (pdi->tag == DW_TAG_subprogram
6633 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 6634 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
6635 pdi = pdi->die_sibling;
6636 }
6637 }
6638}
6639
91c24f0a
DC
6640/* Read a partial die corresponding to an enumeration type. */
6641
72bf9492
DJ
6642static void
6643add_partial_enumeration (struct partial_die_info *enum_pdi,
6644 struct dwarf2_cu *cu)
91c24f0a 6645{
72bf9492 6646 struct partial_die_info *pdi;
91c24f0a
DC
6647
6648 if (enum_pdi->name != NULL)
72bf9492
DJ
6649 add_partial_symbol (enum_pdi, cu);
6650
6651 pdi = enum_pdi->die_child;
6652 while (pdi)
91c24f0a 6653 {
72bf9492 6654 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 6655 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 6656 else
72bf9492
DJ
6657 add_partial_symbol (pdi, cu);
6658 pdi = pdi->die_sibling;
91c24f0a 6659 }
91c24f0a
DC
6660}
6661
6caca83c
CC
6662/* Return the initial uleb128 in the die at INFO_PTR. */
6663
6664static unsigned int
d521ce57 6665peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
6666{
6667 unsigned int bytes_read;
6668
6669 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6670}
6671
4bb7a0a7
DJ
6672/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6673 Return the corresponding abbrev, or NULL if the number is zero (indicating
6674 an empty DIE). In either case *BYTES_READ will be set to the length of
6675 the initial number. */
6676
6677static struct abbrev_info *
d521ce57 6678peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 6679 struct dwarf2_cu *cu)
4bb7a0a7
DJ
6680{
6681 bfd *abfd = cu->objfile->obfd;
6682 unsigned int abbrev_number;
6683 struct abbrev_info *abbrev;
6684
6685 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6686
6687 if (abbrev_number == 0)
6688 return NULL;
6689
433df2d4 6690 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
6691 if (!abbrev)
6692 {
3e43a32a
MS
6693 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6694 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
6695 }
6696
6697 return abbrev;
6698}
6699
93311388
DE
6700/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6701 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
6702 DIE. Any children of the skipped DIEs will also be skipped. */
6703
d521ce57
TT
6704static const gdb_byte *
6705skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 6706{
dee91e82 6707 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
6708 struct abbrev_info *abbrev;
6709 unsigned int bytes_read;
6710
6711 while (1)
6712 {
6713 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6714 if (abbrev == NULL)
6715 return info_ptr + bytes_read;
6716 else
dee91e82 6717 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
6718 }
6719}
6720
93311388
DE
6721/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6722 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
6723 abbrev corresponding to that skipped uleb128 should be passed in
6724 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6725 children. */
6726
d521ce57
TT
6727static const gdb_byte *
6728skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 6729 struct abbrev_info *abbrev)
4bb7a0a7
DJ
6730{
6731 unsigned int bytes_read;
6732 struct attribute attr;
dee91e82
DE
6733 bfd *abfd = reader->abfd;
6734 struct dwarf2_cu *cu = reader->cu;
d521ce57 6735 const gdb_byte *buffer = reader->buffer;
f664829e 6736 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 6737 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
6738 unsigned int form, i;
6739
6740 for (i = 0; i < abbrev->num_attrs; i++)
6741 {
6742 /* The only abbrev we care about is DW_AT_sibling. */
6743 if (abbrev->attrs[i].name == DW_AT_sibling)
6744 {
dee91e82 6745 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 6746 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
6747 complaint (&symfile_complaints,
6748 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 6749 else
b64f50a1 6750 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
4bb7a0a7
DJ
6751 }
6752
6753 /* If it isn't DW_AT_sibling, skip this attribute. */
6754 form = abbrev->attrs[i].form;
6755 skip_attribute:
6756 switch (form)
6757 {
4bb7a0a7 6758 case DW_FORM_ref_addr:
ae411497
TT
6759 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6760 and later it is offset sized. */
6761 if (cu->header.version == 2)
6762 info_ptr += cu->header.addr_size;
6763 else
6764 info_ptr += cu->header.offset_size;
6765 break;
36586728
TT
6766 case DW_FORM_GNU_ref_alt:
6767 info_ptr += cu->header.offset_size;
6768 break;
ae411497 6769 case DW_FORM_addr:
4bb7a0a7
DJ
6770 info_ptr += cu->header.addr_size;
6771 break;
6772 case DW_FORM_data1:
6773 case DW_FORM_ref1:
6774 case DW_FORM_flag:
6775 info_ptr += 1;
6776 break;
2dc7f7b3
TT
6777 case DW_FORM_flag_present:
6778 break;
4bb7a0a7
DJ
6779 case DW_FORM_data2:
6780 case DW_FORM_ref2:
6781 info_ptr += 2;
6782 break;
6783 case DW_FORM_data4:
6784 case DW_FORM_ref4:
6785 info_ptr += 4;
6786 break;
6787 case DW_FORM_data8:
6788 case DW_FORM_ref8:
55f1336d 6789 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
6790 info_ptr += 8;
6791 break;
6792 case DW_FORM_string:
9b1c24c8 6793 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
6794 info_ptr += bytes_read;
6795 break;
2dc7f7b3 6796 case DW_FORM_sec_offset:
4bb7a0a7 6797 case DW_FORM_strp:
36586728 6798 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
6799 info_ptr += cu->header.offset_size;
6800 break;
2dc7f7b3 6801 case DW_FORM_exprloc:
4bb7a0a7
DJ
6802 case DW_FORM_block:
6803 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6804 info_ptr += bytes_read;
6805 break;
6806 case DW_FORM_block1:
6807 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6808 break;
6809 case DW_FORM_block2:
6810 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6811 break;
6812 case DW_FORM_block4:
6813 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6814 break;
6815 case DW_FORM_sdata:
6816 case DW_FORM_udata:
6817 case DW_FORM_ref_udata:
3019eac3
DE
6818 case DW_FORM_GNU_addr_index:
6819 case DW_FORM_GNU_str_index:
d521ce57 6820 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
6821 break;
6822 case DW_FORM_indirect:
6823 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6824 info_ptr += bytes_read;
6825 /* We need to continue parsing from here, so just go back to
6826 the top. */
6827 goto skip_attribute;
6828
6829 default:
3e43a32a
MS
6830 error (_("Dwarf Error: Cannot handle %s "
6831 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
6832 dwarf_form_name (form),
6833 bfd_get_filename (abfd));
6834 }
6835 }
6836
6837 if (abbrev->has_children)
dee91e82 6838 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
6839 else
6840 return info_ptr;
6841}
6842
93311388 6843/* Locate ORIG_PDI's sibling.
dee91e82 6844 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 6845
d521ce57 6846static const gdb_byte *
dee91e82
DE
6847locate_pdi_sibling (const struct die_reader_specs *reader,
6848 struct partial_die_info *orig_pdi,
d521ce57 6849 const gdb_byte *info_ptr)
91c24f0a
DC
6850{
6851 /* Do we know the sibling already? */
72bf9492 6852
91c24f0a
DC
6853 if (orig_pdi->sibling)
6854 return orig_pdi->sibling;
6855
6856 /* Are there any children to deal with? */
6857
6858 if (!orig_pdi->has_children)
6859 return info_ptr;
6860
4bb7a0a7 6861 /* Skip the children the long way. */
91c24f0a 6862
dee91e82 6863 return skip_children (reader, info_ptr);
91c24f0a
DC
6864}
6865
257e7a09 6866/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 6867 not NULL. */
c906108c
SS
6868
6869static void
257e7a09
YQ
6870dwarf2_read_symtab (struct partial_symtab *self,
6871 struct objfile *objfile)
c906108c 6872{
257e7a09 6873 if (self->readin)
c906108c 6874 {
442e4d9c 6875 warning (_("bug: psymtab for %s is already read in."),
257e7a09 6876 self->filename);
442e4d9c
YQ
6877 }
6878 else
6879 {
6880 if (info_verbose)
c906108c 6881 {
442e4d9c 6882 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 6883 self->filename);
442e4d9c 6884 gdb_flush (gdb_stdout);
c906108c 6885 }
c906108c 6886
442e4d9c
YQ
6887 /* Restore our global data. */
6888 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 6889
442e4d9c
YQ
6890 /* If this psymtab is constructed from a debug-only objfile, the
6891 has_section_at_zero flag will not necessarily be correct. We
6892 can get the correct value for this flag by looking at the data
6893 associated with the (presumably stripped) associated objfile. */
6894 if (objfile->separate_debug_objfile_backlink)
6895 {
6896 struct dwarf2_per_objfile *dpo_backlink
6897 = objfile_data (objfile->separate_debug_objfile_backlink,
6898 dwarf2_objfile_data_key);
9a619af0 6899
442e4d9c
YQ
6900 dwarf2_per_objfile->has_section_at_zero
6901 = dpo_backlink->has_section_at_zero;
6902 }
b2ab525c 6903
442e4d9c 6904 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 6905
257e7a09 6906 psymtab_to_symtab_1 (self);
c906108c 6907
442e4d9c
YQ
6908 /* Finish up the debug error message. */
6909 if (info_verbose)
6910 printf_filtered (_("done.\n"));
c906108c 6911 }
95554aad
TT
6912
6913 process_cu_includes ();
c906108c 6914}
9cdd5dbd
DE
6915\f
6916/* Reading in full CUs. */
c906108c 6917
10b3939b
DJ
6918/* Add PER_CU to the queue. */
6919
6920static void
95554aad
TT
6921queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6922 enum language pretend_language)
10b3939b
DJ
6923{
6924 struct dwarf2_queue_item *item;
6925
6926 per_cu->queued = 1;
6927 item = xmalloc (sizeof (*item));
6928 item->per_cu = per_cu;
95554aad 6929 item->pretend_language = pretend_language;
10b3939b
DJ
6930 item->next = NULL;
6931
6932 if (dwarf2_queue == NULL)
6933 dwarf2_queue = item;
6934 else
6935 dwarf2_queue_tail->next = item;
6936
6937 dwarf2_queue_tail = item;
6938}
6939
0907af0c
DE
6940/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6941 unit and add it to our queue.
6942 The result is non-zero if PER_CU was queued, otherwise the result is zero
6943 meaning either PER_CU is already queued or it is already loaded. */
6944
6945static int
6946maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6947 struct dwarf2_per_cu_data *per_cu,
6948 enum language pretend_language)
6949{
6950 /* We may arrive here during partial symbol reading, if we need full
6951 DIEs to process an unusual case (e.g. template arguments). Do
6952 not queue PER_CU, just tell our caller to load its DIEs. */
6953 if (dwarf2_per_objfile->reading_partial_symbols)
6954 {
6955 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6956 return 1;
6957 return 0;
6958 }
6959
6960 /* Mark the dependence relation so that we don't flush PER_CU
6961 too early. */
6962 dwarf2_add_dependence (this_cu, per_cu);
6963
6964 /* If it's already on the queue, we have nothing to do. */
6965 if (per_cu->queued)
6966 return 0;
6967
6968 /* If the compilation unit is already loaded, just mark it as
6969 used. */
6970 if (per_cu->cu != NULL)
6971 {
6972 per_cu->cu->last_used = 0;
6973 return 0;
6974 }
6975
6976 /* Add it to the queue. */
6977 queue_comp_unit (per_cu, pretend_language);
6978
6979 return 1;
6980}
6981
10b3939b
DJ
6982/* Process the queue. */
6983
6984static void
a0f42c21 6985process_queue (void)
10b3939b
DJ
6986{
6987 struct dwarf2_queue_item *item, *next_item;
6988
45cfd468
DE
6989 if (dwarf2_read_debug)
6990 {
6991 fprintf_unfiltered (gdb_stdlog,
6992 "Expanding one or more symtabs of objfile %s ...\n",
6993 dwarf2_per_objfile->objfile->name);
6994 }
6995
03dd20cc
DJ
6996 /* The queue starts out with one item, but following a DIE reference
6997 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
6998 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6999 {
9291a0cd
TT
7000 if (dwarf2_per_objfile->using_index
7001 ? !item->per_cu->v.quick->symtab
7002 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
f4dc4d17
DE
7003 {
7004 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7005
7006 if (dwarf2_read_debug)
7007 {
7008 fprintf_unfiltered (gdb_stdlog,
7009 "Expanding symtab of %s at offset 0x%x\n",
7010 per_cu->is_debug_types ? "TU" : "CU",
7011 per_cu->offset.sect_off);
7012 }
7013
7014 if (per_cu->is_debug_types)
7015 process_full_type_unit (per_cu, item->pretend_language);
7016 else
7017 process_full_comp_unit (per_cu, item->pretend_language);
7018
7019 if (dwarf2_read_debug)
7020 {
7021 fprintf_unfiltered (gdb_stdlog,
7022 "Done expanding %s at offset 0x%x\n",
7023 per_cu->is_debug_types ? "TU" : "CU",
7024 per_cu->offset.sect_off);
7025 }
7026 }
10b3939b
DJ
7027
7028 item->per_cu->queued = 0;
7029 next_item = item->next;
7030 xfree (item);
7031 }
7032
7033 dwarf2_queue_tail = NULL;
45cfd468
DE
7034
7035 if (dwarf2_read_debug)
7036 {
7037 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7038 dwarf2_per_objfile->objfile->name);
7039 }
10b3939b
DJ
7040}
7041
7042/* Free all allocated queue entries. This function only releases anything if
7043 an error was thrown; if the queue was processed then it would have been
7044 freed as we went along. */
7045
7046static void
7047dwarf2_release_queue (void *dummy)
7048{
7049 struct dwarf2_queue_item *item, *last;
7050
7051 item = dwarf2_queue;
7052 while (item)
7053 {
7054 /* Anything still marked queued is likely to be in an
7055 inconsistent state, so discard it. */
7056 if (item->per_cu->queued)
7057 {
7058 if (item->per_cu->cu != NULL)
dee91e82 7059 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7060 item->per_cu->queued = 0;
7061 }
7062
7063 last = item;
7064 item = item->next;
7065 xfree (last);
7066 }
7067
7068 dwarf2_queue = dwarf2_queue_tail = NULL;
7069}
7070
7071/* Read in full symbols for PST, and anything it depends on. */
7072
c906108c 7073static void
fba45db2 7074psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7075{
10b3939b 7076 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7077 int i;
7078
95554aad
TT
7079 if (pst->readin)
7080 return;
7081
aaa75496 7082 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7083 if (!pst->dependencies[i]->readin
7084 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7085 {
7086 /* Inform about additional files that need to be read in. */
7087 if (info_verbose)
7088 {
a3f17187 7089 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7090 fputs_filtered (" ", gdb_stdout);
7091 wrap_here ("");
7092 fputs_filtered ("and ", gdb_stdout);
7093 wrap_here ("");
7094 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7095 wrap_here (""); /* Flush output. */
aaa75496
JB
7096 gdb_flush (gdb_stdout);
7097 }
7098 psymtab_to_symtab_1 (pst->dependencies[i]);
7099 }
7100
e38df1d0 7101 per_cu = pst->read_symtab_private;
10b3939b
DJ
7102
7103 if (per_cu == NULL)
aaa75496
JB
7104 {
7105 /* It's an include file, no symbols to read for it.
7106 Everything is in the parent symtab. */
7107 pst->readin = 1;
7108 return;
7109 }
c906108c 7110
a0f42c21 7111 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7112}
7113
dee91e82
DE
7114/* Trivial hash function for die_info: the hash value of a DIE
7115 is its offset in .debug_info for this objfile. */
10b3939b 7116
dee91e82
DE
7117static hashval_t
7118die_hash (const void *item)
10b3939b 7119{
dee91e82 7120 const struct die_info *die = item;
6502dd73 7121
dee91e82
DE
7122 return die->offset.sect_off;
7123}
63d06c5c 7124
dee91e82
DE
7125/* Trivial comparison function for die_info structures: two DIEs
7126 are equal if they have the same offset. */
98bfdba5 7127
dee91e82
DE
7128static int
7129die_eq (const void *item_lhs, const void *item_rhs)
7130{
7131 const struct die_info *die_lhs = item_lhs;
7132 const struct die_info *die_rhs = item_rhs;
c906108c 7133
dee91e82
DE
7134 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7135}
c906108c 7136
dee91e82
DE
7137/* die_reader_func for load_full_comp_unit.
7138 This is identical to read_signatured_type_reader,
7139 but is kept separate for now. */
c906108c 7140
dee91e82
DE
7141static void
7142load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7143 const gdb_byte *info_ptr,
dee91e82
DE
7144 struct die_info *comp_unit_die,
7145 int has_children,
7146 void *data)
7147{
7148 struct dwarf2_cu *cu = reader->cu;
95554aad 7149 enum language *language_ptr = data;
6caca83c 7150
dee91e82
DE
7151 gdb_assert (cu->die_hash == NULL);
7152 cu->die_hash =
7153 htab_create_alloc_ex (cu->header.length / 12,
7154 die_hash,
7155 die_eq,
7156 NULL,
7157 &cu->comp_unit_obstack,
7158 hashtab_obstack_allocate,
7159 dummy_obstack_deallocate);
e142c38c 7160
dee91e82
DE
7161 if (has_children)
7162 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7163 &info_ptr, comp_unit_die);
7164 cu->dies = comp_unit_die;
7165 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7166
7167 /* We try not to read any attributes in this function, because not
9cdd5dbd 7168 all CUs needed for references have been loaded yet, and symbol
10b3939b 7169 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7170 or we won't be able to build types correctly.
7171 Similarly, if we do not read the producer, we can not apply
7172 producer-specific interpretation. */
95554aad 7173 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7174}
10b3939b 7175
dee91e82 7176/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7177
dee91e82 7178static void
95554aad
TT
7179load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7180 enum language pretend_language)
dee91e82 7181{
3019eac3 7182 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7183
f4dc4d17
DE
7184 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7185 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7186}
7187
3da10d80
KS
7188/* Add a DIE to the delayed physname list. */
7189
7190static void
7191add_to_method_list (struct type *type, int fnfield_index, int index,
7192 const char *name, struct die_info *die,
7193 struct dwarf2_cu *cu)
7194{
7195 struct delayed_method_info mi;
7196 mi.type = type;
7197 mi.fnfield_index = fnfield_index;
7198 mi.index = index;
7199 mi.name = name;
7200 mi.die = die;
7201 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7202}
7203
7204/* A cleanup for freeing the delayed method list. */
7205
7206static void
7207free_delayed_list (void *ptr)
7208{
7209 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7210 if (cu->method_list != NULL)
7211 {
7212 VEC_free (delayed_method_info, cu->method_list);
7213 cu->method_list = NULL;
7214 }
7215}
7216
7217/* Compute the physnames of any methods on the CU's method list.
7218
7219 The computation of method physnames is delayed in order to avoid the
7220 (bad) condition that one of the method's formal parameters is of an as yet
7221 incomplete type. */
7222
7223static void
7224compute_delayed_physnames (struct dwarf2_cu *cu)
7225{
7226 int i;
7227 struct delayed_method_info *mi;
7228 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7229 {
1d06ead6 7230 const char *physname;
3da10d80
KS
7231 struct fn_fieldlist *fn_flp
7232 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7233 physname = dwarf2_physname (mi->name, mi->die, cu);
3da10d80
KS
7234 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7235 }
7236}
7237
a766d390
DE
7238/* Go objects should be embedded in a DW_TAG_module DIE,
7239 and it's not clear if/how imported objects will appear.
7240 To keep Go support simple until that's worked out,
7241 go back through what we've read and create something usable.
7242 We could do this while processing each DIE, and feels kinda cleaner,
7243 but that way is more invasive.
7244 This is to, for example, allow the user to type "p var" or "b main"
7245 without having to specify the package name, and allow lookups
7246 of module.object to work in contexts that use the expression
7247 parser. */
7248
7249static void
7250fixup_go_packaging (struct dwarf2_cu *cu)
7251{
7252 char *package_name = NULL;
7253 struct pending *list;
7254 int i;
7255
7256 for (list = global_symbols; list != NULL; list = list->next)
7257 {
7258 for (i = 0; i < list->nsyms; ++i)
7259 {
7260 struct symbol *sym = list->symbol[i];
7261
7262 if (SYMBOL_LANGUAGE (sym) == language_go
7263 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7264 {
7265 char *this_package_name = go_symbol_package_name (sym);
7266
7267 if (this_package_name == NULL)
7268 continue;
7269 if (package_name == NULL)
7270 package_name = this_package_name;
7271 else
7272 {
7273 if (strcmp (package_name, this_package_name) != 0)
7274 complaint (&symfile_complaints,
7275 _("Symtab %s has objects from two different Go packages: %s and %s"),
210bbc17 7276 (SYMBOL_SYMTAB (sym)
05cba821 7277 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
a766d390
DE
7278 : cu->objfile->name),
7279 this_package_name, package_name);
7280 xfree (this_package_name);
7281 }
7282 }
7283 }
7284 }
7285
7286 if (package_name != NULL)
7287 {
7288 struct objfile *objfile = cu->objfile;
10f0c4bb
TT
7289 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7290 package_name,
7291 strlen (package_name));
a766d390 7292 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7293 saved_package_name, objfile);
a766d390
DE
7294 struct symbol *sym;
7295
7296 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7297
e623cf5d 7298 sym = allocate_symbol (objfile);
f85f34ed 7299 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7300 SYMBOL_SET_NAMES (sym, saved_package_name,
7301 strlen (saved_package_name), 0, objfile);
a766d390
DE
7302 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7303 e.g., "main" finds the "main" module and not C's main(). */
7304 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7305 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7306 SYMBOL_TYPE (sym) = type;
7307
7308 add_symbol_to_list (sym, &global_symbols);
7309
7310 xfree (package_name);
7311 }
7312}
7313
95554aad
TT
7314/* Return the symtab for PER_CU. This works properly regardless of
7315 whether we're using the index or psymtabs. */
7316
7317static struct symtab *
7318get_symtab (struct dwarf2_per_cu_data *per_cu)
7319{
7320 return (dwarf2_per_objfile->using_index
7321 ? per_cu->v.quick->symtab
7322 : per_cu->v.psymtab->symtab);
7323}
7324
7325/* A helper function for computing the list of all symbol tables
7326 included by PER_CU. */
7327
7328static void
7329recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
7330 htab_t all_children,
7331 struct dwarf2_per_cu_data *per_cu)
7332{
7333 void **slot;
7334 int ix;
7335 struct dwarf2_per_cu_data *iter;
7336
7337 slot = htab_find_slot (all_children, per_cu, INSERT);
7338 if (*slot != NULL)
7339 {
7340 /* This inclusion and its children have been processed. */
7341 return;
7342 }
7343
7344 *slot = per_cu;
7345 /* Only add a CU if it has a symbol table. */
7346 if (get_symtab (per_cu) != NULL)
7347 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
7348
7349 for (ix = 0;
796a7ff8 7350 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad
TT
7351 ++ix)
7352 recursively_compute_inclusions (result, all_children, iter);
7353}
7354
7355/* Compute the symtab 'includes' fields for the symtab related to
7356 PER_CU. */
7357
7358static void
7359compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7360{
f4dc4d17
DE
7361 gdb_assert (! per_cu->is_debug_types);
7362
796a7ff8 7363 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7364 {
7365 int ix, len;
7366 struct dwarf2_per_cu_data *iter;
7367 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
7368 htab_t all_children;
7369 struct symtab *symtab = get_symtab (per_cu);
7370
7371 /* If we don't have a symtab, we can just skip this case. */
7372 if (symtab == NULL)
7373 return;
7374
7375 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7376 NULL, xcalloc, xfree);
7377
7378 for (ix = 0;
796a7ff8 7379 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
95554aad
TT
7380 ix, iter);
7381 ++ix)
7382 recursively_compute_inclusions (&result_children, all_children, iter);
7383
796a7ff8
DE
7384 /* Now we have a transitive closure of all the included CUs, and
7385 for .gdb_index version 7 the included TUs, so we can convert it
7386 to a list of symtabs. */
95554aad
TT
7387 len = VEC_length (dwarf2_per_cu_ptr, result_children);
7388 symtab->includes
7389 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7390 (len + 1) * sizeof (struct symtab *));
7391 for (ix = 0;
7392 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
7393 ++ix)
7394 symtab->includes[ix] = get_symtab (iter);
7395 symtab->includes[len] = NULL;
7396
7397 VEC_free (dwarf2_per_cu_ptr, result_children);
7398 htab_delete (all_children);
7399 }
7400}
7401
7402/* Compute the 'includes' field for the symtabs of all the CUs we just
7403 read. */
7404
7405static void
7406process_cu_includes (void)
7407{
7408 int ix;
7409 struct dwarf2_per_cu_data *iter;
7410
7411 for (ix = 0;
7412 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7413 ix, iter);
7414 ++ix)
f4dc4d17
DE
7415 {
7416 if (! iter->is_debug_types)
7417 compute_symtab_includes (iter);
7418 }
95554aad
TT
7419
7420 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7421}
7422
9cdd5dbd 7423/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
7424 already been loaded into memory. */
7425
7426static void
95554aad
TT
7427process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7428 enum language pretend_language)
10b3939b 7429{
10b3939b 7430 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 7431 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
7432 CORE_ADDR lowpc, highpc;
7433 struct symtab *symtab;
3da10d80 7434 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 7435 CORE_ADDR baseaddr;
4359dff1 7436 struct block *static_block;
10b3939b
DJ
7437
7438 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7439
10b3939b
DJ
7440 buildsym_init ();
7441 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 7442 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
7443
7444 cu->list_in_scope = &file_symbols;
c906108c 7445
95554aad
TT
7446 cu->language = pretend_language;
7447 cu->language_defn = language_def (cu->language);
7448
c906108c 7449 /* Do line number decoding in read_file_scope () */
10b3939b 7450 process_die (cu->dies, cu);
c906108c 7451
a766d390
DE
7452 /* For now fudge the Go package. */
7453 if (cu->language == language_go)
7454 fixup_go_packaging (cu);
7455
3da10d80
KS
7456 /* Now that we have processed all the DIEs in the CU, all the types
7457 should be complete, and it should now be safe to compute all of the
7458 physnames. */
7459 compute_delayed_physnames (cu);
7460 do_cleanups (delayed_list_cleanup);
7461
fae299cd
DC
7462 /* Some compilers don't define a DW_AT_high_pc attribute for the
7463 compilation unit. If the DW_AT_high_pc is missing, synthesize
7464 it, by scanning the DIE's below the compilation unit. */
10b3939b 7465 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 7466
36586728 7467 static_block
ff546935 7468 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
4359dff1
JK
7469
7470 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7471 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7472 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7473 addrmap to help ensure it has an accurate map of pc values belonging to
7474 this comp unit. */
7475 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7476
7477 symtab = end_symtab_from_static_block (static_block, objfile,
7478 SECT_OFF_TEXT (objfile), 0);
c906108c 7479
8be455d7 7480 if (symtab != NULL)
c906108c 7481 {
df15bd07 7482 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 7483
8be455d7
JK
7484 /* Set symtab language to language from DW_AT_language. If the
7485 compilation is from a C file generated by language preprocessors, do
7486 not set the language if it was already deduced by start_subfile. */
7487 if (!(cu->language == language_c && symtab->language != language_c))
7488 symtab->language = cu->language;
7489
7490 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7491 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
7492 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7493 there were bugs in prologue debug info, fixed later in GCC-4.5
7494 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
7495
7496 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7497 needed, it would be wrong due to missing DW_AT_producer there.
7498
7499 Still one can confuse GDB by using non-standard GCC compilation
7500 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7501 */
ab260dad 7502 if (cu->has_loclist && gcc_4_minor >= 5)
8be455d7 7503 symtab->locations_valid = 1;
e0d00bc7
JK
7504
7505 if (gcc_4_minor >= 5)
7506 symtab->epilogue_unwind_valid = 1;
96408a79
SA
7507
7508 symtab->call_site_htab = cu->call_site_htab;
c906108c 7509 }
9291a0cd
TT
7510
7511 if (dwarf2_per_objfile->using_index)
7512 per_cu->v.quick->symtab = symtab;
7513 else
7514 {
7515 struct partial_symtab *pst = per_cu->v.psymtab;
7516 pst->symtab = symtab;
7517 pst->readin = 1;
7518 }
c906108c 7519
95554aad
TT
7520 /* Push it for inclusion processing later. */
7521 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7522
c906108c 7523 do_cleanups (back_to);
f4dc4d17 7524}
45cfd468 7525
f4dc4d17
DE
7526/* Generate full symbol information for type unit PER_CU, whose DIEs have
7527 already been loaded into memory. */
7528
7529static void
7530process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7531 enum language pretend_language)
7532{
7533 struct dwarf2_cu *cu = per_cu->cu;
7534 struct objfile *objfile = per_cu->objfile;
7535 struct symtab *symtab;
7536 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
7537 struct signatured_type *sig_type;
7538
7539 gdb_assert (per_cu->is_debug_types);
7540 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
7541
7542 buildsym_init ();
7543 back_to = make_cleanup (really_free_pendings, NULL);
7544 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7545
7546 cu->list_in_scope = &file_symbols;
7547
7548 cu->language = pretend_language;
7549 cu->language_defn = language_def (cu->language);
7550
7551 /* The symbol tables are set up in read_type_unit_scope. */
7552 process_die (cu->dies, cu);
7553
7554 /* For now fudge the Go package. */
7555 if (cu->language == language_go)
7556 fixup_go_packaging (cu);
7557
7558 /* Now that we have processed all the DIEs in the CU, all the types
7559 should be complete, and it should now be safe to compute all of the
7560 physnames. */
7561 compute_delayed_physnames (cu);
7562 do_cleanups (delayed_list_cleanup);
7563
7564 /* TUs share symbol tables.
7565 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
7566 of it with end_expandable_symtab. Otherwise, complete the addition of
7567 this TU's symbols to the existing symtab. */
0186c6a7 7568 if (sig_type->type_unit_group->primary_symtab == NULL)
45cfd468 7569 {
f4dc4d17 7570 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
0186c6a7 7571 sig_type->type_unit_group->primary_symtab = symtab;
f4dc4d17
DE
7572
7573 if (symtab != NULL)
7574 {
7575 /* Set symtab language to language from DW_AT_language. If the
7576 compilation is from a C file generated by language preprocessors,
7577 do not set the language if it was already deduced by
7578 start_subfile. */
7579 if (!(cu->language == language_c && symtab->language != language_c))
7580 symtab->language = cu->language;
7581 }
7582 }
7583 else
7584 {
7585 augment_type_symtab (objfile,
0186c6a7
DE
7586 sig_type->type_unit_group->primary_symtab);
7587 symtab = sig_type->type_unit_group->primary_symtab;
f4dc4d17
DE
7588 }
7589
7590 if (dwarf2_per_objfile->using_index)
7591 per_cu->v.quick->symtab = symtab;
7592 else
7593 {
7594 struct partial_symtab *pst = per_cu->v.psymtab;
7595 pst->symtab = symtab;
7596 pst->readin = 1;
45cfd468 7597 }
f4dc4d17
DE
7598
7599 do_cleanups (back_to);
c906108c
SS
7600}
7601
95554aad
TT
7602/* Process an imported unit DIE. */
7603
7604static void
7605process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7606{
7607 struct attribute *attr;
7608
f4dc4d17
DE
7609 /* For now we don't handle imported units in type units. */
7610 if (cu->per_cu->is_debug_types)
7611 {
7612 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7613 " supported in type units [in module %s]"),
7614 cu->objfile->name);
7615 }
7616
95554aad
TT
7617 attr = dwarf2_attr (die, DW_AT_import, cu);
7618 if (attr != NULL)
7619 {
7620 struct dwarf2_per_cu_data *per_cu;
7621 struct symtab *imported_symtab;
7622 sect_offset offset;
36586728 7623 int is_dwz;
95554aad
TT
7624
7625 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
7626 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7627 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad
TT
7628
7629 /* Queue the unit, if needed. */
7630 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7631 load_full_comp_unit (per_cu, cu->language);
7632
796a7ff8 7633 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
7634 per_cu);
7635 }
7636}
7637
c906108c
SS
7638/* Process a die and its children. */
7639
7640static void
e7c27a73 7641process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7642{
7643 switch (die->tag)
7644 {
7645 case DW_TAG_padding:
7646 break;
7647 case DW_TAG_compile_unit:
95554aad 7648 case DW_TAG_partial_unit:
e7c27a73 7649 read_file_scope (die, cu);
c906108c 7650 break;
348e048f
DE
7651 case DW_TAG_type_unit:
7652 read_type_unit_scope (die, cu);
7653 break;
c906108c 7654 case DW_TAG_subprogram:
c906108c 7655 case DW_TAG_inlined_subroutine:
edb3359d 7656 read_func_scope (die, cu);
c906108c
SS
7657 break;
7658 case DW_TAG_lexical_block:
14898363
L
7659 case DW_TAG_try_block:
7660 case DW_TAG_catch_block:
e7c27a73 7661 read_lexical_block_scope (die, cu);
c906108c 7662 break;
96408a79
SA
7663 case DW_TAG_GNU_call_site:
7664 read_call_site_scope (die, cu);
7665 break;
c906108c 7666 case DW_TAG_class_type:
680b30c7 7667 case DW_TAG_interface_type:
c906108c
SS
7668 case DW_TAG_structure_type:
7669 case DW_TAG_union_type:
134d01f1 7670 process_structure_scope (die, cu);
c906108c
SS
7671 break;
7672 case DW_TAG_enumeration_type:
134d01f1 7673 process_enumeration_scope (die, cu);
c906108c 7674 break;
134d01f1 7675
f792889a
DJ
7676 /* These dies have a type, but processing them does not create
7677 a symbol or recurse to process the children. Therefore we can
7678 read them on-demand through read_type_die. */
c906108c 7679 case DW_TAG_subroutine_type:
72019c9c 7680 case DW_TAG_set_type:
c906108c 7681 case DW_TAG_array_type:
c906108c 7682 case DW_TAG_pointer_type:
c906108c 7683 case DW_TAG_ptr_to_member_type:
c906108c 7684 case DW_TAG_reference_type:
c906108c 7685 case DW_TAG_string_type:
c906108c 7686 break;
134d01f1 7687
c906108c 7688 case DW_TAG_base_type:
a02abb62 7689 case DW_TAG_subrange_type:
cb249c71 7690 case DW_TAG_typedef:
134d01f1
DJ
7691 /* Add a typedef symbol for the type definition, if it has a
7692 DW_AT_name. */
f792889a 7693 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 7694 break;
c906108c 7695 case DW_TAG_common_block:
e7c27a73 7696 read_common_block (die, cu);
c906108c
SS
7697 break;
7698 case DW_TAG_common_inclusion:
7699 break;
d9fa45fe 7700 case DW_TAG_namespace:
4d4ec4e5 7701 cu->processing_has_namespace_info = 1;
e7c27a73 7702 read_namespace (die, cu);
d9fa45fe 7703 break;
5d7cb8df 7704 case DW_TAG_module:
4d4ec4e5 7705 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
7706 read_module (die, cu);
7707 break;
d9fa45fe
DC
7708 case DW_TAG_imported_declaration:
7709 case DW_TAG_imported_module:
4d4ec4e5 7710 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
7711 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7712 || cu->language != language_fortran))
7713 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7714 dwarf_tag_name (die->tag));
7715 read_import_statement (die, cu);
d9fa45fe 7716 break;
95554aad
TT
7717
7718 case DW_TAG_imported_unit:
7719 process_imported_unit_die (die, cu);
7720 break;
7721
c906108c 7722 default:
e7c27a73 7723 new_symbol (die, NULL, cu);
c906108c
SS
7724 break;
7725 }
7726}
ca69b9e6
DE
7727\f
7728/* DWARF name computation. */
c906108c 7729
94af9270
KS
7730/* A helper function for dwarf2_compute_name which determines whether DIE
7731 needs to have the name of the scope prepended to the name listed in the
7732 die. */
7733
7734static int
7735die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7736{
1c809c68
TT
7737 struct attribute *attr;
7738
94af9270
KS
7739 switch (die->tag)
7740 {
7741 case DW_TAG_namespace:
7742 case DW_TAG_typedef:
7743 case DW_TAG_class_type:
7744 case DW_TAG_interface_type:
7745 case DW_TAG_structure_type:
7746 case DW_TAG_union_type:
7747 case DW_TAG_enumeration_type:
7748 case DW_TAG_enumerator:
7749 case DW_TAG_subprogram:
7750 case DW_TAG_member:
7751 return 1;
7752
7753 case DW_TAG_variable:
c2b0a229 7754 case DW_TAG_constant:
94af9270
KS
7755 /* We only need to prefix "globally" visible variables. These include
7756 any variable marked with DW_AT_external or any variable that
7757 lives in a namespace. [Variables in anonymous namespaces
7758 require prefixing, but they are not DW_AT_external.] */
7759
7760 if (dwarf2_attr (die, DW_AT_specification, cu))
7761 {
7762 struct dwarf2_cu *spec_cu = cu;
9a619af0 7763
94af9270
KS
7764 return die_needs_namespace (die_specification (die, &spec_cu),
7765 spec_cu);
7766 }
7767
1c809c68 7768 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
7769 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7770 && die->parent->tag != DW_TAG_module)
1c809c68
TT
7771 return 0;
7772 /* A variable in a lexical block of some kind does not need a
7773 namespace, even though in C++ such variables may be external
7774 and have a mangled name. */
7775 if (die->parent->tag == DW_TAG_lexical_block
7776 || die->parent->tag == DW_TAG_try_block
1054b214
TT
7777 || die->parent->tag == DW_TAG_catch_block
7778 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
7779 return 0;
7780 return 1;
94af9270
KS
7781
7782 default:
7783 return 0;
7784 }
7785}
7786
98bfdba5
PA
7787/* Retrieve the last character from a mem_file. */
7788
7789static void
7790do_ui_file_peek_last (void *object, const char *buffer, long length)
7791{
7792 char *last_char_p = (char *) object;
7793
7794 if (length > 0)
7795 *last_char_p = buffer[length - 1];
7796}
7797
94af9270 7798/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
7799 compute the physname for the object, which include a method's:
7800 - formal parameters (C++/Java),
7801 - receiver type (Go),
7802 - return type (Java).
7803
7804 The term "physname" is a bit confusing.
7805 For C++, for example, it is the demangled name.
7806 For Go, for example, it's the mangled name.
94af9270 7807
af6b7be1
JB
7808 For Ada, return the DIE's linkage name rather than the fully qualified
7809 name. PHYSNAME is ignored..
7810
94af9270
KS
7811 The result is allocated on the objfile_obstack and canonicalized. */
7812
7813static const char *
15d034d0
TT
7814dwarf2_compute_name (const char *name,
7815 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
7816 int physname)
7817{
bb5ed363
DE
7818 struct objfile *objfile = cu->objfile;
7819
94af9270
KS
7820 if (name == NULL)
7821 name = dwarf2_name (die, cu);
7822
f55ee35c
JK
7823 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7824 compute it by typename_concat inside GDB. */
7825 if (cu->language == language_ada
7826 || (cu->language == language_fortran && physname))
7827 {
7828 /* For Ada unit, we prefer the linkage name over the name, as
7829 the former contains the exported name, which the user expects
7830 to be able to reference. Ideally, we want the user to be able
7831 to reference this entity using either natural or linkage name,
7832 but we haven't started looking at this enhancement yet. */
7833 struct attribute *attr;
7834
7835 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7836 if (attr == NULL)
7837 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7838 if (attr && DW_STRING (attr))
7839 return DW_STRING (attr);
7840 }
7841
94af9270
KS
7842 /* These are the only languages we know how to qualify names in. */
7843 if (name != NULL
f55ee35c
JK
7844 && (cu->language == language_cplus || cu->language == language_java
7845 || cu->language == language_fortran))
94af9270
KS
7846 {
7847 if (die_needs_namespace (die, cu))
7848 {
7849 long length;
0d5cff50 7850 const char *prefix;
94af9270
KS
7851 struct ui_file *buf;
7852
7853 prefix = determine_prefix (die, cu);
7854 buf = mem_fileopen ();
7855 if (*prefix != '\0')
7856 {
f55ee35c
JK
7857 char *prefixed_name = typename_concat (NULL, prefix, name,
7858 physname, cu);
9a619af0 7859
94af9270
KS
7860 fputs_unfiltered (prefixed_name, buf);
7861 xfree (prefixed_name);
7862 }
7863 else
62d5b8da 7864 fputs_unfiltered (name, buf);
94af9270 7865
98bfdba5
PA
7866 /* Template parameters may be specified in the DIE's DW_AT_name, or
7867 as children with DW_TAG_template_type_param or
7868 DW_TAG_value_type_param. If the latter, add them to the name
7869 here. If the name already has template parameters, then
7870 skip this step; some versions of GCC emit both, and
7871 it is more efficient to use the pre-computed name.
7872
7873 Something to keep in mind about this process: it is very
7874 unlikely, or in some cases downright impossible, to produce
7875 something that will match the mangled name of a function.
7876 If the definition of the function has the same debug info,
7877 we should be able to match up with it anyway. But fallbacks
7878 using the minimal symbol, for instance to find a method
7879 implemented in a stripped copy of libstdc++, will not work.
7880 If we do not have debug info for the definition, we will have to
7881 match them up some other way.
7882
7883 When we do name matching there is a related problem with function
7884 templates; two instantiated function templates are allowed to
7885 differ only by their return types, which we do not add here. */
7886
7887 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7888 {
7889 struct attribute *attr;
7890 struct die_info *child;
7891 int first = 1;
7892
7893 die->building_fullname = 1;
7894
7895 for (child = die->child; child != NULL; child = child->sibling)
7896 {
7897 struct type *type;
12df843f 7898 LONGEST value;
d521ce57 7899 const gdb_byte *bytes;
98bfdba5
PA
7900 struct dwarf2_locexpr_baton *baton;
7901 struct value *v;
7902
7903 if (child->tag != DW_TAG_template_type_param
7904 && child->tag != DW_TAG_template_value_param)
7905 continue;
7906
7907 if (first)
7908 {
7909 fputs_unfiltered ("<", buf);
7910 first = 0;
7911 }
7912 else
7913 fputs_unfiltered (", ", buf);
7914
7915 attr = dwarf2_attr (child, DW_AT_type, cu);
7916 if (attr == NULL)
7917 {
7918 complaint (&symfile_complaints,
7919 _("template parameter missing DW_AT_type"));
7920 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7921 continue;
7922 }
7923 type = die_type (child, cu);
7924
7925 if (child->tag == DW_TAG_template_type_param)
7926 {
79d43c61 7927 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
7928 continue;
7929 }
7930
7931 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7932 if (attr == NULL)
7933 {
7934 complaint (&symfile_complaints,
3e43a32a
MS
7935 _("template parameter missing "
7936 "DW_AT_const_value"));
98bfdba5
PA
7937 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7938 continue;
7939 }
7940
7941 dwarf2_const_value_attr (attr, type, name,
7942 &cu->comp_unit_obstack, cu,
7943 &value, &bytes, &baton);
7944
7945 if (TYPE_NOSIGN (type))
7946 /* GDB prints characters as NUMBER 'CHAR'. If that's
7947 changed, this can use value_print instead. */
7948 c_printchar (value, type, buf);
7949 else
7950 {
7951 struct value_print_options opts;
7952
7953 if (baton != NULL)
7954 v = dwarf2_evaluate_loc_desc (type, NULL,
7955 baton->data,
7956 baton->size,
7957 baton->per_cu);
7958 else if (bytes != NULL)
7959 {
7960 v = allocate_value (type);
7961 memcpy (value_contents_writeable (v), bytes,
7962 TYPE_LENGTH (type));
7963 }
7964 else
7965 v = value_from_longest (type, value);
7966
3e43a32a
MS
7967 /* Specify decimal so that we do not depend on
7968 the radix. */
98bfdba5
PA
7969 get_formatted_print_options (&opts, 'd');
7970 opts.raw = 1;
7971 value_print (v, buf, &opts);
7972 release_value (v);
7973 value_free (v);
7974 }
7975 }
7976
7977 die->building_fullname = 0;
7978
7979 if (!first)
7980 {
7981 /* Close the argument list, with a space if necessary
7982 (nested templates). */
7983 char last_char = '\0';
7984 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7985 if (last_char == '>')
7986 fputs_unfiltered (" >", buf);
7987 else
7988 fputs_unfiltered (">", buf);
7989 }
7990 }
7991
94af9270
KS
7992 /* For Java and C++ methods, append formal parameter type
7993 information, if PHYSNAME. */
6e70227d 7994
94af9270
KS
7995 if (physname && die->tag == DW_TAG_subprogram
7996 && (cu->language == language_cplus
7997 || cu->language == language_java))
7998 {
7999 struct type *type = read_type_die (die, cu);
8000
79d43c61
TT
8001 c_type_print_args (type, buf, 1, cu->language,
8002 &type_print_raw_options);
94af9270
KS
8003
8004 if (cu->language == language_java)
8005 {
8006 /* For java, we must append the return type to method
0963b4bd 8007 names. */
94af9270
KS
8008 if (die->tag == DW_TAG_subprogram)
8009 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8010 0, 0, &type_print_raw_options);
94af9270
KS
8011 }
8012 else if (cu->language == language_cplus)
8013 {
60430eff
DJ
8014 /* Assume that an artificial first parameter is
8015 "this", but do not crash if it is not. RealView
8016 marks unnamed (and thus unused) parameters as
8017 artificial; there is no way to differentiate
8018 the two cases. */
94af9270
KS
8019 if (TYPE_NFIELDS (type) > 0
8020 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8021 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8022 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8023 0))))
94af9270
KS
8024 fputs_unfiltered (" const", buf);
8025 }
8026 }
8027
bb5ed363 8028 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
94af9270
KS
8029 &length);
8030 ui_file_delete (buf);
8031
8032 if (cu->language == language_cplus)
8033 {
15d034d0 8034 const char *cname
94af9270 8035 = dwarf2_canonicalize_name (name, cu,
bb5ed363 8036 &objfile->objfile_obstack);
9a619af0 8037
94af9270
KS
8038 if (cname != NULL)
8039 name = cname;
8040 }
8041 }
8042 }
8043
8044 return name;
8045}
8046
0114d602
DJ
8047/* Return the fully qualified name of DIE, based on its DW_AT_name.
8048 If scope qualifiers are appropriate they will be added. The result
8049 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
8050 not have a name. NAME may either be from a previous call to
8051 dwarf2_name or NULL.
8052
0963b4bd 8053 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8054
8055static const char *
15d034d0 8056dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8057{
94af9270
KS
8058 return dwarf2_compute_name (name, die, cu, 0);
8059}
0114d602 8060
94af9270
KS
8061/* Construct a physname for the given DIE in CU. NAME may either be
8062 from a previous call to dwarf2_name or NULL. The result will be
8063 allocated on the objfile_objstack or NULL if the DIE does not have a
8064 name.
0114d602 8065
94af9270 8066 The output string will be canonicalized (if C++/Java). */
0114d602 8067
94af9270 8068static const char *
15d034d0 8069dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8070{
bb5ed363 8071 struct objfile *objfile = cu->objfile;
900e11f9
JK
8072 struct attribute *attr;
8073 const char *retval, *mangled = NULL, *canon = NULL;
8074 struct cleanup *back_to;
8075 int need_copy = 1;
8076
8077 /* In this case dwarf2_compute_name is just a shortcut not building anything
8078 on its own. */
8079 if (!die_needs_namespace (die, cu))
8080 return dwarf2_compute_name (name, die, cu, 1);
8081
8082 back_to = make_cleanup (null_cleanup, NULL);
8083
8084 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8085 if (!attr)
8086 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8087
8088 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8089 has computed. */
8090 if (attr && DW_STRING (attr))
8091 {
8092 char *demangled;
8093
8094 mangled = DW_STRING (attr);
8095
8096 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8097 type. It is easier for GDB users to search for such functions as
8098 `name(params)' than `long name(params)'. In such case the minimal
8099 symbol names do not match the full symbol names but for template
8100 functions there is never a need to look up their definition from their
8101 declaration so the only disadvantage remains the minimal symbol
8102 variant `long name(params)' does not have the proper inferior type.
8103 */
8104
a766d390
DE
8105 if (cu->language == language_go)
8106 {
8107 /* This is a lie, but we already lie to the caller new_symbol_full.
8108 new_symbol_full assumes we return the mangled name.
8109 This just undoes that lie until things are cleaned up. */
8110 demangled = NULL;
8111 }
8112 else
8113 {
8de20a37
TT
8114 demangled = gdb_demangle (mangled,
8115 (DMGL_PARAMS | DMGL_ANSI
8116 | (cu->language == language_java
8117 ? DMGL_JAVA | DMGL_RET_POSTFIX
8118 : DMGL_RET_DROP)));
a766d390 8119 }
900e11f9
JK
8120 if (demangled)
8121 {
8122 make_cleanup (xfree, demangled);
8123 canon = demangled;
8124 }
8125 else
8126 {
8127 canon = mangled;
8128 need_copy = 0;
8129 }
8130 }
8131
8132 if (canon == NULL || check_physname)
8133 {
8134 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8135
8136 if (canon != NULL && strcmp (physname, canon) != 0)
8137 {
8138 /* It may not mean a bug in GDB. The compiler could also
8139 compute DW_AT_linkage_name incorrectly. But in such case
8140 GDB would need to be bug-to-bug compatible. */
8141
8142 complaint (&symfile_complaints,
8143 _("Computed physname <%s> does not match demangled <%s> "
8144 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
b64f50a1 8145 physname, canon, mangled, die->offset.sect_off, objfile->name);
900e11f9
JK
8146
8147 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8148 is available here - over computed PHYSNAME. It is safer
8149 against both buggy GDB and buggy compilers. */
8150
8151 retval = canon;
8152 }
8153 else
8154 {
8155 retval = physname;
8156 need_copy = 0;
8157 }
8158 }
8159 else
8160 retval = canon;
8161
8162 if (need_copy)
10f0c4bb 8163 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
900e11f9
JK
8164
8165 do_cleanups (back_to);
8166 return retval;
0114d602
DJ
8167}
8168
27aa8d6a
SW
8169/* Read the import statement specified by the given die and record it. */
8170
8171static void
8172read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8173{
bb5ed363 8174 struct objfile *objfile = cu->objfile;
27aa8d6a 8175 struct attribute *import_attr;
32019081 8176 struct die_info *imported_die, *child_die;
de4affc9 8177 struct dwarf2_cu *imported_cu;
27aa8d6a 8178 const char *imported_name;
794684b6 8179 const char *imported_name_prefix;
13387711
SW
8180 const char *canonical_name;
8181 const char *import_alias;
8182 const char *imported_declaration = NULL;
794684b6 8183 const char *import_prefix;
32019081
JK
8184 VEC (const_char_ptr) *excludes = NULL;
8185 struct cleanup *cleanups;
13387711 8186
27aa8d6a
SW
8187 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8188 if (import_attr == NULL)
8189 {
8190 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8191 dwarf_tag_name (die->tag));
8192 return;
8193 }
8194
de4affc9
CC
8195 imported_cu = cu;
8196 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8197 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8198 if (imported_name == NULL)
8199 {
8200 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8201
8202 The import in the following code:
8203 namespace A
8204 {
8205 typedef int B;
8206 }
8207
8208 int main ()
8209 {
8210 using A::B;
8211 B b;
8212 return b;
8213 }
8214
8215 ...
8216 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8217 <52> DW_AT_decl_file : 1
8218 <53> DW_AT_decl_line : 6
8219 <54> DW_AT_import : <0x75>
8220 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8221 <59> DW_AT_name : B
8222 <5b> DW_AT_decl_file : 1
8223 <5c> DW_AT_decl_line : 2
8224 <5d> DW_AT_type : <0x6e>
8225 ...
8226 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8227 <76> DW_AT_byte_size : 4
8228 <77> DW_AT_encoding : 5 (signed)
8229
8230 imports the wrong die ( 0x75 instead of 0x58 ).
8231 This case will be ignored until the gcc bug is fixed. */
8232 return;
8233 }
8234
82856980
SW
8235 /* Figure out the local name after import. */
8236 import_alias = dwarf2_name (die, cu);
27aa8d6a 8237
794684b6
SW
8238 /* Figure out where the statement is being imported to. */
8239 import_prefix = determine_prefix (die, cu);
8240
8241 /* Figure out what the scope of the imported die is and prepend it
8242 to the name of the imported die. */
de4affc9 8243 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8244
f55ee35c
JK
8245 if (imported_die->tag != DW_TAG_namespace
8246 && imported_die->tag != DW_TAG_module)
794684b6 8247 {
13387711
SW
8248 imported_declaration = imported_name;
8249 canonical_name = imported_name_prefix;
794684b6 8250 }
13387711 8251 else if (strlen (imported_name_prefix) > 0)
12aaed36
TT
8252 canonical_name = obconcat (&objfile->objfile_obstack,
8253 imported_name_prefix, "::", imported_name,
8254 (char *) NULL);
13387711
SW
8255 else
8256 canonical_name = imported_name;
794684b6 8257
32019081
JK
8258 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8259
8260 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8261 for (child_die = die->child; child_die && child_die->tag;
8262 child_die = sibling_die (child_die))
8263 {
8264 /* DWARF-4: A Fortran use statement with a “rename list” may be
8265 represented by an imported module entry with an import attribute
8266 referring to the module and owned entries corresponding to those
8267 entities that are renamed as part of being imported. */
8268
8269 if (child_die->tag != DW_TAG_imported_declaration)
8270 {
8271 complaint (&symfile_complaints,
8272 _("child DW_TAG_imported_declaration expected "
8273 "- DIE at 0x%x [in module %s]"),
b64f50a1 8274 child_die->offset.sect_off, objfile->name);
32019081
JK
8275 continue;
8276 }
8277
8278 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8279 if (import_attr == NULL)
8280 {
8281 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8282 dwarf_tag_name (child_die->tag));
8283 continue;
8284 }
8285
8286 imported_cu = cu;
8287 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8288 &imported_cu);
8289 imported_name = dwarf2_name (imported_die, imported_cu);
8290 if (imported_name == NULL)
8291 {
8292 complaint (&symfile_complaints,
8293 _("child DW_TAG_imported_declaration has unknown "
8294 "imported name - DIE at 0x%x [in module %s]"),
b64f50a1 8295 child_die->offset.sect_off, objfile->name);
32019081
JK
8296 continue;
8297 }
8298
8299 VEC_safe_push (const_char_ptr, excludes, imported_name);
8300
8301 process_die (child_die, cu);
8302 }
8303
c0cc3a76
SW
8304 cp_add_using_directive (import_prefix,
8305 canonical_name,
8306 import_alias,
13387711 8307 imported_declaration,
32019081 8308 excludes,
12aaed36 8309 0,
bb5ed363 8310 &objfile->objfile_obstack);
32019081
JK
8311
8312 do_cleanups (cleanups);
27aa8d6a
SW
8313}
8314
f4dc4d17 8315/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 8316
cb1df416
DJ
8317static void
8318free_cu_line_header (void *arg)
8319{
8320 struct dwarf2_cu *cu = arg;
8321
8322 free_line_header (cu->line_header);
8323 cu->line_header = NULL;
8324}
8325
1b80a9fa
JK
8326/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8327 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8328 this, it was first present in GCC release 4.3.0. */
8329
8330static int
8331producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8332{
8333 if (!cu->checked_producer)
8334 check_producer (cu);
8335
8336 return cu->producer_is_gcc_lt_4_3;
8337}
8338
9291a0cd
TT
8339static void
8340find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 8341 const char **name, const char **comp_dir)
9291a0cd
TT
8342{
8343 struct attribute *attr;
8344
8345 *name = NULL;
8346 *comp_dir = NULL;
8347
8348 /* Find the filename. Do not use dwarf2_name here, since the filename
8349 is not a source language identifier. */
8350 attr = dwarf2_attr (die, DW_AT_name, cu);
8351 if (attr)
8352 {
8353 *name = DW_STRING (attr);
8354 }
8355
8356 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8357 if (attr)
8358 *comp_dir = DW_STRING (attr);
1b80a9fa
JK
8359 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8360 && IS_ABSOLUTE_PATH (*name))
9291a0cd 8361 {
15d034d0
TT
8362 char *d = ldirname (*name);
8363
8364 *comp_dir = d;
8365 if (d != NULL)
8366 make_cleanup (xfree, d);
9291a0cd
TT
8367 }
8368 if (*comp_dir != NULL)
8369 {
8370 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8371 directory, get rid of it. */
8372 char *cp = strchr (*comp_dir, ':');
8373
8374 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8375 *comp_dir = cp + 1;
8376 }
8377
8378 if (*name == NULL)
8379 *name = "<unknown>";
8380}
8381
f4dc4d17
DE
8382/* Handle DW_AT_stmt_list for a compilation unit.
8383 DIE is the DW_TAG_compile_unit die for CU.
f3f5162e
DE
8384 COMP_DIR is the compilation directory.
8385 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
2ab95328
TT
8386
8387static void
8388handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
b385a60d 8389 const char *comp_dir) /* ARI: editCase function */
2ab95328
TT
8390{
8391 struct attribute *attr;
2ab95328 8392
f4dc4d17
DE
8393 gdb_assert (! cu->per_cu->is_debug_types);
8394
2ab95328
TT
8395 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8396 if (attr)
8397 {
8398 unsigned int line_offset = DW_UNSND (attr);
8399 struct line_header *line_header
3019eac3 8400 = dwarf_decode_line_header (line_offset, cu);
2ab95328
TT
8401
8402 if (line_header)
dee91e82
DE
8403 {
8404 cu->line_header = line_header;
8405 make_cleanup (free_cu_line_header, cu);
f4dc4d17 8406 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
dee91e82 8407 }
2ab95328
TT
8408 }
8409}
8410
95554aad 8411/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 8412
c906108c 8413static void
e7c27a73 8414read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8415{
dee91e82 8416 struct objfile *objfile = dwarf2_per_objfile->objfile;
debd256d 8417 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 8418 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
8419 CORE_ADDR highpc = ((CORE_ADDR) 0);
8420 struct attribute *attr;
15d034d0
TT
8421 const char *name = NULL;
8422 const char *comp_dir = NULL;
c906108c
SS
8423 struct die_info *child_die;
8424 bfd *abfd = objfile->obfd;
e142c38c 8425 CORE_ADDR baseaddr;
6e70227d 8426
e142c38c 8427 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8428
fae299cd 8429 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
8430
8431 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8432 from finish_block. */
2acceee2 8433 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
8434 lowpc = highpc;
8435 lowpc += baseaddr;
8436 highpc += baseaddr;
8437
9291a0cd 8438 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 8439
95554aad 8440 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 8441
f4b8a18d
KW
8442 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8443 standardised yet. As a workaround for the language detection we fall
8444 back to the DW_AT_producer string. */
8445 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8446 cu->language = language_opencl;
8447
3019eac3
DE
8448 /* Similar hack for Go. */
8449 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8450 set_cu_language (DW_LANG_Go, cu);
8451
f4dc4d17 8452 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
8453
8454 /* Decode line number information if present. We do this before
8455 processing child DIEs, so that the line header table is available
8456 for DW_AT_decl_file. */
f4dc4d17 8457 handle_DW_AT_stmt_list (die, cu, comp_dir);
3019eac3
DE
8458
8459 /* Process all dies in compilation unit. */
8460 if (die->child != NULL)
8461 {
8462 child_die = die->child;
8463 while (child_die && child_die->tag)
8464 {
8465 process_die (child_die, cu);
8466 child_die = sibling_die (child_die);
8467 }
8468 }
8469
8470 /* Decode macro information, if present. Dwarf 2 macro information
8471 refers to information in the line number info statement program
8472 header, so we can only read it if we've read the header
8473 successfully. */
8474 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8475 if (attr && cu->line_header)
8476 {
8477 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8478 complaint (&symfile_complaints,
8479 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8480
09262596 8481 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
3019eac3
DE
8482 }
8483 else
8484 {
8485 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8486 if (attr && cu->line_header)
8487 {
8488 unsigned int macro_offset = DW_UNSND (attr);
8489
09262596 8490 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
3019eac3
DE
8491 }
8492 }
8493
8494 do_cleanups (back_to);
8495}
8496
f4dc4d17
DE
8497/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8498 Create the set of symtabs used by this TU, or if this TU is sharing
8499 symtabs with another TU and the symtabs have already been created
8500 then restore those symtabs in the line header.
8501 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
8502
8503static void
f4dc4d17 8504setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 8505{
f4dc4d17
DE
8506 struct objfile *objfile = dwarf2_per_objfile->objfile;
8507 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8508 struct type_unit_group *tu_group;
8509 int first_time;
8510 struct line_header *lh;
3019eac3 8511 struct attribute *attr;
f4dc4d17 8512 unsigned int i, line_offset;
0186c6a7 8513 struct signatured_type *sig_type;
3019eac3 8514
f4dc4d17 8515 gdb_assert (per_cu->is_debug_types);
0186c6a7 8516 sig_type = (struct signatured_type *) per_cu;
3019eac3 8517
f4dc4d17 8518 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 8519
f4dc4d17 8520 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 8521 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
8522 if (sig_type->type_unit_group == NULL)
8523 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8524 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
8525
8526 /* If we've already processed this stmt_list there's no real need to
8527 do it again, we could fake it and just recreate the part we need
8528 (file name,index -> symtab mapping). If data shows this optimization
8529 is useful we can do it then. */
8530 first_time = tu_group->primary_symtab == NULL;
8531
8532 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8533 debug info. */
8534 lh = NULL;
8535 if (attr != NULL)
3019eac3 8536 {
f4dc4d17
DE
8537 line_offset = DW_UNSND (attr);
8538 lh = dwarf_decode_line_header (line_offset, cu);
8539 }
8540 if (lh == NULL)
8541 {
8542 if (first_time)
8543 dwarf2_start_symtab (cu, "", NULL, 0);
8544 else
8545 {
8546 gdb_assert (tu_group->symtabs == NULL);
8547 restart_symtab (0);
8548 }
8549 /* Note: The primary symtab will get allocated at the end. */
8550 return;
3019eac3
DE
8551 }
8552
f4dc4d17
DE
8553 cu->line_header = lh;
8554 make_cleanup (free_cu_line_header, cu);
3019eac3 8555
f4dc4d17
DE
8556 if (first_time)
8557 {
8558 dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 8559
f4dc4d17
DE
8560 tu_group->num_symtabs = lh->num_file_names;
8561 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 8562
f4dc4d17
DE
8563 for (i = 0; i < lh->num_file_names; ++i)
8564 {
d521ce57 8565 const char *dir = NULL;
f4dc4d17 8566 struct file_entry *fe = &lh->file_names[i];
3019eac3 8567
f4dc4d17
DE
8568 if (fe->dir_index)
8569 dir = lh->include_dirs[fe->dir_index - 1];
8570 dwarf2_start_subfile (fe->name, dir, NULL);
3019eac3 8571
f4dc4d17
DE
8572 /* Note: We don't have to watch for the main subfile here, type units
8573 don't have DW_AT_name. */
3019eac3 8574
f4dc4d17
DE
8575 if (current_subfile->symtab == NULL)
8576 {
8577 /* NOTE: start_subfile will recognize when it's been passed
8578 a file it has already seen. So we can't assume there's a
8579 simple mapping from lh->file_names to subfiles,
8580 lh->file_names may contain dups. */
8581 current_subfile->symtab = allocate_symtab (current_subfile->name,
8582 objfile);
8583 }
8584
8585 fe->symtab = current_subfile->symtab;
8586 tu_group->symtabs[i] = fe->symtab;
8587 }
8588 }
8589 else
3019eac3 8590 {
f4dc4d17
DE
8591 restart_symtab (0);
8592
8593 for (i = 0; i < lh->num_file_names; ++i)
8594 {
8595 struct file_entry *fe = &lh->file_names[i];
8596
8597 fe->symtab = tu_group->symtabs[i];
8598 }
3019eac3
DE
8599 }
8600
f4dc4d17
DE
8601 /* The main symtab is allocated last. Type units don't have DW_AT_name
8602 so they don't have a "real" (so to speak) symtab anyway.
8603 There is later code that will assign the main symtab to all symbols
8604 that don't have one. We need to handle the case of a symbol with a
8605 missing symtab (DW_AT_decl_file) anyway. */
8606}
3019eac3 8607
f4dc4d17
DE
8608/* Process DW_TAG_type_unit.
8609 For TUs we want to skip the first top level sibling if it's not the
8610 actual type being defined by this TU. In this case the first top
8611 level sibling is there to provide context only. */
3019eac3 8612
f4dc4d17
DE
8613static void
8614read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8615{
8616 struct die_info *child_die;
3019eac3 8617
f4dc4d17
DE
8618 prepare_one_comp_unit (cu, die, language_minimal);
8619
8620 /* Initialize (or reinitialize) the machinery for building symtabs.
8621 We do this before processing child DIEs, so that the line header table
8622 is available for DW_AT_decl_file. */
8623 setup_type_unit_groups (die, cu);
8624
8625 if (die->child != NULL)
8626 {
8627 child_die = die->child;
8628 while (child_die && child_die->tag)
8629 {
8630 process_die (child_die, cu);
8631 child_die = sibling_die (child_die);
8632 }
8633 }
3019eac3
DE
8634}
8635\f
80626a55
DE
8636/* DWO/DWP files.
8637
8638 http://gcc.gnu.org/wiki/DebugFission
8639 http://gcc.gnu.org/wiki/DebugFissionDWP
8640
8641 To simplify handling of both DWO files ("object" files with the DWARF info)
8642 and DWP files (a file with the DWOs packaged up into one file), we treat
8643 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
8644
8645static hashval_t
8646hash_dwo_file (const void *item)
8647{
8648 const struct dwo_file *dwo_file = item;
a2ce51a0 8649 hashval_t hash;
3019eac3 8650
a2ce51a0
DE
8651 hash = htab_hash_string (dwo_file->dwo_name);
8652 if (dwo_file->comp_dir != NULL)
8653 hash += htab_hash_string (dwo_file->comp_dir);
8654 return hash;
3019eac3
DE
8655}
8656
8657static int
8658eq_dwo_file (const void *item_lhs, const void *item_rhs)
8659{
8660 const struct dwo_file *lhs = item_lhs;
8661 const struct dwo_file *rhs = item_rhs;
8662
a2ce51a0
DE
8663 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
8664 return 0;
8665 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
8666 return lhs->comp_dir == rhs->comp_dir;
8667 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
8668}
8669
8670/* Allocate a hash table for DWO files. */
8671
8672static htab_t
8673allocate_dwo_file_hash_table (void)
8674{
8675 struct objfile *objfile = dwarf2_per_objfile->objfile;
8676
8677 return htab_create_alloc_ex (41,
8678 hash_dwo_file,
8679 eq_dwo_file,
8680 NULL,
8681 &objfile->objfile_obstack,
8682 hashtab_obstack_allocate,
8683 dummy_obstack_deallocate);
8684}
8685
80626a55
DE
8686/* Lookup DWO file DWO_NAME. */
8687
8688static void **
0ac5b59e 8689lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
8690{
8691 struct dwo_file find_entry;
8692 void **slot;
8693
8694 if (dwarf2_per_objfile->dwo_files == NULL)
8695 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8696
8697 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
8698 find_entry.dwo_name = dwo_name;
8699 find_entry.comp_dir = comp_dir;
80626a55
DE
8700 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8701
8702 return slot;
8703}
8704
3019eac3
DE
8705static hashval_t
8706hash_dwo_unit (const void *item)
8707{
8708 const struct dwo_unit *dwo_unit = item;
8709
8710 /* This drops the top 32 bits of the id, but is ok for a hash. */
8711 return dwo_unit->signature;
8712}
8713
8714static int
8715eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8716{
8717 const struct dwo_unit *lhs = item_lhs;
8718 const struct dwo_unit *rhs = item_rhs;
8719
8720 /* The signature is assumed to be unique within the DWO file.
8721 So while object file CU dwo_id's always have the value zero,
8722 that's OK, assuming each object file DWO file has only one CU,
8723 and that's the rule for now. */
8724 return lhs->signature == rhs->signature;
8725}
8726
8727/* Allocate a hash table for DWO CUs,TUs.
8728 There is one of these tables for each of CUs,TUs for each DWO file. */
8729
8730static htab_t
8731allocate_dwo_unit_table (struct objfile *objfile)
8732{
8733 /* Start out with a pretty small number.
8734 Generally DWO files contain only one CU and maybe some TUs. */
8735 return htab_create_alloc_ex (3,
8736 hash_dwo_unit,
8737 eq_dwo_unit,
8738 NULL,
8739 &objfile->objfile_obstack,
8740 hashtab_obstack_allocate,
8741 dummy_obstack_deallocate);
8742}
8743
80626a55 8744/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 8745
19c3d4c9 8746struct create_dwo_cu_data
3019eac3
DE
8747{
8748 struct dwo_file *dwo_file;
19c3d4c9 8749 struct dwo_unit dwo_unit;
3019eac3
DE
8750};
8751
19c3d4c9 8752/* die_reader_func for create_dwo_cu. */
3019eac3
DE
8753
8754static void
19c3d4c9
DE
8755create_dwo_cu_reader (const struct die_reader_specs *reader,
8756 const gdb_byte *info_ptr,
8757 struct die_info *comp_unit_die,
8758 int has_children,
8759 void *datap)
3019eac3
DE
8760{
8761 struct dwarf2_cu *cu = reader->cu;
8762 struct objfile *objfile = dwarf2_per_objfile->objfile;
8763 sect_offset offset = cu->per_cu->offset;
8a0459fd 8764 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 8765 struct create_dwo_cu_data *data = datap;
3019eac3 8766 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 8767 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 8768 struct attribute *attr;
3019eac3
DE
8769
8770 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8771 if (attr == NULL)
8772 {
19c3d4c9
DE
8773 complaint (&symfile_complaints,
8774 _("Dwarf Error: debug entry at offset 0x%x is missing"
8775 " its dwo_id [in module %s]"),
8776 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
8777 return;
8778 }
8779
3019eac3
DE
8780 dwo_unit->dwo_file = dwo_file;
8781 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 8782 dwo_unit->section = section;
3019eac3
DE
8783 dwo_unit->offset = offset;
8784 dwo_unit->length = cu->per_cu->length;
8785
09406207 8786 if (dwarf2_read_debug)
4031ecc5
DE
8787 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
8788 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
8789}
8790
19c3d4c9
DE
8791/* Create the dwo_unit for the lone CU in DWO_FILE.
8792 Note: This function processes DWO files only, not DWP files. */
3019eac3 8793
19c3d4c9
DE
8794static struct dwo_unit *
8795create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
8796{
8797 struct objfile *objfile = dwarf2_per_objfile->objfile;
8798 struct dwarf2_section_info *section = &dwo_file->sections.info;
8799 bfd *abfd;
8800 htab_t cu_htab;
d521ce57 8801 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
8802 struct create_dwo_cu_data create_dwo_cu_data;
8803 struct dwo_unit *dwo_unit;
3019eac3
DE
8804
8805 dwarf2_read_section (objfile, section);
8806 info_ptr = section->buffer;
8807
8808 if (info_ptr == NULL)
8809 return NULL;
8810
8811 /* We can't set abfd until now because the section may be empty or
8812 not present, in which case section->asection will be NULL. */
8813 abfd = section->asection->owner;
8814
09406207 8815 if (dwarf2_read_debug)
19c3d4c9
DE
8816 {
8817 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
8818 bfd_section_name (abfd, section->asection),
8819 bfd_get_filename (abfd));
8820 }
3019eac3 8821
19c3d4c9
DE
8822 create_dwo_cu_data.dwo_file = dwo_file;
8823 dwo_unit = NULL;
3019eac3
DE
8824
8825 end_ptr = info_ptr + section->size;
8826 while (info_ptr < end_ptr)
8827 {
8828 struct dwarf2_per_cu_data per_cu;
8829
19c3d4c9
DE
8830 memset (&create_dwo_cu_data.dwo_unit, 0,
8831 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
8832 memset (&per_cu, 0, sizeof (per_cu));
8833 per_cu.objfile = objfile;
8834 per_cu.is_debug_types = 0;
8835 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 8836 per_cu.section = section;
3019eac3
DE
8837
8838 init_cutu_and_read_dies_no_follow (&per_cu,
8839 &dwo_file->sections.abbrev,
8840 dwo_file,
19c3d4c9
DE
8841 create_dwo_cu_reader,
8842 &create_dwo_cu_data);
8843
8844 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
8845 {
8846 /* If we've already found one, complain. We only support one
8847 because having more than one requires hacking the dwo_name of
8848 each to match, which is highly unlikely to happen. */
8849 if (dwo_unit != NULL)
8850 {
8851 complaint (&symfile_complaints,
8852 _("Multiple CUs in DWO file %s [in module %s]"),
8853 dwo_file->dwo_name, objfile->name);
8854 break;
8855 }
8856
8857 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8858 *dwo_unit = create_dwo_cu_data.dwo_unit;
8859 }
3019eac3
DE
8860
8861 info_ptr += per_cu.length;
8862 }
8863
19c3d4c9 8864 return dwo_unit;
3019eac3
DE
8865}
8866
80626a55
DE
8867/* DWP file .debug_{cu,tu}_index section format:
8868 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8869
8870 Both index sections have the same format, and serve to map a 64-bit
8871 signature to a set of section numbers. Each section begins with a header,
8872 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8873 indexes, and a pool of 32-bit section numbers. The index sections will be
8874 aligned at 8-byte boundaries in the file.
8875
8876 The index section header contains two unsigned 32-bit values (using the
8877 byte order of the application binary):
8878
8879 N, the number of compilation units or type units in the index
8880 M, the number of slots in the hash table
8881
8882 (We assume that N and M will not exceed 2^32 - 1.)
8883
8884 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8885
8886 The hash table begins at offset 8 in the section, and consists of an array
8887 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8888 order of the application binary). Unused slots in the hash table are 0.
8889 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8890
8891 The parallel table begins immediately after the hash table
8892 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8893 array of 32-bit indexes (using the byte order of the application binary),
8894 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8895 table contains a 32-bit index into the pool of section numbers. For unused
8896 hash table slots, the corresponding entry in the parallel table will be 0.
8897
8898 Given a 64-bit compilation unit signature or a type signature S, an entry
8899 in the hash table is located as follows:
8900
8901 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8902 the low-order k bits all set to 1.
8903
8904 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8905
8906 3) If the hash table entry at index H matches the signature, use that
8907 entry. If the hash table entry at index H is unused (all zeroes),
8908 terminate the search: the signature is not present in the table.
8909
8910 4) Let H = (H + H') modulo M. Repeat at Step 3.
8911
8912 Because M > N and H' and M are relatively prime, the search is guaranteed
8913 to stop at an unused slot or find the match.
8914
8915 The pool of section numbers begins immediately following the hash table
8916 (at offset 8 + 12 * M from the beginning of the section). The pool of
8917 section numbers consists of an array of 32-bit words (using the byte order
8918 of the application binary). Each item in the array is indexed starting
8919 from 0. The hash table entry provides the index of the first section
8920 number in the set. Additional section numbers in the set follow, and the
8921 set is terminated by a 0 entry (section number 0 is not used in ELF).
8922
8923 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8924 section must be the first entry in the set, and the .debug_abbrev.dwo must
8925 be the second entry. Other members of the set may follow in any order. */
8926
8927/* Create a hash table to map DWO IDs to their CU/TU entry in
8928 .debug_{info,types}.dwo in DWP_FILE.
8929 Returns NULL if there isn't one.
8930 Note: This function processes DWP files only, not DWO files. */
8931
8932static struct dwp_hash_table *
8933create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8934{
8935 struct objfile *objfile = dwarf2_per_objfile->objfile;
8936 bfd *dbfd = dwp_file->dbfd;
948f8e3d 8937 const gdb_byte *index_ptr, *index_end;
80626a55
DE
8938 struct dwarf2_section_info *index;
8939 uint32_t version, nr_units, nr_slots;
8940 struct dwp_hash_table *htab;
8941
8942 if (is_debug_types)
8943 index = &dwp_file->sections.tu_index;
8944 else
8945 index = &dwp_file->sections.cu_index;
8946
8947 if (dwarf2_section_empty_p (index))
8948 return NULL;
8949 dwarf2_read_section (objfile, index);
8950
8951 index_ptr = index->buffer;
8952 index_end = index_ptr + index->size;
8953
8954 version = read_4_bytes (dbfd, index_ptr);
8955 index_ptr += 8; /* Skip the unused word. */
8956 nr_units = read_4_bytes (dbfd, index_ptr);
8957 index_ptr += 4;
8958 nr_slots = read_4_bytes (dbfd, index_ptr);
8959 index_ptr += 4;
8960
8961 if (version != 1)
8962 {
8963 error (_("Dwarf Error: unsupported DWP file version (%u)"
8964 " [in module %s]"),
8965 version, dwp_file->name);
8966 }
8967 if (nr_slots != (nr_slots & -nr_slots))
8968 {
8969 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8970 " is not power of 2 [in module %s]"),
8971 nr_slots, dwp_file->name);
8972 }
8973
8974 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8975 htab->nr_units = nr_units;
8976 htab->nr_slots = nr_slots;
8977 htab->hash_table = index_ptr;
8978 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8979 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8980
8981 return htab;
8982}
8983
8984/* Update SECTIONS with the data from SECTP.
8985
8986 This function is like the other "locate" section routines that are
8987 passed to bfd_map_over_sections, but in this context the sections to
8988 read comes from the DWP hash table, not the full ELF section table.
8989
8990 The result is non-zero for success, or zero if an error was found. */
8991
8992static int
8993locate_virtual_dwo_sections (asection *sectp,
8994 struct virtual_dwo_sections *sections)
8995{
8996 const struct dwop_section_names *names = &dwop_section_names;
8997
8998 if (section_is_p (sectp->name, &names->abbrev_dwo))
8999 {
9000 /* There can be only one. */
9001 if (sections->abbrev.asection != NULL)
9002 return 0;
9003 sections->abbrev.asection = sectp;
9004 sections->abbrev.size = bfd_get_section_size (sectp);
9005 }
9006 else if (section_is_p (sectp->name, &names->info_dwo)
9007 || section_is_p (sectp->name, &names->types_dwo))
9008 {
9009 /* There can be only one. */
9010 if (sections->info_or_types.asection != NULL)
9011 return 0;
9012 sections->info_or_types.asection = sectp;
9013 sections->info_or_types.size = bfd_get_section_size (sectp);
9014 }
9015 else if (section_is_p (sectp->name, &names->line_dwo))
9016 {
9017 /* There can be only one. */
9018 if (sections->line.asection != NULL)
9019 return 0;
9020 sections->line.asection = sectp;
9021 sections->line.size = bfd_get_section_size (sectp);
9022 }
9023 else if (section_is_p (sectp->name, &names->loc_dwo))
9024 {
9025 /* There can be only one. */
9026 if (sections->loc.asection != NULL)
9027 return 0;
9028 sections->loc.asection = sectp;
9029 sections->loc.size = bfd_get_section_size (sectp);
9030 }
9031 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9032 {
9033 /* There can be only one. */
9034 if (sections->macinfo.asection != NULL)
9035 return 0;
9036 sections->macinfo.asection = sectp;
9037 sections->macinfo.size = bfd_get_section_size (sectp);
9038 }
9039 else if (section_is_p (sectp->name, &names->macro_dwo))
9040 {
9041 /* There can be only one. */
9042 if (sections->macro.asection != NULL)
9043 return 0;
9044 sections->macro.asection = sectp;
9045 sections->macro.size = bfd_get_section_size (sectp);
9046 }
9047 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9048 {
9049 /* There can be only one. */
9050 if (sections->str_offsets.asection != NULL)
9051 return 0;
9052 sections->str_offsets.asection = sectp;
9053 sections->str_offsets.size = bfd_get_section_size (sectp);
9054 }
9055 else
9056 {
9057 /* No other kind of section is valid. */
9058 return 0;
9059 }
9060
9061 return 1;
9062}
9063
9064/* Create a dwo_unit object for the DWO with signature SIGNATURE.
9065 HTAB is the hash table from the DWP file.
0ac5b59e
DE
9066 SECTION_INDEX is the index of the DWO in HTAB.
9067 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. */
80626a55
DE
9068
9069static struct dwo_unit *
9070create_dwo_in_dwp (struct dwp_file *dwp_file,
9071 const struct dwp_hash_table *htab,
9072 uint32_t section_index,
0ac5b59e 9073 const char *comp_dir,
80626a55
DE
9074 ULONGEST signature, int is_debug_types)
9075{
9076 struct objfile *objfile = dwarf2_per_objfile->objfile;
9077 bfd *dbfd = dwp_file->dbfd;
9078 const char *kind = is_debug_types ? "TU" : "CU";
9079 struct dwo_file *dwo_file;
9080 struct dwo_unit *dwo_unit;
9081 struct virtual_dwo_sections sections;
9082 void **dwo_file_slot;
9083 char *virtual_dwo_name;
9084 struct dwarf2_section_info *cutu;
9085 struct cleanup *cleanups;
9086 int i;
9087
9088 if (dwarf2_read_debug)
9089 {
4031ecc5 9090 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/%s in DWP file: %s\n",
80626a55 9091 kind,
4031ecc5 9092 section_index, hex_string (signature),
80626a55
DE
9093 dwp_file->name);
9094 }
9095
9096 /* Fetch the sections of this DWO.
9097 Put a limit on the number of sections we look for so that bad data
9098 doesn't cause us to loop forever. */
9099
9100#define MAX_NR_DWO_SECTIONS \
9101 (1 /* .debug_info or .debug_types */ \
9102 + 1 /* .debug_abbrev */ \
9103 + 1 /* .debug_line */ \
9104 + 1 /* .debug_loc */ \
9105 + 1 /* .debug_str_offsets */ \
9106 + 1 /* .debug_macro */ \
9107 + 1 /* .debug_macinfo */ \
9108 + 1 /* trailing zero */)
9109
9110 memset (&sections, 0, sizeof (sections));
9111 cleanups = make_cleanup (null_cleanup, 0);
9112
9113 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
9114 {
9115 asection *sectp;
9116 uint32_t section_nr =
9117 read_4_bytes (dbfd,
9118 htab->section_pool
9119 + (section_index + i) * sizeof (uint32_t));
9120
9121 if (section_nr == 0)
9122 break;
9123 if (section_nr >= dwp_file->num_sections)
9124 {
9125 error (_("Dwarf Error: bad DWP hash table, section number too large"
9126 " [in module %s]"),
9127 dwp_file->name);
9128 }
9129
9130 sectp = dwp_file->elf_sections[section_nr];
9131 if (! locate_virtual_dwo_sections (sectp, &sections))
9132 {
9133 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9134 " [in module %s]"),
9135 dwp_file->name);
9136 }
9137 }
9138
9139 if (i < 2
9140 || sections.info_or_types.asection == NULL
9141 || sections.abbrev.asection == NULL)
9142 {
9143 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9144 " [in module %s]"),
9145 dwp_file->name);
9146 }
9147 if (i == MAX_NR_DWO_SECTIONS)
9148 {
9149 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9150 " [in module %s]"),
9151 dwp_file->name);
9152 }
9153
9154 /* It's easier for the rest of the code if we fake a struct dwo_file and
9155 have dwo_unit "live" in that. At least for now.
9156
9157 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec
DE
9158 However, for each CU + set of TUs that came from the same original DWO
9159 file, we want to combine them back into a virtual DWO file to save space
80626a55
DE
9160 (fewer struct dwo_file objects to allocated). Remember that for really
9161 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9162
2792b94d
PM
9163 virtual_dwo_name =
9164 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9165 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
9166 sections.line.asection ? sections.line.asection->id : 0,
9167 sections.loc.asection ? sections.loc.asection->id : 0,
9168 (sections.str_offsets.asection
9169 ? sections.str_offsets.asection->id
9170 : 0));
80626a55
DE
9171 make_cleanup (xfree, virtual_dwo_name);
9172 /* Can we use an existing virtual DWO file? */
0ac5b59e 9173 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
9174 /* Create one if necessary. */
9175 if (*dwo_file_slot == NULL)
9176 {
9177 if (dwarf2_read_debug)
9178 {
9179 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9180 virtual_dwo_name);
9181 }
9182 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
9183 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9184 virtual_dwo_name,
9185 strlen (virtual_dwo_name));
9186 dwo_file->comp_dir = comp_dir;
80626a55
DE
9187 dwo_file->sections.abbrev = sections.abbrev;
9188 dwo_file->sections.line = sections.line;
9189 dwo_file->sections.loc = sections.loc;
9190 dwo_file->sections.macinfo = sections.macinfo;
9191 dwo_file->sections.macro = sections.macro;
9192 dwo_file->sections.str_offsets = sections.str_offsets;
9193 /* The "str" section is global to the entire DWP file. */
9194 dwo_file->sections.str = dwp_file->sections.str;
9195 /* The info or types section is assigned later to dwo_unit,
9196 there's no need to record it in dwo_file.
9197 Also, we can't simply record type sections in dwo_file because
9198 we record a pointer into the vector in dwo_unit. As we collect more
9199 types we'll grow the vector and eventually have to reallocate space
9200 for it, invalidating all the pointers into the current copy. */
9201 *dwo_file_slot = dwo_file;
9202 }
9203 else
9204 {
9205 if (dwarf2_read_debug)
9206 {
9207 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9208 virtual_dwo_name);
9209 }
9210 dwo_file = *dwo_file_slot;
9211 }
9212 do_cleanups (cleanups);
9213
9214 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9215 dwo_unit->dwo_file = dwo_file;
9216 dwo_unit->signature = signature;
8a0459fd
DE
9217 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9218 sizeof (struct dwarf2_section_info));
9219 *dwo_unit->section = sections.info_or_types;
80626a55
DE
9220 /* offset, length, type_offset_in_tu are set later. */
9221
9222 return dwo_unit;
9223}
9224
9225/* Lookup the DWO with SIGNATURE in DWP_FILE. */
9226
9227static struct dwo_unit *
9228lookup_dwo_in_dwp (struct dwp_file *dwp_file,
9229 const struct dwp_hash_table *htab,
0ac5b59e 9230 const char *comp_dir,
80626a55
DE
9231 ULONGEST signature, int is_debug_types)
9232{
9233 bfd *dbfd = dwp_file->dbfd;
9234 uint32_t mask = htab->nr_slots - 1;
9235 uint32_t hash = signature & mask;
9236 uint32_t hash2 = ((signature >> 32) & mask) | 1;
9237 unsigned int i;
9238 void **slot;
9239 struct dwo_unit find_dwo_cu, *dwo_cu;
9240
9241 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
9242 find_dwo_cu.signature = signature;
9243 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
9244
9245 if (*slot != NULL)
9246 return *slot;
9247
9248 /* Use a for loop so that we don't loop forever on bad debug info. */
9249 for (i = 0; i < htab->nr_slots; ++i)
9250 {
9251 ULONGEST signature_in_table;
9252
9253 signature_in_table =
9254 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
9255 if (signature_in_table == signature)
9256 {
9257 uint32_t section_index =
9258 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
9259
9260 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
0ac5b59e 9261 comp_dir, signature, is_debug_types);
80626a55
DE
9262 return *slot;
9263 }
9264 if (signature_in_table == 0)
9265 return NULL;
9266 hash = (hash + hash2) & mask;
9267 }
9268
9269 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
9270 " [in module %s]"),
9271 dwp_file->name);
9272}
9273
ab5088bf 9274/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
9275 Open the file specified by FILE_NAME and hand it off to BFD for
9276 preliminary analysis. Return a newly initialized bfd *, which
9277 includes a canonicalized copy of FILE_NAME.
80626a55 9278 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
3019eac3
DE
9279 In case of trouble, return NULL.
9280 NOTE: This function is derived from symfile_bfd_open. */
9281
9282static bfd *
80626a55 9283try_open_dwop_file (const char *file_name, int is_dwp)
3019eac3
DE
9284{
9285 bfd *sym_bfd;
80626a55 9286 int desc, flags;
3019eac3 9287 char *absolute_name;
3019eac3 9288
80626a55
DE
9289 flags = OPF_TRY_CWD_FIRST;
9290 if (is_dwp)
9291 flags |= OPF_SEARCH_IN_PATH;
9292 desc = openp (debug_file_directory, flags, file_name,
3019eac3
DE
9293 O_RDONLY | O_BINARY, &absolute_name);
9294 if (desc < 0)
9295 return NULL;
9296
bb397797 9297 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
3019eac3
DE
9298 if (!sym_bfd)
9299 {
3019eac3
DE
9300 xfree (absolute_name);
9301 return NULL;
9302 }
a4453b7e 9303 xfree (absolute_name);
3019eac3
DE
9304 bfd_set_cacheable (sym_bfd, 1);
9305
9306 if (!bfd_check_format (sym_bfd, bfd_object))
9307 {
cbb099e8 9308 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
9309 return NULL;
9310 }
9311
3019eac3
DE
9312 return sym_bfd;
9313}
9314
ab5088bf 9315/* Try to open DWO file FILE_NAME.
3019eac3
DE
9316 COMP_DIR is the DW_AT_comp_dir attribute.
9317 The result is the bfd handle of the file.
9318 If there is a problem finding or opening the file, return NULL.
9319 Upon success, the canonicalized path of the file is stored in the bfd,
9320 same as symfile_bfd_open. */
9321
9322static bfd *
ab5088bf 9323open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
9324{
9325 bfd *abfd;
3019eac3 9326
80626a55 9327 if (IS_ABSOLUTE_PATH (file_name))
ab5088bf 9328 return try_open_dwop_file (file_name, 0 /*is_dwp*/);
3019eac3
DE
9329
9330 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
9331
9332 if (comp_dir != NULL)
9333 {
80626a55 9334 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
9335
9336 /* NOTE: If comp_dir is a relative path, this will also try the
9337 search path, which seems useful. */
ab5088bf 9338 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/);
3019eac3
DE
9339 xfree (path_to_try);
9340 if (abfd != NULL)
9341 return abfd;
9342 }
9343
9344 /* That didn't work, try debug-file-directory, which, despite its name,
9345 is a list of paths. */
9346
9347 if (*debug_file_directory == '\0')
9348 return NULL;
9349
ab5088bf 9350 return try_open_dwop_file (file_name, 0 /*is_dwp*/);
3019eac3
DE
9351}
9352
80626a55
DE
9353/* This function is mapped across the sections and remembers the offset and
9354 size of each of the DWO debugging sections we are interested in. */
9355
9356static void
9357dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
9358{
9359 struct dwo_sections *dwo_sections = dwo_sections_ptr;
9360 const struct dwop_section_names *names = &dwop_section_names;
9361
9362 if (section_is_p (sectp->name, &names->abbrev_dwo))
9363 {
9364 dwo_sections->abbrev.asection = sectp;
9365 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
9366 }
9367 else if (section_is_p (sectp->name, &names->info_dwo))
9368 {
9369 dwo_sections->info.asection = sectp;
9370 dwo_sections->info.size = bfd_get_section_size (sectp);
9371 }
9372 else if (section_is_p (sectp->name, &names->line_dwo))
9373 {
9374 dwo_sections->line.asection = sectp;
9375 dwo_sections->line.size = bfd_get_section_size (sectp);
9376 }
9377 else if (section_is_p (sectp->name, &names->loc_dwo))
9378 {
9379 dwo_sections->loc.asection = sectp;
9380 dwo_sections->loc.size = bfd_get_section_size (sectp);
9381 }
9382 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9383 {
9384 dwo_sections->macinfo.asection = sectp;
9385 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
9386 }
9387 else if (section_is_p (sectp->name, &names->macro_dwo))
9388 {
9389 dwo_sections->macro.asection = sectp;
9390 dwo_sections->macro.size = bfd_get_section_size (sectp);
9391 }
9392 else if (section_is_p (sectp->name, &names->str_dwo))
9393 {
9394 dwo_sections->str.asection = sectp;
9395 dwo_sections->str.size = bfd_get_section_size (sectp);
9396 }
9397 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9398 {
9399 dwo_sections->str_offsets.asection = sectp;
9400 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
9401 }
9402 else if (section_is_p (sectp->name, &names->types_dwo))
9403 {
9404 struct dwarf2_section_info type_section;
9405
9406 memset (&type_section, 0, sizeof (type_section));
9407 type_section.asection = sectp;
9408 type_section.size = bfd_get_section_size (sectp);
9409 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
9410 &type_section);
9411 }
9412}
9413
ab5088bf 9414/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 9415 by PER_CU. This is for the non-DWP case.
80626a55 9416 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
9417
9418static struct dwo_file *
0ac5b59e
DE
9419open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
9420 const char *dwo_name, const char *comp_dir)
3019eac3
DE
9421{
9422 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
9423 struct dwo_file *dwo_file;
9424 bfd *dbfd;
3019eac3
DE
9425 struct cleanup *cleanups;
9426
ab5088bf 9427 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
9428 if (dbfd == NULL)
9429 {
9430 if (dwarf2_read_debug)
9431 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
9432 return NULL;
9433 }
9434 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
9435 dwo_file->dwo_name = dwo_name;
9436 dwo_file->comp_dir = comp_dir;
80626a55 9437 dwo_file->dbfd = dbfd;
3019eac3
DE
9438
9439 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
9440
80626a55 9441 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 9442
19c3d4c9 9443 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
9444
9445 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9446 dwo_file->sections.types);
9447
9448 discard_cleanups (cleanups);
9449
80626a55
DE
9450 if (dwarf2_read_debug)
9451 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9452
3019eac3
DE
9453 return dwo_file;
9454}
9455
80626a55
DE
9456/* This function is mapped across the sections and remembers the offset and
9457 size of each of the DWP debugging sections we are interested in. */
3019eac3 9458
80626a55
DE
9459static void
9460dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
3019eac3 9461{
80626a55
DE
9462 struct dwp_file *dwp_file = dwp_file_ptr;
9463 const struct dwop_section_names *names = &dwop_section_names;
9464 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 9465
80626a55
DE
9466 /* Record the ELF section number for later lookup: this is what the
9467 .debug_cu_index,.debug_tu_index tables use. */
9468 gdb_assert (elf_section_nr < dwp_file->num_sections);
9469 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 9470
80626a55
DE
9471 /* Look for specific sections that we need. */
9472 if (section_is_p (sectp->name, &names->str_dwo))
9473 {
9474 dwp_file->sections.str.asection = sectp;
9475 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9476 }
9477 else if (section_is_p (sectp->name, &names->cu_index))
9478 {
9479 dwp_file->sections.cu_index.asection = sectp;
9480 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9481 }
9482 else if (section_is_p (sectp->name, &names->tu_index))
9483 {
9484 dwp_file->sections.tu_index.asection = sectp;
9485 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9486 }
9487}
3019eac3 9488
80626a55 9489/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 9490
80626a55
DE
9491static hashval_t
9492hash_dwp_loaded_cutus (const void *item)
9493{
9494 const struct dwo_unit *dwo_unit = item;
3019eac3 9495
80626a55
DE
9496 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9497 return dwo_unit->signature;
3019eac3
DE
9498}
9499
80626a55 9500/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 9501
80626a55
DE
9502static int
9503eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 9504{
80626a55
DE
9505 const struct dwo_unit *dua = a;
9506 const struct dwo_unit *dub = b;
3019eac3 9507
80626a55
DE
9508 return dua->signature == dub->signature;
9509}
3019eac3 9510
80626a55 9511/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 9512
80626a55
DE
9513static htab_t
9514allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9515{
9516 return htab_create_alloc_ex (3,
9517 hash_dwp_loaded_cutus,
9518 eq_dwp_loaded_cutus,
9519 NULL,
9520 &objfile->objfile_obstack,
9521 hashtab_obstack_allocate,
9522 dummy_obstack_deallocate);
9523}
3019eac3 9524
ab5088bf
DE
9525/* Try to open DWP file FILE_NAME.
9526 The result is the bfd handle of the file.
9527 If there is a problem finding or opening the file, return NULL.
9528 Upon success, the canonicalized path of the file is stored in the bfd,
9529 same as symfile_bfd_open. */
9530
9531static bfd *
9532open_dwp_file (const char *file_name)
9533{
9534 return try_open_dwop_file (file_name, 1 /*is_dwp*/);
9535}
9536
80626a55
DE
9537/* Initialize the use of the DWP file for the current objfile.
9538 By convention the name of the DWP file is ${objfile}.dwp.
9539 The result is NULL if it can't be found. */
a766d390 9540
80626a55 9541static struct dwp_file *
ab5088bf 9542open_and_init_dwp_file (void)
80626a55
DE
9543{
9544 struct objfile *objfile = dwarf2_per_objfile->objfile;
9545 struct dwp_file *dwp_file;
9546 char *dwp_name;
9547 bfd *dbfd;
9548 struct cleanup *cleanups;
9549
2792b94d 9550 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
80626a55
DE
9551 cleanups = make_cleanup (xfree, dwp_name);
9552
ab5088bf 9553 dbfd = open_dwp_file (dwp_name);
80626a55
DE
9554 if (dbfd == NULL)
9555 {
9556 if (dwarf2_read_debug)
9557 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9558 do_cleanups (cleanups);
9559 return NULL;
3019eac3 9560 }
80626a55
DE
9561 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9562 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
9563 dwp_name, strlen (dwp_name));
9564 dwp_file->dbfd = dbfd;
9565 do_cleanups (cleanups);
c906108c 9566
80626a55
DE
9567 /* +1: section 0 is unused */
9568 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9569 dwp_file->elf_sections =
9570 OBSTACK_CALLOC (&objfile->objfile_obstack,
9571 dwp_file->num_sections, asection *);
9572
9573 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9574
9575 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9576
9577 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9578
9579 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9580
80626a55
DE
9581 if (dwarf2_read_debug)
9582 {
9583 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9584 fprintf_unfiltered (gdb_stdlog,
9585 " %u CUs, %u TUs\n",
9586 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9587 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9588 }
9589
9590 return dwp_file;
3019eac3 9591}
c906108c 9592
ab5088bf
DE
9593/* Wrapper around open_and_init_dwp_file, only open it once. */
9594
9595static struct dwp_file *
9596get_dwp_file (void)
9597{
9598 if (! dwarf2_per_objfile->dwp_checked)
9599 {
9600 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
9601 dwarf2_per_objfile->dwp_checked = 1;
9602 }
9603 return dwarf2_per_objfile->dwp_file;
9604}
9605
80626a55
DE
9606/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9607 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9608 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 9609 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
9610 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9611
9612 This is called, for example, when wanting to read a variable with a
9613 complex location. Therefore we don't want to do file i/o for every call.
9614 Therefore we don't want to look for a DWO file on every call.
9615 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9616 then we check if we've already seen DWO_NAME, and only THEN do we check
9617 for a DWO file.
9618
1c658ad5 9619 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 9620 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 9621
3019eac3 9622static struct dwo_unit *
80626a55
DE
9623lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9624 const char *dwo_name, const char *comp_dir,
9625 ULONGEST signature, int is_debug_types)
3019eac3
DE
9626{
9627 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
9628 const char *kind = is_debug_types ? "TU" : "CU";
9629 void **dwo_file_slot;
3019eac3 9630 struct dwo_file *dwo_file;
80626a55 9631 struct dwp_file *dwp_file;
cb1df416 9632
6a506a2d
DE
9633 /* First see if there's a DWP file.
9634 If we have a DWP file but didn't find the DWO inside it, don't
9635 look for the original DWO file. It makes gdb behave differently
9636 depending on whether one is debugging in the build tree. */
cf2c3c16 9637
ab5088bf 9638 dwp_file = get_dwp_file ();
80626a55 9639 if (dwp_file != NULL)
cf2c3c16 9640 {
80626a55
DE
9641 const struct dwp_hash_table *dwp_htab =
9642 is_debug_types ? dwp_file->tus : dwp_file->cus;
9643
9644 if (dwp_htab != NULL)
9645 {
9646 struct dwo_unit *dwo_cutu =
0ac5b59e
DE
9647 lookup_dwo_in_dwp (dwp_file, dwp_htab, comp_dir,
9648 signature, is_debug_types);
80626a55
DE
9649
9650 if (dwo_cutu != NULL)
9651 {
9652 if (dwarf2_read_debug)
9653 {
9654 fprintf_unfiltered (gdb_stdlog,
9655 "Virtual DWO %s %s found: @%s\n",
9656 kind, hex_string (signature),
9657 host_address_to_string (dwo_cutu));
9658 }
9659 return dwo_cutu;
9660 }
9661 }
9662 }
6a506a2d 9663 else
80626a55 9664 {
6a506a2d 9665 /* No DWP file, look for the DWO file. */
80626a55 9666
6a506a2d
DE
9667 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
9668 if (*dwo_file_slot == NULL)
80626a55 9669 {
6a506a2d
DE
9670 /* Read in the file and build a table of the CUs/TUs it contains. */
9671 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 9672 }
6a506a2d
DE
9673 /* NOTE: This will be NULL if unable to open the file. */
9674 dwo_file = *dwo_file_slot;
3019eac3 9675
6a506a2d 9676 if (dwo_file != NULL)
19c3d4c9 9677 {
6a506a2d
DE
9678 struct dwo_unit *dwo_cutu = NULL;
9679
9680 if (is_debug_types && dwo_file->tus)
9681 {
9682 struct dwo_unit find_dwo_cutu;
9683
9684 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9685 find_dwo_cutu.signature = signature;
9686 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
9687 }
9688 else if (!is_debug_types && dwo_file->cu)
80626a55 9689 {
6a506a2d
DE
9690 if (signature == dwo_file->cu->signature)
9691 dwo_cutu = dwo_file->cu;
9692 }
9693
9694 if (dwo_cutu != NULL)
9695 {
9696 if (dwarf2_read_debug)
9697 {
9698 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9699 kind, dwo_name, hex_string (signature),
9700 host_address_to_string (dwo_cutu));
9701 }
9702 return dwo_cutu;
80626a55
DE
9703 }
9704 }
2e276125 9705 }
9cdd5dbd 9706
80626a55
DE
9707 /* We didn't find it. This could mean a dwo_id mismatch, or
9708 someone deleted the DWO/DWP file, or the search path isn't set up
9709 correctly to find the file. */
9710
9711 if (dwarf2_read_debug)
9712 {
9713 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9714 kind, dwo_name, hex_string (signature));
9715 }
3019eac3
DE
9716
9717 complaint (&symfile_complaints,
a2ce51a0 9718 _("Could not find DWO %s %s(%s) referenced by %s at offset 0x%x"
3019eac3 9719 " [in module %s]"),
6a506a2d 9720 kind, dwo_name, hex_string (signature),
a2ce51a0 9721 this_unit->is_debug_types ? "TU" : "CU",
6a506a2d 9722 this_unit->offset.sect_off, objfile->name);
3019eac3 9723 return NULL;
5fb290d7
DJ
9724}
9725
80626a55
DE
9726/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9727 See lookup_dwo_cutu_unit for details. */
9728
9729static struct dwo_unit *
9730lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9731 const char *dwo_name, const char *comp_dir,
9732 ULONGEST signature)
9733{
9734 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9735}
9736
9737/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9738 See lookup_dwo_cutu_unit for details. */
9739
9740static struct dwo_unit *
9741lookup_dwo_type_unit (struct signatured_type *this_tu,
9742 const char *dwo_name, const char *comp_dir)
9743{
9744 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9745}
9746
3019eac3
DE
9747/* Free all resources associated with DWO_FILE.
9748 Close the DWO file and munmap the sections.
9749 All memory should be on the objfile obstack. */
348e048f
DE
9750
9751static void
3019eac3 9752free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 9753{
3019eac3
DE
9754 int ix;
9755 struct dwarf2_section_info *section;
348e048f 9756
5c6fa7ab 9757 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 9758 gdb_bfd_unref (dwo_file->dbfd);
348e048f 9759
3019eac3
DE
9760 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9761}
348e048f 9762
3019eac3 9763/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 9764
3019eac3
DE
9765static void
9766free_dwo_file_cleanup (void *arg)
9767{
9768 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9769 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 9770
3019eac3
DE
9771 free_dwo_file (dwo_file, objfile);
9772}
348e048f 9773
3019eac3 9774/* Traversal function for free_dwo_files. */
2ab95328 9775
3019eac3
DE
9776static int
9777free_dwo_file_from_slot (void **slot, void *info)
9778{
9779 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9780 struct objfile *objfile = (struct objfile *) info;
348e048f 9781
3019eac3 9782 free_dwo_file (dwo_file, objfile);
348e048f 9783
3019eac3
DE
9784 return 1;
9785}
348e048f 9786
3019eac3 9787/* Free all resources associated with DWO_FILES. */
348e048f 9788
3019eac3
DE
9789static void
9790free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9791{
9792 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 9793}
3019eac3
DE
9794\f
9795/* Read in various DIEs. */
348e048f 9796
d389af10
JK
9797/* qsort helper for inherit_abstract_dies. */
9798
9799static int
9800unsigned_int_compar (const void *ap, const void *bp)
9801{
9802 unsigned int a = *(unsigned int *) ap;
9803 unsigned int b = *(unsigned int *) bp;
9804
9805 return (a > b) - (b > a);
9806}
9807
9808/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
9809 Inherit only the children of the DW_AT_abstract_origin DIE not being
9810 already referenced by DW_AT_abstract_origin from the children of the
9811 current DIE. */
d389af10
JK
9812
9813static void
9814inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9815{
9816 struct die_info *child_die;
9817 unsigned die_children_count;
9818 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
9819 sect_offset *offsets;
9820 sect_offset *offsets_end, *offsetp;
d389af10
JK
9821 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9822 struct die_info *origin_die;
9823 /* Iterator of the ORIGIN_DIE children. */
9824 struct die_info *origin_child_die;
9825 struct cleanup *cleanups;
9826 struct attribute *attr;
cd02d79d
PA
9827 struct dwarf2_cu *origin_cu;
9828 struct pending **origin_previous_list_in_scope;
d389af10
JK
9829
9830 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9831 if (!attr)
9832 return;
9833
cd02d79d
PA
9834 /* Note that following die references may follow to a die in a
9835 different cu. */
9836
9837 origin_cu = cu;
9838 origin_die = follow_die_ref (die, attr, &origin_cu);
9839
9840 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9841 symbols in. */
9842 origin_previous_list_in_scope = origin_cu->list_in_scope;
9843 origin_cu->list_in_scope = cu->list_in_scope;
9844
edb3359d
DJ
9845 if (die->tag != origin_die->tag
9846 && !(die->tag == DW_TAG_inlined_subroutine
9847 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
9848 complaint (&symfile_complaints,
9849 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 9850 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
9851
9852 child_die = die->child;
9853 die_children_count = 0;
9854 while (child_die && child_die->tag)
9855 {
9856 child_die = sibling_die (child_die);
9857 die_children_count++;
9858 }
9859 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9860 cleanups = make_cleanup (xfree, offsets);
9861
9862 offsets_end = offsets;
9863 child_die = die->child;
9864 while (child_die && child_die->tag)
9865 {
c38f313d
DJ
9866 /* For each CHILD_DIE, find the corresponding child of
9867 ORIGIN_DIE. If there is more than one layer of
9868 DW_AT_abstract_origin, follow them all; there shouldn't be,
9869 but GCC versions at least through 4.4 generate this (GCC PR
9870 40573). */
9871 struct die_info *child_origin_die = child_die;
cd02d79d 9872 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 9873
c38f313d
DJ
9874 while (1)
9875 {
cd02d79d
PA
9876 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9877 child_origin_cu);
c38f313d
DJ
9878 if (attr == NULL)
9879 break;
cd02d79d
PA
9880 child_origin_die = follow_die_ref (child_origin_die, attr,
9881 &child_origin_cu);
c38f313d
DJ
9882 }
9883
d389af10
JK
9884 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9885 counterpart may exist. */
c38f313d 9886 if (child_origin_die != child_die)
d389af10 9887 {
edb3359d
DJ
9888 if (child_die->tag != child_origin_die->tag
9889 && !(child_die->tag == DW_TAG_inlined_subroutine
9890 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
9891 complaint (&symfile_complaints,
9892 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
9893 "different tags"), child_die->offset.sect_off,
9894 child_origin_die->offset.sect_off);
c38f313d
DJ
9895 if (child_origin_die->parent != origin_die)
9896 complaint (&symfile_complaints,
9897 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
9898 "different parents"), child_die->offset.sect_off,
9899 child_origin_die->offset.sect_off);
c38f313d
DJ
9900 else
9901 *offsets_end++ = child_origin_die->offset;
d389af10
JK
9902 }
9903 child_die = sibling_die (child_die);
9904 }
9905 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9906 unsigned_int_compar);
9907 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 9908 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
9909 complaint (&symfile_complaints,
9910 _("Multiple children of DIE 0x%x refer "
9911 "to DIE 0x%x as their abstract origin"),
b64f50a1 9912 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
9913
9914 offsetp = offsets;
9915 origin_child_die = origin_die->child;
9916 while (origin_child_die && origin_child_die->tag)
9917 {
9918 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
9919 while (offsetp < offsets_end
9920 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 9921 offsetp++;
b64f50a1
JK
9922 if (offsetp >= offsets_end
9923 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10
JK
9924 {
9925 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
cd02d79d 9926 process_die (origin_child_die, origin_cu);
d389af10
JK
9927 }
9928 origin_child_die = sibling_die (origin_child_die);
9929 }
cd02d79d 9930 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
9931
9932 do_cleanups (cleanups);
9933}
9934
c906108c 9935static void
e7c27a73 9936read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9937{
e7c27a73 9938 struct objfile *objfile = cu->objfile;
52f0bd74 9939 struct context_stack *new;
c906108c
SS
9940 CORE_ADDR lowpc;
9941 CORE_ADDR highpc;
9942 struct die_info *child_die;
edb3359d 9943 struct attribute *attr, *call_line, *call_file;
15d034d0 9944 const char *name;
e142c38c 9945 CORE_ADDR baseaddr;
801e3a5b 9946 struct block *block;
edb3359d 9947 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
9948 VEC (symbolp) *template_args = NULL;
9949 struct template_symbol *templ_func = NULL;
edb3359d
DJ
9950
9951 if (inlined_func)
9952 {
9953 /* If we do not have call site information, we can't show the
9954 caller of this inlined function. That's too confusing, so
9955 only use the scope for local variables. */
9956 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9957 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9958 if (call_line == NULL || call_file == NULL)
9959 {
9960 read_lexical_block_scope (die, cu);
9961 return;
9962 }
9963 }
c906108c 9964
e142c38c
DJ
9965 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9966
94af9270 9967 name = dwarf2_name (die, cu);
c906108c 9968
e8d05480
JB
9969 /* Ignore functions with missing or empty names. These are actually
9970 illegal according to the DWARF standard. */
9971 if (name == NULL)
9972 {
9973 complaint (&symfile_complaints,
b64f50a1
JK
9974 _("missing name for subprogram DIE at %d"),
9975 die->offset.sect_off);
e8d05480
JB
9976 return;
9977 }
9978
9979 /* Ignore functions with missing or invalid low and high pc attributes. */
9980 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9981 {
ae4d0c03
PM
9982 attr = dwarf2_attr (die, DW_AT_external, cu);
9983 if (!attr || !DW_UNSND (attr))
9984 complaint (&symfile_complaints,
3e43a32a
MS
9985 _("cannot get low and high bounds "
9986 "for subprogram DIE at %d"),
b64f50a1 9987 die->offset.sect_off);
e8d05480
JB
9988 return;
9989 }
c906108c
SS
9990
9991 lowpc += baseaddr;
9992 highpc += baseaddr;
9993
34eaf542
TT
9994 /* If we have any template arguments, then we must allocate a
9995 different sort of symbol. */
9996 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9997 {
9998 if (child_die->tag == DW_TAG_template_type_param
9999 || child_die->tag == DW_TAG_template_value_param)
10000 {
e623cf5d 10001 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
10002 templ_func->base.is_cplus_template_function = 1;
10003 break;
10004 }
10005 }
10006
c906108c 10007 new = push_context (0, lowpc);
34eaf542
TT
10008 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
10009 (struct symbol *) templ_func);
4c2df51b 10010
4cecd739
DJ
10011 /* If there is a location expression for DW_AT_frame_base, record
10012 it. */
e142c38c 10013 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 10014 if (attr)
f1e6e072 10015 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
4c2df51b 10016
e142c38c 10017 cu->list_in_scope = &local_symbols;
c906108c 10018
639d11d3 10019 if (die->child != NULL)
c906108c 10020 {
639d11d3 10021 child_die = die->child;
c906108c
SS
10022 while (child_die && child_die->tag)
10023 {
34eaf542
TT
10024 if (child_die->tag == DW_TAG_template_type_param
10025 || child_die->tag == DW_TAG_template_value_param)
10026 {
10027 struct symbol *arg = new_symbol (child_die, NULL, cu);
10028
f1078f66
DJ
10029 if (arg != NULL)
10030 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
10031 }
10032 else
10033 process_die (child_die, cu);
c906108c
SS
10034 child_die = sibling_die (child_die);
10035 }
10036 }
10037
d389af10
JK
10038 inherit_abstract_dies (die, cu);
10039
4a811a97
UW
10040 /* If we have a DW_AT_specification, we might need to import using
10041 directives from the context of the specification DIE. See the
10042 comment in determine_prefix. */
10043 if (cu->language == language_cplus
10044 && dwarf2_attr (die, DW_AT_specification, cu))
10045 {
10046 struct dwarf2_cu *spec_cu = cu;
10047 struct die_info *spec_die = die_specification (die, &spec_cu);
10048
10049 while (spec_die)
10050 {
10051 child_die = spec_die->child;
10052 while (child_die && child_die->tag)
10053 {
10054 if (child_die->tag == DW_TAG_imported_module)
10055 process_die (child_die, spec_cu);
10056 child_die = sibling_die (child_die);
10057 }
10058
10059 /* In some cases, GCC generates specification DIEs that
10060 themselves contain DW_AT_specification attributes. */
10061 spec_die = die_specification (spec_die, &spec_cu);
10062 }
10063 }
10064
c906108c
SS
10065 new = pop_context ();
10066 /* Make a block for the local symbols within. */
801e3a5b
JB
10067 block = finish_block (new->name, &local_symbols, new->old_blocks,
10068 lowpc, highpc, objfile);
10069
df8a16a1 10070 /* For C++, set the block's scope. */
195a3f6c 10071 if ((cu->language == language_cplus || cu->language == language_fortran)
4d4ec4e5 10072 && cu->processing_has_namespace_info)
195a3f6c
TT
10073 block_set_scope (block, determine_prefix (die, cu),
10074 &objfile->objfile_obstack);
df8a16a1 10075
801e3a5b
JB
10076 /* If we have address ranges, record them. */
10077 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 10078
34eaf542
TT
10079 /* Attach template arguments to function. */
10080 if (! VEC_empty (symbolp, template_args))
10081 {
10082 gdb_assert (templ_func != NULL);
10083
10084 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
10085 templ_func->template_arguments
10086 = obstack_alloc (&objfile->objfile_obstack,
10087 (templ_func->n_template_arguments
10088 * sizeof (struct symbol *)));
10089 memcpy (templ_func->template_arguments,
10090 VEC_address (symbolp, template_args),
10091 (templ_func->n_template_arguments * sizeof (struct symbol *)));
10092 VEC_free (symbolp, template_args);
10093 }
10094
208d8187
JB
10095 /* In C++, we can have functions nested inside functions (e.g., when
10096 a function declares a class that has methods). This means that
10097 when we finish processing a function scope, we may need to go
10098 back to building a containing block's symbol lists. */
10099 local_symbols = new->locals;
27aa8d6a 10100 using_directives = new->using_directives;
208d8187 10101
921e78cf
JB
10102 /* If we've finished processing a top-level function, subsequent
10103 symbols go in the file symbol list. */
10104 if (outermost_context_p ())
e142c38c 10105 cu->list_in_scope = &file_symbols;
c906108c
SS
10106}
10107
10108/* Process all the DIES contained within a lexical block scope. Start
10109 a new scope, process the dies, and then close the scope. */
10110
10111static void
e7c27a73 10112read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10113{
e7c27a73 10114 struct objfile *objfile = cu->objfile;
52f0bd74 10115 struct context_stack *new;
c906108c
SS
10116 CORE_ADDR lowpc, highpc;
10117 struct die_info *child_die;
e142c38c
DJ
10118 CORE_ADDR baseaddr;
10119
10120 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
10121
10122 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
10123 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
10124 as multiple lexical blocks? Handling children in a sane way would
6e70227d 10125 be nasty. Might be easier to properly extend generic blocks to
af34e669 10126 describe ranges. */
d85a05f0 10127 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
10128 return;
10129 lowpc += baseaddr;
10130 highpc += baseaddr;
10131
10132 push_context (0, lowpc);
639d11d3 10133 if (die->child != NULL)
c906108c 10134 {
639d11d3 10135 child_die = die->child;
c906108c
SS
10136 while (child_die && child_die->tag)
10137 {
e7c27a73 10138 process_die (child_die, cu);
c906108c
SS
10139 child_die = sibling_die (child_die);
10140 }
10141 }
10142 new = pop_context ();
10143
8540c487 10144 if (local_symbols != NULL || using_directives != NULL)
c906108c 10145 {
801e3a5b
JB
10146 struct block *block
10147 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
10148 highpc, objfile);
10149
10150 /* Note that recording ranges after traversing children, as we
10151 do here, means that recording a parent's ranges entails
10152 walking across all its children's ranges as they appear in
10153 the address map, which is quadratic behavior.
10154
10155 It would be nicer to record the parent's ranges before
10156 traversing its children, simply overriding whatever you find
10157 there. But since we don't even decide whether to create a
10158 block until after we've traversed its children, that's hard
10159 to do. */
10160 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
10161 }
10162 local_symbols = new->locals;
27aa8d6a 10163 using_directives = new->using_directives;
c906108c
SS
10164}
10165
96408a79
SA
10166/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
10167
10168static void
10169read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
10170{
10171 struct objfile *objfile = cu->objfile;
10172 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10173 CORE_ADDR pc, baseaddr;
10174 struct attribute *attr;
10175 struct call_site *call_site, call_site_local;
10176 void **slot;
10177 int nparams;
10178 struct die_info *child_die;
10179
10180 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10181
10182 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10183 if (!attr)
10184 {
10185 complaint (&symfile_complaints,
10186 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
10187 "DIE 0x%x [in module %s]"),
b64f50a1 10188 die->offset.sect_off, objfile->name);
96408a79
SA
10189 return;
10190 }
10191 pc = DW_ADDR (attr) + baseaddr;
10192
10193 if (cu->call_site_htab == NULL)
10194 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
10195 NULL, &objfile->objfile_obstack,
10196 hashtab_obstack_allocate, NULL);
10197 call_site_local.pc = pc;
10198 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
10199 if (*slot != NULL)
10200 {
10201 complaint (&symfile_complaints,
10202 _("Duplicate PC %s for DW_TAG_GNU_call_site "
10203 "DIE 0x%x [in module %s]"),
b64f50a1 10204 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
96408a79
SA
10205 return;
10206 }
10207
10208 /* Count parameters at the caller. */
10209
10210 nparams = 0;
10211 for (child_die = die->child; child_die && child_die->tag;
10212 child_die = sibling_die (child_die))
10213 {
10214 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10215 {
10216 complaint (&symfile_complaints,
10217 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
10218 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 10219 child_die->tag, child_die->offset.sect_off, objfile->name);
96408a79
SA
10220 continue;
10221 }
10222
10223 nparams++;
10224 }
10225
10226 call_site = obstack_alloc (&objfile->objfile_obstack,
10227 (sizeof (*call_site)
10228 + (sizeof (*call_site->parameter)
10229 * (nparams - 1))));
10230 *slot = call_site;
10231 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
10232 call_site->pc = pc;
10233
10234 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
10235 {
10236 struct die_info *func_die;
10237
10238 /* Skip also over DW_TAG_inlined_subroutine. */
10239 for (func_die = die->parent;
10240 func_die && func_die->tag != DW_TAG_subprogram
10241 && func_die->tag != DW_TAG_subroutine_type;
10242 func_die = func_die->parent);
10243
10244 /* DW_AT_GNU_all_call_sites is a superset
10245 of DW_AT_GNU_all_tail_call_sites. */
10246 if (func_die
10247 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
10248 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
10249 {
10250 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
10251 not complete. But keep CALL_SITE for look ups via call_site_htab,
10252 both the initial caller containing the real return address PC and
10253 the final callee containing the current PC of a chain of tail
10254 calls do not need to have the tail call list complete. But any
10255 function candidate for a virtual tail call frame searched via
10256 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
10257 determined unambiguously. */
10258 }
10259 else
10260 {
10261 struct type *func_type = NULL;
10262
10263 if (func_die)
10264 func_type = get_die_type (func_die, cu);
10265 if (func_type != NULL)
10266 {
10267 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
10268
10269 /* Enlist this call site to the function. */
10270 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
10271 TYPE_TAIL_CALL_LIST (func_type) = call_site;
10272 }
10273 else
10274 complaint (&symfile_complaints,
10275 _("Cannot find function owning DW_TAG_GNU_call_site "
10276 "DIE 0x%x [in module %s]"),
b64f50a1 10277 die->offset.sect_off, objfile->name);
96408a79
SA
10278 }
10279 }
10280
10281 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
10282 if (attr == NULL)
10283 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10284 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
10285 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
10286 /* Keep NULL DWARF_BLOCK. */;
10287 else if (attr_form_is_block (attr))
10288 {
10289 struct dwarf2_locexpr_baton *dlbaton;
10290
10291 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
10292 dlbaton->data = DW_BLOCK (attr)->data;
10293 dlbaton->size = DW_BLOCK (attr)->size;
10294 dlbaton->per_cu = cu->per_cu;
10295
10296 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
10297 }
10298 else if (is_ref_attr (attr))
10299 {
96408a79
SA
10300 struct dwarf2_cu *target_cu = cu;
10301 struct die_info *target_die;
10302
ac9ec31b 10303 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
10304 gdb_assert (target_cu->objfile == objfile);
10305 if (die_is_declaration (target_die, target_cu))
10306 {
9112db09
JK
10307 const char *target_physname = NULL;
10308 struct attribute *target_attr;
10309
10310 /* Prefer the mangled name; otherwise compute the demangled one. */
10311 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
10312 if (target_attr == NULL)
10313 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
10314 target_cu);
10315 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
10316 target_physname = DW_STRING (target_attr);
10317 else
10318 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
10319 if (target_physname == NULL)
10320 complaint (&symfile_complaints,
10321 _("DW_AT_GNU_call_site_target target DIE has invalid "
10322 "physname, for referencing DIE 0x%x [in module %s]"),
b64f50a1 10323 die->offset.sect_off, objfile->name);
96408a79 10324 else
7d455152 10325 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
10326 }
10327 else
10328 {
10329 CORE_ADDR lowpc;
10330
10331 /* DW_AT_entry_pc should be preferred. */
10332 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
10333 complaint (&symfile_complaints,
10334 _("DW_AT_GNU_call_site_target target DIE has invalid "
10335 "low pc, for referencing DIE 0x%x [in module %s]"),
b64f50a1 10336 die->offset.sect_off, objfile->name);
96408a79
SA
10337 else
10338 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
10339 }
10340 }
10341 else
10342 complaint (&symfile_complaints,
10343 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
10344 "block nor reference, for DIE 0x%x [in module %s]"),
b64f50a1 10345 die->offset.sect_off, objfile->name);
96408a79
SA
10346
10347 call_site->per_cu = cu->per_cu;
10348
10349 for (child_die = die->child;
10350 child_die && child_die->tag;
10351 child_die = sibling_die (child_die))
10352 {
96408a79 10353 struct call_site_parameter *parameter;
1788b2d3 10354 struct attribute *loc, *origin;
96408a79
SA
10355
10356 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10357 {
10358 /* Already printed the complaint above. */
10359 continue;
10360 }
10361
10362 gdb_assert (call_site->parameter_count < nparams);
10363 parameter = &call_site->parameter[call_site->parameter_count];
10364
1788b2d3
JK
10365 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
10366 specifies DW_TAG_formal_parameter. Value of the data assumed for the
10367 register is contained in DW_AT_GNU_call_site_value. */
96408a79 10368
24c5c679 10369 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3
JK
10370 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
10371 if (loc == NULL && origin != NULL && is_ref_attr (origin))
10372 {
10373 sect_offset offset;
10374
10375 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
10376 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
10377 if (!offset_in_cu_p (&cu->header, offset))
10378 {
10379 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
10380 binding can be done only inside one CU. Such referenced DIE
10381 therefore cannot be even moved to DW_TAG_partial_unit. */
10382 complaint (&symfile_complaints,
10383 _("DW_AT_abstract_origin offset is not in CU for "
10384 "DW_TAG_GNU_call_site child DIE 0x%x "
10385 "[in module %s]"),
10386 child_die->offset.sect_off, objfile->name);
10387 continue;
10388 }
1788b2d3
JK
10389 parameter->u.param_offset.cu_off = (offset.sect_off
10390 - cu->header.offset.sect_off);
10391 }
10392 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
10393 {
10394 complaint (&symfile_complaints,
10395 _("No DW_FORM_block* DW_AT_location for "
10396 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 10397 child_die->offset.sect_off, objfile->name);
96408a79
SA
10398 continue;
10399 }
24c5c679 10400 else
96408a79 10401 {
24c5c679
JK
10402 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
10403 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
10404 if (parameter->u.dwarf_reg != -1)
10405 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
10406 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
10407 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
10408 &parameter->u.fb_offset))
10409 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
10410 else
10411 {
10412 complaint (&symfile_complaints,
10413 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
10414 "for DW_FORM_block* DW_AT_location is supported for "
10415 "DW_TAG_GNU_call_site child DIE 0x%x "
10416 "[in module %s]"),
10417 child_die->offset.sect_off, objfile->name);
10418 continue;
10419 }
96408a79
SA
10420 }
10421
10422 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
10423 if (!attr_form_is_block (attr))
10424 {
10425 complaint (&symfile_complaints,
10426 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
10427 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 10428 child_die->offset.sect_off, objfile->name);
96408a79
SA
10429 continue;
10430 }
10431 parameter->value = DW_BLOCK (attr)->data;
10432 parameter->value_size = DW_BLOCK (attr)->size;
10433
10434 /* Parameters are not pre-cleared by memset above. */
10435 parameter->data_value = NULL;
10436 parameter->data_value_size = 0;
10437 call_site->parameter_count++;
10438
10439 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
10440 if (attr)
10441 {
10442 if (!attr_form_is_block (attr))
10443 complaint (&symfile_complaints,
10444 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
10445 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 10446 child_die->offset.sect_off, objfile->name);
96408a79
SA
10447 else
10448 {
10449 parameter->data_value = DW_BLOCK (attr)->data;
10450 parameter->data_value_size = DW_BLOCK (attr)->size;
10451 }
10452 }
10453 }
10454}
10455
43039443 10456/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
10457 Return 1 if the attributes are present and valid, otherwise, return 0.
10458 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
10459
10460static int
10461dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
10462 CORE_ADDR *high_return, struct dwarf2_cu *cu,
10463 struct partial_symtab *ranges_pst)
43039443
JK
10464{
10465 struct objfile *objfile = cu->objfile;
10466 struct comp_unit_head *cu_header = &cu->header;
10467 bfd *obfd = objfile->obfd;
10468 unsigned int addr_size = cu_header->addr_size;
10469 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10470 /* Base address selection entry. */
10471 CORE_ADDR base;
10472 int found_base;
10473 unsigned int dummy;
d521ce57 10474 const gdb_byte *buffer;
43039443
JK
10475 CORE_ADDR marker;
10476 int low_set;
10477 CORE_ADDR low = 0;
10478 CORE_ADDR high = 0;
ff013f42 10479 CORE_ADDR baseaddr;
43039443 10480
d00adf39
DE
10481 found_base = cu->base_known;
10482 base = cu->base_address;
43039443 10483
be391dca 10484 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 10485 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
10486 {
10487 complaint (&symfile_complaints,
10488 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10489 offset);
10490 return 0;
10491 }
dce234bc 10492 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
10493
10494 /* Read in the largest possible address. */
10495 marker = read_address (obfd, buffer, cu, &dummy);
10496 if ((marker & mask) == mask)
10497 {
10498 /* If we found the largest possible address, then
10499 read the base address. */
10500 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10501 buffer += 2 * addr_size;
10502 offset += 2 * addr_size;
10503 found_base = 1;
10504 }
10505
10506 low_set = 0;
10507
e7030f15 10508 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 10509
43039443
JK
10510 while (1)
10511 {
10512 CORE_ADDR range_beginning, range_end;
10513
10514 range_beginning = read_address (obfd, buffer, cu, &dummy);
10515 buffer += addr_size;
10516 range_end = read_address (obfd, buffer, cu, &dummy);
10517 buffer += addr_size;
10518 offset += 2 * addr_size;
10519
10520 /* An end of list marker is a pair of zero addresses. */
10521 if (range_beginning == 0 && range_end == 0)
10522 /* Found the end of list entry. */
10523 break;
10524
10525 /* Each base address selection entry is a pair of 2 values.
10526 The first is the largest possible address, the second is
10527 the base address. Check for a base address here. */
10528 if ((range_beginning & mask) == mask)
10529 {
10530 /* If we found the largest possible address, then
10531 read the base address. */
10532 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10533 found_base = 1;
10534 continue;
10535 }
10536
10537 if (!found_base)
10538 {
10539 /* We have no valid base address for the ranges
10540 data. */
10541 complaint (&symfile_complaints,
10542 _("Invalid .debug_ranges data (no base address)"));
10543 return 0;
10544 }
10545
9277c30c
UW
10546 if (range_beginning > range_end)
10547 {
10548 /* Inverted range entries are invalid. */
10549 complaint (&symfile_complaints,
10550 _("Invalid .debug_ranges data (inverted range)"));
10551 return 0;
10552 }
10553
10554 /* Empty range entries have no effect. */
10555 if (range_beginning == range_end)
10556 continue;
10557
43039443
JK
10558 range_beginning += base;
10559 range_end += base;
10560
01093045
DE
10561 /* A not-uncommon case of bad debug info.
10562 Don't pollute the addrmap with bad data. */
10563 if (range_beginning + baseaddr == 0
10564 && !dwarf2_per_objfile->has_section_at_zero)
10565 {
10566 complaint (&symfile_complaints,
10567 _(".debug_ranges entry has start address of zero"
10568 " [in module %s]"), objfile->name);
10569 continue;
10570 }
10571
9277c30c 10572 if (ranges_pst != NULL)
ff013f42 10573 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
10574 range_beginning + baseaddr,
10575 range_end - 1 + baseaddr,
ff013f42
JK
10576 ranges_pst);
10577
43039443
JK
10578 /* FIXME: This is recording everything as a low-high
10579 segment of consecutive addresses. We should have a
10580 data structure for discontiguous block ranges
10581 instead. */
10582 if (! low_set)
10583 {
10584 low = range_beginning;
10585 high = range_end;
10586 low_set = 1;
10587 }
10588 else
10589 {
10590 if (range_beginning < low)
10591 low = range_beginning;
10592 if (range_end > high)
10593 high = range_end;
10594 }
10595 }
10596
10597 if (! low_set)
10598 /* If the first entry is an end-of-list marker, the range
10599 describes an empty scope, i.e. no instructions. */
10600 return 0;
10601
10602 if (low_return)
10603 *low_return = low;
10604 if (high_return)
10605 *high_return = high;
10606 return 1;
10607}
10608
af34e669
DJ
10609/* Get low and high pc attributes from a die. Return 1 if the attributes
10610 are present and valid, otherwise, return 0. Return -1 if the range is
10611 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 10612
c906108c 10613static int
af34e669 10614dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
10615 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10616 struct partial_symtab *pst)
c906108c
SS
10617{
10618 struct attribute *attr;
91da1414 10619 struct attribute *attr_high;
af34e669
DJ
10620 CORE_ADDR low = 0;
10621 CORE_ADDR high = 0;
10622 int ret = 0;
c906108c 10623
91da1414
MW
10624 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10625 if (attr_high)
af34e669 10626 {
e142c38c 10627 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 10628 if (attr)
91da1414
MW
10629 {
10630 low = DW_ADDR (attr);
3019eac3
DE
10631 if (attr_high->form == DW_FORM_addr
10632 || attr_high->form == DW_FORM_GNU_addr_index)
91da1414
MW
10633 high = DW_ADDR (attr_high);
10634 else
10635 high = low + DW_UNSND (attr_high);
10636 }
af34e669
DJ
10637 else
10638 /* Found high w/o low attribute. */
10639 return 0;
10640
10641 /* Found consecutive range of addresses. */
10642 ret = 1;
10643 }
c906108c 10644 else
af34e669 10645 {
e142c38c 10646 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
10647 if (attr != NULL)
10648 {
ab435259
DE
10649 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10650 We take advantage of the fact that DW_AT_ranges does not appear
10651 in DW_TAG_compile_unit of DWO files. */
10652 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10653 unsigned int ranges_offset = (DW_UNSND (attr)
10654 + (need_ranges_base
10655 ? cu->ranges_base
10656 : 0));
2e3cf129 10657
af34e669 10658 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 10659 .debug_ranges section. */
2e3cf129 10660 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 10661 return 0;
43039443 10662 /* Found discontinuous range of addresses. */
af34e669
DJ
10663 ret = -1;
10664 }
10665 }
c906108c 10666
9373cf26
JK
10667 /* read_partial_die has also the strict LOW < HIGH requirement. */
10668 if (high <= low)
c906108c
SS
10669 return 0;
10670
10671 /* When using the GNU linker, .gnu.linkonce. sections are used to
10672 eliminate duplicate copies of functions and vtables and such.
10673 The linker will arbitrarily choose one and discard the others.
10674 The AT_*_pc values for such functions refer to local labels in
10675 these sections. If the section from that file was discarded, the
10676 labels are not in the output, so the relocs get a value of 0.
10677 If this is a discarded function, mark the pc bounds as invalid,
10678 so that GDB will ignore it. */
72dca2f5 10679 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
10680 return 0;
10681
10682 *lowpc = low;
96408a79
SA
10683 if (highpc)
10684 *highpc = high;
af34e669 10685 return ret;
c906108c
SS
10686}
10687
b084d499
JB
10688/* Assuming that DIE represents a subprogram DIE or a lexical block, get
10689 its low and high PC addresses. Do nothing if these addresses could not
10690 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10691 and HIGHPC to the high address if greater than HIGHPC. */
10692
10693static void
10694dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10695 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10696 struct dwarf2_cu *cu)
10697{
10698 CORE_ADDR low, high;
10699 struct die_info *child = die->child;
10700
d85a05f0 10701 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
10702 {
10703 *lowpc = min (*lowpc, low);
10704 *highpc = max (*highpc, high);
10705 }
10706
10707 /* If the language does not allow nested subprograms (either inside
10708 subprograms or lexical blocks), we're done. */
10709 if (cu->language != language_ada)
10710 return;
6e70227d 10711
b084d499
JB
10712 /* Check all the children of the given DIE. If it contains nested
10713 subprograms, then check their pc bounds. Likewise, we need to
10714 check lexical blocks as well, as they may also contain subprogram
10715 definitions. */
10716 while (child && child->tag)
10717 {
10718 if (child->tag == DW_TAG_subprogram
10719 || child->tag == DW_TAG_lexical_block)
10720 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10721 child = sibling_die (child);
10722 }
10723}
10724
fae299cd
DC
10725/* Get the low and high pc's represented by the scope DIE, and store
10726 them in *LOWPC and *HIGHPC. If the correct values can't be
10727 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10728
10729static void
10730get_scope_pc_bounds (struct die_info *die,
10731 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10732 struct dwarf2_cu *cu)
10733{
10734 CORE_ADDR best_low = (CORE_ADDR) -1;
10735 CORE_ADDR best_high = (CORE_ADDR) 0;
10736 CORE_ADDR current_low, current_high;
10737
d85a05f0 10738 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
10739 {
10740 best_low = current_low;
10741 best_high = current_high;
10742 }
10743 else
10744 {
10745 struct die_info *child = die->child;
10746
10747 while (child && child->tag)
10748 {
10749 switch (child->tag) {
10750 case DW_TAG_subprogram:
b084d499 10751 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
10752 break;
10753 case DW_TAG_namespace:
f55ee35c 10754 case DW_TAG_module:
fae299cd
DC
10755 /* FIXME: carlton/2004-01-16: Should we do this for
10756 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10757 that current GCC's always emit the DIEs corresponding
10758 to definitions of methods of classes as children of a
10759 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10760 the DIEs giving the declarations, which could be
10761 anywhere). But I don't see any reason why the
10762 standards says that they have to be there. */
10763 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10764
10765 if (current_low != ((CORE_ADDR) -1))
10766 {
10767 best_low = min (best_low, current_low);
10768 best_high = max (best_high, current_high);
10769 }
10770 break;
10771 default:
0963b4bd 10772 /* Ignore. */
fae299cd
DC
10773 break;
10774 }
10775
10776 child = sibling_die (child);
10777 }
10778 }
10779
10780 *lowpc = best_low;
10781 *highpc = best_high;
10782}
10783
801e3a5b
JB
10784/* Record the address ranges for BLOCK, offset by BASEADDR, as given
10785 in DIE. */
380bca97 10786
801e3a5b
JB
10787static void
10788dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10789 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10790{
bb5ed363 10791 struct objfile *objfile = cu->objfile;
801e3a5b 10792 struct attribute *attr;
91da1414 10793 struct attribute *attr_high;
801e3a5b 10794
91da1414
MW
10795 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10796 if (attr_high)
801e3a5b 10797 {
801e3a5b
JB
10798 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10799 if (attr)
10800 {
10801 CORE_ADDR low = DW_ADDR (attr);
91da1414 10802 CORE_ADDR high;
3019eac3
DE
10803 if (attr_high->form == DW_FORM_addr
10804 || attr_high->form == DW_FORM_GNU_addr_index)
91da1414
MW
10805 high = DW_ADDR (attr_high);
10806 else
10807 high = low + DW_UNSND (attr_high);
9a619af0 10808
801e3a5b
JB
10809 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10810 }
10811 }
10812
10813 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10814 if (attr)
10815 {
bb5ed363 10816 bfd *obfd = objfile->obfd;
ab435259
DE
10817 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10818 We take advantage of the fact that DW_AT_ranges does not appear
10819 in DW_TAG_compile_unit of DWO files. */
10820 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
10821
10822 /* The value of the DW_AT_ranges attribute is the offset of the
10823 address range list in the .debug_ranges section. */
ab435259
DE
10824 unsigned long offset = (DW_UNSND (attr)
10825 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 10826 const gdb_byte *buffer;
801e3a5b
JB
10827
10828 /* For some target architectures, but not others, the
10829 read_address function sign-extends the addresses it returns.
10830 To recognize base address selection entries, we need a
10831 mask. */
10832 unsigned int addr_size = cu->header.addr_size;
10833 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10834
10835 /* The base address, to which the next pair is relative. Note
10836 that this 'base' is a DWARF concept: most entries in a range
10837 list are relative, to reduce the number of relocs against the
10838 debugging information. This is separate from this function's
10839 'baseaddr' argument, which GDB uses to relocate debugging
10840 information from a shared library based on the address at
10841 which the library was loaded. */
d00adf39
DE
10842 CORE_ADDR base = cu->base_address;
10843 int base_known = cu->base_known;
801e3a5b 10844
d62bfeaf 10845 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 10846 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
10847 {
10848 complaint (&symfile_complaints,
10849 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10850 offset);
10851 return;
10852 }
d62bfeaf 10853 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
10854
10855 for (;;)
10856 {
10857 unsigned int bytes_read;
10858 CORE_ADDR start, end;
10859
10860 start = read_address (obfd, buffer, cu, &bytes_read);
10861 buffer += bytes_read;
10862 end = read_address (obfd, buffer, cu, &bytes_read);
10863 buffer += bytes_read;
10864
10865 /* Did we find the end of the range list? */
10866 if (start == 0 && end == 0)
10867 break;
10868
10869 /* Did we find a base address selection entry? */
10870 else if ((start & base_select_mask) == base_select_mask)
10871 {
10872 base = end;
10873 base_known = 1;
10874 }
10875
10876 /* We found an ordinary address range. */
10877 else
10878 {
10879 if (!base_known)
10880 {
10881 complaint (&symfile_complaints,
3e43a32a
MS
10882 _("Invalid .debug_ranges data "
10883 "(no base address)"));
801e3a5b
JB
10884 return;
10885 }
10886
9277c30c
UW
10887 if (start > end)
10888 {
10889 /* Inverted range entries are invalid. */
10890 complaint (&symfile_complaints,
10891 _("Invalid .debug_ranges data "
10892 "(inverted range)"));
10893 return;
10894 }
10895
10896 /* Empty range entries have no effect. */
10897 if (start == end)
10898 continue;
10899
01093045
DE
10900 start += base + baseaddr;
10901 end += base + baseaddr;
10902
10903 /* A not-uncommon case of bad debug info.
10904 Don't pollute the addrmap with bad data. */
10905 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10906 {
10907 complaint (&symfile_complaints,
10908 _(".debug_ranges entry has start address of zero"
10909 " [in module %s]"), objfile->name);
10910 continue;
10911 }
10912
10913 record_block_range (block, start, end - 1);
801e3a5b
JB
10914 }
10915 }
10916 }
10917}
10918
685b1105
JK
10919/* Check whether the producer field indicates either of GCC < 4.6, or the
10920 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 10921
685b1105
JK
10922static void
10923check_producer (struct dwarf2_cu *cu)
60d5a603
JK
10924{
10925 const char *cs;
10926 int major, minor, release;
10927
10928 if (cu->producer == NULL)
10929 {
10930 /* For unknown compilers expect their behavior is DWARF version
10931 compliant.
10932
10933 GCC started to support .debug_types sections by -gdwarf-4 since
10934 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10935 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10936 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10937 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 10938 }
685b1105 10939 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
60d5a603 10940 {
685b1105
JK
10941 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10942
ba919b58
TT
10943 cs = &cu->producer[strlen ("GNU ")];
10944 while (*cs && !isdigit (*cs))
10945 cs++;
10946 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10947 {
10948 /* Not recognized as GCC. */
10949 }
10950 else
1b80a9fa
JK
10951 {
10952 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10953 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10954 }
685b1105
JK
10955 }
10956 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10957 cu->producer_is_icc = 1;
10958 else
10959 {
10960 /* For other non-GCC compilers, expect their behavior is DWARF version
10961 compliant. */
60d5a603
JK
10962 }
10963
ba919b58 10964 cu->checked_producer = 1;
685b1105 10965}
ba919b58 10966
685b1105
JK
10967/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10968 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10969 during 4.6.0 experimental. */
10970
10971static int
10972producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10973{
10974 if (!cu->checked_producer)
10975 check_producer (cu);
10976
10977 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
10978}
10979
10980/* Return the default accessibility type if it is not overriden by
10981 DW_AT_accessibility. */
10982
10983static enum dwarf_access_attribute
10984dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10985{
10986 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10987 {
10988 /* The default DWARF 2 accessibility for members is public, the default
10989 accessibility for inheritance is private. */
10990
10991 if (die->tag != DW_TAG_inheritance)
10992 return DW_ACCESS_public;
10993 else
10994 return DW_ACCESS_private;
10995 }
10996 else
10997 {
10998 /* DWARF 3+ defines the default accessibility a different way. The same
10999 rules apply now for DW_TAG_inheritance as for the members and it only
11000 depends on the container kind. */
11001
11002 if (die->parent->tag == DW_TAG_class_type)
11003 return DW_ACCESS_private;
11004 else
11005 return DW_ACCESS_public;
11006 }
11007}
11008
74ac6d43
TT
11009/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
11010 offset. If the attribute was not found return 0, otherwise return
11011 1. If it was found but could not properly be handled, set *OFFSET
11012 to 0. */
11013
11014static int
11015handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
11016 LONGEST *offset)
11017{
11018 struct attribute *attr;
11019
11020 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
11021 if (attr != NULL)
11022 {
11023 *offset = 0;
11024
11025 /* Note that we do not check for a section offset first here.
11026 This is because DW_AT_data_member_location is new in DWARF 4,
11027 so if we see it, we can assume that a constant form is really
11028 a constant and not a section offset. */
11029 if (attr_form_is_constant (attr))
11030 *offset = dwarf2_get_attr_constant_value (attr, 0);
11031 else if (attr_form_is_section_offset (attr))
11032 dwarf2_complex_location_expr_complaint ();
11033 else if (attr_form_is_block (attr))
11034 *offset = decode_locdesc (DW_BLOCK (attr), cu);
11035 else
11036 dwarf2_complex_location_expr_complaint ();
11037
11038 return 1;
11039 }
11040
11041 return 0;
11042}
11043
c906108c
SS
11044/* Add an aggregate field to the field list. */
11045
11046static void
107d2387 11047dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 11048 struct dwarf2_cu *cu)
6e70227d 11049{
e7c27a73 11050 struct objfile *objfile = cu->objfile;
5e2b427d 11051 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
11052 struct nextfield *new_field;
11053 struct attribute *attr;
11054 struct field *fp;
15d034d0 11055 const char *fieldname = "";
c906108c
SS
11056
11057 /* Allocate a new field list entry and link it in. */
11058 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 11059 make_cleanup (xfree, new_field);
c906108c 11060 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
11061
11062 if (die->tag == DW_TAG_inheritance)
11063 {
11064 new_field->next = fip->baseclasses;
11065 fip->baseclasses = new_field;
11066 }
11067 else
11068 {
11069 new_field->next = fip->fields;
11070 fip->fields = new_field;
11071 }
c906108c
SS
11072 fip->nfields++;
11073
e142c38c 11074 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
11075 if (attr)
11076 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
11077 else
11078 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
11079 if (new_field->accessibility != DW_ACCESS_public)
11080 fip->non_public_fields = 1;
60d5a603 11081
e142c38c 11082 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
11083 if (attr)
11084 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
11085 else
11086 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
11087
11088 fp = &new_field->field;
a9a9bd0f 11089
e142c38c 11090 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 11091 {
74ac6d43
TT
11092 LONGEST offset;
11093
a9a9bd0f 11094 /* Data member other than a C++ static data member. */
6e70227d 11095
c906108c 11096 /* Get type of field. */
e7c27a73 11097 fp->type = die_type (die, cu);
c906108c 11098
d6a843b5 11099 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 11100
c906108c 11101 /* Get bit size of field (zero if none). */
e142c38c 11102 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
11103 if (attr)
11104 {
11105 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
11106 }
11107 else
11108 {
11109 FIELD_BITSIZE (*fp) = 0;
11110 }
11111
11112 /* Get bit offset of field. */
74ac6d43
TT
11113 if (handle_data_member_location (die, cu, &offset))
11114 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 11115 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
11116 if (attr)
11117 {
5e2b427d 11118 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
11119 {
11120 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
11121 additional bit offset from the MSB of the containing
11122 anonymous object to the MSB of the field. We don't
11123 have to do anything special since we don't need to
11124 know the size of the anonymous object. */
f41f5e61 11125 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
11126 }
11127 else
11128 {
11129 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
11130 MSB of the anonymous object, subtract off the number of
11131 bits from the MSB of the field to the MSB of the
11132 object, and then subtract off the number of bits of
11133 the field itself. The result is the bit offset of
11134 the LSB of the field. */
c906108c
SS
11135 int anonymous_size;
11136 int bit_offset = DW_UNSND (attr);
11137
e142c38c 11138 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
11139 if (attr)
11140 {
11141 /* The size of the anonymous object containing
11142 the bit field is explicit, so use the
11143 indicated size (in bytes). */
11144 anonymous_size = DW_UNSND (attr);
11145 }
11146 else
11147 {
11148 /* The size of the anonymous object containing
11149 the bit field must be inferred from the type
11150 attribute of the data member containing the
11151 bit field. */
11152 anonymous_size = TYPE_LENGTH (fp->type);
11153 }
f41f5e61
PA
11154 SET_FIELD_BITPOS (*fp,
11155 (FIELD_BITPOS (*fp)
11156 + anonymous_size * bits_per_byte
11157 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
11158 }
11159 }
11160
11161 /* Get name of field. */
39cbfefa
DJ
11162 fieldname = dwarf2_name (die, cu);
11163 if (fieldname == NULL)
11164 fieldname = "";
d8151005
DJ
11165
11166 /* The name is already allocated along with this objfile, so we don't
11167 need to duplicate it for the type. */
11168 fp->name = fieldname;
c906108c
SS
11169
11170 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 11171 pointer or virtual base class pointer) to private. */
e142c38c 11172 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 11173 {
d48cc9dd 11174 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
11175 new_field->accessibility = DW_ACCESS_private;
11176 fip->non_public_fields = 1;
11177 }
11178 }
a9a9bd0f 11179 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 11180 {
a9a9bd0f
DC
11181 /* C++ static member. */
11182
11183 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
11184 is a declaration, but all versions of G++ as of this writing
11185 (so through at least 3.2.1) incorrectly generate
11186 DW_TAG_variable tags. */
6e70227d 11187
ff355380 11188 const char *physname;
c906108c 11189
a9a9bd0f 11190 /* Get name of field. */
39cbfefa
DJ
11191 fieldname = dwarf2_name (die, cu);
11192 if (fieldname == NULL)
c906108c
SS
11193 return;
11194
254e6b9e 11195 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
11196 if (attr
11197 /* Only create a symbol if this is an external value.
11198 new_symbol checks this and puts the value in the global symbol
11199 table, which we want. If it is not external, new_symbol
11200 will try to put the value in cu->list_in_scope which is wrong. */
11201 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
11202 {
11203 /* A static const member, not much different than an enum as far as
11204 we're concerned, except that we can support more types. */
11205 new_symbol (die, NULL, cu);
11206 }
11207
2df3850c 11208 /* Get physical name. */
ff355380 11209 physname = dwarf2_physname (fieldname, die, cu);
c906108c 11210
d8151005
DJ
11211 /* The name is already allocated along with this objfile, so we don't
11212 need to duplicate it for the type. */
11213 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 11214 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 11215 FIELD_NAME (*fp) = fieldname;
c906108c
SS
11216 }
11217 else if (die->tag == DW_TAG_inheritance)
11218 {
74ac6d43 11219 LONGEST offset;
d4b96c9a 11220
74ac6d43
TT
11221 /* C++ base class field. */
11222 if (handle_data_member_location (die, cu, &offset))
11223 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 11224 FIELD_BITSIZE (*fp) = 0;
e7c27a73 11225 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
11226 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
11227 fip->nbaseclasses++;
11228 }
11229}
11230
98751a41
JK
11231/* Add a typedef defined in the scope of the FIP's class. */
11232
11233static void
11234dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
11235 struct dwarf2_cu *cu)
6e70227d 11236{
98751a41 11237 struct objfile *objfile = cu->objfile;
98751a41
JK
11238 struct typedef_field_list *new_field;
11239 struct attribute *attr;
11240 struct typedef_field *fp;
11241 char *fieldname = "";
11242
11243 /* Allocate a new field list entry and link it in. */
11244 new_field = xzalloc (sizeof (*new_field));
11245 make_cleanup (xfree, new_field);
11246
11247 gdb_assert (die->tag == DW_TAG_typedef);
11248
11249 fp = &new_field->field;
11250
11251 /* Get name of field. */
11252 fp->name = dwarf2_name (die, cu);
11253 if (fp->name == NULL)
11254 return;
11255
11256 fp->type = read_type_die (die, cu);
11257
11258 new_field->next = fip->typedef_field_list;
11259 fip->typedef_field_list = new_field;
11260 fip->typedef_field_list_count++;
11261}
11262
c906108c
SS
11263/* Create the vector of fields, and attach it to the type. */
11264
11265static void
fba45db2 11266dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 11267 struct dwarf2_cu *cu)
c906108c
SS
11268{
11269 int nfields = fip->nfields;
11270
11271 /* Record the field count, allocate space for the array of fields,
11272 and create blank accessibility bitfields if necessary. */
11273 TYPE_NFIELDS (type) = nfields;
11274 TYPE_FIELDS (type) = (struct field *)
11275 TYPE_ALLOC (type, sizeof (struct field) * nfields);
11276 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
11277
b4ba55a1 11278 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
11279 {
11280 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11281
11282 TYPE_FIELD_PRIVATE_BITS (type) =
11283 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11284 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
11285
11286 TYPE_FIELD_PROTECTED_BITS (type) =
11287 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11288 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
11289
774b6a14
TT
11290 TYPE_FIELD_IGNORE_BITS (type) =
11291 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11292 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
11293 }
11294
11295 /* If the type has baseclasses, allocate and clear a bit vector for
11296 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 11297 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
11298 {
11299 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 11300 unsigned char *pointer;
c906108c
SS
11301
11302 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
11303 pointer = TYPE_ALLOC (type, num_bytes);
11304 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
11305 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
11306 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
11307 }
11308
3e43a32a
MS
11309 /* Copy the saved-up fields into the field vector. Start from the head of
11310 the list, adding to the tail of the field array, so that they end up in
11311 the same order in the array in which they were added to the list. */
c906108c
SS
11312 while (nfields-- > 0)
11313 {
7d0ccb61
DJ
11314 struct nextfield *fieldp;
11315
11316 if (fip->fields)
11317 {
11318 fieldp = fip->fields;
11319 fip->fields = fieldp->next;
11320 }
11321 else
11322 {
11323 fieldp = fip->baseclasses;
11324 fip->baseclasses = fieldp->next;
11325 }
11326
11327 TYPE_FIELD (type, nfields) = fieldp->field;
11328 switch (fieldp->accessibility)
c906108c 11329 {
c5aa993b 11330 case DW_ACCESS_private:
b4ba55a1
JB
11331 if (cu->language != language_ada)
11332 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 11333 break;
c906108c 11334
c5aa993b 11335 case DW_ACCESS_protected:
b4ba55a1
JB
11336 if (cu->language != language_ada)
11337 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 11338 break;
c906108c 11339
c5aa993b
JM
11340 case DW_ACCESS_public:
11341 break;
c906108c 11342
c5aa993b
JM
11343 default:
11344 /* Unknown accessibility. Complain and treat it as public. */
11345 {
e2e0b3e5 11346 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 11347 fieldp->accessibility);
c5aa993b
JM
11348 }
11349 break;
c906108c
SS
11350 }
11351 if (nfields < fip->nbaseclasses)
11352 {
7d0ccb61 11353 switch (fieldp->virtuality)
c906108c 11354 {
c5aa993b
JM
11355 case DW_VIRTUALITY_virtual:
11356 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 11357 if (cu->language == language_ada)
a73c6dcd 11358 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
11359 SET_TYPE_FIELD_VIRTUAL (type, nfields);
11360 break;
c906108c
SS
11361 }
11362 }
c906108c
SS
11363 }
11364}
11365
7d27a96d
TT
11366/* Return true if this member function is a constructor, false
11367 otherwise. */
11368
11369static int
11370dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
11371{
11372 const char *fieldname;
11373 const char *typename;
11374 int len;
11375
11376 if (die->parent == NULL)
11377 return 0;
11378
11379 if (die->parent->tag != DW_TAG_structure_type
11380 && die->parent->tag != DW_TAG_union_type
11381 && die->parent->tag != DW_TAG_class_type)
11382 return 0;
11383
11384 fieldname = dwarf2_name (die, cu);
11385 typename = dwarf2_name (die->parent, cu);
11386 if (fieldname == NULL || typename == NULL)
11387 return 0;
11388
11389 len = strlen (fieldname);
11390 return (strncmp (fieldname, typename, len) == 0
11391 && (typename[len] == '\0' || typename[len] == '<'));
11392}
11393
c906108c
SS
11394/* Add a member function to the proper fieldlist. */
11395
11396static void
107d2387 11397dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 11398 struct type *type, struct dwarf2_cu *cu)
c906108c 11399{
e7c27a73 11400 struct objfile *objfile = cu->objfile;
c906108c
SS
11401 struct attribute *attr;
11402 struct fnfieldlist *flp;
11403 int i;
11404 struct fn_field *fnp;
15d034d0 11405 const char *fieldname;
c906108c 11406 struct nextfnfield *new_fnfield;
f792889a 11407 struct type *this_type;
60d5a603 11408 enum dwarf_access_attribute accessibility;
c906108c 11409
b4ba55a1 11410 if (cu->language == language_ada)
a73c6dcd 11411 error (_("unexpected member function in Ada type"));
b4ba55a1 11412
2df3850c 11413 /* Get name of member function. */
39cbfefa
DJ
11414 fieldname = dwarf2_name (die, cu);
11415 if (fieldname == NULL)
2df3850c 11416 return;
c906108c 11417
c906108c
SS
11418 /* Look up member function name in fieldlist. */
11419 for (i = 0; i < fip->nfnfields; i++)
11420 {
27bfe10e 11421 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
11422 break;
11423 }
11424
11425 /* Create new list element if necessary. */
11426 if (i < fip->nfnfields)
11427 flp = &fip->fnfieldlists[i];
11428 else
11429 {
11430 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
11431 {
11432 fip->fnfieldlists = (struct fnfieldlist *)
11433 xrealloc (fip->fnfieldlists,
11434 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 11435 * sizeof (struct fnfieldlist));
c906108c 11436 if (fip->nfnfields == 0)
c13c43fd 11437 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
11438 }
11439 flp = &fip->fnfieldlists[fip->nfnfields];
11440 flp->name = fieldname;
11441 flp->length = 0;
11442 flp->head = NULL;
3da10d80 11443 i = fip->nfnfields++;
c906108c
SS
11444 }
11445
11446 /* Create a new member function field and chain it to the field list
0963b4bd 11447 entry. */
c906108c 11448 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 11449 make_cleanup (xfree, new_fnfield);
c906108c
SS
11450 memset (new_fnfield, 0, sizeof (struct nextfnfield));
11451 new_fnfield->next = flp->head;
11452 flp->head = new_fnfield;
11453 flp->length++;
11454
11455 /* Fill in the member function field info. */
11456 fnp = &new_fnfield->fnfield;
3da10d80
KS
11457
11458 /* Delay processing of the physname until later. */
11459 if (cu->language == language_cplus || cu->language == language_java)
11460 {
11461 add_to_method_list (type, i, flp->length - 1, fieldname,
11462 die, cu);
11463 }
11464 else
11465 {
1d06ead6 11466 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
11467 fnp->physname = physname ? physname : "";
11468 }
11469
c906108c 11470 fnp->type = alloc_type (objfile);
f792889a
DJ
11471 this_type = read_type_die (die, cu);
11472 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 11473 {
f792889a 11474 int nparams = TYPE_NFIELDS (this_type);
c906108c 11475
f792889a 11476 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
11477 of the method itself (TYPE_CODE_METHOD). */
11478 smash_to_method_type (fnp->type, type,
f792889a
DJ
11479 TYPE_TARGET_TYPE (this_type),
11480 TYPE_FIELDS (this_type),
11481 TYPE_NFIELDS (this_type),
11482 TYPE_VARARGS (this_type));
c906108c
SS
11483
11484 /* Handle static member functions.
c5aa993b 11485 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
11486 member functions. G++ helps GDB by marking the first
11487 parameter for non-static member functions (which is the this
11488 pointer) as artificial. We obtain this information from
11489 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 11490 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
11491 fnp->voffset = VOFFSET_STATIC;
11492 }
11493 else
e2e0b3e5 11494 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 11495 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
11496
11497 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 11498 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 11499 fnp->fcontext = die_containing_type (die, cu);
c906108c 11500
3e43a32a
MS
11501 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11502 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
11503
11504 /* Get accessibility. */
e142c38c 11505 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 11506 if (attr)
60d5a603
JK
11507 accessibility = DW_UNSND (attr);
11508 else
11509 accessibility = dwarf2_default_access_attribute (die, cu);
11510 switch (accessibility)
c906108c 11511 {
60d5a603
JK
11512 case DW_ACCESS_private:
11513 fnp->is_private = 1;
11514 break;
11515 case DW_ACCESS_protected:
11516 fnp->is_protected = 1;
11517 break;
c906108c
SS
11518 }
11519
b02dede2 11520 /* Check for artificial methods. */
e142c38c 11521 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
11522 if (attr && DW_UNSND (attr) != 0)
11523 fnp->is_artificial = 1;
11524
7d27a96d
TT
11525 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11526
0d564a31 11527 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
11528 function. For older versions of GCC, this is an offset in the
11529 appropriate virtual table, as specified by DW_AT_containing_type.
11530 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
11531 to the object address. */
11532
e142c38c 11533 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 11534 if (attr)
8e19ed76 11535 {
aec5aa8b 11536 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 11537 {
aec5aa8b
TT
11538 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11539 {
11540 /* Old-style GCC. */
11541 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11542 }
11543 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11544 || (DW_BLOCK (attr)->size > 1
11545 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11546 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11547 {
11548 struct dwarf_block blk;
11549 int offset;
11550
11551 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11552 ? 1 : 2);
11553 blk.size = DW_BLOCK (attr)->size - offset;
11554 blk.data = DW_BLOCK (attr)->data + offset;
11555 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11556 if ((fnp->voffset % cu->header.addr_size) != 0)
11557 dwarf2_complex_location_expr_complaint ();
11558 else
11559 fnp->voffset /= cu->header.addr_size;
11560 fnp->voffset += 2;
11561 }
11562 else
11563 dwarf2_complex_location_expr_complaint ();
11564
11565 if (!fnp->fcontext)
11566 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11567 }
3690dd37 11568 else if (attr_form_is_section_offset (attr))
8e19ed76 11569 {
4d3c2250 11570 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
11571 }
11572 else
11573 {
4d3c2250
KB
11574 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11575 fieldname);
8e19ed76 11576 }
0d564a31 11577 }
d48cc9dd
DJ
11578 else
11579 {
11580 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11581 if (attr && DW_UNSND (attr))
11582 {
11583 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11584 complaint (&symfile_complaints,
3e43a32a
MS
11585 _("Member function \"%s\" (offset %d) is virtual "
11586 "but the vtable offset is not specified"),
b64f50a1 11587 fieldname, die->offset.sect_off);
9655fd1a 11588 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
11589 TYPE_CPLUS_DYNAMIC (type) = 1;
11590 }
11591 }
c906108c
SS
11592}
11593
11594/* Create the vector of member function fields, and attach it to the type. */
11595
11596static void
fba45db2 11597dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 11598 struct dwarf2_cu *cu)
c906108c
SS
11599{
11600 struct fnfieldlist *flp;
c906108c
SS
11601 int i;
11602
b4ba55a1 11603 if (cu->language == language_ada)
a73c6dcd 11604 error (_("unexpected member functions in Ada type"));
b4ba55a1 11605
c906108c
SS
11606 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11607 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11608 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11609
11610 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11611 {
11612 struct nextfnfield *nfp = flp->head;
11613 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11614 int k;
11615
11616 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11617 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11618 fn_flp->fn_fields = (struct fn_field *)
11619 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11620 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 11621 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
11622 }
11623
11624 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
11625}
11626
1168df01
JB
11627/* Returns non-zero if NAME is the name of a vtable member in CU's
11628 language, zero otherwise. */
11629static int
11630is_vtable_name (const char *name, struct dwarf2_cu *cu)
11631{
11632 static const char vptr[] = "_vptr";
987504bb 11633 static const char vtable[] = "vtable";
1168df01 11634
987504bb
JJ
11635 /* Look for the C++ and Java forms of the vtable. */
11636 if ((cu->language == language_java
11637 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11638 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11639 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
11640 return 1;
11641
11642 return 0;
11643}
11644
c0dd20ea 11645/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
11646 functions, with the ABI-specified layout. If TYPE describes
11647 such a structure, smash it into a member function type.
61049d3b
DJ
11648
11649 GCC shouldn't do this; it should just output pointer to member DIEs.
11650 This is GCC PR debug/28767. */
c0dd20ea 11651
0b92b5bb
TT
11652static void
11653quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 11654{
0b92b5bb 11655 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
11656
11657 /* Check for a structure with no name and two children. */
0b92b5bb
TT
11658 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11659 return;
c0dd20ea
DJ
11660
11661 /* Check for __pfn and __delta members. */
0b92b5bb
TT
11662 if (TYPE_FIELD_NAME (type, 0) == NULL
11663 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11664 || TYPE_FIELD_NAME (type, 1) == NULL
11665 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11666 return;
c0dd20ea
DJ
11667
11668 /* Find the type of the method. */
0b92b5bb 11669 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
11670 if (pfn_type == NULL
11671 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11672 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 11673 return;
c0dd20ea
DJ
11674
11675 /* Look for the "this" argument. */
11676 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11677 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 11678 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 11679 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 11680 return;
c0dd20ea
DJ
11681
11682 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
11683 new_type = alloc_type (objfile);
11684 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
11685 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11686 TYPE_VARARGS (pfn_type));
0b92b5bb 11687 smash_to_methodptr_type (type, new_type);
c0dd20ea 11688}
1168df01 11689
685b1105
JK
11690/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11691 (icc). */
11692
11693static int
11694producer_is_icc (struct dwarf2_cu *cu)
11695{
11696 if (!cu->checked_producer)
11697 check_producer (cu);
11698
11699 return cu->producer_is_icc;
11700}
11701
c906108c 11702/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
11703 (definition) to create a type for the structure or union. Fill in
11704 the type's name and general properties; the members will not be
3d1d5ea3 11705 processed until process_structure_scope.
c906108c 11706
c767944b
DJ
11707 NOTE: we need to call these functions regardless of whether or not the
11708 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c
SS
11709 structure or union. This gets the type entered into our set of
11710 user defined types.
11711
11712 However, if the structure is incomplete (an opaque struct/union)
11713 then suppress creating a symbol table entry for it since gdb only
11714 wants to find the one with the complete definition. Note that if
11715 it is complete, we just call new_symbol, which does it's own
11716 checking about whether the struct/union is anonymous or not (and
11717 suppresses creating a symbol table entry itself). */
11718
f792889a 11719static struct type *
134d01f1 11720read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11721{
e7c27a73 11722 struct objfile *objfile = cu->objfile;
c906108c
SS
11723 struct type *type;
11724 struct attribute *attr;
15d034d0 11725 const char *name;
c906108c 11726
348e048f
DE
11727 /* If the definition of this type lives in .debug_types, read that type.
11728 Don't follow DW_AT_specification though, that will take us back up
11729 the chain and we want to go down. */
45e58e77 11730 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
11731 if (attr)
11732 {
ac9ec31b 11733 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 11734
ac9ec31b 11735 /* The type's CU may not be the same as CU.
02142a6c 11736 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
11737 return set_die_type (die, type, cu);
11738 }
11739
c0dd20ea 11740 type = alloc_type (objfile);
c906108c 11741 INIT_CPLUS_SPECIFIC (type);
93311388 11742
39cbfefa
DJ
11743 name = dwarf2_name (die, cu);
11744 if (name != NULL)
c906108c 11745 {
987504bb
JJ
11746 if (cu->language == language_cplus
11747 || cu->language == language_java)
63d06c5c 11748 {
15d034d0 11749 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
11750
11751 /* dwarf2_full_name might have already finished building the DIE's
11752 type. If so, there is no need to continue. */
11753 if (get_die_type (die, cu) != NULL)
11754 return get_die_type (die, cu);
11755
11756 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
11757 if (die->tag == DW_TAG_structure_type
11758 || die->tag == DW_TAG_class_type)
11759 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
11760 }
11761 else
11762 {
d8151005
DJ
11763 /* The name is already allocated along with this objfile, so
11764 we don't need to duplicate it for the type. */
7d455152 11765 TYPE_TAG_NAME (type) = name;
94af9270
KS
11766 if (die->tag == DW_TAG_class_type)
11767 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 11768 }
c906108c
SS
11769 }
11770
11771 if (die->tag == DW_TAG_structure_type)
11772 {
11773 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11774 }
11775 else if (die->tag == DW_TAG_union_type)
11776 {
11777 TYPE_CODE (type) = TYPE_CODE_UNION;
11778 }
11779 else
11780 {
c906108c
SS
11781 TYPE_CODE (type) = TYPE_CODE_CLASS;
11782 }
11783
0cc2414c
TT
11784 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11785 TYPE_DECLARED_CLASS (type) = 1;
11786
e142c38c 11787 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
11788 if (attr)
11789 {
11790 TYPE_LENGTH (type) = DW_UNSND (attr);
11791 }
11792 else
11793 {
11794 TYPE_LENGTH (type) = 0;
11795 }
11796
685b1105
JK
11797 if (producer_is_icc (cu))
11798 {
11799 /* ICC does not output the required DW_AT_declaration
11800 on incomplete types, but gives them a size of zero. */
11801 }
11802 else
11803 TYPE_STUB_SUPPORTED (type) = 1;
11804
dc718098 11805 if (die_is_declaration (die, cu))
876cecd0 11806 TYPE_STUB (type) = 1;
a6c727b2
DJ
11807 else if (attr == NULL && die->child == NULL
11808 && producer_is_realview (cu->producer))
11809 /* RealView does not output the required DW_AT_declaration
11810 on incomplete types. */
11811 TYPE_STUB (type) = 1;
dc718098 11812
c906108c
SS
11813 /* We need to add the type field to the die immediately so we don't
11814 infinitely recurse when dealing with pointers to the structure
0963b4bd 11815 type within the structure itself. */
1c379e20 11816 set_die_type (die, type, cu);
c906108c 11817
7e314c57
JK
11818 /* set_die_type should be already done. */
11819 set_descriptive_type (type, die, cu);
11820
c767944b
DJ
11821 return type;
11822}
11823
11824/* Finish creating a structure or union type, including filling in
11825 its members and creating a symbol for it. */
11826
11827static void
11828process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11829{
11830 struct objfile *objfile = cu->objfile;
11831 struct die_info *child_die = die->child;
11832 struct type *type;
11833
11834 type = get_die_type (die, cu);
11835 if (type == NULL)
11836 type = read_structure_type (die, cu);
11837
e142c38c 11838 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
11839 {
11840 struct field_info fi;
11841 struct die_info *child_die;
34eaf542 11842 VEC (symbolp) *template_args = NULL;
c767944b 11843 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
11844
11845 memset (&fi, 0, sizeof (struct field_info));
11846
639d11d3 11847 child_die = die->child;
c906108c
SS
11848
11849 while (child_die && child_die->tag)
11850 {
a9a9bd0f
DC
11851 if (child_die->tag == DW_TAG_member
11852 || child_die->tag == DW_TAG_variable)
c906108c 11853 {
a9a9bd0f
DC
11854 /* NOTE: carlton/2002-11-05: A C++ static data member
11855 should be a DW_TAG_member that is a declaration, but
11856 all versions of G++ as of this writing (so through at
11857 least 3.2.1) incorrectly generate DW_TAG_variable
11858 tags for them instead. */
e7c27a73 11859 dwarf2_add_field (&fi, child_die, cu);
c906108c 11860 }
8713b1b1 11861 else if (child_die->tag == DW_TAG_subprogram)
c906108c 11862 {
0963b4bd 11863 /* C++ member function. */
e7c27a73 11864 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
11865 }
11866 else if (child_die->tag == DW_TAG_inheritance)
11867 {
11868 /* C++ base class field. */
e7c27a73 11869 dwarf2_add_field (&fi, child_die, cu);
c906108c 11870 }
98751a41
JK
11871 else if (child_die->tag == DW_TAG_typedef)
11872 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
11873 else if (child_die->tag == DW_TAG_template_type_param
11874 || child_die->tag == DW_TAG_template_value_param)
11875 {
11876 struct symbol *arg = new_symbol (child_die, NULL, cu);
11877
f1078f66
DJ
11878 if (arg != NULL)
11879 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11880 }
11881
c906108c
SS
11882 child_die = sibling_die (child_die);
11883 }
11884
34eaf542
TT
11885 /* Attach template arguments to type. */
11886 if (! VEC_empty (symbolp, template_args))
11887 {
11888 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11889 TYPE_N_TEMPLATE_ARGUMENTS (type)
11890 = VEC_length (symbolp, template_args);
11891 TYPE_TEMPLATE_ARGUMENTS (type)
11892 = obstack_alloc (&objfile->objfile_obstack,
11893 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11894 * sizeof (struct symbol *)));
11895 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11896 VEC_address (symbolp, template_args),
11897 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11898 * sizeof (struct symbol *)));
11899 VEC_free (symbolp, template_args);
11900 }
11901
c906108c
SS
11902 /* Attach fields and member functions to the type. */
11903 if (fi.nfields)
e7c27a73 11904 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
11905 if (fi.nfnfields)
11906 {
e7c27a73 11907 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 11908
c5aa993b 11909 /* Get the type which refers to the base class (possibly this
c906108c 11910 class itself) which contains the vtable pointer for the current
0d564a31
DJ
11911 class from the DW_AT_containing_type attribute. This use of
11912 DW_AT_containing_type is a GNU extension. */
c906108c 11913
e142c38c 11914 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 11915 {
e7c27a73 11916 struct type *t = die_containing_type (die, cu);
c906108c
SS
11917
11918 TYPE_VPTR_BASETYPE (type) = t;
11919 if (type == t)
11920 {
c906108c
SS
11921 int i;
11922
11923 /* Our own class provides vtbl ptr. */
11924 for (i = TYPE_NFIELDS (t) - 1;
11925 i >= TYPE_N_BASECLASSES (t);
11926 --i)
11927 {
0d5cff50 11928 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 11929
1168df01 11930 if (is_vtable_name (fieldname, cu))
c906108c
SS
11931 {
11932 TYPE_VPTR_FIELDNO (type) = i;
11933 break;
11934 }
11935 }
11936
11937 /* Complain if virtual function table field not found. */
11938 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 11939 complaint (&symfile_complaints,
3e43a32a
MS
11940 _("virtual function table pointer "
11941 "not found when defining class '%s'"),
4d3c2250
KB
11942 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11943 "");
c906108c
SS
11944 }
11945 else
11946 {
11947 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11948 }
11949 }
f6235d4c
EZ
11950 else if (cu->producer
11951 && strncmp (cu->producer,
11952 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11953 {
11954 /* The IBM XLC compiler does not provide direct indication
11955 of the containing type, but the vtable pointer is
11956 always named __vfp. */
11957
11958 int i;
11959
11960 for (i = TYPE_NFIELDS (type) - 1;
11961 i >= TYPE_N_BASECLASSES (type);
11962 --i)
11963 {
11964 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11965 {
11966 TYPE_VPTR_FIELDNO (type) = i;
11967 TYPE_VPTR_BASETYPE (type) = type;
11968 break;
11969 }
11970 }
11971 }
c906108c 11972 }
98751a41
JK
11973
11974 /* Copy fi.typedef_field_list linked list elements content into the
11975 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11976 if (fi.typedef_field_list)
11977 {
11978 int i = fi.typedef_field_list_count;
11979
a0d7a4ff 11980 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
11981 TYPE_TYPEDEF_FIELD_ARRAY (type)
11982 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11983 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11984
11985 /* Reverse the list order to keep the debug info elements order. */
11986 while (--i >= 0)
11987 {
11988 struct typedef_field *dest, *src;
6e70227d 11989
98751a41
JK
11990 dest = &TYPE_TYPEDEF_FIELD (type, i);
11991 src = &fi.typedef_field_list->field;
11992 fi.typedef_field_list = fi.typedef_field_list->next;
11993 *dest = *src;
11994 }
11995 }
c767944b
DJ
11996
11997 do_cleanups (back_to);
eb2a6f42
TT
11998
11999 if (HAVE_CPLUS_STRUCT (type))
12000 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 12001 }
63d06c5c 12002
bb5ed363 12003 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 12004
90aeadfc
DC
12005 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
12006 snapshots) has been known to create a die giving a declaration
12007 for a class that has, as a child, a die giving a definition for a
12008 nested class. So we have to process our children even if the
12009 current die is a declaration. Normally, of course, a declaration
12010 won't have any children at all. */
134d01f1 12011
90aeadfc
DC
12012 while (child_die != NULL && child_die->tag)
12013 {
12014 if (child_die->tag == DW_TAG_member
12015 || child_die->tag == DW_TAG_variable
34eaf542
TT
12016 || child_die->tag == DW_TAG_inheritance
12017 || child_die->tag == DW_TAG_template_value_param
12018 || child_die->tag == DW_TAG_template_type_param)
134d01f1 12019 {
90aeadfc 12020 /* Do nothing. */
134d01f1 12021 }
90aeadfc
DC
12022 else
12023 process_die (child_die, cu);
134d01f1 12024
90aeadfc 12025 child_die = sibling_die (child_die);
134d01f1
DJ
12026 }
12027
fa4028e9
JB
12028 /* Do not consider external references. According to the DWARF standard,
12029 these DIEs are identified by the fact that they have no byte_size
12030 attribute, and a declaration attribute. */
12031 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
12032 || !die_is_declaration (die, cu))
c767944b 12033 new_symbol (die, type, cu);
134d01f1
DJ
12034}
12035
12036/* Given a DW_AT_enumeration_type die, set its type. We do not
12037 complete the type's fields yet, or create any symbols. */
c906108c 12038
f792889a 12039static struct type *
134d01f1 12040read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12041{
e7c27a73 12042 struct objfile *objfile = cu->objfile;
c906108c 12043 struct type *type;
c906108c 12044 struct attribute *attr;
0114d602 12045 const char *name;
134d01f1 12046
348e048f
DE
12047 /* If the definition of this type lives in .debug_types, read that type.
12048 Don't follow DW_AT_specification though, that will take us back up
12049 the chain and we want to go down. */
45e58e77 12050 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
12051 if (attr)
12052 {
ac9ec31b 12053 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 12054
ac9ec31b 12055 /* The type's CU may not be the same as CU.
02142a6c 12056 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
12057 return set_die_type (die, type, cu);
12058 }
12059
c906108c
SS
12060 type = alloc_type (objfile);
12061
12062 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 12063 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 12064 if (name != NULL)
7d455152 12065 TYPE_TAG_NAME (type) = name;
c906108c 12066
e142c38c 12067 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12068 if (attr)
12069 {
12070 TYPE_LENGTH (type) = DW_UNSND (attr);
12071 }
12072 else
12073 {
12074 TYPE_LENGTH (type) = 0;
12075 }
12076
137033e9
JB
12077 /* The enumeration DIE can be incomplete. In Ada, any type can be
12078 declared as private in the package spec, and then defined only
12079 inside the package body. Such types are known as Taft Amendment
12080 Types. When another package uses such a type, an incomplete DIE
12081 may be generated by the compiler. */
02eb380e 12082 if (die_is_declaration (die, cu))
876cecd0 12083 TYPE_STUB (type) = 1;
02eb380e 12084
f792889a 12085 return set_die_type (die, type, cu);
134d01f1
DJ
12086}
12087
12088/* Given a pointer to a die which begins an enumeration, process all
12089 the dies that define the members of the enumeration, and create the
12090 symbol for the enumeration type.
12091
12092 NOTE: We reverse the order of the element list. */
12093
12094static void
12095process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
12096{
f792889a 12097 struct type *this_type;
134d01f1 12098
f792889a
DJ
12099 this_type = get_die_type (die, cu);
12100 if (this_type == NULL)
12101 this_type = read_enumeration_type (die, cu);
9dc481d3 12102
639d11d3 12103 if (die->child != NULL)
c906108c 12104 {
9dc481d3
DE
12105 struct die_info *child_die;
12106 struct symbol *sym;
12107 struct field *fields = NULL;
12108 int num_fields = 0;
12109 int unsigned_enum = 1;
15d034d0 12110 const char *name;
cafec441
TT
12111 int flag_enum = 1;
12112 ULONGEST mask = 0;
9dc481d3 12113
639d11d3 12114 child_die = die->child;
c906108c
SS
12115 while (child_die && child_die->tag)
12116 {
12117 if (child_die->tag != DW_TAG_enumerator)
12118 {
e7c27a73 12119 process_die (child_die, cu);
c906108c
SS
12120 }
12121 else
12122 {
39cbfefa
DJ
12123 name = dwarf2_name (child_die, cu);
12124 if (name)
c906108c 12125 {
f792889a 12126 sym = new_symbol (child_die, this_type, cu);
c906108c 12127 if (SYMBOL_VALUE (sym) < 0)
cafec441
TT
12128 {
12129 unsigned_enum = 0;
12130 flag_enum = 0;
12131 }
12132 else if ((mask & SYMBOL_VALUE (sym)) != 0)
12133 flag_enum = 0;
12134 else
12135 mask |= SYMBOL_VALUE (sym);
c906108c
SS
12136
12137 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
12138 {
12139 fields = (struct field *)
12140 xrealloc (fields,
12141 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12142 * sizeof (struct field));
c906108c
SS
12143 }
12144
3567439c 12145 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 12146 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 12147 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
12148 FIELD_BITSIZE (fields[num_fields]) = 0;
12149
12150 num_fields++;
12151 }
12152 }
12153
12154 child_die = sibling_die (child_die);
12155 }
12156
12157 if (num_fields)
12158 {
f792889a
DJ
12159 TYPE_NFIELDS (this_type) = num_fields;
12160 TYPE_FIELDS (this_type) = (struct field *)
12161 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
12162 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 12163 sizeof (struct field) * num_fields);
b8c9b27d 12164 xfree (fields);
c906108c
SS
12165 }
12166 if (unsigned_enum)
876cecd0 12167 TYPE_UNSIGNED (this_type) = 1;
cafec441
TT
12168 if (flag_enum)
12169 TYPE_FLAG_ENUM (this_type) = 1;
c906108c 12170 }
134d01f1 12171
6c83ed52
TT
12172 /* If we are reading an enum from a .debug_types unit, and the enum
12173 is a declaration, and the enum is not the signatured type in the
12174 unit, then we do not want to add a symbol for it. Adding a
12175 symbol would in some cases obscure the true definition of the
12176 enum, giving users an incomplete type when the definition is
12177 actually available. Note that we do not want to do this for all
12178 enums which are just declarations, because C++0x allows forward
12179 enum declarations. */
3019eac3 12180 if (cu->per_cu->is_debug_types
6c83ed52
TT
12181 && die_is_declaration (die, cu))
12182 {
52dc124a 12183 struct signatured_type *sig_type;
6c83ed52 12184
c0f78cd4 12185 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
12186 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
12187 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
12188 return;
12189 }
12190
f792889a 12191 new_symbol (die, this_type, cu);
c906108c
SS
12192}
12193
12194/* Extract all information from a DW_TAG_array_type DIE and put it in
12195 the DIE's type field. For now, this only handles one dimensional
12196 arrays. */
12197
f792889a 12198static struct type *
e7c27a73 12199read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12200{
e7c27a73 12201 struct objfile *objfile = cu->objfile;
c906108c 12202 struct die_info *child_die;
7e314c57 12203 struct type *type;
c906108c
SS
12204 struct type *element_type, *range_type, *index_type;
12205 struct type **range_types = NULL;
12206 struct attribute *attr;
12207 int ndim = 0;
12208 struct cleanup *back_to;
15d034d0 12209 const char *name;
c906108c 12210
e7c27a73 12211 element_type = die_type (die, cu);
c906108c 12212
7e314c57
JK
12213 /* The die_type call above may have already set the type for this DIE. */
12214 type = get_die_type (die, cu);
12215 if (type)
12216 return type;
12217
c906108c
SS
12218 /* Irix 6.2 native cc creates array types without children for
12219 arrays with unspecified length. */
639d11d3 12220 if (die->child == NULL)
c906108c 12221 {
46bf5051 12222 index_type = objfile_type (objfile)->builtin_int;
c906108c 12223 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
12224 type = create_array_type (NULL, element_type, range_type);
12225 return set_die_type (die, type, cu);
c906108c
SS
12226 }
12227
12228 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 12229 child_die = die->child;
c906108c
SS
12230 while (child_die && child_die->tag)
12231 {
12232 if (child_die->tag == DW_TAG_subrange_type)
12233 {
f792889a 12234 struct type *child_type = read_type_die (child_die, cu);
9a619af0 12235
f792889a 12236 if (child_type != NULL)
a02abb62 12237 {
0963b4bd
MS
12238 /* The range type was succesfully read. Save it for the
12239 array type creation. */
a02abb62
JB
12240 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
12241 {
12242 range_types = (struct type **)
12243 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
12244 * sizeof (struct type *));
12245 if (ndim == 0)
12246 make_cleanup (free_current_contents, &range_types);
12247 }
f792889a 12248 range_types[ndim++] = child_type;
a02abb62 12249 }
c906108c
SS
12250 }
12251 child_die = sibling_die (child_die);
12252 }
12253
12254 /* Dwarf2 dimensions are output from left to right, create the
12255 necessary array types in backwards order. */
7ca2d3a3 12256
c906108c 12257 type = element_type;
7ca2d3a3
DL
12258
12259 if (read_array_order (die, cu) == DW_ORD_col_major)
12260 {
12261 int i = 0;
9a619af0 12262
7ca2d3a3
DL
12263 while (i < ndim)
12264 type = create_array_type (NULL, type, range_types[i++]);
12265 }
12266 else
12267 {
12268 while (ndim-- > 0)
12269 type = create_array_type (NULL, type, range_types[ndim]);
12270 }
c906108c 12271
f5f8a009
EZ
12272 /* Understand Dwarf2 support for vector types (like they occur on
12273 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
12274 array type. This is not part of the Dwarf2/3 standard yet, but a
12275 custom vendor extension. The main difference between a regular
12276 array and the vector variant is that vectors are passed by value
12277 to functions. */
e142c38c 12278 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 12279 if (attr)
ea37ba09 12280 make_vector_type (type);
f5f8a009 12281
dbc98a8b
KW
12282 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
12283 implementation may choose to implement triple vectors using this
12284 attribute. */
12285 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12286 if (attr)
12287 {
12288 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
12289 TYPE_LENGTH (type) = DW_UNSND (attr);
12290 else
3e43a32a
MS
12291 complaint (&symfile_complaints,
12292 _("DW_AT_byte_size for array type smaller "
12293 "than the total size of elements"));
dbc98a8b
KW
12294 }
12295
39cbfefa
DJ
12296 name = dwarf2_name (die, cu);
12297 if (name)
12298 TYPE_NAME (type) = name;
6e70227d 12299
0963b4bd 12300 /* Install the type in the die. */
7e314c57
JK
12301 set_die_type (die, type, cu);
12302
12303 /* set_die_type should be already done. */
b4ba55a1
JB
12304 set_descriptive_type (type, die, cu);
12305
c906108c
SS
12306 do_cleanups (back_to);
12307
7e314c57 12308 return type;
c906108c
SS
12309}
12310
7ca2d3a3 12311static enum dwarf_array_dim_ordering
6e70227d 12312read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
12313{
12314 struct attribute *attr;
12315
12316 attr = dwarf2_attr (die, DW_AT_ordering, cu);
12317
12318 if (attr) return DW_SND (attr);
12319
0963b4bd
MS
12320 /* GNU F77 is a special case, as at 08/2004 array type info is the
12321 opposite order to the dwarf2 specification, but data is still
12322 laid out as per normal fortran.
7ca2d3a3 12323
0963b4bd
MS
12324 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
12325 version checking. */
7ca2d3a3 12326
905e0470
PM
12327 if (cu->language == language_fortran
12328 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
12329 {
12330 return DW_ORD_row_major;
12331 }
12332
6e70227d 12333 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
12334 {
12335 case array_column_major:
12336 return DW_ORD_col_major;
12337 case array_row_major:
12338 default:
12339 return DW_ORD_row_major;
12340 };
12341}
12342
72019c9c 12343/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 12344 the DIE's type field. */
72019c9c 12345
f792889a 12346static struct type *
72019c9c
GM
12347read_set_type (struct die_info *die, struct dwarf2_cu *cu)
12348{
7e314c57
JK
12349 struct type *domain_type, *set_type;
12350 struct attribute *attr;
f792889a 12351
7e314c57
JK
12352 domain_type = die_type (die, cu);
12353
12354 /* The die_type call above may have already set the type for this DIE. */
12355 set_type = get_die_type (die, cu);
12356 if (set_type)
12357 return set_type;
12358
12359 set_type = create_set_type (NULL, domain_type);
12360
12361 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
12362 if (attr)
12363 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 12364
f792889a 12365 return set_die_type (die, set_type, cu);
72019c9c 12366}
7ca2d3a3 12367
0971de02
TT
12368/* A helper for read_common_block that creates a locexpr baton.
12369 SYM is the symbol which we are marking as computed.
12370 COMMON_DIE is the DIE for the common block.
12371 COMMON_LOC is the location expression attribute for the common
12372 block itself.
12373 MEMBER_LOC is the location expression attribute for the particular
12374 member of the common block that we are processing.
12375 CU is the CU from which the above come. */
12376
12377static void
12378mark_common_block_symbol_computed (struct symbol *sym,
12379 struct die_info *common_die,
12380 struct attribute *common_loc,
12381 struct attribute *member_loc,
12382 struct dwarf2_cu *cu)
12383{
12384 struct objfile *objfile = dwarf2_per_objfile->objfile;
12385 struct dwarf2_locexpr_baton *baton;
12386 gdb_byte *ptr;
12387 unsigned int cu_off;
12388 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
12389 LONGEST offset = 0;
12390
12391 gdb_assert (common_loc && member_loc);
12392 gdb_assert (attr_form_is_block (common_loc));
12393 gdb_assert (attr_form_is_block (member_loc)
12394 || attr_form_is_constant (member_loc));
12395
12396 baton = obstack_alloc (&objfile->objfile_obstack,
12397 sizeof (struct dwarf2_locexpr_baton));
12398 baton->per_cu = cu->per_cu;
12399 gdb_assert (baton->per_cu);
12400
12401 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
12402
12403 if (attr_form_is_constant (member_loc))
12404 {
12405 offset = dwarf2_get_attr_constant_value (member_loc, 0);
12406 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
12407 }
12408 else
12409 baton->size += DW_BLOCK (member_loc)->size;
12410
12411 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
12412 baton->data = ptr;
12413
12414 *ptr++ = DW_OP_call4;
12415 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
12416 store_unsigned_integer (ptr, 4, byte_order, cu_off);
12417 ptr += 4;
12418
12419 if (attr_form_is_constant (member_loc))
12420 {
12421 *ptr++ = DW_OP_addr;
12422 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
12423 ptr += cu->header.addr_size;
12424 }
12425 else
12426 {
12427 /* We have to copy the data here, because DW_OP_call4 will only
12428 use a DW_AT_location attribute. */
12429 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
12430 ptr += DW_BLOCK (member_loc)->size;
12431 }
12432
12433 *ptr++ = DW_OP_plus;
12434 gdb_assert (ptr - baton->data == baton->size);
12435
0971de02 12436 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 12437 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
12438}
12439
4357ac6c
TT
12440/* Create appropriate locally-scoped variables for all the
12441 DW_TAG_common_block entries. Also create a struct common_block
12442 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
12443 is used to sepate the common blocks name namespace from regular
12444 variable names. */
c906108c
SS
12445
12446static void
e7c27a73 12447read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12448{
0971de02
TT
12449 struct attribute *attr;
12450
12451 attr = dwarf2_attr (die, DW_AT_location, cu);
12452 if (attr)
12453 {
12454 /* Support the .debug_loc offsets. */
12455 if (attr_form_is_block (attr))
12456 {
12457 /* Ok. */
12458 }
12459 else if (attr_form_is_section_offset (attr))
12460 {
12461 dwarf2_complex_location_expr_complaint ();
12462 attr = NULL;
12463 }
12464 else
12465 {
12466 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12467 "common block member");
12468 attr = NULL;
12469 }
12470 }
12471
639d11d3 12472 if (die->child != NULL)
c906108c 12473 {
4357ac6c
TT
12474 struct objfile *objfile = cu->objfile;
12475 struct die_info *child_die;
12476 size_t n_entries = 0, size;
12477 struct common_block *common_block;
12478 struct symbol *sym;
74ac6d43 12479
4357ac6c
TT
12480 for (child_die = die->child;
12481 child_die && child_die->tag;
12482 child_die = sibling_die (child_die))
12483 ++n_entries;
12484
12485 size = (sizeof (struct common_block)
12486 + (n_entries - 1) * sizeof (struct symbol *));
12487 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12488 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12489 common_block->n_entries = 0;
12490
12491 for (child_die = die->child;
12492 child_die && child_die->tag;
12493 child_die = sibling_die (child_die))
12494 {
12495 /* Create the symbol in the DW_TAG_common_block block in the current
12496 symbol scope. */
e7c27a73 12497 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
12498 if (sym != NULL)
12499 {
12500 struct attribute *member_loc;
12501
12502 common_block->contents[common_block->n_entries++] = sym;
12503
12504 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12505 cu);
12506 if (member_loc)
12507 {
12508 /* GDB has handled this for a long time, but it is
12509 not specified by DWARF. It seems to have been
12510 emitted by gfortran at least as recently as:
12511 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12512 complaint (&symfile_complaints,
12513 _("Variable in common block has "
12514 "DW_AT_data_member_location "
12515 "- DIE at 0x%x [in module %s]"),
12516 child_die->offset.sect_off, cu->objfile->name);
12517
12518 if (attr_form_is_section_offset (member_loc))
12519 dwarf2_complex_location_expr_complaint ();
12520 else if (attr_form_is_constant (member_loc)
12521 || attr_form_is_block (member_loc))
12522 {
12523 if (attr)
12524 mark_common_block_symbol_computed (sym, die, attr,
12525 member_loc, cu);
12526 }
12527 else
12528 dwarf2_complex_location_expr_complaint ();
12529 }
12530 }
c906108c 12531 }
4357ac6c
TT
12532
12533 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12534 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
12535 }
12536}
12537
0114d602 12538/* Create a type for a C++ namespace. */
d9fa45fe 12539
0114d602
DJ
12540static struct type *
12541read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 12542{
e7c27a73 12543 struct objfile *objfile = cu->objfile;
0114d602 12544 const char *previous_prefix, *name;
9219021c 12545 int is_anonymous;
0114d602
DJ
12546 struct type *type;
12547
12548 /* For extensions, reuse the type of the original namespace. */
12549 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12550 {
12551 struct die_info *ext_die;
12552 struct dwarf2_cu *ext_cu = cu;
9a619af0 12553
0114d602
DJ
12554 ext_die = dwarf2_extension (die, &ext_cu);
12555 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
12556
12557 /* EXT_CU may not be the same as CU.
02142a6c 12558 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
12559 return set_die_type (die, type, cu);
12560 }
9219021c 12561
e142c38c 12562 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
12563
12564 /* Now build the name of the current namespace. */
12565
0114d602
DJ
12566 previous_prefix = determine_prefix (die, cu);
12567 if (previous_prefix[0] != '\0')
12568 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 12569 previous_prefix, name, 0, cu);
0114d602
DJ
12570
12571 /* Create the type. */
12572 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12573 objfile);
abee88f2 12574 TYPE_NAME (type) = name;
0114d602
DJ
12575 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12576
60531b24 12577 return set_die_type (die, type, cu);
0114d602
DJ
12578}
12579
12580/* Read a C++ namespace. */
12581
12582static void
12583read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12584{
12585 struct objfile *objfile = cu->objfile;
0114d602 12586 int is_anonymous;
9219021c 12587
5c4e30ca
DC
12588 /* Add a symbol associated to this if we haven't seen the namespace
12589 before. Also, add a using directive if it's an anonymous
12590 namespace. */
9219021c 12591
f2f0e013 12592 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
12593 {
12594 struct type *type;
12595
0114d602 12596 type = read_type_die (die, cu);
e7c27a73 12597 new_symbol (die, type, cu);
5c4e30ca 12598
e8e80198 12599 namespace_name (die, &is_anonymous, cu);
5c4e30ca 12600 if (is_anonymous)
0114d602
DJ
12601 {
12602 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 12603
c0cc3a76 12604 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12aaed36 12605 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 12606 }
5c4e30ca 12607 }
9219021c 12608
639d11d3 12609 if (die->child != NULL)
d9fa45fe 12610 {
639d11d3 12611 struct die_info *child_die = die->child;
6e70227d 12612
d9fa45fe
DC
12613 while (child_die && child_die->tag)
12614 {
e7c27a73 12615 process_die (child_die, cu);
d9fa45fe
DC
12616 child_die = sibling_die (child_die);
12617 }
12618 }
38d518c9
EZ
12619}
12620
f55ee35c
JK
12621/* Read a Fortran module as type. This DIE can be only a declaration used for
12622 imported module. Still we need that type as local Fortran "use ... only"
12623 declaration imports depend on the created type in determine_prefix. */
12624
12625static struct type *
12626read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12627{
12628 struct objfile *objfile = cu->objfile;
15d034d0 12629 const char *module_name;
f55ee35c
JK
12630 struct type *type;
12631
12632 module_name = dwarf2_name (die, cu);
12633 if (!module_name)
3e43a32a
MS
12634 complaint (&symfile_complaints,
12635 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 12636 die->offset.sect_off);
f55ee35c
JK
12637 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12638
12639 /* determine_prefix uses TYPE_TAG_NAME. */
12640 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12641
12642 return set_die_type (die, type, cu);
12643}
12644
5d7cb8df
JK
12645/* Read a Fortran module. */
12646
12647static void
12648read_module (struct die_info *die, struct dwarf2_cu *cu)
12649{
12650 struct die_info *child_die = die->child;
12651
5d7cb8df
JK
12652 while (child_die && child_die->tag)
12653 {
12654 process_die (child_die, cu);
12655 child_die = sibling_die (child_die);
12656 }
12657}
12658
38d518c9
EZ
12659/* Return the name of the namespace represented by DIE. Set
12660 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12661 namespace. */
12662
12663static const char *
e142c38c 12664namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
12665{
12666 struct die_info *current_die;
12667 const char *name = NULL;
12668
12669 /* Loop through the extensions until we find a name. */
12670
12671 for (current_die = die;
12672 current_die != NULL;
f2f0e013 12673 current_die = dwarf2_extension (die, &cu))
38d518c9 12674 {
e142c38c 12675 name = dwarf2_name (current_die, cu);
38d518c9
EZ
12676 if (name != NULL)
12677 break;
12678 }
12679
12680 /* Is it an anonymous namespace? */
12681
12682 *is_anonymous = (name == NULL);
12683 if (*is_anonymous)
2b1dbab0 12684 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
12685
12686 return name;
d9fa45fe
DC
12687}
12688
c906108c
SS
12689/* Extract all information from a DW_TAG_pointer_type DIE and add to
12690 the user defined type vector. */
12691
f792889a 12692static struct type *
e7c27a73 12693read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12694{
5e2b427d 12695 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 12696 struct comp_unit_head *cu_header = &cu->header;
c906108c 12697 struct type *type;
8b2dbe47
KB
12698 struct attribute *attr_byte_size;
12699 struct attribute *attr_address_class;
12700 int byte_size, addr_class;
7e314c57
JK
12701 struct type *target_type;
12702
12703 target_type = die_type (die, cu);
c906108c 12704
7e314c57
JK
12705 /* The die_type call above may have already set the type for this DIE. */
12706 type = get_die_type (die, cu);
12707 if (type)
12708 return type;
12709
12710 type = lookup_pointer_type (target_type);
8b2dbe47 12711
e142c38c 12712 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
12713 if (attr_byte_size)
12714 byte_size = DW_UNSND (attr_byte_size);
c906108c 12715 else
8b2dbe47
KB
12716 byte_size = cu_header->addr_size;
12717
e142c38c 12718 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
12719 if (attr_address_class)
12720 addr_class = DW_UNSND (attr_address_class);
12721 else
12722 addr_class = DW_ADDR_none;
12723
12724 /* If the pointer size or address class is different than the
12725 default, create a type variant marked as such and set the
12726 length accordingly. */
12727 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 12728 {
5e2b427d 12729 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
12730 {
12731 int type_flags;
12732
849957d9 12733 type_flags = gdbarch_address_class_type_flags
5e2b427d 12734 (gdbarch, byte_size, addr_class);
876cecd0
TT
12735 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12736 == 0);
8b2dbe47
KB
12737 type = make_type_with_address_space (type, type_flags);
12738 }
12739 else if (TYPE_LENGTH (type) != byte_size)
12740 {
3e43a32a
MS
12741 complaint (&symfile_complaints,
12742 _("invalid pointer size %d"), byte_size);
8b2dbe47 12743 }
6e70227d 12744 else
9a619af0
MS
12745 {
12746 /* Should we also complain about unhandled address classes? */
12747 }
c906108c 12748 }
8b2dbe47
KB
12749
12750 TYPE_LENGTH (type) = byte_size;
f792889a 12751 return set_die_type (die, type, cu);
c906108c
SS
12752}
12753
12754/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12755 the user defined type vector. */
12756
f792889a 12757static struct type *
e7c27a73 12758read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
12759{
12760 struct type *type;
12761 struct type *to_type;
12762 struct type *domain;
12763
e7c27a73
DJ
12764 to_type = die_type (die, cu);
12765 domain = die_containing_type (die, cu);
0d5de010 12766
7e314c57
JK
12767 /* The calls above may have already set the type for this DIE. */
12768 type = get_die_type (die, cu);
12769 if (type)
12770 return type;
12771
0d5de010
DJ
12772 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12773 type = lookup_methodptr_type (to_type);
7078baeb
TT
12774 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12775 {
12776 struct type *new_type = alloc_type (cu->objfile);
12777
12778 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12779 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12780 TYPE_VARARGS (to_type));
12781 type = lookup_methodptr_type (new_type);
12782 }
0d5de010
DJ
12783 else
12784 type = lookup_memberptr_type (to_type, domain);
c906108c 12785
f792889a 12786 return set_die_type (die, type, cu);
c906108c
SS
12787}
12788
12789/* Extract all information from a DW_TAG_reference_type DIE and add to
12790 the user defined type vector. */
12791
f792889a 12792static struct type *
e7c27a73 12793read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12794{
e7c27a73 12795 struct comp_unit_head *cu_header = &cu->header;
7e314c57 12796 struct type *type, *target_type;
c906108c
SS
12797 struct attribute *attr;
12798
7e314c57
JK
12799 target_type = die_type (die, cu);
12800
12801 /* The die_type call above may have already set the type for this DIE. */
12802 type = get_die_type (die, cu);
12803 if (type)
12804 return type;
12805
12806 type = lookup_reference_type (target_type);
e142c38c 12807 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12808 if (attr)
12809 {
12810 TYPE_LENGTH (type) = DW_UNSND (attr);
12811 }
12812 else
12813 {
107d2387 12814 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 12815 }
f792889a 12816 return set_die_type (die, type, cu);
c906108c
SS
12817}
12818
f792889a 12819static struct type *
e7c27a73 12820read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12821{
f792889a 12822 struct type *base_type, *cv_type;
c906108c 12823
e7c27a73 12824 base_type = die_type (die, cu);
7e314c57
JK
12825
12826 /* The die_type call above may have already set the type for this DIE. */
12827 cv_type = get_die_type (die, cu);
12828 if (cv_type)
12829 return cv_type;
12830
2f608a3a
KW
12831 /* In case the const qualifier is applied to an array type, the element type
12832 is so qualified, not the array type (section 6.7.3 of C99). */
12833 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12834 {
12835 struct type *el_type, *inner_array;
12836
12837 base_type = copy_type (base_type);
12838 inner_array = base_type;
12839
12840 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12841 {
12842 TYPE_TARGET_TYPE (inner_array) =
12843 copy_type (TYPE_TARGET_TYPE (inner_array));
12844 inner_array = TYPE_TARGET_TYPE (inner_array);
12845 }
12846
12847 el_type = TYPE_TARGET_TYPE (inner_array);
12848 TYPE_TARGET_TYPE (inner_array) =
12849 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12850
12851 return set_die_type (die, base_type, cu);
12852 }
12853
f792889a
DJ
12854 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12855 return set_die_type (die, cv_type, cu);
c906108c
SS
12856}
12857
f792889a 12858static struct type *
e7c27a73 12859read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12860{
f792889a 12861 struct type *base_type, *cv_type;
c906108c 12862
e7c27a73 12863 base_type = die_type (die, cu);
7e314c57
JK
12864
12865 /* The die_type call above may have already set the type for this DIE. */
12866 cv_type = get_die_type (die, cu);
12867 if (cv_type)
12868 return cv_type;
12869
f792889a
DJ
12870 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12871 return set_die_type (die, cv_type, cu);
c906108c
SS
12872}
12873
06d66ee9
TT
12874/* Handle DW_TAG_restrict_type. */
12875
12876static struct type *
12877read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12878{
12879 struct type *base_type, *cv_type;
12880
12881 base_type = die_type (die, cu);
12882
12883 /* The die_type call above may have already set the type for this DIE. */
12884 cv_type = get_die_type (die, cu);
12885 if (cv_type)
12886 return cv_type;
12887
12888 cv_type = make_restrict_type (base_type);
12889 return set_die_type (die, cv_type, cu);
12890}
12891
c906108c
SS
12892/* Extract all information from a DW_TAG_string_type DIE and add to
12893 the user defined type vector. It isn't really a user defined type,
12894 but it behaves like one, with other DIE's using an AT_user_def_type
12895 attribute to reference it. */
12896
f792889a 12897static struct type *
e7c27a73 12898read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12899{
e7c27a73 12900 struct objfile *objfile = cu->objfile;
3b7538c0 12901 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12902 struct type *type, *range_type, *index_type, *char_type;
12903 struct attribute *attr;
12904 unsigned int length;
12905
e142c38c 12906 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
12907 if (attr)
12908 {
12909 length = DW_UNSND (attr);
12910 }
12911 else
12912 {
0963b4bd 12913 /* Check for the DW_AT_byte_size attribute. */
e142c38c 12914 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
12915 if (attr)
12916 {
12917 length = DW_UNSND (attr);
12918 }
12919 else
12920 {
12921 length = 1;
12922 }
c906108c 12923 }
6ccb9162 12924
46bf5051 12925 index_type = objfile_type (objfile)->builtin_int;
c906108c 12926 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
12927 char_type = language_string_char_type (cu->language_defn, gdbarch);
12928 type = create_string_type (NULL, char_type, range_type);
6ccb9162 12929
f792889a 12930 return set_die_type (die, type, cu);
c906108c
SS
12931}
12932
4d804846
JB
12933/* Assuming that DIE corresponds to a function, returns nonzero
12934 if the function is prototyped. */
12935
12936static int
12937prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
12938{
12939 struct attribute *attr;
12940
12941 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12942 if (attr && (DW_UNSND (attr) != 0))
12943 return 1;
12944
12945 /* The DWARF standard implies that the DW_AT_prototyped attribute
12946 is only meaninful for C, but the concept also extends to other
12947 languages that allow unprototyped functions (Eg: Objective C).
12948 For all other languages, assume that functions are always
12949 prototyped. */
12950 if (cu->language != language_c
12951 && cu->language != language_objc
12952 && cu->language != language_opencl)
12953 return 1;
12954
12955 /* RealView does not emit DW_AT_prototyped. We can not distinguish
12956 prototyped and unprototyped functions; default to prototyped,
12957 since that is more common in modern code (and RealView warns
12958 about unprototyped functions). */
12959 if (producer_is_realview (cu->producer))
12960 return 1;
12961
12962 return 0;
12963}
12964
c906108c
SS
12965/* Handle DIES due to C code like:
12966
12967 struct foo
c5aa993b
JM
12968 {
12969 int (*funcp)(int a, long l);
12970 int b;
12971 };
c906108c 12972
0963b4bd 12973 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 12974
f792889a 12975static struct type *
e7c27a73 12976read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12977{
bb5ed363 12978 struct objfile *objfile = cu->objfile;
0963b4bd
MS
12979 struct type *type; /* Type that this function returns. */
12980 struct type *ftype; /* Function that returns above type. */
c906108c
SS
12981 struct attribute *attr;
12982
e7c27a73 12983 type = die_type (die, cu);
7e314c57
JK
12984
12985 /* The die_type call above may have already set the type for this DIE. */
12986 ftype = get_die_type (die, cu);
12987 if (ftype)
12988 return ftype;
12989
0c8b41f1 12990 ftype = lookup_function_type (type);
c906108c 12991
4d804846 12992 if (prototyped_function_p (die, cu))
a6c727b2 12993 TYPE_PROTOTYPED (ftype) = 1;
c906108c 12994
c055b101
CV
12995 /* Store the calling convention in the type if it's available in
12996 the subroutine die. Otherwise set the calling convention to
12997 the default value DW_CC_normal. */
12998 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
12999 if (attr)
13000 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
13001 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
13002 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
13003 else
13004 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
13005
13006 /* We need to add the subroutine type to the die immediately so
13007 we don't infinitely recurse when dealing with parameters
0963b4bd 13008 declared as the same subroutine type. */
76c10ea2 13009 set_die_type (die, ftype, cu);
6e70227d 13010
639d11d3 13011 if (die->child != NULL)
c906108c 13012 {
bb5ed363 13013 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 13014 struct die_info *child_die;
8072405b 13015 int nparams, iparams;
c906108c
SS
13016
13017 /* Count the number of parameters.
13018 FIXME: GDB currently ignores vararg functions, but knows about
13019 vararg member functions. */
8072405b 13020 nparams = 0;
639d11d3 13021 child_die = die->child;
c906108c
SS
13022 while (child_die && child_die->tag)
13023 {
13024 if (child_die->tag == DW_TAG_formal_parameter)
13025 nparams++;
13026 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 13027 TYPE_VARARGS (ftype) = 1;
c906108c
SS
13028 child_die = sibling_die (child_die);
13029 }
13030
13031 /* Allocate storage for parameters and fill them in. */
13032 TYPE_NFIELDS (ftype) = nparams;
13033 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 13034 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 13035
8072405b
JK
13036 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
13037 even if we error out during the parameters reading below. */
13038 for (iparams = 0; iparams < nparams; iparams++)
13039 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
13040
13041 iparams = 0;
639d11d3 13042 child_die = die->child;
c906108c
SS
13043 while (child_die && child_die->tag)
13044 {
13045 if (child_die->tag == DW_TAG_formal_parameter)
13046 {
3ce3b1ba
PA
13047 struct type *arg_type;
13048
13049 /* DWARF version 2 has no clean way to discern C++
13050 static and non-static member functions. G++ helps
13051 GDB by marking the first parameter for non-static
13052 member functions (which is the this pointer) as
13053 artificial. We pass this information to
13054 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
13055
13056 DWARF version 3 added DW_AT_object_pointer, which GCC
13057 4.5 does not yet generate. */
e142c38c 13058 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
13059 if (attr)
13060 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
13061 else
418835cc
KS
13062 {
13063 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
13064
13065 /* GCC/43521: In java, the formal parameter
13066 "this" is sometimes not marked with DW_AT_artificial. */
13067 if (cu->language == language_java)
13068 {
13069 const char *name = dwarf2_name (child_die, cu);
9a619af0 13070
418835cc
KS
13071 if (name && !strcmp (name, "this"))
13072 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
13073 }
13074 }
3ce3b1ba
PA
13075 arg_type = die_type (child_die, cu);
13076
13077 /* RealView does not mark THIS as const, which the testsuite
13078 expects. GCC marks THIS as const in method definitions,
13079 but not in the class specifications (GCC PR 43053). */
13080 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
13081 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
13082 {
13083 int is_this = 0;
13084 struct dwarf2_cu *arg_cu = cu;
13085 const char *name = dwarf2_name (child_die, cu);
13086
13087 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
13088 if (attr)
13089 {
13090 /* If the compiler emits this, use it. */
13091 if (follow_die_ref (die, attr, &arg_cu) == child_die)
13092 is_this = 1;
13093 }
13094 else if (name && strcmp (name, "this") == 0)
13095 /* Function definitions will have the argument names. */
13096 is_this = 1;
13097 else if (name == NULL && iparams == 0)
13098 /* Declarations may not have the names, so like
13099 elsewhere in GDB, assume an artificial first
13100 argument is "this". */
13101 is_this = 1;
13102
13103 if (is_this)
13104 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
13105 arg_type, 0);
13106 }
13107
13108 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
13109 iparams++;
13110 }
13111 child_die = sibling_die (child_die);
13112 }
13113 }
13114
76c10ea2 13115 return ftype;
c906108c
SS
13116}
13117
f792889a 13118static struct type *
e7c27a73 13119read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13120{
e7c27a73 13121 struct objfile *objfile = cu->objfile;
0114d602 13122 const char *name = NULL;
3c8e0968 13123 struct type *this_type, *target_type;
c906108c 13124
94af9270 13125 name = dwarf2_full_name (NULL, die, cu);
f792889a 13126 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 13127 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 13128 TYPE_NAME (this_type) = name;
f792889a 13129 set_die_type (die, this_type, cu);
3c8e0968
DE
13130 target_type = die_type (die, cu);
13131 if (target_type != this_type)
13132 TYPE_TARGET_TYPE (this_type) = target_type;
13133 else
13134 {
13135 /* Self-referential typedefs are, it seems, not allowed by the DWARF
13136 spec and cause infinite loops in GDB. */
13137 complaint (&symfile_complaints,
13138 _("Self-referential DW_TAG_typedef "
13139 "- DIE at 0x%x [in module %s]"),
b64f50a1 13140 die->offset.sect_off, objfile->name);
3c8e0968
DE
13141 TYPE_TARGET_TYPE (this_type) = NULL;
13142 }
f792889a 13143 return this_type;
c906108c
SS
13144}
13145
13146/* Find a representation of a given base type and install
13147 it in the TYPE field of the die. */
13148
f792889a 13149static struct type *
e7c27a73 13150read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13151{
e7c27a73 13152 struct objfile *objfile = cu->objfile;
c906108c
SS
13153 struct type *type;
13154 struct attribute *attr;
13155 int encoding = 0, size = 0;
15d034d0 13156 const char *name;
6ccb9162
UW
13157 enum type_code code = TYPE_CODE_INT;
13158 int type_flags = 0;
13159 struct type *target_type = NULL;
c906108c 13160
e142c38c 13161 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
13162 if (attr)
13163 {
13164 encoding = DW_UNSND (attr);
13165 }
e142c38c 13166 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13167 if (attr)
13168 {
13169 size = DW_UNSND (attr);
13170 }
39cbfefa 13171 name = dwarf2_name (die, cu);
6ccb9162 13172 if (!name)
c906108c 13173 {
6ccb9162
UW
13174 complaint (&symfile_complaints,
13175 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 13176 }
6ccb9162
UW
13177
13178 switch (encoding)
c906108c 13179 {
6ccb9162
UW
13180 case DW_ATE_address:
13181 /* Turn DW_ATE_address into a void * pointer. */
13182 code = TYPE_CODE_PTR;
13183 type_flags |= TYPE_FLAG_UNSIGNED;
13184 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
13185 break;
13186 case DW_ATE_boolean:
13187 code = TYPE_CODE_BOOL;
13188 type_flags |= TYPE_FLAG_UNSIGNED;
13189 break;
13190 case DW_ATE_complex_float:
13191 code = TYPE_CODE_COMPLEX;
13192 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
13193 break;
13194 case DW_ATE_decimal_float:
13195 code = TYPE_CODE_DECFLOAT;
13196 break;
13197 case DW_ATE_float:
13198 code = TYPE_CODE_FLT;
13199 break;
13200 case DW_ATE_signed:
13201 break;
13202 case DW_ATE_unsigned:
13203 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
13204 if (cu->language == language_fortran
13205 && name
13206 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
13207 code = TYPE_CODE_CHAR;
6ccb9162
UW
13208 break;
13209 case DW_ATE_signed_char:
6e70227d 13210 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
13211 || cu->language == language_pascal
13212 || cu->language == language_fortran)
6ccb9162
UW
13213 code = TYPE_CODE_CHAR;
13214 break;
13215 case DW_ATE_unsigned_char:
868a0084 13216 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
13217 || cu->language == language_pascal
13218 || cu->language == language_fortran)
6ccb9162
UW
13219 code = TYPE_CODE_CHAR;
13220 type_flags |= TYPE_FLAG_UNSIGNED;
13221 break;
75079b2b
TT
13222 case DW_ATE_UTF:
13223 /* We just treat this as an integer and then recognize the
13224 type by name elsewhere. */
13225 break;
13226
6ccb9162
UW
13227 default:
13228 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
13229 dwarf_type_encoding_name (encoding));
13230 break;
c906108c 13231 }
6ccb9162 13232
0114d602
DJ
13233 type = init_type (code, size, type_flags, NULL, objfile);
13234 TYPE_NAME (type) = name;
6ccb9162
UW
13235 TYPE_TARGET_TYPE (type) = target_type;
13236
0114d602 13237 if (name && strcmp (name, "char") == 0)
876cecd0 13238 TYPE_NOSIGN (type) = 1;
0114d602 13239
f792889a 13240 return set_die_type (die, type, cu);
c906108c
SS
13241}
13242
a02abb62
JB
13243/* Read the given DW_AT_subrange DIE. */
13244
f792889a 13245static struct type *
a02abb62
JB
13246read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
13247{
4c9ad8c2 13248 struct type *base_type, *orig_base_type;
a02abb62
JB
13249 struct type *range_type;
13250 struct attribute *attr;
4fae6e18
JK
13251 LONGEST low, high;
13252 int low_default_is_valid;
15d034d0 13253 const char *name;
43bbcdc2 13254 LONGEST negative_mask;
e77813c8 13255
4c9ad8c2
TT
13256 orig_base_type = die_type (die, cu);
13257 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
13258 whereas the real type might be. So, we use ORIG_BASE_TYPE when
13259 creating the range type, but we use the result of check_typedef
13260 when examining properties of the type. */
13261 base_type = check_typedef (orig_base_type);
a02abb62 13262
7e314c57
JK
13263 /* The die_type call above may have already set the type for this DIE. */
13264 range_type = get_die_type (die, cu);
13265 if (range_type)
13266 return range_type;
13267
4fae6e18
JK
13268 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
13269 omitting DW_AT_lower_bound. */
13270 switch (cu->language)
6e70227d 13271 {
4fae6e18
JK
13272 case language_c:
13273 case language_cplus:
13274 low = 0;
13275 low_default_is_valid = 1;
13276 break;
13277 case language_fortran:
13278 low = 1;
13279 low_default_is_valid = 1;
13280 break;
13281 case language_d:
13282 case language_java:
13283 case language_objc:
13284 low = 0;
13285 low_default_is_valid = (cu->header.version >= 4);
13286 break;
13287 case language_ada:
13288 case language_m2:
13289 case language_pascal:
a02abb62 13290 low = 1;
4fae6e18
JK
13291 low_default_is_valid = (cu->header.version >= 4);
13292 break;
13293 default:
13294 low = 0;
13295 low_default_is_valid = 0;
13296 break;
a02abb62
JB
13297 }
13298
dd5e6932
DJ
13299 /* FIXME: For variable sized arrays either of these could be
13300 a variable rather than a constant value. We'll allow it,
13301 but we don't know how to handle it. */
e142c38c 13302 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 13303 if (attr)
4fae6e18
JK
13304 low = dwarf2_get_attr_constant_value (attr, low);
13305 else if (!low_default_is_valid)
13306 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
13307 "- DIE at 0x%x [in module %s]"),
13308 die->offset.sect_off, cu->objfile->name);
a02abb62 13309
e142c38c 13310 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 13311 if (attr)
6e70227d 13312 {
d48323d8 13313 if (attr_form_is_block (attr) || is_ref_attr (attr))
a02abb62
JB
13314 {
13315 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 13316 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
13317 FIXME: GDB does not yet know how to handle dynamic
13318 arrays properly, treat them as arrays with unspecified
13319 length for now.
13320
13321 FIXME: jimb/2003-09-22: GDB does not really know
13322 how to handle arrays of unspecified length
13323 either; we just represent them as zero-length
13324 arrays. Choose an appropriate upper bound given
13325 the lower bound we've computed above. */
13326 high = low - 1;
13327 }
13328 else
13329 high = dwarf2_get_attr_constant_value (attr, 1);
13330 }
e77813c8
PM
13331 else
13332 {
13333 attr = dwarf2_attr (die, DW_AT_count, cu);
13334 if (attr)
13335 {
13336 int count = dwarf2_get_attr_constant_value (attr, 1);
13337 high = low + count - 1;
13338 }
c2ff108b
JK
13339 else
13340 {
13341 /* Unspecified array length. */
13342 high = low - 1;
13343 }
e77813c8
PM
13344 }
13345
13346 /* Dwarf-2 specifications explicitly allows to create subrange types
13347 without specifying a base type.
13348 In that case, the base type must be set to the type of
13349 the lower bound, upper bound or count, in that order, if any of these
13350 three attributes references an object that has a type.
13351 If no base type is found, the Dwarf-2 specifications say that
13352 a signed integer type of size equal to the size of an address should
13353 be used.
13354 For the following C code: `extern char gdb_int [];'
13355 GCC produces an empty range DIE.
13356 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 13357 high bound or count are not yet handled by this code. */
e77813c8
PM
13358 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
13359 {
13360 struct objfile *objfile = cu->objfile;
13361 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13362 int addr_size = gdbarch_addr_bit (gdbarch) /8;
13363 struct type *int_type = objfile_type (objfile)->builtin_int;
13364
13365 /* Test "int", "long int", and "long long int" objfile types,
13366 and select the first one having a size above or equal to the
13367 architecture address size. */
13368 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13369 base_type = int_type;
13370 else
13371 {
13372 int_type = objfile_type (objfile)->builtin_long;
13373 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13374 base_type = int_type;
13375 else
13376 {
13377 int_type = objfile_type (objfile)->builtin_long_long;
13378 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13379 base_type = int_type;
13380 }
13381 }
13382 }
a02abb62 13383
6e70227d 13384 negative_mask =
43bbcdc2
PH
13385 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
13386 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
13387 low |= negative_mask;
13388 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
13389 high |= negative_mask;
13390
4c9ad8c2 13391 range_type = create_range_type (NULL, orig_base_type, low, high);
a02abb62 13392
bbb0eef6
JK
13393 /* Mark arrays with dynamic length at least as an array of unspecified
13394 length. GDB could check the boundary but before it gets implemented at
13395 least allow accessing the array elements. */
d48323d8 13396 if (attr && attr_form_is_block (attr))
bbb0eef6
JK
13397 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13398
c2ff108b
JK
13399 /* Ada expects an empty array on no boundary attributes. */
13400 if (attr == NULL && cu->language != language_ada)
13401 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13402
39cbfefa
DJ
13403 name = dwarf2_name (die, cu);
13404 if (name)
13405 TYPE_NAME (range_type) = name;
6e70227d 13406
e142c38c 13407 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
13408 if (attr)
13409 TYPE_LENGTH (range_type) = DW_UNSND (attr);
13410
7e314c57
JK
13411 set_die_type (die, range_type, cu);
13412
13413 /* set_die_type should be already done. */
b4ba55a1
JB
13414 set_descriptive_type (range_type, die, cu);
13415
7e314c57 13416 return range_type;
a02abb62 13417}
6e70227d 13418
f792889a 13419static struct type *
81a17f79
JB
13420read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
13421{
13422 struct type *type;
81a17f79 13423
81a17f79
JB
13424 /* For now, we only support the C meaning of an unspecified type: void. */
13425
0114d602
DJ
13426 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
13427 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 13428
f792889a 13429 return set_die_type (die, type, cu);
81a17f79 13430}
a02abb62 13431
639d11d3
DC
13432/* Read a single die and all its descendents. Set the die's sibling
13433 field to NULL; set other fields in the die correctly, and set all
13434 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
13435 location of the info_ptr after reading all of those dies. PARENT
13436 is the parent of the die in question. */
13437
13438static struct die_info *
dee91e82 13439read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
13440 const gdb_byte *info_ptr,
13441 const gdb_byte **new_info_ptr,
dee91e82 13442 struct die_info *parent)
639d11d3
DC
13443{
13444 struct die_info *die;
d521ce57 13445 const gdb_byte *cur_ptr;
639d11d3
DC
13446 int has_children;
13447
bf6af496 13448 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
13449 if (die == NULL)
13450 {
13451 *new_info_ptr = cur_ptr;
13452 return NULL;
13453 }
93311388 13454 store_in_ref_table (die, reader->cu);
639d11d3
DC
13455
13456 if (has_children)
bf6af496 13457 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
13458 else
13459 {
13460 die->child = NULL;
13461 *new_info_ptr = cur_ptr;
13462 }
13463
13464 die->sibling = NULL;
13465 die->parent = parent;
13466 return die;
13467}
13468
13469/* Read a die, all of its descendents, and all of its siblings; set
13470 all of the fields of all of the dies correctly. Arguments are as
13471 in read_die_and_children. */
13472
13473static struct die_info *
bf6af496 13474read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
13475 const gdb_byte *info_ptr,
13476 const gdb_byte **new_info_ptr,
bf6af496 13477 struct die_info *parent)
639d11d3
DC
13478{
13479 struct die_info *first_die, *last_sibling;
d521ce57 13480 const gdb_byte *cur_ptr;
639d11d3 13481
c906108c 13482 cur_ptr = info_ptr;
639d11d3
DC
13483 first_die = last_sibling = NULL;
13484
13485 while (1)
c906108c 13486 {
639d11d3 13487 struct die_info *die
dee91e82 13488 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 13489
1d325ec1 13490 if (die == NULL)
c906108c 13491 {
639d11d3
DC
13492 *new_info_ptr = cur_ptr;
13493 return first_die;
c906108c 13494 }
1d325ec1
DJ
13495
13496 if (!first_die)
13497 first_die = die;
c906108c 13498 else
1d325ec1
DJ
13499 last_sibling->sibling = die;
13500
13501 last_sibling = die;
c906108c 13502 }
c906108c
SS
13503}
13504
bf6af496
DE
13505/* Read a die, all of its descendents, and all of its siblings; set
13506 all of the fields of all of the dies correctly. Arguments are as
13507 in read_die_and_children.
13508 This the main entry point for reading a DIE and all its children. */
13509
13510static struct die_info *
13511read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
13512 const gdb_byte *info_ptr,
13513 const gdb_byte **new_info_ptr,
bf6af496
DE
13514 struct die_info *parent)
13515{
13516 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
13517 new_info_ptr, parent);
13518
13519 if (dwarf2_die_debug)
13520 {
13521 fprintf_unfiltered (gdb_stdlog,
13522 "Read die from %s@0x%x of %s:\n",
13523 bfd_section_name (reader->abfd,
13524 reader->die_section->asection),
13525 (unsigned) (info_ptr - reader->die_section->buffer),
13526 bfd_get_filename (reader->abfd));
13527 dump_die (die, dwarf2_die_debug);
13528 }
13529
13530 return die;
13531}
13532
3019eac3
DE
13533/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13534 attributes.
13535 The caller is responsible for filling in the extra attributes
13536 and updating (*DIEP)->num_attrs.
13537 Set DIEP to point to a newly allocated die with its information,
13538 except for its child, sibling, and parent fields.
13539 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 13540
d521ce57 13541static const gdb_byte *
3019eac3 13542read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 13543 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 13544 int *has_children, int num_extra_attrs)
93311388 13545{
b64f50a1
JK
13546 unsigned int abbrev_number, bytes_read, i;
13547 sect_offset offset;
93311388
DE
13548 struct abbrev_info *abbrev;
13549 struct die_info *die;
13550 struct dwarf2_cu *cu = reader->cu;
13551 bfd *abfd = reader->abfd;
13552
b64f50a1 13553 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
13554 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13555 info_ptr += bytes_read;
13556 if (!abbrev_number)
13557 {
13558 *diep = NULL;
13559 *has_children = 0;
13560 return info_ptr;
13561 }
13562
433df2d4 13563 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 13564 if (!abbrev)
348e048f
DE
13565 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13566 abbrev_number,
13567 bfd_get_filename (abfd));
13568
3019eac3 13569 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
13570 die->offset = offset;
13571 die->tag = abbrev->tag;
13572 die->abbrev = abbrev_number;
13573
3019eac3
DE
13574 /* Make the result usable.
13575 The caller needs to update num_attrs after adding the extra
13576 attributes. */
93311388
DE
13577 die->num_attrs = abbrev->num_attrs;
13578
13579 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
13580 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13581 info_ptr);
93311388
DE
13582
13583 *diep = die;
13584 *has_children = abbrev->has_children;
13585 return info_ptr;
13586}
13587
3019eac3
DE
13588/* Read a die and all its attributes.
13589 Set DIEP to point to a newly allocated die with its information,
13590 except for its child, sibling, and parent fields.
13591 Set HAS_CHILDREN to tell whether the die has children or not. */
13592
d521ce57 13593static const gdb_byte *
3019eac3 13594read_full_die (const struct die_reader_specs *reader,
d521ce57 13595 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
13596 int *has_children)
13597{
d521ce57 13598 const gdb_byte *result;
bf6af496
DE
13599
13600 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13601
13602 if (dwarf2_die_debug)
13603 {
13604 fprintf_unfiltered (gdb_stdlog,
13605 "Read die from %s@0x%x of %s:\n",
13606 bfd_section_name (reader->abfd,
13607 reader->die_section->asection),
13608 (unsigned) (info_ptr - reader->die_section->buffer),
13609 bfd_get_filename (reader->abfd));
13610 dump_die (*diep, dwarf2_die_debug);
13611 }
13612
13613 return result;
3019eac3 13614}
433df2d4
DE
13615\f
13616/* Abbreviation tables.
3019eac3 13617
433df2d4 13618 In DWARF version 2, the description of the debugging information is
c906108c
SS
13619 stored in a separate .debug_abbrev section. Before we read any
13620 dies from a section we read in all abbreviations and install them
433df2d4
DE
13621 in a hash table. */
13622
13623/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13624
13625static struct abbrev_info *
13626abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13627{
13628 struct abbrev_info *abbrev;
13629
13630 abbrev = (struct abbrev_info *)
13631 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13632 memset (abbrev, 0, sizeof (struct abbrev_info));
13633 return abbrev;
13634}
13635
13636/* Add an abbreviation to the table. */
c906108c
SS
13637
13638static void
433df2d4
DE
13639abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13640 unsigned int abbrev_number,
13641 struct abbrev_info *abbrev)
13642{
13643 unsigned int hash_number;
13644
13645 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13646 abbrev->next = abbrev_table->abbrevs[hash_number];
13647 abbrev_table->abbrevs[hash_number] = abbrev;
13648}
dee91e82 13649
433df2d4
DE
13650/* Look up an abbrev in the table.
13651 Returns NULL if the abbrev is not found. */
13652
13653static struct abbrev_info *
13654abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13655 unsigned int abbrev_number)
c906108c 13656{
433df2d4
DE
13657 unsigned int hash_number;
13658 struct abbrev_info *abbrev;
13659
13660 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13661 abbrev = abbrev_table->abbrevs[hash_number];
13662
13663 while (abbrev)
13664 {
13665 if (abbrev->number == abbrev_number)
13666 return abbrev;
13667 abbrev = abbrev->next;
13668 }
13669 return NULL;
13670}
13671
13672/* Read in an abbrev table. */
13673
13674static struct abbrev_table *
13675abbrev_table_read_table (struct dwarf2_section_info *section,
13676 sect_offset offset)
13677{
13678 struct objfile *objfile = dwarf2_per_objfile->objfile;
13679 bfd *abfd = section->asection->owner;
13680 struct abbrev_table *abbrev_table;
d521ce57 13681 const gdb_byte *abbrev_ptr;
c906108c
SS
13682 struct abbrev_info *cur_abbrev;
13683 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 13684 unsigned int abbrev_form;
f3dd6933
DJ
13685 struct attr_abbrev *cur_attrs;
13686 unsigned int allocated_attrs;
c906108c 13687
433df2d4 13688 abbrev_table = XMALLOC (struct abbrev_table);
f4dc4d17 13689 abbrev_table->offset = offset;
433df2d4
DE
13690 obstack_init (&abbrev_table->abbrev_obstack);
13691 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13692 (ABBREV_HASH_SIZE
13693 * sizeof (struct abbrev_info *)));
13694 memset (abbrev_table->abbrevs, 0,
13695 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 13696
433df2d4
DE
13697 dwarf2_read_section (objfile, section);
13698 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
13699 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13700 abbrev_ptr += bytes_read;
13701
f3dd6933
DJ
13702 allocated_attrs = ATTR_ALLOC_CHUNK;
13703 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 13704
0963b4bd 13705 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
13706 while (abbrev_number)
13707 {
433df2d4 13708 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
13709
13710 /* read in abbrev header */
13711 cur_abbrev->number = abbrev_number;
13712 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13713 abbrev_ptr += bytes_read;
13714 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13715 abbrev_ptr += 1;
13716
13717 /* now read in declarations */
13718 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13719 abbrev_ptr += bytes_read;
13720 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13721 abbrev_ptr += bytes_read;
13722 while (abbrev_name)
13723 {
f3dd6933 13724 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 13725 {
f3dd6933
DJ
13726 allocated_attrs += ATTR_ALLOC_CHUNK;
13727 cur_attrs
13728 = xrealloc (cur_attrs, (allocated_attrs
13729 * sizeof (struct attr_abbrev)));
c906108c 13730 }
ae038cb0 13731
f3dd6933
DJ
13732 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13733 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
13734 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13735 abbrev_ptr += bytes_read;
13736 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13737 abbrev_ptr += bytes_read;
13738 }
13739
433df2d4 13740 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
13741 (cur_abbrev->num_attrs
13742 * sizeof (struct attr_abbrev)));
13743 memcpy (cur_abbrev->attrs, cur_attrs,
13744 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13745
433df2d4 13746 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
13747
13748 /* Get next abbreviation.
13749 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
13750 always properly terminated with an abbrev number of 0.
13751 Exit loop if we encounter an abbreviation which we have
13752 already read (which means we are about to read the abbreviations
13753 for the next compile unit) or if the end of the abbreviation
13754 table is reached. */
433df2d4 13755 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
13756 break;
13757 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13758 abbrev_ptr += bytes_read;
433df2d4 13759 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
13760 break;
13761 }
f3dd6933
DJ
13762
13763 xfree (cur_attrs);
433df2d4 13764 return abbrev_table;
c906108c
SS
13765}
13766
433df2d4 13767/* Free the resources held by ABBREV_TABLE. */
c906108c 13768
c906108c 13769static void
433df2d4 13770abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 13771{
433df2d4
DE
13772 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13773 xfree (abbrev_table);
c906108c
SS
13774}
13775
f4dc4d17
DE
13776/* Same as abbrev_table_free but as a cleanup.
13777 We pass in a pointer to the pointer to the table so that we can
13778 set the pointer to NULL when we're done. It also simplifies
13779 build_type_unit_groups. */
13780
13781static void
13782abbrev_table_free_cleanup (void *table_ptr)
13783{
13784 struct abbrev_table **abbrev_table_ptr = table_ptr;
13785
13786 if (*abbrev_table_ptr != NULL)
13787 abbrev_table_free (*abbrev_table_ptr);
13788 *abbrev_table_ptr = NULL;
13789}
13790
433df2d4
DE
13791/* Read the abbrev table for CU from ABBREV_SECTION. */
13792
13793static void
13794dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13795 struct dwarf2_section_info *abbrev_section)
c906108c 13796{
433df2d4
DE
13797 cu->abbrev_table =
13798 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13799}
c906108c 13800
433df2d4 13801/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 13802
433df2d4
DE
13803static void
13804dwarf2_free_abbrev_table (void *ptr_to_cu)
13805{
13806 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 13807
a2ce51a0
DE
13808 if (cu->abbrev_table != NULL)
13809 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
13810 /* Set this to NULL so that we SEGV if we try to read it later,
13811 and also because free_comp_unit verifies this is NULL. */
13812 cu->abbrev_table = NULL;
13813}
13814\f
72bf9492
DJ
13815/* Returns nonzero if TAG represents a type that we might generate a partial
13816 symbol for. */
13817
13818static int
13819is_type_tag_for_partial (int tag)
13820{
13821 switch (tag)
13822 {
13823#if 0
13824 /* Some types that would be reasonable to generate partial symbols for,
13825 that we don't at present. */
13826 case DW_TAG_array_type:
13827 case DW_TAG_file_type:
13828 case DW_TAG_ptr_to_member_type:
13829 case DW_TAG_set_type:
13830 case DW_TAG_string_type:
13831 case DW_TAG_subroutine_type:
13832#endif
13833 case DW_TAG_base_type:
13834 case DW_TAG_class_type:
680b30c7 13835 case DW_TAG_interface_type:
72bf9492
DJ
13836 case DW_TAG_enumeration_type:
13837 case DW_TAG_structure_type:
13838 case DW_TAG_subrange_type:
13839 case DW_TAG_typedef:
13840 case DW_TAG_union_type:
13841 return 1;
13842 default:
13843 return 0;
13844 }
13845}
13846
13847/* Load all DIEs that are interesting for partial symbols into memory. */
13848
13849static struct partial_die_info *
dee91e82 13850load_partial_dies (const struct die_reader_specs *reader,
d521ce57 13851 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 13852{
dee91e82 13853 struct dwarf2_cu *cu = reader->cu;
bb5ed363 13854 struct objfile *objfile = cu->objfile;
72bf9492
DJ
13855 struct partial_die_info *part_die;
13856 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13857 struct abbrev_info *abbrev;
13858 unsigned int bytes_read;
5afb4e99 13859 unsigned int load_all = 0;
72bf9492
DJ
13860 int nesting_level = 1;
13861
13862 parent_die = NULL;
13863 last_die = NULL;
13864
7adf1e79
DE
13865 gdb_assert (cu->per_cu != NULL);
13866 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
13867 load_all = 1;
13868
72bf9492
DJ
13869 cu->partial_dies
13870 = htab_create_alloc_ex (cu->header.length / 12,
13871 partial_die_hash,
13872 partial_die_eq,
13873 NULL,
13874 &cu->comp_unit_obstack,
13875 hashtab_obstack_allocate,
13876 dummy_obstack_deallocate);
13877
13878 part_die = obstack_alloc (&cu->comp_unit_obstack,
13879 sizeof (struct partial_die_info));
13880
13881 while (1)
13882 {
13883 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13884
13885 /* A NULL abbrev means the end of a series of children. */
13886 if (abbrev == NULL)
13887 {
13888 if (--nesting_level == 0)
13889 {
13890 /* PART_DIE was probably the last thing allocated on the
13891 comp_unit_obstack, so we could call obstack_free
13892 here. We don't do that because the waste is small,
13893 and will be cleaned up when we're done with this
13894 compilation unit. This way, we're also more robust
13895 against other users of the comp_unit_obstack. */
13896 return first_die;
13897 }
13898 info_ptr += bytes_read;
13899 last_die = parent_die;
13900 parent_die = parent_die->die_parent;
13901 continue;
13902 }
13903
98bfdba5
PA
13904 /* Check for template arguments. We never save these; if
13905 they're seen, we just mark the parent, and go on our way. */
13906 if (parent_die != NULL
13907 && cu->language == language_cplus
13908 && (abbrev->tag == DW_TAG_template_type_param
13909 || abbrev->tag == DW_TAG_template_value_param))
13910 {
13911 parent_die->has_template_arguments = 1;
13912
13913 if (!load_all)
13914 {
13915 /* We don't need a partial DIE for the template argument. */
dee91e82 13916 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
13917 continue;
13918 }
13919 }
13920
0d99eb77 13921 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
13922 Skip their other children. */
13923 if (!load_all
13924 && cu->language == language_cplus
13925 && parent_die != NULL
13926 && parent_die->tag == DW_TAG_subprogram)
13927 {
dee91e82 13928 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
13929 continue;
13930 }
13931
5afb4e99
DJ
13932 /* Check whether this DIE is interesting enough to save. Normally
13933 we would not be interested in members here, but there may be
13934 later variables referencing them via DW_AT_specification (for
13935 static members). */
13936 if (!load_all
13937 && !is_type_tag_for_partial (abbrev->tag)
72929c62 13938 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
13939 && abbrev->tag != DW_TAG_enumerator
13940 && abbrev->tag != DW_TAG_subprogram
bc30ff58 13941 && abbrev->tag != DW_TAG_lexical_block
72bf9492 13942 && abbrev->tag != DW_TAG_variable
5afb4e99 13943 && abbrev->tag != DW_TAG_namespace
f55ee35c 13944 && abbrev->tag != DW_TAG_module
95554aad
TT
13945 && abbrev->tag != DW_TAG_member
13946 && abbrev->tag != DW_TAG_imported_unit)
72bf9492
DJ
13947 {
13948 /* Otherwise we skip to the next sibling, if any. */
dee91e82 13949 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
13950 continue;
13951 }
13952
dee91e82
DE
13953 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13954 info_ptr);
72bf9492
DJ
13955
13956 /* This two-pass algorithm for processing partial symbols has a
13957 high cost in cache pressure. Thus, handle some simple cases
13958 here which cover the majority of C partial symbols. DIEs
13959 which neither have specification tags in them, nor could have
13960 specification tags elsewhere pointing at them, can simply be
13961 processed and discarded.
13962
13963 This segment is also optional; scan_partial_symbols and
13964 add_partial_symbol will handle these DIEs if we chain
13965 them in normally. When compilers which do not emit large
13966 quantities of duplicate debug information are more common,
13967 this code can probably be removed. */
13968
13969 /* Any complete simple types at the top level (pretty much all
13970 of them, for a language without namespaces), can be processed
13971 directly. */
13972 if (parent_die == NULL
13973 && part_die->has_specification == 0
13974 && part_die->is_declaration == 0
d8228535 13975 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
13976 || part_die->tag == DW_TAG_base_type
13977 || part_die->tag == DW_TAG_subrange_type))
13978 {
13979 if (building_psymtab && part_die->name != NULL)
04a679b8 13980 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 13981 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
13982 &objfile->static_psymbols,
13983 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 13984 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
13985 continue;
13986 }
13987
d8228535
JK
13988 /* The exception for DW_TAG_typedef with has_children above is
13989 a workaround of GCC PR debug/47510. In the case of this complaint
13990 type_name_no_tag_or_error will error on such types later.
13991
13992 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13993 it could not find the child DIEs referenced later, this is checked
13994 above. In correct DWARF DW_TAG_typedef should have no children. */
13995
13996 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13997 complaint (&symfile_complaints,
13998 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13999 "- DIE at 0x%x [in module %s]"),
b64f50a1 14000 part_die->offset.sect_off, objfile->name);
d8228535 14001
72bf9492
DJ
14002 /* If we're at the second level, and we're an enumerator, and
14003 our parent has no specification (meaning possibly lives in a
14004 namespace elsewhere), then we can add the partial symbol now
14005 instead of queueing it. */
14006 if (part_die->tag == DW_TAG_enumerator
14007 && parent_die != NULL
14008 && parent_die->die_parent == NULL
14009 && parent_die->tag == DW_TAG_enumeration_type
14010 && parent_die->has_specification == 0)
14011 {
14012 if (part_die->name == NULL)
3e43a32a
MS
14013 complaint (&symfile_complaints,
14014 _("malformed enumerator DIE ignored"));
72bf9492 14015 else if (building_psymtab)
04a679b8 14016 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 14017 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
14018 (cu->language == language_cplus
14019 || cu->language == language_java)
bb5ed363
DE
14020 ? &objfile->global_psymbols
14021 : &objfile->static_psymbols,
14022 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 14023
dee91e82 14024 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
14025 continue;
14026 }
14027
14028 /* We'll save this DIE so link it in. */
14029 part_die->die_parent = parent_die;
14030 part_die->die_sibling = NULL;
14031 part_die->die_child = NULL;
14032
14033 if (last_die && last_die == parent_die)
14034 last_die->die_child = part_die;
14035 else if (last_die)
14036 last_die->die_sibling = part_die;
14037
14038 last_die = part_die;
14039
14040 if (first_die == NULL)
14041 first_die = part_die;
14042
14043 /* Maybe add the DIE to the hash table. Not all DIEs that we
14044 find interesting need to be in the hash table, because we
14045 also have the parent/sibling/child chains; only those that we
14046 might refer to by offset later during partial symbol reading.
14047
14048 For now this means things that might have be the target of a
14049 DW_AT_specification, DW_AT_abstract_origin, or
14050 DW_AT_extension. DW_AT_extension will refer only to
14051 namespaces; DW_AT_abstract_origin refers to functions (and
14052 many things under the function DIE, but we do not recurse
14053 into function DIEs during partial symbol reading) and
14054 possibly variables as well; DW_AT_specification refers to
14055 declarations. Declarations ought to have the DW_AT_declaration
14056 flag. It happens that GCC forgets to put it in sometimes, but
14057 only for functions, not for types.
14058
14059 Adding more things than necessary to the hash table is harmless
14060 except for the performance cost. Adding too few will result in
5afb4e99
DJ
14061 wasted time in find_partial_die, when we reread the compilation
14062 unit with load_all_dies set. */
72bf9492 14063
5afb4e99 14064 if (load_all
72929c62 14065 || abbrev->tag == DW_TAG_constant
5afb4e99 14066 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
14067 || abbrev->tag == DW_TAG_variable
14068 || abbrev->tag == DW_TAG_namespace
14069 || part_die->is_declaration)
14070 {
14071 void **slot;
14072
14073 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 14074 part_die->offset.sect_off, INSERT);
72bf9492
DJ
14075 *slot = part_die;
14076 }
14077
14078 part_die = obstack_alloc (&cu->comp_unit_obstack,
14079 sizeof (struct partial_die_info));
14080
14081 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 14082 we have no reason to follow the children of structures; for other
98bfdba5
PA
14083 languages we have to, so that we can get at method physnames
14084 to infer fully qualified class names, for DW_AT_specification,
14085 and for C++ template arguments. For C++, we also look one level
14086 inside functions to find template arguments (if the name of the
14087 function does not already contain the template arguments).
bc30ff58
JB
14088
14089 For Ada, we need to scan the children of subprograms and lexical
14090 blocks as well because Ada allows the definition of nested
14091 entities that could be interesting for the debugger, such as
14092 nested subprograms for instance. */
72bf9492 14093 if (last_die->has_children
5afb4e99
DJ
14094 && (load_all
14095 || last_die->tag == DW_TAG_namespace
f55ee35c 14096 || last_die->tag == DW_TAG_module
72bf9492 14097 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
14098 || (cu->language == language_cplus
14099 && last_die->tag == DW_TAG_subprogram
14100 && (last_die->name == NULL
14101 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
14102 || (cu->language != language_c
14103 && (last_die->tag == DW_TAG_class_type
680b30c7 14104 || last_die->tag == DW_TAG_interface_type
72bf9492 14105 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
14106 || last_die->tag == DW_TAG_union_type))
14107 || (cu->language == language_ada
14108 && (last_die->tag == DW_TAG_subprogram
14109 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
14110 {
14111 nesting_level++;
14112 parent_die = last_die;
14113 continue;
14114 }
14115
14116 /* Otherwise we skip to the next sibling, if any. */
dee91e82 14117 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
14118
14119 /* Back to the top, do it again. */
14120 }
14121}
14122
c906108c
SS
14123/* Read a minimal amount of information into the minimal die structure. */
14124
d521ce57 14125static const gdb_byte *
dee91e82
DE
14126read_partial_die (const struct die_reader_specs *reader,
14127 struct partial_die_info *part_die,
14128 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 14129 const gdb_byte *info_ptr)
c906108c 14130{
dee91e82 14131 struct dwarf2_cu *cu = reader->cu;
bb5ed363 14132 struct objfile *objfile = cu->objfile;
d521ce57 14133 const gdb_byte *buffer = reader->buffer;
fa238c03 14134 unsigned int i;
c906108c 14135 struct attribute attr;
c5aa993b 14136 int has_low_pc_attr = 0;
c906108c 14137 int has_high_pc_attr = 0;
91da1414 14138 int high_pc_relative = 0;
c906108c 14139
72bf9492 14140 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 14141
b64f50a1 14142 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
14143
14144 info_ptr += abbrev_len;
14145
14146 if (abbrev == NULL)
14147 return info_ptr;
14148
c906108c
SS
14149 part_die->tag = abbrev->tag;
14150 part_die->has_children = abbrev->has_children;
c906108c
SS
14151
14152 for (i = 0; i < abbrev->num_attrs; ++i)
14153 {
dee91e82 14154 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
14155
14156 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 14157 partial symbol table. */
c906108c
SS
14158 switch (attr.name)
14159 {
14160 case DW_AT_name:
71c25dea
TT
14161 switch (part_die->tag)
14162 {
14163 case DW_TAG_compile_unit:
95554aad 14164 case DW_TAG_partial_unit:
348e048f 14165 case DW_TAG_type_unit:
71c25dea
TT
14166 /* Compilation units have a DW_AT_name that is a filename, not
14167 a source language identifier. */
14168 case DW_TAG_enumeration_type:
14169 case DW_TAG_enumerator:
14170 /* These tags always have simple identifiers already; no need
14171 to canonicalize them. */
14172 part_die->name = DW_STRING (&attr);
14173 break;
14174 default:
14175 part_die->name
14176 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
bb5ed363 14177 &objfile->objfile_obstack);
71c25dea
TT
14178 break;
14179 }
c906108c 14180 break;
31ef98ae 14181 case DW_AT_linkage_name:
c906108c 14182 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
14183 /* Note that both forms of linkage name might appear. We
14184 assume they will be the same, and we only store the last
14185 one we see. */
94af9270
KS
14186 if (cu->language == language_ada)
14187 part_die->name = DW_STRING (&attr);
abc72ce4 14188 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
14189 break;
14190 case DW_AT_low_pc:
14191 has_low_pc_attr = 1;
14192 part_die->lowpc = DW_ADDR (&attr);
14193 break;
14194 case DW_AT_high_pc:
14195 has_high_pc_attr = 1;
3019eac3
DE
14196 if (attr.form == DW_FORM_addr
14197 || attr.form == DW_FORM_GNU_addr_index)
91da1414
MW
14198 part_die->highpc = DW_ADDR (&attr);
14199 else
14200 {
14201 high_pc_relative = 1;
14202 part_die->highpc = DW_UNSND (&attr);
14203 }
c906108c
SS
14204 break;
14205 case DW_AT_location:
0963b4bd 14206 /* Support the .debug_loc offsets. */
8e19ed76
PS
14207 if (attr_form_is_block (&attr))
14208 {
95554aad 14209 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 14210 }
3690dd37 14211 else if (attr_form_is_section_offset (&attr))
8e19ed76 14212 {
4d3c2250 14213 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
14214 }
14215 else
14216 {
4d3c2250
KB
14217 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14218 "partial symbol information");
8e19ed76 14219 }
c906108c 14220 break;
c906108c
SS
14221 case DW_AT_external:
14222 part_die->is_external = DW_UNSND (&attr);
14223 break;
14224 case DW_AT_declaration:
14225 part_die->is_declaration = DW_UNSND (&attr);
14226 break;
14227 case DW_AT_type:
14228 part_die->has_type = 1;
14229 break;
14230 case DW_AT_abstract_origin:
14231 case DW_AT_specification:
72bf9492
DJ
14232 case DW_AT_extension:
14233 part_die->has_specification = 1;
c764a876 14234 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
14235 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14236 || cu->per_cu->is_dwz);
c906108c
SS
14237 break;
14238 case DW_AT_sibling:
14239 /* Ignore absolute siblings, they might point outside of
14240 the current compile unit. */
14241 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
14242 complaint (&symfile_complaints,
14243 _("ignoring absolute DW_AT_sibling"));
c906108c 14244 else
b64f50a1 14245 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
c906108c 14246 break;
fa4028e9
JB
14247 case DW_AT_byte_size:
14248 part_die->has_byte_size = 1;
14249 break;
68511cec
CES
14250 case DW_AT_calling_convention:
14251 /* DWARF doesn't provide a way to identify a program's source-level
14252 entry point. DW_AT_calling_convention attributes are only meant
14253 to describe functions' calling conventions.
14254
14255 However, because it's a necessary piece of information in
14256 Fortran, and because DW_CC_program is the only piece of debugging
14257 information whose definition refers to a 'main program' at all,
14258 several compilers have begun marking Fortran main programs with
14259 DW_CC_program --- even when those functions use the standard
14260 calling conventions.
14261
14262 So until DWARF specifies a way to provide this information and
14263 compilers pick up the new representation, we'll support this
14264 practice. */
14265 if (DW_UNSND (&attr) == DW_CC_program
14266 && cu->language == language_fortran)
01f8c46d
JK
14267 {
14268 set_main_name (part_die->name);
14269
14270 /* As this DIE has a static linkage the name would be difficult
14271 to look up later. */
14272 language_of_main = language_fortran;
14273 }
68511cec 14274 break;
481860b3
GB
14275 case DW_AT_inline:
14276 if (DW_UNSND (&attr) == DW_INL_inlined
14277 || DW_UNSND (&attr) == DW_INL_declared_inlined)
14278 part_die->may_be_inlined = 1;
14279 break;
95554aad
TT
14280
14281 case DW_AT_import:
14282 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
14283 {
14284 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
14285 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14286 || cu->per_cu->is_dwz);
14287 }
95554aad
TT
14288 break;
14289
c906108c
SS
14290 default:
14291 break;
14292 }
14293 }
14294
91da1414
MW
14295 if (high_pc_relative)
14296 part_die->highpc += part_die->lowpc;
14297
9373cf26
JK
14298 if (has_low_pc_attr && has_high_pc_attr)
14299 {
14300 /* When using the GNU linker, .gnu.linkonce. sections are used to
14301 eliminate duplicate copies of functions and vtables and such.
14302 The linker will arbitrarily choose one and discard the others.
14303 The AT_*_pc values for such functions refer to local labels in
14304 these sections. If the section from that file was discarded, the
14305 labels are not in the output, so the relocs get a value of 0.
14306 If this is a discarded function, mark the pc bounds as invalid,
14307 so that GDB will ignore it. */
14308 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
14309 {
bb5ed363 14310 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
14311
14312 complaint (&symfile_complaints,
14313 _("DW_AT_low_pc %s is zero "
14314 "for DIE at 0x%x [in module %s]"),
14315 paddress (gdbarch, part_die->lowpc),
b64f50a1 14316 part_die->offset.sect_off, objfile->name);
9373cf26
JK
14317 }
14318 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
14319 else if (part_die->lowpc >= part_die->highpc)
14320 {
bb5ed363 14321 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
14322
14323 complaint (&symfile_complaints,
14324 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
14325 "for DIE at 0x%x [in module %s]"),
14326 paddress (gdbarch, part_die->lowpc),
14327 paddress (gdbarch, part_die->highpc),
b64f50a1 14328 part_die->offset.sect_off, objfile->name);
9373cf26
JK
14329 }
14330 else
14331 part_die->has_pc_info = 1;
14332 }
85cbf3d3 14333
c906108c
SS
14334 return info_ptr;
14335}
14336
72bf9492
DJ
14337/* Find a cached partial DIE at OFFSET in CU. */
14338
14339static struct partial_die_info *
b64f50a1 14340find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
14341{
14342 struct partial_die_info *lookup_die = NULL;
14343 struct partial_die_info part_die;
14344
14345 part_die.offset = offset;
b64f50a1
JK
14346 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
14347 offset.sect_off);
72bf9492 14348
72bf9492
DJ
14349 return lookup_die;
14350}
14351
348e048f
DE
14352/* Find a partial DIE at OFFSET, which may or may not be in CU,
14353 except in the case of .debug_types DIEs which do not reference
14354 outside their CU (they do however referencing other types via
55f1336d 14355 DW_FORM_ref_sig8). */
72bf9492
DJ
14356
14357static struct partial_die_info *
36586728 14358find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 14359{
bb5ed363 14360 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
14361 struct dwarf2_per_cu_data *per_cu = NULL;
14362 struct partial_die_info *pd = NULL;
72bf9492 14363
36586728
TT
14364 if (offset_in_dwz == cu->per_cu->is_dwz
14365 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
14366 {
14367 pd = find_partial_die_in_comp_unit (offset, cu);
14368 if (pd != NULL)
14369 return pd;
0d99eb77
DE
14370 /* We missed recording what we needed.
14371 Load all dies and try again. */
14372 per_cu = cu->per_cu;
5afb4e99 14373 }
0d99eb77
DE
14374 else
14375 {
14376 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 14377 if (cu->per_cu->is_debug_types)
0d99eb77
DE
14378 {
14379 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
14380 " external reference to offset 0x%lx [in module %s].\n"),
14381 (long) cu->header.offset.sect_off, (long) offset.sect_off,
14382 bfd_get_filename (objfile->obfd));
14383 }
36586728
TT
14384 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
14385 objfile);
72bf9492 14386
0d99eb77
DE
14387 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
14388 load_partial_comp_unit (per_cu);
ae038cb0 14389
0d99eb77
DE
14390 per_cu->cu->last_used = 0;
14391 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14392 }
5afb4e99 14393
dee91e82
DE
14394 /* If we didn't find it, and not all dies have been loaded,
14395 load them all and try again. */
14396
5afb4e99
DJ
14397 if (pd == NULL && per_cu->load_all_dies == 0)
14398 {
5afb4e99 14399 per_cu->load_all_dies = 1;
fd820528
DE
14400
14401 /* This is nasty. When we reread the DIEs, somewhere up the call chain
14402 THIS_CU->cu may already be in use. So we can't just free it and
14403 replace its DIEs with the ones we read in. Instead, we leave those
14404 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
14405 and clobber THIS_CU->cu->partial_dies with the hash table for the new
14406 set. */
dee91e82 14407 load_partial_comp_unit (per_cu);
5afb4e99
DJ
14408
14409 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14410 }
14411
14412 if (pd == NULL)
14413 internal_error (__FILE__, __LINE__,
3e43a32a
MS
14414 _("could not find partial DIE 0x%x "
14415 "in cache [from module %s]\n"),
b64f50a1 14416 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 14417 return pd;
72bf9492
DJ
14418}
14419
abc72ce4
DE
14420/* See if we can figure out if the class lives in a namespace. We do
14421 this by looking for a member function; its demangled name will
14422 contain namespace info, if there is any. */
14423
14424static void
14425guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
14426 struct dwarf2_cu *cu)
14427{
14428 /* NOTE: carlton/2003-10-07: Getting the info this way changes
14429 what template types look like, because the demangler
14430 frequently doesn't give the same name as the debug info. We
14431 could fix this by only using the demangled name to get the
14432 prefix (but see comment in read_structure_type). */
14433
14434 struct partial_die_info *real_pdi;
14435 struct partial_die_info *child_pdi;
14436
14437 /* If this DIE (this DIE's specification, if any) has a parent, then
14438 we should not do this. We'll prepend the parent's fully qualified
14439 name when we create the partial symbol. */
14440
14441 real_pdi = struct_pdi;
14442 while (real_pdi->has_specification)
36586728
TT
14443 real_pdi = find_partial_die (real_pdi->spec_offset,
14444 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
14445
14446 if (real_pdi->die_parent != NULL)
14447 return;
14448
14449 for (child_pdi = struct_pdi->die_child;
14450 child_pdi != NULL;
14451 child_pdi = child_pdi->die_sibling)
14452 {
14453 if (child_pdi->tag == DW_TAG_subprogram
14454 && child_pdi->linkage_name != NULL)
14455 {
14456 char *actual_class_name
14457 = language_class_name_from_physname (cu->language_defn,
14458 child_pdi->linkage_name);
14459 if (actual_class_name != NULL)
14460 {
14461 struct_pdi->name
10f0c4bb
TT
14462 = obstack_copy0 (&cu->objfile->objfile_obstack,
14463 actual_class_name,
14464 strlen (actual_class_name));
abc72ce4
DE
14465 xfree (actual_class_name);
14466 }
14467 break;
14468 }
14469 }
14470}
14471
72bf9492
DJ
14472/* Adjust PART_DIE before generating a symbol for it. This function
14473 may set the is_external flag or change the DIE's name. */
14474
14475static void
14476fixup_partial_die (struct partial_die_info *part_die,
14477 struct dwarf2_cu *cu)
14478{
abc72ce4
DE
14479 /* Once we've fixed up a die, there's no point in doing so again.
14480 This also avoids a memory leak if we were to call
14481 guess_partial_die_structure_name multiple times. */
14482 if (part_die->fixup_called)
14483 return;
14484
72bf9492
DJ
14485 /* If we found a reference attribute and the DIE has no name, try
14486 to find a name in the referred to DIE. */
14487
14488 if (part_die->name == NULL && part_die->has_specification)
14489 {
14490 struct partial_die_info *spec_die;
72bf9492 14491
36586728
TT
14492 spec_die = find_partial_die (part_die->spec_offset,
14493 part_die->spec_is_dwz, cu);
72bf9492 14494
10b3939b 14495 fixup_partial_die (spec_die, cu);
72bf9492
DJ
14496
14497 if (spec_die->name)
14498 {
14499 part_die->name = spec_die->name;
14500
14501 /* Copy DW_AT_external attribute if it is set. */
14502 if (spec_die->is_external)
14503 part_die->is_external = spec_die->is_external;
14504 }
14505 }
14506
14507 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
14508
14509 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 14510 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 14511
abc72ce4
DE
14512 /* If there is no parent die to provide a namespace, and there are
14513 children, see if we can determine the namespace from their linkage
122d1940 14514 name. */
abc72ce4 14515 if (cu->language == language_cplus
8b70b953 14516 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
14517 && part_die->die_parent == NULL
14518 && part_die->has_children
14519 && (part_die->tag == DW_TAG_class_type
14520 || part_die->tag == DW_TAG_structure_type
14521 || part_die->tag == DW_TAG_union_type))
14522 guess_partial_die_structure_name (part_die, cu);
14523
53832f31
TT
14524 /* GCC might emit a nameless struct or union that has a linkage
14525 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14526 if (part_die->name == NULL
96408a79
SA
14527 && (part_die->tag == DW_TAG_class_type
14528 || part_die->tag == DW_TAG_interface_type
14529 || part_die->tag == DW_TAG_structure_type
14530 || part_die->tag == DW_TAG_union_type)
53832f31
TT
14531 && part_die->linkage_name != NULL)
14532 {
14533 char *demangled;
14534
8de20a37 14535 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
14536 if (demangled)
14537 {
96408a79
SA
14538 const char *base;
14539
14540 /* Strip any leading namespaces/classes, keep only the base name.
14541 DW_AT_name for named DIEs does not contain the prefixes. */
14542 base = strrchr (demangled, ':');
14543 if (base && base > demangled && base[-1] == ':')
14544 base++;
14545 else
14546 base = demangled;
14547
10f0c4bb
TT
14548 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14549 base, strlen (base));
53832f31
TT
14550 xfree (demangled);
14551 }
14552 }
14553
abc72ce4 14554 part_die->fixup_called = 1;
72bf9492
DJ
14555}
14556
a8329558 14557/* Read an attribute value described by an attribute form. */
c906108c 14558
d521ce57 14559static const gdb_byte *
dee91e82
DE
14560read_attribute_value (const struct die_reader_specs *reader,
14561 struct attribute *attr, unsigned form,
d521ce57 14562 const gdb_byte *info_ptr)
c906108c 14563{
dee91e82
DE
14564 struct dwarf2_cu *cu = reader->cu;
14565 bfd *abfd = reader->abfd;
e7c27a73 14566 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
14567 unsigned int bytes_read;
14568 struct dwarf_block *blk;
14569
a8329558
KW
14570 attr->form = form;
14571 switch (form)
c906108c 14572 {
c906108c 14573 case DW_FORM_ref_addr:
ae411497 14574 if (cu->header.version == 2)
4568ecf9 14575 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 14576 else
4568ecf9
DE
14577 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14578 &cu->header, &bytes_read);
ae411497
TT
14579 info_ptr += bytes_read;
14580 break;
36586728
TT
14581 case DW_FORM_GNU_ref_alt:
14582 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14583 info_ptr += bytes_read;
14584 break;
ae411497 14585 case DW_FORM_addr:
e7c27a73 14586 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 14587 info_ptr += bytes_read;
c906108c
SS
14588 break;
14589 case DW_FORM_block2:
7b5a2f43 14590 blk = dwarf_alloc_block (cu);
c906108c
SS
14591 blk->size = read_2_bytes (abfd, info_ptr);
14592 info_ptr += 2;
14593 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14594 info_ptr += blk->size;
14595 DW_BLOCK (attr) = blk;
14596 break;
14597 case DW_FORM_block4:
7b5a2f43 14598 blk = dwarf_alloc_block (cu);
c906108c
SS
14599 blk->size = read_4_bytes (abfd, info_ptr);
14600 info_ptr += 4;
14601 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14602 info_ptr += blk->size;
14603 DW_BLOCK (attr) = blk;
14604 break;
14605 case DW_FORM_data2:
14606 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14607 info_ptr += 2;
14608 break;
14609 case DW_FORM_data4:
14610 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14611 info_ptr += 4;
14612 break;
14613 case DW_FORM_data8:
14614 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14615 info_ptr += 8;
14616 break;
2dc7f7b3
TT
14617 case DW_FORM_sec_offset:
14618 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14619 info_ptr += bytes_read;
14620 break;
c906108c 14621 case DW_FORM_string:
9b1c24c8 14622 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 14623 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
14624 info_ptr += bytes_read;
14625 break;
4bdf3d34 14626 case DW_FORM_strp:
36586728
TT
14627 if (!cu->per_cu->is_dwz)
14628 {
14629 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14630 &bytes_read);
14631 DW_STRING_IS_CANONICAL (attr) = 0;
14632 info_ptr += bytes_read;
14633 break;
14634 }
14635 /* FALLTHROUGH */
14636 case DW_FORM_GNU_strp_alt:
14637 {
14638 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14639 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14640 &bytes_read);
14641
14642 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14643 DW_STRING_IS_CANONICAL (attr) = 0;
14644 info_ptr += bytes_read;
14645 }
4bdf3d34 14646 break;
2dc7f7b3 14647 case DW_FORM_exprloc:
c906108c 14648 case DW_FORM_block:
7b5a2f43 14649 blk = dwarf_alloc_block (cu);
c906108c
SS
14650 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14651 info_ptr += bytes_read;
14652 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14653 info_ptr += blk->size;
14654 DW_BLOCK (attr) = blk;
14655 break;
14656 case DW_FORM_block1:
7b5a2f43 14657 blk = dwarf_alloc_block (cu);
c906108c
SS
14658 blk->size = read_1_byte (abfd, info_ptr);
14659 info_ptr += 1;
14660 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14661 info_ptr += blk->size;
14662 DW_BLOCK (attr) = blk;
14663 break;
14664 case DW_FORM_data1:
14665 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14666 info_ptr += 1;
14667 break;
14668 case DW_FORM_flag:
14669 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14670 info_ptr += 1;
14671 break;
2dc7f7b3
TT
14672 case DW_FORM_flag_present:
14673 DW_UNSND (attr) = 1;
14674 break;
c906108c
SS
14675 case DW_FORM_sdata:
14676 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14677 info_ptr += bytes_read;
14678 break;
14679 case DW_FORM_udata:
14680 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14681 info_ptr += bytes_read;
14682 break;
14683 case DW_FORM_ref1:
4568ecf9
DE
14684 DW_UNSND (attr) = (cu->header.offset.sect_off
14685 + read_1_byte (abfd, info_ptr));
c906108c
SS
14686 info_ptr += 1;
14687 break;
14688 case DW_FORM_ref2:
4568ecf9
DE
14689 DW_UNSND (attr) = (cu->header.offset.sect_off
14690 + read_2_bytes (abfd, info_ptr));
c906108c
SS
14691 info_ptr += 2;
14692 break;
14693 case DW_FORM_ref4:
4568ecf9
DE
14694 DW_UNSND (attr) = (cu->header.offset.sect_off
14695 + read_4_bytes (abfd, info_ptr));
c906108c
SS
14696 info_ptr += 4;
14697 break;
613e1657 14698 case DW_FORM_ref8:
4568ecf9
DE
14699 DW_UNSND (attr) = (cu->header.offset.sect_off
14700 + read_8_bytes (abfd, info_ptr));
613e1657
KB
14701 info_ptr += 8;
14702 break;
55f1336d 14703 case DW_FORM_ref_sig8:
ac9ec31b 14704 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
14705 info_ptr += 8;
14706 break;
c906108c 14707 case DW_FORM_ref_udata:
4568ecf9
DE
14708 DW_UNSND (attr) = (cu->header.offset.sect_off
14709 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
14710 info_ptr += bytes_read;
14711 break;
c906108c 14712 case DW_FORM_indirect:
a8329558
KW
14713 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14714 info_ptr += bytes_read;
dee91e82 14715 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 14716 break;
3019eac3
DE
14717 case DW_FORM_GNU_addr_index:
14718 if (reader->dwo_file == NULL)
14719 {
14720 /* For now flag a hard error.
14721 Later we can turn this into a complaint. */
14722 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14723 dwarf_form_name (form),
14724 bfd_get_filename (abfd));
14725 }
14726 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14727 info_ptr += bytes_read;
14728 break;
14729 case DW_FORM_GNU_str_index:
14730 if (reader->dwo_file == NULL)
14731 {
14732 /* For now flag a hard error.
14733 Later we can turn this into a complaint if warranted. */
14734 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14735 dwarf_form_name (form),
14736 bfd_get_filename (abfd));
14737 }
14738 {
14739 ULONGEST str_index =
14740 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14741
14742 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14743 DW_STRING_IS_CANONICAL (attr) = 0;
14744 info_ptr += bytes_read;
14745 }
14746 break;
c906108c 14747 default:
8a3fe4f8 14748 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
14749 dwarf_form_name (form),
14750 bfd_get_filename (abfd));
c906108c 14751 }
28e94949 14752
36586728
TT
14753 /* Super hack. */
14754 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14755 attr->form = DW_FORM_GNU_ref_alt;
14756
28e94949
JB
14757 /* We have seen instances where the compiler tried to emit a byte
14758 size attribute of -1 which ended up being encoded as an unsigned
14759 0xffffffff. Although 0xffffffff is technically a valid size value,
14760 an object of this size seems pretty unlikely so we can relatively
14761 safely treat these cases as if the size attribute was invalid and
14762 treat them as zero by default. */
14763 if (attr->name == DW_AT_byte_size
14764 && form == DW_FORM_data4
14765 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
14766 {
14767 complaint
14768 (&symfile_complaints,
43bbcdc2
PH
14769 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14770 hex_string (DW_UNSND (attr)));
01c66ae6
JB
14771 DW_UNSND (attr) = 0;
14772 }
28e94949 14773
c906108c
SS
14774 return info_ptr;
14775}
14776
a8329558
KW
14777/* Read an attribute described by an abbreviated attribute. */
14778
d521ce57 14779static const gdb_byte *
dee91e82
DE
14780read_attribute (const struct die_reader_specs *reader,
14781 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 14782 const gdb_byte *info_ptr)
a8329558
KW
14783{
14784 attr->name = abbrev->name;
dee91e82 14785 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
14786}
14787
0963b4bd 14788/* Read dwarf information from a buffer. */
c906108c
SS
14789
14790static unsigned int
a1855c1d 14791read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 14792{
fe1b8b76 14793 return bfd_get_8 (abfd, buf);
c906108c
SS
14794}
14795
14796static int
a1855c1d 14797read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 14798{
fe1b8b76 14799 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
14800}
14801
14802static unsigned int
a1855c1d 14803read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 14804{
fe1b8b76 14805 return bfd_get_16 (abfd, buf);
c906108c
SS
14806}
14807
21ae7a4d 14808static int
a1855c1d 14809read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
14810{
14811 return bfd_get_signed_16 (abfd, buf);
14812}
14813
c906108c 14814static unsigned int
a1855c1d 14815read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 14816{
fe1b8b76 14817 return bfd_get_32 (abfd, buf);
c906108c
SS
14818}
14819
21ae7a4d 14820static int
a1855c1d 14821read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
14822{
14823 return bfd_get_signed_32 (abfd, buf);
14824}
14825
93311388 14826static ULONGEST
a1855c1d 14827read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 14828{
fe1b8b76 14829 return bfd_get_64 (abfd, buf);
c906108c
SS
14830}
14831
14832static CORE_ADDR
d521ce57 14833read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 14834 unsigned int *bytes_read)
c906108c 14835{
e7c27a73 14836 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
14837 CORE_ADDR retval = 0;
14838
107d2387 14839 if (cu_header->signed_addr_p)
c906108c 14840 {
107d2387
AC
14841 switch (cu_header->addr_size)
14842 {
14843 case 2:
fe1b8b76 14844 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
14845 break;
14846 case 4:
fe1b8b76 14847 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
14848 break;
14849 case 8:
fe1b8b76 14850 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
14851 break;
14852 default:
8e65ff28 14853 internal_error (__FILE__, __LINE__,
e2e0b3e5 14854 _("read_address: bad switch, signed [in module %s]"),
659b0389 14855 bfd_get_filename (abfd));
107d2387
AC
14856 }
14857 }
14858 else
14859 {
14860 switch (cu_header->addr_size)
14861 {
14862 case 2:
fe1b8b76 14863 retval = bfd_get_16 (abfd, buf);
107d2387
AC
14864 break;
14865 case 4:
fe1b8b76 14866 retval = bfd_get_32 (abfd, buf);
107d2387
AC
14867 break;
14868 case 8:
fe1b8b76 14869 retval = bfd_get_64 (abfd, buf);
107d2387
AC
14870 break;
14871 default:
8e65ff28 14872 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
14873 _("read_address: bad switch, "
14874 "unsigned [in module %s]"),
659b0389 14875 bfd_get_filename (abfd));
107d2387 14876 }
c906108c 14877 }
64367e0a 14878
107d2387
AC
14879 *bytes_read = cu_header->addr_size;
14880 return retval;
c906108c
SS
14881}
14882
f7ef9339 14883/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
14884 specification allows the initial length to take up either 4 bytes
14885 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14886 bytes describe the length and all offsets will be 8 bytes in length
14887 instead of 4.
14888
f7ef9339
KB
14889 An older, non-standard 64-bit format is also handled by this
14890 function. The older format in question stores the initial length
14891 as an 8-byte quantity without an escape value. Lengths greater
14892 than 2^32 aren't very common which means that the initial 4 bytes
14893 is almost always zero. Since a length value of zero doesn't make
14894 sense for the 32-bit format, this initial zero can be considered to
14895 be an escape value which indicates the presence of the older 64-bit
14896 format. As written, the code can't detect (old format) lengths
917c78fc
MK
14897 greater than 4GB. If it becomes necessary to handle lengths
14898 somewhat larger than 4GB, we could allow other small values (such
14899 as the non-sensical values of 1, 2, and 3) to also be used as
14900 escape values indicating the presence of the old format.
f7ef9339 14901
917c78fc
MK
14902 The value returned via bytes_read should be used to increment the
14903 relevant pointer after calling read_initial_length().
c764a876 14904
613e1657
KB
14905 [ Note: read_initial_length() and read_offset() are based on the
14906 document entitled "DWARF Debugging Information Format", revision
f7ef9339 14907 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
14908 from:
14909
f7ef9339 14910 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 14911
613e1657
KB
14912 This document is only a draft and is subject to change. (So beware.)
14913
f7ef9339 14914 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
14915 determined empirically by examining 64-bit ELF files produced by
14916 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
14917
14918 - Kevin, July 16, 2002
613e1657
KB
14919 ] */
14920
14921static LONGEST
d521ce57 14922read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 14923{
fe1b8b76 14924 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 14925
dd373385 14926 if (length == 0xffffffff)
613e1657 14927 {
fe1b8b76 14928 length = bfd_get_64 (abfd, buf + 4);
613e1657 14929 *bytes_read = 12;
613e1657 14930 }
dd373385 14931 else if (length == 0)
f7ef9339 14932 {
dd373385 14933 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 14934 length = bfd_get_64 (abfd, buf);
f7ef9339 14935 *bytes_read = 8;
f7ef9339 14936 }
613e1657
KB
14937 else
14938 {
14939 *bytes_read = 4;
613e1657
KB
14940 }
14941
c764a876
DE
14942 return length;
14943}
dd373385 14944
c764a876
DE
14945/* Cover function for read_initial_length.
14946 Returns the length of the object at BUF, and stores the size of the
14947 initial length in *BYTES_READ and stores the size that offsets will be in
14948 *OFFSET_SIZE.
14949 If the initial length size is not equivalent to that specified in
14950 CU_HEADER then issue a complaint.
14951 This is useful when reading non-comp-unit headers. */
dd373385 14952
c764a876 14953static LONGEST
d521ce57 14954read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
14955 const struct comp_unit_head *cu_header,
14956 unsigned int *bytes_read,
14957 unsigned int *offset_size)
14958{
14959 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14960
14961 gdb_assert (cu_header->initial_length_size == 4
14962 || cu_header->initial_length_size == 8
14963 || cu_header->initial_length_size == 12);
14964
14965 if (cu_header->initial_length_size != *bytes_read)
14966 complaint (&symfile_complaints,
14967 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 14968
c764a876 14969 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 14970 return length;
613e1657
KB
14971}
14972
14973/* Read an offset from the data stream. The size of the offset is
917c78fc 14974 given by cu_header->offset_size. */
613e1657
KB
14975
14976static LONGEST
d521ce57
TT
14977read_offset (bfd *abfd, const gdb_byte *buf,
14978 const struct comp_unit_head *cu_header,
891d2f0b 14979 unsigned int *bytes_read)
c764a876
DE
14980{
14981 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 14982
c764a876
DE
14983 *bytes_read = cu_header->offset_size;
14984 return offset;
14985}
14986
14987/* Read an offset from the data stream. */
14988
14989static LONGEST
d521ce57 14990read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
14991{
14992 LONGEST retval = 0;
14993
c764a876 14994 switch (offset_size)
613e1657
KB
14995 {
14996 case 4:
fe1b8b76 14997 retval = bfd_get_32 (abfd, buf);
613e1657
KB
14998 break;
14999 case 8:
fe1b8b76 15000 retval = bfd_get_64 (abfd, buf);
613e1657
KB
15001 break;
15002 default:
8e65ff28 15003 internal_error (__FILE__, __LINE__,
c764a876 15004 _("read_offset_1: bad switch [in module %s]"),
659b0389 15005 bfd_get_filename (abfd));
613e1657
KB
15006 }
15007
917c78fc 15008 return retval;
613e1657
KB
15009}
15010
d521ce57
TT
15011static const gdb_byte *
15012read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
15013{
15014 /* If the size of a host char is 8 bits, we can return a pointer
15015 to the buffer, otherwise we have to copy the data to a buffer
15016 allocated on the temporary obstack. */
4bdf3d34 15017 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 15018 return buf;
c906108c
SS
15019}
15020
d521ce57
TT
15021static const char *
15022read_direct_string (bfd *abfd, const gdb_byte *buf,
15023 unsigned int *bytes_read_ptr)
c906108c
SS
15024{
15025 /* If the size of a host char is 8 bits, we can return a pointer
15026 to the string, otherwise we have to copy the string to a buffer
15027 allocated on the temporary obstack. */
4bdf3d34 15028 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
15029 if (*buf == '\0')
15030 {
15031 *bytes_read_ptr = 1;
15032 return NULL;
15033 }
d521ce57
TT
15034 *bytes_read_ptr = strlen ((const char *) buf) + 1;
15035 return (const char *) buf;
4bdf3d34
JJ
15036}
15037
d521ce57 15038static const char *
cf2c3c16 15039read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 15040{
be391dca 15041 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 15042 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
15043 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
15044 bfd_get_filename (abfd));
dce234bc 15045 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
15046 error (_("DW_FORM_strp pointing outside of "
15047 ".debug_str section [in module %s]"),
15048 bfd_get_filename (abfd));
4bdf3d34 15049 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 15050 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 15051 return NULL;
d521ce57 15052 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
15053}
15054
36586728
TT
15055/* Read a string at offset STR_OFFSET in the .debug_str section from
15056 the .dwz file DWZ. Throw an error if the offset is too large. If
15057 the string consists of a single NUL byte, return NULL; otherwise
15058 return a pointer to the string. */
15059
d521ce57 15060static const char *
36586728
TT
15061read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
15062{
15063 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
15064
15065 if (dwz->str.buffer == NULL)
15066 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
15067 "section [in module %s]"),
15068 bfd_get_filename (dwz->dwz_bfd));
15069 if (str_offset >= dwz->str.size)
15070 error (_("DW_FORM_GNU_strp_alt pointing outside of "
15071 ".debug_str section [in module %s]"),
15072 bfd_get_filename (dwz->dwz_bfd));
15073 gdb_assert (HOST_CHAR_BIT == 8);
15074 if (dwz->str.buffer[str_offset] == '\0')
15075 return NULL;
d521ce57 15076 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
15077}
15078
d521ce57
TT
15079static const char *
15080read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
15081 const struct comp_unit_head *cu_header,
15082 unsigned int *bytes_read_ptr)
15083{
15084 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
15085
15086 return read_indirect_string_at_offset (abfd, str_offset);
15087}
15088
12df843f 15089static ULONGEST
d521ce57
TT
15090read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
15091 unsigned int *bytes_read_ptr)
c906108c 15092{
12df843f 15093 ULONGEST result;
ce5d95e1 15094 unsigned int num_read;
c906108c
SS
15095 int i, shift;
15096 unsigned char byte;
15097
15098 result = 0;
15099 shift = 0;
15100 num_read = 0;
15101 i = 0;
15102 while (1)
15103 {
fe1b8b76 15104 byte = bfd_get_8 (abfd, buf);
c906108c
SS
15105 buf++;
15106 num_read++;
12df843f 15107 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
15108 if ((byte & 128) == 0)
15109 {
15110 break;
15111 }
15112 shift += 7;
15113 }
15114 *bytes_read_ptr = num_read;
15115 return result;
15116}
15117
12df843f 15118static LONGEST
d521ce57
TT
15119read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
15120 unsigned int *bytes_read_ptr)
c906108c 15121{
12df843f 15122 LONGEST result;
77e0b926 15123 int i, shift, num_read;
c906108c
SS
15124 unsigned char byte;
15125
15126 result = 0;
15127 shift = 0;
c906108c
SS
15128 num_read = 0;
15129 i = 0;
15130 while (1)
15131 {
fe1b8b76 15132 byte = bfd_get_8 (abfd, buf);
c906108c
SS
15133 buf++;
15134 num_read++;
12df843f 15135 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
15136 shift += 7;
15137 if ((byte & 128) == 0)
15138 {
15139 break;
15140 }
15141 }
77e0b926 15142 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 15143 result |= -(((LONGEST) 1) << shift);
c906108c
SS
15144 *bytes_read_ptr = num_read;
15145 return result;
15146}
15147
3019eac3
DE
15148/* Given index ADDR_INDEX in .debug_addr, fetch the value.
15149 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
15150 ADDR_SIZE is the size of addresses from the CU header. */
15151
15152static CORE_ADDR
15153read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
15154{
15155 struct objfile *objfile = dwarf2_per_objfile->objfile;
15156 bfd *abfd = objfile->obfd;
15157 const gdb_byte *info_ptr;
15158
15159 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
15160 if (dwarf2_per_objfile->addr.buffer == NULL)
15161 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
15162 objfile->name);
15163 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
15164 error (_("DW_FORM_addr_index pointing outside of "
15165 ".debug_addr section [in module %s]"),
15166 objfile->name);
15167 info_ptr = (dwarf2_per_objfile->addr.buffer
15168 + addr_base + addr_index * addr_size);
15169 if (addr_size == 4)
15170 return bfd_get_32 (abfd, info_ptr);
15171 else
15172 return bfd_get_64 (abfd, info_ptr);
15173}
15174
15175/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
15176
15177static CORE_ADDR
15178read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
15179{
15180 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
15181}
15182
15183/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
15184
15185static CORE_ADDR
d521ce57 15186read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
15187 unsigned int *bytes_read)
15188{
15189 bfd *abfd = cu->objfile->obfd;
15190 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
15191
15192 return read_addr_index (cu, addr_index);
15193}
15194
15195/* Data structure to pass results from dwarf2_read_addr_index_reader
15196 back to dwarf2_read_addr_index. */
15197
15198struct dwarf2_read_addr_index_data
15199{
15200 ULONGEST addr_base;
15201 int addr_size;
15202};
15203
15204/* die_reader_func for dwarf2_read_addr_index. */
15205
15206static void
15207dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 15208 const gdb_byte *info_ptr,
3019eac3
DE
15209 struct die_info *comp_unit_die,
15210 int has_children,
15211 void *data)
15212{
15213 struct dwarf2_cu *cu = reader->cu;
15214 struct dwarf2_read_addr_index_data *aidata =
15215 (struct dwarf2_read_addr_index_data *) data;
15216
15217 aidata->addr_base = cu->addr_base;
15218 aidata->addr_size = cu->header.addr_size;
15219}
15220
15221/* Given an index in .debug_addr, fetch the value.
15222 NOTE: This can be called during dwarf expression evaluation,
15223 long after the debug information has been read, and thus per_cu->cu
15224 may no longer exist. */
15225
15226CORE_ADDR
15227dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
15228 unsigned int addr_index)
15229{
15230 struct objfile *objfile = per_cu->objfile;
15231 struct dwarf2_cu *cu = per_cu->cu;
15232 ULONGEST addr_base;
15233 int addr_size;
15234
15235 /* This is intended to be called from outside this file. */
15236 dw2_setup (objfile);
15237
15238 /* We need addr_base and addr_size.
15239 If we don't have PER_CU->cu, we have to get it.
15240 Nasty, but the alternative is storing the needed info in PER_CU,
15241 which at this point doesn't seem justified: it's not clear how frequently
15242 it would get used and it would increase the size of every PER_CU.
15243 Entry points like dwarf2_per_cu_addr_size do a similar thing
15244 so we're not in uncharted territory here.
15245 Alas we need to be a bit more complicated as addr_base is contained
15246 in the DIE.
15247
15248 We don't need to read the entire CU(/TU).
15249 We just need the header and top level die.
a1b64ce1 15250
3019eac3 15251 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 15252 For now we skip this optimization. */
3019eac3
DE
15253
15254 if (cu != NULL)
15255 {
15256 addr_base = cu->addr_base;
15257 addr_size = cu->header.addr_size;
15258 }
15259 else
15260 {
15261 struct dwarf2_read_addr_index_data aidata;
15262
a1b64ce1
DE
15263 /* Note: We can't use init_cutu_and_read_dies_simple here,
15264 we need addr_base. */
15265 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
15266 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
15267 addr_base = aidata.addr_base;
15268 addr_size = aidata.addr_size;
15269 }
15270
15271 return read_addr_index_1 (addr_index, addr_base, addr_size);
15272}
15273
15274/* Given a DW_AT_str_index, fetch the string. */
15275
d521ce57 15276static const char *
3019eac3
DE
15277read_str_index (const struct die_reader_specs *reader,
15278 struct dwarf2_cu *cu, ULONGEST str_index)
15279{
15280 struct objfile *objfile = dwarf2_per_objfile->objfile;
15281 const char *dwo_name = objfile->name;
15282 bfd *abfd = objfile->obfd;
15283 struct dwo_sections *sections = &reader->dwo_file->sections;
d521ce57 15284 const gdb_byte *info_ptr;
3019eac3
DE
15285 ULONGEST str_offset;
15286
15287 dwarf2_read_section (objfile, &sections->str);
15288 dwarf2_read_section (objfile, &sections->str_offsets);
15289 if (sections->str.buffer == NULL)
15290 error (_("DW_FORM_str_index used without .debug_str.dwo section"
15291 " in CU at offset 0x%lx [in module %s]"),
15292 (long) cu->header.offset.sect_off, dwo_name);
15293 if (sections->str_offsets.buffer == NULL)
15294 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
15295 " in CU at offset 0x%lx [in module %s]"),
15296 (long) cu->header.offset.sect_off, dwo_name);
15297 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
15298 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
15299 " section in CU at offset 0x%lx [in module %s]"),
15300 (long) cu->header.offset.sect_off, dwo_name);
15301 info_ptr = (sections->str_offsets.buffer
15302 + str_index * cu->header.offset_size);
15303 if (cu->header.offset_size == 4)
15304 str_offset = bfd_get_32 (abfd, info_ptr);
15305 else
15306 str_offset = bfd_get_64 (abfd, info_ptr);
15307 if (str_offset >= sections->str.size)
15308 error (_("Offset from DW_FORM_str_index pointing outside of"
15309 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
15310 (long) cu->header.offset.sect_off, dwo_name);
d521ce57 15311 return (const char *) (sections->str.buffer + str_offset);
3019eac3
DE
15312}
15313
3019eac3
DE
15314/* Return the length of an LEB128 number in BUF. */
15315
15316static int
15317leb128_size (const gdb_byte *buf)
15318{
15319 const gdb_byte *begin = buf;
15320 gdb_byte byte;
15321
15322 while (1)
15323 {
15324 byte = *buf++;
15325 if ((byte & 128) == 0)
15326 return buf - begin;
15327 }
15328}
15329
c906108c 15330static void
e142c38c 15331set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
15332{
15333 switch (lang)
15334 {
15335 case DW_LANG_C89:
76bee0cc 15336 case DW_LANG_C99:
c906108c 15337 case DW_LANG_C:
d1be3247 15338 case DW_LANG_UPC:
e142c38c 15339 cu->language = language_c;
c906108c
SS
15340 break;
15341 case DW_LANG_C_plus_plus:
e142c38c 15342 cu->language = language_cplus;
c906108c 15343 break;
6aecb9c2
JB
15344 case DW_LANG_D:
15345 cu->language = language_d;
15346 break;
c906108c
SS
15347 case DW_LANG_Fortran77:
15348 case DW_LANG_Fortran90:
b21b22e0 15349 case DW_LANG_Fortran95:
e142c38c 15350 cu->language = language_fortran;
c906108c 15351 break;
a766d390
DE
15352 case DW_LANG_Go:
15353 cu->language = language_go;
15354 break;
c906108c 15355 case DW_LANG_Mips_Assembler:
e142c38c 15356 cu->language = language_asm;
c906108c 15357 break;
bebd888e 15358 case DW_LANG_Java:
e142c38c 15359 cu->language = language_java;
bebd888e 15360 break;
c906108c 15361 case DW_LANG_Ada83:
8aaf0b47 15362 case DW_LANG_Ada95:
bc5f45f8
JB
15363 cu->language = language_ada;
15364 break;
72019c9c
GM
15365 case DW_LANG_Modula2:
15366 cu->language = language_m2;
15367 break;
fe8e67fd
PM
15368 case DW_LANG_Pascal83:
15369 cu->language = language_pascal;
15370 break;
22566fbd
DJ
15371 case DW_LANG_ObjC:
15372 cu->language = language_objc;
15373 break;
c906108c
SS
15374 case DW_LANG_Cobol74:
15375 case DW_LANG_Cobol85:
c906108c 15376 default:
e142c38c 15377 cu->language = language_minimal;
c906108c
SS
15378 break;
15379 }
e142c38c 15380 cu->language_defn = language_def (cu->language);
c906108c
SS
15381}
15382
15383/* Return the named attribute or NULL if not there. */
15384
15385static struct attribute *
e142c38c 15386dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 15387{
a48e046c 15388 for (;;)
c906108c 15389 {
a48e046c
TT
15390 unsigned int i;
15391 struct attribute *spec = NULL;
15392
15393 for (i = 0; i < die->num_attrs; ++i)
15394 {
15395 if (die->attrs[i].name == name)
15396 return &die->attrs[i];
15397 if (die->attrs[i].name == DW_AT_specification
15398 || die->attrs[i].name == DW_AT_abstract_origin)
15399 spec = &die->attrs[i];
15400 }
15401
15402 if (!spec)
15403 break;
c906108c 15404
f2f0e013 15405 die = follow_die_ref (die, spec, &cu);
f2f0e013 15406 }
c5aa993b 15407
c906108c
SS
15408 return NULL;
15409}
15410
348e048f
DE
15411/* Return the named attribute or NULL if not there,
15412 but do not follow DW_AT_specification, etc.
15413 This is for use in contexts where we're reading .debug_types dies.
15414 Following DW_AT_specification, DW_AT_abstract_origin will take us
15415 back up the chain, and we want to go down. */
15416
15417static struct attribute *
45e58e77 15418dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
15419{
15420 unsigned int i;
15421
15422 for (i = 0; i < die->num_attrs; ++i)
15423 if (die->attrs[i].name == name)
15424 return &die->attrs[i];
15425
15426 return NULL;
15427}
15428
05cf31d1
JB
15429/* Return non-zero iff the attribute NAME is defined for the given DIE,
15430 and holds a non-zero value. This function should only be used for
2dc7f7b3 15431 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
15432
15433static int
15434dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
15435{
15436 struct attribute *attr = dwarf2_attr (die, name, cu);
15437
15438 return (attr && DW_UNSND (attr));
15439}
15440
3ca72b44 15441static int
e142c38c 15442die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 15443{
05cf31d1
JB
15444 /* A DIE is a declaration if it has a DW_AT_declaration attribute
15445 which value is non-zero. However, we have to be careful with
15446 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
15447 (via dwarf2_flag_true_p) follows this attribute. So we may
15448 end up accidently finding a declaration attribute that belongs
15449 to a different DIE referenced by the specification attribute,
15450 even though the given DIE does not have a declaration attribute. */
15451 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
15452 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
15453}
15454
63d06c5c 15455/* Return the die giving the specification for DIE, if there is
f2f0e013 15456 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
15457 containing the return value on output. If there is no
15458 specification, but there is an abstract origin, that is
15459 returned. */
63d06c5c
DC
15460
15461static struct die_info *
f2f0e013 15462die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 15463{
f2f0e013
DJ
15464 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
15465 *spec_cu);
63d06c5c 15466
edb3359d
DJ
15467 if (spec_attr == NULL)
15468 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
15469
63d06c5c
DC
15470 if (spec_attr == NULL)
15471 return NULL;
15472 else
f2f0e013 15473 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 15474}
c906108c 15475
debd256d 15476/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
15477 refers to.
15478 NOTE: This is also used as a "cleanup" function. */
15479
debd256d
JB
15480static void
15481free_line_header (struct line_header *lh)
15482{
15483 if (lh->standard_opcode_lengths)
a8bc7b56 15484 xfree (lh->standard_opcode_lengths);
debd256d
JB
15485
15486 /* Remember that all the lh->file_names[i].name pointers are
15487 pointers into debug_line_buffer, and don't need to be freed. */
15488 if (lh->file_names)
a8bc7b56 15489 xfree (lh->file_names);
debd256d
JB
15490
15491 /* Similarly for the include directory names. */
15492 if (lh->include_dirs)
a8bc7b56 15493 xfree (lh->include_dirs);
debd256d 15494
a8bc7b56 15495 xfree (lh);
debd256d
JB
15496}
15497
debd256d 15498/* Add an entry to LH's include directory table. */
ae2de4f8 15499
debd256d 15500static void
d521ce57 15501add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 15502{
debd256d
JB
15503 /* Grow the array if necessary. */
15504 if (lh->include_dirs_size == 0)
c5aa993b 15505 {
debd256d
JB
15506 lh->include_dirs_size = 1; /* for testing */
15507 lh->include_dirs = xmalloc (lh->include_dirs_size
15508 * sizeof (*lh->include_dirs));
15509 }
15510 else if (lh->num_include_dirs >= lh->include_dirs_size)
15511 {
15512 lh->include_dirs_size *= 2;
15513 lh->include_dirs = xrealloc (lh->include_dirs,
15514 (lh->include_dirs_size
15515 * sizeof (*lh->include_dirs)));
c5aa993b 15516 }
c906108c 15517
debd256d
JB
15518 lh->include_dirs[lh->num_include_dirs++] = include_dir;
15519}
6e70227d 15520
debd256d 15521/* Add an entry to LH's file name table. */
ae2de4f8 15522
debd256d
JB
15523static void
15524add_file_name (struct line_header *lh,
d521ce57 15525 const char *name,
debd256d
JB
15526 unsigned int dir_index,
15527 unsigned int mod_time,
15528 unsigned int length)
15529{
15530 struct file_entry *fe;
15531
15532 /* Grow the array if necessary. */
15533 if (lh->file_names_size == 0)
15534 {
15535 lh->file_names_size = 1; /* for testing */
15536 lh->file_names = xmalloc (lh->file_names_size
15537 * sizeof (*lh->file_names));
15538 }
15539 else if (lh->num_file_names >= lh->file_names_size)
15540 {
15541 lh->file_names_size *= 2;
15542 lh->file_names = xrealloc (lh->file_names,
15543 (lh->file_names_size
15544 * sizeof (*lh->file_names)));
15545 }
15546
15547 fe = &lh->file_names[lh->num_file_names++];
15548 fe->name = name;
15549 fe->dir_index = dir_index;
15550 fe->mod_time = mod_time;
15551 fe->length = length;
aaa75496 15552 fe->included_p = 0;
cb1df416 15553 fe->symtab = NULL;
debd256d 15554}
6e70227d 15555
36586728
TT
15556/* A convenience function to find the proper .debug_line section for a
15557 CU. */
15558
15559static struct dwarf2_section_info *
15560get_debug_line_section (struct dwarf2_cu *cu)
15561{
15562 struct dwarf2_section_info *section;
15563
15564 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15565 DWO file. */
15566 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15567 section = &cu->dwo_unit->dwo_file->sections.line;
15568 else if (cu->per_cu->is_dwz)
15569 {
15570 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15571
15572 section = &dwz->line;
15573 }
15574 else
15575 section = &dwarf2_per_objfile->line;
15576
15577 return section;
15578}
15579
debd256d 15580/* Read the statement program header starting at OFFSET in
3019eac3 15581 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 15582 to a struct line_header, allocated using xmalloc.
debd256d
JB
15583
15584 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
15585 the returned object point into the dwarf line section buffer,
15586 and must not be freed. */
ae2de4f8 15587
debd256d 15588static struct line_header *
3019eac3 15589dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
15590{
15591 struct cleanup *back_to;
15592 struct line_header *lh;
d521ce57 15593 const gdb_byte *line_ptr;
c764a876 15594 unsigned int bytes_read, offset_size;
debd256d 15595 int i;
d521ce57 15596 const char *cur_dir, *cur_file;
3019eac3
DE
15597 struct dwarf2_section_info *section;
15598 bfd *abfd;
15599
36586728 15600 section = get_debug_line_section (cu);
3019eac3
DE
15601 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15602 if (section->buffer == NULL)
debd256d 15603 {
3019eac3
DE
15604 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15605 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15606 else
15607 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
15608 return 0;
15609 }
15610
fceca515
DE
15611 /* We can't do this until we know the section is non-empty.
15612 Only then do we know we have such a section. */
15613 abfd = section->asection->owner;
15614
a738430d
MK
15615 /* Make sure that at least there's room for the total_length field.
15616 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 15617 if (offset + 4 >= section->size)
debd256d 15618 {
4d3c2250 15619 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
15620 return 0;
15621 }
15622
15623 lh = xmalloc (sizeof (*lh));
15624 memset (lh, 0, sizeof (*lh));
15625 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15626 (void *) lh);
15627
3019eac3 15628 line_ptr = section->buffer + offset;
debd256d 15629
a738430d 15630 /* Read in the header. */
6e70227d 15631 lh->total_length =
c764a876
DE
15632 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15633 &bytes_read, &offset_size);
debd256d 15634 line_ptr += bytes_read;
3019eac3 15635 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 15636 {
4d3c2250 15637 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
15638 return 0;
15639 }
15640 lh->statement_program_end = line_ptr + lh->total_length;
15641 lh->version = read_2_bytes (abfd, line_ptr);
15642 line_ptr += 2;
c764a876
DE
15643 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15644 line_ptr += offset_size;
debd256d
JB
15645 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15646 line_ptr += 1;
2dc7f7b3
TT
15647 if (lh->version >= 4)
15648 {
15649 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15650 line_ptr += 1;
15651 }
15652 else
15653 lh->maximum_ops_per_instruction = 1;
15654
15655 if (lh->maximum_ops_per_instruction == 0)
15656 {
15657 lh->maximum_ops_per_instruction = 1;
15658 complaint (&symfile_complaints,
3e43a32a
MS
15659 _("invalid maximum_ops_per_instruction "
15660 "in `.debug_line' section"));
2dc7f7b3
TT
15661 }
15662
debd256d
JB
15663 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15664 line_ptr += 1;
15665 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15666 line_ptr += 1;
15667 lh->line_range = read_1_byte (abfd, line_ptr);
15668 line_ptr += 1;
15669 lh->opcode_base = read_1_byte (abfd, line_ptr);
15670 line_ptr += 1;
15671 lh->standard_opcode_lengths
fe1b8b76 15672 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
15673
15674 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15675 for (i = 1; i < lh->opcode_base; ++i)
15676 {
15677 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15678 line_ptr += 1;
15679 }
15680
a738430d 15681 /* Read directory table. */
9b1c24c8 15682 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
15683 {
15684 line_ptr += bytes_read;
15685 add_include_dir (lh, cur_dir);
15686 }
15687 line_ptr += bytes_read;
15688
a738430d 15689 /* Read file name table. */
9b1c24c8 15690 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
15691 {
15692 unsigned int dir_index, mod_time, length;
15693
15694 line_ptr += bytes_read;
15695 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15696 line_ptr += bytes_read;
15697 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15698 line_ptr += bytes_read;
15699 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15700 line_ptr += bytes_read;
15701
15702 add_file_name (lh, cur_file, dir_index, mod_time, length);
15703 }
15704 line_ptr += bytes_read;
6e70227d 15705 lh->statement_program_start = line_ptr;
debd256d 15706
3019eac3 15707 if (line_ptr > (section->buffer + section->size))
4d3c2250 15708 complaint (&symfile_complaints,
3e43a32a
MS
15709 _("line number info header doesn't "
15710 "fit in `.debug_line' section"));
debd256d
JB
15711
15712 discard_cleanups (back_to);
15713 return lh;
15714}
c906108c 15715
c6da4cef
DE
15716/* Subroutine of dwarf_decode_lines to simplify it.
15717 Return the file name of the psymtab for included file FILE_INDEX
15718 in line header LH of PST.
15719 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15720 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
15721 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15722
15723 The function creates dangling cleanup registration. */
c6da4cef 15724
d521ce57 15725static const char *
c6da4cef
DE
15726psymtab_include_file_name (const struct line_header *lh, int file_index,
15727 const struct partial_symtab *pst,
15728 const char *comp_dir)
15729{
15730 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
15731 const char *include_name = fe.name;
15732 const char *include_name_to_compare = include_name;
15733 const char *dir_name = NULL;
72b9f47f
TT
15734 const char *pst_filename;
15735 char *copied_name = NULL;
c6da4cef
DE
15736 int file_is_pst;
15737
15738 if (fe.dir_index)
15739 dir_name = lh->include_dirs[fe.dir_index - 1];
15740
15741 if (!IS_ABSOLUTE_PATH (include_name)
15742 && (dir_name != NULL || comp_dir != NULL))
15743 {
15744 /* Avoid creating a duplicate psymtab for PST.
15745 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15746 Before we do the comparison, however, we need to account
15747 for DIR_NAME and COMP_DIR.
15748 First prepend dir_name (if non-NULL). If we still don't
15749 have an absolute path prepend comp_dir (if non-NULL).
15750 However, the directory we record in the include-file's
15751 psymtab does not contain COMP_DIR (to match the
15752 corresponding symtab(s)).
15753
15754 Example:
15755
15756 bash$ cd /tmp
15757 bash$ gcc -g ./hello.c
15758 include_name = "hello.c"
15759 dir_name = "."
15760 DW_AT_comp_dir = comp_dir = "/tmp"
15761 DW_AT_name = "./hello.c" */
15762
15763 if (dir_name != NULL)
15764 {
d521ce57
TT
15765 char *tem = concat (dir_name, SLASH_STRING,
15766 include_name, (char *)NULL);
15767
15768 make_cleanup (xfree, tem);
15769 include_name = tem;
c6da4cef 15770 include_name_to_compare = include_name;
c6da4cef
DE
15771 }
15772 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15773 {
d521ce57
TT
15774 char *tem = concat (comp_dir, SLASH_STRING,
15775 include_name, (char *)NULL);
15776
15777 make_cleanup (xfree, tem);
15778 include_name_to_compare = tem;
c6da4cef
DE
15779 }
15780 }
15781
15782 pst_filename = pst->filename;
15783 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15784 {
72b9f47f
TT
15785 copied_name = concat (pst->dirname, SLASH_STRING,
15786 pst_filename, (char *)NULL);
15787 pst_filename = copied_name;
c6da4cef
DE
15788 }
15789
1e3fad37 15790 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 15791
72b9f47f
TT
15792 if (copied_name != NULL)
15793 xfree (copied_name);
c6da4cef
DE
15794
15795 if (file_is_pst)
15796 return NULL;
15797 return include_name;
15798}
15799
c91513d8
PP
15800/* Ignore this record_line request. */
15801
15802static void
15803noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15804{
15805 return;
15806}
15807
f3f5162e
DE
15808/* Subroutine of dwarf_decode_lines to simplify it.
15809 Process the line number information in LH. */
debd256d 15810
c906108c 15811static void
f3f5162e
DE
15812dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15813 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 15814{
d521ce57
TT
15815 const gdb_byte *line_ptr, *extended_end;
15816 const gdb_byte *line_end;
a8c50c1f 15817 unsigned int bytes_read, extended_len;
c906108c 15818 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
15819 CORE_ADDR baseaddr;
15820 struct objfile *objfile = cu->objfile;
f3f5162e 15821 bfd *abfd = objfile->obfd;
fbf65064 15822 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 15823 const int decode_for_pst_p = (pst != NULL);
f3f5162e 15824 struct subfile *last_subfile = NULL;
c91513d8
PP
15825 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15826 = record_line;
e142c38c
DJ
15827
15828 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 15829
debd256d
JB
15830 line_ptr = lh->statement_program_start;
15831 line_end = lh->statement_program_end;
c906108c
SS
15832
15833 /* Read the statement sequences until there's nothing left. */
15834 while (line_ptr < line_end)
15835 {
15836 /* state machine registers */
15837 CORE_ADDR address = 0;
15838 unsigned int file = 1;
15839 unsigned int line = 1;
15840 unsigned int column = 0;
debd256d 15841 int is_stmt = lh->default_is_stmt;
c906108c
SS
15842 int basic_block = 0;
15843 int end_sequence = 0;
fbf65064 15844 CORE_ADDR addr;
2dc7f7b3 15845 unsigned char op_index = 0;
c906108c 15846
aaa75496 15847 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 15848 {
aaa75496 15849 /* Start a subfile for the current file of the state machine. */
debd256d
JB
15850 /* lh->include_dirs and lh->file_names are 0-based, but the
15851 directory and file name numbers in the statement program
15852 are 1-based. */
15853 struct file_entry *fe = &lh->file_names[file - 1];
d521ce57 15854 const char *dir = NULL;
a738430d 15855
debd256d
JB
15856 if (fe->dir_index)
15857 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
15858
15859 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
15860 }
15861
a738430d 15862 /* Decode the table. */
c5aa993b 15863 while (!end_sequence)
c906108c
SS
15864 {
15865 op_code = read_1_byte (abfd, line_ptr);
15866 line_ptr += 1;
59205f5a
JB
15867 if (line_ptr > line_end)
15868 {
15869 dwarf2_debug_line_missing_end_sequence_complaint ();
15870 break;
15871 }
9aa1fe7e 15872
debd256d 15873 if (op_code >= lh->opcode_base)
6e70227d 15874 {
a738430d 15875 /* Special operand. */
debd256d 15876 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
15877 address += (((op_index + (adj_opcode / lh->line_range))
15878 / lh->maximum_ops_per_instruction)
15879 * lh->minimum_instruction_length);
15880 op_index = ((op_index + (adj_opcode / lh->line_range))
15881 % lh->maximum_ops_per_instruction);
debd256d 15882 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 15883 if (lh->num_file_names < file || file == 0)
25e43795 15884 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
15885 /* For now we ignore lines not starting on an
15886 instruction boundary. */
15887 else if (op_index == 0)
25e43795
DJ
15888 {
15889 lh->file_names[file - 1].included_p = 1;
ca5f395d 15890 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
15891 {
15892 if (last_subfile != current_subfile)
15893 {
15894 addr = gdbarch_addr_bits_remove (gdbarch, address);
15895 if (last_subfile)
c91513d8 15896 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
15897 last_subfile = current_subfile;
15898 }
25e43795 15899 /* Append row to matrix using current values. */
7019d805 15900 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 15901 (*p_record_line) (current_subfile, line, addr);
366da635 15902 }
25e43795 15903 }
ca5f395d 15904 basic_block = 0;
9aa1fe7e
GK
15905 }
15906 else switch (op_code)
c906108c
SS
15907 {
15908 case DW_LNS_extended_op:
3e43a32a
MS
15909 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15910 &bytes_read);
473b7be6 15911 line_ptr += bytes_read;
a8c50c1f 15912 extended_end = line_ptr + extended_len;
c906108c
SS
15913 extended_op = read_1_byte (abfd, line_ptr);
15914 line_ptr += 1;
15915 switch (extended_op)
15916 {
15917 case DW_LNE_end_sequence:
c91513d8 15918 p_record_line = record_line;
c906108c 15919 end_sequence = 1;
c906108c
SS
15920 break;
15921 case DW_LNE_set_address:
e7c27a73 15922 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8
PP
15923
15924 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15925 {
15926 /* This line table is for a function which has been
15927 GCd by the linker. Ignore it. PR gdb/12528 */
15928
15929 long line_offset
36586728 15930 = line_ptr - get_debug_line_section (cu)->buffer;
c91513d8
PP
15931
15932 complaint (&symfile_complaints,
15933 _(".debug_line address at offset 0x%lx is 0 "
15934 "[in module %s]"),
bb5ed363 15935 line_offset, objfile->name);
c91513d8
PP
15936 p_record_line = noop_record_line;
15937 }
15938
2dc7f7b3 15939 op_index = 0;
107d2387
AC
15940 line_ptr += bytes_read;
15941 address += baseaddr;
c906108c
SS
15942 break;
15943 case DW_LNE_define_file:
debd256d 15944 {
d521ce57 15945 const char *cur_file;
debd256d 15946 unsigned int dir_index, mod_time, length;
6e70227d 15947
3e43a32a
MS
15948 cur_file = read_direct_string (abfd, line_ptr,
15949 &bytes_read);
debd256d
JB
15950 line_ptr += bytes_read;
15951 dir_index =
15952 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15953 line_ptr += bytes_read;
15954 mod_time =
15955 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15956 line_ptr += bytes_read;
15957 length =
15958 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15959 line_ptr += bytes_read;
15960 add_file_name (lh, cur_file, dir_index, mod_time, length);
15961 }
c906108c 15962 break;
d0c6ba3d
CC
15963 case DW_LNE_set_discriminator:
15964 /* The discriminator is not interesting to the debugger;
15965 just ignore it. */
15966 line_ptr = extended_end;
15967 break;
c906108c 15968 default:
4d3c2250 15969 complaint (&symfile_complaints,
e2e0b3e5 15970 _("mangled .debug_line section"));
debd256d 15971 return;
c906108c 15972 }
a8c50c1f
DJ
15973 /* Make sure that we parsed the extended op correctly. If e.g.
15974 we expected a different address size than the producer used,
15975 we may have read the wrong number of bytes. */
15976 if (line_ptr != extended_end)
15977 {
15978 complaint (&symfile_complaints,
15979 _("mangled .debug_line section"));
15980 return;
15981 }
c906108c
SS
15982 break;
15983 case DW_LNS_copy:
59205f5a 15984 if (lh->num_file_names < file || file == 0)
25e43795
DJ
15985 dwarf2_debug_line_missing_file_complaint ();
15986 else
366da635 15987 {
25e43795 15988 lh->file_names[file - 1].included_p = 1;
ca5f395d 15989 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
15990 {
15991 if (last_subfile != current_subfile)
15992 {
15993 addr = gdbarch_addr_bits_remove (gdbarch, address);
15994 if (last_subfile)
c91513d8 15995 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
15996 last_subfile = current_subfile;
15997 }
7019d805 15998 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 15999 (*p_record_line) (current_subfile, line, addr);
fbf65064 16000 }
366da635 16001 }
c906108c
SS
16002 basic_block = 0;
16003 break;
16004 case DW_LNS_advance_pc:
2dc7f7b3
TT
16005 {
16006 CORE_ADDR adjust
16007 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16008
16009 address += (((op_index + adjust)
16010 / lh->maximum_ops_per_instruction)
16011 * lh->minimum_instruction_length);
16012 op_index = ((op_index + adjust)
16013 % lh->maximum_ops_per_instruction);
16014 line_ptr += bytes_read;
16015 }
c906108c
SS
16016 break;
16017 case DW_LNS_advance_line:
16018 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
16019 line_ptr += bytes_read;
16020 break;
16021 case DW_LNS_set_file:
debd256d 16022 {
a738430d
MK
16023 /* The arrays lh->include_dirs and lh->file_names are
16024 0-based, but the directory and file name numbers in
16025 the statement program are 1-based. */
debd256d 16026 struct file_entry *fe;
d521ce57 16027 const char *dir = NULL;
a738430d 16028
debd256d
JB
16029 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16030 line_ptr += bytes_read;
59205f5a 16031 if (lh->num_file_names < file || file == 0)
25e43795
DJ
16032 dwarf2_debug_line_missing_file_complaint ();
16033 else
16034 {
16035 fe = &lh->file_names[file - 1];
16036 if (fe->dir_index)
16037 dir = lh->include_dirs[fe->dir_index - 1];
16038 if (!decode_for_pst_p)
16039 {
16040 last_subfile = current_subfile;
16041 dwarf2_start_subfile (fe->name, dir, comp_dir);
16042 }
16043 }
debd256d 16044 }
c906108c
SS
16045 break;
16046 case DW_LNS_set_column:
16047 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16048 line_ptr += bytes_read;
16049 break;
16050 case DW_LNS_negate_stmt:
16051 is_stmt = (!is_stmt);
16052 break;
16053 case DW_LNS_set_basic_block:
16054 basic_block = 1;
16055 break;
c2c6d25f
JM
16056 /* Add to the address register of the state machine the
16057 address increment value corresponding to special opcode
a738430d
MK
16058 255. I.e., this value is scaled by the minimum
16059 instruction length since special opcode 255 would have
b021a221 16060 scaled the increment. */
c906108c 16061 case DW_LNS_const_add_pc:
2dc7f7b3
TT
16062 {
16063 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
16064
16065 address += (((op_index + adjust)
16066 / lh->maximum_ops_per_instruction)
16067 * lh->minimum_instruction_length);
16068 op_index = ((op_index + adjust)
16069 % lh->maximum_ops_per_instruction);
16070 }
c906108c
SS
16071 break;
16072 case DW_LNS_fixed_advance_pc:
16073 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 16074 op_index = 0;
c906108c
SS
16075 line_ptr += 2;
16076 break;
9aa1fe7e 16077 default:
a738430d
MK
16078 {
16079 /* Unknown standard opcode, ignore it. */
9aa1fe7e 16080 int i;
a738430d 16081
debd256d 16082 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
16083 {
16084 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16085 line_ptr += bytes_read;
16086 }
16087 }
c906108c
SS
16088 }
16089 }
59205f5a
JB
16090 if (lh->num_file_names < file || file == 0)
16091 dwarf2_debug_line_missing_file_complaint ();
16092 else
16093 {
16094 lh->file_names[file - 1].included_p = 1;
16095 if (!decode_for_pst_p)
fbf65064
UW
16096 {
16097 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 16098 (*p_record_line) (current_subfile, 0, addr);
fbf65064 16099 }
59205f5a 16100 }
c906108c 16101 }
f3f5162e
DE
16102}
16103
16104/* Decode the Line Number Program (LNP) for the given line_header
16105 structure and CU. The actual information extracted and the type
16106 of structures created from the LNP depends on the value of PST.
16107
16108 1. If PST is NULL, then this procedure uses the data from the program
16109 to create all necessary symbol tables, and their linetables.
16110
16111 2. If PST is not NULL, this procedure reads the program to determine
16112 the list of files included by the unit represented by PST, and
16113 builds all the associated partial symbol tables.
16114
16115 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16116 It is used for relative paths in the line table.
16117 NOTE: When processing partial symtabs (pst != NULL),
16118 comp_dir == pst->dirname.
16119
16120 NOTE: It is important that psymtabs have the same file name (via strcmp)
16121 as the corresponding symtab. Since COMP_DIR is not used in the name of the
16122 symtab we don't use it in the name of the psymtabs we create.
16123 E.g. expand_line_sal requires this when finding psymtabs to expand.
16124 A good testcase for this is mb-inline.exp. */
16125
16126static void
16127dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
16128 struct dwarf2_cu *cu, struct partial_symtab *pst,
16129 int want_line_info)
16130{
16131 struct objfile *objfile = cu->objfile;
16132 const int decode_for_pst_p = (pst != NULL);
16133 struct subfile *first_subfile = current_subfile;
16134
16135 if (want_line_info)
16136 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
aaa75496
JB
16137
16138 if (decode_for_pst_p)
16139 {
16140 int file_index;
16141
16142 /* Now that we're done scanning the Line Header Program, we can
16143 create the psymtab of each included file. */
16144 for (file_index = 0; file_index < lh->num_file_names; file_index++)
16145 if (lh->file_names[file_index].included_p == 1)
16146 {
d521ce57 16147 const char *include_name =
c6da4cef
DE
16148 psymtab_include_file_name (lh, file_index, pst, comp_dir);
16149 if (include_name != NULL)
aaa75496
JB
16150 dwarf2_create_include_psymtab (include_name, pst, objfile);
16151 }
16152 }
cb1df416
DJ
16153 else
16154 {
16155 /* Make sure a symtab is created for every file, even files
16156 which contain only variables (i.e. no code with associated
16157 line numbers). */
cb1df416 16158 int i;
cb1df416
DJ
16159
16160 for (i = 0; i < lh->num_file_names; i++)
16161 {
d521ce57 16162 const char *dir = NULL;
f3f5162e 16163 struct file_entry *fe;
9a619af0 16164
cb1df416
DJ
16165 fe = &lh->file_names[i];
16166 if (fe->dir_index)
16167 dir = lh->include_dirs[fe->dir_index - 1];
16168 dwarf2_start_subfile (fe->name, dir, comp_dir);
16169
16170 /* Skip the main file; we don't need it, and it must be
16171 allocated last, so that it will show up before the
16172 non-primary symtabs in the objfile's symtab list. */
16173 if (current_subfile == first_subfile)
16174 continue;
16175
16176 if (current_subfile->symtab == NULL)
16177 current_subfile->symtab = allocate_symtab (current_subfile->name,
bb5ed363 16178 objfile);
cb1df416
DJ
16179 fe->symtab = current_subfile->symtab;
16180 }
16181 }
c906108c
SS
16182}
16183
16184/* Start a subfile for DWARF. FILENAME is the name of the file and
16185 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
16186 or NULL if not known. COMP_DIR is the compilation directory for the
16187 linetable's compilation unit or NULL if not known.
c906108c
SS
16188 This routine tries to keep line numbers from identical absolute and
16189 relative file names in a common subfile.
16190
16191 Using the `list' example from the GDB testsuite, which resides in
16192 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
16193 of /srcdir/list0.c yields the following debugging information for list0.c:
16194
c5aa993b
JM
16195 DW_AT_name: /srcdir/list0.c
16196 DW_AT_comp_dir: /compdir
357e46e7 16197 files.files[0].name: list0.h
c5aa993b 16198 files.files[0].dir: /srcdir
357e46e7 16199 files.files[1].name: list0.c
c5aa993b 16200 files.files[1].dir: /srcdir
c906108c
SS
16201
16202 The line number information for list0.c has to end up in a single
4f1520fb
FR
16203 subfile, so that `break /srcdir/list0.c:1' works as expected.
16204 start_subfile will ensure that this happens provided that we pass the
16205 concatenation of files.files[1].dir and files.files[1].name as the
16206 subfile's name. */
c906108c
SS
16207
16208static void
d521ce57 16209dwarf2_start_subfile (const char *filename, const char *dirname,
3e43a32a 16210 const char *comp_dir)
c906108c 16211{
d521ce57 16212 char *copy = NULL;
4f1520fb
FR
16213
16214 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
16215 `start_symtab' will always pass the contents of DW_AT_comp_dir as
16216 second argument to start_subfile. To be consistent, we do the
16217 same here. In order not to lose the line information directory,
16218 we concatenate it to the filename when it makes sense.
16219 Note that the Dwarf3 standard says (speaking of filenames in line
16220 information): ``The directory index is ignored for file names
16221 that represent full path names''. Thus ignoring dirname in the
16222 `else' branch below isn't an issue. */
c906108c 16223
d5166ae1 16224 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
16225 {
16226 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
16227 filename = copy;
16228 }
c906108c 16229
d521ce57 16230 start_subfile (filename, comp_dir);
4f1520fb 16231
d521ce57
TT
16232 if (copy != NULL)
16233 xfree (copy);
c906108c
SS
16234}
16235
f4dc4d17
DE
16236/* Start a symtab for DWARF.
16237 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
16238
16239static void
16240dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 16241 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17
DE
16242{
16243 start_symtab (name, comp_dir, low_pc);
16244 record_debugformat ("DWARF 2");
16245 record_producer (cu->producer);
16246
16247 /* We assume that we're processing GCC output. */
16248 processing_gcc_compilation = 2;
16249
4d4ec4e5 16250 cu->processing_has_namespace_info = 0;
f4dc4d17
DE
16251}
16252
4c2df51b
DJ
16253static void
16254var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 16255 struct dwarf2_cu *cu)
4c2df51b 16256{
e7c27a73
DJ
16257 struct objfile *objfile = cu->objfile;
16258 struct comp_unit_head *cu_header = &cu->header;
16259
4c2df51b
DJ
16260 /* NOTE drow/2003-01-30: There used to be a comment and some special
16261 code here to turn a symbol with DW_AT_external and a
16262 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
16263 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
16264 with some versions of binutils) where shared libraries could have
16265 relocations against symbols in their debug information - the
16266 minimal symbol would have the right address, but the debug info
16267 would not. It's no longer necessary, because we will explicitly
16268 apply relocations when we read in the debug information now. */
16269
16270 /* A DW_AT_location attribute with no contents indicates that a
16271 variable has been optimized away. */
16272 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
16273 {
f1e6e072 16274 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
16275 return;
16276 }
16277
16278 /* Handle one degenerate form of location expression specially, to
16279 preserve GDB's previous behavior when section offsets are
3019eac3
DE
16280 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
16281 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
16282
16283 if (attr_form_is_block (attr)
3019eac3
DE
16284 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
16285 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
16286 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
16287 && (DW_BLOCK (attr)->size
16288 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 16289 {
891d2f0b 16290 unsigned int dummy;
4c2df51b 16291
3019eac3
DE
16292 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
16293 SYMBOL_VALUE_ADDRESS (sym) =
16294 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
16295 else
16296 SYMBOL_VALUE_ADDRESS (sym) =
16297 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 16298 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
16299 fixup_symbol_section (sym, objfile);
16300 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
16301 SYMBOL_SECTION (sym));
4c2df51b
DJ
16302 return;
16303 }
16304
16305 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
16306 expression evaluator, and use LOC_COMPUTED only when necessary
16307 (i.e. when the value of a register or memory location is
16308 referenced, or a thread-local block, etc.). Then again, it might
16309 not be worthwhile. I'm assuming that it isn't unless performance
16310 or memory numbers show me otherwise. */
16311
f1e6e072 16312 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 16313
f1e6e072 16314 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 16315 cu->has_loclist = 1;
4c2df51b
DJ
16316}
16317
c906108c
SS
16318/* Given a pointer to a DWARF information entry, figure out if we need
16319 to make a symbol table entry for it, and if so, create a new entry
16320 and return a pointer to it.
16321 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
16322 used the passed type.
16323 If SPACE is not NULL, use it to hold the new symbol. If it is
16324 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
16325
16326static struct symbol *
34eaf542
TT
16327new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
16328 struct symbol *space)
c906108c 16329{
e7c27a73 16330 struct objfile *objfile = cu->objfile;
c906108c 16331 struct symbol *sym = NULL;
15d034d0 16332 const char *name;
c906108c
SS
16333 struct attribute *attr = NULL;
16334 struct attribute *attr2 = NULL;
e142c38c 16335 CORE_ADDR baseaddr;
e37fd15a
SW
16336 struct pending **list_to_add = NULL;
16337
edb3359d 16338 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
16339
16340 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 16341
94af9270 16342 name = dwarf2_name (die, cu);
c906108c
SS
16343 if (name)
16344 {
94af9270 16345 const char *linkagename;
34eaf542 16346 int suppress_add = 0;
94af9270 16347
34eaf542
TT
16348 if (space)
16349 sym = space;
16350 else
e623cf5d 16351 sym = allocate_symbol (objfile);
c906108c 16352 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
16353
16354 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 16355 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
16356 linkagename = dwarf2_physname (name, die, cu);
16357 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 16358
f55ee35c
JK
16359 /* Fortran does not have mangling standard and the mangling does differ
16360 between gfortran, iFort etc. */
16361 if (cu->language == language_fortran
b250c185 16362 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 16363 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 16364 dwarf2_full_name (name, die, cu),
29df156d 16365 NULL);
f55ee35c 16366
c906108c 16367 /* Default assumptions.
c5aa993b 16368 Use the passed type or decode it from the die. */
176620f1 16369 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 16370 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
16371 if (type != NULL)
16372 SYMBOL_TYPE (sym) = type;
16373 else
e7c27a73 16374 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
16375 attr = dwarf2_attr (die,
16376 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
16377 cu);
c906108c
SS
16378 if (attr)
16379 {
16380 SYMBOL_LINE (sym) = DW_UNSND (attr);
16381 }
cb1df416 16382
edb3359d
DJ
16383 attr = dwarf2_attr (die,
16384 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
16385 cu);
cb1df416
DJ
16386 if (attr)
16387 {
16388 int file_index = DW_UNSND (attr);
9a619af0 16389
cb1df416
DJ
16390 if (cu->line_header == NULL
16391 || file_index > cu->line_header->num_file_names)
16392 complaint (&symfile_complaints,
16393 _("file index out of range"));
1c3d648d 16394 else if (file_index > 0)
cb1df416
DJ
16395 {
16396 struct file_entry *fe;
9a619af0 16397
cb1df416
DJ
16398 fe = &cu->line_header->file_names[file_index - 1];
16399 SYMBOL_SYMTAB (sym) = fe->symtab;
16400 }
16401 }
16402
c906108c
SS
16403 switch (die->tag)
16404 {
16405 case DW_TAG_label:
e142c38c 16406 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
16407 if (attr)
16408 {
16409 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
16410 }
0f5238ed
TT
16411 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
16412 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 16413 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 16414 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
16415 break;
16416 case DW_TAG_subprogram:
16417 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16418 finish_block. */
f1e6e072 16419 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 16420 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
16421 if ((attr2 && (DW_UNSND (attr2) != 0))
16422 || cu->language == language_ada)
c906108c 16423 {
2cfa0c8d
JB
16424 /* Subprograms marked external are stored as a global symbol.
16425 Ada subprograms, whether marked external or not, are always
16426 stored as a global symbol, because we want to be able to
16427 access them globally. For instance, we want to be able
16428 to break on a nested subprogram without having to
16429 specify the context. */
e37fd15a 16430 list_to_add = &global_symbols;
c906108c
SS
16431 }
16432 else
16433 {
e37fd15a 16434 list_to_add = cu->list_in_scope;
c906108c
SS
16435 }
16436 break;
edb3359d
DJ
16437 case DW_TAG_inlined_subroutine:
16438 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16439 finish_block. */
f1e6e072 16440 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 16441 SYMBOL_INLINED (sym) = 1;
481860b3 16442 list_to_add = cu->list_in_scope;
edb3359d 16443 break;
34eaf542
TT
16444 case DW_TAG_template_value_param:
16445 suppress_add = 1;
16446 /* Fall through. */
72929c62 16447 case DW_TAG_constant:
c906108c 16448 case DW_TAG_variable:
254e6b9e 16449 case DW_TAG_member:
0963b4bd
MS
16450 /* Compilation with minimal debug info may result in
16451 variables with missing type entries. Change the
16452 misleading `void' type to something sensible. */
c906108c 16453 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 16454 SYMBOL_TYPE (sym)
46bf5051 16455 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 16456
e142c38c 16457 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
16458 /* In the case of DW_TAG_member, we should only be called for
16459 static const members. */
16460 if (die->tag == DW_TAG_member)
16461 {
3863f96c
DE
16462 /* dwarf2_add_field uses die_is_declaration,
16463 so we do the same. */
254e6b9e
DE
16464 gdb_assert (die_is_declaration (die, cu));
16465 gdb_assert (attr);
16466 }
c906108c
SS
16467 if (attr)
16468 {
e7c27a73 16469 dwarf2_const_value (attr, sym, cu);
e142c38c 16470 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 16471 if (!suppress_add)
34eaf542
TT
16472 {
16473 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 16474 list_to_add = &global_symbols;
34eaf542 16475 else
e37fd15a 16476 list_to_add = cu->list_in_scope;
34eaf542 16477 }
c906108c
SS
16478 break;
16479 }
e142c38c 16480 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
16481 if (attr)
16482 {
e7c27a73 16483 var_decode_location (attr, sym, cu);
e142c38c 16484 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
16485
16486 /* Fortran explicitly imports any global symbols to the local
16487 scope by DW_TAG_common_block. */
16488 if (cu->language == language_fortran && die->parent
16489 && die->parent->tag == DW_TAG_common_block)
16490 attr2 = NULL;
16491
caac4577
JG
16492 if (SYMBOL_CLASS (sym) == LOC_STATIC
16493 && SYMBOL_VALUE_ADDRESS (sym) == 0
16494 && !dwarf2_per_objfile->has_section_at_zero)
16495 {
16496 /* When a static variable is eliminated by the linker,
16497 the corresponding debug information is not stripped
16498 out, but the variable address is set to null;
16499 do not add such variables into symbol table. */
16500 }
16501 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 16502 {
f55ee35c
JK
16503 /* Workaround gfortran PR debug/40040 - it uses
16504 DW_AT_location for variables in -fPIC libraries which may
16505 get overriden by other libraries/executable and get
16506 a different address. Resolve it by the minimal symbol
16507 which may come from inferior's executable using copy
16508 relocation. Make this workaround only for gfortran as for
16509 other compilers GDB cannot guess the minimal symbol
16510 Fortran mangling kind. */
16511 if (cu->language == language_fortran && die->parent
16512 && die->parent->tag == DW_TAG_module
16513 && cu->producer
16514 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
f1e6e072 16515 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 16516
1c809c68
TT
16517 /* A variable with DW_AT_external is never static,
16518 but it may be block-scoped. */
16519 list_to_add = (cu->list_in_scope == &file_symbols
16520 ? &global_symbols : cu->list_in_scope);
1c809c68 16521 }
c906108c 16522 else
e37fd15a 16523 list_to_add = cu->list_in_scope;
c906108c
SS
16524 }
16525 else
16526 {
16527 /* We do not know the address of this symbol.
c5aa993b
JM
16528 If it is an external symbol and we have type information
16529 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16530 The address of the variable will then be determined from
16531 the minimal symbol table whenever the variable is
16532 referenced. */
e142c38c 16533 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
16534
16535 /* Fortran explicitly imports any global symbols to the local
16536 scope by DW_TAG_common_block. */
16537 if (cu->language == language_fortran && die->parent
16538 && die->parent->tag == DW_TAG_common_block)
16539 {
16540 /* SYMBOL_CLASS doesn't matter here because
16541 read_common_block is going to reset it. */
16542 if (!suppress_add)
16543 list_to_add = cu->list_in_scope;
16544 }
16545 else if (attr2 && (DW_UNSND (attr2) != 0)
16546 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 16547 {
0fe7935b
DJ
16548 /* A variable with DW_AT_external is never static, but it
16549 may be block-scoped. */
16550 list_to_add = (cu->list_in_scope == &file_symbols
16551 ? &global_symbols : cu->list_in_scope);
16552
f1e6e072 16553 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 16554 }
442ddf59
JK
16555 else if (!die_is_declaration (die, cu))
16556 {
16557 /* Use the default LOC_OPTIMIZED_OUT class. */
16558 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
16559 if (!suppress_add)
16560 list_to_add = cu->list_in_scope;
442ddf59 16561 }
c906108c
SS
16562 }
16563 break;
16564 case DW_TAG_formal_parameter:
edb3359d
DJ
16565 /* If we are inside a function, mark this as an argument. If
16566 not, we might be looking at an argument to an inlined function
16567 when we do not have enough information to show inlined frames;
16568 pretend it's a local variable in that case so that the user can
16569 still see it. */
16570 if (context_stack_depth > 0
16571 && context_stack[context_stack_depth - 1].name != NULL)
16572 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 16573 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
16574 if (attr)
16575 {
e7c27a73 16576 var_decode_location (attr, sym, cu);
c906108c 16577 }
e142c38c 16578 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
16579 if (attr)
16580 {
e7c27a73 16581 dwarf2_const_value (attr, sym, cu);
c906108c 16582 }
f346a30d 16583
e37fd15a 16584 list_to_add = cu->list_in_scope;
c906108c
SS
16585 break;
16586 case DW_TAG_unspecified_parameters:
16587 /* From varargs functions; gdb doesn't seem to have any
16588 interest in this information, so just ignore it for now.
16589 (FIXME?) */
16590 break;
34eaf542
TT
16591 case DW_TAG_template_type_param:
16592 suppress_add = 1;
16593 /* Fall through. */
c906108c 16594 case DW_TAG_class_type:
680b30c7 16595 case DW_TAG_interface_type:
c906108c
SS
16596 case DW_TAG_structure_type:
16597 case DW_TAG_union_type:
72019c9c 16598 case DW_TAG_set_type:
c906108c 16599 case DW_TAG_enumeration_type:
f1e6e072 16600 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 16601 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 16602
63d06c5c 16603 {
987504bb 16604 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
16605 really ever be static objects: otherwise, if you try
16606 to, say, break of a class's method and you're in a file
16607 which doesn't mention that class, it won't work unless
16608 the check for all static symbols in lookup_symbol_aux
16609 saves you. See the OtherFileClass tests in
16610 gdb.c++/namespace.exp. */
16611
e37fd15a 16612 if (!suppress_add)
34eaf542 16613 {
34eaf542
TT
16614 list_to_add = (cu->list_in_scope == &file_symbols
16615 && (cu->language == language_cplus
16616 || cu->language == language_java)
16617 ? &global_symbols : cu->list_in_scope);
63d06c5c 16618
64382290
TT
16619 /* The semantics of C++ state that "struct foo {
16620 ... }" also defines a typedef for "foo". A Java
16621 class declaration also defines a typedef for the
16622 class. */
16623 if (cu->language == language_cplus
16624 || cu->language == language_java
16625 || cu->language == language_ada)
16626 {
16627 /* The symbol's name is already allocated along
16628 with this objfile, so we don't need to
16629 duplicate it for the type. */
16630 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16631 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16632 }
63d06c5c
DC
16633 }
16634 }
c906108c
SS
16635 break;
16636 case DW_TAG_typedef:
f1e6e072 16637 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 16638 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 16639 list_to_add = cu->list_in_scope;
63d06c5c 16640 break;
c906108c 16641 case DW_TAG_base_type:
a02abb62 16642 case DW_TAG_subrange_type:
f1e6e072 16643 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 16644 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 16645 list_to_add = cu->list_in_scope;
c906108c
SS
16646 break;
16647 case DW_TAG_enumerator:
e142c38c 16648 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
16649 if (attr)
16650 {
e7c27a73 16651 dwarf2_const_value (attr, sym, cu);
c906108c 16652 }
63d06c5c
DC
16653 {
16654 /* NOTE: carlton/2003-11-10: See comment above in the
16655 DW_TAG_class_type, etc. block. */
16656
e142c38c 16657 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
16658 && (cu->language == language_cplus
16659 || cu->language == language_java)
e142c38c 16660 ? &global_symbols : cu->list_in_scope);
63d06c5c 16661 }
c906108c 16662 break;
5c4e30ca 16663 case DW_TAG_namespace:
f1e6e072 16664 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 16665 list_to_add = &global_symbols;
5c4e30ca 16666 break;
4357ac6c 16667 case DW_TAG_common_block:
f1e6e072 16668 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
16669 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16670 add_symbol_to_list (sym, cu->list_in_scope);
16671 break;
c906108c
SS
16672 default:
16673 /* Not a tag we recognize. Hopefully we aren't processing
16674 trash data, but since we must specifically ignore things
16675 we don't recognize, there is nothing else we should do at
0963b4bd 16676 this point. */
e2e0b3e5 16677 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 16678 dwarf_tag_name (die->tag));
c906108c
SS
16679 break;
16680 }
df8a16a1 16681
e37fd15a
SW
16682 if (suppress_add)
16683 {
16684 sym->hash_next = objfile->template_symbols;
16685 objfile->template_symbols = sym;
16686 list_to_add = NULL;
16687 }
16688
16689 if (list_to_add != NULL)
16690 add_symbol_to_list (sym, list_to_add);
16691
df8a16a1
DJ
16692 /* For the benefit of old versions of GCC, check for anonymous
16693 namespaces based on the demangled name. */
4d4ec4e5 16694 if (!cu->processing_has_namespace_info
94af9270 16695 && cu->language == language_cplus)
a10964d1 16696 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
16697 }
16698 return (sym);
16699}
16700
34eaf542
TT
16701/* A wrapper for new_symbol_full that always allocates a new symbol. */
16702
16703static struct symbol *
16704new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16705{
16706 return new_symbol_full (die, type, cu, NULL);
16707}
16708
98bfdba5
PA
16709/* Given an attr with a DW_FORM_dataN value in host byte order,
16710 zero-extend it as appropriate for the symbol's type. The DWARF
16711 standard (v4) is not entirely clear about the meaning of using
16712 DW_FORM_dataN for a constant with a signed type, where the type is
16713 wider than the data. The conclusion of a discussion on the DWARF
16714 list was that this is unspecified. We choose to always zero-extend
16715 because that is the interpretation long in use by GCC. */
c906108c 16716
98bfdba5 16717static gdb_byte *
3aef2284 16718dwarf2_const_value_data (struct attribute *attr, struct obstack *obstack,
12df843f 16719 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 16720{
e7c27a73 16721 struct objfile *objfile = cu->objfile;
e17a4113
UW
16722 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16723 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
16724 LONGEST l = DW_UNSND (attr);
16725
16726 if (bits < sizeof (*value) * 8)
16727 {
16728 l &= ((LONGEST) 1 << bits) - 1;
16729 *value = l;
16730 }
16731 else if (bits == sizeof (*value) * 8)
16732 *value = l;
16733 else
16734 {
16735 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16736 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16737 return bytes;
16738 }
16739
16740 return NULL;
16741}
16742
16743/* Read a constant value from an attribute. Either set *VALUE, or if
16744 the value does not fit in *VALUE, set *BYTES - either already
16745 allocated on the objfile obstack, or newly allocated on OBSTACK,
16746 or, set *BATON, if we translated the constant to a location
16747 expression. */
16748
16749static void
16750dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16751 const char *name, struct obstack *obstack,
16752 struct dwarf2_cu *cu,
d521ce57 16753 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
16754 struct dwarf2_locexpr_baton **baton)
16755{
16756 struct objfile *objfile = cu->objfile;
16757 struct comp_unit_head *cu_header = &cu->header;
c906108c 16758 struct dwarf_block *blk;
98bfdba5
PA
16759 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16760 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16761
16762 *value = 0;
16763 *bytes = NULL;
16764 *baton = NULL;
c906108c
SS
16765
16766 switch (attr->form)
16767 {
16768 case DW_FORM_addr:
3019eac3 16769 case DW_FORM_GNU_addr_index:
ac56253d 16770 {
ac56253d
TT
16771 gdb_byte *data;
16772
98bfdba5
PA
16773 if (TYPE_LENGTH (type) != cu_header->addr_size)
16774 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 16775 cu_header->addr_size,
98bfdba5 16776 TYPE_LENGTH (type));
ac56253d
TT
16777 /* Symbols of this form are reasonably rare, so we just
16778 piggyback on the existing location code rather than writing
16779 a new implementation of symbol_computed_ops. */
7919a973 16780 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
98bfdba5
PA
16781 (*baton)->per_cu = cu->per_cu;
16782 gdb_assert ((*baton)->per_cu);
ac56253d 16783
98bfdba5 16784 (*baton)->size = 2 + cu_header->addr_size;
7919a973 16785 data = obstack_alloc (obstack, (*baton)->size);
98bfdba5 16786 (*baton)->data = data;
ac56253d
TT
16787
16788 data[0] = DW_OP_addr;
16789 store_unsigned_integer (&data[1], cu_header->addr_size,
16790 byte_order, DW_ADDR (attr));
16791 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 16792 }
c906108c 16793 break;
4ac36638 16794 case DW_FORM_string:
93b5768b 16795 case DW_FORM_strp:
3019eac3 16796 case DW_FORM_GNU_str_index:
36586728 16797 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
16798 /* DW_STRING is already allocated on the objfile obstack, point
16799 directly to it. */
d521ce57 16800 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 16801 break;
c906108c
SS
16802 case DW_FORM_block1:
16803 case DW_FORM_block2:
16804 case DW_FORM_block4:
16805 case DW_FORM_block:
2dc7f7b3 16806 case DW_FORM_exprloc:
c906108c 16807 blk = DW_BLOCK (attr);
98bfdba5
PA
16808 if (TYPE_LENGTH (type) != blk->size)
16809 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16810 TYPE_LENGTH (type));
16811 *bytes = blk->data;
c906108c 16812 break;
2df3850c
JM
16813
16814 /* The DW_AT_const_value attributes are supposed to carry the
16815 symbol's value "represented as it would be on the target
16816 architecture." By the time we get here, it's already been
16817 converted to host endianness, so we just need to sign- or
16818 zero-extend it as appropriate. */
16819 case DW_FORM_data1:
3aef2284 16820 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 16821 break;
c906108c 16822 case DW_FORM_data2:
3aef2284 16823 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 16824 break;
c906108c 16825 case DW_FORM_data4:
3aef2284 16826 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 16827 break;
c906108c 16828 case DW_FORM_data8:
3aef2284 16829 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
16830 break;
16831
c906108c 16832 case DW_FORM_sdata:
98bfdba5 16833 *value = DW_SND (attr);
2df3850c
JM
16834 break;
16835
c906108c 16836 case DW_FORM_udata:
98bfdba5 16837 *value = DW_UNSND (attr);
c906108c 16838 break;
2df3850c 16839
c906108c 16840 default:
4d3c2250 16841 complaint (&symfile_complaints,
e2e0b3e5 16842 _("unsupported const value attribute form: '%s'"),
4d3c2250 16843 dwarf_form_name (attr->form));
98bfdba5 16844 *value = 0;
c906108c
SS
16845 break;
16846 }
16847}
16848
2df3850c 16849
98bfdba5
PA
16850/* Copy constant value from an attribute to a symbol. */
16851
2df3850c 16852static void
98bfdba5
PA
16853dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16854 struct dwarf2_cu *cu)
2df3850c 16855{
98bfdba5
PA
16856 struct objfile *objfile = cu->objfile;
16857 struct comp_unit_head *cu_header = &cu->header;
12df843f 16858 LONGEST value;
d521ce57 16859 const gdb_byte *bytes;
98bfdba5 16860 struct dwarf2_locexpr_baton *baton;
2df3850c 16861
98bfdba5
PA
16862 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16863 SYMBOL_PRINT_NAME (sym),
16864 &objfile->objfile_obstack, cu,
16865 &value, &bytes, &baton);
2df3850c 16866
98bfdba5
PA
16867 if (baton != NULL)
16868 {
98bfdba5 16869 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 16870 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
16871 }
16872 else if (bytes != NULL)
16873 {
16874 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 16875 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
16876 }
16877 else
16878 {
16879 SYMBOL_VALUE (sym) = value;
f1e6e072 16880 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 16881 }
2df3850c
JM
16882}
16883
c906108c
SS
16884/* Return the type of the die in question using its DW_AT_type attribute. */
16885
16886static struct type *
e7c27a73 16887die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16888{
c906108c 16889 struct attribute *type_attr;
c906108c 16890
e142c38c 16891 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
16892 if (!type_attr)
16893 {
16894 /* A missing DW_AT_type represents a void type. */
46bf5051 16895 return objfile_type (cu->objfile)->builtin_void;
c906108c 16896 }
348e048f 16897
673bfd45 16898 return lookup_die_type (die, type_attr, cu);
c906108c
SS
16899}
16900
b4ba55a1
JB
16901/* True iff CU's producer generates GNAT Ada auxiliary information
16902 that allows to find parallel types through that information instead
16903 of having to do expensive parallel lookups by type name. */
16904
16905static int
16906need_gnat_info (struct dwarf2_cu *cu)
16907{
16908 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16909 of GNAT produces this auxiliary information, without any indication
16910 that it is produced. Part of enhancing the FSF version of GNAT
16911 to produce that information will be to put in place an indicator
16912 that we can use in order to determine whether the descriptive type
16913 info is available or not. One suggestion that has been made is
16914 to use a new attribute, attached to the CU die. For now, assume
16915 that the descriptive type info is not available. */
16916 return 0;
16917}
16918
b4ba55a1
JB
16919/* Return the auxiliary type of the die in question using its
16920 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16921 attribute is not present. */
16922
16923static struct type *
16924die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16925{
b4ba55a1 16926 struct attribute *type_attr;
b4ba55a1
JB
16927
16928 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16929 if (!type_attr)
16930 return NULL;
16931
673bfd45 16932 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
16933}
16934
16935/* If DIE has a descriptive_type attribute, then set the TYPE's
16936 descriptive type accordingly. */
16937
16938static void
16939set_descriptive_type (struct type *type, struct die_info *die,
16940 struct dwarf2_cu *cu)
16941{
16942 struct type *descriptive_type = die_descriptive_type (die, cu);
16943
16944 if (descriptive_type)
16945 {
16946 ALLOCATE_GNAT_AUX_TYPE (type);
16947 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16948 }
16949}
16950
c906108c
SS
16951/* Return the containing type of the die in question using its
16952 DW_AT_containing_type attribute. */
16953
16954static struct type *
e7c27a73 16955die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16956{
c906108c 16957 struct attribute *type_attr;
c906108c 16958
e142c38c 16959 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
16960 if (!type_attr)
16961 error (_("Dwarf Error: Problem turning containing type into gdb type "
16962 "[in module %s]"), cu->objfile->name);
16963
673bfd45 16964 return lookup_die_type (die, type_attr, cu);
c906108c
SS
16965}
16966
ac9ec31b
DE
16967/* Return an error marker type to use for the ill formed type in DIE/CU. */
16968
16969static struct type *
16970build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
16971{
16972 struct objfile *objfile = dwarf2_per_objfile->objfile;
16973 char *message, *saved;
16974
16975 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16976 objfile->name,
16977 cu->header.offset.sect_off,
16978 die->offset.sect_off);
16979 saved = obstack_copy0 (&objfile->objfile_obstack,
16980 message, strlen (message));
16981 xfree (message);
16982
16983 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16984}
16985
673bfd45 16986/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
16987 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
16988 DW_AT_containing_type.
673bfd45
DE
16989 If there is no type substitute an error marker. */
16990
c906108c 16991static struct type *
673bfd45
DE
16992lookup_die_type (struct die_info *die, struct attribute *attr,
16993 struct dwarf2_cu *cu)
c906108c 16994{
bb5ed363 16995 struct objfile *objfile = cu->objfile;
f792889a
DJ
16996 struct type *this_type;
16997
ac9ec31b
DE
16998 gdb_assert (attr->name == DW_AT_type
16999 || attr->name == DW_AT_GNAT_descriptive_type
17000 || attr->name == DW_AT_containing_type);
17001
673bfd45
DE
17002 /* First see if we have it cached. */
17003
36586728
TT
17004 if (attr->form == DW_FORM_GNU_ref_alt)
17005 {
17006 struct dwarf2_per_cu_data *per_cu;
17007 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17008
17009 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
17010 this_type = get_die_type_at_offset (offset, per_cu);
17011 }
17012 else if (is_ref_attr (attr))
673bfd45 17013 {
b64f50a1 17014 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
17015
17016 this_type = get_die_type_at_offset (offset, cu->per_cu);
17017 }
55f1336d 17018 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 17019 {
ac9ec31b 17020 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 17021
ac9ec31b 17022 return get_signatured_type (die, signature, cu);
673bfd45
DE
17023 }
17024 else
17025 {
ac9ec31b
DE
17026 complaint (&symfile_complaints,
17027 _("Dwarf Error: Bad type attribute %s in DIE"
17028 " at 0x%x [in module %s]"),
17029 dwarf_attr_name (attr->name), die->offset.sect_off,
17030 objfile->name);
17031 return build_error_marker_type (cu, die);
673bfd45
DE
17032 }
17033
17034 /* If not cached we need to read it in. */
17035
17036 if (this_type == NULL)
17037 {
ac9ec31b 17038 struct die_info *type_die = NULL;
673bfd45
DE
17039 struct dwarf2_cu *type_cu = cu;
17040
ac9ec31b
DE
17041 if (is_ref_attr (attr))
17042 type_die = follow_die_ref (die, attr, &type_cu);
17043 if (type_die == NULL)
17044 return build_error_marker_type (cu, die);
17045 /* If we find the type now, it's probably because the type came
3019eac3
DE
17046 from an inter-CU reference and the type's CU got expanded before
17047 ours. */
ac9ec31b 17048 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
17049 }
17050
17051 /* If we still don't have a type use an error marker. */
17052
17053 if (this_type == NULL)
ac9ec31b 17054 return build_error_marker_type (cu, die);
673bfd45 17055
f792889a 17056 return this_type;
c906108c
SS
17057}
17058
673bfd45
DE
17059/* Return the type in DIE, CU.
17060 Returns NULL for invalid types.
17061
02142a6c 17062 This first does a lookup in die_type_hash,
673bfd45
DE
17063 and only reads the die in if necessary.
17064
17065 NOTE: This can be called when reading in partial or full symbols. */
17066
f792889a 17067static struct type *
e7c27a73 17068read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17069{
f792889a
DJ
17070 struct type *this_type;
17071
17072 this_type = get_die_type (die, cu);
17073 if (this_type)
17074 return this_type;
17075
673bfd45
DE
17076 return read_type_die_1 (die, cu);
17077}
17078
17079/* Read the type in DIE, CU.
17080 Returns NULL for invalid types. */
17081
17082static struct type *
17083read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
17084{
17085 struct type *this_type = NULL;
17086
c906108c
SS
17087 switch (die->tag)
17088 {
17089 case DW_TAG_class_type:
680b30c7 17090 case DW_TAG_interface_type:
c906108c
SS
17091 case DW_TAG_structure_type:
17092 case DW_TAG_union_type:
f792889a 17093 this_type = read_structure_type (die, cu);
c906108c
SS
17094 break;
17095 case DW_TAG_enumeration_type:
f792889a 17096 this_type = read_enumeration_type (die, cu);
c906108c
SS
17097 break;
17098 case DW_TAG_subprogram:
17099 case DW_TAG_subroutine_type:
edb3359d 17100 case DW_TAG_inlined_subroutine:
f792889a 17101 this_type = read_subroutine_type (die, cu);
c906108c
SS
17102 break;
17103 case DW_TAG_array_type:
f792889a 17104 this_type = read_array_type (die, cu);
c906108c 17105 break;
72019c9c 17106 case DW_TAG_set_type:
f792889a 17107 this_type = read_set_type (die, cu);
72019c9c 17108 break;
c906108c 17109 case DW_TAG_pointer_type:
f792889a 17110 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
17111 break;
17112 case DW_TAG_ptr_to_member_type:
f792889a 17113 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
17114 break;
17115 case DW_TAG_reference_type:
f792889a 17116 this_type = read_tag_reference_type (die, cu);
c906108c
SS
17117 break;
17118 case DW_TAG_const_type:
f792889a 17119 this_type = read_tag_const_type (die, cu);
c906108c
SS
17120 break;
17121 case DW_TAG_volatile_type:
f792889a 17122 this_type = read_tag_volatile_type (die, cu);
c906108c 17123 break;
06d66ee9
TT
17124 case DW_TAG_restrict_type:
17125 this_type = read_tag_restrict_type (die, cu);
17126 break;
c906108c 17127 case DW_TAG_string_type:
f792889a 17128 this_type = read_tag_string_type (die, cu);
c906108c
SS
17129 break;
17130 case DW_TAG_typedef:
f792889a 17131 this_type = read_typedef (die, cu);
c906108c 17132 break;
a02abb62 17133 case DW_TAG_subrange_type:
f792889a 17134 this_type = read_subrange_type (die, cu);
a02abb62 17135 break;
c906108c 17136 case DW_TAG_base_type:
f792889a 17137 this_type = read_base_type (die, cu);
c906108c 17138 break;
81a17f79 17139 case DW_TAG_unspecified_type:
f792889a 17140 this_type = read_unspecified_type (die, cu);
81a17f79 17141 break;
0114d602
DJ
17142 case DW_TAG_namespace:
17143 this_type = read_namespace_type (die, cu);
17144 break;
f55ee35c
JK
17145 case DW_TAG_module:
17146 this_type = read_module_type (die, cu);
17147 break;
c906108c 17148 default:
3e43a32a
MS
17149 complaint (&symfile_complaints,
17150 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 17151 dwarf_tag_name (die->tag));
c906108c
SS
17152 break;
17153 }
63d06c5c 17154
f792889a 17155 return this_type;
63d06c5c
DC
17156}
17157
abc72ce4
DE
17158/* See if we can figure out if the class lives in a namespace. We do
17159 this by looking for a member function; its demangled name will
17160 contain namespace info, if there is any.
17161 Return the computed name or NULL.
17162 Space for the result is allocated on the objfile's obstack.
17163 This is the full-die version of guess_partial_die_structure_name.
17164 In this case we know DIE has no useful parent. */
17165
17166static char *
17167guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
17168{
17169 struct die_info *spec_die;
17170 struct dwarf2_cu *spec_cu;
17171 struct die_info *child;
17172
17173 spec_cu = cu;
17174 spec_die = die_specification (die, &spec_cu);
17175 if (spec_die != NULL)
17176 {
17177 die = spec_die;
17178 cu = spec_cu;
17179 }
17180
17181 for (child = die->child;
17182 child != NULL;
17183 child = child->sibling)
17184 {
17185 if (child->tag == DW_TAG_subprogram)
17186 {
17187 struct attribute *attr;
17188
17189 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
17190 if (attr == NULL)
17191 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
17192 if (attr != NULL)
17193 {
17194 char *actual_name
17195 = language_class_name_from_physname (cu->language_defn,
17196 DW_STRING (attr));
17197 char *name = NULL;
17198
17199 if (actual_name != NULL)
17200 {
15d034d0 17201 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
17202
17203 if (die_name != NULL
17204 && strcmp (die_name, actual_name) != 0)
17205 {
17206 /* Strip off the class name from the full name.
17207 We want the prefix. */
17208 int die_name_len = strlen (die_name);
17209 int actual_name_len = strlen (actual_name);
17210
17211 /* Test for '::' as a sanity check. */
17212 if (actual_name_len > die_name_len + 2
3e43a32a
MS
17213 && actual_name[actual_name_len
17214 - die_name_len - 1] == ':')
abc72ce4 17215 name =
10f0c4bb
TT
17216 obstack_copy0 (&cu->objfile->objfile_obstack,
17217 actual_name,
17218 actual_name_len - die_name_len - 2);
abc72ce4
DE
17219 }
17220 }
17221 xfree (actual_name);
17222 return name;
17223 }
17224 }
17225 }
17226
17227 return NULL;
17228}
17229
96408a79
SA
17230/* GCC might emit a nameless typedef that has a linkage name. Determine the
17231 prefix part in such case. See
17232 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17233
17234static char *
17235anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
17236{
17237 struct attribute *attr;
17238 char *base;
17239
17240 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
17241 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
17242 return NULL;
17243
17244 attr = dwarf2_attr (die, DW_AT_name, cu);
17245 if (attr != NULL && DW_STRING (attr) != NULL)
17246 return NULL;
17247
17248 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17249 if (attr == NULL)
17250 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17251 if (attr == NULL || DW_STRING (attr) == NULL)
17252 return NULL;
17253
17254 /* dwarf2_name had to be already called. */
17255 gdb_assert (DW_STRING_IS_CANONICAL (attr));
17256
17257 /* Strip the base name, keep any leading namespaces/classes. */
17258 base = strrchr (DW_STRING (attr), ':');
17259 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
17260 return "";
17261
10f0c4bb
TT
17262 return obstack_copy0 (&cu->objfile->objfile_obstack,
17263 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
17264}
17265
fdde2d81 17266/* Return the name of the namespace/class that DIE is defined within,
0114d602 17267 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 17268
0114d602
DJ
17269 For example, if we're within the method foo() in the following
17270 code:
17271
17272 namespace N {
17273 class C {
17274 void foo () {
17275 }
17276 };
17277 }
17278
17279 then determine_prefix on foo's die will return "N::C". */
fdde2d81 17280
0d5cff50 17281static const char *
e142c38c 17282determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 17283{
0114d602
DJ
17284 struct die_info *parent, *spec_die;
17285 struct dwarf2_cu *spec_cu;
17286 struct type *parent_type;
96408a79 17287 char *retval;
63d06c5c 17288
f55ee35c
JK
17289 if (cu->language != language_cplus && cu->language != language_java
17290 && cu->language != language_fortran)
0114d602
DJ
17291 return "";
17292
96408a79
SA
17293 retval = anonymous_struct_prefix (die, cu);
17294 if (retval)
17295 return retval;
17296
0114d602
DJ
17297 /* We have to be careful in the presence of DW_AT_specification.
17298 For example, with GCC 3.4, given the code
17299
17300 namespace N {
17301 void foo() {
17302 // Definition of N::foo.
17303 }
17304 }
17305
17306 then we'll have a tree of DIEs like this:
17307
17308 1: DW_TAG_compile_unit
17309 2: DW_TAG_namespace // N
17310 3: DW_TAG_subprogram // declaration of N::foo
17311 4: DW_TAG_subprogram // definition of N::foo
17312 DW_AT_specification // refers to die #3
17313
17314 Thus, when processing die #4, we have to pretend that we're in
17315 the context of its DW_AT_specification, namely the contex of die
17316 #3. */
17317 spec_cu = cu;
17318 spec_die = die_specification (die, &spec_cu);
17319 if (spec_die == NULL)
17320 parent = die->parent;
17321 else
63d06c5c 17322 {
0114d602
DJ
17323 parent = spec_die->parent;
17324 cu = spec_cu;
63d06c5c 17325 }
0114d602
DJ
17326
17327 if (parent == NULL)
17328 return "";
98bfdba5
PA
17329 else if (parent->building_fullname)
17330 {
17331 const char *name;
17332 const char *parent_name;
17333
17334 /* It has been seen on RealView 2.2 built binaries,
17335 DW_TAG_template_type_param types actually _defined_ as
17336 children of the parent class:
17337
17338 enum E {};
17339 template class <class Enum> Class{};
17340 Class<enum E> class_e;
17341
17342 1: DW_TAG_class_type (Class)
17343 2: DW_TAG_enumeration_type (E)
17344 3: DW_TAG_enumerator (enum1:0)
17345 3: DW_TAG_enumerator (enum2:1)
17346 ...
17347 2: DW_TAG_template_type_param
17348 DW_AT_type DW_FORM_ref_udata (E)
17349
17350 Besides being broken debug info, it can put GDB into an
17351 infinite loop. Consider:
17352
17353 When we're building the full name for Class<E>, we'll start
17354 at Class, and go look over its template type parameters,
17355 finding E. We'll then try to build the full name of E, and
17356 reach here. We're now trying to build the full name of E,
17357 and look over the parent DIE for containing scope. In the
17358 broken case, if we followed the parent DIE of E, we'd again
17359 find Class, and once again go look at its template type
17360 arguments, etc., etc. Simply don't consider such parent die
17361 as source-level parent of this die (it can't be, the language
17362 doesn't allow it), and break the loop here. */
17363 name = dwarf2_name (die, cu);
17364 parent_name = dwarf2_name (parent, cu);
17365 complaint (&symfile_complaints,
17366 _("template param type '%s' defined within parent '%s'"),
17367 name ? name : "<unknown>",
17368 parent_name ? parent_name : "<unknown>");
17369 return "";
17370 }
63d06c5c 17371 else
0114d602
DJ
17372 switch (parent->tag)
17373 {
63d06c5c 17374 case DW_TAG_namespace:
0114d602 17375 parent_type = read_type_die (parent, cu);
acebe513
UW
17376 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
17377 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
17378 Work around this problem here. */
17379 if (cu->language == language_cplus
17380 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
17381 return "";
0114d602
DJ
17382 /* We give a name to even anonymous namespaces. */
17383 return TYPE_TAG_NAME (parent_type);
63d06c5c 17384 case DW_TAG_class_type:
680b30c7 17385 case DW_TAG_interface_type:
63d06c5c 17386 case DW_TAG_structure_type:
0114d602 17387 case DW_TAG_union_type:
f55ee35c 17388 case DW_TAG_module:
0114d602
DJ
17389 parent_type = read_type_die (parent, cu);
17390 if (TYPE_TAG_NAME (parent_type) != NULL)
17391 return TYPE_TAG_NAME (parent_type);
17392 else
17393 /* An anonymous structure is only allowed non-static data
17394 members; no typedefs, no member functions, et cetera.
17395 So it does not need a prefix. */
17396 return "";
abc72ce4 17397 case DW_TAG_compile_unit:
95554aad 17398 case DW_TAG_partial_unit:
abc72ce4
DE
17399 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
17400 if (cu->language == language_cplus
8b70b953 17401 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
17402 && die->child != NULL
17403 && (die->tag == DW_TAG_class_type
17404 || die->tag == DW_TAG_structure_type
17405 || die->tag == DW_TAG_union_type))
17406 {
17407 char *name = guess_full_die_structure_name (die, cu);
17408 if (name != NULL)
17409 return name;
17410 }
17411 return "";
63d06c5c 17412 default:
8176b9b8 17413 return determine_prefix (parent, cu);
63d06c5c 17414 }
63d06c5c
DC
17415}
17416
3e43a32a
MS
17417/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
17418 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
17419 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
17420 an obconcat, otherwise allocate storage for the result. The CU argument is
17421 used to determine the language and hence, the appropriate separator. */
987504bb 17422
f55ee35c 17423#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
17424
17425static char *
f55ee35c
JK
17426typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
17427 int physname, struct dwarf2_cu *cu)
63d06c5c 17428{
f55ee35c 17429 const char *lead = "";
5c315b68 17430 const char *sep;
63d06c5c 17431
3e43a32a
MS
17432 if (suffix == NULL || suffix[0] == '\0'
17433 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
17434 sep = "";
17435 else if (cu->language == language_java)
17436 sep = ".";
f55ee35c
JK
17437 else if (cu->language == language_fortran && physname)
17438 {
17439 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
17440 DW_AT_MIPS_linkage_name is preferred and used instead. */
17441
17442 lead = "__";
17443 sep = "_MOD_";
17444 }
987504bb
JJ
17445 else
17446 sep = "::";
63d06c5c 17447
6dd47d34
DE
17448 if (prefix == NULL)
17449 prefix = "";
17450 if (suffix == NULL)
17451 suffix = "";
17452
987504bb
JJ
17453 if (obs == NULL)
17454 {
3e43a32a
MS
17455 char *retval
17456 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 17457
f55ee35c
JK
17458 strcpy (retval, lead);
17459 strcat (retval, prefix);
6dd47d34
DE
17460 strcat (retval, sep);
17461 strcat (retval, suffix);
63d06c5c
DC
17462 return retval;
17463 }
987504bb
JJ
17464 else
17465 {
17466 /* We have an obstack. */
f55ee35c 17467 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 17468 }
63d06c5c
DC
17469}
17470
c906108c
SS
17471/* Return sibling of die, NULL if no sibling. */
17472
f9aca02d 17473static struct die_info *
fba45db2 17474sibling_die (struct die_info *die)
c906108c 17475{
639d11d3 17476 return die->sibling;
c906108c
SS
17477}
17478
71c25dea
TT
17479/* Get name of a die, return NULL if not found. */
17480
15d034d0
TT
17481static const char *
17482dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
17483 struct obstack *obstack)
17484{
17485 if (name && cu->language == language_cplus)
17486 {
17487 char *canon_name = cp_canonicalize_string (name);
17488
17489 if (canon_name != NULL)
17490 {
17491 if (strcmp (canon_name, name) != 0)
10f0c4bb 17492 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
17493 xfree (canon_name);
17494 }
17495 }
17496
17497 return name;
c906108c
SS
17498}
17499
9219021c
DC
17500/* Get name of a die, return NULL if not found. */
17501
15d034d0 17502static const char *
e142c38c 17503dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
17504{
17505 struct attribute *attr;
17506
e142c38c 17507 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
17508 if ((!attr || !DW_STRING (attr))
17509 && die->tag != DW_TAG_class_type
17510 && die->tag != DW_TAG_interface_type
17511 && die->tag != DW_TAG_structure_type
17512 && die->tag != DW_TAG_union_type)
71c25dea
TT
17513 return NULL;
17514
17515 switch (die->tag)
17516 {
17517 case DW_TAG_compile_unit:
95554aad 17518 case DW_TAG_partial_unit:
71c25dea
TT
17519 /* Compilation units have a DW_AT_name that is a filename, not
17520 a source language identifier. */
17521 case DW_TAG_enumeration_type:
17522 case DW_TAG_enumerator:
17523 /* These tags always have simple identifiers already; no need
17524 to canonicalize them. */
17525 return DW_STRING (attr);
907af001 17526
418835cc
KS
17527 case DW_TAG_subprogram:
17528 /* Java constructors will all be named "<init>", so return
17529 the class name when we see this special case. */
17530 if (cu->language == language_java
17531 && DW_STRING (attr) != NULL
17532 && strcmp (DW_STRING (attr), "<init>") == 0)
17533 {
17534 struct dwarf2_cu *spec_cu = cu;
17535 struct die_info *spec_die;
17536
17537 /* GCJ will output '<init>' for Java constructor names.
17538 For this special case, return the name of the parent class. */
17539
17540 /* GCJ may output suprogram DIEs with AT_specification set.
17541 If so, use the name of the specified DIE. */
17542 spec_die = die_specification (die, &spec_cu);
17543 if (spec_die != NULL)
17544 return dwarf2_name (spec_die, spec_cu);
17545
17546 do
17547 {
17548 die = die->parent;
17549 if (die->tag == DW_TAG_class_type)
17550 return dwarf2_name (die, cu);
17551 }
95554aad
TT
17552 while (die->tag != DW_TAG_compile_unit
17553 && die->tag != DW_TAG_partial_unit);
418835cc 17554 }
907af001
UW
17555 break;
17556
17557 case DW_TAG_class_type:
17558 case DW_TAG_interface_type:
17559 case DW_TAG_structure_type:
17560 case DW_TAG_union_type:
17561 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17562 structures or unions. These were of the form "._%d" in GCC 4.1,
17563 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17564 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
17565 if (attr && DW_STRING (attr)
17566 && (strncmp (DW_STRING (attr), "._", 2) == 0
17567 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 17568 return NULL;
53832f31
TT
17569
17570 /* GCC might emit a nameless typedef that has a linkage name. See
17571 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17572 if (!attr || DW_STRING (attr) == NULL)
17573 {
df5c6c50 17574 char *demangled = NULL;
53832f31
TT
17575
17576 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17577 if (attr == NULL)
17578 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17579
17580 if (attr == NULL || DW_STRING (attr) == NULL)
17581 return NULL;
17582
df5c6c50
JK
17583 /* Avoid demangling DW_STRING (attr) the second time on a second
17584 call for the same DIE. */
17585 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 17586 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
17587
17588 if (demangled)
17589 {
96408a79
SA
17590 char *base;
17591
53832f31 17592 /* FIXME: we already did this for the partial symbol... */
10f0c4bb
TT
17593 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17594 demangled, strlen (demangled));
53832f31
TT
17595 DW_STRING_IS_CANONICAL (attr) = 1;
17596 xfree (demangled);
96408a79
SA
17597
17598 /* Strip any leading namespaces/classes, keep only the base name.
17599 DW_AT_name for named DIEs does not contain the prefixes. */
17600 base = strrchr (DW_STRING (attr), ':');
17601 if (base && base > DW_STRING (attr) && base[-1] == ':')
17602 return &base[1];
17603 else
17604 return DW_STRING (attr);
53832f31
TT
17605 }
17606 }
907af001
UW
17607 break;
17608
71c25dea 17609 default:
907af001
UW
17610 break;
17611 }
17612
17613 if (!DW_STRING_IS_CANONICAL (attr))
17614 {
17615 DW_STRING (attr)
17616 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17617 &cu->objfile->objfile_obstack);
17618 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 17619 }
907af001 17620 return DW_STRING (attr);
9219021c
DC
17621}
17622
17623/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
17624 is none. *EXT_CU is the CU containing DIE on input, and the CU
17625 containing the return value on output. */
9219021c
DC
17626
17627static struct die_info *
f2f0e013 17628dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
17629{
17630 struct attribute *attr;
9219021c 17631
f2f0e013 17632 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
17633 if (attr == NULL)
17634 return NULL;
17635
f2f0e013 17636 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
17637}
17638
c906108c
SS
17639/* Convert a DIE tag into its string name. */
17640
f39c6ffd 17641static const char *
aa1ee363 17642dwarf_tag_name (unsigned tag)
c906108c 17643{
f39c6ffd
TT
17644 const char *name = get_DW_TAG_name (tag);
17645
17646 if (name == NULL)
17647 return "DW_TAG_<unknown>";
17648
17649 return name;
c906108c
SS
17650}
17651
17652/* Convert a DWARF attribute code into its string name. */
17653
f39c6ffd 17654static const char *
aa1ee363 17655dwarf_attr_name (unsigned attr)
c906108c 17656{
f39c6ffd
TT
17657 const char *name;
17658
c764a876 17659#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
17660 if (attr == DW_AT_MIPS_fde)
17661 return "DW_AT_MIPS_fde";
17662#else
17663 if (attr == DW_AT_HP_block_index)
17664 return "DW_AT_HP_block_index";
c764a876 17665#endif
f39c6ffd
TT
17666
17667 name = get_DW_AT_name (attr);
17668
17669 if (name == NULL)
17670 return "DW_AT_<unknown>";
17671
17672 return name;
c906108c
SS
17673}
17674
17675/* Convert a DWARF value form code into its string name. */
17676
f39c6ffd 17677static const char *
aa1ee363 17678dwarf_form_name (unsigned form)
c906108c 17679{
f39c6ffd
TT
17680 const char *name = get_DW_FORM_name (form);
17681
17682 if (name == NULL)
17683 return "DW_FORM_<unknown>";
17684
17685 return name;
c906108c
SS
17686}
17687
17688static char *
fba45db2 17689dwarf_bool_name (unsigned mybool)
c906108c
SS
17690{
17691 if (mybool)
17692 return "TRUE";
17693 else
17694 return "FALSE";
17695}
17696
17697/* Convert a DWARF type code into its string name. */
17698
f39c6ffd 17699static const char *
aa1ee363 17700dwarf_type_encoding_name (unsigned enc)
c906108c 17701{
f39c6ffd 17702 const char *name = get_DW_ATE_name (enc);
c906108c 17703
f39c6ffd
TT
17704 if (name == NULL)
17705 return "DW_ATE_<unknown>";
c906108c 17706
f39c6ffd 17707 return name;
c906108c 17708}
c906108c 17709
f9aca02d 17710static void
d97bc12b 17711dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
17712{
17713 unsigned int i;
17714
d97bc12b
DE
17715 print_spaces (indent, f);
17716 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 17717 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
17718
17719 if (die->parent != NULL)
17720 {
17721 print_spaces (indent, f);
17722 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 17723 die->parent->offset.sect_off);
d97bc12b
DE
17724 }
17725
17726 print_spaces (indent, f);
17727 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 17728 dwarf_bool_name (die->child != NULL));
c906108c 17729
d97bc12b
DE
17730 print_spaces (indent, f);
17731 fprintf_unfiltered (f, " attributes:\n");
17732
c906108c
SS
17733 for (i = 0; i < die->num_attrs; ++i)
17734 {
d97bc12b
DE
17735 print_spaces (indent, f);
17736 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
17737 dwarf_attr_name (die->attrs[i].name),
17738 dwarf_form_name (die->attrs[i].form));
d97bc12b 17739
c906108c
SS
17740 switch (die->attrs[i].form)
17741 {
c906108c 17742 case DW_FORM_addr:
3019eac3 17743 case DW_FORM_GNU_addr_index:
d97bc12b 17744 fprintf_unfiltered (f, "address: ");
5af949e3 17745 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
17746 break;
17747 case DW_FORM_block2:
17748 case DW_FORM_block4:
17749 case DW_FORM_block:
17750 case DW_FORM_block1:
56eb65bd
SP
17751 fprintf_unfiltered (f, "block: size %s",
17752 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 17753 break;
2dc7f7b3 17754 case DW_FORM_exprloc:
56eb65bd
SP
17755 fprintf_unfiltered (f, "expression: size %s",
17756 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 17757 break;
4568ecf9
DE
17758 case DW_FORM_ref_addr:
17759 fprintf_unfiltered (f, "ref address: ");
17760 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17761 break;
36586728
TT
17762 case DW_FORM_GNU_ref_alt:
17763 fprintf_unfiltered (f, "alt ref address: ");
17764 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17765 break;
10b3939b
DJ
17766 case DW_FORM_ref1:
17767 case DW_FORM_ref2:
17768 case DW_FORM_ref4:
4568ecf9
DE
17769 case DW_FORM_ref8:
17770 case DW_FORM_ref_udata:
d97bc12b 17771 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 17772 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 17773 break;
c906108c
SS
17774 case DW_FORM_data1:
17775 case DW_FORM_data2:
17776 case DW_FORM_data4:
ce5d95e1 17777 case DW_FORM_data8:
c906108c
SS
17778 case DW_FORM_udata:
17779 case DW_FORM_sdata:
43bbcdc2
PH
17780 fprintf_unfiltered (f, "constant: %s",
17781 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 17782 break;
2dc7f7b3
TT
17783 case DW_FORM_sec_offset:
17784 fprintf_unfiltered (f, "section offset: %s",
17785 pulongest (DW_UNSND (&die->attrs[i])));
17786 break;
55f1336d 17787 case DW_FORM_ref_sig8:
ac9ec31b
DE
17788 fprintf_unfiltered (f, "signature: %s",
17789 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 17790 break;
c906108c 17791 case DW_FORM_string:
4bdf3d34 17792 case DW_FORM_strp:
3019eac3 17793 case DW_FORM_GNU_str_index:
36586728 17794 case DW_FORM_GNU_strp_alt:
8285870a 17795 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 17796 DW_STRING (&die->attrs[i])
8285870a
JK
17797 ? DW_STRING (&die->attrs[i]) : "",
17798 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
17799 break;
17800 case DW_FORM_flag:
17801 if (DW_UNSND (&die->attrs[i]))
d97bc12b 17802 fprintf_unfiltered (f, "flag: TRUE");
c906108c 17803 else
d97bc12b 17804 fprintf_unfiltered (f, "flag: FALSE");
c906108c 17805 break;
2dc7f7b3
TT
17806 case DW_FORM_flag_present:
17807 fprintf_unfiltered (f, "flag: TRUE");
17808 break;
a8329558 17809 case DW_FORM_indirect:
0963b4bd
MS
17810 /* The reader will have reduced the indirect form to
17811 the "base form" so this form should not occur. */
3e43a32a
MS
17812 fprintf_unfiltered (f,
17813 "unexpected attribute form: DW_FORM_indirect");
a8329558 17814 break;
c906108c 17815 default:
d97bc12b 17816 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 17817 die->attrs[i].form);
d97bc12b 17818 break;
c906108c 17819 }
d97bc12b 17820 fprintf_unfiltered (f, "\n");
c906108c
SS
17821 }
17822}
17823
f9aca02d 17824static void
d97bc12b 17825dump_die_for_error (struct die_info *die)
c906108c 17826{
d97bc12b
DE
17827 dump_die_shallow (gdb_stderr, 0, die);
17828}
17829
17830static void
17831dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17832{
17833 int indent = level * 4;
17834
17835 gdb_assert (die != NULL);
17836
17837 if (level >= max_level)
17838 return;
17839
17840 dump_die_shallow (f, indent, die);
17841
17842 if (die->child != NULL)
c906108c 17843 {
d97bc12b
DE
17844 print_spaces (indent, f);
17845 fprintf_unfiltered (f, " Children:");
17846 if (level + 1 < max_level)
17847 {
17848 fprintf_unfiltered (f, "\n");
17849 dump_die_1 (f, level + 1, max_level, die->child);
17850 }
17851 else
17852 {
3e43a32a
MS
17853 fprintf_unfiltered (f,
17854 " [not printed, max nesting level reached]\n");
d97bc12b
DE
17855 }
17856 }
17857
17858 if (die->sibling != NULL && level > 0)
17859 {
17860 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
17861 }
17862}
17863
d97bc12b
DE
17864/* This is called from the pdie macro in gdbinit.in.
17865 It's not static so gcc will keep a copy callable from gdb. */
17866
17867void
17868dump_die (struct die_info *die, int max_level)
17869{
17870 dump_die_1 (gdb_stdlog, 0, max_level, die);
17871}
17872
f9aca02d 17873static void
51545339 17874store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17875{
51545339 17876 void **slot;
c906108c 17877
b64f50a1
JK
17878 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17879 INSERT);
51545339
DJ
17880
17881 *slot = die;
c906108c
SS
17882}
17883
b64f50a1
JK
17884/* DW_ADDR is always stored already as sect_offset; despite for the forms
17885 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17886
93311388
DE
17887static int
17888is_ref_attr (struct attribute *attr)
c906108c 17889{
c906108c
SS
17890 switch (attr->form)
17891 {
17892 case DW_FORM_ref_addr:
c906108c
SS
17893 case DW_FORM_ref1:
17894 case DW_FORM_ref2:
17895 case DW_FORM_ref4:
613e1657 17896 case DW_FORM_ref8:
c906108c 17897 case DW_FORM_ref_udata:
36586728 17898 case DW_FORM_GNU_ref_alt:
93311388 17899 return 1;
c906108c 17900 default:
93311388 17901 return 0;
c906108c 17902 }
93311388
DE
17903}
17904
b64f50a1
JK
17905/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17906 required kind. */
17907
17908static sect_offset
93311388
DE
17909dwarf2_get_ref_die_offset (struct attribute *attr)
17910{
4568ecf9 17911 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 17912
93311388 17913 if (is_ref_attr (attr))
b64f50a1 17914 return retval;
93311388 17915
b64f50a1 17916 retval.sect_off = 0;
93311388
DE
17917 complaint (&symfile_complaints,
17918 _("unsupported die ref attribute form: '%s'"),
17919 dwarf_form_name (attr->form));
b64f50a1 17920 return retval;
c906108c
SS
17921}
17922
43bbcdc2
PH
17923/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17924 * the value held by the attribute is not constant. */
a02abb62 17925
43bbcdc2 17926static LONGEST
a02abb62
JB
17927dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17928{
17929 if (attr->form == DW_FORM_sdata)
17930 return DW_SND (attr);
17931 else if (attr->form == DW_FORM_udata
17932 || attr->form == DW_FORM_data1
17933 || attr->form == DW_FORM_data2
17934 || attr->form == DW_FORM_data4
17935 || attr->form == DW_FORM_data8)
17936 return DW_UNSND (attr);
17937 else
17938 {
3e43a32a
MS
17939 complaint (&symfile_complaints,
17940 _("Attribute value is not a constant (%s)"),
a02abb62
JB
17941 dwarf_form_name (attr->form));
17942 return default_value;
17943 }
17944}
17945
348e048f
DE
17946/* Follow reference or signature attribute ATTR of SRC_DIE.
17947 On entry *REF_CU is the CU of SRC_DIE.
17948 On exit *REF_CU is the CU of the result. */
17949
17950static struct die_info *
17951follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17952 struct dwarf2_cu **ref_cu)
17953{
17954 struct die_info *die;
17955
17956 if (is_ref_attr (attr))
17957 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 17958 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
17959 die = follow_die_sig (src_die, attr, ref_cu);
17960 else
17961 {
17962 dump_die_for_error (src_die);
17963 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17964 (*ref_cu)->objfile->name);
17965 }
17966
17967 return die;
03dd20cc
DJ
17968}
17969
5c631832 17970/* Follow reference OFFSET.
673bfd45
DE
17971 On entry *REF_CU is the CU of the source die referencing OFFSET.
17972 On exit *REF_CU is the CU of the result.
17973 Returns NULL if OFFSET is invalid. */
f504f079 17974
f9aca02d 17975static struct die_info *
36586728
TT
17976follow_die_offset (sect_offset offset, int offset_in_dwz,
17977 struct dwarf2_cu **ref_cu)
c906108c 17978{
10b3939b 17979 struct die_info temp_die;
f2f0e013 17980 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 17981
348e048f
DE
17982 gdb_assert (cu->per_cu != NULL);
17983
98bfdba5
PA
17984 target_cu = cu;
17985
3019eac3 17986 if (cu->per_cu->is_debug_types)
348e048f
DE
17987 {
17988 /* .debug_types CUs cannot reference anything outside their CU.
17989 If they need to, they have to reference a signatured type via
55f1336d 17990 DW_FORM_ref_sig8. */
348e048f 17991 if (! offset_in_cu_p (&cu->header, offset))
5c631832 17992 return NULL;
348e048f 17993 }
36586728
TT
17994 else if (offset_in_dwz != cu->per_cu->is_dwz
17995 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
17996 {
17997 struct dwarf2_per_cu_data *per_cu;
9a619af0 17998
36586728
TT
17999 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
18000 cu->objfile);
03dd20cc
DJ
18001
18002 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
18003 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
18004 load_full_comp_unit (per_cu, cu->language);
03dd20cc 18005
10b3939b
DJ
18006 target_cu = per_cu->cu;
18007 }
98bfdba5
PA
18008 else if (cu->dies == NULL)
18009 {
18010 /* We're loading full DIEs during partial symbol reading. */
18011 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 18012 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 18013 }
c906108c 18014
f2f0e013 18015 *ref_cu = target_cu;
51545339 18016 temp_die.offset = offset;
b64f50a1 18017 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 18018}
10b3939b 18019
5c631832
JK
18020/* Follow reference attribute ATTR of SRC_DIE.
18021 On entry *REF_CU is the CU of SRC_DIE.
18022 On exit *REF_CU is the CU of the result. */
18023
18024static struct die_info *
18025follow_die_ref (struct die_info *src_die, struct attribute *attr,
18026 struct dwarf2_cu **ref_cu)
18027{
b64f50a1 18028 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
18029 struct dwarf2_cu *cu = *ref_cu;
18030 struct die_info *die;
18031
36586728
TT
18032 die = follow_die_offset (offset,
18033 (attr->form == DW_FORM_GNU_ref_alt
18034 || cu->per_cu->is_dwz),
18035 ref_cu);
5c631832
JK
18036 if (!die)
18037 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
18038 "at 0x%x [in module %s]"),
b64f50a1 18039 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
348e048f 18040
5c631832
JK
18041 return die;
18042}
18043
d83e736b
JK
18044/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
18045 Returned value is intended for DW_OP_call*. Returned
18046 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
18047
18048struct dwarf2_locexpr_baton
8b9737bf
TT
18049dwarf2_fetch_die_loc_sect_off (sect_offset offset,
18050 struct dwarf2_per_cu_data *per_cu,
18051 CORE_ADDR (*get_frame_pc) (void *baton),
18052 void *baton)
5c631832 18053{
918dd910 18054 struct dwarf2_cu *cu;
5c631832
JK
18055 struct die_info *die;
18056 struct attribute *attr;
18057 struct dwarf2_locexpr_baton retval;
18058
8cf6f0b1
TT
18059 dw2_setup (per_cu->objfile);
18060
918dd910
JK
18061 if (per_cu->cu == NULL)
18062 load_cu (per_cu);
18063 cu = per_cu->cu;
18064
36586728 18065 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
18066 if (!die)
18067 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
b64f50a1 18068 offset.sect_off, per_cu->objfile->name);
5c631832
JK
18069
18070 attr = dwarf2_attr (die, DW_AT_location, cu);
18071 if (!attr)
18072 {
e103e986
JK
18073 /* DWARF: "If there is no such attribute, then there is no effect.".
18074 DATA is ignored if SIZE is 0. */
5c631832 18075
e103e986 18076 retval.data = NULL;
5c631832
JK
18077 retval.size = 0;
18078 }
8cf6f0b1
TT
18079 else if (attr_form_is_section_offset (attr))
18080 {
18081 struct dwarf2_loclist_baton loclist_baton;
18082 CORE_ADDR pc = (*get_frame_pc) (baton);
18083 size_t size;
18084
18085 fill_in_loclist_baton (cu, &loclist_baton, attr);
18086
18087 retval.data = dwarf2_find_location_expression (&loclist_baton,
18088 &size, pc);
18089 retval.size = size;
18090 }
5c631832
JK
18091 else
18092 {
18093 if (!attr_form_is_block (attr))
18094 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
18095 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
b64f50a1 18096 offset.sect_off, per_cu->objfile->name);
5c631832
JK
18097
18098 retval.data = DW_BLOCK (attr)->data;
18099 retval.size = DW_BLOCK (attr)->size;
18100 }
18101 retval.per_cu = cu->per_cu;
918dd910 18102
918dd910
JK
18103 age_cached_comp_units ();
18104
5c631832 18105 return retval;
348e048f
DE
18106}
18107
8b9737bf
TT
18108/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
18109 offset. */
18110
18111struct dwarf2_locexpr_baton
18112dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
18113 struct dwarf2_per_cu_data *per_cu,
18114 CORE_ADDR (*get_frame_pc) (void *baton),
18115 void *baton)
18116{
18117 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
18118
18119 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
18120}
18121
b6807d98
TT
18122/* Write a constant of a given type as target-ordered bytes into
18123 OBSTACK. */
18124
18125static const gdb_byte *
18126write_constant_as_bytes (struct obstack *obstack,
18127 enum bfd_endian byte_order,
18128 struct type *type,
18129 ULONGEST value,
18130 LONGEST *len)
18131{
18132 gdb_byte *result;
18133
18134 *len = TYPE_LENGTH (type);
18135 result = obstack_alloc (obstack, *len);
18136 store_unsigned_integer (result, *len, byte_order, value);
18137
18138 return result;
18139}
18140
18141/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
18142 pointer to the constant bytes and set LEN to the length of the
18143 data. If memory is needed, allocate it on OBSTACK. If the DIE
18144 does not have a DW_AT_const_value, return NULL. */
18145
18146const gdb_byte *
18147dwarf2_fetch_constant_bytes (sect_offset offset,
18148 struct dwarf2_per_cu_data *per_cu,
18149 struct obstack *obstack,
18150 LONGEST *len)
18151{
18152 struct dwarf2_cu *cu;
18153 struct die_info *die;
18154 struct attribute *attr;
18155 const gdb_byte *result = NULL;
18156 struct type *type;
18157 LONGEST value;
18158 enum bfd_endian byte_order;
18159
18160 dw2_setup (per_cu->objfile);
18161
18162 if (per_cu->cu == NULL)
18163 load_cu (per_cu);
18164 cu = per_cu->cu;
18165
18166 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18167 if (!die)
18168 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18169 offset.sect_off, per_cu->objfile->name);
18170
18171
18172 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18173 if (attr == NULL)
18174 return NULL;
18175
18176 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
18177 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18178
18179 switch (attr->form)
18180 {
18181 case DW_FORM_addr:
18182 case DW_FORM_GNU_addr_index:
18183 {
18184 gdb_byte *tem;
18185
18186 *len = cu->header.addr_size;
18187 tem = obstack_alloc (obstack, *len);
18188 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
18189 result = tem;
18190 }
18191 break;
18192 case DW_FORM_string:
18193 case DW_FORM_strp:
18194 case DW_FORM_GNU_str_index:
18195 case DW_FORM_GNU_strp_alt:
18196 /* DW_STRING is already allocated on the objfile obstack, point
18197 directly to it. */
18198 result = (const gdb_byte *) DW_STRING (attr);
18199 *len = strlen (DW_STRING (attr));
18200 break;
18201 case DW_FORM_block1:
18202 case DW_FORM_block2:
18203 case DW_FORM_block4:
18204 case DW_FORM_block:
18205 case DW_FORM_exprloc:
18206 result = DW_BLOCK (attr)->data;
18207 *len = DW_BLOCK (attr)->size;
18208 break;
18209
18210 /* The DW_AT_const_value attributes are supposed to carry the
18211 symbol's value "represented as it would be on the target
18212 architecture." By the time we get here, it's already been
18213 converted to host endianness, so we just need to sign- or
18214 zero-extend it as appropriate. */
18215 case DW_FORM_data1:
18216 type = die_type (die, cu);
18217 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
18218 if (result == NULL)
18219 result = write_constant_as_bytes (obstack, byte_order,
18220 type, value, len);
18221 break;
18222 case DW_FORM_data2:
18223 type = die_type (die, cu);
18224 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
18225 if (result == NULL)
18226 result = write_constant_as_bytes (obstack, byte_order,
18227 type, value, len);
18228 break;
18229 case DW_FORM_data4:
18230 type = die_type (die, cu);
18231 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
18232 if (result == NULL)
18233 result = write_constant_as_bytes (obstack, byte_order,
18234 type, value, len);
18235 break;
18236 case DW_FORM_data8:
18237 type = die_type (die, cu);
18238 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
18239 if (result == NULL)
18240 result = write_constant_as_bytes (obstack, byte_order,
18241 type, value, len);
18242 break;
18243
18244 case DW_FORM_sdata:
18245 type = die_type (die, cu);
18246 result = write_constant_as_bytes (obstack, byte_order,
18247 type, DW_SND (attr), len);
18248 break;
18249
18250 case DW_FORM_udata:
18251 type = die_type (die, cu);
18252 result = write_constant_as_bytes (obstack, byte_order,
18253 type, DW_UNSND (attr), len);
18254 break;
18255
18256 default:
18257 complaint (&symfile_complaints,
18258 _("unsupported const value attribute form: '%s'"),
18259 dwarf_form_name (attr->form));
18260 break;
18261 }
18262
18263 return result;
18264}
18265
8a9b8146
TT
18266/* Return the type of the DIE at DIE_OFFSET in the CU named by
18267 PER_CU. */
18268
18269struct type *
b64f50a1 18270dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
18271 struct dwarf2_per_cu_data *per_cu)
18272{
b64f50a1
JK
18273 sect_offset die_offset_sect;
18274
8a9b8146 18275 dw2_setup (per_cu->objfile);
b64f50a1
JK
18276
18277 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
18278 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
18279}
18280
ac9ec31b 18281/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 18282 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
18283 On exit *REF_CU is the CU of the result.
18284 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
18285
18286static struct die_info *
ac9ec31b
DE
18287follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
18288 struct dwarf2_cu **ref_cu)
348e048f
DE
18289{
18290 struct objfile *objfile = (*ref_cu)->objfile;
18291 struct die_info temp_die;
348e048f
DE
18292 struct dwarf2_cu *sig_cu;
18293 struct die_info *die;
18294
ac9ec31b
DE
18295 /* While it might be nice to assert sig_type->type == NULL here,
18296 we can get here for DW_AT_imported_declaration where we need
18297 the DIE not the type. */
348e048f
DE
18298
18299 /* If necessary, add it to the queue and load its DIEs. */
18300
95554aad 18301 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 18302 read_signatured_type (sig_type);
348e048f
DE
18303
18304 gdb_assert (sig_type->per_cu.cu != NULL);
18305
18306 sig_cu = sig_type->per_cu.cu;
3019eac3
DE
18307 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
18308 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
18309 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
18310 temp_die.offset.sect_off);
348e048f
DE
18311 if (die)
18312 {
796a7ff8
DE
18313 /* For .gdb_index version 7 keep track of included TUs.
18314 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
18315 if (dwarf2_per_objfile->index_table != NULL
18316 && dwarf2_per_objfile->index_table->version <= 7)
18317 {
18318 VEC_safe_push (dwarf2_per_cu_ptr,
18319 (*ref_cu)->per_cu->imported_symtabs,
18320 sig_cu->per_cu);
18321 }
18322
348e048f
DE
18323 *ref_cu = sig_cu;
18324 return die;
18325 }
18326
ac9ec31b
DE
18327 return NULL;
18328}
18329
18330/* Follow signatured type referenced by ATTR in SRC_DIE.
18331 On entry *REF_CU is the CU of SRC_DIE.
18332 On exit *REF_CU is the CU of the result.
18333 The result is the DIE of the type.
18334 If the referenced type cannot be found an error is thrown. */
18335
18336static struct die_info *
18337follow_die_sig (struct die_info *src_die, struct attribute *attr,
18338 struct dwarf2_cu **ref_cu)
18339{
18340 ULONGEST signature = DW_SIGNATURE (attr);
18341 struct signatured_type *sig_type;
18342 struct die_info *die;
18343
18344 gdb_assert (attr->form == DW_FORM_ref_sig8);
18345
a2ce51a0 18346 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
18347 /* sig_type will be NULL if the signatured type is missing from
18348 the debug info. */
18349 if (sig_type == NULL)
18350 {
18351 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
18352 " from DIE at 0x%x [in module %s]"),
18353 hex_string (signature), src_die->offset.sect_off,
18354 (*ref_cu)->objfile->name);
18355 }
18356
18357 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
18358 if (die == NULL)
18359 {
18360 dump_die_for_error (src_die);
18361 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
18362 " from DIE at 0x%x [in module %s]"),
18363 hex_string (signature), src_die->offset.sect_off,
18364 (*ref_cu)->objfile->name);
18365 }
18366
18367 return die;
18368}
18369
18370/* Get the type specified by SIGNATURE referenced in DIE/CU,
18371 reading in and processing the type unit if necessary. */
18372
18373static struct type *
18374get_signatured_type (struct die_info *die, ULONGEST signature,
18375 struct dwarf2_cu *cu)
18376{
18377 struct signatured_type *sig_type;
18378 struct dwarf2_cu *type_cu;
18379 struct die_info *type_die;
18380 struct type *type;
18381
a2ce51a0 18382 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
18383 /* sig_type will be NULL if the signatured type is missing from
18384 the debug info. */
18385 if (sig_type == NULL)
18386 {
18387 complaint (&symfile_complaints,
18388 _("Dwarf Error: Cannot find signatured DIE %s referenced"
18389 " from DIE at 0x%x [in module %s]"),
18390 hex_string (signature), die->offset.sect_off,
18391 dwarf2_per_objfile->objfile->name);
18392 return build_error_marker_type (cu, die);
18393 }
18394
18395 /* If we already know the type we're done. */
18396 if (sig_type->type != NULL)
18397 return sig_type->type;
18398
18399 type_cu = cu;
18400 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
18401 if (type_die != NULL)
18402 {
18403 /* N.B. We need to call get_die_type to ensure only one type for this DIE
18404 is created. This is important, for example, because for c++ classes
18405 we need TYPE_NAME set which is only done by new_symbol. Blech. */
18406 type = read_type_die (type_die, type_cu);
18407 if (type == NULL)
18408 {
18409 complaint (&symfile_complaints,
18410 _("Dwarf Error: Cannot build signatured type %s"
18411 " referenced from DIE at 0x%x [in module %s]"),
18412 hex_string (signature), die->offset.sect_off,
18413 dwarf2_per_objfile->objfile->name);
18414 type = build_error_marker_type (cu, die);
18415 }
18416 }
18417 else
18418 {
18419 complaint (&symfile_complaints,
18420 _("Dwarf Error: Problem reading signatured DIE %s referenced"
18421 " from DIE at 0x%x [in module %s]"),
18422 hex_string (signature), die->offset.sect_off,
18423 dwarf2_per_objfile->objfile->name);
18424 type = build_error_marker_type (cu, die);
18425 }
18426 sig_type->type = type;
18427
18428 return type;
18429}
18430
18431/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
18432 reading in and processing the type unit if necessary. */
18433
18434static struct type *
b385a60d
PM
18435get_DW_AT_signature_type (struct die_info *die, struct attribute *attr,
18436 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
18437{
18438 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
18439 if (is_ref_attr (attr))
18440 {
18441 struct dwarf2_cu *type_cu = cu;
18442 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
18443
18444 return read_type_die (type_die, type_cu);
18445 }
18446 else if (attr->form == DW_FORM_ref_sig8)
18447 {
18448 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
18449 }
18450 else
18451 {
18452 complaint (&symfile_complaints,
18453 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
18454 " at 0x%x [in module %s]"),
18455 dwarf_form_name (attr->form), die->offset.sect_off,
18456 dwarf2_per_objfile->objfile->name);
18457 return build_error_marker_type (cu, die);
18458 }
348e048f
DE
18459}
18460
e5fe5e75 18461/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
18462
18463static void
e5fe5e75 18464load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 18465{
52dc124a 18466 struct signatured_type *sig_type;
348e048f 18467
f4dc4d17
DE
18468 /* Caller is responsible for ensuring type_unit_groups don't get here. */
18469 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
18470
6721b2ec
DE
18471 /* We have the per_cu, but we need the signatured_type.
18472 Fortunately this is an easy translation. */
18473 gdb_assert (per_cu->is_debug_types);
18474 sig_type = (struct signatured_type *) per_cu;
348e048f 18475
6721b2ec 18476 gdb_assert (per_cu->cu == NULL);
348e048f 18477
52dc124a 18478 read_signatured_type (sig_type);
348e048f 18479
6721b2ec 18480 gdb_assert (per_cu->cu != NULL);
348e048f
DE
18481}
18482
dee91e82
DE
18483/* die_reader_func for read_signatured_type.
18484 This is identical to load_full_comp_unit_reader,
18485 but is kept separate for now. */
348e048f
DE
18486
18487static void
dee91e82 18488read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 18489 const gdb_byte *info_ptr,
dee91e82
DE
18490 struct die_info *comp_unit_die,
18491 int has_children,
18492 void *data)
348e048f 18493{
dee91e82 18494 struct dwarf2_cu *cu = reader->cu;
348e048f 18495
dee91e82
DE
18496 gdb_assert (cu->die_hash == NULL);
18497 cu->die_hash =
18498 htab_create_alloc_ex (cu->header.length / 12,
18499 die_hash,
18500 die_eq,
18501 NULL,
18502 &cu->comp_unit_obstack,
18503 hashtab_obstack_allocate,
18504 dummy_obstack_deallocate);
348e048f 18505
dee91e82
DE
18506 if (has_children)
18507 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
18508 &info_ptr, comp_unit_die);
18509 cu->dies = comp_unit_die;
18510 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
18511
18512 /* We try not to read any attributes in this function, because not
9cdd5dbd 18513 all CUs needed for references have been loaded yet, and symbol
348e048f 18514 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
18515 or we won't be able to build types correctly.
18516 Similarly, if we do not read the producer, we can not apply
18517 producer-specific interpretation. */
95554aad 18518 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 18519}
348e048f 18520
3019eac3
DE
18521/* Read in a signatured type and build its CU and DIEs.
18522 If the type is a stub for the real type in a DWO file,
18523 read in the real type from the DWO file as well. */
dee91e82
DE
18524
18525static void
18526read_signatured_type (struct signatured_type *sig_type)
18527{
18528 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 18529
3019eac3 18530 gdb_assert (per_cu->is_debug_types);
dee91e82 18531 gdb_assert (per_cu->cu == NULL);
348e048f 18532
f4dc4d17
DE
18533 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
18534 read_signatured_type_reader, NULL);
c906108c
SS
18535}
18536
c906108c
SS
18537/* Decode simple location descriptions.
18538 Given a pointer to a dwarf block that defines a location, compute
18539 the location and return the value.
18540
4cecd739
DJ
18541 NOTE drow/2003-11-18: This function is called in two situations
18542 now: for the address of static or global variables (partial symbols
18543 only) and for offsets into structures which are expected to be
18544 (more or less) constant. The partial symbol case should go away,
18545 and only the constant case should remain. That will let this
18546 function complain more accurately. A few special modes are allowed
18547 without complaint for global variables (for instance, global
18548 register values and thread-local values).
c906108c
SS
18549
18550 A location description containing no operations indicates that the
4cecd739 18551 object is optimized out. The return value is 0 for that case.
6b992462
DJ
18552 FIXME drow/2003-11-16: No callers check for this case any more; soon all
18553 callers will only want a very basic result and this can become a
21ae7a4d
JK
18554 complaint.
18555
18556 Note that stack[0] is unused except as a default error return. */
c906108c
SS
18557
18558static CORE_ADDR
e7c27a73 18559decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 18560{
e7c27a73 18561 struct objfile *objfile = cu->objfile;
56eb65bd
SP
18562 size_t i;
18563 size_t size = blk->size;
d521ce57 18564 const gdb_byte *data = blk->data;
21ae7a4d
JK
18565 CORE_ADDR stack[64];
18566 int stacki;
18567 unsigned int bytes_read, unsnd;
18568 gdb_byte op;
c906108c 18569
21ae7a4d
JK
18570 i = 0;
18571 stacki = 0;
18572 stack[stacki] = 0;
18573 stack[++stacki] = 0;
18574
18575 while (i < size)
18576 {
18577 op = data[i++];
18578 switch (op)
18579 {
18580 case DW_OP_lit0:
18581 case DW_OP_lit1:
18582 case DW_OP_lit2:
18583 case DW_OP_lit3:
18584 case DW_OP_lit4:
18585 case DW_OP_lit5:
18586 case DW_OP_lit6:
18587 case DW_OP_lit7:
18588 case DW_OP_lit8:
18589 case DW_OP_lit9:
18590 case DW_OP_lit10:
18591 case DW_OP_lit11:
18592 case DW_OP_lit12:
18593 case DW_OP_lit13:
18594 case DW_OP_lit14:
18595 case DW_OP_lit15:
18596 case DW_OP_lit16:
18597 case DW_OP_lit17:
18598 case DW_OP_lit18:
18599 case DW_OP_lit19:
18600 case DW_OP_lit20:
18601 case DW_OP_lit21:
18602 case DW_OP_lit22:
18603 case DW_OP_lit23:
18604 case DW_OP_lit24:
18605 case DW_OP_lit25:
18606 case DW_OP_lit26:
18607 case DW_OP_lit27:
18608 case DW_OP_lit28:
18609 case DW_OP_lit29:
18610 case DW_OP_lit30:
18611 case DW_OP_lit31:
18612 stack[++stacki] = op - DW_OP_lit0;
18613 break;
f1bea926 18614
21ae7a4d
JK
18615 case DW_OP_reg0:
18616 case DW_OP_reg1:
18617 case DW_OP_reg2:
18618 case DW_OP_reg3:
18619 case DW_OP_reg4:
18620 case DW_OP_reg5:
18621 case DW_OP_reg6:
18622 case DW_OP_reg7:
18623 case DW_OP_reg8:
18624 case DW_OP_reg9:
18625 case DW_OP_reg10:
18626 case DW_OP_reg11:
18627 case DW_OP_reg12:
18628 case DW_OP_reg13:
18629 case DW_OP_reg14:
18630 case DW_OP_reg15:
18631 case DW_OP_reg16:
18632 case DW_OP_reg17:
18633 case DW_OP_reg18:
18634 case DW_OP_reg19:
18635 case DW_OP_reg20:
18636 case DW_OP_reg21:
18637 case DW_OP_reg22:
18638 case DW_OP_reg23:
18639 case DW_OP_reg24:
18640 case DW_OP_reg25:
18641 case DW_OP_reg26:
18642 case DW_OP_reg27:
18643 case DW_OP_reg28:
18644 case DW_OP_reg29:
18645 case DW_OP_reg30:
18646 case DW_OP_reg31:
18647 stack[++stacki] = op - DW_OP_reg0;
18648 if (i < size)
18649 dwarf2_complex_location_expr_complaint ();
18650 break;
c906108c 18651
21ae7a4d
JK
18652 case DW_OP_regx:
18653 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
18654 i += bytes_read;
18655 stack[++stacki] = unsnd;
18656 if (i < size)
18657 dwarf2_complex_location_expr_complaint ();
18658 break;
c906108c 18659
21ae7a4d
JK
18660 case DW_OP_addr:
18661 stack[++stacki] = read_address (objfile->obfd, &data[i],
18662 cu, &bytes_read);
18663 i += bytes_read;
18664 break;
d53d4ac5 18665
21ae7a4d
JK
18666 case DW_OP_const1u:
18667 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
18668 i += 1;
18669 break;
18670
18671 case DW_OP_const1s:
18672 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
18673 i += 1;
18674 break;
18675
18676 case DW_OP_const2u:
18677 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
18678 i += 2;
18679 break;
18680
18681 case DW_OP_const2s:
18682 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
18683 i += 2;
18684 break;
d53d4ac5 18685
21ae7a4d
JK
18686 case DW_OP_const4u:
18687 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
18688 i += 4;
18689 break;
18690
18691 case DW_OP_const4s:
18692 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
18693 i += 4;
18694 break;
18695
585861ea
JK
18696 case DW_OP_const8u:
18697 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
18698 i += 8;
18699 break;
18700
21ae7a4d
JK
18701 case DW_OP_constu:
18702 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
18703 &bytes_read);
18704 i += bytes_read;
18705 break;
18706
18707 case DW_OP_consts:
18708 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
18709 i += bytes_read;
18710 break;
18711
18712 case DW_OP_dup:
18713 stack[stacki + 1] = stack[stacki];
18714 stacki++;
18715 break;
18716
18717 case DW_OP_plus:
18718 stack[stacki - 1] += stack[stacki];
18719 stacki--;
18720 break;
18721
18722 case DW_OP_plus_uconst:
18723 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
18724 &bytes_read);
18725 i += bytes_read;
18726 break;
18727
18728 case DW_OP_minus:
18729 stack[stacki - 1] -= stack[stacki];
18730 stacki--;
18731 break;
18732
18733 case DW_OP_deref:
18734 /* If we're not the last op, then we definitely can't encode
18735 this using GDB's address_class enum. This is valid for partial
18736 global symbols, although the variable's address will be bogus
18737 in the psymtab. */
18738 if (i < size)
18739 dwarf2_complex_location_expr_complaint ();
18740 break;
18741
18742 case DW_OP_GNU_push_tls_address:
18743 /* The top of the stack has the offset from the beginning
18744 of the thread control block at which the variable is located. */
18745 /* Nothing should follow this operator, so the top of stack would
18746 be returned. */
18747 /* This is valid for partial global symbols, but the variable's
585861ea
JK
18748 address will be bogus in the psymtab. Make it always at least
18749 non-zero to not look as a variable garbage collected by linker
18750 which have DW_OP_addr 0. */
21ae7a4d
JK
18751 if (i < size)
18752 dwarf2_complex_location_expr_complaint ();
585861ea 18753 stack[stacki]++;
21ae7a4d
JK
18754 break;
18755
18756 case DW_OP_GNU_uninit:
18757 break;
18758
3019eac3 18759 case DW_OP_GNU_addr_index:
49f6c839 18760 case DW_OP_GNU_const_index:
3019eac3
DE
18761 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18762 &bytes_read);
18763 i += bytes_read;
18764 break;
18765
21ae7a4d
JK
18766 default:
18767 {
f39c6ffd 18768 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
18769
18770 if (name)
18771 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18772 name);
18773 else
18774 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
18775 op);
18776 }
18777
18778 return (stack[stacki]);
d53d4ac5 18779 }
3c6e0cb3 18780
21ae7a4d
JK
18781 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18782 outside of the allocated space. Also enforce minimum>0. */
18783 if (stacki >= ARRAY_SIZE (stack) - 1)
18784 {
18785 complaint (&symfile_complaints,
18786 _("location description stack overflow"));
18787 return 0;
18788 }
18789
18790 if (stacki <= 0)
18791 {
18792 complaint (&symfile_complaints,
18793 _("location description stack underflow"));
18794 return 0;
18795 }
18796 }
18797 return (stack[stacki]);
c906108c
SS
18798}
18799
18800/* memory allocation interface */
18801
c906108c 18802static struct dwarf_block *
7b5a2f43 18803dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
18804{
18805 struct dwarf_block *blk;
18806
18807 blk = (struct dwarf_block *)
7b5a2f43 18808 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
18809 return (blk);
18810}
18811
c906108c 18812static struct die_info *
b60c80d6 18813dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
18814{
18815 struct die_info *die;
b60c80d6
DJ
18816 size_t size = sizeof (struct die_info);
18817
18818 if (num_attrs > 1)
18819 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 18820
b60c80d6 18821 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
18822 memset (die, 0, sizeof (struct die_info));
18823 return (die);
18824}
2e276125
JB
18825
18826\f
18827/* Macro support. */
18828
233d95b5
JK
18829/* Return file name relative to the compilation directory of file number I in
18830 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 18831 responsible for freeing it. */
233d95b5 18832
2e276125 18833static char *
233d95b5 18834file_file_name (int file, struct line_header *lh)
2e276125 18835{
6a83a1e6
EZ
18836 /* Is the file number a valid index into the line header's file name
18837 table? Remember that file numbers start with one, not zero. */
18838 if (1 <= file && file <= lh->num_file_names)
18839 {
18840 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 18841
233d95b5 18842 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
6a83a1e6 18843 return xstrdup (fe->name);
233d95b5
JK
18844 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18845 fe->name, NULL);
6a83a1e6 18846 }
2e276125
JB
18847 else
18848 {
6a83a1e6
EZ
18849 /* The compiler produced a bogus file number. We can at least
18850 record the macro definitions made in the file, even if we
18851 won't be able to find the file by name. */
18852 char fake_name[80];
9a619af0 18853
8c042590
PM
18854 xsnprintf (fake_name, sizeof (fake_name),
18855 "<bad macro file number %d>", file);
2e276125 18856
6e70227d 18857 complaint (&symfile_complaints,
6a83a1e6
EZ
18858 _("bad file number in macro information (%d)"),
18859 file);
2e276125 18860
6a83a1e6 18861 return xstrdup (fake_name);
2e276125
JB
18862 }
18863}
18864
233d95b5
JK
18865/* Return the full name of file number I in *LH's file name table.
18866 Use COMP_DIR as the name of the current directory of the
18867 compilation. The result is allocated using xmalloc; the caller is
18868 responsible for freeing it. */
18869static char *
18870file_full_name (int file, struct line_header *lh, const char *comp_dir)
18871{
18872 /* Is the file number a valid index into the line header's file name
18873 table? Remember that file numbers start with one, not zero. */
18874 if (1 <= file && file <= lh->num_file_names)
18875 {
18876 char *relative = file_file_name (file, lh);
18877
18878 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18879 return relative;
18880 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18881 }
18882 else
18883 return file_file_name (file, lh);
18884}
18885
2e276125
JB
18886
18887static struct macro_source_file *
18888macro_start_file (int file, int line,
18889 struct macro_source_file *current_file,
18890 const char *comp_dir,
18891 struct line_header *lh, struct objfile *objfile)
18892{
233d95b5
JK
18893 /* File name relative to the compilation directory of this source file. */
18894 char *file_name = file_file_name (file, lh);
2e276125
JB
18895
18896 /* We don't create a macro table for this compilation unit
18897 at all until we actually get a filename. */
18898 if (! pending_macros)
6532ff36 18899 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
233d95b5
JK
18900 objfile->per_bfd->macro_cache,
18901 comp_dir);
2e276125
JB
18902
18903 if (! current_file)
abc9d0dc
TT
18904 {
18905 /* If we have no current file, then this must be the start_file
18906 directive for the compilation unit's main source file. */
233d95b5 18907 current_file = macro_set_main (pending_macros, file_name);
abc9d0dc
TT
18908 macro_define_special (pending_macros);
18909 }
2e276125 18910 else
233d95b5 18911 current_file = macro_include (current_file, line, file_name);
2e276125 18912
233d95b5 18913 xfree (file_name);
6e70227d 18914
2e276125
JB
18915 return current_file;
18916}
18917
18918
18919/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18920 followed by a null byte. */
18921static char *
18922copy_string (const char *buf, int len)
18923{
18924 char *s = xmalloc (len + 1);
9a619af0 18925
2e276125
JB
18926 memcpy (s, buf, len);
18927 s[len] = '\0';
2e276125
JB
18928 return s;
18929}
18930
18931
18932static const char *
18933consume_improper_spaces (const char *p, const char *body)
18934{
18935 if (*p == ' ')
18936 {
4d3c2250 18937 complaint (&symfile_complaints,
3e43a32a
MS
18938 _("macro definition contains spaces "
18939 "in formal argument list:\n`%s'"),
4d3c2250 18940 body);
2e276125
JB
18941
18942 while (*p == ' ')
18943 p++;
18944 }
18945
18946 return p;
18947}
18948
18949
18950static void
18951parse_macro_definition (struct macro_source_file *file, int line,
18952 const char *body)
18953{
18954 const char *p;
18955
18956 /* The body string takes one of two forms. For object-like macro
18957 definitions, it should be:
18958
18959 <macro name> " " <definition>
18960
18961 For function-like macro definitions, it should be:
18962
18963 <macro name> "() " <definition>
18964 or
18965 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18966
18967 Spaces may appear only where explicitly indicated, and in the
18968 <definition>.
18969
18970 The Dwarf 2 spec says that an object-like macro's name is always
18971 followed by a space, but versions of GCC around March 2002 omit
6e70227d 18972 the space when the macro's definition is the empty string.
2e276125
JB
18973
18974 The Dwarf 2 spec says that there should be no spaces between the
18975 formal arguments in a function-like macro's formal argument list,
18976 but versions of GCC around March 2002 include spaces after the
18977 commas. */
18978
18979
18980 /* Find the extent of the macro name. The macro name is terminated
18981 by either a space or null character (for an object-like macro) or
18982 an opening paren (for a function-like macro). */
18983 for (p = body; *p; p++)
18984 if (*p == ' ' || *p == '(')
18985 break;
18986
18987 if (*p == ' ' || *p == '\0')
18988 {
18989 /* It's an object-like macro. */
18990 int name_len = p - body;
18991 char *name = copy_string (body, name_len);
18992 const char *replacement;
18993
18994 if (*p == ' ')
18995 replacement = body + name_len + 1;
18996 else
18997 {
4d3c2250 18998 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
18999 replacement = body + name_len;
19000 }
6e70227d 19001
2e276125
JB
19002 macro_define_object (file, line, name, replacement);
19003
19004 xfree (name);
19005 }
19006 else if (*p == '(')
19007 {
19008 /* It's a function-like macro. */
19009 char *name = copy_string (body, p - body);
19010 int argc = 0;
19011 int argv_size = 1;
19012 char **argv = xmalloc (argv_size * sizeof (*argv));
19013
19014 p++;
19015
19016 p = consume_improper_spaces (p, body);
19017
19018 /* Parse the formal argument list. */
19019 while (*p && *p != ')')
19020 {
19021 /* Find the extent of the current argument name. */
19022 const char *arg_start = p;
19023
19024 while (*p && *p != ',' && *p != ')' && *p != ' ')
19025 p++;
19026
19027 if (! *p || p == arg_start)
4d3c2250 19028 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19029 else
19030 {
19031 /* Make sure argv has room for the new argument. */
19032 if (argc >= argv_size)
19033 {
19034 argv_size *= 2;
19035 argv = xrealloc (argv, argv_size * sizeof (*argv));
19036 }
19037
19038 argv[argc++] = copy_string (arg_start, p - arg_start);
19039 }
19040
19041 p = consume_improper_spaces (p, body);
19042
19043 /* Consume the comma, if present. */
19044 if (*p == ',')
19045 {
19046 p++;
19047
19048 p = consume_improper_spaces (p, body);
19049 }
19050 }
19051
19052 if (*p == ')')
19053 {
19054 p++;
19055
19056 if (*p == ' ')
19057 /* Perfectly formed definition, no complaints. */
19058 macro_define_function (file, line, name,
6e70227d 19059 argc, (const char **) argv,
2e276125
JB
19060 p + 1);
19061 else if (*p == '\0')
19062 {
19063 /* Complain, but do define it. */
4d3c2250 19064 dwarf2_macro_malformed_definition_complaint (body);
2e276125 19065 macro_define_function (file, line, name,
6e70227d 19066 argc, (const char **) argv,
2e276125
JB
19067 p);
19068 }
19069 else
19070 /* Just complain. */
4d3c2250 19071 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19072 }
19073 else
19074 /* Just complain. */
4d3c2250 19075 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19076
19077 xfree (name);
19078 {
19079 int i;
19080
19081 for (i = 0; i < argc; i++)
19082 xfree (argv[i]);
19083 }
19084 xfree (argv);
19085 }
19086 else
4d3c2250 19087 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
19088}
19089
cf2c3c16
TT
19090/* Skip some bytes from BYTES according to the form given in FORM.
19091 Returns the new pointer. */
2e276125 19092
d521ce57
TT
19093static const gdb_byte *
19094skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
19095 enum dwarf_form form,
19096 unsigned int offset_size,
19097 struct dwarf2_section_info *section)
2e276125 19098{
cf2c3c16 19099 unsigned int bytes_read;
2e276125 19100
cf2c3c16 19101 switch (form)
2e276125 19102 {
cf2c3c16
TT
19103 case DW_FORM_data1:
19104 case DW_FORM_flag:
19105 ++bytes;
19106 break;
19107
19108 case DW_FORM_data2:
19109 bytes += 2;
19110 break;
19111
19112 case DW_FORM_data4:
19113 bytes += 4;
19114 break;
19115
19116 case DW_FORM_data8:
19117 bytes += 8;
19118 break;
19119
19120 case DW_FORM_string:
19121 read_direct_string (abfd, bytes, &bytes_read);
19122 bytes += bytes_read;
19123 break;
19124
19125 case DW_FORM_sec_offset:
19126 case DW_FORM_strp:
36586728 19127 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
19128 bytes += offset_size;
19129 break;
19130
19131 case DW_FORM_block:
19132 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
19133 bytes += bytes_read;
19134 break;
19135
19136 case DW_FORM_block1:
19137 bytes += 1 + read_1_byte (abfd, bytes);
19138 break;
19139 case DW_FORM_block2:
19140 bytes += 2 + read_2_bytes (abfd, bytes);
19141 break;
19142 case DW_FORM_block4:
19143 bytes += 4 + read_4_bytes (abfd, bytes);
19144 break;
19145
19146 case DW_FORM_sdata:
19147 case DW_FORM_udata:
3019eac3
DE
19148 case DW_FORM_GNU_addr_index:
19149 case DW_FORM_GNU_str_index:
d521ce57 19150 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
19151 if (bytes == NULL)
19152 {
19153 dwarf2_section_buffer_overflow_complaint (section);
19154 return NULL;
19155 }
cf2c3c16
TT
19156 break;
19157
19158 default:
19159 {
19160 complain:
19161 complaint (&symfile_complaints,
19162 _("invalid form 0x%x in `%s'"),
19163 form,
19164 section->asection->name);
19165 return NULL;
19166 }
2e276125
JB
19167 }
19168
cf2c3c16
TT
19169 return bytes;
19170}
757a13d0 19171
cf2c3c16
TT
19172/* A helper for dwarf_decode_macros that handles skipping an unknown
19173 opcode. Returns an updated pointer to the macro data buffer; or,
19174 on error, issues a complaint and returns NULL. */
757a13d0 19175
d521ce57 19176static const gdb_byte *
cf2c3c16 19177skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
19178 const gdb_byte **opcode_definitions,
19179 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
19180 bfd *abfd,
19181 unsigned int offset_size,
19182 struct dwarf2_section_info *section)
19183{
19184 unsigned int bytes_read, i;
19185 unsigned long arg;
d521ce57 19186 const gdb_byte *defn;
2e276125 19187
cf2c3c16 19188 if (opcode_definitions[opcode] == NULL)
2e276125 19189 {
cf2c3c16
TT
19190 complaint (&symfile_complaints,
19191 _("unrecognized DW_MACFINO opcode 0x%x"),
19192 opcode);
19193 return NULL;
19194 }
2e276125 19195
cf2c3c16
TT
19196 defn = opcode_definitions[opcode];
19197 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
19198 defn += bytes_read;
2e276125 19199
cf2c3c16
TT
19200 for (i = 0; i < arg; ++i)
19201 {
f664829e
DE
19202 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
19203 section);
cf2c3c16
TT
19204 if (mac_ptr == NULL)
19205 {
19206 /* skip_form_bytes already issued the complaint. */
19207 return NULL;
19208 }
19209 }
757a13d0 19210
cf2c3c16
TT
19211 return mac_ptr;
19212}
757a13d0 19213
cf2c3c16
TT
19214/* A helper function which parses the header of a macro section.
19215 If the macro section is the extended (for now called "GNU") type,
19216 then this updates *OFFSET_SIZE. Returns a pointer to just after
19217 the header, or issues a complaint and returns NULL on error. */
757a13d0 19218
d521ce57
TT
19219static const gdb_byte *
19220dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 19221 bfd *abfd,
d521ce57 19222 const gdb_byte *mac_ptr,
cf2c3c16
TT
19223 unsigned int *offset_size,
19224 int section_is_gnu)
19225{
19226 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 19227
cf2c3c16
TT
19228 if (section_is_gnu)
19229 {
19230 unsigned int version, flags;
757a13d0 19231
cf2c3c16
TT
19232 version = read_2_bytes (abfd, mac_ptr);
19233 if (version != 4)
19234 {
19235 complaint (&symfile_complaints,
19236 _("unrecognized version `%d' in .debug_macro section"),
19237 version);
19238 return NULL;
19239 }
19240 mac_ptr += 2;
757a13d0 19241
cf2c3c16
TT
19242 flags = read_1_byte (abfd, mac_ptr);
19243 ++mac_ptr;
19244 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 19245
cf2c3c16
TT
19246 if ((flags & 2) != 0)
19247 /* We don't need the line table offset. */
19248 mac_ptr += *offset_size;
757a13d0 19249
cf2c3c16
TT
19250 /* Vendor opcode descriptions. */
19251 if ((flags & 4) != 0)
19252 {
19253 unsigned int i, count;
757a13d0 19254
cf2c3c16
TT
19255 count = read_1_byte (abfd, mac_ptr);
19256 ++mac_ptr;
19257 for (i = 0; i < count; ++i)
19258 {
19259 unsigned int opcode, bytes_read;
19260 unsigned long arg;
19261
19262 opcode = read_1_byte (abfd, mac_ptr);
19263 ++mac_ptr;
19264 opcode_definitions[opcode] = mac_ptr;
19265 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19266 mac_ptr += bytes_read;
19267 mac_ptr += arg;
19268 }
757a13d0 19269 }
cf2c3c16 19270 }
757a13d0 19271
cf2c3c16
TT
19272 return mac_ptr;
19273}
757a13d0 19274
cf2c3c16 19275/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 19276 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
19277
19278static void
d521ce57
TT
19279dwarf_decode_macro_bytes (bfd *abfd,
19280 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 19281 struct macro_source_file *current_file,
15d034d0 19282 struct line_header *lh, const char *comp_dir,
cf2c3c16 19283 struct dwarf2_section_info *section,
36586728 19284 int section_is_gnu, int section_is_dwz,
cf2c3c16 19285 unsigned int offset_size,
8fc3fc34
TT
19286 struct objfile *objfile,
19287 htab_t include_hash)
cf2c3c16
TT
19288{
19289 enum dwarf_macro_record_type macinfo_type;
19290 int at_commandline;
d521ce57 19291 const gdb_byte *opcode_definitions[256];
757a13d0 19292
cf2c3c16
TT
19293 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19294 &offset_size, section_is_gnu);
19295 if (mac_ptr == NULL)
19296 {
19297 /* We already issued a complaint. */
19298 return;
19299 }
757a13d0
JK
19300
19301 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
19302 GDB is still reading the definitions from command line. First
19303 DW_MACINFO_start_file will need to be ignored as it was already executed
19304 to create CURRENT_FILE for the main source holding also the command line
19305 definitions. On first met DW_MACINFO_start_file this flag is reset to
19306 normally execute all the remaining DW_MACINFO_start_file macinfos. */
19307
19308 at_commandline = 1;
19309
19310 do
19311 {
19312 /* Do we at least have room for a macinfo type byte? */
19313 if (mac_ptr >= mac_end)
19314 {
f664829e 19315 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
19316 break;
19317 }
19318
19319 macinfo_type = read_1_byte (abfd, mac_ptr);
19320 mac_ptr++;
19321
cf2c3c16
TT
19322 /* Note that we rely on the fact that the corresponding GNU and
19323 DWARF constants are the same. */
757a13d0
JK
19324 switch (macinfo_type)
19325 {
19326 /* A zero macinfo type indicates the end of the macro
19327 information. */
19328 case 0:
19329 break;
2e276125 19330
cf2c3c16
TT
19331 case DW_MACRO_GNU_define:
19332 case DW_MACRO_GNU_undef:
19333 case DW_MACRO_GNU_define_indirect:
19334 case DW_MACRO_GNU_undef_indirect:
36586728
TT
19335 case DW_MACRO_GNU_define_indirect_alt:
19336 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 19337 {
891d2f0b 19338 unsigned int bytes_read;
2e276125 19339 int line;
d521ce57 19340 const char *body;
cf2c3c16 19341 int is_define;
2e276125 19342
cf2c3c16
TT
19343 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19344 mac_ptr += bytes_read;
19345
19346 if (macinfo_type == DW_MACRO_GNU_define
19347 || macinfo_type == DW_MACRO_GNU_undef)
19348 {
19349 body = read_direct_string (abfd, mac_ptr, &bytes_read);
19350 mac_ptr += bytes_read;
19351 }
19352 else
19353 {
19354 LONGEST str_offset;
19355
19356 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
19357 mac_ptr += offset_size;
2e276125 19358
36586728 19359 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
19360 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
19361 || section_is_dwz)
36586728
TT
19362 {
19363 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19364
19365 body = read_indirect_string_from_dwz (dwz, str_offset);
19366 }
19367 else
19368 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
19369 }
19370
19371 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
19372 || macinfo_type == DW_MACRO_GNU_define_indirect
19373 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 19374 if (! current_file)
757a13d0
JK
19375 {
19376 /* DWARF violation as no main source is present. */
19377 complaint (&symfile_complaints,
19378 _("debug info with no main source gives macro %s "
19379 "on line %d: %s"),
cf2c3c16
TT
19380 is_define ? _("definition") : _("undefinition"),
19381 line, body);
757a13d0
JK
19382 break;
19383 }
3e43a32a
MS
19384 if ((line == 0 && !at_commandline)
19385 || (line != 0 && at_commandline))
4d3c2250 19386 complaint (&symfile_complaints,
757a13d0
JK
19387 _("debug info gives %s macro %s with %s line %d: %s"),
19388 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 19389 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
19390 line == 0 ? _("zero") : _("non-zero"), line, body);
19391
cf2c3c16 19392 if (is_define)
757a13d0 19393 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
19394 else
19395 {
19396 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
19397 || macinfo_type == DW_MACRO_GNU_undef_indirect
19398 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
19399 macro_undef (current_file, line, body);
19400 }
2e276125
JB
19401 }
19402 break;
19403
cf2c3c16 19404 case DW_MACRO_GNU_start_file:
2e276125 19405 {
891d2f0b 19406 unsigned int bytes_read;
2e276125
JB
19407 int line, file;
19408
19409 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19410 mac_ptr += bytes_read;
19411 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19412 mac_ptr += bytes_read;
19413
3e43a32a
MS
19414 if ((line == 0 && !at_commandline)
19415 || (line != 0 && at_commandline))
757a13d0
JK
19416 complaint (&symfile_complaints,
19417 _("debug info gives source %d included "
19418 "from %s at %s line %d"),
19419 file, at_commandline ? _("command-line") : _("file"),
19420 line == 0 ? _("zero") : _("non-zero"), line);
19421
19422 if (at_commandline)
19423 {
cf2c3c16
TT
19424 /* This DW_MACRO_GNU_start_file was executed in the
19425 pass one. */
757a13d0
JK
19426 at_commandline = 0;
19427 }
19428 else
19429 current_file = macro_start_file (file, line,
19430 current_file, comp_dir,
cf2c3c16 19431 lh, objfile);
2e276125
JB
19432 }
19433 break;
19434
cf2c3c16 19435 case DW_MACRO_GNU_end_file:
2e276125 19436 if (! current_file)
4d3c2250 19437 complaint (&symfile_complaints,
3e43a32a
MS
19438 _("macro debug info has an unmatched "
19439 "`close_file' directive"));
2e276125
JB
19440 else
19441 {
19442 current_file = current_file->included_by;
19443 if (! current_file)
19444 {
cf2c3c16 19445 enum dwarf_macro_record_type next_type;
2e276125
JB
19446
19447 /* GCC circa March 2002 doesn't produce the zero
19448 type byte marking the end of the compilation
19449 unit. Complain if it's not there, but exit no
19450 matter what. */
19451
19452 /* Do we at least have room for a macinfo type byte? */
19453 if (mac_ptr >= mac_end)
19454 {
f664829e 19455 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
19456 return;
19457 }
19458
19459 /* We don't increment mac_ptr here, so this is just
19460 a look-ahead. */
19461 next_type = read_1_byte (abfd, mac_ptr);
19462 if (next_type != 0)
4d3c2250 19463 complaint (&symfile_complaints,
3e43a32a
MS
19464 _("no terminating 0-type entry for "
19465 "macros in `.debug_macinfo' section"));
2e276125
JB
19466
19467 return;
19468 }
19469 }
19470 break;
19471
cf2c3c16 19472 case DW_MACRO_GNU_transparent_include:
36586728 19473 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
19474 {
19475 LONGEST offset;
8fc3fc34 19476 void **slot;
a036ba48
TT
19477 bfd *include_bfd = abfd;
19478 struct dwarf2_section_info *include_section = section;
19479 struct dwarf2_section_info alt_section;
d521ce57 19480 const gdb_byte *include_mac_end = mac_end;
a036ba48 19481 int is_dwz = section_is_dwz;
d521ce57 19482 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
19483
19484 offset = read_offset_1 (abfd, mac_ptr, offset_size);
19485 mac_ptr += offset_size;
19486
a036ba48
TT
19487 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
19488 {
19489 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19490
19491 dwarf2_read_section (dwarf2_per_objfile->objfile,
19492 &dwz->macro);
19493
19494 include_bfd = dwz->macro.asection->owner;
19495 include_section = &dwz->macro;
19496 include_mac_end = dwz->macro.buffer + dwz->macro.size;
19497 is_dwz = 1;
19498 }
19499
19500 new_mac_ptr = include_section->buffer + offset;
19501 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
19502
8fc3fc34
TT
19503 if (*slot != NULL)
19504 {
19505 /* This has actually happened; see
19506 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
19507 complaint (&symfile_complaints,
19508 _("recursive DW_MACRO_GNU_transparent_include in "
19509 ".debug_macro section"));
19510 }
19511 else
19512 {
d521ce57 19513 *slot = (void *) new_mac_ptr;
36586728 19514
a036ba48 19515 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
36586728 19516 include_mac_end, current_file,
8fc3fc34 19517 lh, comp_dir,
36586728 19518 section, section_is_gnu, is_dwz,
8fc3fc34
TT
19519 offset_size, objfile, include_hash);
19520
d521ce57 19521 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 19522 }
cf2c3c16
TT
19523 }
19524 break;
19525
2e276125 19526 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
19527 if (!section_is_gnu)
19528 {
19529 unsigned int bytes_read;
19530 int constant;
2e276125 19531
cf2c3c16
TT
19532 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19533 mac_ptr += bytes_read;
19534 read_direct_string (abfd, mac_ptr, &bytes_read);
19535 mac_ptr += bytes_read;
2e276125 19536
cf2c3c16
TT
19537 /* We don't recognize any vendor extensions. */
19538 break;
19539 }
19540 /* FALLTHROUGH */
19541
19542 default:
19543 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 19544 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
19545 section);
19546 if (mac_ptr == NULL)
19547 return;
19548 break;
2e276125 19549 }
757a13d0 19550 } while (macinfo_type != 0);
2e276125 19551}
8e19ed76 19552
cf2c3c16 19553static void
09262596 19554dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
15d034d0 19555 const char *comp_dir, int section_is_gnu)
cf2c3c16 19556{
bb5ed363 19557 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
19558 struct line_header *lh = cu->line_header;
19559 bfd *abfd;
d521ce57 19560 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
19561 struct macro_source_file *current_file = 0;
19562 enum dwarf_macro_record_type macinfo_type;
19563 unsigned int offset_size = cu->header.offset_size;
d521ce57 19564 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
19565 struct cleanup *cleanup;
19566 htab_t include_hash;
19567 void **slot;
09262596
DE
19568 struct dwarf2_section_info *section;
19569 const char *section_name;
19570
19571 if (cu->dwo_unit != NULL)
19572 {
19573 if (section_is_gnu)
19574 {
19575 section = &cu->dwo_unit->dwo_file->sections.macro;
19576 section_name = ".debug_macro.dwo";
19577 }
19578 else
19579 {
19580 section = &cu->dwo_unit->dwo_file->sections.macinfo;
19581 section_name = ".debug_macinfo.dwo";
19582 }
19583 }
19584 else
19585 {
19586 if (section_is_gnu)
19587 {
19588 section = &dwarf2_per_objfile->macro;
19589 section_name = ".debug_macro";
19590 }
19591 else
19592 {
19593 section = &dwarf2_per_objfile->macinfo;
19594 section_name = ".debug_macinfo";
19595 }
19596 }
cf2c3c16 19597
bb5ed363 19598 dwarf2_read_section (objfile, section);
cf2c3c16
TT
19599 if (section->buffer == NULL)
19600 {
fceca515 19601 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
19602 return;
19603 }
09262596 19604 abfd = section->asection->owner;
cf2c3c16
TT
19605
19606 /* First pass: Find the name of the base filename.
19607 This filename is needed in order to process all macros whose definition
19608 (or undefinition) comes from the command line. These macros are defined
19609 before the first DW_MACINFO_start_file entry, and yet still need to be
19610 associated to the base file.
19611
19612 To determine the base file name, we scan the macro definitions until we
19613 reach the first DW_MACINFO_start_file entry. We then initialize
19614 CURRENT_FILE accordingly so that any macro definition found before the
19615 first DW_MACINFO_start_file can still be associated to the base file. */
19616
19617 mac_ptr = section->buffer + offset;
19618 mac_end = section->buffer + section->size;
19619
19620 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19621 &offset_size, section_is_gnu);
19622 if (mac_ptr == NULL)
19623 {
19624 /* We already issued a complaint. */
19625 return;
19626 }
19627
19628 do
19629 {
19630 /* Do we at least have room for a macinfo type byte? */
19631 if (mac_ptr >= mac_end)
19632 {
19633 /* Complaint is printed during the second pass as GDB will probably
19634 stop the first pass earlier upon finding
19635 DW_MACINFO_start_file. */
19636 break;
19637 }
19638
19639 macinfo_type = read_1_byte (abfd, mac_ptr);
19640 mac_ptr++;
19641
19642 /* Note that we rely on the fact that the corresponding GNU and
19643 DWARF constants are the same. */
19644 switch (macinfo_type)
19645 {
19646 /* A zero macinfo type indicates the end of the macro
19647 information. */
19648 case 0:
19649 break;
19650
19651 case DW_MACRO_GNU_define:
19652 case DW_MACRO_GNU_undef:
19653 /* Only skip the data by MAC_PTR. */
19654 {
19655 unsigned int bytes_read;
19656
19657 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19658 mac_ptr += bytes_read;
19659 read_direct_string (abfd, mac_ptr, &bytes_read);
19660 mac_ptr += bytes_read;
19661 }
19662 break;
19663
19664 case DW_MACRO_GNU_start_file:
19665 {
19666 unsigned int bytes_read;
19667 int line, file;
19668
19669 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19670 mac_ptr += bytes_read;
19671 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19672 mac_ptr += bytes_read;
19673
19674 current_file = macro_start_file (file, line, current_file,
bb5ed363 19675 comp_dir, lh, objfile);
cf2c3c16
TT
19676 }
19677 break;
19678
19679 case DW_MACRO_GNU_end_file:
19680 /* No data to skip by MAC_PTR. */
19681 break;
19682
19683 case DW_MACRO_GNU_define_indirect:
19684 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
19685 case DW_MACRO_GNU_define_indirect_alt:
19686 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
19687 {
19688 unsigned int bytes_read;
19689
19690 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19691 mac_ptr += bytes_read;
19692 mac_ptr += offset_size;
19693 }
19694 break;
19695
19696 case DW_MACRO_GNU_transparent_include:
f7a35f02 19697 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
19698 /* Note that, according to the spec, a transparent include
19699 chain cannot call DW_MACRO_GNU_start_file. So, we can just
19700 skip this opcode. */
19701 mac_ptr += offset_size;
19702 break;
19703
19704 case DW_MACINFO_vendor_ext:
19705 /* Only skip the data by MAC_PTR. */
19706 if (!section_is_gnu)
19707 {
19708 unsigned int bytes_read;
19709
19710 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19711 mac_ptr += bytes_read;
19712 read_direct_string (abfd, mac_ptr, &bytes_read);
19713 mac_ptr += bytes_read;
19714 }
19715 /* FALLTHROUGH */
19716
19717 default:
19718 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 19719 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
19720 section);
19721 if (mac_ptr == NULL)
19722 return;
19723 break;
19724 }
19725 } while (macinfo_type != 0 && current_file == NULL);
19726
19727 /* Second pass: Process all entries.
19728
19729 Use the AT_COMMAND_LINE flag to determine whether we are still processing
19730 command-line macro definitions/undefinitions. This flag is unset when we
19731 reach the first DW_MACINFO_start_file entry. */
19732
8fc3fc34
TT
19733 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
19734 NULL, xcalloc, xfree);
19735 cleanup = make_cleanup_htab_delete (include_hash);
19736 mac_ptr = section->buffer + offset;
19737 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 19738 *slot = (void *) mac_ptr;
8fc3fc34 19739 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
36586728
TT
19740 current_file, lh, comp_dir, section,
19741 section_is_gnu, 0,
8fc3fc34
TT
19742 offset_size, objfile, include_hash);
19743 do_cleanups (cleanup);
cf2c3c16
TT
19744}
19745
8e19ed76 19746/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 19747 if so return true else false. */
380bca97 19748
8e19ed76
PS
19749static int
19750attr_form_is_block (struct attribute *attr)
19751{
19752 return (attr == NULL ? 0 :
19753 attr->form == DW_FORM_block1
19754 || attr->form == DW_FORM_block2
19755 || attr->form == DW_FORM_block4
2dc7f7b3
TT
19756 || attr->form == DW_FORM_block
19757 || attr->form == DW_FORM_exprloc);
8e19ed76 19758}
4c2df51b 19759
c6a0999f
JB
19760/* Return non-zero if ATTR's value is a section offset --- classes
19761 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19762 You may use DW_UNSND (attr) to retrieve such offsets.
19763
19764 Section 7.5.4, "Attribute Encodings", explains that no attribute
19765 may have a value that belongs to more than one of these classes; it
19766 would be ambiguous if we did, because we use the same forms for all
19767 of them. */
380bca97 19768
3690dd37
JB
19769static int
19770attr_form_is_section_offset (struct attribute *attr)
19771{
19772 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
19773 || attr->form == DW_FORM_data8
19774 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
19775}
19776
3690dd37
JB
19777/* Return non-zero if ATTR's value falls in the 'constant' class, or
19778 zero otherwise. When this function returns true, you can apply
19779 dwarf2_get_attr_constant_value to it.
19780
19781 However, note that for some attributes you must check
19782 attr_form_is_section_offset before using this test. DW_FORM_data4
19783 and DW_FORM_data8 are members of both the constant class, and of
19784 the classes that contain offsets into other debug sections
19785 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19786 that, if an attribute's can be either a constant or one of the
19787 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19788 taken as section offsets, not constants. */
380bca97 19789
3690dd37
JB
19790static int
19791attr_form_is_constant (struct attribute *attr)
19792{
19793 switch (attr->form)
19794 {
19795 case DW_FORM_sdata:
19796 case DW_FORM_udata:
19797 case DW_FORM_data1:
19798 case DW_FORM_data2:
19799 case DW_FORM_data4:
19800 case DW_FORM_data8:
19801 return 1;
19802 default:
19803 return 0;
19804 }
19805}
19806
3019eac3
DE
19807/* Return the .debug_loc section to use for CU.
19808 For DWO files use .debug_loc.dwo. */
19809
19810static struct dwarf2_section_info *
19811cu_debug_loc_section (struct dwarf2_cu *cu)
19812{
19813 if (cu->dwo_unit)
19814 return &cu->dwo_unit->dwo_file->sections.loc;
19815 return &dwarf2_per_objfile->loc;
19816}
19817
8cf6f0b1
TT
19818/* A helper function that fills in a dwarf2_loclist_baton. */
19819
19820static void
19821fill_in_loclist_baton (struct dwarf2_cu *cu,
19822 struct dwarf2_loclist_baton *baton,
19823 struct attribute *attr)
19824{
3019eac3
DE
19825 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19826
19827 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
19828
19829 baton->per_cu = cu->per_cu;
19830 gdb_assert (baton->per_cu);
19831 /* We don't know how long the location list is, but make sure we
19832 don't run off the edge of the section. */
3019eac3
DE
19833 baton->size = section->size - DW_UNSND (attr);
19834 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 19835 baton->base_address = cu->base_address;
f664829e 19836 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
19837}
19838
4c2df51b
DJ
19839static void
19840dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
f1e6e072 19841 struct dwarf2_cu *cu, int is_block)
4c2df51b 19842{
bb5ed363 19843 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 19844 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 19845
3690dd37 19846 if (attr_form_is_section_offset (attr)
3019eac3 19847 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
19848 the section. If so, fall through to the complaint in the
19849 other branch. */
3019eac3 19850 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 19851 {
0d53c4c4 19852 struct dwarf2_loclist_baton *baton;
4c2df51b 19853
bb5ed363 19854 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 19855 sizeof (struct dwarf2_loclist_baton));
4c2df51b 19856
8cf6f0b1 19857 fill_in_loclist_baton (cu, baton, attr);
be391dca 19858
d00adf39 19859 if (cu->base_known == 0)
0d53c4c4 19860 complaint (&symfile_complaints,
3e43a32a
MS
19861 _("Location list used without "
19862 "specifying the CU base address."));
4c2df51b 19863
f1e6e072
TT
19864 SYMBOL_ACLASS_INDEX (sym) = (is_block
19865 ? dwarf2_loclist_block_index
19866 : dwarf2_loclist_index);
0d53c4c4
DJ
19867 SYMBOL_LOCATION_BATON (sym) = baton;
19868 }
19869 else
19870 {
19871 struct dwarf2_locexpr_baton *baton;
19872
bb5ed363 19873 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 19874 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
19875 baton->per_cu = cu->per_cu;
19876 gdb_assert (baton->per_cu);
0d53c4c4
DJ
19877
19878 if (attr_form_is_block (attr))
19879 {
19880 /* Note that we're just copying the block's data pointer
19881 here, not the actual data. We're still pointing into the
6502dd73
DJ
19882 info_buffer for SYM's objfile; right now we never release
19883 that buffer, but when we do clean up properly this may
19884 need to change. */
0d53c4c4
DJ
19885 baton->size = DW_BLOCK (attr)->size;
19886 baton->data = DW_BLOCK (attr)->data;
19887 }
19888 else
19889 {
19890 dwarf2_invalid_attrib_class_complaint ("location description",
19891 SYMBOL_NATURAL_NAME (sym));
19892 baton->size = 0;
0d53c4c4 19893 }
6e70227d 19894
f1e6e072
TT
19895 SYMBOL_ACLASS_INDEX (sym) = (is_block
19896 ? dwarf2_locexpr_block_index
19897 : dwarf2_locexpr_index);
0d53c4c4
DJ
19898 SYMBOL_LOCATION_BATON (sym) = baton;
19899 }
4c2df51b 19900}
6502dd73 19901
9aa1f1e3
TT
19902/* Return the OBJFILE associated with the compilation unit CU. If CU
19903 came from a separate debuginfo file, then the master objfile is
19904 returned. */
ae0d2f24
UW
19905
19906struct objfile *
19907dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19908{
9291a0cd 19909 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
19910
19911 /* Return the master objfile, so that we can report and look up the
19912 correct file containing this variable. */
19913 if (objfile->separate_debug_objfile_backlink)
19914 objfile = objfile->separate_debug_objfile_backlink;
19915
19916 return objfile;
19917}
19918
96408a79
SA
19919/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19920 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19921 CU_HEADERP first. */
19922
19923static const struct comp_unit_head *
19924per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19925 struct dwarf2_per_cu_data *per_cu)
19926{
d521ce57 19927 const gdb_byte *info_ptr;
96408a79
SA
19928
19929 if (per_cu->cu)
19930 return &per_cu->cu->header;
19931
8a0459fd 19932 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
19933
19934 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 19935 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
19936
19937 return cu_headerp;
19938}
19939
ae0d2f24
UW
19940/* Return the address size given in the compilation unit header for CU. */
19941
98714339 19942int
ae0d2f24
UW
19943dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19944{
96408a79
SA
19945 struct comp_unit_head cu_header_local;
19946 const struct comp_unit_head *cu_headerp;
c471e790 19947
96408a79
SA
19948 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19949
19950 return cu_headerp->addr_size;
ae0d2f24
UW
19951}
19952
9eae7c52
TT
19953/* Return the offset size given in the compilation unit header for CU. */
19954
19955int
19956dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19957{
96408a79
SA
19958 struct comp_unit_head cu_header_local;
19959 const struct comp_unit_head *cu_headerp;
9c6c53f7 19960
96408a79
SA
19961 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19962
19963 return cu_headerp->offset_size;
19964}
19965
19966/* See its dwarf2loc.h declaration. */
19967
19968int
19969dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19970{
19971 struct comp_unit_head cu_header_local;
19972 const struct comp_unit_head *cu_headerp;
19973
19974 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19975
19976 if (cu_headerp->version == 2)
19977 return cu_headerp->addr_size;
19978 else
19979 return cu_headerp->offset_size;
181cebd4
JK
19980}
19981
9aa1f1e3
TT
19982/* Return the text offset of the CU. The returned offset comes from
19983 this CU's objfile. If this objfile came from a separate debuginfo
19984 file, then the offset may be different from the corresponding
19985 offset in the parent objfile. */
19986
19987CORE_ADDR
19988dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19989{
bb3fa9d0 19990 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
19991
19992 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19993}
19994
348e048f
DE
19995/* Locate the .debug_info compilation unit from CU's objfile which contains
19996 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
19997
19998static struct dwarf2_per_cu_data *
b64f50a1 19999dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 20000 unsigned int offset_in_dwz,
ae038cb0
DJ
20001 struct objfile *objfile)
20002{
20003 struct dwarf2_per_cu_data *this_cu;
20004 int low, high;
36586728 20005 const sect_offset *cu_off;
ae038cb0 20006
ae038cb0
DJ
20007 low = 0;
20008 high = dwarf2_per_objfile->n_comp_units - 1;
20009 while (high > low)
20010 {
36586728 20011 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 20012 int mid = low + (high - low) / 2;
9a619af0 20013
36586728
TT
20014 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
20015 cu_off = &mid_cu->offset;
20016 if (mid_cu->is_dwz > offset_in_dwz
20017 || (mid_cu->is_dwz == offset_in_dwz
20018 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
20019 high = mid;
20020 else
20021 low = mid + 1;
20022 }
20023 gdb_assert (low == high);
36586728
TT
20024 this_cu = dwarf2_per_objfile->all_comp_units[low];
20025 cu_off = &this_cu->offset;
20026 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 20027 {
36586728 20028 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
20029 error (_("Dwarf Error: could not find partial DIE containing "
20030 "offset 0x%lx [in module %s]"),
b64f50a1 20031 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 20032
b64f50a1
JK
20033 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
20034 <= offset.sect_off);
ae038cb0
DJ
20035 return dwarf2_per_objfile->all_comp_units[low-1];
20036 }
20037 else
20038 {
20039 this_cu = dwarf2_per_objfile->all_comp_units[low];
20040 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
20041 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
20042 error (_("invalid dwarf2 offset %u"), offset.sect_off);
20043 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
20044 return this_cu;
20045 }
20046}
20047
23745b47 20048/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 20049
9816fde3 20050static void
23745b47 20051init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 20052{
9816fde3 20053 memset (cu, 0, sizeof (*cu));
23745b47
DE
20054 per_cu->cu = cu;
20055 cu->per_cu = per_cu;
20056 cu->objfile = per_cu->objfile;
93311388 20057 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
20058}
20059
20060/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
20061
20062static void
95554aad
TT
20063prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
20064 enum language pretend_language)
9816fde3
JK
20065{
20066 struct attribute *attr;
20067
20068 /* Set the language we're debugging. */
20069 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
20070 if (attr)
20071 set_cu_language (DW_UNSND (attr), cu);
20072 else
9cded63f 20073 {
95554aad 20074 cu->language = pretend_language;
9cded63f
TT
20075 cu->language_defn = language_def (cu->language);
20076 }
dee91e82
DE
20077
20078 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
20079 if (attr)
20080 cu->producer = DW_STRING (attr);
93311388
DE
20081}
20082
ae038cb0
DJ
20083/* Release one cached compilation unit, CU. We unlink it from the tree
20084 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
20085 the caller is responsible for that.
20086 NOTE: DATA is a void * because this function is also used as a
20087 cleanup routine. */
ae038cb0
DJ
20088
20089static void
68dc6402 20090free_heap_comp_unit (void *data)
ae038cb0
DJ
20091{
20092 struct dwarf2_cu *cu = data;
20093
23745b47
DE
20094 gdb_assert (cu->per_cu != NULL);
20095 cu->per_cu->cu = NULL;
ae038cb0
DJ
20096 cu->per_cu = NULL;
20097
20098 obstack_free (&cu->comp_unit_obstack, NULL);
20099
20100 xfree (cu);
20101}
20102
72bf9492 20103/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 20104 when we're finished with it. We can't free the pointer itself, but be
dee91e82 20105 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
20106
20107static void
20108free_stack_comp_unit (void *data)
20109{
20110 struct dwarf2_cu *cu = data;
20111
23745b47
DE
20112 gdb_assert (cu->per_cu != NULL);
20113 cu->per_cu->cu = NULL;
20114 cu->per_cu = NULL;
20115
72bf9492
DJ
20116 obstack_free (&cu->comp_unit_obstack, NULL);
20117 cu->partial_dies = NULL;
ae038cb0
DJ
20118}
20119
20120/* Free all cached compilation units. */
20121
20122static void
20123free_cached_comp_units (void *data)
20124{
20125 struct dwarf2_per_cu_data *per_cu, **last_chain;
20126
20127 per_cu = dwarf2_per_objfile->read_in_chain;
20128 last_chain = &dwarf2_per_objfile->read_in_chain;
20129 while (per_cu != NULL)
20130 {
20131 struct dwarf2_per_cu_data *next_cu;
20132
20133 next_cu = per_cu->cu->read_in_chain;
20134
68dc6402 20135 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
20136 *last_chain = next_cu;
20137
20138 per_cu = next_cu;
20139 }
20140}
20141
20142/* Increase the age counter on each cached compilation unit, and free
20143 any that are too old. */
20144
20145static void
20146age_cached_comp_units (void)
20147{
20148 struct dwarf2_per_cu_data *per_cu, **last_chain;
20149
20150 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
20151 per_cu = dwarf2_per_objfile->read_in_chain;
20152 while (per_cu != NULL)
20153 {
20154 per_cu->cu->last_used ++;
20155 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
20156 dwarf2_mark (per_cu->cu);
20157 per_cu = per_cu->cu->read_in_chain;
20158 }
20159
20160 per_cu = dwarf2_per_objfile->read_in_chain;
20161 last_chain = &dwarf2_per_objfile->read_in_chain;
20162 while (per_cu != NULL)
20163 {
20164 struct dwarf2_per_cu_data *next_cu;
20165
20166 next_cu = per_cu->cu->read_in_chain;
20167
20168 if (!per_cu->cu->mark)
20169 {
68dc6402 20170 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
20171 *last_chain = next_cu;
20172 }
20173 else
20174 last_chain = &per_cu->cu->read_in_chain;
20175
20176 per_cu = next_cu;
20177 }
20178}
20179
20180/* Remove a single compilation unit from the cache. */
20181
20182static void
dee91e82 20183free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
20184{
20185 struct dwarf2_per_cu_data *per_cu, **last_chain;
20186
20187 per_cu = dwarf2_per_objfile->read_in_chain;
20188 last_chain = &dwarf2_per_objfile->read_in_chain;
20189 while (per_cu != NULL)
20190 {
20191 struct dwarf2_per_cu_data *next_cu;
20192
20193 next_cu = per_cu->cu->read_in_chain;
20194
dee91e82 20195 if (per_cu == target_per_cu)
ae038cb0 20196 {
68dc6402 20197 free_heap_comp_unit (per_cu->cu);
dee91e82 20198 per_cu->cu = NULL;
ae038cb0
DJ
20199 *last_chain = next_cu;
20200 break;
20201 }
20202 else
20203 last_chain = &per_cu->cu->read_in_chain;
20204
20205 per_cu = next_cu;
20206 }
20207}
20208
fe3e1990
DJ
20209/* Release all extra memory associated with OBJFILE. */
20210
20211void
20212dwarf2_free_objfile (struct objfile *objfile)
20213{
20214 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20215
20216 if (dwarf2_per_objfile == NULL)
20217 return;
20218
20219 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
20220 free_cached_comp_units (NULL);
20221
7b9f3c50
DE
20222 if (dwarf2_per_objfile->quick_file_names_table)
20223 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 20224
fe3e1990
DJ
20225 /* Everything else should be on the objfile obstack. */
20226}
20227
dee91e82
DE
20228/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
20229 We store these in a hash table separate from the DIEs, and preserve them
20230 when the DIEs are flushed out of cache.
20231
20232 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 20233 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
20234 or the type may come from a DWO file. Furthermore, while it's more logical
20235 to use per_cu->section+offset, with Fission the section with the data is in
20236 the DWO file but we don't know that section at the point we need it.
20237 We have to use something in dwarf2_per_cu_data (or the pointer to it)
20238 because we can enter the lookup routine, get_die_type_at_offset, from
20239 outside this file, and thus won't necessarily have PER_CU->cu.
20240 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 20241
dee91e82 20242struct dwarf2_per_cu_offset_and_type
1c379e20 20243{
dee91e82 20244 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 20245 sect_offset offset;
1c379e20
DJ
20246 struct type *type;
20247};
20248
dee91e82 20249/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
20250
20251static hashval_t
dee91e82 20252per_cu_offset_and_type_hash (const void *item)
1c379e20 20253{
dee91e82 20254 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 20255
dee91e82 20256 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
20257}
20258
dee91e82 20259/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
20260
20261static int
dee91e82 20262per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 20263{
dee91e82
DE
20264 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
20265 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 20266
dee91e82
DE
20267 return (ofs_lhs->per_cu == ofs_rhs->per_cu
20268 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
20269}
20270
20271/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
20272 table if necessary. For convenience, return TYPE.
20273
20274 The DIEs reading must have careful ordering to:
20275 * Not cause infite loops trying to read in DIEs as a prerequisite for
20276 reading current DIE.
20277 * Not trying to dereference contents of still incompletely read in types
20278 while reading in other DIEs.
20279 * Enable referencing still incompletely read in types just by a pointer to
20280 the type without accessing its fields.
20281
20282 Therefore caller should follow these rules:
20283 * Try to fetch any prerequisite types we may need to build this DIE type
20284 before building the type and calling set_die_type.
e71ec853 20285 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
20286 possible before fetching more types to complete the current type.
20287 * Make the type as complete as possible before fetching more types. */
1c379e20 20288
f792889a 20289static struct type *
1c379e20
DJ
20290set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
20291{
dee91e82 20292 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 20293 struct objfile *objfile = cu->objfile;
1c379e20 20294
b4ba55a1
JB
20295 /* For Ada types, make sure that the gnat-specific data is always
20296 initialized (if not already set). There are a few types where
20297 we should not be doing so, because the type-specific area is
20298 already used to hold some other piece of info (eg: TYPE_CODE_FLT
20299 where the type-specific area is used to store the floatformat).
20300 But this is not a problem, because the gnat-specific information
20301 is actually not needed for these types. */
20302 if (need_gnat_info (cu)
20303 && TYPE_CODE (type) != TYPE_CODE_FUNC
20304 && TYPE_CODE (type) != TYPE_CODE_FLT
20305 && !HAVE_GNAT_AUX_INFO (type))
20306 INIT_GNAT_SPECIFIC (type);
20307
dee91e82 20308 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 20309 {
dee91e82
DE
20310 dwarf2_per_objfile->die_type_hash =
20311 htab_create_alloc_ex (127,
20312 per_cu_offset_and_type_hash,
20313 per_cu_offset_and_type_eq,
20314 NULL,
20315 &objfile->objfile_obstack,
20316 hashtab_obstack_allocate,
20317 dummy_obstack_deallocate);
f792889a 20318 }
1c379e20 20319
dee91e82 20320 ofs.per_cu = cu->per_cu;
1c379e20
DJ
20321 ofs.offset = die->offset;
20322 ofs.type = type;
dee91e82
DE
20323 slot = (struct dwarf2_per_cu_offset_and_type **)
20324 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
20325 if (*slot)
20326 complaint (&symfile_complaints,
20327 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 20328 die->offset.sect_off);
673bfd45 20329 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 20330 **slot = ofs;
f792889a 20331 return type;
1c379e20
DJ
20332}
20333
02142a6c
DE
20334/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
20335 or return NULL if the die does not have a saved type. */
1c379e20
DJ
20336
20337static struct type *
b64f50a1 20338get_die_type_at_offset (sect_offset offset,
673bfd45 20339 struct dwarf2_per_cu_data *per_cu)
1c379e20 20340{
dee91e82 20341 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 20342
dee91e82 20343 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 20344 return NULL;
1c379e20 20345
dee91e82 20346 ofs.per_cu = per_cu;
673bfd45 20347 ofs.offset = offset;
dee91e82 20348 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
20349 if (slot)
20350 return slot->type;
20351 else
20352 return NULL;
20353}
20354
02142a6c 20355/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
20356 or return NULL if DIE does not have a saved type. */
20357
20358static struct type *
20359get_die_type (struct die_info *die, struct dwarf2_cu *cu)
20360{
20361 return get_die_type_at_offset (die->offset, cu->per_cu);
20362}
20363
10b3939b
DJ
20364/* Add a dependence relationship from CU to REF_PER_CU. */
20365
20366static void
20367dwarf2_add_dependence (struct dwarf2_cu *cu,
20368 struct dwarf2_per_cu_data *ref_per_cu)
20369{
20370 void **slot;
20371
20372 if (cu->dependencies == NULL)
20373 cu->dependencies
20374 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
20375 NULL, &cu->comp_unit_obstack,
20376 hashtab_obstack_allocate,
20377 dummy_obstack_deallocate);
20378
20379 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
20380 if (*slot == NULL)
20381 *slot = ref_per_cu;
20382}
1c379e20 20383
f504f079
DE
20384/* Subroutine of dwarf2_mark to pass to htab_traverse.
20385 Set the mark field in every compilation unit in the
ae038cb0
DJ
20386 cache that we must keep because we are keeping CU. */
20387
10b3939b
DJ
20388static int
20389dwarf2_mark_helper (void **slot, void *data)
20390{
20391 struct dwarf2_per_cu_data *per_cu;
20392
20393 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
20394
20395 /* cu->dependencies references may not yet have been ever read if QUIT aborts
20396 reading of the chain. As such dependencies remain valid it is not much
20397 useful to track and undo them during QUIT cleanups. */
20398 if (per_cu->cu == NULL)
20399 return 1;
20400
10b3939b
DJ
20401 if (per_cu->cu->mark)
20402 return 1;
20403 per_cu->cu->mark = 1;
20404
20405 if (per_cu->cu->dependencies != NULL)
20406 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
20407
20408 return 1;
20409}
20410
f504f079
DE
20411/* Set the mark field in CU and in every other compilation unit in the
20412 cache that we must keep because we are keeping CU. */
20413
ae038cb0
DJ
20414static void
20415dwarf2_mark (struct dwarf2_cu *cu)
20416{
20417 if (cu->mark)
20418 return;
20419 cu->mark = 1;
10b3939b
DJ
20420 if (cu->dependencies != NULL)
20421 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
20422}
20423
20424static void
20425dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
20426{
20427 while (per_cu)
20428 {
20429 per_cu->cu->mark = 0;
20430 per_cu = per_cu->cu->read_in_chain;
20431 }
72bf9492
DJ
20432}
20433
72bf9492
DJ
20434/* Trivial hash function for partial_die_info: the hash value of a DIE
20435 is its offset in .debug_info for this objfile. */
20436
20437static hashval_t
20438partial_die_hash (const void *item)
20439{
20440 const struct partial_die_info *part_die = item;
9a619af0 20441
b64f50a1 20442 return part_die->offset.sect_off;
72bf9492
DJ
20443}
20444
20445/* Trivial comparison function for partial_die_info structures: two DIEs
20446 are equal if they have the same offset. */
20447
20448static int
20449partial_die_eq (const void *item_lhs, const void *item_rhs)
20450{
20451 const struct partial_die_info *part_die_lhs = item_lhs;
20452 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 20453
b64f50a1 20454 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
20455}
20456
ae038cb0
DJ
20457static struct cmd_list_element *set_dwarf2_cmdlist;
20458static struct cmd_list_element *show_dwarf2_cmdlist;
20459
20460static void
20461set_dwarf2_cmd (char *args, int from_tty)
20462{
20463 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
20464}
20465
20466static void
20467show_dwarf2_cmd (char *args, int from_tty)
6e70227d 20468{
ae038cb0
DJ
20469 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
20470}
20471
4bf44c1c 20472/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
20473
20474static void
c1bd65d0 20475dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
20476{
20477 struct dwarf2_per_objfile *data = d;
8b70b953 20478 int ix;
8b70b953 20479
95554aad
TT
20480 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
20481 VEC_free (dwarf2_per_cu_ptr,
796a7ff8
DE
20482 dwarf2_per_objfile->all_comp_units[ix]->imported_symtabs);
20483
20484 for (ix = 0; ix < dwarf2_per_objfile->n_type_units; ++ix)
20485 VEC_free (dwarf2_per_cu_ptr,
20486 dwarf2_per_objfile->all_type_units[ix]->per_cu.imported_symtabs);
a2ce51a0 20487 xfree (dwarf2_per_objfile->all_type_units);
95554aad 20488
8b70b953 20489 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
20490
20491 if (data->dwo_files)
20492 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
20493 if (data->dwp_file)
20494 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
20495
20496 if (data->dwz_file && data->dwz_file->dwz_bfd)
20497 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
20498}
20499
20500\f
ae2de4f8 20501/* The "save gdb-index" command. */
9291a0cd
TT
20502
20503/* The contents of the hash table we create when building the string
20504 table. */
20505struct strtab_entry
20506{
20507 offset_type offset;
20508 const char *str;
20509};
20510
559a7a62
JK
20511/* Hash function for a strtab_entry.
20512
20513 Function is used only during write_hash_table so no index format backward
20514 compatibility is needed. */
b89be57b 20515
9291a0cd
TT
20516static hashval_t
20517hash_strtab_entry (const void *e)
20518{
20519 const struct strtab_entry *entry = e;
559a7a62 20520 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
20521}
20522
20523/* Equality function for a strtab_entry. */
b89be57b 20524
9291a0cd
TT
20525static int
20526eq_strtab_entry (const void *a, const void *b)
20527{
20528 const struct strtab_entry *ea = a;
20529 const struct strtab_entry *eb = b;
20530 return !strcmp (ea->str, eb->str);
20531}
20532
20533/* Create a strtab_entry hash table. */
b89be57b 20534
9291a0cd
TT
20535static htab_t
20536create_strtab (void)
20537{
20538 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
20539 xfree, xcalloc, xfree);
20540}
20541
20542/* Add a string to the constant pool. Return the string's offset in
20543 host order. */
b89be57b 20544
9291a0cd
TT
20545static offset_type
20546add_string (htab_t table, struct obstack *cpool, const char *str)
20547{
20548 void **slot;
20549 struct strtab_entry entry;
20550 struct strtab_entry *result;
20551
20552 entry.str = str;
20553 slot = htab_find_slot (table, &entry, INSERT);
20554 if (*slot)
20555 result = *slot;
20556 else
20557 {
20558 result = XNEW (struct strtab_entry);
20559 result->offset = obstack_object_size (cpool);
20560 result->str = str;
20561 obstack_grow_str0 (cpool, str);
20562 *slot = result;
20563 }
20564 return result->offset;
20565}
20566
20567/* An entry in the symbol table. */
20568struct symtab_index_entry
20569{
20570 /* The name of the symbol. */
20571 const char *name;
20572 /* The offset of the name in the constant pool. */
20573 offset_type index_offset;
20574 /* A sorted vector of the indices of all the CUs that hold an object
20575 of this name. */
20576 VEC (offset_type) *cu_indices;
20577};
20578
20579/* The symbol table. This is a power-of-2-sized hash table. */
20580struct mapped_symtab
20581{
20582 offset_type n_elements;
20583 offset_type size;
20584 struct symtab_index_entry **data;
20585};
20586
20587/* Hash function for a symtab_index_entry. */
b89be57b 20588
9291a0cd
TT
20589static hashval_t
20590hash_symtab_entry (const void *e)
20591{
20592 const struct symtab_index_entry *entry = e;
20593 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
20594 sizeof (offset_type) * VEC_length (offset_type,
20595 entry->cu_indices),
20596 0);
20597}
20598
20599/* Equality function for a symtab_index_entry. */
b89be57b 20600
9291a0cd
TT
20601static int
20602eq_symtab_entry (const void *a, const void *b)
20603{
20604 const struct symtab_index_entry *ea = a;
20605 const struct symtab_index_entry *eb = b;
20606 int len = VEC_length (offset_type, ea->cu_indices);
20607 if (len != VEC_length (offset_type, eb->cu_indices))
20608 return 0;
20609 return !memcmp (VEC_address (offset_type, ea->cu_indices),
20610 VEC_address (offset_type, eb->cu_indices),
20611 sizeof (offset_type) * len);
20612}
20613
20614/* Destroy a symtab_index_entry. */
b89be57b 20615
9291a0cd
TT
20616static void
20617delete_symtab_entry (void *p)
20618{
20619 struct symtab_index_entry *entry = p;
20620 VEC_free (offset_type, entry->cu_indices);
20621 xfree (entry);
20622}
20623
20624/* Create a hash table holding symtab_index_entry objects. */
b89be57b 20625
9291a0cd 20626static htab_t
3876f04e 20627create_symbol_hash_table (void)
9291a0cd
TT
20628{
20629 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
20630 delete_symtab_entry, xcalloc, xfree);
20631}
20632
20633/* Create a new mapped symtab object. */
b89be57b 20634
9291a0cd
TT
20635static struct mapped_symtab *
20636create_mapped_symtab (void)
20637{
20638 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
20639 symtab->n_elements = 0;
20640 symtab->size = 1024;
20641 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20642 return symtab;
20643}
20644
20645/* Destroy a mapped_symtab. */
b89be57b 20646
9291a0cd
TT
20647static void
20648cleanup_mapped_symtab (void *p)
20649{
20650 struct mapped_symtab *symtab = p;
20651 /* The contents of the array are freed when the other hash table is
20652 destroyed. */
20653 xfree (symtab->data);
20654 xfree (symtab);
20655}
20656
20657/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
20658 the slot.
20659
20660 Function is used only during write_hash_table so no index format backward
20661 compatibility is needed. */
b89be57b 20662
9291a0cd
TT
20663static struct symtab_index_entry **
20664find_slot (struct mapped_symtab *symtab, const char *name)
20665{
559a7a62 20666 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
20667
20668 index = hash & (symtab->size - 1);
20669 step = ((hash * 17) & (symtab->size - 1)) | 1;
20670
20671 for (;;)
20672 {
20673 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
20674 return &symtab->data[index];
20675 index = (index + step) & (symtab->size - 1);
20676 }
20677}
20678
20679/* Expand SYMTAB's hash table. */
b89be57b 20680
9291a0cd
TT
20681static void
20682hash_expand (struct mapped_symtab *symtab)
20683{
20684 offset_type old_size = symtab->size;
20685 offset_type i;
20686 struct symtab_index_entry **old_entries = symtab->data;
20687
20688 symtab->size *= 2;
20689 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20690
20691 for (i = 0; i < old_size; ++i)
20692 {
20693 if (old_entries[i])
20694 {
20695 struct symtab_index_entry **slot = find_slot (symtab,
20696 old_entries[i]->name);
20697 *slot = old_entries[i];
20698 }
20699 }
20700
20701 xfree (old_entries);
20702}
20703
156942c7
DE
20704/* Add an entry to SYMTAB. NAME is the name of the symbol.
20705 CU_INDEX is the index of the CU in which the symbol appears.
20706 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 20707
9291a0cd
TT
20708static void
20709add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 20710 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
20711 offset_type cu_index)
20712{
20713 struct symtab_index_entry **slot;
156942c7 20714 offset_type cu_index_and_attrs;
9291a0cd
TT
20715
20716 ++symtab->n_elements;
20717 if (4 * symtab->n_elements / 3 >= symtab->size)
20718 hash_expand (symtab);
20719
20720 slot = find_slot (symtab, name);
20721 if (!*slot)
20722 {
20723 *slot = XNEW (struct symtab_index_entry);
20724 (*slot)->name = name;
156942c7 20725 /* index_offset is set later. */
9291a0cd
TT
20726 (*slot)->cu_indices = NULL;
20727 }
156942c7
DE
20728
20729 cu_index_and_attrs = 0;
20730 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
20731 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
20732 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
20733
20734 /* We don't want to record an index value twice as we want to avoid the
20735 duplication.
20736 We process all global symbols and then all static symbols
20737 (which would allow us to avoid the duplication by only having to check
20738 the last entry pushed), but a symbol could have multiple kinds in one CU.
20739 To keep things simple we don't worry about the duplication here and
20740 sort and uniqufy the list after we've processed all symbols. */
20741 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
20742}
20743
20744/* qsort helper routine for uniquify_cu_indices. */
20745
20746static int
20747offset_type_compare (const void *ap, const void *bp)
20748{
20749 offset_type a = *(offset_type *) ap;
20750 offset_type b = *(offset_type *) bp;
20751
20752 return (a > b) - (b > a);
20753}
20754
20755/* Sort and remove duplicates of all symbols' cu_indices lists. */
20756
20757static void
20758uniquify_cu_indices (struct mapped_symtab *symtab)
20759{
20760 int i;
20761
20762 for (i = 0; i < symtab->size; ++i)
20763 {
20764 struct symtab_index_entry *entry = symtab->data[i];
20765
20766 if (entry
20767 && entry->cu_indices != NULL)
20768 {
20769 unsigned int next_to_insert, next_to_check;
20770 offset_type last_value;
20771
20772 qsort (VEC_address (offset_type, entry->cu_indices),
20773 VEC_length (offset_type, entry->cu_indices),
20774 sizeof (offset_type), offset_type_compare);
20775
20776 last_value = VEC_index (offset_type, entry->cu_indices, 0);
20777 next_to_insert = 1;
20778 for (next_to_check = 1;
20779 next_to_check < VEC_length (offset_type, entry->cu_indices);
20780 ++next_to_check)
20781 {
20782 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
20783 != last_value)
20784 {
20785 last_value = VEC_index (offset_type, entry->cu_indices,
20786 next_to_check);
20787 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20788 last_value);
20789 ++next_to_insert;
20790 }
20791 }
20792 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20793 }
20794 }
9291a0cd
TT
20795}
20796
20797/* Add a vector of indices to the constant pool. */
b89be57b 20798
9291a0cd 20799static offset_type
3876f04e 20800add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
20801 struct symtab_index_entry *entry)
20802{
20803 void **slot;
20804
3876f04e 20805 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
20806 if (!*slot)
20807 {
20808 offset_type len = VEC_length (offset_type, entry->cu_indices);
20809 offset_type val = MAYBE_SWAP (len);
20810 offset_type iter;
20811 int i;
20812
20813 *slot = entry;
20814 entry->index_offset = obstack_object_size (cpool);
20815
20816 obstack_grow (cpool, &val, sizeof (val));
20817 for (i = 0;
20818 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20819 ++i)
20820 {
20821 val = MAYBE_SWAP (iter);
20822 obstack_grow (cpool, &val, sizeof (val));
20823 }
20824 }
20825 else
20826 {
20827 struct symtab_index_entry *old_entry = *slot;
20828 entry->index_offset = old_entry->index_offset;
20829 entry = old_entry;
20830 }
20831 return entry->index_offset;
20832}
20833
20834/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20835 constant pool entries going into the obstack CPOOL. */
b89be57b 20836
9291a0cd
TT
20837static void
20838write_hash_table (struct mapped_symtab *symtab,
20839 struct obstack *output, struct obstack *cpool)
20840{
20841 offset_type i;
3876f04e 20842 htab_t symbol_hash_table;
9291a0cd
TT
20843 htab_t str_table;
20844
3876f04e 20845 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 20846 str_table = create_strtab ();
3876f04e 20847
9291a0cd
TT
20848 /* We add all the index vectors to the constant pool first, to
20849 ensure alignment is ok. */
20850 for (i = 0; i < symtab->size; ++i)
20851 {
20852 if (symtab->data[i])
3876f04e 20853 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
20854 }
20855
20856 /* Now write out the hash table. */
20857 for (i = 0; i < symtab->size; ++i)
20858 {
20859 offset_type str_off, vec_off;
20860
20861 if (symtab->data[i])
20862 {
20863 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20864 vec_off = symtab->data[i]->index_offset;
20865 }
20866 else
20867 {
20868 /* While 0 is a valid constant pool index, it is not valid
20869 to have 0 for both offsets. */
20870 str_off = 0;
20871 vec_off = 0;
20872 }
20873
20874 str_off = MAYBE_SWAP (str_off);
20875 vec_off = MAYBE_SWAP (vec_off);
20876
20877 obstack_grow (output, &str_off, sizeof (str_off));
20878 obstack_grow (output, &vec_off, sizeof (vec_off));
20879 }
20880
20881 htab_delete (str_table);
3876f04e 20882 htab_delete (symbol_hash_table);
9291a0cd
TT
20883}
20884
0a5429f6
DE
20885/* Struct to map psymtab to CU index in the index file. */
20886struct psymtab_cu_index_map
20887{
20888 struct partial_symtab *psymtab;
20889 unsigned int cu_index;
20890};
20891
20892static hashval_t
20893hash_psymtab_cu_index (const void *item)
20894{
20895 const struct psymtab_cu_index_map *map = item;
20896
20897 return htab_hash_pointer (map->psymtab);
20898}
20899
20900static int
20901eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20902{
20903 const struct psymtab_cu_index_map *lhs = item_lhs;
20904 const struct psymtab_cu_index_map *rhs = item_rhs;
20905
20906 return lhs->psymtab == rhs->psymtab;
20907}
20908
20909/* Helper struct for building the address table. */
20910struct addrmap_index_data
20911{
20912 struct objfile *objfile;
20913 struct obstack *addr_obstack;
20914 htab_t cu_index_htab;
20915
20916 /* Non-zero if the previous_* fields are valid.
20917 We can't write an entry until we see the next entry (since it is only then
20918 that we know the end of the entry). */
20919 int previous_valid;
20920 /* Index of the CU in the table of all CUs in the index file. */
20921 unsigned int previous_cu_index;
0963b4bd 20922 /* Start address of the CU. */
0a5429f6
DE
20923 CORE_ADDR previous_cu_start;
20924};
20925
20926/* Write an address entry to OBSTACK. */
b89be57b 20927
9291a0cd 20928static void
0a5429f6
DE
20929add_address_entry (struct objfile *objfile, struct obstack *obstack,
20930 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 20931{
0a5429f6 20932 offset_type cu_index_to_write;
948f8e3d 20933 gdb_byte addr[8];
9291a0cd
TT
20934 CORE_ADDR baseaddr;
20935
20936 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20937
0a5429f6
DE
20938 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20939 obstack_grow (obstack, addr, 8);
20940 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20941 obstack_grow (obstack, addr, 8);
20942 cu_index_to_write = MAYBE_SWAP (cu_index);
20943 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20944}
20945
20946/* Worker function for traversing an addrmap to build the address table. */
20947
20948static int
20949add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20950{
20951 struct addrmap_index_data *data = datap;
20952 struct partial_symtab *pst = obj;
0a5429f6
DE
20953
20954 if (data->previous_valid)
20955 add_address_entry (data->objfile, data->addr_obstack,
20956 data->previous_cu_start, start_addr,
20957 data->previous_cu_index);
20958
20959 data->previous_cu_start = start_addr;
20960 if (pst != NULL)
20961 {
20962 struct psymtab_cu_index_map find_map, *map;
20963 find_map.psymtab = pst;
20964 map = htab_find (data->cu_index_htab, &find_map);
20965 gdb_assert (map != NULL);
20966 data->previous_cu_index = map->cu_index;
20967 data->previous_valid = 1;
20968 }
20969 else
20970 data->previous_valid = 0;
20971
20972 return 0;
20973}
20974
20975/* Write OBJFILE's address map to OBSTACK.
20976 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20977 in the index file. */
20978
20979static void
20980write_address_map (struct objfile *objfile, struct obstack *obstack,
20981 htab_t cu_index_htab)
20982{
20983 struct addrmap_index_data addrmap_index_data;
20984
20985 /* When writing the address table, we have to cope with the fact that
20986 the addrmap iterator only provides the start of a region; we have to
20987 wait until the next invocation to get the start of the next region. */
20988
20989 addrmap_index_data.objfile = objfile;
20990 addrmap_index_data.addr_obstack = obstack;
20991 addrmap_index_data.cu_index_htab = cu_index_htab;
20992 addrmap_index_data.previous_valid = 0;
20993
20994 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20995 &addrmap_index_data);
20996
20997 /* It's highly unlikely the last entry (end address = 0xff...ff)
20998 is valid, but we should still handle it.
20999 The end address is recorded as the start of the next region, but that
21000 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
21001 anyway. */
21002 if (addrmap_index_data.previous_valid)
21003 add_address_entry (objfile, obstack,
21004 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
21005 addrmap_index_data.previous_cu_index);
9291a0cd
TT
21006}
21007
156942c7
DE
21008/* Return the symbol kind of PSYM. */
21009
21010static gdb_index_symbol_kind
21011symbol_kind (struct partial_symbol *psym)
21012{
21013 domain_enum domain = PSYMBOL_DOMAIN (psym);
21014 enum address_class aclass = PSYMBOL_CLASS (psym);
21015
21016 switch (domain)
21017 {
21018 case VAR_DOMAIN:
21019 switch (aclass)
21020 {
21021 case LOC_BLOCK:
21022 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
21023 case LOC_TYPEDEF:
21024 return GDB_INDEX_SYMBOL_KIND_TYPE;
21025 case LOC_COMPUTED:
21026 case LOC_CONST_BYTES:
21027 case LOC_OPTIMIZED_OUT:
21028 case LOC_STATIC:
21029 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21030 case LOC_CONST:
21031 /* Note: It's currently impossible to recognize psyms as enum values
21032 short of reading the type info. For now punt. */
21033 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21034 default:
21035 /* There are other LOC_FOO values that one might want to classify
21036 as variables, but dwarf2read.c doesn't currently use them. */
21037 return GDB_INDEX_SYMBOL_KIND_OTHER;
21038 }
21039 case STRUCT_DOMAIN:
21040 return GDB_INDEX_SYMBOL_KIND_TYPE;
21041 default:
21042 return GDB_INDEX_SYMBOL_KIND_OTHER;
21043 }
21044}
21045
9291a0cd 21046/* Add a list of partial symbols to SYMTAB. */
b89be57b 21047
9291a0cd
TT
21048static void
21049write_psymbols (struct mapped_symtab *symtab,
987d643c 21050 htab_t psyms_seen,
9291a0cd
TT
21051 struct partial_symbol **psymp,
21052 int count,
987d643c
TT
21053 offset_type cu_index,
21054 int is_static)
9291a0cd
TT
21055{
21056 for (; count-- > 0; ++psymp)
21057 {
156942c7
DE
21058 struct partial_symbol *psym = *psymp;
21059 void **slot;
987d643c 21060
156942c7 21061 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 21062 error (_("Ada is not currently supported by the index"));
987d643c 21063
987d643c 21064 /* Only add a given psymbol once. */
156942c7 21065 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
21066 if (!*slot)
21067 {
156942c7
DE
21068 gdb_index_symbol_kind kind = symbol_kind (psym);
21069
21070 *slot = psym;
21071 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
21072 is_static, kind, cu_index);
987d643c 21073 }
9291a0cd
TT
21074 }
21075}
21076
21077/* Write the contents of an ("unfinished") obstack to FILE. Throw an
21078 exception if there is an error. */
b89be57b 21079
9291a0cd
TT
21080static void
21081write_obstack (FILE *file, struct obstack *obstack)
21082{
21083 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
21084 file)
21085 != obstack_object_size (obstack))
21086 error (_("couldn't data write to file"));
21087}
21088
21089/* Unlink a file if the argument is not NULL. */
b89be57b 21090
9291a0cd
TT
21091static void
21092unlink_if_set (void *p)
21093{
21094 char **filename = p;
21095 if (*filename)
21096 unlink (*filename);
21097}
21098
1fd400ff
TT
21099/* A helper struct used when iterating over debug_types. */
21100struct signatured_type_index_data
21101{
21102 struct objfile *objfile;
21103 struct mapped_symtab *symtab;
21104 struct obstack *types_list;
987d643c 21105 htab_t psyms_seen;
1fd400ff
TT
21106 int cu_index;
21107};
21108
21109/* A helper function that writes a single signatured_type to an
21110 obstack. */
b89be57b 21111
1fd400ff
TT
21112static int
21113write_one_signatured_type (void **slot, void *d)
21114{
21115 struct signatured_type_index_data *info = d;
21116 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 21117 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
21118 gdb_byte val[8];
21119
21120 write_psymbols (info->symtab,
987d643c 21121 info->psyms_seen,
3e43a32a
MS
21122 info->objfile->global_psymbols.list
21123 + psymtab->globals_offset,
987d643c
TT
21124 psymtab->n_global_syms, info->cu_index,
21125 0);
1fd400ff 21126 write_psymbols (info->symtab,
987d643c 21127 info->psyms_seen,
3e43a32a
MS
21128 info->objfile->static_psymbols.list
21129 + psymtab->statics_offset,
987d643c
TT
21130 psymtab->n_static_syms, info->cu_index,
21131 1);
1fd400ff 21132
b64f50a1
JK
21133 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21134 entry->per_cu.offset.sect_off);
1fd400ff 21135 obstack_grow (info->types_list, val, 8);
3019eac3
DE
21136 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21137 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
21138 obstack_grow (info->types_list, val, 8);
21139 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
21140 obstack_grow (info->types_list, val, 8);
21141
21142 ++info->cu_index;
21143
21144 return 1;
21145}
21146
95554aad
TT
21147/* Recurse into all "included" dependencies and write their symbols as
21148 if they appeared in this psymtab. */
21149
21150static void
21151recursively_write_psymbols (struct objfile *objfile,
21152 struct partial_symtab *psymtab,
21153 struct mapped_symtab *symtab,
21154 htab_t psyms_seen,
21155 offset_type cu_index)
21156{
21157 int i;
21158
21159 for (i = 0; i < psymtab->number_of_dependencies; ++i)
21160 if (psymtab->dependencies[i]->user != NULL)
21161 recursively_write_psymbols (objfile, psymtab->dependencies[i],
21162 symtab, psyms_seen, cu_index);
21163
21164 write_psymbols (symtab,
21165 psyms_seen,
21166 objfile->global_psymbols.list + psymtab->globals_offset,
21167 psymtab->n_global_syms, cu_index,
21168 0);
21169 write_psymbols (symtab,
21170 psyms_seen,
21171 objfile->static_psymbols.list + psymtab->statics_offset,
21172 psymtab->n_static_syms, cu_index,
21173 1);
21174}
21175
9291a0cd 21176/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 21177
9291a0cd
TT
21178static void
21179write_psymtabs_to_index (struct objfile *objfile, const char *dir)
21180{
21181 struct cleanup *cleanup;
21182 char *filename, *cleanup_filename;
1fd400ff
TT
21183 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
21184 struct obstack cu_list, types_cu_list;
9291a0cd
TT
21185 int i;
21186 FILE *out_file;
21187 struct mapped_symtab *symtab;
21188 offset_type val, size_of_contents, total_len;
21189 struct stat st;
987d643c 21190 htab_t psyms_seen;
0a5429f6
DE
21191 htab_t cu_index_htab;
21192 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 21193
b4f2f049 21194 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
9291a0cd 21195 return;
b4f2f049 21196
9291a0cd
TT
21197 if (dwarf2_per_objfile->using_index)
21198 error (_("Cannot use an index to create the index"));
21199
8b70b953
TT
21200 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
21201 error (_("Cannot make an index when the file has multiple .debug_types sections"));
21202
9291a0cd 21203 if (stat (objfile->name, &st) < 0)
7e17e088 21204 perror_with_name (objfile->name);
9291a0cd
TT
21205
21206 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
21207 INDEX_SUFFIX, (char *) NULL);
21208 cleanup = make_cleanup (xfree, filename);
21209
614c279d 21210 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
21211 if (!out_file)
21212 error (_("Can't open `%s' for writing"), filename);
21213
21214 cleanup_filename = filename;
21215 make_cleanup (unlink_if_set, &cleanup_filename);
21216
21217 symtab = create_mapped_symtab ();
21218 make_cleanup (cleanup_mapped_symtab, symtab);
21219
21220 obstack_init (&addr_obstack);
21221 make_cleanup_obstack_free (&addr_obstack);
21222
21223 obstack_init (&cu_list);
21224 make_cleanup_obstack_free (&cu_list);
21225
1fd400ff
TT
21226 obstack_init (&types_cu_list);
21227 make_cleanup_obstack_free (&types_cu_list);
21228
987d643c
TT
21229 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
21230 NULL, xcalloc, xfree);
96408a79 21231 make_cleanup_htab_delete (psyms_seen);
987d643c 21232
0a5429f6
DE
21233 /* While we're scanning CU's create a table that maps a psymtab pointer
21234 (which is what addrmap records) to its index (which is what is recorded
21235 in the index file). This will later be needed to write the address
21236 table. */
21237 cu_index_htab = htab_create_alloc (100,
21238 hash_psymtab_cu_index,
21239 eq_psymtab_cu_index,
21240 NULL, xcalloc, xfree);
96408a79 21241 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
21242 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
21243 xmalloc (sizeof (struct psymtab_cu_index_map)
21244 * dwarf2_per_objfile->n_comp_units);
21245 make_cleanup (xfree, psymtab_cu_index_map);
21246
21247 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
21248 work here. Also, the debug_types entries do not appear in
21249 all_comp_units, but only in their own hash table. */
9291a0cd
TT
21250 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
21251 {
3e43a32a
MS
21252 struct dwarf2_per_cu_data *per_cu
21253 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 21254 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 21255 gdb_byte val[8];
0a5429f6
DE
21256 struct psymtab_cu_index_map *map;
21257 void **slot;
9291a0cd 21258
95554aad
TT
21259 if (psymtab->user == NULL)
21260 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 21261
0a5429f6
DE
21262 map = &psymtab_cu_index_map[i];
21263 map->psymtab = psymtab;
21264 map->cu_index = i;
21265 slot = htab_find_slot (cu_index_htab, map, INSERT);
21266 gdb_assert (slot != NULL);
21267 gdb_assert (*slot == NULL);
21268 *slot = map;
9291a0cd 21269
b64f50a1
JK
21270 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21271 per_cu->offset.sect_off);
9291a0cd 21272 obstack_grow (&cu_list, val, 8);
e254ef6a 21273 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
21274 obstack_grow (&cu_list, val, 8);
21275 }
21276
0a5429f6
DE
21277 /* Dump the address map. */
21278 write_address_map (objfile, &addr_obstack, cu_index_htab);
21279
1fd400ff
TT
21280 /* Write out the .debug_type entries, if any. */
21281 if (dwarf2_per_objfile->signatured_types)
21282 {
21283 struct signatured_type_index_data sig_data;
21284
21285 sig_data.objfile = objfile;
21286 sig_data.symtab = symtab;
21287 sig_data.types_list = &types_cu_list;
987d643c 21288 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
21289 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
21290 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
21291 write_one_signatured_type, &sig_data);
21292 }
21293
156942c7
DE
21294 /* Now that we've processed all symbols we can shrink their cu_indices
21295 lists. */
21296 uniquify_cu_indices (symtab);
21297
9291a0cd
TT
21298 obstack_init (&constant_pool);
21299 make_cleanup_obstack_free (&constant_pool);
21300 obstack_init (&symtab_obstack);
21301 make_cleanup_obstack_free (&symtab_obstack);
21302 write_hash_table (symtab, &symtab_obstack, &constant_pool);
21303
21304 obstack_init (&contents);
21305 make_cleanup_obstack_free (&contents);
1fd400ff 21306 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
21307 total_len = size_of_contents;
21308
21309 /* The version number. */
796a7ff8 21310 val = MAYBE_SWAP (8);
9291a0cd
TT
21311 obstack_grow (&contents, &val, sizeof (val));
21312
21313 /* The offset of the CU list from the start of the file. */
21314 val = MAYBE_SWAP (total_len);
21315 obstack_grow (&contents, &val, sizeof (val));
21316 total_len += obstack_object_size (&cu_list);
21317
1fd400ff
TT
21318 /* The offset of the types CU list from the start of the file. */
21319 val = MAYBE_SWAP (total_len);
21320 obstack_grow (&contents, &val, sizeof (val));
21321 total_len += obstack_object_size (&types_cu_list);
21322
9291a0cd
TT
21323 /* The offset of the address table from the start of the file. */
21324 val = MAYBE_SWAP (total_len);
21325 obstack_grow (&contents, &val, sizeof (val));
21326 total_len += obstack_object_size (&addr_obstack);
21327
21328 /* The offset of the symbol table from the start of the file. */
21329 val = MAYBE_SWAP (total_len);
21330 obstack_grow (&contents, &val, sizeof (val));
21331 total_len += obstack_object_size (&symtab_obstack);
21332
21333 /* The offset of the constant pool from the start of the file. */
21334 val = MAYBE_SWAP (total_len);
21335 obstack_grow (&contents, &val, sizeof (val));
21336 total_len += obstack_object_size (&constant_pool);
21337
21338 gdb_assert (obstack_object_size (&contents) == size_of_contents);
21339
21340 write_obstack (out_file, &contents);
21341 write_obstack (out_file, &cu_list);
1fd400ff 21342 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
21343 write_obstack (out_file, &addr_obstack);
21344 write_obstack (out_file, &symtab_obstack);
21345 write_obstack (out_file, &constant_pool);
21346
21347 fclose (out_file);
21348
21349 /* We want to keep the file, so we set cleanup_filename to NULL
21350 here. See unlink_if_set. */
21351 cleanup_filename = NULL;
21352
21353 do_cleanups (cleanup);
21354}
21355
90476074
TT
21356/* Implementation of the `save gdb-index' command.
21357
21358 Note that the file format used by this command is documented in the
21359 GDB manual. Any changes here must be documented there. */
11570e71 21360
9291a0cd
TT
21361static void
21362save_gdb_index_command (char *arg, int from_tty)
21363{
21364 struct objfile *objfile;
21365
21366 if (!arg || !*arg)
96d19272 21367 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
21368
21369 ALL_OBJFILES (objfile)
21370 {
21371 struct stat st;
21372
21373 /* If the objfile does not correspond to an actual file, skip it. */
21374 if (stat (objfile->name, &st) < 0)
21375 continue;
21376
21377 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21378 if (dwarf2_per_objfile)
21379 {
21380 volatile struct gdb_exception except;
21381
21382 TRY_CATCH (except, RETURN_MASK_ERROR)
21383 {
21384 write_psymtabs_to_index (objfile, arg);
21385 }
21386 if (except.reason < 0)
21387 exception_fprintf (gdb_stderr, except,
21388 _("Error while writing index for `%s': "),
21389 objfile->name);
21390 }
21391 }
dce234bc
PP
21392}
21393
9291a0cd
TT
21394\f
21395
9eae7c52
TT
21396int dwarf2_always_disassemble;
21397
21398static void
21399show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
21400 struct cmd_list_element *c, const char *value)
21401{
3e43a32a
MS
21402 fprintf_filtered (file,
21403 _("Whether to always disassemble "
21404 "DWARF expressions is %s.\n"),
9eae7c52
TT
21405 value);
21406}
21407
900e11f9
JK
21408static void
21409show_check_physname (struct ui_file *file, int from_tty,
21410 struct cmd_list_element *c, const char *value)
21411{
21412 fprintf_filtered (file,
21413 _("Whether to check \"physname\" is %s.\n"),
21414 value);
21415}
21416
6502dd73
DJ
21417void _initialize_dwarf2_read (void);
21418
21419void
21420_initialize_dwarf2_read (void)
21421{
96d19272
JK
21422 struct cmd_list_element *c;
21423
dce234bc 21424 dwarf2_objfile_data_key
c1bd65d0 21425 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 21426
1bedd215
AC
21427 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
21428Set DWARF 2 specific variables.\n\
21429Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
21430 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
21431 0/*allow-unknown*/, &maintenance_set_cmdlist);
21432
1bedd215
AC
21433 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
21434Show DWARF 2 specific variables\n\
21435Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
21436 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
21437 0/*allow-unknown*/, &maintenance_show_cmdlist);
21438
21439 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
21440 &dwarf2_max_cache_age, _("\
21441Set the upper bound on the age of cached dwarf2 compilation units."), _("\
21442Show the upper bound on the age of cached dwarf2 compilation units."), _("\
21443A higher limit means that cached compilation units will be stored\n\
21444in memory longer, and more total memory will be used. Zero disables\n\
21445caching, which can slow down startup."),
2c5b56ce 21446 NULL,
920d2a44 21447 show_dwarf2_max_cache_age,
2c5b56ce 21448 &set_dwarf2_cmdlist,
ae038cb0 21449 &show_dwarf2_cmdlist);
d97bc12b 21450
9eae7c52
TT
21451 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
21452 &dwarf2_always_disassemble, _("\
21453Set whether `info address' always disassembles DWARF expressions."), _("\
21454Show whether `info address' always disassembles DWARF expressions."), _("\
21455When enabled, DWARF expressions are always printed in an assembly-like\n\
21456syntax. When disabled, expressions will be printed in a more\n\
21457conversational style, when possible."),
21458 NULL,
21459 show_dwarf2_always_disassemble,
21460 &set_dwarf2_cmdlist,
21461 &show_dwarf2_cmdlist);
21462
45cfd468
DE
21463 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
21464Set debugging of the dwarf2 reader."), _("\
21465Show debugging of the dwarf2 reader."), _("\
21466When enabled, debugging messages are printed during dwarf2 reading\n\
21467and symtab expansion."),
21468 NULL,
21469 NULL,
21470 &setdebuglist, &showdebuglist);
21471
ccce17b0 21472 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
d97bc12b
DE
21473Set debugging of the dwarf2 DIE reader."), _("\
21474Show debugging of the dwarf2 DIE reader."), _("\
21475When enabled (non-zero), DIEs are dumped after they are read in.\n\
21476The value is the maximum depth to print."),
ccce17b0
YQ
21477 NULL,
21478 NULL,
21479 &setdebuglist, &showdebuglist);
9291a0cd 21480
900e11f9
JK
21481 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
21482Set cross-checking of \"physname\" code against demangler."), _("\
21483Show cross-checking of \"physname\" code against demangler."), _("\
21484When enabled, GDB's internal \"physname\" code is checked against\n\
21485the demangler."),
21486 NULL, show_check_physname,
21487 &setdebuglist, &showdebuglist);
21488
e615022a
DE
21489 add_setshow_boolean_cmd ("use-deprecated-index-sections",
21490 no_class, &use_deprecated_index_sections, _("\
21491Set whether to use deprecated gdb_index sections."), _("\
21492Show whether to use deprecated gdb_index sections."), _("\
21493When enabled, deprecated .gdb_index sections are used anyway.\n\
21494Normally they are ignored either because of a missing feature or\n\
21495performance issue.\n\
21496Warning: This option must be enabled before gdb reads the file."),
21497 NULL,
21498 NULL,
21499 &setlist, &showlist);
21500
96d19272 21501 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 21502 _("\
fc1a9d6e 21503Save a gdb-index file.\n\
11570e71 21504Usage: save gdb-index DIRECTORY"),
96d19272
JK
21505 &save_cmdlist);
21506 set_cmd_completer (c, filename_completer);
f1e6e072
TT
21507
21508 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
21509 &dwarf2_locexpr_funcs);
21510 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
21511 &dwarf2_loclist_funcs);
21512
21513 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
21514 &dwarf2_block_frame_base_locexpr_funcs);
21515 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
21516 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 21517}
This page took 3.02501 seconds and 4 git commands to generate.