"complete" command and completion word break characters
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
61baf725 3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270 55#include "typeprint.h"
ccefe4c4 56#include "psympriv.h"
53ce3c39 57#include <sys/stat.h>
96d19272 58#include "completer.h"
34eaf542 59#include "vec.h"
98bfdba5 60#include "c-lang.h"
a766d390 61#include "go-lang.h"
98bfdba5 62#include "valprint.h"
3019eac3 63#include "gdbcore.h" /* for gnutarget */
156942c7 64#include "gdb/gdb-index.h"
60d5a603 65#include <ctype.h>
cbb099e8 66#include "gdb_bfd.h"
4357ac6c 67#include "f-lang.h"
05cba821 68#include "source.h"
614c279d 69#include "filestuff.h"
dc294be5 70#include "build-id.h"
22cee43f 71#include "namespace.h"
bef155c3 72#include "common/gdb_unlinker.h"
14bc53a8 73#include "common/function-view.h"
ecfb656c
PA
74#include "common/gdb_optional.h"
75#include "common/underlying.h"
d5722aa2 76#include "common/byte-vector.h"
bbf2f4df 77#include "filename-seen-cache.h"
c906108c 78#include <fcntl.h>
c906108c 79#include <sys/types.h>
325fac50 80#include <algorithm>
bc8f2430
JK
81#include <unordered_set>
82#include <unordered_map>
d8151005 83
34eaf542
TT
84typedef struct symbol *symbolp;
85DEF_VEC_P (symbolp);
86
73be47f5
DE
87/* When == 1, print basic high level tracing messages.
88 When > 1, be more verbose.
b4f54984
DE
89 This is in contrast to the low level DIE reading of dwarf_die_debug. */
90static unsigned int dwarf_read_debug = 0;
45cfd468 91
d97bc12b 92/* When non-zero, dump DIEs after they are read in. */
b4f54984 93static unsigned int dwarf_die_debug = 0;
d97bc12b 94
27e0867f
DE
95/* When non-zero, dump line number entries as they are read in. */
96static unsigned int dwarf_line_debug = 0;
97
900e11f9
JK
98/* When non-zero, cross-check physname against demangler. */
99static int check_physname = 0;
100
481860b3 101/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 102static int use_deprecated_index_sections = 0;
481860b3 103
6502dd73
DJ
104static const struct objfile_data *dwarf2_objfile_data_key;
105
f1e6e072
TT
106/* The "aclass" indices for various kinds of computed DWARF symbols. */
107
108static int dwarf2_locexpr_index;
109static int dwarf2_loclist_index;
110static int dwarf2_locexpr_block_index;
111static int dwarf2_loclist_block_index;
112
73869dc2
DE
113/* A descriptor for dwarf sections.
114
115 S.ASECTION, SIZE are typically initialized when the objfile is first
116 scanned. BUFFER, READIN are filled in later when the section is read.
117 If the section contained compressed data then SIZE is updated to record
118 the uncompressed size of the section.
119
120 DWP file format V2 introduces a wrinkle that is easiest to handle by
121 creating the concept of virtual sections contained within a real section.
122 In DWP V2 the sections of the input DWO files are concatenated together
123 into one section, but section offsets are kept relative to the original
124 input section.
125 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
126 the real section this "virtual" section is contained in, and BUFFER,SIZE
127 describe the virtual section. */
128
dce234bc
PP
129struct dwarf2_section_info
130{
73869dc2
DE
131 union
132 {
e5aa3347 133 /* If this is a real section, the bfd section. */
049412e3 134 asection *section;
73869dc2 135 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 136 section. */
73869dc2
DE
137 struct dwarf2_section_info *containing_section;
138 } s;
19ac8c2e 139 /* Pointer to section data, only valid if readin. */
d521ce57 140 const gdb_byte *buffer;
73869dc2 141 /* The size of the section, real or virtual. */
dce234bc 142 bfd_size_type size;
73869dc2
DE
143 /* If this is a virtual section, the offset in the real section.
144 Only valid if is_virtual. */
145 bfd_size_type virtual_offset;
be391dca 146 /* True if we have tried to read this section. */
73869dc2
DE
147 char readin;
148 /* True if this is a virtual section, False otherwise.
049412e3 149 This specifies which of s.section and s.containing_section to use. */
73869dc2 150 char is_virtual;
dce234bc
PP
151};
152
8b70b953
TT
153typedef struct dwarf2_section_info dwarf2_section_info_def;
154DEF_VEC_O (dwarf2_section_info_def);
155
9291a0cd
TT
156/* All offsets in the index are of this type. It must be
157 architecture-independent. */
158typedef uint32_t offset_type;
159
160DEF_VEC_I (offset_type);
161
156942c7
DE
162/* Ensure only legit values are used. */
163#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((unsigned int) (value) <= 1); \
166 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169/* Ensure only legit values are used. */
170#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
173 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
174 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177/* Ensure we don't use more than the alloted nuber of bits for the CU. */
178#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
179 do { \
180 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
181 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
182 } while (0)
183
9291a0cd
TT
184/* A description of the mapped index. The file format is described in
185 a comment by the code that writes the index. */
186struct mapped_index
187{
559a7a62
JK
188 /* Index data format version. */
189 int version;
190
9291a0cd
TT
191 /* The total length of the buffer. */
192 off_t total_size;
b11b1f88 193
9291a0cd
TT
194 /* A pointer to the address table data. */
195 const gdb_byte *address_table;
b11b1f88 196
9291a0cd
TT
197 /* Size of the address table data in bytes. */
198 offset_type address_table_size;
b11b1f88 199
3876f04e
DE
200 /* The symbol table, implemented as a hash table. */
201 const offset_type *symbol_table;
b11b1f88 202
9291a0cd 203 /* Size in slots, each slot is 2 offset_types. */
3876f04e 204 offset_type symbol_table_slots;
b11b1f88 205
9291a0cd
TT
206 /* A pointer to the constant pool. */
207 const char *constant_pool;
208};
209
95554aad
TT
210typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
211DEF_VEC_P (dwarf2_per_cu_ptr);
212
52059ffd
TT
213struct tu_stats
214{
215 int nr_uniq_abbrev_tables;
216 int nr_symtabs;
217 int nr_symtab_sharers;
218 int nr_stmt_less_type_units;
219 int nr_all_type_units_reallocs;
220};
221
9cdd5dbd
DE
222/* Collection of data recorded per objfile.
223 This hangs off of dwarf2_objfile_data_key. */
224
6502dd73
DJ
225struct dwarf2_per_objfile
226{
330cdd98
PA
227 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
228 dwarf2 section names, or is NULL if the standard ELF names are
229 used. */
230 dwarf2_per_objfile (struct objfile *objfile,
231 const dwarf2_debug_sections *names);
ae038cb0 232
330cdd98
PA
233 ~dwarf2_per_objfile ();
234
235 /* Disable copy. */
236 dwarf2_per_objfile (const dwarf2_per_objfile &) = delete;
237 void operator= (const dwarf2_per_objfile &) = delete;
238
239 /* Free all cached compilation units. */
240 void free_cached_comp_units ();
241private:
242 /* This function is mapped across the sections and remembers the
243 offset and size of each of the debugging sections we are
244 interested in. */
245 void locate_sections (bfd *abfd, asection *sectp,
246 const dwarf2_debug_sections &names);
247
248public:
249 dwarf2_section_info info {};
250 dwarf2_section_info abbrev {};
251 dwarf2_section_info line {};
252 dwarf2_section_info loc {};
253 dwarf2_section_info loclists {};
254 dwarf2_section_info macinfo {};
255 dwarf2_section_info macro {};
256 dwarf2_section_info str {};
257 dwarf2_section_info line_str {};
258 dwarf2_section_info ranges {};
259 dwarf2_section_info rnglists {};
260 dwarf2_section_info addr {};
261 dwarf2_section_info frame {};
262 dwarf2_section_info eh_frame {};
263 dwarf2_section_info gdb_index {};
264
265 VEC (dwarf2_section_info_def) *types = NULL;
8b70b953 266
be391dca 267 /* Back link. */
330cdd98 268 struct objfile *objfile = NULL;
be391dca 269
d467dd73 270 /* Table of all the compilation units. This is used to locate
10b3939b 271 the target compilation unit of a particular reference. */
330cdd98 272 struct dwarf2_per_cu_data **all_comp_units = NULL;
ae038cb0
DJ
273
274 /* The number of compilation units in ALL_COMP_UNITS. */
330cdd98 275 int n_comp_units = 0;
ae038cb0 276
1fd400ff 277 /* The number of .debug_types-related CUs. */
330cdd98 278 int n_type_units = 0;
1fd400ff 279
6aa5f3a6
DE
280 /* The number of elements allocated in all_type_units.
281 If there are skeleton-less TUs, we add them to all_type_units lazily. */
330cdd98 282 int n_allocated_type_units = 0;
6aa5f3a6 283
a2ce51a0
DE
284 /* The .debug_types-related CUs (TUs).
285 This is stored in malloc space because we may realloc it. */
330cdd98 286 struct signatured_type **all_type_units = NULL;
1fd400ff 287
f4dc4d17
DE
288 /* Table of struct type_unit_group objects.
289 The hash key is the DW_AT_stmt_list value. */
330cdd98 290 htab_t type_unit_groups {};
72dca2f5 291
348e048f
DE
292 /* A table mapping .debug_types signatures to its signatured_type entry.
293 This is NULL if the .debug_types section hasn't been read in yet. */
330cdd98 294 htab_t signatured_types {};
348e048f 295
f4dc4d17
DE
296 /* Type unit statistics, to see how well the scaling improvements
297 are doing. */
330cdd98 298 struct tu_stats tu_stats {};
f4dc4d17
DE
299
300 /* A chain of compilation units that are currently read in, so that
301 they can be freed later. */
330cdd98 302 dwarf2_per_cu_data *read_in_chain = NULL;
f4dc4d17 303
3019eac3
DE
304 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
305 This is NULL if the table hasn't been allocated yet. */
330cdd98 306 htab_t dwo_files {};
3019eac3 307
330cdd98
PA
308 /* True if we've checked for whether there is a DWP file. */
309 bool dwp_checked = false;
80626a55
DE
310
311 /* The DWP file if there is one, or NULL. */
330cdd98 312 struct dwp_file *dwp_file = NULL;
80626a55 313
36586728
TT
314 /* The shared '.dwz' file, if one exists. This is used when the
315 original data was compressed using 'dwz -m'. */
330cdd98 316 struct dwz_file *dwz_file = NULL;
36586728 317
330cdd98 318 /* A flag indicating whether this objfile has a section loaded at a
72dca2f5 319 VMA of 0. */
330cdd98 320 bool has_section_at_zero = false;
9291a0cd 321
ae2de4f8
DE
322 /* True if we are using the mapped index,
323 or we are faking it for OBJF_READNOW's sake. */
330cdd98 324 bool using_index = false;
9291a0cd 325
ae2de4f8 326 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
330cdd98 327 mapped_index *index_table = NULL;
98bfdba5 328
7b9f3c50 329 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
330 TUs typically share line table entries with a CU, so we maintain a
331 separate table of all line table entries to support the sharing.
332 Note that while there can be way more TUs than CUs, we've already
333 sorted all the TUs into "type unit groups", grouped by their
334 DW_AT_stmt_list value. Therefore the only sharing done here is with a
335 CU and its associated TU group if there is one. */
330cdd98 336 htab_t quick_file_names_table {};
7b9f3c50 337
98bfdba5
PA
338 /* Set during partial symbol reading, to prevent queueing of full
339 symbols. */
330cdd98 340 bool reading_partial_symbols = false;
673bfd45 341
dee91e82 342 /* Table mapping type DIEs to their struct type *.
673bfd45 343 This is NULL if not allocated yet.
02142a6c 344 The mapping is done via (CU/TU + DIE offset) -> type. */
330cdd98 345 htab_t die_type_hash {};
95554aad
TT
346
347 /* The CUs we recently read. */
330cdd98 348 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
527f3840
JK
349
350 /* Table containing line_header indexed by offset and offset_in_dwz. */
330cdd98 351 htab_t line_header_hash {};
bbf2f4df
PA
352
353 /* Table containing all filenames. This is an optional because the
354 table is lazily constructed on first access. */
355 gdb::optional<filename_seen_cache> filenames_cache;
6502dd73
DJ
356};
357
358static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 359
251d32d9 360/* Default names of the debugging sections. */
c906108c 361
233a11ab
CS
362/* Note that if the debugging section has been compressed, it might
363 have a name like .zdebug_info. */
364
9cdd5dbd
DE
365static const struct dwarf2_debug_sections dwarf2_elf_names =
366{
251d32d9
TG
367 { ".debug_info", ".zdebug_info" },
368 { ".debug_abbrev", ".zdebug_abbrev" },
369 { ".debug_line", ".zdebug_line" },
370 { ".debug_loc", ".zdebug_loc" },
43988095 371 { ".debug_loclists", ".zdebug_loclists" },
251d32d9 372 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 373 { ".debug_macro", ".zdebug_macro" },
251d32d9 374 { ".debug_str", ".zdebug_str" },
43988095 375 { ".debug_line_str", ".zdebug_line_str" },
251d32d9 376 { ".debug_ranges", ".zdebug_ranges" },
43988095 377 { ".debug_rnglists", ".zdebug_rnglists" },
251d32d9 378 { ".debug_types", ".zdebug_types" },
3019eac3 379 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
380 { ".debug_frame", ".zdebug_frame" },
381 { ".eh_frame", NULL },
24d3216f
TT
382 { ".gdb_index", ".zgdb_index" },
383 23
251d32d9 384};
c906108c 385
80626a55 386/* List of DWO/DWP sections. */
3019eac3 387
80626a55 388static const struct dwop_section_names
3019eac3
DE
389{
390 struct dwarf2_section_names abbrev_dwo;
391 struct dwarf2_section_names info_dwo;
392 struct dwarf2_section_names line_dwo;
393 struct dwarf2_section_names loc_dwo;
43988095 394 struct dwarf2_section_names loclists_dwo;
09262596
DE
395 struct dwarf2_section_names macinfo_dwo;
396 struct dwarf2_section_names macro_dwo;
3019eac3
DE
397 struct dwarf2_section_names str_dwo;
398 struct dwarf2_section_names str_offsets_dwo;
399 struct dwarf2_section_names types_dwo;
80626a55
DE
400 struct dwarf2_section_names cu_index;
401 struct dwarf2_section_names tu_index;
3019eac3 402}
80626a55 403dwop_section_names =
3019eac3
DE
404{
405 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
406 { ".debug_info.dwo", ".zdebug_info.dwo" },
407 { ".debug_line.dwo", ".zdebug_line.dwo" },
408 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
43988095 409 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
09262596
DE
410 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
411 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
412 { ".debug_str.dwo", ".zdebug_str.dwo" },
413 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
414 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
415 { ".debug_cu_index", ".zdebug_cu_index" },
416 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
417};
418
c906108c
SS
419/* local data types */
420
107d2387
AC
421/* The data in a compilation unit header, after target2host
422 translation, looks like this. */
c906108c 423struct comp_unit_head
a738430d 424{
c764a876 425 unsigned int length;
a738430d 426 short version;
a738430d
MK
427 unsigned char addr_size;
428 unsigned char signed_addr_p;
9c541725 429 sect_offset abbrev_sect_off;
57349743 430
a738430d
MK
431 /* Size of file offsets; either 4 or 8. */
432 unsigned int offset_size;
57349743 433
a738430d
MK
434 /* Size of the length field; either 4 or 12. */
435 unsigned int initial_length_size;
57349743 436
43988095
JK
437 enum dwarf_unit_type unit_type;
438
a738430d
MK
439 /* Offset to the first byte of this compilation unit header in the
440 .debug_info section, for resolving relative reference dies. */
9c541725 441 sect_offset sect_off;
57349743 442
d00adf39
DE
443 /* Offset to first die in this cu from the start of the cu.
444 This will be the first byte following the compilation unit header. */
9c541725 445 cu_offset first_die_cu_offset;
43988095
JK
446
447 /* 64-bit signature of this type unit - it is valid only for
448 UNIT_TYPE DW_UT_type. */
449 ULONGEST signature;
450
451 /* For types, offset in the type's DIE of the type defined by this TU. */
9c541725 452 cu_offset type_cu_offset_in_tu;
a738430d 453};
c906108c 454
3da10d80
KS
455/* Type used for delaying computation of method physnames.
456 See comments for compute_delayed_physnames. */
457struct delayed_method_info
458{
459 /* The type to which the method is attached, i.e., its parent class. */
460 struct type *type;
461
462 /* The index of the method in the type's function fieldlists. */
463 int fnfield_index;
464
465 /* The index of the method in the fieldlist. */
466 int index;
467
468 /* The name of the DIE. */
469 const char *name;
470
471 /* The DIE associated with this method. */
472 struct die_info *die;
473};
474
475typedef struct delayed_method_info delayed_method_info;
476DEF_VEC_O (delayed_method_info);
477
e7c27a73
DJ
478/* Internal state when decoding a particular compilation unit. */
479struct dwarf2_cu
480{
481 /* The objfile containing this compilation unit. */
482 struct objfile *objfile;
483
d00adf39 484 /* The header of the compilation unit. */
e7c27a73 485 struct comp_unit_head header;
e142c38c 486
d00adf39
DE
487 /* Base address of this compilation unit. */
488 CORE_ADDR base_address;
489
490 /* Non-zero if base_address has been set. */
491 int base_known;
492
e142c38c
DJ
493 /* The language we are debugging. */
494 enum language language;
495 const struct language_defn *language_defn;
496
b0f35d58
DL
497 const char *producer;
498
e142c38c
DJ
499 /* The generic symbol table building routines have separate lists for
500 file scope symbols and all all other scopes (local scopes). So
501 we need to select the right one to pass to add_symbol_to_list().
502 We do it by keeping a pointer to the correct list in list_in_scope.
503
504 FIXME: The original dwarf code just treated the file scope as the
505 first local scope, and all other local scopes as nested local
506 scopes, and worked fine. Check to see if we really need to
507 distinguish these in buildsym.c. */
508 struct pending **list_in_scope;
509
433df2d4
DE
510 /* The abbrev table for this CU.
511 Normally this points to the abbrev table in the objfile.
512 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
513 struct abbrev_table *abbrev_table;
72bf9492 514
b64f50a1
JK
515 /* Hash table holding all the loaded partial DIEs
516 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
517 htab_t partial_dies;
518
519 /* Storage for things with the same lifetime as this read-in compilation
520 unit, including partial DIEs. */
521 struct obstack comp_unit_obstack;
522
ae038cb0
DJ
523 /* When multiple dwarf2_cu structures are living in memory, this field
524 chains them all together, so that they can be released efficiently.
525 We will probably also want a generation counter so that most-recently-used
526 compilation units are cached... */
527 struct dwarf2_per_cu_data *read_in_chain;
528
69d751e3 529 /* Backlink to our per_cu entry. */
ae038cb0
DJ
530 struct dwarf2_per_cu_data *per_cu;
531
532 /* How many compilation units ago was this CU last referenced? */
533 int last_used;
534
b64f50a1
JK
535 /* A hash table of DIE cu_offset for following references with
536 die_info->offset.sect_off as hash. */
51545339 537 htab_t die_hash;
10b3939b
DJ
538
539 /* Full DIEs if read in. */
540 struct die_info *dies;
541
542 /* A set of pointers to dwarf2_per_cu_data objects for compilation
543 units referenced by this one. Only set during full symbol processing;
544 partial symbol tables do not have dependencies. */
545 htab_t dependencies;
546
cb1df416
DJ
547 /* Header data from the line table, during full symbol processing. */
548 struct line_header *line_header;
549
3da10d80
KS
550 /* A list of methods which need to have physnames computed
551 after all type information has been read. */
552 VEC (delayed_method_info) *method_list;
553
96408a79
SA
554 /* To be copied to symtab->call_site_htab. */
555 htab_t call_site_htab;
556
034e5797
DE
557 /* Non-NULL if this CU came from a DWO file.
558 There is an invariant here that is important to remember:
559 Except for attributes copied from the top level DIE in the "main"
560 (or "stub") file in preparation for reading the DWO file
561 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
562 Either there isn't a DWO file (in which case this is NULL and the point
563 is moot), or there is and either we're not going to read it (in which
564 case this is NULL) or there is and we are reading it (in which case this
565 is non-NULL). */
3019eac3
DE
566 struct dwo_unit *dwo_unit;
567
568 /* The DW_AT_addr_base attribute if present, zero otherwise
569 (zero is a valid value though).
1dbab08b 570 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
571 ULONGEST addr_base;
572
2e3cf129
DE
573 /* The DW_AT_ranges_base attribute if present, zero otherwise
574 (zero is a valid value though).
1dbab08b 575 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 576 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
577 be used without needing to know whether DWO files are in use or not.
578 N.B. This does not apply to DW_AT_ranges appearing in
579 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
580 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
581 DW_AT_ranges_base *would* have to be applied, and we'd have to care
582 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
583 ULONGEST ranges_base;
584
ae038cb0
DJ
585 /* Mark used when releasing cached dies. */
586 unsigned int mark : 1;
587
8be455d7
JK
588 /* This CU references .debug_loc. See the symtab->locations_valid field.
589 This test is imperfect as there may exist optimized debug code not using
590 any location list and still facing inlining issues if handled as
591 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 592 unsigned int has_loclist : 1;
ba919b58 593
1b80a9fa
JK
594 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
595 if all the producer_is_* fields are valid. This information is cached
596 because profiling CU expansion showed excessive time spent in
597 producer_is_gxx_lt_4_6. */
ba919b58
TT
598 unsigned int checked_producer : 1;
599 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 600 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 601 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
602
603 /* When set, the file that we're processing is known to have
604 debugging info for C++ namespaces. GCC 3.3.x did not produce
605 this information, but later versions do. */
606
607 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
608};
609
10b3939b
DJ
610/* Persistent data held for a compilation unit, even when not
611 processing it. We put a pointer to this structure in the
28dee7f5 612 read_symtab_private field of the psymtab. */
10b3939b 613
ae038cb0
DJ
614struct dwarf2_per_cu_data
615{
36586728 616 /* The start offset and length of this compilation unit.
45452591 617 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
618 initial_length_size.
619 If the DIE refers to a DWO file, this is always of the original die,
620 not the DWO file. */
9c541725 621 sect_offset sect_off;
36586728 622 unsigned int length;
ae038cb0 623
43988095
JK
624 /* DWARF standard version this data has been read from (such as 4 or 5). */
625 short dwarf_version;
626
ae038cb0
DJ
627 /* Flag indicating this compilation unit will be read in before
628 any of the current compilation units are processed. */
c764a876 629 unsigned int queued : 1;
ae038cb0 630
0d99eb77
DE
631 /* This flag will be set when reading partial DIEs if we need to load
632 absolutely all DIEs for this compilation unit, instead of just the ones
633 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
634 hash table and don't find it. */
635 unsigned int load_all_dies : 1;
636
0186c6a7
DE
637 /* Non-zero if this CU is from .debug_types.
638 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
639 this is non-zero. */
3019eac3
DE
640 unsigned int is_debug_types : 1;
641
36586728
TT
642 /* Non-zero if this CU is from the .dwz file. */
643 unsigned int is_dwz : 1;
644
a2ce51a0
DE
645 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
646 This flag is only valid if is_debug_types is true.
647 We can't read a CU directly from a DWO file: There are required
648 attributes in the stub. */
649 unsigned int reading_dwo_directly : 1;
650
7ee85ab1
DE
651 /* Non-zero if the TU has been read.
652 This is used to assist the "Stay in DWO Optimization" for Fission:
653 When reading a DWO, it's faster to read TUs from the DWO instead of
654 fetching them from random other DWOs (due to comdat folding).
655 If the TU has already been read, the optimization is unnecessary
656 (and unwise - we don't want to change where gdb thinks the TU lives
657 "midflight").
658 This flag is only valid if is_debug_types is true. */
659 unsigned int tu_read : 1;
660
3019eac3
DE
661 /* The section this CU/TU lives in.
662 If the DIE refers to a DWO file, this is always the original die,
663 not the DWO file. */
8a0459fd 664 struct dwarf2_section_info *section;
348e048f 665
17ea53c3 666 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
667 of the CU cache it gets reset to NULL again. This is left as NULL for
668 dummy CUs (a CU header, but nothing else). */
ae038cb0 669 struct dwarf2_cu *cu;
1c379e20 670
9cdd5dbd
DE
671 /* The corresponding objfile.
672 Normally we can get the objfile from dwarf2_per_objfile.
673 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
674 struct objfile *objfile;
675
fffbe6a8
YQ
676 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
677 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
678 union
679 {
680 /* The partial symbol table associated with this compilation unit,
95554aad 681 or NULL for unread partial units. */
9291a0cd
TT
682 struct partial_symtab *psymtab;
683
684 /* Data needed by the "quick" functions. */
685 struct dwarf2_per_cu_quick_data *quick;
686 } v;
95554aad 687
796a7ff8
DE
688 /* The CUs we import using DW_TAG_imported_unit. This is filled in
689 while reading psymtabs, used to compute the psymtab dependencies,
690 and then cleared. Then it is filled in again while reading full
691 symbols, and only deleted when the objfile is destroyed.
692
693 This is also used to work around a difference between the way gold
694 generates .gdb_index version <=7 and the way gdb does. Arguably this
695 is a gold bug. For symbols coming from TUs, gold records in the index
696 the CU that includes the TU instead of the TU itself. This breaks
697 dw2_lookup_symbol: It assumes that if the index says symbol X lives
698 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
699 will find X. Alas TUs live in their own symtab, so after expanding CU Y
700 we need to look in TU Z to find X. Fortunately, this is akin to
701 DW_TAG_imported_unit, so we just use the same mechanism: For
702 .gdb_index version <=7 this also records the TUs that the CU referred
703 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
704 indices so we only pay a price for gold generated indices.
705 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 706 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
707};
708
348e048f
DE
709/* Entry in the signatured_types hash table. */
710
711struct signatured_type
712{
42e7ad6c 713 /* The "per_cu" object of this type.
ac9ec31b 714 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
715 N.B.: This is the first member so that it's easy to convert pointers
716 between them. */
717 struct dwarf2_per_cu_data per_cu;
718
3019eac3 719 /* The type's signature. */
348e048f
DE
720 ULONGEST signature;
721
3019eac3 722 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
723 If this TU is a DWO stub and the definition lives in a DWO file
724 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
725 cu_offset type_offset_in_tu;
726
727 /* Offset in the section of the type's DIE.
728 If the definition lives in a DWO file, this is the offset in the
729 .debug_types.dwo section.
730 The value is zero until the actual value is known.
731 Zero is otherwise not a valid section offset. */
732 sect_offset type_offset_in_section;
0186c6a7
DE
733
734 /* Type units are grouped by their DW_AT_stmt_list entry so that they
735 can share them. This points to the containing symtab. */
736 struct type_unit_group *type_unit_group;
ac9ec31b
DE
737
738 /* The type.
739 The first time we encounter this type we fully read it in and install it
740 in the symbol tables. Subsequent times we only need the type. */
741 struct type *type;
a2ce51a0
DE
742
743 /* Containing DWO unit.
744 This field is valid iff per_cu.reading_dwo_directly. */
745 struct dwo_unit *dwo_unit;
348e048f
DE
746};
747
0186c6a7
DE
748typedef struct signatured_type *sig_type_ptr;
749DEF_VEC_P (sig_type_ptr);
750
094b34ac
DE
751/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
752 This includes type_unit_group and quick_file_names. */
753
754struct stmt_list_hash
755{
756 /* The DWO unit this table is from or NULL if there is none. */
757 struct dwo_unit *dwo_unit;
758
759 /* Offset in .debug_line or .debug_line.dwo. */
9c541725 760 sect_offset line_sect_off;
094b34ac
DE
761};
762
f4dc4d17
DE
763/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
764 an object of this type. */
765
766struct type_unit_group
767{
0186c6a7 768 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
769 To simplify things we create an artificial CU that "includes" all the
770 type units using this stmt_list so that the rest of the code still has
771 a "per_cu" handle on the symtab.
772 This PER_CU is recognized by having no section. */
8a0459fd 773#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
774 struct dwarf2_per_cu_data per_cu;
775
0186c6a7
DE
776 /* The TUs that share this DW_AT_stmt_list entry.
777 This is added to while parsing type units to build partial symtabs,
778 and is deleted afterwards and not used again. */
779 VEC (sig_type_ptr) *tus;
f4dc4d17 780
43f3e411 781 /* The compunit symtab.
094b34ac 782 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
783 so we create an essentially anonymous symtab as the compunit symtab. */
784 struct compunit_symtab *compunit_symtab;
f4dc4d17 785
094b34ac
DE
786 /* The data used to construct the hash key. */
787 struct stmt_list_hash hash;
f4dc4d17
DE
788
789 /* The number of symtabs from the line header.
790 The value here must match line_header.num_file_names. */
791 unsigned int num_symtabs;
792
793 /* The symbol tables for this TU (obtained from the files listed in
794 DW_AT_stmt_list).
795 WARNING: The order of entries here must match the order of entries
796 in the line header. After the first TU using this type_unit_group, the
797 line header for the subsequent TUs is recreated from this. This is done
798 because we need to use the same symtabs for each TU using the same
799 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
800 there's no guarantee the line header doesn't have duplicate entries. */
801 struct symtab **symtabs;
802};
803
73869dc2 804/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
805
806struct dwo_sections
807{
808 struct dwarf2_section_info abbrev;
3019eac3
DE
809 struct dwarf2_section_info line;
810 struct dwarf2_section_info loc;
43988095 811 struct dwarf2_section_info loclists;
09262596
DE
812 struct dwarf2_section_info macinfo;
813 struct dwarf2_section_info macro;
3019eac3
DE
814 struct dwarf2_section_info str;
815 struct dwarf2_section_info str_offsets;
80626a55
DE
816 /* In the case of a virtual DWO file, these two are unused. */
817 struct dwarf2_section_info info;
3019eac3
DE
818 VEC (dwarf2_section_info_def) *types;
819};
820
c88ee1f0 821/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
822
823struct dwo_unit
824{
825 /* Backlink to the containing struct dwo_file. */
826 struct dwo_file *dwo_file;
827
828 /* The "id" that distinguishes this CU/TU.
829 .debug_info calls this "dwo_id", .debug_types calls this "signature".
830 Since signatures came first, we stick with it for consistency. */
831 ULONGEST signature;
832
833 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 834 struct dwarf2_section_info *section;
3019eac3 835
9c541725
PA
836 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
837 sect_offset sect_off;
3019eac3
DE
838 unsigned int length;
839
840 /* For types, offset in the type's DIE of the type defined by this TU. */
841 cu_offset type_offset_in_tu;
842};
843
73869dc2
DE
844/* include/dwarf2.h defines the DWP section codes.
845 It defines a max value but it doesn't define a min value, which we
846 use for error checking, so provide one. */
847
848enum dwp_v2_section_ids
849{
850 DW_SECT_MIN = 1
851};
852
80626a55 853/* Data for one DWO file.
57d63ce2
DE
854
855 This includes virtual DWO files (a virtual DWO file is a DWO file as it
856 appears in a DWP file). DWP files don't really have DWO files per se -
857 comdat folding of types "loses" the DWO file they came from, and from
858 a high level view DWP files appear to contain a mass of random types.
859 However, to maintain consistency with the non-DWP case we pretend DWP
860 files contain virtual DWO files, and we assign each TU with one virtual
861 DWO file (generally based on the line and abbrev section offsets -
862 a heuristic that seems to work in practice). */
3019eac3
DE
863
864struct dwo_file
865{
0ac5b59e 866 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
867 For virtual DWO files the name is constructed from the section offsets
868 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
869 from related CU+TUs. */
0ac5b59e
DE
870 const char *dwo_name;
871
872 /* The DW_AT_comp_dir attribute. */
873 const char *comp_dir;
3019eac3 874
80626a55
DE
875 /* The bfd, when the file is open. Otherwise this is NULL.
876 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
877 bfd *dbfd;
3019eac3 878
73869dc2
DE
879 /* The sections that make up this DWO file.
880 Remember that for virtual DWO files in DWP V2, these are virtual
881 sections (for lack of a better name). */
3019eac3
DE
882 struct dwo_sections sections;
883
33c5cd75
DB
884 /* The CUs in the file.
885 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
886 an extension to handle LLVM's Link Time Optimization output (where
887 multiple source files may be compiled into a single object/dwo pair). */
888 htab_t cus;
3019eac3
DE
889
890 /* Table of TUs in the file.
891 Each element is a struct dwo_unit. */
892 htab_t tus;
893};
894
80626a55
DE
895/* These sections are what may appear in a DWP file. */
896
897struct dwp_sections
898{
73869dc2 899 /* These are used by both DWP version 1 and 2. */
80626a55
DE
900 struct dwarf2_section_info str;
901 struct dwarf2_section_info cu_index;
902 struct dwarf2_section_info tu_index;
73869dc2
DE
903
904 /* These are only used by DWP version 2 files.
905 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
906 sections are referenced by section number, and are not recorded here.
907 In DWP version 2 there is at most one copy of all these sections, each
908 section being (effectively) comprised of the concatenation of all of the
909 individual sections that exist in the version 1 format.
910 To keep the code simple we treat each of these concatenated pieces as a
911 section itself (a virtual section?). */
912 struct dwarf2_section_info abbrev;
913 struct dwarf2_section_info info;
914 struct dwarf2_section_info line;
915 struct dwarf2_section_info loc;
916 struct dwarf2_section_info macinfo;
917 struct dwarf2_section_info macro;
918 struct dwarf2_section_info str_offsets;
919 struct dwarf2_section_info types;
80626a55
DE
920};
921
73869dc2
DE
922/* These sections are what may appear in a virtual DWO file in DWP version 1.
923 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 924
73869dc2 925struct virtual_v1_dwo_sections
80626a55
DE
926{
927 struct dwarf2_section_info abbrev;
928 struct dwarf2_section_info line;
929 struct dwarf2_section_info loc;
930 struct dwarf2_section_info macinfo;
931 struct dwarf2_section_info macro;
932 struct dwarf2_section_info str_offsets;
933 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 934 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
935 struct dwarf2_section_info info_or_types;
936};
937
73869dc2
DE
938/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
939 In version 2, the sections of the DWO files are concatenated together
940 and stored in one section of that name. Thus each ELF section contains
941 several "virtual" sections. */
942
943struct virtual_v2_dwo_sections
944{
945 bfd_size_type abbrev_offset;
946 bfd_size_type abbrev_size;
947
948 bfd_size_type line_offset;
949 bfd_size_type line_size;
950
951 bfd_size_type loc_offset;
952 bfd_size_type loc_size;
953
954 bfd_size_type macinfo_offset;
955 bfd_size_type macinfo_size;
956
957 bfd_size_type macro_offset;
958 bfd_size_type macro_size;
959
960 bfd_size_type str_offsets_offset;
961 bfd_size_type str_offsets_size;
962
963 /* Each DWP hash table entry records one CU or one TU.
964 That is recorded here, and copied to dwo_unit.section. */
965 bfd_size_type info_or_types_offset;
966 bfd_size_type info_or_types_size;
967};
968
80626a55
DE
969/* Contents of DWP hash tables. */
970
971struct dwp_hash_table
972{
73869dc2 973 uint32_t version, nr_columns;
80626a55 974 uint32_t nr_units, nr_slots;
73869dc2
DE
975 const gdb_byte *hash_table, *unit_table;
976 union
977 {
978 struct
979 {
980 const gdb_byte *indices;
981 } v1;
982 struct
983 {
984 /* This is indexed by column number and gives the id of the section
985 in that column. */
986#define MAX_NR_V2_DWO_SECTIONS \
987 (1 /* .debug_info or .debug_types */ \
988 + 1 /* .debug_abbrev */ \
989 + 1 /* .debug_line */ \
990 + 1 /* .debug_loc */ \
991 + 1 /* .debug_str_offsets */ \
992 + 1 /* .debug_macro or .debug_macinfo */)
993 int section_ids[MAX_NR_V2_DWO_SECTIONS];
994 const gdb_byte *offsets;
995 const gdb_byte *sizes;
996 } v2;
997 } section_pool;
80626a55
DE
998};
999
1000/* Data for one DWP file. */
1001
1002struct dwp_file
1003{
1004 /* Name of the file. */
1005 const char *name;
1006
73869dc2
DE
1007 /* File format version. */
1008 int version;
1009
93417882 1010 /* The bfd. */
80626a55
DE
1011 bfd *dbfd;
1012
1013 /* Section info for this file. */
1014 struct dwp_sections sections;
1015
57d63ce2 1016 /* Table of CUs in the file. */
80626a55
DE
1017 const struct dwp_hash_table *cus;
1018
1019 /* Table of TUs in the file. */
1020 const struct dwp_hash_table *tus;
1021
19ac8c2e
DE
1022 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1023 htab_t loaded_cus;
1024 htab_t loaded_tus;
80626a55 1025
73869dc2
DE
1026 /* Table to map ELF section numbers to their sections.
1027 This is only needed for the DWP V1 file format. */
80626a55
DE
1028 unsigned int num_sections;
1029 asection **elf_sections;
1030};
1031
36586728
TT
1032/* This represents a '.dwz' file. */
1033
1034struct dwz_file
1035{
1036 /* A dwz file can only contain a few sections. */
1037 struct dwarf2_section_info abbrev;
1038 struct dwarf2_section_info info;
1039 struct dwarf2_section_info str;
1040 struct dwarf2_section_info line;
1041 struct dwarf2_section_info macro;
2ec9a5e0 1042 struct dwarf2_section_info gdb_index;
36586728
TT
1043
1044 /* The dwz's BFD. */
1045 bfd *dwz_bfd;
1046};
1047
0963b4bd
MS
1048/* Struct used to pass misc. parameters to read_die_and_children, et
1049 al. which are used for both .debug_info and .debug_types dies.
1050 All parameters here are unchanging for the life of the call. This
dee91e82 1051 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
1052
1053struct die_reader_specs
1054{
a32a8923 1055 /* The bfd of die_section. */
93311388
DE
1056 bfd* abfd;
1057
1058 /* The CU of the DIE we are parsing. */
1059 struct dwarf2_cu *cu;
1060
80626a55 1061 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1062 struct dwo_file *dwo_file;
1063
dee91e82 1064 /* The section the die comes from.
3019eac3 1065 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1066 struct dwarf2_section_info *die_section;
1067
1068 /* die_section->buffer. */
d521ce57 1069 const gdb_byte *buffer;
f664829e
DE
1070
1071 /* The end of the buffer. */
1072 const gdb_byte *buffer_end;
a2ce51a0
DE
1073
1074 /* The value of the DW_AT_comp_dir attribute. */
1075 const char *comp_dir;
93311388
DE
1076};
1077
fd820528 1078/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1079typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1080 const gdb_byte *info_ptr,
dee91e82
DE
1081 struct die_info *comp_unit_die,
1082 int has_children,
1083 void *data);
1084
ecfb656c
PA
1085/* A 1-based directory index. This is a strong typedef to prevent
1086 accidentally using a directory index as a 0-based index into an
1087 array/vector. */
1088enum class dir_index : unsigned int {};
1089
1090/* Likewise, a 1-based file name index. */
1091enum class file_name_index : unsigned int {};
1092
52059ffd
TT
1093struct file_entry
1094{
fff8551c
PA
1095 file_entry () = default;
1096
ecfb656c 1097 file_entry (const char *name_, dir_index d_index_,
fff8551c
PA
1098 unsigned int mod_time_, unsigned int length_)
1099 : name (name_),
ecfb656c 1100 d_index (d_index_),
fff8551c
PA
1101 mod_time (mod_time_),
1102 length (length_)
1103 {}
1104
ecfb656c
PA
1105 /* Return the include directory at D_INDEX stored in LH. Returns
1106 NULL if D_INDEX is out of bounds. */
8c43009f
PA
1107 const char *include_dir (const line_header *lh) const;
1108
fff8551c
PA
1109 /* The file name. Note this is an observing pointer. The memory is
1110 owned by debug_line_buffer. */
1111 const char *name {};
1112
8c43009f 1113 /* The directory index (1-based). */
ecfb656c 1114 dir_index d_index {};
fff8551c
PA
1115
1116 unsigned int mod_time {};
1117
1118 unsigned int length {};
1119
1120 /* True if referenced by the Line Number Program. */
1121 bool included_p {};
1122
83769d0b 1123 /* The associated symbol table, if any. */
fff8551c 1124 struct symtab *symtab {};
52059ffd
TT
1125};
1126
debd256d
JB
1127/* The line number information for a compilation unit (found in the
1128 .debug_line section) begins with a "statement program header",
1129 which contains the following information. */
1130struct line_header
1131{
fff8551c
PA
1132 line_header ()
1133 : offset_in_dwz {}
1134 {}
1135
1136 /* Add an entry to the include directory table. */
1137 void add_include_dir (const char *include_dir);
1138
1139 /* Add an entry to the file name table. */
ecfb656c 1140 void add_file_name (const char *name, dir_index d_index,
fff8551c
PA
1141 unsigned int mod_time, unsigned int length);
1142
ecfb656c 1143 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
8c43009f 1144 is out of bounds. */
ecfb656c 1145 const char *include_dir_at (dir_index index) const
8c43009f 1146 {
ecfb656c
PA
1147 /* Convert directory index number (1-based) to vector index
1148 (0-based). */
1149 size_t vec_index = to_underlying (index) - 1;
1150
1151 if (vec_index >= include_dirs.size ())
8c43009f 1152 return NULL;
ecfb656c 1153 return include_dirs[vec_index];
8c43009f
PA
1154 }
1155
ecfb656c 1156 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
8c43009f 1157 is out of bounds. */
ecfb656c 1158 file_entry *file_name_at (file_name_index index)
8c43009f 1159 {
ecfb656c
PA
1160 /* Convert file name index number (1-based) to vector index
1161 (0-based). */
1162 size_t vec_index = to_underlying (index) - 1;
1163
1164 if (vec_index >= file_names.size ())
fff8551c 1165 return NULL;
ecfb656c 1166 return &file_names[vec_index];
fff8551c
PA
1167 }
1168
1169 /* Const version of the above. */
1170 const file_entry *file_name_at (unsigned int index) const
1171 {
1172 if (index >= file_names.size ())
8c43009f
PA
1173 return NULL;
1174 return &file_names[index];
1175 }
1176
527f3840 1177 /* Offset of line number information in .debug_line section. */
9c541725 1178 sect_offset sect_off {};
527f3840
JK
1179
1180 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
fff8551c
PA
1181 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1182
1183 unsigned int total_length {};
1184 unsigned short version {};
1185 unsigned int header_length {};
1186 unsigned char minimum_instruction_length {};
1187 unsigned char maximum_ops_per_instruction {};
1188 unsigned char default_is_stmt {};
1189 int line_base {};
1190 unsigned char line_range {};
1191 unsigned char opcode_base {};
debd256d
JB
1192
1193 /* standard_opcode_lengths[i] is the number of operands for the
1194 standard opcode whose value is i. This means that
1195 standard_opcode_lengths[0] is unused, and the last meaningful
1196 element is standard_opcode_lengths[opcode_base - 1]. */
fff8551c 1197 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
debd256d 1198
fff8551c
PA
1199 /* The include_directories table. Note these are observing
1200 pointers. The memory is owned by debug_line_buffer. */
1201 std::vector<const char *> include_dirs;
debd256d 1202
fff8551c
PA
1203 /* The file_names table. */
1204 std::vector<file_entry> file_names;
debd256d
JB
1205
1206 /* The start and end of the statement program following this
6502dd73 1207 header. These point into dwarf2_per_objfile->line_buffer. */
fff8551c 1208 const gdb_byte *statement_program_start {}, *statement_program_end {};
debd256d 1209};
c906108c 1210
fff8551c
PA
1211typedef std::unique_ptr<line_header> line_header_up;
1212
8c43009f
PA
1213const char *
1214file_entry::include_dir (const line_header *lh) const
1215{
ecfb656c 1216 return lh->include_dir_at (d_index);
8c43009f
PA
1217}
1218
c906108c 1219/* When we construct a partial symbol table entry we only
0963b4bd 1220 need this much information. */
c906108c
SS
1221struct partial_die_info
1222 {
72bf9492 1223 /* Offset of this DIE. */
9c541725 1224 sect_offset sect_off;
72bf9492
DJ
1225
1226 /* DWARF-2 tag for this DIE. */
1227 ENUM_BITFIELD(dwarf_tag) tag : 16;
1228
72bf9492
DJ
1229 /* Assorted flags describing the data found in this DIE. */
1230 unsigned int has_children : 1;
1231 unsigned int is_external : 1;
1232 unsigned int is_declaration : 1;
1233 unsigned int has_type : 1;
1234 unsigned int has_specification : 1;
1235 unsigned int has_pc_info : 1;
481860b3 1236 unsigned int may_be_inlined : 1;
72bf9492 1237
0c1b455e
TT
1238 /* This DIE has been marked DW_AT_main_subprogram. */
1239 unsigned int main_subprogram : 1;
1240
72bf9492
DJ
1241 /* Flag set if the SCOPE field of this structure has been
1242 computed. */
1243 unsigned int scope_set : 1;
1244
fa4028e9
JB
1245 /* Flag set if the DIE has a byte_size attribute. */
1246 unsigned int has_byte_size : 1;
1247
ff908ebf
AW
1248 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1249 unsigned int has_const_value : 1;
1250
98bfdba5
PA
1251 /* Flag set if any of the DIE's children are template arguments. */
1252 unsigned int has_template_arguments : 1;
1253
abc72ce4
DE
1254 /* Flag set if fixup_partial_die has been called on this die. */
1255 unsigned int fixup_called : 1;
1256
36586728
TT
1257 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1258 unsigned int is_dwz : 1;
1259
1260 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1261 unsigned int spec_is_dwz : 1;
1262
72bf9492 1263 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1264 sometimes a default name for unnamed DIEs. */
15d034d0 1265 const char *name;
72bf9492 1266
abc72ce4
DE
1267 /* The linkage name, if present. */
1268 const char *linkage_name;
1269
72bf9492
DJ
1270 /* The scope to prepend to our children. This is generally
1271 allocated on the comp_unit_obstack, so will disappear
1272 when this compilation unit leaves the cache. */
15d034d0 1273 const char *scope;
72bf9492 1274
95554aad
TT
1275 /* Some data associated with the partial DIE. The tag determines
1276 which field is live. */
1277 union
1278 {
1279 /* The location description associated with this DIE, if any. */
1280 struct dwarf_block *locdesc;
1281 /* The offset of an import, for DW_TAG_imported_unit. */
9c541725 1282 sect_offset sect_off;
95554aad 1283 } d;
72bf9492
DJ
1284
1285 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1286 CORE_ADDR lowpc;
1287 CORE_ADDR highpc;
72bf9492 1288
93311388 1289 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1290 DW_AT_sibling, if any. */
abc72ce4
DE
1291 /* NOTE: This member isn't strictly necessary, read_partial_die could
1292 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1293 const gdb_byte *sibling;
72bf9492
DJ
1294
1295 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1296 DW_AT_specification (or DW_AT_abstract_origin or
1297 DW_AT_extension). */
b64f50a1 1298 sect_offset spec_offset;
72bf9492
DJ
1299
1300 /* Pointers to this DIE's parent, first child, and next sibling,
1301 if any. */
1302 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1303 };
1304
0963b4bd 1305/* This data structure holds the information of an abbrev. */
c906108c
SS
1306struct abbrev_info
1307 {
1308 unsigned int number; /* number identifying abbrev */
1309 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1310 unsigned short has_children; /* boolean */
1311 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1312 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1313 struct abbrev_info *next; /* next in chain */
1314 };
1315
1316struct attr_abbrev
1317 {
9d25dd43
DE
1318 ENUM_BITFIELD(dwarf_attribute) name : 16;
1319 ENUM_BITFIELD(dwarf_form) form : 16;
43988095
JK
1320
1321 /* It is valid only if FORM is DW_FORM_implicit_const. */
1322 LONGEST implicit_const;
c906108c
SS
1323 };
1324
433df2d4
DE
1325/* Size of abbrev_table.abbrev_hash_table. */
1326#define ABBREV_HASH_SIZE 121
1327
1328/* Top level data structure to contain an abbreviation table. */
1329
1330struct abbrev_table
1331{
f4dc4d17
DE
1332 /* Where the abbrev table came from.
1333 This is used as a sanity check when the table is used. */
9c541725 1334 sect_offset sect_off;
433df2d4
DE
1335
1336 /* Storage for the abbrev table. */
1337 struct obstack abbrev_obstack;
1338
1339 /* Hash table of abbrevs.
1340 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1341 It could be statically allocated, but the previous code didn't so we
1342 don't either. */
1343 struct abbrev_info **abbrevs;
1344};
1345
0963b4bd 1346/* Attributes have a name and a value. */
b60c80d6
DJ
1347struct attribute
1348 {
9d25dd43 1349 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1350 ENUM_BITFIELD(dwarf_form) form : 15;
1351
1352 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1353 field should be in u.str (existing only for DW_STRING) but it is kept
1354 here for better struct attribute alignment. */
1355 unsigned int string_is_canonical : 1;
1356
b60c80d6
DJ
1357 union
1358 {
15d034d0 1359 const char *str;
b60c80d6 1360 struct dwarf_block *blk;
43bbcdc2
PH
1361 ULONGEST unsnd;
1362 LONGEST snd;
b60c80d6 1363 CORE_ADDR addr;
ac9ec31b 1364 ULONGEST signature;
b60c80d6
DJ
1365 }
1366 u;
1367 };
1368
0963b4bd 1369/* This data structure holds a complete die structure. */
c906108c
SS
1370struct die_info
1371 {
76815b17
DE
1372 /* DWARF-2 tag for this DIE. */
1373 ENUM_BITFIELD(dwarf_tag) tag : 16;
1374
1375 /* Number of attributes */
98bfdba5
PA
1376 unsigned char num_attrs;
1377
1378 /* True if we're presently building the full type name for the
1379 type derived from this DIE. */
1380 unsigned char building_fullname : 1;
76815b17 1381
adde2bff
DE
1382 /* True if this die is in process. PR 16581. */
1383 unsigned char in_process : 1;
1384
76815b17
DE
1385 /* Abbrev number */
1386 unsigned int abbrev;
1387
93311388 1388 /* Offset in .debug_info or .debug_types section. */
9c541725 1389 sect_offset sect_off;
78ba4af6
JB
1390
1391 /* The dies in a compilation unit form an n-ary tree. PARENT
1392 points to this die's parent; CHILD points to the first child of
1393 this node; and all the children of a given node are chained
4950bc1c 1394 together via their SIBLING fields. */
639d11d3
DC
1395 struct die_info *child; /* Its first child, if any. */
1396 struct die_info *sibling; /* Its next sibling, if any. */
1397 struct die_info *parent; /* Its parent, if any. */
c906108c 1398
b60c80d6
DJ
1399 /* An array of attributes, with NUM_ATTRS elements. There may be
1400 zero, but it's not common and zero-sized arrays are not
1401 sufficiently portable C. */
1402 struct attribute attrs[1];
c906108c
SS
1403 };
1404
0963b4bd 1405/* Get at parts of an attribute structure. */
c906108c
SS
1406
1407#define DW_STRING(attr) ((attr)->u.str)
8285870a 1408#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1409#define DW_UNSND(attr) ((attr)->u.unsnd)
1410#define DW_BLOCK(attr) ((attr)->u.blk)
1411#define DW_SND(attr) ((attr)->u.snd)
1412#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1413#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1414
0963b4bd 1415/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1416struct dwarf_block
1417 {
56eb65bd 1418 size_t size;
1d6edc3c
JK
1419
1420 /* Valid only if SIZE is not zero. */
d521ce57 1421 const gdb_byte *data;
c906108c
SS
1422 };
1423
c906108c
SS
1424#ifndef ATTR_ALLOC_CHUNK
1425#define ATTR_ALLOC_CHUNK 4
1426#endif
1427
c906108c
SS
1428/* Allocate fields for structs, unions and enums in this size. */
1429#ifndef DW_FIELD_ALLOC_CHUNK
1430#define DW_FIELD_ALLOC_CHUNK 4
1431#endif
1432
c906108c
SS
1433/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1434 but this would require a corresponding change in unpack_field_as_long
1435 and friends. */
1436static int bits_per_byte = 8;
1437
52059ffd
TT
1438struct nextfield
1439{
1440 struct nextfield *next;
1441 int accessibility;
1442 int virtuality;
1443 struct field field;
1444};
1445
1446struct nextfnfield
1447{
1448 struct nextfnfield *next;
1449 struct fn_field fnfield;
1450};
1451
1452struct fnfieldlist
1453{
1454 const char *name;
1455 int length;
1456 struct nextfnfield *head;
1457};
1458
1459struct typedef_field_list
1460{
1461 struct typedef_field field;
1462 struct typedef_field_list *next;
1463};
1464
c906108c
SS
1465/* The routines that read and process dies for a C struct or C++ class
1466 pass lists of data member fields and lists of member function fields
1467 in an instance of a field_info structure, as defined below. */
1468struct field_info
c5aa993b 1469 {
0963b4bd 1470 /* List of data member and baseclasses fields. */
52059ffd 1471 struct nextfield *fields, *baseclasses;
c906108c 1472
7d0ccb61 1473 /* Number of fields (including baseclasses). */
c5aa993b 1474 int nfields;
c906108c 1475
c5aa993b
JM
1476 /* Number of baseclasses. */
1477 int nbaseclasses;
c906108c 1478
c5aa993b
JM
1479 /* Set if the accesibility of one of the fields is not public. */
1480 int non_public_fields;
c906108c 1481
c5aa993b
JM
1482 /* Member function fields array, entries are allocated in the order they
1483 are encountered in the object file. */
52059ffd 1484 struct nextfnfield *fnfields;
c906108c 1485
c5aa993b
JM
1486 /* Member function fieldlist array, contains name of possibly overloaded
1487 member function, number of overloaded member functions and a pointer
1488 to the head of the member function field chain. */
52059ffd 1489 struct fnfieldlist *fnfieldlists;
c906108c 1490
c5aa993b
JM
1491 /* Number of entries in the fnfieldlists array. */
1492 int nfnfields;
98751a41
JK
1493
1494 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1495 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1496 struct typedef_field_list *typedef_field_list;
98751a41 1497 unsigned typedef_field_list_count;
c5aa993b 1498 };
c906108c 1499
10b3939b
DJ
1500/* One item on the queue of compilation units to read in full symbols
1501 for. */
1502struct dwarf2_queue_item
1503{
1504 struct dwarf2_per_cu_data *per_cu;
95554aad 1505 enum language pretend_language;
10b3939b
DJ
1506 struct dwarf2_queue_item *next;
1507};
1508
1509/* The current queue. */
1510static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1511
ae038cb0
DJ
1512/* Loaded secondary compilation units are kept in memory until they
1513 have not been referenced for the processing of this many
1514 compilation units. Set this to zero to disable caching. Cache
1515 sizes of up to at least twenty will improve startup time for
1516 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1517static int dwarf_max_cache_age = 5;
920d2a44 1518static void
b4f54984
DE
1519show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1520 struct cmd_list_element *c, const char *value)
920d2a44 1521{
3e43a32a 1522 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1523 "DWARF compilation units is %s.\n"),
920d2a44
AC
1524 value);
1525}
4390d890 1526\f
c906108c
SS
1527/* local function prototypes */
1528
a32a8923
DE
1529static const char *get_section_name (const struct dwarf2_section_info *);
1530
1531static const char *get_section_file_name (const struct dwarf2_section_info *);
1532
918dd910
JK
1533static void dwarf2_find_base_address (struct die_info *die,
1534 struct dwarf2_cu *cu);
1535
0018ea6f
DE
1536static struct partial_symtab *create_partial_symtab
1537 (struct dwarf2_per_cu_data *per_cu, const char *name);
1538
c67a9c90 1539static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1540
72bf9492
DJ
1541static void scan_partial_symbols (struct partial_die_info *,
1542 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1543 int, struct dwarf2_cu *);
c906108c 1544
72bf9492
DJ
1545static void add_partial_symbol (struct partial_die_info *,
1546 struct dwarf2_cu *);
63d06c5c 1547
72bf9492
DJ
1548static void add_partial_namespace (struct partial_die_info *pdi,
1549 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1550 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1551
5d7cb8df 1552static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1553 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1554 struct dwarf2_cu *cu);
1555
72bf9492
DJ
1556static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1557 struct dwarf2_cu *cu);
91c24f0a 1558
bc30ff58
JB
1559static void add_partial_subprogram (struct partial_die_info *pdi,
1560 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1561 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1562
257e7a09
YQ
1563static void dwarf2_read_symtab (struct partial_symtab *,
1564 struct objfile *);
c906108c 1565
a14ed312 1566static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1567
433df2d4
DE
1568static struct abbrev_info *abbrev_table_lookup_abbrev
1569 (const struct abbrev_table *, unsigned int);
1570
1571static struct abbrev_table *abbrev_table_read_table
1572 (struct dwarf2_section_info *, sect_offset);
1573
1574static void abbrev_table_free (struct abbrev_table *);
1575
f4dc4d17
DE
1576static void abbrev_table_free_cleanup (void *);
1577
dee91e82
DE
1578static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1579 struct dwarf2_section_info *);
c906108c 1580
f3dd6933 1581static void dwarf2_free_abbrev_table (void *);
c906108c 1582
d521ce57 1583static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1584
dee91e82 1585static struct partial_die_info *load_partial_dies
d521ce57 1586 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1587
d521ce57
TT
1588static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1589 struct partial_die_info *,
1590 struct abbrev_info *,
1591 unsigned int,
1592 const gdb_byte *);
c906108c 1593
36586728 1594static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1595 struct dwarf2_cu *);
72bf9492
DJ
1596
1597static void fixup_partial_die (struct partial_die_info *,
1598 struct dwarf2_cu *);
1599
d521ce57
TT
1600static const gdb_byte *read_attribute (const struct die_reader_specs *,
1601 struct attribute *, struct attr_abbrev *,
1602 const gdb_byte *);
a8329558 1603
a1855c1d 1604static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1605
a1855c1d 1606static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1607
a1855c1d 1608static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1609
a1855c1d 1610static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1611
a1855c1d 1612static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1613
d521ce57 1614static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1615 unsigned int *);
c906108c 1616
d521ce57 1617static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1618
1619static LONGEST read_checked_initial_length_and_offset
d521ce57 1620 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1621 unsigned int *, unsigned int *);
613e1657 1622
d521ce57
TT
1623static LONGEST read_offset (bfd *, const gdb_byte *,
1624 const struct comp_unit_head *,
c764a876
DE
1625 unsigned int *);
1626
d521ce57 1627static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1628
f4dc4d17
DE
1629static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1630 sect_offset);
1631
d521ce57 1632static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1633
d521ce57 1634static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1635
d521ce57
TT
1636static const char *read_indirect_string (bfd *, const gdb_byte *,
1637 const struct comp_unit_head *,
1638 unsigned int *);
4bdf3d34 1639
43988095
JK
1640static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1641 const struct comp_unit_head *,
1642 unsigned int *);
36586728 1643
43988095 1644static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
c906108c 1645
d521ce57 1646static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1647
d521ce57
TT
1648static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1649 const gdb_byte *,
3019eac3
DE
1650 unsigned int *);
1651
d521ce57 1652static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1653 ULONGEST str_index);
3019eac3 1654
e142c38c 1655static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1656
e142c38c
DJ
1657static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1658 struct dwarf2_cu *);
c906108c 1659
348e048f 1660static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1661 unsigned int);
348e048f 1662
7d45c7c3
KB
1663static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1664 struct dwarf2_cu *cu);
1665
05cf31d1
JB
1666static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1667 struct dwarf2_cu *cu);
1668
e142c38c 1669static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1670
e142c38c 1671static struct die_info *die_specification (struct die_info *die,
f2f0e013 1672 struct dwarf2_cu **);
63d06c5c 1673
9c541725 1674static line_header_up dwarf_decode_line_header (sect_offset sect_off,
fff8551c 1675 struct dwarf2_cu *cu);
debd256d 1676
f3f5162e 1677static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1678 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1679 CORE_ADDR, int decode_mapping);
c906108c 1680
4d663531 1681static void dwarf2_start_subfile (const char *, const char *);
c906108c 1682
43f3e411
DE
1683static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1684 const char *, const char *,
1685 CORE_ADDR);
f4dc4d17 1686
a14ed312 1687static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1688 struct dwarf2_cu *);
c906108c 1689
34eaf542
TT
1690static struct symbol *new_symbol_full (struct die_info *, struct type *,
1691 struct dwarf2_cu *, struct symbol *);
1692
ff39bb5e 1693static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1694 struct dwarf2_cu *);
c906108c 1695
ff39bb5e 1696static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1697 struct type *type,
1698 const char *name,
1699 struct obstack *obstack,
12df843f 1700 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1701 const gdb_byte **bytes,
98bfdba5 1702 struct dwarf2_locexpr_baton **baton);
2df3850c 1703
e7c27a73 1704static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1705
b4ba55a1
JB
1706static int need_gnat_info (struct dwarf2_cu *);
1707
3e43a32a
MS
1708static struct type *die_descriptive_type (struct die_info *,
1709 struct dwarf2_cu *);
b4ba55a1
JB
1710
1711static void set_descriptive_type (struct type *, struct die_info *,
1712 struct dwarf2_cu *);
1713
e7c27a73
DJ
1714static struct type *die_containing_type (struct die_info *,
1715 struct dwarf2_cu *);
c906108c 1716
ff39bb5e 1717static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1718 struct dwarf2_cu *);
c906108c 1719
f792889a 1720static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1721
673bfd45
DE
1722static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1723
0d5cff50 1724static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1725
6e70227d 1726static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1727 const char *suffix, int physname,
1728 struct dwarf2_cu *cu);
63d06c5c 1729
e7c27a73 1730static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1731
348e048f
DE
1732static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1733
e7c27a73 1734static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1735
e7c27a73 1736static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1737
96408a79
SA
1738static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1739
ff013f42
JK
1740static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1741 struct dwarf2_cu *, struct partial_symtab *);
1742
3a2b436a 1743/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
e385593e 1744 values. Keep the items ordered with increasing constraints compliance. */
3a2b436a
JK
1745enum pc_bounds_kind
1746{
e385593e 1747 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
3a2b436a
JK
1748 PC_BOUNDS_NOT_PRESENT,
1749
e385593e
JK
1750 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1751 were present but they do not form a valid range of PC addresses. */
1752 PC_BOUNDS_INVALID,
1753
3a2b436a
JK
1754 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1755 PC_BOUNDS_RANGES,
1756
1757 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1758 PC_BOUNDS_HIGH_LOW,
1759};
1760
1761static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1762 CORE_ADDR *, CORE_ADDR *,
1763 struct dwarf2_cu *,
1764 struct partial_symtab *);
c906108c 1765
fae299cd
DC
1766static void get_scope_pc_bounds (struct die_info *,
1767 CORE_ADDR *, CORE_ADDR *,
1768 struct dwarf2_cu *);
1769
801e3a5b
JB
1770static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1771 CORE_ADDR, struct dwarf2_cu *);
1772
a14ed312 1773static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1774 struct dwarf2_cu *);
c906108c 1775
a14ed312 1776static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1777 struct type *, struct dwarf2_cu *);
c906108c 1778
a14ed312 1779static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1780 struct die_info *, struct type *,
e7c27a73 1781 struct dwarf2_cu *);
c906108c 1782
a14ed312 1783static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1784 struct type *,
1785 struct dwarf2_cu *);
c906108c 1786
134d01f1 1787static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1788
e7c27a73 1789static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1790
e7c27a73 1791static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1792
5d7cb8df
JK
1793static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1794
22cee43f
PMR
1795static struct using_direct **using_directives (enum language);
1796
27aa8d6a
SW
1797static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1798
74921315
KS
1799static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1800
f55ee35c
JK
1801static struct type *read_module_type (struct die_info *die,
1802 struct dwarf2_cu *cu);
1803
38d518c9 1804static const char *namespace_name (struct die_info *die,
e142c38c 1805 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1806
134d01f1 1807static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1808
e7c27a73 1809static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1810
6e70227d 1811static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1812 struct dwarf2_cu *);
1813
bf6af496 1814static struct die_info *read_die_and_siblings_1
d521ce57 1815 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1816 struct die_info *);
639d11d3 1817
dee91e82 1818static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1819 const gdb_byte *info_ptr,
1820 const gdb_byte **new_info_ptr,
639d11d3
DC
1821 struct die_info *parent);
1822
d521ce57
TT
1823static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1824 struct die_info **, const gdb_byte *,
1825 int *, int);
3019eac3 1826
d521ce57
TT
1827static const gdb_byte *read_full_die (const struct die_reader_specs *,
1828 struct die_info **, const gdb_byte *,
1829 int *);
93311388 1830
e7c27a73 1831static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1832
15d034d0
TT
1833static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1834 struct obstack *);
71c25dea 1835
15d034d0 1836static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1837
15d034d0 1838static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1839 struct die_info *die,
1840 struct dwarf2_cu *cu);
1841
ca69b9e6
DE
1842static const char *dwarf2_physname (const char *name, struct die_info *die,
1843 struct dwarf2_cu *cu);
1844
e142c38c 1845static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1846 struct dwarf2_cu **);
9219021c 1847
f39c6ffd 1848static const char *dwarf_tag_name (unsigned int);
c906108c 1849
f39c6ffd 1850static const char *dwarf_attr_name (unsigned int);
c906108c 1851
f39c6ffd 1852static const char *dwarf_form_name (unsigned int);
c906108c 1853
a121b7c1 1854static const char *dwarf_bool_name (unsigned int);
c906108c 1855
f39c6ffd 1856static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1857
f9aca02d 1858static struct die_info *sibling_die (struct die_info *);
c906108c 1859
d97bc12b
DE
1860static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1861
1862static void dump_die_for_error (struct die_info *);
1863
1864static void dump_die_1 (struct ui_file *, int level, int max_level,
1865 struct die_info *);
c906108c 1866
d97bc12b 1867/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1868
51545339 1869static void store_in_ref_table (struct die_info *,
10b3939b 1870 struct dwarf2_cu *);
c906108c 1871
ff39bb5e 1872static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1873
ff39bb5e 1874static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1875
348e048f 1876static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1877 const struct attribute *,
348e048f
DE
1878 struct dwarf2_cu **);
1879
10b3939b 1880static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1881 const struct attribute *,
f2f0e013 1882 struct dwarf2_cu **);
c906108c 1883
348e048f 1884static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1885 const struct attribute *,
348e048f
DE
1886 struct dwarf2_cu **);
1887
ac9ec31b
DE
1888static struct type *get_signatured_type (struct die_info *, ULONGEST,
1889 struct dwarf2_cu *);
1890
1891static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1892 const struct attribute *,
ac9ec31b
DE
1893 struct dwarf2_cu *);
1894
e5fe5e75 1895static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1896
52dc124a 1897static void read_signatured_type (struct signatured_type *);
348e048f 1898
63e43d3a
PMR
1899static int attr_to_dynamic_prop (const struct attribute *attr,
1900 struct die_info *die, struct dwarf2_cu *cu,
1901 struct dynamic_prop *prop);
1902
c906108c
SS
1903/* memory allocation interface */
1904
7b5a2f43 1905static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1906
b60c80d6 1907static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1908
43f3e411 1909static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1910
6e5a29e1 1911static int attr_form_is_block (const struct attribute *);
8e19ed76 1912
6e5a29e1 1913static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1914
6e5a29e1 1915static int attr_form_is_constant (const struct attribute *);
3690dd37 1916
6e5a29e1 1917static int attr_form_is_ref (const struct attribute *);
7771576e 1918
8cf6f0b1
TT
1919static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1920 struct dwarf2_loclist_baton *baton,
ff39bb5e 1921 const struct attribute *attr);
8cf6f0b1 1922
ff39bb5e 1923static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1924 struct symbol *sym,
f1e6e072
TT
1925 struct dwarf2_cu *cu,
1926 int is_block);
4c2df51b 1927
d521ce57
TT
1928static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1929 const gdb_byte *info_ptr,
1930 struct abbrev_info *abbrev);
4bb7a0a7 1931
72bf9492
DJ
1932static void free_stack_comp_unit (void *);
1933
72bf9492
DJ
1934static hashval_t partial_die_hash (const void *item);
1935
1936static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1937
ae038cb0 1938static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
9c541725 1939 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1940
9816fde3 1941static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1942 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1943
1944static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1945 struct die_info *comp_unit_die,
1946 enum language pretend_language);
93311388 1947
68dc6402 1948static void free_heap_comp_unit (void *);
ae038cb0
DJ
1949
1950static void free_cached_comp_units (void *);
1951
1952static void age_cached_comp_units (void);
1953
dee91e82 1954static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1955
f792889a
DJ
1956static struct type *set_die_type (struct die_info *, struct type *,
1957 struct dwarf2_cu *);
1c379e20 1958
ae038cb0
DJ
1959static void create_all_comp_units (struct objfile *);
1960
0e50663e 1961static int create_all_type_units (struct objfile *);
1fd400ff 1962
95554aad
TT
1963static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1964 enum language);
10b3939b 1965
95554aad
TT
1966static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1967 enum language);
10b3939b 1968
f4dc4d17
DE
1969static void process_full_type_unit (struct dwarf2_per_cu_data *,
1970 enum language);
1971
10b3939b
DJ
1972static void dwarf2_add_dependence (struct dwarf2_cu *,
1973 struct dwarf2_per_cu_data *);
1974
ae038cb0
DJ
1975static void dwarf2_mark (struct dwarf2_cu *);
1976
1977static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1978
b64f50a1 1979static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1980 struct dwarf2_per_cu_data *);
673bfd45 1981
f792889a 1982static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1983
9291a0cd
TT
1984static void dwarf2_release_queue (void *dummy);
1985
95554aad
TT
1986static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1987 enum language pretend_language);
1988
a0f42c21 1989static void process_queue (void);
9291a0cd 1990
d721ba37
PA
1991/* The return type of find_file_and_directory. Note, the enclosed
1992 string pointers are only valid while this object is valid. */
1993
1994struct file_and_directory
1995{
1996 /* The filename. This is never NULL. */
1997 const char *name;
1998
1999 /* The compilation directory. NULL if not known. If we needed to
2000 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2001 points directly to the DW_AT_comp_dir string attribute owned by
2002 the obstack that owns the DIE. */
2003 const char *comp_dir;
2004
2005 /* If we needed to build a new string for comp_dir, this is what
2006 owns the storage. */
2007 std::string comp_dir_storage;
2008};
2009
2010static file_and_directory find_file_and_directory (struct die_info *die,
2011 struct dwarf2_cu *cu);
9291a0cd
TT
2012
2013static char *file_full_name (int file, struct line_header *lh,
2014 const char *comp_dir);
2015
43988095
JK
2016/* Expected enum dwarf_unit_type for read_comp_unit_head. */
2017enum class rcuh_kind { COMPILE, TYPE };
2018
d521ce57 2019static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
2020 (struct comp_unit_head *header,
2021 struct dwarf2_section_info *section,
d521ce57 2022 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
43988095 2023 rcuh_kind section_kind);
36586728 2024
fd820528 2025static void init_cutu_and_read_dies
f4dc4d17
DE
2026 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2027 int use_existing_cu, int keep,
3019eac3
DE
2028 die_reader_func_ftype *die_reader_func, void *data);
2029
dee91e82
DE
2030static void init_cutu_and_read_dies_simple
2031 (struct dwarf2_per_cu_data *this_cu,
2032 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 2033
673bfd45 2034static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 2035
3019eac3
DE
2036static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2037
57d63ce2
DE
2038static struct dwo_unit *lookup_dwo_unit_in_dwp
2039 (struct dwp_file *dwp_file, const char *comp_dir,
2040 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
2041
2042static struct dwp_file *get_dwp_file (void);
2043
3019eac3 2044static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 2045 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
2046
2047static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 2048 (struct signatured_type *, const char *, const char *);
3019eac3 2049
89e63ee4
DE
2050static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2051
3019eac3
DE
2052static void free_dwo_file_cleanup (void *);
2053
95554aad
TT
2054static void process_cu_includes (void);
2055
1b80a9fa 2056static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
2057
2058static void free_line_header_voidp (void *arg);
4390d890
DE
2059\f
2060/* Various complaints about symbol reading that don't abort the process. */
2061
2062static void
2063dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2064{
2065 complaint (&symfile_complaints,
2066 _("statement list doesn't fit in .debug_line section"));
2067}
2068
2069static void
2070dwarf2_debug_line_missing_file_complaint (void)
2071{
2072 complaint (&symfile_complaints,
2073 _(".debug_line section has line data without a file"));
2074}
2075
2076static void
2077dwarf2_debug_line_missing_end_sequence_complaint (void)
2078{
2079 complaint (&symfile_complaints,
2080 _(".debug_line section has line "
2081 "program sequence without an end"));
2082}
2083
2084static void
2085dwarf2_complex_location_expr_complaint (void)
2086{
2087 complaint (&symfile_complaints, _("location expression too complex"));
2088}
2089
2090static void
2091dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2092 int arg3)
2093{
2094 complaint (&symfile_complaints,
2095 _("const value length mismatch for '%s', got %d, expected %d"),
2096 arg1, arg2, arg3);
2097}
2098
2099static void
2100dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2101{
2102 complaint (&symfile_complaints,
2103 _("debug info runs off end of %s section"
2104 " [in module %s]"),
a32a8923
DE
2105 get_section_name (section),
2106 get_section_file_name (section));
4390d890 2107}
1b80a9fa 2108
4390d890
DE
2109static void
2110dwarf2_macro_malformed_definition_complaint (const char *arg1)
2111{
2112 complaint (&symfile_complaints,
2113 _("macro debug info contains a "
2114 "malformed macro definition:\n`%s'"),
2115 arg1);
2116}
2117
2118static void
2119dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2120{
2121 complaint (&symfile_complaints,
2122 _("invalid attribute class or form for '%s' in '%s'"),
2123 arg1, arg2);
2124}
527f3840
JK
2125
2126/* Hash function for line_header_hash. */
2127
2128static hashval_t
2129line_header_hash (const struct line_header *ofs)
2130{
9c541725 2131 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
527f3840
JK
2132}
2133
2134/* Hash function for htab_create_alloc_ex for line_header_hash. */
2135
2136static hashval_t
2137line_header_hash_voidp (const void *item)
2138{
9a3c8263 2139 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
2140
2141 return line_header_hash (ofs);
2142}
2143
2144/* Equality function for line_header_hash. */
2145
2146static int
2147line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2148{
9a3c8263
SM
2149 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2150 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840 2151
9c541725 2152 return (ofs_lhs->sect_off == ofs_rhs->sect_off
527f3840
JK
2153 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2154}
2155
4390d890 2156\f
9291a0cd
TT
2157#if WORDS_BIGENDIAN
2158
2159/* Convert VALUE between big- and little-endian. */
2160static offset_type
2161byte_swap (offset_type value)
2162{
2163 offset_type result;
2164
2165 result = (value & 0xff) << 24;
2166 result |= (value & 0xff00) << 8;
2167 result |= (value & 0xff0000) >> 8;
2168 result |= (value & 0xff000000) >> 24;
2169 return result;
2170}
2171
2172#define MAYBE_SWAP(V) byte_swap (V)
2173
2174#else
bc8f2430 2175#define MAYBE_SWAP(V) static_cast<offset_type> (V)
9291a0cd
TT
2176#endif /* WORDS_BIGENDIAN */
2177
31aa7e4e
JB
2178/* Read the given attribute value as an address, taking the attribute's
2179 form into account. */
2180
2181static CORE_ADDR
2182attr_value_as_address (struct attribute *attr)
2183{
2184 CORE_ADDR addr;
2185
2186 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2187 {
2188 /* Aside from a few clearly defined exceptions, attributes that
2189 contain an address must always be in DW_FORM_addr form.
2190 Unfortunately, some compilers happen to be violating this
2191 requirement by encoding addresses using other forms, such
2192 as DW_FORM_data4 for example. For those broken compilers,
2193 we try to do our best, without any guarantee of success,
2194 to interpret the address correctly. It would also be nice
2195 to generate a complaint, but that would require us to maintain
2196 a list of legitimate cases where a non-address form is allowed,
2197 as well as update callers to pass in at least the CU's DWARF
2198 version. This is more overhead than what we're willing to
2199 expand for a pretty rare case. */
2200 addr = DW_UNSND (attr);
2201 }
2202 else
2203 addr = DW_ADDR (attr);
2204
2205 return addr;
2206}
2207
9291a0cd
TT
2208/* The suffix for an index file. */
2209#define INDEX_SUFFIX ".gdb-index"
2210
330cdd98
PA
2211/* See declaration. */
2212
2213dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2214 const dwarf2_debug_sections *names)
2215 : objfile (objfile_)
2216{
2217 if (names == NULL)
2218 names = &dwarf2_elf_names;
2219
2220 bfd *obfd = objfile->obfd;
2221
2222 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2223 locate_sections (obfd, sec, *names);
2224}
2225
2226dwarf2_per_objfile::~dwarf2_per_objfile ()
2227{
2228 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2229 free_cached_comp_units ();
2230
2231 if (quick_file_names_table)
2232 htab_delete (quick_file_names_table);
2233
2234 if (line_header_hash)
2235 htab_delete (line_header_hash);
2236
2237 /* Everything else should be on the objfile obstack. */
2238}
2239
2240/* See declaration. */
2241
2242void
2243dwarf2_per_objfile::free_cached_comp_units ()
2244{
2245 dwarf2_per_cu_data *per_cu = read_in_chain;
2246 dwarf2_per_cu_data **last_chain = &read_in_chain;
2247 while (per_cu != NULL)
2248 {
2249 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2250
2251 free_heap_comp_unit (per_cu->cu);
2252 *last_chain = next_cu;
2253 per_cu = next_cu;
2254 }
2255}
2256
c906108c 2257/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2258 information and return true if we have enough to do something.
2259 NAMES points to the dwarf2 section names, or is NULL if the standard
2260 ELF names are used. */
c906108c
SS
2261
2262int
251d32d9
TG
2263dwarf2_has_info (struct objfile *objfile,
2264 const struct dwarf2_debug_sections *names)
c906108c 2265{
9a3c8263
SM
2266 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2267 objfile_data (objfile, dwarf2_objfile_data_key));
be391dca
TT
2268 if (!dwarf2_per_objfile)
2269 {
2270 /* Initialize per-objfile state. */
2271 struct dwarf2_per_objfile *data
8d749320 2272 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
9a619af0 2273
330cdd98
PA
2274 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2275 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
be391dca 2276 }
73869dc2 2277 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2278 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2279 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2280 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2281}
2282
2283/* Return the containing section of virtual section SECTION. */
2284
2285static struct dwarf2_section_info *
2286get_containing_section (const struct dwarf2_section_info *section)
2287{
2288 gdb_assert (section->is_virtual);
2289 return section->s.containing_section;
c906108c
SS
2290}
2291
a32a8923
DE
2292/* Return the bfd owner of SECTION. */
2293
2294static struct bfd *
2295get_section_bfd_owner (const struct dwarf2_section_info *section)
2296{
73869dc2
DE
2297 if (section->is_virtual)
2298 {
2299 section = get_containing_section (section);
2300 gdb_assert (!section->is_virtual);
2301 }
049412e3 2302 return section->s.section->owner;
a32a8923
DE
2303}
2304
2305/* Return the bfd section of SECTION.
2306 Returns NULL if the section is not present. */
2307
2308static asection *
2309get_section_bfd_section (const struct dwarf2_section_info *section)
2310{
73869dc2
DE
2311 if (section->is_virtual)
2312 {
2313 section = get_containing_section (section);
2314 gdb_assert (!section->is_virtual);
2315 }
049412e3 2316 return section->s.section;
a32a8923
DE
2317}
2318
2319/* Return the name of SECTION. */
2320
2321static const char *
2322get_section_name (const struct dwarf2_section_info *section)
2323{
2324 asection *sectp = get_section_bfd_section (section);
2325
2326 gdb_assert (sectp != NULL);
2327 return bfd_section_name (get_section_bfd_owner (section), sectp);
2328}
2329
2330/* Return the name of the file SECTION is in. */
2331
2332static const char *
2333get_section_file_name (const struct dwarf2_section_info *section)
2334{
2335 bfd *abfd = get_section_bfd_owner (section);
2336
2337 return bfd_get_filename (abfd);
2338}
2339
2340/* Return the id of SECTION.
2341 Returns 0 if SECTION doesn't exist. */
2342
2343static int
2344get_section_id (const struct dwarf2_section_info *section)
2345{
2346 asection *sectp = get_section_bfd_section (section);
2347
2348 if (sectp == NULL)
2349 return 0;
2350 return sectp->id;
2351}
2352
2353/* Return the flags of SECTION.
73869dc2 2354 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2355
2356static int
2357get_section_flags (const struct dwarf2_section_info *section)
2358{
2359 asection *sectp = get_section_bfd_section (section);
2360
2361 gdb_assert (sectp != NULL);
2362 return bfd_get_section_flags (sectp->owner, sectp);
2363}
2364
251d32d9
TG
2365/* When loading sections, we look either for uncompressed section or for
2366 compressed section names. */
233a11ab
CS
2367
2368static int
251d32d9
TG
2369section_is_p (const char *section_name,
2370 const struct dwarf2_section_names *names)
233a11ab 2371{
251d32d9
TG
2372 if (names->normal != NULL
2373 && strcmp (section_name, names->normal) == 0)
2374 return 1;
2375 if (names->compressed != NULL
2376 && strcmp (section_name, names->compressed) == 0)
2377 return 1;
2378 return 0;
233a11ab
CS
2379}
2380
330cdd98 2381/* See declaration. */
c906108c 2382
330cdd98
PA
2383void
2384dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2385 const dwarf2_debug_sections &names)
c906108c 2386{
dc7650b8 2387 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9 2388
dc7650b8
JK
2389 if ((aflag & SEC_HAS_CONTENTS) == 0)
2390 {
2391 }
330cdd98 2392 else if (section_is_p (sectp->name, &names.info))
c906108c 2393 {
330cdd98
PA
2394 this->info.s.section = sectp;
2395 this->info.size = bfd_get_section_size (sectp);
c906108c 2396 }
330cdd98 2397 else if (section_is_p (sectp->name, &names.abbrev))
c906108c 2398 {
330cdd98
PA
2399 this->abbrev.s.section = sectp;
2400 this->abbrev.size = bfd_get_section_size (sectp);
c906108c 2401 }
330cdd98 2402 else if (section_is_p (sectp->name, &names.line))
c906108c 2403 {
330cdd98
PA
2404 this->line.s.section = sectp;
2405 this->line.size = bfd_get_section_size (sectp);
c906108c 2406 }
330cdd98 2407 else if (section_is_p (sectp->name, &names.loc))
c906108c 2408 {
330cdd98
PA
2409 this->loc.s.section = sectp;
2410 this->loc.size = bfd_get_section_size (sectp);
c906108c 2411 }
330cdd98 2412 else if (section_is_p (sectp->name, &names.loclists))
43988095 2413 {
330cdd98
PA
2414 this->loclists.s.section = sectp;
2415 this->loclists.size = bfd_get_section_size (sectp);
43988095 2416 }
330cdd98 2417 else if (section_is_p (sectp->name, &names.macinfo))
c906108c 2418 {
330cdd98
PA
2419 this->macinfo.s.section = sectp;
2420 this->macinfo.size = bfd_get_section_size (sectp);
c906108c 2421 }
330cdd98 2422 else if (section_is_p (sectp->name, &names.macro))
cf2c3c16 2423 {
330cdd98
PA
2424 this->macro.s.section = sectp;
2425 this->macro.size = bfd_get_section_size (sectp);
cf2c3c16 2426 }
330cdd98 2427 else if (section_is_p (sectp->name, &names.str))
c906108c 2428 {
330cdd98
PA
2429 this->str.s.section = sectp;
2430 this->str.size = bfd_get_section_size (sectp);
c906108c 2431 }
330cdd98 2432 else if (section_is_p (sectp->name, &names.line_str))
43988095 2433 {
330cdd98
PA
2434 this->line_str.s.section = sectp;
2435 this->line_str.size = bfd_get_section_size (sectp);
43988095 2436 }
330cdd98 2437 else if (section_is_p (sectp->name, &names.addr))
3019eac3 2438 {
330cdd98
PA
2439 this->addr.s.section = sectp;
2440 this->addr.size = bfd_get_section_size (sectp);
3019eac3 2441 }
330cdd98 2442 else if (section_is_p (sectp->name, &names.frame))
b6af0555 2443 {
330cdd98
PA
2444 this->frame.s.section = sectp;
2445 this->frame.size = bfd_get_section_size (sectp);
b6af0555 2446 }
330cdd98 2447 else if (section_is_p (sectp->name, &names.eh_frame))
b6af0555 2448 {
330cdd98
PA
2449 this->eh_frame.s.section = sectp;
2450 this->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2451 }
330cdd98 2452 else if (section_is_p (sectp->name, &names.ranges))
af34e669 2453 {
330cdd98
PA
2454 this->ranges.s.section = sectp;
2455 this->ranges.size = bfd_get_section_size (sectp);
af34e669 2456 }
330cdd98 2457 else if (section_is_p (sectp->name, &names.rnglists))
43988095 2458 {
330cdd98
PA
2459 this->rnglists.s.section = sectp;
2460 this->rnglists.size = bfd_get_section_size (sectp);
43988095 2461 }
330cdd98 2462 else if (section_is_p (sectp->name, &names.types))
348e048f 2463 {
8b70b953
TT
2464 struct dwarf2_section_info type_section;
2465
2466 memset (&type_section, 0, sizeof (type_section));
049412e3 2467 type_section.s.section = sectp;
8b70b953
TT
2468 type_section.size = bfd_get_section_size (sectp);
2469
330cdd98 2470 VEC_safe_push (dwarf2_section_info_def, this->types,
8b70b953 2471 &type_section);
348e048f 2472 }
330cdd98 2473 else if (section_is_p (sectp->name, &names.gdb_index))
9291a0cd 2474 {
330cdd98
PA
2475 this->gdb_index.s.section = sectp;
2476 this->gdb_index.size = bfd_get_section_size (sectp);
9291a0cd 2477 }
dce234bc 2478
b4e1fd61 2479 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5 2480 && bfd_section_vma (abfd, sectp) == 0)
330cdd98 2481 this->has_section_at_zero = true;
c906108c
SS
2482}
2483
fceca515
DE
2484/* A helper function that decides whether a section is empty,
2485 or not present. */
9e0ac564
TT
2486
2487static int
19ac8c2e 2488dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2489{
73869dc2
DE
2490 if (section->is_virtual)
2491 return section->size == 0;
049412e3 2492 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2493}
2494
3019eac3
DE
2495/* Read the contents of the section INFO.
2496 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2497 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2498 of the DWO file.
dce234bc 2499 If the section is compressed, uncompress it before returning. */
c906108c 2500
dce234bc
PP
2501static void
2502dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2503{
a32a8923 2504 asection *sectp;
3019eac3 2505 bfd *abfd;
dce234bc 2506 gdb_byte *buf, *retbuf;
c906108c 2507
be391dca
TT
2508 if (info->readin)
2509 return;
dce234bc 2510 info->buffer = NULL;
be391dca 2511 info->readin = 1;
188dd5d6 2512
9e0ac564 2513 if (dwarf2_section_empty_p (info))
dce234bc 2514 return;
c906108c 2515
a32a8923 2516 sectp = get_section_bfd_section (info);
3019eac3 2517
73869dc2
DE
2518 /* If this is a virtual section we need to read in the real one first. */
2519 if (info->is_virtual)
2520 {
2521 struct dwarf2_section_info *containing_section =
2522 get_containing_section (info);
2523
2524 gdb_assert (sectp != NULL);
2525 if ((sectp->flags & SEC_RELOC) != 0)
2526 {
2527 error (_("Dwarf Error: DWP format V2 with relocations is not"
2528 " supported in section %s [in module %s]"),
2529 get_section_name (info), get_section_file_name (info));
2530 }
2531 dwarf2_read_section (objfile, containing_section);
2532 /* Other code should have already caught virtual sections that don't
2533 fit. */
2534 gdb_assert (info->virtual_offset + info->size
2535 <= containing_section->size);
2536 /* If the real section is empty or there was a problem reading the
2537 section we shouldn't get here. */
2538 gdb_assert (containing_section->buffer != NULL);
2539 info->buffer = containing_section->buffer + info->virtual_offset;
2540 return;
2541 }
2542
4bf44c1c
TT
2543 /* If the section has relocations, we must read it ourselves.
2544 Otherwise we attach it to the BFD. */
2545 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2546 {
d521ce57 2547 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2548 return;
dce234bc 2549 }
dce234bc 2550
224c3ddb 2551 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2552 info->buffer = buf;
dce234bc
PP
2553
2554 /* When debugging .o files, we may need to apply relocations; see
2555 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2556 We never compress sections in .o files, so we only need to
2557 try this when the section is not compressed. */
ac8035ab 2558 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2559 if (retbuf != NULL)
2560 {
2561 info->buffer = retbuf;
2562 return;
2563 }
2564
a32a8923
DE
2565 abfd = get_section_bfd_owner (info);
2566 gdb_assert (abfd != NULL);
2567
dce234bc
PP
2568 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2569 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2570 {
2571 error (_("Dwarf Error: Can't read DWARF data"
2572 " in section %s [in module %s]"),
2573 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2574 }
dce234bc
PP
2575}
2576
9e0ac564
TT
2577/* A helper function that returns the size of a section in a safe way.
2578 If you are positive that the section has been read before using the
2579 size, then it is safe to refer to the dwarf2_section_info object's
2580 "size" field directly. In other cases, you must call this
2581 function, because for compressed sections the size field is not set
2582 correctly until the section has been read. */
2583
2584static bfd_size_type
2585dwarf2_section_size (struct objfile *objfile,
2586 struct dwarf2_section_info *info)
2587{
2588 if (!info->readin)
2589 dwarf2_read_section (objfile, info);
2590 return info->size;
2591}
2592
dce234bc 2593/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2594 SECTION_NAME. */
af34e669 2595
dce234bc 2596void
3017a003
TG
2597dwarf2_get_section_info (struct objfile *objfile,
2598 enum dwarf2_section_enum sect,
d521ce57 2599 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2600 bfd_size_type *sizep)
2601{
2602 struct dwarf2_per_objfile *data
9a3c8263
SM
2603 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2604 dwarf2_objfile_data_key);
dce234bc 2605 struct dwarf2_section_info *info;
a3b2a86b
TT
2606
2607 /* We may see an objfile without any DWARF, in which case we just
2608 return nothing. */
2609 if (data == NULL)
2610 {
2611 *sectp = NULL;
2612 *bufp = NULL;
2613 *sizep = 0;
2614 return;
2615 }
3017a003
TG
2616 switch (sect)
2617 {
2618 case DWARF2_DEBUG_FRAME:
2619 info = &data->frame;
2620 break;
2621 case DWARF2_EH_FRAME:
2622 info = &data->eh_frame;
2623 break;
2624 default:
2625 gdb_assert_not_reached ("unexpected section");
2626 }
dce234bc 2627
9e0ac564 2628 dwarf2_read_section (objfile, info);
dce234bc 2629
a32a8923 2630 *sectp = get_section_bfd_section (info);
dce234bc
PP
2631 *bufp = info->buffer;
2632 *sizep = info->size;
2633}
2634
36586728
TT
2635/* A helper function to find the sections for a .dwz file. */
2636
2637static void
2638locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2639{
9a3c8263 2640 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2641
2642 /* Note that we only support the standard ELF names, because .dwz
2643 is ELF-only (at the time of writing). */
2644 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2645 {
049412e3 2646 dwz_file->abbrev.s.section = sectp;
36586728
TT
2647 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2648 }
2649 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2650 {
049412e3 2651 dwz_file->info.s.section = sectp;
36586728
TT
2652 dwz_file->info.size = bfd_get_section_size (sectp);
2653 }
2654 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2655 {
049412e3 2656 dwz_file->str.s.section = sectp;
36586728
TT
2657 dwz_file->str.size = bfd_get_section_size (sectp);
2658 }
2659 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2660 {
049412e3 2661 dwz_file->line.s.section = sectp;
36586728
TT
2662 dwz_file->line.size = bfd_get_section_size (sectp);
2663 }
2664 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2665 {
049412e3 2666 dwz_file->macro.s.section = sectp;
36586728
TT
2667 dwz_file->macro.size = bfd_get_section_size (sectp);
2668 }
2ec9a5e0
TT
2669 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2670 {
049412e3 2671 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2672 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2673 }
36586728
TT
2674}
2675
4db1a1dc
TT
2676/* Open the separate '.dwz' debug file, if needed. Return NULL if
2677 there is no .gnu_debugaltlink section in the file. Error if there
2678 is such a section but the file cannot be found. */
36586728
TT
2679
2680static struct dwz_file *
2681dwarf2_get_dwz_file (void)
2682{
4db1a1dc 2683 char *data;
36586728
TT
2684 struct cleanup *cleanup;
2685 const char *filename;
2686 struct dwz_file *result;
acd13123 2687 bfd_size_type buildid_len_arg;
dc294be5
TT
2688 size_t buildid_len;
2689 bfd_byte *buildid;
36586728
TT
2690
2691 if (dwarf2_per_objfile->dwz_file != NULL)
2692 return dwarf2_per_objfile->dwz_file;
2693
4db1a1dc
TT
2694 bfd_set_error (bfd_error_no_error);
2695 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2696 &buildid_len_arg, &buildid);
4db1a1dc
TT
2697 if (data == NULL)
2698 {
2699 if (bfd_get_error () == bfd_error_no_error)
2700 return NULL;
2701 error (_("could not read '.gnu_debugaltlink' section: %s"),
2702 bfd_errmsg (bfd_get_error ()));
2703 }
36586728 2704 cleanup = make_cleanup (xfree, data);
dc294be5 2705 make_cleanup (xfree, buildid);
36586728 2706
acd13123
TT
2707 buildid_len = (size_t) buildid_len_arg;
2708
f9d83a0b 2709 filename = (const char *) data;
d721ba37
PA
2710
2711 std::string abs_storage;
36586728
TT
2712 if (!IS_ABSOLUTE_PATH (filename))
2713 {
4262abfb 2714 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2715
2716 make_cleanup (xfree, abs);
d721ba37
PA
2717 abs_storage = ldirname (abs) + SLASH_STRING + filename;
2718 filename = abs_storage.c_str ();
36586728
TT
2719 }
2720
dc294be5
TT
2721 /* First try the file name given in the section. If that doesn't
2722 work, try to use the build-id instead. */
192b62ce 2723 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
dc294be5 2724 if (dwz_bfd != NULL)
36586728 2725 {
192b62ce
TT
2726 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2727 dwz_bfd.release ();
36586728
TT
2728 }
2729
dc294be5
TT
2730 if (dwz_bfd == NULL)
2731 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2732
2733 if (dwz_bfd == NULL)
2734 error (_("could not find '.gnu_debugaltlink' file for %s"),
2735 objfile_name (dwarf2_per_objfile->objfile));
2736
36586728
TT
2737 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2738 struct dwz_file);
192b62ce 2739 result->dwz_bfd = dwz_bfd.release ();
36586728 2740
192b62ce 2741 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
36586728
TT
2742
2743 do_cleanups (cleanup);
2744
192b62ce 2745 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
8d2cc612 2746 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2747 return result;
2748}
9291a0cd 2749\f
7b9f3c50
DE
2750/* DWARF quick_symbols_functions support. */
2751
2752/* TUs can share .debug_line entries, and there can be a lot more TUs than
2753 unique line tables, so we maintain a separate table of all .debug_line
2754 derived entries to support the sharing.
2755 All the quick functions need is the list of file names. We discard the
2756 line_header when we're done and don't need to record it here. */
2757struct quick_file_names
2758{
094b34ac
DE
2759 /* The data used to construct the hash key. */
2760 struct stmt_list_hash hash;
7b9f3c50
DE
2761
2762 /* The number of entries in file_names, real_names. */
2763 unsigned int num_file_names;
2764
2765 /* The file names from the line table, after being run through
2766 file_full_name. */
2767 const char **file_names;
2768
2769 /* The file names from the line table after being run through
2770 gdb_realpath. These are computed lazily. */
2771 const char **real_names;
2772};
2773
2774/* When using the index (and thus not using psymtabs), each CU has an
2775 object of this type. This is used to hold information needed by
2776 the various "quick" methods. */
2777struct dwarf2_per_cu_quick_data
2778{
2779 /* The file table. This can be NULL if there was no file table
2780 or it's currently not read in.
2781 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2782 struct quick_file_names *file_names;
2783
2784 /* The corresponding symbol table. This is NULL if symbols for this
2785 CU have not yet been read. */
43f3e411 2786 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2787
2788 /* A temporary mark bit used when iterating over all CUs in
2789 expand_symtabs_matching. */
2790 unsigned int mark : 1;
2791
2792 /* True if we've tried to read the file table and found there isn't one.
2793 There will be no point in trying to read it again next time. */
2794 unsigned int no_file_data : 1;
2795};
2796
094b34ac
DE
2797/* Utility hash function for a stmt_list_hash. */
2798
2799static hashval_t
2800hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2801{
2802 hashval_t v = 0;
2803
2804 if (stmt_list_hash->dwo_unit != NULL)
2805 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
9c541725 2806 v += to_underlying (stmt_list_hash->line_sect_off);
094b34ac
DE
2807 return v;
2808}
2809
2810/* Utility equality function for a stmt_list_hash. */
2811
2812static int
2813eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2814 const struct stmt_list_hash *rhs)
2815{
2816 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2817 return 0;
2818 if (lhs->dwo_unit != NULL
2819 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2820 return 0;
2821
9c541725 2822 return lhs->line_sect_off == rhs->line_sect_off;
094b34ac
DE
2823}
2824
7b9f3c50
DE
2825/* Hash function for a quick_file_names. */
2826
2827static hashval_t
2828hash_file_name_entry (const void *e)
2829{
9a3c8263
SM
2830 const struct quick_file_names *file_data
2831 = (const struct quick_file_names *) e;
7b9f3c50 2832
094b34ac 2833 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2834}
2835
2836/* Equality function for a quick_file_names. */
2837
2838static int
2839eq_file_name_entry (const void *a, const void *b)
2840{
9a3c8263
SM
2841 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2842 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2843
094b34ac 2844 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2845}
2846
2847/* Delete function for a quick_file_names. */
2848
2849static void
2850delete_file_name_entry (void *e)
2851{
9a3c8263 2852 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2853 int i;
2854
2855 for (i = 0; i < file_data->num_file_names; ++i)
2856 {
2857 xfree ((void*) file_data->file_names[i]);
2858 if (file_data->real_names)
2859 xfree ((void*) file_data->real_names[i]);
2860 }
2861
2862 /* The space for the struct itself lives on objfile_obstack,
2863 so we don't free it here. */
2864}
2865
2866/* Create a quick_file_names hash table. */
2867
2868static htab_t
2869create_quick_file_names_table (unsigned int nr_initial_entries)
2870{
2871 return htab_create_alloc (nr_initial_entries,
2872 hash_file_name_entry, eq_file_name_entry,
2873 delete_file_name_entry, xcalloc, xfree);
2874}
9291a0cd 2875
918dd910
JK
2876/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2877 have to be created afterwards. You should call age_cached_comp_units after
2878 processing PER_CU->CU. dw2_setup must have been already called. */
2879
2880static void
2881load_cu (struct dwarf2_per_cu_data *per_cu)
2882{
3019eac3 2883 if (per_cu->is_debug_types)
e5fe5e75 2884 load_full_type_unit (per_cu);
918dd910 2885 else
95554aad 2886 load_full_comp_unit (per_cu, language_minimal);
918dd910 2887
cc12ce38
DE
2888 if (per_cu->cu == NULL)
2889 return; /* Dummy CU. */
2dc860c0
DE
2890
2891 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2892}
2893
a0f42c21 2894/* Read in the symbols for PER_CU. */
2fdf6df6 2895
9291a0cd 2896static void
a0f42c21 2897dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2898{
2899 struct cleanup *back_to;
2900
f4dc4d17
DE
2901 /* Skip type_unit_groups, reading the type units they contain
2902 is handled elsewhere. */
2903 if (IS_TYPE_UNIT_GROUP (per_cu))
2904 return;
2905
9291a0cd
TT
2906 back_to = make_cleanup (dwarf2_release_queue, NULL);
2907
95554aad 2908 if (dwarf2_per_objfile->using_index
43f3e411 2909 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2910 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2911 {
2912 queue_comp_unit (per_cu, language_minimal);
2913 load_cu (per_cu);
89e63ee4
DE
2914
2915 /* If we just loaded a CU from a DWO, and we're working with an index
2916 that may badly handle TUs, load all the TUs in that DWO as well.
2917 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2918 if (!per_cu->is_debug_types
cc12ce38 2919 && per_cu->cu != NULL
89e63ee4
DE
2920 && per_cu->cu->dwo_unit != NULL
2921 && dwarf2_per_objfile->index_table != NULL
2922 && dwarf2_per_objfile->index_table->version <= 7
2923 /* DWP files aren't supported yet. */
2924 && get_dwp_file () == NULL)
2925 queue_and_load_all_dwo_tus (per_cu);
95554aad 2926 }
9291a0cd 2927
a0f42c21 2928 process_queue ();
9291a0cd
TT
2929
2930 /* Age the cache, releasing compilation units that have not
2931 been used recently. */
2932 age_cached_comp_units ();
2933
2934 do_cleanups (back_to);
2935}
2936
2937/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2938 the objfile from which this CU came. Returns the resulting symbol
2939 table. */
2fdf6df6 2940
43f3e411 2941static struct compunit_symtab *
a0f42c21 2942dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2943{
95554aad 2944 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2945 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2946 {
2947 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
c83dd867 2948 scoped_restore decrementer = increment_reading_symtab ();
a0f42c21 2949 dw2_do_instantiate_symtab (per_cu);
95554aad 2950 process_cu_includes ();
9291a0cd
TT
2951 do_cleanups (back_to);
2952 }
f194fefb 2953
43f3e411 2954 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2955}
2956
8832e7e3 2957/* Return the CU/TU given its index.
f4dc4d17
DE
2958
2959 This is intended for loops like:
2960
2961 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2962 + dwarf2_per_objfile->n_type_units); ++i)
2963 {
8832e7e3 2964 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2965
2966 ...;
2967 }
2968*/
2fdf6df6 2969
1fd400ff 2970static struct dwarf2_per_cu_data *
8832e7e3 2971dw2_get_cutu (int index)
1fd400ff
TT
2972{
2973 if (index >= dwarf2_per_objfile->n_comp_units)
2974 {
f4dc4d17 2975 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2976 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2977 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2978 }
2979
2980 return dwarf2_per_objfile->all_comp_units[index];
2981}
2982
8832e7e3
DE
2983/* Return the CU given its index.
2984 This differs from dw2_get_cutu in that it's for when you know INDEX
2985 refers to a CU. */
f4dc4d17
DE
2986
2987static struct dwarf2_per_cu_data *
8832e7e3 2988dw2_get_cu (int index)
f4dc4d17 2989{
8832e7e3 2990 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2991
1fd400ff
TT
2992 return dwarf2_per_objfile->all_comp_units[index];
2993}
2994
2ec9a5e0
TT
2995/* A helper for create_cus_from_index that handles a given list of
2996 CUs. */
2fdf6df6 2997
74a0d9f6 2998static void
2ec9a5e0
TT
2999create_cus_from_index_list (struct objfile *objfile,
3000 const gdb_byte *cu_list, offset_type n_elements,
3001 struct dwarf2_section_info *section,
3002 int is_dwz,
3003 int base_offset)
9291a0cd
TT
3004{
3005 offset_type i;
9291a0cd 3006
2ec9a5e0 3007 for (i = 0; i < n_elements; i += 2)
9291a0cd 3008 {
74a0d9f6 3009 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
3010
3011 sect_offset sect_off
3012 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3013 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
3014 cu_list += 2 * 8;
3015
9c541725
PA
3016 dwarf2_per_cu_data *the_cu
3017 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3018 struct dwarf2_per_cu_data);
3019 the_cu->sect_off = sect_off;
9291a0cd
TT
3020 the_cu->length = length;
3021 the_cu->objfile = objfile;
8a0459fd 3022 the_cu->section = section;
9291a0cd
TT
3023 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3024 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
3025 the_cu->is_dwz = is_dwz;
3026 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 3027 }
9291a0cd
TT
3028}
3029
2ec9a5e0 3030/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 3031 the CU objects for this objfile. */
2ec9a5e0 3032
74a0d9f6 3033static void
2ec9a5e0
TT
3034create_cus_from_index (struct objfile *objfile,
3035 const gdb_byte *cu_list, offset_type cu_list_elements,
3036 const gdb_byte *dwz_list, offset_type dwz_elements)
3037{
3038 struct dwz_file *dwz;
3039
3040 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
8d749320
SM
3041 dwarf2_per_objfile->all_comp_units =
3042 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3043 dwarf2_per_objfile->n_comp_units);
2ec9a5e0 3044
74a0d9f6
JK
3045 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3046 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
3047
3048 if (dwz_elements == 0)
74a0d9f6 3049 return;
2ec9a5e0
TT
3050
3051 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
3052 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3053 cu_list_elements / 2);
2ec9a5e0
TT
3054}
3055
1fd400ff 3056/* Create the signatured type hash table from the index. */
673bfd45 3057
74a0d9f6 3058static void
673bfd45 3059create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 3060 struct dwarf2_section_info *section,
673bfd45
DE
3061 const gdb_byte *bytes,
3062 offset_type elements)
1fd400ff
TT
3063{
3064 offset_type i;
673bfd45 3065 htab_t sig_types_hash;
1fd400ff 3066
6aa5f3a6
DE
3067 dwarf2_per_objfile->n_type_units
3068 = dwarf2_per_objfile->n_allocated_type_units
3069 = elements / 3;
8d749320
SM
3070 dwarf2_per_objfile->all_type_units =
3071 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
1fd400ff 3072
673bfd45 3073 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
3074
3075 for (i = 0; i < elements; i += 3)
3076 {
52dc124a 3077 struct signatured_type *sig_type;
9c541725 3078 ULONGEST signature;
1fd400ff 3079 void **slot;
9c541725 3080 cu_offset type_offset_in_tu;
1fd400ff 3081
74a0d9f6 3082 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
3083 sect_offset sect_off
3084 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3085 type_offset_in_tu
3086 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3087 BFD_ENDIAN_LITTLE);
1fd400ff
TT
3088 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3089 bytes += 3 * 8;
3090
52dc124a 3091 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 3092 struct signatured_type);
52dc124a 3093 sig_type->signature = signature;
9c541725 3094 sig_type->type_offset_in_tu = type_offset_in_tu;
3019eac3 3095 sig_type->per_cu.is_debug_types = 1;
8a0459fd 3096 sig_type->per_cu.section = section;
9c541725 3097 sig_type->per_cu.sect_off = sect_off;
52dc124a
DE
3098 sig_type->per_cu.objfile = objfile;
3099 sig_type->per_cu.v.quick
1fd400ff
TT
3100 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3101 struct dwarf2_per_cu_quick_data);
3102
52dc124a
DE
3103 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3104 *slot = sig_type;
1fd400ff 3105
b4dd5633 3106 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
3107 }
3108
673bfd45 3109 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
3110}
3111
9291a0cd
TT
3112/* Read the address map data from the mapped index, and use it to
3113 populate the objfile's psymtabs_addrmap. */
2fdf6df6 3114
9291a0cd
TT
3115static void
3116create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3117{
3e29f34a 3118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd 3119 const gdb_byte *iter, *end;
9291a0cd 3120 struct addrmap *mutable_map;
9291a0cd
TT
3121 CORE_ADDR baseaddr;
3122
8268c778
PA
3123 auto_obstack temp_obstack;
3124
9291a0cd
TT
3125 mutable_map = addrmap_create_mutable (&temp_obstack);
3126
3127 iter = index->address_table;
3128 end = iter + index->address_table_size;
3129
3130 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3131
3132 while (iter < end)
3133 {
3134 ULONGEST hi, lo, cu_index;
3135 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3136 iter += 8;
3137 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3138 iter += 8;
3139 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3140 iter += 4;
f652bce2 3141
24a55014 3142 if (lo > hi)
f652bce2 3143 {
24a55014
DE
3144 complaint (&symfile_complaints,
3145 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 3146 hex_string (lo), hex_string (hi));
24a55014 3147 continue;
f652bce2 3148 }
24a55014
DE
3149
3150 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
3151 {
3152 complaint (&symfile_complaints,
3153 _(".gdb_index address table has invalid CU number %u"),
3154 (unsigned) cu_index);
24a55014 3155 continue;
f652bce2 3156 }
24a55014 3157
3e29f34a
MR
3158 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3159 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3160 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
3161 }
3162
3163 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3164 &objfile->objfile_obstack);
9291a0cd
TT
3165}
3166
59d7bcaf
JK
3167/* The hash function for strings in the mapped index. This is the same as
3168 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3169 implementation. This is necessary because the hash function is tied to the
3170 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
3171 SYMBOL_HASH_NEXT.
3172
3173 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 3174
9291a0cd 3175static hashval_t
559a7a62 3176mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
3177{
3178 const unsigned char *str = (const unsigned char *) p;
3179 hashval_t r = 0;
3180 unsigned char c;
3181
3182 while ((c = *str++) != 0)
559a7a62
JK
3183 {
3184 if (index_version >= 5)
3185 c = tolower (c);
3186 r = r * 67 + c - 113;
3187 }
9291a0cd
TT
3188
3189 return r;
3190}
3191
3192/* Find a slot in the mapped index INDEX for the object named NAME.
3193 If NAME is found, set *VEC_OUT to point to the CU vector in the
3194 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 3195
9291a0cd
TT
3196static int
3197find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3198 offset_type **vec_out)
3199{
0cf03b49
JK
3200 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3201 offset_type hash;
9291a0cd 3202 offset_type slot, step;
559a7a62 3203 int (*cmp) (const char *, const char *);
9291a0cd 3204
0cf03b49 3205 if (current_language->la_language == language_cplus
45280282
IB
3206 || current_language->la_language == language_fortran
3207 || current_language->la_language == language_d)
0cf03b49
JK
3208 {
3209 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3210 not contain any. */
a8719064 3211
72998fb3 3212 if (strchr (name, '(') != NULL)
0cf03b49 3213 {
72998fb3 3214 char *without_params = cp_remove_params (name);
0cf03b49 3215
72998fb3
DE
3216 if (without_params != NULL)
3217 {
3218 make_cleanup (xfree, without_params);
3219 name = without_params;
3220 }
0cf03b49
JK
3221 }
3222 }
3223
559a7a62 3224 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3225 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3226 simulate our NAME being searched is also lowercased. */
3227 hash = mapped_index_string_hash ((index->version == 4
3228 && case_sensitivity == case_sensitive_off
3229 ? 5 : index->version),
3230 name);
3231
3876f04e
DE
3232 slot = hash & (index->symbol_table_slots - 1);
3233 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3234 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3235
3236 for (;;)
3237 {
3238 /* Convert a slot number to an offset into the table. */
3239 offset_type i = 2 * slot;
3240 const char *str;
3876f04e 3241 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3242 {
3243 do_cleanups (back_to);
3244 return 0;
3245 }
9291a0cd 3246
3876f04e 3247 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3248 if (!cmp (name, str))
9291a0cd
TT
3249 {
3250 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3251 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3252 do_cleanups (back_to);
9291a0cd
TT
3253 return 1;
3254 }
3255
3876f04e 3256 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3257 }
3258}
3259
2ec9a5e0
TT
3260/* A helper function that reads the .gdb_index from SECTION and fills
3261 in MAP. FILENAME is the name of the file containing the section;
3262 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3263 ok to use deprecated sections.
3264
3265 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3266 out parameters that are filled in with information about the CU and
3267 TU lists in the section.
3268
3269 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3270
9291a0cd 3271static int
2ec9a5e0
TT
3272read_index_from_section (struct objfile *objfile,
3273 const char *filename,
3274 int deprecated_ok,
3275 struct dwarf2_section_info *section,
3276 struct mapped_index *map,
3277 const gdb_byte **cu_list,
3278 offset_type *cu_list_elements,
3279 const gdb_byte **types_list,
3280 offset_type *types_list_elements)
9291a0cd 3281{
948f8e3d 3282 const gdb_byte *addr;
2ec9a5e0 3283 offset_type version;
b3b272e1 3284 offset_type *metadata;
1fd400ff 3285 int i;
9291a0cd 3286
2ec9a5e0 3287 if (dwarf2_section_empty_p (section))
9291a0cd 3288 return 0;
82430852
JK
3289
3290 /* Older elfutils strip versions could keep the section in the main
3291 executable while splitting it for the separate debug info file. */
a32a8923 3292 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3293 return 0;
3294
2ec9a5e0 3295 dwarf2_read_section (objfile, section);
9291a0cd 3296
2ec9a5e0 3297 addr = section->buffer;
9291a0cd 3298 /* Version check. */
1fd400ff 3299 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3300 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3301 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3302 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3303 indices. */
831adc1f 3304 if (version < 4)
481860b3
GB
3305 {
3306 static int warning_printed = 0;
3307 if (!warning_printed)
3308 {
3309 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3310 filename);
481860b3
GB
3311 warning_printed = 1;
3312 }
3313 return 0;
3314 }
3315 /* Index version 4 uses a different hash function than index version
3316 5 and later.
3317
3318 Versions earlier than 6 did not emit psymbols for inlined
3319 functions. Using these files will cause GDB not to be able to
3320 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3321 indices unless the user has done
3322 "set use-deprecated-index-sections on". */
2ec9a5e0 3323 if (version < 6 && !deprecated_ok)
481860b3
GB
3324 {
3325 static int warning_printed = 0;
3326 if (!warning_printed)
3327 {
e615022a
DE
3328 warning (_("\
3329Skipping deprecated .gdb_index section in %s.\n\
3330Do \"set use-deprecated-index-sections on\" before the file is read\n\
3331to use the section anyway."),
2ec9a5e0 3332 filename);
481860b3
GB
3333 warning_printed = 1;
3334 }
3335 return 0;
3336 }
796a7ff8 3337 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3338 of the TU (for symbols coming from TUs),
3339 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3340 Plus gold-generated indices can have duplicate entries for global symbols,
3341 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3342 These are just performance bugs, and we can't distinguish gdb-generated
3343 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3344
481860b3 3345 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3346 longer backward compatible. */
796a7ff8 3347 if (version > 8)
594e8718 3348 return 0;
9291a0cd 3349
559a7a62 3350 map->version = version;
2ec9a5e0 3351 map->total_size = section->size;
9291a0cd
TT
3352
3353 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3354
3355 i = 0;
2ec9a5e0
TT
3356 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3357 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3358 / 8);
1fd400ff
TT
3359 ++i;
3360
2ec9a5e0
TT
3361 *types_list = addr + MAYBE_SWAP (metadata[i]);
3362 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3363 - MAYBE_SWAP (metadata[i]))
3364 / 8);
987d643c 3365 ++i;
1fd400ff
TT
3366
3367 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3368 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3369 - MAYBE_SWAP (metadata[i]));
3370 ++i;
3371
3876f04e
DE
3372 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3373 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3374 - MAYBE_SWAP (metadata[i]))
3375 / (2 * sizeof (offset_type)));
1fd400ff 3376 ++i;
9291a0cd 3377
f9d83a0b 3378 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3379
2ec9a5e0
TT
3380 return 1;
3381}
3382
3383
3384/* Read the index file. If everything went ok, initialize the "quick"
3385 elements of all the CUs and return 1. Otherwise, return 0. */
3386
3387static int
3388dwarf2_read_index (struct objfile *objfile)
3389{
3390 struct mapped_index local_map, *map;
3391 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3392 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3393 struct dwz_file *dwz;
2ec9a5e0 3394
4262abfb 3395 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3396 use_deprecated_index_sections,
3397 &dwarf2_per_objfile->gdb_index, &local_map,
3398 &cu_list, &cu_list_elements,
3399 &types_list, &types_list_elements))
3400 return 0;
3401
0fefef59 3402 /* Don't use the index if it's empty. */
2ec9a5e0 3403 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3404 return 0;
3405
2ec9a5e0
TT
3406 /* If there is a .dwz file, read it so we can get its CU list as
3407 well. */
4db1a1dc
TT
3408 dwz = dwarf2_get_dwz_file ();
3409 if (dwz != NULL)
2ec9a5e0 3410 {
2ec9a5e0
TT
3411 struct mapped_index dwz_map;
3412 const gdb_byte *dwz_types_ignore;
3413 offset_type dwz_types_elements_ignore;
3414
3415 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3416 1,
3417 &dwz->gdb_index, &dwz_map,
3418 &dwz_list, &dwz_list_elements,
3419 &dwz_types_ignore,
3420 &dwz_types_elements_ignore))
3421 {
3422 warning (_("could not read '.gdb_index' section from %s; skipping"),
3423 bfd_get_filename (dwz->dwz_bfd));
3424 return 0;
3425 }
3426 }
3427
74a0d9f6
JK
3428 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3429 dwz_list_elements);
1fd400ff 3430
8b70b953
TT
3431 if (types_list_elements)
3432 {
3433 struct dwarf2_section_info *section;
3434
3435 /* We can only handle a single .debug_types when we have an
3436 index. */
3437 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3438 return 0;
3439
3440 section = VEC_index (dwarf2_section_info_def,
3441 dwarf2_per_objfile->types, 0);
3442
74a0d9f6
JK
3443 create_signatured_type_table_from_index (objfile, section, types_list,
3444 types_list_elements);
8b70b953 3445 }
9291a0cd 3446
2ec9a5e0
TT
3447 create_addrmap_from_index (objfile, &local_map);
3448
8d749320 3449 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
2ec9a5e0 3450 *map = local_map;
9291a0cd
TT
3451
3452 dwarf2_per_objfile->index_table = map;
3453 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3454 dwarf2_per_objfile->quick_file_names_table =
3455 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3456
3457 return 1;
3458}
3459
3460/* A helper for the "quick" functions which sets the global
3461 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3462
9291a0cd
TT
3463static void
3464dw2_setup (struct objfile *objfile)
3465{
9a3c8263
SM
3466 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3467 objfile_data (objfile, dwarf2_objfile_data_key));
9291a0cd
TT
3468 gdb_assert (dwarf2_per_objfile);
3469}
3470
dee91e82 3471/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3472
dee91e82
DE
3473static void
3474dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3475 const gdb_byte *info_ptr,
dee91e82
DE
3476 struct die_info *comp_unit_die,
3477 int has_children,
3478 void *data)
9291a0cd 3479{
dee91e82
DE
3480 struct dwarf2_cu *cu = reader->cu;
3481 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3482 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3483 struct dwarf2_per_cu_data *lh_cu;
9291a0cd 3484 struct attribute *attr;
dee91e82 3485 int i;
7b9f3c50
DE
3486 void **slot;
3487 struct quick_file_names *qfn;
9291a0cd 3488
0186c6a7
DE
3489 gdb_assert (! this_cu->is_debug_types);
3490
07261596
TT
3491 /* Our callers never want to match partial units -- instead they
3492 will match the enclosing full CU. */
3493 if (comp_unit_die->tag == DW_TAG_partial_unit)
3494 {
3495 this_cu->v.quick->no_file_data = 1;
3496 return;
3497 }
3498
0186c6a7 3499 lh_cu = this_cu;
7b9f3c50 3500 slot = NULL;
dee91e82 3501
fff8551c 3502 line_header_up lh;
9c541725 3503 sect_offset line_offset {};
fff8551c 3504
dee91e82 3505 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3506 if (attr)
3507 {
7b9f3c50
DE
3508 struct quick_file_names find_entry;
3509
9c541725 3510 line_offset = (sect_offset) DW_UNSND (attr);
7b9f3c50
DE
3511
3512 /* We may have already read in this line header (TU line header sharing).
3513 If we have we're done. */
094b34ac 3514 find_entry.hash.dwo_unit = cu->dwo_unit;
9c541725 3515 find_entry.hash.line_sect_off = line_offset;
7b9f3c50
DE
3516 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3517 &find_entry, INSERT);
3518 if (*slot != NULL)
3519 {
9a3c8263 3520 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3521 return;
7b9f3c50
DE
3522 }
3523
3019eac3 3524 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3525 }
3526 if (lh == NULL)
3527 {
094b34ac 3528 lh_cu->v.quick->no_file_data = 1;
dee91e82 3529 return;
9291a0cd
TT
3530 }
3531
8d749320 3532 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac 3533 qfn->hash.dwo_unit = cu->dwo_unit;
9c541725 3534 qfn->hash.line_sect_off = line_offset;
7b9f3c50
DE
3535 gdb_assert (slot != NULL);
3536 *slot = qfn;
9291a0cd 3537
d721ba37 3538 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
9291a0cd 3539
fff8551c 3540 qfn->num_file_names = lh->file_names.size ();
8d749320 3541 qfn->file_names =
fff8551c
PA
3542 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3543 for (i = 0; i < lh->file_names.size (); ++i)
3544 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
7b9f3c50 3545 qfn->real_names = NULL;
9291a0cd 3546
094b34ac 3547 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3548}
3549
3550/* A helper for the "quick" functions which attempts to read the line
3551 table for THIS_CU. */
3552
3553static struct quick_file_names *
e4a48d9d 3554dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3555{
0186c6a7
DE
3556 /* This should never be called for TUs. */
3557 gdb_assert (! this_cu->is_debug_types);
3558 /* Nor type unit groups. */
3559 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3560
dee91e82
DE
3561 if (this_cu->v.quick->file_names != NULL)
3562 return this_cu->v.quick->file_names;
3563 /* If we know there is no line data, no point in looking again. */
3564 if (this_cu->v.quick->no_file_data)
3565 return NULL;
3566
0186c6a7 3567 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3568
3569 if (this_cu->v.quick->no_file_data)
3570 return NULL;
3571 return this_cu->v.quick->file_names;
9291a0cd
TT
3572}
3573
3574/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3575 real path for a given file name from the line table. */
2fdf6df6 3576
9291a0cd 3577static const char *
7b9f3c50
DE
3578dw2_get_real_path (struct objfile *objfile,
3579 struct quick_file_names *qfn, int index)
9291a0cd 3580{
7b9f3c50
DE
3581 if (qfn->real_names == NULL)
3582 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3583 qfn->num_file_names, const char *);
9291a0cd 3584
7b9f3c50
DE
3585 if (qfn->real_names[index] == NULL)
3586 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3587
7b9f3c50 3588 return qfn->real_names[index];
9291a0cd
TT
3589}
3590
3591static struct symtab *
3592dw2_find_last_source_symtab (struct objfile *objfile)
3593{
43f3e411 3594 struct compunit_symtab *cust;
9291a0cd 3595 int index;
ae2de4f8 3596
9291a0cd
TT
3597 dw2_setup (objfile);
3598 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3599 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3600 if (cust == NULL)
3601 return NULL;
3602 return compunit_primary_filetab (cust);
9291a0cd
TT
3603}
3604
7b9f3c50
DE
3605/* Traversal function for dw2_forget_cached_source_info. */
3606
3607static int
3608dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3609{
7b9f3c50 3610 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3611
7b9f3c50 3612 if (file_data->real_names)
9291a0cd 3613 {
7b9f3c50 3614 int i;
9291a0cd 3615
7b9f3c50 3616 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3617 {
7b9f3c50
DE
3618 xfree ((void*) file_data->real_names[i]);
3619 file_data->real_names[i] = NULL;
9291a0cd
TT
3620 }
3621 }
7b9f3c50
DE
3622
3623 return 1;
3624}
3625
3626static void
3627dw2_forget_cached_source_info (struct objfile *objfile)
3628{
3629 dw2_setup (objfile);
3630
3631 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3632 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3633}
3634
f8eba3c6
TT
3635/* Helper function for dw2_map_symtabs_matching_filename that expands
3636 the symtabs and calls the iterator. */
3637
3638static int
3639dw2_map_expand_apply (struct objfile *objfile,
3640 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3641 const char *name, const char *real_path,
14bc53a8 3642 gdb::function_view<bool (symtab *)> callback)
f8eba3c6 3643{
43f3e411 3644 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3645
3646 /* Don't visit already-expanded CUs. */
43f3e411 3647 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3648 return 0;
3649
3650 /* This may expand more than one symtab, and we want to iterate over
3651 all of them. */
a0f42c21 3652 dw2_instantiate_symtab (per_cu);
f8eba3c6 3653
14bc53a8
PA
3654 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3655 last_made, callback);
f8eba3c6
TT
3656}
3657
3658/* Implementation of the map_symtabs_matching_filename method. */
3659
14bc53a8
PA
3660static bool
3661dw2_map_symtabs_matching_filename
3662 (struct objfile *objfile, const char *name, const char *real_path,
3663 gdb::function_view<bool (symtab *)> callback)
9291a0cd
TT
3664{
3665 int i;
c011a4f4 3666 const char *name_basename = lbasename (name);
9291a0cd
TT
3667
3668 dw2_setup (objfile);
ae2de4f8 3669
848e3e78
DE
3670 /* The rule is CUs specify all the files, including those used by
3671 any TU, so there's no need to scan TUs here. */
f4dc4d17 3672
848e3e78 3673 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3674 {
3675 int j;
8832e7e3 3676 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3677 struct quick_file_names *file_data;
9291a0cd 3678
3d7bb9d9 3679 /* We only need to look at symtabs not already expanded. */
43f3e411 3680 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3681 continue;
3682
e4a48d9d 3683 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3684 if (file_data == NULL)
9291a0cd
TT
3685 continue;
3686
7b9f3c50 3687 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3688 {
7b9f3c50 3689 const char *this_name = file_data->file_names[j];
da235a7c 3690 const char *this_real_name;
9291a0cd 3691
af529f8f 3692 if (compare_filenames_for_search (this_name, name))
9291a0cd 3693 {
f5b95b50 3694 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3695 callback))
3696 return true;
288e77a7 3697 continue;
4aac40c8 3698 }
9291a0cd 3699
c011a4f4
DE
3700 /* Before we invoke realpath, which can get expensive when many
3701 files are involved, do a quick comparison of the basenames. */
3702 if (! basenames_may_differ
3703 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3704 continue;
3705
da235a7c
JK
3706 this_real_name = dw2_get_real_path (objfile, file_data, j);
3707 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3708 {
da235a7c 3709 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3710 callback))
3711 return true;
288e77a7 3712 continue;
da235a7c 3713 }
9291a0cd 3714
da235a7c
JK
3715 if (real_path != NULL)
3716 {
af529f8f
JK
3717 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3718 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3719 if (this_real_name != NULL
af529f8f 3720 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3721 {
f5b95b50 3722 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3723 callback))
3724 return true;
288e77a7 3725 continue;
9291a0cd
TT
3726 }
3727 }
3728 }
3729 }
3730
14bc53a8 3731 return false;
9291a0cd
TT
3732}
3733
da51c347
DE
3734/* Struct used to manage iterating over all CUs looking for a symbol. */
3735
3736struct dw2_symtab_iterator
9291a0cd 3737{
da51c347
DE
3738 /* The internalized form of .gdb_index. */
3739 struct mapped_index *index;
3740 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3741 int want_specific_block;
3742 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3743 Unused if !WANT_SPECIFIC_BLOCK. */
3744 int block_index;
3745 /* The kind of symbol we're looking for. */
3746 domain_enum domain;
3747 /* The list of CUs from the index entry of the symbol,
3748 or NULL if not found. */
3749 offset_type *vec;
3750 /* The next element in VEC to look at. */
3751 int next;
3752 /* The number of elements in VEC, or zero if there is no match. */
3753 int length;
8943b874
DE
3754 /* Have we seen a global version of the symbol?
3755 If so we can ignore all further global instances.
3756 This is to work around gold/15646, inefficient gold-generated
3757 indices. */
3758 int global_seen;
da51c347 3759};
9291a0cd 3760
da51c347
DE
3761/* Initialize the index symtab iterator ITER.
3762 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3763 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3764
9291a0cd 3765static void
da51c347
DE
3766dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3767 struct mapped_index *index,
3768 int want_specific_block,
3769 int block_index,
3770 domain_enum domain,
3771 const char *name)
3772{
3773 iter->index = index;
3774 iter->want_specific_block = want_specific_block;
3775 iter->block_index = block_index;
3776 iter->domain = domain;
3777 iter->next = 0;
8943b874 3778 iter->global_seen = 0;
da51c347
DE
3779
3780 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3781 iter->length = MAYBE_SWAP (*iter->vec);
3782 else
3783 {
3784 iter->vec = NULL;
3785 iter->length = 0;
3786 }
3787}
3788
3789/* Return the next matching CU or NULL if there are no more. */
3790
3791static struct dwarf2_per_cu_data *
3792dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3793{
3794 for ( ; iter->next < iter->length; ++iter->next)
3795 {
3796 offset_type cu_index_and_attrs =
3797 MAYBE_SWAP (iter->vec[iter->next + 1]);
3798 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3799 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3800 int want_static = iter->block_index != GLOBAL_BLOCK;
3801 /* This value is only valid for index versions >= 7. */
3802 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3803 gdb_index_symbol_kind symbol_kind =
3804 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3805 /* Only check the symbol attributes if they're present.
3806 Indices prior to version 7 don't record them,
3807 and indices >= 7 may elide them for certain symbols
3808 (gold does this). */
3809 int attrs_valid =
3810 (iter->index->version >= 7
3811 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3812
3190f0c6
DE
3813 /* Don't crash on bad data. */
3814 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3815 + dwarf2_per_objfile->n_type_units))
3816 {
3817 complaint (&symfile_complaints,
3818 _(".gdb_index entry has bad CU index"
4262abfb
JK
3819 " [in module %s]"),
3820 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3821 continue;
3822 }
3823
8832e7e3 3824 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3825
da51c347 3826 /* Skip if already read in. */
43f3e411 3827 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3828 continue;
3829
8943b874
DE
3830 /* Check static vs global. */
3831 if (attrs_valid)
3832 {
3833 if (iter->want_specific_block
3834 && want_static != is_static)
3835 continue;
3836 /* Work around gold/15646. */
3837 if (!is_static && iter->global_seen)
3838 continue;
3839 if (!is_static)
3840 iter->global_seen = 1;
3841 }
da51c347
DE
3842
3843 /* Only check the symbol's kind if it has one. */
3844 if (attrs_valid)
3845 {
3846 switch (iter->domain)
3847 {
3848 case VAR_DOMAIN:
3849 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3850 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3851 /* Some types are also in VAR_DOMAIN. */
3852 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3853 continue;
3854 break;
3855 case STRUCT_DOMAIN:
3856 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3857 continue;
3858 break;
3859 case LABEL_DOMAIN:
3860 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3861 continue;
3862 break;
3863 default:
3864 break;
3865 }
3866 }
3867
3868 ++iter->next;
3869 return per_cu;
3870 }
3871
3872 return NULL;
3873}
3874
43f3e411 3875static struct compunit_symtab *
da51c347
DE
3876dw2_lookup_symbol (struct objfile *objfile, int block_index,
3877 const char *name, domain_enum domain)
9291a0cd 3878{
43f3e411 3879 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3880 struct mapped_index *index;
3881
9291a0cd
TT
3882 dw2_setup (objfile);
3883
156942c7
DE
3884 index = dwarf2_per_objfile->index_table;
3885
da51c347 3886 /* index is NULL if OBJF_READNOW. */
156942c7 3887 if (index)
9291a0cd 3888 {
da51c347
DE
3889 struct dw2_symtab_iterator iter;
3890 struct dwarf2_per_cu_data *per_cu;
3891
3892 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3893
da51c347 3894 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3895 {
b2e2f908 3896 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3897 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3898 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3899 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3900
b2e2f908
DE
3901 sym = block_find_symbol (block, name, domain,
3902 block_find_non_opaque_type_preferred,
3903 &with_opaque);
3904
da51c347
DE
3905 /* Some caution must be observed with overloaded functions
3906 and methods, since the index will not contain any overload
3907 information (but NAME might contain it). */
da51c347 3908
b2e2f908
DE
3909 if (sym != NULL
3910 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3911 return stab;
3912 if (with_opaque != NULL
3913 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3914 stab_best = stab;
da51c347
DE
3915
3916 /* Keep looking through other CUs. */
9291a0cd
TT
3917 }
3918 }
9291a0cd 3919
da51c347 3920 return stab_best;
9291a0cd
TT
3921}
3922
3923static void
3924dw2_print_stats (struct objfile *objfile)
3925{
e4a48d9d 3926 int i, total, count;
9291a0cd
TT
3927
3928 dw2_setup (objfile);
e4a48d9d 3929 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3930 count = 0;
e4a48d9d 3931 for (i = 0; i < total; ++i)
9291a0cd 3932 {
8832e7e3 3933 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3934
43f3e411 3935 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3936 ++count;
3937 }
e4a48d9d 3938 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3939 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3940}
3941
779bd270
DE
3942/* This dumps minimal information about the index.
3943 It is called via "mt print objfiles".
3944 One use is to verify .gdb_index has been loaded by the
3945 gdb.dwarf2/gdb-index.exp testcase. */
3946
9291a0cd
TT
3947static void
3948dw2_dump (struct objfile *objfile)
3949{
779bd270
DE
3950 dw2_setup (objfile);
3951 gdb_assert (dwarf2_per_objfile->using_index);
3952 printf_filtered (".gdb_index:");
3953 if (dwarf2_per_objfile->index_table != NULL)
3954 {
3955 printf_filtered (" version %d\n",
3956 dwarf2_per_objfile->index_table->version);
3957 }
3958 else
3959 printf_filtered (" faked for \"readnow\"\n");
3960 printf_filtered ("\n");
9291a0cd
TT
3961}
3962
3963static void
3189cb12
DE
3964dw2_relocate (struct objfile *objfile,
3965 const struct section_offsets *new_offsets,
3966 const struct section_offsets *delta)
9291a0cd
TT
3967{
3968 /* There's nothing to relocate here. */
3969}
3970
3971static void
3972dw2_expand_symtabs_for_function (struct objfile *objfile,
3973 const char *func_name)
3974{
da51c347
DE
3975 struct mapped_index *index;
3976
3977 dw2_setup (objfile);
3978
3979 index = dwarf2_per_objfile->index_table;
3980
3981 /* index is NULL if OBJF_READNOW. */
3982 if (index)
3983 {
3984 struct dw2_symtab_iterator iter;
3985 struct dwarf2_per_cu_data *per_cu;
3986
3987 /* Note: It doesn't matter what we pass for block_index here. */
3988 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3989 func_name);
3990
3991 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3992 dw2_instantiate_symtab (per_cu);
3993 }
9291a0cd
TT
3994}
3995
3996static void
3997dw2_expand_all_symtabs (struct objfile *objfile)
3998{
3999 int i;
4000
4001 dw2_setup (objfile);
1fd400ff
TT
4002
4003 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4004 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4005 {
8832e7e3 4006 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4007
a0f42c21 4008 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
4009 }
4010}
4011
4012static void
652a8996
JK
4013dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4014 const char *fullname)
9291a0cd
TT
4015{
4016 int i;
4017
4018 dw2_setup (objfile);
d4637a04
DE
4019
4020 /* We don't need to consider type units here.
4021 This is only called for examining code, e.g. expand_line_sal.
4022 There can be an order of magnitude (or more) more type units
4023 than comp units, and we avoid them if we can. */
4024
4025 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4026 {
4027 int j;
8832e7e3 4028 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 4029 struct quick_file_names *file_data;
9291a0cd 4030
3d7bb9d9 4031 /* We only need to look at symtabs not already expanded. */
43f3e411 4032 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4033 continue;
4034
e4a48d9d 4035 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4036 if (file_data == NULL)
9291a0cd
TT
4037 continue;
4038
7b9f3c50 4039 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4040 {
652a8996
JK
4041 const char *this_fullname = file_data->file_names[j];
4042
4043 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 4044 {
a0f42c21 4045 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
4046 break;
4047 }
4048 }
4049 }
4050}
4051
9291a0cd 4052static void
ade7ed9e 4053dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 4054 const char * name, domain_enum domain,
ade7ed9e 4055 int global,
40658b94
PH
4056 int (*callback) (struct block *,
4057 struct symbol *, void *),
2edb89d3
JK
4058 void *data, symbol_compare_ftype *match,
4059 symbol_compare_ftype *ordered_compare)
9291a0cd 4060{
40658b94 4061 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
4062 current language is Ada for a non-Ada objfile using GNU index. As Ada
4063 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
4064}
4065
4066static void
f8eba3c6
TT
4067dw2_expand_symtabs_matching
4068 (struct objfile *objfile,
14bc53a8
PA
4069 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4070 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4071 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4072 enum search_domain kind)
9291a0cd
TT
4073{
4074 int i;
4075 offset_type iter;
4b5246aa 4076 struct mapped_index *index;
9291a0cd
TT
4077
4078 dw2_setup (objfile);
ae2de4f8
DE
4079
4080 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
4081 if (!dwarf2_per_objfile->index_table)
4082 return;
4b5246aa 4083 index = dwarf2_per_objfile->index_table;
9291a0cd 4084
7b08b9eb 4085 if (file_matcher != NULL)
24c79950 4086 {
fc4007c9
TT
4087 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4088 htab_eq_pointer,
4089 NULL, xcalloc, xfree));
4090 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4091 htab_eq_pointer,
4092 NULL, xcalloc, xfree));
24c79950 4093
848e3e78
DE
4094 /* The rule is CUs specify all the files, including those used by
4095 any TU, so there's no need to scan TUs here. */
4096
4097 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
4098 {
4099 int j;
8832e7e3 4100 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
4101 struct quick_file_names *file_data;
4102 void **slot;
7b08b9eb 4103
61d96d7e
DE
4104 QUIT;
4105
24c79950 4106 per_cu->v.quick->mark = 0;
3d7bb9d9 4107
24c79950 4108 /* We only need to look at symtabs not already expanded. */
43f3e411 4109 if (per_cu->v.quick->compunit_symtab)
24c79950 4110 continue;
7b08b9eb 4111
e4a48d9d 4112 file_data = dw2_get_file_names (per_cu);
24c79950
TT
4113 if (file_data == NULL)
4114 continue;
7b08b9eb 4115
fc4007c9 4116 if (htab_find (visited_not_found.get (), file_data) != NULL)
24c79950 4117 continue;
fc4007c9 4118 else if (htab_find (visited_found.get (), file_data) != NULL)
24c79950
TT
4119 {
4120 per_cu->v.quick->mark = 1;
4121 continue;
4122 }
4123
4124 for (j = 0; j < file_data->num_file_names; ++j)
4125 {
da235a7c
JK
4126 const char *this_real_name;
4127
14bc53a8 4128 if (file_matcher (file_data->file_names[j], false))
24c79950
TT
4129 {
4130 per_cu->v.quick->mark = 1;
4131 break;
4132 }
da235a7c
JK
4133
4134 /* Before we invoke realpath, which can get expensive when many
4135 files are involved, do a quick comparison of the basenames. */
4136 if (!basenames_may_differ
4137 && !file_matcher (lbasename (file_data->file_names[j]),
14bc53a8 4138 true))
da235a7c
JK
4139 continue;
4140
4141 this_real_name = dw2_get_real_path (objfile, file_data, j);
14bc53a8 4142 if (file_matcher (this_real_name, false))
da235a7c
JK
4143 {
4144 per_cu->v.quick->mark = 1;
4145 break;
4146 }
24c79950
TT
4147 }
4148
4149 slot = htab_find_slot (per_cu->v.quick->mark
fc4007c9
TT
4150 ? visited_found.get ()
4151 : visited_not_found.get (),
24c79950
TT
4152 file_data, INSERT);
4153 *slot = file_data;
4154 }
24c79950 4155 }
9291a0cd 4156
3876f04e 4157 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
4158 {
4159 offset_type idx = 2 * iter;
4160 const char *name;
4161 offset_type *vec, vec_len, vec_idx;
8943b874 4162 int global_seen = 0;
9291a0cd 4163
61d96d7e
DE
4164 QUIT;
4165
3876f04e 4166 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
4167 continue;
4168
3876f04e 4169 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 4170
14bc53a8 4171 if (!symbol_matcher (name))
9291a0cd
TT
4172 continue;
4173
4174 /* The name was matched, now expand corresponding CUs that were
4175 marked. */
4b5246aa 4176 vec = (offset_type *) (index->constant_pool
3876f04e 4177 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
4178 vec_len = MAYBE_SWAP (vec[0]);
4179 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4180 {
e254ef6a 4181 struct dwarf2_per_cu_data *per_cu;
156942c7 4182 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
4183 /* This value is only valid for index versions >= 7. */
4184 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
4185 gdb_index_symbol_kind symbol_kind =
4186 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4187 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
4188 /* Only check the symbol attributes if they're present.
4189 Indices prior to version 7 don't record them,
4190 and indices >= 7 may elide them for certain symbols
4191 (gold does this). */
4192 int attrs_valid =
4193 (index->version >= 7
4194 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4195
8943b874
DE
4196 /* Work around gold/15646. */
4197 if (attrs_valid)
4198 {
4199 if (!is_static && global_seen)
4200 continue;
4201 if (!is_static)
4202 global_seen = 1;
4203 }
4204
3190f0c6
DE
4205 /* Only check the symbol's kind if it has one. */
4206 if (attrs_valid)
156942c7
DE
4207 {
4208 switch (kind)
4209 {
4210 case VARIABLES_DOMAIN:
4211 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4212 continue;
4213 break;
4214 case FUNCTIONS_DOMAIN:
4215 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4216 continue;
4217 break;
4218 case TYPES_DOMAIN:
4219 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4220 continue;
4221 break;
4222 default:
4223 break;
4224 }
4225 }
4226
3190f0c6
DE
4227 /* Don't crash on bad data. */
4228 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4229 + dwarf2_per_objfile->n_type_units))
4230 {
4231 complaint (&symfile_complaints,
4232 _(".gdb_index entry has bad CU index"
4262abfb 4233 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4234 continue;
4235 }
4236
8832e7e3 4237 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4238 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4239 {
4240 int symtab_was_null =
4241 (per_cu->v.quick->compunit_symtab == NULL);
4242
4243 dw2_instantiate_symtab (per_cu);
4244
4245 if (expansion_notify != NULL
4246 && symtab_was_null
4247 && per_cu->v.quick->compunit_symtab != NULL)
4248 {
14bc53a8 4249 expansion_notify (per_cu->v.quick->compunit_symtab);
276d885b
GB
4250 }
4251 }
9291a0cd
TT
4252 }
4253 }
4254}
4255
43f3e411 4256/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4257 symtab. */
4258
43f3e411
DE
4259static struct compunit_symtab *
4260recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4261 CORE_ADDR pc)
9703b513
TT
4262{
4263 int i;
4264
43f3e411
DE
4265 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4266 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4267 return cust;
9703b513 4268
43f3e411 4269 if (cust->includes == NULL)
a3ec0bb1
DE
4270 return NULL;
4271
43f3e411 4272 for (i = 0; cust->includes[i]; ++i)
9703b513 4273 {
43f3e411 4274 struct compunit_symtab *s = cust->includes[i];
9703b513 4275
43f3e411 4276 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4277 if (s != NULL)
4278 return s;
4279 }
4280
4281 return NULL;
4282}
4283
43f3e411
DE
4284static struct compunit_symtab *
4285dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4286 struct bound_minimal_symbol msymbol,
4287 CORE_ADDR pc,
4288 struct obj_section *section,
4289 int warn_if_readin)
9291a0cd
TT
4290{
4291 struct dwarf2_per_cu_data *data;
43f3e411 4292 struct compunit_symtab *result;
9291a0cd
TT
4293
4294 dw2_setup (objfile);
4295
4296 if (!objfile->psymtabs_addrmap)
4297 return NULL;
4298
9a3c8263
SM
4299 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4300 pc);
9291a0cd
TT
4301 if (!data)
4302 return NULL;
4303
43f3e411 4304 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4305 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4306 paddress (get_objfile_arch (objfile), pc));
4307
43f3e411
DE
4308 result
4309 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4310 pc);
9703b513
TT
4311 gdb_assert (result != NULL);
4312 return result;
9291a0cd
TT
4313}
4314
9291a0cd 4315static void
44b13c5a 4316dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4317 void *data, int need_fullname)
9291a0cd 4318{
9291a0cd 4319 dw2_setup (objfile);
ae2de4f8 4320
bbf2f4df 4321 if (!dwarf2_per_objfile->filenames_cache)
24c79950 4322 {
bbf2f4df 4323 dwarf2_per_objfile->filenames_cache.emplace ();
24c79950 4324
bbf2f4df
PA
4325 htab_up visited (htab_create_alloc (10,
4326 htab_hash_pointer, htab_eq_pointer,
4327 NULL, xcalloc, xfree));
24c79950 4328
bbf2f4df
PA
4329 /* The rule is CUs specify all the files, including those used
4330 by any TU, so there's no need to scan TUs here. We can
4331 ignore file names coming from already-expanded CUs. */
24c79950 4332
bbf2f4df
PA
4333 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4334 {
4335 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4336
bbf2f4df
PA
4337 if (per_cu->v.quick->compunit_symtab)
4338 {
4339 void **slot = htab_find_slot (visited.get (),
4340 per_cu->v.quick->file_names,
4341 INSERT);
9291a0cd 4342
bbf2f4df
PA
4343 *slot = per_cu->v.quick->file_names;
4344 }
24c79950 4345 }
24c79950 4346
bbf2f4df 4347 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd 4348 {
bbf2f4df
PA
4349 int j;
4350 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4351 struct quick_file_names *file_data;
4352 void **slot;
4353
4354 /* We only need to look at symtabs not already expanded. */
4355 if (per_cu->v.quick->compunit_symtab)
4356 continue;
74e2f255 4357
bbf2f4df
PA
4358 file_data = dw2_get_file_names (per_cu);
4359 if (file_data == NULL)
4360 continue;
4361
4362 slot = htab_find_slot (visited.get (), file_data, INSERT);
4363 if (*slot)
4364 {
4365 /* Already visited. */
4366 continue;
4367 }
4368 *slot = file_data;
4369
4370 for (int j = 0; j < file_data->num_file_names; ++j)
4371 {
4372 const char *filename = file_data->file_names[j];
4373 dwarf2_per_objfile->filenames_cache->seen (filename);
4374 }
9291a0cd
TT
4375 }
4376 }
bbf2f4df
PA
4377
4378 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4379 {
4380 const char *this_real_name;
4381
4382 if (need_fullname)
4383 this_real_name = gdb_realpath (filename);
4384 else
4385 this_real_name = NULL;
4386 (*fun) (filename, this_real_name, data);
4387 });
9291a0cd
TT
4388}
4389
4390static int
4391dw2_has_symbols (struct objfile *objfile)
4392{
4393 return 1;
4394}
4395
4396const struct quick_symbol_functions dwarf2_gdb_index_functions =
4397{
4398 dw2_has_symbols,
4399 dw2_find_last_source_symtab,
4400 dw2_forget_cached_source_info,
f8eba3c6 4401 dw2_map_symtabs_matching_filename,
9291a0cd 4402 dw2_lookup_symbol,
9291a0cd
TT
4403 dw2_print_stats,
4404 dw2_dump,
4405 dw2_relocate,
4406 dw2_expand_symtabs_for_function,
4407 dw2_expand_all_symtabs,
652a8996 4408 dw2_expand_symtabs_with_fullname,
40658b94 4409 dw2_map_matching_symbols,
9291a0cd 4410 dw2_expand_symtabs_matching,
43f3e411 4411 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4412 dw2_map_symbol_filenames
4413};
4414
4415/* Initialize for reading DWARF for this objfile. Return 0 if this
4416 file will use psymtabs, or 1 if using the GNU index. */
4417
4418int
4419dwarf2_initialize_objfile (struct objfile *objfile)
4420{
4421 /* If we're about to read full symbols, don't bother with the
4422 indices. In this case we also don't care if some other debug
4423 format is making psymtabs, because they are all about to be
4424 expanded anyway. */
4425 if ((objfile->flags & OBJF_READNOW))
4426 {
4427 int i;
4428
4429 dwarf2_per_objfile->using_index = 1;
4430 create_all_comp_units (objfile);
0e50663e 4431 create_all_type_units (objfile);
7b9f3c50
DE
4432 dwarf2_per_objfile->quick_file_names_table =
4433 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4434
1fd400ff 4435 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4436 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4437 {
8832e7e3 4438 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4439
e254ef6a
DE
4440 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4441 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4442 }
4443
4444 /* Return 1 so that gdb sees the "quick" functions. However,
4445 these functions will be no-ops because we will have expanded
4446 all symtabs. */
4447 return 1;
4448 }
4449
4450 if (dwarf2_read_index (objfile))
4451 return 1;
4452
9291a0cd
TT
4453 return 0;
4454}
4455
4456\f
4457
dce234bc
PP
4458/* Build a partial symbol table. */
4459
4460void
f29dff0a 4461dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4462{
c9bf0622 4463
f29dff0a 4464 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4465 {
4466 init_psymbol_list (objfile, 1024);
4467 }
4468
492d29ea 4469 TRY
c9bf0622
TT
4470 {
4471 /* This isn't really ideal: all the data we allocate on the
4472 objfile's obstack is still uselessly kept around. However,
4473 freeing it seems unsafe. */
906768f9 4474 psymtab_discarder psymtabs (objfile);
c9bf0622 4475 dwarf2_build_psymtabs_hard (objfile);
906768f9 4476 psymtabs.keep ();
c9bf0622 4477 }
492d29ea
PA
4478 CATCH (except, RETURN_MASK_ERROR)
4479 {
4480 exception_print (gdb_stderr, except);
4481 }
4482 END_CATCH
c906108c 4483}
c906108c 4484
1ce1cefd
DE
4485/* Return the total length of the CU described by HEADER. */
4486
4487static unsigned int
4488get_cu_length (const struct comp_unit_head *header)
4489{
4490 return header->initial_length_size + header->length;
4491}
4492
9c541725 4493/* Return TRUE if SECT_OFF is within CU_HEADER. */
45452591 4494
9c541725
PA
4495static inline bool
4496offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
45452591 4497{
9c541725
PA
4498 sect_offset bottom = cu_header->sect_off;
4499 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
9a619af0 4500
9c541725 4501 return sect_off >= bottom && sect_off < top;
45452591
DE
4502}
4503
3b80fe9b
DE
4504/* Find the base address of the compilation unit for range lists and
4505 location lists. It will normally be specified by DW_AT_low_pc.
4506 In DWARF-3 draft 4, the base address could be overridden by
4507 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4508 compilation units with discontinuous ranges. */
4509
4510static void
4511dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4512{
4513 struct attribute *attr;
4514
4515 cu->base_known = 0;
4516 cu->base_address = 0;
4517
4518 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4519 if (attr)
4520 {
31aa7e4e 4521 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4522 cu->base_known = 1;
4523 }
4524 else
4525 {
4526 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4527 if (attr)
4528 {
31aa7e4e 4529 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4530 cu->base_known = 1;
4531 }
4532 }
4533}
4534
93311388 4535/* Read in the comp unit header information from the debug_info at info_ptr.
43988095 4536 Use rcuh_kind::COMPILE as the default type if not known by the caller.
93311388
DE
4537 NOTE: This leaves members offset, first_die_offset to be filled in
4538 by the caller. */
107d2387 4539
d521ce57 4540static const gdb_byte *
107d2387 4541read_comp_unit_head (struct comp_unit_head *cu_header,
43988095
JK
4542 const gdb_byte *info_ptr,
4543 struct dwarf2_section_info *section,
4544 rcuh_kind section_kind)
107d2387
AC
4545{
4546 int signed_addr;
891d2f0b 4547 unsigned int bytes_read;
43988095
JK
4548 const char *filename = get_section_file_name (section);
4549 bfd *abfd = get_section_bfd_owner (section);
c764a876
DE
4550
4551 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4552 cu_header->initial_length_size = bytes_read;
4553 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4554 info_ptr += bytes_read;
107d2387
AC
4555 cu_header->version = read_2_bytes (abfd, info_ptr);
4556 info_ptr += 2;
43988095
JK
4557 if (cu_header->version < 5)
4558 switch (section_kind)
4559 {
4560 case rcuh_kind::COMPILE:
4561 cu_header->unit_type = DW_UT_compile;
4562 break;
4563 case rcuh_kind::TYPE:
4564 cu_header->unit_type = DW_UT_type;
4565 break;
4566 default:
4567 internal_error (__FILE__, __LINE__,
4568 _("read_comp_unit_head: invalid section_kind"));
4569 }
4570 else
4571 {
4572 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4573 (read_1_byte (abfd, info_ptr));
4574 info_ptr += 1;
4575 switch (cu_header->unit_type)
4576 {
4577 case DW_UT_compile:
4578 if (section_kind != rcuh_kind::COMPILE)
4579 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4580 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4581 filename);
4582 break;
4583 case DW_UT_type:
4584 section_kind = rcuh_kind::TYPE;
4585 break;
4586 default:
4587 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4588 "(is %d, should be %d or %d) [in module %s]"),
4589 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4590 }
4591
4592 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4593 info_ptr += 1;
4594 }
9c541725
PA
4595 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
4596 cu_header,
4597 &bytes_read);
613e1657 4598 info_ptr += bytes_read;
43988095
JK
4599 if (cu_header->version < 5)
4600 {
4601 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4602 info_ptr += 1;
4603 }
107d2387
AC
4604 signed_addr = bfd_get_sign_extend_vma (abfd);
4605 if (signed_addr < 0)
8e65ff28 4606 internal_error (__FILE__, __LINE__,
e2e0b3e5 4607 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4608 cu_header->signed_addr_p = signed_addr;
c764a876 4609
43988095
JK
4610 if (section_kind == rcuh_kind::TYPE)
4611 {
4612 LONGEST type_offset;
4613
4614 cu_header->signature = read_8_bytes (abfd, info_ptr);
4615 info_ptr += 8;
4616
4617 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4618 info_ptr += bytes_read;
9c541725
PA
4619 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
4620 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
43988095
JK
4621 error (_("Dwarf Error: Too big type_offset in compilation unit "
4622 "header (is %s) [in module %s]"), plongest (type_offset),
4623 filename);
4624 }
4625
107d2387
AC
4626 return info_ptr;
4627}
4628
36586728
TT
4629/* Helper function that returns the proper abbrev section for
4630 THIS_CU. */
4631
4632static struct dwarf2_section_info *
4633get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4634{
4635 struct dwarf2_section_info *abbrev;
4636
4637 if (this_cu->is_dwz)
4638 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4639 else
4640 abbrev = &dwarf2_per_objfile->abbrev;
4641
4642 return abbrev;
4643}
4644
9ff913ba
DE
4645/* Subroutine of read_and_check_comp_unit_head and
4646 read_and_check_type_unit_head to simplify them.
4647 Perform various error checking on the header. */
4648
4649static void
4650error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4651 struct dwarf2_section_info *section,
4652 struct dwarf2_section_info *abbrev_section)
9ff913ba 4653{
a32a8923 4654 const char *filename = get_section_file_name (section);
9ff913ba 4655
43988095 4656 if (header->version < 2 || header->version > 5)
9ff913ba 4657 error (_("Dwarf Error: wrong version in compilation unit header "
43988095 4658 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
9ff913ba
DE
4659 filename);
4660
9c541725 4661 if (to_underlying (header->abbrev_sect_off)
36586728 4662 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9c541725
PA
4663 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
4664 "(offset 0x%x + 6) [in module %s]"),
4665 to_underlying (header->abbrev_sect_off),
4666 to_underlying (header->sect_off),
9ff913ba
DE
4667 filename);
4668
9c541725 4669 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
9ff913ba 4670 avoid potential 32-bit overflow. */
9c541725 4671 if (((ULONGEST) header->sect_off + get_cu_length (header))
9ff913ba 4672 > section->size)
9c541725
PA
4673 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
4674 "(offset 0x%x + 0) [in module %s]"),
4675 header->length, to_underlying (header->sect_off),
9ff913ba
DE
4676 filename);
4677}
4678
4679/* Read in a CU/TU header and perform some basic error checking.
4680 The contents of the header are stored in HEADER.
4681 The result is a pointer to the start of the first DIE. */
adabb602 4682
d521ce57 4683static const gdb_byte *
9ff913ba
DE
4684read_and_check_comp_unit_head (struct comp_unit_head *header,
4685 struct dwarf2_section_info *section,
4bdcc0c1 4686 struct dwarf2_section_info *abbrev_section,
d521ce57 4687 const gdb_byte *info_ptr,
43988095 4688 rcuh_kind section_kind)
72bf9492 4689{
d521ce57 4690 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4691 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4692
9c541725 4693 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
adabb602 4694
43988095 4695 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
9ff913ba 4696
9c541725 4697 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
348e048f 4698
4bdcc0c1 4699 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4700
4701 return info_ptr;
348e048f
DE
4702}
4703
f4dc4d17
DE
4704/* Fetch the abbreviation table offset from a comp or type unit header. */
4705
4706static sect_offset
4707read_abbrev_offset (struct dwarf2_section_info *section,
9c541725 4708 sect_offset sect_off)
f4dc4d17 4709{
a32a8923 4710 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4711 const gdb_byte *info_ptr;
ac298888 4712 unsigned int initial_length_size, offset_size;
43988095 4713 uint16_t version;
f4dc4d17
DE
4714
4715 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
9c541725 4716 info_ptr = section->buffer + to_underlying (sect_off);
ac298888 4717 read_initial_length (abfd, info_ptr, &initial_length_size);
f4dc4d17 4718 offset_size = initial_length_size == 4 ? 4 : 8;
43988095
JK
4719 info_ptr += initial_length_size;
4720
4721 version = read_2_bytes (abfd, info_ptr);
4722 info_ptr += 2;
4723 if (version >= 5)
4724 {
4725 /* Skip unit type and address size. */
4726 info_ptr += 2;
4727 }
4728
9c541725 4729 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
f4dc4d17
DE
4730}
4731
aaa75496
JB
4732/* Allocate a new partial symtab for file named NAME and mark this new
4733 partial symtab as being an include of PST. */
4734
4735static void
d521ce57 4736dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4737 struct objfile *objfile)
4738{
4739 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4740
fbd9ab74
JK
4741 if (!IS_ABSOLUTE_PATH (subpst->filename))
4742 {
4743 /* It shares objfile->objfile_obstack. */
4744 subpst->dirname = pst->dirname;
4745 }
4746
aaa75496
JB
4747 subpst->textlow = 0;
4748 subpst->texthigh = 0;
4749
8d749320
SM
4750 subpst->dependencies
4751 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
4752 subpst->dependencies[0] = pst;
4753 subpst->number_of_dependencies = 1;
4754
4755 subpst->globals_offset = 0;
4756 subpst->n_global_syms = 0;
4757 subpst->statics_offset = 0;
4758 subpst->n_static_syms = 0;
43f3e411 4759 subpst->compunit_symtab = NULL;
aaa75496
JB
4760 subpst->read_symtab = pst->read_symtab;
4761 subpst->readin = 0;
4762
4763 /* No private part is necessary for include psymtabs. This property
4764 can be used to differentiate between such include psymtabs and
10b3939b 4765 the regular ones. */
58a9656e 4766 subpst->read_symtab_private = NULL;
aaa75496
JB
4767}
4768
4769/* Read the Line Number Program data and extract the list of files
4770 included by the source file represented by PST. Build an include
d85a05f0 4771 partial symtab for each of these included files. */
aaa75496
JB
4772
4773static void
4774dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4775 struct die_info *die,
4776 struct partial_symtab *pst)
aaa75496 4777{
fff8551c 4778 line_header_up lh;
d85a05f0 4779 struct attribute *attr;
aaa75496 4780
d85a05f0
DJ
4781 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4782 if (attr)
9c541725 4783 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
aaa75496
JB
4784 if (lh == NULL)
4785 return; /* No linetable, so no includes. */
4786
c6da4cef 4787 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
fff8551c 4788 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4789}
4790
348e048f 4791static hashval_t
52dc124a 4792hash_signatured_type (const void *item)
348e048f 4793{
9a3c8263
SM
4794 const struct signatured_type *sig_type
4795 = (const struct signatured_type *) item;
9a619af0 4796
348e048f 4797 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4798 return sig_type->signature;
348e048f
DE
4799}
4800
4801static int
52dc124a 4802eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 4803{
9a3c8263
SM
4804 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4805 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 4806
348e048f
DE
4807 return lhs->signature == rhs->signature;
4808}
4809
1fd400ff
TT
4810/* Allocate a hash table for signatured types. */
4811
4812static htab_t
673bfd45 4813allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4814{
4815 return htab_create_alloc_ex (41,
52dc124a
DE
4816 hash_signatured_type,
4817 eq_signatured_type,
1fd400ff
TT
4818 NULL,
4819 &objfile->objfile_obstack,
4820 hashtab_obstack_allocate,
4821 dummy_obstack_deallocate);
4822}
4823
d467dd73 4824/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4825
4826static int
d467dd73 4827add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 4828{
9a3c8263
SM
4829 struct signatured_type *sigt = (struct signatured_type *) *slot;
4830 struct signatured_type ***datap = (struct signatured_type ***) datum;
1fd400ff 4831
b4dd5633 4832 **datap = sigt;
1fd400ff
TT
4833 ++*datap;
4834
4835 return 1;
4836}
4837
78d4d2c5 4838/* A helper for create_debug_types_hash_table. Read types from SECTION
43988095
JK
4839 and fill them into TYPES_HTAB. It will process only type units,
4840 therefore DW_UT_type. */
c88ee1f0 4841
78d4d2c5
JK
4842static void
4843create_debug_type_hash_table (struct dwo_file *dwo_file,
43988095
JK
4844 dwarf2_section_info *section, htab_t &types_htab,
4845 rcuh_kind section_kind)
348e048f 4846{
3019eac3 4847 struct objfile *objfile = dwarf2_per_objfile->objfile;
4bdcc0c1 4848 struct dwarf2_section_info *abbrev_section;
78d4d2c5
JK
4849 bfd *abfd;
4850 const gdb_byte *info_ptr, *end_ptr;
348e048f 4851
4bdcc0c1
DE
4852 abbrev_section = (dwo_file != NULL
4853 ? &dwo_file->sections.abbrev
4854 : &dwarf2_per_objfile->abbrev);
4855
b4f54984 4856 if (dwarf_read_debug)
43988095
JK
4857 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4858 get_section_name (section),
a32a8923 4859 get_section_file_name (abbrev_section));
09406207 4860
78d4d2c5
JK
4861 dwarf2_read_section (objfile, section);
4862 info_ptr = section->buffer;
348e048f 4863
78d4d2c5
JK
4864 if (info_ptr == NULL)
4865 return;
348e048f 4866
78d4d2c5
JK
4867 /* We can't set abfd until now because the section may be empty or
4868 not present, in which case the bfd is unknown. */
4869 abfd = get_section_bfd_owner (section);
348e048f 4870
78d4d2c5
JK
4871 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4872 because we don't need to read any dies: the signature is in the
4873 header. */
3019eac3 4874
78d4d2c5
JK
4875 end_ptr = info_ptr + section->size;
4876 while (info_ptr < end_ptr)
4877 {
78d4d2c5
JK
4878 struct signatured_type *sig_type;
4879 struct dwo_unit *dwo_tu;
4880 void **slot;
4881 const gdb_byte *ptr = info_ptr;
4882 struct comp_unit_head header;
4883 unsigned int length;
8b70b953 4884
9c541725 4885 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
348e048f 4886
a49dd8dd
JK
4887 /* Initialize it due to a false compiler warning. */
4888 header.signature = -1;
9c541725 4889 header.type_cu_offset_in_tu = (cu_offset) -1;
a49dd8dd 4890
78d4d2c5
JK
4891 /* We need to read the type's signature in order to build the hash
4892 table, but we don't need anything else just yet. */
348e048f 4893
43988095
JK
4894 ptr = read_and_check_comp_unit_head (&header, section,
4895 abbrev_section, ptr, section_kind);
348e048f 4896
78d4d2c5 4897 length = get_cu_length (&header);
6caca83c 4898
78d4d2c5
JK
4899 /* Skip dummy type units. */
4900 if (ptr >= info_ptr + length
43988095
JK
4901 || peek_abbrev_code (abfd, ptr) == 0
4902 || header.unit_type != DW_UT_type)
78d4d2c5
JK
4903 {
4904 info_ptr += length;
4905 continue;
4906 }
dee91e82 4907
78d4d2c5
JK
4908 if (types_htab == NULL)
4909 {
4910 if (dwo_file)
4911 types_htab = allocate_dwo_unit_table (objfile);
4912 else
4913 types_htab = allocate_signatured_type_table (objfile);
4914 }
8b70b953 4915
78d4d2c5
JK
4916 if (dwo_file)
4917 {
4918 sig_type = NULL;
4919 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4920 struct dwo_unit);
4921 dwo_tu->dwo_file = dwo_file;
43988095 4922 dwo_tu->signature = header.signature;
9c541725 4923 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
78d4d2c5 4924 dwo_tu->section = section;
9c541725 4925 dwo_tu->sect_off = sect_off;
78d4d2c5
JK
4926 dwo_tu->length = length;
4927 }
4928 else
4929 {
4930 /* N.B.: type_offset is not usable if this type uses a DWO file.
4931 The real type_offset is in the DWO file. */
4932 dwo_tu = NULL;
4933 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4934 struct signatured_type);
43988095 4935 sig_type->signature = header.signature;
9c541725 4936 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
78d4d2c5
JK
4937 sig_type->per_cu.objfile = objfile;
4938 sig_type->per_cu.is_debug_types = 1;
4939 sig_type->per_cu.section = section;
9c541725 4940 sig_type->per_cu.sect_off = sect_off;
78d4d2c5
JK
4941 sig_type->per_cu.length = length;
4942 }
4943
4944 slot = htab_find_slot (types_htab,
4945 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4946 INSERT);
4947 gdb_assert (slot != NULL);
4948 if (*slot != NULL)
4949 {
9c541725 4950 sect_offset dup_sect_off;
0349ea22 4951
3019eac3
DE
4952 if (dwo_file)
4953 {
78d4d2c5
JK
4954 const struct dwo_unit *dup_tu
4955 = (const struct dwo_unit *) *slot;
4956
9c541725 4957 dup_sect_off = dup_tu->sect_off;
3019eac3
DE
4958 }
4959 else
4960 {
78d4d2c5
JK
4961 const struct signatured_type *dup_tu
4962 = (const struct signatured_type *) *slot;
4963
9c541725 4964 dup_sect_off = dup_tu->per_cu.sect_off;
3019eac3 4965 }
8b70b953 4966
78d4d2c5
JK
4967 complaint (&symfile_complaints,
4968 _("debug type entry at offset 0x%x is duplicate to"
4969 " the entry at offset 0x%x, signature %s"),
9c541725 4970 to_underlying (sect_off), to_underlying (dup_sect_off),
43988095 4971 hex_string (header.signature));
78d4d2c5
JK
4972 }
4973 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
3019eac3 4974
78d4d2c5
JK
4975 if (dwarf_read_debug > 1)
4976 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
9c541725 4977 to_underlying (sect_off),
43988095 4978 hex_string (header.signature));
3019eac3 4979
78d4d2c5
JK
4980 info_ptr += length;
4981 }
4982}
3019eac3 4983
78d4d2c5
JK
4984/* Create the hash table of all entries in the .debug_types
4985 (or .debug_types.dwo) section(s).
4986 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4987 otherwise it is NULL.
b3c8eb43 4988
78d4d2c5 4989 The result is a pointer to the hash table or NULL if there are no types.
348e048f 4990
78d4d2c5 4991 Note: This function processes DWO files only, not DWP files. */
348e048f 4992
78d4d2c5
JK
4993static void
4994create_debug_types_hash_table (struct dwo_file *dwo_file,
4995 VEC (dwarf2_section_info_def) *types,
4996 htab_t &types_htab)
4997{
4998 int ix;
4999 struct dwarf2_section_info *section;
5000
5001 if (VEC_empty (dwarf2_section_info_def, types))
5002 return;
348e048f 5003
78d4d2c5
JK
5004 for (ix = 0;
5005 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5006 ++ix)
43988095
JK
5007 create_debug_type_hash_table (dwo_file, section, types_htab,
5008 rcuh_kind::TYPE);
3019eac3
DE
5009}
5010
5011/* Create the hash table of all entries in the .debug_types section,
5012 and initialize all_type_units.
5013 The result is zero if there is an error (e.g. missing .debug_types section),
5014 otherwise non-zero. */
5015
5016static int
5017create_all_type_units (struct objfile *objfile)
5018{
78d4d2c5 5019 htab_t types_htab = NULL;
b4dd5633 5020 struct signatured_type **iter;
3019eac3 5021
43988095
JK
5022 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5023 rcuh_kind::COMPILE);
78d4d2c5 5024 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
3019eac3
DE
5025 if (types_htab == NULL)
5026 {
5027 dwarf2_per_objfile->signatured_types = NULL;
5028 return 0;
5029 }
5030
348e048f
DE
5031 dwarf2_per_objfile->signatured_types = types_htab;
5032
6aa5f3a6
DE
5033 dwarf2_per_objfile->n_type_units
5034 = dwarf2_per_objfile->n_allocated_type_units
5035 = htab_elements (types_htab);
8d749320
SM
5036 dwarf2_per_objfile->all_type_units =
5037 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
d467dd73
DE
5038 iter = &dwarf2_per_objfile->all_type_units[0];
5039 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5040 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5041 == dwarf2_per_objfile->n_type_units);
1fd400ff 5042
348e048f
DE
5043 return 1;
5044}
5045
6aa5f3a6
DE
5046/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5047 If SLOT is non-NULL, it is the entry to use in the hash table.
5048 Otherwise we find one. */
5049
5050static struct signatured_type *
5051add_type_unit (ULONGEST sig, void **slot)
5052{
5053 struct objfile *objfile = dwarf2_per_objfile->objfile;
5054 int n_type_units = dwarf2_per_objfile->n_type_units;
5055 struct signatured_type *sig_type;
5056
5057 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5058 ++n_type_units;
5059 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5060 {
5061 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5062 dwarf2_per_objfile->n_allocated_type_units = 1;
5063 dwarf2_per_objfile->n_allocated_type_units *= 2;
5064 dwarf2_per_objfile->all_type_units
224c3ddb
SM
5065 = XRESIZEVEC (struct signatured_type *,
5066 dwarf2_per_objfile->all_type_units,
5067 dwarf2_per_objfile->n_allocated_type_units);
6aa5f3a6
DE
5068 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5069 }
5070 dwarf2_per_objfile->n_type_units = n_type_units;
5071
5072 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5073 struct signatured_type);
5074 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5075 sig_type->signature = sig;
5076 sig_type->per_cu.is_debug_types = 1;
5077 if (dwarf2_per_objfile->using_index)
5078 {
5079 sig_type->per_cu.v.quick =
5080 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5081 struct dwarf2_per_cu_quick_data);
5082 }
5083
5084 if (slot == NULL)
5085 {
5086 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5087 sig_type, INSERT);
5088 }
5089 gdb_assert (*slot == NULL);
5090 *slot = sig_type;
5091 /* The rest of sig_type must be filled in by the caller. */
5092 return sig_type;
5093}
5094
a2ce51a0
DE
5095/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5096 Fill in SIG_ENTRY with DWO_ENTRY. */
5097
5098static void
5099fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5100 struct signatured_type *sig_entry,
5101 struct dwo_unit *dwo_entry)
5102{
7ee85ab1 5103 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
5104 gdb_assert (! sig_entry->per_cu.queued);
5105 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
5106 if (dwarf2_per_objfile->using_index)
5107 {
5108 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 5109 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
5110 }
5111 else
5112 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0 5113 gdb_assert (sig_entry->signature == dwo_entry->signature);
9c541725 5114 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
a2ce51a0 5115 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
5116 gdb_assert (sig_entry->dwo_unit == NULL);
5117
5118 sig_entry->per_cu.section = dwo_entry->section;
9c541725 5119 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7ee85ab1
DE
5120 sig_entry->per_cu.length = dwo_entry->length;
5121 sig_entry->per_cu.reading_dwo_directly = 1;
5122 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
5123 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5124 sig_entry->dwo_unit = dwo_entry;
5125}
5126
5127/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
5128 If we haven't read the TU yet, create the signatured_type data structure
5129 for a TU to be read in directly from a DWO file, bypassing the stub.
5130 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5131 using .gdb_index, then when reading a CU we want to stay in the DWO file
5132 containing that CU. Otherwise we could end up reading several other DWO
5133 files (due to comdat folding) to process the transitive closure of all the
5134 mentioned TUs, and that can be slow. The current DWO file will have every
5135 type signature that it needs.
a2ce51a0
DE
5136 We only do this for .gdb_index because in the psymtab case we already have
5137 to read all the DWOs to build the type unit groups. */
5138
5139static struct signatured_type *
5140lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5141{
5142 struct objfile *objfile = dwarf2_per_objfile->objfile;
5143 struct dwo_file *dwo_file;
5144 struct dwo_unit find_dwo_entry, *dwo_entry;
5145 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 5146 void **slot;
a2ce51a0
DE
5147
5148 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5149
6aa5f3a6
DE
5150 /* If TU skeletons have been removed then we may not have read in any
5151 TUs yet. */
5152 if (dwarf2_per_objfile->signatured_types == NULL)
5153 {
5154 dwarf2_per_objfile->signatured_types
5155 = allocate_signatured_type_table (objfile);
5156 }
a2ce51a0
DE
5157
5158 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
5159 Use the global signatured_types array to do our own comdat-folding
5160 of types. If this is the first time we're reading this TU, and
5161 the TU has an entry in .gdb_index, replace the recorded data from
5162 .gdb_index with this TU. */
a2ce51a0 5163
a2ce51a0 5164 find_sig_entry.signature = sig;
6aa5f3a6
DE
5165 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5166 &find_sig_entry, INSERT);
9a3c8263 5167 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
5168
5169 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
5170 read. Don't reassign the global entry to point to this DWO if that's
5171 the case. Also note that if the TU is already being read, it may not
5172 have come from a DWO, the program may be a mix of Fission-compiled
5173 code and non-Fission-compiled code. */
5174
5175 /* Have we already tried to read this TU?
5176 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5177 needn't exist in the global table yet). */
5178 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
5179 return sig_entry;
5180
6aa5f3a6
DE
5181 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5182 dwo_unit of the TU itself. */
5183 dwo_file = cu->dwo_unit->dwo_file;
5184
a2ce51a0
DE
5185 /* Ok, this is the first time we're reading this TU. */
5186 if (dwo_file->tus == NULL)
5187 return NULL;
5188 find_dwo_entry.signature = sig;
9a3c8263 5189 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
5190 if (dwo_entry == NULL)
5191 return NULL;
5192
6aa5f3a6
DE
5193 /* If the global table doesn't have an entry for this TU, add one. */
5194 if (sig_entry == NULL)
5195 sig_entry = add_type_unit (sig, slot);
5196
a2ce51a0 5197 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 5198 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
5199 return sig_entry;
5200}
5201
a2ce51a0
DE
5202/* Subroutine of lookup_signatured_type.
5203 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
5204 then try the DWP file. If the TU stub (skeleton) has been removed then
5205 it won't be in .gdb_index. */
a2ce51a0
DE
5206
5207static struct signatured_type *
5208lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5209{
5210 struct objfile *objfile = dwarf2_per_objfile->objfile;
5211 struct dwp_file *dwp_file = get_dwp_file ();
5212 struct dwo_unit *dwo_entry;
5213 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 5214 void **slot;
a2ce51a0
DE
5215
5216 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5217 gdb_assert (dwp_file != NULL);
5218
6aa5f3a6
DE
5219 /* If TU skeletons have been removed then we may not have read in any
5220 TUs yet. */
5221 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 5222 {
6aa5f3a6
DE
5223 dwarf2_per_objfile->signatured_types
5224 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
5225 }
5226
6aa5f3a6
DE
5227 find_sig_entry.signature = sig;
5228 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5229 &find_sig_entry, INSERT);
9a3c8263 5230 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
5231
5232 /* Have we already tried to read this TU?
5233 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5234 needn't exist in the global table yet). */
5235 if (sig_entry != NULL)
5236 return sig_entry;
5237
a2ce51a0
DE
5238 if (dwp_file->tus == NULL)
5239 return NULL;
57d63ce2
DE
5240 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5241 sig, 1 /* is_debug_types */);
a2ce51a0
DE
5242 if (dwo_entry == NULL)
5243 return NULL;
5244
6aa5f3a6 5245 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
5246 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5247
a2ce51a0
DE
5248 return sig_entry;
5249}
5250
380bca97 5251/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
5252 Returns NULL if signature SIG is not present in the table.
5253 It is up to the caller to complain about this. */
348e048f
DE
5254
5255static struct signatured_type *
a2ce51a0 5256lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 5257{
a2ce51a0
DE
5258 if (cu->dwo_unit
5259 && dwarf2_per_objfile->using_index)
5260 {
5261 /* We're in a DWO/DWP file, and we're using .gdb_index.
5262 These cases require special processing. */
5263 if (get_dwp_file () == NULL)
5264 return lookup_dwo_signatured_type (cu, sig);
5265 else
5266 return lookup_dwp_signatured_type (cu, sig);
5267 }
5268 else
5269 {
5270 struct signatured_type find_entry, *entry;
348e048f 5271
a2ce51a0
DE
5272 if (dwarf2_per_objfile->signatured_types == NULL)
5273 return NULL;
5274 find_entry.signature = sig;
9a3c8263
SM
5275 entry = ((struct signatured_type *)
5276 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
5277 return entry;
5278 }
348e048f 5279}
42e7ad6c
DE
5280\f
5281/* Low level DIE reading support. */
348e048f 5282
d85a05f0
DJ
5283/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5284
5285static void
5286init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5287 struct dwarf2_cu *cu,
3019eac3
DE
5288 struct dwarf2_section_info *section,
5289 struct dwo_file *dwo_file)
d85a05f0 5290{
fceca515 5291 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5292 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5293 reader->cu = cu;
3019eac3 5294 reader->dwo_file = dwo_file;
dee91e82
DE
5295 reader->die_section = section;
5296 reader->buffer = section->buffer;
f664829e 5297 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5298 reader->comp_dir = NULL;
d85a05f0
DJ
5299}
5300
b0c7bfa9
DE
5301/* Subroutine of init_cutu_and_read_dies to simplify it.
5302 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5303 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5304 already.
5305
5306 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5307 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5308 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5309 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5310 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5311 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5312 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5313 are filled in with the info of the DIE from the DWO file.
5314 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5315 provided an abbrev table to use.
5316 The result is non-zero if a valid (non-dummy) DIE was found. */
5317
5318static int
5319read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5320 struct dwo_unit *dwo_unit,
5321 int abbrev_table_provided,
5322 struct die_info *stub_comp_unit_die,
a2ce51a0 5323 const char *stub_comp_dir,
b0c7bfa9 5324 struct die_reader_specs *result_reader,
d521ce57 5325 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5326 struct die_info **result_comp_unit_die,
5327 int *result_has_children)
5328{
5329 struct objfile *objfile = dwarf2_per_objfile->objfile;
5330 struct dwarf2_cu *cu = this_cu->cu;
5331 struct dwarf2_section_info *section;
5332 bfd *abfd;
d521ce57 5333 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5334 ULONGEST signature; /* Or dwo_id. */
5335 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5336 int i,num_extra_attrs;
5337 struct dwarf2_section_info *dwo_abbrev_section;
5338 struct attribute *attr;
5339 struct die_info *comp_unit_die;
5340
b0aeadb3
DE
5341 /* At most one of these may be provided. */
5342 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5343
b0c7bfa9
DE
5344 /* These attributes aren't processed until later:
5345 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5346 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5347 referenced later. However, these attributes are found in the stub
5348 which we won't have later. In order to not impose this complication
5349 on the rest of the code, we read them here and copy them to the
5350 DWO CU/TU die. */
b0c7bfa9
DE
5351
5352 stmt_list = NULL;
5353 low_pc = NULL;
5354 high_pc = NULL;
5355 ranges = NULL;
5356 comp_dir = NULL;
5357
5358 if (stub_comp_unit_die != NULL)
5359 {
5360 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5361 DWO file. */
5362 if (! this_cu->is_debug_types)
5363 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5364 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5365 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5366 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5367 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5368
5369 /* There should be a DW_AT_addr_base attribute here (if needed).
5370 We need the value before we can process DW_FORM_GNU_addr_index. */
5371 cu->addr_base = 0;
5372 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5373 if (attr)
5374 cu->addr_base = DW_UNSND (attr);
5375
5376 /* There should be a DW_AT_ranges_base attribute here (if needed).
5377 We need the value before we can process DW_AT_ranges. */
5378 cu->ranges_base = 0;
5379 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5380 if (attr)
5381 cu->ranges_base = DW_UNSND (attr);
5382 }
a2ce51a0
DE
5383 else if (stub_comp_dir != NULL)
5384 {
5385 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 5386 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
5387 comp_dir->name = DW_AT_comp_dir;
5388 comp_dir->form = DW_FORM_string;
5389 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5390 DW_STRING (comp_dir) = stub_comp_dir;
5391 }
b0c7bfa9
DE
5392
5393 /* Set up for reading the DWO CU/TU. */
5394 cu->dwo_unit = dwo_unit;
5395 section = dwo_unit->section;
5396 dwarf2_read_section (objfile, section);
a32a8923 5397 abfd = get_section_bfd_owner (section);
9c541725
PA
5398 begin_info_ptr = info_ptr = (section->buffer
5399 + to_underlying (dwo_unit->sect_off));
b0c7bfa9
DE
5400 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5401 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5402
5403 if (this_cu->is_debug_types)
5404 {
b0c7bfa9
DE
5405 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5406
43988095 5407 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
b0c7bfa9 5408 dwo_abbrev_section,
43988095 5409 info_ptr, rcuh_kind::TYPE);
a2ce51a0 5410 /* This is not an assert because it can be caused by bad debug info. */
43988095 5411 if (sig_type->signature != cu->header.signature)
a2ce51a0
DE
5412 {
5413 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5414 " TU at offset 0x%x [in module %s]"),
5415 hex_string (sig_type->signature),
43988095 5416 hex_string (cu->header.signature),
9c541725 5417 to_underlying (dwo_unit->sect_off),
a2ce51a0
DE
5418 bfd_get_filename (abfd));
5419 }
9c541725 5420 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
5421 /* For DWOs coming from DWP files, we don't know the CU length
5422 nor the type's offset in the TU until now. */
5423 dwo_unit->length = get_cu_length (&cu->header);
9c541725 5424 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
b0c7bfa9
DE
5425
5426 /* Establish the type offset that can be used to lookup the type.
5427 For DWO files, we don't know it until now. */
9c541725
PA
5428 sig_type->type_offset_in_section
5429 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
b0c7bfa9
DE
5430 }
5431 else
5432 {
5433 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5434 dwo_abbrev_section,
43988095 5435 info_ptr, rcuh_kind::COMPILE);
9c541725 5436 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
5437 /* For DWOs coming from DWP files, we don't know the CU length
5438 until now. */
5439 dwo_unit->length = get_cu_length (&cu->header);
5440 }
5441
02142a6c
DE
5442 /* Replace the CU's original abbrev table with the DWO's.
5443 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5444 if (abbrev_table_provided)
5445 {
5446 /* Don't free the provided abbrev table, the caller of
5447 init_cutu_and_read_dies owns it. */
5448 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5449 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5450 make_cleanup (dwarf2_free_abbrev_table, cu);
5451 }
5452 else
5453 {
5454 dwarf2_free_abbrev_table (cu);
5455 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5456 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5457 }
5458
5459 /* Read in the die, but leave space to copy over the attributes
5460 from the stub. This has the benefit of simplifying the rest of
5461 the code - all the work to maintain the illusion of a single
5462 DW_TAG_{compile,type}_unit DIE is done here. */
5463 num_extra_attrs = ((stmt_list != NULL)
5464 + (low_pc != NULL)
5465 + (high_pc != NULL)
5466 + (ranges != NULL)
5467 + (comp_dir != NULL));
5468 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5469 result_has_children, num_extra_attrs);
5470
5471 /* Copy over the attributes from the stub to the DIE we just read in. */
5472 comp_unit_die = *result_comp_unit_die;
5473 i = comp_unit_die->num_attrs;
5474 if (stmt_list != NULL)
5475 comp_unit_die->attrs[i++] = *stmt_list;
5476 if (low_pc != NULL)
5477 comp_unit_die->attrs[i++] = *low_pc;
5478 if (high_pc != NULL)
5479 comp_unit_die->attrs[i++] = *high_pc;
5480 if (ranges != NULL)
5481 comp_unit_die->attrs[i++] = *ranges;
5482 if (comp_dir != NULL)
5483 comp_unit_die->attrs[i++] = *comp_dir;
5484 comp_unit_die->num_attrs += num_extra_attrs;
5485
b4f54984 5486 if (dwarf_die_debug)
bf6af496
DE
5487 {
5488 fprintf_unfiltered (gdb_stdlog,
5489 "Read die from %s@0x%x of %s:\n",
a32a8923 5490 get_section_name (section),
bf6af496
DE
5491 (unsigned) (begin_info_ptr - section->buffer),
5492 bfd_get_filename (abfd));
b4f54984 5493 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5494 }
5495
a2ce51a0
DE
5496 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5497 TUs by skipping the stub and going directly to the entry in the DWO file.
5498 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5499 to get it via circuitous means. Blech. */
5500 if (comp_dir != NULL)
5501 result_reader->comp_dir = DW_STRING (comp_dir);
5502
b0c7bfa9
DE
5503 /* Skip dummy compilation units. */
5504 if (info_ptr >= begin_info_ptr + dwo_unit->length
5505 || peek_abbrev_code (abfd, info_ptr) == 0)
5506 return 0;
5507
5508 *result_info_ptr = info_ptr;
5509 return 1;
5510}
5511
5512/* Subroutine of init_cutu_and_read_dies to simplify it.
5513 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5514 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5515
5516static struct dwo_unit *
5517lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5518 struct die_info *comp_unit_die)
5519{
5520 struct dwarf2_cu *cu = this_cu->cu;
5521 struct attribute *attr;
5522 ULONGEST signature;
5523 struct dwo_unit *dwo_unit;
5524 const char *comp_dir, *dwo_name;
5525
a2ce51a0
DE
5526 gdb_assert (cu != NULL);
5527
b0c7bfa9 5528 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
5529 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5530 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
5531
5532 if (this_cu->is_debug_types)
5533 {
5534 struct signatured_type *sig_type;
5535
5536 /* Since this_cu is the first member of struct signatured_type,
5537 we can go from a pointer to one to a pointer to the other. */
5538 sig_type = (struct signatured_type *) this_cu;
5539 signature = sig_type->signature;
5540 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5541 }
5542 else
5543 {
5544 struct attribute *attr;
5545
5546 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5547 if (! attr)
5548 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5549 " [in module %s]"),
4262abfb 5550 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5551 signature = DW_UNSND (attr);
5552 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5553 signature);
5554 }
5555
b0c7bfa9
DE
5556 return dwo_unit;
5557}
5558
a2ce51a0 5559/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5560 See it for a description of the parameters.
5561 Read a TU directly from a DWO file, bypassing the stub.
5562
5563 Note: This function could be a little bit simpler if we shared cleanups
5564 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5565 to do, so we keep this function self-contained. Or we could move this
5566 into our caller, but it's complex enough already. */
a2ce51a0
DE
5567
5568static void
6aa5f3a6
DE
5569init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5570 int use_existing_cu, int keep,
a2ce51a0
DE
5571 die_reader_func_ftype *die_reader_func,
5572 void *data)
5573{
5574 struct dwarf2_cu *cu;
5575 struct signatured_type *sig_type;
6aa5f3a6 5576 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5577 struct die_reader_specs reader;
5578 const gdb_byte *info_ptr;
5579 struct die_info *comp_unit_die;
5580 int has_children;
5581
5582 /* Verify we can do the following downcast, and that we have the
5583 data we need. */
5584 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5585 sig_type = (struct signatured_type *) this_cu;
5586 gdb_assert (sig_type->dwo_unit != NULL);
5587
5588 cleanups = make_cleanup (null_cleanup, NULL);
5589
6aa5f3a6
DE
5590 if (use_existing_cu && this_cu->cu != NULL)
5591 {
5592 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5593 cu = this_cu->cu;
5594 /* There's no need to do the rereading_dwo_cu handling that
5595 init_cutu_and_read_dies does since we don't read the stub. */
5596 }
5597 else
5598 {
5599 /* If !use_existing_cu, this_cu->cu must be NULL. */
5600 gdb_assert (this_cu->cu == NULL);
8d749320 5601 cu = XNEW (struct dwarf2_cu);
6aa5f3a6
DE
5602 init_one_comp_unit (cu, this_cu);
5603 /* If an error occurs while loading, release our storage. */
5604 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5605 }
5606
5607 /* A future optimization, if needed, would be to use an existing
5608 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5609 could share abbrev tables. */
a2ce51a0
DE
5610
5611 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5612 0 /* abbrev_table_provided */,
5613 NULL /* stub_comp_unit_die */,
5614 sig_type->dwo_unit->dwo_file->comp_dir,
5615 &reader, &info_ptr,
5616 &comp_unit_die, &has_children) == 0)
5617 {
5618 /* Dummy die. */
5619 do_cleanups (cleanups);
5620 return;
5621 }
5622
5623 /* All the "real" work is done here. */
5624 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5625
6aa5f3a6 5626 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5627 but the alternative is making the latter more complex.
5628 This function is only for the special case of using DWO files directly:
5629 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5630 if (free_cu_cleanup != NULL)
a2ce51a0 5631 {
6aa5f3a6
DE
5632 if (keep)
5633 {
5634 /* We've successfully allocated this compilation unit. Let our
5635 caller clean it up when finished with it. */
5636 discard_cleanups (free_cu_cleanup);
a2ce51a0 5637
6aa5f3a6
DE
5638 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5639 So we have to manually free the abbrev table. */
5640 dwarf2_free_abbrev_table (cu);
a2ce51a0 5641
6aa5f3a6
DE
5642 /* Link this CU into read_in_chain. */
5643 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5644 dwarf2_per_objfile->read_in_chain = this_cu;
5645 }
5646 else
5647 do_cleanups (free_cu_cleanup);
a2ce51a0 5648 }
a2ce51a0
DE
5649
5650 do_cleanups (cleanups);
5651}
5652
fd820528 5653/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5654 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5655
f4dc4d17
DE
5656 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5657 Otherwise the table specified in the comp unit header is read in and used.
5658 This is an optimization for when we already have the abbrev table.
5659
dee91e82
DE
5660 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5661 Otherwise, a new CU is allocated with xmalloc.
5662
5663 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5664 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5665
5666 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5667 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5668
70221824 5669static void
fd820528 5670init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5671 struct abbrev_table *abbrev_table,
fd820528
DE
5672 int use_existing_cu, int keep,
5673 die_reader_func_ftype *die_reader_func,
5674 void *data)
c906108c 5675{
dee91e82 5676 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5677 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5678 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5679 struct dwarf2_cu *cu;
d521ce57 5680 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5681 struct die_reader_specs reader;
d85a05f0 5682 struct die_info *comp_unit_die;
dee91e82 5683 int has_children;
d85a05f0 5684 struct attribute *attr;
365156ad 5685 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5686 struct signatured_type *sig_type = NULL;
4bdcc0c1 5687 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5688 /* Non-zero if CU currently points to a DWO file and we need to
5689 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5690 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5691 int rereading_dwo_cu = 0;
c906108c 5692
b4f54984 5693 if (dwarf_die_debug)
09406207
DE
5694 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5695 this_cu->is_debug_types ? "type" : "comp",
9c541725 5696 to_underlying (this_cu->sect_off));
09406207 5697
dee91e82
DE
5698 if (use_existing_cu)
5699 gdb_assert (keep);
23745b47 5700
a2ce51a0
DE
5701 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5702 file (instead of going through the stub), short-circuit all of this. */
5703 if (this_cu->reading_dwo_directly)
5704 {
5705 /* Narrow down the scope of possibilities to have to understand. */
5706 gdb_assert (this_cu->is_debug_types);
5707 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5708 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5709 die_reader_func, data);
a2ce51a0
DE
5710 return;
5711 }
5712
dee91e82
DE
5713 cleanups = make_cleanup (null_cleanup, NULL);
5714
5715 /* This is cheap if the section is already read in. */
5716 dwarf2_read_section (objfile, section);
5717
9c541725 5718 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
36586728
TT
5719
5720 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5721
5722 if (use_existing_cu && this_cu->cu != NULL)
5723 {
5724 cu = this_cu->cu;
42e7ad6c
DE
5725 /* If this CU is from a DWO file we need to start over, we need to
5726 refetch the attributes from the skeleton CU.
5727 This could be optimized by retrieving those attributes from when we
5728 were here the first time: the previous comp_unit_die was stored in
5729 comp_unit_obstack. But there's no data yet that we need this
5730 optimization. */
5731 if (cu->dwo_unit != NULL)
5732 rereading_dwo_cu = 1;
dee91e82
DE
5733 }
5734 else
5735 {
5736 /* If !use_existing_cu, this_cu->cu must be NULL. */
5737 gdb_assert (this_cu->cu == NULL);
8d749320 5738 cu = XNEW (struct dwarf2_cu);
dee91e82 5739 init_one_comp_unit (cu, this_cu);
dee91e82 5740 /* If an error occurs while loading, release our storage. */
365156ad 5741 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5742 }
dee91e82 5743
b0c7bfa9 5744 /* Get the header. */
9c541725 5745 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
42e7ad6c
DE
5746 {
5747 /* We already have the header, there's no need to read it in again. */
9c541725 5748 info_ptr += to_underlying (cu->header.first_die_cu_offset);
42e7ad6c
DE
5749 }
5750 else
5751 {
3019eac3 5752 if (this_cu->is_debug_types)
dee91e82 5753 {
43988095 5754 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4bdcc0c1 5755 abbrev_section, info_ptr,
43988095 5756 rcuh_kind::TYPE);
dee91e82 5757
42e7ad6c
DE
5758 /* Since per_cu is the first member of struct signatured_type,
5759 we can go from a pointer to one to a pointer to the other. */
5760 sig_type = (struct signatured_type *) this_cu;
43988095 5761 gdb_assert (sig_type->signature == cu->header.signature);
9c541725
PA
5762 gdb_assert (sig_type->type_offset_in_tu
5763 == cu->header.type_cu_offset_in_tu);
5764 gdb_assert (this_cu->sect_off == cu->header.sect_off);
dee91e82 5765
42e7ad6c
DE
5766 /* LENGTH has not been set yet for type units if we're
5767 using .gdb_index. */
1ce1cefd 5768 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5769
5770 /* Establish the type offset that can be used to lookup the type. */
9c541725
PA
5771 sig_type->type_offset_in_section =
5772 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
43988095
JK
5773
5774 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
5775 }
5776 else
5777 {
4bdcc0c1
DE
5778 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5779 abbrev_section,
43988095
JK
5780 info_ptr,
5781 rcuh_kind::COMPILE);
dee91e82 5782
9c541725 5783 gdb_assert (this_cu->sect_off == cu->header.sect_off);
1ce1cefd 5784 gdb_assert (this_cu->length == get_cu_length (&cu->header));
43988095 5785 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
5786 }
5787 }
10b3939b 5788
6caca83c 5789 /* Skip dummy compilation units. */
dee91e82 5790 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5791 || peek_abbrev_code (abfd, info_ptr) == 0)
5792 {
dee91e82 5793 do_cleanups (cleanups);
21b2bd31 5794 return;
6caca83c
CC
5795 }
5796
433df2d4
DE
5797 /* If we don't have them yet, read the abbrevs for this compilation unit.
5798 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5799 done. Note that it's important that if the CU had an abbrev table
5800 on entry we don't free it when we're done: Somewhere up the call stack
5801 it may be in use. */
f4dc4d17
DE
5802 if (abbrev_table != NULL)
5803 {
5804 gdb_assert (cu->abbrev_table == NULL);
9c541725 5805 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
f4dc4d17
DE
5806 cu->abbrev_table = abbrev_table;
5807 }
5808 else if (cu->abbrev_table == NULL)
dee91e82 5809 {
4bdcc0c1 5810 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5811 make_cleanup (dwarf2_free_abbrev_table, cu);
5812 }
42e7ad6c
DE
5813 else if (rereading_dwo_cu)
5814 {
5815 dwarf2_free_abbrev_table (cu);
5816 dwarf2_read_abbrevs (cu, abbrev_section);
5817 }
af703f96 5818
dee91e82 5819 /* Read the top level CU/TU die. */
3019eac3 5820 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5821 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5822
b0c7bfa9
DE
5823 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5824 from the DWO file.
5825 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5826 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5827 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5828 if (attr)
5829 {
3019eac3 5830 struct dwo_unit *dwo_unit;
b0c7bfa9 5831 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5832
5833 if (has_children)
6a506a2d
DE
5834 {
5835 complaint (&symfile_complaints,
5836 _("compilation unit with DW_AT_GNU_dwo_name"
5837 " has children (offset 0x%x) [in module %s]"),
9c541725 5838 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
6a506a2d 5839 }
b0c7bfa9 5840 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5841 if (dwo_unit != NULL)
3019eac3 5842 {
6a506a2d
DE
5843 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5844 abbrev_table != NULL,
a2ce51a0 5845 comp_unit_die, NULL,
6a506a2d
DE
5846 &reader, &info_ptr,
5847 &dwo_comp_unit_die, &has_children) == 0)
5848 {
5849 /* Dummy die. */
5850 do_cleanups (cleanups);
5851 return;
5852 }
5853 comp_unit_die = dwo_comp_unit_die;
5854 }
5855 else
5856 {
5857 /* Yikes, we couldn't find the rest of the DIE, we only have
5858 the stub. A complaint has already been logged. There's
5859 not much more we can do except pass on the stub DIE to
5860 die_reader_func. We don't want to throw an error on bad
5861 debug info. */
3019eac3
DE
5862 }
5863 }
5864
b0c7bfa9 5865 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5866 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5867
b0c7bfa9 5868 /* Done, clean up. */
365156ad 5869 if (free_cu_cleanup != NULL)
348e048f 5870 {
365156ad
TT
5871 if (keep)
5872 {
5873 /* We've successfully allocated this compilation unit. Let our
5874 caller clean it up when finished with it. */
5875 discard_cleanups (free_cu_cleanup);
dee91e82 5876
365156ad
TT
5877 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5878 So we have to manually free the abbrev table. */
5879 dwarf2_free_abbrev_table (cu);
dee91e82 5880
365156ad
TT
5881 /* Link this CU into read_in_chain. */
5882 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5883 dwarf2_per_objfile->read_in_chain = this_cu;
5884 }
5885 else
5886 do_cleanups (free_cu_cleanup);
348e048f 5887 }
365156ad
TT
5888
5889 do_cleanups (cleanups);
dee91e82
DE
5890}
5891
33e80786
DE
5892/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5893 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5894 to have already done the lookup to find the DWO file).
dee91e82
DE
5895
5896 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5897 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5898
5899 We fill in THIS_CU->length.
5900
5901 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5902 linker) then DIE_READER_FUNC will not get called.
5903
5904 THIS_CU->cu is always freed when done.
3019eac3
DE
5905 This is done in order to not leave THIS_CU->cu in a state where we have
5906 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5907
5908static void
5909init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5910 struct dwo_file *dwo_file,
dee91e82
DE
5911 die_reader_func_ftype *die_reader_func,
5912 void *data)
5913{
5914 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5915 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5916 bfd *abfd = get_section_bfd_owner (section);
33e80786 5917 struct dwarf2_section_info *abbrev_section;
dee91e82 5918 struct dwarf2_cu cu;
d521ce57 5919 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5920 struct die_reader_specs reader;
5921 struct cleanup *cleanups;
5922 struct die_info *comp_unit_die;
5923 int has_children;
5924
b4f54984 5925 if (dwarf_die_debug)
09406207
DE
5926 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5927 this_cu->is_debug_types ? "type" : "comp",
9c541725 5928 to_underlying (this_cu->sect_off));
09406207 5929
dee91e82
DE
5930 gdb_assert (this_cu->cu == NULL);
5931
33e80786
DE
5932 abbrev_section = (dwo_file != NULL
5933 ? &dwo_file->sections.abbrev
5934 : get_abbrev_section_for_cu (this_cu));
5935
dee91e82
DE
5936 /* This is cheap if the section is already read in. */
5937 dwarf2_read_section (objfile, section);
5938
5939 init_one_comp_unit (&cu, this_cu);
5940
5941 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5942
9c541725 5943 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
4bdcc0c1
DE
5944 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5945 abbrev_section, info_ptr,
43988095
JK
5946 (this_cu->is_debug_types
5947 ? rcuh_kind::TYPE
5948 : rcuh_kind::COMPILE));
dee91e82 5949
1ce1cefd 5950 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5951
5952 /* Skip dummy compilation units. */
5953 if (info_ptr >= begin_info_ptr + this_cu->length
5954 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5955 {
dee91e82 5956 do_cleanups (cleanups);
21b2bd31 5957 return;
93311388 5958 }
72bf9492 5959
dee91e82
DE
5960 dwarf2_read_abbrevs (&cu, abbrev_section);
5961 make_cleanup (dwarf2_free_abbrev_table, &cu);
5962
3019eac3 5963 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5964 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5965
5966 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5967
5968 do_cleanups (cleanups);
5969}
5970
3019eac3
DE
5971/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5972 does not lookup the specified DWO file.
5973 This cannot be used to read DWO files.
dee91e82
DE
5974
5975 THIS_CU->cu is always freed when done.
3019eac3
DE
5976 This is done in order to not leave THIS_CU->cu in a state where we have
5977 to care whether it refers to the "main" CU or the DWO CU.
5978 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5979
5980static void
5981init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5982 die_reader_func_ftype *die_reader_func,
5983 void *data)
5984{
33e80786 5985 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5986}
0018ea6f
DE
5987\f
5988/* Type Unit Groups.
dee91e82 5989
0018ea6f
DE
5990 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5991 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5992 so that all types coming from the same compilation (.o file) are grouped
5993 together. A future step could be to put the types in the same symtab as
5994 the CU the types ultimately came from. */
ff013f42 5995
f4dc4d17
DE
5996static hashval_t
5997hash_type_unit_group (const void *item)
5998{
9a3c8263
SM
5999 const struct type_unit_group *tu_group
6000 = (const struct type_unit_group *) item;
f4dc4d17 6001
094b34ac 6002 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 6003}
348e048f
DE
6004
6005static int
f4dc4d17 6006eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 6007{
9a3c8263
SM
6008 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6009 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 6010
094b34ac 6011 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 6012}
348e048f 6013
f4dc4d17
DE
6014/* Allocate a hash table for type unit groups. */
6015
6016static htab_t
6017allocate_type_unit_groups_table (void)
6018{
6019 return htab_create_alloc_ex (3,
6020 hash_type_unit_group,
6021 eq_type_unit_group,
6022 NULL,
6023 &dwarf2_per_objfile->objfile->objfile_obstack,
6024 hashtab_obstack_allocate,
6025 dummy_obstack_deallocate);
6026}
dee91e82 6027
f4dc4d17
DE
6028/* Type units that don't have DW_AT_stmt_list are grouped into their own
6029 partial symtabs. We combine several TUs per psymtab to not let the size
6030 of any one psymtab grow too big. */
6031#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6032#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 6033
094b34ac 6034/* Helper routine for get_type_unit_group.
f4dc4d17
DE
6035 Create the type_unit_group object used to hold one or more TUs. */
6036
6037static struct type_unit_group *
094b34ac 6038create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
6039{
6040 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 6041 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 6042 struct type_unit_group *tu_group;
f4dc4d17
DE
6043
6044 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6045 struct type_unit_group);
094b34ac 6046 per_cu = &tu_group->per_cu;
f4dc4d17 6047 per_cu->objfile = objfile;
f4dc4d17 6048
094b34ac
DE
6049 if (dwarf2_per_objfile->using_index)
6050 {
6051 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6052 struct dwarf2_per_cu_quick_data);
094b34ac
DE
6053 }
6054 else
6055 {
9c541725 6056 unsigned int line_offset = to_underlying (line_offset_struct);
094b34ac
DE
6057 struct partial_symtab *pst;
6058 char *name;
6059
6060 /* Give the symtab a useful name for debug purposes. */
6061 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6062 name = xstrprintf ("<type_units_%d>",
6063 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6064 else
6065 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6066
6067 pst = create_partial_symtab (per_cu, name);
6068 pst->anonymous = 1;
f4dc4d17 6069
094b34ac
DE
6070 xfree (name);
6071 }
f4dc4d17 6072
094b34ac 6073 tu_group->hash.dwo_unit = cu->dwo_unit;
9c541725 6074 tu_group->hash.line_sect_off = line_offset_struct;
f4dc4d17
DE
6075
6076 return tu_group;
6077}
6078
094b34ac
DE
6079/* Look up the type_unit_group for type unit CU, and create it if necessary.
6080 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
6081
6082static struct type_unit_group *
ff39bb5e 6083get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
6084{
6085 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6086 struct type_unit_group *tu_group;
6087 void **slot;
6088 unsigned int line_offset;
6089 struct type_unit_group type_unit_group_for_lookup;
6090
6091 if (dwarf2_per_objfile->type_unit_groups == NULL)
6092 {
6093 dwarf2_per_objfile->type_unit_groups =
6094 allocate_type_unit_groups_table ();
6095 }
6096
6097 /* Do we need to create a new group, or can we use an existing one? */
6098
6099 if (stmt_list)
6100 {
6101 line_offset = DW_UNSND (stmt_list);
6102 ++tu_stats->nr_symtab_sharers;
6103 }
6104 else
6105 {
6106 /* Ugh, no stmt_list. Rare, but we have to handle it.
6107 We can do various things here like create one group per TU or
6108 spread them over multiple groups to split up the expansion work.
6109 To avoid worst case scenarios (too many groups or too large groups)
6110 we, umm, group them in bunches. */
6111 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6112 | (tu_stats->nr_stmt_less_type_units
6113 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6114 ++tu_stats->nr_stmt_less_type_units;
6115 }
6116
094b34ac 6117 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
9c541725 6118 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
f4dc4d17
DE
6119 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6120 &type_unit_group_for_lookup, INSERT);
6121 if (*slot != NULL)
6122 {
9a3c8263 6123 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
6124 gdb_assert (tu_group != NULL);
6125 }
6126 else
6127 {
9c541725 6128 sect_offset line_offset_struct = (sect_offset) line_offset;
094b34ac 6129 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
6130 *slot = tu_group;
6131 ++tu_stats->nr_symtabs;
6132 }
6133
6134 return tu_group;
6135}
0018ea6f
DE
6136\f
6137/* Partial symbol tables. */
6138
6139/* Create a psymtab named NAME and assign it to PER_CU.
6140
6141 The caller must fill in the following details:
6142 dirname, textlow, texthigh. */
6143
6144static struct partial_symtab *
6145create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6146{
6147 struct objfile *objfile = per_cu->objfile;
6148 struct partial_symtab *pst;
6149
18a94d75 6150 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
6151 objfile->global_psymbols.next,
6152 objfile->static_psymbols.next);
6153
6154 pst->psymtabs_addrmap_supported = 1;
6155
6156 /* This is the glue that links PST into GDB's symbol API. */
6157 pst->read_symtab_private = per_cu;
6158 pst->read_symtab = dwarf2_read_symtab;
6159 per_cu->v.psymtab = pst;
6160
6161 return pst;
6162}
6163
b93601f3
TT
6164/* The DATA object passed to process_psymtab_comp_unit_reader has this
6165 type. */
6166
6167struct process_psymtab_comp_unit_data
6168{
6169 /* True if we are reading a DW_TAG_partial_unit. */
6170
6171 int want_partial_unit;
6172
6173 /* The "pretend" language that is used if the CU doesn't declare a
6174 language. */
6175
6176 enum language pretend_language;
6177};
6178
0018ea6f
DE
6179/* die_reader_func for process_psymtab_comp_unit. */
6180
6181static void
6182process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6183 const gdb_byte *info_ptr,
0018ea6f
DE
6184 struct die_info *comp_unit_die,
6185 int has_children,
6186 void *data)
6187{
6188 struct dwarf2_cu *cu = reader->cu;
6189 struct objfile *objfile = cu->objfile;
3e29f34a 6190 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 6191 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
6192 CORE_ADDR baseaddr;
6193 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6194 struct partial_symtab *pst;
3a2b436a 6195 enum pc_bounds_kind cu_bounds_kind;
0018ea6f 6196 const char *filename;
9a3c8263
SM
6197 struct process_psymtab_comp_unit_data *info
6198 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 6199
b93601f3 6200 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
6201 return;
6202
6203 gdb_assert (! per_cu->is_debug_types);
6204
b93601f3 6205 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
6206
6207 cu->list_in_scope = &file_symbols;
6208
6209 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
6210 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6211 if (filename == NULL)
0018ea6f 6212 filename = "";
0018ea6f
DE
6213
6214 pst = create_partial_symtab (per_cu, filename);
6215
6216 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 6217 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
6218
6219 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6220
6221 dwarf2_find_base_address (comp_unit_die, cu);
6222
6223 /* Possibly set the default values of LOWPC and HIGHPC from
6224 `DW_AT_ranges'. */
3a2b436a
JK
6225 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6226 &best_highpc, cu, pst);
6227 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
0018ea6f
DE
6228 /* Store the contiguous range if it is not empty; it can be empty for
6229 CUs with no code. */
6230 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
6231 gdbarch_adjust_dwarf2_addr (gdbarch,
6232 best_lowpc + baseaddr),
6233 gdbarch_adjust_dwarf2_addr (gdbarch,
6234 best_highpc + baseaddr) - 1,
6235 pst);
0018ea6f
DE
6236
6237 /* Check if comp unit has_children.
6238 If so, read the rest of the partial symbols from this comp unit.
6239 If not, there's no more debug_info for this comp unit. */
6240 if (has_children)
6241 {
6242 struct partial_die_info *first_die;
6243 CORE_ADDR lowpc, highpc;
6244
6245 lowpc = ((CORE_ADDR) -1);
6246 highpc = ((CORE_ADDR) 0);
6247
6248 first_die = load_partial_dies (reader, info_ptr, 1);
6249
6250 scan_partial_symbols (first_die, &lowpc, &highpc,
e385593e 6251 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
0018ea6f
DE
6252
6253 /* If we didn't find a lowpc, set it to highpc to avoid
6254 complaints from `maint check'. */
6255 if (lowpc == ((CORE_ADDR) -1))
6256 lowpc = highpc;
6257
6258 /* If the compilation unit didn't have an explicit address range,
6259 then use the information extracted from its child dies. */
e385593e 6260 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
0018ea6f
DE
6261 {
6262 best_lowpc = lowpc;
6263 best_highpc = highpc;
6264 }
6265 }
3e29f34a
MR
6266 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6267 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6268
8763cede 6269 end_psymtab_common (objfile, pst);
0018ea6f
DE
6270
6271 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6272 {
6273 int i;
6274 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6275 struct dwarf2_per_cu_data *iter;
6276
6277 /* Fill in 'dependencies' here; we fill in 'users' in a
6278 post-pass. */
6279 pst->number_of_dependencies = len;
8d749320
SM
6280 pst->dependencies =
6281 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
6282 for (i = 0;
6283 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6284 i, iter);
6285 ++i)
6286 pst->dependencies[i] = iter->v.psymtab;
6287
6288 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6289 }
6290
6291 /* Get the list of files included in the current compilation unit,
6292 and build a psymtab for each of them. */
6293 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6294
b4f54984 6295 if (dwarf_read_debug)
0018ea6f
DE
6296 {
6297 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6298
6299 fprintf_unfiltered (gdb_stdlog,
6300 "Psymtab for %s unit @0x%x: %s - %s"
6301 ", %d global, %d static syms\n",
6302 per_cu->is_debug_types ? "type" : "comp",
9c541725 6303 to_underlying (per_cu->sect_off),
0018ea6f
DE
6304 paddress (gdbarch, pst->textlow),
6305 paddress (gdbarch, pst->texthigh),
6306 pst->n_global_syms, pst->n_static_syms);
6307 }
6308}
6309
6310/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6311 Process compilation unit THIS_CU for a psymtab. */
6312
6313static void
6314process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6315 int want_partial_unit,
6316 enum language pretend_language)
0018ea6f 6317{
b93601f3
TT
6318 struct process_psymtab_comp_unit_data info;
6319
0018ea6f
DE
6320 /* If this compilation unit was already read in, free the
6321 cached copy in order to read it in again. This is
6322 necessary because we skipped some symbols when we first
6323 read in the compilation unit (see load_partial_dies).
6324 This problem could be avoided, but the benefit is unclear. */
6325 if (this_cu->cu != NULL)
6326 free_one_cached_comp_unit (this_cu);
6327
6328 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6329 info.want_partial_unit = want_partial_unit;
6330 info.pretend_language = pretend_language;
0018ea6f
DE
6331 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6332 process_psymtab_comp_unit_reader,
b93601f3 6333 &info);
0018ea6f
DE
6334
6335 /* Age out any secondary CUs. */
6336 age_cached_comp_units ();
6337}
f4dc4d17
DE
6338
6339/* Reader function for build_type_psymtabs. */
6340
6341static void
6342build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6343 const gdb_byte *info_ptr,
f4dc4d17
DE
6344 struct die_info *type_unit_die,
6345 int has_children,
6346 void *data)
6347{
6348 struct objfile *objfile = dwarf2_per_objfile->objfile;
6349 struct dwarf2_cu *cu = reader->cu;
6350 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6351 struct signatured_type *sig_type;
f4dc4d17
DE
6352 struct type_unit_group *tu_group;
6353 struct attribute *attr;
6354 struct partial_die_info *first_die;
6355 CORE_ADDR lowpc, highpc;
6356 struct partial_symtab *pst;
6357
6358 gdb_assert (data == NULL);
0186c6a7
DE
6359 gdb_assert (per_cu->is_debug_types);
6360 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6361
6362 if (! has_children)
6363 return;
6364
6365 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6366 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6367
0186c6a7 6368 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6369
6370 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6371 cu->list_in_scope = &file_symbols;
6372 pst = create_partial_symtab (per_cu, "");
6373 pst->anonymous = 1;
6374
6375 first_die = load_partial_dies (reader, info_ptr, 1);
6376
6377 lowpc = (CORE_ADDR) -1;
6378 highpc = (CORE_ADDR) 0;
6379 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6380
8763cede 6381 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6382}
6383
73051182
DE
6384/* Struct used to sort TUs by their abbreviation table offset. */
6385
6386struct tu_abbrev_offset
6387{
6388 struct signatured_type *sig_type;
6389 sect_offset abbrev_offset;
6390};
6391
6392/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6393
6394static int
6395sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6396{
9a3c8263
SM
6397 const struct tu_abbrev_offset * const *a
6398 = (const struct tu_abbrev_offset * const*) ap;
6399 const struct tu_abbrev_offset * const *b
6400 = (const struct tu_abbrev_offset * const*) bp;
9c541725
PA
6401 sect_offset aoff = (*a)->abbrev_offset;
6402 sect_offset boff = (*b)->abbrev_offset;
73051182
DE
6403
6404 return (aoff > boff) - (aoff < boff);
6405}
6406
6407/* Efficiently read all the type units.
6408 This does the bulk of the work for build_type_psymtabs.
6409
6410 The efficiency is because we sort TUs by the abbrev table they use and
6411 only read each abbrev table once. In one program there are 200K TUs
6412 sharing 8K abbrev tables.
6413
6414 The main purpose of this function is to support building the
6415 dwarf2_per_objfile->type_unit_groups table.
6416 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6417 can collapse the search space by grouping them by stmt_list.
6418 The savings can be significant, in the same program from above the 200K TUs
6419 share 8K stmt_list tables.
6420
6421 FUNC is expected to call get_type_unit_group, which will create the
6422 struct type_unit_group if necessary and add it to
6423 dwarf2_per_objfile->type_unit_groups. */
6424
6425static void
6426build_type_psymtabs_1 (void)
6427{
73051182
DE
6428 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6429 struct cleanup *cleanups;
6430 struct abbrev_table *abbrev_table;
6431 sect_offset abbrev_offset;
6432 struct tu_abbrev_offset *sorted_by_abbrev;
73051182
DE
6433 int i;
6434
6435 /* It's up to the caller to not call us multiple times. */
6436 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6437
6438 if (dwarf2_per_objfile->n_type_units == 0)
6439 return;
6440
6441 /* TUs typically share abbrev tables, and there can be way more TUs than
6442 abbrev tables. Sort by abbrev table to reduce the number of times we
6443 read each abbrev table in.
6444 Alternatives are to punt or to maintain a cache of abbrev tables.
6445 This is simpler and efficient enough for now.
6446
6447 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6448 symtab to use). Typically TUs with the same abbrev offset have the same
6449 stmt_list value too so in practice this should work well.
6450
6451 The basic algorithm here is:
6452
6453 sort TUs by abbrev table
6454 for each TU with same abbrev table:
6455 read abbrev table if first user
6456 read TU top level DIE
6457 [IWBN if DWO skeletons had DW_AT_stmt_list]
6458 call FUNC */
6459
b4f54984 6460 if (dwarf_read_debug)
73051182
DE
6461 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6462
6463 /* Sort in a separate table to maintain the order of all_type_units
6464 for .gdb_index: TU indices directly index all_type_units. */
6465 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6466 dwarf2_per_objfile->n_type_units);
6467 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6468 {
6469 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6470
6471 sorted_by_abbrev[i].sig_type = sig_type;
6472 sorted_by_abbrev[i].abbrev_offset =
6473 read_abbrev_offset (sig_type->per_cu.section,
9c541725 6474 sig_type->per_cu.sect_off);
73051182
DE
6475 }
6476 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6477 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6478 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6479
9c541725 6480 abbrev_offset = (sect_offset) ~(unsigned) 0;
73051182
DE
6481 abbrev_table = NULL;
6482 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6483
6484 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6485 {
6486 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6487
6488 /* Switch to the next abbrev table if necessary. */
6489 if (abbrev_table == NULL
9c541725 6490 || tu->abbrev_offset != abbrev_offset)
73051182
DE
6491 {
6492 if (abbrev_table != NULL)
6493 {
6494 abbrev_table_free (abbrev_table);
6495 /* Reset to NULL in case abbrev_table_read_table throws
6496 an error: abbrev_table_free_cleanup will get called. */
6497 abbrev_table = NULL;
6498 }
6499 abbrev_offset = tu->abbrev_offset;
6500 abbrev_table =
6501 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6502 abbrev_offset);
6503 ++tu_stats->nr_uniq_abbrev_tables;
6504 }
6505
6506 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6507 build_type_psymtabs_reader, NULL);
6508 }
6509
73051182 6510 do_cleanups (cleanups);
6aa5f3a6 6511}
73051182 6512
6aa5f3a6
DE
6513/* Print collected type unit statistics. */
6514
6515static void
6516print_tu_stats (void)
6517{
6518 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6519
6520 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6521 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6522 dwarf2_per_objfile->n_type_units);
6523 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6524 tu_stats->nr_uniq_abbrev_tables);
6525 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6526 tu_stats->nr_symtabs);
6527 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6528 tu_stats->nr_symtab_sharers);
6529 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6530 tu_stats->nr_stmt_less_type_units);
6531 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6532 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6533}
6534
f4dc4d17
DE
6535/* Traversal function for build_type_psymtabs. */
6536
6537static int
6538build_type_psymtab_dependencies (void **slot, void *info)
6539{
6540 struct objfile *objfile = dwarf2_per_objfile->objfile;
6541 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6542 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6543 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6544 int len = VEC_length (sig_type_ptr, tu_group->tus);
6545 struct signatured_type *iter;
f4dc4d17
DE
6546 int i;
6547
6548 gdb_assert (len > 0);
0186c6a7 6549 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6550
6551 pst->number_of_dependencies = len;
8d749320
SM
6552 pst->dependencies =
6553 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 6554 for (i = 0;
0186c6a7 6555 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6556 ++i)
6557 {
0186c6a7
DE
6558 gdb_assert (iter->per_cu.is_debug_types);
6559 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6560 iter->type_unit_group = tu_group;
f4dc4d17
DE
6561 }
6562
0186c6a7 6563 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6564
6565 return 1;
6566}
6567
6568/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6569 Build partial symbol tables for the .debug_types comp-units. */
6570
6571static void
6572build_type_psymtabs (struct objfile *objfile)
6573{
0e50663e 6574 if (! create_all_type_units (objfile))
348e048f
DE
6575 return;
6576
73051182 6577 build_type_psymtabs_1 ();
6aa5f3a6 6578}
f4dc4d17 6579
6aa5f3a6
DE
6580/* Traversal function for process_skeletonless_type_unit.
6581 Read a TU in a DWO file and build partial symbols for it. */
6582
6583static int
6584process_skeletonless_type_unit (void **slot, void *info)
6585{
6586 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9a3c8263 6587 struct objfile *objfile = (struct objfile *) info;
6aa5f3a6
DE
6588 struct signatured_type find_entry, *entry;
6589
6590 /* If this TU doesn't exist in the global table, add it and read it in. */
6591
6592 if (dwarf2_per_objfile->signatured_types == NULL)
6593 {
6594 dwarf2_per_objfile->signatured_types
6595 = allocate_signatured_type_table (objfile);
6596 }
6597
6598 find_entry.signature = dwo_unit->signature;
6599 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6600 INSERT);
6601 /* If we've already seen this type there's nothing to do. What's happening
6602 is we're doing our own version of comdat-folding here. */
6603 if (*slot != NULL)
6604 return 1;
6605
6606 /* This does the job that create_all_type_units would have done for
6607 this TU. */
6608 entry = add_type_unit (dwo_unit->signature, slot);
6609 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6610 *slot = entry;
6611
6612 /* This does the job that build_type_psymtabs_1 would have done. */
6613 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6614 build_type_psymtabs_reader, NULL);
6615
6616 return 1;
6617}
6618
6619/* Traversal function for process_skeletonless_type_units. */
6620
6621static int
6622process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6623{
6624 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6625
6626 if (dwo_file->tus != NULL)
6627 {
6628 htab_traverse_noresize (dwo_file->tus,
6629 process_skeletonless_type_unit, info);
6630 }
6631
6632 return 1;
6633}
6634
6635/* Scan all TUs of DWO files, verifying we've processed them.
6636 This is needed in case a TU was emitted without its skeleton.
6637 Note: This can't be done until we know what all the DWO files are. */
6638
6639static void
6640process_skeletonless_type_units (struct objfile *objfile)
6641{
6642 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6643 if (get_dwp_file () == NULL
6644 && dwarf2_per_objfile->dwo_files != NULL)
6645 {
6646 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6647 process_dwo_file_for_skeletonless_type_units,
6648 objfile);
6649 }
348e048f
DE
6650}
6651
60606b2c
TT
6652/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6653
6654static void
6655psymtabs_addrmap_cleanup (void *o)
6656{
9a3c8263 6657 struct objfile *objfile = (struct objfile *) o;
ec61707d 6658
60606b2c
TT
6659 objfile->psymtabs_addrmap = NULL;
6660}
6661
95554aad
TT
6662/* Compute the 'user' field for each psymtab in OBJFILE. */
6663
6664static void
6665set_partial_user (struct objfile *objfile)
6666{
6667 int i;
6668
6669 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6670 {
8832e7e3 6671 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6672 struct partial_symtab *pst = per_cu->v.psymtab;
6673 int j;
6674
36586728
TT
6675 if (pst == NULL)
6676 continue;
6677
95554aad
TT
6678 for (j = 0; j < pst->number_of_dependencies; ++j)
6679 {
6680 /* Set the 'user' field only if it is not already set. */
6681 if (pst->dependencies[j]->user == NULL)
6682 pst->dependencies[j]->user = pst;
6683 }
6684 }
6685}
6686
93311388
DE
6687/* Build the partial symbol table by doing a quick pass through the
6688 .debug_info and .debug_abbrev sections. */
72bf9492 6689
93311388 6690static void
c67a9c90 6691dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6692{
60606b2c 6693 struct cleanup *back_to, *addrmap_cleanup;
21b2bd31 6694 int i;
93311388 6695
b4f54984 6696 if (dwarf_read_debug)
45cfd468
DE
6697 {
6698 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6699 objfile_name (objfile));
45cfd468
DE
6700 }
6701
98bfdba5
PA
6702 dwarf2_per_objfile->reading_partial_symbols = 1;
6703
be391dca 6704 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6705
93311388
DE
6706 /* Any cached compilation units will be linked by the per-objfile
6707 read_in_chain. Make sure to free them when we're done. */
6708 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6709
348e048f
DE
6710 build_type_psymtabs (objfile);
6711
93311388 6712 create_all_comp_units (objfile);
c906108c 6713
60606b2c
TT
6714 /* Create a temporary address map on a temporary obstack. We later
6715 copy this to the final obstack. */
8268c778 6716 auto_obstack temp_obstack;
60606b2c
TT
6717 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6718 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6719
21b2bd31 6720 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6721 {
8832e7e3 6722 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6723
b93601f3 6724 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6725 }
ff013f42 6726
6aa5f3a6
DE
6727 /* This has to wait until we read the CUs, we need the list of DWOs. */
6728 process_skeletonless_type_units (objfile);
6729
6730 /* Now that all TUs have been processed we can fill in the dependencies. */
6731 if (dwarf2_per_objfile->type_unit_groups != NULL)
6732 {
6733 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6734 build_type_psymtab_dependencies, NULL);
6735 }
6736
b4f54984 6737 if (dwarf_read_debug)
6aa5f3a6
DE
6738 print_tu_stats ();
6739
95554aad
TT
6740 set_partial_user (objfile);
6741
ff013f42
JK
6742 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6743 &objfile->objfile_obstack);
60606b2c 6744 discard_cleanups (addrmap_cleanup);
ff013f42 6745
ae038cb0 6746 do_cleanups (back_to);
45cfd468 6747
b4f54984 6748 if (dwarf_read_debug)
45cfd468 6749 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6750 objfile_name (objfile));
ae038cb0
DJ
6751}
6752
3019eac3 6753/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6754
6755static void
dee91e82 6756load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6757 const gdb_byte *info_ptr,
dee91e82
DE
6758 struct die_info *comp_unit_die,
6759 int has_children,
6760 void *data)
ae038cb0 6761{
dee91e82 6762 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6763
95554aad 6764 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6765
ae038cb0
DJ
6766 /* Check if comp unit has_children.
6767 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6768 If not, there's no more debug_info for this comp unit. */
d85a05f0 6769 if (has_children)
dee91e82
DE
6770 load_partial_dies (reader, info_ptr, 0);
6771}
98bfdba5 6772
dee91e82
DE
6773/* Load the partial DIEs for a secondary CU into memory.
6774 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6775
dee91e82
DE
6776static void
6777load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6778{
f4dc4d17
DE
6779 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6780 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6781}
6782
ae038cb0 6783static void
36586728
TT
6784read_comp_units_from_section (struct objfile *objfile,
6785 struct dwarf2_section_info *section,
6786 unsigned int is_dwz,
6787 int *n_allocated,
6788 int *n_comp_units,
6789 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6790{
d521ce57 6791 const gdb_byte *info_ptr;
a32a8923 6792 bfd *abfd = get_section_bfd_owner (section);
be391dca 6793
b4f54984 6794 if (dwarf_read_debug)
bf6af496 6795 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6796 get_section_name (section),
6797 get_section_file_name (section));
bf6af496 6798
36586728 6799 dwarf2_read_section (objfile, section);
ae038cb0 6800
36586728 6801 info_ptr = section->buffer;
6e70227d 6802
36586728 6803 while (info_ptr < section->buffer + section->size)
ae038cb0 6804 {
c764a876 6805 unsigned int length, initial_length_size;
ae038cb0 6806 struct dwarf2_per_cu_data *this_cu;
ae038cb0 6807
9c541725 6808 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
ae038cb0
DJ
6809
6810 /* Read just enough information to find out where the next
6811 compilation unit is. */
36586728 6812 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6813
6814 /* Save the compilation unit for later lookup. */
8d749320 6815 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
ae038cb0 6816 memset (this_cu, 0, sizeof (*this_cu));
9c541725 6817 this_cu->sect_off = sect_off;
c764a876 6818 this_cu->length = length + initial_length_size;
36586728 6819 this_cu->is_dwz = is_dwz;
9291a0cd 6820 this_cu->objfile = objfile;
8a0459fd 6821 this_cu->section = section;
ae038cb0 6822
36586728 6823 if (*n_comp_units == *n_allocated)
ae038cb0 6824 {
36586728 6825 *n_allocated *= 2;
224c3ddb
SM
6826 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6827 *all_comp_units, *n_allocated);
ae038cb0 6828 }
36586728
TT
6829 (*all_comp_units)[*n_comp_units] = this_cu;
6830 ++*n_comp_units;
ae038cb0
DJ
6831
6832 info_ptr = info_ptr + this_cu->length;
6833 }
36586728
TT
6834}
6835
6836/* Create a list of all compilation units in OBJFILE.
6837 This is only done for -readnow and building partial symtabs. */
6838
6839static void
6840create_all_comp_units (struct objfile *objfile)
6841{
6842 int n_allocated;
6843 int n_comp_units;
6844 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6845 struct dwz_file *dwz;
36586728
TT
6846
6847 n_comp_units = 0;
6848 n_allocated = 10;
8d749320 6849 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
36586728
TT
6850
6851 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6852 &n_allocated, &n_comp_units, &all_comp_units);
6853
4db1a1dc
TT
6854 dwz = dwarf2_get_dwz_file ();
6855 if (dwz != NULL)
6856 read_comp_units_from_section (objfile, &dwz->info, 1,
6857 &n_allocated, &n_comp_units,
6858 &all_comp_units);
ae038cb0 6859
8d749320
SM
6860 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6861 struct dwarf2_per_cu_data *,
6862 n_comp_units);
ae038cb0
DJ
6863 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6864 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6865 xfree (all_comp_units);
6866 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6867}
6868
5734ee8b 6869/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6870 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6871 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6872 DW_AT_ranges). See the comments of add_partial_subprogram on how
6873 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6874
72bf9492
DJ
6875static void
6876scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6877 CORE_ADDR *highpc, int set_addrmap,
6878 struct dwarf2_cu *cu)
c906108c 6879{
72bf9492 6880 struct partial_die_info *pdi;
c906108c 6881
91c24f0a
DC
6882 /* Now, march along the PDI's, descending into ones which have
6883 interesting children but skipping the children of the other ones,
6884 until we reach the end of the compilation unit. */
c906108c 6885
72bf9492 6886 pdi = first_die;
91c24f0a 6887
72bf9492
DJ
6888 while (pdi != NULL)
6889 {
6890 fixup_partial_die (pdi, cu);
c906108c 6891
f55ee35c 6892 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6893 children, so we need to look at them. Ditto for anonymous
6894 enums. */
933c6fe4 6895
72bf9492 6896 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6897 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6898 || pdi->tag == DW_TAG_imported_unit)
c906108c 6899 {
72bf9492 6900 switch (pdi->tag)
c906108c
SS
6901 {
6902 case DW_TAG_subprogram:
cdc07690 6903 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6904 break;
72929c62 6905 case DW_TAG_constant:
c906108c
SS
6906 case DW_TAG_variable:
6907 case DW_TAG_typedef:
91c24f0a 6908 case DW_TAG_union_type:
72bf9492 6909 if (!pdi->is_declaration)
63d06c5c 6910 {
72bf9492 6911 add_partial_symbol (pdi, cu);
63d06c5c
DC
6912 }
6913 break;
c906108c 6914 case DW_TAG_class_type:
680b30c7 6915 case DW_TAG_interface_type:
c906108c 6916 case DW_TAG_structure_type:
72bf9492 6917 if (!pdi->is_declaration)
c906108c 6918 {
72bf9492 6919 add_partial_symbol (pdi, cu);
c906108c 6920 }
e98c9e7c
TT
6921 if (cu->language == language_rust && pdi->has_children)
6922 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6923 set_addrmap, cu);
c906108c 6924 break;
91c24f0a 6925 case DW_TAG_enumeration_type:
72bf9492
DJ
6926 if (!pdi->is_declaration)
6927 add_partial_enumeration (pdi, cu);
c906108c
SS
6928 break;
6929 case DW_TAG_base_type:
a02abb62 6930 case DW_TAG_subrange_type:
c906108c 6931 /* File scope base type definitions are added to the partial
c5aa993b 6932 symbol table. */
72bf9492 6933 add_partial_symbol (pdi, cu);
c906108c 6934 break;
d9fa45fe 6935 case DW_TAG_namespace:
cdc07690 6936 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6937 break;
5d7cb8df 6938 case DW_TAG_module:
cdc07690 6939 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6940 break;
95554aad
TT
6941 case DW_TAG_imported_unit:
6942 {
6943 struct dwarf2_per_cu_data *per_cu;
6944
f4dc4d17
DE
6945 /* For now we don't handle imported units in type units. */
6946 if (cu->per_cu->is_debug_types)
6947 {
6948 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6949 " supported in type units [in module %s]"),
4262abfb 6950 objfile_name (cu->objfile));
f4dc4d17
DE
6951 }
6952
9c541725 6953 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
36586728 6954 pdi->is_dwz,
95554aad
TT
6955 cu->objfile);
6956
6957 /* Go read the partial unit, if needed. */
6958 if (per_cu->v.psymtab == NULL)
b93601f3 6959 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6960
f4dc4d17 6961 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6962 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6963 }
6964 break;
74921315
KS
6965 case DW_TAG_imported_declaration:
6966 add_partial_symbol (pdi, cu);
6967 break;
c906108c
SS
6968 default:
6969 break;
6970 }
6971 }
6972
72bf9492
DJ
6973 /* If the die has a sibling, skip to the sibling. */
6974
6975 pdi = pdi->die_sibling;
6976 }
6977}
6978
6979/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6980
72bf9492 6981 Normally, this is simple. For C++, the parent DIE's fully scoped
9c37b5ae 6982 name is concatenated with "::" and the partial DIE's name.
72bf9492
DJ
6983 Enumerators are an exception; they use the scope of their parent
6984 enumeration type, i.e. the name of the enumeration type is not
6985 prepended to the enumerator.
91c24f0a 6986
72bf9492
DJ
6987 There are two complexities. One is DW_AT_specification; in this
6988 case "parent" means the parent of the target of the specification,
6989 instead of the direct parent of the DIE. The other is compilers
6990 which do not emit DW_TAG_namespace; in this case we try to guess
6991 the fully qualified name of structure types from their members'
6992 linkage names. This must be done using the DIE's children rather
6993 than the children of any DW_AT_specification target. We only need
6994 to do this for structures at the top level, i.e. if the target of
6995 any DW_AT_specification (if any; otherwise the DIE itself) does not
6996 have a parent. */
6997
6998/* Compute the scope prefix associated with PDI's parent, in
6999 compilation unit CU. The result will be allocated on CU's
7000 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7001 field. NULL is returned if no prefix is necessary. */
15d034d0 7002static const char *
72bf9492
DJ
7003partial_die_parent_scope (struct partial_die_info *pdi,
7004 struct dwarf2_cu *cu)
7005{
15d034d0 7006 const char *grandparent_scope;
72bf9492 7007 struct partial_die_info *parent, *real_pdi;
91c24f0a 7008
72bf9492
DJ
7009 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7010 then this means the parent of the specification DIE. */
7011
7012 real_pdi = pdi;
72bf9492 7013 while (real_pdi->has_specification)
36586728
TT
7014 real_pdi = find_partial_die (real_pdi->spec_offset,
7015 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
7016
7017 parent = real_pdi->die_parent;
7018 if (parent == NULL)
7019 return NULL;
7020
7021 if (parent->scope_set)
7022 return parent->scope;
7023
7024 fixup_partial_die (parent, cu);
7025
10b3939b 7026 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 7027
acebe513
UW
7028 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7029 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7030 Work around this problem here. */
7031 if (cu->language == language_cplus
6e70227d 7032 && parent->tag == DW_TAG_namespace
acebe513
UW
7033 && strcmp (parent->name, "::") == 0
7034 && grandparent_scope == NULL)
7035 {
7036 parent->scope = NULL;
7037 parent->scope_set = 1;
7038 return NULL;
7039 }
7040
9c6c53f7
SA
7041 if (pdi->tag == DW_TAG_enumerator)
7042 /* Enumerators should not get the name of the enumeration as a prefix. */
7043 parent->scope = grandparent_scope;
7044 else if (parent->tag == DW_TAG_namespace
f55ee35c 7045 || parent->tag == DW_TAG_module
72bf9492
DJ
7046 || parent->tag == DW_TAG_structure_type
7047 || parent->tag == DW_TAG_class_type
680b30c7 7048 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
7049 || parent->tag == DW_TAG_union_type
7050 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
7051 {
7052 if (grandparent_scope == NULL)
7053 parent->scope = parent->name;
7054 else
3e43a32a
MS
7055 parent->scope = typename_concat (&cu->comp_unit_obstack,
7056 grandparent_scope,
f55ee35c 7057 parent->name, 0, cu);
72bf9492 7058 }
72bf9492
DJ
7059 else
7060 {
7061 /* FIXME drow/2004-04-01: What should we be doing with
7062 function-local names? For partial symbols, we should probably be
7063 ignoring them. */
7064 complaint (&symfile_complaints,
e2e0b3e5 7065 _("unhandled containing DIE tag %d for DIE at %d"),
9c541725 7066 parent->tag, to_underlying (pdi->sect_off));
72bf9492 7067 parent->scope = grandparent_scope;
c906108c
SS
7068 }
7069
72bf9492
DJ
7070 parent->scope_set = 1;
7071 return parent->scope;
7072}
7073
7074/* Return the fully scoped name associated with PDI, from compilation unit
7075 CU. The result will be allocated with malloc. */
4568ecf9 7076
72bf9492
DJ
7077static char *
7078partial_die_full_name (struct partial_die_info *pdi,
7079 struct dwarf2_cu *cu)
7080{
15d034d0 7081 const char *parent_scope;
72bf9492 7082
98bfdba5
PA
7083 /* If this is a template instantiation, we can not work out the
7084 template arguments from partial DIEs. So, unfortunately, we have
7085 to go through the full DIEs. At least any work we do building
7086 types here will be reused if full symbols are loaded later. */
7087 if (pdi->has_template_arguments)
7088 {
7089 fixup_partial_die (pdi, cu);
7090
7091 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7092 {
7093 struct die_info *die;
7094 struct attribute attr;
7095 struct dwarf2_cu *ref_cu = cu;
7096
b64f50a1 7097 /* DW_FORM_ref_addr is using section offset. */
b4069958 7098 attr.name = (enum dwarf_attribute) 0;
98bfdba5 7099 attr.form = DW_FORM_ref_addr;
9c541725 7100 attr.u.unsnd = to_underlying (pdi->sect_off);
98bfdba5
PA
7101 die = follow_die_ref (NULL, &attr, &ref_cu);
7102
7103 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7104 }
7105 }
7106
72bf9492
DJ
7107 parent_scope = partial_die_parent_scope (pdi, cu);
7108 if (parent_scope == NULL)
7109 return NULL;
7110 else
f55ee35c 7111 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
7112}
7113
7114static void
72bf9492 7115add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 7116{
e7c27a73 7117 struct objfile *objfile = cu->objfile;
3e29f34a 7118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 7119 CORE_ADDR addr = 0;
15d034d0 7120 const char *actual_name = NULL;
e142c38c 7121 CORE_ADDR baseaddr;
15d034d0 7122 char *built_actual_name;
e142c38c
DJ
7123
7124 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 7125
15d034d0
TT
7126 built_actual_name = partial_die_full_name (pdi, cu);
7127 if (built_actual_name != NULL)
7128 actual_name = built_actual_name;
63d06c5c 7129
72bf9492
DJ
7130 if (actual_name == NULL)
7131 actual_name = pdi->name;
7132
c906108c
SS
7133 switch (pdi->tag)
7134 {
7135 case DW_TAG_subprogram:
3e29f34a 7136 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 7137 if (pdi->is_external || cu->language == language_ada)
c906108c 7138 {
2cfa0c8d
JB
7139 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7140 of the global scope. But in Ada, we want to be able to access
7141 nested procedures globally. So all Ada subprograms are stored
7142 in the global scope. */
f47fb265 7143 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7144 built_actual_name != NULL,
f47fb265
MS
7145 VAR_DOMAIN, LOC_BLOCK,
7146 &objfile->global_psymbols,
1762568f 7147 addr, cu->language, objfile);
c906108c
SS
7148 }
7149 else
7150 {
f47fb265 7151 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7152 built_actual_name != NULL,
f47fb265
MS
7153 VAR_DOMAIN, LOC_BLOCK,
7154 &objfile->static_psymbols,
1762568f 7155 addr, cu->language, objfile);
c906108c 7156 }
0c1b455e
TT
7157
7158 if (pdi->main_subprogram && actual_name != NULL)
7159 set_objfile_main_name (objfile, actual_name, cu->language);
c906108c 7160 break;
72929c62
JB
7161 case DW_TAG_constant:
7162 {
7163 struct psymbol_allocation_list *list;
7164
7165 if (pdi->is_external)
7166 list = &objfile->global_psymbols;
7167 else
7168 list = &objfile->static_psymbols;
f47fb265 7169 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7170 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 7171 list, 0, cu->language, objfile);
72929c62
JB
7172 }
7173 break;
c906108c 7174 case DW_TAG_variable:
95554aad
TT
7175 if (pdi->d.locdesc)
7176 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 7177
95554aad 7178 if (pdi->d.locdesc
caac4577
JG
7179 && addr == 0
7180 && !dwarf2_per_objfile->has_section_at_zero)
7181 {
7182 /* A global or static variable may also have been stripped
7183 out by the linker if unused, in which case its address
7184 will be nullified; do not add such variables into partial
7185 symbol table then. */
7186 }
7187 else if (pdi->is_external)
c906108c
SS
7188 {
7189 /* Global Variable.
7190 Don't enter into the minimal symbol tables as there is
7191 a minimal symbol table entry from the ELF symbols already.
7192 Enter into partial symbol table if it has a location
7193 descriptor or a type.
7194 If the location descriptor is missing, new_symbol will create
7195 a LOC_UNRESOLVED symbol, the address of the variable will then
7196 be determined from the minimal symbol table whenever the variable
7197 is referenced.
7198 The address for the partial symbol table entry is not
7199 used by GDB, but it comes in handy for debugging partial symbol
7200 table building. */
7201
95554aad 7202 if (pdi->d.locdesc || pdi->has_type)
f47fb265 7203 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7204 built_actual_name != NULL,
f47fb265
MS
7205 VAR_DOMAIN, LOC_STATIC,
7206 &objfile->global_psymbols,
1762568f 7207 addr + baseaddr,
f47fb265 7208 cu->language, objfile);
c906108c
SS
7209 }
7210 else
7211 {
ff908ebf
AW
7212 int has_loc = pdi->d.locdesc != NULL;
7213
7214 /* Static Variable. Skip symbols whose value we cannot know (those
7215 without location descriptors or constant values). */
7216 if (!has_loc && !pdi->has_const_value)
decbce07 7217 {
15d034d0 7218 xfree (built_actual_name);
decbce07
MS
7219 return;
7220 }
ff908ebf 7221
f47fb265 7222 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7223 built_actual_name != NULL,
f47fb265
MS
7224 VAR_DOMAIN, LOC_STATIC,
7225 &objfile->static_psymbols,
ff908ebf 7226 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 7227 cu->language, objfile);
c906108c
SS
7228 }
7229 break;
7230 case DW_TAG_typedef:
7231 case DW_TAG_base_type:
a02abb62 7232 case DW_TAG_subrange_type:
38d518c9 7233 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7234 built_actual_name != NULL,
176620f1 7235 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 7236 &objfile->static_psymbols,
1762568f 7237 0, cu->language, objfile);
c906108c 7238 break;
74921315 7239 case DW_TAG_imported_declaration:
72bf9492
DJ
7240 case DW_TAG_namespace:
7241 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7242 built_actual_name != NULL,
72bf9492
DJ
7243 VAR_DOMAIN, LOC_TYPEDEF,
7244 &objfile->global_psymbols,
1762568f 7245 0, cu->language, objfile);
72bf9492 7246 break;
530e8392
KB
7247 case DW_TAG_module:
7248 add_psymbol_to_list (actual_name, strlen (actual_name),
7249 built_actual_name != NULL,
7250 MODULE_DOMAIN, LOC_TYPEDEF,
7251 &objfile->global_psymbols,
1762568f 7252 0, cu->language, objfile);
530e8392 7253 break;
c906108c 7254 case DW_TAG_class_type:
680b30c7 7255 case DW_TAG_interface_type:
c906108c
SS
7256 case DW_TAG_structure_type:
7257 case DW_TAG_union_type:
7258 case DW_TAG_enumeration_type:
fa4028e9
JB
7259 /* Skip external references. The DWARF standard says in the section
7260 about "Structure, Union, and Class Type Entries": "An incomplete
7261 structure, union or class type is represented by a structure,
7262 union or class entry that does not have a byte size attribute
7263 and that has a DW_AT_declaration attribute." */
7264 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7265 {
15d034d0 7266 xfree (built_actual_name);
decbce07
MS
7267 return;
7268 }
fa4028e9 7269
63d06c5c
DC
7270 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7271 static vs. global. */
38d518c9 7272 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7273 built_actual_name != NULL,
176620f1 7274 STRUCT_DOMAIN, LOC_TYPEDEF,
9c37b5ae 7275 cu->language == language_cplus
63d06c5c
DC
7276 ? &objfile->global_psymbols
7277 : &objfile->static_psymbols,
1762568f 7278 0, cu->language, objfile);
c906108c 7279
c906108c
SS
7280 break;
7281 case DW_TAG_enumerator:
38d518c9 7282 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7283 built_actual_name != NULL,
176620f1 7284 VAR_DOMAIN, LOC_CONST,
9c37b5ae 7285 cu->language == language_cplus
f6fe98ef
DJ
7286 ? &objfile->global_psymbols
7287 : &objfile->static_psymbols,
1762568f 7288 0, cu->language, objfile);
c906108c
SS
7289 break;
7290 default:
7291 break;
7292 }
5c4e30ca 7293
15d034d0 7294 xfree (built_actual_name);
c906108c
SS
7295}
7296
5c4e30ca
DC
7297/* Read a partial die corresponding to a namespace; also, add a symbol
7298 corresponding to that namespace to the symbol table. NAMESPACE is
7299 the name of the enclosing namespace. */
91c24f0a 7300
72bf9492
DJ
7301static void
7302add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7303 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7304 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7305{
72bf9492 7306 /* Add a symbol for the namespace. */
e7c27a73 7307
72bf9492 7308 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7309
7310 /* Now scan partial symbols in that namespace. */
7311
91c24f0a 7312 if (pdi->has_children)
cdc07690 7313 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7314}
7315
5d7cb8df
JK
7316/* Read a partial die corresponding to a Fortran module. */
7317
7318static void
7319add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7320 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7321{
530e8392
KB
7322 /* Add a symbol for the namespace. */
7323
7324 add_partial_symbol (pdi, cu);
7325
f55ee35c 7326 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7327
7328 if (pdi->has_children)
cdc07690 7329 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7330}
7331
bc30ff58
JB
7332/* Read a partial die corresponding to a subprogram and create a partial
7333 symbol for that subprogram. When the CU language allows it, this
7334 routine also defines a partial symbol for each nested subprogram
cdc07690 7335 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7336 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7337 and highest PC values found in PDI.
6e70227d 7338
cdc07690
YQ
7339 PDI may also be a lexical block, in which case we simply search
7340 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7341 Again, this is only performed when the CU language allows this
7342 type of definitions. */
7343
7344static void
7345add_partial_subprogram (struct partial_die_info *pdi,
7346 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7347 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7348{
7349 if (pdi->tag == DW_TAG_subprogram)
7350 {
7351 if (pdi->has_pc_info)
7352 {
7353 if (pdi->lowpc < *lowpc)
7354 *lowpc = pdi->lowpc;
7355 if (pdi->highpc > *highpc)
7356 *highpc = pdi->highpc;
cdc07690 7357 if (set_addrmap)
5734ee8b 7358 {
5734ee8b 7359 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7360 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7361 CORE_ADDR baseaddr;
7362 CORE_ADDR highpc;
7363 CORE_ADDR lowpc;
5734ee8b
DJ
7364
7365 baseaddr = ANOFFSET (objfile->section_offsets,
7366 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7367 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7368 pdi->lowpc + baseaddr);
7369 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7370 pdi->highpc + baseaddr);
7371 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7372 cu->per_cu->v.psymtab);
5734ee8b 7373 }
481860b3
GB
7374 }
7375
7376 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7377 {
bc30ff58 7378 if (!pdi->is_declaration)
e8d05480
JB
7379 /* Ignore subprogram DIEs that do not have a name, they are
7380 illegal. Do not emit a complaint at this point, we will
7381 do so when we convert this psymtab into a symtab. */
7382 if (pdi->name)
7383 add_partial_symbol (pdi, cu);
bc30ff58
JB
7384 }
7385 }
6e70227d 7386
bc30ff58
JB
7387 if (! pdi->has_children)
7388 return;
7389
7390 if (cu->language == language_ada)
7391 {
7392 pdi = pdi->die_child;
7393 while (pdi != NULL)
7394 {
7395 fixup_partial_die (pdi, cu);
7396 if (pdi->tag == DW_TAG_subprogram
7397 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7398 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7399 pdi = pdi->die_sibling;
7400 }
7401 }
7402}
7403
91c24f0a
DC
7404/* Read a partial die corresponding to an enumeration type. */
7405
72bf9492
DJ
7406static void
7407add_partial_enumeration (struct partial_die_info *enum_pdi,
7408 struct dwarf2_cu *cu)
91c24f0a 7409{
72bf9492 7410 struct partial_die_info *pdi;
91c24f0a
DC
7411
7412 if (enum_pdi->name != NULL)
72bf9492
DJ
7413 add_partial_symbol (enum_pdi, cu);
7414
7415 pdi = enum_pdi->die_child;
7416 while (pdi)
91c24f0a 7417 {
72bf9492 7418 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7419 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7420 else
72bf9492
DJ
7421 add_partial_symbol (pdi, cu);
7422 pdi = pdi->die_sibling;
91c24f0a 7423 }
91c24f0a
DC
7424}
7425
6caca83c
CC
7426/* Return the initial uleb128 in the die at INFO_PTR. */
7427
7428static unsigned int
d521ce57 7429peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7430{
7431 unsigned int bytes_read;
7432
7433 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7434}
7435
4bb7a0a7
DJ
7436/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7437 Return the corresponding abbrev, or NULL if the number is zero (indicating
7438 an empty DIE). In either case *BYTES_READ will be set to the length of
7439 the initial number. */
7440
7441static struct abbrev_info *
d521ce57 7442peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7443 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7444{
7445 bfd *abfd = cu->objfile->obfd;
7446 unsigned int abbrev_number;
7447 struct abbrev_info *abbrev;
7448
7449 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7450
7451 if (abbrev_number == 0)
7452 return NULL;
7453
433df2d4 7454 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7455 if (!abbrev)
7456 {
422b9917
DE
7457 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7458 " at offset 0x%x [in module %s]"),
7459 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9c541725 7460 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
4bb7a0a7
DJ
7461 }
7462
7463 return abbrev;
7464}
7465
93311388
DE
7466/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7467 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7468 DIE. Any children of the skipped DIEs will also be skipped. */
7469
d521ce57
TT
7470static const gdb_byte *
7471skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7472{
dee91e82 7473 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7474 struct abbrev_info *abbrev;
7475 unsigned int bytes_read;
7476
7477 while (1)
7478 {
7479 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7480 if (abbrev == NULL)
7481 return info_ptr + bytes_read;
7482 else
dee91e82 7483 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7484 }
7485}
7486
93311388
DE
7487/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7488 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7489 abbrev corresponding to that skipped uleb128 should be passed in
7490 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7491 children. */
7492
d521ce57
TT
7493static const gdb_byte *
7494skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7495 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7496{
7497 unsigned int bytes_read;
7498 struct attribute attr;
dee91e82
DE
7499 bfd *abfd = reader->abfd;
7500 struct dwarf2_cu *cu = reader->cu;
d521ce57 7501 const gdb_byte *buffer = reader->buffer;
f664829e 7502 const gdb_byte *buffer_end = reader->buffer_end;
4bb7a0a7
DJ
7503 unsigned int form, i;
7504
7505 for (i = 0; i < abbrev->num_attrs; i++)
7506 {
7507 /* The only abbrev we care about is DW_AT_sibling. */
7508 if (abbrev->attrs[i].name == DW_AT_sibling)
7509 {
dee91e82 7510 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7511 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7512 complaint (&symfile_complaints,
7513 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7514 else
b9502d3f 7515 {
9c541725
PA
7516 sect_offset off = dwarf2_get_ref_die_offset (&attr);
7517 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
7518
7519 if (sibling_ptr < info_ptr)
7520 complaint (&symfile_complaints,
7521 _("DW_AT_sibling points backwards"));
22869d73
KS
7522 else if (sibling_ptr > reader->buffer_end)
7523 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7524 else
7525 return sibling_ptr;
7526 }
4bb7a0a7
DJ
7527 }
7528
7529 /* If it isn't DW_AT_sibling, skip this attribute. */
7530 form = abbrev->attrs[i].form;
7531 skip_attribute:
7532 switch (form)
7533 {
4bb7a0a7 7534 case DW_FORM_ref_addr:
ae411497
TT
7535 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7536 and later it is offset sized. */
7537 if (cu->header.version == 2)
7538 info_ptr += cu->header.addr_size;
7539 else
7540 info_ptr += cu->header.offset_size;
7541 break;
36586728
TT
7542 case DW_FORM_GNU_ref_alt:
7543 info_ptr += cu->header.offset_size;
7544 break;
ae411497 7545 case DW_FORM_addr:
4bb7a0a7
DJ
7546 info_ptr += cu->header.addr_size;
7547 break;
7548 case DW_FORM_data1:
7549 case DW_FORM_ref1:
7550 case DW_FORM_flag:
7551 info_ptr += 1;
7552 break;
2dc7f7b3 7553 case DW_FORM_flag_present:
43988095 7554 case DW_FORM_implicit_const:
2dc7f7b3 7555 break;
4bb7a0a7
DJ
7556 case DW_FORM_data2:
7557 case DW_FORM_ref2:
7558 info_ptr += 2;
7559 break;
7560 case DW_FORM_data4:
7561 case DW_FORM_ref4:
7562 info_ptr += 4;
7563 break;
7564 case DW_FORM_data8:
7565 case DW_FORM_ref8:
55f1336d 7566 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7567 info_ptr += 8;
7568 break;
0224619f
JK
7569 case DW_FORM_data16:
7570 info_ptr += 16;
7571 break;
4bb7a0a7 7572 case DW_FORM_string:
9b1c24c8 7573 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7574 info_ptr += bytes_read;
7575 break;
2dc7f7b3 7576 case DW_FORM_sec_offset:
4bb7a0a7 7577 case DW_FORM_strp:
36586728 7578 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7579 info_ptr += cu->header.offset_size;
7580 break;
2dc7f7b3 7581 case DW_FORM_exprloc:
4bb7a0a7
DJ
7582 case DW_FORM_block:
7583 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7584 info_ptr += bytes_read;
7585 break;
7586 case DW_FORM_block1:
7587 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7588 break;
7589 case DW_FORM_block2:
7590 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7591 break;
7592 case DW_FORM_block4:
7593 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7594 break;
7595 case DW_FORM_sdata:
7596 case DW_FORM_udata:
7597 case DW_FORM_ref_udata:
3019eac3
DE
7598 case DW_FORM_GNU_addr_index:
7599 case DW_FORM_GNU_str_index:
d521ce57 7600 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7601 break;
7602 case DW_FORM_indirect:
7603 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7604 info_ptr += bytes_read;
7605 /* We need to continue parsing from here, so just go back to
7606 the top. */
7607 goto skip_attribute;
7608
7609 default:
3e43a32a
MS
7610 error (_("Dwarf Error: Cannot handle %s "
7611 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7612 dwarf_form_name (form),
7613 bfd_get_filename (abfd));
7614 }
7615 }
7616
7617 if (abbrev->has_children)
dee91e82 7618 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7619 else
7620 return info_ptr;
7621}
7622
93311388 7623/* Locate ORIG_PDI's sibling.
dee91e82 7624 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7625
d521ce57 7626static const gdb_byte *
dee91e82
DE
7627locate_pdi_sibling (const struct die_reader_specs *reader,
7628 struct partial_die_info *orig_pdi,
d521ce57 7629 const gdb_byte *info_ptr)
91c24f0a
DC
7630{
7631 /* Do we know the sibling already? */
72bf9492 7632
91c24f0a
DC
7633 if (orig_pdi->sibling)
7634 return orig_pdi->sibling;
7635
7636 /* Are there any children to deal with? */
7637
7638 if (!orig_pdi->has_children)
7639 return info_ptr;
7640
4bb7a0a7 7641 /* Skip the children the long way. */
91c24f0a 7642
dee91e82 7643 return skip_children (reader, info_ptr);
91c24f0a
DC
7644}
7645
257e7a09 7646/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7647 not NULL. */
c906108c
SS
7648
7649static void
257e7a09
YQ
7650dwarf2_read_symtab (struct partial_symtab *self,
7651 struct objfile *objfile)
c906108c 7652{
257e7a09 7653 if (self->readin)
c906108c 7654 {
442e4d9c 7655 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7656 self->filename);
442e4d9c
YQ
7657 }
7658 else
7659 {
7660 if (info_verbose)
c906108c 7661 {
442e4d9c 7662 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7663 self->filename);
442e4d9c 7664 gdb_flush (gdb_stdout);
c906108c 7665 }
c906108c 7666
442e4d9c 7667 /* Restore our global data. */
9a3c8263
SM
7668 dwarf2_per_objfile
7669 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7670 dwarf2_objfile_data_key);
10b3939b 7671
442e4d9c
YQ
7672 /* If this psymtab is constructed from a debug-only objfile, the
7673 has_section_at_zero flag will not necessarily be correct. We
7674 can get the correct value for this flag by looking at the data
7675 associated with the (presumably stripped) associated objfile. */
7676 if (objfile->separate_debug_objfile_backlink)
7677 {
7678 struct dwarf2_per_objfile *dpo_backlink
9a3c8263
SM
7679 = ((struct dwarf2_per_objfile *)
7680 objfile_data (objfile->separate_debug_objfile_backlink,
7681 dwarf2_objfile_data_key));
9a619af0 7682
442e4d9c
YQ
7683 dwarf2_per_objfile->has_section_at_zero
7684 = dpo_backlink->has_section_at_zero;
7685 }
b2ab525c 7686
442e4d9c 7687 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7688
257e7a09 7689 psymtab_to_symtab_1 (self);
c906108c 7690
442e4d9c
YQ
7691 /* Finish up the debug error message. */
7692 if (info_verbose)
7693 printf_filtered (_("done.\n"));
c906108c 7694 }
95554aad
TT
7695
7696 process_cu_includes ();
c906108c 7697}
9cdd5dbd
DE
7698\f
7699/* Reading in full CUs. */
c906108c 7700
10b3939b
DJ
7701/* Add PER_CU to the queue. */
7702
7703static void
95554aad
TT
7704queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7705 enum language pretend_language)
10b3939b
DJ
7706{
7707 struct dwarf2_queue_item *item;
7708
7709 per_cu->queued = 1;
8d749320 7710 item = XNEW (struct dwarf2_queue_item);
10b3939b 7711 item->per_cu = per_cu;
95554aad 7712 item->pretend_language = pretend_language;
10b3939b
DJ
7713 item->next = NULL;
7714
7715 if (dwarf2_queue == NULL)
7716 dwarf2_queue = item;
7717 else
7718 dwarf2_queue_tail->next = item;
7719
7720 dwarf2_queue_tail = item;
7721}
7722
89e63ee4
DE
7723/* If PER_CU is not yet queued, add it to the queue.
7724 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7725 dependency.
0907af0c 7726 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7727 meaning either PER_CU is already queued or it is already loaded.
7728
7729 N.B. There is an invariant here that if a CU is queued then it is loaded.
7730 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7731
7732static int
89e63ee4 7733maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7734 struct dwarf2_per_cu_data *per_cu,
7735 enum language pretend_language)
7736{
7737 /* We may arrive here during partial symbol reading, if we need full
7738 DIEs to process an unusual case (e.g. template arguments). Do
7739 not queue PER_CU, just tell our caller to load its DIEs. */
7740 if (dwarf2_per_objfile->reading_partial_symbols)
7741 {
7742 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7743 return 1;
7744 return 0;
7745 }
7746
7747 /* Mark the dependence relation so that we don't flush PER_CU
7748 too early. */
89e63ee4
DE
7749 if (dependent_cu != NULL)
7750 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7751
7752 /* If it's already on the queue, we have nothing to do. */
7753 if (per_cu->queued)
7754 return 0;
7755
7756 /* If the compilation unit is already loaded, just mark it as
7757 used. */
7758 if (per_cu->cu != NULL)
7759 {
7760 per_cu->cu->last_used = 0;
7761 return 0;
7762 }
7763
7764 /* Add it to the queue. */
7765 queue_comp_unit (per_cu, pretend_language);
7766
7767 return 1;
7768}
7769
10b3939b
DJ
7770/* Process the queue. */
7771
7772static void
a0f42c21 7773process_queue (void)
10b3939b
DJ
7774{
7775 struct dwarf2_queue_item *item, *next_item;
7776
b4f54984 7777 if (dwarf_read_debug)
45cfd468
DE
7778 {
7779 fprintf_unfiltered (gdb_stdlog,
7780 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7781 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7782 }
7783
03dd20cc
DJ
7784 /* The queue starts out with one item, but following a DIE reference
7785 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7786 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7787 {
cc12ce38
DE
7788 if ((dwarf2_per_objfile->using_index
7789 ? !item->per_cu->v.quick->compunit_symtab
7790 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7791 /* Skip dummy CUs. */
7792 && item->per_cu->cu != NULL)
f4dc4d17
DE
7793 {
7794 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7795 unsigned int debug_print_threshold;
247f5c4f 7796 char buf[100];
f4dc4d17 7797
247f5c4f 7798 if (per_cu->is_debug_types)
f4dc4d17 7799 {
247f5c4f
DE
7800 struct signatured_type *sig_type =
7801 (struct signatured_type *) per_cu;
7802
7803 sprintf (buf, "TU %s at offset 0x%x",
73be47f5 7804 hex_string (sig_type->signature),
9c541725 7805 to_underlying (per_cu->sect_off));
73be47f5
DE
7806 /* There can be 100s of TUs.
7807 Only print them in verbose mode. */
7808 debug_print_threshold = 2;
f4dc4d17 7809 }
247f5c4f 7810 else
73be47f5 7811 {
9c541725
PA
7812 sprintf (buf, "CU at offset 0x%x",
7813 to_underlying (per_cu->sect_off));
73be47f5
DE
7814 debug_print_threshold = 1;
7815 }
247f5c4f 7816
b4f54984 7817 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7818 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7819
7820 if (per_cu->is_debug_types)
7821 process_full_type_unit (per_cu, item->pretend_language);
7822 else
7823 process_full_comp_unit (per_cu, item->pretend_language);
7824
b4f54984 7825 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7826 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7827 }
10b3939b
DJ
7828
7829 item->per_cu->queued = 0;
7830 next_item = item->next;
7831 xfree (item);
7832 }
7833
7834 dwarf2_queue_tail = NULL;
45cfd468 7835
b4f54984 7836 if (dwarf_read_debug)
45cfd468
DE
7837 {
7838 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7839 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7840 }
10b3939b
DJ
7841}
7842
7843/* Free all allocated queue entries. This function only releases anything if
7844 an error was thrown; if the queue was processed then it would have been
7845 freed as we went along. */
7846
7847static void
7848dwarf2_release_queue (void *dummy)
7849{
7850 struct dwarf2_queue_item *item, *last;
7851
7852 item = dwarf2_queue;
7853 while (item)
7854 {
7855 /* Anything still marked queued is likely to be in an
7856 inconsistent state, so discard it. */
7857 if (item->per_cu->queued)
7858 {
7859 if (item->per_cu->cu != NULL)
dee91e82 7860 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7861 item->per_cu->queued = 0;
7862 }
7863
7864 last = item;
7865 item = item->next;
7866 xfree (last);
7867 }
7868
7869 dwarf2_queue = dwarf2_queue_tail = NULL;
7870}
7871
7872/* Read in full symbols for PST, and anything it depends on. */
7873
c906108c 7874static void
fba45db2 7875psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7876{
10b3939b 7877 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7878 int i;
7879
95554aad
TT
7880 if (pst->readin)
7881 return;
7882
aaa75496 7883 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7884 if (!pst->dependencies[i]->readin
7885 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7886 {
7887 /* Inform about additional files that need to be read in. */
7888 if (info_verbose)
7889 {
a3f17187 7890 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7891 fputs_filtered (" ", gdb_stdout);
7892 wrap_here ("");
7893 fputs_filtered ("and ", gdb_stdout);
7894 wrap_here ("");
7895 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7896 wrap_here (""); /* Flush output. */
aaa75496
JB
7897 gdb_flush (gdb_stdout);
7898 }
7899 psymtab_to_symtab_1 (pst->dependencies[i]);
7900 }
7901
9a3c8263 7902 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
7903
7904 if (per_cu == NULL)
aaa75496
JB
7905 {
7906 /* It's an include file, no symbols to read for it.
7907 Everything is in the parent symtab. */
7908 pst->readin = 1;
7909 return;
7910 }
c906108c 7911
a0f42c21 7912 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7913}
7914
dee91e82
DE
7915/* Trivial hash function for die_info: the hash value of a DIE
7916 is its offset in .debug_info for this objfile. */
10b3939b 7917
dee91e82
DE
7918static hashval_t
7919die_hash (const void *item)
10b3939b 7920{
9a3c8263 7921 const struct die_info *die = (const struct die_info *) item;
6502dd73 7922
9c541725 7923 return to_underlying (die->sect_off);
dee91e82 7924}
63d06c5c 7925
dee91e82
DE
7926/* Trivial comparison function for die_info structures: two DIEs
7927 are equal if they have the same offset. */
98bfdba5 7928
dee91e82
DE
7929static int
7930die_eq (const void *item_lhs, const void *item_rhs)
7931{
9a3c8263
SM
7932 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7933 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 7934
9c541725 7935 return die_lhs->sect_off == die_rhs->sect_off;
dee91e82 7936}
c906108c 7937
dee91e82
DE
7938/* die_reader_func for load_full_comp_unit.
7939 This is identical to read_signatured_type_reader,
7940 but is kept separate for now. */
c906108c 7941
dee91e82
DE
7942static void
7943load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7944 const gdb_byte *info_ptr,
dee91e82
DE
7945 struct die_info *comp_unit_die,
7946 int has_children,
7947 void *data)
7948{
7949 struct dwarf2_cu *cu = reader->cu;
9a3c8263 7950 enum language *language_ptr = (enum language *) data;
6caca83c 7951
dee91e82
DE
7952 gdb_assert (cu->die_hash == NULL);
7953 cu->die_hash =
7954 htab_create_alloc_ex (cu->header.length / 12,
7955 die_hash,
7956 die_eq,
7957 NULL,
7958 &cu->comp_unit_obstack,
7959 hashtab_obstack_allocate,
7960 dummy_obstack_deallocate);
e142c38c 7961
dee91e82
DE
7962 if (has_children)
7963 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7964 &info_ptr, comp_unit_die);
7965 cu->dies = comp_unit_die;
7966 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7967
7968 /* We try not to read any attributes in this function, because not
9cdd5dbd 7969 all CUs needed for references have been loaded yet, and symbol
10b3939b 7970 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7971 or we won't be able to build types correctly.
7972 Similarly, if we do not read the producer, we can not apply
7973 producer-specific interpretation. */
95554aad 7974 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7975}
10b3939b 7976
dee91e82 7977/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7978
dee91e82 7979static void
95554aad
TT
7980load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7981 enum language pretend_language)
dee91e82 7982{
3019eac3 7983 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7984
f4dc4d17
DE
7985 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7986 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7987}
7988
3da10d80
KS
7989/* Add a DIE to the delayed physname list. */
7990
7991static void
7992add_to_method_list (struct type *type, int fnfield_index, int index,
7993 const char *name, struct die_info *die,
7994 struct dwarf2_cu *cu)
7995{
7996 struct delayed_method_info mi;
7997 mi.type = type;
7998 mi.fnfield_index = fnfield_index;
7999 mi.index = index;
8000 mi.name = name;
8001 mi.die = die;
8002 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8003}
8004
8005/* A cleanup for freeing the delayed method list. */
8006
8007static void
8008free_delayed_list (void *ptr)
8009{
8010 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8011 if (cu->method_list != NULL)
8012 {
8013 VEC_free (delayed_method_info, cu->method_list);
8014 cu->method_list = NULL;
8015 }
8016}
8017
8018/* Compute the physnames of any methods on the CU's method list.
8019
8020 The computation of method physnames is delayed in order to avoid the
8021 (bad) condition that one of the method's formal parameters is of an as yet
8022 incomplete type. */
8023
8024static void
8025compute_delayed_physnames (struct dwarf2_cu *cu)
8026{
8027 int i;
8028 struct delayed_method_info *mi;
8029 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8030 {
1d06ead6 8031 const char *physname;
3da10d80
KS
8032 struct fn_fieldlist *fn_flp
8033 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 8034 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
8035 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8036 = physname ? physname : "";
3da10d80
KS
8037 }
8038}
8039
a766d390
DE
8040/* Go objects should be embedded in a DW_TAG_module DIE,
8041 and it's not clear if/how imported objects will appear.
8042 To keep Go support simple until that's worked out,
8043 go back through what we've read and create something usable.
8044 We could do this while processing each DIE, and feels kinda cleaner,
8045 but that way is more invasive.
8046 This is to, for example, allow the user to type "p var" or "b main"
8047 without having to specify the package name, and allow lookups
8048 of module.object to work in contexts that use the expression
8049 parser. */
8050
8051static void
8052fixup_go_packaging (struct dwarf2_cu *cu)
8053{
8054 char *package_name = NULL;
8055 struct pending *list;
8056 int i;
8057
8058 for (list = global_symbols; list != NULL; list = list->next)
8059 {
8060 for (i = 0; i < list->nsyms; ++i)
8061 {
8062 struct symbol *sym = list->symbol[i];
8063
8064 if (SYMBOL_LANGUAGE (sym) == language_go
8065 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8066 {
8067 char *this_package_name = go_symbol_package_name (sym);
8068
8069 if (this_package_name == NULL)
8070 continue;
8071 if (package_name == NULL)
8072 package_name = this_package_name;
8073 else
8074 {
8075 if (strcmp (package_name, this_package_name) != 0)
8076 complaint (&symfile_complaints,
8077 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
8078 (symbol_symtab (sym) != NULL
8079 ? symtab_to_filename_for_display
8080 (symbol_symtab (sym))
4262abfb 8081 : objfile_name (cu->objfile)),
a766d390
DE
8082 this_package_name, package_name);
8083 xfree (this_package_name);
8084 }
8085 }
8086 }
8087 }
8088
8089 if (package_name != NULL)
8090 {
8091 struct objfile *objfile = cu->objfile;
34a68019 8092 const char *saved_package_name
224c3ddb
SM
8093 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8094 package_name,
8095 strlen (package_name));
19f392bc
UW
8096 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8097 saved_package_name);
a766d390
DE
8098 struct symbol *sym;
8099
8100 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8101
e623cf5d 8102 sym = allocate_symbol (objfile);
f85f34ed 8103 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
8104 SYMBOL_SET_NAMES (sym, saved_package_name,
8105 strlen (saved_package_name), 0, objfile);
a766d390
DE
8106 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8107 e.g., "main" finds the "main" module and not C's main(). */
8108 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 8109 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
8110 SYMBOL_TYPE (sym) = type;
8111
8112 add_symbol_to_list (sym, &global_symbols);
8113
8114 xfree (package_name);
8115 }
8116}
8117
95554aad
TT
8118/* Return the symtab for PER_CU. This works properly regardless of
8119 whether we're using the index or psymtabs. */
8120
43f3e411
DE
8121static struct compunit_symtab *
8122get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
8123{
8124 return (dwarf2_per_objfile->using_index
43f3e411
DE
8125 ? per_cu->v.quick->compunit_symtab
8126 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
8127}
8128
8129/* A helper function for computing the list of all symbol tables
8130 included by PER_CU. */
8131
8132static void
43f3e411 8133recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 8134 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 8135 struct dwarf2_per_cu_data *per_cu,
43f3e411 8136 struct compunit_symtab *immediate_parent)
95554aad
TT
8137{
8138 void **slot;
8139 int ix;
43f3e411 8140 struct compunit_symtab *cust;
95554aad
TT
8141 struct dwarf2_per_cu_data *iter;
8142
8143 slot = htab_find_slot (all_children, per_cu, INSERT);
8144 if (*slot != NULL)
8145 {
8146 /* This inclusion and its children have been processed. */
8147 return;
8148 }
8149
8150 *slot = per_cu;
8151 /* Only add a CU if it has a symbol table. */
43f3e411
DE
8152 cust = get_compunit_symtab (per_cu);
8153 if (cust != NULL)
ec94af83
DE
8154 {
8155 /* If this is a type unit only add its symbol table if we haven't
8156 seen it yet (type unit per_cu's can share symtabs). */
8157 if (per_cu->is_debug_types)
8158 {
43f3e411 8159 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
8160 if (*slot == NULL)
8161 {
43f3e411
DE
8162 *slot = cust;
8163 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8164 if (cust->user == NULL)
8165 cust->user = immediate_parent;
ec94af83
DE
8166 }
8167 }
8168 else
f9125b6c 8169 {
43f3e411
DE
8170 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8171 if (cust->user == NULL)
8172 cust->user = immediate_parent;
f9125b6c 8173 }
ec94af83 8174 }
95554aad
TT
8175
8176 for (ix = 0;
796a7ff8 8177 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 8178 ++ix)
ec94af83
DE
8179 {
8180 recursively_compute_inclusions (result, all_children,
43f3e411 8181 all_type_symtabs, iter, cust);
ec94af83 8182 }
95554aad
TT
8183}
8184
43f3e411 8185/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
8186 PER_CU. */
8187
8188static void
43f3e411 8189compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 8190{
f4dc4d17
DE
8191 gdb_assert (! per_cu->is_debug_types);
8192
796a7ff8 8193 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
8194 {
8195 int ix, len;
ec94af83 8196 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
8197 struct compunit_symtab *compunit_symtab_iter;
8198 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 8199 htab_t all_children, all_type_symtabs;
43f3e411 8200 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
8201
8202 /* If we don't have a symtab, we can just skip this case. */
43f3e411 8203 if (cust == NULL)
95554aad
TT
8204 return;
8205
8206 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8207 NULL, xcalloc, xfree);
ec94af83
DE
8208 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8209 NULL, xcalloc, xfree);
95554aad
TT
8210
8211 for (ix = 0;
796a7ff8 8212 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 8213 ix, per_cu_iter);
95554aad 8214 ++ix)
ec94af83
DE
8215 {
8216 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 8217 all_type_symtabs, per_cu_iter,
43f3e411 8218 cust);
ec94af83 8219 }
95554aad 8220
ec94af83 8221 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
8222 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8223 cust->includes
8d749320
SM
8224 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8225 struct compunit_symtab *, len + 1);
95554aad 8226 for (ix = 0;
43f3e411
DE
8227 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8228 compunit_symtab_iter);
95554aad 8229 ++ix)
43f3e411
DE
8230 cust->includes[ix] = compunit_symtab_iter;
8231 cust->includes[len] = NULL;
95554aad 8232
43f3e411 8233 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 8234 htab_delete (all_children);
ec94af83 8235 htab_delete (all_type_symtabs);
95554aad
TT
8236 }
8237}
8238
8239/* Compute the 'includes' field for the symtabs of all the CUs we just
8240 read. */
8241
8242static void
8243process_cu_includes (void)
8244{
8245 int ix;
8246 struct dwarf2_per_cu_data *iter;
8247
8248 for (ix = 0;
8249 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8250 ix, iter);
8251 ++ix)
f4dc4d17
DE
8252 {
8253 if (! iter->is_debug_types)
43f3e411 8254 compute_compunit_symtab_includes (iter);
f4dc4d17 8255 }
95554aad
TT
8256
8257 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8258}
8259
9cdd5dbd 8260/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8261 already been loaded into memory. */
8262
8263static void
95554aad
TT
8264process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8265 enum language pretend_language)
10b3939b 8266{
10b3939b 8267 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8268 struct objfile *objfile = per_cu->objfile;
3e29f34a 8269 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8270 CORE_ADDR lowpc, highpc;
43f3e411 8271 struct compunit_symtab *cust;
3da10d80 8272 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8273 CORE_ADDR baseaddr;
4359dff1 8274 struct block *static_block;
3e29f34a 8275 CORE_ADDR addr;
10b3939b
DJ
8276
8277 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8278
10b3939b
DJ
8279 buildsym_init ();
8280 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8281 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8282
8283 cu->list_in_scope = &file_symbols;
c906108c 8284
95554aad
TT
8285 cu->language = pretend_language;
8286 cu->language_defn = language_def (cu->language);
8287
c906108c 8288 /* Do line number decoding in read_file_scope () */
10b3939b 8289 process_die (cu->dies, cu);
c906108c 8290
a766d390
DE
8291 /* For now fudge the Go package. */
8292 if (cu->language == language_go)
8293 fixup_go_packaging (cu);
8294
3da10d80
KS
8295 /* Now that we have processed all the DIEs in the CU, all the types
8296 should be complete, and it should now be safe to compute all of the
8297 physnames. */
8298 compute_delayed_physnames (cu);
8299 do_cleanups (delayed_list_cleanup);
8300
fae299cd
DC
8301 /* Some compilers don't define a DW_AT_high_pc attribute for the
8302 compilation unit. If the DW_AT_high_pc is missing, synthesize
8303 it, by scanning the DIE's below the compilation unit. */
10b3939b 8304 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8305
3e29f34a
MR
8306 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8307 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8308
8309 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8310 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8311 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8312 addrmap to help ensure it has an accurate map of pc values belonging to
8313 this comp unit. */
8314 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8315
43f3e411
DE
8316 cust = end_symtab_from_static_block (static_block,
8317 SECT_OFF_TEXT (objfile), 0);
c906108c 8318
43f3e411 8319 if (cust != NULL)
c906108c 8320 {
df15bd07 8321 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8322
8be455d7
JK
8323 /* Set symtab language to language from DW_AT_language. If the
8324 compilation is from a C file generated by language preprocessors, do
8325 not set the language if it was already deduced by start_subfile. */
43f3e411 8326 if (!(cu->language == language_c
40e3ad0e 8327 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 8328 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8329
8330 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8331 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8332 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8333 there were bugs in prologue debug info, fixed later in GCC-4.5
8334 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8335
8336 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8337 needed, it would be wrong due to missing DW_AT_producer there.
8338
8339 Still one can confuse GDB by using non-standard GCC compilation
8340 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8341 */
ab260dad 8342 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8343 cust->locations_valid = 1;
e0d00bc7
JK
8344
8345 if (gcc_4_minor >= 5)
43f3e411 8346 cust->epilogue_unwind_valid = 1;
96408a79 8347
43f3e411 8348 cust->call_site_htab = cu->call_site_htab;
c906108c 8349 }
9291a0cd
TT
8350
8351 if (dwarf2_per_objfile->using_index)
43f3e411 8352 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8353 else
8354 {
8355 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8356 pst->compunit_symtab = cust;
9291a0cd
TT
8357 pst->readin = 1;
8358 }
c906108c 8359
95554aad
TT
8360 /* Push it for inclusion processing later. */
8361 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8362
c906108c 8363 do_cleanups (back_to);
f4dc4d17 8364}
45cfd468 8365
f4dc4d17
DE
8366/* Generate full symbol information for type unit PER_CU, whose DIEs have
8367 already been loaded into memory. */
8368
8369static void
8370process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8371 enum language pretend_language)
8372{
8373 struct dwarf2_cu *cu = per_cu->cu;
8374 struct objfile *objfile = per_cu->objfile;
43f3e411 8375 struct compunit_symtab *cust;
f4dc4d17 8376 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8377 struct signatured_type *sig_type;
8378
8379 gdb_assert (per_cu->is_debug_types);
8380 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8381
8382 buildsym_init ();
8383 back_to = make_cleanup (really_free_pendings, NULL);
8384 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8385
8386 cu->list_in_scope = &file_symbols;
8387
8388 cu->language = pretend_language;
8389 cu->language_defn = language_def (cu->language);
8390
8391 /* The symbol tables are set up in read_type_unit_scope. */
8392 process_die (cu->dies, cu);
8393
8394 /* For now fudge the Go package. */
8395 if (cu->language == language_go)
8396 fixup_go_packaging (cu);
8397
8398 /* Now that we have processed all the DIEs in the CU, all the types
8399 should be complete, and it should now be safe to compute all of the
8400 physnames. */
8401 compute_delayed_physnames (cu);
8402 do_cleanups (delayed_list_cleanup);
8403
8404 /* TUs share symbol tables.
8405 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8406 of it with end_expandable_symtab. Otherwise, complete the addition of
8407 this TU's symbols to the existing symtab. */
43f3e411 8408 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8409 {
43f3e411
DE
8410 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8411 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8412
43f3e411 8413 if (cust != NULL)
f4dc4d17
DE
8414 {
8415 /* Set symtab language to language from DW_AT_language. If the
8416 compilation is from a C file generated by language preprocessors,
8417 do not set the language if it was already deduced by
8418 start_subfile. */
43f3e411
DE
8419 if (!(cu->language == language_c
8420 && COMPUNIT_FILETABS (cust)->language != language_c))
8421 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8422 }
8423 }
8424 else
8425 {
0ab9ce85 8426 augment_type_symtab ();
43f3e411 8427 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8428 }
8429
8430 if (dwarf2_per_objfile->using_index)
43f3e411 8431 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8432 else
8433 {
8434 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8435 pst->compunit_symtab = cust;
f4dc4d17 8436 pst->readin = 1;
45cfd468 8437 }
f4dc4d17
DE
8438
8439 do_cleanups (back_to);
c906108c
SS
8440}
8441
95554aad
TT
8442/* Process an imported unit DIE. */
8443
8444static void
8445process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8446{
8447 struct attribute *attr;
8448
f4dc4d17
DE
8449 /* For now we don't handle imported units in type units. */
8450 if (cu->per_cu->is_debug_types)
8451 {
8452 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8453 " supported in type units [in module %s]"),
4262abfb 8454 objfile_name (cu->objfile));
f4dc4d17
DE
8455 }
8456
95554aad
TT
8457 attr = dwarf2_attr (die, DW_AT_import, cu);
8458 if (attr != NULL)
8459 {
9c541725
PA
8460 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
8461 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8462 dwarf2_per_cu_data *per_cu
8463 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
95554aad 8464
69d751e3 8465 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8466 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8467 load_full_comp_unit (per_cu, cu->language);
8468
796a7ff8 8469 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8470 per_cu);
8471 }
8472}
8473
adde2bff
DE
8474/* Reset the in_process bit of a die. */
8475
8476static void
8477reset_die_in_process (void *arg)
8478{
9a3c8263 8479 struct die_info *die = (struct die_info *) arg;
8c3cb9fa 8480
adde2bff
DE
8481 die->in_process = 0;
8482}
8483
c906108c
SS
8484/* Process a die and its children. */
8485
8486static void
e7c27a73 8487process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8488{
adde2bff
DE
8489 struct cleanup *in_process;
8490
8491 /* We should only be processing those not already in process. */
8492 gdb_assert (!die->in_process);
8493
8494 die->in_process = 1;
8495 in_process = make_cleanup (reset_die_in_process,die);
8496
c906108c
SS
8497 switch (die->tag)
8498 {
8499 case DW_TAG_padding:
8500 break;
8501 case DW_TAG_compile_unit:
95554aad 8502 case DW_TAG_partial_unit:
e7c27a73 8503 read_file_scope (die, cu);
c906108c 8504 break;
348e048f
DE
8505 case DW_TAG_type_unit:
8506 read_type_unit_scope (die, cu);
8507 break;
c906108c 8508 case DW_TAG_subprogram:
c906108c 8509 case DW_TAG_inlined_subroutine:
edb3359d 8510 read_func_scope (die, cu);
c906108c
SS
8511 break;
8512 case DW_TAG_lexical_block:
14898363
L
8513 case DW_TAG_try_block:
8514 case DW_TAG_catch_block:
e7c27a73 8515 read_lexical_block_scope (die, cu);
c906108c 8516 break;
216f72a1 8517 case DW_TAG_call_site:
96408a79
SA
8518 case DW_TAG_GNU_call_site:
8519 read_call_site_scope (die, cu);
8520 break;
c906108c 8521 case DW_TAG_class_type:
680b30c7 8522 case DW_TAG_interface_type:
c906108c
SS
8523 case DW_TAG_structure_type:
8524 case DW_TAG_union_type:
134d01f1 8525 process_structure_scope (die, cu);
c906108c
SS
8526 break;
8527 case DW_TAG_enumeration_type:
134d01f1 8528 process_enumeration_scope (die, cu);
c906108c 8529 break;
134d01f1 8530
f792889a
DJ
8531 /* These dies have a type, but processing them does not create
8532 a symbol or recurse to process the children. Therefore we can
8533 read them on-demand through read_type_die. */
c906108c 8534 case DW_TAG_subroutine_type:
72019c9c 8535 case DW_TAG_set_type:
c906108c 8536 case DW_TAG_array_type:
c906108c 8537 case DW_TAG_pointer_type:
c906108c 8538 case DW_TAG_ptr_to_member_type:
c906108c 8539 case DW_TAG_reference_type:
4297a3f0 8540 case DW_TAG_rvalue_reference_type:
c906108c 8541 case DW_TAG_string_type:
c906108c 8542 break;
134d01f1 8543
c906108c 8544 case DW_TAG_base_type:
a02abb62 8545 case DW_TAG_subrange_type:
cb249c71 8546 case DW_TAG_typedef:
134d01f1
DJ
8547 /* Add a typedef symbol for the type definition, if it has a
8548 DW_AT_name. */
f792889a 8549 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8550 break;
c906108c 8551 case DW_TAG_common_block:
e7c27a73 8552 read_common_block (die, cu);
c906108c
SS
8553 break;
8554 case DW_TAG_common_inclusion:
8555 break;
d9fa45fe 8556 case DW_TAG_namespace:
4d4ec4e5 8557 cu->processing_has_namespace_info = 1;
e7c27a73 8558 read_namespace (die, cu);
d9fa45fe 8559 break;
5d7cb8df 8560 case DW_TAG_module:
4d4ec4e5 8561 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8562 read_module (die, cu);
8563 break;
d9fa45fe 8564 case DW_TAG_imported_declaration:
74921315
KS
8565 cu->processing_has_namespace_info = 1;
8566 if (read_namespace_alias (die, cu))
8567 break;
8568 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8569 case DW_TAG_imported_module:
4d4ec4e5 8570 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8571 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8572 || cu->language != language_fortran))
8573 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8574 dwarf_tag_name (die->tag));
8575 read_import_statement (die, cu);
d9fa45fe 8576 break;
95554aad
TT
8577
8578 case DW_TAG_imported_unit:
8579 process_imported_unit_die (die, cu);
8580 break;
8581
c906108c 8582 default:
e7c27a73 8583 new_symbol (die, NULL, cu);
c906108c
SS
8584 break;
8585 }
adde2bff
DE
8586
8587 do_cleanups (in_process);
c906108c 8588}
ca69b9e6
DE
8589\f
8590/* DWARF name computation. */
c906108c 8591
94af9270
KS
8592/* A helper function for dwarf2_compute_name which determines whether DIE
8593 needs to have the name of the scope prepended to the name listed in the
8594 die. */
8595
8596static int
8597die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8598{
1c809c68
TT
8599 struct attribute *attr;
8600
94af9270
KS
8601 switch (die->tag)
8602 {
8603 case DW_TAG_namespace:
8604 case DW_TAG_typedef:
8605 case DW_TAG_class_type:
8606 case DW_TAG_interface_type:
8607 case DW_TAG_structure_type:
8608 case DW_TAG_union_type:
8609 case DW_TAG_enumeration_type:
8610 case DW_TAG_enumerator:
8611 case DW_TAG_subprogram:
08a76f8a 8612 case DW_TAG_inlined_subroutine:
94af9270 8613 case DW_TAG_member:
74921315 8614 case DW_TAG_imported_declaration:
94af9270
KS
8615 return 1;
8616
8617 case DW_TAG_variable:
c2b0a229 8618 case DW_TAG_constant:
94af9270
KS
8619 /* We only need to prefix "globally" visible variables. These include
8620 any variable marked with DW_AT_external or any variable that
8621 lives in a namespace. [Variables in anonymous namespaces
8622 require prefixing, but they are not DW_AT_external.] */
8623
8624 if (dwarf2_attr (die, DW_AT_specification, cu))
8625 {
8626 struct dwarf2_cu *spec_cu = cu;
9a619af0 8627
94af9270
KS
8628 return die_needs_namespace (die_specification (die, &spec_cu),
8629 spec_cu);
8630 }
8631
1c809c68 8632 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8633 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8634 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8635 return 0;
8636 /* A variable in a lexical block of some kind does not need a
8637 namespace, even though in C++ such variables may be external
8638 and have a mangled name. */
8639 if (die->parent->tag == DW_TAG_lexical_block
8640 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8641 || die->parent->tag == DW_TAG_catch_block
8642 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8643 return 0;
8644 return 1;
94af9270
KS
8645
8646 default:
8647 return 0;
8648 }
8649}
8650
8651/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390 8652 compute the physname for the object, which include a method's:
9c37b5ae 8653 - formal parameters (C++),
a766d390 8654 - receiver type (Go),
a766d390
DE
8655
8656 The term "physname" is a bit confusing.
8657 For C++, for example, it is the demangled name.
8658 For Go, for example, it's the mangled name.
94af9270 8659
af6b7be1
JB
8660 For Ada, return the DIE's linkage name rather than the fully qualified
8661 name. PHYSNAME is ignored..
8662
94af9270
KS
8663 The result is allocated on the objfile_obstack and canonicalized. */
8664
8665static const char *
15d034d0
TT
8666dwarf2_compute_name (const char *name,
8667 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8668 int physname)
8669{
bb5ed363
DE
8670 struct objfile *objfile = cu->objfile;
8671
94af9270
KS
8672 if (name == NULL)
8673 name = dwarf2_name (die, cu);
8674
2ee7123e
DE
8675 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8676 but otherwise compute it by typename_concat inside GDB.
8677 FIXME: Actually this is not really true, or at least not always true.
8678 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8679 Fortran names because there is no mangling standard. So new_symbol_full
8680 will set the demangled name to the result of dwarf2_full_name, and it is
8681 the demangled name that GDB uses if it exists. */
f55ee35c
JK
8682 if (cu->language == language_ada
8683 || (cu->language == language_fortran && physname))
8684 {
8685 /* For Ada unit, we prefer the linkage name over the name, as
8686 the former contains the exported name, which the user expects
8687 to be able to reference. Ideally, we want the user to be able
8688 to reference this entity using either natural or linkage name,
8689 but we haven't started looking at this enhancement yet. */
2ee7123e 8690 const char *linkage_name;
f55ee35c 8691
2ee7123e
DE
8692 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8693 if (linkage_name == NULL)
8694 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8695 if (linkage_name != NULL)
8696 return linkage_name;
f55ee35c
JK
8697 }
8698
94af9270
KS
8699 /* These are the only languages we know how to qualify names in. */
8700 if (name != NULL
9c37b5ae 8701 && (cu->language == language_cplus
c44af4eb
TT
8702 || cu->language == language_fortran || cu->language == language_d
8703 || cu->language == language_rust))
94af9270
KS
8704 {
8705 if (die_needs_namespace (die, cu))
8706 {
8707 long length;
0d5cff50 8708 const char *prefix;
34a68019 8709 const char *canonical_name = NULL;
94af9270 8710
d7e74731
PA
8711 string_file buf;
8712
94af9270 8713 prefix = determine_prefix (die, cu);
94af9270
KS
8714 if (*prefix != '\0')
8715 {
f55ee35c
JK
8716 char *prefixed_name = typename_concat (NULL, prefix, name,
8717 physname, cu);
9a619af0 8718
d7e74731 8719 buf.puts (prefixed_name);
94af9270
KS
8720 xfree (prefixed_name);
8721 }
8722 else
d7e74731 8723 buf.puts (name);
94af9270 8724
98bfdba5
PA
8725 /* Template parameters may be specified in the DIE's DW_AT_name, or
8726 as children with DW_TAG_template_type_param or
8727 DW_TAG_value_type_param. If the latter, add them to the name
8728 here. If the name already has template parameters, then
8729 skip this step; some versions of GCC emit both, and
8730 it is more efficient to use the pre-computed name.
8731
8732 Something to keep in mind about this process: it is very
8733 unlikely, or in some cases downright impossible, to produce
8734 something that will match the mangled name of a function.
8735 If the definition of the function has the same debug info,
8736 we should be able to match up with it anyway. But fallbacks
8737 using the minimal symbol, for instance to find a method
8738 implemented in a stripped copy of libstdc++, will not work.
8739 If we do not have debug info for the definition, we will have to
8740 match them up some other way.
8741
8742 When we do name matching there is a related problem with function
8743 templates; two instantiated function templates are allowed to
8744 differ only by their return types, which we do not add here. */
8745
8746 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8747 {
8748 struct attribute *attr;
8749 struct die_info *child;
8750 int first = 1;
8751
8752 die->building_fullname = 1;
8753
8754 for (child = die->child; child != NULL; child = child->sibling)
8755 {
8756 struct type *type;
12df843f 8757 LONGEST value;
d521ce57 8758 const gdb_byte *bytes;
98bfdba5
PA
8759 struct dwarf2_locexpr_baton *baton;
8760 struct value *v;
8761
8762 if (child->tag != DW_TAG_template_type_param
8763 && child->tag != DW_TAG_template_value_param)
8764 continue;
8765
8766 if (first)
8767 {
d7e74731 8768 buf.puts ("<");
98bfdba5
PA
8769 first = 0;
8770 }
8771 else
d7e74731 8772 buf.puts (", ");
98bfdba5
PA
8773
8774 attr = dwarf2_attr (child, DW_AT_type, cu);
8775 if (attr == NULL)
8776 {
8777 complaint (&symfile_complaints,
8778 _("template parameter missing DW_AT_type"));
d7e74731 8779 buf.puts ("UNKNOWN_TYPE");
98bfdba5
PA
8780 continue;
8781 }
8782 type = die_type (child, cu);
8783
8784 if (child->tag == DW_TAG_template_type_param)
8785 {
d7e74731 8786 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8787 continue;
8788 }
8789
8790 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8791 if (attr == NULL)
8792 {
8793 complaint (&symfile_complaints,
3e43a32a
MS
8794 _("template parameter missing "
8795 "DW_AT_const_value"));
d7e74731 8796 buf.puts ("UNKNOWN_VALUE");
98bfdba5
PA
8797 continue;
8798 }
8799
8800 dwarf2_const_value_attr (attr, type, name,
8801 &cu->comp_unit_obstack, cu,
8802 &value, &bytes, &baton);
8803
8804 if (TYPE_NOSIGN (type))
8805 /* GDB prints characters as NUMBER 'CHAR'. If that's
8806 changed, this can use value_print instead. */
d7e74731 8807 c_printchar (value, type, &buf);
98bfdba5
PA
8808 else
8809 {
8810 struct value_print_options opts;
8811
8812 if (baton != NULL)
8813 v = dwarf2_evaluate_loc_desc (type, NULL,
8814 baton->data,
8815 baton->size,
8816 baton->per_cu);
8817 else if (bytes != NULL)
8818 {
8819 v = allocate_value (type);
8820 memcpy (value_contents_writeable (v), bytes,
8821 TYPE_LENGTH (type));
8822 }
8823 else
8824 v = value_from_longest (type, value);
8825
3e43a32a
MS
8826 /* Specify decimal so that we do not depend on
8827 the radix. */
98bfdba5
PA
8828 get_formatted_print_options (&opts, 'd');
8829 opts.raw = 1;
d7e74731 8830 value_print (v, &buf, &opts);
98bfdba5
PA
8831 release_value (v);
8832 value_free (v);
8833 }
8834 }
8835
8836 die->building_fullname = 0;
8837
8838 if (!first)
8839 {
8840 /* Close the argument list, with a space if necessary
8841 (nested templates). */
d7e74731
PA
8842 if (!buf.empty () && buf.string ().back () == '>')
8843 buf.puts (" >");
98bfdba5 8844 else
d7e74731 8845 buf.puts (">");
98bfdba5
PA
8846 }
8847 }
8848
9c37b5ae 8849 /* For C++ methods, append formal parameter type
94af9270 8850 information, if PHYSNAME. */
6e70227d 8851
94af9270 8852 if (physname && die->tag == DW_TAG_subprogram
9c37b5ae 8853 && cu->language == language_cplus)
94af9270
KS
8854 {
8855 struct type *type = read_type_die (die, cu);
8856
d7e74731 8857 c_type_print_args (type, &buf, 1, cu->language,
79d43c61 8858 &type_print_raw_options);
94af9270 8859
9c37b5ae 8860 if (cu->language == language_cplus)
94af9270 8861 {
60430eff
DJ
8862 /* Assume that an artificial first parameter is
8863 "this", but do not crash if it is not. RealView
8864 marks unnamed (and thus unused) parameters as
8865 artificial; there is no way to differentiate
8866 the two cases. */
94af9270
KS
8867 if (TYPE_NFIELDS (type) > 0
8868 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8869 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8870 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8871 0))))
d7e74731 8872 buf.puts (" const");
94af9270
KS
8873 }
8874 }
8875
d7e74731 8876 const std::string &intermediate_name = buf.string ();
94af9270
KS
8877
8878 if (cu->language == language_cplus)
34a68019 8879 canonical_name
322a8516 8880 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
34a68019
TT
8881 &objfile->per_bfd->storage_obstack);
8882
8883 /* If we only computed INTERMEDIATE_NAME, or if
8884 INTERMEDIATE_NAME is already canonical, then we need to
8885 copy it to the appropriate obstack. */
322a8516 8886 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
224c3ddb
SM
8887 name = ((const char *)
8888 obstack_copy0 (&objfile->per_bfd->storage_obstack,
322a8516
PA
8889 intermediate_name.c_str (),
8890 intermediate_name.length ()));
34a68019
TT
8891 else
8892 name = canonical_name;
94af9270
KS
8893 }
8894 }
8895
8896 return name;
8897}
8898
0114d602
DJ
8899/* Return the fully qualified name of DIE, based on its DW_AT_name.
8900 If scope qualifiers are appropriate they will be added. The result
34a68019 8901 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8902 not have a name. NAME may either be from a previous call to
8903 dwarf2_name or NULL.
8904
9c37b5ae 8905 The output string will be canonicalized (if C++). */
0114d602
DJ
8906
8907static const char *
15d034d0 8908dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8909{
94af9270
KS
8910 return dwarf2_compute_name (name, die, cu, 0);
8911}
0114d602 8912
94af9270
KS
8913/* Construct a physname for the given DIE in CU. NAME may either be
8914 from a previous call to dwarf2_name or NULL. The result will be
8915 allocated on the objfile_objstack or NULL if the DIE does not have a
8916 name.
0114d602 8917
9c37b5ae 8918 The output string will be canonicalized (if C++). */
0114d602 8919
94af9270 8920static const char *
15d034d0 8921dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8922{
bb5ed363 8923 struct objfile *objfile = cu->objfile;
900e11f9
JK
8924 const char *retval, *mangled = NULL, *canon = NULL;
8925 struct cleanup *back_to;
8926 int need_copy = 1;
8927
8928 /* In this case dwarf2_compute_name is just a shortcut not building anything
8929 on its own. */
8930 if (!die_needs_namespace (die, cu))
8931 return dwarf2_compute_name (name, die, cu, 1);
8932
8933 back_to = make_cleanup (null_cleanup, NULL);
8934
7d45c7c3
KB
8935 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8936 if (mangled == NULL)
8937 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
900e11f9 8938
e98c9e7c
TT
8939 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8940 See https://github.com/rust-lang/rust/issues/32925. */
8941 if (cu->language == language_rust && mangled != NULL
8942 && strchr (mangled, '{') != NULL)
8943 mangled = NULL;
8944
900e11f9
JK
8945 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8946 has computed. */
7d45c7c3 8947 if (mangled != NULL)
900e11f9
JK
8948 {
8949 char *demangled;
8950
900e11f9
JK
8951 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8952 type. It is easier for GDB users to search for such functions as
8953 `name(params)' than `long name(params)'. In such case the minimal
8954 symbol names do not match the full symbol names but for template
8955 functions there is never a need to look up their definition from their
8956 declaration so the only disadvantage remains the minimal symbol
8957 variant `long name(params)' does not have the proper inferior type.
8958 */
8959
a766d390
DE
8960 if (cu->language == language_go)
8961 {
8962 /* This is a lie, but we already lie to the caller new_symbol_full.
8963 new_symbol_full assumes we return the mangled name.
8964 This just undoes that lie until things are cleaned up. */
8965 demangled = NULL;
8966 }
8967 else
8968 {
8de20a37 8969 demangled = gdb_demangle (mangled,
9c37b5ae 8970 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
a766d390 8971 }
900e11f9
JK
8972 if (demangled)
8973 {
8974 make_cleanup (xfree, demangled);
8975 canon = demangled;
8976 }
8977 else
8978 {
8979 canon = mangled;
8980 need_copy = 0;
8981 }
8982 }
8983
8984 if (canon == NULL || check_physname)
8985 {
8986 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8987
8988 if (canon != NULL && strcmp (physname, canon) != 0)
8989 {
8990 /* It may not mean a bug in GDB. The compiler could also
8991 compute DW_AT_linkage_name incorrectly. But in such case
8992 GDB would need to be bug-to-bug compatible. */
8993
8994 complaint (&symfile_complaints,
8995 _("Computed physname <%s> does not match demangled <%s> "
8996 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
9c541725 8997 physname, canon, mangled, to_underlying (die->sect_off),
4262abfb 8998 objfile_name (objfile));
900e11f9
JK
8999
9000 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9001 is available here - over computed PHYSNAME. It is safer
9002 against both buggy GDB and buggy compilers. */
9003
9004 retval = canon;
9005 }
9006 else
9007 {
9008 retval = physname;
9009 need_copy = 0;
9010 }
9011 }
9012 else
9013 retval = canon;
9014
9015 if (need_copy)
224c3ddb
SM
9016 retval = ((const char *)
9017 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9018 retval, strlen (retval)));
900e11f9
JK
9019
9020 do_cleanups (back_to);
9021 return retval;
0114d602
DJ
9022}
9023
74921315
KS
9024/* Inspect DIE in CU for a namespace alias. If one exists, record
9025 a new symbol for it.
9026
9027 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9028
9029static int
9030read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9031{
9032 struct attribute *attr;
9033
9034 /* If the die does not have a name, this is not a namespace
9035 alias. */
9036 attr = dwarf2_attr (die, DW_AT_name, cu);
9037 if (attr != NULL)
9038 {
9039 int num;
9040 struct die_info *d = die;
9041 struct dwarf2_cu *imported_cu = cu;
9042
9043 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9044 keep inspecting DIEs until we hit the underlying import. */
9045#define MAX_NESTED_IMPORTED_DECLARATIONS 100
9046 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9047 {
9048 attr = dwarf2_attr (d, DW_AT_import, cu);
9049 if (attr == NULL)
9050 break;
9051
9052 d = follow_die_ref (d, attr, &imported_cu);
9053 if (d->tag != DW_TAG_imported_declaration)
9054 break;
9055 }
9056
9057 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
9058 {
9059 complaint (&symfile_complaints,
9060 _("DIE at 0x%x has too many recursively imported "
9c541725 9061 "declarations"), to_underlying (d->sect_off));
74921315
KS
9062 return 0;
9063 }
9064
9065 if (attr != NULL)
9066 {
9067 struct type *type;
9c541725 9068 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
74921315 9069
9c541725 9070 type = get_die_type_at_offset (sect_off, cu->per_cu);
74921315
KS
9071 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9072 {
9073 /* This declaration is a global namespace alias. Add
9074 a symbol for it whose type is the aliased namespace. */
9075 new_symbol (die, type, cu);
9076 return 1;
9077 }
9078 }
9079 }
9080
9081 return 0;
9082}
9083
22cee43f
PMR
9084/* Return the using directives repository (global or local?) to use in the
9085 current context for LANGUAGE.
9086
9087 For Ada, imported declarations can materialize renamings, which *may* be
9088 global. However it is impossible (for now?) in DWARF to distinguish
9089 "external" imported declarations and "static" ones. As all imported
9090 declarations seem to be static in all other languages, make them all CU-wide
9091 global only in Ada. */
9092
9093static struct using_direct **
9094using_directives (enum language language)
9095{
9096 if (language == language_ada && context_stack_depth == 0)
9097 return &global_using_directives;
9098 else
9099 return &local_using_directives;
9100}
9101
27aa8d6a
SW
9102/* Read the import statement specified by the given die and record it. */
9103
9104static void
9105read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9106{
bb5ed363 9107 struct objfile *objfile = cu->objfile;
27aa8d6a 9108 struct attribute *import_attr;
32019081 9109 struct die_info *imported_die, *child_die;
de4affc9 9110 struct dwarf2_cu *imported_cu;
27aa8d6a 9111 const char *imported_name;
794684b6 9112 const char *imported_name_prefix;
13387711
SW
9113 const char *canonical_name;
9114 const char *import_alias;
9115 const char *imported_declaration = NULL;
794684b6 9116 const char *import_prefix;
32019081
JK
9117 VEC (const_char_ptr) *excludes = NULL;
9118 struct cleanup *cleanups;
13387711 9119
27aa8d6a
SW
9120 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9121 if (import_attr == NULL)
9122 {
9123 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9124 dwarf_tag_name (die->tag));
9125 return;
9126 }
9127
de4affc9
CC
9128 imported_cu = cu;
9129 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9130 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
9131 if (imported_name == NULL)
9132 {
9133 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9134
9135 The import in the following code:
9136 namespace A
9137 {
9138 typedef int B;
9139 }
9140
9141 int main ()
9142 {
9143 using A::B;
9144 B b;
9145 return b;
9146 }
9147
9148 ...
9149 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9150 <52> DW_AT_decl_file : 1
9151 <53> DW_AT_decl_line : 6
9152 <54> DW_AT_import : <0x75>
9153 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9154 <59> DW_AT_name : B
9155 <5b> DW_AT_decl_file : 1
9156 <5c> DW_AT_decl_line : 2
9157 <5d> DW_AT_type : <0x6e>
9158 ...
9159 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9160 <76> DW_AT_byte_size : 4
9161 <77> DW_AT_encoding : 5 (signed)
9162
9163 imports the wrong die ( 0x75 instead of 0x58 ).
9164 This case will be ignored until the gcc bug is fixed. */
9165 return;
9166 }
9167
82856980
SW
9168 /* Figure out the local name after import. */
9169 import_alias = dwarf2_name (die, cu);
27aa8d6a 9170
794684b6
SW
9171 /* Figure out where the statement is being imported to. */
9172 import_prefix = determine_prefix (die, cu);
9173
9174 /* Figure out what the scope of the imported die is and prepend it
9175 to the name of the imported die. */
de4affc9 9176 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 9177
f55ee35c
JK
9178 if (imported_die->tag != DW_TAG_namespace
9179 && imported_die->tag != DW_TAG_module)
794684b6 9180 {
13387711
SW
9181 imported_declaration = imported_name;
9182 canonical_name = imported_name_prefix;
794684b6 9183 }
13387711 9184 else if (strlen (imported_name_prefix) > 0)
12aaed36 9185 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
9186 imported_name_prefix,
9187 (cu->language == language_d ? "." : "::"),
9188 imported_name, (char *) NULL);
13387711
SW
9189 else
9190 canonical_name = imported_name;
794684b6 9191
32019081
JK
9192 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
9193
9194 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9195 for (child_die = die->child; child_die && child_die->tag;
9196 child_die = sibling_die (child_die))
9197 {
9198 /* DWARF-4: A Fortran use statement with a “rename list” may be
9199 represented by an imported module entry with an import attribute
9200 referring to the module and owned entries corresponding to those
9201 entities that are renamed as part of being imported. */
9202
9203 if (child_die->tag != DW_TAG_imported_declaration)
9204 {
9205 complaint (&symfile_complaints,
9206 _("child DW_TAG_imported_declaration expected "
9207 "- DIE at 0x%x [in module %s]"),
9c541725 9208 to_underlying (child_die->sect_off), objfile_name (objfile));
32019081
JK
9209 continue;
9210 }
9211
9212 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9213 if (import_attr == NULL)
9214 {
9215 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9216 dwarf_tag_name (child_die->tag));
9217 continue;
9218 }
9219
9220 imported_cu = cu;
9221 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9222 &imported_cu);
9223 imported_name = dwarf2_name (imported_die, imported_cu);
9224 if (imported_name == NULL)
9225 {
9226 complaint (&symfile_complaints,
9227 _("child DW_TAG_imported_declaration has unknown "
9228 "imported name - DIE at 0x%x [in module %s]"),
9c541725 9229 to_underlying (child_die->sect_off), objfile_name (objfile));
32019081
JK
9230 continue;
9231 }
9232
9233 VEC_safe_push (const_char_ptr, excludes, imported_name);
9234
9235 process_die (child_die, cu);
9236 }
9237
22cee43f
PMR
9238 add_using_directive (using_directives (cu->language),
9239 import_prefix,
9240 canonical_name,
9241 import_alias,
9242 imported_declaration,
9243 excludes,
9244 0,
9245 &objfile->objfile_obstack);
32019081
JK
9246
9247 do_cleanups (cleanups);
27aa8d6a
SW
9248}
9249
1b80a9fa
JK
9250/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9251 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9252 this, it was first present in GCC release 4.3.0. */
9253
9254static int
9255producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9256{
9257 if (!cu->checked_producer)
9258 check_producer (cu);
9259
9260 return cu->producer_is_gcc_lt_4_3;
9261}
9262
d721ba37
PA
9263static file_and_directory
9264find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9291a0cd 9265{
d721ba37
PA
9266 file_and_directory res;
9267
9291a0cd
TT
9268 /* Find the filename. Do not use dwarf2_name here, since the filename
9269 is not a source language identifier. */
d721ba37
PA
9270 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9271 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 9272
d721ba37
PA
9273 if (res.comp_dir == NULL
9274 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9275 && IS_ABSOLUTE_PATH (res.name))
9291a0cd 9276 {
d721ba37
PA
9277 res.comp_dir_storage = ldirname (res.name);
9278 if (!res.comp_dir_storage.empty ())
9279 res.comp_dir = res.comp_dir_storage.c_str ();
9291a0cd 9280 }
d721ba37 9281 if (res.comp_dir != NULL)
9291a0cd
TT
9282 {
9283 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9284 directory, get rid of it. */
d721ba37 9285 const char *cp = strchr (res.comp_dir, ':');
9291a0cd 9286
d721ba37
PA
9287 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9288 res.comp_dir = cp + 1;
9291a0cd
TT
9289 }
9290
d721ba37
PA
9291 if (res.name == NULL)
9292 res.name = "<unknown>";
9293
9294 return res;
9291a0cd
TT
9295}
9296
f4dc4d17
DE
9297/* Handle DW_AT_stmt_list for a compilation unit.
9298 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9299 COMP_DIR is the compilation directory. LOWPC is passed to
9300 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9301
9302static void
9303handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9304 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9305{
527f3840 9306 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9307 struct attribute *attr;
527f3840
JK
9308 struct line_header line_header_local;
9309 hashval_t line_header_local_hash;
9310 unsigned u;
9311 void **slot;
9312 int decode_mapping;
2ab95328 9313
f4dc4d17
DE
9314 gdb_assert (! cu->per_cu->is_debug_types);
9315
2ab95328 9316 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9317 if (attr == NULL)
9318 return;
9319
9c541725 9320 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
527f3840
JK
9321
9322 /* The line header hash table is only created if needed (it exists to
9323 prevent redundant reading of the line table for partial_units).
9324 If we're given a partial_unit, we'll need it. If we're given a
9325 compile_unit, then use the line header hash table if it's already
9326 created, but don't create one just yet. */
9327
9328 if (dwarf2_per_objfile->line_header_hash == NULL
9329 && die->tag == DW_TAG_partial_unit)
2ab95328 9330 {
527f3840
JK
9331 dwarf2_per_objfile->line_header_hash
9332 = htab_create_alloc_ex (127, line_header_hash_voidp,
9333 line_header_eq_voidp,
9334 free_line_header_voidp,
9335 &objfile->objfile_obstack,
9336 hashtab_obstack_allocate,
9337 dummy_obstack_deallocate);
9338 }
2ab95328 9339
9c541725 9340 line_header_local.sect_off = line_offset;
527f3840
JK
9341 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9342 line_header_local_hash = line_header_hash (&line_header_local);
9343 if (dwarf2_per_objfile->line_header_hash != NULL)
9344 {
9345 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9346 &line_header_local,
9347 line_header_local_hash, NO_INSERT);
9348
9349 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9350 is not present in *SLOT (since if there is something in *SLOT then
9351 it will be for a partial_unit). */
9352 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9353 {
527f3840 9354 gdb_assert (*slot != NULL);
9a3c8263 9355 cu->line_header = (struct line_header *) *slot;
527f3840 9356 return;
dee91e82 9357 }
2ab95328 9358 }
527f3840
JK
9359
9360 /* dwarf_decode_line_header does not yet provide sufficient information.
9361 We always have to call also dwarf_decode_lines for it. */
fff8551c
PA
9362 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
9363 if (lh == NULL)
527f3840 9364 return;
fff8551c 9365 cu->line_header = lh.get ();
527f3840
JK
9366
9367 if (dwarf2_per_objfile->line_header_hash == NULL)
9368 slot = NULL;
9369 else
9370 {
9371 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9372 &line_header_local,
9373 line_header_local_hash, INSERT);
9374 gdb_assert (slot != NULL);
9375 }
9376 if (slot != NULL && *slot == NULL)
9377 {
9378 /* This newly decoded line number information unit will be owned
9379 by line_header_hash hash table. */
9380 *slot = cu->line_header;
9381 }
9382 else
9383 {
9384 /* We cannot free any current entry in (*slot) as that struct line_header
9385 may be already used by multiple CUs. Create only temporary decoded
9386 line_header for this CU - it may happen at most once for each line
9387 number information unit. And if we're not using line_header_hash
9388 then this is what we want as well. */
9389 gdb_assert (die->tag != DW_TAG_partial_unit);
527f3840
JK
9390 }
9391 decode_mapping = (die->tag != DW_TAG_partial_unit);
9392 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9393 decode_mapping);
fff8551c
PA
9394
9395 lh.release ();
2ab95328
TT
9396}
9397
95554aad 9398/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9399
c906108c 9400static void
e7c27a73 9401read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9402{
dee91e82 9403 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9404 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2acceee2 9405 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9406 CORE_ADDR highpc = ((CORE_ADDR) 0);
9407 struct attribute *attr;
c906108c 9408 struct die_info *child_die;
e142c38c 9409 CORE_ADDR baseaddr;
6e70227d 9410
e142c38c 9411 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9412
fae299cd 9413 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9414
9415 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9416 from finish_block. */
2acceee2 9417 if (lowpc == ((CORE_ADDR) -1))
c906108c 9418 lowpc = highpc;
3e29f34a 9419 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9420
d721ba37 9421 file_and_directory fnd = find_file_and_directory (die, cu);
e1024ff1 9422
95554aad 9423 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9424
f4b8a18d
KW
9425 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9426 standardised yet. As a workaround for the language detection we fall
9427 back to the DW_AT_producer string. */
9428 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9429 cu->language = language_opencl;
9430
3019eac3
DE
9431 /* Similar hack for Go. */
9432 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9433 set_cu_language (DW_LANG_Go, cu);
9434
d721ba37 9435 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
3019eac3
DE
9436
9437 /* Decode line number information if present. We do this before
9438 processing child DIEs, so that the line header table is available
9439 for DW_AT_decl_file. */
d721ba37 9440 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
3019eac3
DE
9441
9442 /* Process all dies in compilation unit. */
9443 if (die->child != NULL)
9444 {
9445 child_die = die->child;
9446 while (child_die && child_die->tag)
9447 {
9448 process_die (child_die, cu);
9449 child_die = sibling_die (child_die);
9450 }
9451 }
9452
9453 /* Decode macro information, if present. Dwarf 2 macro information
9454 refers to information in the line number info statement program
9455 header, so we can only read it if we've read the header
9456 successfully. */
0af92d60
JK
9457 attr = dwarf2_attr (die, DW_AT_macros, cu);
9458 if (attr == NULL)
9459 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
3019eac3
DE
9460 if (attr && cu->line_header)
9461 {
9462 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9463 complaint (&symfile_complaints,
0af92d60 9464 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
3019eac3 9465
43f3e411 9466 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9467 }
9468 else
9469 {
9470 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9471 if (attr && cu->line_header)
9472 {
9473 unsigned int macro_offset = DW_UNSND (attr);
9474
43f3e411 9475 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9476 }
9477 }
3019eac3
DE
9478}
9479
f4dc4d17
DE
9480/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9481 Create the set of symtabs used by this TU, or if this TU is sharing
9482 symtabs with another TU and the symtabs have already been created
9483 then restore those symtabs in the line header.
9484 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9485
9486static void
f4dc4d17 9487setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9488{
f4dc4d17
DE
9489 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9490 struct type_unit_group *tu_group;
9491 int first_time;
3019eac3 9492 struct attribute *attr;
9c541725 9493 unsigned int i;
0186c6a7 9494 struct signatured_type *sig_type;
3019eac3 9495
f4dc4d17 9496 gdb_assert (per_cu->is_debug_types);
0186c6a7 9497 sig_type = (struct signatured_type *) per_cu;
3019eac3 9498
f4dc4d17 9499 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9500
f4dc4d17 9501 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9502 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9503 if (sig_type->type_unit_group == NULL)
9504 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9505 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9506
9507 /* If we've already processed this stmt_list there's no real need to
9508 do it again, we could fake it and just recreate the part we need
9509 (file name,index -> symtab mapping). If data shows this optimization
9510 is useful we can do it then. */
43f3e411 9511 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9512
9513 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9514 debug info. */
fff8551c 9515 line_header_up lh;
f4dc4d17 9516 if (attr != NULL)
3019eac3 9517 {
9c541725 9518 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
f4dc4d17
DE
9519 lh = dwarf_decode_line_header (line_offset, cu);
9520 }
9521 if (lh == NULL)
9522 {
9523 if (first_time)
9524 dwarf2_start_symtab (cu, "", NULL, 0);
9525 else
9526 {
9527 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9528 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9529 }
f4dc4d17 9530 return;
3019eac3
DE
9531 }
9532
fff8551c 9533 cu->line_header = lh.get ();
3019eac3 9534
f4dc4d17
DE
9535 if (first_time)
9536 {
43f3e411 9537 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9538
1fd60fc0
DE
9539 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9540 still initializing it, and our caller (a few levels up)
9541 process_full_type_unit still needs to know if this is the first
9542 time. */
9543
fff8551c
PA
9544 tu_group->num_symtabs = lh->file_names.size ();
9545 tu_group->symtabs = XNEWVEC (struct symtab *, lh->file_names.size ());
3019eac3 9546
fff8551c 9547 for (i = 0; i < lh->file_names.size (); ++i)
f4dc4d17 9548 {
8c43009f 9549 file_entry &fe = lh->file_names[i];
3019eac3 9550
fff8551c 9551 dwarf2_start_subfile (fe.name, fe.include_dir (lh.get ()));
3019eac3 9552
f4dc4d17
DE
9553 if (current_subfile->symtab == NULL)
9554 {
9555 /* NOTE: start_subfile will recognize when it's been passed
9556 a file it has already seen. So we can't assume there's a
43f3e411 9557 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9558 lh->file_names may contain dups. */
43f3e411
DE
9559 current_subfile->symtab
9560 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9561 }
9562
8c43009f
PA
9563 fe.symtab = current_subfile->symtab;
9564 tu_group->symtabs[i] = fe.symtab;
f4dc4d17
DE
9565 }
9566 }
9567 else
3019eac3 9568 {
0ab9ce85 9569 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9570
fff8551c 9571 for (i = 0; i < lh->file_names.size (); ++i)
f4dc4d17
DE
9572 {
9573 struct file_entry *fe = &lh->file_names[i];
9574
9575 fe->symtab = tu_group->symtabs[i];
9576 }
3019eac3
DE
9577 }
9578
fff8551c
PA
9579 lh.release ();
9580
f4dc4d17
DE
9581 /* The main symtab is allocated last. Type units don't have DW_AT_name
9582 so they don't have a "real" (so to speak) symtab anyway.
9583 There is later code that will assign the main symtab to all symbols
9584 that don't have one. We need to handle the case of a symbol with a
9585 missing symtab (DW_AT_decl_file) anyway. */
9586}
3019eac3 9587
f4dc4d17
DE
9588/* Process DW_TAG_type_unit.
9589 For TUs we want to skip the first top level sibling if it's not the
9590 actual type being defined by this TU. In this case the first top
9591 level sibling is there to provide context only. */
3019eac3 9592
f4dc4d17
DE
9593static void
9594read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9595{
9596 struct die_info *child_die;
3019eac3 9597
f4dc4d17
DE
9598 prepare_one_comp_unit (cu, die, language_minimal);
9599
9600 /* Initialize (or reinitialize) the machinery for building symtabs.
9601 We do this before processing child DIEs, so that the line header table
9602 is available for DW_AT_decl_file. */
9603 setup_type_unit_groups (die, cu);
9604
9605 if (die->child != NULL)
9606 {
9607 child_die = die->child;
9608 while (child_die && child_die->tag)
9609 {
9610 process_die (child_die, cu);
9611 child_die = sibling_die (child_die);
9612 }
9613 }
3019eac3
DE
9614}
9615\f
80626a55
DE
9616/* DWO/DWP files.
9617
9618 http://gcc.gnu.org/wiki/DebugFission
9619 http://gcc.gnu.org/wiki/DebugFissionDWP
9620
9621 To simplify handling of both DWO files ("object" files with the DWARF info)
9622 and DWP files (a file with the DWOs packaged up into one file), we treat
9623 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9624
9625static hashval_t
9626hash_dwo_file (const void *item)
9627{
9a3c8263 9628 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 9629 hashval_t hash;
3019eac3 9630
a2ce51a0
DE
9631 hash = htab_hash_string (dwo_file->dwo_name);
9632 if (dwo_file->comp_dir != NULL)
9633 hash += htab_hash_string (dwo_file->comp_dir);
9634 return hash;
3019eac3
DE
9635}
9636
9637static int
9638eq_dwo_file (const void *item_lhs, const void *item_rhs)
9639{
9a3c8263
SM
9640 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9641 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 9642
a2ce51a0
DE
9643 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9644 return 0;
9645 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9646 return lhs->comp_dir == rhs->comp_dir;
9647 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9648}
9649
9650/* Allocate a hash table for DWO files. */
9651
9652static htab_t
9653allocate_dwo_file_hash_table (void)
9654{
9655 struct objfile *objfile = dwarf2_per_objfile->objfile;
9656
9657 return htab_create_alloc_ex (41,
9658 hash_dwo_file,
9659 eq_dwo_file,
9660 NULL,
9661 &objfile->objfile_obstack,
9662 hashtab_obstack_allocate,
9663 dummy_obstack_deallocate);
9664}
9665
80626a55
DE
9666/* Lookup DWO file DWO_NAME. */
9667
9668static void **
0ac5b59e 9669lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9670{
9671 struct dwo_file find_entry;
9672 void **slot;
9673
9674 if (dwarf2_per_objfile->dwo_files == NULL)
9675 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9676
9677 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9678 find_entry.dwo_name = dwo_name;
9679 find_entry.comp_dir = comp_dir;
80626a55
DE
9680 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9681
9682 return slot;
9683}
9684
3019eac3
DE
9685static hashval_t
9686hash_dwo_unit (const void *item)
9687{
9a3c8263 9688 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
9689
9690 /* This drops the top 32 bits of the id, but is ok for a hash. */
9691 return dwo_unit->signature;
9692}
9693
9694static int
9695eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9696{
9a3c8263
SM
9697 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9698 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
9699
9700 /* The signature is assumed to be unique within the DWO file.
9701 So while object file CU dwo_id's always have the value zero,
9702 that's OK, assuming each object file DWO file has only one CU,
9703 and that's the rule for now. */
9704 return lhs->signature == rhs->signature;
9705}
9706
9707/* Allocate a hash table for DWO CUs,TUs.
9708 There is one of these tables for each of CUs,TUs for each DWO file. */
9709
9710static htab_t
9711allocate_dwo_unit_table (struct objfile *objfile)
9712{
9713 /* Start out with a pretty small number.
9714 Generally DWO files contain only one CU and maybe some TUs. */
9715 return htab_create_alloc_ex (3,
9716 hash_dwo_unit,
9717 eq_dwo_unit,
9718 NULL,
9719 &objfile->objfile_obstack,
9720 hashtab_obstack_allocate,
9721 dummy_obstack_deallocate);
9722}
9723
80626a55 9724/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9725
19c3d4c9 9726struct create_dwo_cu_data
3019eac3
DE
9727{
9728 struct dwo_file *dwo_file;
19c3d4c9 9729 struct dwo_unit dwo_unit;
3019eac3
DE
9730};
9731
19c3d4c9 9732/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9733
9734static void
19c3d4c9
DE
9735create_dwo_cu_reader (const struct die_reader_specs *reader,
9736 const gdb_byte *info_ptr,
9737 struct die_info *comp_unit_die,
9738 int has_children,
9739 void *datap)
3019eac3
DE
9740{
9741 struct dwarf2_cu *cu = reader->cu;
9c541725 9742 sect_offset sect_off = cu->per_cu->sect_off;
8a0459fd 9743 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 9744 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 9745 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9746 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9747 struct attribute *attr;
3019eac3
DE
9748
9749 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9750 if (attr == NULL)
9751 {
19c3d4c9
DE
9752 complaint (&symfile_complaints,
9753 _("Dwarf Error: debug entry at offset 0x%x is missing"
9754 " its dwo_id [in module %s]"),
9c541725 9755 to_underlying (sect_off), dwo_file->dwo_name);
3019eac3
DE
9756 return;
9757 }
9758
3019eac3
DE
9759 dwo_unit->dwo_file = dwo_file;
9760 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9761 dwo_unit->section = section;
9c541725 9762 dwo_unit->sect_off = sect_off;
3019eac3
DE
9763 dwo_unit->length = cu->per_cu->length;
9764
b4f54984 9765 if (dwarf_read_debug)
4031ecc5 9766 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9c541725
PA
9767 to_underlying (sect_off),
9768 hex_string (dwo_unit->signature));
3019eac3
DE
9769}
9770
33c5cd75 9771/* Create the dwo_units for the CUs in a DWO_FILE.
19c3d4c9 9772 Note: This function processes DWO files only, not DWP files. */
3019eac3 9773
33c5cd75
DB
9774static void
9775create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
9776 htab_t &cus_htab)
3019eac3
DE
9777{
9778 struct objfile *objfile = dwarf2_per_objfile->objfile;
33c5cd75 9779 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
d521ce57 9780 const gdb_byte *info_ptr, *end_ptr;
3019eac3 9781
33c5cd75
DB
9782 dwarf2_read_section (objfile, &section);
9783 info_ptr = section.buffer;
3019eac3
DE
9784
9785 if (info_ptr == NULL)
33c5cd75 9786 return;
3019eac3 9787
b4f54984 9788 if (dwarf_read_debug)
19c3d4c9
DE
9789 {
9790 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
33c5cd75
DB
9791 get_section_name (&section),
9792 get_section_file_name (&section));
19c3d4c9 9793 }
3019eac3 9794
33c5cd75 9795 end_ptr = info_ptr + section.size;
3019eac3
DE
9796 while (info_ptr < end_ptr)
9797 {
9798 struct dwarf2_per_cu_data per_cu;
33c5cd75
DB
9799 struct create_dwo_cu_data create_dwo_cu_data;
9800 struct dwo_unit *dwo_unit;
9801 void **slot;
9802 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
3019eac3 9803
19c3d4c9
DE
9804 memset (&create_dwo_cu_data.dwo_unit, 0,
9805 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9806 memset (&per_cu, 0, sizeof (per_cu));
9807 per_cu.objfile = objfile;
9808 per_cu.is_debug_types = 0;
33c5cd75
DB
9809 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
9810 per_cu.section = &section;
9811
9812 init_cutu_and_read_dies_no_follow (
9813 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
9814 info_ptr += per_cu.length;
9815
9816 // If the unit could not be parsed, skip it.
9817 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
9818 continue;
3019eac3 9819
33c5cd75
DB
9820 if (cus_htab == NULL)
9821 cus_htab = allocate_dwo_unit_table (objfile);
19c3d4c9 9822
33c5cd75
DB
9823 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9824 *dwo_unit = create_dwo_cu_data.dwo_unit;
9825 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
9826 gdb_assert (slot != NULL);
9827 if (*slot != NULL)
19c3d4c9 9828 {
33c5cd75
DB
9829 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
9830 sect_offset dup_sect_off = dup_cu->sect_off;
19c3d4c9 9831
33c5cd75
DB
9832 complaint (&symfile_complaints,
9833 _("debug cu entry at offset 0x%x is duplicate to"
9834 " the entry at offset 0x%x, signature %s"),
9835 to_underlying (sect_off), to_underlying (dup_sect_off),
9836 hex_string (dwo_unit->signature));
19c3d4c9 9837 }
33c5cd75 9838 *slot = (void *)dwo_unit;
3019eac3 9839 }
3019eac3
DE
9840}
9841
80626a55
DE
9842/* DWP file .debug_{cu,tu}_index section format:
9843 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9844
d2415c6c
DE
9845 DWP Version 1:
9846
80626a55
DE
9847 Both index sections have the same format, and serve to map a 64-bit
9848 signature to a set of section numbers. Each section begins with a header,
9849 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9850 indexes, and a pool of 32-bit section numbers. The index sections will be
9851 aligned at 8-byte boundaries in the file.
9852
d2415c6c
DE
9853 The index section header consists of:
9854
9855 V, 32 bit version number
9856 -, 32 bits unused
9857 N, 32 bit number of compilation units or type units in the index
9858 M, 32 bit number of slots in the hash table
80626a55 9859
d2415c6c 9860 Numbers are recorded using the byte order of the application binary.
80626a55 9861
d2415c6c
DE
9862 The hash table begins at offset 16 in the section, and consists of an array
9863 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9864 order of the application binary). Unused slots in the hash table are 0.
9865 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9866
d2415c6c
DE
9867 The parallel table begins immediately after the hash table
9868 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9869 array of 32-bit indexes (using the byte order of the application binary),
9870 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9871 table contains a 32-bit index into the pool of section numbers. For unused
9872 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9873
73869dc2
DE
9874 The pool of section numbers begins immediately following the hash table
9875 (at offset 16 + 12 * M from the beginning of the section). The pool of
9876 section numbers consists of an array of 32-bit words (using the byte order
9877 of the application binary). Each item in the array is indexed starting
9878 from 0. The hash table entry provides the index of the first section
9879 number in the set. Additional section numbers in the set follow, and the
9880 set is terminated by a 0 entry (section number 0 is not used in ELF).
9881
9882 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9883 section must be the first entry in the set, and the .debug_abbrev.dwo must
9884 be the second entry. Other members of the set may follow in any order.
9885
9886 ---
9887
9888 DWP Version 2:
9889
9890 DWP Version 2 combines all the .debug_info, etc. sections into one,
9891 and the entries in the index tables are now offsets into these sections.
9892 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9893 section.
9894
9895 Index Section Contents:
9896 Header
9897 Hash Table of Signatures dwp_hash_table.hash_table
9898 Parallel Table of Indices dwp_hash_table.unit_table
9899 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9900 Table of Section Sizes dwp_hash_table.v2.sizes
9901
9902 The index section header consists of:
9903
9904 V, 32 bit version number
9905 L, 32 bit number of columns in the table of section offsets
9906 N, 32 bit number of compilation units or type units in the index
9907 M, 32 bit number of slots in the hash table
9908
9909 Numbers are recorded using the byte order of the application binary.
9910
9911 The hash table has the same format as version 1.
9912 The parallel table of indices has the same format as version 1,
9913 except that the entries are origin-1 indices into the table of sections
9914 offsets and the table of section sizes.
9915
9916 The table of offsets begins immediately following the parallel table
9917 (at offset 16 + 12 * M from the beginning of the section). The table is
9918 a two-dimensional array of 32-bit words (using the byte order of the
9919 application binary), with L columns and N+1 rows, in row-major order.
9920 Each row in the array is indexed starting from 0. The first row provides
9921 a key to the remaining rows: each column in this row provides an identifier
9922 for a debug section, and the offsets in the same column of subsequent rows
9923 refer to that section. The section identifiers are:
9924
9925 DW_SECT_INFO 1 .debug_info.dwo
9926 DW_SECT_TYPES 2 .debug_types.dwo
9927 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9928 DW_SECT_LINE 4 .debug_line.dwo
9929 DW_SECT_LOC 5 .debug_loc.dwo
9930 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9931 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9932 DW_SECT_MACRO 8 .debug_macro.dwo
9933
9934 The offsets provided by the CU and TU index sections are the base offsets
9935 for the contributions made by each CU or TU to the corresponding section
9936 in the package file. Each CU and TU header contains an abbrev_offset
9937 field, used to find the abbreviations table for that CU or TU within the
9938 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9939 be interpreted as relative to the base offset given in the index section.
9940 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9941 should be interpreted as relative to the base offset for .debug_line.dwo,
9942 and offsets into other debug sections obtained from DWARF attributes should
9943 also be interpreted as relative to the corresponding base offset.
9944
9945 The table of sizes begins immediately following the table of offsets.
9946 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9947 with L columns and N rows, in row-major order. Each row in the array is
9948 indexed starting from 1 (row 0 is shared by the two tables).
9949
9950 ---
9951
9952 Hash table lookup is handled the same in version 1 and 2:
9953
9954 We assume that N and M will not exceed 2^32 - 1.
9955 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9956
d2415c6c
DE
9957 Given a 64-bit compilation unit signature or a type signature S, an entry
9958 in the hash table is located as follows:
80626a55 9959
d2415c6c
DE
9960 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9961 the low-order k bits all set to 1.
80626a55 9962
d2415c6c 9963 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9964
d2415c6c
DE
9965 3) If the hash table entry at index H matches the signature, use that
9966 entry. If the hash table entry at index H is unused (all zeroes),
9967 terminate the search: the signature is not present in the table.
80626a55 9968
d2415c6c 9969 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9970
d2415c6c 9971 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9972 to stop at an unused slot or find the match. */
80626a55
DE
9973
9974/* Create a hash table to map DWO IDs to their CU/TU entry in
9975 .debug_{info,types}.dwo in DWP_FILE.
9976 Returns NULL if there isn't one.
9977 Note: This function processes DWP files only, not DWO files. */
9978
9979static struct dwp_hash_table *
9980create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9981{
9982 struct objfile *objfile = dwarf2_per_objfile->objfile;
9983 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9984 const gdb_byte *index_ptr, *index_end;
80626a55 9985 struct dwarf2_section_info *index;
73869dc2 9986 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9987 struct dwp_hash_table *htab;
9988
9989 if (is_debug_types)
9990 index = &dwp_file->sections.tu_index;
9991 else
9992 index = &dwp_file->sections.cu_index;
9993
9994 if (dwarf2_section_empty_p (index))
9995 return NULL;
9996 dwarf2_read_section (objfile, index);
9997
9998 index_ptr = index->buffer;
9999 index_end = index_ptr + index->size;
10000
10001 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
10002 index_ptr += 4;
10003 if (version == 2)
10004 nr_columns = read_4_bytes (dbfd, index_ptr);
10005 else
10006 nr_columns = 0;
10007 index_ptr += 4;
80626a55
DE
10008 nr_units = read_4_bytes (dbfd, index_ptr);
10009 index_ptr += 4;
10010 nr_slots = read_4_bytes (dbfd, index_ptr);
10011 index_ptr += 4;
10012
73869dc2 10013 if (version != 1 && version != 2)
80626a55 10014 {
21aa081e 10015 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 10016 " [in module %s]"),
21aa081e 10017 pulongest (version), dwp_file->name);
80626a55
DE
10018 }
10019 if (nr_slots != (nr_slots & -nr_slots))
10020 {
21aa081e 10021 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 10022 " is not power of 2 [in module %s]"),
21aa081e 10023 pulongest (nr_slots), dwp_file->name);
80626a55
DE
10024 }
10025
10026 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
10027 htab->version = version;
10028 htab->nr_columns = nr_columns;
80626a55
DE
10029 htab->nr_units = nr_units;
10030 htab->nr_slots = nr_slots;
10031 htab->hash_table = index_ptr;
10032 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
10033
10034 /* Exit early if the table is empty. */
10035 if (nr_slots == 0 || nr_units == 0
10036 || (version == 2 && nr_columns == 0))
10037 {
10038 /* All must be zero. */
10039 if (nr_slots != 0 || nr_units != 0
10040 || (version == 2 && nr_columns != 0))
10041 {
10042 complaint (&symfile_complaints,
10043 _("Empty DWP but nr_slots,nr_units,nr_columns not"
10044 " all zero [in modules %s]"),
10045 dwp_file->name);
10046 }
10047 return htab;
10048 }
10049
10050 if (version == 1)
10051 {
10052 htab->section_pool.v1.indices =
10053 htab->unit_table + sizeof (uint32_t) * nr_slots;
10054 /* It's harder to decide whether the section is too small in v1.
10055 V1 is deprecated anyway so we punt. */
10056 }
10057 else
10058 {
10059 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
10060 int *ids = htab->section_pool.v2.section_ids;
10061 /* Reverse map for error checking. */
10062 int ids_seen[DW_SECT_MAX + 1];
10063 int i;
10064
10065 if (nr_columns < 2)
10066 {
10067 error (_("Dwarf Error: bad DWP hash table, too few columns"
10068 " in section table [in module %s]"),
10069 dwp_file->name);
10070 }
10071 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10072 {
10073 error (_("Dwarf Error: bad DWP hash table, too many columns"
10074 " in section table [in module %s]"),
10075 dwp_file->name);
10076 }
10077 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10078 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10079 for (i = 0; i < nr_columns; ++i)
10080 {
10081 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10082
10083 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10084 {
10085 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10086 " in section table [in module %s]"),
10087 id, dwp_file->name);
10088 }
10089 if (ids_seen[id] != -1)
10090 {
10091 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10092 " id %d in section table [in module %s]"),
10093 id, dwp_file->name);
10094 }
10095 ids_seen[id] = i;
10096 ids[i] = id;
10097 }
10098 /* Must have exactly one info or types section. */
10099 if (((ids_seen[DW_SECT_INFO] != -1)
10100 + (ids_seen[DW_SECT_TYPES] != -1))
10101 != 1)
10102 {
10103 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10104 " DWO info/types section [in module %s]"),
10105 dwp_file->name);
10106 }
10107 /* Must have an abbrev section. */
10108 if (ids_seen[DW_SECT_ABBREV] == -1)
10109 {
10110 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10111 " section [in module %s]"),
10112 dwp_file->name);
10113 }
10114 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10115 htab->section_pool.v2.sizes =
10116 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10117 * nr_units * nr_columns);
10118 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10119 * nr_units * nr_columns))
10120 > index_end)
10121 {
10122 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10123 " [in module %s]"),
10124 dwp_file->name);
10125 }
10126 }
80626a55
DE
10127
10128 return htab;
10129}
10130
10131/* Update SECTIONS with the data from SECTP.
10132
10133 This function is like the other "locate" section routines that are
10134 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 10135 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
10136
10137 The result is non-zero for success, or zero if an error was found. */
10138
10139static int
73869dc2
DE
10140locate_v1_virtual_dwo_sections (asection *sectp,
10141 struct virtual_v1_dwo_sections *sections)
80626a55
DE
10142{
10143 const struct dwop_section_names *names = &dwop_section_names;
10144
10145 if (section_is_p (sectp->name, &names->abbrev_dwo))
10146 {
10147 /* There can be only one. */
049412e3 10148 if (sections->abbrev.s.section != NULL)
80626a55 10149 return 0;
049412e3 10150 sections->abbrev.s.section = sectp;
80626a55
DE
10151 sections->abbrev.size = bfd_get_section_size (sectp);
10152 }
10153 else if (section_is_p (sectp->name, &names->info_dwo)
10154 || section_is_p (sectp->name, &names->types_dwo))
10155 {
10156 /* There can be only one. */
049412e3 10157 if (sections->info_or_types.s.section != NULL)
80626a55 10158 return 0;
049412e3 10159 sections->info_or_types.s.section = sectp;
80626a55
DE
10160 sections->info_or_types.size = bfd_get_section_size (sectp);
10161 }
10162 else if (section_is_p (sectp->name, &names->line_dwo))
10163 {
10164 /* There can be only one. */
049412e3 10165 if (sections->line.s.section != NULL)
80626a55 10166 return 0;
049412e3 10167 sections->line.s.section = sectp;
80626a55
DE
10168 sections->line.size = bfd_get_section_size (sectp);
10169 }
10170 else if (section_is_p (sectp->name, &names->loc_dwo))
10171 {
10172 /* There can be only one. */
049412e3 10173 if (sections->loc.s.section != NULL)
80626a55 10174 return 0;
049412e3 10175 sections->loc.s.section = sectp;
80626a55
DE
10176 sections->loc.size = bfd_get_section_size (sectp);
10177 }
10178 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10179 {
10180 /* There can be only one. */
049412e3 10181 if (sections->macinfo.s.section != NULL)
80626a55 10182 return 0;
049412e3 10183 sections->macinfo.s.section = sectp;
80626a55
DE
10184 sections->macinfo.size = bfd_get_section_size (sectp);
10185 }
10186 else if (section_is_p (sectp->name, &names->macro_dwo))
10187 {
10188 /* There can be only one. */
049412e3 10189 if (sections->macro.s.section != NULL)
80626a55 10190 return 0;
049412e3 10191 sections->macro.s.section = sectp;
80626a55
DE
10192 sections->macro.size = bfd_get_section_size (sectp);
10193 }
10194 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10195 {
10196 /* There can be only one. */
049412e3 10197 if (sections->str_offsets.s.section != NULL)
80626a55 10198 return 0;
049412e3 10199 sections->str_offsets.s.section = sectp;
80626a55
DE
10200 sections->str_offsets.size = bfd_get_section_size (sectp);
10201 }
10202 else
10203 {
10204 /* No other kind of section is valid. */
10205 return 0;
10206 }
10207
10208 return 1;
10209}
10210
73869dc2
DE
10211/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10212 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10213 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10214 This is for DWP version 1 files. */
80626a55
DE
10215
10216static struct dwo_unit *
73869dc2
DE
10217create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10218 uint32_t unit_index,
10219 const char *comp_dir,
10220 ULONGEST signature, int is_debug_types)
80626a55
DE
10221{
10222 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10223 const struct dwp_hash_table *dwp_htab =
10224 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10225 bfd *dbfd = dwp_file->dbfd;
10226 const char *kind = is_debug_types ? "TU" : "CU";
10227 struct dwo_file *dwo_file;
10228 struct dwo_unit *dwo_unit;
73869dc2 10229 struct virtual_v1_dwo_sections sections;
80626a55
DE
10230 void **dwo_file_slot;
10231 char *virtual_dwo_name;
80626a55
DE
10232 struct cleanup *cleanups;
10233 int i;
10234
73869dc2
DE
10235 gdb_assert (dwp_file->version == 1);
10236
b4f54984 10237 if (dwarf_read_debug)
80626a55 10238 {
73869dc2 10239 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10240 kind,
73869dc2 10241 pulongest (unit_index), hex_string (signature),
80626a55
DE
10242 dwp_file->name);
10243 }
10244
19ac8c2e 10245 /* Fetch the sections of this DWO unit.
80626a55
DE
10246 Put a limit on the number of sections we look for so that bad data
10247 doesn't cause us to loop forever. */
10248
73869dc2 10249#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10250 (1 /* .debug_info or .debug_types */ \
10251 + 1 /* .debug_abbrev */ \
10252 + 1 /* .debug_line */ \
10253 + 1 /* .debug_loc */ \
10254 + 1 /* .debug_str_offsets */ \
19ac8c2e 10255 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10256 + 1 /* trailing zero */)
10257
10258 memset (&sections, 0, sizeof (sections));
10259 cleanups = make_cleanup (null_cleanup, 0);
10260
73869dc2 10261 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10262 {
10263 asection *sectp;
10264 uint32_t section_nr =
10265 read_4_bytes (dbfd,
73869dc2
DE
10266 dwp_htab->section_pool.v1.indices
10267 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10268
10269 if (section_nr == 0)
10270 break;
10271 if (section_nr >= dwp_file->num_sections)
10272 {
10273 error (_("Dwarf Error: bad DWP hash table, section number too large"
10274 " [in module %s]"),
10275 dwp_file->name);
10276 }
10277
10278 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10279 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10280 {
10281 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10282 " [in module %s]"),
10283 dwp_file->name);
10284 }
10285 }
10286
10287 if (i < 2
a32a8923
DE
10288 || dwarf2_section_empty_p (&sections.info_or_types)
10289 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10290 {
10291 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10292 " [in module %s]"),
10293 dwp_file->name);
10294 }
73869dc2 10295 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10296 {
10297 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10298 " [in module %s]"),
10299 dwp_file->name);
10300 }
10301
10302 /* It's easier for the rest of the code if we fake a struct dwo_file and
10303 have dwo_unit "live" in that. At least for now.
10304
10305 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10306 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10307 file, we can combine them back into a virtual DWO file to save space
10308 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10309 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10310
2792b94d
PM
10311 virtual_dwo_name =
10312 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10313 get_section_id (&sections.abbrev),
10314 get_section_id (&sections.line),
10315 get_section_id (&sections.loc),
10316 get_section_id (&sections.str_offsets));
80626a55
DE
10317 make_cleanup (xfree, virtual_dwo_name);
10318 /* Can we use an existing virtual DWO file? */
0ac5b59e 10319 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10320 /* Create one if necessary. */
10321 if (*dwo_file_slot == NULL)
10322 {
b4f54984 10323 if (dwarf_read_debug)
80626a55
DE
10324 {
10325 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10326 virtual_dwo_name);
10327 }
10328 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10329 dwo_file->dwo_name
10330 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10331 virtual_dwo_name,
10332 strlen (virtual_dwo_name));
0ac5b59e 10333 dwo_file->comp_dir = comp_dir;
80626a55
DE
10334 dwo_file->sections.abbrev = sections.abbrev;
10335 dwo_file->sections.line = sections.line;
10336 dwo_file->sections.loc = sections.loc;
10337 dwo_file->sections.macinfo = sections.macinfo;
10338 dwo_file->sections.macro = sections.macro;
10339 dwo_file->sections.str_offsets = sections.str_offsets;
10340 /* The "str" section is global to the entire DWP file. */
10341 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10342 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10343 there's no need to record it in dwo_file.
10344 Also, we can't simply record type sections in dwo_file because
10345 we record a pointer into the vector in dwo_unit. As we collect more
10346 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10347 for it, invalidating all copies of pointers into the previous
10348 contents. */
80626a55
DE
10349 *dwo_file_slot = dwo_file;
10350 }
10351 else
10352 {
b4f54984 10353 if (dwarf_read_debug)
80626a55
DE
10354 {
10355 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10356 virtual_dwo_name);
10357 }
9a3c8263 10358 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55
DE
10359 }
10360 do_cleanups (cleanups);
10361
10362 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10363 dwo_unit->dwo_file = dwo_file;
10364 dwo_unit->signature = signature;
8d749320
SM
10365 dwo_unit->section =
10366 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 10367 *dwo_unit->section = sections.info_or_types;
57d63ce2 10368 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10369
10370 return dwo_unit;
10371}
10372
73869dc2
DE
10373/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10374 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10375 piece within that section used by a TU/CU, return a virtual section
10376 of just that piece. */
10377
10378static struct dwarf2_section_info
10379create_dwp_v2_section (struct dwarf2_section_info *section,
10380 bfd_size_type offset, bfd_size_type size)
10381{
10382 struct dwarf2_section_info result;
10383 asection *sectp;
10384
10385 gdb_assert (section != NULL);
10386 gdb_assert (!section->is_virtual);
10387
10388 memset (&result, 0, sizeof (result));
10389 result.s.containing_section = section;
10390 result.is_virtual = 1;
10391
10392 if (size == 0)
10393 return result;
10394
10395 sectp = get_section_bfd_section (section);
10396
10397 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10398 bounds of the real section. This is a pretty-rare event, so just
10399 flag an error (easier) instead of a warning and trying to cope. */
10400 if (sectp == NULL
10401 || offset + size > bfd_get_section_size (sectp))
10402 {
10403 bfd *abfd = sectp->owner;
10404
10405 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10406 " in section %s [in module %s]"),
10407 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10408 objfile_name (dwarf2_per_objfile->objfile));
10409 }
10410
10411 result.virtual_offset = offset;
10412 result.size = size;
10413 return result;
10414}
10415
10416/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10417 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10418 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10419 This is for DWP version 2 files. */
10420
10421static struct dwo_unit *
10422create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10423 uint32_t unit_index,
10424 const char *comp_dir,
10425 ULONGEST signature, int is_debug_types)
10426{
10427 struct objfile *objfile = dwarf2_per_objfile->objfile;
10428 const struct dwp_hash_table *dwp_htab =
10429 is_debug_types ? dwp_file->tus : dwp_file->cus;
10430 bfd *dbfd = dwp_file->dbfd;
10431 const char *kind = is_debug_types ? "TU" : "CU";
10432 struct dwo_file *dwo_file;
10433 struct dwo_unit *dwo_unit;
10434 struct virtual_v2_dwo_sections sections;
10435 void **dwo_file_slot;
10436 char *virtual_dwo_name;
73869dc2
DE
10437 struct cleanup *cleanups;
10438 int i;
10439
10440 gdb_assert (dwp_file->version == 2);
10441
b4f54984 10442 if (dwarf_read_debug)
73869dc2
DE
10443 {
10444 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10445 kind,
10446 pulongest (unit_index), hex_string (signature),
10447 dwp_file->name);
10448 }
10449
10450 /* Fetch the section offsets of this DWO unit. */
10451
10452 memset (&sections, 0, sizeof (sections));
10453 cleanups = make_cleanup (null_cleanup, 0);
10454
10455 for (i = 0; i < dwp_htab->nr_columns; ++i)
10456 {
10457 uint32_t offset = read_4_bytes (dbfd,
10458 dwp_htab->section_pool.v2.offsets
10459 + (((unit_index - 1) * dwp_htab->nr_columns
10460 + i)
10461 * sizeof (uint32_t)));
10462 uint32_t size = read_4_bytes (dbfd,
10463 dwp_htab->section_pool.v2.sizes
10464 + (((unit_index - 1) * dwp_htab->nr_columns
10465 + i)
10466 * sizeof (uint32_t)));
10467
10468 switch (dwp_htab->section_pool.v2.section_ids[i])
10469 {
10470 case DW_SECT_INFO:
10471 case DW_SECT_TYPES:
10472 sections.info_or_types_offset = offset;
10473 sections.info_or_types_size = size;
10474 break;
10475 case DW_SECT_ABBREV:
10476 sections.abbrev_offset = offset;
10477 sections.abbrev_size = size;
10478 break;
10479 case DW_SECT_LINE:
10480 sections.line_offset = offset;
10481 sections.line_size = size;
10482 break;
10483 case DW_SECT_LOC:
10484 sections.loc_offset = offset;
10485 sections.loc_size = size;
10486 break;
10487 case DW_SECT_STR_OFFSETS:
10488 sections.str_offsets_offset = offset;
10489 sections.str_offsets_size = size;
10490 break;
10491 case DW_SECT_MACINFO:
10492 sections.macinfo_offset = offset;
10493 sections.macinfo_size = size;
10494 break;
10495 case DW_SECT_MACRO:
10496 sections.macro_offset = offset;
10497 sections.macro_size = size;
10498 break;
10499 }
10500 }
10501
10502 /* It's easier for the rest of the code if we fake a struct dwo_file and
10503 have dwo_unit "live" in that. At least for now.
10504
10505 The DWP file can be made up of a random collection of CUs and TUs.
10506 However, for each CU + set of TUs that came from the same original DWO
10507 file, we can combine them back into a virtual DWO file to save space
10508 (fewer struct dwo_file objects to allocate). Remember that for really
10509 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10510
10511 virtual_dwo_name =
10512 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10513 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10514 (long) (sections.line_size ? sections.line_offset : 0),
10515 (long) (sections.loc_size ? sections.loc_offset : 0),
10516 (long) (sections.str_offsets_size
10517 ? sections.str_offsets_offset : 0));
10518 make_cleanup (xfree, virtual_dwo_name);
10519 /* Can we use an existing virtual DWO file? */
10520 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10521 /* Create one if necessary. */
10522 if (*dwo_file_slot == NULL)
10523 {
b4f54984 10524 if (dwarf_read_debug)
73869dc2
DE
10525 {
10526 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10527 virtual_dwo_name);
10528 }
10529 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10530 dwo_file->dwo_name
10531 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10532 virtual_dwo_name,
10533 strlen (virtual_dwo_name));
73869dc2
DE
10534 dwo_file->comp_dir = comp_dir;
10535 dwo_file->sections.abbrev =
10536 create_dwp_v2_section (&dwp_file->sections.abbrev,
10537 sections.abbrev_offset, sections.abbrev_size);
10538 dwo_file->sections.line =
10539 create_dwp_v2_section (&dwp_file->sections.line,
10540 sections.line_offset, sections.line_size);
10541 dwo_file->sections.loc =
10542 create_dwp_v2_section (&dwp_file->sections.loc,
10543 sections.loc_offset, sections.loc_size);
10544 dwo_file->sections.macinfo =
10545 create_dwp_v2_section (&dwp_file->sections.macinfo,
10546 sections.macinfo_offset, sections.macinfo_size);
10547 dwo_file->sections.macro =
10548 create_dwp_v2_section (&dwp_file->sections.macro,
10549 sections.macro_offset, sections.macro_size);
10550 dwo_file->sections.str_offsets =
10551 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10552 sections.str_offsets_offset,
10553 sections.str_offsets_size);
10554 /* The "str" section is global to the entire DWP file. */
10555 dwo_file->sections.str = dwp_file->sections.str;
10556 /* The info or types section is assigned below to dwo_unit,
10557 there's no need to record it in dwo_file.
10558 Also, we can't simply record type sections in dwo_file because
10559 we record a pointer into the vector in dwo_unit. As we collect more
10560 types we'll grow the vector and eventually have to reallocate space
10561 for it, invalidating all copies of pointers into the previous
10562 contents. */
10563 *dwo_file_slot = dwo_file;
10564 }
10565 else
10566 {
b4f54984 10567 if (dwarf_read_debug)
73869dc2
DE
10568 {
10569 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10570 virtual_dwo_name);
10571 }
9a3c8263 10572 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2
DE
10573 }
10574 do_cleanups (cleanups);
10575
10576 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10577 dwo_unit->dwo_file = dwo_file;
10578 dwo_unit->signature = signature;
8d749320
SM
10579 dwo_unit->section =
10580 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
73869dc2
DE
10581 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10582 ? &dwp_file->sections.types
10583 : &dwp_file->sections.info,
10584 sections.info_or_types_offset,
10585 sections.info_or_types_size);
10586 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10587
10588 return dwo_unit;
10589}
10590
57d63ce2
DE
10591/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10592 Returns NULL if the signature isn't found. */
80626a55
DE
10593
10594static struct dwo_unit *
57d63ce2
DE
10595lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10596 ULONGEST signature, int is_debug_types)
80626a55 10597{
57d63ce2
DE
10598 const struct dwp_hash_table *dwp_htab =
10599 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10600 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10601 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10602 uint32_t hash = signature & mask;
10603 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10604 unsigned int i;
10605 void **slot;
870f88f7 10606 struct dwo_unit find_dwo_cu;
80626a55
DE
10607
10608 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10609 find_dwo_cu.signature = signature;
19ac8c2e
DE
10610 slot = htab_find_slot (is_debug_types
10611 ? dwp_file->loaded_tus
10612 : dwp_file->loaded_cus,
10613 &find_dwo_cu, INSERT);
80626a55
DE
10614
10615 if (*slot != NULL)
9a3c8263 10616 return (struct dwo_unit *) *slot;
80626a55
DE
10617
10618 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10619 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10620 {
10621 ULONGEST signature_in_table;
10622
10623 signature_in_table =
57d63ce2 10624 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10625 if (signature_in_table == signature)
10626 {
57d63ce2
DE
10627 uint32_t unit_index =
10628 read_4_bytes (dbfd,
10629 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10630
73869dc2
DE
10631 if (dwp_file->version == 1)
10632 {
10633 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10634 comp_dir, signature,
10635 is_debug_types);
10636 }
10637 else
10638 {
10639 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10640 comp_dir, signature,
10641 is_debug_types);
10642 }
9a3c8263 10643 return (struct dwo_unit *) *slot;
80626a55
DE
10644 }
10645 if (signature_in_table == 0)
10646 return NULL;
10647 hash = (hash + hash2) & mask;
10648 }
10649
10650 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10651 " [in module %s]"),
10652 dwp_file->name);
10653}
10654
ab5088bf 10655/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10656 Open the file specified by FILE_NAME and hand it off to BFD for
10657 preliminary analysis. Return a newly initialized bfd *, which
10658 includes a canonicalized copy of FILE_NAME.
80626a55 10659 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10660 SEARCH_CWD is true if the current directory is to be searched.
10661 It will be searched before debug-file-directory.
13aaf454
DE
10662 If successful, the file is added to the bfd include table of the
10663 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10664 If unable to find/open the file, return NULL.
3019eac3
DE
10665 NOTE: This function is derived from symfile_bfd_open. */
10666
192b62ce 10667static gdb_bfd_ref_ptr
6ac97d4c 10668try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3 10669{
80626a55 10670 int desc, flags;
3019eac3 10671 char *absolute_name;
9c02c129
DE
10672 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10673 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10674 to debug_file_directory. */
10675 char *search_path;
10676 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10677
6ac97d4c
DE
10678 if (search_cwd)
10679 {
10680 if (*debug_file_directory != '\0')
10681 search_path = concat (".", dirname_separator_string,
b36cec19 10682 debug_file_directory, (char *) NULL);
6ac97d4c
DE
10683 else
10684 search_path = xstrdup (".");
10685 }
9c02c129 10686 else
6ac97d4c 10687 search_path = xstrdup (debug_file_directory);
3019eac3 10688
492c0ab7 10689 flags = OPF_RETURN_REALPATH;
80626a55
DE
10690 if (is_dwp)
10691 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10692 desc = openp (search_path, flags, file_name,
3019eac3 10693 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10694 xfree (search_path);
3019eac3
DE
10695 if (desc < 0)
10696 return NULL;
10697
192b62ce 10698 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
a4453b7e 10699 xfree (absolute_name);
9c02c129
DE
10700 if (sym_bfd == NULL)
10701 return NULL;
192b62ce 10702 bfd_set_cacheable (sym_bfd.get (), 1);
3019eac3 10703
192b62ce
TT
10704 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10705 return NULL;
3019eac3 10706
13aaf454
DE
10707 /* Success. Record the bfd as having been included by the objfile's bfd.
10708 This is important because things like demangled_names_hash lives in the
10709 objfile's per_bfd space and may have references to things like symbol
10710 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
192b62ce 10711 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
13aaf454 10712
3019eac3
DE
10713 return sym_bfd;
10714}
10715
ab5088bf 10716/* Try to open DWO file FILE_NAME.
3019eac3
DE
10717 COMP_DIR is the DW_AT_comp_dir attribute.
10718 The result is the bfd handle of the file.
10719 If there is a problem finding or opening the file, return NULL.
10720 Upon success, the canonicalized path of the file is stored in the bfd,
10721 same as symfile_bfd_open. */
10722
192b62ce 10723static gdb_bfd_ref_ptr
ab5088bf 10724open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3 10725{
80626a55 10726 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10727 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10728
10729 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10730
10731 if (comp_dir != NULL)
10732 {
b36cec19
PA
10733 char *path_to_try = concat (comp_dir, SLASH_STRING,
10734 file_name, (char *) NULL);
3019eac3
DE
10735
10736 /* NOTE: If comp_dir is a relative path, this will also try the
10737 search path, which seems useful. */
192b62ce
TT
10738 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10739 1 /*search_cwd*/));
3019eac3
DE
10740 xfree (path_to_try);
10741 if (abfd != NULL)
10742 return abfd;
10743 }
10744
10745 /* That didn't work, try debug-file-directory, which, despite its name,
10746 is a list of paths. */
10747
10748 if (*debug_file_directory == '\0')
10749 return NULL;
10750
6ac97d4c 10751 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10752}
10753
80626a55
DE
10754/* This function is mapped across the sections and remembers the offset and
10755 size of each of the DWO debugging sections we are interested in. */
10756
10757static void
10758dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10759{
9a3c8263 10760 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
10761 const struct dwop_section_names *names = &dwop_section_names;
10762
10763 if (section_is_p (sectp->name, &names->abbrev_dwo))
10764 {
049412e3 10765 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
10766 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10767 }
10768 else if (section_is_p (sectp->name, &names->info_dwo))
10769 {
049412e3 10770 dwo_sections->info.s.section = sectp;
80626a55
DE
10771 dwo_sections->info.size = bfd_get_section_size (sectp);
10772 }
10773 else if (section_is_p (sectp->name, &names->line_dwo))
10774 {
049412e3 10775 dwo_sections->line.s.section = sectp;
80626a55
DE
10776 dwo_sections->line.size = bfd_get_section_size (sectp);
10777 }
10778 else if (section_is_p (sectp->name, &names->loc_dwo))
10779 {
049412e3 10780 dwo_sections->loc.s.section = sectp;
80626a55
DE
10781 dwo_sections->loc.size = bfd_get_section_size (sectp);
10782 }
10783 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10784 {
049412e3 10785 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
10786 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10787 }
10788 else if (section_is_p (sectp->name, &names->macro_dwo))
10789 {
049412e3 10790 dwo_sections->macro.s.section = sectp;
80626a55
DE
10791 dwo_sections->macro.size = bfd_get_section_size (sectp);
10792 }
10793 else if (section_is_p (sectp->name, &names->str_dwo))
10794 {
049412e3 10795 dwo_sections->str.s.section = sectp;
80626a55
DE
10796 dwo_sections->str.size = bfd_get_section_size (sectp);
10797 }
10798 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10799 {
049412e3 10800 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
10801 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10802 }
10803 else if (section_is_p (sectp->name, &names->types_dwo))
10804 {
10805 struct dwarf2_section_info type_section;
10806
10807 memset (&type_section, 0, sizeof (type_section));
049412e3 10808 type_section.s.section = sectp;
80626a55
DE
10809 type_section.size = bfd_get_section_size (sectp);
10810 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10811 &type_section);
10812 }
10813}
10814
ab5088bf 10815/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10816 by PER_CU. This is for the non-DWP case.
80626a55 10817 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10818
10819static struct dwo_file *
0ac5b59e
DE
10820open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10821 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10822{
10823 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55 10824 struct dwo_file *dwo_file;
3019eac3
DE
10825 struct cleanup *cleanups;
10826
192b62ce 10827 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
80626a55
DE
10828 if (dbfd == NULL)
10829 {
b4f54984 10830 if (dwarf_read_debug)
80626a55
DE
10831 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10832 return NULL;
10833 }
10834 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10835 dwo_file->dwo_name = dwo_name;
10836 dwo_file->comp_dir = comp_dir;
192b62ce 10837 dwo_file->dbfd = dbfd.release ();
3019eac3
DE
10838
10839 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10840
192b62ce
TT
10841 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10842 &dwo_file->sections);
3019eac3 10843
33c5cd75 10844 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
3019eac3 10845
78d4d2c5
JK
10846 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10847 dwo_file->tus);
3019eac3
DE
10848
10849 discard_cleanups (cleanups);
10850
b4f54984 10851 if (dwarf_read_debug)
80626a55
DE
10852 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10853
3019eac3
DE
10854 return dwo_file;
10855}
10856
80626a55 10857/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10858 size of each of the DWP debugging sections common to version 1 and 2 that
10859 we are interested in. */
3019eac3 10860
80626a55 10861static void
73869dc2
DE
10862dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10863 void *dwp_file_ptr)
3019eac3 10864{
9a3c8263 10865 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
10866 const struct dwop_section_names *names = &dwop_section_names;
10867 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10868
80626a55 10869 /* Record the ELF section number for later lookup: this is what the
73869dc2 10870 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10871 gdb_assert (elf_section_nr < dwp_file->num_sections);
10872 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10873
80626a55
DE
10874 /* Look for specific sections that we need. */
10875 if (section_is_p (sectp->name, &names->str_dwo))
10876 {
049412e3 10877 dwp_file->sections.str.s.section = sectp;
80626a55
DE
10878 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10879 }
10880 else if (section_is_p (sectp->name, &names->cu_index))
10881 {
049412e3 10882 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
10883 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10884 }
10885 else if (section_is_p (sectp->name, &names->tu_index))
10886 {
049412e3 10887 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
10888 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10889 }
10890}
3019eac3 10891
73869dc2
DE
10892/* This function is mapped across the sections and remembers the offset and
10893 size of each of the DWP version 2 debugging sections that we are interested
10894 in. This is split into a separate function because we don't know if we
10895 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10896
10897static void
10898dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10899{
9a3c8263 10900 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
10901 const struct dwop_section_names *names = &dwop_section_names;
10902 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10903
10904 /* Record the ELF section number for later lookup: this is what the
10905 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10906 gdb_assert (elf_section_nr < dwp_file->num_sections);
10907 dwp_file->elf_sections[elf_section_nr] = sectp;
10908
10909 /* Look for specific sections that we need. */
10910 if (section_is_p (sectp->name, &names->abbrev_dwo))
10911 {
049412e3 10912 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
10913 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10914 }
10915 else if (section_is_p (sectp->name, &names->info_dwo))
10916 {
049412e3 10917 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
10918 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10919 }
10920 else if (section_is_p (sectp->name, &names->line_dwo))
10921 {
049412e3 10922 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
10923 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10924 }
10925 else if (section_is_p (sectp->name, &names->loc_dwo))
10926 {
049412e3 10927 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
10928 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10929 }
10930 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10931 {
049412e3 10932 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
10933 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10934 }
10935 else if (section_is_p (sectp->name, &names->macro_dwo))
10936 {
049412e3 10937 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
10938 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10939 }
10940 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10941 {
049412e3 10942 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
10943 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10944 }
10945 else if (section_is_p (sectp->name, &names->types_dwo))
10946 {
049412e3 10947 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
10948 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10949 }
10950}
10951
80626a55 10952/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10953
80626a55
DE
10954static hashval_t
10955hash_dwp_loaded_cutus (const void *item)
10956{
9a3c8263 10957 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 10958
80626a55
DE
10959 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10960 return dwo_unit->signature;
3019eac3
DE
10961}
10962
80626a55 10963/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10964
80626a55
DE
10965static int
10966eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10967{
9a3c8263
SM
10968 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10969 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 10970
80626a55
DE
10971 return dua->signature == dub->signature;
10972}
3019eac3 10973
80626a55 10974/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10975
80626a55
DE
10976static htab_t
10977allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10978{
10979 return htab_create_alloc_ex (3,
10980 hash_dwp_loaded_cutus,
10981 eq_dwp_loaded_cutus,
10982 NULL,
10983 &objfile->objfile_obstack,
10984 hashtab_obstack_allocate,
10985 dummy_obstack_deallocate);
10986}
3019eac3 10987
ab5088bf
DE
10988/* Try to open DWP file FILE_NAME.
10989 The result is the bfd handle of the file.
10990 If there is a problem finding or opening the file, return NULL.
10991 Upon success, the canonicalized path of the file is stored in the bfd,
10992 same as symfile_bfd_open. */
10993
192b62ce 10994static gdb_bfd_ref_ptr
ab5088bf
DE
10995open_dwp_file (const char *file_name)
10996{
192b62ce
TT
10997 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
10998 1 /*search_cwd*/));
6ac97d4c
DE
10999 if (abfd != NULL)
11000 return abfd;
11001
11002 /* Work around upstream bug 15652.
11003 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11004 [Whether that's a "bug" is debatable, but it is getting in our way.]
11005 We have no real idea where the dwp file is, because gdb's realpath-ing
11006 of the executable's path may have discarded the needed info.
11007 [IWBN if the dwp file name was recorded in the executable, akin to
11008 .gnu_debuglink, but that doesn't exist yet.]
11009 Strip the directory from FILE_NAME and search again. */
11010 if (*debug_file_directory != '\0')
11011 {
11012 /* Don't implicitly search the current directory here.
11013 If the user wants to search "." to handle this case,
11014 it must be added to debug-file-directory. */
11015 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11016 0 /*search_cwd*/);
11017 }
11018
11019 return NULL;
ab5088bf
DE
11020}
11021
80626a55
DE
11022/* Initialize the use of the DWP file for the current objfile.
11023 By convention the name of the DWP file is ${objfile}.dwp.
11024 The result is NULL if it can't be found. */
a766d390 11025
80626a55 11026static struct dwp_file *
ab5088bf 11027open_and_init_dwp_file (void)
80626a55
DE
11028{
11029 struct objfile *objfile = dwarf2_per_objfile->objfile;
11030 struct dwp_file *dwp_file;
80626a55 11031
82bf32bc
JK
11032 /* Try to find first .dwp for the binary file before any symbolic links
11033 resolving. */
6c447423
DE
11034
11035 /* If the objfile is a debug file, find the name of the real binary
11036 file and get the name of dwp file from there. */
d721ba37 11037 std::string dwp_name;
6c447423
DE
11038 if (objfile->separate_debug_objfile_backlink != NULL)
11039 {
11040 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11041 const char *backlink_basename = lbasename (backlink->original_name);
6c447423 11042
d721ba37 11043 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
6c447423
DE
11044 }
11045 else
d721ba37
PA
11046 dwp_name = objfile->original_name;
11047
11048 dwp_name += ".dwp";
80626a55 11049
d721ba37 11050 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
82bf32bc
JK
11051 if (dbfd == NULL
11052 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
11053 {
11054 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
d721ba37
PA
11055 dwp_name = objfile_name (objfile);
11056 dwp_name += ".dwp";
11057 dbfd = open_dwp_file (dwp_name.c_str ());
82bf32bc
JK
11058 }
11059
80626a55
DE
11060 if (dbfd == NULL)
11061 {
b4f54984 11062 if (dwarf_read_debug)
d721ba37 11063 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
80626a55 11064 return NULL;
3019eac3 11065 }
80626a55 11066 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
192b62ce
TT
11067 dwp_file->name = bfd_get_filename (dbfd.get ());
11068 dwp_file->dbfd = dbfd.release ();
c906108c 11069
80626a55 11070 /* +1: section 0 is unused */
192b62ce 11071 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
80626a55
DE
11072 dwp_file->elf_sections =
11073 OBSTACK_CALLOC (&objfile->objfile_obstack,
11074 dwp_file->num_sections, asection *);
11075
192b62ce
TT
11076 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11077 dwp_file);
80626a55
DE
11078
11079 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11080
11081 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11082
73869dc2
DE
11083 /* The DWP file version is stored in the hash table. Oh well. */
11084 if (dwp_file->cus->version != dwp_file->tus->version)
11085 {
11086 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 11087 pretty bizarre. We use pulongest here because that's the established
4d65956b 11088 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
11089 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11090 " TU version %s [in DWP file %s]"),
11091 pulongest (dwp_file->cus->version),
d721ba37 11092 pulongest (dwp_file->tus->version), dwp_name.c_str ());
73869dc2
DE
11093 }
11094 dwp_file->version = dwp_file->cus->version;
11095
11096 if (dwp_file->version == 2)
192b62ce
TT
11097 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11098 dwp_file);
73869dc2 11099
19ac8c2e
DE
11100 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11101 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 11102
b4f54984 11103 if (dwarf_read_debug)
80626a55
DE
11104 {
11105 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11106 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
11107 " %s CUs, %s TUs\n",
11108 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11109 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
11110 }
11111
11112 return dwp_file;
3019eac3 11113}
c906108c 11114
ab5088bf
DE
11115/* Wrapper around open_and_init_dwp_file, only open it once. */
11116
11117static struct dwp_file *
11118get_dwp_file (void)
11119{
11120 if (! dwarf2_per_objfile->dwp_checked)
11121 {
11122 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11123 dwarf2_per_objfile->dwp_checked = 1;
11124 }
11125 return dwarf2_per_objfile->dwp_file;
11126}
11127
80626a55
DE
11128/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11129 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11130 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 11131 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
11132 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11133
11134 This is called, for example, when wanting to read a variable with a
11135 complex location. Therefore we don't want to do file i/o for every call.
11136 Therefore we don't want to look for a DWO file on every call.
11137 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11138 then we check if we've already seen DWO_NAME, and only THEN do we check
11139 for a DWO file.
11140
1c658ad5 11141 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 11142 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 11143
3019eac3 11144static struct dwo_unit *
80626a55
DE
11145lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11146 const char *dwo_name, const char *comp_dir,
11147 ULONGEST signature, int is_debug_types)
3019eac3
DE
11148{
11149 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
11150 const char *kind = is_debug_types ? "TU" : "CU";
11151 void **dwo_file_slot;
3019eac3 11152 struct dwo_file *dwo_file;
80626a55 11153 struct dwp_file *dwp_file;
cb1df416 11154
6a506a2d
DE
11155 /* First see if there's a DWP file.
11156 If we have a DWP file but didn't find the DWO inside it, don't
11157 look for the original DWO file. It makes gdb behave differently
11158 depending on whether one is debugging in the build tree. */
cf2c3c16 11159
ab5088bf 11160 dwp_file = get_dwp_file ();
80626a55 11161 if (dwp_file != NULL)
cf2c3c16 11162 {
80626a55
DE
11163 const struct dwp_hash_table *dwp_htab =
11164 is_debug_types ? dwp_file->tus : dwp_file->cus;
11165
11166 if (dwp_htab != NULL)
11167 {
11168 struct dwo_unit *dwo_cutu =
57d63ce2
DE
11169 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11170 signature, is_debug_types);
80626a55
DE
11171
11172 if (dwo_cutu != NULL)
11173 {
b4f54984 11174 if (dwarf_read_debug)
80626a55
DE
11175 {
11176 fprintf_unfiltered (gdb_stdlog,
11177 "Virtual DWO %s %s found: @%s\n",
11178 kind, hex_string (signature),
11179 host_address_to_string (dwo_cutu));
11180 }
11181 return dwo_cutu;
11182 }
11183 }
11184 }
6a506a2d 11185 else
80626a55 11186 {
6a506a2d 11187 /* No DWP file, look for the DWO file. */
80626a55 11188
6a506a2d
DE
11189 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11190 if (*dwo_file_slot == NULL)
80626a55 11191 {
6a506a2d
DE
11192 /* Read in the file and build a table of the CUs/TUs it contains. */
11193 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 11194 }
6a506a2d 11195 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 11196 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 11197
6a506a2d 11198 if (dwo_file != NULL)
19c3d4c9 11199 {
6a506a2d
DE
11200 struct dwo_unit *dwo_cutu = NULL;
11201
11202 if (is_debug_types && dwo_file->tus)
11203 {
11204 struct dwo_unit find_dwo_cutu;
11205
11206 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11207 find_dwo_cutu.signature = signature;
9a3c8263
SM
11208 dwo_cutu
11209 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d 11210 }
33c5cd75 11211 else if (!is_debug_types && dwo_file->cus)
80626a55 11212 {
33c5cd75
DB
11213 struct dwo_unit find_dwo_cutu;
11214
11215 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11216 find_dwo_cutu.signature = signature;
11217 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
11218 &find_dwo_cutu);
6a506a2d
DE
11219 }
11220
11221 if (dwo_cutu != NULL)
11222 {
b4f54984 11223 if (dwarf_read_debug)
6a506a2d
DE
11224 {
11225 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11226 kind, dwo_name, hex_string (signature),
11227 host_address_to_string (dwo_cutu));
11228 }
11229 return dwo_cutu;
80626a55
DE
11230 }
11231 }
2e276125 11232 }
9cdd5dbd 11233
80626a55
DE
11234 /* We didn't find it. This could mean a dwo_id mismatch, or
11235 someone deleted the DWO/DWP file, or the search path isn't set up
11236 correctly to find the file. */
11237
b4f54984 11238 if (dwarf_read_debug)
80626a55
DE
11239 {
11240 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11241 kind, dwo_name, hex_string (signature));
11242 }
3019eac3 11243
6656a72d
DE
11244 /* This is a warning and not a complaint because it can be caused by
11245 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11246 {
11247 /* Print the name of the DWP file if we looked there, helps the user
11248 better diagnose the problem. */
11249 char *dwp_text = NULL;
11250 struct cleanup *cleanups;
11251
11252 if (dwp_file != NULL)
11253 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11254 cleanups = make_cleanup (xfree, dwp_text);
11255
11256 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11257 " [in module %s]"),
11258 kind, dwo_name, hex_string (signature),
11259 dwp_text != NULL ? dwp_text : "",
11260 this_unit->is_debug_types ? "TU" : "CU",
9c541725 11261 to_underlying (this_unit->sect_off), objfile_name (objfile));
43942612
DE
11262
11263 do_cleanups (cleanups);
11264 }
3019eac3 11265 return NULL;
5fb290d7
DJ
11266}
11267
80626a55
DE
11268/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11269 See lookup_dwo_cutu_unit for details. */
11270
11271static struct dwo_unit *
11272lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11273 const char *dwo_name, const char *comp_dir,
11274 ULONGEST signature)
11275{
11276 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11277}
11278
11279/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11280 See lookup_dwo_cutu_unit for details. */
11281
11282static struct dwo_unit *
11283lookup_dwo_type_unit (struct signatured_type *this_tu,
11284 const char *dwo_name, const char *comp_dir)
11285{
11286 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11287}
11288
89e63ee4
DE
11289/* Traversal function for queue_and_load_all_dwo_tus. */
11290
11291static int
11292queue_and_load_dwo_tu (void **slot, void *info)
11293{
11294 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11295 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11296 ULONGEST signature = dwo_unit->signature;
11297 struct signatured_type *sig_type =
11298 lookup_dwo_signatured_type (per_cu->cu, signature);
11299
11300 if (sig_type != NULL)
11301 {
11302 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11303
11304 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11305 a real dependency of PER_CU on SIG_TYPE. That is detected later
11306 while processing PER_CU. */
11307 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11308 load_full_type_unit (sig_cu);
11309 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11310 }
11311
11312 return 1;
11313}
11314
11315/* Queue all TUs contained in the DWO of PER_CU to be read in.
11316 The DWO may have the only definition of the type, though it may not be
11317 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11318 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11319
11320static void
11321queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11322{
11323 struct dwo_unit *dwo_unit;
11324 struct dwo_file *dwo_file;
11325
11326 gdb_assert (!per_cu->is_debug_types);
11327 gdb_assert (get_dwp_file () == NULL);
11328 gdb_assert (per_cu->cu != NULL);
11329
11330 dwo_unit = per_cu->cu->dwo_unit;
11331 gdb_assert (dwo_unit != NULL);
11332
11333 dwo_file = dwo_unit->dwo_file;
11334 if (dwo_file->tus != NULL)
11335 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11336}
11337
3019eac3
DE
11338/* Free all resources associated with DWO_FILE.
11339 Close the DWO file and munmap the sections.
11340 All memory should be on the objfile obstack. */
348e048f
DE
11341
11342static void
3019eac3 11343free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11344{
348e048f 11345
5c6fa7ab 11346 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11347 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11348
3019eac3
DE
11349 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11350}
348e048f 11351
3019eac3 11352/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11353
3019eac3
DE
11354static void
11355free_dwo_file_cleanup (void *arg)
11356{
11357 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11358 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11359
3019eac3
DE
11360 free_dwo_file (dwo_file, objfile);
11361}
348e048f 11362
3019eac3 11363/* Traversal function for free_dwo_files. */
2ab95328 11364
3019eac3
DE
11365static int
11366free_dwo_file_from_slot (void **slot, void *info)
11367{
11368 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11369 struct objfile *objfile = (struct objfile *) info;
348e048f 11370
3019eac3 11371 free_dwo_file (dwo_file, objfile);
348e048f 11372
3019eac3
DE
11373 return 1;
11374}
348e048f 11375
3019eac3 11376/* Free all resources associated with DWO_FILES. */
348e048f 11377
3019eac3
DE
11378static void
11379free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11380{
11381 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11382}
3019eac3
DE
11383\f
11384/* Read in various DIEs. */
348e048f 11385
d389af10
JK
11386/* qsort helper for inherit_abstract_dies. */
11387
11388static int
11389unsigned_int_compar (const void *ap, const void *bp)
11390{
11391 unsigned int a = *(unsigned int *) ap;
11392 unsigned int b = *(unsigned int *) bp;
11393
11394 return (a > b) - (b > a);
11395}
11396
11397/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11398 Inherit only the children of the DW_AT_abstract_origin DIE not being
11399 already referenced by DW_AT_abstract_origin from the children of the
11400 current DIE. */
d389af10
JK
11401
11402static void
11403inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11404{
11405 struct die_info *child_die;
11406 unsigned die_children_count;
11407 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11408 sect_offset *offsets;
11409 sect_offset *offsets_end, *offsetp;
d389af10
JK
11410 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11411 struct die_info *origin_die;
11412 /* Iterator of the ORIGIN_DIE children. */
11413 struct die_info *origin_child_die;
11414 struct cleanup *cleanups;
11415 struct attribute *attr;
cd02d79d
PA
11416 struct dwarf2_cu *origin_cu;
11417 struct pending **origin_previous_list_in_scope;
d389af10
JK
11418
11419 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11420 if (!attr)
11421 return;
11422
cd02d79d
PA
11423 /* Note that following die references may follow to a die in a
11424 different cu. */
11425
11426 origin_cu = cu;
11427 origin_die = follow_die_ref (die, attr, &origin_cu);
11428
11429 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11430 symbols in. */
11431 origin_previous_list_in_scope = origin_cu->list_in_scope;
11432 origin_cu->list_in_scope = cu->list_in_scope;
11433
edb3359d
DJ
11434 if (die->tag != origin_die->tag
11435 && !(die->tag == DW_TAG_inlined_subroutine
11436 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11437 complaint (&symfile_complaints,
11438 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9c541725
PA
11439 to_underlying (die->sect_off),
11440 to_underlying (origin_die->sect_off));
d389af10
JK
11441
11442 child_die = die->child;
11443 die_children_count = 0;
11444 while (child_die && child_die->tag)
11445 {
11446 child_die = sibling_die (child_die);
11447 die_children_count++;
11448 }
8d749320 11449 offsets = XNEWVEC (sect_offset, die_children_count);
d389af10
JK
11450 cleanups = make_cleanup (xfree, offsets);
11451
11452 offsets_end = offsets;
3ea89b92
PMR
11453 for (child_die = die->child;
11454 child_die && child_die->tag;
11455 child_die = sibling_die (child_die))
11456 {
11457 struct die_info *child_origin_die;
11458 struct dwarf2_cu *child_origin_cu;
11459
11460 /* We are trying to process concrete instance entries:
216f72a1 11461 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
3ea89b92
PMR
11462 it's not relevant to our analysis here. i.e. detecting DIEs that are
11463 present in the abstract instance but not referenced in the concrete
11464 one. */
216f72a1
JK
11465 if (child_die->tag == DW_TAG_call_site
11466 || child_die->tag == DW_TAG_GNU_call_site)
3ea89b92
PMR
11467 continue;
11468
c38f313d
DJ
11469 /* For each CHILD_DIE, find the corresponding child of
11470 ORIGIN_DIE. If there is more than one layer of
11471 DW_AT_abstract_origin, follow them all; there shouldn't be,
11472 but GCC versions at least through 4.4 generate this (GCC PR
11473 40573). */
3ea89b92
PMR
11474 child_origin_die = child_die;
11475 child_origin_cu = cu;
c38f313d
DJ
11476 while (1)
11477 {
cd02d79d
PA
11478 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11479 child_origin_cu);
c38f313d
DJ
11480 if (attr == NULL)
11481 break;
cd02d79d
PA
11482 child_origin_die = follow_die_ref (child_origin_die, attr,
11483 &child_origin_cu);
c38f313d
DJ
11484 }
11485
d389af10
JK
11486 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11487 counterpart may exist. */
c38f313d 11488 if (child_origin_die != child_die)
d389af10 11489 {
edb3359d
DJ
11490 if (child_die->tag != child_origin_die->tag
11491 && !(child_die->tag == DW_TAG_inlined_subroutine
11492 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11493 complaint (&symfile_complaints,
11494 _("Child DIE 0x%x and its abstract origin 0x%x have "
9c541725
PA
11495 "different tags"),
11496 to_underlying (child_die->sect_off),
11497 to_underlying (child_origin_die->sect_off));
c38f313d
DJ
11498 if (child_origin_die->parent != origin_die)
11499 complaint (&symfile_complaints,
11500 _("Child DIE 0x%x and its abstract origin 0x%x have "
9c541725
PA
11501 "different parents"),
11502 to_underlying (child_die->sect_off),
11503 to_underlying (child_origin_die->sect_off));
c38f313d 11504 else
9c541725 11505 *offsets_end++ = child_origin_die->sect_off;
d389af10 11506 }
d389af10
JK
11507 }
11508 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11509 unsigned_int_compar);
11510 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9c541725 11511 if (offsetp[-1] == *offsetp)
3e43a32a
MS
11512 complaint (&symfile_complaints,
11513 _("Multiple children of DIE 0x%x refer "
11514 "to DIE 0x%x as their abstract origin"),
9c541725 11515 to_underlying (die->sect_off), to_underlying (*offsetp));
d389af10
JK
11516
11517 offsetp = offsets;
11518 origin_child_die = origin_die->child;
11519 while (origin_child_die && origin_child_die->tag)
11520 {
11521 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1 11522 while (offsetp < offsets_end
9c541725 11523 && *offsetp < origin_child_die->sect_off)
d389af10 11524 offsetp++;
b64f50a1 11525 if (offsetp >= offsets_end
9c541725 11526 || *offsetp > origin_child_die->sect_off)
d389af10 11527 {
adde2bff
DE
11528 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11529 Check whether we're already processing ORIGIN_CHILD_DIE.
11530 This can happen with mutually referenced abstract_origins.
11531 PR 16581. */
11532 if (!origin_child_die->in_process)
11533 process_die (origin_child_die, origin_cu);
d389af10
JK
11534 }
11535 origin_child_die = sibling_die (origin_child_die);
11536 }
cd02d79d 11537 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11538
11539 do_cleanups (cleanups);
11540}
11541
c906108c 11542static void
e7c27a73 11543read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11544{
e7c27a73 11545 struct objfile *objfile = cu->objfile;
3e29f34a 11546 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11547 struct context_stack *newobj;
c906108c
SS
11548 CORE_ADDR lowpc;
11549 CORE_ADDR highpc;
11550 struct die_info *child_die;
edb3359d 11551 struct attribute *attr, *call_line, *call_file;
15d034d0 11552 const char *name;
e142c38c 11553 CORE_ADDR baseaddr;
801e3a5b 11554 struct block *block;
edb3359d 11555 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11556 VEC (symbolp) *template_args = NULL;
11557 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11558
11559 if (inlined_func)
11560 {
11561 /* If we do not have call site information, we can't show the
11562 caller of this inlined function. That's too confusing, so
11563 only use the scope for local variables. */
11564 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11565 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11566 if (call_line == NULL || call_file == NULL)
11567 {
11568 read_lexical_block_scope (die, cu);
11569 return;
11570 }
11571 }
c906108c 11572
e142c38c
DJ
11573 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11574
94af9270 11575 name = dwarf2_name (die, cu);
c906108c 11576
e8d05480
JB
11577 /* Ignore functions with missing or empty names. These are actually
11578 illegal according to the DWARF standard. */
11579 if (name == NULL)
11580 {
11581 complaint (&symfile_complaints,
b64f50a1 11582 _("missing name for subprogram DIE at %d"),
9c541725 11583 to_underlying (die->sect_off));
e8d05480
JB
11584 return;
11585 }
11586
11587 /* Ignore functions with missing or invalid low and high pc attributes. */
3a2b436a 11588 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
e385593e 11589 <= PC_BOUNDS_INVALID)
e8d05480 11590 {
ae4d0c03
PM
11591 attr = dwarf2_attr (die, DW_AT_external, cu);
11592 if (!attr || !DW_UNSND (attr))
11593 complaint (&symfile_complaints,
3e43a32a
MS
11594 _("cannot get low and high bounds "
11595 "for subprogram DIE at %d"),
9c541725 11596 to_underlying (die->sect_off));
e8d05480
JB
11597 return;
11598 }
c906108c 11599
3e29f34a
MR
11600 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11601 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11602
34eaf542
TT
11603 /* If we have any template arguments, then we must allocate a
11604 different sort of symbol. */
11605 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11606 {
11607 if (child_die->tag == DW_TAG_template_type_param
11608 || child_die->tag == DW_TAG_template_value_param)
11609 {
e623cf5d 11610 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11611 templ_func->base.is_cplus_template_function = 1;
11612 break;
11613 }
11614 }
11615
fe978cb0
PA
11616 newobj = push_context (0, lowpc);
11617 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11618 (struct symbol *) templ_func);
4c2df51b 11619
4cecd739
DJ
11620 /* If there is a location expression for DW_AT_frame_base, record
11621 it. */
e142c38c 11622 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11623 if (attr)
fe978cb0 11624 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11625
63e43d3a
PMR
11626 /* If there is a location for the static link, record it. */
11627 newobj->static_link = NULL;
11628 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11629 if (attr)
11630 {
224c3ddb
SM
11631 newobj->static_link
11632 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
11633 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11634 }
11635
e142c38c 11636 cu->list_in_scope = &local_symbols;
c906108c 11637
639d11d3 11638 if (die->child != NULL)
c906108c 11639 {
639d11d3 11640 child_die = die->child;
c906108c
SS
11641 while (child_die && child_die->tag)
11642 {
34eaf542
TT
11643 if (child_die->tag == DW_TAG_template_type_param
11644 || child_die->tag == DW_TAG_template_value_param)
11645 {
11646 struct symbol *arg = new_symbol (child_die, NULL, cu);
11647
f1078f66
DJ
11648 if (arg != NULL)
11649 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11650 }
11651 else
11652 process_die (child_die, cu);
c906108c
SS
11653 child_die = sibling_die (child_die);
11654 }
11655 }
11656
d389af10
JK
11657 inherit_abstract_dies (die, cu);
11658
4a811a97
UW
11659 /* If we have a DW_AT_specification, we might need to import using
11660 directives from the context of the specification DIE. See the
11661 comment in determine_prefix. */
11662 if (cu->language == language_cplus
11663 && dwarf2_attr (die, DW_AT_specification, cu))
11664 {
11665 struct dwarf2_cu *spec_cu = cu;
11666 struct die_info *spec_die = die_specification (die, &spec_cu);
11667
11668 while (spec_die)
11669 {
11670 child_die = spec_die->child;
11671 while (child_die && child_die->tag)
11672 {
11673 if (child_die->tag == DW_TAG_imported_module)
11674 process_die (child_die, spec_cu);
11675 child_die = sibling_die (child_die);
11676 }
11677
11678 /* In some cases, GCC generates specification DIEs that
11679 themselves contain DW_AT_specification attributes. */
11680 spec_die = die_specification (spec_die, &spec_cu);
11681 }
11682 }
11683
fe978cb0 11684 newobj = pop_context ();
c906108c 11685 /* Make a block for the local symbols within. */
fe978cb0 11686 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 11687 newobj->static_link, lowpc, highpc);
801e3a5b 11688
df8a16a1 11689 /* For C++, set the block's scope. */
45280282
IB
11690 if ((cu->language == language_cplus
11691 || cu->language == language_fortran
c44af4eb
TT
11692 || cu->language == language_d
11693 || cu->language == language_rust)
4d4ec4e5 11694 && cu->processing_has_namespace_info)
195a3f6c
TT
11695 block_set_scope (block, determine_prefix (die, cu),
11696 &objfile->objfile_obstack);
df8a16a1 11697
801e3a5b
JB
11698 /* If we have address ranges, record them. */
11699 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11700
fe978cb0 11701 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11702
34eaf542
TT
11703 /* Attach template arguments to function. */
11704 if (! VEC_empty (symbolp, template_args))
11705 {
11706 gdb_assert (templ_func != NULL);
11707
11708 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11709 templ_func->template_arguments
8d749320
SM
11710 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11711 templ_func->n_template_arguments);
34eaf542
TT
11712 memcpy (templ_func->template_arguments,
11713 VEC_address (symbolp, template_args),
11714 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11715 VEC_free (symbolp, template_args);
11716 }
11717
208d8187
JB
11718 /* In C++, we can have functions nested inside functions (e.g., when
11719 a function declares a class that has methods). This means that
11720 when we finish processing a function scope, we may need to go
11721 back to building a containing block's symbol lists. */
fe978cb0 11722 local_symbols = newobj->locals;
22cee43f 11723 local_using_directives = newobj->local_using_directives;
208d8187 11724
921e78cf
JB
11725 /* If we've finished processing a top-level function, subsequent
11726 symbols go in the file symbol list. */
11727 if (outermost_context_p ())
e142c38c 11728 cu->list_in_scope = &file_symbols;
c906108c
SS
11729}
11730
11731/* Process all the DIES contained within a lexical block scope. Start
11732 a new scope, process the dies, and then close the scope. */
11733
11734static void
e7c27a73 11735read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11736{
e7c27a73 11737 struct objfile *objfile = cu->objfile;
3e29f34a 11738 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11739 struct context_stack *newobj;
c906108c
SS
11740 CORE_ADDR lowpc, highpc;
11741 struct die_info *child_die;
e142c38c
DJ
11742 CORE_ADDR baseaddr;
11743
11744 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11745
11746 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11747 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11748 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11749 be nasty. Might be easier to properly extend generic blocks to
af34e669 11750 describe ranges. */
e385593e
JK
11751 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11752 {
11753 case PC_BOUNDS_NOT_PRESENT:
11754 /* DW_TAG_lexical_block has no attributes, process its children as if
11755 there was no wrapping by that DW_TAG_lexical_block.
11756 GCC does no longer produces such DWARF since GCC r224161. */
11757 for (child_die = die->child;
11758 child_die != NULL && child_die->tag;
11759 child_die = sibling_die (child_die))
11760 process_die (child_die, cu);
11761 return;
11762 case PC_BOUNDS_INVALID:
11763 return;
11764 }
3e29f34a
MR
11765 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11766 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11767
11768 push_context (0, lowpc);
639d11d3 11769 if (die->child != NULL)
c906108c 11770 {
639d11d3 11771 child_die = die->child;
c906108c
SS
11772 while (child_die && child_die->tag)
11773 {
e7c27a73 11774 process_die (child_die, cu);
c906108c
SS
11775 child_die = sibling_die (child_die);
11776 }
11777 }
3ea89b92 11778 inherit_abstract_dies (die, cu);
fe978cb0 11779 newobj = pop_context ();
c906108c 11780
22cee43f 11781 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11782 {
801e3a5b 11783 struct block *block
63e43d3a 11784 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 11785 newobj->start_addr, highpc);
801e3a5b
JB
11786
11787 /* Note that recording ranges after traversing children, as we
11788 do here, means that recording a parent's ranges entails
11789 walking across all its children's ranges as they appear in
11790 the address map, which is quadratic behavior.
11791
11792 It would be nicer to record the parent's ranges before
11793 traversing its children, simply overriding whatever you find
11794 there. But since we don't even decide whether to create a
11795 block until after we've traversed its children, that's hard
11796 to do. */
11797 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11798 }
fe978cb0 11799 local_symbols = newobj->locals;
22cee43f 11800 local_using_directives = newobj->local_using_directives;
c906108c
SS
11801}
11802
216f72a1 11803/* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
96408a79
SA
11804
11805static void
11806read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11807{
11808 struct objfile *objfile = cu->objfile;
11809 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11810 CORE_ADDR pc, baseaddr;
11811 struct attribute *attr;
11812 struct call_site *call_site, call_site_local;
11813 void **slot;
11814 int nparams;
11815 struct die_info *child_die;
11816
11817 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11818
216f72a1
JK
11819 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11820 if (attr == NULL)
11821 {
11822 /* This was a pre-DWARF-5 GNU extension alias
11823 for DW_AT_call_return_pc. */
11824 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11825 }
96408a79
SA
11826 if (!attr)
11827 {
11828 complaint (&symfile_complaints,
216f72a1 11829 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
96408a79 11830 "DIE 0x%x [in module %s]"),
9c541725 11831 to_underlying (die->sect_off), objfile_name (objfile));
96408a79
SA
11832 return;
11833 }
31aa7e4e 11834 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11835 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11836
11837 if (cu->call_site_htab == NULL)
11838 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11839 NULL, &objfile->objfile_obstack,
11840 hashtab_obstack_allocate, NULL);
11841 call_site_local.pc = pc;
11842 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11843 if (*slot != NULL)
11844 {
11845 complaint (&symfile_complaints,
216f72a1 11846 _("Duplicate PC %s for DW_TAG_call_site "
96408a79 11847 "DIE 0x%x [in module %s]"),
9c541725 11848 paddress (gdbarch, pc), to_underlying (die->sect_off),
4262abfb 11849 objfile_name (objfile));
96408a79
SA
11850 return;
11851 }
11852
11853 /* Count parameters at the caller. */
11854
11855 nparams = 0;
11856 for (child_die = die->child; child_die && child_die->tag;
11857 child_die = sibling_die (child_die))
11858 {
216f72a1
JK
11859 if (child_die->tag != DW_TAG_call_site_parameter
11860 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79
SA
11861 {
11862 complaint (&symfile_complaints,
216f72a1
JK
11863 _("Tag %d is not DW_TAG_call_site_parameter in "
11864 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725 11865 child_die->tag, to_underlying (child_die->sect_off),
4262abfb 11866 objfile_name (objfile));
96408a79
SA
11867 continue;
11868 }
11869
11870 nparams++;
11871 }
11872
224c3ddb
SM
11873 call_site
11874 = ((struct call_site *)
11875 obstack_alloc (&objfile->objfile_obstack,
11876 sizeof (*call_site)
11877 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
11878 *slot = call_site;
11879 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11880 call_site->pc = pc;
11881
216f72a1
JK
11882 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
11883 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
96408a79
SA
11884 {
11885 struct die_info *func_die;
11886
11887 /* Skip also over DW_TAG_inlined_subroutine. */
11888 for (func_die = die->parent;
11889 func_die && func_die->tag != DW_TAG_subprogram
11890 && func_die->tag != DW_TAG_subroutine_type;
11891 func_die = func_die->parent);
11892
216f72a1
JK
11893 /* DW_AT_call_all_calls is a superset
11894 of DW_AT_call_all_tail_calls. */
96408a79 11895 if (func_die
216f72a1 11896 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
96408a79 11897 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
216f72a1 11898 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
96408a79
SA
11899 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11900 {
11901 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11902 not complete. But keep CALL_SITE for look ups via call_site_htab,
11903 both the initial caller containing the real return address PC and
11904 the final callee containing the current PC of a chain of tail
11905 calls do not need to have the tail call list complete. But any
11906 function candidate for a virtual tail call frame searched via
11907 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11908 determined unambiguously. */
11909 }
11910 else
11911 {
11912 struct type *func_type = NULL;
11913
11914 if (func_die)
11915 func_type = get_die_type (func_die, cu);
11916 if (func_type != NULL)
11917 {
11918 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11919
11920 /* Enlist this call site to the function. */
11921 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11922 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11923 }
11924 else
11925 complaint (&symfile_complaints,
216f72a1 11926 _("Cannot find function owning DW_TAG_call_site "
96408a79 11927 "DIE 0x%x [in module %s]"),
9c541725 11928 to_underlying (die->sect_off), objfile_name (objfile));
96408a79
SA
11929 }
11930 }
11931
216f72a1
JK
11932 attr = dwarf2_attr (die, DW_AT_call_target, cu);
11933 if (attr == NULL)
11934 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11935 if (attr == NULL)
11936 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
96408a79 11937 if (attr == NULL)
216f72a1
JK
11938 {
11939 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
11940 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11941 }
96408a79
SA
11942 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11943 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11944 /* Keep NULL DWARF_BLOCK. */;
11945 else if (attr_form_is_block (attr))
11946 {
11947 struct dwarf2_locexpr_baton *dlbaton;
11948
8d749320 11949 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
11950 dlbaton->data = DW_BLOCK (attr)->data;
11951 dlbaton->size = DW_BLOCK (attr)->size;
11952 dlbaton->per_cu = cu->per_cu;
11953
11954 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11955 }
7771576e 11956 else if (attr_form_is_ref (attr))
96408a79 11957 {
96408a79
SA
11958 struct dwarf2_cu *target_cu = cu;
11959 struct die_info *target_die;
11960
ac9ec31b 11961 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11962 gdb_assert (target_cu->objfile == objfile);
11963 if (die_is_declaration (target_die, target_cu))
11964 {
7d45c7c3 11965 const char *target_physname;
9112db09
JK
11966
11967 /* Prefer the mangled name; otherwise compute the demangled one. */
7d45c7c3
KB
11968 target_physname = dwarf2_string_attr (target_die,
11969 DW_AT_linkage_name,
11970 target_cu);
11971 if (target_physname == NULL)
11972 target_physname = dwarf2_string_attr (target_die,
11973 DW_AT_MIPS_linkage_name,
11974 target_cu);
11975 if (target_physname == NULL)
9112db09 11976 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11977 if (target_physname == NULL)
11978 complaint (&symfile_complaints,
216f72a1 11979 _("DW_AT_call_target target DIE has invalid "
96408a79 11980 "physname, for referencing DIE 0x%x [in module %s]"),
9c541725 11981 to_underlying (die->sect_off), objfile_name (objfile));
96408a79 11982 else
7d455152 11983 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11984 }
11985 else
11986 {
11987 CORE_ADDR lowpc;
11988
11989 /* DW_AT_entry_pc should be preferred. */
3a2b436a 11990 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
e385593e 11991 <= PC_BOUNDS_INVALID)
96408a79 11992 complaint (&symfile_complaints,
216f72a1 11993 _("DW_AT_call_target target DIE has invalid "
96408a79 11994 "low pc, for referencing DIE 0x%x [in module %s]"),
9c541725 11995 to_underlying (die->sect_off), objfile_name (objfile));
96408a79 11996 else
3e29f34a
MR
11997 {
11998 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11999 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12000 }
96408a79
SA
12001 }
12002 }
12003 else
12004 complaint (&symfile_complaints,
216f72a1 12005 _("DW_TAG_call_site DW_AT_call_target is neither "
96408a79 12006 "block nor reference, for DIE 0x%x [in module %s]"),
9c541725 12007 to_underlying (die->sect_off), objfile_name (objfile));
96408a79
SA
12008
12009 call_site->per_cu = cu->per_cu;
12010
12011 for (child_die = die->child;
12012 child_die && child_die->tag;
12013 child_die = sibling_die (child_die))
12014 {
96408a79 12015 struct call_site_parameter *parameter;
1788b2d3 12016 struct attribute *loc, *origin;
96408a79 12017
216f72a1
JK
12018 if (child_die->tag != DW_TAG_call_site_parameter
12019 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79
SA
12020 {
12021 /* Already printed the complaint above. */
12022 continue;
12023 }
12024
12025 gdb_assert (call_site->parameter_count < nparams);
12026 parameter = &call_site->parameter[call_site->parameter_count];
12027
1788b2d3
JK
12028 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12029 specifies DW_TAG_formal_parameter. Value of the data assumed for the
216f72a1 12030 register is contained in DW_AT_call_value. */
96408a79 12031
24c5c679 12032 loc = dwarf2_attr (child_die, DW_AT_location, cu);
216f72a1
JK
12033 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12034 if (origin == NULL)
12035 {
12036 /* This was a pre-DWARF-5 GNU extension alias
12037 for DW_AT_call_parameter. */
12038 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12039 }
7771576e 12040 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3 12041 {
1788b2d3 12042 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9c541725
PA
12043
12044 sect_offset sect_off
12045 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12046 if (!offset_in_cu_p (&cu->header, sect_off))
d76b7dbc
JK
12047 {
12048 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12049 binding can be done only inside one CU. Such referenced DIE
12050 therefore cannot be even moved to DW_TAG_partial_unit. */
12051 complaint (&symfile_complaints,
216f72a1
JK
12052 _("DW_AT_call_parameter offset is not in CU for "
12053 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725
PA
12054 to_underlying (child_die->sect_off),
12055 objfile_name (objfile));
d76b7dbc
JK
12056 continue;
12057 }
9c541725
PA
12058 parameter->u.param_cu_off
12059 = (cu_offset) (sect_off - cu->header.sect_off);
1788b2d3
JK
12060 }
12061 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
12062 {
12063 complaint (&symfile_complaints,
12064 _("No DW_FORM_block* DW_AT_location for "
216f72a1 12065 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725 12066 to_underlying (child_die->sect_off), objfile_name (objfile));
96408a79
SA
12067 continue;
12068 }
24c5c679 12069 else
96408a79 12070 {
24c5c679
JK
12071 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12072 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12073 if (parameter->u.dwarf_reg != -1)
12074 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12075 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12076 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12077 &parameter->u.fb_offset))
12078 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12079 else
12080 {
12081 complaint (&symfile_complaints,
12082 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12083 "for DW_FORM_block* DW_AT_location is supported for "
216f72a1 12084 "DW_TAG_call_site child DIE 0x%x "
24c5c679 12085 "[in module %s]"),
9c541725
PA
12086 to_underlying (child_die->sect_off),
12087 objfile_name (objfile));
24c5c679
JK
12088 continue;
12089 }
96408a79
SA
12090 }
12091
216f72a1
JK
12092 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12093 if (attr == NULL)
12094 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
96408a79
SA
12095 if (!attr_form_is_block (attr))
12096 {
12097 complaint (&symfile_complaints,
216f72a1
JK
12098 _("No DW_FORM_block* DW_AT_call_value for "
12099 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725
PA
12100 to_underlying (child_die->sect_off),
12101 objfile_name (objfile));
96408a79
SA
12102 continue;
12103 }
12104 parameter->value = DW_BLOCK (attr)->data;
12105 parameter->value_size = DW_BLOCK (attr)->size;
12106
12107 /* Parameters are not pre-cleared by memset above. */
12108 parameter->data_value = NULL;
12109 parameter->data_value_size = 0;
12110 call_site->parameter_count++;
12111
216f72a1
JK
12112 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12113 if (attr == NULL)
12114 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
96408a79
SA
12115 if (attr)
12116 {
12117 if (!attr_form_is_block (attr))
12118 complaint (&symfile_complaints,
216f72a1
JK
12119 _("No DW_FORM_block* DW_AT_call_data_value for "
12120 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725
PA
12121 to_underlying (child_die->sect_off),
12122 objfile_name (objfile));
96408a79
SA
12123 else
12124 {
12125 parameter->data_value = DW_BLOCK (attr)->data;
12126 parameter->data_value_size = DW_BLOCK (attr)->size;
12127 }
12128 }
12129 }
12130}
12131
43988095
JK
12132/* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12133 reading .debug_rnglists.
12134 Callback's type should be:
12135 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12136 Return true if the attributes are present and valid, otherwise,
12137 return false. */
12138
12139template <typename Callback>
12140static bool
12141dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12142 Callback &&callback)
12143{
12144 struct objfile *objfile = cu->objfile;
12145 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12146 struct comp_unit_head *cu_header = &cu->header;
12147 bfd *obfd = objfile->obfd;
12148 unsigned int addr_size = cu_header->addr_size;
12149 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12150 /* Base address selection entry. */
12151 CORE_ADDR base;
12152 int found_base;
12153 unsigned int dummy;
12154 const gdb_byte *buffer;
12155 CORE_ADDR low = 0;
12156 CORE_ADDR high = 0;
12157 CORE_ADDR baseaddr;
12158 bool overflow = false;
12159
12160 found_base = cu->base_known;
12161 base = cu->base_address;
12162
12163 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12164 if (offset >= dwarf2_per_objfile->rnglists.size)
12165 {
12166 complaint (&symfile_complaints,
12167 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12168 offset);
12169 return false;
12170 }
12171 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12172
12173 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12174
12175 while (1)
12176 {
7814882a
JK
12177 /* Initialize it due to a false compiler warning. */
12178 CORE_ADDR range_beginning = 0, range_end = 0;
43988095
JK
12179 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12180 + dwarf2_per_objfile->rnglists.size);
12181 unsigned int bytes_read;
12182
12183 if (buffer == buf_end)
12184 {
12185 overflow = true;
12186 break;
12187 }
12188 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12189 switch (rlet)
12190 {
12191 case DW_RLE_end_of_list:
12192 break;
12193 case DW_RLE_base_address:
12194 if (buffer + cu->header.addr_size > buf_end)
12195 {
12196 overflow = true;
12197 break;
12198 }
12199 base = read_address (obfd, buffer, cu, &bytes_read);
12200 found_base = 1;
12201 buffer += bytes_read;
12202 break;
12203 case DW_RLE_start_length:
12204 if (buffer + cu->header.addr_size > buf_end)
12205 {
12206 overflow = true;
12207 break;
12208 }
12209 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12210 buffer += bytes_read;
12211 range_end = (range_beginning
12212 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12213 buffer += bytes_read;
12214 if (buffer > buf_end)
12215 {
12216 overflow = true;
12217 break;
12218 }
12219 break;
12220 case DW_RLE_offset_pair:
12221 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12222 buffer += bytes_read;
12223 if (buffer > buf_end)
12224 {
12225 overflow = true;
12226 break;
12227 }
12228 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12229 buffer += bytes_read;
12230 if (buffer > buf_end)
12231 {
12232 overflow = true;
12233 break;
12234 }
12235 break;
12236 case DW_RLE_start_end:
12237 if (buffer + 2 * cu->header.addr_size > buf_end)
12238 {
12239 overflow = true;
12240 break;
12241 }
12242 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12243 buffer += bytes_read;
12244 range_end = read_address (obfd, buffer, cu, &bytes_read);
12245 buffer += bytes_read;
12246 break;
12247 default:
12248 complaint (&symfile_complaints,
12249 _("Invalid .debug_rnglists data (no base address)"));
12250 return false;
12251 }
12252 if (rlet == DW_RLE_end_of_list || overflow)
12253 break;
12254 if (rlet == DW_RLE_base_address)
12255 continue;
12256
12257 if (!found_base)
12258 {
12259 /* We have no valid base address for the ranges
12260 data. */
12261 complaint (&symfile_complaints,
12262 _("Invalid .debug_rnglists data (no base address)"));
12263 return false;
12264 }
12265
12266 if (range_beginning > range_end)
12267 {
12268 /* Inverted range entries are invalid. */
12269 complaint (&symfile_complaints,
12270 _("Invalid .debug_rnglists data (inverted range)"));
12271 return false;
12272 }
12273
12274 /* Empty range entries have no effect. */
12275 if (range_beginning == range_end)
12276 continue;
12277
12278 range_beginning += base;
12279 range_end += base;
12280
12281 /* A not-uncommon case of bad debug info.
12282 Don't pollute the addrmap with bad data. */
12283 if (range_beginning + baseaddr == 0
12284 && !dwarf2_per_objfile->has_section_at_zero)
12285 {
12286 complaint (&symfile_complaints,
12287 _(".debug_rnglists entry has start address of zero"
12288 " [in module %s]"), objfile_name (objfile));
12289 continue;
12290 }
12291
12292 callback (range_beginning, range_end);
12293 }
12294
12295 if (overflow)
12296 {
12297 complaint (&symfile_complaints,
12298 _("Offset %d is not terminated "
12299 "for DW_AT_ranges attribute"),
12300 offset);
12301 return false;
12302 }
12303
12304 return true;
12305}
12306
12307/* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12308 Callback's type should be:
12309 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
5f46c5a5 12310 Return 1 if the attributes are present and valid, otherwise, return 0. */
43039443 12311
43988095 12312template <typename Callback>
43039443 12313static int
5f46c5a5 12314dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
43988095 12315 Callback &&callback)
43039443
JK
12316{
12317 struct objfile *objfile = cu->objfile;
3e29f34a 12318 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
12319 struct comp_unit_head *cu_header = &cu->header;
12320 bfd *obfd = objfile->obfd;
12321 unsigned int addr_size = cu_header->addr_size;
12322 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12323 /* Base address selection entry. */
12324 CORE_ADDR base;
12325 int found_base;
12326 unsigned int dummy;
d521ce57 12327 const gdb_byte *buffer;
ff013f42 12328 CORE_ADDR baseaddr;
43039443 12329
43988095
JK
12330 if (cu_header->version >= 5)
12331 return dwarf2_rnglists_process (offset, cu, callback);
12332
d00adf39
DE
12333 found_base = cu->base_known;
12334 base = cu->base_address;
43039443 12335
be391dca 12336 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12337 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
12338 {
12339 complaint (&symfile_complaints,
12340 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12341 offset);
12342 return 0;
12343 }
dce234bc 12344 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 12345
e7030f15 12346 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 12347
43039443
JK
12348 while (1)
12349 {
12350 CORE_ADDR range_beginning, range_end;
12351
12352 range_beginning = read_address (obfd, buffer, cu, &dummy);
12353 buffer += addr_size;
12354 range_end = read_address (obfd, buffer, cu, &dummy);
12355 buffer += addr_size;
12356 offset += 2 * addr_size;
12357
12358 /* An end of list marker is a pair of zero addresses. */
12359 if (range_beginning == 0 && range_end == 0)
12360 /* Found the end of list entry. */
12361 break;
12362
12363 /* Each base address selection entry is a pair of 2 values.
12364 The first is the largest possible address, the second is
12365 the base address. Check for a base address here. */
12366 if ((range_beginning & mask) == mask)
12367 {
28d2bfb9
AB
12368 /* If we found the largest possible address, then we already
12369 have the base address in range_end. */
12370 base = range_end;
43039443
JK
12371 found_base = 1;
12372 continue;
12373 }
12374
12375 if (!found_base)
12376 {
12377 /* We have no valid base address for the ranges
12378 data. */
12379 complaint (&symfile_complaints,
12380 _("Invalid .debug_ranges data (no base address)"));
12381 return 0;
12382 }
12383
9277c30c
UW
12384 if (range_beginning > range_end)
12385 {
12386 /* Inverted range entries are invalid. */
12387 complaint (&symfile_complaints,
12388 _("Invalid .debug_ranges data (inverted range)"));
12389 return 0;
12390 }
12391
12392 /* Empty range entries have no effect. */
12393 if (range_beginning == range_end)
12394 continue;
12395
43039443
JK
12396 range_beginning += base;
12397 range_end += base;
12398
01093045
DE
12399 /* A not-uncommon case of bad debug info.
12400 Don't pollute the addrmap with bad data. */
12401 if (range_beginning + baseaddr == 0
12402 && !dwarf2_per_objfile->has_section_at_zero)
12403 {
12404 complaint (&symfile_complaints,
12405 _(".debug_ranges entry has start address of zero"
4262abfb 12406 " [in module %s]"), objfile_name (objfile));
01093045
DE
12407 continue;
12408 }
12409
5f46c5a5
JK
12410 callback (range_beginning, range_end);
12411 }
12412
12413 return 1;
12414}
12415
12416/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12417 Return 1 if the attributes are present and valid, otherwise, return 0.
12418 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12419
12420static int
12421dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12422 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12423 struct partial_symtab *ranges_pst)
12424{
12425 struct objfile *objfile = cu->objfile;
12426 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12427 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12428 SECT_OFF_TEXT (objfile));
12429 int low_set = 0;
12430 CORE_ADDR low = 0;
12431 CORE_ADDR high = 0;
12432 int retval;
12433
12434 retval = dwarf2_ranges_process (offset, cu,
12435 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12436 {
9277c30c 12437 if (ranges_pst != NULL)
3e29f34a
MR
12438 {
12439 CORE_ADDR lowpc;
12440 CORE_ADDR highpc;
12441
12442 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12443 range_beginning + baseaddr);
12444 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12445 range_end + baseaddr);
12446 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12447 ranges_pst);
12448 }
ff013f42 12449
43039443
JK
12450 /* FIXME: This is recording everything as a low-high
12451 segment of consecutive addresses. We should have a
12452 data structure for discontiguous block ranges
12453 instead. */
12454 if (! low_set)
12455 {
12456 low = range_beginning;
12457 high = range_end;
12458 low_set = 1;
12459 }
12460 else
12461 {
12462 if (range_beginning < low)
12463 low = range_beginning;
12464 if (range_end > high)
12465 high = range_end;
12466 }
5f46c5a5
JK
12467 });
12468 if (!retval)
12469 return 0;
43039443
JK
12470
12471 if (! low_set)
12472 /* If the first entry is an end-of-list marker, the range
12473 describes an empty scope, i.e. no instructions. */
12474 return 0;
12475
12476 if (low_return)
12477 *low_return = low;
12478 if (high_return)
12479 *high_return = high;
12480 return 1;
12481}
12482
3a2b436a
JK
12483/* Get low and high pc attributes from a die. See enum pc_bounds_kind
12484 definition for the return value. *LOWPC and *HIGHPC are set iff
e385593e 12485 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
380bca97 12486
3a2b436a 12487static enum pc_bounds_kind
af34e669 12488dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12489 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12490 struct partial_symtab *pst)
c906108c
SS
12491{
12492 struct attribute *attr;
91da1414 12493 struct attribute *attr_high;
af34e669
DJ
12494 CORE_ADDR low = 0;
12495 CORE_ADDR high = 0;
e385593e 12496 enum pc_bounds_kind ret;
c906108c 12497
91da1414
MW
12498 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12499 if (attr_high)
af34e669 12500 {
e142c38c 12501 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12502 if (attr)
91da1414 12503 {
31aa7e4e
JB
12504 low = attr_value_as_address (attr);
12505 high = attr_value_as_address (attr_high);
12506 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12507 high += low;
91da1414 12508 }
af34e669
DJ
12509 else
12510 /* Found high w/o low attribute. */
e385593e 12511 return PC_BOUNDS_INVALID;
af34e669
DJ
12512
12513 /* Found consecutive range of addresses. */
3a2b436a 12514 ret = PC_BOUNDS_HIGH_LOW;
af34e669 12515 }
c906108c 12516 else
af34e669 12517 {
e142c38c 12518 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12519 if (attr != NULL)
12520 {
ab435259
DE
12521 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12522 We take advantage of the fact that DW_AT_ranges does not appear
12523 in DW_TAG_compile_unit of DWO files. */
12524 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12525 unsigned int ranges_offset = (DW_UNSND (attr)
12526 + (need_ranges_base
12527 ? cu->ranges_base
12528 : 0));
2e3cf129 12529
af34e669 12530 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12531 .debug_ranges section. */
2e3cf129 12532 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
e385593e 12533 return PC_BOUNDS_INVALID;
43039443 12534 /* Found discontinuous range of addresses. */
3a2b436a 12535 ret = PC_BOUNDS_RANGES;
af34e669 12536 }
e385593e
JK
12537 else
12538 return PC_BOUNDS_NOT_PRESENT;
af34e669 12539 }
c906108c 12540
9373cf26
JK
12541 /* read_partial_die has also the strict LOW < HIGH requirement. */
12542 if (high <= low)
e385593e 12543 return PC_BOUNDS_INVALID;
c906108c
SS
12544
12545 /* When using the GNU linker, .gnu.linkonce. sections are used to
12546 eliminate duplicate copies of functions and vtables and such.
12547 The linker will arbitrarily choose one and discard the others.
12548 The AT_*_pc values for such functions refer to local labels in
12549 these sections. If the section from that file was discarded, the
12550 labels are not in the output, so the relocs get a value of 0.
12551 If this is a discarded function, mark the pc bounds as invalid,
12552 so that GDB will ignore it. */
72dca2f5 12553 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
e385593e 12554 return PC_BOUNDS_INVALID;
c906108c
SS
12555
12556 *lowpc = low;
96408a79
SA
12557 if (highpc)
12558 *highpc = high;
af34e669 12559 return ret;
c906108c
SS
12560}
12561
b084d499
JB
12562/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12563 its low and high PC addresses. Do nothing if these addresses could not
12564 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12565 and HIGHPC to the high address if greater than HIGHPC. */
12566
12567static void
12568dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12569 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12570 struct dwarf2_cu *cu)
12571{
12572 CORE_ADDR low, high;
12573 struct die_info *child = die->child;
12574
e385593e 12575 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
b084d499 12576 {
325fac50
PA
12577 *lowpc = std::min (*lowpc, low);
12578 *highpc = std::max (*highpc, high);
b084d499
JB
12579 }
12580
12581 /* If the language does not allow nested subprograms (either inside
12582 subprograms or lexical blocks), we're done. */
12583 if (cu->language != language_ada)
12584 return;
6e70227d 12585
b084d499
JB
12586 /* Check all the children of the given DIE. If it contains nested
12587 subprograms, then check their pc bounds. Likewise, we need to
12588 check lexical blocks as well, as they may also contain subprogram
12589 definitions. */
12590 while (child && child->tag)
12591 {
12592 if (child->tag == DW_TAG_subprogram
12593 || child->tag == DW_TAG_lexical_block)
12594 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12595 child = sibling_die (child);
12596 }
12597}
12598
fae299cd
DC
12599/* Get the low and high pc's represented by the scope DIE, and store
12600 them in *LOWPC and *HIGHPC. If the correct values can't be
12601 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12602
12603static void
12604get_scope_pc_bounds (struct die_info *die,
12605 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12606 struct dwarf2_cu *cu)
12607{
12608 CORE_ADDR best_low = (CORE_ADDR) -1;
12609 CORE_ADDR best_high = (CORE_ADDR) 0;
12610 CORE_ADDR current_low, current_high;
12611
3a2b436a 12612 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
e385593e 12613 >= PC_BOUNDS_RANGES)
fae299cd
DC
12614 {
12615 best_low = current_low;
12616 best_high = current_high;
12617 }
12618 else
12619 {
12620 struct die_info *child = die->child;
12621
12622 while (child && child->tag)
12623 {
12624 switch (child->tag) {
12625 case DW_TAG_subprogram:
b084d499 12626 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12627 break;
12628 case DW_TAG_namespace:
f55ee35c 12629 case DW_TAG_module:
fae299cd
DC
12630 /* FIXME: carlton/2004-01-16: Should we do this for
12631 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12632 that current GCC's always emit the DIEs corresponding
12633 to definitions of methods of classes as children of a
12634 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12635 the DIEs giving the declarations, which could be
12636 anywhere). But I don't see any reason why the
12637 standards says that they have to be there. */
12638 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12639
12640 if (current_low != ((CORE_ADDR) -1))
12641 {
325fac50
PA
12642 best_low = std::min (best_low, current_low);
12643 best_high = std::max (best_high, current_high);
fae299cd
DC
12644 }
12645 break;
12646 default:
0963b4bd 12647 /* Ignore. */
fae299cd
DC
12648 break;
12649 }
12650
12651 child = sibling_die (child);
12652 }
12653 }
12654
12655 *lowpc = best_low;
12656 *highpc = best_high;
12657}
12658
801e3a5b
JB
12659/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12660 in DIE. */
380bca97 12661
801e3a5b
JB
12662static void
12663dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12664 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12665{
bb5ed363 12666 struct objfile *objfile = cu->objfile;
3e29f34a 12667 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12668 struct attribute *attr;
91da1414 12669 struct attribute *attr_high;
801e3a5b 12670
91da1414
MW
12671 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12672 if (attr_high)
801e3a5b 12673 {
801e3a5b
JB
12674 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12675 if (attr)
12676 {
31aa7e4e
JB
12677 CORE_ADDR low = attr_value_as_address (attr);
12678 CORE_ADDR high = attr_value_as_address (attr_high);
12679
12680 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12681 high += low;
9a619af0 12682
3e29f34a
MR
12683 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12684 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12685 record_block_range (block, low, high - 1);
801e3a5b
JB
12686 }
12687 }
12688
12689 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12690 if (attr)
12691 {
bb5ed363 12692 bfd *obfd = objfile->obfd;
ab435259
DE
12693 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12694 We take advantage of the fact that DW_AT_ranges does not appear
12695 in DW_TAG_compile_unit of DWO files. */
12696 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12697
12698 /* The value of the DW_AT_ranges attribute is the offset of the
12699 address range list in the .debug_ranges section. */
ab435259
DE
12700 unsigned long offset = (DW_UNSND (attr)
12701 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12702 const gdb_byte *buffer;
801e3a5b
JB
12703
12704 /* For some target architectures, but not others, the
12705 read_address function sign-extends the addresses it returns.
12706 To recognize base address selection entries, we need a
12707 mask. */
12708 unsigned int addr_size = cu->header.addr_size;
12709 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12710
12711 /* The base address, to which the next pair is relative. Note
12712 that this 'base' is a DWARF concept: most entries in a range
12713 list are relative, to reduce the number of relocs against the
12714 debugging information. This is separate from this function's
12715 'baseaddr' argument, which GDB uses to relocate debugging
12716 information from a shared library based on the address at
12717 which the library was loaded. */
d00adf39
DE
12718 CORE_ADDR base = cu->base_address;
12719 int base_known = cu->base_known;
801e3a5b 12720
5f46c5a5
JK
12721 dwarf2_ranges_process (offset, cu,
12722 [&] (CORE_ADDR start, CORE_ADDR end)
12723 {
58fdfd2c
JK
12724 start += baseaddr;
12725 end += baseaddr;
5f46c5a5
JK
12726 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12727 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12728 record_block_range (block, start, end - 1);
12729 });
801e3a5b
JB
12730 }
12731}
12732
685b1105
JK
12733/* Check whether the producer field indicates either of GCC < 4.6, or the
12734 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12735
685b1105
JK
12736static void
12737check_producer (struct dwarf2_cu *cu)
60d5a603 12738{
38360086 12739 int major, minor;
60d5a603
JK
12740
12741 if (cu->producer == NULL)
12742 {
12743 /* For unknown compilers expect their behavior is DWARF version
12744 compliant.
12745
12746 GCC started to support .debug_types sections by -gdwarf-4 since
12747 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12748 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12749 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12750 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12751 }
b1ffba5a 12752 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12753 {
38360086
MW
12754 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12755 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12756 }
61012eef 12757 else if (startswith (cu->producer, "Intel(R) C"))
685b1105
JK
12758 cu->producer_is_icc = 1;
12759 else
12760 {
12761 /* For other non-GCC compilers, expect their behavior is DWARF version
12762 compliant. */
60d5a603
JK
12763 }
12764
ba919b58 12765 cu->checked_producer = 1;
685b1105 12766}
ba919b58 12767
685b1105
JK
12768/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12769 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12770 during 4.6.0 experimental. */
12771
12772static int
12773producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12774{
12775 if (!cu->checked_producer)
12776 check_producer (cu);
12777
12778 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12779}
12780
12781/* Return the default accessibility type if it is not overriden by
12782 DW_AT_accessibility. */
12783
12784static enum dwarf_access_attribute
12785dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12786{
12787 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12788 {
12789 /* The default DWARF 2 accessibility for members is public, the default
12790 accessibility for inheritance is private. */
12791
12792 if (die->tag != DW_TAG_inheritance)
12793 return DW_ACCESS_public;
12794 else
12795 return DW_ACCESS_private;
12796 }
12797 else
12798 {
12799 /* DWARF 3+ defines the default accessibility a different way. The same
12800 rules apply now for DW_TAG_inheritance as for the members and it only
12801 depends on the container kind. */
12802
12803 if (die->parent->tag == DW_TAG_class_type)
12804 return DW_ACCESS_private;
12805 else
12806 return DW_ACCESS_public;
12807 }
12808}
12809
74ac6d43
TT
12810/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12811 offset. If the attribute was not found return 0, otherwise return
12812 1. If it was found but could not properly be handled, set *OFFSET
12813 to 0. */
12814
12815static int
12816handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12817 LONGEST *offset)
12818{
12819 struct attribute *attr;
12820
12821 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12822 if (attr != NULL)
12823 {
12824 *offset = 0;
12825
12826 /* Note that we do not check for a section offset first here.
12827 This is because DW_AT_data_member_location is new in DWARF 4,
12828 so if we see it, we can assume that a constant form is really
12829 a constant and not a section offset. */
12830 if (attr_form_is_constant (attr))
12831 *offset = dwarf2_get_attr_constant_value (attr, 0);
12832 else if (attr_form_is_section_offset (attr))
12833 dwarf2_complex_location_expr_complaint ();
12834 else if (attr_form_is_block (attr))
12835 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12836 else
12837 dwarf2_complex_location_expr_complaint ();
12838
12839 return 1;
12840 }
12841
12842 return 0;
12843}
12844
c906108c
SS
12845/* Add an aggregate field to the field list. */
12846
12847static void
107d2387 12848dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12849 struct dwarf2_cu *cu)
6e70227d 12850{
e7c27a73 12851 struct objfile *objfile = cu->objfile;
5e2b427d 12852 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12853 struct nextfield *new_field;
12854 struct attribute *attr;
12855 struct field *fp;
15d034d0 12856 const char *fieldname = "";
c906108c
SS
12857
12858 /* Allocate a new field list entry and link it in. */
8d749320 12859 new_field = XNEW (struct nextfield);
b8c9b27d 12860 make_cleanup (xfree, new_field);
c906108c 12861 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12862
12863 if (die->tag == DW_TAG_inheritance)
12864 {
12865 new_field->next = fip->baseclasses;
12866 fip->baseclasses = new_field;
12867 }
12868 else
12869 {
12870 new_field->next = fip->fields;
12871 fip->fields = new_field;
12872 }
c906108c
SS
12873 fip->nfields++;
12874
e142c38c 12875 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12876 if (attr)
12877 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12878 else
12879 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12880 if (new_field->accessibility != DW_ACCESS_public)
12881 fip->non_public_fields = 1;
60d5a603 12882
e142c38c 12883 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12884 if (attr)
12885 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12886 else
12887 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12888
12889 fp = &new_field->field;
a9a9bd0f 12890
e142c38c 12891 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12892 {
74ac6d43
TT
12893 LONGEST offset;
12894
a9a9bd0f 12895 /* Data member other than a C++ static data member. */
6e70227d 12896
c906108c 12897 /* Get type of field. */
e7c27a73 12898 fp->type = die_type (die, cu);
c906108c 12899
d6a843b5 12900 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12901
c906108c 12902 /* Get bit size of field (zero if none). */
e142c38c 12903 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12904 if (attr)
12905 {
12906 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12907 }
12908 else
12909 {
12910 FIELD_BITSIZE (*fp) = 0;
12911 }
12912
12913 /* Get bit offset of field. */
74ac6d43
TT
12914 if (handle_data_member_location (die, cu, &offset))
12915 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12916 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12917 if (attr)
12918 {
5e2b427d 12919 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12920 {
12921 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12922 additional bit offset from the MSB of the containing
12923 anonymous object to the MSB of the field. We don't
12924 have to do anything special since we don't need to
12925 know the size of the anonymous object. */
f41f5e61 12926 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12927 }
12928 else
12929 {
12930 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12931 MSB of the anonymous object, subtract off the number of
12932 bits from the MSB of the field to the MSB of the
12933 object, and then subtract off the number of bits of
12934 the field itself. The result is the bit offset of
12935 the LSB of the field. */
c906108c
SS
12936 int anonymous_size;
12937 int bit_offset = DW_UNSND (attr);
12938
e142c38c 12939 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12940 if (attr)
12941 {
12942 /* The size of the anonymous object containing
12943 the bit field is explicit, so use the
12944 indicated size (in bytes). */
12945 anonymous_size = DW_UNSND (attr);
12946 }
12947 else
12948 {
12949 /* The size of the anonymous object containing
12950 the bit field must be inferred from the type
12951 attribute of the data member containing the
12952 bit field. */
12953 anonymous_size = TYPE_LENGTH (fp->type);
12954 }
f41f5e61
PA
12955 SET_FIELD_BITPOS (*fp,
12956 (FIELD_BITPOS (*fp)
12957 + anonymous_size * bits_per_byte
12958 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12959 }
12960 }
da5b30da
AA
12961 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
12962 if (attr != NULL)
12963 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
12964 + dwarf2_get_attr_constant_value (attr, 0)));
c906108c
SS
12965
12966 /* Get name of field. */
39cbfefa
DJ
12967 fieldname = dwarf2_name (die, cu);
12968 if (fieldname == NULL)
12969 fieldname = "";
d8151005
DJ
12970
12971 /* The name is already allocated along with this objfile, so we don't
12972 need to duplicate it for the type. */
12973 fp->name = fieldname;
c906108c
SS
12974
12975 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12976 pointer or virtual base class pointer) to private. */
e142c38c 12977 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12978 {
d48cc9dd 12979 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12980 new_field->accessibility = DW_ACCESS_private;
12981 fip->non_public_fields = 1;
12982 }
12983 }
a9a9bd0f 12984 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12985 {
a9a9bd0f
DC
12986 /* C++ static member. */
12987
12988 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12989 is a declaration, but all versions of G++ as of this writing
12990 (so through at least 3.2.1) incorrectly generate
12991 DW_TAG_variable tags. */
6e70227d 12992
ff355380 12993 const char *physname;
c906108c 12994
a9a9bd0f 12995 /* Get name of field. */
39cbfefa
DJ
12996 fieldname = dwarf2_name (die, cu);
12997 if (fieldname == NULL)
c906108c
SS
12998 return;
12999
254e6b9e 13000 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
13001 if (attr
13002 /* Only create a symbol if this is an external value.
13003 new_symbol checks this and puts the value in the global symbol
13004 table, which we want. If it is not external, new_symbol
13005 will try to put the value in cu->list_in_scope which is wrong. */
13006 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
13007 {
13008 /* A static const member, not much different than an enum as far as
13009 we're concerned, except that we can support more types. */
13010 new_symbol (die, NULL, cu);
13011 }
13012
2df3850c 13013 /* Get physical name. */
ff355380 13014 physname = dwarf2_physname (fieldname, die, cu);
c906108c 13015
d8151005
DJ
13016 /* The name is already allocated along with this objfile, so we don't
13017 need to duplicate it for the type. */
13018 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 13019 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 13020 FIELD_NAME (*fp) = fieldname;
c906108c
SS
13021 }
13022 else if (die->tag == DW_TAG_inheritance)
13023 {
74ac6d43 13024 LONGEST offset;
d4b96c9a 13025
74ac6d43
TT
13026 /* C++ base class field. */
13027 if (handle_data_member_location (die, cu, &offset))
13028 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 13029 FIELD_BITSIZE (*fp) = 0;
e7c27a73 13030 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
13031 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
13032 fip->nbaseclasses++;
13033 }
13034}
13035
98751a41
JK
13036/* Add a typedef defined in the scope of the FIP's class. */
13037
13038static void
13039dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
13040 struct dwarf2_cu *cu)
6e70227d 13041{
98751a41 13042 struct typedef_field_list *new_field;
98751a41 13043 struct typedef_field *fp;
98751a41
JK
13044
13045 /* Allocate a new field list entry and link it in. */
8d749320 13046 new_field = XCNEW (struct typedef_field_list);
98751a41
JK
13047 make_cleanup (xfree, new_field);
13048
13049 gdb_assert (die->tag == DW_TAG_typedef);
13050
13051 fp = &new_field->field;
13052
13053 /* Get name of field. */
13054 fp->name = dwarf2_name (die, cu);
13055 if (fp->name == NULL)
13056 return;
13057
13058 fp->type = read_type_die (die, cu);
13059
13060 new_field->next = fip->typedef_field_list;
13061 fip->typedef_field_list = new_field;
13062 fip->typedef_field_list_count++;
13063}
13064
c906108c
SS
13065/* Create the vector of fields, and attach it to the type. */
13066
13067static void
fba45db2 13068dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13069 struct dwarf2_cu *cu)
c906108c
SS
13070{
13071 int nfields = fip->nfields;
13072
13073 /* Record the field count, allocate space for the array of fields,
13074 and create blank accessibility bitfields if necessary. */
13075 TYPE_NFIELDS (type) = nfields;
13076 TYPE_FIELDS (type) = (struct field *)
13077 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13078 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13079
b4ba55a1 13080 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
13081 {
13082 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13083
13084 TYPE_FIELD_PRIVATE_BITS (type) =
13085 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13086 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13087
13088 TYPE_FIELD_PROTECTED_BITS (type) =
13089 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13090 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13091
774b6a14
TT
13092 TYPE_FIELD_IGNORE_BITS (type) =
13093 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13094 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
13095 }
13096
13097 /* If the type has baseclasses, allocate and clear a bit vector for
13098 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 13099 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
13100 {
13101 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 13102 unsigned char *pointer;
c906108c
SS
13103
13104 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 13105 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 13106 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
13107 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13108 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13109 }
13110
3e43a32a
MS
13111 /* Copy the saved-up fields into the field vector. Start from the head of
13112 the list, adding to the tail of the field array, so that they end up in
13113 the same order in the array in which they were added to the list. */
c906108c
SS
13114 while (nfields-- > 0)
13115 {
7d0ccb61
DJ
13116 struct nextfield *fieldp;
13117
13118 if (fip->fields)
13119 {
13120 fieldp = fip->fields;
13121 fip->fields = fieldp->next;
13122 }
13123 else
13124 {
13125 fieldp = fip->baseclasses;
13126 fip->baseclasses = fieldp->next;
13127 }
13128
13129 TYPE_FIELD (type, nfields) = fieldp->field;
13130 switch (fieldp->accessibility)
c906108c 13131 {
c5aa993b 13132 case DW_ACCESS_private:
b4ba55a1
JB
13133 if (cu->language != language_ada)
13134 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 13135 break;
c906108c 13136
c5aa993b 13137 case DW_ACCESS_protected:
b4ba55a1
JB
13138 if (cu->language != language_ada)
13139 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 13140 break;
c906108c 13141
c5aa993b
JM
13142 case DW_ACCESS_public:
13143 break;
c906108c 13144
c5aa993b
JM
13145 default:
13146 /* Unknown accessibility. Complain and treat it as public. */
13147 {
e2e0b3e5 13148 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 13149 fieldp->accessibility);
c5aa993b
JM
13150 }
13151 break;
c906108c
SS
13152 }
13153 if (nfields < fip->nbaseclasses)
13154 {
7d0ccb61 13155 switch (fieldp->virtuality)
c906108c 13156 {
c5aa993b
JM
13157 case DW_VIRTUALITY_virtual:
13158 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 13159 if (cu->language == language_ada)
a73c6dcd 13160 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
13161 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13162 break;
c906108c
SS
13163 }
13164 }
c906108c
SS
13165 }
13166}
13167
7d27a96d
TT
13168/* Return true if this member function is a constructor, false
13169 otherwise. */
13170
13171static int
13172dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13173{
13174 const char *fieldname;
fe978cb0 13175 const char *type_name;
7d27a96d
TT
13176 int len;
13177
13178 if (die->parent == NULL)
13179 return 0;
13180
13181 if (die->parent->tag != DW_TAG_structure_type
13182 && die->parent->tag != DW_TAG_union_type
13183 && die->parent->tag != DW_TAG_class_type)
13184 return 0;
13185
13186 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
13187 type_name = dwarf2_name (die->parent, cu);
13188 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
13189 return 0;
13190
13191 len = strlen (fieldname);
fe978cb0
PA
13192 return (strncmp (fieldname, type_name, len) == 0
13193 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
13194}
13195
c906108c
SS
13196/* Add a member function to the proper fieldlist. */
13197
13198static void
107d2387 13199dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 13200 struct type *type, struct dwarf2_cu *cu)
c906108c 13201{
e7c27a73 13202 struct objfile *objfile = cu->objfile;
c906108c
SS
13203 struct attribute *attr;
13204 struct fnfieldlist *flp;
13205 int i;
13206 struct fn_field *fnp;
15d034d0 13207 const char *fieldname;
c906108c 13208 struct nextfnfield *new_fnfield;
f792889a 13209 struct type *this_type;
60d5a603 13210 enum dwarf_access_attribute accessibility;
c906108c 13211
b4ba55a1 13212 if (cu->language == language_ada)
a73c6dcd 13213 error (_("unexpected member function in Ada type"));
b4ba55a1 13214
2df3850c 13215 /* Get name of member function. */
39cbfefa
DJ
13216 fieldname = dwarf2_name (die, cu);
13217 if (fieldname == NULL)
2df3850c 13218 return;
c906108c 13219
c906108c
SS
13220 /* Look up member function name in fieldlist. */
13221 for (i = 0; i < fip->nfnfields; i++)
13222 {
27bfe10e 13223 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
13224 break;
13225 }
13226
13227 /* Create new list element if necessary. */
13228 if (i < fip->nfnfields)
13229 flp = &fip->fnfieldlists[i];
13230 else
13231 {
13232 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13233 {
13234 fip->fnfieldlists = (struct fnfieldlist *)
13235 xrealloc (fip->fnfieldlists,
13236 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13237 * sizeof (struct fnfieldlist));
c906108c 13238 if (fip->nfnfields == 0)
c13c43fd 13239 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
13240 }
13241 flp = &fip->fnfieldlists[fip->nfnfields];
13242 flp->name = fieldname;
13243 flp->length = 0;
13244 flp->head = NULL;
3da10d80 13245 i = fip->nfnfields++;
c906108c
SS
13246 }
13247
13248 /* Create a new member function field and chain it to the field list
0963b4bd 13249 entry. */
8d749320 13250 new_fnfield = XNEW (struct nextfnfield);
b8c9b27d 13251 make_cleanup (xfree, new_fnfield);
c906108c
SS
13252 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13253 new_fnfield->next = flp->head;
13254 flp->head = new_fnfield;
13255 flp->length++;
13256
13257 /* Fill in the member function field info. */
13258 fnp = &new_fnfield->fnfield;
3da10d80
KS
13259
13260 /* Delay processing of the physname until later. */
9c37b5ae 13261 if (cu->language == language_cplus)
3da10d80
KS
13262 {
13263 add_to_method_list (type, i, flp->length - 1, fieldname,
13264 die, cu);
13265 }
13266 else
13267 {
1d06ead6 13268 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
13269 fnp->physname = physname ? physname : "";
13270 }
13271
c906108c 13272 fnp->type = alloc_type (objfile);
f792889a
DJ
13273 this_type = read_type_die (die, cu);
13274 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 13275 {
f792889a 13276 int nparams = TYPE_NFIELDS (this_type);
c906108c 13277
f792889a 13278 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
13279 of the method itself (TYPE_CODE_METHOD). */
13280 smash_to_method_type (fnp->type, type,
f792889a
DJ
13281 TYPE_TARGET_TYPE (this_type),
13282 TYPE_FIELDS (this_type),
13283 TYPE_NFIELDS (this_type),
13284 TYPE_VARARGS (this_type));
c906108c
SS
13285
13286 /* Handle static member functions.
c5aa993b 13287 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
13288 member functions. G++ helps GDB by marking the first
13289 parameter for non-static member functions (which is the this
13290 pointer) as artificial. We obtain this information from
13291 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 13292 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
13293 fnp->voffset = VOFFSET_STATIC;
13294 }
13295 else
e2e0b3e5 13296 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 13297 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
13298
13299 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 13300 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 13301 fnp->fcontext = die_containing_type (die, cu);
c906108c 13302
3e43a32a
MS
13303 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13304 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
13305
13306 /* Get accessibility. */
e142c38c 13307 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 13308 if (attr)
aead7601 13309 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
13310 else
13311 accessibility = dwarf2_default_access_attribute (die, cu);
13312 switch (accessibility)
c906108c 13313 {
60d5a603
JK
13314 case DW_ACCESS_private:
13315 fnp->is_private = 1;
13316 break;
13317 case DW_ACCESS_protected:
13318 fnp->is_protected = 1;
13319 break;
c906108c
SS
13320 }
13321
b02dede2 13322 /* Check for artificial methods. */
e142c38c 13323 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
13324 if (attr && DW_UNSND (attr) != 0)
13325 fnp->is_artificial = 1;
13326
7d27a96d
TT
13327 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13328
0d564a31 13329 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
13330 function. For older versions of GCC, this is an offset in the
13331 appropriate virtual table, as specified by DW_AT_containing_type.
13332 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
13333 to the object address. */
13334
e142c38c 13335 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 13336 if (attr)
8e19ed76 13337 {
aec5aa8b 13338 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 13339 {
aec5aa8b
TT
13340 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13341 {
13342 /* Old-style GCC. */
13343 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13344 }
13345 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13346 || (DW_BLOCK (attr)->size > 1
13347 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13348 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13349 {
aec5aa8b
TT
13350 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13351 if ((fnp->voffset % cu->header.addr_size) != 0)
13352 dwarf2_complex_location_expr_complaint ();
13353 else
13354 fnp->voffset /= cu->header.addr_size;
13355 fnp->voffset += 2;
13356 }
13357 else
13358 dwarf2_complex_location_expr_complaint ();
13359
13360 if (!fnp->fcontext)
7e993ebf
KS
13361 {
13362 /* If there is no `this' field and no DW_AT_containing_type,
13363 we cannot actually find a base class context for the
13364 vtable! */
13365 if (TYPE_NFIELDS (this_type) == 0
13366 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13367 {
13368 complaint (&symfile_complaints,
13369 _("cannot determine context for virtual member "
13370 "function \"%s\" (offset %d)"),
9c541725 13371 fieldname, to_underlying (die->sect_off));
7e993ebf
KS
13372 }
13373 else
13374 {
13375 fnp->fcontext
13376 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13377 }
13378 }
aec5aa8b 13379 }
3690dd37 13380 else if (attr_form_is_section_offset (attr))
8e19ed76 13381 {
4d3c2250 13382 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
13383 }
13384 else
13385 {
4d3c2250
KB
13386 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13387 fieldname);
8e19ed76 13388 }
0d564a31 13389 }
d48cc9dd
DJ
13390 else
13391 {
13392 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13393 if (attr && DW_UNSND (attr))
13394 {
13395 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13396 complaint (&symfile_complaints,
3e43a32a
MS
13397 _("Member function \"%s\" (offset %d) is virtual "
13398 "but the vtable offset is not specified"),
9c541725 13399 fieldname, to_underlying (die->sect_off));
9655fd1a 13400 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
13401 TYPE_CPLUS_DYNAMIC (type) = 1;
13402 }
13403 }
c906108c
SS
13404}
13405
13406/* Create the vector of member function fields, and attach it to the type. */
13407
13408static void
fba45db2 13409dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13410 struct dwarf2_cu *cu)
c906108c
SS
13411{
13412 struct fnfieldlist *flp;
c906108c
SS
13413 int i;
13414
b4ba55a1 13415 if (cu->language == language_ada)
a73c6dcd 13416 error (_("unexpected member functions in Ada type"));
b4ba55a1 13417
c906108c
SS
13418 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13419 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13420 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13421
13422 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13423 {
13424 struct nextfnfield *nfp = flp->head;
13425 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13426 int k;
13427
13428 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13429 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13430 fn_flp->fn_fields = (struct fn_field *)
13431 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13432 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13433 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13434 }
13435
13436 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13437}
13438
1168df01
JB
13439/* Returns non-zero if NAME is the name of a vtable member in CU's
13440 language, zero otherwise. */
13441static int
13442is_vtable_name (const char *name, struct dwarf2_cu *cu)
13443{
13444 static const char vptr[] = "_vptr";
987504bb 13445 static const char vtable[] = "vtable";
1168df01 13446
9c37b5ae
TT
13447 /* Look for the C++ form of the vtable. */
13448 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
1168df01
JB
13449 return 1;
13450
13451 return 0;
13452}
13453
c0dd20ea 13454/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13455 functions, with the ABI-specified layout. If TYPE describes
13456 such a structure, smash it into a member function type.
61049d3b
DJ
13457
13458 GCC shouldn't do this; it should just output pointer to member DIEs.
13459 This is GCC PR debug/28767. */
c0dd20ea 13460
0b92b5bb
TT
13461static void
13462quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13463{
09e2d7c7 13464 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13465
13466 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13467 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13468 return;
c0dd20ea
DJ
13469
13470 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13471 if (TYPE_FIELD_NAME (type, 0) == NULL
13472 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13473 || TYPE_FIELD_NAME (type, 1) == NULL
13474 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13475 return;
c0dd20ea
DJ
13476
13477 /* Find the type of the method. */
0b92b5bb 13478 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13479 if (pfn_type == NULL
13480 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13481 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13482 return;
c0dd20ea
DJ
13483
13484 /* Look for the "this" argument. */
13485 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13486 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13487 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13488 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13489 return;
c0dd20ea 13490
09e2d7c7 13491 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13492 new_type = alloc_type (objfile);
09e2d7c7 13493 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13494 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13495 TYPE_VARARGS (pfn_type));
0b92b5bb 13496 smash_to_methodptr_type (type, new_type);
c0dd20ea 13497}
1168df01 13498
685b1105
JK
13499/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13500 (icc). */
13501
13502static int
13503producer_is_icc (struct dwarf2_cu *cu)
13504{
13505 if (!cu->checked_producer)
13506 check_producer (cu);
13507
13508 return cu->producer_is_icc;
13509}
13510
c906108c 13511/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13512 (definition) to create a type for the structure or union. Fill in
13513 the type's name and general properties; the members will not be
83655187
DE
13514 processed until process_structure_scope. A symbol table entry for
13515 the type will also not be done until process_structure_scope (assuming
13516 the type has a name).
c906108c 13517
c767944b
DJ
13518 NOTE: we need to call these functions regardless of whether or not the
13519 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13520 structure or union. This gets the type entered into our set of
83655187 13521 user defined types. */
c906108c 13522
f792889a 13523static struct type *
134d01f1 13524read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13525{
e7c27a73 13526 struct objfile *objfile = cu->objfile;
c906108c
SS
13527 struct type *type;
13528 struct attribute *attr;
15d034d0 13529 const char *name;
c906108c 13530
348e048f
DE
13531 /* If the definition of this type lives in .debug_types, read that type.
13532 Don't follow DW_AT_specification though, that will take us back up
13533 the chain and we want to go down. */
45e58e77 13534 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13535 if (attr)
13536 {
ac9ec31b 13537 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13538
ac9ec31b 13539 /* The type's CU may not be the same as CU.
02142a6c 13540 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13541 return set_die_type (die, type, cu);
13542 }
13543
c0dd20ea 13544 type = alloc_type (objfile);
c906108c 13545 INIT_CPLUS_SPECIFIC (type);
93311388 13546
39cbfefa
DJ
13547 name = dwarf2_name (die, cu);
13548 if (name != NULL)
c906108c 13549 {
987504bb 13550 if (cu->language == language_cplus
c44af4eb
TT
13551 || cu->language == language_d
13552 || cu->language == language_rust)
63d06c5c 13553 {
15d034d0 13554 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13555
13556 /* dwarf2_full_name might have already finished building the DIE's
13557 type. If so, there is no need to continue. */
13558 if (get_die_type (die, cu) != NULL)
13559 return get_die_type (die, cu);
13560
13561 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13562 if (die->tag == DW_TAG_structure_type
13563 || die->tag == DW_TAG_class_type)
13564 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13565 }
13566 else
13567 {
d8151005
DJ
13568 /* The name is already allocated along with this objfile, so
13569 we don't need to duplicate it for the type. */
7d455152 13570 TYPE_TAG_NAME (type) = name;
94af9270
KS
13571 if (die->tag == DW_TAG_class_type)
13572 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13573 }
c906108c
SS
13574 }
13575
13576 if (die->tag == DW_TAG_structure_type)
13577 {
13578 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13579 }
13580 else if (die->tag == DW_TAG_union_type)
13581 {
13582 TYPE_CODE (type) = TYPE_CODE_UNION;
13583 }
13584 else
13585 {
4753d33b 13586 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13587 }
13588
0cc2414c
TT
13589 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13590 TYPE_DECLARED_CLASS (type) = 1;
13591
e142c38c 13592 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13593 if (attr)
13594 {
155bfbd3
JB
13595 if (attr_form_is_constant (attr))
13596 TYPE_LENGTH (type) = DW_UNSND (attr);
13597 else
13598 {
13599 /* For the moment, dynamic type sizes are not supported
13600 by GDB's struct type. The actual size is determined
13601 on-demand when resolving the type of a given object,
13602 so set the type's length to zero for now. Otherwise,
13603 we record an expression as the length, and that expression
13604 could lead to a very large value, which could eventually
13605 lead to us trying to allocate that much memory when creating
13606 a value of that type. */
13607 TYPE_LENGTH (type) = 0;
13608 }
c906108c
SS
13609 }
13610 else
13611 {
13612 TYPE_LENGTH (type) = 0;
13613 }
13614
422b1cb0 13615 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13616 {
13617 /* ICC does not output the required DW_AT_declaration
13618 on incomplete types, but gives them a size of zero. */
422b1cb0 13619 TYPE_STUB (type) = 1;
685b1105
JK
13620 }
13621 else
13622 TYPE_STUB_SUPPORTED (type) = 1;
13623
dc718098 13624 if (die_is_declaration (die, cu))
876cecd0 13625 TYPE_STUB (type) = 1;
a6c727b2
DJ
13626 else if (attr == NULL && die->child == NULL
13627 && producer_is_realview (cu->producer))
13628 /* RealView does not output the required DW_AT_declaration
13629 on incomplete types. */
13630 TYPE_STUB (type) = 1;
dc718098 13631
c906108c
SS
13632 /* We need to add the type field to the die immediately so we don't
13633 infinitely recurse when dealing with pointers to the structure
0963b4bd 13634 type within the structure itself. */
1c379e20 13635 set_die_type (die, type, cu);
c906108c 13636
7e314c57
JK
13637 /* set_die_type should be already done. */
13638 set_descriptive_type (type, die, cu);
13639
c767944b
DJ
13640 return type;
13641}
13642
13643/* Finish creating a structure or union type, including filling in
13644 its members and creating a symbol for it. */
13645
13646static void
13647process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13648{
13649 struct objfile *objfile = cu->objfile;
ca040673 13650 struct die_info *child_die;
c767944b
DJ
13651 struct type *type;
13652
13653 type = get_die_type (die, cu);
13654 if (type == NULL)
13655 type = read_structure_type (die, cu);
13656
e142c38c 13657 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13658 {
13659 struct field_info fi;
34eaf542 13660 VEC (symbolp) *template_args = NULL;
c767944b 13661 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13662
13663 memset (&fi, 0, sizeof (struct field_info));
13664
639d11d3 13665 child_die = die->child;
c906108c
SS
13666
13667 while (child_die && child_die->tag)
13668 {
a9a9bd0f
DC
13669 if (child_die->tag == DW_TAG_member
13670 || child_die->tag == DW_TAG_variable)
c906108c 13671 {
a9a9bd0f
DC
13672 /* NOTE: carlton/2002-11-05: A C++ static data member
13673 should be a DW_TAG_member that is a declaration, but
13674 all versions of G++ as of this writing (so through at
13675 least 3.2.1) incorrectly generate DW_TAG_variable
13676 tags for them instead. */
e7c27a73 13677 dwarf2_add_field (&fi, child_die, cu);
c906108c 13678 }
8713b1b1 13679 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13680 {
e98c9e7c
TT
13681 /* Rust doesn't have member functions in the C++ sense.
13682 However, it does emit ordinary functions as children
13683 of a struct DIE. */
13684 if (cu->language == language_rust)
13685 read_func_scope (child_die, cu);
13686 else
13687 {
13688 /* C++ member function. */
13689 dwarf2_add_member_fn (&fi, child_die, type, cu);
13690 }
c906108c
SS
13691 }
13692 else if (child_die->tag == DW_TAG_inheritance)
13693 {
13694 /* C++ base class field. */
e7c27a73 13695 dwarf2_add_field (&fi, child_die, cu);
c906108c 13696 }
98751a41
JK
13697 else if (child_die->tag == DW_TAG_typedef)
13698 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13699 else if (child_die->tag == DW_TAG_template_type_param
13700 || child_die->tag == DW_TAG_template_value_param)
13701 {
13702 struct symbol *arg = new_symbol (child_die, NULL, cu);
13703
f1078f66
DJ
13704 if (arg != NULL)
13705 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13706 }
13707
c906108c
SS
13708 child_die = sibling_die (child_die);
13709 }
13710
34eaf542
TT
13711 /* Attach template arguments to type. */
13712 if (! VEC_empty (symbolp, template_args))
13713 {
13714 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13715 TYPE_N_TEMPLATE_ARGUMENTS (type)
13716 = VEC_length (symbolp, template_args);
13717 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
13718 = XOBNEWVEC (&objfile->objfile_obstack,
13719 struct symbol *,
13720 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542
TT
13721 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13722 VEC_address (symbolp, template_args),
13723 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13724 * sizeof (struct symbol *)));
13725 VEC_free (symbolp, template_args);
13726 }
13727
c906108c
SS
13728 /* Attach fields and member functions to the type. */
13729 if (fi.nfields)
e7c27a73 13730 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13731 if (fi.nfnfields)
13732 {
e7c27a73 13733 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13734
c5aa993b 13735 /* Get the type which refers to the base class (possibly this
c906108c 13736 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13737 class from the DW_AT_containing_type attribute. This use of
13738 DW_AT_containing_type is a GNU extension. */
c906108c 13739
e142c38c 13740 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13741 {
e7c27a73 13742 struct type *t = die_containing_type (die, cu);
c906108c 13743
ae6ae975 13744 set_type_vptr_basetype (type, t);
c906108c
SS
13745 if (type == t)
13746 {
c906108c
SS
13747 int i;
13748
13749 /* Our own class provides vtbl ptr. */
13750 for (i = TYPE_NFIELDS (t) - 1;
13751 i >= TYPE_N_BASECLASSES (t);
13752 --i)
13753 {
0d5cff50 13754 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13755
1168df01 13756 if (is_vtable_name (fieldname, cu))
c906108c 13757 {
ae6ae975 13758 set_type_vptr_fieldno (type, i);
c906108c
SS
13759 break;
13760 }
13761 }
13762
13763 /* Complain if virtual function table field not found. */
13764 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13765 complaint (&symfile_complaints,
3e43a32a
MS
13766 _("virtual function table pointer "
13767 "not found when defining class '%s'"),
4d3c2250
KB
13768 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13769 "");
c906108c
SS
13770 }
13771 else
13772 {
ae6ae975 13773 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13774 }
13775 }
f6235d4c 13776 else if (cu->producer
61012eef 13777 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13778 {
13779 /* The IBM XLC compiler does not provide direct indication
13780 of the containing type, but the vtable pointer is
13781 always named __vfp. */
13782
13783 int i;
13784
13785 for (i = TYPE_NFIELDS (type) - 1;
13786 i >= TYPE_N_BASECLASSES (type);
13787 --i)
13788 {
13789 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13790 {
ae6ae975
DE
13791 set_type_vptr_fieldno (type, i);
13792 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13793 break;
13794 }
13795 }
13796 }
c906108c 13797 }
98751a41
JK
13798
13799 /* Copy fi.typedef_field_list linked list elements content into the
13800 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13801 if (fi.typedef_field_list)
13802 {
13803 int i = fi.typedef_field_list_count;
13804
a0d7a4ff 13805 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 13806 TYPE_TYPEDEF_FIELD_ARRAY (type)
224c3ddb
SM
13807 = ((struct typedef_field *)
13808 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
98751a41
JK
13809 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13810
13811 /* Reverse the list order to keep the debug info elements order. */
13812 while (--i >= 0)
13813 {
13814 struct typedef_field *dest, *src;
6e70227d 13815
98751a41
JK
13816 dest = &TYPE_TYPEDEF_FIELD (type, i);
13817 src = &fi.typedef_field_list->field;
13818 fi.typedef_field_list = fi.typedef_field_list->next;
13819 *dest = *src;
13820 }
13821 }
c767944b
DJ
13822
13823 do_cleanups (back_to);
c906108c 13824 }
63d06c5c 13825
bb5ed363 13826 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13827
90aeadfc
DC
13828 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13829 snapshots) has been known to create a die giving a declaration
13830 for a class that has, as a child, a die giving a definition for a
13831 nested class. So we have to process our children even if the
13832 current die is a declaration. Normally, of course, a declaration
13833 won't have any children at all. */
134d01f1 13834
ca040673
DE
13835 child_die = die->child;
13836
90aeadfc
DC
13837 while (child_die != NULL && child_die->tag)
13838 {
13839 if (child_die->tag == DW_TAG_member
13840 || child_die->tag == DW_TAG_variable
34eaf542
TT
13841 || child_die->tag == DW_TAG_inheritance
13842 || child_die->tag == DW_TAG_template_value_param
13843 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13844 {
90aeadfc 13845 /* Do nothing. */
134d01f1 13846 }
90aeadfc
DC
13847 else
13848 process_die (child_die, cu);
134d01f1 13849
90aeadfc 13850 child_die = sibling_die (child_die);
134d01f1
DJ
13851 }
13852
fa4028e9
JB
13853 /* Do not consider external references. According to the DWARF standard,
13854 these DIEs are identified by the fact that they have no byte_size
13855 attribute, and a declaration attribute. */
13856 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13857 || !die_is_declaration (die, cu))
c767944b 13858 new_symbol (die, type, cu);
134d01f1
DJ
13859}
13860
55426c9d
JB
13861/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13862 update TYPE using some information only available in DIE's children. */
13863
13864static void
13865update_enumeration_type_from_children (struct die_info *die,
13866 struct type *type,
13867 struct dwarf2_cu *cu)
13868{
60f7655a 13869 struct die_info *child_die;
55426c9d
JB
13870 int unsigned_enum = 1;
13871 int flag_enum = 1;
13872 ULONGEST mask = 0;
55426c9d 13873
8268c778 13874 auto_obstack obstack;
55426c9d 13875
60f7655a
DE
13876 for (child_die = die->child;
13877 child_die != NULL && child_die->tag;
13878 child_die = sibling_die (child_die))
55426c9d
JB
13879 {
13880 struct attribute *attr;
13881 LONGEST value;
13882 const gdb_byte *bytes;
13883 struct dwarf2_locexpr_baton *baton;
13884 const char *name;
60f7655a 13885
55426c9d
JB
13886 if (child_die->tag != DW_TAG_enumerator)
13887 continue;
13888
13889 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13890 if (attr == NULL)
13891 continue;
13892
13893 name = dwarf2_name (child_die, cu);
13894 if (name == NULL)
13895 name = "<anonymous enumerator>";
13896
13897 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13898 &value, &bytes, &baton);
13899 if (value < 0)
13900 {
13901 unsigned_enum = 0;
13902 flag_enum = 0;
13903 }
13904 else if ((mask & value) != 0)
13905 flag_enum = 0;
13906 else
13907 mask |= value;
13908
13909 /* If we already know that the enum type is neither unsigned, nor
13910 a flag type, no need to look at the rest of the enumerates. */
13911 if (!unsigned_enum && !flag_enum)
13912 break;
55426c9d
JB
13913 }
13914
13915 if (unsigned_enum)
13916 TYPE_UNSIGNED (type) = 1;
13917 if (flag_enum)
13918 TYPE_FLAG_ENUM (type) = 1;
55426c9d
JB
13919}
13920
134d01f1
DJ
13921/* Given a DW_AT_enumeration_type die, set its type. We do not
13922 complete the type's fields yet, or create any symbols. */
c906108c 13923
f792889a 13924static struct type *
134d01f1 13925read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13926{
e7c27a73 13927 struct objfile *objfile = cu->objfile;
c906108c 13928 struct type *type;
c906108c 13929 struct attribute *attr;
0114d602 13930 const char *name;
134d01f1 13931
348e048f
DE
13932 /* If the definition of this type lives in .debug_types, read that type.
13933 Don't follow DW_AT_specification though, that will take us back up
13934 the chain and we want to go down. */
45e58e77 13935 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13936 if (attr)
13937 {
ac9ec31b 13938 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13939
ac9ec31b 13940 /* The type's CU may not be the same as CU.
02142a6c 13941 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13942 return set_die_type (die, type, cu);
13943 }
13944
c906108c
SS
13945 type = alloc_type (objfile);
13946
13947 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13948 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13949 if (name != NULL)
7d455152 13950 TYPE_TAG_NAME (type) = name;
c906108c 13951
0626fc76
TT
13952 attr = dwarf2_attr (die, DW_AT_type, cu);
13953 if (attr != NULL)
13954 {
13955 struct type *underlying_type = die_type (die, cu);
13956
13957 TYPE_TARGET_TYPE (type) = underlying_type;
13958 }
13959
e142c38c 13960 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13961 if (attr)
13962 {
13963 TYPE_LENGTH (type) = DW_UNSND (attr);
13964 }
13965 else
13966 {
13967 TYPE_LENGTH (type) = 0;
13968 }
13969
137033e9
JB
13970 /* The enumeration DIE can be incomplete. In Ada, any type can be
13971 declared as private in the package spec, and then defined only
13972 inside the package body. Such types are known as Taft Amendment
13973 Types. When another package uses such a type, an incomplete DIE
13974 may be generated by the compiler. */
02eb380e 13975 if (die_is_declaration (die, cu))
876cecd0 13976 TYPE_STUB (type) = 1;
02eb380e 13977
0626fc76
TT
13978 /* Finish the creation of this type by using the enum's children.
13979 We must call this even when the underlying type has been provided
13980 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13981 update_enumeration_type_from_children (die, type, cu);
13982
0626fc76
TT
13983 /* If this type has an underlying type that is not a stub, then we
13984 may use its attributes. We always use the "unsigned" attribute
13985 in this situation, because ordinarily we guess whether the type
13986 is unsigned -- but the guess can be wrong and the underlying type
13987 can tell us the reality. However, we defer to a local size
13988 attribute if one exists, because this lets the compiler override
13989 the underlying type if needed. */
13990 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13991 {
13992 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13993 if (TYPE_LENGTH (type) == 0)
13994 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13995 }
13996
3d567982
TT
13997 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13998
f792889a 13999 return set_die_type (die, type, cu);
134d01f1
DJ
14000}
14001
14002/* Given a pointer to a die which begins an enumeration, process all
14003 the dies that define the members of the enumeration, and create the
14004 symbol for the enumeration type.
14005
14006 NOTE: We reverse the order of the element list. */
14007
14008static void
14009process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
14010{
f792889a 14011 struct type *this_type;
134d01f1 14012
f792889a
DJ
14013 this_type = get_die_type (die, cu);
14014 if (this_type == NULL)
14015 this_type = read_enumeration_type (die, cu);
9dc481d3 14016
639d11d3 14017 if (die->child != NULL)
c906108c 14018 {
9dc481d3
DE
14019 struct die_info *child_die;
14020 struct symbol *sym;
14021 struct field *fields = NULL;
14022 int num_fields = 0;
15d034d0 14023 const char *name;
9dc481d3 14024
639d11d3 14025 child_die = die->child;
c906108c
SS
14026 while (child_die && child_die->tag)
14027 {
14028 if (child_die->tag != DW_TAG_enumerator)
14029 {
e7c27a73 14030 process_die (child_die, cu);
c906108c
SS
14031 }
14032 else
14033 {
39cbfefa
DJ
14034 name = dwarf2_name (child_die, cu);
14035 if (name)
c906108c 14036 {
f792889a 14037 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
14038
14039 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
14040 {
14041 fields = (struct field *)
14042 xrealloc (fields,
14043 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 14044 * sizeof (struct field));
c906108c
SS
14045 }
14046
3567439c 14047 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 14048 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 14049 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
14050 FIELD_BITSIZE (fields[num_fields]) = 0;
14051
14052 num_fields++;
14053 }
14054 }
14055
14056 child_die = sibling_die (child_die);
14057 }
14058
14059 if (num_fields)
14060 {
f792889a
DJ
14061 TYPE_NFIELDS (this_type) = num_fields;
14062 TYPE_FIELDS (this_type) = (struct field *)
14063 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
14064 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 14065 sizeof (struct field) * num_fields);
b8c9b27d 14066 xfree (fields);
c906108c 14067 }
c906108c 14068 }
134d01f1 14069
6c83ed52
TT
14070 /* If we are reading an enum from a .debug_types unit, and the enum
14071 is a declaration, and the enum is not the signatured type in the
14072 unit, then we do not want to add a symbol for it. Adding a
14073 symbol would in some cases obscure the true definition of the
14074 enum, giving users an incomplete type when the definition is
14075 actually available. Note that we do not want to do this for all
14076 enums which are just declarations, because C++0x allows forward
14077 enum declarations. */
3019eac3 14078 if (cu->per_cu->is_debug_types
6c83ed52
TT
14079 && die_is_declaration (die, cu))
14080 {
52dc124a 14081 struct signatured_type *sig_type;
6c83ed52 14082
c0f78cd4 14083 sig_type = (struct signatured_type *) cu->per_cu;
9c541725
PA
14084 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14085 if (sig_type->type_offset_in_section != die->sect_off)
6c83ed52
TT
14086 return;
14087 }
14088
f792889a 14089 new_symbol (die, this_type, cu);
c906108c
SS
14090}
14091
14092/* Extract all information from a DW_TAG_array_type DIE and put it in
14093 the DIE's type field. For now, this only handles one dimensional
14094 arrays. */
14095
f792889a 14096static struct type *
e7c27a73 14097read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14098{
e7c27a73 14099 struct objfile *objfile = cu->objfile;
c906108c 14100 struct die_info *child_die;
7e314c57 14101 struct type *type;
c906108c
SS
14102 struct type *element_type, *range_type, *index_type;
14103 struct type **range_types = NULL;
14104 struct attribute *attr;
14105 int ndim = 0;
14106 struct cleanup *back_to;
15d034d0 14107 const char *name;
dc53a7ad 14108 unsigned int bit_stride = 0;
c906108c 14109
e7c27a73 14110 element_type = die_type (die, cu);
c906108c 14111
7e314c57
JK
14112 /* The die_type call above may have already set the type for this DIE. */
14113 type = get_die_type (die, cu);
14114 if (type)
14115 return type;
14116
dc53a7ad
JB
14117 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14118 if (attr != NULL)
14119 bit_stride = DW_UNSND (attr) * 8;
14120
14121 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14122 if (attr != NULL)
14123 bit_stride = DW_UNSND (attr);
14124
c906108c
SS
14125 /* Irix 6.2 native cc creates array types without children for
14126 arrays with unspecified length. */
639d11d3 14127 if (die->child == NULL)
c906108c 14128 {
46bf5051 14129 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14130 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
14131 type = create_array_type_with_stride (NULL, element_type, range_type,
14132 bit_stride);
f792889a 14133 return set_die_type (die, type, cu);
c906108c
SS
14134 }
14135
14136 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 14137 child_die = die->child;
c906108c
SS
14138 while (child_die && child_die->tag)
14139 {
14140 if (child_die->tag == DW_TAG_subrange_type)
14141 {
f792889a 14142 struct type *child_type = read_type_die (child_die, cu);
9a619af0 14143
f792889a 14144 if (child_type != NULL)
a02abb62 14145 {
0963b4bd
MS
14146 /* The range type was succesfully read. Save it for the
14147 array type creation. */
a02abb62
JB
14148 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
14149 {
14150 range_types = (struct type **)
14151 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
14152 * sizeof (struct type *));
14153 if (ndim == 0)
14154 make_cleanup (free_current_contents, &range_types);
14155 }
f792889a 14156 range_types[ndim++] = child_type;
a02abb62 14157 }
c906108c
SS
14158 }
14159 child_die = sibling_die (child_die);
14160 }
14161
14162 /* Dwarf2 dimensions are output from left to right, create the
14163 necessary array types in backwards order. */
7ca2d3a3 14164
c906108c 14165 type = element_type;
7ca2d3a3
DL
14166
14167 if (read_array_order (die, cu) == DW_ORD_col_major)
14168 {
14169 int i = 0;
9a619af0 14170
7ca2d3a3 14171 while (i < ndim)
dc53a7ad
JB
14172 type = create_array_type_with_stride (NULL, type, range_types[i++],
14173 bit_stride);
7ca2d3a3
DL
14174 }
14175 else
14176 {
14177 while (ndim-- > 0)
dc53a7ad
JB
14178 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14179 bit_stride);
7ca2d3a3 14180 }
c906108c 14181
f5f8a009
EZ
14182 /* Understand Dwarf2 support for vector types (like they occur on
14183 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14184 array type. This is not part of the Dwarf2/3 standard yet, but a
14185 custom vendor extension. The main difference between a regular
14186 array and the vector variant is that vectors are passed by value
14187 to functions. */
e142c38c 14188 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 14189 if (attr)
ea37ba09 14190 make_vector_type (type);
f5f8a009 14191
dbc98a8b
KW
14192 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14193 implementation may choose to implement triple vectors using this
14194 attribute. */
14195 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14196 if (attr)
14197 {
14198 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14199 TYPE_LENGTH (type) = DW_UNSND (attr);
14200 else
3e43a32a
MS
14201 complaint (&symfile_complaints,
14202 _("DW_AT_byte_size for array type smaller "
14203 "than the total size of elements"));
dbc98a8b
KW
14204 }
14205
39cbfefa
DJ
14206 name = dwarf2_name (die, cu);
14207 if (name)
14208 TYPE_NAME (type) = name;
6e70227d 14209
0963b4bd 14210 /* Install the type in the die. */
7e314c57
JK
14211 set_die_type (die, type, cu);
14212
14213 /* set_die_type should be already done. */
b4ba55a1
JB
14214 set_descriptive_type (type, die, cu);
14215
c906108c
SS
14216 do_cleanups (back_to);
14217
7e314c57 14218 return type;
c906108c
SS
14219}
14220
7ca2d3a3 14221static enum dwarf_array_dim_ordering
6e70227d 14222read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
14223{
14224 struct attribute *attr;
14225
14226 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14227
aead7601
SM
14228 if (attr)
14229 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 14230
0963b4bd
MS
14231 /* GNU F77 is a special case, as at 08/2004 array type info is the
14232 opposite order to the dwarf2 specification, but data is still
14233 laid out as per normal fortran.
7ca2d3a3 14234
0963b4bd
MS
14235 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14236 version checking. */
7ca2d3a3 14237
905e0470
PM
14238 if (cu->language == language_fortran
14239 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
14240 {
14241 return DW_ORD_row_major;
14242 }
14243
6e70227d 14244 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
14245 {
14246 case array_column_major:
14247 return DW_ORD_col_major;
14248 case array_row_major:
14249 default:
14250 return DW_ORD_row_major;
14251 };
14252}
14253
72019c9c 14254/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 14255 the DIE's type field. */
72019c9c 14256
f792889a 14257static struct type *
72019c9c
GM
14258read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14259{
7e314c57
JK
14260 struct type *domain_type, *set_type;
14261 struct attribute *attr;
f792889a 14262
7e314c57
JK
14263 domain_type = die_type (die, cu);
14264
14265 /* The die_type call above may have already set the type for this DIE. */
14266 set_type = get_die_type (die, cu);
14267 if (set_type)
14268 return set_type;
14269
14270 set_type = create_set_type (NULL, domain_type);
14271
14272 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
14273 if (attr)
14274 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 14275
f792889a 14276 return set_die_type (die, set_type, cu);
72019c9c 14277}
7ca2d3a3 14278
0971de02
TT
14279/* A helper for read_common_block that creates a locexpr baton.
14280 SYM is the symbol which we are marking as computed.
14281 COMMON_DIE is the DIE for the common block.
14282 COMMON_LOC is the location expression attribute for the common
14283 block itself.
14284 MEMBER_LOC is the location expression attribute for the particular
14285 member of the common block that we are processing.
14286 CU is the CU from which the above come. */
14287
14288static void
14289mark_common_block_symbol_computed (struct symbol *sym,
14290 struct die_info *common_die,
14291 struct attribute *common_loc,
14292 struct attribute *member_loc,
14293 struct dwarf2_cu *cu)
14294{
14295 struct objfile *objfile = dwarf2_per_objfile->objfile;
14296 struct dwarf2_locexpr_baton *baton;
14297 gdb_byte *ptr;
14298 unsigned int cu_off;
14299 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14300 LONGEST offset = 0;
14301
14302 gdb_assert (common_loc && member_loc);
14303 gdb_assert (attr_form_is_block (common_loc));
14304 gdb_assert (attr_form_is_block (member_loc)
14305 || attr_form_is_constant (member_loc));
14306
8d749320 14307 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
14308 baton->per_cu = cu->per_cu;
14309 gdb_assert (baton->per_cu);
14310
14311 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14312
14313 if (attr_form_is_constant (member_loc))
14314 {
14315 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14316 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14317 }
14318 else
14319 baton->size += DW_BLOCK (member_loc)->size;
14320
224c3ddb 14321 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
14322 baton->data = ptr;
14323
14324 *ptr++ = DW_OP_call4;
9c541725 14325 cu_off = common_die->sect_off - cu->per_cu->sect_off;
0971de02
TT
14326 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14327 ptr += 4;
14328
14329 if (attr_form_is_constant (member_loc))
14330 {
14331 *ptr++ = DW_OP_addr;
14332 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14333 ptr += cu->header.addr_size;
14334 }
14335 else
14336 {
14337 /* We have to copy the data here, because DW_OP_call4 will only
14338 use a DW_AT_location attribute. */
14339 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14340 ptr += DW_BLOCK (member_loc)->size;
14341 }
14342
14343 *ptr++ = DW_OP_plus;
14344 gdb_assert (ptr - baton->data == baton->size);
14345
0971de02 14346 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 14347 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
14348}
14349
4357ac6c
TT
14350/* Create appropriate locally-scoped variables for all the
14351 DW_TAG_common_block entries. Also create a struct common_block
14352 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14353 is used to sepate the common blocks name namespace from regular
14354 variable names. */
c906108c
SS
14355
14356static void
e7c27a73 14357read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14358{
0971de02
TT
14359 struct attribute *attr;
14360
14361 attr = dwarf2_attr (die, DW_AT_location, cu);
14362 if (attr)
14363 {
14364 /* Support the .debug_loc offsets. */
14365 if (attr_form_is_block (attr))
14366 {
14367 /* Ok. */
14368 }
14369 else if (attr_form_is_section_offset (attr))
14370 {
14371 dwarf2_complex_location_expr_complaint ();
14372 attr = NULL;
14373 }
14374 else
14375 {
14376 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14377 "common block member");
14378 attr = NULL;
14379 }
14380 }
14381
639d11d3 14382 if (die->child != NULL)
c906108c 14383 {
4357ac6c
TT
14384 struct objfile *objfile = cu->objfile;
14385 struct die_info *child_die;
14386 size_t n_entries = 0, size;
14387 struct common_block *common_block;
14388 struct symbol *sym;
74ac6d43 14389
4357ac6c
TT
14390 for (child_die = die->child;
14391 child_die && child_die->tag;
14392 child_die = sibling_die (child_die))
14393 ++n_entries;
14394
14395 size = (sizeof (struct common_block)
14396 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
14397 common_block
14398 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14399 size);
4357ac6c
TT
14400 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14401 common_block->n_entries = 0;
14402
14403 for (child_die = die->child;
14404 child_die && child_die->tag;
14405 child_die = sibling_die (child_die))
14406 {
14407 /* Create the symbol in the DW_TAG_common_block block in the current
14408 symbol scope. */
e7c27a73 14409 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
14410 if (sym != NULL)
14411 {
14412 struct attribute *member_loc;
14413
14414 common_block->contents[common_block->n_entries++] = sym;
14415
14416 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14417 cu);
14418 if (member_loc)
14419 {
14420 /* GDB has handled this for a long time, but it is
14421 not specified by DWARF. It seems to have been
14422 emitted by gfortran at least as recently as:
14423 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14424 complaint (&symfile_complaints,
14425 _("Variable in common block has "
14426 "DW_AT_data_member_location "
14427 "- DIE at 0x%x [in module %s]"),
9c541725 14428 to_underlying (child_die->sect_off),
4262abfb 14429 objfile_name (cu->objfile));
0971de02
TT
14430
14431 if (attr_form_is_section_offset (member_loc))
14432 dwarf2_complex_location_expr_complaint ();
14433 else if (attr_form_is_constant (member_loc)
14434 || attr_form_is_block (member_loc))
14435 {
14436 if (attr)
14437 mark_common_block_symbol_computed (sym, die, attr,
14438 member_loc, cu);
14439 }
14440 else
14441 dwarf2_complex_location_expr_complaint ();
14442 }
14443 }
c906108c 14444 }
4357ac6c
TT
14445
14446 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14447 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14448 }
14449}
14450
0114d602 14451/* Create a type for a C++ namespace. */
d9fa45fe 14452
0114d602
DJ
14453static struct type *
14454read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14455{
e7c27a73 14456 struct objfile *objfile = cu->objfile;
0114d602 14457 const char *previous_prefix, *name;
9219021c 14458 int is_anonymous;
0114d602
DJ
14459 struct type *type;
14460
14461 /* For extensions, reuse the type of the original namespace. */
14462 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14463 {
14464 struct die_info *ext_die;
14465 struct dwarf2_cu *ext_cu = cu;
9a619af0 14466
0114d602
DJ
14467 ext_die = dwarf2_extension (die, &ext_cu);
14468 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14469
14470 /* EXT_CU may not be the same as CU.
02142a6c 14471 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14472 return set_die_type (die, type, cu);
14473 }
9219021c 14474
e142c38c 14475 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14476
14477 /* Now build the name of the current namespace. */
14478
0114d602
DJ
14479 previous_prefix = determine_prefix (die, cu);
14480 if (previous_prefix[0] != '\0')
14481 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14482 previous_prefix, name, 0, cu);
0114d602
DJ
14483
14484 /* Create the type. */
19f392bc 14485 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
0114d602
DJ
14486 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14487
60531b24 14488 return set_die_type (die, type, cu);
0114d602
DJ
14489}
14490
22cee43f 14491/* Read a namespace scope. */
0114d602
DJ
14492
14493static void
14494read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14495{
14496 struct objfile *objfile = cu->objfile;
0114d602 14497 int is_anonymous;
9219021c 14498
5c4e30ca
DC
14499 /* Add a symbol associated to this if we haven't seen the namespace
14500 before. Also, add a using directive if it's an anonymous
14501 namespace. */
9219021c 14502
f2f0e013 14503 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14504 {
14505 struct type *type;
14506
0114d602 14507 type = read_type_die (die, cu);
e7c27a73 14508 new_symbol (die, type, cu);
5c4e30ca 14509
e8e80198 14510 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14511 if (is_anonymous)
0114d602
DJ
14512 {
14513 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14514
22cee43f
PMR
14515 add_using_directive (using_directives (cu->language),
14516 previous_prefix, TYPE_NAME (type), NULL,
14517 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14518 }
5c4e30ca 14519 }
9219021c 14520
639d11d3 14521 if (die->child != NULL)
d9fa45fe 14522 {
639d11d3 14523 struct die_info *child_die = die->child;
6e70227d 14524
d9fa45fe
DC
14525 while (child_die && child_die->tag)
14526 {
e7c27a73 14527 process_die (child_die, cu);
d9fa45fe
DC
14528 child_die = sibling_die (child_die);
14529 }
14530 }
38d518c9
EZ
14531}
14532
f55ee35c
JK
14533/* Read a Fortran module as type. This DIE can be only a declaration used for
14534 imported module. Still we need that type as local Fortran "use ... only"
14535 declaration imports depend on the created type in determine_prefix. */
14536
14537static struct type *
14538read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14539{
14540 struct objfile *objfile = cu->objfile;
15d034d0 14541 const char *module_name;
f55ee35c
JK
14542 struct type *type;
14543
14544 module_name = dwarf2_name (die, cu);
14545 if (!module_name)
3e43a32a
MS
14546 complaint (&symfile_complaints,
14547 _("DW_TAG_module has no name, offset 0x%x"),
9c541725 14548 to_underlying (die->sect_off));
19f392bc 14549 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
f55ee35c
JK
14550
14551 /* determine_prefix uses TYPE_TAG_NAME. */
14552 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14553
14554 return set_die_type (die, type, cu);
14555}
14556
5d7cb8df
JK
14557/* Read a Fortran module. */
14558
14559static void
14560read_module (struct die_info *die, struct dwarf2_cu *cu)
14561{
14562 struct die_info *child_die = die->child;
530e8392
KB
14563 struct type *type;
14564
14565 type = read_type_die (die, cu);
14566 new_symbol (die, type, cu);
5d7cb8df 14567
5d7cb8df
JK
14568 while (child_die && child_die->tag)
14569 {
14570 process_die (child_die, cu);
14571 child_die = sibling_die (child_die);
14572 }
14573}
14574
38d518c9
EZ
14575/* Return the name of the namespace represented by DIE. Set
14576 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14577 namespace. */
14578
14579static const char *
e142c38c 14580namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14581{
14582 struct die_info *current_die;
14583 const char *name = NULL;
14584
14585 /* Loop through the extensions until we find a name. */
14586
14587 for (current_die = die;
14588 current_die != NULL;
f2f0e013 14589 current_die = dwarf2_extension (die, &cu))
38d518c9 14590 {
96553a0c
DE
14591 /* We don't use dwarf2_name here so that we can detect the absence
14592 of a name -> anonymous namespace. */
7d45c7c3 14593 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 14594
38d518c9
EZ
14595 if (name != NULL)
14596 break;
14597 }
14598
14599 /* Is it an anonymous namespace? */
14600
14601 *is_anonymous = (name == NULL);
14602 if (*is_anonymous)
2b1dbab0 14603 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14604
14605 return name;
d9fa45fe
DC
14606}
14607
c906108c
SS
14608/* Extract all information from a DW_TAG_pointer_type DIE and add to
14609 the user defined type vector. */
14610
f792889a 14611static struct type *
e7c27a73 14612read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14613{
5e2b427d 14614 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14615 struct comp_unit_head *cu_header = &cu->header;
c906108c 14616 struct type *type;
8b2dbe47
KB
14617 struct attribute *attr_byte_size;
14618 struct attribute *attr_address_class;
14619 int byte_size, addr_class;
7e314c57
JK
14620 struct type *target_type;
14621
14622 target_type = die_type (die, cu);
c906108c 14623
7e314c57
JK
14624 /* The die_type call above may have already set the type for this DIE. */
14625 type = get_die_type (die, cu);
14626 if (type)
14627 return type;
14628
14629 type = lookup_pointer_type (target_type);
8b2dbe47 14630
e142c38c 14631 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14632 if (attr_byte_size)
14633 byte_size = DW_UNSND (attr_byte_size);
c906108c 14634 else
8b2dbe47
KB
14635 byte_size = cu_header->addr_size;
14636
e142c38c 14637 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14638 if (attr_address_class)
14639 addr_class = DW_UNSND (attr_address_class);
14640 else
14641 addr_class = DW_ADDR_none;
14642
14643 /* If the pointer size or address class is different than the
14644 default, create a type variant marked as such and set the
14645 length accordingly. */
14646 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14647 {
5e2b427d 14648 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14649 {
14650 int type_flags;
14651
849957d9 14652 type_flags = gdbarch_address_class_type_flags
5e2b427d 14653 (gdbarch, byte_size, addr_class);
876cecd0
TT
14654 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14655 == 0);
8b2dbe47
KB
14656 type = make_type_with_address_space (type, type_flags);
14657 }
14658 else if (TYPE_LENGTH (type) != byte_size)
14659 {
3e43a32a
MS
14660 complaint (&symfile_complaints,
14661 _("invalid pointer size %d"), byte_size);
8b2dbe47 14662 }
6e70227d 14663 else
9a619af0
MS
14664 {
14665 /* Should we also complain about unhandled address classes? */
14666 }
c906108c 14667 }
8b2dbe47
KB
14668
14669 TYPE_LENGTH (type) = byte_size;
f792889a 14670 return set_die_type (die, type, cu);
c906108c
SS
14671}
14672
14673/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14674 the user defined type vector. */
14675
f792889a 14676static struct type *
e7c27a73 14677read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14678{
14679 struct type *type;
14680 struct type *to_type;
14681 struct type *domain;
14682
e7c27a73
DJ
14683 to_type = die_type (die, cu);
14684 domain = die_containing_type (die, cu);
0d5de010 14685
7e314c57
JK
14686 /* The calls above may have already set the type for this DIE. */
14687 type = get_die_type (die, cu);
14688 if (type)
14689 return type;
14690
0d5de010
DJ
14691 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14692 type = lookup_methodptr_type (to_type);
7078baeb
TT
14693 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14694 {
14695 struct type *new_type = alloc_type (cu->objfile);
14696
14697 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14698 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14699 TYPE_VARARGS (to_type));
14700 type = lookup_methodptr_type (new_type);
14701 }
0d5de010
DJ
14702 else
14703 type = lookup_memberptr_type (to_type, domain);
c906108c 14704
f792889a 14705 return set_die_type (die, type, cu);
c906108c
SS
14706}
14707
4297a3f0 14708/* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
c906108c
SS
14709 the user defined type vector. */
14710
f792889a 14711static struct type *
4297a3f0
AV
14712read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
14713 enum type_code refcode)
c906108c 14714{
e7c27a73 14715 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14716 struct type *type, *target_type;
c906108c
SS
14717 struct attribute *attr;
14718
4297a3f0
AV
14719 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
14720
7e314c57
JK
14721 target_type = die_type (die, cu);
14722
14723 /* The die_type call above may have already set the type for this DIE. */
14724 type = get_die_type (die, cu);
14725 if (type)
14726 return type;
14727
4297a3f0 14728 type = lookup_reference_type (target_type, refcode);
e142c38c 14729 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14730 if (attr)
14731 {
14732 TYPE_LENGTH (type) = DW_UNSND (attr);
14733 }
14734 else
14735 {
107d2387 14736 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14737 }
f792889a 14738 return set_die_type (die, type, cu);
c906108c
SS
14739}
14740
cf363f18
MW
14741/* Add the given cv-qualifiers to the element type of the array. GCC
14742 outputs DWARF type qualifiers that apply to an array, not the
14743 element type. But GDB relies on the array element type to carry
14744 the cv-qualifiers. This mimics section 6.7.3 of the C99
14745 specification. */
14746
14747static struct type *
14748add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14749 struct type *base_type, int cnst, int voltl)
14750{
14751 struct type *el_type, *inner_array;
14752
14753 base_type = copy_type (base_type);
14754 inner_array = base_type;
14755
14756 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14757 {
14758 TYPE_TARGET_TYPE (inner_array) =
14759 copy_type (TYPE_TARGET_TYPE (inner_array));
14760 inner_array = TYPE_TARGET_TYPE (inner_array);
14761 }
14762
14763 el_type = TYPE_TARGET_TYPE (inner_array);
14764 cnst |= TYPE_CONST (el_type);
14765 voltl |= TYPE_VOLATILE (el_type);
14766 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14767
14768 return set_die_type (die, base_type, cu);
14769}
14770
f792889a 14771static struct type *
e7c27a73 14772read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14773{
f792889a 14774 struct type *base_type, *cv_type;
c906108c 14775
e7c27a73 14776 base_type = die_type (die, cu);
7e314c57
JK
14777
14778 /* The die_type call above may have already set the type for this DIE. */
14779 cv_type = get_die_type (die, cu);
14780 if (cv_type)
14781 return cv_type;
14782
2f608a3a
KW
14783 /* In case the const qualifier is applied to an array type, the element type
14784 is so qualified, not the array type (section 6.7.3 of C99). */
14785 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14786 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14787
f792889a
DJ
14788 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14789 return set_die_type (die, cv_type, cu);
c906108c
SS
14790}
14791
f792889a 14792static struct type *
e7c27a73 14793read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14794{
f792889a 14795 struct type *base_type, *cv_type;
c906108c 14796
e7c27a73 14797 base_type = die_type (die, cu);
7e314c57
JK
14798
14799 /* The die_type call above may have already set the type for this DIE. */
14800 cv_type = get_die_type (die, cu);
14801 if (cv_type)
14802 return cv_type;
14803
cf363f18
MW
14804 /* In case the volatile qualifier is applied to an array type, the
14805 element type is so qualified, not the array type (section 6.7.3
14806 of C99). */
14807 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14808 return add_array_cv_type (die, cu, base_type, 0, 1);
14809
f792889a
DJ
14810 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14811 return set_die_type (die, cv_type, cu);
c906108c
SS
14812}
14813
06d66ee9
TT
14814/* Handle DW_TAG_restrict_type. */
14815
14816static struct type *
14817read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14818{
14819 struct type *base_type, *cv_type;
14820
14821 base_type = die_type (die, cu);
14822
14823 /* The die_type call above may have already set the type for this DIE. */
14824 cv_type = get_die_type (die, cu);
14825 if (cv_type)
14826 return cv_type;
14827
14828 cv_type = make_restrict_type (base_type);
14829 return set_die_type (die, cv_type, cu);
14830}
14831
a2c2acaf
MW
14832/* Handle DW_TAG_atomic_type. */
14833
14834static struct type *
14835read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14836{
14837 struct type *base_type, *cv_type;
14838
14839 base_type = die_type (die, cu);
14840
14841 /* The die_type call above may have already set the type for this DIE. */
14842 cv_type = get_die_type (die, cu);
14843 if (cv_type)
14844 return cv_type;
14845
14846 cv_type = make_atomic_type (base_type);
14847 return set_die_type (die, cv_type, cu);
14848}
14849
c906108c
SS
14850/* Extract all information from a DW_TAG_string_type DIE and add to
14851 the user defined type vector. It isn't really a user defined type,
14852 but it behaves like one, with other DIE's using an AT_user_def_type
14853 attribute to reference it. */
14854
f792889a 14855static struct type *
e7c27a73 14856read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14857{
e7c27a73 14858 struct objfile *objfile = cu->objfile;
3b7538c0 14859 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14860 struct type *type, *range_type, *index_type, *char_type;
14861 struct attribute *attr;
14862 unsigned int length;
14863
e142c38c 14864 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14865 if (attr)
14866 {
14867 length = DW_UNSND (attr);
14868 }
14869 else
14870 {
0963b4bd 14871 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14872 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14873 if (attr)
14874 {
14875 length = DW_UNSND (attr);
14876 }
14877 else
14878 {
14879 length = 1;
14880 }
c906108c 14881 }
6ccb9162 14882
46bf5051 14883 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14884 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14885 char_type = language_string_char_type (cu->language_defn, gdbarch);
14886 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14887
f792889a 14888 return set_die_type (die, type, cu);
c906108c
SS
14889}
14890
4d804846
JB
14891/* Assuming that DIE corresponds to a function, returns nonzero
14892 if the function is prototyped. */
14893
14894static int
14895prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14896{
14897 struct attribute *attr;
14898
14899 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14900 if (attr && (DW_UNSND (attr) != 0))
14901 return 1;
14902
14903 /* The DWARF standard implies that the DW_AT_prototyped attribute
14904 is only meaninful for C, but the concept also extends to other
14905 languages that allow unprototyped functions (Eg: Objective C).
14906 For all other languages, assume that functions are always
14907 prototyped. */
14908 if (cu->language != language_c
14909 && cu->language != language_objc
14910 && cu->language != language_opencl)
14911 return 1;
14912
14913 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14914 prototyped and unprototyped functions; default to prototyped,
14915 since that is more common in modern code (and RealView warns
14916 about unprototyped functions). */
14917 if (producer_is_realview (cu->producer))
14918 return 1;
14919
14920 return 0;
14921}
14922
c906108c
SS
14923/* Handle DIES due to C code like:
14924
14925 struct foo
c5aa993b
JM
14926 {
14927 int (*funcp)(int a, long l);
14928 int b;
14929 };
c906108c 14930
0963b4bd 14931 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14932
f792889a 14933static struct type *
e7c27a73 14934read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14935{
bb5ed363 14936 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14937 struct type *type; /* Type that this function returns. */
14938 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14939 struct attribute *attr;
14940
e7c27a73 14941 type = die_type (die, cu);
7e314c57
JK
14942
14943 /* The die_type call above may have already set the type for this DIE. */
14944 ftype = get_die_type (die, cu);
14945 if (ftype)
14946 return ftype;
14947
0c8b41f1 14948 ftype = lookup_function_type (type);
c906108c 14949
4d804846 14950 if (prototyped_function_p (die, cu))
a6c727b2 14951 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14952
c055b101
CV
14953 /* Store the calling convention in the type if it's available in
14954 the subroutine die. Otherwise set the calling convention to
14955 the default value DW_CC_normal. */
14956 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14957 if (attr)
14958 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14959 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14960 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14961 else
14962 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14963
743649fd
MW
14964 /* Record whether the function returns normally to its caller or not
14965 if the DWARF producer set that information. */
14966 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14967 if (attr && (DW_UNSND (attr) != 0))
14968 TYPE_NO_RETURN (ftype) = 1;
14969
76c10ea2
GM
14970 /* We need to add the subroutine type to the die immediately so
14971 we don't infinitely recurse when dealing with parameters
0963b4bd 14972 declared as the same subroutine type. */
76c10ea2 14973 set_die_type (die, ftype, cu);
6e70227d 14974
639d11d3 14975 if (die->child != NULL)
c906108c 14976 {
bb5ed363 14977 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14978 struct die_info *child_die;
8072405b 14979 int nparams, iparams;
c906108c
SS
14980
14981 /* Count the number of parameters.
14982 FIXME: GDB currently ignores vararg functions, but knows about
14983 vararg member functions. */
8072405b 14984 nparams = 0;
639d11d3 14985 child_die = die->child;
c906108c
SS
14986 while (child_die && child_die->tag)
14987 {
14988 if (child_die->tag == DW_TAG_formal_parameter)
14989 nparams++;
14990 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14991 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14992 child_die = sibling_die (child_die);
14993 }
14994
14995 /* Allocate storage for parameters and fill them in. */
14996 TYPE_NFIELDS (ftype) = nparams;
14997 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14998 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14999
8072405b
JK
15000 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
15001 even if we error out during the parameters reading below. */
15002 for (iparams = 0; iparams < nparams; iparams++)
15003 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
15004
15005 iparams = 0;
639d11d3 15006 child_die = die->child;
c906108c
SS
15007 while (child_die && child_die->tag)
15008 {
15009 if (child_die->tag == DW_TAG_formal_parameter)
15010 {
3ce3b1ba
PA
15011 struct type *arg_type;
15012
15013 /* DWARF version 2 has no clean way to discern C++
15014 static and non-static member functions. G++ helps
15015 GDB by marking the first parameter for non-static
15016 member functions (which is the this pointer) as
15017 artificial. We pass this information to
15018 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15019
15020 DWARF version 3 added DW_AT_object_pointer, which GCC
15021 4.5 does not yet generate. */
e142c38c 15022 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
15023 if (attr)
15024 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
15025 else
9c37b5ae 15026 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
3ce3b1ba
PA
15027 arg_type = die_type (child_die, cu);
15028
15029 /* RealView does not mark THIS as const, which the testsuite
15030 expects. GCC marks THIS as const in method definitions,
15031 but not in the class specifications (GCC PR 43053). */
15032 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
15033 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
15034 {
15035 int is_this = 0;
15036 struct dwarf2_cu *arg_cu = cu;
15037 const char *name = dwarf2_name (child_die, cu);
15038
15039 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
15040 if (attr)
15041 {
15042 /* If the compiler emits this, use it. */
15043 if (follow_die_ref (die, attr, &arg_cu) == child_die)
15044 is_this = 1;
15045 }
15046 else if (name && strcmp (name, "this") == 0)
15047 /* Function definitions will have the argument names. */
15048 is_this = 1;
15049 else if (name == NULL && iparams == 0)
15050 /* Declarations may not have the names, so like
15051 elsewhere in GDB, assume an artificial first
15052 argument is "this". */
15053 is_this = 1;
15054
15055 if (is_this)
15056 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
15057 arg_type, 0);
15058 }
15059
15060 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
15061 iparams++;
15062 }
15063 child_die = sibling_die (child_die);
15064 }
15065 }
15066
76c10ea2 15067 return ftype;
c906108c
SS
15068}
15069
f792889a 15070static struct type *
e7c27a73 15071read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 15072{
e7c27a73 15073 struct objfile *objfile = cu->objfile;
0114d602 15074 const char *name = NULL;
3c8e0968 15075 struct type *this_type, *target_type;
c906108c 15076
94af9270 15077 name = dwarf2_full_name (NULL, die, cu);
19f392bc
UW
15078 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15079 TYPE_TARGET_STUB (this_type) = 1;
f792889a 15080 set_die_type (die, this_type, cu);
3c8e0968
DE
15081 target_type = die_type (die, cu);
15082 if (target_type != this_type)
15083 TYPE_TARGET_TYPE (this_type) = target_type;
15084 else
15085 {
15086 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15087 spec and cause infinite loops in GDB. */
15088 complaint (&symfile_complaints,
15089 _("Self-referential DW_TAG_typedef "
15090 "- DIE at 0x%x [in module %s]"),
9c541725 15091 to_underlying (die->sect_off), objfile_name (objfile));
3c8e0968
DE
15092 TYPE_TARGET_TYPE (this_type) = NULL;
15093 }
f792889a 15094 return this_type;
c906108c
SS
15095}
15096
9b790ce7
UW
15097/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15098 (which may be different from NAME) to the architecture back-end to allow
15099 it to guess the correct format if necessary. */
15100
15101static struct type *
15102dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15103 const char *name_hint)
15104{
15105 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15106 const struct floatformat **format;
15107 struct type *type;
15108
15109 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15110 if (format)
15111 type = init_float_type (objfile, bits, name, format);
15112 else
15113 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
15114
15115 return type;
15116}
15117
c906108c
SS
15118/* Find a representation of a given base type and install
15119 it in the TYPE field of the die. */
15120
f792889a 15121static struct type *
e7c27a73 15122read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 15123{
e7c27a73 15124 struct objfile *objfile = cu->objfile;
c906108c
SS
15125 struct type *type;
15126 struct attribute *attr;
19f392bc 15127 int encoding = 0, bits = 0;
15d034d0 15128 const char *name;
c906108c 15129
e142c38c 15130 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
15131 if (attr)
15132 {
15133 encoding = DW_UNSND (attr);
15134 }
e142c38c 15135 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
15136 if (attr)
15137 {
19f392bc 15138 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
c906108c 15139 }
39cbfefa 15140 name = dwarf2_name (die, cu);
6ccb9162 15141 if (!name)
c906108c 15142 {
6ccb9162
UW
15143 complaint (&symfile_complaints,
15144 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 15145 }
6ccb9162
UW
15146
15147 switch (encoding)
c906108c 15148 {
6ccb9162
UW
15149 case DW_ATE_address:
15150 /* Turn DW_ATE_address into a void * pointer. */
19f392bc
UW
15151 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
15152 type = init_pointer_type (objfile, bits, name, type);
6ccb9162
UW
15153 break;
15154 case DW_ATE_boolean:
19f392bc 15155 type = init_boolean_type (objfile, bits, 1, name);
6ccb9162
UW
15156 break;
15157 case DW_ATE_complex_float:
9b790ce7 15158 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
19f392bc 15159 type = init_complex_type (objfile, name, type);
6ccb9162
UW
15160 break;
15161 case DW_ATE_decimal_float:
19f392bc 15162 type = init_decfloat_type (objfile, bits, name);
6ccb9162
UW
15163 break;
15164 case DW_ATE_float:
9b790ce7 15165 type = dwarf2_init_float_type (objfile, bits, name, name);
6ccb9162
UW
15166 break;
15167 case DW_ATE_signed:
19f392bc 15168 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
15169 break;
15170 case DW_ATE_unsigned:
3b2b8fea
TT
15171 if (cu->language == language_fortran
15172 && name
61012eef 15173 && startswith (name, "character("))
19f392bc
UW
15174 type = init_character_type (objfile, bits, 1, name);
15175 else
15176 type = init_integer_type (objfile, bits, 1, name);
6ccb9162
UW
15177 break;
15178 case DW_ATE_signed_char:
6e70227d 15179 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
15180 || cu->language == language_pascal
15181 || cu->language == language_fortran)
19f392bc
UW
15182 type = init_character_type (objfile, bits, 0, name);
15183 else
15184 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
15185 break;
15186 case DW_ATE_unsigned_char:
868a0084 15187 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea 15188 || cu->language == language_pascal
c44af4eb
TT
15189 || cu->language == language_fortran
15190 || cu->language == language_rust)
19f392bc
UW
15191 type = init_character_type (objfile, bits, 1, name);
15192 else
15193 type = init_integer_type (objfile, bits, 1, name);
6ccb9162 15194 break;
75079b2b 15195 case DW_ATE_UTF:
53e710ac
PA
15196 {
15197 gdbarch *arch = get_objfile_arch (objfile);
15198
15199 if (bits == 16)
15200 type = builtin_type (arch)->builtin_char16;
15201 else if (bits == 32)
15202 type = builtin_type (arch)->builtin_char32;
15203 else
15204 {
15205 complaint (&symfile_complaints,
15206 _("unsupported DW_ATE_UTF bit size: '%d'"),
15207 bits);
15208 type = init_integer_type (objfile, bits, 1, name);
15209 }
15210 return set_die_type (die, type, cu);
15211 }
75079b2b
TT
15212 break;
15213
6ccb9162
UW
15214 default:
15215 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15216 dwarf_type_encoding_name (encoding));
19f392bc
UW
15217 type = init_type (objfile, TYPE_CODE_ERROR,
15218 bits / TARGET_CHAR_BIT, name);
6ccb9162 15219 break;
c906108c 15220 }
6ccb9162 15221
0114d602 15222 if (name && strcmp (name, "char") == 0)
876cecd0 15223 TYPE_NOSIGN (type) = 1;
0114d602 15224
f792889a 15225 return set_die_type (die, type, cu);
c906108c
SS
15226}
15227
80180f79
SA
15228/* Parse dwarf attribute if it's a block, reference or constant and put the
15229 resulting value of the attribute into struct bound_prop.
15230 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15231
15232static int
15233attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15234 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15235{
15236 struct dwarf2_property_baton *baton;
15237 struct obstack *obstack = &cu->objfile->objfile_obstack;
15238
15239 if (attr == NULL || prop == NULL)
15240 return 0;
15241
15242 if (attr_form_is_block (attr))
15243 {
8d749320 15244 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
15245 baton->referenced_type = NULL;
15246 baton->locexpr.per_cu = cu->per_cu;
15247 baton->locexpr.size = DW_BLOCK (attr)->size;
15248 baton->locexpr.data = DW_BLOCK (attr)->data;
15249 prop->data.baton = baton;
15250 prop->kind = PROP_LOCEXPR;
15251 gdb_assert (prop->data.baton != NULL);
15252 }
15253 else if (attr_form_is_ref (attr))
15254 {
15255 struct dwarf2_cu *target_cu = cu;
15256 struct die_info *target_die;
15257 struct attribute *target_attr;
15258
15259 target_die = follow_die_ref (die, attr, &target_cu);
15260 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
15261 if (target_attr == NULL)
15262 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15263 target_cu);
80180f79
SA
15264 if (target_attr == NULL)
15265 return 0;
15266
df25ebbd 15267 switch (target_attr->name)
80180f79 15268 {
df25ebbd
JB
15269 case DW_AT_location:
15270 if (attr_form_is_section_offset (target_attr))
15271 {
8d749320 15272 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
15273 baton->referenced_type = die_type (target_die, target_cu);
15274 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15275 prop->data.baton = baton;
15276 prop->kind = PROP_LOCLIST;
15277 gdb_assert (prop->data.baton != NULL);
15278 }
15279 else if (attr_form_is_block (target_attr))
15280 {
8d749320 15281 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
15282 baton->referenced_type = die_type (target_die, target_cu);
15283 baton->locexpr.per_cu = cu->per_cu;
15284 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15285 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15286 prop->data.baton = baton;
15287 prop->kind = PROP_LOCEXPR;
15288 gdb_assert (prop->data.baton != NULL);
15289 }
15290 else
15291 {
15292 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15293 "dynamic property");
15294 return 0;
15295 }
15296 break;
15297 case DW_AT_data_member_location:
15298 {
15299 LONGEST offset;
15300
15301 if (!handle_data_member_location (target_die, target_cu,
15302 &offset))
15303 return 0;
15304
8d749320 15305 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
15306 baton->referenced_type = read_type_die (target_die->parent,
15307 target_cu);
df25ebbd
JB
15308 baton->offset_info.offset = offset;
15309 baton->offset_info.type = die_type (target_die, target_cu);
15310 prop->data.baton = baton;
15311 prop->kind = PROP_ADDR_OFFSET;
15312 break;
15313 }
80180f79
SA
15314 }
15315 }
15316 else if (attr_form_is_constant (attr))
15317 {
15318 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15319 prop->kind = PROP_CONST;
15320 }
15321 else
15322 {
15323 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15324 dwarf2_name (die, cu));
15325 return 0;
15326 }
15327
15328 return 1;
15329}
15330
a02abb62
JB
15331/* Read the given DW_AT_subrange DIE. */
15332
f792889a 15333static struct type *
a02abb62
JB
15334read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15335{
4c9ad8c2 15336 struct type *base_type, *orig_base_type;
a02abb62
JB
15337 struct type *range_type;
15338 struct attribute *attr;
729efb13 15339 struct dynamic_prop low, high;
4fae6e18 15340 int low_default_is_valid;
c451ebe5 15341 int high_bound_is_count = 0;
15d034d0 15342 const char *name;
43bbcdc2 15343 LONGEST negative_mask;
e77813c8 15344
4c9ad8c2
TT
15345 orig_base_type = die_type (die, cu);
15346 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15347 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15348 creating the range type, but we use the result of check_typedef
15349 when examining properties of the type. */
15350 base_type = check_typedef (orig_base_type);
a02abb62 15351
7e314c57
JK
15352 /* The die_type call above may have already set the type for this DIE. */
15353 range_type = get_die_type (die, cu);
15354 if (range_type)
15355 return range_type;
15356
729efb13
SA
15357 low.kind = PROP_CONST;
15358 high.kind = PROP_CONST;
15359 high.data.const_val = 0;
15360
4fae6e18
JK
15361 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15362 omitting DW_AT_lower_bound. */
15363 switch (cu->language)
6e70227d 15364 {
4fae6e18
JK
15365 case language_c:
15366 case language_cplus:
729efb13 15367 low.data.const_val = 0;
4fae6e18
JK
15368 low_default_is_valid = 1;
15369 break;
15370 case language_fortran:
729efb13 15371 low.data.const_val = 1;
4fae6e18
JK
15372 low_default_is_valid = 1;
15373 break;
15374 case language_d:
4fae6e18 15375 case language_objc:
c44af4eb 15376 case language_rust:
729efb13 15377 low.data.const_val = 0;
4fae6e18
JK
15378 low_default_is_valid = (cu->header.version >= 4);
15379 break;
15380 case language_ada:
15381 case language_m2:
15382 case language_pascal:
729efb13 15383 low.data.const_val = 1;
4fae6e18
JK
15384 low_default_is_valid = (cu->header.version >= 4);
15385 break;
15386 default:
729efb13 15387 low.data.const_val = 0;
4fae6e18
JK
15388 low_default_is_valid = 0;
15389 break;
a02abb62
JB
15390 }
15391
e142c38c 15392 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 15393 if (attr)
11c1ba78 15394 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
15395 else if (!low_default_is_valid)
15396 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15397 "- DIE at 0x%x [in module %s]"),
9c541725 15398 to_underlying (die->sect_off), objfile_name (cu->objfile));
a02abb62 15399
e142c38c 15400 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 15401 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
15402 {
15403 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 15404 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 15405 {
c451ebe5
SA
15406 /* If bounds are constant do the final calculation here. */
15407 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15408 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15409 else
15410 high_bound_is_count = 1;
c2ff108b 15411 }
e77813c8
PM
15412 }
15413
15414 /* Dwarf-2 specifications explicitly allows to create subrange types
15415 without specifying a base type.
15416 In that case, the base type must be set to the type of
15417 the lower bound, upper bound or count, in that order, if any of these
15418 three attributes references an object that has a type.
15419 If no base type is found, the Dwarf-2 specifications say that
15420 a signed integer type of size equal to the size of an address should
15421 be used.
15422 For the following C code: `extern char gdb_int [];'
15423 GCC produces an empty range DIE.
15424 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 15425 high bound or count are not yet handled by this code. */
e77813c8
PM
15426 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15427 {
15428 struct objfile *objfile = cu->objfile;
15429 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15430 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15431 struct type *int_type = objfile_type (objfile)->builtin_int;
15432
15433 /* Test "int", "long int", and "long long int" objfile types,
15434 and select the first one having a size above or equal to the
15435 architecture address size. */
15436 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15437 base_type = int_type;
15438 else
15439 {
15440 int_type = objfile_type (objfile)->builtin_long;
15441 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15442 base_type = int_type;
15443 else
15444 {
15445 int_type = objfile_type (objfile)->builtin_long_long;
15446 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15447 base_type = int_type;
15448 }
15449 }
15450 }
a02abb62 15451
dbb9c2b1
JB
15452 /* Normally, the DWARF producers are expected to use a signed
15453 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15454 But this is unfortunately not always the case, as witnessed
15455 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15456 is used instead. To work around that ambiguity, we treat
15457 the bounds as signed, and thus sign-extend their values, when
15458 the base type is signed. */
6e70227d 15459 negative_mask =
66c6502d 15460 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
15461 if (low.kind == PROP_CONST
15462 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15463 low.data.const_val |= negative_mask;
15464 if (high.kind == PROP_CONST
15465 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15466 high.data.const_val |= negative_mask;
43bbcdc2 15467
729efb13 15468 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15469
c451ebe5
SA
15470 if (high_bound_is_count)
15471 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15472
c2ff108b
JK
15473 /* Ada expects an empty array on no boundary attributes. */
15474 if (attr == NULL && cu->language != language_ada)
729efb13 15475 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15476
39cbfefa
DJ
15477 name = dwarf2_name (die, cu);
15478 if (name)
15479 TYPE_NAME (range_type) = name;
6e70227d 15480
e142c38c 15481 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15482 if (attr)
15483 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15484
7e314c57
JK
15485 set_die_type (die, range_type, cu);
15486
15487 /* set_die_type should be already done. */
b4ba55a1
JB
15488 set_descriptive_type (range_type, die, cu);
15489
7e314c57 15490 return range_type;
a02abb62 15491}
6e70227d 15492
f792889a 15493static struct type *
81a17f79
JB
15494read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15495{
15496 struct type *type;
81a17f79 15497
81a17f79
JB
15498 /* For now, we only support the C meaning of an unspecified type: void. */
15499
19f392bc 15500 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
0114d602 15501 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15502
f792889a 15503 return set_die_type (die, type, cu);
81a17f79 15504}
a02abb62 15505
639d11d3
DC
15506/* Read a single die and all its descendents. Set the die's sibling
15507 field to NULL; set other fields in the die correctly, and set all
15508 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15509 location of the info_ptr after reading all of those dies. PARENT
15510 is the parent of the die in question. */
15511
15512static struct die_info *
dee91e82 15513read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15514 const gdb_byte *info_ptr,
15515 const gdb_byte **new_info_ptr,
dee91e82 15516 struct die_info *parent)
639d11d3
DC
15517{
15518 struct die_info *die;
d521ce57 15519 const gdb_byte *cur_ptr;
639d11d3
DC
15520 int has_children;
15521
bf6af496 15522 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15523 if (die == NULL)
15524 {
15525 *new_info_ptr = cur_ptr;
15526 return NULL;
15527 }
93311388 15528 store_in_ref_table (die, reader->cu);
639d11d3
DC
15529
15530 if (has_children)
bf6af496 15531 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15532 else
15533 {
15534 die->child = NULL;
15535 *new_info_ptr = cur_ptr;
15536 }
15537
15538 die->sibling = NULL;
15539 die->parent = parent;
15540 return die;
15541}
15542
15543/* Read a die, all of its descendents, and all of its siblings; set
15544 all of the fields of all of the dies correctly. Arguments are as
15545 in read_die_and_children. */
15546
15547static struct die_info *
bf6af496 15548read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15549 const gdb_byte *info_ptr,
15550 const gdb_byte **new_info_ptr,
bf6af496 15551 struct die_info *parent)
639d11d3
DC
15552{
15553 struct die_info *first_die, *last_sibling;
d521ce57 15554 const gdb_byte *cur_ptr;
639d11d3 15555
c906108c 15556 cur_ptr = info_ptr;
639d11d3
DC
15557 first_die = last_sibling = NULL;
15558
15559 while (1)
c906108c 15560 {
639d11d3 15561 struct die_info *die
dee91e82 15562 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15563
1d325ec1 15564 if (die == NULL)
c906108c 15565 {
639d11d3
DC
15566 *new_info_ptr = cur_ptr;
15567 return first_die;
c906108c 15568 }
1d325ec1
DJ
15569
15570 if (!first_die)
15571 first_die = die;
c906108c 15572 else
1d325ec1
DJ
15573 last_sibling->sibling = die;
15574
15575 last_sibling = die;
c906108c 15576 }
c906108c
SS
15577}
15578
bf6af496
DE
15579/* Read a die, all of its descendents, and all of its siblings; set
15580 all of the fields of all of the dies correctly. Arguments are as
15581 in read_die_and_children.
15582 This the main entry point for reading a DIE and all its children. */
15583
15584static struct die_info *
15585read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15586 const gdb_byte *info_ptr,
15587 const gdb_byte **new_info_ptr,
bf6af496
DE
15588 struct die_info *parent)
15589{
15590 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15591 new_info_ptr, parent);
15592
b4f54984 15593 if (dwarf_die_debug)
bf6af496
DE
15594 {
15595 fprintf_unfiltered (gdb_stdlog,
15596 "Read die from %s@0x%x of %s:\n",
a32a8923 15597 get_section_name (reader->die_section),
bf6af496
DE
15598 (unsigned) (info_ptr - reader->die_section->buffer),
15599 bfd_get_filename (reader->abfd));
b4f54984 15600 dump_die (die, dwarf_die_debug);
bf6af496
DE
15601 }
15602
15603 return die;
15604}
15605
3019eac3
DE
15606/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15607 attributes.
15608 The caller is responsible for filling in the extra attributes
15609 and updating (*DIEP)->num_attrs.
15610 Set DIEP to point to a newly allocated die with its information,
15611 except for its child, sibling, and parent fields.
15612 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15613
d521ce57 15614static const gdb_byte *
3019eac3 15615read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15616 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15617 int *has_children, int num_extra_attrs)
93311388 15618{
b64f50a1 15619 unsigned int abbrev_number, bytes_read, i;
93311388
DE
15620 struct abbrev_info *abbrev;
15621 struct die_info *die;
15622 struct dwarf2_cu *cu = reader->cu;
15623 bfd *abfd = reader->abfd;
15624
9c541725 15625 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
93311388
DE
15626 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15627 info_ptr += bytes_read;
15628 if (!abbrev_number)
15629 {
15630 *diep = NULL;
15631 *has_children = 0;
15632 return info_ptr;
15633 }
15634
433df2d4 15635 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15636 if (!abbrev)
348e048f
DE
15637 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15638 abbrev_number,
15639 bfd_get_filename (abfd));
15640
3019eac3 15641 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
9c541725 15642 die->sect_off = sect_off;
93311388
DE
15643 die->tag = abbrev->tag;
15644 die->abbrev = abbrev_number;
15645
3019eac3
DE
15646 /* Make the result usable.
15647 The caller needs to update num_attrs after adding the extra
15648 attributes. */
93311388
DE
15649 die->num_attrs = abbrev->num_attrs;
15650
15651 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15652 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15653 info_ptr);
93311388
DE
15654
15655 *diep = die;
15656 *has_children = abbrev->has_children;
15657 return info_ptr;
15658}
15659
3019eac3
DE
15660/* Read a die and all its attributes.
15661 Set DIEP to point to a newly allocated die with its information,
15662 except for its child, sibling, and parent fields.
15663 Set HAS_CHILDREN to tell whether the die has children or not. */
15664
d521ce57 15665static const gdb_byte *
3019eac3 15666read_full_die (const struct die_reader_specs *reader,
d521ce57 15667 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15668 int *has_children)
15669{
d521ce57 15670 const gdb_byte *result;
bf6af496
DE
15671
15672 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15673
b4f54984 15674 if (dwarf_die_debug)
bf6af496
DE
15675 {
15676 fprintf_unfiltered (gdb_stdlog,
15677 "Read die from %s@0x%x of %s:\n",
a32a8923 15678 get_section_name (reader->die_section),
bf6af496
DE
15679 (unsigned) (info_ptr - reader->die_section->buffer),
15680 bfd_get_filename (reader->abfd));
b4f54984 15681 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15682 }
15683
15684 return result;
3019eac3 15685}
433df2d4
DE
15686\f
15687/* Abbreviation tables.
3019eac3 15688
433df2d4 15689 In DWARF version 2, the description of the debugging information is
c906108c
SS
15690 stored in a separate .debug_abbrev section. Before we read any
15691 dies from a section we read in all abbreviations and install them
433df2d4
DE
15692 in a hash table. */
15693
15694/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15695
15696static struct abbrev_info *
15697abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15698{
15699 struct abbrev_info *abbrev;
15700
8d749320 15701 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
433df2d4 15702 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 15703
433df2d4
DE
15704 return abbrev;
15705}
15706
15707/* Add an abbreviation to the table. */
c906108c
SS
15708
15709static void
433df2d4
DE
15710abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15711 unsigned int abbrev_number,
15712 struct abbrev_info *abbrev)
15713{
15714 unsigned int hash_number;
15715
15716 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15717 abbrev->next = abbrev_table->abbrevs[hash_number];
15718 abbrev_table->abbrevs[hash_number] = abbrev;
15719}
dee91e82 15720
433df2d4
DE
15721/* Look up an abbrev in the table.
15722 Returns NULL if the abbrev is not found. */
15723
15724static struct abbrev_info *
15725abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15726 unsigned int abbrev_number)
c906108c 15727{
433df2d4
DE
15728 unsigned int hash_number;
15729 struct abbrev_info *abbrev;
15730
15731 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15732 abbrev = abbrev_table->abbrevs[hash_number];
15733
15734 while (abbrev)
15735 {
15736 if (abbrev->number == abbrev_number)
15737 return abbrev;
15738 abbrev = abbrev->next;
15739 }
15740 return NULL;
15741}
15742
15743/* Read in an abbrev table. */
15744
15745static struct abbrev_table *
15746abbrev_table_read_table (struct dwarf2_section_info *section,
9c541725 15747 sect_offset sect_off)
433df2d4
DE
15748{
15749 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15750 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15751 struct abbrev_table *abbrev_table;
d521ce57 15752 const gdb_byte *abbrev_ptr;
c906108c
SS
15753 struct abbrev_info *cur_abbrev;
15754 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15755 unsigned int abbrev_form;
f3dd6933
DJ
15756 struct attr_abbrev *cur_attrs;
15757 unsigned int allocated_attrs;
c906108c 15758
70ba0933 15759 abbrev_table = XNEW (struct abbrev_table);
9c541725 15760 abbrev_table->sect_off = sect_off;
433df2d4 15761 obstack_init (&abbrev_table->abbrev_obstack);
8d749320
SM
15762 abbrev_table->abbrevs =
15763 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15764 ABBREV_HASH_SIZE);
433df2d4
DE
15765 memset (abbrev_table->abbrevs, 0,
15766 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15767
433df2d4 15768 dwarf2_read_section (objfile, section);
9c541725 15769 abbrev_ptr = section->buffer + to_underlying (sect_off);
c906108c
SS
15770 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15771 abbrev_ptr += bytes_read;
15772
f3dd6933 15773 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 15774 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 15775
0963b4bd 15776 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15777 while (abbrev_number)
15778 {
433df2d4 15779 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15780
15781 /* read in abbrev header */
15782 cur_abbrev->number = abbrev_number;
aead7601
SM
15783 cur_abbrev->tag
15784 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15785 abbrev_ptr += bytes_read;
15786 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15787 abbrev_ptr += 1;
15788
15789 /* now read in declarations */
22d2f3ab 15790 for (;;)
c906108c 15791 {
43988095
JK
15792 LONGEST implicit_const;
15793
22d2f3ab
JK
15794 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15795 abbrev_ptr += bytes_read;
15796 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15797 abbrev_ptr += bytes_read;
43988095
JK
15798 if (abbrev_form == DW_FORM_implicit_const)
15799 {
15800 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15801 &bytes_read);
15802 abbrev_ptr += bytes_read;
15803 }
15804 else
15805 {
15806 /* Initialize it due to a false compiler warning. */
15807 implicit_const = -1;
15808 }
22d2f3ab
JK
15809
15810 if (abbrev_name == 0)
15811 break;
15812
f3dd6933 15813 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15814 {
f3dd6933
DJ
15815 allocated_attrs += ATTR_ALLOC_CHUNK;
15816 cur_attrs
224c3ddb 15817 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 15818 }
ae038cb0 15819
aead7601
SM
15820 cur_attrs[cur_abbrev->num_attrs].name
15821 = (enum dwarf_attribute) abbrev_name;
22d2f3ab 15822 cur_attrs[cur_abbrev->num_attrs].form
aead7601 15823 = (enum dwarf_form) abbrev_form;
43988095 15824 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
22d2f3ab 15825 ++cur_abbrev->num_attrs;
c906108c
SS
15826 }
15827
8d749320
SM
15828 cur_abbrev->attrs =
15829 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15830 cur_abbrev->num_attrs);
f3dd6933
DJ
15831 memcpy (cur_abbrev->attrs, cur_attrs,
15832 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15833
433df2d4 15834 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15835
15836 /* Get next abbreviation.
15837 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15838 always properly terminated with an abbrev number of 0.
15839 Exit loop if we encounter an abbreviation which we have
15840 already read (which means we are about to read the abbreviations
15841 for the next compile unit) or if the end of the abbreviation
15842 table is reached. */
433df2d4 15843 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15844 break;
15845 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15846 abbrev_ptr += bytes_read;
433df2d4 15847 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15848 break;
15849 }
f3dd6933
DJ
15850
15851 xfree (cur_attrs);
433df2d4 15852 return abbrev_table;
c906108c
SS
15853}
15854
433df2d4 15855/* Free the resources held by ABBREV_TABLE. */
c906108c 15856
c906108c 15857static void
433df2d4 15858abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15859{
433df2d4
DE
15860 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15861 xfree (abbrev_table);
c906108c
SS
15862}
15863
f4dc4d17
DE
15864/* Same as abbrev_table_free but as a cleanup.
15865 We pass in a pointer to the pointer to the table so that we can
15866 set the pointer to NULL when we're done. It also simplifies
73051182 15867 build_type_psymtabs_1. */
f4dc4d17
DE
15868
15869static void
15870abbrev_table_free_cleanup (void *table_ptr)
15871{
9a3c8263 15872 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
f4dc4d17
DE
15873
15874 if (*abbrev_table_ptr != NULL)
15875 abbrev_table_free (*abbrev_table_ptr);
15876 *abbrev_table_ptr = NULL;
15877}
15878
433df2d4
DE
15879/* Read the abbrev table for CU from ABBREV_SECTION. */
15880
15881static void
15882dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15883 struct dwarf2_section_info *abbrev_section)
c906108c 15884{
433df2d4 15885 cu->abbrev_table =
9c541725 15886 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
433df2d4 15887}
c906108c 15888
433df2d4 15889/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15890
433df2d4
DE
15891static void
15892dwarf2_free_abbrev_table (void *ptr_to_cu)
15893{
9a3c8263 15894 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
c906108c 15895
a2ce51a0
DE
15896 if (cu->abbrev_table != NULL)
15897 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15898 /* Set this to NULL so that we SEGV if we try to read it later,
15899 and also because free_comp_unit verifies this is NULL. */
15900 cu->abbrev_table = NULL;
15901}
15902\f
72bf9492
DJ
15903/* Returns nonzero if TAG represents a type that we might generate a partial
15904 symbol for. */
15905
15906static int
15907is_type_tag_for_partial (int tag)
15908{
15909 switch (tag)
15910 {
15911#if 0
15912 /* Some types that would be reasonable to generate partial symbols for,
15913 that we don't at present. */
15914 case DW_TAG_array_type:
15915 case DW_TAG_file_type:
15916 case DW_TAG_ptr_to_member_type:
15917 case DW_TAG_set_type:
15918 case DW_TAG_string_type:
15919 case DW_TAG_subroutine_type:
15920#endif
15921 case DW_TAG_base_type:
15922 case DW_TAG_class_type:
680b30c7 15923 case DW_TAG_interface_type:
72bf9492
DJ
15924 case DW_TAG_enumeration_type:
15925 case DW_TAG_structure_type:
15926 case DW_TAG_subrange_type:
15927 case DW_TAG_typedef:
15928 case DW_TAG_union_type:
15929 return 1;
15930 default:
15931 return 0;
15932 }
15933}
15934
15935/* Load all DIEs that are interesting for partial symbols into memory. */
15936
15937static struct partial_die_info *
dee91e82 15938load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15939 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15940{
dee91e82 15941 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15942 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15943 struct partial_die_info *part_die;
15944 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15945 struct abbrev_info *abbrev;
15946 unsigned int bytes_read;
5afb4e99 15947 unsigned int load_all = 0;
72bf9492
DJ
15948 int nesting_level = 1;
15949
15950 parent_die = NULL;
15951 last_die = NULL;
15952
7adf1e79
DE
15953 gdb_assert (cu->per_cu != NULL);
15954 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15955 load_all = 1;
15956
72bf9492
DJ
15957 cu->partial_dies
15958 = htab_create_alloc_ex (cu->header.length / 12,
15959 partial_die_hash,
15960 partial_die_eq,
15961 NULL,
15962 &cu->comp_unit_obstack,
15963 hashtab_obstack_allocate,
15964 dummy_obstack_deallocate);
15965
8d749320 15966 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15967
15968 while (1)
15969 {
15970 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15971
15972 /* A NULL abbrev means the end of a series of children. */
15973 if (abbrev == NULL)
15974 {
15975 if (--nesting_level == 0)
15976 {
15977 /* PART_DIE was probably the last thing allocated on the
15978 comp_unit_obstack, so we could call obstack_free
15979 here. We don't do that because the waste is small,
15980 and will be cleaned up when we're done with this
15981 compilation unit. This way, we're also more robust
15982 against other users of the comp_unit_obstack. */
15983 return first_die;
15984 }
15985 info_ptr += bytes_read;
15986 last_die = parent_die;
15987 parent_die = parent_die->die_parent;
15988 continue;
15989 }
15990
98bfdba5
PA
15991 /* Check for template arguments. We never save these; if
15992 they're seen, we just mark the parent, and go on our way. */
15993 if (parent_die != NULL
15994 && cu->language == language_cplus
15995 && (abbrev->tag == DW_TAG_template_type_param
15996 || abbrev->tag == DW_TAG_template_value_param))
15997 {
15998 parent_die->has_template_arguments = 1;
15999
16000 if (!load_all)
16001 {
16002 /* We don't need a partial DIE for the template argument. */
dee91e82 16003 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
16004 continue;
16005 }
16006 }
16007
0d99eb77 16008 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
16009 Skip their other children. */
16010 if (!load_all
16011 && cu->language == language_cplus
16012 && parent_die != NULL
16013 && parent_die->tag == DW_TAG_subprogram)
16014 {
dee91e82 16015 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
16016 continue;
16017 }
16018
5afb4e99
DJ
16019 /* Check whether this DIE is interesting enough to save. Normally
16020 we would not be interested in members here, but there may be
16021 later variables referencing them via DW_AT_specification (for
16022 static members). */
16023 if (!load_all
16024 && !is_type_tag_for_partial (abbrev->tag)
72929c62 16025 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
16026 && abbrev->tag != DW_TAG_enumerator
16027 && abbrev->tag != DW_TAG_subprogram
bc30ff58 16028 && abbrev->tag != DW_TAG_lexical_block
72bf9492 16029 && abbrev->tag != DW_TAG_variable
5afb4e99 16030 && abbrev->tag != DW_TAG_namespace
f55ee35c 16031 && abbrev->tag != DW_TAG_module
95554aad 16032 && abbrev->tag != DW_TAG_member
74921315
KS
16033 && abbrev->tag != DW_TAG_imported_unit
16034 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
16035 {
16036 /* Otherwise we skip to the next sibling, if any. */
dee91e82 16037 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
16038 continue;
16039 }
16040
dee91e82
DE
16041 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
16042 info_ptr);
72bf9492
DJ
16043
16044 /* This two-pass algorithm for processing partial symbols has a
16045 high cost in cache pressure. Thus, handle some simple cases
16046 here which cover the majority of C partial symbols. DIEs
16047 which neither have specification tags in them, nor could have
16048 specification tags elsewhere pointing at them, can simply be
16049 processed and discarded.
16050
16051 This segment is also optional; scan_partial_symbols and
16052 add_partial_symbol will handle these DIEs if we chain
16053 them in normally. When compilers which do not emit large
16054 quantities of duplicate debug information are more common,
16055 this code can probably be removed. */
16056
16057 /* Any complete simple types at the top level (pretty much all
16058 of them, for a language without namespaces), can be processed
16059 directly. */
16060 if (parent_die == NULL
16061 && part_die->has_specification == 0
16062 && part_die->is_declaration == 0
d8228535 16063 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
16064 || part_die->tag == DW_TAG_base_type
16065 || part_die->tag == DW_TAG_subrange_type))
16066 {
16067 if (building_psymtab && part_die->name != NULL)
04a679b8 16068 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 16069 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 16070 &objfile->static_psymbols,
1762568f 16071 0, cu->language, objfile);
dee91e82 16072 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
16073 continue;
16074 }
16075
d8228535
JK
16076 /* The exception for DW_TAG_typedef with has_children above is
16077 a workaround of GCC PR debug/47510. In the case of this complaint
16078 type_name_no_tag_or_error will error on such types later.
16079
16080 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16081 it could not find the child DIEs referenced later, this is checked
16082 above. In correct DWARF DW_TAG_typedef should have no children. */
16083
16084 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16085 complaint (&symfile_complaints,
16086 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16087 "- DIE at 0x%x [in module %s]"),
9c541725 16088 to_underlying (part_die->sect_off), objfile_name (objfile));
d8228535 16089
72bf9492
DJ
16090 /* If we're at the second level, and we're an enumerator, and
16091 our parent has no specification (meaning possibly lives in a
16092 namespace elsewhere), then we can add the partial symbol now
16093 instead of queueing it. */
16094 if (part_die->tag == DW_TAG_enumerator
16095 && parent_die != NULL
16096 && parent_die->die_parent == NULL
16097 && parent_die->tag == DW_TAG_enumeration_type
16098 && parent_die->has_specification == 0)
16099 {
16100 if (part_die->name == NULL)
3e43a32a
MS
16101 complaint (&symfile_complaints,
16102 _("malformed enumerator DIE ignored"));
72bf9492 16103 else if (building_psymtab)
04a679b8 16104 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 16105 VAR_DOMAIN, LOC_CONST,
9c37b5ae 16106 cu->language == language_cplus
bb5ed363
DE
16107 ? &objfile->global_psymbols
16108 : &objfile->static_psymbols,
1762568f 16109 0, cu->language, objfile);
72bf9492 16110
dee91e82 16111 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
16112 continue;
16113 }
16114
16115 /* We'll save this DIE so link it in. */
16116 part_die->die_parent = parent_die;
16117 part_die->die_sibling = NULL;
16118 part_die->die_child = NULL;
16119
16120 if (last_die && last_die == parent_die)
16121 last_die->die_child = part_die;
16122 else if (last_die)
16123 last_die->die_sibling = part_die;
16124
16125 last_die = part_die;
16126
16127 if (first_die == NULL)
16128 first_die = part_die;
16129
16130 /* Maybe add the DIE to the hash table. Not all DIEs that we
16131 find interesting need to be in the hash table, because we
16132 also have the parent/sibling/child chains; only those that we
16133 might refer to by offset later during partial symbol reading.
16134
16135 For now this means things that might have be the target of a
16136 DW_AT_specification, DW_AT_abstract_origin, or
16137 DW_AT_extension. DW_AT_extension will refer only to
16138 namespaces; DW_AT_abstract_origin refers to functions (and
16139 many things under the function DIE, but we do not recurse
16140 into function DIEs during partial symbol reading) and
16141 possibly variables as well; DW_AT_specification refers to
16142 declarations. Declarations ought to have the DW_AT_declaration
16143 flag. It happens that GCC forgets to put it in sometimes, but
16144 only for functions, not for types.
16145
16146 Adding more things than necessary to the hash table is harmless
16147 except for the performance cost. Adding too few will result in
5afb4e99
DJ
16148 wasted time in find_partial_die, when we reread the compilation
16149 unit with load_all_dies set. */
72bf9492 16150
5afb4e99 16151 if (load_all
72929c62 16152 || abbrev->tag == DW_TAG_constant
5afb4e99 16153 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
16154 || abbrev->tag == DW_TAG_variable
16155 || abbrev->tag == DW_TAG_namespace
16156 || part_die->is_declaration)
16157 {
16158 void **slot;
16159
16160 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9c541725
PA
16161 to_underlying (part_die->sect_off),
16162 INSERT);
72bf9492
DJ
16163 *slot = part_die;
16164 }
16165
8d749320 16166 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
16167
16168 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 16169 we have no reason to follow the children of structures; for other
98bfdba5
PA
16170 languages we have to, so that we can get at method physnames
16171 to infer fully qualified class names, for DW_AT_specification,
16172 and for C++ template arguments. For C++, we also look one level
16173 inside functions to find template arguments (if the name of the
16174 function does not already contain the template arguments).
bc30ff58
JB
16175
16176 For Ada, we need to scan the children of subprograms and lexical
16177 blocks as well because Ada allows the definition of nested
16178 entities that could be interesting for the debugger, such as
16179 nested subprograms for instance. */
72bf9492 16180 if (last_die->has_children
5afb4e99
DJ
16181 && (load_all
16182 || last_die->tag == DW_TAG_namespace
f55ee35c 16183 || last_die->tag == DW_TAG_module
72bf9492 16184 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
16185 || (cu->language == language_cplus
16186 && last_die->tag == DW_TAG_subprogram
16187 && (last_die->name == NULL
16188 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
16189 || (cu->language != language_c
16190 && (last_die->tag == DW_TAG_class_type
680b30c7 16191 || last_die->tag == DW_TAG_interface_type
72bf9492 16192 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
16193 || last_die->tag == DW_TAG_union_type))
16194 || (cu->language == language_ada
16195 && (last_die->tag == DW_TAG_subprogram
16196 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
16197 {
16198 nesting_level++;
16199 parent_die = last_die;
16200 continue;
16201 }
16202
16203 /* Otherwise we skip to the next sibling, if any. */
dee91e82 16204 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
16205
16206 /* Back to the top, do it again. */
16207 }
16208}
16209
c906108c
SS
16210/* Read a minimal amount of information into the minimal die structure. */
16211
d521ce57 16212static const gdb_byte *
dee91e82
DE
16213read_partial_die (const struct die_reader_specs *reader,
16214 struct partial_die_info *part_die,
16215 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 16216 const gdb_byte *info_ptr)
c906108c 16217{
dee91e82 16218 struct dwarf2_cu *cu = reader->cu;
bb5ed363 16219 struct objfile *objfile = cu->objfile;
d521ce57 16220 const gdb_byte *buffer = reader->buffer;
fa238c03 16221 unsigned int i;
c906108c 16222 struct attribute attr;
c5aa993b 16223 int has_low_pc_attr = 0;
c906108c 16224 int has_high_pc_attr = 0;
91da1414 16225 int high_pc_relative = 0;
c906108c 16226
72bf9492 16227 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 16228
9c541725 16229 part_die->sect_off = (sect_offset) (info_ptr - buffer);
72bf9492
DJ
16230
16231 info_ptr += abbrev_len;
16232
16233 if (abbrev == NULL)
16234 return info_ptr;
16235
c906108c
SS
16236 part_die->tag = abbrev->tag;
16237 part_die->has_children = abbrev->has_children;
c906108c
SS
16238
16239 for (i = 0; i < abbrev->num_attrs; ++i)
16240 {
dee91e82 16241 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
16242
16243 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 16244 partial symbol table. */
c906108c
SS
16245 switch (attr.name)
16246 {
16247 case DW_AT_name:
71c25dea
TT
16248 switch (part_die->tag)
16249 {
16250 case DW_TAG_compile_unit:
95554aad 16251 case DW_TAG_partial_unit:
348e048f 16252 case DW_TAG_type_unit:
71c25dea
TT
16253 /* Compilation units have a DW_AT_name that is a filename, not
16254 a source language identifier. */
16255 case DW_TAG_enumeration_type:
16256 case DW_TAG_enumerator:
16257 /* These tags always have simple identifiers already; no need
16258 to canonicalize them. */
16259 part_die->name = DW_STRING (&attr);
16260 break;
16261 default:
16262 part_die->name
16263 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 16264 &objfile->per_bfd->storage_obstack);
71c25dea
TT
16265 break;
16266 }
c906108c 16267 break;
31ef98ae 16268 case DW_AT_linkage_name:
c906108c 16269 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
16270 /* Note that both forms of linkage name might appear. We
16271 assume they will be the same, and we only store the last
16272 one we see. */
94af9270
KS
16273 if (cu->language == language_ada)
16274 part_die->name = DW_STRING (&attr);
abc72ce4 16275 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
16276 break;
16277 case DW_AT_low_pc:
16278 has_low_pc_attr = 1;
31aa7e4e 16279 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
16280 break;
16281 case DW_AT_high_pc:
16282 has_high_pc_attr = 1;
31aa7e4e
JB
16283 part_die->highpc = attr_value_as_address (&attr);
16284 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16285 high_pc_relative = 1;
c906108c
SS
16286 break;
16287 case DW_AT_location:
0963b4bd 16288 /* Support the .debug_loc offsets. */
8e19ed76
PS
16289 if (attr_form_is_block (&attr))
16290 {
95554aad 16291 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 16292 }
3690dd37 16293 else if (attr_form_is_section_offset (&attr))
8e19ed76 16294 {
4d3c2250 16295 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
16296 }
16297 else
16298 {
4d3c2250
KB
16299 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16300 "partial symbol information");
8e19ed76 16301 }
c906108c 16302 break;
c906108c
SS
16303 case DW_AT_external:
16304 part_die->is_external = DW_UNSND (&attr);
16305 break;
16306 case DW_AT_declaration:
16307 part_die->is_declaration = DW_UNSND (&attr);
16308 break;
16309 case DW_AT_type:
16310 part_die->has_type = 1;
16311 break;
16312 case DW_AT_abstract_origin:
16313 case DW_AT_specification:
72bf9492
DJ
16314 case DW_AT_extension:
16315 part_die->has_specification = 1;
c764a876 16316 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
16317 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16318 || cu->per_cu->is_dwz);
c906108c
SS
16319 break;
16320 case DW_AT_sibling:
16321 /* Ignore absolute siblings, they might point outside of
16322 the current compile unit. */
16323 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
16324 complaint (&symfile_complaints,
16325 _("ignoring absolute DW_AT_sibling"));
c906108c 16326 else
b9502d3f 16327 {
9c541725
PA
16328 sect_offset off = dwarf2_get_ref_die_offset (&attr);
16329 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
16330
16331 if (sibling_ptr < info_ptr)
16332 complaint (&symfile_complaints,
16333 _("DW_AT_sibling points backwards"));
22869d73
KS
16334 else if (sibling_ptr > reader->buffer_end)
16335 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
16336 else
16337 part_die->sibling = sibling_ptr;
16338 }
c906108c 16339 break;
fa4028e9
JB
16340 case DW_AT_byte_size:
16341 part_die->has_byte_size = 1;
16342 break;
ff908ebf
AW
16343 case DW_AT_const_value:
16344 part_die->has_const_value = 1;
16345 break;
68511cec
CES
16346 case DW_AT_calling_convention:
16347 /* DWARF doesn't provide a way to identify a program's source-level
16348 entry point. DW_AT_calling_convention attributes are only meant
16349 to describe functions' calling conventions.
16350
16351 However, because it's a necessary piece of information in
0c1b455e
TT
16352 Fortran, and before DWARF 4 DW_CC_program was the only
16353 piece of debugging information whose definition refers to
16354 a 'main program' at all, several compilers marked Fortran
16355 main programs with DW_CC_program --- even when those
16356 functions use the standard calling conventions.
16357
16358 Although DWARF now specifies a way to provide this
16359 information, we support this practice for backward
16360 compatibility. */
68511cec 16361 if (DW_UNSND (&attr) == DW_CC_program
0c1b455e
TT
16362 && cu->language == language_fortran)
16363 part_die->main_subprogram = 1;
68511cec 16364 break;
481860b3
GB
16365 case DW_AT_inline:
16366 if (DW_UNSND (&attr) == DW_INL_inlined
16367 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16368 part_die->may_be_inlined = 1;
16369 break;
95554aad
TT
16370
16371 case DW_AT_import:
16372 if (part_die->tag == DW_TAG_imported_unit)
36586728 16373 {
9c541725 16374 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
36586728
TT
16375 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16376 || cu->per_cu->is_dwz);
16377 }
95554aad
TT
16378 break;
16379
0c1b455e
TT
16380 case DW_AT_main_subprogram:
16381 part_die->main_subprogram = DW_UNSND (&attr);
16382 break;
16383
c906108c
SS
16384 default:
16385 break;
16386 }
16387 }
16388
91da1414
MW
16389 if (high_pc_relative)
16390 part_die->highpc += part_die->lowpc;
16391
9373cf26
JK
16392 if (has_low_pc_attr && has_high_pc_attr)
16393 {
16394 /* When using the GNU linker, .gnu.linkonce. sections are used to
16395 eliminate duplicate copies of functions and vtables and such.
16396 The linker will arbitrarily choose one and discard the others.
16397 The AT_*_pc values for such functions refer to local labels in
16398 these sections. If the section from that file was discarded, the
16399 labels are not in the output, so the relocs get a value of 0.
16400 If this is a discarded function, mark the pc bounds as invalid,
16401 so that GDB will ignore it. */
16402 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16403 {
bb5ed363 16404 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16405
16406 complaint (&symfile_complaints,
16407 _("DW_AT_low_pc %s is zero "
16408 "for DIE at 0x%x [in module %s]"),
16409 paddress (gdbarch, part_die->lowpc),
9c541725 16410 to_underlying (part_die->sect_off), objfile_name (objfile));
9373cf26
JK
16411 }
16412 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16413 else if (part_die->lowpc >= part_die->highpc)
16414 {
bb5ed363 16415 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16416
16417 complaint (&symfile_complaints,
16418 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16419 "for DIE at 0x%x [in module %s]"),
16420 paddress (gdbarch, part_die->lowpc),
16421 paddress (gdbarch, part_die->highpc),
9c541725
PA
16422 to_underlying (part_die->sect_off),
16423 objfile_name (objfile));
9373cf26
JK
16424 }
16425 else
16426 part_die->has_pc_info = 1;
16427 }
85cbf3d3 16428
c906108c
SS
16429 return info_ptr;
16430}
16431
72bf9492
DJ
16432/* Find a cached partial DIE at OFFSET in CU. */
16433
16434static struct partial_die_info *
9c541725 16435find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
72bf9492
DJ
16436{
16437 struct partial_die_info *lookup_die = NULL;
16438 struct partial_die_info part_die;
16439
9c541725 16440 part_die.sect_off = sect_off;
9a3c8263
SM
16441 lookup_die = ((struct partial_die_info *)
16442 htab_find_with_hash (cu->partial_dies, &part_die,
9c541725 16443 to_underlying (sect_off)));
72bf9492 16444
72bf9492
DJ
16445 return lookup_die;
16446}
16447
348e048f
DE
16448/* Find a partial DIE at OFFSET, which may or may not be in CU,
16449 except in the case of .debug_types DIEs which do not reference
16450 outside their CU (they do however referencing other types via
55f1336d 16451 DW_FORM_ref_sig8). */
72bf9492
DJ
16452
16453static struct partial_die_info *
9c541725 16454find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 16455{
bb5ed363 16456 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16457 struct dwarf2_per_cu_data *per_cu = NULL;
16458 struct partial_die_info *pd = NULL;
72bf9492 16459
36586728 16460 if (offset_in_dwz == cu->per_cu->is_dwz
9c541725 16461 && offset_in_cu_p (&cu->header, sect_off))
5afb4e99 16462 {
9c541725 16463 pd = find_partial_die_in_comp_unit (sect_off, cu);
5afb4e99
DJ
16464 if (pd != NULL)
16465 return pd;
0d99eb77
DE
16466 /* We missed recording what we needed.
16467 Load all dies and try again. */
16468 per_cu = cu->per_cu;
5afb4e99 16469 }
0d99eb77
DE
16470 else
16471 {
16472 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16473 if (cu->per_cu->is_debug_types)
0d99eb77 16474 {
9c541725
PA
16475 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
16476 " external reference to offset 0x%x [in module %s].\n"),
16477 to_underlying (cu->header.sect_off), to_underlying (sect_off),
0d99eb77
DE
16478 bfd_get_filename (objfile->obfd));
16479 }
9c541725 16480 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
36586728 16481 objfile);
72bf9492 16482
0d99eb77
DE
16483 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16484 load_partial_comp_unit (per_cu);
ae038cb0 16485
0d99eb77 16486 per_cu->cu->last_used = 0;
9c541725 16487 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
0d99eb77 16488 }
5afb4e99 16489
dee91e82
DE
16490 /* If we didn't find it, and not all dies have been loaded,
16491 load them all and try again. */
16492
5afb4e99
DJ
16493 if (pd == NULL && per_cu->load_all_dies == 0)
16494 {
5afb4e99 16495 per_cu->load_all_dies = 1;
fd820528
DE
16496
16497 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16498 THIS_CU->cu may already be in use. So we can't just free it and
16499 replace its DIEs with the ones we read in. Instead, we leave those
16500 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16501 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16502 set. */
dee91e82 16503 load_partial_comp_unit (per_cu);
5afb4e99 16504
9c541725 16505 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
5afb4e99
DJ
16506 }
16507
16508 if (pd == NULL)
16509 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16510 _("could not find partial DIE 0x%x "
16511 "in cache [from module %s]\n"),
9c541725 16512 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
5afb4e99 16513 return pd;
72bf9492
DJ
16514}
16515
abc72ce4
DE
16516/* See if we can figure out if the class lives in a namespace. We do
16517 this by looking for a member function; its demangled name will
16518 contain namespace info, if there is any. */
16519
16520static void
16521guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16522 struct dwarf2_cu *cu)
16523{
16524 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16525 what template types look like, because the demangler
16526 frequently doesn't give the same name as the debug info. We
16527 could fix this by only using the demangled name to get the
16528 prefix (but see comment in read_structure_type). */
16529
16530 struct partial_die_info *real_pdi;
16531 struct partial_die_info *child_pdi;
16532
16533 /* If this DIE (this DIE's specification, if any) has a parent, then
16534 we should not do this. We'll prepend the parent's fully qualified
16535 name when we create the partial symbol. */
16536
16537 real_pdi = struct_pdi;
16538 while (real_pdi->has_specification)
36586728
TT
16539 real_pdi = find_partial_die (real_pdi->spec_offset,
16540 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16541
16542 if (real_pdi->die_parent != NULL)
16543 return;
16544
16545 for (child_pdi = struct_pdi->die_child;
16546 child_pdi != NULL;
16547 child_pdi = child_pdi->die_sibling)
16548 {
16549 if (child_pdi->tag == DW_TAG_subprogram
16550 && child_pdi->linkage_name != NULL)
16551 {
16552 char *actual_class_name
16553 = language_class_name_from_physname (cu->language_defn,
16554 child_pdi->linkage_name);
16555 if (actual_class_name != NULL)
16556 {
16557 struct_pdi->name
224c3ddb
SM
16558 = ((const char *)
16559 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16560 actual_class_name,
16561 strlen (actual_class_name)));
abc72ce4
DE
16562 xfree (actual_class_name);
16563 }
16564 break;
16565 }
16566 }
16567}
16568
72bf9492
DJ
16569/* Adjust PART_DIE before generating a symbol for it. This function
16570 may set the is_external flag or change the DIE's name. */
16571
16572static void
16573fixup_partial_die (struct partial_die_info *part_die,
16574 struct dwarf2_cu *cu)
16575{
abc72ce4
DE
16576 /* Once we've fixed up a die, there's no point in doing so again.
16577 This also avoids a memory leak if we were to call
16578 guess_partial_die_structure_name multiple times. */
16579 if (part_die->fixup_called)
16580 return;
16581
72bf9492
DJ
16582 /* If we found a reference attribute and the DIE has no name, try
16583 to find a name in the referred to DIE. */
16584
16585 if (part_die->name == NULL && part_die->has_specification)
16586 {
16587 struct partial_die_info *spec_die;
72bf9492 16588
36586728
TT
16589 spec_die = find_partial_die (part_die->spec_offset,
16590 part_die->spec_is_dwz, cu);
72bf9492 16591
10b3939b 16592 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16593
16594 if (spec_die->name)
16595 {
16596 part_die->name = spec_die->name;
16597
16598 /* Copy DW_AT_external attribute if it is set. */
16599 if (spec_die->is_external)
16600 part_die->is_external = spec_die->is_external;
16601 }
16602 }
16603
16604 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16605
16606 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16607 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16608
abc72ce4
DE
16609 /* If there is no parent die to provide a namespace, and there are
16610 children, see if we can determine the namespace from their linkage
122d1940 16611 name. */
abc72ce4 16612 if (cu->language == language_cplus
8b70b953 16613 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16614 && part_die->die_parent == NULL
16615 && part_die->has_children
16616 && (part_die->tag == DW_TAG_class_type
16617 || part_die->tag == DW_TAG_structure_type
16618 || part_die->tag == DW_TAG_union_type))
16619 guess_partial_die_structure_name (part_die, cu);
16620
53832f31
TT
16621 /* GCC might emit a nameless struct or union that has a linkage
16622 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16623 if (part_die->name == NULL
96408a79
SA
16624 && (part_die->tag == DW_TAG_class_type
16625 || part_die->tag == DW_TAG_interface_type
16626 || part_die->tag == DW_TAG_structure_type
16627 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16628 && part_die->linkage_name != NULL)
16629 {
16630 char *demangled;
16631
8de20a37 16632 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16633 if (demangled)
16634 {
96408a79
SA
16635 const char *base;
16636
16637 /* Strip any leading namespaces/classes, keep only the base name.
16638 DW_AT_name for named DIEs does not contain the prefixes. */
16639 base = strrchr (demangled, ':');
16640 if (base && base > demangled && base[-1] == ':')
16641 base++;
16642 else
16643 base = demangled;
16644
34a68019 16645 part_die->name
224c3ddb
SM
16646 = ((const char *)
16647 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16648 base, strlen (base)));
53832f31
TT
16649 xfree (demangled);
16650 }
16651 }
16652
abc72ce4 16653 part_die->fixup_called = 1;
72bf9492
DJ
16654}
16655
a8329558 16656/* Read an attribute value described by an attribute form. */
c906108c 16657
d521ce57 16658static const gdb_byte *
dee91e82
DE
16659read_attribute_value (const struct die_reader_specs *reader,
16660 struct attribute *attr, unsigned form,
43988095 16661 LONGEST implicit_const, const gdb_byte *info_ptr)
c906108c 16662{
dee91e82 16663 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16664 struct objfile *objfile = cu->objfile;
16665 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16666 bfd *abfd = reader->abfd;
e7c27a73 16667 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16668 unsigned int bytes_read;
16669 struct dwarf_block *blk;
16670
aead7601 16671 attr->form = (enum dwarf_form) form;
a8329558 16672 switch (form)
c906108c 16673 {
c906108c 16674 case DW_FORM_ref_addr:
ae411497 16675 if (cu->header.version == 2)
4568ecf9 16676 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16677 else
4568ecf9
DE
16678 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16679 &cu->header, &bytes_read);
ae411497
TT
16680 info_ptr += bytes_read;
16681 break;
36586728
TT
16682 case DW_FORM_GNU_ref_alt:
16683 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16684 info_ptr += bytes_read;
16685 break;
ae411497 16686 case DW_FORM_addr:
e7c27a73 16687 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16688 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16689 info_ptr += bytes_read;
c906108c
SS
16690 break;
16691 case DW_FORM_block2:
7b5a2f43 16692 blk = dwarf_alloc_block (cu);
c906108c
SS
16693 blk->size = read_2_bytes (abfd, info_ptr);
16694 info_ptr += 2;
16695 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16696 info_ptr += blk->size;
16697 DW_BLOCK (attr) = blk;
16698 break;
16699 case DW_FORM_block4:
7b5a2f43 16700 blk = dwarf_alloc_block (cu);
c906108c
SS
16701 blk->size = read_4_bytes (abfd, info_ptr);
16702 info_ptr += 4;
16703 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16704 info_ptr += blk->size;
16705 DW_BLOCK (attr) = blk;
16706 break;
16707 case DW_FORM_data2:
16708 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16709 info_ptr += 2;
16710 break;
16711 case DW_FORM_data4:
16712 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16713 info_ptr += 4;
16714 break;
16715 case DW_FORM_data8:
16716 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16717 info_ptr += 8;
16718 break;
0224619f
JK
16719 case DW_FORM_data16:
16720 blk = dwarf_alloc_block (cu);
16721 blk->size = 16;
16722 blk->data = read_n_bytes (abfd, info_ptr, 16);
16723 info_ptr += 16;
16724 DW_BLOCK (attr) = blk;
16725 break;
2dc7f7b3
TT
16726 case DW_FORM_sec_offset:
16727 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16728 info_ptr += bytes_read;
16729 break;
c906108c 16730 case DW_FORM_string:
9b1c24c8 16731 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16732 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16733 info_ptr += bytes_read;
16734 break;
4bdf3d34 16735 case DW_FORM_strp:
36586728
TT
16736 if (!cu->per_cu->is_dwz)
16737 {
16738 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16739 &bytes_read);
16740 DW_STRING_IS_CANONICAL (attr) = 0;
16741 info_ptr += bytes_read;
16742 break;
16743 }
16744 /* FALLTHROUGH */
43988095
JK
16745 case DW_FORM_line_strp:
16746 if (!cu->per_cu->is_dwz)
16747 {
16748 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16749 cu_header, &bytes_read);
16750 DW_STRING_IS_CANONICAL (attr) = 0;
16751 info_ptr += bytes_read;
16752 break;
16753 }
16754 /* FALLTHROUGH */
36586728
TT
16755 case DW_FORM_GNU_strp_alt:
16756 {
16757 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16758 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16759 &bytes_read);
16760
16761 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16762 DW_STRING_IS_CANONICAL (attr) = 0;
16763 info_ptr += bytes_read;
16764 }
4bdf3d34 16765 break;
2dc7f7b3 16766 case DW_FORM_exprloc:
c906108c 16767 case DW_FORM_block:
7b5a2f43 16768 blk = dwarf_alloc_block (cu);
c906108c
SS
16769 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16770 info_ptr += bytes_read;
16771 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16772 info_ptr += blk->size;
16773 DW_BLOCK (attr) = blk;
16774 break;
16775 case DW_FORM_block1:
7b5a2f43 16776 blk = dwarf_alloc_block (cu);
c906108c
SS
16777 blk->size = read_1_byte (abfd, info_ptr);
16778 info_ptr += 1;
16779 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16780 info_ptr += blk->size;
16781 DW_BLOCK (attr) = blk;
16782 break;
16783 case DW_FORM_data1:
16784 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16785 info_ptr += 1;
16786 break;
16787 case DW_FORM_flag:
16788 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16789 info_ptr += 1;
16790 break;
2dc7f7b3
TT
16791 case DW_FORM_flag_present:
16792 DW_UNSND (attr) = 1;
16793 break;
c906108c
SS
16794 case DW_FORM_sdata:
16795 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16796 info_ptr += bytes_read;
16797 break;
16798 case DW_FORM_udata:
16799 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16800 info_ptr += bytes_read;
16801 break;
16802 case DW_FORM_ref1:
9c541725 16803 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16804 + read_1_byte (abfd, info_ptr));
c906108c
SS
16805 info_ptr += 1;
16806 break;
16807 case DW_FORM_ref2:
9c541725 16808 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16809 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16810 info_ptr += 2;
16811 break;
16812 case DW_FORM_ref4:
9c541725 16813 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16814 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16815 info_ptr += 4;
16816 break;
613e1657 16817 case DW_FORM_ref8:
9c541725 16818 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16819 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16820 info_ptr += 8;
16821 break;
55f1336d 16822 case DW_FORM_ref_sig8:
ac9ec31b 16823 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16824 info_ptr += 8;
16825 break;
c906108c 16826 case DW_FORM_ref_udata:
9c541725 16827 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16828 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16829 info_ptr += bytes_read;
16830 break;
c906108c 16831 case DW_FORM_indirect:
a8329558
KW
16832 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16833 info_ptr += bytes_read;
43988095
JK
16834 if (form == DW_FORM_implicit_const)
16835 {
16836 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16837 info_ptr += bytes_read;
16838 }
16839 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16840 info_ptr);
16841 break;
16842 case DW_FORM_implicit_const:
16843 DW_SND (attr) = implicit_const;
a8329558 16844 break;
3019eac3
DE
16845 case DW_FORM_GNU_addr_index:
16846 if (reader->dwo_file == NULL)
16847 {
16848 /* For now flag a hard error.
16849 Later we can turn this into a complaint. */
16850 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16851 dwarf_form_name (form),
16852 bfd_get_filename (abfd));
16853 }
16854 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16855 info_ptr += bytes_read;
16856 break;
16857 case DW_FORM_GNU_str_index:
16858 if (reader->dwo_file == NULL)
16859 {
16860 /* For now flag a hard error.
16861 Later we can turn this into a complaint if warranted. */
16862 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16863 dwarf_form_name (form),
16864 bfd_get_filename (abfd));
16865 }
16866 {
16867 ULONGEST str_index =
16868 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16869
342587c4 16870 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16871 DW_STRING_IS_CANONICAL (attr) = 0;
16872 info_ptr += bytes_read;
16873 }
16874 break;
c906108c 16875 default:
8a3fe4f8 16876 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16877 dwarf_form_name (form),
16878 bfd_get_filename (abfd));
c906108c 16879 }
28e94949 16880
36586728 16881 /* Super hack. */
7771576e 16882 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16883 attr->form = DW_FORM_GNU_ref_alt;
16884
28e94949
JB
16885 /* We have seen instances where the compiler tried to emit a byte
16886 size attribute of -1 which ended up being encoded as an unsigned
16887 0xffffffff. Although 0xffffffff is technically a valid size value,
16888 an object of this size seems pretty unlikely so we can relatively
16889 safely treat these cases as if the size attribute was invalid and
16890 treat them as zero by default. */
16891 if (attr->name == DW_AT_byte_size
16892 && form == DW_FORM_data4
16893 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16894 {
16895 complaint
16896 (&symfile_complaints,
43bbcdc2
PH
16897 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16898 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16899 DW_UNSND (attr) = 0;
16900 }
28e94949 16901
c906108c
SS
16902 return info_ptr;
16903}
16904
a8329558
KW
16905/* Read an attribute described by an abbreviated attribute. */
16906
d521ce57 16907static const gdb_byte *
dee91e82
DE
16908read_attribute (const struct die_reader_specs *reader,
16909 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16910 const gdb_byte *info_ptr)
a8329558
KW
16911{
16912 attr->name = abbrev->name;
43988095
JK
16913 return read_attribute_value (reader, attr, abbrev->form,
16914 abbrev->implicit_const, info_ptr);
a8329558
KW
16915}
16916
0963b4bd 16917/* Read dwarf information from a buffer. */
c906108c
SS
16918
16919static unsigned int
a1855c1d 16920read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16921{
fe1b8b76 16922 return bfd_get_8 (abfd, buf);
c906108c
SS
16923}
16924
16925static int
a1855c1d 16926read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16927{
fe1b8b76 16928 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16929}
16930
16931static unsigned int
a1855c1d 16932read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16933{
fe1b8b76 16934 return bfd_get_16 (abfd, buf);
c906108c
SS
16935}
16936
21ae7a4d 16937static int
a1855c1d 16938read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16939{
16940 return bfd_get_signed_16 (abfd, buf);
16941}
16942
c906108c 16943static unsigned int
a1855c1d 16944read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16945{
fe1b8b76 16946 return bfd_get_32 (abfd, buf);
c906108c
SS
16947}
16948
21ae7a4d 16949static int
a1855c1d 16950read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16951{
16952 return bfd_get_signed_32 (abfd, buf);
16953}
16954
93311388 16955static ULONGEST
a1855c1d 16956read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16957{
fe1b8b76 16958 return bfd_get_64 (abfd, buf);
c906108c
SS
16959}
16960
16961static CORE_ADDR
d521ce57 16962read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16963 unsigned int *bytes_read)
c906108c 16964{
e7c27a73 16965 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16966 CORE_ADDR retval = 0;
16967
107d2387 16968 if (cu_header->signed_addr_p)
c906108c 16969 {
107d2387
AC
16970 switch (cu_header->addr_size)
16971 {
16972 case 2:
fe1b8b76 16973 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16974 break;
16975 case 4:
fe1b8b76 16976 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16977 break;
16978 case 8:
fe1b8b76 16979 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16980 break;
16981 default:
8e65ff28 16982 internal_error (__FILE__, __LINE__,
e2e0b3e5 16983 _("read_address: bad switch, signed [in module %s]"),
659b0389 16984 bfd_get_filename (abfd));
107d2387
AC
16985 }
16986 }
16987 else
16988 {
16989 switch (cu_header->addr_size)
16990 {
16991 case 2:
fe1b8b76 16992 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16993 break;
16994 case 4:
fe1b8b76 16995 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16996 break;
16997 case 8:
fe1b8b76 16998 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16999 break;
17000 default:
8e65ff28 17001 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
17002 _("read_address: bad switch, "
17003 "unsigned [in module %s]"),
659b0389 17004 bfd_get_filename (abfd));
107d2387 17005 }
c906108c 17006 }
64367e0a 17007
107d2387
AC
17008 *bytes_read = cu_header->addr_size;
17009 return retval;
c906108c
SS
17010}
17011
f7ef9339 17012/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
17013 specification allows the initial length to take up either 4 bytes
17014 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17015 bytes describe the length and all offsets will be 8 bytes in length
17016 instead of 4.
17017
f7ef9339
KB
17018 An older, non-standard 64-bit format is also handled by this
17019 function. The older format in question stores the initial length
17020 as an 8-byte quantity without an escape value. Lengths greater
17021 than 2^32 aren't very common which means that the initial 4 bytes
17022 is almost always zero. Since a length value of zero doesn't make
17023 sense for the 32-bit format, this initial zero can be considered to
17024 be an escape value which indicates the presence of the older 64-bit
17025 format. As written, the code can't detect (old format) lengths
917c78fc
MK
17026 greater than 4GB. If it becomes necessary to handle lengths
17027 somewhat larger than 4GB, we could allow other small values (such
17028 as the non-sensical values of 1, 2, and 3) to also be used as
17029 escape values indicating the presence of the old format.
f7ef9339 17030
917c78fc
MK
17031 The value returned via bytes_read should be used to increment the
17032 relevant pointer after calling read_initial_length().
c764a876 17033
613e1657
KB
17034 [ Note: read_initial_length() and read_offset() are based on the
17035 document entitled "DWARF Debugging Information Format", revision
f7ef9339 17036 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
17037 from:
17038
f7ef9339 17039 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 17040
613e1657
KB
17041 This document is only a draft and is subject to change. (So beware.)
17042
f7ef9339 17043 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
17044 determined empirically by examining 64-bit ELF files produced by
17045 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
17046
17047 - Kevin, July 16, 2002
613e1657
KB
17048 ] */
17049
17050static LONGEST
d521ce57 17051read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 17052{
fe1b8b76 17053 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 17054
dd373385 17055 if (length == 0xffffffff)
613e1657 17056 {
fe1b8b76 17057 length = bfd_get_64 (abfd, buf + 4);
613e1657 17058 *bytes_read = 12;
613e1657 17059 }
dd373385 17060 else if (length == 0)
f7ef9339 17061 {
dd373385 17062 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 17063 length = bfd_get_64 (abfd, buf);
f7ef9339 17064 *bytes_read = 8;
f7ef9339 17065 }
613e1657
KB
17066 else
17067 {
17068 *bytes_read = 4;
613e1657
KB
17069 }
17070
c764a876
DE
17071 return length;
17072}
dd373385 17073
c764a876
DE
17074/* Cover function for read_initial_length.
17075 Returns the length of the object at BUF, and stores the size of the
17076 initial length in *BYTES_READ and stores the size that offsets will be in
17077 *OFFSET_SIZE.
17078 If the initial length size is not equivalent to that specified in
17079 CU_HEADER then issue a complaint.
17080 This is useful when reading non-comp-unit headers. */
dd373385 17081
c764a876 17082static LONGEST
d521ce57 17083read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
17084 const struct comp_unit_head *cu_header,
17085 unsigned int *bytes_read,
17086 unsigned int *offset_size)
17087{
17088 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17089
17090 gdb_assert (cu_header->initial_length_size == 4
17091 || cu_header->initial_length_size == 8
17092 || cu_header->initial_length_size == 12);
17093
17094 if (cu_header->initial_length_size != *bytes_read)
17095 complaint (&symfile_complaints,
17096 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 17097
c764a876 17098 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 17099 return length;
613e1657
KB
17100}
17101
17102/* Read an offset from the data stream. The size of the offset is
917c78fc 17103 given by cu_header->offset_size. */
613e1657
KB
17104
17105static LONGEST
d521ce57
TT
17106read_offset (bfd *abfd, const gdb_byte *buf,
17107 const struct comp_unit_head *cu_header,
891d2f0b 17108 unsigned int *bytes_read)
c764a876
DE
17109{
17110 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 17111
c764a876
DE
17112 *bytes_read = cu_header->offset_size;
17113 return offset;
17114}
17115
17116/* Read an offset from the data stream. */
17117
17118static LONGEST
d521ce57 17119read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
17120{
17121 LONGEST retval = 0;
17122
c764a876 17123 switch (offset_size)
613e1657
KB
17124 {
17125 case 4:
fe1b8b76 17126 retval = bfd_get_32 (abfd, buf);
613e1657
KB
17127 break;
17128 case 8:
fe1b8b76 17129 retval = bfd_get_64 (abfd, buf);
613e1657
KB
17130 break;
17131 default:
8e65ff28 17132 internal_error (__FILE__, __LINE__,
c764a876 17133 _("read_offset_1: bad switch [in module %s]"),
659b0389 17134 bfd_get_filename (abfd));
613e1657
KB
17135 }
17136
917c78fc 17137 return retval;
613e1657
KB
17138}
17139
d521ce57
TT
17140static const gdb_byte *
17141read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
17142{
17143 /* If the size of a host char is 8 bits, we can return a pointer
17144 to the buffer, otherwise we have to copy the data to a buffer
17145 allocated on the temporary obstack. */
4bdf3d34 17146 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 17147 return buf;
c906108c
SS
17148}
17149
d521ce57
TT
17150static const char *
17151read_direct_string (bfd *abfd, const gdb_byte *buf,
17152 unsigned int *bytes_read_ptr)
c906108c
SS
17153{
17154 /* If the size of a host char is 8 bits, we can return a pointer
17155 to the string, otherwise we have to copy the string to a buffer
17156 allocated on the temporary obstack. */
4bdf3d34 17157 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
17158 if (*buf == '\0')
17159 {
17160 *bytes_read_ptr = 1;
17161 return NULL;
17162 }
d521ce57
TT
17163 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17164 return (const char *) buf;
4bdf3d34
JJ
17165}
17166
43988095
JK
17167/* Return pointer to string at section SECT offset STR_OFFSET with error
17168 reporting strings FORM_NAME and SECT_NAME. */
17169
d521ce57 17170static const char *
43988095
JK
17171read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17172 struct dwarf2_section_info *sect,
17173 const char *form_name,
17174 const char *sect_name)
17175{
17176 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17177 if (sect->buffer == NULL)
17178 error (_("%s used without %s section [in module %s]"),
17179 form_name, sect_name, bfd_get_filename (abfd));
17180 if (str_offset >= sect->size)
17181 error (_("%s pointing outside of %s section [in module %s]"),
17182 form_name, sect_name, bfd_get_filename (abfd));
4bdf3d34 17183 gdb_assert (HOST_CHAR_BIT == 8);
43988095 17184 if (sect->buffer[str_offset] == '\0')
4bdf3d34 17185 return NULL;
43988095
JK
17186 return (const char *) (sect->buffer + str_offset);
17187}
17188
17189/* Return pointer to string at .debug_str offset STR_OFFSET. */
17190
17191static const char *
17192read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17193{
17194 return read_indirect_string_at_offset_from (abfd, str_offset,
17195 &dwarf2_per_objfile->str,
17196 "DW_FORM_strp", ".debug_str");
17197}
17198
17199/* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17200
17201static const char *
17202read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17203{
17204 return read_indirect_string_at_offset_from (abfd, str_offset,
17205 &dwarf2_per_objfile->line_str,
17206 "DW_FORM_line_strp",
17207 ".debug_line_str");
c906108c
SS
17208}
17209
36586728
TT
17210/* Read a string at offset STR_OFFSET in the .debug_str section from
17211 the .dwz file DWZ. Throw an error if the offset is too large. If
17212 the string consists of a single NUL byte, return NULL; otherwise
17213 return a pointer to the string. */
17214
d521ce57 17215static const char *
36586728
TT
17216read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17217{
17218 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17219
17220 if (dwz->str.buffer == NULL)
17221 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17222 "section [in module %s]"),
17223 bfd_get_filename (dwz->dwz_bfd));
17224 if (str_offset >= dwz->str.size)
17225 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17226 ".debug_str section [in module %s]"),
17227 bfd_get_filename (dwz->dwz_bfd));
17228 gdb_assert (HOST_CHAR_BIT == 8);
17229 if (dwz->str.buffer[str_offset] == '\0')
17230 return NULL;
d521ce57 17231 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
17232}
17233
43988095
JK
17234/* Return pointer to string at .debug_str offset as read from BUF.
17235 BUF is assumed to be in a compilation unit described by CU_HEADER.
17236 Return *BYTES_READ_PTR count of bytes read from BUF. */
17237
d521ce57
TT
17238static const char *
17239read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
17240 const struct comp_unit_head *cu_header,
17241 unsigned int *bytes_read_ptr)
17242{
17243 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17244
17245 return read_indirect_string_at_offset (abfd, str_offset);
17246}
17247
43988095
JK
17248/* Return pointer to string at .debug_line_str offset as read from BUF.
17249 BUF is assumed to be in a compilation unit described by CU_HEADER.
17250 Return *BYTES_READ_PTR count of bytes read from BUF. */
17251
17252static const char *
17253read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17254 const struct comp_unit_head *cu_header,
17255 unsigned int *bytes_read_ptr)
17256{
17257 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17258
17259 return read_indirect_line_string_at_offset (abfd, str_offset);
17260}
17261
17262ULONGEST
d521ce57 17263read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
43988095 17264 unsigned int *bytes_read_ptr)
c906108c 17265{
12df843f 17266 ULONGEST result;
ce5d95e1 17267 unsigned int num_read;
870f88f7 17268 int shift;
c906108c
SS
17269 unsigned char byte;
17270
17271 result = 0;
17272 shift = 0;
17273 num_read = 0;
c906108c
SS
17274 while (1)
17275 {
fe1b8b76 17276 byte = bfd_get_8 (abfd, buf);
c906108c
SS
17277 buf++;
17278 num_read++;
12df843f 17279 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
17280 if ((byte & 128) == 0)
17281 {
17282 break;
17283 }
17284 shift += 7;
17285 }
17286 *bytes_read_ptr = num_read;
17287 return result;
17288}
17289
12df843f 17290static LONGEST
d521ce57
TT
17291read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17292 unsigned int *bytes_read_ptr)
c906108c 17293{
12df843f 17294 LONGEST result;
870f88f7 17295 int shift, num_read;
c906108c
SS
17296 unsigned char byte;
17297
17298 result = 0;
17299 shift = 0;
c906108c 17300 num_read = 0;
c906108c
SS
17301 while (1)
17302 {
fe1b8b76 17303 byte = bfd_get_8 (abfd, buf);
c906108c
SS
17304 buf++;
17305 num_read++;
12df843f 17306 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
17307 shift += 7;
17308 if ((byte & 128) == 0)
17309 {
17310 break;
17311 }
17312 }
77e0b926 17313 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 17314 result |= -(((LONGEST) 1) << shift);
c906108c
SS
17315 *bytes_read_ptr = num_read;
17316 return result;
17317}
17318
3019eac3
DE
17319/* Given index ADDR_INDEX in .debug_addr, fetch the value.
17320 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17321 ADDR_SIZE is the size of addresses from the CU header. */
17322
17323static CORE_ADDR
17324read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17325{
17326 struct objfile *objfile = dwarf2_per_objfile->objfile;
17327 bfd *abfd = objfile->obfd;
17328 const gdb_byte *info_ptr;
17329
17330 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17331 if (dwarf2_per_objfile->addr.buffer == NULL)
17332 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 17333 objfile_name (objfile));
3019eac3
DE
17334 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17335 error (_("DW_FORM_addr_index pointing outside of "
17336 ".debug_addr section [in module %s]"),
4262abfb 17337 objfile_name (objfile));
3019eac3
DE
17338 info_ptr = (dwarf2_per_objfile->addr.buffer
17339 + addr_base + addr_index * addr_size);
17340 if (addr_size == 4)
17341 return bfd_get_32 (abfd, info_ptr);
17342 else
17343 return bfd_get_64 (abfd, info_ptr);
17344}
17345
17346/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17347
17348static CORE_ADDR
17349read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17350{
17351 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17352}
17353
17354/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17355
17356static CORE_ADDR
d521ce57 17357read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
17358 unsigned int *bytes_read)
17359{
17360 bfd *abfd = cu->objfile->obfd;
17361 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17362
17363 return read_addr_index (cu, addr_index);
17364}
17365
17366/* Data structure to pass results from dwarf2_read_addr_index_reader
17367 back to dwarf2_read_addr_index. */
17368
17369struct dwarf2_read_addr_index_data
17370{
17371 ULONGEST addr_base;
17372 int addr_size;
17373};
17374
17375/* die_reader_func for dwarf2_read_addr_index. */
17376
17377static void
17378dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 17379 const gdb_byte *info_ptr,
3019eac3
DE
17380 struct die_info *comp_unit_die,
17381 int has_children,
17382 void *data)
17383{
17384 struct dwarf2_cu *cu = reader->cu;
17385 struct dwarf2_read_addr_index_data *aidata =
17386 (struct dwarf2_read_addr_index_data *) data;
17387
17388 aidata->addr_base = cu->addr_base;
17389 aidata->addr_size = cu->header.addr_size;
17390}
17391
17392/* Given an index in .debug_addr, fetch the value.
17393 NOTE: This can be called during dwarf expression evaluation,
17394 long after the debug information has been read, and thus per_cu->cu
17395 may no longer exist. */
17396
17397CORE_ADDR
17398dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17399 unsigned int addr_index)
17400{
17401 struct objfile *objfile = per_cu->objfile;
17402 struct dwarf2_cu *cu = per_cu->cu;
17403 ULONGEST addr_base;
17404 int addr_size;
17405
17406 /* This is intended to be called from outside this file. */
17407 dw2_setup (objfile);
17408
17409 /* We need addr_base and addr_size.
17410 If we don't have PER_CU->cu, we have to get it.
17411 Nasty, but the alternative is storing the needed info in PER_CU,
17412 which at this point doesn't seem justified: it's not clear how frequently
17413 it would get used and it would increase the size of every PER_CU.
17414 Entry points like dwarf2_per_cu_addr_size do a similar thing
17415 so we're not in uncharted territory here.
17416 Alas we need to be a bit more complicated as addr_base is contained
17417 in the DIE.
17418
17419 We don't need to read the entire CU(/TU).
17420 We just need the header and top level die.
a1b64ce1 17421
3019eac3 17422 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 17423 For now we skip this optimization. */
3019eac3
DE
17424
17425 if (cu != NULL)
17426 {
17427 addr_base = cu->addr_base;
17428 addr_size = cu->header.addr_size;
17429 }
17430 else
17431 {
17432 struct dwarf2_read_addr_index_data aidata;
17433
a1b64ce1
DE
17434 /* Note: We can't use init_cutu_and_read_dies_simple here,
17435 we need addr_base. */
17436 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17437 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
17438 addr_base = aidata.addr_base;
17439 addr_size = aidata.addr_size;
17440 }
17441
17442 return read_addr_index_1 (addr_index, addr_base, addr_size);
17443}
17444
57d63ce2
DE
17445/* Given a DW_FORM_GNU_str_index, fetch the string.
17446 This is only used by the Fission support. */
3019eac3 17447
d521ce57 17448static const char *
342587c4 17449read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
17450{
17451 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 17452 const char *objf_name = objfile_name (objfile);
3019eac3 17453 bfd *abfd = objfile->obfd;
342587c4 17454 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
17455 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17456 struct dwarf2_section_info *str_offsets_section =
17457 &reader->dwo_file->sections.str_offsets;
d521ce57 17458 const gdb_byte *info_ptr;
3019eac3 17459 ULONGEST str_offset;
57d63ce2 17460 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 17461
73869dc2
DE
17462 dwarf2_read_section (objfile, str_section);
17463 dwarf2_read_section (objfile, str_offsets_section);
17464 if (str_section->buffer == NULL)
57d63ce2 17465 error (_("%s used without .debug_str.dwo section"
9c541725
PA
17466 " in CU at offset 0x%x [in module %s]"),
17467 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17468 if (str_offsets_section->buffer == NULL)
57d63ce2 17469 error (_("%s used without .debug_str_offsets.dwo section"
9c541725
PA
17470 " in CU at offset 0x%x [in module %s]"),
17471 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17472 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 17473 error (_("%s pointing outside of .debug_str_offsets.dwo"
9c541725
PA
17474 " section in CU at offset 0x%x [in module %s]"),
17475 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17476 info_ptr = (str_offsets_section->buffer
3019eac3
DE
17477 + str_index * cu->header.offset_size);
17478 if (cu->header.offset_size == 4)
17479 str_offset = bfd_get_32 (abfd, info_ptr);
17480 else
17481 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 17482 if (str_offset >= str_section->size)
57d63ce2 17483 error (_("Offset from %s pointing outside of"
9c541725
PA
17484 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
17485 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17486 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
17487}
17488
3019eac3
DE
17489/* Return the length of an LEB128 number in BUF. */
17490
17491static int
17492leb128_size (const gdb_byte *buf)
17493{
17494 const gdb_byte *begin = buf;
17495 gdb_byte byte;
17496
17497 while (1)
17498 {
17499 byte = *buf++;
17500 if ((byte & 128) == 0)
17501 return buf - begin;
17502 }
17503}
17504
c906108c 17505static void
e142c38c 17506set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
17507{
17508 switch (lang)
17509 {
17510 case DW_LANG_C89:
76bee0cc 17511 case DW_LANG_C99:
0cfd832f 17512 case DW_LANG_C11:
c906108c 17513 case DW_LANG_C:
d1be3247 17514 case DW_LANG_UPC:
e142c38c 17515 cu->language = language_c;
c906108c 17516 break;
9c37b5ae 17517 case DW_LANG_Java:
c906108c 17518 case DW_LANG_C_plus_plus:
0cfd832f
MW
17519 case DW_LANG_C_plus_plus_11:
17520 case DW_LANG_C_plus_plus_14:
e142c38c 17521 cu->language = language_cplus;
c906108c 17522 break;
6aecb9c2
JB
17523 case DW_LANG_D:
17524 cu->language = language_d;
17525 break;
c906108c
SS
17526 case DW_LANG_Fortran77:
17527 case DW_LANG_Fortran90:
b21b22e0 17528 case DW_LANG_Fortran95:
f7de9aab
MW
17529 case DW_LANG_Fortran03:
17530 case DW_LANG_Fortran08:
e142c38c 17531 cu->language = language_fortran;
c906108c 17532 break;
a766d390
DE
17533 case DW_LANG_Go:
17534 cu->language = language_go;
17535 break;
c906108c 17536 case DW_LANG_Mips_Assembler:
e142c38c 17537 cu->language = language_asm;
c906108c
SS
17538 break;
17539 case DW_LANG_Ada83:
8aaf0b47 17540 case DW_LANG_Ada95:
bc5f45f8
JB
17541 cu->language = language_ada;
17542 break;
72019c9c
GM
17543 case DW_LANG_Modula2:
17544 cu->language = language_m2;
17545 break;
fe8e67fd
PM
17546 case DW_LANG_Pascal83:
17547 cu->language = language_pascal;
17548 break;
22566fbd
DJ
17549 case DW_LANG_ObjC:
17550 cu->language = language_objc;
17551 break;
c44af4eb
TT
17552 case DW_LANG_Rust:
17553 case DW_LANG_Rust_old:
17554 cu->language = language_rust;
17555 break;
c906108c
SS
17556 case DW_LANG_Cobol74:
17557 case DW_LANG_Cobol85:
c906108c 17558 default:
e142c38c 17559 cu->language = language_minimal;
c906108c
SS
17560 break;
17561 }
e142c38c 17562 cu->language_defn = language_def (cu->language);
c906108c
SS
17563}
17564
17565/* Return the named attribute or NULL if not there. */
17566
17567static struct attribute *
e142c38c 17568dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17569{
a48e046c 17570 for (;;)
c906108c 17571 {
a48e046c
TT
17572 unsigned int i;
17573 struct attribute *spec = NULL;
17574
17575 for (i = 0; i < die->num_attrs; ++i)
17576 {
17577 if (die->attrs[i].name == name)
17578 return &die->attrs[i];
17579 if (die->attrs[i].name == DW_AT_specification
17580 || die->attrs[i].name == DW_AT_abstract_origin)
17581 spec = &die->attrs[i];
17582 }
17583
17584 if (!spec)
17585 break;
c906108c 17586
f2f0e013 17587 die = follow_die_ref (die, spec, &cu);
f2f0e013 17588 }
c5aa993b 17589
c906108c
SS
17590 return NULL;
17591}
17592
348e048f
DE
17593/* Return the named attribute or NULL if not there,
17594 but do not follow DW_AT_specification, etc.
17595 This is for use in contexts where we're reading .debug_types dies.
17596 Following DW_AT_specification, DW_AT_abstract_origin will take us
17597 back up the chain, and we want to go down. */
17598
17599static struct attribute *
45e58e77 17600dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17601{
17602 unsigned int i;
17603
17604 for (i = 0; i < die->num_attrs; ++i)
17605 if (die->attrs[i].name == name)
17606 return &die->attrs[i];
17607
17608 return NULL;
17609}
17610
7d45c7c3
KB
17611/* Return the string associated with a string-typed attribute, or NULL if it
17612 is either not found or is of an incorrect type. */
17613
17614static const char *
17615dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17616{
17617 struct attribute *attr;
17618 const char *str = NULL;
17619
17620 attr = dwarf2_attr (die, name, cu);
17621
17622 if (attr != NULL)
17623 {
43988095
JK
17624 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
17625 || attr->form == DW_FORM_string || attr->form == DW_FORM_GNU_strp_alt)
7d45c7c3
KB
17626 str = DW_STRING (attr);
17627 else
17628 complaint (&symfile_complaints,
17629 _("string type expected for attribute %s for "
17630 "DIE at 0x%x in module %s"),
9c541725 17631 dwarf_attr_name (name), to_underlying (die->sect_off),
7d45c7c3
KB
17632 objfile_name (cu->objfile));
17633 }
17634
17635 return str;
17636}
17637
05cf31d1
JB
17638/* Return non-zero iff the attribute NAME is defined for the given DIE,
17639 and holds a non-zero value. This function should only be used for
2dc7f7b3 17640 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17641
17642static int
17643dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17644{
17645 struct attribute *attr = dwarf2_attr (die, name, cu);
17646
17647 return (attr && DW_UNSND (attr));
17648}
17649
3ca72b44 17650static int
e142c38c 17651die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17652{
05cf31d1
JB
17653 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17654 which value is non-zero. However, we have to be careful with
17655 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17656 (via dwarf2_flag_true_p) follows this attribute. So we may
17657 end up accidently finding a declaration attribute that belongs
17658 to a different DIE referenced by the specification attribute,
17659 even though the given DIE does not have a declaration attribute. */
17660 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17661 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17662}
17663
63d06c5c 17664/* Return the die giving the specification for DIE, if there is
f2f0e013 17665 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17666 containing the return value on output. If there is no
17667 specification, but there is an abstract origin, that is
17668 returned. */
63d06c5c
DC
17669
17670static struct die_info *
f2f0e013 17671die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17672{
f2f0e013
DJ
17673 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17674 *spec_cu);
63d06c5c 17675
edb3359d
DJ
17676 if (spec_attr == NULL)
17677 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17678
63d06c5c
DC
17679 if (spec_attr == NULL)
17680 return NULL;
17681 else
f2f0e013 17682 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17683}
c906108c 17684
527f3840
JK
17685/* Stub for free_line_header to match void * callback types. */
17686
17687static void
17688free_line_header_voidp (void *arg)
17689{
9a3c8263 17690 struct line_header *lh = (struct line_header *) arg;
527f3840 17691
fff8551c 17692 delete lh;
527f3840
JK
17693}
17694
fff8551c
PA
17695void
17696line_header::add_include_dir (const char *include_dir)
c906108c 17697{
27e0867f 17698 if (dwarf_line_debug >= 2)
fff8551c
PA
17699 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
17700 include_dirs.size () + 1, include_dir);
27e0867f 17701
fff8551c 17702 include_dirs.push_back (include_dir);
debd256d 17703}
6e70227d 17704
fff8551c
PA
17705void
17706line_header::add_file_name (const char *name,
ecfb656c 17707 dir_index d_index,
fff8551c
PA
17708 unsigned int mod_time,
17709 unsigned int length)
debd256d 17710{
27e0867f
DE
17711 if (dwarf_line_debug >= 2)
17712 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
fff8551c 17713 (unsigned) file_names.size () + 1, name);
27e0867f 17714
ecfb656c 17715 file_names.emplace_back (name, d_index, mod_time, length);
debd256d 17716}
6e70227d 17717
83769d0b 17718/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17719
17720static struct dwarf2_section_info *
17721get_debug_line_section (struct dwarf2_cu *cu)
17722{
17723 struct dwarf2_section_info *section;
17724
17725 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17726 DWO file. */
17727 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17728 section = &cu->dwo_unit->dwo_file->sections.line;
17729 else if (cu->per_cu->is_dwz)
17730 {
17731 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17732
17733 section = &dwz->line;
17734 }
17735 else
17736 section = &dwarf2_per_objfile->line;
17737
17738 return section;
17739}
17740
43988095
JK
17741/* Read directory or file name entry format, starting with byte of
17742 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17743 entries count and the entries themselves in the described entry
17744 format. */
17745
17746static void
17747read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17748 struct line_header *lh,
17749 const struct comp_unit_head *cu_header,
17750 void (*callback) (struct line_header *lh,
17751 const char *name,
ecfb656c 17752 dir_index d_index,
43988095
JK
17753 unsigned int mod_time,
17754 unsigned int length))
17755{
17756 gdb_byte format_count, formati;
17757 ULONGEST data_count, datai;
17758 const gdb_byte *buf = *bufp;
17759 const gdb_byte *format_header_data;
17760 int i;
17761 unsigned int bytes_read;
17762
17763 format_count = read_1_byte (abfd, buf);
17764 buf += 1;
17765 format_header_data = buf;
17766 for (formati = 0; formati < format_count; formati++)
17767 {
17768 read_unsigned_leb128 (abfd, buf, &bytes_read);
17769 buf += bytes_read;
17770 read_unsigned_leb128 (abfd, buf, &bytes_read);
17771 buf += bytes_read;
17772 }
17773
17774 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17775 buf += bytes_read;
17776 for (datai = 0; datai < data_count; datai++)
17777 {
17778 const gdb_byte *format = format_header_data;
17779 struct file_entry fe;
17780
43988095
JK
17781 for (formati = 0; formati < format_count; formati++)
17782 {
ecfb656c 17783 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 17784 format += bytes_read;
43988095 17785
ecfb656c 17786 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 17787 format += bytes_read;
ecfb656c
PA
17788
17789 gdb::optional<const char *> string;
17790 gdb::optional<unsigned int> uint;
17791
43988095
JK
17792 switch (form)
17793 {
17794 case DW_FORM_string:
ecfb656c 17795 string.emplace (read_direct_string (abfd, buf, &bytes_read));
43988095
JK
17796 buf += bytes_read;
17797 break;
17798
17799 case DW_FORM_line_strp:
ecfb656c
PA
17800 string.emplace (read_indirect_line_string (abfd, buf,
17801 cu_header,
17802 &bytes_read));
43988095
JK
17803 buf += bytes_read;
17804 break;
17805
17806 case DW_FORM_data1:
ecfb656c 17807 uint.emplace (read_1_byte (abfd, buf));
43988095
JK
17808 buf += 1;
17809 break;
17810
17811 case DW_FORM_data2:
ecfb656c 17812 uint.emplace (read_2_bytes (abfd, buf));
43988095
JK
17813 buf += 2;
17814 break;
17815
17816 case DW_FORM_data4:
ecfb656c 17817 uint.emplace (read_4_bytes (abfd, buf));
43988095
JK
17818 buf += 4;
17819 break;
17820
17821 case DW_FORM_data8:
ecfb656c 17822 uint.emplace (read_8_bytes (abfd, buf));
43988095
JK
17823 buf += 8;
17824 break;
17825
17826 case DW_FORM_udata:
ecfb656c 17827 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
43988095
JK
17828 buf += bytes_read;
17829 break;
17830
17831 case DW_FORM_block:
17832 /* It is valid only for DW_LNCT_timestamp which is ignored by
17833 current GDB. */
17834 break;
17835 }
ecfb656c
PA
17836
17837 switch (content_type)
17838 {
17839 case DW_LNCT_path:
17840 if (string.has_value ())
17841 fe.name = *string;
17842 break;
17843 case DW_LNCT_directory_index:
17844 if (uint.has_value ())
17845 fe.d_index = (dir_index) *uint;
17846 break;
17847 case DW_LNCT_timestamp:
17848 if (uint.has_value ())
17849 fe.mod_time = *uint;
17850 break;
17851 case DW_LNCT_size:
17852 if (uint.has_value ())
17853 fe.length = *uint;
17854 break;
17855 case DW_LNCT_MD5:
17856 break;
17857 default:
17858 complaint (&symfile_complaints,
17859 _("Unknown format content type %s"),
17860 pulongest (content_type));
17861 }
43988095
JK
17862 }
17863
ecfb656c 17864 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
43988095
JK
17865 }
17866
17867 *bufp = buf;
17868}
17869
debd256d 17870/* Read the statement program header starting at OFFSET in
3019eac3 17871 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17872 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17873 Returns NULL if there is a problem reading the header, e.g., if it
17874 has a version we don't understand.
debd256d
JB
17875
17876 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17877 the returned object point into the dwarf line section buffer,
17878 and must not be freed. */
ae2de4f8 17879
fff8551c 17880static line_header_up
9c541725 17881dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
debd256d 17882{
d521ce57 17883 const gdb_byte *line_ptr;
c764a876 17884 unsigned int bytes_read, offset_size;
debd256d 17885 int i;
d521ce57 17886 const char *cur_dir, *cur_file;
3019eac3
DE
17887 struct dwarf2_section_info *section;
17888 bfd *abfd;
17889
36586728 17890 section = get_debug_line_section (cu);
3019eac3
DE
17891 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17892 if (section->buffer == NULL)
debd256d 17893 {
3019eac3
DE
17894 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17895 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17896 else
17897 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17898 return 0;
17899 }
17900
fceca515
DE
17901 /* We can't do this until we know the section is non-empty.
17902 Only then do we know we have such a section. */
a32a8923 17903 abfd = get_section_bfd_owner (section);
fceca515 17904
a738430d
MK
17905 /* Make sure that at least there's room for the total_length field.
17906 That could be 12 bytes long, but we're just going to fudge that. */
9c541725 17907 if (to_underlying (sect_off) + 4 >= section->size)
debd256d 17908 {
4d3c2250 17909 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17910 return 0;
17911 }
17912
fff8551c 17913 line_header_up lh (new line_header ());
debd256d 17914
9c541725 17915 lh->sect_off = sect_off;
527f3840
JK
17916 lh->offset_in_dwz = cu->per_cu->is_dwz;
17917
9c541725 17918 line_ptr = section->buffer + to_underlying (sect_off);
debd256d 17919
a738430d 17920 /* Read in the header. */
6e70227d 17921 lh->total_length =
c764a876
DE
17922 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17923 &bytes_read, &offset_size);
debd256d 17924 line_ptr += bytes_read;
3019eac3 17925 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17926 {
4d3c2250 17927 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17928 return 0;
17929 }
17930 lh->statement_program_end = line_ptr + lh->total_length;
17931 lh->version = read_2_bytes (abfd, line_ptr);
17932 line_ptr += 2;
43988095 17933 if (lh->version > 5)
cd366ee8
DE
17934 {
17935 /* This is a version we don't understand. The format could have
17936 changed in ways we don't handle properly so just punt. */
17937 complaint (&symfile_complaints,
17938 _("unsupported version in .debug_line section"));
17939 return NULL;
17940 }
43988095
JK
17941 if (lh->version >= 5)
17942 {
17943 gdb_byte segment_selector_size;
17944
17945 /* Skip address size. */
17946 read_1_byte (abfd, line_ptr);
17947 line_ptr += 1;
17948
17949 segment_selector_size = read_1_byte (abfd, line_ptr);
17950 line_ptr += 1;
17951 if (segment_selector_size != 0)
17952 {
17953 complaint (&symfile_complaints,
17954 _("unsupported segment selector size %u "
17955 "in .debug_line section"),
17956 segment_selector_size);
17957 return NULL;
17958 }
17959 }
c764a876
DE
17960 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17961 line_ptr += offset_size;
debd256d
JB
17962 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17963 line_ptr += 1;
2dc7f7b3
TT
17964 if (lh->version >= 4)
17965 {
17966 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17967 line_ptr += 1;
17968 }
17969 else
17970 lh->maximum_ops_per_instruction = 1;
17971
17972 if (lh->maximum_ops_per_instruction == 0)
17973 {
17974 lh->maximum_ops_per_instruction = 1;
17975 complaint (&symfile_complaints,
3e43a32a
MS
17976 _("invalid maximum_ops_per_instruction "
17977 "in `.debug_line' section"));
2dc7f7b3
TT
17978 }
17979
debd256d
JB
17980 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17981 line_ptr += 1;
17982 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17983 line_ptr += 1;
17984 lh->line_range = read_1_byte (abfd, line_ptr);
17985 line_ptr += 1;
17986 lh->opcode_base = read_1_byte (abfd, line_ptr);
17987 line_ptr += 1;
fff8551c 17988 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
debd256d
JB
17989
17990 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17991 for (i = 1; i < lh->opcode_base; ++i)
17992 {
17993 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17994 line_ptr += 1;
17995 }
17996
43988095 17997 if (lh->version >= 5)
debd256d 17998 {
43988095 17999 /* Read directory table. */
fff8551c
PA
18000 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18001 [] (struct line_header *lh, const char *name,
ecfb656c 18002 dir_index d_index, unsigned int mod_time,
fff8551c
PA
18003 unsigned int length)
18004 {
18005 lh->add_include_dir (name);
18006 });
debd256d 18007
43988095 18008 /* Read file name table. */
fff8551c
PA
18009 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18010 [] (struct line_header *lh, const char *name,
ecfb656c 18011 dir_index d_index, unsigned int mod_time,
fff8551c
PA
18012 unsigned int length)
18013 {
ecfb656c 18014 lh->add_file_name (name, d_index, mod_time, length);
fff8551c 18015 });
43988095
JK
18016 }
18017 else
debd256d 18018 {
43988095
JK
18019 /* Read directory table. */
18020 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18021 {
18022 line_ptr += bytes_read;
fff8551c 18023 lh->add_include_dir (cur_dir);
43988095 18024 }
debd256d
JB
18025 line_ptr += bytes_read;
18026
43988095
JK
18027 /* Read file name table. */
18028 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18029 {
ecfb656c
PA
18030 unsigned int mod_time, length;
18031 dir_index d_index;
43988095
JK
18032
18033 line_ptr += bytes_read;
ecfb656c 18034 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
43988095
JK
18035 line_ptr += bytes_read;
18036 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18037 line_ptr += bytes_read;
18038 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18039 line_ptr += bytes_read;
18040
ecfb656c 18041 lh->add_file_name (cur_file, d_index, mod_time, length);
43988095
JK
18042 }
18043 line_ptr += bytes_read;
debd256d 18044 }
6e70227d 18045 lh->statement_program_start = line_ptr;
debd256d 18046
3019eac3 18047 if (line_ptr > (section->buffer + section->size))
4d3c2250 18048 complaint (&symfile_complaints,
3e43a32a
MS
18049 _("line number info header doesn't "
18050 "fit in `.debug_line' section"));
debd256d 18051
debd256d
JB
18052 return lh;
18053}
c906108c 18054
c6da4cef
DE
18055/* Subroutine of dwarf_decode_lines to simplify it.
18056 Return the file name of the psymtab for included file FILE_INDEX
18057 in line header LH of PST.
18058 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18059 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
18060 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
18061
18062 The function creates dangling cleanup registration. */
c6da4cef 18063
d521ce57 18064static const char *
c6da4cef
DE
18065psymtab_include_file_name (const struct line_header *lh, int file_index,
18066 const struct partial_symtab *pst,
18067 const char *comp_dir)
18068{
8c43009f 18069 const file_entry &fe = lh->file_names[file_index];
d521ce57
TT
18070 const char *include_name = fe.name;
18071 const char *include_name_to_compare = include_name;
72b9f47f
TT
18072 const char *pst_filename;
18073 char *copied_name = NULL;
c6da4cef
DE
18074 int file_is_pst;
18075
8c43009f 18076 const char *dir_name = fe.include_dir (lh);
c6da4cef
DE
18077
18078 if (!IS_ABSOLUTE_PATH (include_name)
18079 && (dir_name != NULL || comp_dir != NULL))
18080 {
18081 /* Avoid creating a duplicate psymtab for PST.
18082 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18083 Before we do the comparison, however, we need to account
18084 for DIR_NAME and COMP_DIR.
18085 First prepend dir_name (if non-NULL). If we still don't
18086 have an absolute path prepend comp_dir (if non-NULL).
18087 However, the directory we record in the include-file's
18088 psymtab does not contain COMP_DIR (to match the
18089 corresponding symtab(s)).
18090
18091 Example:
18092
18093 bash$ cd /tmp
18094 bash$ gcc -g ./hello.c
18095 include_name = "hello.c"
18096 dir_name = "."
18097 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
18098 DW_AT_name = "./hello.c"
18099
18100 */
c6da4cef
DE
18101
18102 if (dir_name != NULL)
18103 {
d521ce57
TT
18104 char *tem = concat (dir_name, SLASH_STRING,
18105 include_name, (char *)NULL);
18106
18107 make_cleanup (xfree, tem);
18108 include_name = tem;
c6da4cef 18109 include_name_to_compare = include_name;
c6da4cef
DE
18110 }
18111 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18112 {
d521ce57
TT
18113 char *tem = concat (comp_dir, SLASH_STRING,
18114 include_name, (char *)NULL);
18115
18116 make_cleanup (xfree, tem);
18117 include_name_to_compare = tem;
c6da4cef
DE
18118 }
18119 }
18120
18121 pst_filename = pst->filename;
18122 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18123 {
72b9f47f
TT
18124 copied_name = concat (pst->dirname, SLASH_STRING,
18125 pst_filename, (char *)NULL);
18126 pst_filename = copied_name;
c6da4cef
DE
18127 }
18128
1e3fad37 18129 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 18130
72b9f47f
TT
18131 if (copied_name != NULL)
18132 xfree (copied_name);
c6da4cef
DE
18133
18134 if (file_is_pst)
18135 return NULL;
18136 return include_name;
18137}
18138
d9b3de22
DE
18139/* State machine to track the state of the line number program. */
18140
6f77053d 18141class lnp_state_machine
d9b3de22 18142{
6f77053d
PA
18143public:
18144 /* Initialize a machine state for the start of a line number
18145 program. */
18146 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18147
8c43009f
PA
18148 file_entry *current_file ()
18149 {
18150 /* lh->file_names is 0-based, but the file name numbers in the
18151 statement program are 1-based. */
6f77053d
PA
18152 return m_line_header->file_name_at (m_file);
18153 }
18154
18155 /* Record the line in the state machine. END_SEQUENCE is true if
18156 we're processing the end of a sequence. */
18157 void record_line (bool end_sequence);
18158
18159 /* Check address and if invalid nop-out the rest of the lines in this
18160 sequence. */
18161 void check_line_address (struct dwarf2_cu *cu,
18162 const gdb_byte *line_ptr,
18163 CORE_ADDR lowpc, CORE_ADDR address);
18164
18165 void handle_set_discriminator (unsigned int discriminator)
18166 {
18167 m_discriminator = discriminator;
18168 m_line_has_non_zero_discriminator |= discriminator != 0;
18169 }
18170
18171 /* Handle DW_LNE_set_address. */
18172 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18173 {
18174 m_op_index = 0;
18175 address += baseaddr;
18176 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18177 }
18178
18179 /* Handle DW_LNS_advance_pc. */
18180 void handle_advance_pc (CORE_ADDR adjust);
18181
18182 /* Handle a special opcode. */
18183 void handle_special_opcode (unsigned char op_code);
18184
18185 /* Handle DW_LNS_advance_line. */
18186 void handle_advance_line (int line_delta)
18187 {
18188 advance_line (line_delta);
18189 }
18190
18191 /* Handle DW_LNS_set_file. */
18192 void handle_set_file (file_name_index file);
18193
18194 /* Handle DW_LNS_negate_stmt. */
18195 void handle_negate_stmt ()
18196 {
18197 m_is_stmt = !m_is_stmt;
18198 }
18199
18200 /* Handle DW_LNS_const_add_pc. */
18201 void handle_const_add_pc ();
18202
18203 /* Handle DW_LNS_fixed_advance_pc. */
18204 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18205 {
18206 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18207 m_op_index = 0;
18208 }
18209
18210 /* Handle DW_LNS_copy. */
18211 void handle_copy ()
18212 {
18213 record_line (false);
18214 m_discriminator = 0;
18215 }
18216
18217 /* Handle DW_LNE_end_sequence. */
18218 void handle_end_sequence ()
18219 {
18220 m_record_line_callback = ::record_line;
18221 }
18222
18223private:
18224 /* Advance the line by LINE_DELTA. */
18225 void advance_line (int line_delta)
18226 {
18227 m_line += line_delta;
18228
18229 if (line_delta != 0)
18230 m_line_has_non_zero_discriminator = m_discriminator != 0;
8c43009f
PA
18231 }
18232
6f77053d
PA
18233 gdbarch *m_gdbarch;
18234
18235 /* True if we're recording lines.
18236 Otherwise we're building partial symtabs and are just interested in
18237 finding include files mentioned by the line number program. */
18238 bool m_record_lines_p;
18239
8c43009f 18240 /* The line number header. */
6f77053d 18241 line_header *m_line_header;
8c43009f 18242
6f77053d
PA
18243 /* These are part of the standard DWARF line number state machine,
18244 and initialized according to the DWARF spec. */
d9b3de22 18245
6f77053d 18246 unsigned char m_op_index = 0;
8c43009f 18247 /* The line table index (1-based) of the current file. */
6f77053d
PA
18248 file_name_index m_file = (file_name_index) 1;
18249 unsigned int m_line = 1;
18250
18251 /* These are initialized in the constructor. */
18252
18253 CORE_ADDR m_address;
18254 bool m_is_stmt;
18255 unsigned int m_discriminator;
d9b3de22
DE
18256
18257 /* Additional bits of state we need to track. */
18258
18259 /* The last file that we called dwarf2_start_subfile for.
18260 This is only used for TLLs. */
6f77053d 18261 unsigned int m_last_file = 0;
d9b3de22 18262 /* The last file a line number was recorded for. */
6f77053d 18263 struct subfile *m_last_subfile = NULL;
d9b3de22
DE
18264
18265 /* The function to call to record a line. */
6f77053d 18266 record_line_ftype *m_record_line_callback = NULL;
d9b3de22
DE
18267
18268 /* The last line number that was recorded, used to coalesce
18269 consecutive entries for the same line. This can happen, for
18270 example, when discriminators are present. PR 17276. */
6f77053d
PA
18271 unsigned int m_last_line = 0;
18272 bool m_line_has_non_zero_discriminator = false;
8c43009f 18273};
d9b3de22 18274
6f77053d
PA
18275void
18276lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18277{
18278 CORE_ADDR addr_adj = (((m_op_index + adjust)
18279 / m_line_header->maximum_ops_per_instruction)
18280 * m_line_header->minimum_instruction_length);
18281 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18282 m_op_index = ((m_op_index + adjust)
18283 % m_line_header->maximum_ops_per_instruction);
18284}
d9b3de22 18285
6f77053d
PA
18286void
18287lnp_state_machine::handle_special_opcode (unsigned char op_code)
d9b3de22 18288{
6f77053d
PA
18289 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18290 CORE_ADDR addr_adj = (((m_op_index
18291 + (adj_opcode / m_line_header->line_range))
18292 / m_line_header->maximum_ops_per_instruction)
18293 * m_line_header->minimum_instruction_length);
18294 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18295 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18296 % m_line_header->maximum_ops_per_instruction);
d9b3de22 18297
6f77053d
PA
18298 int line_delta = (m_line_header->line_base
18299 + (adj_opcode % m_line_header->line_range));
18300 advance_line (line_delta);
18301 record_line (false);
18302 m_discriminator = 0;
18303}
d9b3de22 18304
6f77053d
PA
18305void
18306lnp_state_machine::handle_set_file (file_name_index file)
18307{
18308 m_file = file;
18309
18310 const file_entry *fe = current_file ();
18311 if (fe == NULL)
18312 dwarf2_debug_line_missing_file_complaint ();
18313 else if (m_record_lines_p)
18314 {
18315 const char *dir = fe->include_dir (m_line_header);
18316
18317 m_last_subfile = current_subfile;
18318 m_line_has_non_zero_discriminator = m_discriminator != 0;
18319 dwarf2_start_subfile (fe->name, dir);
18320 }
18321}
18322
18323void
18324lnp_state_machine::handle_const_add_pc ()
18325{
18326 CORE_ADDR adjust
18327 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
18328
18329 CORE_ADDR addr_adj
18330 = (((m_op_index + adjust)
18331 / m_line_header->maximum_ops_per_instruction)
18332 * m_line_header->minimum_instruction_length);
18333
18334 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18335 m_op_index = ((m_op_index + adjust)
18336 % m_line_header->maximum_ops_per_instruction);
18337}
d9b3de22 18338
c91513d8
PP
18339/* Ignore this record_line request. */
18340
18341static void
18342noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18343{
18344 return;
18345}
18346
a05a36a5
DE
18347/* Return non-zero if we should add LINE to the line number table.
18348 LINE is the line to add, LAST_LINE is the last line that was added,
18349 LAST_SUBFILE is the subfile for LAST_LINE.
18350 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18351 had a non-zero discriminator.
18352
18353 We have to be careful in the presence of discriminators.
18354 E.g., for this line:
18355
18356 for (i = 0; i < 100000; i++);
18357
18358 clang can emit four line number entries for that one line,
18359 each with a different discriminator.
18360 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18361
18362 However, we want gdb to coalesce all four entries into one.
18363 Otherwise the user could stepi into the middle of the line and
18364 gdb would get confused about whether the pc really was in the
18365 middle of the line.
18366
18367 Things are further complicated by the fact that two consecutive
18368 line number entries for the same line is a heuristic used by gcc
18369 to denote the end of the prologue. So we can't just discard duplicate
18370 entries, we have to be selective about it. The heuristic we use is
18371 that we only collapse consecutive entries for the same line if at least
18372 one of those entries has a non-zero discriminator. PR 17276.
18373
18374 Note: Addresses in the line number state machine can never go backwards
18375 within one sequence, thus this coalescing is ok. */
18376
18377static int
18378dwarf_record_line_p (unsigned int line, unsigned int last_line,
18379 int line_has_non_zero_discriminator,
18380 struct subfile *last_subfile)
18381{
18382 if (current_subfile != last_subfile)
18383 return 1;
18384 if (line != last_line)
18385 return 1;
18386 /* Same line for the same file that we've seen already.
18387 As a last check, for pr 17276, only record the line if the line
18388 has never had a non-zero discriminator. */
18389 if (!line_has_non_zero_discriminator)
18390 return 1;
18391 return 0;
18392}
18393
252a6764
DE
18394/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18395 in the line table of subfile SUBFILE. */
18396
18397static void
d9b3de22
DE
18398dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18399 unsigned int line, CORE_ADDR address,
18400 record_line_ftype p_record_line)
252a6764
DE
18401{
18402 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18403
27e0867f
DE
18404 if (dwarf_line_debug)
18405 {
18406 fprintf_unfiltered (gdb_stdlog,
18407 "Recording line %u, file %s, address %s\n",
18408 line, lbasename (subfile->name),
18409 paddress (gdbarch, address));
18410 }
18411
d5962de5 18412 (*p_record_line) (subfile, line, addr);
252a6764
DE
18413}
18414
18415/* Subroutine of dwarf_decode_lines_1 to simplify it.
18416 Mark the end of a set of line number records.
d9b3de22 18417 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
18418 If SUBFILE is NULL the request is ignored. */
18419
18420static void
18421dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18422 CORE_ADDR address, record_line_ftype p_record_line)
18423{
27e0867f
DE
18424 if (subfile == NULL)
18425 return;
18426
18427 if (dwarf_line_debug)
18428 {
18429 fprintf_unfiltered (gdb_stdlog,
18430 "Finishing current line, file %s, address %s\n",
18431 lbasename (subfile->name),
18432 paddress (gdbarch, address));
18433 }
18434
d9b3de22
DE
18435 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18436}
18437
6f77053d
PA
18438void
18439lnp_state_machine::record_line (bool end_sequence)
d9b3de22 18440{
d9b3de22
DE
18441 if (dwarf_line_debug)
18442 {
18443 fprintf_unfiltered (gdb_stdlog,
18444 "Processing actual line %u: file %u,"
18445 " address %s, is_stmt %u, discrim %u\n",
6f77053d
PA
18446 m_line, to_underlying (m_file),
18447 paddress (m_gdbarch, m_address),
18448 m_is_stmt, m_discriminator);
d9b3de22
DE
18449 }
18450
6f77053d 18451 file_entry *fe = current_file ();
8c43009f
PA
18452
18453 if (fe == NULL)
d9b3de22
DE
18454 dwarf2_debug_line_missing_file_complaint ();
18455 /* For now we ignore lines not starting on an instruction boundary.
18456 But not when processing end_sequence for compatibility with the
18457 previous version of the code. */
6f77053d 18458 else if (m_op_index == 0 || end_sequence)
d9b3de22 18459 {
8c43009f 18460 fe->included_p = 1;
6f77053d 18461 if (m_record_lines_p && m_is_stmt)
d9b3de22 18462 {
6f77053d 18463 if (m_last_subfile != current_subfile || end_sequence)
d9b3de22 18464 {
6f77053d
PA
18465 dwarf_finish_line (m_gdbarch, m_last_subfile,
18466 m_address, m_record_line_callback);
d9b3de22
DE
18467 }
18468
18469 if (!end_sequence)
18470 {
6f77053d
PA
18471 if (dwarf_record_line_p (m_line, m_last_line,
18472 m_line_has_non_zero_discriminator,
18473 m_last_subfile))
d9b3de22 18474 {
6f77053d
PA
18475 dwarf_record_line_1 (m_gdbarch, current_subfile,
18476 m_line, m_address,
18477 m_record_line_callback);
d9b3de22 18478 }
6f77053d
PA
18479 m_last_subfile = current_subfile;
18480 m_last_line = m_line;
d9b3de22
DE
18481 }
18482 }
18483 }
18484}
18485
6f77053d
PA
18486lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
18487 bool record_lines_p)
d9b3de22 18488{
6f77053d
PA
18489 m_gdbarch = arch;
18490 m_record_lines_p = record_lines_p;
18491 m_line_header = lh;
d9b3de22 18492
6f77053d 18493 m_record_line_callback = ::record_line;
d9b3de22 18494
d9b3de22
DE
18495 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18496 was a line entry for it so that the backend has a chance to adjust it
18497 and also record it in case it needs it. This is currently used by MIPS
18498 code, cf. `mips_adjust_dwarf2_line'. */
6f77053d
PA
18499 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
18500 m_is_stmt = lh->default_is_stmt;
18501 m_discriminator = 0;
252a6764
DE
18502}
18503
6f77053d
PA
18504void
18505lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
18506 const gdb_byte *line_ptr,
18507 CORE_ADDR lowpc, CORE_ADDR address)
924c2928
DE
18508{
18509 /* If address < lowpc then it's not a usable value, it's outside the
18510 pc range of the CU. However, we restrict the test to only address
18511 values of zero to preserve GDB's previous behaviour which is to
18512 handle the specific case of a function being GC'd by the linker. */
18513
18514 if (address == 0 && address < lowpc)
18515 {
18516 /* This line table is for a function which has been
18517 GCd by the linker. Ignore it. PR gdb/12528 */
18518
18519 struct objfile *objfile = cu->objfile;
18520 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18521
18522 complaint (&symfile_complaints,
18523 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18524 line_offset, objfile_name (objfile));
6f77053d
PA
18525 m_record_line_callback = noop_record_line;
18526 /* Note: record_line_callback is left as noop_record_line until
18527 we see DW_LNE_end_sequence. */
924c2928
DE
18528 }
18529}
18530
f3f5162e 18531/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
18532 Process the line number information in LH.
18533 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18534 program in order to set included_p for every referenced header. */
debd256d 18535
c906108c 18536static void
43f3e411
DE
18537dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18538 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 18539{
d521ce57
TT
18540 const gdb_byte *line_ptr, *extended_end;
18541 const gdb_byte *line_end;
a8c50c1f 18542 unsigned int bytes_read, extended_len;
699ca60a 18543 unsigned char op_code, extended_op;
e142c38c
DJ
18544 CORE_ADDR baseaddr;
18545 struct objfile *objfile = cu->objfile;
f3f5162e 18546 bfd *abfd = objfile->obfd;
fbf65064 18547 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6f77053d
PA
18548 /* True if we're recording line info (as opposed to building partial
18549 symtabs and just interested in finding include files mentioned by
18550 the line number program). */
18551 bool record_lines_p = !decode_for_pst_p;
e142c38c
DJ
18552
18553 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18554
debd256d
JB
18555 line_ptr = lh->statement_program_start;
18556 line_end = lh->statement_program_end;
c906108c
SS
18557
18558 /* Read the statement sequences until there's nothing left. */
18559 while (line_ptr < line_end)
18560 {
6f77053d
PA
18561 /* The DWARF line number program state machine. Reset the state
18562 machine at the start of each sequence. */
18563 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
18564 bool end_sequence = false;
d9b3de22 18565
8c43009f 18566 if (record_lines_p)
c906108c 18567 {
8c43009f
PA
18568 /* Start a subfile for the current file of the state
18569 machine. */
18570 const file_entry *fe = state_machine.current_file ();
18571
18572 if (fe != NULL)
18573 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
c906108c
SS
18574 }
18575
a738430d 18576 /* Decode the table. */
d9b3de22 18577 while (line_ptr < line_end && !end_sequence)
c906108c
SS
18578 {
18579 op_code = read_1_byte (abfd, line_ptr);
18580 line_ptr += 1;
9aa1fe7e 18581
debd256d 18582 if (op_code >= lh->opcode_base)
6e70227d 18583 {
8e07a239 18584 /* Special opcode. */
6f77053d 18585 state_machine.handle_special_opcode (op_code);
9aa1fe7e
GK
18586 }
18587 else switch (op_code)
c906108c
SS
18588 {
18589 case DW_LNS_extended_op:
3e43a32a
MS
18590 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18591 &bytes_read);
473b7be6 18592 line_ptr += bytes_read;
a8c50c1f 18593 extended_end = line_ptr + extended_len;
c906108c
SS
18594 extended_op = read_1_byte (abfd, line_ptr);
18595 line_ptr += 1;
18596 switch (extended_op)
18597 {
18598 case DW_LNE_end_sequence:
6f77053d
PA
18599 state_machine.handle_end_sequence ();
18600 end_sequence = true;
c906108c
SS
18601 break;
18602 case DW_LNE_set_address:
d9b3de22
DE
18603 {
18604 CORE_ADDR address
18605 = read_address (abfd, line_ptr, cu, &bytes_read);
d9b3de22 18606 line_ptr += bytes_read;
6f77053d
PA
18607
18608 state_machine.check_line_address (cu, line_ptr,
18609 lowpc, address);
18610 state_machine.handle_set_address (baseaddr, address);
d9b3de22 18611 }
c906108c
SS
18612 break;
18613 case DW_LNE_define_file:
debd256d 18614 {
d521ce57 18615 const char *cur_file;
ecfb656c
PA
18616 unsigned int mod_time, length;
18617 dir_index dindex;
6e70227d 18618
3e43a32a
MS
18619 cur_file = read_direct_string (abfd, line_ptr,
18620 &bytes_read);
debd256d 18621 line_ptr += bytes_read;
ecfb656c 18622 dindex = (dir_index)
debd256d
JB
18623 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18624 line_ptr += bytes_read;
18625 mod_time =
18626 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18627 line_ptr += bytes_read;
18628 length =
18629 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18630 line_ptr += bytes_read;
ecfb656c 18631 lh->add_file_name (cur_file, dindex, mod_time, length);
debd256d 18632 }
c906108c 18633 break;
d0c6ba3d 18634 case DW_LNE_set_discriminator:
6f77053d
PA
18635 {
18636 /* The discriminator is not interesting to the
18637 debugger; just ignore it. We still need to
18638 check its value though:
18639 if there are consecutive entries for the same
18640 (non-prologue) line we want to coalesce them.
18641 PR 17276. */
18642 unsigned int discr
18643 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18644 line_ptr += bytes_read;
18645
18646 state_machine.handle_set_discriminator (discr);
18647 }
d0c6ba3d 18648 break;
c906108c 18649 default:
4d3c2250 18650 complaint (&symfile_complaints,
e2e0b3e5 18651 _("mangled .debug_line section"));
debd256d 18652 return;
c906108c 18653 }
a8c50c1f
DJ
18654 /* Make sure that we parsed the extended op correctly. If e.g.
18655 we expected a different address size than the producer used,
18656 we may have read the wrong number of bytes. */
18657 if (line_ptr != extended_end)
18658 {
18659 complaint (&symfile_complaints,
18660 _("mangled .debug_line section"));
18661 return;
18662 }
c906108c
SS
18663 break;
18664 case DW_LNS_copy:
6f77053d 18665 state_machine.handle_copy ();
c906108c
SS
18666 break;
18667 case DW_LNS_advance_pc:
2dc7f7b3
TT
18668 {
18669 CORE_ADDR adjust
18670 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
2dc7f7b3 18671 line_ptr += bytes_read;
6f77053d
PA
18672
18673 state_machine.handle_advance_pc (adjust);
2dc7f7b3 18674 }
c906108c
SS
18675 break;
18676 case DW_LNS_advance_line:
a05a36a5
DE
18677 {
18678 int line_delta
18679 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
a05a36a5 18680 line_ptr += bytes_read;
6f77053d
PA
18681
18682 state_machine.handle_advance_line (line_delta);
a05a36a5 18683 }
c906108c
SS
18684 break;
18685 case DW_LNS_set_file:
d9b3de22 18686 {
6f77053d 18687 file_name_index file
ecfb656c
PA
18688 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
18689 &bytes_read);
d9b3de22 18690 line_ptr += bytes_read;
8c43009f 18691
6f77053d 18692 state_machine.handle_set_file (file);
d9b3de22 18693 }
c906108c
SS
18694 break;
18695 case DW_LNS_set_column:
0ad93d4f 18696 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
18697 line_ptr += bytes_read;
18698 break;
18699 case DW_LNS_negate_stmt:
6f77053d 18700 state_machine.handle_negate_stmt ();
c906108c
SS
18701 break;
18702 case DW_LNS_set_basic_block:
c906108c 18703 break;
c2c6d25f
JM
18704 /* Add to the address register of the state machine the
18705 address increment value corresponding to special opcode
a738430d
MK
18706 255. I.e., this value is scaled by the minimum
18707 instruction length since special opcode 255 would have
b021a221 18708 scaled the increment. */
c906108c 18709 case DW_LNS_const_add_pc:
6f77053d 18710 state_machine.handle_const_add_pc ();
c906108c
SS
18711 break;
18712 case DW_LNS_fixed_advance_pc:
3e29f34a 18713 {
6f77053d 18714 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
3e29f34a 18715 line_ptr += 2;
6f77053d
PA
18716
18717 state_machine.handle_fixed_advance_pc (addr_adj);
3e29f34a 18718 }
c906108c 18719 break;
9aa1fe7e 18720 default:
a738430d
MK
18721 {
18722 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18723 int i;
a738430d 18724
debd256d 18725 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18726 {
18727 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18728 line_ptr += bytes_read;
18729 }
18730 }
c906108c
SS
18731 }
18732 }
d9b3de22
DE
18733
18734 if (!end_sequence)
18735 dwarf2_debug_line_missing_end_sequence_complaint ();
18736
18737 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18738 in which case we still finish recording the last line). */
6f77053d 18739 state_machine.record_line (true);
c906108c 18740 }
f3f5162e
DE
18741}
18742
18743/* Decode the Line Number Program (LNP) for the given line_header
18744 structure and CU. The actual information extracted and the type
18745 of structures created from the LNP depends on the value of PST.
18746
18747 1. If PST is NULL, then this procedure uses the data from the program
18748 to create all necessary symbol tables, and their linetables.
18749
18750 2. If PST is not NULL, this procedure reads the program to determine
18751 the list of files included by the unit represented by PST, and
18752 builds all the associated partial symbol tables.
18753
18754 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18755 It is used for relative paths in the line table.
18756 NOTE: When processing partial symtabs (pst != NULL),
18757 comp_dir == pst->dirname.
18758
18759 NOTE: It is important that psymtabs have the same file name (via strcmp)
18760 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18761 symtab we don't use it in the name of the psymtabs we create.
18762 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18763 A good testcase for this is mb-inline.exp.
18764
527f3840
JK
18765 LOWPC is the lowest address in CU (or 0 if not known).
18766
18767 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18768 for its PC<->lines mapping information. Otherwise only the filename
18769 table is read in. */
f3f5162e
DE
18770
18771static void
18772dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18773 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18774 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18775{
18776 struct objfile *objfile = cu->objfile;
18777 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18778
527f3840
JK
18779 if (decode_mapping)
18780 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18781
18782 if (decode_for_pst_p)
18783 {
18784 int file_index;
18785
18786 /* Now that we're done scanning the Line Header Program, we can
18787 create the psymtab of each included file. */
fff8551c 18788 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
aaa75496
JB
18789 if (lh->file_names[file_index].included_p == 1)
18790 {
d521ce57 18791 const char *include_name =
c6da4cef
DE
18792 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18793 if (include_name != NULL)
aaa75496
JB
18794 dwarf2_create_include_psymtab (include_name, pst, objfile);
18795 }
18796 }
cb1df416
DJ
18797 else
18798 {
18799 /* Make sure a symtab is created for every file, even files
18800 which contain only variables (i.e. no code with associated
18801 line numbers). */
43f3e411 18802 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18803 int i;
cb1df416 18804
fff8551c 18805 for (i = 0; i < lh->file_names.size (); i++)
cb1df416 18806 {
8c43009f 18807 file_entry &fe = lh->file_names[i];
9a619af0 18808
8c43009f 18809 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
cb1df416 18810
cb1df416 18811 if (current_subfile->symtab == NULL)
43f3e411
DE
18812 {
18813 current_subfile->symtab
18814 = allocate_symtab (cust, current_subfile->name);
18815 }
8c43009f 18816 fe.symtab = current_subfile->symtab;
cb1df416
DJ
18817 }
18818 }
c906108c
SS
18819}
18820
18821/* Start a subfile for DWARF. FILENAME is the name of the file and
18822 DIRNAME the name of the source directory which contains FILENAME
4d663531 18823 or NULL if not known.
c906108c
SS
18824 This routine tries to keep line numbers from identical absolute and
18825 relative file names in a common subfile.
18826
18827 Using the `list' example from the GDB testsuite, which resides in
18828 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18829 of /srcdir/list0.c yields the following debugging information for list0.c:
18830
c5aa993b 18831 DW_AT_name: /srcdir/list0.c
4d663531 18832 DW_AT_comp_dir: /compdir
357e46e7 18833 files.files[0].name: list0.h
c5aa993b 18834 files.files[0].dir: /srcdir
357e46e7 18835 files.files[1].name: list0.c
c5aa993b 18836 files.files[1].dir: /srcdir
c906108c
SS
18837
18838 The line number information for list0.c has to end up in a single
4f1520fb
FR
18839 subfile, so that `break /srcdir/list0.c:1' works as expected.
18840 start_subfile will ensure that this happens provided that we pass the
18841 concatenation of files.files[1].dir and files.files[1].name as the
18842 subfile's name. */
c906108c
SS
18843
18844static void
4d663531 18845dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18846{
d521ce57 18847 char *copy = NULL;
4f1520fb 18848
4d663531 18849 /* In order not to lose the line information directory,
4f1520fb
FR
18850 we concatenate it to the filename when it makes sense.
18851 Note that the Dwarf3 standard says (speaking of filenames in line
18852 information): ``The directory index is ignored for file names
18853 that represent full path names''. Thus ignoring dirname in the
18854 `else' branch below isn't an issue. */
c906108c 18855
d5166ae1 18856 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18857 {
18858 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18859 filename = copy;
18860 }
c906108c 18861
4d663531 18862 start_subfile (filename);
4f1520fb 18863
d521ce57
TT
18864 if (copy != NULL)
18865 xfree (copy);
c906108c
SS
18866}
18867
f4dc4d17
DE
18868/* Start a symtab for DWARF.
18869 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18870
43f3e411 18871static struct compunit_symtab *
f4dc4d17 18872dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18873 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18874{
43f3e411
DE
18875 struct compunit_symtab *cust
18876 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18877
f4dc4d17
DE
18878 record_debugformat ("DWARF 2");
18879 record_producer (cu->producer);
18880
18881 /* We assume that we're processing GCC output. */
18882 processing_gcc_compilation = 2;
18883
4d4ec4e5 18884 cu->processing_has_namespace_info = 0;
43f3e411
DE
18885
18886 return cust;
f4dc4d17
DE
18887}
18888
4c2df51b
DJ
18889static void
18890var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18891 struct dwarf2_cu *cu)
4c2df51b 18892{
e7c27a73
DJ
18893 struct objfile *objfile = cu->objfile;
18894 struct comp_unit_head *cu_header = &cu->header;
18895
4c2df51b
DJ
18896 /* NOTE drow/2003-01-30: There used to be a comment and some special
18897 code here to turn a symbol with DW_AT_external and a
18898 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18899 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18900 with some versions of binutils) where shared libraries could have
18901 relocations against symbols in their debug information - the
18902 minimal symbol would have the right address, but the debug info
18903 would not. It's no longer necessary, because we will explicitly
18904 apply relocations when we read in the debug information now. */
18905
18906 /* A DW_AT_location attribute with no contents indicates that a
18907 variable has been optimized away. */
18908 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18909 {
f1e6e072 18910 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18911 return;
18912 }
18913
18914 /* Handle one degenerate form of location expression specially, to
18915 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18916 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18917 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18918
18919 if (attr_form_is_block (attr)
3019eac3
DE
18920 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18921 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18922 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18923 && (DW_BLOCK (attr)->size
18924 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18925 {
891d2f0b 18926 unsigned int dummy;
4c2df51b 18927
3019eac3
DE
18928 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18929 SYMBOL_VALUE_ADDRESS (sym) =
18930 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18931 else
18932 SYMBOL_VALUE_ADDRESS (sym) =
18933 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18934 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18935 fixup_symbol_section (sym, objfile);
18936 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18937 SYMBOL_SECTION (sym));
4c2df51b
DJ
18938 return;
18939 }
18940
18941 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18942 expression evaluator, and use LOC_COMPUTED only when necessary
18943 (i.e. when the value of a register or memory location is
18944 referenced, or a thread-local block, etc.). Then again, it might
18945 not be worthwhile. I'm assuming that it isn't unless performance
18946 or memory numbers show me otherwise. */
18947
f1e6e072 18948 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18949
f1e6e072 18950 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18951 cu->has_loclist = 1;
4c2df51b
DJ
18952}
18953
c906108c
SS
18954/* Given a pointer to a DWARF information entry, figure out if we need
18955 to make a symbol table entry for it, and if so, create a new entry
18956 and return a pointer to it.
18957 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18958 used the passed type.
18959 If SPACE is not NULL, use it to hold the new symbol. If it is
18960 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18961
18962static struct symbol *
34eaf542
TT
18963new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18964 struct symbol *space)
c906108c 18965{
e7c27a73 18966 struct objfile *objfile = cu->objfile;
3e29f34a 18967 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 18968 struct symbol *sym = NULL;
15d034d0 18969 const char *name;
c906108c
SS
18970 struct attribute *attr = NULL;
18971 struct attribute *attr2 = NULL;
e142c38c 18972 CORE_ADDR baseaddr;
e37fd15a
SW
18973 struct pending **list_to_add = NULL;
18974
edb3359d 18975 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
18976
18977 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18978
94af9270 18979 name = dwarf2_name (die, cu);
c906108c
SS
18980 if (name)
18981 {
94af9270 18982 const char *linkagename;
34eaf542 18983 int suppress_add = 0;
94af9270 18984
34eaf542
TT
18985 if (space)
18986 sym = space;
18987 else
e623cf5d 18988 sym = allocate_symbol (objfile);
c906108c 18989 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
18990
18991 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 18992 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
18993 linkagename = dwarf2_physname (name, die, cu);
18994 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 18995
f55ee35c
JK
18996 /* Fortran does not have mangling standard and the mangling does differ
18997 between gfortran, iFort etc. */
18998 if (cu->language == language_fortran
b250c185 18999 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 19000 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 19001 dwarf2_full_name (name, die, cu),
29df156d 19002 NULL);
f55ee35c 19003
c906108c 19004 /* Default assumptions.
c5aa993b 19005 Use the passed type or decode it from the die. */
176620f1 19006 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 19007 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
19008 if (type != NULL)
19009 SYMBOL_TYPE (sym) = type;
19010 else
e7c27a73 19011 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
19012 attr = dwarf2_attr (die,
19013 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
19014 cu);
c906108c
SS
19015 if (attr)
19016 {
19017 SYMBOL_LINE (sym) = DW_UNSND (attr);
19018 }
cb1df416 19019
edb3359d
DJ
19020 attr = dwarf2_attr (die,
19021 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19022 cu);
cb1df416
DJ
19023 if (attr)
19024 {
ecfb656c 19025 file_name_index file_index = (file_name_index) DW_UNSND (attr);
8c43009f 19026 struct file_entry *fe;
9a619af0 19027
ecfb656c
PA
19028 if (cu->line_header != NULL)
19029 fe = cu->line_header->file_name_at (file_index);
8c43009f
PA
19030 else
19031 fe = NULL;
19032
19033 if (fe == NULL)
cb1df416
DJ
19034 complaint (&symfile_complaints,
19035 _("file index out of range"));
8c43009f
PA
19036 else
19037 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
19038 }
19039
c906108c
SS
19040 switch (die->tag)
19041 {
19042 case DW_TAG_label:
e142c38c 19043 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 19044 if (attr)
3e29f34a
MR
19045 {
19046 CORE_ADDR addr;
19047
19048 addr = attr_value_as_address (attr);
19049 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
19050 SYMBOL_VALUE_ADDRESS (sym) = addr;
19051 }
0f5238ed
TT
19052 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
19053 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 19054 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 19055 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
19056 break;
19057 case DW_TAG_subprogram:
19058 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19059 finish_block. */
f1e6e072 19060 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 19061 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
19062 if ((attr2 && (DW_UNSND (attr2) != 0))
19063 || cu->language == language_ada)
c906108c 19064 {
2cfa0c8d
JB
19065 /* Subprograms marked external are stored as a global symbol.
19066 Ada subprograms, whether marked external or not, are always
19067 stored as a global symbol, because we want to be able to
19068 access them globally. For instance, we want to be able
19069 to break on a nested subprogram without having to
19070 specify the context. */
e37fd15a 19071 list_to_add = &global_symbols;
c906108c
SS
19072 }
19073 else
19074 {
e37fd15a 19075 list_to_add = cu->list_in_scope;
c906108c
SS
19076 }
19077 break;
edb3359d
DJ
19078 case DW_TAG_inlined_subroutine:
19079 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19080 finish_block. */
f1e6e072 19081 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 19082 SYMBOL_INLINED (sym) = 1;
481860b3 19083 list_to_add = cu->list_in_scope;
edb3359d 19084 break;
34eaf542
TT
19085 case DW_TAG_template_value_param:
19086 suppress_add = 1;
19087 /* Fall through. */
72929c62 19088 case DW_TAG_constant:
c906108c 19089 case DW_TAG_variable:
254e6b9e 19090 case DW_TAG_member:
0963b4bd
MS
19091 /* Compilation with minimal debug info may result in
19092 variables with missing type entries. Change the
19093 misleading `void' type to something sensible. */
c906108c 19094 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 19095 SYMBOL_TYPE (sym)
46bf5051 19096 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 19097
e142c38c 19098 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
19099 /* In the case of DW_TAG_member, we should only be called for
19100 static const members. */
19101 if (die->tag == DW_TAG_member)
19102 {
3863f96c
DE
19103 /* dwarf2_add_field uses die_is_declaration,
19104 so we do the same. */
254e6b9e
DE
19105 gdb_assert (die_is_declaration (die, cu));
19106 gdb_assert (attr);
19107 }
c906108c
SS
19108 if (attr)
19109 {
e7c27a73 19110 dwarf2_const_value (attr, sym, cu);
e142c38c 19111 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 19112 if (!suppress_add)
34eaf542
TT
19113 {
19114 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 19115 list_to_add = &global_symbols;
34eaf542 19116 else
e37fd15a 19117 list_to_add = cu->list_in_scope;
34eaf542 19118 }
c906108c
SS
19119 break;
19120 }
e142c38c 19121 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
19122 if (attr)
19123 {
e7c27a73 19124 var_decode_location (attr, sym, cu);
e142c38c 19125 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
19126
19127 /* Fortran explicitly imports any global symbols to the local
19128 scope by DW_TAG_common_block. */
19129 if (cu->language == language_fortran && die->parent
19130 && die->parent->tag == DW_TAG_common_block)
19131 attr2 = NULL;
19132
caac4577
JG
19133 if (SYMBOL_CLASS (sym) == LOC_STATIC
19134 && SYMBOL_VALUE_ADDRESS (sym) == 0
19135 && !dwarf2_per_objfile->has_section_at_zero)
19136 {
19137 /* When a static variable is eliminated by the linker,
19138 the corresponding debug information is not stripped
19139 out, but the variable address is set to null;
19140 do not add such variables into symbol table. */
19141 }
19142 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 19143 {
f55ee35c
JK
19144 /* Workaround gfortran PR debug/40040 - it uses
19145 DW_AT_location for variables in -fPIC libraries which may
19146 get overriden by other libraries/executable and get
19147 a different address. Resolve it by the minimal symbol
19148 which may come from inferior's executable using copy
19149 relocation. Make this workaround only for gfortran as for
19150 other compilers GDB cannot guess the minimal symbol
19151 Fortran mangling kind. */
19152 if (cu->language == language_fortran && die->parent
19153 && die->parent->tag == DW_TAG_module
19154 && cu->producer
28586665 19155 && startswith (cu->producer, "GNU Fortran"))
f1e6e072 19156 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 19157
1c809c68
TT
19158 /* A variable with DW_AT_external is never static,
19159 but it may be block-scoped. */
19160 list_to_add = (cu->list_in_scope == &file_symbols
19161 ? &global_symbols : cu->list_in_scope);
1c809c68 19162 }
c906108c 19163 else
e37fd15a 19164 list_to_add = cu->list_in_scope;
c906108c
SS
19165 }
19166 else
19167 {
19168 /* We do not know the address of this symbol.
c5aa993b
JM
19169 If it is an external symbol and we have type information
19170 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19171 The address of the variable will then be determined from
19172 the minimal symbol table whenever the variable is
19173 referenced. */
e142c38c 19174 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
19175
19176 /* Fortran explicitly imports any global symbols to the local
19177 scope by DW_TAG_common_block. */
19178 if (cu->language == language_fortran && die->parent
19179 && die->parent->tag == DW_TAG_common_block)
19180 {
19181 /* SYMBOL_CLASS doesn't matter here because
19182 read_common_block is going to reset it. */
19183 if (!suppress_add)
19184 list_to_add = cu->list_in_scope;
19185 }
19186 else if (attr2 && (DW_UNSND (attr2) != 0)
19187 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 19188 {
0fe7935b
DJ
19189 /* A variable with DW_AT_external is never static, but it
19190 may be block-scoped. */
19191 list_to_add = (cu->list_in_scope == &file_symbols
19192 ? &global_symbols : cu->list_in_scope);
19193
f1e6e072 19194 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 19195 }
442ddf59
JK
19196 else if (!die_is_declaration (die, cu))
19197 {
19198 /* Use the default LOC_OPTIMIZED_OUT class. */
19199 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
19200 if (!suppress_add)
19201 list_to_add = cu->list_in_scope;
442ddf59 19202 }
c906108c
SS
19203 }
19204 break;
19205 case DW_TAG_formal_parameter:
edb3359d
DJ
19206 /* If we are inside a function, mark this as an argument. If
19207 not, we might be looking at an argument to an inlined function
19208 when we do not have enough information to show inlined frames;
19209 pretend it's a local variable in that case so that the user can
19210 still see it. */
19211 if (context_stack_depth > 0
19212 && context_stack[context_stack_depth - 1].name != NULL)
19213 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 19214 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
19215 if (attr)
19216 {
e7c27a73 19217 var_decode_location (attr, sym, cu);
c906108c 19218 }
e142c38c 19219 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
19220 if (attr)
19221 {
e7c27a73 19222 dwarf2_const_value (attr, sym, cu);
c906108c 19223 }
f346a30d 19224
e37fd15a 19225 list_to_add = cu->list_in_scope;
c906108c
SS
19226 break;
19227 case DW_TAG_unspecified_parameters:
19228 /* From varargs functions; gdb doesn't seem to have any
19229 interest in this information, so just ignore it for now.
19230 (FIXME?) */
19231 break;
34eaf542
TT
19232 case DW_TAG_template_type_param:
19233 suppress_add = 1;
19234 /* Fall through. */
c906108c 19235 case DW_TAG_class_type:
680b30c7 19236 case DW_TAG_interface_type:
c906108c
SS
19237 case DW_TAG_structure_type:
19238 case DW_TAG_union_type:
72019c9c 19239 case DW_TAG_set_type:
c906108c 19240 case DW_TAG_enumeration_type:
f1e6e072 19241 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 19242 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 19243
63d06c5c 19244 {
9c37b5ae 19245 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
63d06c5c
DC
19246 really ever be static objects: otherwise, if you try
19247 to, say, break of a class's method and you're in a file
19248 which doesn't mention that class, it won't work unless
19249 the check for all static symbols in lookup_symbol_aux
19250 saves you. See the OtherFileClass tests in
19251 gdb.c++/namespace.exp. */
19252
e37fd15a 19253 if (!suppress_add)
34eaf542 19254 {
34eaf542 19255 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 19256 && cu->language == language_cplus
34eaf542 19257 ? &global_symbols : cu->list_in_scope);
63d06c5c 19258
64382290 19259 /* The semantics of C++ state that "struct foo {
9c37b5ae 19260 ... }" also defines a typedef for "foo". */
64382290 19261 if (cu->language == language_cplus
45280282 19262 || cu->language == language_ada
c44af4eb
TT
19263 || cu->language == language_d
19264 || cu->language == language_rust)
64382290
TT
19265 {
19266 /* The symbol's name is already allocated along
19267 with this objfile, so we don't need to
19268 duplicate it for the type. */
19269 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19270 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19271 }
63d06c5c
DC
19272 }
19273 }
c906108c
SS
19274 break;
19275 case DW_TAG_typedef:
f1e6e072 19276 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 19277 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 19278 list_to_add = cu->list_in_scope;
63d06c5c 19279 break;
c906108c 19280 case DW_TAG_base_type:
a02abb62 19281 case DW_TAG_subrange_type:
f1e6e072 19282 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 19283 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 19284 list_to_add = cu->list_in_scope;
c906108c
SS
19285 break;
19286 case DW_TAG_enumerator:
e142c38c 19287 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
19288 if (attr)
19289 {
e7c27a73 19290 dwarf2_const_value (attr, sym, cu);
c906108c 19291 }
63d06c5c
DC
19292 {
19293 /* NOTE: carlton/2003-11-10: See comment above in the
19294 DW_TAG_class_type, etc. block. */
19295
e142c38c 19296 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 19297 && cu->language == language_cplus
e142c38c 19298 ? &global_symbols : cu->list_in_scope);
63d06c5c 19299 }
c906108c 19300 break;
74921315 19301 case DW_TAG_imported_declaration:
5c4e30ca 19302 case DW_TAG_namespace:
f1e6e072 19303 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 19304 list_to_add = &global_symbols;
5c4e30ca 19305 break;
530e8392
KB
19306 case DW_TAG_module:
19307 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19308 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19309 list_to_add = &global_symbols;
19310 break;
4357ac6c 19311 case DW_TAG_common_block:
f1e6e072 19312 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
19313 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19314 add_symbol_to_list (sym, cu->list_in_scope);
19315 break;
c906108c
SS
19316 default:
19317 /* Not a tag we recognize. Hopefully we aren't processing
19318 trash data, but since we must specifically ignore things
19319 we don't recognize, there is nothing else we should do at
0963b4bd 19320 this point. */
e2e0b3e5 19321 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 19322 dwarf_tag_name (die->tag));
c906108c
SS
19323 break;
19324 }
df8a16a1 19325
e37fd15a
SW
19326 if (suppress_add)
19327 {
19328 sym->hash_next = objfile->template_symbols;
19329 objfile->template_symbols = sym;
19330 list_to_add = NULL;
19331 }
19332
19333 if (list_to_add != NULL)
19334 add_symbol_to_list (sym, list_to_add);
19335
df8a16a1
DJ
19336 /* For the benefit of old versions of GCC, check for anonymous
19337 namespaces based on the demangled name. */
4d4ec4e5 19338 if (!cu->processing_has_namespace_info
94af9270 19339 && cu->language == language_cplus)
a10964d1 19340 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
19341 }
19342 return (sym);
19343}
19344
34eaf542
TT
19345/* A wrapper for new_symbol_full that always allocates a new symbol. */
19346
19347static struct symbol *
19348new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19349{
19350 return new_symbol_full (die, type, cu, NULL);
19351}
19352
98bfdba5
PA
19353/* Given an attr with a DW_FORM_dataN value in host byte order,
19354 zero-extend it as appropriate for the symbol's type. The DWARF
19355 standard (v4) is not entirely clear about the meaning of using
19356 DW_FORM_dataN for a constant with a signed type, where the type is
19357 wider than the data. The conclusion of a discussion on the DWARF
19358 list was that this is unspecified. We choose to always zero-extend
19359 because that is the interpretation long in use by GCC. */
c906108c 19360
98bfdba5 19361static gdb_byte *
ff39bb5e 19362dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 19363 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 19364{
e7c27a73 19365 struct objfile *objfile = cu->objfile;
e17a4113
UW
19366 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19367 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
19368 LONGEST l = DW_UNSND (attr);
19369
19370 if (bits < sizeof (*value) * 8)
19371 {
19372 l &= ((LONGEST) 1 << bits) - 1;
19373 *value = l;
19374 }
19375 else if (bits == sizeof (*value) * 8)
19376 *value = l;
19377 else
19378 {
224c3ddb 19379 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
19380 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19381 return bytes;
19382 }
19383
19384 return NULL;
19385}
19386
19387/* Read a constant value from an attribute. Either set *VALUE, or if
19388 the value does not fit in *VALUE, set *BYTES - either already
19389 allocated on the objfile obstack, or newly allocated on OBSTACK,
19390 or, set *BATON, if we translated the constant to a location
19391 expression. */
19392
19393static void
ff39bb5e 19394dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
19395 const char *name, struct obstack *obstack,
19396 struct dwarf2_cu *cu,
d521ce57 19397 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
19398 struct dwarf2_locexpr_baton **baton)
19399{
19400 struct objfile *objfile = cu->objfile;
19401 struct comp_unit_head *cu_header = &cu->header;
c906108c 19402 struct dwarf_block *blk;
98bfdba5
PA
19403 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19404 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19405
19406 *value = 0;
19407 *bytes = NULL;
19408 *baton = NULL;
c906108c
SS
19409
19410 switch (attr->form)
19411 {
19412 case DW_FORM_addr:
3019eac3 19413 case DW_FORM_GNU_addr_index:
ac56253d 19414 {
ac56253d
TT
19415 gdb_byte *data;
19416
98bfdba5
PA
19417 if (TYPE_LENGTH (type) != cu_header->addr_size)
19418 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 19419 cu_header->addr_size,
98bfdba5 19420 TYPE_LENGTH (type));
ac56253d
TT
19421 /* Symbols of this form are reasonably rare, so we just
19422 piggyback on the existing location code rather than writing
19423 a new implementation of symbol_computed_ops. */
8d749320 19424 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
19425 (*baton)->per_cu = cu->per_cu;
19426 gdb_assert ((*baton)->per_cu);
ac56253d 19427
98bfdba5 19428 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 19429 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 19430 (*baton)->data = data;
ac56253d
TT
19431
19432 data[0] = DW_OP_addr;
19433 store_unsigned_integer (&data[1], cu_header->addr_size,
19434 byte_order, DW_ADDR (attr));
19435 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 19436 }
c906108c 19437 break;
4ac36638 19438 case DW_FORM_string:
93b5768b 19439 case DW_FORM_strp:
3019eac3 19440 case DW_FORM_GNU_str_index:
36586728 19441 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
19442 /* DW_STRING is already allocated on the objfile obstack, point
19443 directly to it. */
d521ce57 19444 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 19445 break;
c906108c
SS
19446 case DW_FORM_block1:
19447 case DW_FORM_block2:
19448 case DW_FORM_block4:
19449 case DW_FORM_block:
2dc7f7b3 19450 case DW_FORM_exprloc:
0224619f 19451 case DW_FORM_data16:
c906108c 19452 blk = DW_BLOCK (attr);
98bfdba5
PA
19453 if (TYPE_LENGTH (type) != blk->size)
19454 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19455 TYPE_LENGTH (type));
19456 *bytes = blk->data;
c906108c 19457 break;
2df3850c
JM
19458
19459 /* The DW_AT_const_value attributes are supposed to carry the
19460 symbol's value "represented as it would be on the target
19461 architecture." By the time we get here, it's already been
19462 converted to host endianness, so we just need to sign- or
19463 zero-extend it as appropriate. */
19464 case DW_FORM_data1:
3aef2284 19465 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 19466 break;
c906108c 19467 case DW_FORM_data2:
3aef2284 19468 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 19469 break;
c906108c 19470 case DW_FORM_data4:
3aef2284 19471 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 19472 break;
c906108c 19473 case DW_FORM_data8:
3aef2284 19474 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
19475 break;
19476
c906108c 19477 case DW_FORM_sdata:
98bfdba5 19478 *value = DW_SND (attr);
2df3850c
JM
19479 break;
19480
c906108c 19481 case DW_FORM_udata:
98bfdba5 19482 *value = DW_UNSND (attr);
c906108c 19483 break;
2df3850c 19484
c906108c 19485 default:
4d3c2250 19486 complaint (&symfile_complaints,
e2e0b3e5 19487 _("unsupported const value attribute form: '%s'"),
4d3c2250 19488 dwarf_form_name (attr->form));
98bfdba5 19489 *value = 0;
c906108c
SS
19490 break;
19491 }
19492}
19493
2df3850c 19494
98bfdba5
PA
19495/* Copy constant value from an attribute to a symbol. */
19496
2df3850c 19497static void
ff39bb5e 19498dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 19499 struct dwarf2_cu *cu)
2df3850c 19500{
98bfdba5 19501 struct objfile *objfile = cu->objfile;
12df843f 19502 LONGEST value;
d521ce57 19503 const gdb_byte *bytes;
98bfdba5 19504 struct dwarf2_locexpr_baton *baton;
2df3850c 19505
98bfdba5
PA
19506 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19507 SYMBOL_PRINT_NAME (sym),
19508 &objfile->objfile_obstack, cu,
19509 &value, &bytes, &baton);
2df3850c 19510
98bfdba5
PA
19511 if (baton != NULL)
19512 {
98bfdba5 19513 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 19514 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
19515 }
19516 else if (bytes != NULL)
19517 {
19518 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 19519 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
19520 }
19521 else
19522 {
19523 SYMBOL_VALUE (sym) = value;
f1e6e072 19524 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 19525 }
2df3850c
JM
19526}
19527
c906108c
SS
19528/* Return the type of the die in question using its DW_AT_type attribute. */
19529
19530static struct type *
e7c27a73 19531die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19532{
c906108c 19533 struct attribute *type_attr;
c906108c 19534
e142c38c 19535 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
19536 if (!type_attr)
19537 {
19538 /* A missing DW_AT_type represents a void type. */
46bf5051 19539 return objfile_type (cu->objfile)->builtin_void;
c906108c 19540 }
348e048f 19541
673bfd45 19542 return lookup_die_type (die, type_attr, cu);
c906108c
SS
19543}
19544
b4ba55a1
JB
19545/* True iff CU's producer generates GNAT Ada auxiliary information
19546 that allows to find parallel types through that information instead
19547 of having to do expensive parallel lookups by type name. */
19548
19549static int
19550need_gnat_info (struct dwarf2_cu *cu)
19551{
19552 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19553 of GNAT produces this auxiliary information, without any indication
19554 that it is produced. Part of enhancing the FSF version of GNAT
19555 to produce that information will be to put in place an indicator
19556 that we can use in order to determine whether the descriptive type
19557 info is available or not. One suggestion that has been made is
19558 to use a new attribute, attached to the CU die. For now, assume
19559 that the descriptive type info is not available. */
19560 return 0;
19561}
19562
b4ba55a1
JB
19563/* Return the auxiliary type of the die in question using its
19564 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19565 attribute is not present. */
19566
19567static struct type *
19568die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19569{
b4ba55a1 19570 struct attribute *type_attr;
b4ba55a1
JB
19571
19572 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19573 if (!type_attr)
19574 return NULL;
19575
673bfd45 19576 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
19577}
19578
19579/* If DIE has a descriptive_type attribute, then set the TYPE's
19580 descriptive type accordingly. */
19581
19582static void
19583set_descriptive_type (struct type *type, struct die_info *die,
19584 struct dwarf2_cu *cu)
19585{
19586 struct type *descriptive_type = die_descriptive_type (die, cu);
19587
19588 if (descriptive_type)
19589 {
19590 ALLOCATE_GNAT_AUX_TYPE (type);
19591 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19592 }
19593}
19594
c906108c
SS
19595/* Return the containing type of the die in question using its
19596 DW_AT_containing_type attribute. */
19597
19598static struct type *
e7c27a73 19599die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19600{
c906108c 19601 struct attribute *type_attr;
c906108c 19602
e142c38c 19603 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
19604 if (!type_attr)
19605 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 19606 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 19607
673bfd45 19608 return lookup_die_type (die, type_attr, cu);
c906108c
SS
19609}
19610
ac9ec31b
DE
19611/* Return an error marker type to use for the ill formed type in DIE/CU. */
19612
19613static struct type *
19614build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19615{
19616 struct objfile *objfile = dwarf2_per_objfile->objfile;
19617 char *message, *saved;
19618
19619 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 19620 objfile_name (objfile),
9c541725
PA
19621 to_underlying (cu->header.sect_off),
19622 to_underlying (die->sect_off));
224c3ddb
SM
19623 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19624 message, strlen (message));
ac9ec31b
DE
19625 xfree (message);
19626
19f392bc 19627 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
ac9ec31b
DE
19628}
19629
673bfd45 19630/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
19631 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19632 DW_AT_containing_type.
673bfd45
DE
19633 If there is no type substitute an error marker. */
19634
c906108c 19635static struct type *
ff39bb5e 19636lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 19637 struct dwarf2_cu *cu)
c906108c 19638{
bb5ed363 19639 struct objfile *objfile = cu->objfile;
f792889a
DJ
19640 struct type *this_type;
19641
ac9ec31b
DE
19642 gdb_assert (attr->name == DW_AT_type
19643 || attr->name == DW_AT_GNAT_descriptive_type
19644 || attr->name == DW_AT_containing_type);
19645
673bfd45
DE
19646 /* First see if we have it cached. */
19647
36586728
TT
19648 if (attr->form == DW_FORM_GNU_ref_alt)
19649 {
19650 struct dwarf2_per_cu_data *per_cu;
9c541725 19651 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
36586728 19652
9c541725
PA
19653 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
19654 this_type = get_die_type_at_offset (sect_off, per_cu);
36586728 19655 }
7771576e 19656 else if (attr_form_is_ref (attr))
673bfd45 19657 {
9c541725 19658 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
673bfd45 19659
9c541725 19660 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
673bfd45 19661 }
55f1336d 19662 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 19663 {
ac9ec31b 19664 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 19665
ac9ec31b 19666 return get_signatured_type (die, signature, cu);
673bfd45
DE
19667 }
19668 else
19669 {
ac9ec31b
DE
19670 complaint (&symfile_complaints,
19671 _("Dwarf Error: Bad type attribute %s in DIE"
19672 " at 0x%x [in module %s]"),
9c541725 19673 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
4262abfb 19674 objfile_name (objfile));
ac9ec31b 19675 return build_error_marker_type (cu, die);
673bfd45
DE
19676 }
19677
19678 /* If not cached we need to read it in. */
19679
19680 if (this_type == NULL)
19681 {
ac9ec31b 19682 struct die_info *type_die = NULL;
673bfd45
DE
19683 struct dwarf2_cu *type_cu = cu;
19684
7771576e 19685 if (attr_form_is_ref (attr))
ac9ec31b
DE
19686 type_die = follow_die_ref (die, attr, &type_cu);
19687 if (type_die == NULL)
19688 return build_error_marker_type (cu, die);
19689 /* If we find the type now, it's probably because the type came
3019eac3
DE
19690 from an inter-CU reference and the type's CU got expanded before
19691 ours. */
ac9ec31b 19692 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19693 }
19694
19695 /* If we still don't have a type use an error marker. */
19696
19697 if (this_type == NULL)
ac9ec31b 19698 return build_error_marker_type (cu, die);
673bfd45 19699
f792889a 19700 return this_type;
c906108c
SS
19701}
19702
673bfd45
DE
19703/* Return the type in DIE, CU.
19704 Returns NULL for invalid types.
19705
02142a6c 19706 This first does a lookup in die_type_hash,
673bfd45
DE
19707 and only reads the die in if necessary.
19708
19709 NOTE: This can be called when reading in partial or full symbols. */
19710
f792889a 19711static struct type *
e7c27a73 19712read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19713{
f792889a
DJ
19714 struct type *this_type;
19715
19716 this_type = get_die_type (die, cu);
19717 if (this_type)
19718 return this_type;
19719
673bfd45
DE
19720 return read_type_die_1 (die, cu);
19721}
19722
19723/* Read the type in DIE, CU.
19724 Returns NULL for invalid types. */
19725
19726static struct type *
19727read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19728{
19729 struct type *this_type = NULL;
19730
c906108c
SS
19731 switch (die->tag)
19732 {
19733 case DW_TAG_class_type:
680b30c7 19734 case DW_TAG_interface_type:
c906108c
SS
19735 case DW_TAG_structure_type:
19736 case DW_TAG_union_type:
f792889a 19737 this_type = read_structure_type (die, cu);
c906108c
SS
19738 break;
19739 case DW_TAG_enumeration_type:
f792889a 19740 this_type = read_enumeration_type (die, cu);
c906108c
SS
19741 break;
19742 case DW_TAG_subprogram:
19743 case DW_TAG_subroutine_type:
edb3359d 19744 case DW_TAG_inlined_subroutine:
f792889a 19745 this_type = read_subroutine_type (die, cu);
c906108c
SS
19746 break;
19747 case DW_TAG_array_type:
f792889a 19748 this_type = read_array_type (die, cu);
c906108c 19749 break;
72019c9c 19750 case DW_TAG_set_type:
f792889a 19751 this_type = read_set_type (die, cu);
72019c9c 19752 break;
c906108c 19753 case DW_TAG_pointer_type:
f792889a 19754 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19755 break;
19756 case DW_TAG_ptr_to_member_type:
f792889a 19757 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19758 break;
19759 case DW_TAG_reference_type:
4297a3f0
AV
19760 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
19761 break;
19762 case DW_TAG_rvalue_reference_type:
19763 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
c906108c
SS
19764 break;
19765 case DW_TAG_const_type:
f792889a 19766 this_type = read_tag_const_type (die, cu);
c906108c
SS
19767 break;
19768 case DW_TAG_volatile_type:
f792889a 19769 this_type = read_tag_volatile_type (die, cu);
c906108c 19770 break;
06d66ee9
TT
19771 case DW_TAG_restrict_type:
19772 this_type = read_tag_restrict_type (die, cu);
19773 break;
c906108c 19774 case DW_TAG_string_type:
f792889a 19775 this_type = read_tag_string_type (die, cu);
c906108c
SS
19776 break;
19777 case DW_TAG_typedef:
f792889a 19778 this_type = read_typedef (die, cu);
c906108c 19779 break;
a02abb62 19780 case DW_TAG_subrange_type:
f792889a 19781 this_type = read_subrange_type (die, cu);
a02abb62 19782 break;
c906108c 19783 case DW_TAG_base_type:
f792889a 19784 this_type = read_base_type (die, cu);
c906108c 19785 break;
81a17f79 19786 case DW_TAG_unspecified_type:
f792889a 19787 this_type = read_unspecified_type (die, cu);
81a17f79 19788 break;
0114d602
DJ
19789 case DW_TAG_namespace:
19790 this_type = read_namespace_type (die, cu);
19791 break;
f55ee35c
JK
19792 case DW_TAG_module:
19793 this_type = read_module_type (die, cu);
19794 break;
a2c2acaf
MW
19795 case DW_TAG_atomic_type:
19796 this_type = read_tag_atomic_type (die, cu);
19797 break;
c906108c 19798 default:
3e43a32a
MS
19799 complaint (&symfile_complaints,
19800 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19801 dwarf_tag_name (die->tag));
c906108c
SS
19802 break;
19803 }
63d06c5c 19804
f792889a 19805 return this_type;
63d06c5c
DC
19806}
19807
abc72ce4
DE
19808/* See if we can figure out if the class lives in a namespace. We do
19809 this by looking for a member function; its demangled name will
19810 contain namespace info, if there is any.
19811 Return the computed name or NULL.
19812 Space for the result is allocated on the objfile's obstack.
19813 This is the full-die version of guess_partial_die_structure_name.
19814 In this case we know DIE has no useful parent. */
19815
19816static char *
19817guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19818{
19819 struct die_info *spec_die;
19820 struct dwarf2_cu *spec_cu;
19821 struct die_info *child;
19822
19823 spec_cu = cu;
19824 spec_die = die_specification (die, &spec_cu);
19825 if (spec_die != NULL)
19826 {
19827 die = spec_die;
19828 cu = spec_cu;
19829 }
19830
19831 for (child = die->child;
19832 child != NULL;
19833 child = child->sibling)
19834 {
19835 if (child->tag == DW_TAG_subprogram)
19836 {
7d45c7c3 19837 const char *linkage_name;
abc72ce4 19838
7d45c7c3
KB
19839 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19840 if (linkage_name == NULL)
19841 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19842 cu);
19843 if (linkage_name != NULL)
abc72ce4
DE
19844 {
19845 char *actual_name
19846 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 19847 linkage_name);
abc72ce4
DE
19848 char *name = NULL;
19849
19850 if (actual_name != NULL)
19851 {
15d034d0 19852 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19853
19854 if (die_name != NULL
19855 && strcmp (die_name, actual_name) != 0)
19856 {
19857 /* Strip off the class name from the full name.
19858 We want the prefix. */
19859 int die_name_len = strlen (die_name);
19860 int actual_name_len = strlen (actual_name);
19861
19862 /* Test for '::' as a sanity check. */
19863 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19864 && actual_name[actual_name_len
19865 - die_name_len - 1] == ':')
224c3ddb
SM
19866 name = (char *) obstack_copy0 (
19867 &cu->objfile->per_bfd->storage_obstack,
19868 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
19869 }
19870 }
19871 xfree (actual_name);
19872 return name;
19873 }
19874 }
19875 }
19876
19877 return NULL;
19878}
19879
96408a79
SA
19880/* GCC might emit a nameless typedef that has a linkage name. Determine the
19881 prefix part in such case. See
19882 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19883
a121b7c1 19884static const char *
96408a79
SA
19885anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19886{
19887 struct attribute *attr;
e6a959d6 19888 const char *base;
96408a79
SA
19889
19890 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19891 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19892 return NULL;
19893
7d45c7c3 19894 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
19895 return NULL;
19896
19897 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19898 if (attr == NULL)
19899 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19900 if (attr == NULL || DW_STRING (attr) == NULL)
19901 return NULL;
19902
19903 /* dwarf2_name had to be already called. */
19904 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19905
19906 /* Strip the base name, keep any leading namespaces/classes. */
19907 base = strrchr (DW_STRING (attr), ':');
19908 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19909 return "";
19910
224c3ddb
SM
19911 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19912 DW_STRING (attr),
19913 &base[-1] - DW_STRING (attr));
96408a79
SA
19914}
19915
fdde2d81 19916/* Return the name of the namespace/class that DIE is defined within,
0114d602 19917 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19918
0114d602
DJ
19919 For example, if we're within the method foo() in the following
19920 code:
19921
19922 namespace N {
19923 class C {
19924 void foo () {
19925 }
19926 };
19927 }
19928
19929 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19930
0d5cff50 19931static const char *
e142c38c 19932determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19933{
0114d602
DJ
19934 struct die_info *parent, *spec_die;
19935 struct dwarf2_cu *spec_cu;
19936 struct type *parent_type;
a121b7c1 19937 const char *retval;
63d06c5c 19938
9c37b5ae 19939 if (cu->language != language_cplus
c44af4eb
TT
19940 && cu->language != language_fortran && cu->language != language_d
19941 && cu->language != language_rust)
0114d602
DJ
19942 return "";
19943
96408a79
SA
19944 retval = anonymous_struct_prefix (die, cu);
19945 if (retval)
19946 return retval;
19947
0114d602
DJ
19948 /* We have to be careful in the presence of DW_AT_specification.
19949 For example, with GCC 3.4, given the code
19950
19951 namespace N {
19952 void foo() {
19953 // Definition of N::foo.
19954 }
19955 }
19956
19957 then we'll have a tree of DIEs like this:
19958
19959 1: DW_TAG_compile_unit
19960 2: DW_TAG_namespace // N
19961 3: DW_TAG_subprogram // declaration of N::foo
19962 4: DW_TAG_subprogram // definition of N::foo
19963 DW_AT_specification // refers to die #3
19964
19965 Thus, when processing die #4, we have to pretend that we're in
19966 the context of its DW_AT_specification, namely the contex of die
19967 #3. */
19968 spec_cu = cu;
19969 spec_die = die_specification (die, &spec_cu);
19970 if (spec_die == NULL)
19971 parent = die->parent;
19972 else
63d06c5c 19973 {
0114d602
DJ
19974 parent = spec_die->parent;
19975 cu = spec_cu;
63d06c5c 19976 }
0114d602
DJ
19977
19978 if (parent == NULL)
19979 return "";
98bfdba5
PA
19980 else if (parent->building_fullname)
19981 {
19982 const char *name;
19983 const char *parent_name;
19984
19985 /* It has been seen on RealView 2.2 built binaries,
19986 DW_TAG_template_type_param types actually _defined_ as
19987 children of the parent class:
19988
19989 enum E {};
19990 template class <class Enum> Class{};
19991 Class<enum E> class_e;
19992
19993 1: DW_TAG_class_type (Class)
19994 2: DW_TAG_enumeration_type (E)
19995 3: DW_TAG_enumerator (enum1:0)
19996 3: DW_TAG_enumerator (enum2:1)
19997 ...
19998 2: DW_TAG_template_type_param
19999 DW_AT_type DW_FORM_ref_udata (E)
20000
20001 Besides being broken debug info, it can put GDB into an
20002 infinite loop. Consider:
20003
20004 When we're building the full name for Class<E>, we'll start
20005 at Class, and go look over its template type parameters,
20006 finding E. We'll then try to build the full name of E, and
20007 reach here. We're now trying to build the full name of E,
20008 and look over the parent DIE for containing scope. In the
20009 broken case, if we followed the parent DIE of E, we'd again
20010 find Class, and once again go look at its template type
20011 arguments, etc., etc. Simply don't consider such parent die
20012 as source-level parent of this die (it can't be, the language
20013 doesn't allow it), and break the loop here. */
20014 name = dwarf2_name (die, cu);
20015 parent_name = dwarf2_name (parent, cu);
20016 complaint (&symfile_complaints,
20017 _("template param type '%s' defined within parent '%s'"),
20018 name ? name : "<unknown>",
20019 parent_name ? parent_name : "<unknown>");
20020 return "";
20021 }
63d06c5c 20022 else
0114d602
DJ
20023 switch (parent->tag)
20024 {
63d06c5c 20025 case DW_TAG_namespace:
0114d602 20026 parent_type = read_type_die (parent, cu);
acebe513
UW
20027 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20028 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20029 Work around this problem here. */
20030 if (cu->language == language_cplus
20031 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
20032 return "";
0114d602
DJ
20033 /* We give a name to even anonymous namespaces. */
20034 return TYPE_TAG_NAME (parent_type);
63d06c5c 20035 case DW_TAG_class_type:
680b30c7 20036 case DW_TAG_interface_type:
63d06c5c 20037 case DW_TAG_structure_type:
0114d602 20038 case DW_TAG_union_type:
f55ee35c 20039 case DW_TAG_module:
0114d602
DJ
20040 parent_type = read_type_die (parent, cu);
20041 if (TYPE_TAG_NAME (parent_type) != NULL)
20042 return TYPE_TAG_NAME (parent_type);
20043 else
20044 /* An anonymous structure is only allowed non-static data
20045 members; no typedefs, no member functions, et cetera.
20046 So it does not need a prefix. */
20047 return "";
abc72ce4 20048 case DW_TAG_compile_unit:
95554aad 20049 case DW_TAG_partial_unit:
abc72ce4
DE
20050 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
20051 if (cu->language == language_cplus
8b70b953 20052 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
20053 && die->child != NULL
20054 && (die->tag == DW_TAG_class_type
20055 || die->tag == DW_TAG_structure_type
20056 || die->tag == DW_TAG_union_type))
20057 {
20058 char *name = guess_full_die_structure_name (die, cu);
20059 if (name != NULL)
20060 return name;
20061 }
20062 return "";
3d567982
TT
20063 case DW_TAG_enumeration_type:
20064 parent_type = read_type_die (parent, cu);
20065 if (TYPE_DECLARED_CLASS (parent_type))
20066 {
20067 if (TYPE_TAG_NAME (parent_type) != NULL)
20068 return TYPE_TAG_NAME (parent_type);
20069 return "";
20070 }
20071 /* Fall through. */
63d06c5c 20072 default:
8176b9b8 20073 return determine_prefix (parent, cu);
63d06c5c 20074 }
63d06c5c
DC
20075}
20076
3e43a32a
MS
20077/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20078 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20079 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20080 an obconcat, otherwise allocate storage for the result. The CU argument is
20081 used to determine the language and hence, the appropriate separator. */
987504bb 20082
f55ee35c 20083#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
20084
20085static char *
f55ee35c
JK
20086typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20087 int physname, struct dwarf2_cu *cu)
63d06c5c 20088{
f55ee35c 20089 const char *lead = "";
5c315b68 20090 const char *sep;
63d06c5c 20091
3e43a32a
MS
20092 if (suffix == NULL || suffix[0] == '\0'
20093 || prefix == NULL || prefix[0] == '\0')
987504bb 20094 sep = "";
45280282
IB
20095 else if (cu->language == language_d)
20096 {
20097 /* For D, the 'main' function could be defined in any module, but it
20098 should never be prefixed. */
20099 if (strcmp (suffix, "D main") == 0)
20100 {
20101 prefix = "";
20102 sep = "";
20103 }
20104 else
20105 sep = ".";
20106 }
f55ee35c
JK
20107 else if (cu->language == language_fortran && physname)
20108 {
20109 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20110 DW_AT_MIPS_linkage_name is preferred and used instead. */
20111
20112 lead = "__";
20113 sep = "_MOD_";
20114 }
987504bb
JJ
20115 else
20116 sep = "::";
63d06c5c 20117
6dd47d34
DE
20118 if (prefix == NULL)
20119 prefix = "";
20120 if (suffix == NULL)
20121 suffix = "";
20122
987504bb
JJ
20123 if (obs == NULL)
20124 {
3e43a32a 20125 char *retval
224c3ddb
SM
20126 = ((char *)
20127 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 20128
f55ee35c
JK
20129 strcpy (retval, lead);
20130 strcat (retval, prefix);
6dd47d34
DE
20131 strcat (retval, sep);
20132 strcat (retval, suffix);
63d06c5c
DC
20133 return retval;
20134 }
987504bb
JJ
20135 else
20136 {
20137 /* We have an obstack. */
f55ee35c 20138 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 20139 }
63d06c5c
DC
20140}
20141
c906108c
SS
20142/* Return sibling of die, NULL if no sibling. */
20143
f9aca02d 20144static struct die_info *
fba45db2 20145sibling_die (struct die_info *die)
c906108c 20146{
639d11d3 20147 return die->sibling;
c906108c
SS
20148}
20149
71c25dea
TT
20150/* Get name of a die, return NULL if not found. */
20151
15d034d0
TT
20152static const char *
20153dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
20154 struct obstack *obstack)
20155{
20156 if (name && cu->language == language_cplus)
20157 {
2f408ecb 20158 std::string canon_name = cp_canonicalize_string (name);
71c25dea 20159
2f408ecb 20160 if (!canon_name.empty ())
71c25dea 20161 {
2f408ecb
PA
20162 if (canon_name != name)
20163 name = (const char *) obstack_copy0 (obstack,
20164 canon_name.c_str (),
20165 canon_name.length ());
71c25dea
TT
20166 }
20167 }
20168
20169 return name;
c906108c
SS
20170}
20171
96553a0c
DE
20172/* Get name of a die, return NULL if not found.
20173 Anonymous namespaces are converted to their magic string. */
9219021c 20174
15d034d0 20175static const char *
e142c38c 20176dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
20177{
20178 struct attribute *attr;
20179
e142c38c 20180 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 20181 if ((!attr || !DW_STRING (attr))
96553a0c 20182 && die->tag != DW_TAG_namespace
53832f31
TT
20183 && die->tag != DW_TAG_class_type
20184 && die->tag != DW_TAG_interface_type
20185 && die->tag != DW_TAG_structure_type
20186 && die->tag != DW_TAG_union_type)
71c25dea
TT
20187 return NULL;
20188
20189 switch (die->tag)
20190 {
20191 case DW_TAG_compile_unit:
95554aad 20192 case DW_TAG_partial_unit:
71c25dea
TT
20193 /* Compilation units have a DW_AT_name that is a filename, not
20194 a source language identifier. */
20195 case DW_TAG_enumeration_type:
20196 case DW_TAG_enumerator:
20197 /* These tags always have simple identifiers already; no need
20198 to canonicalize them. */
20199 return DW_STRING (attr);
907af001 20200
96553a0c
DE
20201 case DW_TAG_namespace:
20202 if (attr != NULL && DW_STRING (attr) != NULL)
20203 return DW_STRING (attr);
20204 return CP_ANONYMOUS_NAMESPACE_STR;
20205
907af001
UW
20206 case DW_TAG_class_type:
20207 case DW_TAG_interface_type:
20208 case DW_TAG_structure_type:
20209 case DW_TAG_union_type:
20210 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20211 structures or unions. These were of the form "._%d" in GCC 4.1,
20212 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20213 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 20214 if (attr && DW_STRING (attr)
61012eef
GB
20215 && (startswith (DW_STRING (attr), "._")
20216 || startswith (DW_STRING (attr), "<anonymous")))
907af001 20217 return NULL;
53832f31
TT
20218
20219 /* GCC might emit a nameless typedef that has a linkage name. See
20220 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20221 if (!attr || DW_STRING (attr) == NULL)
20222 {
df5c6c50 20223 char *demangled = NULL;
53832f31
TT
20224
20225 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
20226 if (attr == NULL)
20227 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
20228
20229 if (attr == NULL || DW_STRING (attr) == NULL)
20230 return NULL;
20231
df5c6c50
JK
20232 /* Avoid demangling DW_STRING (attr) the second time on a second
20233 call for the same DIE. */
20234 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 20235 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
20236
20237 if (demangled)
20238 {
e6a959d6 20239 const char *base;
96408a79 20240
53832f31 20241 /* FIXME: we already did this for the partial symbol... */
34a68019 20242 DW_STRING (attr)
224c3ddb
SM
20243 = ((const char *)
20244 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20245 demangled, strlen (demangled)));
53832f31
TT
20246 DW_STRING_IS_CANONICAL (attr) = 1;
20247 xfree (demangled);
96408a79
SA
20248
20249 /* Strip any leading namespaces/classes, keep only the base name.
20250 DW_AT_name for named DIEs does not contain the prefixes. */
20251 base = strrchr (DW_STRING (attr), ':');
20252 if (base && base > DW_STRING (attr) && base[-1] == ':')
20253 return &base[1];
20254 else
20255 return DW_STRING (attr);
53832f31
TT
20256 }
20257 }
907af001
UW
20258 break;
20259
71c25dea 20260 default:
907af001
UW
20261 break;
20262 }
20263
20264 if (!DW_STRING_IS_CANONICAL (attr))
20265 {
20266 DW_STRING (attr)
20267 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 20268 &cu->objfile->per_bfd->storage_obstack);
907af001 20269 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 20270 }
907af001 20271 return DW_STRING (attr);
9219021c
DC
20272}
20273
20274/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
20275 is none. *EXT_CU is the CU containing DIE on input, and the CU
20276 containing the return value on output. */
9219021c
DC
20277
20278static struct die_info *
f2f0e013 20279dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
20280{
20281 struct attribute *attr;
9219021c 20282
f2f0e013 20283 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
20284 if (attr == NULL)
20285 return NULL;
20286
f2f0e013 20287 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
20288}
20289
c906108c
SS
20290/* Convert a DIE tag into its string name. */
20291
f39c6ffd 20292static const char *
aa1ee363 20293dwarf_tag_name (unsigned tag)
c906108c 20294{
f39c6ffd
TT
20295 const char *name = get_DW_TAG_name (tag);
20296
20297 if (name == NULL)
20298 return "DW_TAG_<unknown>";
20299
20300 return name;
c906108c
SS
20301}
20302
20303/* Convert a DWARF attribute code into its string name. */
20304
f39c6ffd 20305static const char *
aa1ee363 20306dwarf_attr_name (unsigned attr)
c906108c 20307{
f39c6ffd
TT
20308 const char *name;
20309
c764a876 20310#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
20311 if (attr == DW_AT_MIPS_fde)
20312 return "DW_AT_MIPS_fde";
20313#else
20314 if (attr == DW_AT_HP_block_index)
20315 return "DW_AT_HP_block_index";
c764a876 20316#endif
f39c6ffd
TT
20317
20318 name = get_DW_AT_name (attr);
20319
20320 if (name == NULL)
20321 return "DW_AT_<unknown>";
20322
20323 return name;
c906108c
SS
20324}
20325
20326/* Convert a DWARF value form code into its string name. */
20327
f39c6ffd 20328static const char *
aa1ee363 20329dwarf_form_name (unsigned form)
c906108c 20330{
f39c6ffd
TT
20331 const char *name = get_DW_FORM_name (form);
20332
20333 if (name == NULL)
20334 return "DW_FORM_<unknown>";
20335
20336 return name;
c906108c
SS
20337}
20338
a121b7c1 20339static const char *
fba45db2 20340dwarf_bool_name (unsigned mybool)
c906108c
SS
20341{
20342 if (mybool)
20343 return "TRUE";
20344 else
20345 return "FALSE";
20346}
20347
20348/* Convert a DWARF type code into its string name. */
20349
f39c6ffd 20350static const char *
aa1ee363 20351dwarf_type_encoding_name (unsigned enc)
c906108c 20352{
f39c6ffd 20353 const char *name = get_DW_ATE_name (enc);
c906108c 20354
f39c6ffd
TT
20355 if (name == NULL)
20356 return "DW_ATE_<unknown>";
c906108c 20357
f39c6ffd 20358 return name;
c906108c 20359}
c906108c 20360
f9aca02d 20361static void
d97bc12b 20362dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
20363{
20364 unsigned int i;
20365
d97bc12b
DE
20366 print_spaces (indent, f);
20367 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
9c541725
PA
20368 dwarf_tag_name (die->tag), die->abbrev,
20369 to_underlying (die->sect_off));
d97bc12b
DE
20370
20371 if (die->parent != NULL)
20372 {
20373 print_spaces (indent, f);
20374 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
9c541725 20375 to_underlying (die->parent->sect_off));
d97bc12b
DE
20376 }
20377
20378 print_spaces (indent, f);
20379 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 20380 dwarf_bool_name (die->child != NULL));
c906108c 20381
d97bc12b
DE
20382 print_spaces (indent, f);
20383 fprintf_unfiltered (f, " attributes:\n");
20384
c906108c
SS
20385 for (i = 0; i < die->num_attrs; ++i)
20386 {
d97bc12b
DE
20387 print_spaces (indent, f);
20388 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
20389 dwarf_attr_name (die->attrs[i].name),
20390 dwarf_form_name (die->attrs[i].form));
d97bc12b 20391
c906108c
SS
20392 switch (die->attrs[i].form)
20393 {
c906108c 20394 case DW_FORM_addr:
3019eac3 20395 case DW_FORM_GNU_addr_index:
d97bc12b 20396 fprintf_unfiltered (f, "address: ");
5af949e3 20397 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
20398 break;
20399 case DW_FORM_block2:
20400 case DW_FORM_block4:
20401 case DW_FORM_block:
20402 case DW_FORM_block1:
56eb65bd
SP
20403 fprintf_unfiltered (f, "block: size %s",
20404 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 20405 break;
2dc7f7b3 20406 case DW_FORM_exprloc:
56eb65bd
SP
20407 fprintf_unfiltered (f, "expression: size %s",
20408 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 20409 break;
0224619f
JK
20410 case DW_FORM_data16:
20411 fprintf_unfiltered (f, "constant of 16 bytes");
20412 break;
4568ecf9
DE
20413 case DW_FORM_ref_addr:
20414 fprintf_unfiltered (f, "ref address: ");
20415 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20416 break;
36586728
TT
20417 case DW_FORM_GNU_ref_alt:
20418 fprintf_unfiltered (f, "alt ref address: ");
20419 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20420 break;
10b3939b
DJ
20421 case DW_FORM_ref1:
20422 case DW_FORM_ref2:
20423 case DW_FORM_ref4:
4568ecf9
DE
20424 case DW_FORM_ref8:
20425 case DW_FORM_ref_udata:
d97bc12b 20426 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 20427 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 20428 break;
c906108c
SS
20429 case DW_FORM_data1:
20430 case DW_FORM_data2:
20431 case DW_FORM_data4:
ce5d95e1 20432 case DW_FORM_data8:
c906108c
SS
20433 case DW_FORM_udata:
20434 case DW_FORM_sdata:
43bbcdc2
PH
20435 fprintf_unfiltered (f, "constant: %s",
20436 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 20437 break;
2dc7f7b3
TT
20438 case DW_FORM_sec_offset:
20439 fprintf_unfiltered (f, "section offset: %s",
20440 pulongest (DW_UNSND (&die->attrs[i])));
20441 break;
55f1336d 20442 case DW_FORM_ref_sig8:
ac9ec31b
DE
20443 fprintf_unfiltered (f, "signature: %s",
20444 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 20445 break;
c906108c 20446 case DW_FORM_string:
4bdf3d34 20447 case DW_FORM_strp:
43988095 20448 case DW_FORM_line_strp:
3019eac3 20449 case DW_FORM_GNU_str_index:
36586728 20450 case DW_FORM_GNU_strp_alt:
8285870a 20451 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 20452 DW_STRING (&die->attrs[i])
8285870a
JK
20453 ? DW_STRING (&die->attrs[i]) : "",
20454 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
20455 break;
20456 case DW_FORM_flag:
20457 if (DW_UNSND (&die->attrs[i]))
d97bc12b 20458 fprintf_unfiltered (f, "flag: TRUE");
c906108c 20459 else
d97bc12b 20460 fprintf_unfiltered (f, "flag: FALSE");
c906108c 20461 break;
2dc7f7b3
TT
20462 case DW_FORM_flag_present:
20463 fprintf_unfiltered (f, "flag: TRUE");
20464 break;
a8329558 20465 case DW_FORM_indirect:
0963b4bd
MS
20466 /* The reader will have reduced the indirect form to
20467 the "base form" so this form should not occur. */
3e43a32a
MS
20468 fprintf_unfiltered (f,
20469 "unexpected attribute form: DW_FORM_indirect");
a8329558 20470 break;
c906108c 20471 default:
d97bc12b 20472 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 20473 die->attrs[i].form);
d97bc12b 20474 break;
c906108c 20475 }
d97bc12b 20476 fprintf_unfiltered (f, "\n");
c906108c
SS
20477 }
20478}
20479
f9aca02d 20480static void
d97bc12b 20481dump_die_for_error (struct die_info *die)
c906108c 20482{
d97bc12b
DE
20483 dump_die_shallow (gdb_stderr, 0, die);
20484}
20485
20486static void
20487dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20488{
20489 int indent = level * 4;
20490
20491 gdb_assert (die != NULL);
20492
20493 if (level >= max_level)
20494 return;
20495
20496 dump_die_shallow (f, indent, die);
20497
20498 if (die->child != NULL)
c906108c 20499 {
d97bc12b
DE
20500 print_spaces (indent, f);
20501 fprintf_unfiltered (f, " Children:");
20502 if (level + 1 < max_level)
20503 {
20504 fprintf_unfiltered (f, "\n");
20505 dump_die_1 (f, level + 1, max_level, die->child);
20506 }
20507 else
20508 {
3e43a32a
MS
20509 fprintf_unfiltered (f,
20510 " [not printed, max nesting level reached]\n");
d97bc12b
DE
20511 }
20512 }
20513
20514 if (die->sibling != NULL && level > 0)
20515 {
20516 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
20517 }
20518}
20519
d97bc12b
DE
20520/* This is called from the pdie macro in gdbinit.in.
20521 It's not static so gcc will keep a copy callable from gdb. */
20522
20523void
20524dump_die (struct die_info *die, int max_level)
20525{
20526 dump_die_1 (gdb_stdlog, 0, max_level, die);
20527}
20528
f9aca02d 20529static void
51545339 20530store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 20531{
51545339 20532 void **slot;
c906108c 20533
9c541725
PA
20534 slot = htab_find_slot_with_hash (cu->die_hash, die,
20535 to_underlying (die->sect_off),
b64f50a1 20536 INSERT);
51545339
DJ
20537
20538 *slot = die;
c906108c
SS
20539}
20540
b64f50a1
JK
20541/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20542 required kind. */
20543
20544static sect_offset
ff39bb5e 20545dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 20546{
7771576e 20547 if (attr_form_is_ref (attr))
9c541725 20548 return (sect_offset) DW_UNSND (attr);
93311388
DE
20549
20550 complaint (&symfile_complaints,
20551 _("unsupported die ref attribute form: '%s'"),
20552 dwarf_form_name (attr->form));
9c541725 20553 return {};
c906108c
SS
20554}
20555
43bbcdc2
PH
20556/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20557 * the value held by the attribute is not constant. */
a02abb62 20558
43bbcdc2 20559static LONGEST
ff39bb5e 20560dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
20561{
20562 if (attr->form == DW_FORM_sdata)
20563 return DW_SND (attr);
20564 else if (attr->form == DW_FORM_udata
20565 || attr->form == DW_FORM_data1
20566 || attr->form == DW_FORM_data2
20567 || attr->form == DW_FORM_data4
20568 || attr->form == DW_FORM_data8)
20569 return DW_UNSND (attr);
20570 else
20571 {
0224619f 20572 /* For DW_FORM_data16 see attr_form_is_constant. */
3e43a32a
MS
20573 complaint (&symfile_complaints,
20574 _("Attribute value is not a constant (%s)"),
a02abb62
JB
20575 dwarf_form_name (attr->form));
20576 return default_value;
20577 }
20578}
20579
348e048f
DE
20580/* Follow reference or signature attribute ATTR of SRC_DIE.
20581 On entry *REF_CU is the CU of SRC_DIE.
20582 On exit *REF_CU is the CU of the result. */
20583
20584static struct die_info *
ff39bb5e 20585follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
20586 struct dwarf2_cu **ref_cu)
20587{
20588 struct die_info *die;
20589
7771576e 20590 if (attr_form_is_ref (attr))
348e048f 20591 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 20592 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
20593 die = follow_die_sig (src_die, attr, ref_cu);
20594 else
20595 {
20596 dump_die_for_error (src_die);
20597 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 20598 objfile_name ((*ref_cu)->objfile));
348e048f
DE
20599 }
20600
20601 return die;
03dd20cc
DJ
20602}
20603
5c631832 20604/* Follow reference OFFSET.
673bfd45
DE
20605 On entry *REF_CU is the CU of the source die referencing OFFSET.
20606 On exit *REF_CU is the CU of the result.
20607 Returns NULL if OFFSET is invalid. */
f504f079 20608
f9aca02d 20609static struct die_info *
9c541725 20610follow_die_offset (sect_offset sect_off, int offset_in_dwz,
36586728 20611 struct dwarf2_cu **ref_cu)
c906108c 20612{
10b3939b 20613 struct die_info temp_die;
f2f0e013 20614 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 20615
348e048f
DE
20616 gdb_assert (cu->per_cu != NULL);
20617
98bfdba5
PA
20618 target_cu = cu;
20619
3019eac3 20620 if (cu->per_cu->is_debug_types)
348e048f
DE
20621 {
20622 /* .debug_types CUs cannot reference anything outside their CU.
20623 If they need to, they have to reference a signatured type via
55f1336d 20624 DW_FORM_ref_sig8. */
9c541725 20625 if (!offset_in_cu_p (&cu->header, sect_off))
5c631832 20626 return NULL;
348e048f 20627 }
36586728 20628 else if (offset_in_dwz != cu->per_cu->is_dwz
9c541725 20629 || !offset_in_cu_p (&cu->header, sect_off))
10b3939b
DJ
20630 {
20631 struct dwarf2_per_cu_data *per_cu;
9a619af0 20632
9c541725 20633 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
36586728 20634 cu->objfile);
03dd20cc
DJ
20635
20636 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
20637 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20638 load_full_comp_unit (per_cu, cu->language);
03dd20cc 20639
10b3939b
DJ
20640 target_cu = per_cu->cu;
20641 }
98bfdba5
PA
20642 else if (cu->dies == NULL)
20643 {
20644 /* We're loading full DIEs during partial symbol reading. */
20645 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 20646 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 20647 }
c906108c 20648
f2f0e013 20649 *ref_cu = target_cu;
9c541725 20650 temp_die.sect_off = sect_off;
9a3c8263 20651 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
9c541725
PA
20652 &temp_die,
20653 to_underlying (sect_off));
5c631832 20654}
10b3939b 20655
5c631832
JK
20656/* Follow reference attribute ATTR of SRC_DIE.
20657 On entry *REF_CU is the CU of SRC_DIE.
20658 On exit *REF_CU is the CU of the result. */
20659
20660static struct die_info *
ff39bb5e 20661follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20662 struct dwarf2_cu **ref_cu)
20663{
9c541725 20664 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20665 struct dwarf2_cu *cu = *ref_cu;
20666 struct die_info *die;
20667
9c541725 20668 die = follow_die_offset (sect_off,
36586728
TT
20669 (attr->form == DW_FORM_GNU_ref_alt
20670 || cu->per_cu->is_dwz),
20671 ref_cu);
5c631832
JK
20672 if (!die)
20673 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20674 "at 0x%x [in module %s]"),
9c541725 20675 to_underlying (sect_off), to_underlying (src_die->sect_off),
4262abfb 20676 objfile_name (cu->objfile));
348e048f 20677
5c631832
JK
20678 return die;
20679}
20680
9c541725 20681/* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
d83e736b
JK
20682 Returned value is intended for DW_OP_call*. Returned
20683 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20684
20685struct dwarf2_locexpr_baton
9c541725 20686dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
8b9737bf
TT
20687 struct dwarf2_per_cu_data *per_cu,
20688 CORE_ADDR (*get_frame_pc) (void *baton),
20689 void *baton)
5c631832 20690{
918dd910 20691 struct dwarf2_cu *cu;
5c631832
JK
20692 struct die_info *die;
20693 struct attribute *attr;
20694 struct dwarf2_locexpr_baton retval;
20695
8cf6f0b1
TT
20696 dw2_setup (per_cu->objfile);
20697
918dd910
JK
20698 if (per_cu->cu == NULL)
20699 load_cu (per_cu);
20700 cu = per_cu->cu;
cc12ce38
DE
20701 if (cu == NULL)
20702 {
20703 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20704 Instead just throw an error, not much else we can do. */
20705 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
9c541725 20706 to_underlying (sect_off), objfile_name (per_cu->objfile));
cc12ce38 20707 }
918dd910 20708
9c541725 20709 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
5c631832
JK
20710 if (!die)
20711 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
9c541725 20712 to_underlying (sect_off), objfile_name (per_cu->objfile));
5c631832
JK
20713
20714 attr = dwarf2_attr (die, DW_AT_location, cu);
20715 if (!attr)
20716 {
e103e986
JK
20717 /* DWARF: "If there is no such attribute, then there is no effect.".
20718 DATA is ignored if SIZE is 0. */
5c631832 20719
e103e986 20720 retval.data = NULL;
5c631832
JK
20721 retval.size = 0;
20722 }
8cf6f0b1
TT
20723 else if (attr_form_is_section_offset (attr))
20724 {
20725 struct dwarf2_loclist_baton loclist_baton;
20726 CORE_ADDR pc = (*get_frame_pc) (baton);
20727 size_t size;
20728
20729 fill_in_loclist_baton (cu, &loclist_baton, attr);
20730
20731 retval.data = dwarf2_find_location_expression (&loclist_baton,
20732 &size, pc);
20733 retval.size = size;
20734 }
5c631832
JK
20735 else
20736 {
20737 if (!attr_form_is_block (attr))
20738 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20739 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
9c541725 20740 to_underlying (sect_off), objfile_name (per_cu->objfile));
5c631832
JK
20741
20742 retval.data = DW_BLOCK (attr)->data;
20743 retval.size = DW_BLOCK (attr)->size;
20744 }
20745 retval.per_cu = cu->per_cu;
918dd910 20746
918dd910
JK
20747 age_cached_comp_units ();
20748
5c631832 20749 return retval;
348e048f
DE
20750}
20751
8b9737bf
TT
20752/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20753 offset. */
20754
20755struct dwarf2_locexpr_baton
20756dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20757 struct dwarf2_per_cu_data *per_cu,
20758 CORE_ADDR (*get_frame_pc) (void *baton),
20759 void *baton)
20760{
9c541725 20761 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
8b9737bf 20762
9c541725 20763 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
8b9737bf
TT
20764}
20765
b6807d98
TT
20766/* Write a constant of a given type as target-ordered bytes into
20767 OBSTACK. */
20768
20769static const gdb_byte *
20770write_constant_as_bytes (struct obstack *obstack,
20771 enum bfd_endian byte_order,
20772 struct type *type,
20773 ULONGEST value,
20774 LONGEST *len)
20775{
20776 gdb_byte *result;
20777
20778 *len = TYPE_LENGTH (type);
224c3ddb 20779 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20780 store_unsigned_integer (result, *len, byte_order, value);
20781
20782 return result;
20783}
20784
20785/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20786 pointer to the constant bytes and set LEN to the length of the
20787 data. If memory is needed, allocate it on OBSTACK. If the DIE
20788 does not have a DW_AT_const_value, return NULL. */
20789
20790const gdb_byte *
9c541725 20791dwarf2_fetch_constant_bytes (sect_offset sect_off,
b6807d98
TT
20792 struct dwarf2_per_cu_data *per_cu,
20793 struct obstack *obstack,
20794 LONGEST *len)
20795{
20796 struct dwarf2_cu *cu;
20797 struct die_info *die;
20798 struct attribute *attr;
20799 const gdb_byte *result = NULL;
20800 struct type *type;
20801 LONGEST value;
20802 enum bfd_endian byte_order;
20803
20804 dw2_setup (per_cu->objfile);
20805
20806 if (per_cu->cu == NULL)
20807 load_cu (per_cu);
20808 cu = per_cu->cu;
cc12ce38
DE
20809 if (cu == NULL)
20810 {
20811 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20812 Instead just throw an error, not much else we can do. */
20813 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
9c541725 20814 to_underlying (sect_off), objfile_name (per_cu->objfile));
cc12ce38 20815 }
b6807d98 20816
9c541725 20817 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
b6807d98
TT
20818 if (!die)
20819 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
9c541725 20820 to_underlying (sect_off), objfile_name (per_cu->objfile));
b6807d98
TT
20821
20822
20823 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20824 if (attr == NULL)
20825 return NULL;
20826
20827 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20828 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20829
20830 switch (attr->form)
20831 {
20832 case DW_FORM_addr:
20833 case DW_FORM_GNU_addr_index:
20834 {
20835 gdb_byte *tem;
20836
20837 *len = cu->header.addr_size;
224c3ddb 20838 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20839 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20840 result = tem;
20841 }
20842 break;
20843 case DW_FORM_string:
20844 case DW_FORM_strp:
20845 case DW_FORM_GNU_str_index:
20846 case DW_FORM_GNU_strp_alt:
20847 /* DW_STRING is already allocated on the objfile obstack, point
20848 directly to it. */
20849 result = (const gdb_byte *) DW_STRING (attr);
20850 *len = strlen (DW_STRING (attr));
20851 break;
20852 case DW_FORM_block1:
20853 case DW_FORM_block2:
20854 case DW_FORM_block4:
20855 case DW_FORM_block:
20856 case DW_FORM_exprloc:
0224619f 20857 case DW_FORM_data16:
b6807d98
TT
20858 result = DW_BLOCK (attr)->data;
20859 *len = DW_BLOCK (attr)->size;
20860 break;
20861
20862 /* The DW_AT_const_value attributes are supposed to carry the
20863 symbol's value "represented as it would be on the target
20864 architecture." By the time we get here, it's already been
20865 converted to host endianness, so we just need to sign- or
20866 zero-extend it as appropriate. */
20867 case DW_FORM_data1:
20868 type = die_type (die, cu);
20869 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20870 if (result == NULL)
20871 result = write_constant_as_bytes (obstack, byte_order,
20872 type, value, len);
20873 break;
20874 case DW_FORM_data2:
20875 type = die_type (die, cu);
20876 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20877 if (result == NULL)
20878 result = write_constant_as_bytes (obstack, byte_order,
20879 type, value, len);
20880 break;
20881 case DW_FORM_data4:
20882 type = die_type (die, cu);
20883 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20884 if (result == NULL)
20885 result = write_constant_as_bytes (obstack, byte_order,
20886 type, value, len);
20887 break;
20888 case DW_FORM_data8:
20889 type = die_type (die, cu);
20890 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20891 if (result == NULL)
20892 result = write_constant_as_bytes (obstack, byte_order,
20893 type, value, len);
20894 break;
20895
20896 case DW_FORM_sdata:
20897 type = die_type (die, cu);
20898 result = write_constant_as_bytes (obstack, byte_order,
20899 type, DW_SND (attr), len);
20900 break;
20901
20902 case DW_FORM_udata:
20903 type = die_type (die, cu);
20904 result = write_constant_as_bytes (obstack, byte_order,
20905 type, DW_UNSND (attr), len);
20906 break;
20907
20908 default:
20909 complaint (&symfile_complaints,
20910 _("unsupported const value attribute form: '%s'"),
20911 dwarf_form_name (attr->form));
20912 break;
20913 }
20914
20915 return result;
20916}
20917
7942e96e
AA
20918/* Return the type of the die at OFFSET in PER_CU. Return NULL if no
20919 valid type for this die is found. */
20920
20921struct type *
9c541725 20922dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
7942e96e
AA
20923 struct dwarf2_per_cu_data *per_cu)
20924{
20925 struct dwarf2_cu *cu;
20926 struct die_info *die;
20927
20928 dw2_setup (per_cu->objfile);
20929
20930 if (per_cu->cu == NULL)
20931 load_cu (per_cu);
20932 cu = per_cu->cu;
20933 if (!cu)
20934 return NULL;
20935
9c541725 20936 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
7942e96e
AA
20937 if (!die)
20938 return NULL;
20939
20940 return die_type (die, cu);
20941}
20942
8a9b8146
TT
20943/* Return the type of the DIE at DIE_OFFSET in the CU named by
20944 PER_CU. */
20945
20946struct type *
b64f50a1 20947dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20948 struct dwarf2_per_cu_data *per_cu)
20949{
8a9b8146 20950 dw2_setup (per_cu->objfile);
b64f50a1 20951
9c541725 20952 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
b64f50a1 20953 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
20954}
20955
ac9ec31b 20956/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 20957 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
20958 On exit *REF_CU is the CU of the result.
20959 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
20960
20961static struct die_info *
ac9ec31b
DE
20962follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20963 struct dwarf2_cu **ref_cu)
348e048f 20964{
348e048f 20965 struct die_info temp_die;
348e048f
DE
20966 struct dwarf2_cu *sig_cu;
20967 struct die_info *die;
20968
ac9ec31b
DE
20969 /* While it might be nice to assert sig_type->type == NULL here,
20970 we can get here for DW_AT_imported_declaration where we need
20971 the DIE not the type. */
348e048f
DE
20972
20973 /* If necessary, add it to the queue and load its DIEs. */
20974
95554aad 20975 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 20976 read_signatured_type (sig_type);
348e048f 20977
348e048f 20978 sig_cu = sig_type->per_cu.cu;
69d751e3 20979 gdb_assert (sig_cu != NULL);
9c541725
PA
20980 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
20981 temp_die.sect_off = sig_type->type_offset_in_section;
9a3c8263 20982 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
9c541725 20983 to_underlying (temp_die.sect_off));
348e048f
DE
20984 if (die)
20985 {
796a7ff8
DE
20986 /* For .gdb_index version 7 keep track of included TUs.
20987 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20988 if (dwarf2_per_objfile->index_table != NULL
20989 && dwarf2_per_objfile->index_table->version <= 7)
20990 {
20991 VEC_safe_push (dwarf2_per_cu_ptr,
20992 (*ref_cu)->per_cu->imported_symtabs,
20993 sig_cu->per_cu);
20994 }
20995
348e048f
DE
20996 *ref_cu = sig_cu;
20997 return die;
20998 }
20999
ac9ec31b
DE
21000 return NULL;
21001}
21002
21003/* Follow signatured type referenced by ATTR in SRC_DIE.
21004 On entry *REF_CU is the CU of SRC_DIE.
21005 On exit *REF_CU is the CU of the result.
21006 The result is the DIE of the type.
21007 If the referenced type cannot be found an error is thrown. */
21008
21009static struct die_info *
ff39bb5e 21010follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
21011 struct dwarf2_cu **ref_cu)
21012{
21013 ULONGEST signature = DW_SIGNATURE (attr);
21014 struct signatured_type *sig_type;
21015 struct die_info *die;
21016
21017 gdb_assert (attr->form == DW_FORM_ref_sig8);
21018
a2ce51a0 21019 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
21020 /* sig_type will be NULL if the signatured type is missing from
21021 the debug info. */
21022 if (sig_type == NULL)
21023 {
21024 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21025 " from DIE at 0x%x [in module %s]"),
9c541725 21026 hex_string (signature), to_underlying (src_die->sect_off),
4262abfb 21027 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
21028 }
21029
21030 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
21031 if (die == NULL)
21032 {
21033 dump_die_for_error (src_die);
21034 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
21035 " from DIE at 0x%x [in module %s]"),
9c541725 21036 hex_string (signature), to_underlying (src_die->sect_off),
4262abfb 21037 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
21038 }
21039
21040 return die;
21041}
21042
21043/* Get the type specified by SIGNATURE referenced in DIE/CU,
21044 reading in and processing the type unit if necessary. */
21045
21046static struct type *
21047get_signatured_type (struct die_info *die, ULONGEST signature,
21048 struct dwarf2_cu *cu)
21049{
21050 struct signatured_type *sig_type;
21051 struct dwarf2_cu *type_cu;
21052 struct die_info *type_die;
21053 struct type *type;
21054
a2ce51a0 21055 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
21056 /* sig_type will be NULL if the signatured type is missing from
21057 the debug info. */
21058 if (sig_type == NULL)
21059 {
21060 complaint (&symfile_complaints,
21061 _("Dwarf Error: Cannot find signatured DIE %s referenced"
21062 " from DIE at 0x%x [in module %s]"),
9c541725 21063 hex_string (signature), to_underlying (die->sect_off),
4262abfb 21064 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21065 return build_error_marker_type (cu, die);
21066 }
21067
21068 /* If we already know the type we're done. */
21069 if (sig_type->type != NULL)
21070 return sig_type->type;
21071
21072 type_cu = cu;
21073 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
21074 if (type_die != NULL)
21075 {
21076 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21077 is created. This is important, for example, because for c++ classes
21078 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21079 type = read_type_die (type_die, type_cu);
21080 if (type == NULL)
21081 {
21082 complaint (&symfile_complaints,
21083 _("Dwarf Error: Cannot build signatured type %s"
21084 " referenced from DIE at 0x%x [in module %s]"),
9c541725 21085 hex_string (signature), to_underlying (die->sect_off),
4262abfb 21086 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21087 type = build_error_marker_type (cu, die);
21088 }
21089 }
21090 else
21091 {
21092 complaint (&symfile_complaints,
21093 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21094 " from DIE at 0x%x [in module %s]"),
9c541725 21095 hex_string (signature), to_underlying (die->sect_off),
4262abfb 21096 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21097 type = build_error_marker_type (cu, die);
21098 }
21099 sig_type->type = type;
21100
21101 return type;
21102}
21103
21104/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21105 reading in and processing the type unit if necessary. */
21106
21107static struct type *
ff39bb5e 21108get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 21109 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
21110{
21111 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 21112 if (attr_form_is_ref (attr))
ac9ec31b
DE
21113 {
21114 struct dwarf2_cu *type_cu = cu;
21115 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21116
21117 return read_type_die (type_die, type_cu);
21118 }
21119 else if (attr->form == DW_FORM_ref_sig8)
21120 {
21121 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21122 }
21123 else
21124 {
21125 complaint (&symfile_complaints,
21126 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21127 " at 0x%x [in module %s]"),
9c541725 21128 dwarf_form_name (attr->form), to_underlying (die->sect_off),
4262abfb 21129 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21130 return build_error_marker_type (cu, die);
21131 }
348e048f
DE
21132}
21133
e5fe5e75 21134/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
21135
21136static void
e5fe5e75 21137load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 21138{
52dc124a 21139 struct signatured_type *sig_type;
348e048f 21140
f4dc4d17
DE
21141 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21142 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21143
6721b2ec
DE
21144 /* We have the per_cu, but we need the signatured_type.
21145 Fortunately this is an easy translation. */
21146 gdb_assert (per_cu->is_debug_types);
21147 sig_type = (struct signatured_type *) per_cu;
348e048f 21148
6721b2ec 21149 gdb_assert (per_cu->cu == NULL);
348e048f 21150
52dc124a 21151 read_signatured_type (sig_type);
348e048f 21152
6721b2ec 21153 gdb_assert (per_cu->cu != NULL);
348e048f
DE
21154}
21155
dee91e82
DE
21156/* die_reader_func for read_signatured_type.
21157 This is identical to load_full_comp_unit_reader,
21158 but is kept separate for now. */
348e048f
DE
21159
21160static void
dee91e82 21161read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 21162 const gdb_byte *info_ptr,
dee91e82
DE
21163 struct die_info *comp_unit_die,
21164 int has_children,
21165 void *data)
348e048f 21166{
dee91e82 21167 struct dwarf2_cu *cu = reader->cu;
348e048f 21168
dee91e82
DE
21169 gdb_assert (cu->die_hash == NULL);
21170 cu->die_hash =
21171 htab_create_alloc_ex (cu->header.length / 12,
21172 die_hash,
21173 die_eq,
21174 NULL,
21175 &cu->comp_unit_obstack,
21176 hashtab_obstack_allocate,
21177 dummy_obstack_deallocate);
348e048f 21178
dee91e82
DE
21179 if (has_children)
21180 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21181 &info_ptr, comp_unit_die);
21182 cu->dies = comp_unit_die;
21183 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
21184
21185 /* We try not to read any attributes in this function, because not
9cdd5dbd 21186 all CUs needed for references have been loaded yet, and symbol
348e048f 21187 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
21188 or we won't be able to build types correctly.
21189 Similarly, if we do not read the producer, we can not apply
21190 producer-specific interpretation. */
95554aad 21191 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 21192}
348e048f 21193
3019eac3
DE
21194/* Read in a signatured type and build its CU and DIEs.
21195 If the type is a stub for the real type in a DWO file,
21196 read in the real type from the DWO file as well. */
dee91e82
DE
21197
21198static void
21199read_signatured_type (struct signatured_type *sig_type)
21200{
21201 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 21202
3019eac3 21203 gdb_assert (per_cu->is_debug_types);
dee91e82 21204 gdb_assert (per_cu->cu == NULL);
348e048f 21205
f4dc4d17
DE
21206 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21207 read_signatured_type_reader, NULL);
7ee85ab1 21208 sig_type->per_cu.tu_read = 1;
c906108c
SS
21209}
21210
c906108c
SS
21211/* Decode simple location descriptions.
21212 Given a pointer to a dwarf block that defines a location, compute
21213 the location and return the value.
21214
4cecd739
DJ
21215 NOTE drow/2003-11-18: This function is called in two situations
21216 now: for the address of static or global variables (partial symbols
21217 only) and for offsets into structures which are expected to be
21218 (more or less) constant. The partial symbol case should go away,
21219 and only the constant case should remain. That will let this
21220 function complain more accurately. A few special modes are allowed
21221 without complaint for global variables (for instance, global
21222 register values and thread-local values).
c906108c
SS
21223
21224 A location description containing no operations indicates that the
4cecd739 21225 object is optimized out. The return value is 0 for that case.
6b992462
DJ
21226 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21227 callers will only want a very basic result and this can become a
21ae7a4d
JK
21228 complaint.
21229
21230 Note that stack[0] is unused except as a default error return. */
c906108c
SS
21231
21232static CORE_ADDR
e7c27a73 21233decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 21234{
e7c27a73 21235 struct objfile *objfile = cu->objfile;
56eb65bd
SP
21236 size_t i;
21237 size_t size = blk->size;
d521ce57 21238 const gdb_byte *data = blk->data;
21ae7a4d
JK
21239 CORE_ADDR stack[64];
21240 int stacki;
21241 unsigned int bytes_read, unsnd;
21242 gdb_byte op;
c906108c 21243
21ae7a4d
JK
21244 i = 0;
21245 stacki = 0;
21246 stack[stacki] = 0;
21247 stack[++stacki] = 0;
21248
21249 while (i < size)
21250 {
21251 op = data[i++];
21252 switch (op)
21253 {
21254 case DW_OP_lit0:
21255 case DW_OP_lit1:
21256 case DW_OP_lit2:
21257 case DW_OP_lit3:
21258 case DW_OP_lit4:
21259 case DW_OP_lit5:
21260 case DW_OP_lit6:
21261 case DW_OP_lit7:
21262 case DW_OP_lit8:
21263 case DW_OP_lit9:
21264 case DW_OP_lit10:
21265 case DW_OP_lit11:
21266 case DW_OP_lit12:
21267 case DW_OP_lit13:
21268 case DW_OP_lit14:
21269 case DW_OP_lit15:
21270 case DW_OP_lit16:
21271 case DW_OP_lit17:
21272 case DW_OP_lit18:
21273 case DW_OP_lit19:
21274 case DW_OP_lit20:
21275 case DW_OP_lit21:
21276 case DW_OP_lit22:
21277 case DW_OP_lit23:
21278 case DW_OP_lit24:
21279 case DW_OP_lit25:
21280 case DW_OP_lit26:
21281 case DW_OP_lit27:
21282 case DW_OP_lit28:
21283 case DW_OP_lit29:
21284 case DW_OP_lit30:
21285 case DW_OP_lit31:
21286 stack[++stacki] = op - DW_OP_lit0;
21287 break;
f1bea926 21288
21ae7a4d
JK
21289 case DW_OP_reg0:
21290 case DW_OP_reg1:
21291 case DW_OP_reg2:
21292 case DW_OP_reg3:
21293 case DW_OP_reg4:
21294 case DW_OP_reg5:
21295 case DW_OP_reg6:
21296 case DW_OP_reg7:
21297 case DW_OP_reg8:
21298 case DW_OP_reg9:
21299 case DW_OP_reg10:
21300 case DW_OP_reg11:
21301 case DW_OP_reg12:
21302 case DW_OP_reg13:
21303 case DW_OP_reg14:
21304 case DW_OP_reg15:
21305 case DW_OP_reg16:
21306 case DW_OP_reg17:
21307 case DW_OP_reg18:
21308 case DW_OP_reg19:
21309 case DW_OP_reg20:
21310 case DW_OP_reg21:
21311 case DW_OP_reg22:
21312 case DW_OP_reg23:
21313 case DW_OP_reg24:
21314 case DW_OP_reg25:
21315 case DW_OP_reg26:
21316 case DW_OP_reg27:
21317 case DW_OP_reg28:
21318 case DW_OP_reg29:
21319 case DW_OP_reg30:
21320 case DW_OP_reg31:
21321 stack[++stacki] = op - DW_OP_reg0;
21322 if (i < size)
21323 dwarf2_complex_location_expr_complaint ();
21324 break;
c906108c 21325
21ae7a4d
JK
21326 case DW_OP_regx:
21327 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21328 i += bytes_read;
21329 stack[++stacki] = unsnd;
21330 if (i < size)
21331 dwarf2_complex_location_expr_complaint ();
21332 break;
c906108c 21333
21ae7a4d
JK
21334 case DW_OP_addr:
21335 stack[++stacki] = read_address (objfile->obfd, &data[i],
21336 cu, &bytes_read);
21337 i += bytes_read;
21338 break;
d53d4ac5 21339
21ae7a4d
JK
21340 case DW_OP_const1u:
21341 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21342 i += 1;
21343 break;
21344
21345 case DW_OP_const1s:
21346 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21347 i += 1;
21348 break;
21349
21350 case DW_OP_const2u:
21351 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21352 i += 2;
21353 break;
21354
21355 case DW_OP_const2s:
21356 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21357 i += 2;
21358 break;
d53d4ac5 21359
21ae7a4d
JK
21360 case DW_OP_const4u:
21361 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21362 i += 4;
21363 break;
21364
21365 case DW_OP_const4s:
21366 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21367 i += 4;
21368 break;
21369
585861ea
JK
21370 case DW_OP_const8u:
21371 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21372 i += 8;
21373 break;
21374
21ae7a4d
JK
21375 case DW_OP_constu:
21376 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21377 &bytes_read);
21378 i += bytes_read;
21379 break;
21380
21381 case DW_OP_consts:
21382 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21383 i += bytes_read;
21384 break;
21385
21386 case DW_OP_dup:
21387 stack[stacki + 1] = stack[stacki];
21388 stacki++;
21389 break;
21390
21391 case DW_OP_plus:
21392 stack[stacki - 1] += stack[stacki];
21393 stacki--;
21394 break;
21395
21396 case DW_OP_plus_uconst:
21397 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21398 &bytes_read);
21399 i += bytes_read;
21400 break;
21401
21402 case DW_OP_minus:
21403 stack[stacki - 1] -= stack[stacki];
21404 stacki--;
21405 break;
21406
21407 case DW_OP_deref:
21408 /* If we're not the last op, then we definitely can't encode
21409 this using GDB's address_class enum. This is valid for partial
21410 global symbols, although the variable's address will be bogus
21411 in the psymtab. */
21412 if (i < size)
21413 dwarf2_complex_location_expr_complaint ();
21414 break;
21415
21416 case DW_OP_GNU_push_tls_address:
4aa4e28b 21417 case DW_OP_form_tls_address:
21ae7a4d
JK
21418 /* The top of the stack has the offset from the beginning
21419 of the thread control block at which the variable is located. */
21420 /* Nothing should follow this operator, so the top of stack would
21421 be returned. */
21422 /* This is valid for partial global symbols, but the variable's
585861ea
JK
21423 address will be bogus in the psymtab. Make it always at least
21424 non-zero to not look as a variable garbage collected by linker
21425 which have DW_OP_addr 0. */
21ae7a4d
JK
21426 if (i < size)
21427 dwarf2_complex_location_expr_complaint ();
585861ea 21428 stack[stacki]++;
21ae7a4d
JK
21429 break;
21430
21431 case DW_OP_GNU_uninit:
21432 break;
21433
3019eac3 21434 case DW_OP_GNU_addr_index:
49f6c839 21435 case DW_OP_GNU_const_index:
3019eac3
DE
21436 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21437 &bytes_read);
21438 i += bytes_read;
21439 break;
21440
21ae7a4d
JK
21441 default:
21442 {
f39c6ffd 21443 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
21444
21445 if (name)
21446 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21447 name);
21448 else
21449 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21450 op);
21451 }
21452
21453 return (stack[stacki]);
d53d4ac5 21454 }
3c6e0cb3 21455
21ae7a4d
JK
21456 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21457 outside of the allocated space. Also enforce minimum>0. */
21458 if (stacki >= ARRAY_SIZE (stack) - 1)
21459 {
21460 complaint (&symfile_complaints,
21461 _("location description stack overflow"));
21462 return 0;
21463 }
21464
21465 if (stacki <= 0)
21466 {
21467 complaint (&symfile_complaints,
21468 _("location description stack underflow"));
21469 return 0;
21470 }
21471 }
21472 return (stack[stacki]);
c906108c
SS
21473}
21474
21475/* memory allocation interface */
21476
c906108c 21477static struct dwarf_block *
7b5a2f43 21478dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 21479{
8d749320 21480 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
21481}
21482
c906108c 21483static struct die_info *
b60c80d6 21484dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
21485{
21486 struct die_info *die;
b60c80d6
DJ
21487 size_t size = sizeof (struct die_info);
21488
21489 if (num_attrs > 1)
21490 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 21491
b60c80d6 21492 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
21493 memset (die, 0, sizeof (struct die_info));
21494 return (die);
21495}
2e276125
JB
21496
21497\f
21498/* Macro support. */
21499
233d95b5
JK
21500/* Return file name relative to the compilation directory of file number I in
21501 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 21502 responsible for freeing it. */
233d95b5 21503
2e276125 21504static char *
233d95b5 21505file_file_name (int file, struct line_header *lh)
2e276125 21506{
6a83a1e6
EZ
21507 /* Is the file number a valid index into the line header's file name
21508 table? Remember that file numbers start with one, not zero. */
fff8551c 21509 if (1 <= file && file <= lh->file_names.size ())
6a83a1e6 21510 {
8c43009f 21511 const file_entry &fe = lh->file_names[file - 1];
6e70227d 21512
8c43009f
PA
21513 if (!IS_ABSOLUTE_PATH (fe.name))
21514 {
21515 const char *dir = fe.include_dir (lh);
21516 if (dir != NULL)
21517 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
21518 }
21519 return xstrdup (fe.name);
6a83a1e6 21520 }
2e276125
JB
21521 else
21522 {
6a83a1e6
EZ
21523 /* The compiler produced a bogus file number. We can at least
21524 record the macro definitions made in the file, even if we
21525 won't be able to find the file by name. */
21526 char fake_name[80];
9a619af0 21527
8c042590
PM
21528 xsnprintf (fake_name, sizeof (fake_name),
21529 "<bad macro file number %d>", file);
2e276125 21530
6e70227d 21531 complaint (&symfile_complaints,
6a83a1e6
EZ
21532 _("bad file number in macro information (%d)"),
21533 file);
2e276125 21534
6a83a1e6 21535 return xstrdup (fake_name);
2e276125
JB
21536 }
21537}
21538
233d95b5
JK
21539/* Return the full name of file number I in *LH's file name table.
21540 Use COMP_DIR as the name of the current directory of the
21541 compilation. The result is allocated using xmalloc; the caller is
21542 responsible for freeing it. */
21543static char *
21544file_full_name (int file, struct line_header *lh, const char *comp_dir)
21545{
21546 /* Is the file number a valid index into the line header's file name
21547 table? Remember that file numbers start with one, not zero. */
fff8551c 21548 if (1 <= file && file <= lh->file_names.size ())
233d95b5
JK
21549 {
21550 char *relative = file_file_name (file, lh);
21551
21552 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21553 return relative;
b36cec19
PA
21554 return reconcat (relative, comp_dir, SLASH_STRING,
21555 relative, (char *) NULL);
233d95b5
JK
21556 }
21557 else
21558 return file_file_name (file, lh);
21559}
21560
2e276125
JB
21561
21562static struct macro_source_file *
21563macro_start_file (int file, int line,
21564 struct macro_source_file *current_file,
43f3e411 21565 struct line_header *lh)
2e276125 21566{
233d95b5
JK
21567 /* File name relative to the compilation directory of this source file. */
21568 char *file_name = file_file_name (file, lh);
2e276125 21569
2e276125 21570 if (! current_file)
abc9d0dc 21571 {
fc474241
DE
21572 /* Note: We don't create a macro table for this compilation unit
21573 at all until we actually get a filename. */
43f3e411 21574 struct macro_table *macro_table = get_macro_table ();
fc474241 21575
abc9d0dc
TT
21576 /* If we have no current file, then this must be the start_file
21577 directive for the compilation unit's main source file. */
fc474241
DE
21578 current_file = macro_set_main (macro_table, file_name);
21579 macro_define_special (macro_table);
abc9d0dc 21580 }
2e276125 21581 else
233d95b5 21582 current_file = macro_include (current_file, line, file_name);
2e276125 21583
233d95b5 21584 xfree (file_name);
6e70227d 21585
2e276125
JB
21586 return current_file;
21587}
21588
21589
21590/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
21591 followed by a null byte. */
21592static char *
21593copy_string (const char *buf, int len)
21594{
224c3ddb 21595 char *s = (char *) xmalloc (len + 1);
9a619af0 21596
2e276125
JB
21597 memcpy (s, buf, len);
21598 s[len] = '\0';
2e276125
JB
21599 return s;
21600}
21601
21602
21603static const char *
21604consume_improper_spaces (const char *p, const char *body)
21605{
21606 if (*p == ' ')
21607 {
4d3c2250 21608 complaint (&symfile_complaints,
3e43a32a
MS
21609 _("macro definition contains spaces "
21610 "in formal argument list:\n`%s'"),
4d3c2250 21611 body);
2e276125
JB
21612
21613 while (*p == ' ')
21614 p++;
21615 }
21616
21617 return p;
21618}
21619
21620
21621static void
21622parse_macro_definition (struct macro_source_file *file, int line,
21623 const char *body)
21624{
21625 const char *p;
21626
21627 /* The body string takes one of two forms. For object-like macro
21628 definitions, it should be:
21629
21630 <macro name> " " <definition>
21631
21632 For function-like macro definitions, it should be:
21633
21634 <macro name> "() " <definition>
21635 or
21636 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21637
21638 Spaces may appear only where explicitly indicated, and in the
21639 <definition>.
21640
21641 The Dwarf 2 spec says that an object-like macro's name is always
21642 followed by a space, but versions of GCC around March 2002 omit
6e70227d 21643 the space when the macro's definition is the empty string.
2e276125
JB
21644
21645 The Dwarf 2 spec says that there should be no spaces between the
21646 formal arguments in a function-like macro's formal argument list,
21647 but versions of GCC around March 2002 include spaces after the
21648 commas. */
21649
21650
21651 /* Find the extent of the macro name. The macro name is terminated
21652 by either a space or null character (for an object-like macro) or
21653 an opening paren (for a function-like macro). */
21654 for (p = body; *p; p++)
21655 if (*p == ' ' || *p == '(')
21656 break;
21657
21658 if (*p == ' ' || *p == '\0')
21659 {
21660 /* It's an object-like macro. */
21661 int name_len = p - body;
21662 char *name = copy_string (body, name_len);
21663 const char *replacement;
21664
21665 if (*p == ' ')
21666 replacement = body + name_len + 1;
21667 else
21668 {
4d3c2250 21669 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21670 replacement = body + name_len;
21671 }
6e70227d 21672
2e276125
JB
21673 macro_define_object (file, line, name, replacement);
21674
21675 xfree (name);
21676 }
21677 else if (*p == '(')
21678 {
21679 /* It's a function-like macro. */
21680 char *name = copy_string (body, p - body);
21681 int argc = 0;
21682 int argv_size = 1;
8d749320 21683 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
21684
21685 p++;
21686
21687 p = consume_improper_spaces (p, body);
21688
21689 /* Parse the formal argument list. */
21690 while (*p && *p != ')')
21691 {
21692 /* Find the extent of the current argument name. */
21693 const char *arg_start = p;
21694
21695 while (*p && *p != ',' && *p != ')' && *p != ' ')
21696 p++;
21697
21698 if (! *p || p == arg_start)
4d3c2250 21699 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21700 else
21701 {
21702 /* Make sure argv has room for the new argument. */
21703 if (argc >= argv_size)
21704 {
21705 argv_size *= 2;
224c3ddb 21706 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
21707 }
21708
21709 argv[argc++] = copy_string (arg_start, p - arg_start);
21710 }
21711
21712 p = consume_improper_spaces (p, body);
21713
21714 /* Consume the comma, if present. */
21715 if (*p == ',')
21716 {
21717 p++;
21718
21719 p = consume_improper_spaces (p, body);
21720 }
21721 }
21722
21723 if (*p == ')')
21724 {
21725 p++;
21726
21727 if (*p == ' ')
21728 /* Perfectly formed definition, no complaints. */
21729 macro_define_function (file, line, name,
6e70227d 21730 argc, (const char **) argv,
2e276125
JB
21731 p + 1);
21732 else if (*p == '\0')
21733 {
21734 /* Complain, but do define it. */
4d3c2250 21735 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21736 macro_define_function (file, line, name,
6e70227d 21737 argc, (const char **) argv,
2e276125
JB
21738 p);
21739 }
21740 else
21741 /* Just complain. */
4d3c2250 21742 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21743 }
21744 else
21745 /* Just complain. */
4d3c2250 21746 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21747
21748 xfree (name);
21749 {
21750 int i;
21751
21752 for (i = 0; i < argc; i++)
21753 xfree (argv[i]);
21754 }
21755 xfree (argv);
21756 }
21757 else
4d3c2250 21758 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21759}
21760
cf2c3c16
TT
21761/* Skip some bytes from BYTES according to the form given in FORM.
21762 Returns the new pointer. */
2e276125 21763
d521ce57
TT
21764static const gdb_byte *
21765skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21766 enum dwarf_form form,
21767 unsigned int offset_size,
21768 struct dwarf2_section_info *section)
2e276125 21769{
cf2c3c16 21770 unsigned int bytes_read;
2e276125 21771
cf2c3c16 21772 switch (form)
2e276125 21773 {
cf2c3c16
TT
21774 case DW_FORM_data1:
21775 case DW_FORM_flag:
21776 ++bytes;
21777 break;
21778
21779 case DW_FORM_data2:
21780 bytes += 2;
21781 break;
21782
21783 case DW_FORM_data4:
21784 bytes += 4;
21785 break;
21786
21787 case DW_FORM_data8:
21788 bytes += 8;
21789 break;
21790
0224619f
JK
21791 case DW_FORM_data16:
21792 bytes += 16;
21793 break;
21794
cf2c3c16
TT
21795 case DW_FORM_string:
21796 read_direct_string (abfd, bytes, &bytes_read);
21797 bytes += bytes_read;
21798 break;
21799
21800 case DW_FORM_sec_offset:
21801 case DW_FORM_strp:
36586728 21802 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21803 bytes += offset_size;
21804 break;
21805
21806 case DW_FORM_block:
21807 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21808 bytes += bytes_read;
21809 break;
21810
21811 case DW_FORM_block1:
21812 bytes += 1 + read_1_byte (abfd, bytes);
21813 break;
21814 case DW_FORM_block2:
21815 bytes += 2 + read_2_bytes (abfd, bytes);
21816 break;
21817 case DW_FORM_block4:
21818 bytes += 4 + read_4_bytes (abfd, bytes);
21819 break;
21820
21821 case DW_FORM_sdata:
21822 case DW_FORM_udata:
3019eac3
DE
21823 case DW_FORM_GNU_addr_index:
21824 case DW_FORM_GNU_str_index:
d521ce57 21825 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21826 if (bytes == NULL)
21827 {
21828 dwarf2_section_buffer_overflow_complaint (section);
21829 return NULL;
21830 }
cf2c3c16
TT
21831 break;
21832
21833 default:
21834 {
21835 complain:
21836 complaint (&symfile_complaints,
21837 _("invalid form 0x%x in `%s'"),
a32a8923 21838 form, get_section_name (section));
cf2c3c16
TT
21839 return NULL;
21840 }
2e276125
JB
21841 }
21842
cf2c3c16
TT
21843 return bytes;
21844}
757a13d0 21845
cf2c3c16
TT
21846/* A helper for dwarf_decode_macros that handles skipping an unknown
21847 opcode. Returns an updated pointer to the macro data buffer; or,
21848 on error, issues a complaint and returns NULL. */
757a13d0 21849
d521ce57 21850static const gdb_byte *
cf2c3c16 21851skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21852 const gdb_byte **opcode_definitions,
21853 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21854 bfd *abfd,
21855 unsigned int offset_size,
21856 struct dwarf2_section_info *section)
21857{
21858 unsigned int bytes_read, i;
21859 unsigned long arg;
d521ce57 21860 const gdb_byte *defn;
2e276125 21861
cf2c3c16 21862 if (opcode_definitions[opcode] == NULL)
2e276125 21863 {
cf2c3c16
TT
21864 complaint (&symfile_complaints,
21865 _("unrecognized DW_MACFINO opcode 0x%x"),
21866 opcode);
21867 return NULL;
21868 }
2e276125 21869
cf2c3c16
TT
21870 defn = opcode_definitions[opcode];
21871 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21872 defn += bytes_read;
2e276125 21873
cf2c3c16
TT
21874 for (i = 0; i < arg; ++i)
21875 {
aead7601
SM
21876 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21877 (enum dwarf_form) defn[i], offset_size,
f664829e 21878 section);
cf2c3c16
TT
21879 if (mac_ptr == NULL)
21880 {
21881 /* skip_form_bytes already issued the complaint. */
21882 return NULL;
21883 }
21884 }
757a13d0 21885
cf2c3c16
TT
21886 return mac_ptr;
21887}
757a13d0 21888
cf2c3c16
TT
21889/* A helper function which parses the header of a macro section.
21890 If the macro section is the extended (for now called "GNU") type,
21891 then this updates *OFFSET_SIZE. Returns a pointer to just after
21892 the header, or issues a complaint and returns NULL on error. */
757a13d0 21893
d521ce57
TT
21894static const gdb_byte *
21895dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21896 bfd *abfd,
d521ce57 21897 const gdb_byte *mac_ptr,
cf2c3c16
TT
21898 unsigned int *offset_size,
21899 int section_is_gnu)
21900{
21901 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21902
cf2c3c16
TT
21903 if (section_is_gnu)
21904 {
21905 unsigned int version, flags;
757a13d0 21906
cf2c3c16 21907 version = read_2_bytes (abfd, mac_ptr);
0af92d60 21908 if (version != 4 && version != 5)
cf2c3c16
TT
21909 {
21910 complaint (&symfile_complaints,
21911 _("unrecognized version `%d' in .debug_macro section"),
21912 version);
21913 return NULL;
21914 }
21915 mac_ptr += 2;
757a13d0 21916
cf2c3c16
TT
21917 flags = read_1_byte (abfd, mac_ptr);
21918 ++mac_ptr;
21919 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21920
cf2c3c16
TT
21921 if ((flags & 2) != 0)
21922 /* We don't need the line table offset. */
21923 mac_ptr += *offset_size;
757a13d0 21924
cf2c3c16
TT
21925 /* Vendor opcode descriptions. */
21926 if ((flags & 4) != 0)
21927 {
21928 unsigned int i, count;
757a13d0 21929
cf2c3c16
TT
21930 count = read_1_byte (abfd, mac_ptr);
21931 ++mac_ptr;
21932 for (i = 0; i < count; ++i)
21933 {
21934 unsigned int opcode, bytes_read;
21935 unsigned long arg;
21936
21937 opcode = read_1_byte (abfd, mac_ptr);
21938 ++mac_ptr;
21939 opcode_definitions[opcode] = mac_ptr;
21940 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21941 mac_ptr += bytes_read;
21942 mac_ptr += arg;
21943 }
757a13d0 21944 }
cf2c3c16 21945 }
757a13d0 21946
cf2c3c16
TT
21947 return mac_ptr;
21948}
757a13d0 21949
cf2c3c16 21950/* A helper for dwarf_decode_macros that handles the GNU extensions,
0af92d60 21951 including DW_MACRO_import. */
cf2c3c16
TT
21952
21953static void
d521ce57
TT
21954dwarf_decode_macro_bytes (bfd *abfd,
21955 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21956 struct macro_source_file *current_file,
43f3e411 21957 struct line_header *lh,
cf2c3c16 21958 struct dwarf2_section_info *section,
36586728 21959 int section_is_gnu, int section_is_dwz,
cf2c3c16 21960 unsigned int offset_size,
8fc3fc34 21961 htab_t include_hash)
cf2c3c16 21962{
4d663531 21963 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
21964 enum dwarf_macro_record_type macinfo_type;
21965 int at_commandline;
d521ce57 21966 const gdb_byte *opcode_definitions[256];
757a13d0 21967
cf2c3c16
TT
21968 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21969 &offset_size, section_is_gnu);
21970 if (mac_ptr == NULL)
21971 {
21972 /* We already issued a complaint. */
21973 return;
21974 }
757a13d0
JK
21975
21976 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21977 GDB is still reading the definitions from command line. First
21978 DW_MACINFO_start_file will need to be ignored as it was already executed
21979 to create CURRENT_FILE for the main source holding also the command line
21980 definitions. On first met DW_MACINFO_start_file this flag is reset to
21981 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21982
21983 at_commandline = 1;
21984
21985 do
21986 {
21987 /* Do we at least have room for a macinfo type byte? */
21988 if (mac_ptr >= mac_end)
21989 {
f664829e 21990 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
21991 break;
21992 }
21993
aead7601 21994 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
21995 mac_ptr++;
21996
cf2c3c16
TT
21997 /* Note that we rely on the fact that the corresponding GNU and
21998 DWARF constants are the same. */
757a13d0
JK
21999 switch (macinfo_type)
22000 {
22001 /* A zero macinfo type indicates the end of the macro
22002 information. */
22003 case 0:
22004 break;
2e276125 22005
0af92d60
JK
22006 case DW_MACRO_define:
22007 case DW_MACRO_undef:
22008 case DW_MACRO_define_strp:
22009 case DW_MACRO_undef_strp:
22010 case DW_MACRO_define_sup:
22011 case DW_MACRO_undef_sup:
2e276125 22012 {
891d2f0b 22013 unsigned int bytes_read;
2e276125 22014 int line;
d521ce57 22015 const char *body;
cf2c3c16 22016 int is_define;
2e276125 22017
cf2c3c16
TT
22018 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22019 mac_ptr += bytes_read;
22020
0af92d60
JK
22021 if (macinfo_type == DW_MACRO_define
22022 || macinfo_type == DW_MACRO_undef)
cf2c3c16
TT
22023 {
22024 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22025 mac_ptr += bytes_read;
22026 }
22027 else
22028 {
22029 LONGEST str_offset;
22030
22031 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22032 mac_ptr += offset_size;
2e276125 22033
0af92d60
JK
22034 if (macinfo_type == DW_MACRO_define_sup
22035 || macinfo_type == DW_MACRO_undef_sup
f7a35f02 22036 || section_is_dwz)
36586728
TT
22037 {
22038 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22039
22040 body = read_indirect_string_from_dwz (dwz, str_offset);
22041 }
22042 else
22043 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
22044 }
22045
0af92d60
JK
22046 is_define = (macinfo_type == DW_MACRO_define
22047 || macinfo_type == DW_MACRO_define_strp
22048 || macinfo_type == DW_MACRO_define_sup);
2e276125 22049 if (! current_file)
757a13d0
JK
22050 {
22051 /* DWARF violation as no main source is present. */
22052 complaint (&symfile_complaints,
22053 _("debug info with no main source gives macro %s "
22054 "on line %d: %s"),
cf2c3c16
TT
22055 is_define ? _("definition") : _("undefinition"),
22056 line, body);
757a13d0
JK
22057 break;
22058 }
3e43a32a
MS
22059 if ((line == 0 && !at_commandline)
22060 || (line != 0 && at_commandline))
4d3c2250 22061 complaint (&symfile_complaints,
757a13d0
JK
22062 _("debug info gives %s macro %s with %s line %d: %s"),
22063 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 22064 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
22065 line == 0 ? _("zero") : _("non-zero"), line, body);
22066
cf2c3c16 22067 if (is_define)
757a13d0 22068 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
22069 else
22070 {
0af92d60
JK
22071 gdb_assert (macinfo_type == DW_MACRO_undef
22072 || macinfo_type == DW_MACRO_undef_strp
22073 || macinfo_type == DW_MACRO_undef_sup);
cf2c3c16
TT
22074 macro_undef (current_file, line, body);
22075 }
2e276125
JB
22076 }
22077 break;
22078
0af92d60 22079 case DW_MACRO_start_file:
2e276125 22080 {
891d2f0b 22081 unsigned int bytes_read;
2e276125
JB
22082 int line, file;
22083
22084 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22085 mac_ptr += bytes_read;
22086 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22087 mac_ptr += bytes_read;
22088
3e43a32a
MS
22089 if ((line == 0 && !at_commandline)
22090 || (line != 0 && at_commandline))
757a13d0
JK
22091 complaint (&symfile_complaints,
22092 _("debug info gives source %d included "
22093 "from %s at %s line %d"),
22094 file, at_commandline ? _("command-line") : _("file"),
22095 line == 0 ? _("zero") : _("non-zero"), line);
22096
22097 if (at_commandline)
22098 {
0af92d60 22099 /* This DW_MACRO_start_file was executed in the
cf2c3c16 22100 pass one. */
757a13d0
JK
22101 at_commandline = 0;
22102 }
22103 else
43f3e411 22104 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
22105 }
22106 break;
22107
0af92d60 22108 case DW_MACRO_end_file:
2e276125 22109 if (! current_file)
4d3c2250 22110 complaint (&symfile_complaints,
3e43a32a
MS
22111 _("macro debug info has an unmatched "
22112 "`close_file' directive"));
2e276125
JB
22113 else
22114 {
22115 current_file = current_file->included_by;
22116 if (! current_file)
22117 {
cf2c3c16 22118 enum dwarf_macro_record_type next_type;
2e276125
JB
22119
22120 /* GCC circa March 2002 doesn't produce the zero
22121 type byte marking the end of the compilation
22122 unit. Complain if it's not there, but exit no
22123 matter what. */
22124
22125 /* Do we at least have room for a macinfo type byte? */
22126 if (mac_ptr >= mac_end)
22127 {
f664829e 22128 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
22129 return;
22130 }
22131
22132 /* We don't increment mac_ptr here, so this is just
22133 a look-ahead. */
aead7601
SM
22134 next_type
22135 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22136 mac_ptr);
2e276125 22137 if (next_type != 0)
4d3c2250 22138 complaint (&symfile_complaints,
3e43a32a
MS
22139 _("no terminating 0-type entry for "
22140 "macros in `.debug_macinfo' section"));
2e276125
JB
22141
22142 return;
22143 }
22144 }
22145 break;
22146
0af92d60
JK
22147 case DW_MACRO_import:
22148 case DW_MACRO_import_sup:
cf2c3c16
TT
22149 {
22150 LONGEST offset;
8fc3fc34 22151 void **slot;
a036ba48
TT
22152 bfd *include_bfd = abfd;
22153 struct dwarf2_section_info *include_section = section;
d521ce57 22154 const gdb_byte *include_mac_end = mac_end;
a036ba48 22155 int is_dwz = section_is_dwz;
d521ce57 22156 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
22157
22158 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22159 mac_ptr += offset_size;
22160
0af92d60 22161 if (macinfo_type == DW_MACRO_import_sup)
a036ba48
TT
22162 {
22163 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22164
4d663531 22165 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 22166
a036ba48 22167 include_section = &dwz->macro;
a32a8923 22168 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
22169 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22170 is_dwz = 1;
22171 }
22172
22173 new_mac_ptr = include_section->buffer + offset;
22174 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22175
8fc3fc34
TT
22176 if (*slot != NULL)
22177 {
22178 /* This has actually happened; see
22179 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22180 complaint (&symfile_complaints,
0af92d60 22181 _("recursive DW_MACRO_import in "
8fc3fc34
TT
22182 ".debug_macro section"));
22183 }
22184 else
22185 {
d521ce57 22186 *slot = (void *) new_mac_ptr;
36586728 22187
a036ba48 22188 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 22189 include_mac_end, current_file, lh,
36586728 22190 section, section_is_gnu, is_dwz,
4d663531 22191 offset_size, include_hash);
8fc3fc34 22192
d521ce57 22193 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 22194 }
cf2c3c16
TT
22195 }
22196 break;
22197
2e276125 22198 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
22199 if (!section_is_gnu)
22200 {
22201 unsigned int bytes_read;
2e276125 22202
ac298888
TT
22203 /* This reads the constant, but since we don't recognize
22204 any vendor extensions, we ignore it. */
22205 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
cf2c3c16
TT
22206 mac_ptr += bytes_read;
22207 read_direct_string (abfd, mac_ptr, &bytes_read);
22208 mac_ptr += bytes_read;
2e276125 22209
cf2c3c16
TT
22210 /* We don't recognize any vendor extensions. */
22211 break;
22212 }
22213 /* FALLTHROUGH */
22214
22215 default:
22216 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 22217 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
22218 section);
22219 if (mac_ptr == NULL)
22220 return;
22221 break;
2e276125 22222 }
757a13d0 22223 } while (macinfo_type != 0);
2e276125 22224}
8e19ed76 22225
cf2c3c16 22226static void
09262596 22227dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 22228 int section_is_gnu)
cf2c3c16 22229{
bb5ed363 22230 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
22231 struct line_header *lh = cu->line_header;
22232 bfd *abfd;
d521ce57 22233 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
22234 struct macro_source_file *current_file = 0;
22235 enum dwarf_macro_record_type macinfo_type;
22236 unsigned int offset_size = cu->header.offset_size;
d521ce57 22237 const gdb_byte *opcode_definitions[256];
8fc3fc34 22238 struct cleanup *cleanup;
8fc3fc34 22239 void **slot;
09262596
DE
22240 struct dwarf2_section_info *section;
22241 const char *section_name;
22242
22243 if (cu->dwo_unit != NULL)
22244 {
22245 if (section_is_gnu)
22246 {
22247 section = &cu->dwo_unit->dwo_file->sections.macro;
22248 section_name = ".debug_macro.dwo";
22249 }
22250 else
22251 {
22252 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22253 section_name = ".debug_macinfo.dwo";
22254 }
22255 }
22256 else
22257 {
22258 if (section_is_gnu)
22259 {
22260 section = &dwarf2_per_objfile->macro;
22261 section_name = ".debug_macro";
22262 }
22263 else
22264 {
22265 section = &dwarf2_per_objfile->macinfo;
22266 section_name = ".debug_macinfo";
22267 }
22268 }
cf2c3c16 22269
bb5ed363 22270 dwarf2_read_section (objfile, section);
cf2c3c16
TT
22271 if (section->buffer == NULL)
22272 {
fceca515 22273 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
22274 return;
22275 }
a32a8923 22276 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
22277
22278 /* First pass: Find the name of the base filename.
22279 This filename is needed in order to process all macros whose definition
22280 (or undefinition) comes from the command line. These macros are defined
22281 before the first DW_MACINFO_start_file entry, and yet still need to be
22282 associated to the base file.
22283
22284 To determine the base file name, we scan the macro definitions until we
22285 reach the first DW_MACINFO_start_file entry. We then initialize
22286 CURRENT_FILE accordingly so that any macro definition found before the
22287 first DW_MACINFO_start_file can still be associated to the base file. */
22288
22289 mac_ptr = section->buffer + offset;
22290 mac_end = section->buffer + section->size;
22291
22292 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22293 &offset_size, section_is_gnu);
22294 if (mac_ptr == NULL)
22295 {
22296 /* We already issued a complaint. */
22297 return;
22298 }
22299
22300 do
22301 {
22302 /* Do we at least have room for a macinfo type byte? */
22303 if (mac_ptr >= mac_end)
22304 {
22305 /* Complaint is printed during the second pass as GDB will probably
22306 stop the first pass earlier upon finding
22307 DW_MACINFO_start_file. */
22308 break;
22309 }
22310
aead7601 22311 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
22312 mac_ptr++;
22313
22314 /* Note that we rely on the fact that the corresponding GNU and
22315 DWARF constants are the same. */
22316 switch (macinfo_type)
22317 {
22318 /* A zero macinfo type indicates the end of the macro
22319 information. */
22320 case 0:
22321 break;
22322
0af92d60
JK
22323 case DW_MACRO_define:
22324 case DW_MACRO_undef:
cf2c3c16
TT
22325 /* Only skip the data by MAC_PTR. */
22326 {
22327 unsigned int bytes_read;
22328
22329 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22330 mac_ptr += bytes_read;
22331 read_direct_string (abfd, mac_ptr, &bytes_read);
22332 mac_ptr += bytes_read;
22333 }
22334 break;
22335
0af92d60 22336 case DW_MACRO_start_file:
cf2c3c16
TT
22337 {
22338 unsigned int bytes_read;
22339 int line, file;
22340
22341 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22342 mac_ptr += bytes_read;
22343 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22344 mac_ptr += bytes_read;
22345
43f3e411 22346 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
22347 }
22348 break;
22349
0af92d60 22350 case DW_MACRO_end_file:
cf2c3c16
TT
22351 /* No data to skip by MAC_PTR. */
22352 break;
22353
0af92d60
JK
22354 case DW_MACRO_define_strp:
22355 case DW_MACRO_undef_strp:
22356 case DW_MACRO_define_sup:
22357 case DW_MACRO_undef_sup:
cf2c3c16
TT
22358 {
22359 unsigned int bytes_read;
22360
22361 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22362 mac_ptr += bytes_read;
22363 mac_ptr += offset_size;
22364 }
22365 break;
22366
0af92d60
JK
22367 case DW_MACRO_import:
22368 case DW_MACRO_import_sup:
cf2c3c16 22369 /* Note that, according to the spec, a transparent include
0af92d60 22370 chain cannot call DW_MACRO_start_file. So, we can just
cf2c3c16
TT
22371 skip this opcode. */
22372 mac_ptr += offset_size;
22373 break;
22374
22375 case DW_MACINFO_vendor_ext:
22376 /* Only skip the data by MAC_PTR. */
22377 if (!section_is_gnu)
22378 {
22379 unsigned int bytes_read;
22380
22381 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22382 mac_ptr += bytes_read;
22383 read_direct_string (abfd, mac_ptr, &bytes_read);
22384 mac_ptr += bytes_read;
22385 }
22386 /* FALLTHROUGH */
22387
22388 default:
22389 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 22390 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
22391 section);
22392 if (mac_ptr == NULL)
22393 return;
22394 break;
22395 }
22396 } while (macinfo_type != 0 && current_file == NULL);
22397
22398 /* Second pass: Process all entries.
22399
22400 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22401 command-line macro definitions/undefinitions. This flag is unset when we
22402 reach the first DW_MACINFO_start_file entry. */
22403
fc4007c9
TT
22404 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22405 htab_eq_pointer,
22406 NULL, xcalloc, xfree));
8fc3fc34 22407 mac_ptr = section->buffer + offset;
fc4007c9 22408 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
d521ce57 22409 *slot = (void *) mac_ptr;
8fc3fc34 22410 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 22411 current_file, lh, section,
fc4007c9
TT
22412 section_is_gnu, 0, offset_size,
22413 include_hash.get ());
cf2c3c16
TT
22414}
22415
8e19ed76 22416/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 22417 if so return true else false. */
380bca97 22418
8e19ed76 22419static int
6e5a29e1 22420attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
22421{
22422 return (attr == NULL ? 0 :
22423 attr->form == DW_FORM_block1
22424 || attr->form == DW_FORM_block2
22425 || attr->form == DW_FORM_block4
2dc7f7b3
TT
22426 || attr->form == DW_FORM_block
22427 || attr->form == DW_FORM_exprloc);
8e19ed76 22428}
4c2df51b 22429
c6a0999f
JB
22430/* Return non-zero if ATTR's value is a section offset --- classes
22431 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22432 You may use DW_UNSND (attr) to retrieve such offsets.
22433
22434 Section 7.5.4, "Attribute Encodings", explains that no attribute
22435 may have a value that belongs to more than one of these classes; it
22436 would be ambiguous if we did, because we use the same forms for all
22437 of them. */
380bca97 22438
3690dd37 22439static int
6e5a29e1 22440attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
22441{
22442 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
22443 || attr->form == DW_FORM_data8
22444 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
22445}
22446
3690dd37
JB
22447/* Return non-zero if ATTR's value falls in the 'constant' class, or
22448 zero otherwise. When this function returns true, you can apply
22449 dwarf2_get_attr_constant_value to it.
22450
22451 However, note that for some attributes you must check
22452 attr_form_is_section_offset before using this test. DW_FORM_data4
22453 and DW_FORM_data8 are members of both the constant class, and of
22454 the classes that contain offsets into other debug sections
22455 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22456 that, if an attribute's can be either a constant or one of the
22457 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
0224619f
JK
22458 taken as section offsets, not constants.
22459
22460 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22461 cannot handle that. */
380bca97 22462
3690dd37 22463static int
6e5a29e1 22464attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
22465{
22466 switch (attr->form)
22467 {
22468 case DW_FORM_sdata:
22469 case DW_FORM_udata:
22470 case DW_FORM_data1:
22471 case DW_FORM_data2:
22472 case DW_FORM_data4:
22473 case DW_FORM_data8:
22474 return 1;
22475 default:
22476 return 0;
22477 }
22478}
22479
7771576e
SA
22480
22481/* DW_ADDR is always stored already as sect_offset; despite for the forms
22482 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22483
22484static int
6e5a29e1 22485attr_form_is_ref (const struct attribute *attr)
7771576e
SA
22486{
22487 switch (attr->form)
22488 {
22489 case DW_FORM_ref_addr:
22490 case DW_FORM_ref1:
22491 case DW_FORM_ref2:
22492 case DW_FORM_ref4:
22493 case DW_FORM_ref8:
22494 case DW_FORM_ref_udata:
22495 case DW_FORM_GNU_ref_alt:
22496 return 1;
22497 default:
22498 return 0;
22499 }
22500}
22501
3019eac3
DE
22502/* Return the .debug_loc section to use for CU.
22503 For DWO files use .debug_loc.dwo. */
22504
22505static struct dwarf2_section_info *
22506cu_debug_loc_section (struct dwarf2_cu *cu)
22507{
22508 if (cu->dwo_unit)
43988095
JK
22509 {
22510 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22511
22512 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22513 }
22514 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22515 : &dwarf2_per_objfile->loc);
3019eac3
DE
22516}
22517
8cf6f0b1
TT
22518/* A helper function that fills in a dwarf2_loclist_baton. */
22519
22520static void
22521fill_in_loclist_baton (struct dwarf2_cu *cu,
22522 struct dwarf2_loclist_baton *baton,
ff39bb5e 22523 const struct attribute *attr)
8cf6f0b1 22524{
3019eac3
DE
22525 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22526
22527 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
22528
22529 baton->per_cu = cu->per_cu;
22530 gdb_assert (baton->per_cu);
22531 /* We don't know how long the location list is, but make sure we
22532 don't run off the edge of the section. */
3019eac3
DE
22533 baton->size = section->size - DW_UNSND (attr);
22534 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 22535 baton->base_address = cu->base_address;
f664829e 22536 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
22537}
22538
4c2df51b 22539static void
ff39bb5e 22540dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 22541 struct dwarf2_cu *cu, int is_block)
4c2df51b 22542{
bb5ed363 22543 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 22544 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 22545
3690dd37 22546 if (attr_form_is_section_offset (attr)
3019eac3 22547 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
22548 the section. If so, fall through to the complaint in the
22549 other branch. */
3019eac3 22550 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 22551 {
0d53c4c4 22552 struct dwarf2_loclist_baton *baton;
4c2df51b 22553
8d749320 22554 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 22555
8cf6f0b1 22556 fill_in_loclist_baton (cu, baton, attr);
be391dca 22557
d00adf39 22558 if (cu->base_known == 0)
0d53c4c4 22559 complaint (&symfile_complaints,
3e43a32a
MS
22560 _("Location list used without "
22561 "specifying the CU base address."));
4c2df51b 22562
f1e6e072
TT
22563 SYMBOL_ACLASS_INDEX (sym) = (is_block
22564 ? dwarf2_loclist_block_index
22565 : dwarf2_loclist_index);
0d53c4c4
DJ
22566 SYMBOL_LOCATION_BATON (sym) = baton;
22567 }
22568 else
22569 {
22570 struct dwarf2_locexpr_baton *baton;
22571
8d749320 22572 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
22573 baton->per_cu = cu->per_cu;
22574 gdb_assert (baton->per_cu);
0d53c4c4
DJ
22575
22576 if (attr_form_is_block (attr))
22577 {
22578 /* Note that we're just copying the block's data pointer
22579 here, not the actual data. We're still pointing into the
6502dd73
DJ
22580 info_buffer for SYM's objfile; right now we never release
22581 that buffer, but when we do clean up properly this may
22582 need to change. */
0d53c4c4
DJ
22583 baton->size = DW_BLOCK (attr)->size;
22584 baton->data = DW_BLOCK (attr)->data;
22585 }
22586 else
22587 {
22588 dwarf2_invalid_attrib_class_complaint ("location description",
22589 SYMBOL_NATURAL_NAME (sym));
22590 baton->size = 0;
0d53c4c4 22591 }
6e70227d 22592
f1e6e072
TT
22593 SYMBOL_ACLASS_INDEX (sym) = (is_block
22594 ? dwarf2_locexpr_block_index
22595 : dwarf2_locexpr_index);
0d53c4c4
DJ
22596 SYMBOL_LOCATION_BATON (sym) = baton;
22597 }
4c2df51b 22598}
6502dd73 22599
9aa1f1e3
TT
22600/* Return the OBJFILE associated with the compilation unit CU. If CU
22601 came from a separate debuginfo file, then the master objfile is
22602 returned. */
ae0d2f24
UW
22603
22604struct objfile *
22605dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22606{
9291a0cd 22607 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
22608
22609 /* Return the master objfile, so that we can report and look up the
22610 correct file containing this variable. */
22611 if (objfile->separate_debug_objfile_backlink)
22612 objfile = objfile->separate_debug_objfile_backlink;
22613
22614 return objfile;
22615}
22616
96408a79
SA
22617/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22618 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22619 CU_HEADERP first. */
22620
22621static const struct comp_unit_head *
22622per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22623 struct dwarf2_per_cu_data *per_cu)
22624{
d521ce57 22625 const gdb_byte *info_ptr;
96408a79
SA
22626
22627 if (per_cu->cu)
22628 return &per_cu->cu->header;
22629
9c541725 22630 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
96408a79
SA
22631
22632 memset (cu_headerp, 0, sizeof (*cu_headerp));
43988095
JK
22633 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22634 rcuh_kind::COMPILE);
96408a79
SA
22635
22636 return cu_headerp;
22637}
22638
ae0d2f24
UW
22639/* Return the address size given in the compilation unit header for CU. */
22640
98714339 22641int
ae0d2f24
UW
22642dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22643{
96408a79
SA
22644 struct comp_unit_head cu_header_local;
22645 const struct comp_unit_head *cu_headerp;
c471e790 22646
96408a79
SA
22647 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22648
22649 return cu_headerp->addr_size;
ae0d2f24
UW
22650}
22651
9eae7c52
TT
22652/* Return the offset size given in the compilation unit header for CU. */
22653
22654int
22655dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22656{
96408a79
SA
22657 struct comp_unit_head cu_header_local;
22658 const struct comp_unit_head *cu_headerp;
9c6c53f7 22659
96408a79
SA
22660 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22661
22662 return cu_headerp->offset_size;
22663}
22664
22665/* See its dwarf2loc.h declaration. */
22666
22667int
22668dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22669{
22670 struct comp_unit_head cu_header_local;
22671 const struct comp_unit_head *cu_headerp;
22672
22673 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22674
22675 if (cu_headerp->version == 2)
22676 return cu_headerp->addr_size;
22677 else
22678 return cu_headerp->offset_size;
181cebd4
JK
22679}
22680
9aa1f1e3
TT
22681/* Return the text offset of the CU. The returned offset comes from
22682 this CU's objfile. If this objfile came from a separate debuginfo
22683 file, then the offset may be different from the corresponding
22684 offset in the parent objfile. */
22685
22686CORE_ADDR
22687dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22688{
bb3fa9d0 22689 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
22690
22691 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22692}
22693
43988095
JK
22694/* Return DWARF version number of PER_CU. */
22695
22696short
22697dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22698{
22699 return per_cu->dwarf_version;
22700}
22701
348e048f
DE
22702/* Locate the .debug_info compilation unit from CU's objfile which contains
22703 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22704
22705static struct dwarf2_per_cu_data *
9c541725 22706dwarf2_find_containing_comp_unit (sect_offset sect_off,
36586728 22707 unsigned int offset_in_dwz,
ae038cb0
DJ
22708 struct objfile *objfile)
22709{
22710 struct dwarf2_per_cu_data *this_cu;
22711 int low, high;
36586728 22712 const sect_offset *cu_off;
ae038cb0 22713
ae038cb0
DJ
22714 low = 0;
22715 high = dwarf2_per_objfile->n_comp_units - 1;
22716 while (high > low)
22717 {
36586728 22718 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22719 int mid = low + (high - low) / 2;
9a619af0 22720
36586728 22721 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
9c541725 22722 cu_off = &mid_cu->sect_off;
36586728 22723 if (mid_cu->is_dwz > offset_in_dwz
9c541725 22724 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
ae038cb0
DJ
22725 high = mid;
22726 else
22727 low = mid + 1;
22728 }
22729 gdb_assert (low == high);
36586728 22730 this_cu = dwarf2_per_objfile->all_comp_units[low];
9c541725
PA
22731 cu_off = &this_cu->sect_off;
22732 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
ae038cb0 22733 {
36586728 22734 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8 22735 error (_("Dwarf Error: could not find partial DIE containing "
9c541725
PA
22736 "offset 0x%x [in module %s]"),
22737 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
10b3939b 22738
9c541725
PA
22739 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
22740 <= sect_off);
ae038cb0
DJ
22741 return dwarf2_per_objfile->all_comp_units[low-1];
22742 }
22743 else
22744 {
22745 this_cu = dwarf2_per_objfile->all_comp_units[low];
22746 if (low == dwarf2_per_objfile->n_comp_units - 1
9c541725
PA
22747 && sect_off >= this_cu->sect_off + this_cu->length)
22748 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
22749 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
ae038cb0
DJ
22750 return this_cu;
22751 }
22752}
22753
23745b47 22754/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22755
9816fde3 22756static void
23745b47 22757init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22758{
9816fde3 22759 memset (cu, 0, sizeof (*cu));
23745b47
DE
22760 per_cu->cu = cu;
22761 cu->per_cu = per_cu;
22762 cu->objfile = per_cu->objfile;
93311388 22763 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22764}
22765
22766/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22767
22768static void
95554aad
TT
22769prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22770 enum language pretend_language)
9816fde3
JK
22771{
22772 struct attribute *attr;
22773
22774 /* Set the language we're debugging. */
22775 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22776 if (attr)
22777 set_cu_language (DW_UNSND (attr), cu);
22778 else
9cded63f 22779 {
95554aad 22780 cu->language = pretend_language;
9cded63f
TT
22781 cu->language_defn = language_def (cu->language);
22782 }
dee91e82 22783
7d45c7c3 22784 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
22785}
22786
ae038cb0
DJ
22787/* Release one cached compilation unit, CU. We unlink it from the tree
22788 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22789 the caller is responsible for that.
22790 NOTE: DATA is a void * because this function is also used as a
22791 cleanup routine. */
ae038cb0
DJ
22792
22793static void
68dc6402 22794free_heap_comp_unit (void *data)
ae038cb0 22795{
9a3c8263 22796 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
ae038cb0 22797
23745b47
DE
22798 gdb_assert (cu->per_cu != NULL);
22799 cu->per_cu->cu = NULL;
ae038cb0
DJ
22800 cu->per_cu = NULL;
22801
22802 obstack_free (&cu->comp_unit_obstack, NULL);
22803
22804 xfree (cu);
22805}
22806
72bf9492 22807/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22808 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22809 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22810
22811static void
22812free_stack_comp_unit (void *data)
22813{
9a3c8263 22814 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
72bf9492 22815
23745b47
DE
22816 gdb_assert (cu->per_cu != NULL);
22817 cu->per_cu->cu = NULL;
22818 cu->per_cu = NULL;
22819
72bf9492
DJ
22820 obstack_free (&cu->comp_unit_obstack, NULL);
22821 cu->partial_dies = NULL;
ae038cb0
DJ
22822}
22823
22824/* Free all cached compilation units. */
22825
22826static void
22827free_cached_comp_units (void *data)
22828{
330cdd98 22829 dwarf2_per_objfile->free_cached_comp_units ();
ae038cb0
DJ
22830}
22831
22832/* Increase the age counter on each cached compilation unit, and free
22833 any that are too old. */
22834
22835static void
22836age_cached_comp_units (void)
22837{
22838 struct dwarf2_per_cu_data *per_cu, **last_chain;
22839
22840 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22841 per_cu = dwarf2_per_objfile->read_in_chain;
22842 while (per_cu != NULL)
22843 {
22844 per_cu->cu->last_used ++;
b4f54984 22845 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22846 dwarf2_mark (per_cu->cu);
22847 per_cu = per_cu->cu->read_in_chain;
22848 }
22849
22850 per_cu = dwarf2_per_objfile->read_in_chain;
22851 last_chain = &dwarf2_per_objfile->read_in_chain;
22852 while (per_cu != NULL)
22853 {
22854 struct dwarf2_per_cu_data *next_cu;
22855
22856 next_cu = per_cu->cu->read_in_chain;
22857
22858 if (!per_cu->cu->mark)
22859 {
68dc6402 22860 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22861 *last_chain = next_cu;
22862 }
22863 else
22864 last_chain = &per_cu->cu->read_in_chain;
22865
22866 per_cu = next_cu;
22867 }
22868}
22869
22870/* Remove a single compilation unit from the cache. */
22871
22872static void
dee91e82 22873free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22874{
22875 struct dwarf2_per_cu_data *per_cu, **last_chain;
22876
22877 per_cu = dwarf2_per_objfile->read_in_chain;
22878 last_chain = &dwarf2_per_objfile->read_in_chain;
22879 while (per_cu != NULL)
22880 {
22881 struct dwarf2_per_cu_data *next_cu;
22882
22883 next_cu = per_cu->cu->read_in_chain;
22884
dee91e82 22885 if (per_cu == target_per_cu)
ae038cb0 22886 {
68dc6402 22887 free_heap_comp_unit (per_cu->cu);
dee91e82 22888 per_cu->cu = NULL;
ae038cb0
DJ
22889 *last_chain = next_cu;
22890 break;
22891 }
22892 else
22893 last_chain = &per_cu->cu->read_in_chain;
22894
22895 per_cu = next_cu;
22896 }
22897}
22898
fe3e1990
DJ
22899/* Release all extra memory associated with OBJFILE. */
22900
22901void
22902dwarf2_free_objfile (struct objfile *objfile)
22903{
9a3c8263
SM
22904 dwarf2_per_objfile
22905 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22906 dwarf2_objfile_data_key);
fe3e1990
DJ
22907
22908 if (dwarf2_per_objfile == NULL)
22909 return;
22910
330cdd98 22911 dwarf2_per_objfile->~dwarf2_per_objfile ();
fe3e1990
DJ
22912}
22913
dee91e82
DE
22914/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22915 We store these in a hash table separate from the DIEs, and preserve them
22916 when the DIEs are flushed out of cache.
22917
22918 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22919 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22920 or the type may come from a DWO file. Furthermore, while it's more logical
22921 to use per_cu->section+offset, with Fission the section with the data is in
22922 the DWO file but we don't know that section at the point we need it.
22923 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22924 because we can enter the lookup routine, get_die_type_at_offset, from
22925 outside this file, and thus won't necessarily have PER_CU->cu.
22926 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22927
dee91e82 22928struct dwarf2_per_cu_offset_and_type
1c379e20 22929{
dee91e82 22930 const struct dwarf2_per_cu_data *per_cu;
9c541725 22931 sect_offset sect_off;
1c379e20
DJ
22932 struct type *type;
22933};
22934
dee91e82 22935/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22936
22937static hashval_t
dee91e82 22938per_cu_offset_and_type_hash (const void *item)
1c379e20 22939{
9a3c8263
SM
22940 const struct dwarf2_per_cu_offset_and_type *ofs
22941 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 22942
9c541725 22943 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
1c379e20
DJ
22944}
22945
dee91e82 22946/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22947
22948static int
dee91e82 22949per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22950{
9a3c8263
SM
22951 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22952 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22953 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22954 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 22955
dee91e82 22956 return (ofs_lhs->per_cu == ofs_rhs->per_cu
9c541725 22957 && ofs_lhs->sect_off == ofs_rhs->sect_off);
1c379e20
DJ
22958}
22959
22960/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22961 table if necessary. For convenience, return TYPE.
22962
22963 The DIEs reading must have careful ordering to:
22964 * Not cause infite loops trying to read in DIEs as a prerequisite for
22965 reading current DIE.
22966 * Not trying to dereference contents of still incompletely read in types
22967 while reading in other DIEs.
22968 * Enable referencing still incompletely read in types just by a pointer to
22969 the type without accessing its fields.
22970
22971 Therefore caller should follow these rules:
22972 * Try to fetch any prerequisite types we may need to build this DIE type
22973 before building the type and calling set_die_type.
e71ec853 22974 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22975 possible before fetching more types to complete the current type.
22976 * Make the type as complete as possible before fetching more types. */
1c379e20 22977
f792889a 22978static struct type *
1c379e20
DJ
22979set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22980{
dee91e82 22981 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 22982 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
22983 struct attribute *attr;
22984 struct dynamic_prop prop;
1c379e20 22985
b4ba55a1
JB
22986 /* For Ada types, make sure that the gnat-specific data is always
22987 initialized (if not already set). There are a few types where
22988 we should not be doing so, because the type-specific area is
22989 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22990 where the type-specific area is used to store the floatformat).
22991 But this is not a problem, because the gnat-specific information
22992 is actually not needed for these types. */
22993 if (need_gnat_info (cu)
22994 && TYPE_CODE (type) != TYPE_CODE_FUNC
22995 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
22996 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22997 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22998 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
22999 && !HAVE_GNAT_AUX_INFO (type))
23000 INIT_GNAT_SPECIFIC (type);
23001
3f2f83dd
KB
23002 /* Read DW_AT_allocated and set in type. */
23003 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23004 if (attr_form_is_block (attr))
23005 {
23006 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23007 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
23008 }
23009 else if (attr != NULL)
23010 {
23011 complaint (&symfile_complaints,
9c541725
PA
23012 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
23013 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23014 to_underlying (die->sect_off));
3f2f83dd
KB
23015 }
23016
23017 /* Read DW_AT_associated and set in type. */
23018 attr = dwarf2_attr (die, DW_AT_associated, cu);
23019 if (attr_form_is_block (attr))
23020 {
23021 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23022 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23023 }
23024 else if (attr != NULL)
23025 {
23026 complaint (&symfile_complaints,
9c541725
PA
23027 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23028 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23029 to_underlying (die->sect_off));
3f2f83dd
KB
23030 }
23031
3cdcd0ce
JB
23032 /* Read DW_AT_data_location and set in type. */
23033 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23034 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 23035 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 23036
dee91e82 23037 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 23038 {
dee91e82
DE
23039 dwarf2_per_objfile->die_type_hash =
23040 htab_create_alloc_ex (127,
23041 per_cu_offset_and_type_hash,
23042 per_cu_offset_and_type_eq,
23043 NULL,
23044 &objfile->objfile_obstack,
23045 hashtab_obstack_allocate,
23046 dummy_obstack_deallocate);
f792889a 23047 }
1c379e20 23048
dee91e82 23049 ofs.per_cu = cu->per_cu;
9c541725 23050 ofs.sect_off = die->sect_off;
1c379e20 23051 ofs.type = type;
dee91e82
DE
23052 slot = (struct dwarf2_per_cu_offset_and_type **)
23053 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
23054 if (*slot)
23055 complaint (&symfile_complaints,
23056 _("A problem internal to GDB: DIE 0x%x has type already set"),
9c541725 23057 to_underlying (die->sect_off));
8d749320
SM
23058 *slot = XOBNEW (&objfile->objfile_obstack,
23059 struct dwarf2_per_cu_offset_and_type);
1c379e20 23060 **slot = ofs;
f792889a 23061 return type;
1c379e20
DJ
23062}
23063
9c541725 23064/* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
02142a6c 23065 or return NULL if the die does not have a saved type. */
1c379e20
DJ
23066
23067static struct type *
9c541725 23068get_die_type_at_offset (sect_offset sect_off,
673bfd45 23069 struct dwarf2_per_cu_data *per_cu)
1c379e20 23070{
dee91e82 23071 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 23072
dee91e82 23073 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 23074 return NULL;
1c379e20 23075
dee91e82 23076 ofs.per_cu = per_cu;
9c541725 23077 ofs.sect_off = sect_off;
9a3c8263
SM
23078 slot = ((struct dwarf2_per_cu_offset_and_type *)
23079 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
23080 if (slot)
23081 return slot->type;
23082 else
23083 return NULL;
23084}
23085
02142a6c 23086/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
23087 or return NULL if DIE does not have a saved type. */
23088
23089static struct type *
23090get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23091{
9c541725 23092 return get_die_type_at_offset (die->sect_off, cu->per_cu);
673bfd45
DE
23093}
23094
10b3939b
DJ
23095/* Add a dependence relationship from CU to REF_PER_CU. */
23096
23097static void
23098dwarf2_add_dependence (struct dwarf2_cu *cu,
23099 struct dwarf2_per_cu_data *ref_per_cu)
23100{
23101 void **slot;
23102
23103 if (cu->dependencies == NULL)
23104 cu->dependencies
23105 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23106 NULL, &cu->comp_unit_obstack,
23107 hashtab_obstack_allocate,
23108 dummy_obstack_deallocate);
23109
23110 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23111 if (*slot == NULL)
23112 *slot = ref_per_cu;
23113}
1c379e20 23114
f504f079
DE
23115/* Subroutine of dwarf2_mark to pass to htab_traverse.
23116 Set the mark field in every compilation unit in the
ae038cb0
DJ
23117 cache that we must keep because we are keeping CU. */
23118
10b3939b
DJ
23119static int
23120dwarf2_mark_helper (void **slot, void *data)
23121{
23122 struct dwarf2_per_cu_data *per_cu;
23123
23124 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
23125
23126 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23127 reading of the chain. As such dependencies remain valid it is not much
23128 useful to track and undo them during QUIT cleanups. */
23129 if (per_cu->cu == NULL)
23130 return 1;
23131
10b3939b
DJ
23132 if (per_cu->cu->mark)
23133 return 1;
23134 per_cu->cu->mark = 1;
23135
23136 if (per_cu->cu->dependencies != NULL)
23137 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23138
23139 return 1;
23140}
23141
f504f079
DE
23142/* Set the mark field in CU and in every other compilation unit in the
23143 cache that we must keep because we are keeping CU. */
23144
ae038cb0
DJ
23145static void
23146dwarf2_mark (struct dwarf2_cu *cu)
23147{
23148 if (cu->mark)
23149 return;
23150 cu->mark = 1;
10b3939b
DJ
23151 if (cu->dependencies != NULL)
23152 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
23153}
23154
23155static void
23156dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23157{
23158 while (per_cu)
23159 {
23160 per_cu->cu->mark = 0;
23161 per_cu = per_cu->cu->read_in_chain;
23162 }
72bf9492
DJ
23163}
23164
72bf9492
DJ
23165/* Trivial hash function for partial_die_info: the hash value of a DIE
23166 is its offset in .debug_info for this objfile. */
23167
23168static hashval_t
23169partial_die_hash (const void *item)
23170{
9a3c8263
SM
23171 const struct partial_die_info *part_die
23172 = (const struct partial_die_info *) item;
9a619af0 23173
9c541725 23174 return to_underlying (part_die->sect_off);
72bf9492
DJ
23175}
23176
23177/* Trivial comparison function for partial_die_info structures: two DIEs
23178 are equal if they have the same offset. */
23179
23180static int
23181partial_die_eq (const void *item_lhs, const void *item_rhs)
23182{
9a3c8263
SM
23183 const struct partial_die_info *part_die_lhs
23184 = (const struct partial_die_info *) item_lhs;
23185 const struct partial_die_info *part_die_rhs
23186 = (const struct partial_die_info *) item_rhs;
9a619af0 23187
9c541725 23188 return part_die_lhs->sect_off == part_die_rhs->sect_off;
72bf9492
DJ
23189}
23190
b4f54984
DE
23191static struct cmd_list_element *set_dwarf_cmdlist;
23192static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
23193
23194static void
b4f54984 23195set_dwarf_cmd (char *args, int from_tty)
ae038cb0 23196{
b4f54984 23197 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 23198 gdb_stdout);
ae038cb0
DJ
23199}
23200
23201static void
b4f54984 23202show_dwarf_cmd (char *args, int from_tty)
6e70227d 23203{
b4f54984 23204 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
23205}
23206
4bf44c1c 23207/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
23208
23209static void
c1bd65d0 23210dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc 23211{
9a3c8263 23212 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
8b70b953 23213 int ix;
8b70b953 23214
626f2d1c
TT
23215 /* Make sure we don't accidentally use dwarf2_per_objfile while
23216 cleaning up. */
23217 dwarf2_per_objfile = NULL;
23218
59b0c7c1
JB
23219 for (ix = 0; ix < data->n_comp_units; ++ix)
23220 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 23221
59b0c7c1 23222 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 23223 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
23224 data->all_type_units[ix]->per_cu.imported_symtabs);
23225 xfree (data->all_type_units);
95554aad 23226
8b70b953 23227 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
23228
23229 if (data->dwo_files)
23230 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
23231 if (data->dwp_file)
23232 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
23233
23234 if (data->dwz_file && data->dwz_file->dwz_bfd)
23235 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
23236}
23237
23238\f
ae2de4f8 23239/* The "save gdb-index" command. */
9291a0cd 23240
bc8f2430
JK
23241/* In-memory buffer to prepare data to be written later to a file. */
23242class data_buf
9291a0cd 23243{
bc8f2430 23244public:
bc8f2430
JK
23245 /* Copy DATA to the end of the buffer. */
23246 template<typename T>
23247 void append_data (const T &data)
23248 {
23249 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23250 reinterpret_cast<const gdb_byte *> (&data + 1),
c2f134ac 23251 grow (sizeof (data)));
bc8f2430 23252 }
b89be57b 23253
c2f134ac
PA
23254 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23255 terminating zero is appended too. */
bc8f2430
JK
23256 void append_cstr0 (const char *cstr)
23257 {
23258 const size_t size = strlen (cstr) + 1;
c2f134ac
PA
23259 std::copy (cstr, cstr + size, grow (size));
23260 }
23261
23262 /* Accept a host-format integer in VAL and append it to the buffer
23263 as a target-format integer which is LEN bytes long. */
23264 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23265 {
23266 ::store_unsigned_integer (grow (len), len, byte_order, val);
bc8f2430 23267 }
9291a0cd 23268
bc8f2430
JK
23269 /* Return the size of the buffer. */
23270 size_t size () const
23271 {
23272 return m_vec.size ();
23273 }
23274
23275 /* Write the buffer to FILE. */
23276 void file_write (FILE *file) const
23277 {
a81e6d4d
PA
23278 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23279 error (_("couldn't write data to file"));
bc8f2430
JK
23280 }
23281
23282private:
c2f134ac
PA
23283 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23284 the start of the new block. */
23285 gdb_byte *grow (size_t size)
23286 {
23287 m_vec.resize (m_vec.size () + size);
23288 return &*m_vec.end () - size;
23289 }
23290
d5722aa2 23291 gdb::byte_vector m_vec;
bc8f2430 23292};
9291a0cd
TT
23293
23294/* An entry in the symbol table. */
23295struct symtab_index_entry
23296{
23297 /* The name of the symbol. */
23298 const char *name;
23299 /* The offset of the name in the constant pool. */
23300 offset_type index_offset;
23301 /* A sorted vector of the indices of all the CUs that hold an object
23302 of this name. */
bc8f2430 23303 std::vector<offset_type> cu_indices;
9291a0cd
TT
23304};
23305
23306/* The symbol table. This is a power-of-2-sized hash table. */
23307struct mapped_symtab
23308{
bc8f2430
JK
23309 mapped_symtab ()
23310 {
23311 data.resize (1024);
23312 }
b89be57b 23313
bc8f2430 23314 offset_type n_elements = 0;
4b76cda9 23315 std::vector<symtab_index_entry> data;
bc8f2430 23316};
9291a0cd 23317
bc8f2430 23318/* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
559a7a62
JK
23319 the slot.
23320
23321 Function is used only during write_hash_table so no index format backward
23322 compatibility is needed. */
b89be57b 23323
4b76cda9 23324static symtab_index_entry &
9291a0cd
TT
23325find_slot (struct mapped_symtab *symtab, const char *name)
23326{
559a7a62 23327 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd 23328
bc8f2430
JK
23329 index = hash & (symtab->data.size () - 1);
23330 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
9291a0cd
TT
23331
23332 for (;;)
23333 {
4b76cda9
PA
23334 if (symtab->data[index].name == NULL
23335 || strcmp (name, symtab->data[index].name) == 0)
bc8f2430
JK
23336 return symtab->data[index];
23337 index = (index + step) & (symtab->data.size () - 1);
9291a0cd
TT
23338 }
23339}
23340
23341/* Expand SYMTAB's hash table. */
b89be57b 23342
9291a0cd
TT
23343static void
23344hash_expand (struct mapped_symtab *symtab)
23345{
bc8f2430 23346 auto old_entries = std::move (symtab->data);
9291a0cd 23347
bc8f2430
JK
23348 symtab->data.clear ();
23349 symtab->data.resize (old_entries.size () * 2);
9291a0cd 23350
bc8f2430 23351 for (auto &it : old_entries)
4b76cda9 23352 if (it.name != NULL)
bc8f2430 23353 {
4b76cda9 23354 auto &ref = find_slot (symtab, it.name);
bc8f2430
JK
23355 ref = std::move (it);
23356 }
9291a0cd
TT
23357}
23358
156942c7
DE
23359/* Add an entry to SYMTAB. NAME is the name of the symbol.
23360 CU_INDEX is the index of the CU in which the symbol appears.
23361 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 23362
9291a0cd
TT
23363static void
23364add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 23365 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
23366 offset_type cu_index)
23367{
156942c7 23368 offset_type cu_index_and_attrs;
9291a0cd
TT
23369
23370 ++symtab->n_elements;
bc8f2430 23371 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
9291a0cd
TT
23372 hash_expand (symtab);
23373
4b76cda9
PA
23374 symtab_index_entry &slot = find_slot (symtab, name);
23375 if (slot.name == NULL)
9291a0cd 23376 {
4b76cda9 23377 slot.name = name;
156942c7 23378 /* index_offset is set later. */
9291a0cd 23379 }
156942c7
DE
23380
23381 cu_index_and_attrs = 0;
23382 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23383 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23384 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23385
23386 /* We don't want to record an index value twice as we want to avoid the
23387 duplication.
23388 We process all global symbols and then all static symbols
23389 (which would allow us to avoid the duplication by only having to check
23390 the last entry pushed), but a symbol could have multiple kinds in one CU.
23391 To keep things simple we don't worry about the duplication here and
23392 sort and uniqufy the list after we've processed all symbols. */
4b76cda9 23393 slot.cu_indices.push_back (cu_index_and_attrs);
156942c7
DE
23394}
23395
23396/* Sort and remove duplicates of all symbols' cu_indices lists. */
23397
23398static void
23399uniquify_cu_indices (struct mapped_symtab *symtab)
23400{
4b76cda9 23401 for (auto &entry : symtab->data)
156942c7 23402 {
4b76cda9 23403 if (entry.name != NULL && !entry.cu_indices.empty ())
156942c7 23404 {
4b76cda9 23405 auto &cu_indices = entry.cu_indices;
6fd931f2
PA
23406 std::sort (cu_indices.begin (), cu_indices.end ());
23407 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
23408 cu_indices.erase (from, cu_indices.end ());
156942c7
DE
23409 }
23410 }
9291a0cd
TT
23411}
23412
bc8f2430
JK
23413/* A form of 'const char *' suitable for container keys. Only the
23414 pointer is stored. The strings themselves are compared, not the
23415 pointers. */
23416class c_str_view
9291a0cd 23417{
bc8f2430
JK
23418public:
23419 c_str_view (const char *cstr)
23420 : m_cstr (cstr)
23421 {}
9291a0cd 23422
bc8f2430
JK
23423 bool operator== (const c_str_view &other) const
23424 {
23425 return strcmp (m_cstr, other.m_cstr) == 0;
23426 }
9291a0cd 23427
bc8f2430
JK
23428private:
23429 friend class c_str_view_hasher;
23430 const char *const m_cstr;
23431};
9291a0cd 23432
bc8f2430
JK
23433/* A std::unordered_map::hasher for c_str_view that uses the right
23434 hash function for strings in a mapped index. */
23435class c_str_view_hasher
23436{
23437public:
23438 size_t operator () (const c_str_view &x) const
23439 {
23440 return mapped_index_string_hash (INT_MAX, x.m_cstr);
23441 }
23442};
b89be57b 23443
bc8f2430
JK
23444/* A std::unordered_map::hasher for std::vector<>. */
23445template<typename T>
23446class vector_hasher
9291a0cd 23447{
bc8f2430
JK
23448public:
23449 size_t operator () (const std::vector<T> &key) const
23450 {
23451 return iterative_hash (key.data (),
23452 sizeof (key.front ()) * key.size (), 0);
23453 }
23454};
9291a0cd 23455
bc8f2430
JK
23456/* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
23457 constant pool entries going into the data buffer CPOOL. */
3876f04e 23458
bc8f2430
JK
23459static void
23460write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
23461{
23462 {
23463 /* Elements are sorted vectors of the indices of all the CUs that
23464 hold an object of this name. */
23465 std::unordered_map<std::vector<offset_type>, offset_type,
23466 vector_hasher<offset_type>>
23467 symbol_hash_table;
23468
23469 /* We add all the index vectors to the constant pool first, to
23470 ensure alignment is ok. */
4b76cda9 23471 for (symtab_index_entry &entry : symtab->data)
bc8f2430 23472 {
4b76cda9 23473 if (entry.name == NULL)
bc8f2430 23474 continue;
4b76cda9 23475 gdb_assert (entry.index_offset == 0);
70a1152b
PA
23476
23477 /* Finding before inserting is faster than always trying to
23478 insert, because inserting always allocates a node, does the
23479 lookup, and then destroys the new node if another node
23480 already had the same key. C++17 try_emplace will avoid
23481 this. */
23482 const auto found
4b76cda9 23483 = symbol_hash_table.find (entry.cu_indices);
70a1152b
PA
23484 if (found != symbol_hash_table.end ())
23485 {
4b76cda9 23486 entry.index_offset = found->second;
70a1152b
PA
23487 continue;
23488 }
23489
4b76cda9
PA
23490 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
23491 entry.index_offset = cpool.size ();
23492 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
23493 for (const auto index : entry.cu_indices)
23494 cpool.append_data (MAYBE_SWAP (index));
bc8f2430
JK
23495 }
23496 }
9291a0cd
TT
23497
23498 /* Now write out the hash table. */
bc8f2430 23499 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
4b76cda9 23500 for (const auto &entry : symtab->data)
9291a0cd
TT
23501 {
23502 offset_type str_off, vec_off;
23503
4b76cda9 23504 if (entry.name != NULL)
9291a0cd 23505 {
4b76cda9 23506 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
bc8f2430 23507 if (insertpair.second)
4b76cda9 23508 cpool.append_cstr0 (entry.name);
bc8f2430 23509 str_off = insertpair.first->second;
4b76cda9 23510 vec_off = entry.index_offset;
9291a0cd
TT
23511 }
23512 else
23513 {
23514 /* While 0 is a valid constant pool index, it is not valid
23515 to have 0 for both offsets. */
23516 str_off = 0;
23517 vec_off = 0;
23518 }
23519
bc8f2430
JK
23520 output.append_data (MAYBE_SWAP (str_off));
23521 output.append_data (MAYBE_SWAP (vec_off));
9291a0cd 23522 }
9291a0cd
TT
23523}
23524
bc8f2430 23525typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
0a5429f6
DE
23526
23527/* Helper struct for building the address table. */
23528struct addrmap_index_data
23529{
bc8f2430
JK
23530 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
23531 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
23532 {}
23533
0a5429f6 23534 struct objfile *objfile;
bc8f2430
JK
23535 data_buf &addr_vec;
23536 psym_index_map &cu_index_htab;
0a5429f6
DE
23537
23538 /* Non-zero if the previous_* fields are valid.
23539 We can't write an entry until we see the next entry (since it is only then
23540 that we know the end of the entry). */
23541 int previous_valid;
23542 /* Index of the CU in the table of all CUs in the index file. */
23543 unsigned int previous_cu_index;
0963b4bd 23544 /* Start address of the CU. */
0a5429f6
DE
23545 CORE_ADDR previous_cu_start;
23546};
23547
bc8f2430 23548/* Write an address entry to ADDR_VEC. */
b89be57b 23549
9291a0cd 23550static void
bc8f2430 23551add_address_entry (struct objfile *objfile, data_buf &addr_vec,
0a5429f6 23552 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 23553{
9291a0cd
TT
23554 CORE_ADDR baseaddr;
23555
23556 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23557
c2f134ac
PA
23558 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
23559 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
bc8f2430 23560 addr_vec.append_data (MAYBE_SWAP (cu_index));
0a5429f6
DE
23561}
23562
23563/* Worker function for traversing an addrmap to build the address table. */
23564
23565static int
23566add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23567{
9a3c8263
SM
23568 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23569 struct partial_symtab *pst = (struct partial_symtab *) obj;
0a5429f6
DE
23570
23571 if (data->previous_valid)
bc8f2430 23572 add_address_entry (data->objfile, data->addr_vec,
0a5429f6
DE
23573 data->previous_cu_start, start_addr,
23574 data->previous_cu_index);
23575
23576 data->previous_cu_start = start_addr;
23577 if (pst != NULL)
23578 {
bc8f2430
JK
23579 const auto it = data->cu_index_htab.find (pst);
23580 gdb_assert (it != data->cu_index_htab.cend ());
23581 data->previous_cu_index = it->second;
0a5429f6
DE
23582 data->previous_valid = 1;
23583 }
23584 else
bc8f2430 23585 data->previous_valid = 0;
0a5429f6
DE
23586
23587 return 0;
23588}
23589
bc8f2430 23590/* Write OBJFILE's address map to ADDR_VEC.
0a5429f6
DE
23591 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23592 in the index file. */
23593
23594static void
bc8f2430
JK
23595write_address_map (struct objfile *objfile, data_buf &addr_vec,
23596 psym_index_map &cu_index_htab)
0a5429f6 23597{
bc8f2430 23598 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
0a5429f6
DE
23599
23600 /* When writing the address table, we have to cope with the fact that
23601 the addrmap iterator only provides the start of a region; we have to
23602 wait until the next invocation to get the start of the next region. */
23603
23604 addrmap_index_data.objfile = objfile;
0a5429f6
DE
23605 addrmap_index_data.previous_valid = 0;
23606
23607 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23608 &addrmap_index_data);
23609
23610 /* It's highly unlikely the last entry (end address = 0xff...ff)
23611 is valid, but we should still handle it.
23612 The end address is recorded as the start of the next region, but that
23613 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23614 anyway. */
23615 if (addrmap_index_data.previous_valid)
bc8f2430 23616 add_address_entry (objfile, addr_vec,
0a5429f6
DE
23617 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23618 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23619}
23620
156942c7
DE
23621/* Return the symbol kind of PSYM. */
23622
23623static gdb_index_symbol_kind
23624symbol_kind (struct partial_symbol *psym)
23625{
23626 domain_enum domain = PSYMBOL_DOMAIN (psym);
23627 enum address_class aclass = PSYMBOL_CLASS (psym);
23628
23629 switch (domain)
23630 {
23631 case VAR_DOMAIN:
23632 switch (aclass)
23633 {
23634 case LOC_BLOCK:
23635 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23636 case LOC_TYPEDEF:
23637 return GDB_INDEX_SYMBOL_KIND_TYPE;
23638 case LOC_COMPUTED:
23639 case LOC_CONST_BYTES:
23640 case LOC_OPTIMIZED_OUT:
23641 case LOC_STATIC:
23642 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23643 case LOC_CONST:
23644 /* Note: It's currently impossible to recognize psyms as enum values
23645 short of reading the type info. For now punt. */
23646 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23647 default:
23648 /* There are other LOC_FOO values that one might want to classify
23649 as variables, but dwarf2read.c doesn't currently use them. */
23650 return GDB_INDEX_SYMBOL_KIND_OTHER;
23651 }
23652 case STRUCT_DOMAIN:
23653 return GDB_INDEX_SYMBOL_KIND_TYPE;
23654 default:
23655 return GDB_INDEX_SYMBOL_KIND_OTHER;
23656 }
23657}
23658
9291a0cd 23659/* Add a list of partial symbols to SYMTAB. */
b89be57b 23660
9291a0cd
TT
23661static void
23662write_psymbols (struct mapped_symtab *symtab,
bc8f2430 23663 std::unordered_set<partial_symbol *> &psyms_seen,
9291a0cd
TT
23664 struct partial_symbol **psymp,
23665 int count,
987d643c
TT
23666 offset_type cu_index,
23667 int is_static)
9291a0cd
TT
23668{
23669 for (; count-- > 0; ++psymp)
23670 {
156942c7 23671 struct partial_symbol *psym = *psymp;
987d643c 23672
156942c7 23673 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23674 error (_("Ada is not currently supported by the index"));
987d643c 23675
987d643c 23676 /* Only add a given psymbol once. */
bc8f2430 23677 if (psyms_seen.insert (psym).second)
987d643c 23678 {
156942c7
DE
23679 gdb_index_symbol_kind kind = symbol_kind (psym);
23680
156942c7
DE
23681 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23682 is_static, kind, cu_index);
987d643c 23683 }
9291a0cd
TT
23684 }
23685}
23686
1fd400ff
TT
23687/* A helper struct used when iterating over debug_types. */
23688struct signatured_type_index_data
23689{
bc8f2430
JK
23690 signatured_type_index_data (data_buf &types_list_,
23691 std::unordered_set<partial_symbol *> &psyms_seen_)
23692 : types_list (types_list_), psyms_seen (psyms_seen_)
23693 {}
23694
1fd400ff
TT
23695 struct objfile *objfile;
23696 struct mapped_symtab *symtab;
bc8f2430
JK
23697 data_buf &types_list;
23698 std::unordered_set<partial_symbol *> &psyms_seen;
1fd400ff
TT
23699 int cu_index;
23700};
23701
23702/* A helper function that writes a single signatured_type to an
23703 obstack. */
b89be57b 23704
1fd400ff
TT
23705static int
23706write_one_signatured_type (void **slot, void *d)
23707{
9a3c8263
SM
23708 struct signatured_type_index_data *info
23709 = (struct signatured_type_index_data *) d;
1fd400ff 23710 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23711 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23712
23713 write_psymbols (info->symtab,
987d643c 23714 info->psyms_seen,
3e43a32a
MS
23715 info->objfile->global_psymbols.list
23716 + psymtab->globals_offset,
987d643c
TT
23717 psymtab->n_global_syms, info->cu_index,
23718 0);
1fd400ff 23719 write_psymbols (info->symtab,
987d643c 23720 info->psyms_seen,
3e43a32a
MS
23721 info->objfile->static_psymbols.list
23722 + psymtab->statics_offset,
987d643c
TT
23723 psymtab->n_static_syms, info->cu_index,
23724 1);
1fd400ff 23725
c2f134ac
PA
23726 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23727 to_underlying (entry->per_cu.sect_off));
23728 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23729 to_underlying (entry->type_offset_in_tu));
23730 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
1fd400ff
TT
23731
23732 ++info->cu_index;
23733
23734 return 1;
23735}
23736
e8f8bcb3
PA
23737/* Recurse into all "included" dependencies and count their symbols as
23738 if they appeared in this psymtab. */
23739
23740static void
23741recursively_count_psymbols (struct partial_symtab *psymtab,
23742 size_t &psyms_seen)
23743{
23744 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
23745 if (psymtab->dependencies[i]->user != NULL)
23746 recursively_count_psymbols (psymtab->dependencies[i],
23747 psyms_seen);
23748
23749 psyms_seen += psymtab->n_global_syms;
23750 psyms_seen += psymtab->n_static_syms;
23751}
23752
95554aad
TT
23753/* Recurse into all "included" dependencies and write their symbols as
23754 if they appeared in this psymtab. */
23755
23756static void
23757recursively_write_psymbols (struct objfile *objfile,
23758 struct partial_symtab *psymtab,
23759 struct mapped_symtab *symtab,
bc8f2430 23760 std::unordered_set<partial_symbol *> &psyms_seen,
95554aad
TT
23761 offset_type cu_index)
23762{
23763 int i;
23764
23765 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23766 if (psymtab->dependencies[i]->user != NULL)
23767 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23768 symtab, psyms_seen, cu_index);
23769
23770 write_psymbols (symtab,
23771 psyms_seen,
23772 objfile->global_psymbols.list + psymtab->globals_offset,
23773 psymtab->n_global_syms, cu_index,
23774 0);
23775 write_psymbols (symtab,
23776 psyms_seen,
23777 objfile->static_psymbols.list + psymtab->statics_offset,
23778 psymtab->n_static_syms, cu_index,
23779 1);
23780}
23781
bc8f2430
JK
23782/* Closes FILE on scope exit. */
23783struct file_closer
23784{
23785 explicit file_closer (FILE *file)
23786 : m_file (file)
23787 {}
23788
23789 ~file_closer ()
23790 { fclose (m_file); }
23791
23792private:
23793 FILE *m_file;
23794};
23795
9291a0cd 23796/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23797
9291a0cd
TT
23798static void
23799write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23800{
9291a0cd
TT
23801 if (dwarf2_per_objfile->using_index)
23802 error (_("Cannot use an index to create the index"));
23803
8b70b953
TT
23804 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23805 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23806
260b681b
DE
23807 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23808 return;
23809
bc8f2430 23810 struct stat st;
4262abfb
JK
23811 if (stat (objfile_name (objfile), &st) < 0)
23812 perror_with_name (objfile_name (objfile));
9291a0cd 23813
bc8f2430
JK
23814 std::string filename (std::string (dir) + SLASH_STRING
23815 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
9291a0cd 23816
bc8f2430 23817 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb");
9291a0cd 23818 if (!out_file)
bc8f2430 23819 error (_("Can't open `%s' for writing"), filename.c_str ());
9291a0cd 23820
16b7a719
PA
23821 /* Order matters here; we want FILE to be closed before FILENAME is
23822 unlinked, because on MS-Windows one cannot delete a file that is
23823 still open. (Don't call anything here that might throw until
23824 file_closer is created.) */
bc8f2430 23825 gdb::unlinker unlink_file (filename.c_str ());
16b7a719 23826 file_closer close_out_file (out_file);
9291a0cd 23827
bc8f2430
JK
23828 mapped_symtab symtab;
23829 data_buf cu_list;
987d643c 23830
0a5429f6
DE
23831 /* While we're scanning CU's create a table that maps a psymtab pointer
23832 (which is what addrmap records) to its index (which is what is recorded
23833 in the index file). This will later be needed to write the address
23834 table. */
bc8f2430
JK
23835 psym_index_map cu_index_htab;
23836 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
0a5429f6
DE
23837
23838 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23839 work here. Also, the debug_types entries do not appear in
23840 all_comp_units, but only in their own hash table. */
e8f8bcb3
PA
23841
23842 /* The psyms_seen set is potentially going to be largish (~40k
23843 elements when indexing a -g3 build of GDB itself). Estimate the
23844 number of elements in order to avoid too many rehashes, which
23845 require rebuilding buckets and thus many trips to
23846 malloc/free. */
23847 size_t psyms_count = 0;
23848 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23849 {
23850 struct dwarf2_per_cu_data *per_cu
23851 = dwarf2_per_objfile->all_comp_units[i];
23852 struct partial_symtab *psymtab = per_cu->v.psymtab;
23853
23854 if (psymtab != NULL && psymtab->user == NULL)
23855 recursively_count_psymbols (psymtab, psyms_count);
23856 }
23857 /* Generating an index for gdb itself shows a ratio of
23858 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
23859 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
bc8f2430 23860 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd 23861 {
3e43a32a
MS
23862 struct dwarf2_per_cu_data *per_cu
23863 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23864 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23865
92fac807
JK
23866 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23867 It may be referenced from a local scope but in such case it does not
23868 need to be present in .gdb_index. */
23869 if (psymtab == NULL)
23870 continue;
23871
95554aad 23872 if (psymtab->user == NULL)
bc8f2430
JK
23873 recursively_write_psymbols (objfile, psymtab, &symtab,
23874 psyms_seen, i);
9291a0cd 23875
bc8f2430
JK
23876 const auto insertpair = cu_index_htab.emplace (psymtab, i);
23877 gdb_assert (insertpair.second);
9291a0cd 23878
c2f134ac
PA
23879 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
23880 to_underlying (per_cu->sect_off));
23881 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23882 }
23883
0a5429f6 23884 /* Dump the address map. */
bc8f2430
JK
23885 data_buf addr_vec;
23886 write_address_map (objfile, addr_vec, cu_index_htab);
0a5429f6 23887
1fd400ff 23888 /* Write out the .debug_type entries, if any. */
bc8f2430 23889 data_buf types_cu_list;
1fd400ff
TT
23890 if (dwarf2_per_objfile->signatured_types)
23891 {
bc8f2430
JK
23892 signatured_type_index_data sig_data (types_cu_list,
23893 psyms_seen);
1fd400ff
TT
23894
23895 sig_data.objfile = objfile;
bc8f2430 23896 sig_data.symtab = &symtab;
1fd400ff
TT
23897 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23898 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23899 write_one_signatured_type, &sig_data);
23900 }
23901
156942c7
DE
23902 /* Now that we've processed all symbols we can shrink their cu_indices
23903 lists. */
bc8f2430 23904 uniquify_cu_indices (&symtab);
156942c7 23905
bc8f2430
JK
23906 data_buf symtab_vec, constant_pool;
23907 write_hash_table (&symtab, symtab_vec, constant_pool);
9291a0cd 23908
bc8f2430
JK
23909 data_buf contents;
23910 const offset_type size_of_contents = 6 * sizeof (offset_type);
23911 offset_type total_len = size_of_contents;
9291a0cd
TT
23912
23913 /* The version number. */
bc8f2430 23914 contents.append_data (MAYBE_SWAP (8));
9291a0cd
TT
23915
23916 /* The offset of the CU list from the start of the file. */
bc8f2430
JK
23917 contents.append_data (MAYBE_SWAP (total_len));
23918 total_len += cu_list.size ();
9291a0cd 23919
1fd400ff 23920 /* The offset of the types CU list from the start of the file. */
bc8f2430
JK
23921 contents.append_data (MAYBE_SWAP (total_len));
23922 total_len += types_cu_list.size ();
1fd400ff 23923
9291a0cd 23924 /* The offset of the address table from the start of the file. */
bc8f2430
JK
23925 contents.append_data (MAYBE_SWAP (total_len));
23926 total_len += addr_vec.size ();
9291a0cd
TT
23927
23928 /* The offset of the symbol table from the start of the file. */
bc8f2430
JK
23929 contents.append_data (MAYBE_SWAP (total_len));
23930 total_len += symtab_vec.size ();
9291a0cd
TT
23931
23932 /* The offset of the constant pool from the start of the file. */
bc8f2430
JK
23933 contents.append_data (MAYBE_SWAP (total_len));
23934 total_len += constant_pool.size ();
9291a0cd 23935
bc8f2430 23936 gdb_assert (contents.size () == size_of_contents);
9291a0cd 23937
bc8f2430
JK
23938 contents.file_write (out_file);
23939 cu_list.file_write (out_file);
23940 types_cu_list.file_write (out_file);
23941 addr_vec.file_write (out_file);
23942 symtab_vec.file_write (out_file);
23943 constant_pool.file_write (out_file);
9291a0cd 23944
bef155c3
TT
23945 /* We want to keep the file. */
23946 unlink_file.keep ();
9291a0cd
TT
23947}
23948
90476074
TT
23949/* Implementation of the `save gdb-index' command.
23950
23951 Note that the file format used by this command is documented in the
23952 GDB manual. Any changes here must be documented there. */
11570e71 23953
9291a0cd
TT
23954static void
23955save_gdb_index_command (char *arg, int from_tty)
23956{
23957 struct objfile *objfile;
23958
23959 if (!arg || !*arg)
96d19272 23960 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23961
23962 ALL_OBJFILES (objfile)
23963 {
23964 struct stat st;
23965
23966 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23967 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23968 continue;
23969
9a3c8263
SM
23970 dwarf2_per_objfile
23971 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23972 dwarf2_objfile_data_key);
9291a0cd
TT
23973 if (dwarf2_per_objfile)
23974 {
9291a0cd 23975
492d29ea 23976 TRY
9291a0cd
TT
23977 {
23978 write_psymtabs_to_index (objfile, arg);
23979 }
492d29ea
PA
23980 CATCH (except, RETURN_MASK_ERROR)
23981 {
23982 exception_fprintf (gdb_stderr, except,
23983 _("Error while writing index for `%s': "),
23984 objfile_name (objfile));
23985 }
23986 END_CATCH
9291a0cd
TT
23987 }
23988 }
dce234bc
PP
23989}
23990
9291a0cd
TT
23991\f
23992
b4f54984 23993int dwarf_always_disassemble;
9eae7c52
TT
23994
23995static void
b4f54984
DE
23996show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23997 struct cmd_list_element *c, const char *value)
9eae7c52 23998{
3e43a32a
MS
23999 fprintf_filtered (file,
24000 _("Whether to always disassemble "
24001 "DWARF expressions is %s.\n"),
9eae7c52
TT
24002 value);
24003}
24004
900e11f9
JK
24005static void
24006show_check_physname (struct ui_file *file, int from_tty,
24007 struct cmd_list_element *c, const char *value)
24008{
24009 fprintf_filtered (file,
24010 _("Whether to check \"physname\" is %s.\n"),
24011 value);
24012}
24013
6502dd73
DJ
24014void _initialize_dwarf2_read (void);
24015
24016void
24017_initialize_dwarf2_read (void)
24018{
96d19272
JK
24019 struct cmd_list_element *c;
24020
dce234bc 24021 dwarf2_objfile_data_key
c1bd65d0 24022 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 24023
b4f54984
DE
24024 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24025Set DWARF specific variables.\n\
24026Configure DWARF variables such as the cache size"),
24027 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
24028 0/*allow-unknown*/, &maintenance_set_cmdlist);
24029
b4f54984
DE
24030 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24031Show DWARF specific variables\n\
24032Show DWARF variables such as the cache size"),
24033 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
24034 0/*allow-unknown*/, &maintenance_show_cmdlist);
24035
24036 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
24037 &dwarf_max_cache_age, _("\
24038Set the upper bound on the age of cached DWARF compilation units."), _("\
24039Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
24040A higher limit means that cached compilation units will be stored\n\
24041in memory longer, and more total memory will be used. Zero disables\n\
24042caching, which can slow down startup."),
2c5b56ce 24043 NULL,
b4f54984
DE
24044 show_dwarf_max_cache_age,
24045 &set_dwarf_cmdlist,
24046 &show_dwarf_cmdlist);
d97bc12b 24047
9eae7c52 24048 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 24049 &dwarf_always_disassemble, _("\
9eae7c52
TT
24050Set whether `info address' always disassembles DWARF expressions."), _("\
24051Show whether `info address' always disassembles DWARF expressions."), _("\
24052When enabled, DWARF expressions are always printed in an assembly-like\n\
24053syntax. When disabled, expressions will be printed in a more\n\
24054conversational style, when possible."),
24055 NULL,
b4f54984
DE
24056 show_dwarf_always_disassemble,
24057 &set_dwarf_cmdlist,
24058 &show_dwarf_cmdlist);
24059
24060 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24061Set debugging of the DWARF reader."), _("\
24062Show debugging of the DWARF reader."), _("\
24063When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
24064reading and symtab expansion. A value of 1 (one) provides basic\n\
24065information. A value greater than 1 provides more verbose information."),
45cfd468
DE
24066 NULL,
24067 NULL,
24068 &setdebuglist, &showdebuglist);
24069
b4f54984
DE
24070 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24071Set debugging of the DWARF DIE reader."), _("\
24072Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
24073When enabled (non-zero), DIEs are dumped after they are read in.\n\
24074The value is the maximum depth to print."),
ccce17b0
YQ
24075 NULL,
24076 NULL,
24077 &setdebuglist, &showdebuglist);
9291a0cd 24078
27e0867f
DE
24079 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24080Set debugging of the dwarf line reader."), _("\
24081Show debugging of the dwarf line reader."), _("\
24082When enabled (non-zero), line number entries are dumped as they are read in.\n\
24083A value of 1 (one) provides basic information.\n\
24084A value greater than 1 provides more verbose information."),
24085 NULL,
24086 NULL,
24087 &setdebuglist, &showdebuglist);
24088
900e11f9
JK
24089 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24090Set cross-checking of \"physname\" code against demangler."), _("\
24091Show cross-checking of \"physname\" code against demangler."), _("\
24092When enabled, GDB's internal \"physname\" code is checked against\n\
24093the demangler."),
24094 NULL, show_check_physname,
24095 &setdebuglist, &showdebuglist);
24096
e615022a
DE
24097 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24098 no_class, &use_deprecated_index_sections, _("\
24099Set whether to use deprecated gdb_index sections."), _("\
24100Show whether to use deprecated gdb_index sections."), _("\
24101When enabled, deprecated .gdb_index sections are used anyway.\n\
24102Normally they are ignored either because of a missing feature or\n\
24103performance issue.\n\
24104Warning: This option must be enabled before gdb reads the file."),
24105 NULL,
24106 NULL,
24107 &setlist, &showlist);
24108
96d19272 24109 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 24110 _("\
fc1a9d6e 24111Save a gdb-index file.\n\
11570e71 24112Usage: save gdb-index DIRECTORY"),
96d19272
JK
24113 &save_cmdlist);
24114 set_cmd_completer (c, filename_completer);
f1e6e072
TT
24115
24116 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24117 &dwarf2_locexpr_funcs);
24118 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24119 &dwarf2_loclist_funcs);
24120
24121 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24122 &dwarf2_block_frame_base_locexpr_funcs);
24123 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24124 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 24125}
This page took 5.791627 seconds and 4 git commands to generate.