Fix PE/COFF resource merging problems. There were two issues:
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
ecd75fc8 3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
9291a0cd 58#include "exceptions.h"
53ce3c39 59#include <sys/stat.h>
96d19272 60#include "completer.h"
34eaf542 61#include "vec.h"
98bfdba5 62#include "c-lang.h"
a766d390 63#include "go-lang.h"
98bfdba5 64#include "valprint.h"
3019eac3 65#include "gdbcore.h" /* for gnutarget */
156942c7 66#include "gdb/gdb-index.h"
60d5a603 67#include <ctype.h>
cbb099e8 68#include "gdb_bfd.h"
4357ac6c 69#include "f-lang.h"
05cba821 70#include "source.h"
614c279d 71#include "filestuff.h"
dc294be5 72#include "build-id.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
0e9f083f 75#include <string.h>
4bdf3d34 76#include "gdb_assert.h"
c906108c 77#include <sys/types.h>
d8151005 78
34eaf542
TT
79typedef struct symbol *symbolp;
80DEF_VEC_P (symbolp);
81
73be47f5
DE
82/* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
45cfd468 84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
73be47f5 85static unsigned int dwarf2_read_debug = 0;
45cfd468 86
d97bc12b 87/* When non-zero, dump DIEs after they are read in. */
ccce17b0 88static unsigned int dwarf2_die_debug = 0;
d97bc12b 89
900e11f9
JK
90/* When non-zero, cross-check physname against demangler. */
91static int check_physname = 0;
92
481860b3 93/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 94static int use_deprecated_index_sections = 0;
481860b3 95
6502dd73
DJ
96static const struct objfile_data *dwarf2_objfile_data_key;
97
f1e6e072
TT
98/* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100static int dwarf2_locexpr_index;
101static int dwarf2_loclist_index;
102static int dwarf2_locexpr_block_index;
103static int dwarf2_loclist_block_index;
104
73869dc2
DE
105/* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
dce234bc
PP
121struct dwarf2_section_info
122{
73869dc2
DE
123 union
124 {
e5aa3347 125 /* If this is a real section, the bfd section. */
73869dc2
DE
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 128 section. */
73869dc2
DE
129 struct dwarf2_section_info *containing_section;
130 } s;
19ac8c2e 131 /* Pointer to section data, only valid if readin. */
d521ce57 132 const gdb_byte *buffer;
73869dc2 133 /* The size of the section, real or virtual. */
dce234bc 134 bfd_size_type size;
73869dc2
DE
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
be391dca 138 /* True if we have tried to read this section. */
73869dc2
DE
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
dce234bc
PP
143};
144
8b70b953
TT
145typedef struct dwarf2_section_info dwarf2_section_info_def;
146DEF_VEC_O (dwarf2_section_info_def);
147
9291a0cd
TT
148/* All offsets in the index are of this type. It must be
149 architecture-independent. */
150typedef uint32_t offset_type;
151
152DEF_VEC_I (offset_type);
153
156942c7
DE
154/* Ensure only legit values are used. */
155#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161/* Ensure only legit values are used. */
162#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169/* Ensure we don't use more than the alloted nuber of bits for the CU. */
170#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
9291a0cd
TT
176/* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178struct mapped_index
179{
559a7a62
JK
180 /* Index data format version. */
181 int version;
182
9291a0cd
TT
183 /* The total length of the buffer. */
184 off_t total_size;
b11b1f88 185
9291a0cd
TT
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
b11b1f88 188
9291a0cd
TT
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
b11b1f88 191
3876f04e
DE
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
b11b1f88 194
9291a0cd 195 /* Size in slots, each slot is 2 offset_types. */
3876f04e 196 offset_type symbol_table_slots;
b11b1f88 197
9291a0cd
TT
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200};
201
95554aad
TT
202typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203DEF_VEC_P (dwarf2_per_cu_ptr);
204
9cdd5dbd
DE
205/* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
207
6502dd73
DJ
208struct dwarf2_per_objfile
209{
dce234bc
PP
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
dce234bc
PP
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
cf2c3c16 215 struct dwarf2_section_info macro;
dce234bc
PP
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
3019eac3 218 struct dwarf2_section_info addr;
dce234bc
PP
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
9291a0cd 221 struct dwarf2_section_info gdb_index;
ae038cb0 222
8b70b953
TT
223 VEC (dwarf2_section_info_def) *types;
224
be391dca
TT
225 /* Back link. */
226 struct objfile *objfile;
227
d467dd73 228 /* Table of all the compilation units. This is used to locate
10b3939b 229 the target compilation unit of a particular reference. */
ae038cb0
DJ
230 struct dwarf2_per_cu_data **all_comp_units;
231
232 /* The number of compilation units in ALL_COMP_UNITS. */
233 int n_comp_units;
234
1fd400ff 235 /* The number of .debug_types-related CUs. */
d467dd73 236 int n_type_units;
1fd400ff 237
a2ce51a0
DE
238 /* The .debug_types-related CUs (TUs).
239 This is stored in malloc space because we may realloc it. */
b4dd5633 240 struct signatured_type **all_type_units;
1fd400ff 241
f4dc4d17
DE
242 /* The number of entries in all_type_unit_groups. */
243 int n_type_unit_groups;
244
245 /* Table of type unit groups.
246 This exists to make it easy to iterate over all CUs and TU groups. */
247 struct type_unit_group **all_type_unit_groups;
248
249 /* Table of struct type_unit_group objects.
250 The hash key is the DW_AT_stmt_list value. */
251 htab_t type_unit_groups;
72dca2f5 252
348e048f
DE
253 /* A table mapping .debug_types signatures to its signatured_type entry.
254 This is NULL if the .debug_types section hasn't been read in yet. */
255 htab_t signatured_types;
256
f4dc4d17
DE
257 /* Type unit statistics, to see how well the scaling improvements
258 are doing. */
259 struct tu_stats
260 {
261 int nr_uniq_abbrev_tables;
262 int nr_symtabs;
263 int nr_symtab_sharers;
264 int nr_stmt_less_type_units;
265 } tu_stats;
266
267 /* A chain of compilation units that are currently read in, so that
268 they can be freed later. */
269 struct dwarf2_per_cu_data *read_in_chain;
270
3019eac3
DE
271 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
272 This is NULL if the table hasn't been allocated yet. */
273 htab_t dwo_files;
274
80626a55
DE
275 /* Non-zero if we've check for whether there is a DWP file. */
276 int dwp_checked;
277
278 /* The DWP file if there is one, or NULL. */
279 struct dwp_file *dwp_file;
280
36586728
TT
281 /* The shared '.dwz' file, if one exists. This is used when the
282 original data was compressed using 'dwz -m'. */
283 struct dwz_file *dwz_file;
284
72dca2f5
FR
285 /* A flag indicating wether this objfile has a section loaded at a
286 VMA of 0. */
287 int has_section_at_zero;
9291a0cd 288
ae2de4f8
DE
289 /* True if we are using the mapped index,
290 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
291 unsigned char using_index;
292
ae2de4f8 293 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 294 struct mapped_index *index_table;
98bfdba5 295
7b9f3c50 296 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
297 TUs typically share line table entries with a CU, so we maintain a
298 separate table of all line table entries to support the sharing.
299 Note that while there can be way more TUs than CUs, we've already
300 sorted all the TUs into "type unit groups", grouped by their
301 DW_AT_stmt_list value. Therefore the only sharing done here is with a
302 CU and its associated TU group if there is one. */
7b9f3c50
DE
303 htab_t quick_file_names_table;
304
98bfdba5
PA
305 /* Set during partial symbol reading, to prevent queueing of full
306 symbols. */
307 int reading_partial_symbols;
673bfd45 308
dee91e82 309 /* Table mapping type DIEs to their struct type *.
673bfd45 310 This is NULL if not allocated yet.
02142a6c 311 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 312 htab_t die_type_hash;
95554aad
TT
313
314 /* The CUs we recently read. */
315 VEC (dwarf2_per_cu_ptr) *just_read_cus;
6502dd73
DJ
316};
317
318static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 319
251d32d9 320/* Default names of the debugging sections. */
c906108c 321
233a11ab
CS
322/* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
9cdd5dbd
DE
325static const struct dwarf2_debug_sections dwarf2_elf_names =
326{
251d32d9
TG
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 332 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
3019eac3 336 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
24d3216f
TT
339 { ".gdb_index", ".zgdb_index" },
340 23
251d32d9 341};
c906108c 342
80626a55 343/* List of DWO/DWP sections. */
3019eac3 344
80626a55 345static const struct dwop_section_names
3019eac3
DE
346{
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
09262596
DE
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
3019eac3
DE
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
80626a55
DE
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
3019eac3 358}
80626a55 359dwop_section_names =
3019eac3
DE
360{
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
372};
373
c906108c
SS
374/* local data types */
375
107d2387
AC
376/* The data in a compilation unit header, after target2host
377 translation, looks like this. */
c906108c 378struct comp_unit_head
a738430d 379{
c764a876 380 unsigned int length;
a738430d 381 short version;
a738430d
MK
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
b64f50a1 384 sect_offset abbrev_offset;
57349743 385
a738430d
MK
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
57349743 388
a738430d
MK
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
57349743 391
a738430d
MK
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
b64f50a1 394 sect_offset offset;
57349743 395
d00adf39
DE
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
b64f50a1 398 cu_offset first_die_offset;
a738430d 399};
c906108c 400
3da10d80
KS
401/* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403struct delayed_method_info
404{
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419};
420
421typedef struct delayed_method_info delayed_method_info;
422DEF_VEC_O (delayed_method_info);
423
e7c27a73
DJ
424/* Internal state when decoding a particular compilation unit. */
425struct dwarf2_cu
426{
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
d00adf39 430 /* The header of the compilation unit. */
e7c27a73 431 struct comp_unit_head header;
e142c38c 432
d00adf39
DE
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
e142c38c
DJ
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
b0f35d58
DL
443 const char *producer;
444
e142c38c
DJ
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
433df2d4
DE
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
72bf9492 460
b64f50a1
JK
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
ae038cb0
DJ
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
69d751e3 475 /* Backlink to our per_cu entry. */
ae038cb0
DJ
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
b64f50a1
JK
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
51545339 483 htab_t die_hash;
10b3939b
DJ
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
cb1df416
DJ
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
3da10d80
KS
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
96408a79
SA
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
034e5797
DE
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
3019eac3
DE
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
1dbab08b 516 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
517 ULONGEST addr_base;
518
2e3cf129
DE
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
1dbab08b 521 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 522 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
529 ULONGEST ranges_base;
530
ae038cb0
DJ
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
8be455d7
JK
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 538 unsigned int has_loclist : 1;
ba919b58 539
1b80a9fa
JK
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
ba919b58
TT
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 546 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 547 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
554};
555
10b3939b
DJ
556/* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
28dee7f5 558 read_symtab_private field of the psymtab. */
10b3939b 559
ae038cb0
DJ
560struct dwarf2_per_cu_data
561{
36586728 562 /* The start offset and length of this compilation unit.
45452591 563 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
b64f50a1 567 sect_offset offset;
36586728 568 unsigned int length;
ae038cb0
DJ
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
c764a876 572 unsigned int queued : 1;
ae038cb0 573
0d99eb77
DE
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
0186c6a7
DE
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
3019eac3
DE
583 unsigned int is_debug_types : 1;
584
36586728
TT
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
a2ce51a0
DE
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
7ee85ab1
DE
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
3019eac3
DE
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
8a0459fd 607 struct dwarf2_section_info *section;
348e048f 608
17ea53c3
JK
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
ae038cb0 611 struct dwarf2_cu *cu;
1c379e20 612
9cdd5dbd
DE
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
616 struct objfile *objfile;
617
618 /* When using partial symbol tables, the 'psymtab' field is active.
619 Otherwise the 'quick' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
95554aad 623 or NULL for unread partial units. */
9291a0cd
TT
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
95554aad 629
796a7ff8
DE
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
649};
650
348e048f
DE
651/* Entry in the signatured_types hash table. */
652
653struct signatured_type
654{
42e7ad6c 655 /* The "per_cu" object of this type.
ac9ec31b 656 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
3019eac3 661 /* The type's signature. */
348e048f
DE
662 ULONGEST signature;
663
3019eac3 664 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
0186c6a7
DE
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
ac9ec31b
DE
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
a2ce51a0
DE
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
348e048f
DE
688};
689
0186c6a7
DE
690typedef struct signatured_type *sig_type_ptr;
691DEF_VEC_P (sig_type_ptr);
692
094b34ac
DE
693/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696struct stmt_list_hash
697{
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703};
704
f4dc4d17
DE
705/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708struct type_unit_group
709{
0186c6a7 710 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
8a0459fd 715#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
716 struct dwarf2_per_cu_data per_cu;
717
0186c6a7
DE
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
f4dc4d17
DE
722
723 /* The primary symtab.
094b34ac
DE
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the primary symtab. */
f4dc4d17
DE
726 struct symtab *primary_symtab;
727
094b34ac
DE
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
f4dc4d17
DE
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744};
745
73869dc2 746/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
747
748struct dwo_sections
749{
750 struct dwarf2_section_info abbrev;
3019eac3
DE
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
09262596
DE
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
3019eac3
DE
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
80626a55
DE
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
3019eac3
DE
759 VEC (dwarf2_section_info_def) *types;
760};
761
c88ee1f0 762/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
763
764struct dwo_unit
765{
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 775 struct dwarf2_section_info *section;
3019eac3 776
19ac8c2e 777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783};
784
73869dc2
DE
785/* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789enum dwp_v2_section_ids
790{
791 DW_SECT_MIN = 1
792};
793
80626a55 794/* Data for one DWO file.
57d63ce2
DE
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
3019eac3
DE
804
805struct dwo_file
806{
0ac5b59e 807 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
0ac5b59e
DE
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
3019eac3 815
80626a55
DE
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
3019eac3 819
73869dc2
DE
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
3019eac3
DE
823 struct dwo_sections sections;
824
19c3d4c9
DE
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
3019eac3
DE
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835};
836
80626a55
DE
837/* These sections are what may appear in a DWP file. */
838
839struct dwp_sections
840{
73869dc2 841 /* These are used by both DWP version 1 and 2. */
80626a55
DE
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
73869dc2
DE
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
80626a55
DE
862};
863
73869dc2
DE
864/* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 866
73869dc2 867struct virtual_v1_dwo_sections
80626a55
DE
868{
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 876 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
877 struct dwarf2_section_info info_or_types;
878};
879
73869dc2
DE
880/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885struct virtual_v2_dwo_sections
886{
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909};
910
80626a55
DE
911/* Contents of DWP hash tables. */
912
913struct dwp_hash_table
914{
73869dc2 915 uint32_t version, nr_columns;
80626a55 916 uint32_t nr_units, nr_slots;
73869dc2
DE
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928#define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
80626a55
DE
940};
941
942/* Data for one DWP file. */
943
944struct dwp_file
945{
946 /* Name of the file. */
947 const char *name;
948
73869dc2
DE
949 /* File format version. */
950 int version;
951
93417882 952 /* The bfd. */
80626a55
DE
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
57d63ce2 958 /* Table of CUs in the file. */
80626a55
DE
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
19ac8c2e
DE
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
80626a55 967
73869dc2
DE
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
80626a55
DE
970 unsigned int num_sections;
971 asection **elf_sections;
972};
973
36586728
TT
974/* This represents a '.dwz' file. */
975
976struct dwz_file
977{
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
2ec9a5e0 984 struct dwarf2_section_info gdb_index;
36586728
TT
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988};
989
0963b4bd
MS
990/* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
dee91e82 993 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
994
995struct die_reader_specs
996{
a32a8923 997 /* The bfd of die_section. */
93311388
DE
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
80626a55 1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1004 struct dwo_file *dwo_file;
1005
dee91e82 1006 /* The section the die comes from.
3019eac3 1007 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
d521ce57 1011 const gdb_byte *buffer;
f664829e
DE
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
a2ce51a0
DE
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
93311388
DE
1018};
1019
fd820528 1020/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1021typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1022 const gdb_byte *info_ptr,
dee91e82
DE
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
debd256d
JB
1027/* The line number information for a compilation unit (found in the
1028 .debug_line section) begins with a "statement program header",
1029 which contains the following information. */
1030struct line_header
1031{
1032 unsigned int total_length;
1033 unsigned short version;
1034 unsigned int header_length;
1035 unsigned char minimum_instruction_length;
2dc7f7b3 1036 unsigned char maximum_ops_per_instruction;
debd256d
JB
1037 unsigned char default_is_stmt;
1038 int line_base;
1039 unsigned char line_range;
1040 unsigned char opcode_base;
1041
1042 /* standard_opcode_lengths[i] is the number of operands for the
1043 standard opcode whose value is i. This means that
1044 standard_opcode_lengths[0] is unused, and the last meaningful
1045 element is standard_opcode_lengths[opcode_base - 1]. */
1046 unsigned char *standard_opcode_lengths;
1047
1048 /* The include_directories table. NOTE! These strings are not
1049 allocated with xmalloc; instead, they are pointers into
1050 debug_line_buffer. If you try to free them, `free' will get
1051 indigestion. */
1052 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1053 const char **include_dirs;
debd256d
JB
1054
1055 /* The file_names table. NOTE! These strings are not allocated
1056 with xmalloc; instead, they are pointers into debug_line_buffer.
1057 Don't try to free them directly. */
1058 unsigned int num_file_names, file_names_size;
1059 struct file_entry
c906108c 1060 {
d521ce57 1061 const char *name;
debd256d
JB
1062 unsigned int dir_index;
1063 unsigned int mod_time;
1064 unsigned int length;
aaa75496 1065 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 1066 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
1067 } *file_names;
1068
1069 /* The start and end of the statement program following this
6502dd73 1070 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1071 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1072};
c906108c
SS
1073
1074/* When we construct a partial symbol table entry we only
0963b4bd 1075 need this much information. */
c906108c
SS
1076struct partial_die_info
1077 {
72bf9492 1078 /* Offset of this DIE. */
b64f50a1 1079 sect_offset offset;
72bf9492
DJ
1080
1081 /* DWARF-2 tag for this DIE. */
1082 ENUM_BITFIELD(dwarf_tag) tag : 16;
1083
72bf9492
DJ
1084 /* Assorted flags describing the data found in this DIE. */
1085 unsigned int has_children : 1;
1086 unsigned int is_external : 1;
1087 unsigned int is_declaration : 1;
1088 unsigned int has_type : 1;
1089 unsigned int has_specification : 1;
1090 unsigned int has_pc_info : 1;
481860b3 1091 unsigned int may_be_inlined : 1;
72bf9492
DJ
1092
1093 /* Flag set if the SCOPE field of this structure has been
1094 computed. */
1095 unsigned int scope_set : 1;
1096
fa4028e9
JB
1097 /* Flag set if the DIE has a byte_size attribute. */
1098 unsigned int has_byte_size : 1;
1099
98bfdba5
PA
1100 /* Flag set if any of the DIE's children are template arguments. */
1101 unsigned int has_template_arguments : 1;
1102
abc72ce4
DE
1103 /* Flag set if fixup_partial_die has been called on this die. */
1104 unsigned int fixup_called : 1;
1105
36586728
TT
1106 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1107 unsigned int is_dwz : 1;
1108
1109 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1110 unsigned int spec_is_dwz : 1;
1111
72bf9492 1112 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1113 sometimes a default name for unnamed DIEs. */
15d034d0 1114 const char *name;
72bf9492 1115
abc72ce4
DE
1116 /* The linkage name, if present. */
1117 const char *linkage_name;
1118
72bf9492
DJ
1119 /* The scope to prepend to our children. This is generally
1120 allocated on the comp_unit_obstack, so will disappear
1121 when this compilation unit leaves the cache. */
15d034d0 1122 const char *scope;
72bf9492 1123
95554aad
TT
1124 /* Some data associated with the partial DIE. The tag determines
1125 which field is live. */
1126 union
1127 {
1128 /* The location description associated with this DIE, if any. */
1129 struct dwarf_block *locdesc;
1130 /* The offset of an import, for DW_TAG_imported_unit. */
1131 sect_offset offset;
1132 } d;
72bf9492
DJ
1133
1134 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1135 CORE_ADDR lowpc;
1136 CORE_ADDR highpc;
72bf9492 1137
93311388 1138 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1139 DW_AT_sibling, if any. */
abc72ce4
DE
1140 /* NOTE: This member isn't strictly necessary, read_partial_die could
1141 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1142 const gdb_byte *sibling;
72bf9492
DJ
1143
1144 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1145 DW_AT_specification (or DW_AT_abstract_origin or
1146 DW_AT_extension). */
b64f50a1 1147 sect_offset spec_offset;
72bf9492
DJ
1148
1149 /* Pointers to this DIE's parent, first child, and next sibling,
1150 if any. */
1151 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1152 };
1153
0963b4bd 1154/* This data structure holds the information of an abbrev. */
c906108c
SS
1155struct abbrev_info
1156 {
1157 unsigned int number; /* number identifying abbrev */
1158 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1159 unsigned short has_children; /* boolean */
1160 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1161 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1162 struct abbrev_info *next; /* next in chain */
1163 };
1164
1165struct attr_abbrev
1166 {
9d25dd43
DE
1167 ENUM_BITFIELD(dwarf_attribute) name : 16;
1168 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1169 };
1170
433df2d4
DE
1171/* Size of abbrev_table.abbrev_hash_table. */
1172#define ABBREV_HASH_SIZE 121
1173
1174/* Top level data structure to contain an abbreviation table. */
1175
1176struct abbrev_table
1177{
f4dc4d17
DE
1178 /* Where the abbrev table came from.
1179 This is used as a sanity check when the table is used. */
433df2d4
DE
1180 sect_offset offset;
1181
1182 /* Storage for the abbrev table. */
1183 struct obstack abbrev_obstack;
1184
1185 /* Hash table of abbrevs.
1186 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1187 It could be statically allocated, but the previous code didn't so we
1188 don't either. */
1189 struct abbrev_info **abbrevs;
1190};
1191
0963b4bd 1192/* Attributes have a name and a value. */
b60c80d6
DJ
1193struct attribute
1194 {
9d25dd43 1195 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1196 ENUM_BITFIELD(dwarf_form) form : 15;
1197
1198 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1199 field should be in u.str (existing only for DW_STRING) but it is kept
1200 here for better struct attribute alignment. */
1201 unsigned int string_is_canonical : 1;
1202
b60c80d6
DJ
1203 union
1204 {
15d034d0 1205 const char *str;
b60c80d6 1206 struct dwarf_block *blk;
43bbcdc2
PH
1207 ULONGEST unsnd;
1208 LONGEST snd;
b60c80d6 1209 CORE_ADDR addr;
ac9ec31b 1210 ULONGEST signature;
b60c80d6
DJ
1211 }
1212 u;
1213 };
1214
0963b4bd 1215/* This data structure holds a complete die structure. */
c906108c
SS
1216struct die_info
1217 {
76815b17
DE
1218 /* DWARF-2 tag for this DIE. */
1219 ENUM_BITFIELD(dwarf_tag) tag : 16;
1220
1221 /* Number of attributes */
98bfdba5
PA
1222 unsigned char num_attrs;
1223
1224 /* True if we're presently building the full type name for the
1225 type derived from this DIE. */
1226 unsigned char building_fullname : 1;
76815b17 1227
adde2bff
DE
1228 /* True if this die is in process. PR 16581. */
1229 unsigned char in_process : 1;
1230
76815b17
DE
1231 /* Abbrev number */
1232 unsigned int abbrev;
1233
93311388 1234 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1235 sect_offset offset;
78ba4af6
JB
1236
1237 /* The dies in a compilation unit form an n-ary tree. PARENT
1238 points to this die's parent; CHILD points to the first child of
1239 this node; and all the children of a given node are chained
4950bc1c 1240 together via their SIBLING fields. */
639d11d3
DC
1241 struct die_info *child; /* Its first child, if any. */
1242 struct die_info *sibling; /* Its next sibling, if any. */
1243 struct die_info *parent; /* Its parent, if any. */
c906108c 1244
b60c80d6
DJ
1245 /* An array of attributes, with NUM_ATTRS elements. There may be
1246 zero, but it's not common and zero-sized arrays are not
1247 sufficiently portable C. */
1248 struct attribute attrs[1];
c906108c
SS
1249 };
1250
0963b4bd 1251/* Get at parts of an attribute structure. */
c906108c
SS
1252
1253#define DW_STRING(attr) ((attr)->u.str)
8285870a 1254#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1255#define DW_UNSND(attr) ((attr)->u.unsnd)
1256#define DW_BLOCK(attr) ((attr)->u.blk)
1257#define DW_SND(attr) ((attr)->u.snd)
1258#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1259#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1260
0963b4bd 1261/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1262struct dwarf_block
1263 {
56eb65bd 1264 size_t size;
1d6edc3c
JK
1265
1266 /* Valid only if SIZE is not zero. */
d521ce57 1267 const gdb_byte *data;
c906108c
SS
1268 };
1269
c906108c
SS
1270#ifndef ATTR_ALLOC_CHUNK
1271#define ATTR_ALLOC_CHUNK 4
1272#endif
1273
c906108c
SS
1274/* Allocate fields for structs, unions and enums in this size. */
1275#ifndef DW_FIELD_ALLOC_CHUNK
1276#define DW_FIELD_ALLOC_CHUNK 4
1277#endif
1278
c906108c
SS
1279/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1280 but this would require a corresponding change in unpack_field_as_long
1281 and friends. */
1282static int bits_per_byte = 8;
1283
1284/* The routines that read and process dies for a C struct or C++ class
1285 pass lists of data member fields and lists of member function fields
1286 in an instance of a field_info structure, as defined below. */
1287struct field_info
c5aa993b 1288 {
0963b4bd 1289 /* List of data member and baseclasses fields. */
c5aa993b
JM
1290 struct nextfield
1291 {
1292 struct nextfield *next;
1293 int accessibility;
1294 int virtuality;
1295 struct field field;
1296 }
7d0ccb61 1297 *fields, *baseclasses;
c906108c 1298
7d0ccb61 1299 /* Number of fields (including baseclasses). */
c5aa993b 1300 int nfields;
c906108c 1301
c5aa993b
JM
1302 /* Number of baseclasses. */
1303 int nbaseclasses;
c906108c 1304
c5aa993b
JM
1305 /* Set if the accesibility of one of the fields is not public. */
1306 int non_public_fields;
c906108c 1307
c5aa993b
JM
1308 /* Member function fields array, entries are allocated in the order they
1309 are encountered in the object file. */
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 }
1315 *fnfields;
c906108c 1316
c5aa993b
JM
1317 /* Member function fieldlist array, contains name of possibly overloaded
1318 member function, number of overloaded member functions and a pointer
1319 to the head of the member function field chain. */
1320 struct fnfieldlist
1321 {
15d034d0 1322 const char *name;
c5aa993b
JM
1323 int length;
1324 struct nextfnfield *head;
1325 }
1326 *fnfieldlists;
c906108c 1327
c5aa993b
JM
1328 /* Number of entries in the fnfieldlists array. */
1329 int nfnfields;
98751a41
JK
1330
1331 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1332 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1333 struct typedef_field_list
1334 {
1335 struct typedef_field field;
1336 struct typedef_field_list *next;
1337 }
1338 *typedef_field_list;
1339 unsigned typedef_field_list_count;
c5aa993b 1340 };
c906108c 1341
10b3939b
DJ
1342/* One item on the queue of compilation units to read in full symbols
1343 for. */
1344struct dwarf2_queue_item
1345{
1346 struct dwarf2_per_cu_data *per_cu;
95554aad 1347 enum language pretend_language;
10b3939b
DJ
1348 struct dwarf2_queue_item *next;
1349};
1350
1351/* The current queue. */
1352static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1353
ae038cb0
DJ
1354/* Loaded secondary compilation units are kept in memory until they
1355 have not been referenced for the processing of this many
1356 compilation units. Set this to zero to disable caching. Cache
1357 sizes of up to at least twenty will improve startup time for
1358 typical inter-CU-reference binaries, at an obvious memory cost. */
1359static int dwarf2_max_cache_age = 5;
920d2a44
AC
1360static void
1361show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1362 struct cmd_list_element *c, const char *value)
1363{
3e43a32a
MS
1364 fprintf_filtered (file, _("The upper bound on the age of cached "
1365 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
1366 value);
1367}
4390d890 1368\f
c906108c
SS
1369/* local function prototypes */
1370
a32a8923
DE
1371static const char *get_section_name (const struct dwarf2_section_info *);
1372
1373static const char *get_section_file_name (const struct dwarf2_section_info *);
1374
4efb68b1 1375static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1376
918dd910
JK
1377static void dwarf2_find_base_address (struct die_info *die,
1378 struct dwarf2_cu *cu);
1379
0018ea6f
DE
1380static struct partial_symtab *create_partial_symtab
1381 (struct dwarf2_per_cu_data *per_cu, const char *name);
1382
c67a9c90 1383static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1384
72bf9492
DJ
1385static void scan_partial_symbols (struct partial_die_info *,
1386 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1387 int, struct dwarf2_cu *);
c906108c 1388
72bf9492
DJ
1389static void add_partial_symbol (struct partial_die_info *,
1390 struct dwarf2_cu *);
63d06c5c 1391
72bf9492
DJ
1392static void add_partial_namespace (struct partial_die_info *pdi,
1393 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1394 int need_pc, struct dwarf2_cu *cu);
63d06c5c 1395
5d7cb8df
JK
1396static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1397 CORE_ADDR *highpc, int need_pc,
1398 struct dwarf2_cu *cu);
1399
72bf9492
DJ
1400static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1401 struct dwarf2_cu *cu);
91c24f0a 1402
bc30ff58
JB
1403static void add_partial_subprogram (struct partial_die_info *pdi,
1404 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1405 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1406
257e7a09
YQ
1407static void dwarf2_read_symtab (struct partial_symtab *,
1408 struct objfile *);
c906108c 1409
a14ed312 1410static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1411
433df2d4
DE
1412static struct abbrev_info *abbrev_table_lookup_abbrev
1413 (const struct abbrev_table *, unsigned int);
1414
1415static struct abbrev_table *abbrev_table_read_table
1416 (struct dwarf2_section_info *, sect_offset);
1417
1418static void abbrev_table_free (struct abbrev_table *);
1419
f4dc4d17
DE
1420static void abbrev_table_free_cleanup (void *);
1421
dee91e82
DE
1422static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1423 struct dwarf2_section_info *);
c906108c 1424
f3dd6933 1425static void dwarf2_free_abbrev_table (void *);
c906108c 1426
d521ce57 1427static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1428
dee91e82 1429static struct partial_die_info *load_partial_dies
d521ce57 1430 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1431
d521ce57
TT
1432static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1433 struct partial_die_info *,
1434 struct abbrev_info *,
1435 unsigned int,
1436 const gdb_byte *);
c906108c 1437
36586728 1438static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1439 struct dwarf2_cu *);
72bf9492
DJ
1440
1441static void fixup_partial_die (struct partial_die_info *,
1442 struct dwarf2_cu *);
1443
d521ce57
TT
1444static const gdb_byte *read_attribute (const struct die_reader_specs *,
1445 struct attribute *, struct attr_abbrev *,
1446 const gdb_byte *);
a8329558 1447
a1855c1d 1448static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1449
a1855c1d 1450static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1451
a1855c1d 1452static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1453
a1855c1d 1454static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1455
a1855c1d 1456static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1457
d521ce57 1458static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1459 unsigned int *);
c906108c 1460
d521ce57 1461static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1462
1463static LONGEST read_checked_initial_length_and_offset
d521ce57 1464 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1465 unsigned int *, unsigned int *);
613e1657 1466
d521ce57
TT
1467static LONGEST read_offset (bfd *, const gdb_byte *,
1468 const struct comp_unit_head *,
c764a876
DE
1469 unsigned int *);
1470
d521ce57 1471static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1472
f4dc4d17
DE
1473static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1474 sect_offset);
1475
d521ce57 1476static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1477
d521ce57 1478static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1479
d521ce57
TT
1480static const char *read_indirect_string (bfd *, const gdb_byte *,
1481 const struct comp_unit_head *,
1482 unsigned int *);
4bdf3d34 1483
d521ce57 1484static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1485
d521ce57 1486static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1487
d521ce57 1488static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1489
d521ce57
TT
1490static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1491 const gdb_byte *,
3019eac3
DE
1492 unsigned int *);
1493
d521ce57 1494static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1495 ULONGEST str_index);
3019eac3 1496
e142c38c 1497static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1498
e142c38c
DJ
1499static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1500 struct dwarf2_cu *);
c906108c 1501
348e048f 1502static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1503 unsigned int);
348e048f 1504
05cf31d1
JB
1505static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1506 struct dwarf2_cu *cu);
1507
e142c38c 1508static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1509
e142c38c 1510static struct die_info *die_specification (struct die_info *die,
f2f0e013 1511 struct dwarf2_cu **);
63d06c5c 1512
debd256d
JB
1513static void free_line_header (struct line_header *lh);
1514
3019eac3
DE
1515static struct line_header *dwarf_decode_line_header (unsigned int offset,
1516 struct dwarf2_cu *cu);
debd256d 1517
f3f5162e
DE
1518static void dwarf_decode_lines (struct line_header *, const char *,
1519 struct dwarf2_cu *, struct partial_symtab *,
1520 int);
c906108c 1521
d521ce57 1522static void dwarf2_start_subfile (const char *, const char *, const char *);
c906108c 1523
f4dc4d17 1524static void dwarf2_start_symtab (struct dwarf2_cu *,
15d034d0 1525 const char *, const char *, CORE_ADDR);
f4dc4d17 1526
a14ed312 1527static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1528 struct dwarf2_cu *);
c906108c 1529
34eaf542
TT
1530static struct symbol *new_symbol_full (struct die_info *, struct type *,
1531 struct dwarf2_cu *, struct symbol *);
1532
ff39bb5e 1533static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1534 struct dwarf2_cu *);
c906108c 1535
ff39bb5e 1536static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1537 struct type *type,
1538 const char *name,
1539 struct obstack *obstack,
12df843f 1540 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1541 const gdb_byte **bytes,
98bfdba5 1542 struct dwarf2_locexpr_baton **baton);
2df3850c 1543
e7c27a73 1544static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1545
b4ba55a1
JB
1546static int need_gnat_info (struct dwarf2_cu *);
1547
3e43a32a
MS
1548static struct type *die_descriptive_type (struct die_info *,
1549 struct dwarf2_cu *);
b4ba55a1
JB
1550
1551static void set_descriptive_type (struct type *, struct die_info *,
1552 struct dwarf2_cu *);
1553
e7c27a73
DJ
1554static struct type *die_containing_type (struct die_info *,
1555 struct dwarf2_cu *);
c906108c 1556
ff39bb5e 1557static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1558 struct dwarf2_cu *);
c906108c 1559
f792889a 1560static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1561
673bfd45
DE
1562static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1563
0d5cff50 1564static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1565
6e70227d 1566static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1567 const char *suffix, int physname,
1568 struct dwarf2_cu *cu);
63d06c5c 1569
e7c27a73 1570static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1571
348e048f
DE
1572static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1573
e7c27a73 1574static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1575
e7c27a73 1576static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1577
96408a79
SA
1578static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1579
ff013f42
JK
1580static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1581 struct dwarf2_cu *, struct partial_symtab *);
1582
a14ed312 1583static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1584 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1585 struct partial_symtab *);
c906108c 1586
fae299cd
DC
1587static void get_scope_pc_bounds (struct die_info *,
1588 CORE_ADDR *, CORE_ADDR *,
1589 struct dwarf2_cu *);
1590
801e3a5b
JB
1591static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1592 CORE_ADDR, struct dwarf2_cu *);
1593
a14ed312 1594static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1595 struct dwarf2_cu *);
c906108c 1596
a14ed312 1597static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1598 struct type *, struct dwarf2_cu *);
c906108c 1599
a14ed312 1600static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1601 struct die_info *, struct type *,
e7c27a73 1602 struct dwarf2_cu *);
c906108c 1603
a14ed312 1604static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1605 struct type *,
1606 struct dwarf2_cu *);
c906108c 1607
134d01f1 1608static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1609
e7c27a73 1610static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1611
e7c27a73 1612static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1613
5d7cb8df
JK
1614static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1615
27aa8d6a
SW
1616static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1617
74921315
KS
1618static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1619
f55ee35c
JK
1620static struct type *read_module_type (struct die_info *die,
1621 struct dwarf2_cu *cu);
1622
38d518c9 1623static const char *namespace_name (struct die_info *die,
e142c38c 1624 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1625
134d01f1 1626static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1627
e7c27a73 1628static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1629
6e70227d 1630static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1631 struct dwarf2_cu *);
1632
bf6af496 1633static struct die_info *read_die_and_siblings_1
d521ce57 1634 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1635 struct die_info *);
639d11d3 1636
dee91e82 1637static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1638 const gdb_byte *info_ptr,
1639 const gdb_byte **new_info_ptr,
639d11d3
DC
1640 struct die_info *parent);
1641
d521ce57
TT
1642static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *,
1644 int *, int);
3019eac3 1645
d521ce57
TT
1646static const gdb_byte *read_full_die (const struct die_reader_specs *,
1647 struct die_info **, const gdb_byte *,
1648 int *);
93311388 1649
e7c27a73 1650static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1651
15d034d0
TT
1652static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1653 struct obstack *);
71c25dea 1654
15d034d0 1655static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1656
15d034d0 1657static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1658 struct die_info *die,
1659 struct dwarf2_cu *cu);
1660
ca69b9e6
DE
1661static const char *dwarf2_physname (const char *name, struct die_info *die,
1662 struct dwarf2_cu *cu);
1663
e142c38c 1664static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1665 struct dwarf2_cu **);
9219021c 1666
f39c6ffd 1667static const char *dwarf_tag_name (unsigned int);
c906108c 1668
f39c6ffd 1669static const char *dwarf_attr_name (unsigned int);
c906108c 1670
f39c6ffd 1671static const char *dwarf_form_name (unsigned int);
c906108c 1672
a14ed312 1673static char *dwarf_bool_name (unsigned int);
c906108c 1674
f39c6ffd 1675static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1676
f9aca02d 1677static struct die_info *sibling_die (struct die_info *);
c906108c 1678
d97bc12b
DE
1679static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1680
1681static void dump_die_for_error (struct die_info *);
1682
1683static void dump_die_1 (struct ui_file *, int level, int max_level,
1684 struct die_info *);
c906108c 1685
d97bc12b 1686/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1687
51545339 1688static void store_in_ref_table (struct die_info *,
10b3939b 1689 struct dwarf2_cu *);
c906108c 1690
ff39bb5e 1691static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1692
ff39bb5e 1693static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1694
348e048f 1695static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1696 const struct attribute *,
348e048f
DE
1697 struct dwarf2_cu **);
1698
10b3939b 1699static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1700 const struct attribute *,
f2f0e013 1701 struct dwarf2_cu **);
c906108c 1702
348e048f 1703static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1704 const struct attribute *,
348e048f
DE
1705 struct dwarf2_cu **);
1706
ac9ec31b
DE
1707static struct type *get_signatured_type (struct die_info *, ULONGEST,
1708 struct dwarf2_cu *);
1709
1710static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1711 const struct attribute *,
ac9ec31b
DE
1712 struct dwarf2_cu *);
1713
e5fe5e75 1714static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1715
52dc124a 1716static void read_signatured_type (struct signatured_type *);
348e048f 1717
f4dc4d17 1718static struct type_unit_group *get_type_unit_group
ff39bb5e 1719 (struct dwarf2_cu *, const struct attribute *);
f4dc4d17
DE
1720
1721static void build_type_unit_groups (die_reader_func_ftype *, void *);
1722
c906108c
SS
1723/* memory allocation interface */
1724
7b5a2f43 1725static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1726
b60c80d6 1727static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1728
09262596 1729static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
15d034d0 1730 const char *, int);
2e276125 1731
6e5a29e1 1732static int attr_form_is_block (const struct attribute *);
8e19ed76 1733
6e5a29e1 1734static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1735
6e5a29e1 1736static int attr_form_is_constant (const struct attribute *);
3690dd37 1737
6e5a29e1 1738static int attr_form_is_ref (const struct attribute *);
7771576e 1739
8cf6f0b1
TT
1740static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1741 struct dwarf2_loclist_baton *baton,
ff39bb5e 1742 const struct attribute *attr);
8cf6f0b1 1743
ff39bb5e 1744static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1745 struct symbol *sym,
f1e6e072
TT
1746 struct dwarf2_cu *cu,
1747 int is_block);
4c2df51b 1748
d521ce57
TT
1749static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1750 const gdb_byte *info_ptr,
1751 struct abbrev_info *abbrev);
4bb7a0a7 1752
72bf9492
DJ
1753static void free_stack_comp_unit (void *);
1754
72bf9492
DJ
1755static hashval_t partial_die_hash (const void *item);
1756
1757static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1758
ae038cb0 1759static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1760 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1761
9816fde3 1762static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1763 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1764
1765static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1766 struct die_info *comp_unit_die,
1767 enum language pretend_language);
93311388 1768
68dc6402 1769static void free_heap_comp_unit (void *);
ae038cb0
DJ
1770
1771static void free_cached_comp_units (void *);
1772
1773static void age_cached_comp_units (void);
1774
dee91e82 1775static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1776
f792889a
DJ
1777static struct type *set_die_type (struct die_info *, struct type *,
1778 struct dwarf2_cu *);
1c379e20 1779
ae038cb0
DJ
1780static void create_all_comp_units (struct objfile *);
1781
0e50663e 1782static int create_all_type_units (struct objfile *);
1fd400ff 1783
95554aad
TT
1784static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1785 enum language);
10b3939b 1786
95554aad
TT
1787static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1788 enum language);
10b3939b 1789
f4dc4d17
DE
1790static void process_full_type_unit (struct dwarf2_per_cu_data *,
1791 enum language);
1792
10b3939b
DJ
1793static void dwarf2_add_dependence (struct dwarf2_cu *,
1794 struct dwarf2_per_cu_data *);
1795
ae038cb0
DJ
1796static void dwarf2_mark (struct dwarf2_cu *);
1797
1798static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1799
b64f50a1 1800static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1801 struct dwarf2_per_cu_data *);
673bfd45 1802
f792889a 1803static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1804
9291a0cd
TT
1805static void dwarf2_release_queue (void *dummy);
1806
95554aad
TT
1807static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1808 enum language pretend_language);
1809
a0f42c21 1810static void process_queue (void);
9291a0cd
TT
1811
1812static void find_file_and_directory (struct die_info *die,
1813 struct dwarf2_cu *cu,
15d034d0 1814 const char **name, const char **comp_dir);
9291a0cd
TT
1815
1816static char *file_full_name (int file, struct line_header *lh,
1817 const char *comp_dir);
1818
d521ce57 1819static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1820 (struct comp_unit_head *header,
1821 struct dwarf2_section_info *section,
d521ce57 1822 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1823 int is_debug_types_section);
1824
fd820528 1825static void init_cutu_and_read_dies
f4dc4d17
DE
1826 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1827 int use_existing_cu, int keep,
3019eac3
DE
1828 die_reader_func_ftype *die_reader_func, void *data);
1829
dee91e82
DE
1830static void init_cutu_and_read_dies_simple
1831 (struct dwarf2_per_cu_data *this_cu,
1832 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1833
673bfd45 1834static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1835
3019eac3
DE
1836static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1837
57d63ce2
DE
1838static struct dwo_unit *lookup_dwo_unit_in_dwp
1839 (struct dwp_file *dwp_file, const char *comp_dir,
1840 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1841
1842static struct dwp_file *get_dwp_file (void);
1843
3019eac3 1844static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1845 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1846
1847static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1848 (struct signatured_type *, const char *, const char *);
3019eac3 1849
89e63ee4
DE
1850static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1851
3019eac3
DE
1852static void free_dwo_file_cleanup (void *);
1853
95554aad
TT
1854static void process_cu_includes (void);
1855
1b80a9fa 1856static void check_producer (struct dwarf2_cu *cu);
4390d890
DE
1857\f
1858/* Various complaints about symbol reading that don't abort the process. */
1859
1860static void
1861dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1862{
1863 complaint (&symfile_complaints,
1864 _("statement list doesn't fit in .debug_line section"));
1865}
1866
1867static void
1868dwarf2_debug_line_missing_file_complaint (void)
1869{
1870 complaint (&symfile_complaints,
1871 _(".debug_line section has line data without a file"));
1872}
1873
1874static void
1875dwarf2_debug_line_missing_end_sequence_complaint (void)
1876{
1877 complaint (&symfile_complaints,
1878 _(".debug_line section has line "
1879 "program sequence without an end"));
1880}
1881
1882static void
1883dwarf2_complex_location_expr_complaint (void)
1884{
1885 complaint (&symfile_complaints, _("location expression too complex"));
1886}
1887
1888static void
1889dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1890 int arg3)
1891{
1892 complaint (&symfile_complaints,
1893 _("const value length mismatch for '%s', got %d, expected %d"),
1894 arg1, arg2, arg3);
1895}
1896
1897static void
1898dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1899{
1900 complaint (&symfile_complaints,
1901 _("debug info runs off end of %s section"
1902 " [in module %s]"),
a32a8923
DE
1903 get_section_name (section),
1904 get_section_file_name (section));
4390d890 1905}
1b80a9fa 1906
4390d890
DE
1907static void
1908dwarf2_macro_malformed_definition_complaint (const char *arg1)
1909{
1910 complaint (&symfile_complaints,
1911 _("macro debug info contains a "
1912 "malformed macro definition:\n`%s'"),
1913 arg1);
1914}
1915
1916static void
1917dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1918{
1919 complaint (&symfile_complaints,
1920 _("invalid attribute class or form for '%s' in '%s'"),
1921 arg1, arg2);
1922}
1923\f
9291a0cd
TT
1924#if WORDS_BIGENDIAN
1925
1926/* Convert VALUE between big- and little-endian. */
1927static offset_type
1928byte_swap (offset_type value)
1929{
1930 offset_type result;
1931
1932 result = (value & 0xff) << 24;
1933 result |= (value & 0xff00) << 8;
1934 result |= (value & 0xff0000) >> 8;
1935 result |= (value & 0xff000000) >> 24;
1936 return result;
1937}
1938
1939#define MAYBE_SWAP(V) byte_swap (V)
1940
1941#else
1942#define MAYBE_SWAP(V) (V)
1943#endif /* WORDS_BIGENDIAN */
1944
31aa7e4e
JB
1945/* Read the given attribute value as an address, taking the attribute's
1946 form into account. */
1947
1948static CORE_ADDR
1949attr_value_as_address (struct attribute *attr)
1950{
1951 CORE_ADDR addr;
1952
1953 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1954 {
1955 /* Aside from a few clearly defined exceptions, attributes that
1956 contain an address must always be in DW_FORM_addr form.
1957 Unfortunately, some compilers happen to be violating this
1958 requirement by encoding addresses using other forms, such
1959 as DW_FORM_data4 for example. For those broken compilers,
1960 we try to do our best, without any guarantee of success,
1961 to interpret the address correctly. It would also be nice
1962 to generate a complaint, but that would require us to maintain
1963 a list of legitimate cases where a non-address form is allowed,
1964 as well as update callers to pass in at least the CU's DWARF
1965 version. This is more overhead than what we're willing to
1966 expand for a pretty rare case. */
1967 addr = DW_UNSND (attr);
1968 }
1969 else
1970 addr = DW_ADDR (attr);
1971
1972 return addr;
1973}
1974
9291a0cd
TT
1975/* The suffix for an index file. */
1976#define INDEX_SUFFIX ".gdb-index"
1977
c906108c 1978/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
1979 information and return true if we have enough to do something.
1980 NAMES points to the dwarf2 section names, or is NULL if the standard
1981 ELF names are used. */
c906108c
SS
1982
1983int
251d32d9
TG
1984dwarf2_has_info (struct objfile *objfile,
1985 const struct dwarf2_debug_sections *names)
c906108c 1986{
be391dca
TT
1987 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1988 if (!dwarf2_per_objfile)
1989 {
1990 /* Initialize per-objfile state. */
1991 struct dwarf2_per_objfile *data
1992 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1993
be391dca
TT
1994 memset (data, 0, sizeof (*data));
1995 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1996 dwarf2_per_objfile = data;
6502dd73 1997
251d32d9
TG
1998 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1999 (void *) names);
be391dca
TT
2000 dwarf2_per_objfile->objfile = objfile;
2001 }
73869dc2
DE
2002 return (!dwarf2_per_objfile->info.is_virtual
2003 && dwarf2_per_objfile->info.s.asection != NULL
2004 && !dwarf2_per_objfile->abbrev.is_virtual
2005 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2006}
2007
2008/* Return the containing section of virtual section SECTION. */
2009
2010static struct dwarf2_section_info *
2011get_containing_section (const struct dwarf2_section_info *section)
2012{
2013 gdb_assert (section->is_virtual);
2014 return section->s.containing_section;
c906108c
SS
2015}
2016
a32a8923
DE
2017/* Return the bfd owner of SECTION. */
2018
2019static struct bfd *
2020get_section_bfd_owner (const struct dwarf2_section_info *section)
2021{
73869dc2
DE
2022 if (section->is_virtual)
2023 {
2024 section = get_containing_section (section);
2025 gdb_assert (!section->is_virtual);
2026 }
2027 return section->s.asection->owner;
a32a8923
DE
2028}
2029
2030/* Return the bfd section of SECTION.
2031 Returns NULL if the section is not present. */
2032
2033static asection *
2034get_section_bfd_section (const struct dwarf2_section_info *section)
2035{
73869dc2
DE
2036 if (section->is_virtual)
2037 {
2038 section = get_containing_section (section);
2039 gdb_assert (!section->is_virtual);
2040 }
2041 return section->s.asection;
a32a8923
DE
2042}
2043
2044/* Return the name of SECTION. */
2045
2046static const char *
2047get_section_name (const struct dwarf2_section_info *section)
2048{
2049 asection *sectp = get_section_bfd_section (section);
2050
2051 gdb_assert (sectp != NULL);
2052 return bfd_section_name (get_section_bfd_owner (section), sectp);
2053}
2054
2055/* Return the name of the file SECTION is in. */
2056
2057static const char *
2058get_section_file_name (const struct dwarf2_section_info *section)
2059{
2060 bfd *abfd = get_section_bfd_owner (section);
2061
2062 return bfd_get_filename (abfd);
2063}
2064
2065/* Return the id of SECTION.
2066 Returns 0 if SECTION doesn't exist. */
2067
2068static int
2069get_section_id (const struct dwarf2_section_info *section)
2070{
2071 asection *sectp = get_section_bfd_section (section);
2072
2073 if (sectp == NULL)
2074 return 0;
2075 return sectp->id;
2076}
2077
2078/* Return the flags of SECTION.
73869dc2 2079 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2080
2081static int
2082get_section_flags (const struct dwarf2_section_info *section)
2083{
2084 asection *sectp = get_section_bfd_section (section);
2085
2086 gdb_assert (sectp != NULL);
2087 return bfd_get_section_flags (sectp->owner, sectp);
2088}
2089
251d32d9
TG
2090/* When loading sections, we look either for uncompressed section or for
2091 compressed section names. */
233a11ab
CS
2092
2093static int
251d32d9
TG
2094section_is_p (const char *section_name,
2095 const struct dwarf2_section_names *names)
233a11ab 2096{
251d32d9
TG
2097 if (names->normal != NULL
2098 && strcmp (section_name, names->normal) == 0)
2099 return 1;
2100 if (names->compressed != NULL
2101 && strcmp (section_name, names->compressed) == 0)
2102 return 1;
2103 return 0;
233a11ab
CS
2104}
2105
c906108c
SS
2106/* This function is mapped across the sections and remembers the
2107 offset and size of each of the debugging sections we are interested
2108 in. */
2109
2110static void
251d32d9 2111dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2112{
251d32d9 2113 const struct dwarf2_debug_sections *names;
dc7650b8 2114 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2115
2116 if (vnames == NULL)
2117 names = &dwarf2_elf_names;
2118 else
2119 names = (const struct dwarf2_debug_sections *) vnames;
2120
dc7650b8
JK
2121 if ((aflag & SEC_HAS_CONTENTS) == 0)
2122 {
2123 }
2124 else if (section_is_p (sectp->name, &names->info))
c906108c 2125 {
73869dc2 2126 dwarf2_per_objfile->info.s.asection = sectp;
dce234bc 2127 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2128 }
251d32d9 2129 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2130 {
73869dc2 2131 dwarf2_per_objfile->abbrev.s.asection = sectp;
dce234bc 2132 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2133 }
251d32d9 2134 else if (section_is_p (sectp->name, &names->line))
c906108c 2135 {
73869dc2 2136 dwarf2_per_objfile->line.s.asection = sectp;
dce234bc 2137 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2138 }
251d32d9 2139 else if (section_is_p (sectp->name, &names->loc))
c906108c 2140 {
73869dc2 2141 dwarf2_per_objfile->loc.s.asection = sectp;
dce234bc 2142 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2143 }
251d32d9 2144 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2145 {
73869dc2 2146 dwarf2_per_objfile->macinfo.s.asection = sectp;
dce234bc 2147 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2148 }
cf2c3c16
TT
2149 else if (section_is_p (sectp->name, &names->macro))
2150 {
73869dc2 2151 dwarf2_per_objfile->macro.s.asection = sectp;
cf2c3c16
TT
2152 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2153 }
251d32d9 2154 else if (section_is_p (sectp->name, &names->str))
c906108c 2155 {
73869dc2 2156 dwarf2_per_objfile->str.s.asection = sectp;
dce234bc 2157 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2158 }
3019eac3
DE
2159 else if (section_is_p (sectp->name, &names->addr))
2160 {
73869dc2 2161 dwarf2_per_objfile->addr.s.asection = sectp;
3019eac3
DE
2162 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2163 }
251d32d9 2164 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2165 {
73869dc2 2166 dwarf2_per_objfile->frame.s.asection = sectp;
dce234bc 2167 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2168 }
251d32d9 2169 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2170 {
73869dc2 2171 dwarf2_per_objfile->eh_frame.s.asection = sectp;
dc7650b8 2172 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2173 }
251d32d9 2174 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2175 {
73869dc2 2176 dwarf2_per_objfile->ranges.s.asection = sectp;
dce234bc 2177 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2178 }
251d32d9 2179 else if (section_is_p (sectp->name, &names->types))
348e048f 2180 {
8b70b953
TT
2181 struct dwarf2_section_info type_section;
2182
2183 memset (&type_section, 0, sizeof (type_section));
73869dc2 2184 type_section.s.asection = sectp;
8b70b953
TT
2185 type_section.size = bfd_get_section_size (sectp);
2186
2187 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2188 &type_section);
348e048f 2189 }
251d32d9 2190 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2191 {
73869dc2 2192 dwarf2_per_objfile->gdb_index.s.asection = sectp;
9291a0cd
TT
2193 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2194 }
dce234bc 2195
72dca2f5
FR
2196 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2197 && bfd_section_vma (abfd, sectp) == 0)
2198 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2199}
2200
fceca515
DE
2201/* A helper function that decides whether a section is empty,
2202 or not present. */
9e0ac564
TT
2203
2204static int
19ac8c2e 2205dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2206{
73869dc2
DE
2207 if (section->is_virtual)
2208 return section->size == 0;
2209 return section->s.asection == NULL || section->size == 0;
9e0ac564
TT
2210}
2211
3019eac3
DE
2212/* Read the contents of the section INFO.
2213 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2214 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2215 of the DWO file.
dce234bc 2216 If the section is compressed, uncompress it before returning. */
c906108c 2217
dce234bc
PP
2218static void
2219dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2220{
a32a8923 2221 asection *sectp;
3019eac3 2222 bfd *abfd;
dce234bc 2223 gdb_byte *buf, *retbuf;
c906108c 2224
be391dca
TT
2225 if (info->readin)
2226 return;
dce234bc 2227 info->buffer = NULL;
be391dca 2228 info->readin = 1;
188dd5d6 2229
9e0ac564 2230 if (dwarf2_section_empty_p (info))
dce234bc 2231 return;
c906108c 2232
a32a8923 2233 sectp = get_section_bfd_section (info);
3019eac3 2234
73869dc2
DE
2235 /* If this is a virtual section we need to read in the real one first. */
2236 if (info->is_virtual)
2237 {
2238 struct dwarf2_section_info *containing_section =
2239 get_containing_section (info);
2240
2241 gdb_assert (sectp != NULL);
2242 if ((sectp->flags & SEC_RELOC) != 0)
2243 {
2244 error (_("Dwarf Error: DWP format V2 with relocations is not"
2245 " supported in section %s [in module %s]"),
2246 get_section_name (info), get_section_file_name (info));
2247 }
2248 dwarf2_read_section (objfile, containing_section);
2249 /* Other code should have already caught virtual sections that don't
2250 fit. */
2251 gdb_assert (info->virtual_offset + info->size
2252 <= containing_section->size);
2253 /* If the real section is empty or there was a problem reading the
2254 section we shouldn't get here. */
2255 gdb_assert (containing_section->buffer != NULL);
2256 info->buffer = containing_section->buffer + info->virtual_offset;
2257 return;
2258 }
2259
4bf44c1c
TT
2260 /* If the section has relocations, we must read it ourselves.
2261 Otherwise we attach it to the BFD. */
2262 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2263 {
d521ce57 2264 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2265 return;
dce234bc 2266 }
dce234bc 2267
4bf44c1c
TT
2268 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2269 info->buffer = buf;
dce234bc
PP
2270
2271 /* When debugging .o files, we may need to apply relocations; see
2272 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2273 We never compress sections in .o files, so we only need to
2274 try this when the section is not compressed. */
ac8035ab 2275 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2276 if (retbuf != NULL)
2277 {
2278 info->buffer = retbuf;
2279 return;
2280 }
2281
a32a8923
DE
2282 abfd = get_section_bfd_owner (info);
2283 gdb_assert (abfd != NULL);
2284
dce234bc
PP
2285 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2286 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2287 {
2288 error (_("Dwarf Error: Can't read DWARF data"
2289 " in section %s [in module %s]"),
2290 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2291 }
dce234bc
PP
2292}
2293
9e0ac564
TT
2294/* A helper function that returns the size of a section in a safe way.
2295 If you are positive that the section has been read before using the
2296 size, then it is safe to refer to the dwarf2_section_info object's
2297 "size" field directly. In other cases, you must call this
2298 function, because for compressed sections the size field is not set
2299 correctly until the section has been read. */
2300
2301static bfd_size_type
2302dwarf2_section_size (struct objfile *objfile,
2303 struct dwarf2_section_info *info)
2304{
2305 if (!info->readin)
2306 dwarf2_read_section (objfile, info);
2307 return info->size;
2308}
2309
dce234bc 2310/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2311 SECTION_NAME. */
af34e669 2312
dce234bc 2313void
3017a003
TG
2314dwarf2_get_section_info (struct objfile *objfile,
2315 enum dwarf2_section_enum sect,
d521ce57 2316 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2317 bfd_size_type *sizep)
2318{
2319 struct dwarf2_per_objfile *data
2320 = objfile_data (objfile, dwarf2_objfile_data_key);
2321 struct dwarf2_section_info *info;
a3b2a86b
TT
2322
2323 /* We may see an objfile without any DWARF, in which case we just
2324 return nothing. */
2325 if (data == NULL)
2326 {
2327 *sectp = NULL;
2328 *bufp = NULL;
2329 *sizep = 0;
2330 return;
2331 }
3017a003
TG
2332 switch (sect)
2333 {
2334 case DWARF2_DEBUG_FRAME:
2335 info = &data->frame;
2336 break;
2337 case DWARF2_EH_FRAME:
2338 info = &data->eh_frame;
2339 break;
2340 default:
2341 gdb_assert_not_reached ("unexpected section");
2342 }
dce234bc 2343
9e0ac564 2344 dwarf2_read_section (objfile, info);
dce234bc 2345
a32a8923 2346 *sectp = get_section_bfd_section (info);
dce234bc
PP
2347 *bufp = info->buffer;
2348 *sizep = info->size;
2349}
2350
36586728
TT
2351/* A helper function to find the sections for a .dwz file. */
2352
2353static void
2354locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2355{
2356 struct dwz_file *dwz_file = arg;
2357
2358 /* Note that we only support the standard ELF names, because .dwz
2359 is ELF-only (at the time of writing). */
2360 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2361 {
73869dc2 2362 dwz_file->abbrev.s.asection = sectp;
36586728
TT
2363 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2366 {
73869dc2 2367 dwz_file->info.s.asection = sectp;
36586728
TT
2368 dwz_file->info.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2371 {
73869dc2 2372 dwz_file->str.s.asection = sectp;
36586728
TT
2373 dwz_file->str.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2376 {
73869dc2 2377 dwz_file->line.s.asection = sectp;
36586728
TT
2378 dwz_file->line.size = bfd_get_section_size (sectp);
2379 }
2380 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2381 {
73869dc2 2382 dwz_file->macro.s.asection = sectp;
36586728
TT
2383 dwz_file->macro.size = bfd_get_section_size (sectp);
2384 }
2ec9a5e0
TT
2385 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2386 {
73869dc2 2387 dwz_file->gdb_index.s.asection = sectp;
2ec9a5e0
TT
2388 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2389 }
36586728
TT
2390}
2391
4db1a1dc
TT
2392/* Open the separate '.dwz' debug file, if needed. Return NULL if
2393 there is no .gnu_debugaltlink section in the file. Error if there
2394 is such a section but the file cannot be found. */
36586728
TT
2395
2396static struct dwz_file *
2397dwarf2_get_dwz_file (void)
2398{
4db1a1dc
TT
2399 bfd *dwz_bfd;
2400 char *data;
36586728
TT
2401 struct cleanup *cleanup;
2402 const char *filename;
2403 struct dwz_file *result;
acd13123 2404 bfd_size_type buildid_len_arg;
dc294be5
TT
2405 size_t buildid_len;
2406 bfd_byte *buildid;
36586728
TT
2407
2408 if (dwarf2_per_objfile->dwz_file != NULL)
2409 return dwarf2_per_objfile->dwz_file;
2410
4db1a1dc
TT
2411 bfd_set_error (bfd_error_no_error);
2412 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2413 &buildid_len_arg, &buildid);
4db1a1dc
TT
2414 if (data == NULL)
2415 {
2416 if (bfd_get_error () == bfd_error_no_error)
2417 return NULL;
2418 error (_("could not read '.gnu_debugaltlink' section: %s"),
2419 bfd_errmsg (bfd_get_error ()));
2420 }
36586728 2421 cleanup = make_cleanup (xfree, data);
dc294be5 2422 make_cleanup (xfree, buildid);
36586728 2423
acd13123
TT
2424 buildid_len = (size_t) buildid_len_arg;
2425
f9d83a0b 2426 filename = (const char *) data;
36586728
TT
2427 if (!IS_ABSOLUTE_PATH (filename))
2428 {
4262abfb 2429 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2430 char *rel;
2431
2432 make_cleanup (xfree, abs);
2433 abs = ldirname (abs);
2434 make_cleanup (xfree, abs);
2435
2436 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2437 make_cleanup (xfree, rel);
2438 filename = rel;
2439 }
2440
dc294be5
TT
2441 /* First try the file name given in the section. If that doesn't
2442 work, try to use the build-id instead. */
36586728 2443 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2444 if (dwz_bfd != NULL)
36586728 2445 {
dc294be5
TT
2446 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2447 {
2448 gdb_bfd_unref (dwz_bfd);
2449 dwz_bfd = NULL;
2450 }
36586728
TT
2451 }
2452
dc294be5
TT
2453 if (dwz_bfd == NULL)
2454 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2455
2456 if (dwz_bfd == NULL)
2457 error (_("could not find '.gnu_debugaltlink' file for %s"),
2458 objfile_name (dwarf2_per_objfile->objfile));
2459
36586728
TT
2460 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2461 struct dwz_file);
2462 result->dwz_bfd = dwz_bfd;
2463
2464 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2465
2466 do_cleanups (cleanup);
2467
13aaf454 2468 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2469 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2470 return result;
2471}
9291a0cd 2472\f
7b9f3c50
DE
2473/* DWARF quick_symbols_functions support. */
2474
2475/* TUs can share .debug_line entries, and there can be a lot more TUs than
2476 unique line tables, so we maintain a separate table of all .debug_line
2477 derived entries to support the sharing.
2478 All the quick functions need is the list of file names. We discard the
2479 line_header when we're done and don't need to record it here. */
2480struct quick_file_names
2481{
094b34ac
DE
2482 /* The data used to construct the hash key. */
2483 struct stmt_list_hash hash;
7b9f3c50
DE
2484
2485 /* The number of entries in file_names, real_names. */
2486 unsigned int num_file_names;
2487
2488 /* The file names from the line table, after being run through
2489 file_full_name. */
2490 const char **file_names;
2491
2492 /* The file names from the line table after being run through
2493 gdb_realpath. These are computed lazily. */
2494 const char **real_names;
2495};
2496
2497/* When using the index (and thus not using psymtabs), each CU has an
2498 object of this type. This is used to hold information needed by
2499 the various "quick" methods. */
2500struct dwarf2_per_cu_quick_data
2501{
2502 /* The file table. This can be NULL if there was no file table
2503 or it's currently not read in.
2504 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2505 struct quick_file_names *file_names;
2506
2507 /* The corresponding symbol table. This is NULL if symbols for this
2508 CU have not yet been read. */
2509 struct symtab *symtab;
2510
2511 /* A temporary mark bit used when iterating over all CUs in
2512 expand_symtabs_matching. */
2513 unsigned int mark : 1;
2514
2515 /* True if we've tried to read the file table and found there isn't one.
2516 There will be no point in trying to read it again next time. */
2517 unsigned int no_file_data : 1;
2518};
2519
094b34ac
DE
2520/* Utility hash function for a stmt_list_hash. */
2521
2522static hashval_t
2523hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2524{
2525 hashval_t v = 0;
2526
2527 if (stmt_list_hash->dwo_unit != NULL)
2528 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2529 v += stmt_list_hash->line_offset.sect_off;
2530 return v;
2531}
2532
2533/* Utility equality function for a stmt_list_hash. */
2534
2535static int
2536eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2537 const struct stmt_list_hash *rhs)
2538{
2539 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2540 return 0;
2541 if (lhs->dwo_unit != NULL
2542 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2543 return 0;
2544
2545 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2546}
2547
7b9f3c50
DE
2548/* Hash function for a quick_file_names. */
2549
2550static hashval_t
2551hash_file_name_entry (const void *e)
2552{
2553 const struct quick_file_names *file_data = e;
2554
094b34ac 2555 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2556}
2557
2558/* Equality function for a quick_file_names. */
2559
2560static int
2561eq_file_name_entry (const void *a, const void *b)
2562{
2563 const struct quick_file_names *ea = a;
2564 const struct quick_file_names *eb = b;
2565
094b34ac 2566 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2567}
2568
2569/* Delete function for a quick_file_names. */
2570
2571static void
2572delete_file_name_entry (void *e)
2573{
2574 struct quick_file_names *file_data = e;
2575 int i;
2576
2577 for (i = 0; i < file_data->num_file_names; ++i)
2578 {
2579 xfree ((void*) file_data->file_names[i]);
2580 if (file_data->real_names)
2581 xfree ((void*) file_data->real_names[i]);
2582 }
2583
2584 /* The space for the struct itself lives on objfile_obstack,
2585 so we don't free it here. */
2586}
2587
2588/* Create a quick_file_names hash table. */
2589
2590static htab_t
2591create_quick_file_names_table (unsigned int nr_initial_entries)
2592{
2593 return htab_create_alloc (nr_initial_entries,
2594 hash_file_name_entry, eq_file_name_entry,
2595 delete_file_name_entry, xcalloc, xfree);
2596}
9291a0cd 2597
918dd910
JK
2598/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2599 have to be created afterwards. You should call age_cached_comp_units after
2600 processing PER_CU->CU. dw2_setup must have been already called. */
2601
2602static void
2603load_cu (struct dwarf2_per_cu_data *per_cu)
2604{
3019eac3 2605 if (per_cu->is_debug_types)
e5fe5e75 2606 load_full_type_unit (per_cu);
918dd910 2607 else
95554aad 2608 load_full_comp_unit (per_cu, language_minimal);
918dd910 2609
918dd910 2610 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
2611
2612 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2613}
2614
a0f42c21 2615/* Read in the symbols for PER_CU. */
2fdf6df6 2616
9291a0cd 2617static void
a0f42c21 2618dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2619{
2620 struct cleanup *back_to;
2621
f4dc4d17
DE
2622 /* Skip type_unit_groups, reading the type units they contain
2623 is handled elsewhere. */
2624 if (IS_TYPE_UNIT_GROUP (per_cu))
2625 return;
2626
9291a0cd
TT
2627 back_to = make_cleanup (dwarf2_release_queue, NULL);
2628
95554aad
TT
2629 if (dwarf2_per_objfile->using_index
2630 ? per_cu->v.quick->symtab == NULL
2631 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2632 {
2633 queue_comp_unit (per_cu, language_minimal);
2634 load_cu (per_cu);
89e63ee4
DE
2635
2636 /* If we just loaded a CU from a DWO, and we're working with an index
2637 that may badly handle TUs, load all the TUs in that DWO as well.
2638 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2639 if (!per_cu->is_debug_types
2640 && per_cu->cu->dwo_unit != NULL
2641 && dwarf2_per_objfile->index_table != NULL
2642 && dwarf2_per_objfile->index_table->version <= 7
2643 /* DWP files aren't supported yet. */
2644 && get_dwp_file () == NULL)
2645 queue_and_load_all_dwo_tus (per_cu);
95554aad 2646 }
9291a0cd 2647
a0f42c21 2648 process_queue ();
9291a0cd
TT
2649
2650 /* Age the cache, releasing compilation units that have not
2651 been used recently. */
2652 age_cached_comp_units ();
2653
2654 do_cleanups (back_to);
2655}
2656
2657/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2658 the objfile from which this CU came. Returns the resulting symbol
2659 table. */
2fdf6df6 2660
9291a0cd 2661static struct symtab *
a0f42c21 2662dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2663{
95554aad 2664 gdb_assert (dwarf2_per_objfile->using_index);
9291a0cd
TT
2665 if (!per_cu->v.quick->symtab)
2666 {
2667 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2668 increment_reading_symtab ();
a0f42c21 2669 dw2_do_instantiate_symtab (per_cu);
95554aad 2670 process_cu_includes ();
9291a0cd
TT
2671 do_cleanups (back_to);
2672 }
2673 return per_cu->v.quick->symtab;
2674}
2675
f4dc4d17
DE
2676/* Return the CU given its index.
2677
2678 This is intended for loops like:
2679
2680 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2681 + dwarf2_per_objfile->n_type_units); ++i)
2682 {
2683 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2684
2685 ...;
2686 }
2687*/
2fdf6df6 2688
1fd400ff
TT
2689static struct dwarf2_per_cu_data *
2690dw2_get_cu (int index)
2691{
2692 if (index >= dwarf2_per_objfile->n_comp_units)
2693 {
f4dc4d17 2694 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2695 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2696 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2697 }
2698
2699 return dwarf2_per_objfile->all_comp_units[index];
2700}
2701
2702/* Return the primary CU given its index.
2703 The difference between this function and dw2_get_cu is in the handling
2704 of type units (TUs). Here we return the type_unit_group object.
2705
2706 This is intended for loops like:
2707
2708 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2709 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2710 {
2711 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2712
2713 ...;
2714 }
2715*/
2716
2717static struct dwarf2_per_cu_data *
2718dw2_get_primary_cu (int index)
2719{
2720 if (index >= dwarf2_per_objfile->n_comp_units)
2721 {
1fd400ff 2722 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2723 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2724 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
1fd400ff 2725 }
f4dc4d17 2726
1fd400ff
TT
2727 return dwarf2_per_objfile->all_comp_units[index];
2728}
2729
2ec9a5e0
TT
2730/* A helper for create_cus_from_index that handles a given list of
2731 CUs. */
2fdf6df6 2732
74a0d9f6 2733static void
2ec9a5e0
TT
2734create_cus_from_index_list (struct objfile *objfile,
2735 const gdb_byte *cu_list, offset_type n_elements,
2736 struct dwarf2_section_info *section,
2737 int is_dwz,
2738 int base_offset)
9291a0cd
TT
2739{
2740 offset_type i;
9291a0cd 2741
2ec9a5e0 2742 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2743 {
2744 struct dwarf2_per_cu_data *the_cu;
2745 ULONGEST offset, length;
2746
74a0d9f6
JK
2747 gdb_static_assert (sizeof (ULONGEST) >= 8);
2748 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2749 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2750 cu_list += 2 * 8;
2751
2752 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2753 struct dwarf2_per_cu_data);
b64f50a1 2754 the_cu->offset.sect_off = offset;
9291a0cd
TT
2755 the_cu->length = length;
2756 the_cu->objfile = objfile;
8a0459fd 2757 the_cu->section = section;
9291a0cd
TT
2758 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2759 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2760 the_cu->is_dwz = is_dwz;
2761 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2762 }
9291a0cd
TT
2763}
2764
2ec9a5e0 2765/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2766 the CU objects for this objfile. */
2ec9a5e0 2767
74a0d9f6 2768static void
2ec9a5e0
TT
2769create_cus_from_index (struct objfile *objfile,
2770 const gdb_byte *cu_list, offset_type cu_list_elements,
2771 const gdb_byte *dwz_list, offset_type dwz_elements)
2772{
2773 struct dwz_file *dwz;
2774
2775 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2776 dwarf2_per_objfile->all_comp_units
2777 = obstack_alloc (&objfile->objfile_obstack,
2778 dwarf2_per_objfile->n_comp_units
2779 * sizeof (struct dwarf2_per_cu_data *));
2780
74a0d9f6
JK
2781 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2782 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2783
2784 if (dwz_elements == 0)
74a0d9f6 2785 return;
2ec9a5e0
TT
2786
2787 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2788 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2789 cu_list_elements / 2);
2ec9a5e0
TT
2790}
2791
1fd400ff 2792/* Create the signatured type hash table from the index. */
673bfd45 2793
74a0d9f6 2794static void
673bfd45 2795create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2796 struct dwarf2_section_info *section,
673bfd45
DE
2797 const gdb_byte *bytes,
2798 offset_type elements)
1fd400ff
TT
2799{
2800 offset_type i;
673bfd45 2801 htab_t sig_types_hash;
1fd400ff 2802
d467dd73
DE
2803 dwarf2_per_objfile->n_type_units = elements / 3;
2804 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
2805 = xmalloc (dwarf2_per_objfile->n_type_units
2806 * sizeof (struct signatured_type *));
1fd400ff 2807
673bfd45 2808 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2809
2810 for (i = 0; i < elements; i += 3)
2811 {
52dc124a
DE
2812 struct signatured_type *sig_type;
2813 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2814 void **slot;
2815
74a0d9f6
JK
2816 gdb_static_assert (sizeof (ULONGEST) >= 8);
2817 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2818 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2819 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2820 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2821 bytes += 3 * 8;
2822
52dc124a 2823 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2824 struct signatured_type);
52dc124a 2825 sig_type->signature = signature;
3019eac3
DE
2826 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2827 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2828 sig_type->per_cu.section = section;
52dc124a
DE
2829 sig_type->per_cu.offset.sect_off = offset;
2830 sig_type->per_cu.objfile = objfile;
2831 sig_type->per_cu.v.quick
1fd400ff
TT
2832 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2833 struct dwarf2_per_cu_quick_data);
2834
52dc124a
DE
2835 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2836 *slot = sig_type;
1fd400ff 2837
b4dd5633 2838 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2839 }
2840
673bfd45 2841 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2842}
2843
9291a0cd
TT
2844/* Read the address map data from the mapped index, and use it to
2845 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2846
9291a0cd
TT
2847static void
2848create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2849{
2850 const gdb_byte *iter, *end;
2851 struct obstack temp_obstack;
2852 struct addrmap *mutable_map;
2853 struct cleanup *cleanup;
2854 CORE_ADDR baseaddr;
2855
2856 obstack_init (&temp_obstack);
2857 cleanup = make_cleanup_obstack_free (&temp_obstack);
2858 mutable_map = addrmap_create_mutable (&temp_obstack);
2859
2860 iter = index->address_table;
2861 end = iter + index->address_table_size;
2862
2863 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2864
2865 while (iter < end)
2866 {
2867 ULONGEST hi, lo, cu_index;
2868 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2869 iter += 8;
2870 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2871 iter += 8;
2872 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2873 iter += 4;
f652bce2 2874
24a55014 2875 if (lo > hi)
f652bce2 2876 {
24a55014
DE
2877 complaint (&symfile_complaints,
2878 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2879 hex_string (lo), hex_string (hi));
24a55014 2880 continue;
f652bce2 2881 }
24a55014
DE
2882
2883 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2884 {
2885 complaint (&symfile_complaints,
2886 _(".gdb_index address table has invalid CU number %u"),
2887 (unsigned) cu_index);
24a55014 2888 continue;
f652bce2 2889 }
24a55014
DE
2890
2891 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2892 dw2_get_cu (cu_index));
9291a0cd
TT
2893 }
2894
2895 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2896 &objfile->objfile_obstack);
2897 do_cleanups (cleanup);
2898}
2899
59d7bcaf
JK
2900/* The hash function for strings in the mapped index. This is the same as
2901 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2902 implementation. This is necessary because the hash function is tied to the
2903 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2904 SYMBOL_HASH_NEXT.
2905
2906 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2907
9291a0cd 2908static hashval_t
559a7a62 2909mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2910{
2911 const unsigned char *str = (const unsigned char *) p;
2912 hashval_t r = 0;
2913 unsigned char c;
2914
2915 while ((c = *str++) != 0)
559a7a62
JK
2916 {
2917 if (index_version >= 5)
2918 c = tolower (c);
2919 r = r * 67 + c - 113;
2920 }
9291a0cd
TT
2921
2922 return r;
2923}
2924
2925/* Find a slot in the mapped index INDEX for the object named NAME.
2926 If NAME is found, set *VEC_OUT to point to the CU vector in the
2927 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2928
9291a0cd
TT
2929static int
2930find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2931 offset_type **vec_out)
2932{
0cf03b49
JK
2933 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2934 offset_type hash;
9291a0cd 2935 offset_type slot, step;
559a7a62 2936 int (*cmp) (const char *, const char *);
9291a0cd 2937
0cf03b49
JK
2938 if (current_language->la_language == language_cplus
2939 || current_language->la_language == language_java
2940 || current_language->la_language == language_fortran)
2941 {
2942 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2943 not contain any. */
2944 const char *paren = strchr (name, '(');
2945
2946 if (paren)
2947 {
2948 char *dup;
2949
2950 dup = xmalloc (paren - name + 1);
2951 memcpy (dup, name, paren - name);
2952 dup[paren - name] = 0;
2953
2954 make_cleanup (xfree, dup);
2955 name = dup;
2956 }
2957 }
2958
559a7a62 2959 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2960 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2961 simulate our NAME being searched is also lowercased. */
2962 hash = mapped_index_string_hash ((index->version == 4
2963 && case_sensitivity == case_sensitive_off
2964 ? 5 : index->version),
2965 name);
2966
3876f04e
DE
2967 slot = hash & (index->symbol_table_slots - 1);
2968 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2969 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2970
2971 for (;;)
2972 {
2973 /* Convert a slot number to an offset into the table. */
2974 offset_type i = 2 * slot;
2975 const char *str;
3876f04e 2976 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2977 {
2978 do_cleanups (back_to);
2979 return 0;
2980 }
9291a0cd 2981
3876f04e 2982 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 2983 if (!cmp (name, str))
9291a0cd
TT
2984 {
2985 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2986 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 2987 do_cleanups (back_to);
9291a0cd
TT
2988 return 1;
2989 }
2990
3876f04e 2991 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2992 }
2993}
2994
2ec9a5e0
TT
2995/* A helper function that reads the .gdb_index from SECTION and fills
2996 in MAP. FILENAME is the name of the file containing the section;
2997 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2998 ok to use deprecated sections.
2999
3000 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3001 out parameters that are filled in with information about the CU and
3002 TU lists in the section.
3003
3004 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3005
9291a0cd 3006static int
2ec9a5e0
TT
3007read_index_from_section (struct objfile *objfile,
3008 const char *filename,
3009 int deprecated_ok,
3010 struct dwarf2_section_info *section,
3011 struct mapped_index *map,
3012 const gdb_byte **cu_list,
3013 offset_type *cu_list_elements,
3014 const gdb_byte **types_list,
3015 offset_type *types_list_elements)
9291a0cd 3016{
948f8e3d 3017 const gdb_byte *addr;
2ec9a5e0 3018 offset_type version;
b3b272e1 3019 offset_type *metadata;
1fd400ff 3020 int i;
9291a0cd 3021
2ec9a5e0 3022 if (dwarf2_section_empty_p (section))
9291a0cd 3023 return 0;
82430852
JK
3024
3025 /* Older elfutils strip versions could keep the section in the main
3026 executable while splitting it for the separate debug info file. */
a32a8923 3027 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3028 return 0;
3029
2ec9a5e0 3030 dwarf2_read_section (objfile, section);
9291a0cd 3031
2ec9a5e0 3032 addr = section->buffer;
9291a0cd 3033 /* Version check. */
1fd400ff 3034 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3035 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3036 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3037 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3038 indices. */
831adc1f 3039 if (version < 4)
481860b3
GB
3040 {
3041 static int warning_printed = 0;
3042 if (!warning_printed)
3043 {
3044 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3045 filename);
481860b3
GB
3046 warning_printed = 1;
3047 }
3048 return 0;
3049 }
3050 /* Index version 4 uses a different hash function than index version
3051 5 and later.
3052
3053 Versions earlier than 6 did not emit psymbols for inlined
3054 functions. Using these files will cause GDB not to be able to
3055 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3056 indices unless the user has done
3057 "set use-deprecated-index-sections on". */
2ec9a5e0 3058 if (version < 6 && !deprecated_ok)
481860b3
GB
3059 {
3060 static int warning_printed = 0;
3061 if (!warning_printed)
3062 {
e615022a
DE
3063 warning (_("\
3064Skipping deprecated .gdb_index section in %s.\n\
3065Do \"set use-deprecated-index-sections on\" before the file is read\n\
3066to use the section anyway."),
2ec9a5e0 3067 filename);
481860b3
GB
3068 warning_printed = 1;
3069 }
3070 return 0;
3071 }
796a7ff8 3072 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3073 of the TU (for symbols coming from TUs),
3074 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3075 Plus gold-generated indices can have duplicate entries for global symbols,
3076 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3077 These are just performance bugs, and we can't distinguish gdb-generated
3078 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3079
481860b3 3080 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3081 longer backward compatible. */
796a7ff8 3082 if (version > 8)
594e8718 3083 return 0;
9291a0cd 3084
559a7a62 3085 map->version = version;
2ec9a5e0 3086 map->total_size = section->size;
9291a0cd
TT
3087
3088 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3089
3090 i = 0;
2ec9a5e0
TT
3091 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3092 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3093 / 8);
1fd400ff
TT
3094 ++i;
3095
2ec9a5e0
TT
3096 *types_list = addr + MAYBE_SWAP (metadata[i]);
3097 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3098 - MAYBE_SWAP (metadata[i]))
3099 / 8);
987d643c 3100 ++i;
1fd400ff
TT
3101
3102 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3103 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3104 - MAYBE_SWAP (metadata[i]));
3105 ++i;
3106
3876f04e
DE
3107 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3108 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3109 - MAYBE_SWAP (metadata[i]))
3110 / (2 * sizeof (offset_type)));
1fd400ff 3111 ++i;
9291a0cd 3112
f9d83a0b 3113 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3114
2ec9a5e0
TT
3115 return 1;
3116}
3117
3118
3119/* Read the index file. If everything went ok, initialize the "quick"
3120 elements of all the CUs and return 1. Otherwise, return 0. */
3121
3122static int
3123dwarf2_read_index (struct objfile *objfile)
3124{
3125 struct mapped_index local_map, *map;
3126 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3127 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3128 struct dwz_file *dwz;
2ec9a5e0 3129
4262abfb 3130 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3131 use_deprecated_index_sections,
3132 &dwarf2_per_objfile->gdb_index, &local_map,
3133 &cu_list, &cu_list_elements,
3134 &types_list, &types_list_elements))
3135 return 0;
3136
0fefef59 3137 /* Don't use the index if it's empty. */
2ec9a5e0 3138 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3139 return 0;
3140
2ec9a5e0
TT
3141 /* If there is a .dwz file, read it so we can get its CU list as
3142 well. */
4db1a1dc
TT
3143 dwz = dwarf2_get_dwz_file ();
3144 if (dwz != NULL)
2ec9a5e0 3145 {
2ec9a5e0
TT
3146 struct mapped_index dwz_map;
3147 const gdb_byte *dwz_types_ignore;
3148 offset_type dwz_types_elements_ignore;
3149
3150 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3151 1,
3152 &dwz->gdb_index, &dwz_map,
3153 &dwz_list, &dwz_list_elements,
3154 &dwz_types_ignore,
3155 &dwz_types_elements_ignore))
3156 {
3157 warning (_("could not read '.gdb_index' section from %s; skipping"),
3158 bfd_get_filename (dwz->dwz_bfd));
3159 return 0;
3160 }
3161 }
3162
74a0d9f6
JK
3163 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3164 dwz_list_elements);
1fd400ff 3165
8b70b953
TT
3166 if (types_list_elements)
3167 {
3168 struct dwarf2_section_info *section;
3169
3170 /* We can only handle a single .debug_types when we have an
3171 index. */
3172 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3173 return 0;
3174
3175 section = VEC_index (dwarf2_section_info_def,
3176 dwarf2_per_objfile->types, 0);
3177
74a0d9f6
JK
3178 create_signatured_type_table_from_index (objfile, section, types_list,
3179 types_list_elements);
8b70b953 3180 }
9291a0cd 3181
2ec9a5e0
TT
3182 create_addrmap_from_index (objfile, &local_map);
3183
3184 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3185 *map = local_map;
9291a0cd
TT
3186
3187 dwarf2_per_objfile->index_table = map;
3188 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3189 dwarf2_per_objfile->quick_file_names_table =
3190 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3191
3192 return 1;
3193}
3194
3195/* A helper for the "quick" functions which sets the global
3196 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3197
9291a0cd
TT
3198static void
3199dw2_setup (struct objfile *objfile)
3200{
3201 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3202 gdb_assert (dwarf2_per_objfile);
3203}
3204
dee91e82 3205/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3206
dee91e82
DE
3207static void
3208dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3209 const gdb_byte *info_ptr,
dee91e82
DE
3210 struct die_info *comp_unit_die,
3211 int has_children,
3212 void *data)
9291a0cd 3213{
dee91e82
DE
3214 struct dwarf2_cu *cu = reader->cu;
3215 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3216 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3217 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3218 struct line_header *lh;
9291a0cd 3219 struct attribute *attr;
dee91e82 3220 int i;
15d034d0 3221 const char *name, *comp_dir;
7b9f3c50
DE
3222 void **slot;
3223 struct quick_file_names *qfn;
3224 unsigned int line_offset;
9291a0cd 3225
0186c6a7
DE
3226 gdb_assert (! this_cu->is_debug_types);
3227
07261596
TT
3228 /* Our callers never want to match partial units -- instead they
3229 will match the enclosing full CU. */
3230 if (comp_unit_die->tag == DW_TAG_partial_unit)
3231 {
3232 this_cu->v.quick->no_file_data = 1;
3233 return;
3234 }
3235
0186c6a7 3236 lh_cu = this_cu;
7b9f3c50
DE
3237 lh = NULL;
3238 slot = NULL;
3239 line_offset = 0;
dee91e82
DE
3240
3241 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3242 if (attr)
3243 {
7b9f3c50
DE
3244 struct quick_file_names find_entry;
3245
3246 line_offset = DW_UNSND (attr);
3247
3248 /* We may have already read in this line header (TU line header sharing).
3249 If we have we're done. */
094b34ac
DE
3250 find_entry.hash.dwo_unit = cu->dwo_unit;
3251 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3252 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3253 &find_entry, INSERT);
3254 if (*slot != NULL)
3255 {
094b34ac 3256 lh_cu->v.quick->file_names = *slot;
dee91e82 3257 return;
7b9f3c50
DE
3258 }
3259
3019eac3 3260 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3261 }
3262 if (lh == NULL)
3263 {
094b34ac 3264 lh_cu->v.quick->no_file_data = 1;
dee91e82 3265 return;
9291a0cd
TT
3266 }
3267
7b9f3c50 3268 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
3269 qfn->hash.dwo_unit = cu->dwo_unit;
3270 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3271 gdb_assert (slot != NULL);
3272 *slot = qfn;
9291a0cd 3273
dee91e82 3274 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3275
7b9f3c50
DE
3276 qfn->num_file_names = lh->num_file_names;
3277 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3278 lh->num_file_names * sizeof (char *));
9291a0cd 3279 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3280 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3281 qfn->real_names = NULL;
9291a0cd 3282
7b9f3c50 3283 free_line_header (lh);
7b9f3c50 3284
094b34ac 3285 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3286}
3287
3288/* A helper for the "quick" functions which attempts to read the line
3289 table for THIS_CU. */
3290
3291static struct quick_file_names *
e4a48d9d 3292dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3293{
0186c6a7
DE
3294 /* This should never be called for TUs. */
3295 gdb_assert (! this_cu->is_debug_types);
3296 /* Nor type unit groups. */
3297 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3298
dee91e82
DE
3299 if (this_cu->v.quick->file_names != NULL)
3300 return this_cu->v.quick->file_names;
3301 /* If we know there is no line data, no point in looking again. */
3302 if (this_cu->v.quick->no_file_data)
3303 return NULL;
3304
0186c6a7 3305 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3306
3307 if (this_cu->v.quick->no_file_data)
3308 return NULL;
3309 return this_cu->v.quick->file_names;
9291a0cd
TT
3310}
3311
3312/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3313 real path for a given file name from the line table. */
2fdf6df6 3314
9291a0cd 3315static const char *
7b9f3c50
DE
3316dw2_get_real_path (struct objfile *objfile,
3317 struct quick_file_names *qfn, int index)
9291a0cd 3318{
7b9f3c50
DE
3319 if (qfn->real_names == NULL)
3320 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
fd0a4d76 3321 qfn->num_file_names, char *);
9291a0cd 3322
7b9f3c50
DE
3323 if (qfn->real_names[index] == NULL)
3324 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3325
7b9f3c50 3326 return qfn->real_names[index];
9291a0cd
TT
3327}
3328
3329static struct symtab *
3330dw2_find_last_source_symtab (struct objfile *objfile)
3331{
3332 int index;
ae2de4f8 3333
9291a0cd
TT
3334 dw2_setup (objfile);
3335 index = dwarf2_per_objfile->n_comp_units - 1;
a0f42c21 3336 return dw2_instantiate_symtab (dw2_get_cu (index));
9291a0cd
TT
3337}
3338
7b9f3c50
DE
3339/* Traversal function for dw2_forget_cached_source_info. */
3340
3341static int
3342dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3343{
7b9f3c50 3344 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3345
7b9f3c50 3346 if (file_data->real_names)
9291a0cd 3347 {
7b9f3c50 3348 int i;
9291a0cd 3349
7b9f3c50 3350 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3351 {
7b9f3c50
DE
3352 xfree ((void*) file_data->real_names[i]);
3353 file_data->real_names[i] = NULL;
9291a0cd
TT
3354 }
3355 }
7b9f3c50
DE
3356
3357 return 1;
3358}
3359
3360static void
3361dw2_forget_cached_source_info (struct objfile *objfile)
3362{
3363 dw2_setup (objfile);
3364
3365 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3366 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3367}
3368
f8eba3c6
TT
3369/* Helper function for dw2_map_symtabs_matching_filename that expands
3370 the symtabs and calls the iterator. */
3371
3372static int
3373dw2_map_expand_apply (struct objfile *objfile,
3374 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3375 const char *name, const char *real_path,
f8eba3c6
TT
3376 int (*callback) (struct symtab *, void *),
3377 void *data)
3378{
3379 struct symtab *last_made = objfile->symtabs;
3380
3381 /* Don't visit already-expanded CUs. */
3382 if (per_cu->v.quick->symtab)
3383 return 0;
3384
3385 /* This may expand more than one symtab, and we want to iterate over
3386 all of them. */
a0f42c21 3387 dw2_instantiate_symtab (per_cu);
f8eba3c6 3388
f5b95b50 3389 return iterate_over_some_symtabs (name, real_path, callback, data,
f8eba3c6
TT
3390 objfile->symtabs, last_made);
3391}
3392
3393/* Implementation of the map_symtabs_matching_filename method. */
3394
9291a0cd 3395static int
f8eba3c6 3396dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3397 const char *real_path,
f8eba3c6
TT
3398 int (*callback) (struct symtab *, void *),
3399 void *data)
9291a0cd
TT
3400{
3401 int i;
c011a4f4 3402 const char *name_basename = lbasename (name);
9291a0cd
TT
3403
3404 dw2_setup (objfile);
ae2de4f8 3405
848e3e78
DE
3406 /* The rule is CUs specify all the files, including those used by
3407 any TU, so there's no need to scan TUs here. */
f4dc4d17 3408
848e3e78 3409 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3410 {
3411 int j;
f4dc4d17 3412 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 3413 struct quick_file_names *file_data;
9291a0cd 3414
3d7bb9d9 3415 /* We only need to look at symtabs not already expanded. */
e254ef6a 3416 if (per_cu->v.quick->symtab)
9291a0cd
TT
3417 continue;
3418
e4a48d9d 3419 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3420 if (file_data == NULL)
9291a0cd
TT
3421 continue;
3422
7b9f3c50 3423 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3424 {
7b9f3c50 3425 const char *this_name = file_data->file_names[j];
da235a7c 3426 const char *this_real_name;
9291a0cd 3427
af529f8f 3428 if (compare_filenames_for_search (this_name, name))
9291a0cd 3429 {
f5b95b50 3430 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3431 callback, data))
3432 return 1;
288e77a7 3433 continue;
4aac40c8 3434 }
9291a0cd 3435
c011a4f4
DE
3436 /* Before we invoke realpath, which can get expensive when many
3437 files are involved, do a quick comparison of the basenames. */
3438 if (! basenames_may_differ
3439 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3440 continue;
3441
da235a7c
JK
3442 this_real_name = dw2_get_real_path (objfile, file_data, j);
3443 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3444 {
da235a7c
JK
3445 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3446 callback, data))
3447 return 1;
288e77a7 3448 continue;
da235a7c 3449 }
9291a0cd 3450
da235a7c
JK
3451 if (real_path != NULL)
3452 {
af529f8f
JK
3453 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3454 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3455 if (this_real_name != NULL
af529f8f 3456 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3457 {
f5b95b50 3458 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3459 callback, data))
3460 return 1;
288e77a7 3461 continue;
9291a0cd
TT
3462 }
3463 }
3464 }
3465 }
3466
9291a0cd
TT
3467 return 0;
3468}
3469
da51c347
DE
3470/* Struct used to manage iterating over all CUs looking for a symbol. */
3471
3472struct dw2_symtab_iterator
9291a0cd 3473{
da51c347
DE
3474 /* The internalized form of .gdb_index. */
3475 struct mapped_index *index;
3476 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3477 int want_specific_block;
3478 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3479 Unused if !WANT_SPECIFIC_BLOCK. */
3480 int block_index;
3481 /* The kind of symbol we're looking for. */
3482 domain_enum domain;
3483 /* The list of CUs from the index entry of the symbol,
3484 or NULL if not found. */
3485 offset_type *vec;
3486 /* The next element in VEC to look at. */
3487 int next;
3488 /* The number of elements in VEC, or zero if there is no match. */
3489 int length;
8943b874
DE
3490 /* Have we seen a global version of the symbol?
3491 If so we can ignore all further global instances.
3492 This is to work around gold/15646, inefficient gold-generated
3493 indices. */
3494 int global_seen;
da51c347 3495};
9291a0cd 3496
da51c347
DE
3497/* Initialize the index symtab iterator ITER.
3498 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3499 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3500
9291a0cd 3501static void
da51c347
DE
3502dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3503 struct mapped_index *index,
3504 int want_specific_block,
3505 int block_index,
3506 domain_enum domain,
3507 const char *name)
3508{
3509 iter->index = index;
3510 iter->want_specific_block = want_specific_block;
3511 iter->block_index = block_index;
3512 iter->domain = domain;
3513 iter->next = 0;
8943b874 3514 iter->global_seen = 0;
da51c347
DE
3515
3516 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3517 iter->length = MAYBE_SWAP (*iter->vec);
3518 else
3519 {
3520 iter->vec = NULL;
3521 iter->length = 0;
3522 }
3523}
3524
3525/* Return the next matching CU or NULL if there are no more. */
3526
3527static struct dwarf2_per_cu_data *
3528dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3529{
3530 for ( ; iter->next < iter->length; ++iter->next)
3531 {
3532 offset_type cu_index_and_attrs =
3533 MAYBE_SWAP (iter->vec[iter->next + 1]);
3534 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3535 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3536 int want_static = iter->block_index != GLOBAL_BLOCK;
3537 /* This value is only valid for index versions >= 7. */
3538 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3539 gdb_index_symbol_kind symbol_kind =
3540 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3541 /* Only check the symbol attributes if they're present.
3542 Indices prior to version 7 don't record them,
3543 and indices >= 7 may elide them for certain symbols
3544 (gold does this). */
3545 int attrs_valid =
3546 (iter->index->version >= 7
3547 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3548
3190f0c6
DE
3549 /* Don't crash on bad data. */
3550 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3551 + dwarf2_per_objfile->n_type_units))
3552 {
3553 complaint (&symfile_complaints,
3554 _(".gdb_index entry has bad CU index"
4262abfb
JK
3555 " [in module %s]"),
3556 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3557 continue;
3558 }
3559
3560 per_cu = dw2_get_cu (cu_index);
3561
da51c347
DE
3562 /* Skip if already read in. */
3563 if (per_cu->v.quick->symtab)
3564 continue;
3565
8943b874
DE
3566 /* Check static vs global. */
3567 if (attrs_valid)
3568 {
3569 if (iter->want_specific_block
3570 && want_static != is_static)
3571 continue;
3572 /* Work around gold/15646. */
3573 if (!is_static && iter->global_seen)
3574 continue;
3575 if (!is_static)
3576 iter->global_seen = 1;
3577 }
da51c347
DE
3578
3579 /* Only check the symbol's kind if it has one. */
3580 if (attrs_valid)
3581 {
3582 switch (iter->domain)
3583 {
3584 case VAR_DOMAIN:
3585 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3586 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3587 /* Some types are also in VAR_DOMAIN. */
3588 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3589 continue;
3590 break;
3591 case STRUCT_DOMAIN:
3592 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3593 continue;
3594 break;
3595 case LABEL_DOMAIN:
3596 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3597 continue;
3598 break;
3599 default:
3600 break;
3601 }
3602 }
3603
3604 ++iter->next;
3605 return per_cu;
3606 }
3607
3608 return NULL;
3609}
3610
3611static struct symtab *
3612dw2_lookup_symbol (struct objfile *objfile, int block_index,
3613 const char *name, domain_enum domain)
9291a0cd 3614{
da51c347 3615 struct symtab *stab_best = NULL;
156942c7
DE
3616 struct mapped_index *index;
3617
9291a0cd
TT
3618 dw2_setup (objfile);
3619
156942c7
DE
3620 index = dwarf2_per_objfile->index_table;
3621
da51c347 3622 /* index is NULL if OBJF_READNOW. */
156942c7 3623 if (index)
9291a0cd 3624 {
da51c347
DE
3625 struct dw2_symtab_iterator iter;
3626 struct dwarf2_per_cu_data *per_cu;
3627
3628 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3629
da51c347 3630 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3631 {
da51c347
DE
3632 struct symbol *sym = NULL;
3633 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3634
3635 /* Some caution must be observed with overloaded functions
3636 and methods, since the index will not contain any overload
3637 information (but NAME might contain it). */
3638 if (stab->primary)
9291a0cd 3639 {
da51c347
DE
3640 struct blockvector *bv = BLOCKVECTOR (stab);
3641 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
156942c7 3642
da51c347
DE
3643 sym = lookup_block_symbol (block, name, domain);
3644 }
1fd400ff 3645
da51c347
DE
3646 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3647 {
3648 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3649 return stab;
3650
3651 stab_best = stab;
9291a0cd 3652 }
da51c347
DE
3653
3654 /* Keep looking through other CUs. */
9291a0cd
TT
3655 }
3656 }
9291a0cd 3657
da51c347 3658 return stab_best;
9291a0cd
TT
3659}
3660
3661static void
3662dw2_print_stats (struct objfile *objfile)
3663{
e4a48d9d 3664 int i, total, count;
9291a0cd
TT
3665
3666 dw2_setup (objfile);
e4a48d9d 3667 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3668 count = 0;
e4a48d9d 3669 for (i = 0; i < total; ++i)
9291a0cd 3670 {
e254ef6a 3671 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3672
e254ef6a 3673 if (!per_cu->v.quick->symtab)
9291a0cd
TT
3674 ++count;
3675 }
e4a48d9d 3676 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3677 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3678}
3679
779bd270
DE
3680/* This dumps minimal information about the index.
3681 It is called via "mt print objfiles".
3682 One use is to verify .gdb_index has been loaded by the
3683 gdb.dwarf2/gdb-index.exp testcase. */
3684
9291a0cd
TT
3685static void
3686dw2_dump (struct objfile *objfile)
3687{
779bd270
DE
3688 dw2_setup (objfile);
3689 gdb_assert (dwarf2_per_objfile->using_index);
3690 printf_filtered (".gdb_index:");
3691 if (dwarf2_per_objfile->index_table != NULL)
3692 {
3693 printf_filtered (" version %d\n",
3694 dwarf2_per_objfile->index_table->version);
3695 }
3696 else
3697 printf_filtered (" faked for \"readnow\"\n");
3698 printf_filtered ("\n");
9291a0cd
TT
3699}
3700
3701static void
3189cb12
DE
3702dw2_relocate (struct objfile *objfile,
3703 const struct section_offsets *new_offsets,
3704 const struct section_offsets *delta)
9291a0cd
TT
3705{
3706 /* There's nothing to relocate here. */
3707}
3708
3709static void
3710dw2_expand_symtabs_for_function (struct objfile *objfile,
3711 const char *func_name)
3712{
da51c347
DE
3713 struct mapped_index *index;
3714
3715 dw2_setup (objfile);
3716
3717 index = dwarf2_per_objfile->index_table;
3718
3719 /* index is NULL if OBJF_READNOW. */
3720 if (index)
3721 {
3722 struct dw2_symtab_iterator iter;
3723 struct dwarf2_per_cu_data *per_cu;
3724
3725 /* Note: It doesn't matter what we pass for block_index here. */
3726 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3727 func_name);
3728
3729 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3730 dw2_instantiate_symtab (per_cu);
3731 }
9291a0cd
TT
3732}
3733
3734static void
3735dw2_expand_all_symtabs (struct objfile *objfile)
3736{
3737 int i;
3738
3739 dw2_setup (objfile);
1fd400ff
TT
3740
3741 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3742 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3743 {
e254ef6a 3744 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3745
a0f42c21 3746 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3747 }
3748}
3749
3750static void
652a8996
JK
3751dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3752 const char *fullname)
9291a0cd
TT
3753{
3754 int i;
3755
3756 dw2_setup (objfile);
d4637a04
DE
3757
3758 /* We don't need to consider type units here.
3759 This is only called for examining code, e.g. expand_line_sal.
3760 There can be an order of magnitude (or more) more type units
3761 than comp units, and we avoid them if we can. */
3762
3763 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3764 {
3765 int j;
e254ef6a 3766 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3767 struct quick_file_names *file_data;
9291a0cd 3768
3d7bb9d9 3769 /* We only need to look at symtabs not already expanded. */
e254ef6a 3770 if (per_cu->v.quick->symtab)
9291a0cd
TT
3771 continue;
3772
e4a48d9d 3773 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3774 if (file_data == NULL)
9291a0cd
TT
3775 continue;
3776
7b9f3c50 3777 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3778 {
652a8996
JK
3779 const char *this_fullname = file_data->file_names[j];
3780
3781 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3782 {
a0f42c21 3783 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3784 break;
3785 }
3786 }
3787 }
3788}
3789
9291a0cd 3790static void
ade7ed9e
DE
3791dw2_map_matching_symbols (struct objfile *objfile,
3792 const char * name, domain_enum namespace,
3793 int global,
40658b94
PH
3794 int (*callback) (struct block *,
3795 struct symbol *, void *),
2edb89d3
JK
3796 void *data, symbol_compare_ftype *match,
3797 symbol_compare_ftype *ordered_compare)
9291a0cd 3798{
40658b94 3799 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3800 current language is Ada for a non-Ada objfile using GNU index. As Ada
3801 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3802}
3803
3804static void
f8eba3c6
TT
3805dw2_expand_symtabs_matching
3806 (struct objfile *objfile,
206f2a57
DE
3807 expand_symtabs_file_matcher_ftype *file_matcher,
3808 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
f8eba3c6
TT
3809 enum search_domain kind,
3810 void *data)
9291a0cd
TT
3811{
3812 int i;
3813 offset_type iter;
4b5246aa 3814 struct mapped_index *index;
9291a0cd
TT
3815
3816 dw2_setup (objfile);
ae2de4f8
DE
3817
3818 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3819 if (!dwarf2_per_objfile->index_table)
3820 return;
4b5246aa 3821 index = dwarf2_per_objfile->index_table;
9291a0cd 3822
7b08b9eb 3823 if (file_matcher != NULL)
24c79950
TT
3824 {
3825 struct cleanup *cleanup;
3826 htab_t visited_found, visited_not_found;
3827
3828 visited_found = htab_create_alloc (10,
3829 htab_hash_pointer, htab_eq_pointer,
3830 NULL, xcalloc, xfree);
3831 cleanup = make_cleanup_htab_delete (visited_found);
3832 visited_not_found = htab_create_alloc (10,
3833 htab_hash_pointer, htab_eq_pointer,
3834 NULL, xcalloc, xfree);
3835 make_cleanup_htab_delete (visited_not_found);
3836
848e3e78
DE
3837 /* The rule is CUs specify all the files, including those used by
3838 any TU, so there's no need to scan TUs here. */
3839
3840 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3841 {
3842 int j;
f4dc4d17 3843 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
24c79950
TT
3844 struct quick_file_names *file_data;
3845 void **slot;
7b08b9eb 3846
24c79950 3847 per_cu->v.quick->mark = 0;
3d7bb9d9 3848
24c79950
TT
3849 /* We only need to look at symtabs not already expanded. */
3850 if (per_cu->v.quick->symtab)
3851 continue;
7b08b9eb 3852
e4a48d9d 3853 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3854 if (file_data == NULL)
3855 continue;
7b08b9eb 3856
24c79950
TT
3857 if (htab_find (visited_not_found, file_data) != NULL)
3858 continue;
3859 else if (htab_find (visited_found, file_data) != NULL)
3860 {
3861 per_cu->v.quick->mark = 1;
3862 continue;
3863 }
3864
3865 for (j = 0; j < file_data->num_file_names; ++j)
3866 {
da235a7c
JK
3867 const char *this_real_name;
3868
fbd9ab74 3869 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3870 {
3871 per_cu->v.quick->mark = 1;
3872 break;
3873 }
da235a7c
JK
3874
3875 /* Before we invoke realpath, which can get expensive when many
3876 files are involved, do a quick comparison of the basenames. */
3877 if (!basenames_may_differ
3878 && !file_matcher (lbasename (file_data->file_names[j]),
3879 data, 1))
3880 continue;
3881
3882 this_real_name = dw2_get_real_path (objfile, file_data, j);
3883 if (file_matcher (this_real_name, data, 0))
3884 {
3885 per_cu->v.quick->mark = 1;
3886 break;
3887 }
24c79950
TT
3888 }
3889
3890 slot = htab_find_slot (per_cu->v.quick->mark
3891 ? visited_found
3892 : visited_not_found,
3893 file_data, INSERT);
3894 *slot = file_data;
3895 }
3896
3897 do_cleanups (cleanup);
3898 }
9291a0cd 3899
3876f04e 3900 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3901 {
3902 offset_type idx = 2 * iter;
3903 const char *name;
3904 offset_type *vec, vec_len, vec_idx;
8943b874 3905 int global_seen = 0;
9291a0cd 3906
3876f04e 3907 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3908 continue;
3909
3876f04e 3910 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3911
206f2a57 3912 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3913 continue;
3914
3915 /* The name was matched, now expand corresponding CUs that were
3916 marked. */
4b5246aa 3917 vec = (offset_type *) (index->constant_pool
3876f04e 3918 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3919 vec_len = MAYBE_SWAP (vec[0]);
3920 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3921 {
e254ef6a 3922 struct dwarf2_per_cu_data *per_cu;
156942c7 3923 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3924 /* This value is only valid for index versions >= 7. */
3925 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3926 gdb_index_symbol_kind symbol_kind =
3927 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3928 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3929 /* Only check the symbol attributes if they're present.
3930 Indices prior to version 7 don't record them,
3931 and indices >= 7 may elide them for certain symbols
3932 (gold does this). */
3933 int attrs_valid =
3934 (index->version >= 7
3935 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3936
8943b874
DE
3937 /* Work around gold/15646. */
3938 if (attrs_valid)
3939 {
3940 if (!is_static && global_seen)
3941 continue;
3942 if (!is_static)
3943 global_seen = 1;
3944 }
3945
3190f0c6
DE
3946 /* Only check the symbol's kind if it has one. */
3947 if (attrs_valid)
156942c7
DE
3948 {
3949 switch (kind)
3950 {
3951 case VARIABLES_DOMAIN:
3952 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3953 continue;
3954 break;
3955 case FUNCTIONS_DOMAIN:
3956 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3957 continue;
3958 break;
3959 case TYPES_DOMAIN:
3960 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3961 continue;
3962 break;
3963 default:
3964 break;
3965 }
3966 }
3967
3190f0c6
DE
3968 /* Don't crash on bad data. */
3969 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3970 + dwarf2_per_objfile->n_type_units))
3971 {
3972 complaint (&symfile_complaints,
3973 _(".gdb_index entry has bad CU index"
4262abfb 3974 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
3975 continue;
3976 }
3977
156942c7 3978 per_cu = dw2_get_cu (cu_index);
7b08b9eb 3979 if (file_matcher == NULL || per_cu->v.quick->mark)
a0f42c21 3980 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3981 }
3982 }
3983}
3984
9703b513
TT
3985/* A helper for dw2_find_pc_sect_symtab which finds the most specific
3986 symtab. */
3987
3988static struct symtab *
3989recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3990{
3991 int i;
3992
3993 if (BLOCKVECTOR (symtab) != NULL
3994 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3995 return symtab;
3996
a3ec0bb1
DE
3997 if (symtab->includes == NULL)
3998 return NULL;
3999
9703b513
TT
4000 for (i = 0; symtab->includes[i]; ++i)
4001 {
a3ec0bb1 4002 struct symtab *s = symtab->includes[i];
9703b513
TT
4003
4004 s = recursively_find_pc_sect_symtab (s, pc);
4005 if (s != NULL)
4006 return s;
4007 }
4008
4009 return NULL;
4010}
4011
9291a0cd
TT
4012static struct symtab *
4013dw2_find_pc_sect_symtab (struct objfile *objfile,
77e371c0 4014 struct bound_minimal_symbol msymbol,
9291a0cd
TT
4015 CORE_ADDR pc,
4016 struct obj_section *section,
4017 int warn_if_readin)
4018{
4019 struct dwarf2_per_cu_data *data;
9703b513 4020 struct symtab *result;
9291a0cd
TT
4021
4022 dw2_setup (objfile);
4023
4024 if (!objfile->psymtabs_addrmap)
4025 return NULL;
4026
4027 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4028 if (!data)
4029 return NULL;
4030
4031 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 4032 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4033 paddress (get_objfile_arch (objfile), pc));
4034
9703b513
TT
4035 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4036 gdb_assert (result != NULL);
4037 return result;
9291a0cd
TT
4038}
4039
9291a0cd 4040static void
44b13c5a 4041dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4042 void *data, int need_fullname)
9291a0cd
TT
4043{
4044 int i;
24c79950
TT
4045 struct cleanup *cleanup;
4046 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4047 NULL, xcalloc, xfree);
9291a0cd 4048
24c79950 4049 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4050 dw2_setup (objfile);
ae2de4f8 4051
848e3e78
DE
4052 /* The rule is CUs specify all the files, including those used by
4053 any TU, so there's no need to scan TUs here.
4054 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4055
848e3e78 4056 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
4057 {
4058 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4059
4060 if (per_cu->v.quick->symtab)
4061 {
4062 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4063 INSERT);
4064
4065 *slot = per_cu->v.quick->file_names;
4066 }
4067 }
4068
848e3e78 4069 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4070 {
4071 int j;
f4dc4d17 4072 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 4073 struct quick_file_names *file_data;
24c79950 4074 void **slot;
9291a0cd 4075
3d7bb9d9 4076 /* We only need to look at symtabs not already expanded. */
e254ef6a 4077 if (per_cu->v.quick->symtab)
9291a0cd
TT
4078 continue;
4079
e4a48d9d 4080 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4081 if (file_data == NULL)
9291a0cd
TT
4082 continue;
4083
24c79950
TT
4084 slot = htab_find_slot (visited, file_data, INSERT);
4085 if (*slot)
4086 {
4087 /* Already visited. */
4088 continue;
4089 }
4090 *slot = file_data;
4091
7b9f3c50 4092 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4093 {
74e2f255
DE
4094 const char *this_real_name;
4095
4096 if (need_fullname)
4097 this_real_name = dw2_get_real_path (objfile, file_data, j);
4098 else
4099 this_real_name = NULL;
7b9f3c50 4100 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4101 }
4102 }
24c79950
TT
4103
4104 do_cleanups (cleanup);
9291a0cd
TT
4105}
4106
4107static int
4108dw2_has_symbols (struct objfile *objfile)
4109{
4110 return 1;
4111}
4112
4113const struct quick_symbol_functions dwarf2_gdb_index_functions =
4114{
4115 dw2_has_symbols,
4116 dw2_find_last_source_symtab,
4117 dw2_forget_cached_source_info,
f8eba3c6 4118 dw2_map_symtabs_matching_filename,
9291a0cd 4119 dw2_lookup_symbol,
9291a0cd
TT
4120 dw2_print_stats,
4121 dw2_dump,
4122 dw2_relocate,
4123 dw2_expand_symtabs_for_function,
4124 dw2_expand_all_symtabs,
652a8996 4125 dw2_expand_symtabs_with_fullname,
40658b94 4126 dw2_map_matching_symbols,
9291a0cd
TT
4127 dw2_expand_symtabs_matching,
4128 dw2_find_pc_sect_symtab,
9291a0cd
TT
4129 dw2_map_symbol_filenames
4130};
4131
4132/* Initialize for reading DWARF for this objfile. Return 0 if this
4133 file will use psymtabs, or 1 if using the GNU index. */
4134
4135int
4136dwarf2_initialize_objfile (struct objfile *objfile)
4137{
4138 /* If we're about to read full symbols, don't bother with the
4139 indices. In this case we also don't care if some other debug
4140 format is making psymtabs, because they are all about to be
4141 expanded anyway. */
4142 if ((objfile->flags & OBJF_READNOW))
4143 {
4144 int i;
4145
4146 dwarf2_per_objfile->using_index = 1;
4147 create_all_comp_units (objfile);
0e50663e 4148 create_all_type_units (objfile);
7b9f3c50
DE
4149 dwarf2_per_objfile->quick_file_names_table =
4150 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4151
1fd400ff 4152 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4153 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4154 {
e254ef6a 4155 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 4156
e254ef6a
DE
4157 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4158 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4159 }
4160
4161 /* Return 1 so that gdb sees the "quick" functions. However,
4162 these functions will be no-ops because we will have expanded
4163 all symtabs. */
4164 return 1;
4165 }
4166
4167 if (dwarf2_read_index (objfile))
4168 return 1;
4169
9291a0cd
TT
4170 return 0;
4171}
4172
4173\f
4174
dce234bc
PP
4175/* Build a partial symbol table. */
4176
4177void
f29dff0a 4178dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4179{
c9bf0622
TT
4180 volatile struct gdb_exception except;
4181
f29dff0a 4182 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4183 {
4184 init_psymbol_list (objfile, 1024);
4185 }
4186
c9bf0622
TT
4187 TRY_CATCH (except, RETURN_MASK_ERROR)
4188 {
4189 /* This isn't really ideal: all the data we allocate on the
4190 objfile's obstack is still uselessly kept around. However,
4191 freeing it seems unsafe. */
4192 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4193
4194 dwarf2_build_psymtabs_hard (objfile);
4195 discard_cleanups (cleanups);
4196 }
4197 if (except.reason < 0)
4198 exception_print (gdb_stderr, except);
c906108c 4199}
c906108c 4200
1ce1cefd
DE
4201/* Return the total length of the CU described by HEADER. */
4202
4203static unsigned int
4204get_cu_length (const struct comp_unit_head *header)
4205{
4206 return header->initial_length_size + header->length;
4207}
4208
45452591
DE
4209/* Return TRUE if OFFSET is within CU_HEADER. */
4210
4211static inline int
b64f50a1 4212offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4213{
b64f50a1 4214 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4215 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4216
b64f50a1 4217 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4218}
4219
3b80fe9b
DE
4220/* Find the base address of the compilation unit for range lists and
4221 location lists. It will normally be specified by DW_AT_low_pc.
4222 In DWARF-3 draft 4, the base address could be overridden by
4223 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4224 compilation units with discontinuous ranges. */
4225
4226static void
4227dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4228{
4229 struct attribute *attr;
4230
4231 cu->base_known = 0;
4232 cu->base_address = 0;
4233
4234 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4235 if (attr)
4236 {
31aa7e4e 4237 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4238 cu->base_known = 1;
4239 }
4240 else
4241 {
4242 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4243 if (attr)
4244 {
31aa7e4e 4245 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4246 cu->base_known = 1;
4247 }
4248 }
4249}
4250
93311388
DE
4251/* Read in the comp unit header information from the debug_info at info_ptr.
4252 NOTE: This leaves members offset, first_die_offset to be filled in
4253 by the caller. */
107d2387 4254
d521ce57 4255static const gdb_byte *
107d2387 4256read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4257 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4258{
4259 int signed_addr;
891d2f0b 4260 unsigned int bytes_read;
c764a876
DE
4261
4262 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4263 cu_header->initial_length_size = bytes_read;
4264 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4265 info_ptr += bytes_read;
107d2387
AC
4266 cu_header->version = read_2_bytes (abfd, info_ptr);
4267 info_ptr += 2;
b64f50a1
JK
4268 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4269 &bytes_read);
613e1657 4270 info_ptr += bytes_read;
107d2387
AC
4271 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4272 info_ptr += 1;
4273 signed_addr = bfd_get_sign_extend_vma (abfd);
4274 if (signed_addr < 0)
8e65ff28 4275 internal_error (__FILE__, __LINE__,
e2e0b3e5 4276 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4277 cu_header->signed_addr_p = signed_addr;
c764a876 4278
107d2387
AC
4279 return info_ptr;
4280}
4281
36586728
TT
4282/* Helper function that returns the proper abbrev section for
4283 THIS_CU. */
4284
4285static struct dwarf2_section_info *
4286get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4287{
4288 struct dwarf2_section_info *abbrev;
4289
4290 if (this_cu->is_dwz)
4291 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4292 else
4293 abbrev = &dwarf2_per_objfile->abbrev;
4294
4295 return abbrev;
4296}
4297
9ff913ba
DE
4298/* Subroutine of read_and_check_comp_unit_head and
4299 read_and_check_type_unit_head to simplify them.
4300 Perform various error checking on the header. */
4301
4302static void
4303error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4304 struct dwarf2_section_info *section,
4305 struct dwarf2_section_info *abbrev_section)
9ff913ba 4306{
a32a8923
DE
4307 bfd *abfd = get_section_bfd_owner (section);
4308 const char *filename = get_section_file_name (section);
9ff913ba
DE
4309
4310 if (header->version != 2 && header->version != 3 && header->version != 4)
4311 error (_("Dwarf Error: wrong version in compilation unit header "
4312 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4313 filename);
4314
b64f50a1 4315 if (header->abbrev_offset.sect_off
36586728 4316 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4317 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4318 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4319 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4320 filename);
4321
4322 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4323 avoid potential 32-bit overflow. */
1ce1cefd 4324 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4325 > section->size)
4326 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4327 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4328 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4329 filename);
4330}
4331
4332/* Read in a CU/TU header and perform some basic error checking.
4333 The contents of the header are stored in HEADER.
4334 The result is a pointer to the start of the first DIE. */
adabb602 4335
d521ce57 4336static const gdb_byte *
9ff913ba
DE
4337read_and_check_comp_unit_head (struct comp_unit_head *header,
4338 struct dwarf2_section_info *section,
4bdcc0c1 4339 struct dwarf2_section_info *abbrev_section,
d521ce57 4340 const gdb_byte *info_ptr,
9ff913ba 4341 int is_debug_types_section)
72bf9492 4342{
d521ce57 4343 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4344 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4345
b64f50a1 4346 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4347
72bf9492
DJ
4348 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4349
460c1c54
CC
4350 /* If we're reading a type unit, skip over the signature and
4351 type_offset fields. */
b0df02fd 4352 if (is_debug_types_section)
460c1c54
CC
4353 info_ptr += 8 /*signature*/ + header->offset_size;
4354
b64f50a1 4355 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4356
4bdcc0c1 4357 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4358
4359 return info_ptr;
4360}
4361
348e048f
DE
4362/* Read in the types comp unit header information from .debug_types entry at
4363 types_ptr. The result is a pointer to one past the end of the header. */
4364
d521ce57 4365static const gdb_byte *
9ff913ba
DE
4366read_and_check_type_unit_head (struct comp_unit_head *header,
4367 struct dwarf2_section_info *section,
4bdcc0c1 4368 struct dwarf2_section_info *abbrev_section,
d521ce57 4369 const gdb_byte *info_ptr,
dee91e82
DE
4370 ULONGEST *signature,
4371 cu_offset *type_offset_in_tu)
348e048f 4372{
d521ce57 4373 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4374 bfd *abfd = get_section_bfd_owner (section);
348e048f 4375
b64f50a1 4376 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4377
9ff913ba 4378 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4379
9ff913ba
DE
4380 /* If we're reading a type unit, skip over the signature and
4381 type_offset fields. */
4382 if (signature != NULL)
4383 *signature = read_8_bytes (abfd, info_ptr);
4384 info_ptr += 8;
dee91e82
DE
4385 if (type_offset_in_tu != NULL)
4386 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4387 header->offset_size);
9ff913ba
DE
4388 info_ptr += header->offset_size;
4389
b64f50a1 4390 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4391
4bdcc0c1 4392 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4393
4394 return info_ptr;
348e048f
DE
4395}
4396
f4dc4d17
DE
4397/* Fetch the abbreviation table offset from a comp or type unit header. */
4398
4399static sect_offset
4400read_abbrev_offset (struct dwarf2_section_info *section,
4401 sect_offset offset)
4402{
a32a8923 4403 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4404 const gdb_byte *info_ptr;
f4dc4d17
DE
4405 unsigned int length, initial_length_size, offset_size;
4406 sect_offset abbrev_offset;
4407
4408 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4409 info_ptr = section->buffer + offset.sect_off;
4410 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4411 offset_size = initial_length_size == 4 ? 4 : 8;
4412 info_ptr += initial_length_size + 2 /*version*/;
4413 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4414 return abbrev_offset;
4415}
4416
aaa75496
JB
4417/* Allocate a new partial symtab for file named NAME and mark this new
4418 partial symtab as being an include of PST. */
4419
4420static void
d521ce57 4421dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4422 struct objfile *objfile)
4423{
4424 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4425
fbd9ab74
JK
4426 if (!IS_ABSOLUTE_PATH (subpst->filename))
4427 {
4428 /* It shares objfile->objfile_obstack. */
4429 subpst->dirname = pst->dirname;
4430 }
4431
aaa75496
JB
4432 subpst->section_offsets = pst->section_offsets;
4433 subpst->textlow = 0;
4434 subpst->texthigh = 0;
4435
4436 subpst->dependencies = (struct partial_symtab **)
4437 obstack_alloc (&objfile->objfile_obstack,
4438 sizeof (struct partial_symtab *));
4439 subpst->dependencies[0] = pst;
4440 subpst->number_of_dependencies = 1;
4441
4442 subpst->globals_offset = 0;
4443 subpst->n_global_syms = 0;
4444 subpst->statics_offset = 0;
4445 subpst->n_static_syms = 0;
4446 subpst->symtab = NULL;
4447 subpst->read_symtab = pst->read_symtab;
4448 subpst->readin = 0;
4449
4450 /* No private part is necessary for include psymtabs. This property
4451 can be used to differentiate between such include psymtabs and
10b3939b 4452 the regular ones. */
58a9656e 4453 subpst->read_symtab_private = NULL;
aaa75496
JB
4454}
4455
4456/* Read the Line Number Program data and extract the list of files
4457 included by the source file represented by PST. Build an include
d85a05f0 4458 partial symtab for each of these included files. */
aaa75496
JB
4459
4460static void
4461dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4462 struct die_info *die,
4463 struct partial_symtab *pst)
aaa75496 4464{
d85a05f0
DJ
4465 struct line_header *lh = NULL;
4466 struct attribute *attr;
aaa75496 4467
d85a05f0
DJ
4468 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4469 if (attr)
3019eac3 4470 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4471 if (lh == NULL)
4472 return; /* No linetable, so no includes. */
4473
c6da4cef 4474 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
f3f5162e 4475 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
aaa75496
JB
4476
4477 free_line_header (lh);
4478}
4479
348e048f 4480static hashval_t
52dc124a 4481hash_signatured_type (const void *item)
348e048f 4482{
52dc124a 4483 const struct signatured_type *sig_type = item;
9a619af0 4484
348e048f 4485 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4486 return sig_type->signature;
348e048f
DE
4487}
4488
4489static int
52dc124a 4490eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4491{
4492 const struct signatured_type *lhs = item_lhs;
4493 const struct signatured_type *rhs = item_rhs;
9a619af0 4494
348e048f
DE
4495 return lhs->signature == rhs->signature;
4496}
4497
1fd400ff
TT
4498/* Allocate a hash table for signatured types. */
4499
4500static htab_t
673bfd45 4501allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4502{
4503 return htab_create_alloc_ex (41,
52dc124a
DE
4504 hash_signatured_type,
4505 eq_signatured_type,
1fd400ff
TT
4506 NULL,
4507 &objfile->objfile_obstack,
4508 hashtab_obstack_allocate,
4509 dummy_obstack_deallocate);
4510}
4511
d467dd73 4512/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4513
4514static int
d467dd73 4515add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4516{
4517 struct signatured_type *sigt = *slot;
b4dd5633 4518 struct signatured_type ***datap = datum;
1fd400ff 4519
b4dd5633 4520 **datap = sigt;
1fd400ff
TT
4521 ++*datap;
4522
4523 return 1;
4524}
4525
c88ee1f0
DE
4526/* Create the hash table of all entries in the .debug_types
4527 (or .debug_types.dwo) section(s).
4528 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4529 otherwise it is NULL.
4530
4531 The result is a pointer to the hash table or NULL if there are no types.
4532
4533 Note: This function processes DWO files only, not DWP files. */
348e048f 4534
3019eac3
DE
4535static htab_t
4536create_debug_types_hash_table (struct dwo_file *dwo_file,
4537 VEC (dwarf2_section_info_def) *types)
348e048f 4538{
3019eac3 4539 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4540 htab_t types_htab = NULL;
8b70b953
TT
4541 int ix;
4542 struct dwarf2_section_info *section;
4bdcc0c1 4543 struct dwarf2_section_info *abbrev_section;
348e048f 4544
3019eac3
DE
4545 if (VEC_empty (dwarf2_section_info_def, types))
4546 return NULL;
348e048f 4547
4bdcc0c1
DE
4548 abbrev_section = (dwo_file != NULL
4549 ? &dwo_file->sections.abbrev
4550 : &dwarf2_per_objfile->abbrev);
4551
09406207
DE
4552 if (dwarf2_read_debug)
4553 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4554 dwo_file ? ".dwo" : "",
a32a8923 4555 get_section_file_name (abbrev_section));
09406207 4556
8b70b953 4557 for (ix = 0;
3019eac3 4558 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4559 ++ix)
4560 {
3019eac3 4561 bfd *abfd;
d521ce57 4562 const gdb_byte *info_ptr, *end_ptr;
348e048f 4563
8b70b953
TT
4564 dwarf2_read_section (objfile, section);
4565 info_ptr = section->buffer;
348e048f 4566
8b70b953
TT
4567 if (info_ptr == NULL)
4568 continue;
348e048f 4569
3019eac3 4570 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4571 not present, in which case the bfd is unknown. */
4572 abfd = get_section_bfd_owner (section);
3019eac3 4573
dee91e82
DE
4574 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4575 because we don't need to read any dies: the signature is in the
4576 header. */
8b70b953
TT
4577
4578 end_ptr = info_ptr + section->size;
4579 while (info_ptr < end_ptr)
4580 {
b64f50a1 4581 sect_offset offset;
3019eac3 4582 cu_offset type_offset_in_tu;
8b70b953 4583 ULONGEST signature;
52dc124a 4584 struct signatured_type *sig_type;
3019eac3 4585 struct dwo_unit *dwo_tu;
8b70b953 4586 void **slot;
d521ce57 4587 const gdb_byte *ptr = info_ptr;
9ff913ba 4588 struct comp_unit_head header;
dee91e82 4589 unsigned int length;
348e048f 4590
b64f50a1 4591 offset.sect_off = ptr - section->buffer;
348e048f 4592
8b70b953 4593 /* We need to read the type's signature in order to build the hash
9ff913ba 4594 table, but we don't need anything else just yet. */
348e048f 4595
4bdcc0c1
DE
4596 ptr = read_and_check_type_unit_head (&header, section,
4597 abbrev_section, ptr,
3019eac3 4598 &signature, &type_offset_in_tu);
6caca83c 4599
1ce1cefd 4600 length = get_cu_length (&header);
dee91e82 4601
6caca83c 4602 /* Skip dummy type units. */
dee91e82
DE
4603 if (ptr >= info_ptr + length
4604 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4605 {
1ce1cefd 4606 info_ptr += length;
6caca83c
CC
4607 continue;
4608 }
8b70b953 4609
0349ea22
DE
4610 if (types_htab == NULL)
4611 {
4612 if (dwo_file)
4613 types_htab = allocate_dwo_unit_table (objfile);
4614 else
4615 types_htab = allocate_signatured_type_table (objfile);
4616 }
4617
3019eac3
DE
4618 if (dwo_file)
4619 {
4620 sig_type = NULL;
4621 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4622 struct dwo_unit);
4623 dwo_tu->dwo_file = dwo_file;
4624 dwo_tu->signature = signature;
4625 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4626 dwo_tu->section = section;
3019eac3
DE
4627 dwo_tu->offset = offset;
4628 dwo_tu->length = length;
4629 }
4630 else
4631 {
4632 /* N.B.: type_offset is not usable if this type uses a DWO file.
4633 The real type_offset is in the DWO file. */
4634 dwo_tu = NULL;
4635 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4636 struct signatured_type);
4637 sig_type->signature = signature;
4638 sig_type->type_offset_in_tu = type_offset_in_tu;
4639 sig_type->per_cu.objfile = objfile;
4640 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4641 sig_type->per_cu.section = section;
3019eac3
DE
4642 sig_type->per_cu.offset = offset;
4643 sig_type->per_cu.length = length;
4644 }
8b70b953 4645
3019eac3
DE
4646 slot = htab_find_slot (types_htab,
4647 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4648 INSERT);
8b70b953
TT
4649 gdb_assert (slot != NULL);
4650 if (*slot != NULL)
4651 {
3019eac3
DE
4652 sect_offset dup_offset;
4653
4654 if (dwo_file)
4655 {
4656 const struct dwo_unit *dup_tu = *slot;
4657
4658 dup_offset = dup_tu->offset;
4659 }
4660 else
4661 {
4662 const struct signatured_type *dup_tu = *slot;
4663
4664 dup_offset = dup_tu->per_cu.offset;
4665 }
b3c8eb43 4666
8b70b953 4667 complaint (&symfile_complaints,
c88ee1f0 4668 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4669 " the entry at offset 0x%x, signature %s"),
3019eac3 4670 offset.sect_off, dup_offset.sect_off,
4031ecc5 4671 hex_string (signature));
8b70b953 4672 }
3019eac3 4673 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4674
73be47f5 4675 if (dwarf2_read_debug > 1)
4031ecc5 4676 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4677 offset.sect_off,
4031ecc5 4678 hex_string (signature));
348e048f 4679
dee91e82 4680 info_ptr += length;
8b70b953 4681 }
348e048f
DE
4682 }
4683
3019eac3
DE
4684 return types_htab;
4685}
4686
4687/* Create the hash table of all entries in the .debug_types section,
4688 and initialize all_type_units.
4689 The result is zero if there is an error (e.g. missing .debug_types section),
4690 otherwise non-zero. */
4691
4692static int
4693create_all_type_units (struct objfile *objfile)
4694{
4695 htab_t types_htab;
b4dd5633 4696 struct signatured_type **iter;
3019eac3
DE
4697
4698 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4699 if (types_htab == NULL)
4700 {
4701 dwarf2_per_objfile->signatured_types = NULL;
4702 return 0;
4703 }
4704
348e048f
DE
4705 dwarf2_per_objfile->signatured_types = types_htab;
4706
d467dd73
DE
4707 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4708 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
4709 = xmalloc (dwarf2_per_objfile->n_type_units
4710 * sizeof (struct signatured_type *));
d467dd73
DE
4711 iter = &dwarf2_per_objfile->all_type_units[0];
4712 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4713 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4714 == dwarf2_per_objfile->n_type_units);
1fd400ff 4715
348e048f
DE
4716 return 1;
4717}
4718
a2ce51a0
DE
4719/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4720 Fill in SIG_ENTRY with DWO_ENTRY. */
4721
4722static void
4723fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4724 struct signatured_type *sig_entry,
4725 struct dwo_unit *dwo_entry)
4726{
7ee85ab1 4727 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4728 gdb_assert (! sig_entry->per_cu.queued);
4729 gdb_assert (sig_entry->per_cu.cu == NULL);
4730 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4731 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4732 gdb_assert (sig_entry->signature == dwo_entry->signature);
4733 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4734 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4735 gdb_assert (sig_entry->dwo_unit == NULL);
4736
4737 sig_entry->per_cu.section = dwo_entry->section;
4738 sig_entry->per_cu.offset = dwo_entry->offset;
4739 sig_entry->per_cu.length = dwo_entry->length;
4740 sig_entry->per_cu.reading_dwo_directly = 1;
4741 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4742 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4743 sig_entry->dwo_unit = dwo_entry;
4744}
4745
4746/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4747 If we haven't read the TU yet, create the signatured_type data structure
4748 for a TU to be read in directly from a DWO file, bypassing the stub.
4749 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4750 using .gdb_index, then when reading a CU we want to stay in the DWO file
4751 containing that CU. Otherwise we could end up reading several other DWO
4752 files (due to comdat folding) to process the transitive closure of all the
4753 mentioned TUs, and that can be slow. The current DWO file will have every
4754 type signature that it needs.
a2ce51a0
DE
4755 We only do this for .gdb_index because in the psymtab case we already have
4756 to read all the DWOs to build the type unit groups. */
4757
4758static struct signatured_type *
4759lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4760{
4761 struct objfile *objfile = dwarf2_per_objfile->objfile;
4762 struct dwo_file *dwo_file;
4763 struct dwo_unit find_dwo_entry, *dwo_entry;
4764 struct signatured_type find_sig_entry, *sig_entry;
4765
4766 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4767
4768 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4769 dwo_unit of the TU itself. */
4770 dwo_file = cu->dwo_unit->dwo_file;
4771
4772 /* We only ever need to read in one copy of a signatured type.
4773 Just use the global signatured_types array. If this is the first time
4774 we're reading this type, replace the recorded data from .gdb_index with
4775 this TU. */
4776
4777 if (dwarf2_per_objfile->signatured_types == NULL)
4778 return NULL;
4779 find_sig_entry.signature = sig;
4780 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4781 if (sig_entry == NULL)
4782 return NULL;
7ee85ab1
DE
4783
4784 /* We can get here with the TU already read, *or* in the process of being
4785 read. Don't reassign it if that's the case. Also note that if the TU is
4786 already being read, it may not have come from a DWO, the program may be
4787 a mix of Fission-compiled code and non-Fission-compiled code. */
a2ce51a0 4788 /* Have we already tried to read this TU? */
7ee85ab1 4789 if (sig_entry->per_cu.tu_read)
a2ce51a0
DE
4790 return sig_entry;
4791
4792 /* Ok, this is the first time we're reading this TU. */
4793 if (dwo_file->tus == NULL)
4794 return NULL;
4795 find_dwo_entry.signature = sig;
4796 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4797 if (dwo_entry == NULL)
4798 return NULL;
4799
4800 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4801 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4802 return sig_entry;
4803}
4804
4805/* Subroutine of lookup_dwp_signatured_type.
4806 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4807
4808static struct signatured_type *
4809add_type_unit (ULONGEST sig)
4810{
4811 struct objfile *objfile = dwarf2_per_objfile->objfile;
4812 int n_type_units = dwarf2_per_objfile->n_type_units;
4813 struct signatured_type *sig_type;
4814 void **slot;
4815
4816 ++n_type_units;
4817 dwarf2_per_objfile->all_type_units =
4818 xrealloc (dwarf2_per_objfile->all_type_units,
4819 n_type_units * sizeof (struct signatured_type *));
4820 dwarf2_per_objfile->n_type_units = n_type_units;
4821 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4822 struct signatured_type);
4823 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4824 sig_type->signature = sig;
4825 sig_type->per_cu.is_debug_types = 1;
4826 sig_type->per_cu.v.quick =
4827 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4828 struct dwarf2_per_cu_quick_data);
4829 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4830 sig_type, INSERT);
4831 gdb_assert (*slot == NULL);
4832 *slot = sig_type;
4833 /* The rest of sig_type must be filled in by the caller. */
4834 return sig_type;
4835}
4836
4837/* Subroutine of lookup_signatured_type.
4838 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4839 then try the DWP file.
4840 Normally this "can't happen", but if there's a bug in signature
4841 generation and/or the DWP file is built incorrectly, it can happen.
4842 Using the type directly from the DWP file means we don't have the stub
4843 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4844 not critical. [Eventually the stub may go away for type units anyway.] */
4845
4846static struct signatured_type *
4847lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4848{
4849 struct objfile *objfile = dwarf2_per_objfile->objfile;
4850 struct dwp_file *dwp_file = get_dwp_file ();
4851 struct dwo_unit *dwo_entry;
4852 struct signatured_type find_sig_entry, *sig_entry;
4853
4854 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4855 gdb_assert (dwp_file != NULL);
4856
4857 if (dwarf2_per_objfile->signatured_types != NULL)
4858 {
4859 find_sig_entry.signature = sig;
4860 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4861 &find_sig_entry);
4862 if (sig_entry != NULL)
4863 return sig_entry;
4864 }
4865
4866 /* This is the "shouldn't happen" case.
4867 Try the DWP file and hope for the best. */
4868 if (dwp_file->tus == NULL)
4869 return NULL;
57d63ce2
DE
4870 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4871 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4872 if (dwo_entry == NULL)
4873 return NULL;
4874
4875 sig_entry = add_type_unit (sig);
4876 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4877
4878 /* The caller will signal a complaint if we return NULL.
4879 Here we don't return NULL but we still want to complain. */
4880 complaint (&symfile_complaints,
4881 _("Bad type signature %s referenced by %s at 0x%x,"
4882 " coping by using copy in DWP [in module %s]"),
4883 hex_string (sig),
4884 cu->per_cu->is_debug_types ? "TU" : "CU",
4885 cu->per_cu->offset.sect_off,
4262abfb 4886 objfile_name (objfile));
a2ce51a0
DE
4887
4888 return sig_entry;
4889}
4890
380bca97 4891/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4892 Returns NULL if signature SIG is not present in the table.
4893 It is up to the caller to complain about this. */
348e048f
DE
4894
4895static struct signatured_type *
a2ce51a0 4896lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 4897{
a2ce51a0
DE
4898 if (cu->dwo_unit
4899 && dwarf2_per_objfile->using_index)
4900 {
4901 /* We're in a DWO/DWP file, and we're using .gdb_index.
4902 These cases require special processing. */
4903 if (get_dwp_file () == NULL)
4904 return lookup_dwo_signatured_type (cu, sig);
4905 else
4906 return lookup_dwp_signatured_type (cu, sig);
4907 }
4908 else
4909 {
4910 struct signatured_type find_entry, *entry;
348e048f 4911
a2ce51a0
DE
4912 if (dwarf2_per_objfile->signatured_types == NULL)
4913 return NULL;
4914 find_entry.signature = sig;
4915 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4916 return entry;
4917 }
348e048f 4918}
42e7ad6c
DE
4919\f
4920/* Low level DIE reading support. */
348e048f 4921
d85a05f0
DJ
4922/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4923
4924static void
4925init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 4926 struct dwarf2_cu *cu,
3019eac3
DE
4927 struct dwarf2_section_info *section,
4928 struct dwo_file *dwo_file)
d85a05f0 4929{
fceca515 4930 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 4931 reader->abfd = get_section_bfd_owner (section);
d85a05f0 4932 reader->cu = cu;
3019eac3 4933 reader->dwo_file = dwo_file;
dee91e82
DE
4934 reader->die_section = section;
4935 reader->buffer = section->buffer;
f664829e 4936 reader->buffer_end = section->buffer + section->size;
a2ce51a0 4937 reader->comp_dir = NULL;
d85a05f0
DJ
4938}
4939
b0c7bfa9
DE
4940/* Subroutine of init_cutu_and_read_dies to simplify it.
4941 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4942 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4943 already.
4944
4945 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4946 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
4947 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4948 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
4949 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4950 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
4951 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4952 are filled in with the info of the DIE from the DWO file.
4953 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4954 provided an abbrev table to use.
4955 The result is non-zero if a valid (non-dummy) DIE was found. */
4956
4957static int
4958read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4959 struct dwo_unit *dwo_unit,
4960 int abbrev_table_provided,
4961 struct die_info *stub_comp_unit_die,
a2ce51a0 4962 const char *stub_comp_dir,
b0c7bfa9 4963 struct die_reader_specs *result_reader,
d521ce57 4964 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
4965 struct die_info **result_comp_unit_die,
4966 int *result_has_children)
4967{
4968 struct objfile *objfile = dwarf2_per_objfile->objfile;
4969 struct dwarf2_cu *cu = this_cu->cu;
4970 struct dwarf2_section_info *section;
4971 bfd *abfd;
d521ce57 4972 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
4973 ULONGEST signature; /* Or dwo_id. */
4974 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4975 int i,num_extra_attrs;
4976 struct dwarf2_section_info *dwo_abbrev_section;
4977 struct attribute *attr;
4978 struct die_info *comp_unit_die;
4979
b0aeadb3
DE
4980 /* At most one of these may be provided. */
4981 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 4982
b0c7bfa9
DE
4983 /* These attributes aren't processed until later:
4984 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
4985 DW_AT_comp_dir is used now, to find the DWO file, but it is also
4986 referenced later. However, these attributes are found in the stub
4987 which we won't have later. In order to not impose this complication
4988 on the rest of the code, we read them here and copy them to the
4989 DWO CU/TU die. */
b0c7bfa9
DE
4990
4991 stmt_list = NULL;
4992 low_pc = NULL;
4993 high_pc = NULL;
4994 ranges = NULL;
4995 comp_dir = NULL;
4996
4997 if (stub_comp_unit_die != NULL)
4998 {
4999 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5000 DWO file. */
5001 if (! this_cu->is_debug_types)
5002 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5003 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5004 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5005 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5006 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5007
5008 /* There should be a DW_AT_addr_base attribute here (if needed).
5009 We need the value before we can process DW_FORM_GNU_addr_index. */
5010 cu->addr_base = 0;
5011 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5012 if (attr)
5013 cu->addr_base = DW_UNSND (attr);
5014
5015 /* There should be a DW_AT_ranges_base attribute here (if needed).
5016 We need the value before we can process DW_AT_ranges. */
5017 cu->ranges_base = 0;
5018 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5019 if (attr)
5020 cu->ranges_base = DW_UNSND (attr);
5021 }
a2ce51a0
DE
5022 else if (stub_comp_dir != NULL)
5023 {
5024 /* Reconstruct the comp_dir attribute to simplify the code below. */
5025 comp_dir = (struct attribute *)
5026 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5027 comp_dir->name = DW_AT_comp_dir;
5028 comp_dir->form = DW_FORM_string;
5029 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5030 DW_STRING (comp_dir) = stub_comp_dir;
5031 }
b0c7bfa9
DE
5032
5033 /* Set up for reading the DWO CU/TU. */
5034 cu->dwo_unit = dwo_unit;
5035 section = dwo_unit->section;
5036 dwarf2_read_section (objfile, section);
a32a8923 5037 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5038 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5039 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5040 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5041
5042 if (this_cu->is_debug_types)
5043 {
5044 ULONGEST header_signature;
5045 cu_offset type_offset_in_tu;
5046 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5047
5048 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5049 dwo_abbrev_section,
5050 info_ptr,
5051 &header_signature,
5052 &type_offset_in_tu);
a2ce51a0
DE
5053 /* This is not an assert because it can be caused by bad debug info. */
5054 if (sig_type->signature != header_signature)
5055 {
5056 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5057 " TU at offset 0x%x [in module %s]"),
5058 hex_string (sig_type->signature),
5059 hex_string (header_signature),
5060 dwo_unit->offset.sect_off,
5061 bfd_get_filename (abfd));
5062 }
b0c7bfa9
DE
5063 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5064 /* For DWOs coming from DWP files, we don't know the CU length
5065 nor the type's offset in the TU until now. */
5066 dwo_unit->length = get_cu_length (&cu->header);
5067 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5068
5069 /* Establish the type offset that can be used to lookup the type.
5070 For DWO files, we don't know it until now. */
5071 sig_type->type_offset_in_section.sect_off =
5072 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5073 }
5074 else
5075 {
5076 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5077 dwo_abbrev_section,
5078 info_ptr, 0);
5079 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5080 /* For DWOs coming from DWP files, we don't know the CU length
5081 until now. */
5082 dwo_unit->length = get_cu_length (&cu->header);
5083 }
5084
02142a6c
DE
5085 /* Replace the CU's original abbrev table with the DWO's.
5086 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5087 if (abbrev_table_provided)
5088 {
5089 /* Don't free the provided abbrev table, the caller of
5090 init_cutu_and_read_dies owns it. */
5091 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5092 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5093 make_cleanup (dwarf2_free_abbrev_table, cu);
5094 }
5095 else
5096 {
5097 dwarf2_free_abbrev_table (cu);
5098 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5099 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5100 }
5101
5102 /* Read in the die, but leave space to copy over the attributes
5103 from the stub. This has the benefit of simplifying the rest of
5104 the code - all the work to maintain the illusion of a single
5105 DW_TAG_{compile,type}_unit DIE is done here. */
5106 num_extra_attrs = ((stmt_list != NULL)
5107 + (low_pc != NULL)
5108 + (high_pc != NULL)
5109 + (ranges != NULL)
5110 + (comp_dir != NULL));
5111 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5112 result_has_children, num_extra_attrs);
5113
5114 /* Copy over the attributes from the stub to the DIE we just read in. */
5115 comp_unit_die = *result_comp_unit_die;
5116 i = comp_unit_die->num_attrs;
5117 if (stmt_list != NULL)
5118 comp_unit_die->attrs[i++] = *stmt_list;
5119 if (low_pc != NULL)
5120 comp_unit_die->attrs[i++] = *low_pc;
5121 if (high_pc != NULL)
5122 comp_unit_die->attrs[i++] = *high_pc;
5123 if (ranges != NULL)
5124 comp_unit_die->attrs[i++] = *ranges;
5125 if (comp_dir != NULL)
5126 comp_unit_die->attrs[i++] = *comp_dir;
5127 comp_unit_die->num_attrs += num_extra_attrs;
5128
bf6af496
DE
5129 if (dwarf2_die_debug)
5130 {
5131 fprintf_unfiltered (gdb_stdlog,
5132 "Read die from %s@0x%x of %s:\n",
a32a8923 5133 get_section_name (section),
bf6af496
DE
5134 (unsigned) (begin_info_ptr - section->buffer),
5135 bfd_get_filename (abfd));
5136 dump_die (comp_unit_die, dwarf2_die_debug);
5137 }
5138
a2ce51a0
DE
5139 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5140 TUs by skipping the stub and going directly to the entry in the DWO file.
5141 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5142 to get it via circuitous means. Blech. */
5143 if (comp_dir != NULL)
5144 result_reader->comp_dir = DW_STRING (comp_dir);
5145
b0c7bfa9
DE
5146 /* Skip dummy compilation units. */
5147 if (info_ptr >= begin_info_ptr + dwo_unit->length
5148 || peek_abbrev_code (abfd, info_ptr) == 0)
5149 return 0;
5150
5151 *result_info_ptr = info_ptr;
5152 return 1;
5153}
5154
5155/* Subroutine of init_cutu_and_read_dies to simplify it.
5156 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5157 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5158
5159static struct dwo_unit *
5160lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5161 struct die_info *comp_unit_die)
5162{
5163 struct dwarf2_cu *cu = this_cu->cu;
5164 struct attribute *attr;
5165 ULONGEST signature;
5166 struct dwo_unit *dwo_unit;
5167 const char *comp_dir, *dwo_name;
5168
a2ce51a0
DE
5169 gdb_assert (cu != NULL);
5170
b0c7bfa9
DE
5171 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5172 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5173 gdb_assert (attr != NULL);
5174 dwo_name = DW_STRING (attr);
5175 comp_dir = NULL;
5176 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5177 if (attr)
5178 comp_dir = DW_STRING (attr);
5179
5180 if (this_cu->is_debug_types)
5181 {
5182 struct signatured_type *sig_type;
5183
5184 /* Since this_cu is the first member of struct signatured_type,
5185 we can go from a pointer to one to a pointer to the other. */
5186 sig_type = (struct signatured_type *) this_cu;
5187 signature = sig_type->signature;
5188 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5189 }
5190 else
5191 {
5192 struct attribute *attr;
5193
5194 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5195 if (! attr)
5196 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5197 " [in module %s]"),
4262abfb 5198 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5199 signature = DW_UNSND (attr);
5200 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5201 signature);
5202 }
5203
b0c7bfa9
DE
5204 return dwo_unit;
5205}
5206
a2ce51a0
DE
5207/* Subroutine of init_cutu_and_read_dies to simplify it.
5208 Read a TU directly from a DWO file, bypassing the stub. */
5209
5210static void
5211init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
5212 die_reader_func_ftype *die_reader_func,
5213 void *data)
5214{
5215 struct dwarf2_cu *cu;
5216 struct signatured_type *sig_type;
5217 struct cleanup *cleanups, *free_cu_cleanup;
5218 struct die_reader_specs reader;
5219 const gdb_byte *info_ptr;
5220 struct die_info *comp_unit_die;
5221 int has_children;
5222
5223 /* Verify we can do the following downcast, and that we have the
5224 data we need. */
5225 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5226 sig_type = (struct signatured_type *) this_cu;
5227 gdb_assert (sig_type->dwo_unit != NULL);
5228
5229 cleanups = make_cleanup (null_cleanup, NULL);
5230
5231 gdb_assert (this_cu->cu == NULL);
5232 cu = xmalloc (sizeof (*cu));
5233 init_one_comp_unit (cu, this_cu);
5234 /* If an error occurs while loading, release our storage. */
5235 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5236
5237 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5238 0 /* abbrev_table_provided */,
5239 NULL /* stub_comp_unit_die */,
5240 sig_type->dwo_unit->dwo_file->comp_dir,
5241 &reader, &info_ptr,
5242 &comp_unit_die, &has_children) == 0)
5243 {
5244 /* Dummy die. */
5245 do_cleanups (cleanups);
5246 return;
5247 }
5248
5249 /* All the "real" work is done here. */
5250 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5251
5252 /* This duplicates some code in init_cutu_and_read_dies,
5253 but the alternative is making the latter more complex.
5254 This function is only for the special case of using DWO files directly:
5255 no point in overly complicating the general case just to handle this. */
5256 if (keep)
5257 {
5258 /* We've successfully allocated this compilation unit. Let our
5259 caller clean it up when finished with it. */
5260 discard_cleanups (free_cu_cleanup);
5261
5262 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5263 So we have to manually free the abbrev table. */
5264 dwarf2_free_abbrev_table (cu);
5265
5266 /* Link this CU into read_in_chain. */
5267 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5268 dwarf2_per_objfile->read_in_chain = this_cu;
5269 }
5270 else
5271 do_cleanups (free_cu_cleanup);
5272
5273 do_cleanups (cleanups);
5274}
5275
fd820528 5276/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5277 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5278
f4dc4d17
DE
5279 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5280 Otherwise the table specified in the comp unit header is read in and used.
5281 This is an optimization for when we already have the abbrev table.
5282
dee91e82
DE
5283 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5284 Otherwise, a new CU is allocated with xmalloc.
5285
5286 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5287 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5288
5289 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5290 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5291
70221824 5292static void
fd820528 5293init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5294 struct abbrev_table *abbrev_table,
fd820528
DE
5295 int use_existing_cu, int keep,
5296 die_reader_func_ftype *die_reader_func,
5297 void *data)
c906108c 5298{
dee91e82 5299 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5300 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5301 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5302 struct dwarf2_cu *cu;
d521ce57 5303 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5304 struct die_reader_specs reader;
d85a05f0 5305 struct die_info *comp_unit_die;
dee91e82 5306 int has_children;
d85a05f0 5307 struct attribute *attr;
365156ad 5308 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5309 struct signatured_type *sig_type = NULL;
4bdcc0c1 5310 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5311 /* Non-zero if CU currently points to a DWO file and we need to
5312 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5313 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5314 int rereading_dwo_cu = 0;
c906108c 5315
09406207
DE
5316 if (dwarf2_die_debug)
5317 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5318 this_cu->is_debug_types ? "type" : "comp",
5319 this_cu->offset.sect_off);
5320
dee91e82
DE
5321 if (use_existing_cu)
5322 gdb_assert (keep);
23745b47 5323
a2ce51a0
DE
5324 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5325 file (instead of going through the stub), short-circuit all of this. */
5326 if (this_cu->reading_dwo_directly)
5327 {
5328 /* Narrow down the scope of possibilities to have to understand. */
5329 gdb_assert (this_cu->is_debug_types);
5330 gdb_assert (abbrev_table == NULL);
5331 gdb_assert (!use_existing_cu);
5332 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5333 return;
5334 }
5335
dee91e82
DE
5336 cleanups = make_cleanup (null_cleanup, NULL);
5337
5338 /* This is cheap if the section is already read in. */
5339 dwarf2_read_section (objfile, section);
5340
5341 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5342
5343 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5344
5345 if (use_existing_cu && this_cu->cu != NULL)
5346 {
5347 cu = this_cu->cu;
42e7ad6c
DE
5348
5349 /* If this CU is from a DWO file we need to start over, we need to
5350 refetch the attributes from the skeleton CU.
5351 This could be optimized by retrieving those attributes from when we
5352 were here the first time: the previous comp_unit_die was stored in
5353 comp_unit_obstack. But there's no data yet that we need this
5354 optimization. */
5355 if (cu->dwo_unit != NULL)
5356 rereading_dwo_cu = 1;
dee91e82
DE
5357 }
5358 else
5359 {
5360 /* If !use_existing_cu, this_cu->cu must be NULL. */
5361 gdb_assert (this_cu->cu == NULL);
5362
5363 cu = xmalloc (sizeof (*cu));
5364 init_one_comp_unit (cu, this_cu);
5365
5366 /* If an error occurs while loading, release our storage. */
365156ad 5367 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5368 }
dee91e82 5369
b0c7bfa9 5370 /* Get the header. */
42e7ad6c
DE
5371 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5372 {
5373 /* We already have the header, there's no need to read it in again. */
5374 info_ptr += cu->header.first_die_offset.cu_off;
5375 }
5376 else
5377 {
3019eac3 5378 if (this_cu->is_debug_types)
dee91e82
DE
5379 {
5380 ULONGEST signature;
42e7ad6c 5381 cu_offset type_offset_in_tu;
dee91e82 5382
4bdcc0c1
DE
5383 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5384 abbrev_section, info_ptr,
42e7ad6c
DE
5385 &signature,
5386 &type_offset_in_tu);
dee91e82 5387
42e7ad6c
DE
5388 /* Since per_cu is the first member of struct signatured_type,
5389 we can go from a pointer to one to a pointer to the other. */
5390 sig_type = (struct signatured_type *) this_cu;
5391 gdb_assert (sig_type->signature == signature);
5392 gdb_assert (sig_type->type_offset_in_tu.cu_off
5393 == type_offset_in_tu.cu_off);
dee91e82
DE
5394 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5395
42e7ad6c
DE
5396 /* LENGTH has not been set yet for type units if we're
5397 using .gdb_index. */
1ce1cefd 5398 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5399
5400 /* Establish the type offset that can be used to lookup the type. */
5401 sig_type->type_offset_in_section.sect_off =
5402 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5403 }
5404 else
5405 {
4bdcc0c1
DE
5406 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5407 abbrev_section,
5408 info_ptr, 0);
dee91e82
DE
5409
5410 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5411 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5412 }
5413 }
10b3939b 5414
6caca83c 5415 /* Skip dummy compilation units. */
dee91e82 5416 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5417 || peek_abbrev_code (abfd, info_ptr) == 0)
5418 {
dee91e82 5419 do_cleanups (cleanups);
21b2bd31 5420 return;
6caca83c
CC
5421 }
5422
433df2d4
DE
5423 /* If we don't have them yet, read the abbrevs for this compilation unit.
5424 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5425 done. Note that it's important that if the CU had an abbrev table
5426 on entry we don't free it when we're done: Somewhere up the call stack
5427 it may be in use. */
f4dc4d17
DE
5428 if (abbrev_table != NULL)
5429 {
5430 gdb_assert (cu->abbrev_table == NULL);
5431 gdb_assert (cu->header.abbrev_offset.sect_off
5432 == abbrev_table->offset.sect_off);
5433 cu->abbrev_table = abbrev_table;
5434 }
5435 else if (cu->abbrev_table == NULL)
dee91e82 5436 {
4bdcc0c1 5437 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5438 make_cleanup (dwarf2_free_abbrev_table, cu);
5439 }
42e7ad6c
DE
5440 else if (rereading_dwo_cu)
5441 {
5442 dwarf2_free_abbrev_table (cu);
5443 dwarf2_read_abbrevs (cu, abbrev_section);
5444 }
af703f96 5445
dee91e82 5446 /* Read the top level CU/TU die. */
3019eac3 5447 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5448 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5449
b0c7bfa9
DE
5450 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5451 from the DWO file.
5452 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5453 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5454 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5455 if (attr)
5456 {
3019eac3 5457 struct dwo_unit *dwo_unit;
b0c7bfa9 5458 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5459
5460 if (has_children)
6a506a2d
DE
5461 {
5462 complaint (&symfile_complaints,
5463 _("compilation unit with DW_AT_GNU_dwo_name"
5464 " has children (offset 0x%x) [in module %s]"),
5465 this_cu->offset.sect_off, bfd_get_filename (abfd));
5466 }
b0c7bfa9 5467 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5468 if (dwo_unit != NULL)
3019eac3 5469 {
6a506a2d
DE
5470 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5471 abbrev_table != NULL,
a2ce51a0 5472 comp_unit_die, NULL,
6a506a2d
DE
5473 &reader, &info_ptr,
5474 &dwo_comp_unit_die, &has_children) == 0)
5475 {
5476 /* Dummy die. */
5477 do_cleanups (cleanups);
5478 return;
5479 }
5480 comp_unit_die = dwo_comp_unit_die;
5481 }
5482 else
5483 {
5484 /* Yikes, we couldn't find the rest of the DIE, we only have
5485 the stub. A complaint has already been logged. There's
5486 not much more we can do except pass on the stub DIE to
5487 die_reader_func. We don't want to throw an error on bad
5488 debug info. */
3019eac3
DE
5489 }
5490 }
5491
b0c7bfa9 5492 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5493 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5494
b0c7bfa9 5495 /* Done, clean up. */
365156ad 5496 if (free_cu_cleanup != NULL)
348e048f 5497 {
365156ad
TT
5498 if (keep)
5499 {
5500 /* We've successfully allocated this compilation unit. Let our
5501 caller clean it up when finished with it. */
5502 discard_cleanups (free_cu_cleanup);
dee91e82 5503
365156ad
TT
5504 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5505 So we have to manually free the abbrev table. */
5506 dwarf2_free_abbrev_table (cu);
dee91e82 5507
365156ad
TT
5508 /* Link this CU into read_in_chain. */
5509 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5510 dwarf2_per_objfile->read_in_chain = this_cu;
5511 }
5512 else
5513 do_cleanups (free_cu_cleanup);
348e048f 5514 }
365156ad
TT
5515
5516 do_cleanups (cleanups);
dee91e82
DE
5517}
5518
33e80786
DE
5519/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5520 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5521 to have already done the lookup to find the DWO file).
dee91e82
DE
5522
5523 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5524 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5525
5526 We fill in THIS_CU->length.
5527
5528 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5529 linker) then DIE_READER_FUNC will not get called.
5530
5531 THIS_CU->cu is always freed when done.
3019eac3
DE
5532 This is done in order to not leave THIS_CU->cu in a state where we have
5533 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5534
5535static void
5536init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5537 struct dwo_file *dwo_file,
dee91e82
DE
5538 die_reader_func_ftype *die_reader_func,
5539 void *data)
5540{
5541 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5542 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5543 bfd *abfd = get_section_bfd_owner (section);
33e80786 5544 struct dwarf2_section_info *abbrev_section;
dee91e82 5545 struct dwarf2_cu cu;
d521ce57 5546 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5547 struct die_reader_specs reader;
5548 struct cleanup *cleanups;
5549 struct die_info *comp_unit_die;
5550 int has_children;
5551
09406207
DE
5552 if (dwarf2_die_debug)
5553 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5554 this_cu->is_debug_types ? "type" : "comp",
5555 this_cu->offset.sect_off);
5556
dee91e82
DE
5557 gdb_assert (this_cu->cu == NULL);
5558
33e80786
DE
5559 abbrev_section = (dwo_file != NULL
5560 ? &dwo_file->sections.abbrev
5561 : get_abbrev_section_for_cu (this_cu));
5562
dee91e82
DE
5563 /* This is cheap if the section is already read in. */
5564 dwarf2_read_section (objfile, section);
5565
5566 init_one_comp_unit (&cu, this_cu);
5567
5568 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5569
5570 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5571 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5572 abbrev_section, info_ptr,
3019eac3 5573 this_cu->is_debug_types);
dee91e82 5574
1ce1cefd 5575 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5576
5577 /* Skip dummy compilation units. */
5578 if (info_ptr >= begin_info_ptr + this_cu->length
5579 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5580 {
dee91e82 5581 do_cleanups (cleanups);
21b2bd31 5582 return;
93311388 5583 }
72bf9492 5584
dee91e82
DE
5585 dwarf2_read_abbrevs (&cu, abbrev_section);
5586 make_cleanup (dwarf2_free_abbrev_table, &cu);
5587
3019eac3 5588 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5589 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5590
5591 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5592
5593 do_cleanups (cleanups);
5594}
5595
3019eac3
DE
5596/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5597 does not lookup the specified DWO file.
5598 This cannot be used to read DWO files.
dee91e82
DE
5599
5600 THIS_CU->cu is always freed when done.
3019eac3
DE
5601 This is done in order to not leave THIS_CU->cu in a state where we have
5602 to care whether it refers to the "main" CU or the DWO CU.
5603 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5604
5605static void
5606init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5607 die_reader_func_ftype *die_reader_func,
5608 void *data)
5609{
33e80786 5610 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5611}
0018ea6f
DE
5612\f
5613/* Type Unit Groups.
dee91e82 5614
0018ea6f
DE
5615 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5616 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5617 so that all types coming from the same compilation (.o file) are grouped
5618 together. A future step could be to put the types in the same symtab as
5619 the CU the types ultimately came from. */
ff013f42 5620
f4dc4d17
DE
5621static hashval_t
5622hash_type_unit_group (const void *item)
5623{
094b34ac 5624 const struct type_unit_group *tu_group = item;
f4dc4d17 5625
094b34ac 5626 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5627}
348e048f
DE
5628
5629static int
f4dc4d17 5630eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5631{
f4dc4d17
DE
5632 const struct type_unit_group *lhs = item_lhs;
5633 const struct type_unit_group *rhs = item_rhs;
348e048f 5634
094b34ac 5635 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5636}
348e048f 5637
f4dc4d17
DE
5638/* Allocate a hash table for type unit groups. */
5639
5640static htab_t
5641allocate_type_unit_groups_table (void)
5642{
5643 return htab_create_alloc_ex (3,
5644 hash_type_unit_group,
5645 eq_type_unit_group,
5646 NULL,
5647 &dwarf2_per_objfile->objfile->objfile_obstack,
5648 hashtab_obstack_allocate,
5649 dummy_obstack_deallocate);
5650}
dee91e82 5651
f4dc4d17
DE
5652/* Type units that don't have DW_AT_stmt_list are grouped into their own
5653 partial symtabs. We combine several TUs per psymtab to not let the size
5654 of any one psymtab grow too big. */
5655#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5656#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5657
094b34ac 5658/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5659 Create the type_unit_group object used to hold one or more TUs. */
5660
5661static struct type_unit_group *
094b34ac 5662create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5663{
5664 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5665 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5666 struct type_unit_group *tu_group;
f4dc4d17
DE
5667
5668 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5669 struct type_unit_group);
094b34ac 5670 per_cu = &tu_group->per_cu;
f4dc4d17 5671 per_cu->objfile = objfile;
f4dc4d17 5672
094b34ac
DE
5673 if (dwarf2_per_objfile->using_index)
5674 {
5675 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5676 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5677 }
5678 else
5679 {
5680 unsigned int line_offset = line_offset_struct.sect_off;
5681 struct partial_symtab *pst;
5682 char *name;
5683
5684 /* Give the symtab a useful name for debug purposes. */
5685 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5686 name = xstrprintf ("<type_units_%d>",
5687 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5688 else
5689 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5690
5691 pst = create_partial_symtab (per_cu, name);
5692 pst->anonymous = 1;
f4dc4d17 5693
094b34ac
DE
5694 xfree (name);
5695 }
f4dc4d17 5696
094b34ac
DE
5697 tu_group->hash.dwo_unit = cu->dwo_unit;
5698 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5699
5700 return tu_group;
5701}
5702
094b34ac
DE
5703/* Look up the type_unit_group for type unit CU, and create it if necessary.
5704 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5705
5706static struct type_unit_group *
ff39bb5e 5707get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5708{
5709 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5710 struct type_unit_group *tu_group;
5711 void **slot;
5712 unsigned int line_offset;
5713 struct type_unit_group type_unit_group_for_lookup;
5714
5715 if (dwarf2_per_objfile->type_unit_groups == NULL)
5716 {
5717 dwarf2_per_objfile->type_unit_groups =
5718 allocate_type_unit_groups_table ();
5719 }
5720
5721 /* Do we need to create a new group, or can we use an existing one? */
5722
5723 if (stmt_list)
5724 {
5725 line_offset = DW_UNSND (stmt_list);
5726 ++tu_stats->nr_symtab_sharers;
5727 }
5728 else
5729 {
5730 /* Ugh, no stmt_list. Rare, but we have to handle it.
5731 We can do various things here like create one group per TU or
5732 spread them over multiple groups to split up the expansion work.
5733 To avoid worst case scenarios (too many groups or too large groups)
5734 we, umm, group them in bunches. */
5735 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5736 | (tu_stats->nr_stmt_less_type_units
5737 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5738 ++tu_stats->nr_stmt_less_type_units;
5739 }
5740
094b34ac
DE
5741 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5742 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5743 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5744 &type_unit_group_for_lookup, INSERT);
5745 if (*slot != NULL)
5746 {
5747 tu_group = *slot;
5748 gdb_assert (tu_group != NULL);
5749 }
5750 else
5751 {
5752 sect_offset line_offset_struct;
5753
5754 line_offset_struct.sect_off = line_offset;
094b34ac 5755 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5756 *slot = tu_group;
5757 ++tu_stats->nr_symtabs;
5758 }
5759
5760 return tu_group;
5761}
5762
5763/* Struct used to sort TUs by their abbreviation table offset. */
5764
5765struct tu_abbrev_offset
5766{
5767 struct signatured_type *sig_type;
5768 sect_offset abbrev_offset;
5769};
5770
5771/* Helper routine for build_type_unit_groups, passed to qsort. */
5772
5773static int
5774sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5775{
5776 const struct tu_abbrev_offset * const *a = ap;
5777 const struct tu_abbrev_offset * const *b = bp;
5778 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5779 unsigned int boff = (*b)->abbrev_offset.sect_off;
5780
5781 return (aoff > boff) - (aoff < boff);
5782}
5783
5784/* A helper function to add a type_unit_group to a table. */
5785
5786static int
5787add_type_unit_group_to_table (void **slot, void *datum)
5788{
5789 struct type_unit_group *tu_group = *slot;
5790 struct type_unit_group ***datap = datum;
5791
5792 **datap = tu_group;
5793 ++*datap;
5794
5795 return 1;
5796}
5797
5798/* Efficiently read all the type units, calling init_cutu_and_read_dies on
5799 each one passing FUNC,DATA.
5800
5801 The efficiency is because we sort TUs by the abbrev table they use and
5802 only read each abbrev table once. In one program there are 200K TUs
5803 sharing 8K abbrev tables.
5804
5805 The main purpose of this function is to support building the
5806 dwarf2_per_objfile->type_unit_groups table.
5807 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5808 can collapse the search space by grouping them by stmt_list.
5809 The savings can be significant, in the same program from above the 200K TUs
5810 share 8K stmt_list tables.
5811
5812 FUNC is expected to call get_type_unit_group, which will create the
5813 struct type_unit_group if necessary and add it to
5814 dwarf2_per_objfile->type_unit_groups. */
5815
5816static void
5817build_type_unit_groups (die_reader_func_ftype *func, void *data)
5818{
5819 struct objfile *objfile = dwarf2_per_objfile->objfile;
5820 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5821 struct cleanup *cleanups;
5822 struct abbrev_table *abbrev_table;
5823 sect_offset abbrev_offset;
5824 struct tu_abbrev_offset *sorted_by_abbrev;
5825 struct type_unit_group **iter;
5826 int i;
5827
5828 /* It's up to the caller to not call us multiple times. */
5829 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5830
5831 if (dwarf2_per_objfile->n_type_units == 0)
5832 return;
5833
5834 /* TUs typically share abbrev tables, and there can be way more TUs than
5835 abbrev tables. Sort by abbrev table to reduce the number of times we
5836 read each abbrev table in.
5837 Alternatives are to punt or to maintain a cache of abbrev tables.
5838 This is simpler and efficient enough for now.
5839
5840 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5841 symtab to use). Typically TUs with the same abbrev offset have the same
5842 stmt_list value too so in practice this should work well.
5843
5844 The basic algorithm here is:
5845
5846 sort TUs by abbrev table
5847 for each TU with same abbrev table:
5848 read abbrev table if first user
5849 read TU top level DIE
5850 [IWBN if DWO skeletons had DW_AT_stmt_list]
5851 call FUNC */
5852
5853 if (dwarf2_read_debug)
5854 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5855
5856 /* Sort in a separate table to maintain the order of all_type_units
5857 for .gdb_index: TU indices directly index all_type_units. */
5858 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5859 dwarf2_per_objfile->n_type_units);
5860 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5861 {
5862 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5863
5864 sorted_by_abbrev[i].sig_type = sig_type;
5865 sorted_by_abbrev[i].abbrev_offset =
8a0459fd 5866 read_abbrev_offset (sig_type->per_cu.section,
f4dc4d17
DE
5867 sig_type->per_cu.offset);
5868 }
5869 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5870 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5871 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5872
094b34ac
DE
5873 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5874 called any number of times, so we don't reset tu_stats here. */
5875
f4dc4d17
DE
5876 abbrev_offset.sect_off = ~(unsigned) 0;
5877 abbrev_table = NULL;
5878 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5879
5880 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5881 {
5882 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5883
5884 /* Switch to the next abbrev table if necessary. */
5885 if (abbrev_table == NULL
5886 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5887 {
5888 if (abbrev_table != NULL)
5889 {
5890 abbrev_table_free (abbrev_table);
5891 /* Reset to NULL in case abbrev_table_read_table throws
5892 an error: abbrev_table_free_cleanup will get called. */
5893 abbrev_table = NULL;
5894 }
5895 abbrev_offset = tu->abbrev_offset;
5896 abbrev_table =
5897 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5898 abbrev_offset);
5899 ++tu_stats->nr_uniq_abbrev_tables;
5900 }
5901
5902 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5903 func, data);
5904 }
5905
a2ce51a0
DE
5906 /* type_unit_groups can be NULL if there is an error in the debug info.
5907 Just create an empty table so the rest of gdb doesn't have to watch
5908 for this error case. */
5909 if (dwarf2_per_objfile->type_unit_groups == NULL)
5910 {
5911 dwarf2_per_objfile->type_unit_groups =
5912 allocate_type_unit_groups_table ();
5913 dwarf2_per_objfile->n_type_unit_groups = 0;
5914 }
5915
f4dc4d17
DE
5916 /* Create a vector of pointers to primary type units to make it easy to
5917 iterate over them and CUs. See dw2_get_primary_cu. */
5918 dwarf2_per_objfile->n_type_unit_groups =
5919 htab_elements (dwarf2_per_objfile->type_unit_groups);
5920 dwarf2_per_objfile->all_type_unit_groups =
5921 obstack_alloc (&objfile->objfile_obstack,
5922 dwarf2_per_objfile->n_type_unit_groups
5923 * sizeof (struct type_unit_group *));
5924 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5925 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5926 add_type_unit_group_to_table, &iter);
5927 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5928 == dwarf2_per_objfile->n_type_unit_groups);
5929
5930 do_cleanups (cleanups);
5931
5932 if (dwarf2_read_debug)
5933 {
5934 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5935 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5936 dwarf2_per_objfile->n_type_units);
5937 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5938 tu_stats->nr_uniq_abbrev_tables);
5939 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5940 tu_stats->nr_symtabs);
5941 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5942 tu_stats->nr_symtab_sharers);
5943 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5944 tu_stats->nr_stmt_less_type_units);
5945 }
5946}
0018ea6f
DE
5947\f
5948/* Partial symbol tables. */
5949
5950/* Create a psymtab named NAME and assign it to PER_CU.
5951
5952 The caller must fill in the following details:
5953 dirname, textlow, texthigh. */
5954
5955static struct partial_symtab *
5956create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5957{
5958 struct objfile *objfile = per_cu->objfile;
5959 struct partial_symtab *pst;
5960
5961 pst = start_psymtab_common (objfile, objfile->section_offsets,
5962 name, 0,
5963 objfile->global_psymbols.next,
5964 objfile->static_psymbols.next);
5965
5966 pst->psymtabs_addrmap_supported = 1;
5967
5968 /* This is the glue that links PST into GDB's symbol API. */
5969 pst->read_symtab_private = per_cu;
5970 pst->read_symtab = dwarf2_read_symtab;
5971 per_cu->v.psymtab = pst;
5972
5973 return pst;
5974}
5975
b93601f3
TT
5976/* The DATA object passed to process_psymtab_comp_unit_reader has this
5977 type. */
5978
5979struct process_psymtab_comp_unit_data
5980{
5981 /* True if we are reading a DW_TAG_partial_unit. */
5982
5983 int want_partial_unit;
5984
5985 /* The "pretend" language that is used if the CU doesn't declare a
5986 language. */
5987
5988 enum language pretend_language;
5989};
5990
0018ea6f
DE
5991/* die_reader_func for process_psymtab_comp_unit. */
5992
5993static void
5994process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5995 const gdb_byte *info_ptr,
0018ea6f
DE
5996 struct die_info *comp_unit_die,
5997 int has_children,
5998 void *data)
5999{
6000 struct dwarf2_cu *cu = reader->cu;
6001 struct objfile *objfile = cu->objfile;
6002 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6003 struct attribute *attr;
6004 CORE_ADDR baseaddr;
6005 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6006 struct partial_symtab *pst;
6007 int has_pc_info;
6008 const char *filename;
b93601f3 6009 struct process_psymtab_comp_unit_data *info = data;
0018ea6f 6010
b93601f3 6011 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
6012 return;
6013
6014 gdb_assert (! per_cu->is_debug_types);
6015
b93601f3 6016 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
6017
6018 cu->list_in_scope = &file_symbols;
6019
6020 /* Allocate a new partial symbol table structure. */
6021 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
6022 if (attr == NULL || !DW_STRING (attr))
6023 filename = "";
6024 else
6025 filename = DW_STRING (attr);
6026
6027 pst = create_partial_symtab (per_cu, filename);
6028
6029 /* This must be done before calling dwarf2_build_include_psymtabs. */
6030 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
6031 if (attr != NULL)
6032 pst->dirname = DW_STRING (attr);
6033
6034 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6035
6036 dwarf2_find_base_address (comp_unit_die, cu);
6037
6038 /* Possibly set the default values of LOWPC and HIGHPC from
6039 `DW_AT_ranges'. */
6040 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6041 &best_highpc, cu, pst);
6042 if (has_pc_info == 1 && best_lowpc < best_highpc)
6043 /* Store the contiguous range if it is not empty; it can be empty for
6044 CUs with no code. */
6045 addrmap_set_empty (objfile->psymtabs_addrmap,
6046 best_lowpc + baseaddr,
6047 best_highpc + baseaddr - 1, pst);
6048
6049 /* Check if comp unit has_children.
6050 If so, read the rest of the partial symbols from this comp unit.
6051 If not, there's no more debug_info for this comp unit. */
6052 if (has_children)
6053 {
6054 struct partial_die_info *first_die;
6055 CORE_ADDR lowpc, highpc;
6056
6057 lowpc = ((CORE_ADDR) -1);
6058 highpc = ((CORE_ADDR) 0);
6059
6060 first_die = load_partial_dies (reader, info_ptr, 1);
6061
6062 scan_partial_symbols (first_die, &lowpc, &highpc,
6063 ! has_pc_info, cu);
6064
6065 /* If we didn't find a lowpc, set it to highpc to avoid
6066 complaints from `maint check'. */
6067 if (lowpc == ((CORE_ADDR) -1))
6068 lowpc = highpc;
6069
6070 /* If the compilation unit didn't have an explicit address range,
6071 then use the information extracted from its child dies. */
6072 if (! has_pc_info)
6073 {
6074 best_lowpc = lowpc;
6075 best_highpc = highpc;
6076 }
6077 }
6078 pst->textlow = best_lowpc + baseaddr;
6079 pst->texthigh = best_highpc + baseaddr;
6080
6081 pst->n_global_syms = objfile->global_psymbols.next -
6082 (objfile->global_psymbols.list + pst->globals_offset);
6083 pst->n_static_syms = objfile->static_psymbols.next -
6084 (objfile->static_psymbols.list + pst->statics_offset);
6085 sort_pst_symbols (objfile, pst);
6086
6087 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6088 {
6089 int i;
6090 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6091 struct dwarf2_per_cu_data *iter;
6092
6093 /* Fill in 'dependencies' here; we fill in 'users' in a
6094 post-pass. */
6095 pst->number_of_dependencies = len;
6096 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6097 len * sizeof (struct symtab *));
6098 for (i = 0;
6099 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6100 i, iter);
6101 ++i)
6102 pst->dependencies[i] = iter->v.psymtab;
6103
6104 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6105 }
6106
6107 /* Get the list of files included in the current compilation unit,
6108 and build a psymtab for each of them. */
6109 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6110
6111 if (dwarf2_read_debug)
6112 {
6113 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6114
6115 fprintf_unfiltered (gdb_stdlog,
6116 "Psymtab for %s unit @0x%x: %s - %s"
6117 ", %d global, %d static syms\n",
6118 per_cu->is_debug_types ? "type" : "comp",
6119 per_cu->offset.sect_off,
6120 paddress (gdbarch, pst->textlow),
6121 paddress (gdbarch, pst->texthigh),
6122 pst->n_global_syms, pst->n_static_syms);
6123 }
6124}
6125
6126/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6127 Process compilation unit THIS_CU for a psymtab. */
6128
6129static void
6130process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6131 int want_partial_unit,
6132 enum language pretend_language)
0018ea6f 6133{
b93601f3
TT
6134 struct process_psymtab_comp_unit_data info;
6135
0018ea6f
DE
6136 /* If this compilation unit was already read in, free the
6137 cached copy in order to read it in again. This is
6138 necessary because we skipped some symbols when we first
6139 read in the compilation unit (see load_partial_dies).
6140 This problem could be avoided, but the benefit is unclear. */
6141 if (this_cu->cu != NULL)
6142 free_one_cached_comp_unit (this_cu);
6143
6144 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6145 info.want_partial_unit = want_partial_unit;
6146 info.pretend_language = pretend_language;
0018ea6f
DE
6147 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6148 process_psymtab_comp_unit_reader,
b93601f3 6149 &info);
0018ea6f
DE
6150
6151 /* Age out any secondary CUs. */
6152 age_cached_comp_units ();
6153}
f4dc4d17
DE
6154
6155/* Reader function for build_type_psymtabs. */
6156
6157static void
6158build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6159 const gdb_byte *info_ptr,
f4dc4d17
DE
6160 struct die_info *type_unit_die,
6161 int has_children,
6162 void *data)
6163{
6164 struct objfile *objfile = dwarf2_per_objfile->objfile;
6165 struct dwarf2_cu *cu = reader->cu;
6166 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6167 struct signatured_type *sig_type;
f4dc4d17
DE
6168 struct type_unit_group *tu_group;
6169 struct attribute *attr;
6170 struct partial_die_info *first_die;
6171 CORE_ADDR lowpc, highpc;
6172 struct partial_symtab *pst;
6173
6174 gdb_assert (data == NULL);
0186c6a7
DE
6175 gdb_assert (per_cu->is_debug_types);
6176 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6177
6178 if (! has_children)
6179 return;
6180
6181 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6182 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6183
0186c6a7 6184 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6185
6186 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6187 cu->list_in_scope = &file_symbols;
6188 pst = create_partial_symtab (per_cu, "");
6189 pst->anonymous = 1;
6190
6191 first_die = load_partial_dies (reader, info_ptr, 1);
6192
6193 lowpc = (CORE_ADDR) -1;
6194 highpc = (CORE_ADDR) 0;
6195 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6196
6197 pst->n_global_syms = objfile->global_psymbols.next -
6198 (objfile->global_psymbols.list + pst->globals_offset);
6199 pst->n_static_syms = objfile->static_psymbols.next -
6200 (objfile->static_psymbols.list + pst->statics_offset);
5c80ed9d 6201 sort_pst_symbols (objfile, pst);
f4dc4d17
DE
6202}
6203
6204/* Traversal function for build_type_psymtabs. */
6205
6206static int
6207build_type_psymtab_dependencies (void **slot, void *info)
6208{
6209 struct objfile *objfile = dwarf2_per_objfile->objfile;
6210 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6211 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6212 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6213 int len = VEC_length (sig_type_ptr, tu_group->tus);
6214 struct signatured_type *iter;
f4dc4d17
DE
6215 int i;
6216
6217 gdb_assert (len > 0);
0186c6a7 6218 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6219
6220 pst->number_of_dependencies = len;
6221 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6222 len * sizeof (struct psymtab *));
6223 for (i = 0;
0186c6a7 6224 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6225 ++i)
6226 {
0186c6a7
DE
6227 gdb_assert (iter->per_cu.is_debug_types);
6228 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6229 iter->type_unit_group = tu_group;
f4dc4d17
DE
6230 }
6231
0186c6a7 6232 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6233
6234 return 1;
6235}
6236
6237/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6238 Build partial symbol tables for the .debug_types comp-units. */
6239
6240static void
6241build_type_psymtabs (struct objfile *objfile)
6242{
0e50663e 6243 if (! create_all_type_units (objfile))
348e048f
DE
6244 return;
6245
f4dc4d17
DE
6246 build_type_unit_groups (build_type_psymtabs_reader, NULL);
6247
6248 /* Now that all TUs have been processed we can fill in the dependencies. */
6249 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6250 build_type_psymtab_dependencies, NULL);
348e048f
DE
6251}
6252
60606b2c
TT
6253/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6254
6255static void
6256psymtabs_addrmap_cleanup (void *o)
6257{
6258 struct objfile *objfile = o;
ec61707d 6259
60606b2c
TT
6260 objfile->psymtabs_addrmap = NULL;
6261}
6262
95554aad
TT
6263/* Compute the 'user' field for each psymtab in OBJFILE. */
6264
6265static void
6266set_partial_user (struct objfile *objfile)
6267{
6268 int i;
6269
6270 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6271 {
6272 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6273 struct partial_symtab *pst = per_cu->v.psymtab;
6274 int j;
6275
36586728
TT
6276 if (pst == NULL)
6277 continue;
6278
95554aad
TT
6279 for (j = 0; j < pst->number_of_dependencies; ++j)
6280 {
6281 /* Set the 'user' field only if it is not already set. */
6282 if (pst->dependencies[j]->user == NULL)
6283 pst->dependencies[j]->user = pst;
6284 }
6285 }
6286}
6287
93311388
DE
6288/* Build the partial symbol table by doing a quick pass through the
6289 .debug_info and .debug_abbrev sections. */
72bf9492 6290
93311388 6291static void
c67a9c90 6292dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6293{
60606b2c
TT
6294 struct cleanup *back_to, *addrmap_cleanup;
6295 struct obstack temp_obstack;
21b2bd31 6296 int i;
93311388 6297
45cfd468
DE
6298 if (dwarf2_read_debug)
6299 {
6300 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6301 objfile_name (objfile));
45cfd468
DE
6302 }
6303
98bfdba5
PA
6304 dwarf2_per_objfile->reading_partial_symbols = 1;
6305
be391dca 6306 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6307
93311388
DE
6308 /* Any cached compilation units will be linked by the per-objfile
6309 read_in_chain. Make sure to free them when we're done. */
6310 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6311
348e048f
DE
6312 build_type_psymtabs (objfile);
6313
93311388 6314 create_all_comp_units (objfile);
c906108c 6315
60606b2c
TT
6316 /* Create a temporary address map on a temporary obstack. We later
6317 copy this to the final obstack. */
6318 obstack_init (&temp_obstack);
6319 make_cleanup_obstack_free (&temp_obstack);
6320 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6321 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6322
21b2bd31 6323 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6324 {
21b2bd31 6325 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
aaa75496 6326
b93601f3 6327 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6328 }
ff013f42 6329
95554aad
TT
6330 set_partial_user (objfile);
6331
ff013f42
JK
6332 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6333 &objfile->objfile_obstack);
60606b2c 6334 discard_cleanups (addrmap_cleanup);
ff013f42 6335
ae038cb0 6336 do_cleanups (back_to);
45cfd468
DE
6337
6338 if (dwarf2_read_debug)
6339 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6340 objfile_name (objfile));
ae038cb0
DJ
6341}
6342
3019eac3 6343/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6344
6345static void
dee91e82 6346load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6347 const gdb_byte *info_ptr,
dee91e82
DE
6348 struct die_info *comp_unit_die,
6349 int has_children,
6350 void *data)
ae038cb0 6351{
dee91e82 6352 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6353
95554aad 6354 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6355
ae038cb0
DJ
6356 /* Check if comp unit has_children.
6357 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6358 If not, there's no more debug_info for this comp unit. */
d85a05f0 6359 if (has_children)
dee91e82
DE
6360 load_partial_dies (reader, info_ptr, 0);
6361}
98bfdba5 6362
dee91e82
DE
6363/* Load the partial DIEs for a secondary CU into memory.
6364 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6365
dee91e82
DE
6366static void
6367load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6368{
f4dc4d17
DE
6369 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6370 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6371}
6372
ae038cb0 6373static void
36586728
TT
6374read_comp_units_from_section (struct objfile *objfile,
6375 struct dwarf2_section_info *section,
6376 unsigned int is_dwz,
6377 int *n_allocated,
6378 int *n_comp_units,
6379 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6380{
d521ce57 6381 const gdb_byte *info_ptr;
a32a8923 6382 bfd *abfd = get_section_bfd_owner (section);
be391dca 6383
bf6af496
DE
6384 if (dwarf2_read_debug)
6385 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6386 get_section_name (section),
6387 get_section_file_name (section));
bf6af496 6388
36586728 6389 dwarf2_read_section (objfile, section);
ae038cb0 6390
36586728 6391 info_ptr = section->buffer;
6e70227d 6392
36586728 6393 while (info_ptr < section->buffer + section->size)
ae038cb0 6394 {
c764a876 6395 unsigned int length, initial_length_size;
ae038cb0 6396 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6397 sect_offset offset;
ae038cb0 6398
36586728 6399 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6400
6401 /* Read just enough information to find out where the next
6402 compilation unit is. */
36586728 6403 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6404
6405 /* Save the compilation unit for later lookup. */
6406 this_cu = obstack_alloc (&objfile->objfile_obstack,
6407 sizeof (struct dwarf2_per_cu_data));
6408 memset (this_cu, 0, sizeof (*this_cu));
6409 this_cu->offset = offset;
c764a876 6410 this_cu->length = length + initial_length_size;
36586728 6411 this_cu->is_dwz = is_dwz;
9291a0cd 6412 this_cu->objfile = objfile;
8a0459fd 6413 this_cu->section = section;
ae038cb0 6414
36586728 6415 if (*n_comp_units == *n_allocated)
ae038cb0 6416 {
36586728
TT
6417 *n_allocated *= 2;
6418 *all_comp_units = xrealloc (*all_comp_units,
6419 *n_allocated
6420 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 6421 }
36586728
TT
6422 (*all_comp_units)[*n_comp_units] = this_cu;
6423 ++*n_comp_units;
ae038cb0
DJ
6424
6425 info_ptr = info_ptr + this_cu->length;
6426 }
36586728
TT
6427}
6428
6429/* Create a list of all compilation units in OBJFILE.
6430 This is only done for -readnow and building partial symtabs. */
6431
6432static void
6433create_all_comp_units (struct objfile *objfile)
6434{
6435 int n_allocated;
6436 int n_comp_units;
6437 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6438 struct dwz_file *dwz;
36586728
TT
6439
6440 n_comp_units = 0;
6441 n_allocated = 10;
6442 all_comp_units = xmalloc (n_allocated
6443 * sizeof (struct dwarf2_per_cu_data *));
6444
6445 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6446 &n_allocated, &n_comp_units, &all_comp_units);
6447
4db1a1dc
TT
6448 dwz = dwarf2_get_dwz_file ();
6449 if (dwz != NULL)
6450 read_comp_units_from_section (objfile, &dwz->info, 1,
6451 &n_allocated, &n_comp_units,
6452 &all_comp_units);
ae038cb0
DJ
6453
6454 dwarf2_per_objfile->all_comp_units
6455 = obstack_alloc (&objfile->objfile_obstack,
6456 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6457 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6458 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6459 xfree (all_comp_units);
6460 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6461}
6462
5734ee8b
DJ
6463/* Process all loaded DIEs for compilation unit CU, starting at
6464 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6465 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6466 DW_AT_ranges). If NEED_PC is set, then this function will set
6467 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6468 and record the covered ranges in the addrmap. */
c906108c 6469
72bf9492
DJ
6470static void
6471scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 6472 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 6473{
72bf9492 6474 struct partial_die_info *pdi;
c906108c 6475
91c24f0a
DC
6476 /* Now, march along the PDI's, descending into ones which have
6477 interesting children but skipping the children of the other ones,
6478 until we reach the end of the compilation unit. */
c906108c 6479
72bf9492 6480 pdi = first_die;
91c24f0a 6481
72bf9492
DJ
6482 while (pdi != NULL)
6483 {
6484 fixup_partial_die (pdi, cu);
c906108c 6485
f55ee35c 6486 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6487 children, so we need to look at them. Ditto for anonymous
6488 enums. */
933c6fe4 6489
72bf9492 6490 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6491 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6492 || pdi->tag == DW_TAG_imported_unit)
c906108c 6493 {
72bf9492 6494 switch (pdi->tag)
c906108c
SS
6495 {
6496 case DW_TAG_subprogram:
5734ee8b 6497 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 6498 break;
72929c62 6499 case DW_TAG_constant:
c906108c
SS
6500 case DW_TAG_variable:
6501 case DW_TAG_typedef:
91c24f0a 6502 case DW_TAG_union_type:
72bf9492 6503 if (!pdi->is_declaration)
63d06c5c 6504 {
72bf9492 6505 add_partial_symbol (pdi, cu);
63d06c5c
DC
6506 }
6507 break;
c906108c 6508 case DW_TAG_class_type:
680b30c7 6509 case DW_TAG_interface_type:
c906108c 6510 case DW_TAG_structure_type:
72bf9492 6511 if (!pdi->is_declaration)
c906108c 6512 {
72bf9492 6513 add_partial_symbol (pdi, cu);
c906108c
SS
6514 }
6515 break;
91c24f0a 6516 case DW_TAG_enumeration_type:
72bf9492
DJ
6517 if (!pdi->is_declaration)
6518 add_partial_enumeration (pdi, cu);
c906108c
SS
6519 break;
6520 case DW_TAG_base_type:
a02abb62 6521 case DW_TAG_subrange_type:
c906108c 6522 /* File scope base type definitions are added to the partial
c5aa993b 6523 symbol table. */
72bf9492 6524 add_partial_symbol (pdi, cu);
c906108c 6525 break;
d9fa45fe 6526 case DW_TAG_namespace:
5734ee8b 6527 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 6528 break;
5d7cb8df
JK
6529 case DW_TAG_module:
6530 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6531 break;
95554aad
TT
6532 case DW_TAG_imported_unit:
6533 {
6534 struct dwarf2_per_cu_data *per_cu;
6535
f4dc4d17
DE
6536 /* For now we don't handle imported units in type units. */
6537 if (cu->per_cu->is_debug_types)
6538 {
6539 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6540 " supported in type units [in module %s]"),
4262abfb 6541 objfile_name (cu->objfile));
f4dc4d17
DE
6542 }
6543
95554aad 6544 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6545 pdi->is_dwz,
95554aad
TT
6546 cu->objfile);
6547
6548 /* Go read the partial unit, if needed. */
6549 if (per_cu->v.psymtab == NULL)
b93601f3 6550 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6551
f4dc4d17 6552 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6553 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6554 }
6555 break;
74921315
KS
6556 case DW_TAG_imported_declaration:
6557 add_partial_symbol (pdi, cu);
6558 break;
c906108c
SS
6559 default:
6560 break;
6561 }
6562 }
6563
72bf9492
DJ
6564 /* If the die has a sibling, skip to the sibling. */
6565
6566 pdi = pdi->die_sibling;
6567 }
6568}
6569
6570/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6571
72bf9492 6572 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6573 name is concatenated with "::" and the partial DIE's name. For
6574 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6575 Enumerators are an exception; they use the scope of their parent
6576 enumeration type, i.e. the name of the enumeration type is not
6577 prepended to the enumerator.
91c24f0a 6578
72bf9492
DJ
6579 There are two complexities. One is DW_AT_specification; in this
6580 case "parent" means the parent of the target of the specification,
6581 instead of the direct parent of the DIE. The other is compilers
6582 which do not emit DW_TAG_namespace; in this case we try to guess
6583 the fully qualified name of structure types from their members'
6584 linkage names. This must be done using the DIE's children rather
6585 than the children of any DW_AT_specification target. We only need
6586 to do this for structures at the top level, i.e. if the target of
6587 any DW_AT_specification (if any; otherwise the DIE itself) does not
6588 have a parent. */
6589
6590/* Compute the scope prefix associated with PDI's parent, in
6591 compilation unit CU. The result will be allocated on CU's
6592 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6593 field. NULL is returned if no prefix is necessary. */
15d034d0 6594static const char *
72bf9492
DJ
6595partial_die_parent_scope (struct partial_die_info *pdi,
6596 struct dwarf2_cu *cu)
6597{
15d034d0 6598 const char *grandparent_scope;
72bf9492 6599 struct partial_die_info *parent, *real_pdi;
91c24f0a 6600
72bf9492
DJ
6601 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6602 then this means the parent of the specification DIE. */
6603
6604 real_pdi = pdi;
72bf9492 6605 while (real_pdi->has_specification)
36586728
TT
6606 real_pdi = find_partial_die (real_pdi->spec_offset,
6607 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6608
6609 parent = real_pdi->die_parent;
6610 if (parent == NULL)
6611 return NULL;
6612
6613 if (parent->scope_set)
6614 return parent->scope;
6615
6616 fixup_partial_die (parent, cu);
6617
10b3939b 6618 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6619
acebe513
UW
6620 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6621 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6622 Work around this problem here. */
6623 if (cu->language == language_cplus
6e70227d 6624 && parent->tag == DW_TAG_namespace
acebe513
UW
6625 && strcmp (parent->name, "::") == 0
6626 && grandparent_scope == NULL)
6627 {
6628 parent->scope = NULL;
6629 parent->scope_set = 1;
6630 return NULL;
6631 }
6632
9c6c53f7
SA
6633 if (pdi->tag == DW_TAG_enumerator)
6634 /* Enumerators should not get the name of the enumeration as a prefix. */
6635 parent->scope = grandparent_scope;
6636 else if (parent->tag == DW_TAG_namespace
f55ee35c 6637 || parent->tag == DW_TAG_module
72bf9492
DJ
6638 || parent->tag == DW_TAG_structure_type
6639 || parent->tag == DW_TAG_class_type
680b30c7 6640 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6641 || parent->tag == DW_TAG_union_type
6642 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6643 {
6644 if (grandparent_scope == NULL)
6645 parent->scope = parent->name;
6646 else
3e43a32a
MS
6647 parent->scope = typename_concat (&cu->comp_unit_obstack,
6648 grandparent_scope,
f55ee35c 6649 parent->name, 0, cu);
72bf9492 6650 }
72bf9492
DJ
6651 else
6652 {
6653 /* FIXME drow/2004-04-01: What should we be doing with
6654 function-local names? For partial symbols, we should probably be
6655 ignoring them. */
6656 complaint (&symfile_complaints,
e2e0b3e5 6657 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6658 parent->tag, pdi->offset.sect_off);
72bf9492 6659 parent->scope = grandparent_scope;
c906108c
SS
6660 }
6661
72bf9492
DJ
6662 parent->scope_set = 1;
6663 return parent->scope;
6664}
6665
6666/* Return the fully scoped name associated with PDI, from compilation unit
6667 CU. The result will be allocated with malloc. */
4568ecf9 6668
72bf9492
DJ
6669static char *
6670partial_die_full_name (struct partial_die_info *pdi,
6671 struct dwarf2_cu *cu)
6672{
15d034d0 6673 const char *parent_scope;
72bf9492 6674
98bfdba5
PA
6675 /* If this is a template instantiation, we can not work out the
6676 template arguments from partial DIEs. So, unfortunately, we have
6677 to go through the full DIEs. At least any work we do building
6678 types here will be reused if full symbols are loaded later. */
6679 if (pdi->has_template_arguments)
6680 {
6681 fixup_partial_die (pdi, cu);
6682
6683 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6684 {
6685 struct die_info *die;
6686 struct attribute attr;
6687 struct dwarf2_cu *ref_cu = cu;
6688
b64f50a1 6689 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6690 attr.name = 0;
6691 attr.form = DW_FORM_ref_addr;
4568ecf9 6692 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6693 die = follow_die_ref (NULL, &attr, &ref_cu);
6694
6695 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6696 }
6697 }
6698
72bf9492
DJ
6699 parent_scope = partial_die_parent_scope (pdi, cu);
6700 if (parent_scope == NULL)
6701 return NULL;
6702 else
f55ee35c 6703 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6704}
6705
6706static void
72bf9492 6707add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6708{
e7c27a73 6709 struct objfile *objfile = cu->objfile;
c906108c 6710 CORE_ADDR addr = 0;
15d034d0 6711 const char *actual_name = NULL;
e142c38c 6712 CORE_ADDR baseaddr;
15d034d0 6713 char *built_actual_name;
e142c38c
DJ
6714
6715 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6716
15d034d0
TT
6717 built_actual_name = partial_die_full_name (pdi, cu);
6718 if (built_actual_name != NULL)
6719 actual_name = built_actual_name;
63d06c5c 6720
72bf9492
DJ
6721 if (actual_name == NULL)
6722 actual_name = pdi->name;
6723
c906108c
SS
6724 switch (pdi->tag)
6725 {
6726 case DW_TAG_subprogram:
2cfa0c8d 6727 if (pdi->is_external || cu->language == language_ada)
c906108c 6728 {
2cfa0c8d
JB
6729 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6730 of the global scope. But in Ada, we want to be able to access
6731 nested procedures globally. So all Ada subprograms are stored
6732 in the global scope. */
f47fb265 6733 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6734 mst_text, objfile); */
f47fb265 6735 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6736 built_actual_name != NULL,
f47fb265
MS
6737 VAR_DOMAIN, LOC_BLOCK,
6738 &objfile->global_psymbols,
6739 0, pdi->lowpc + baseaddr,
6740 cu->language, objfile);
c906108c
SS
6741 }
6742 else
6743 {
f47fb265 6744 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6745 mst_file_text, objfile); */
f47fb265 6746 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6747 built_actual_name != NULL,
f47fb265
MS
6748 VAR_DOMAIN, LOC_BLOCK,
6749 &objfile->static_psymbols,
6750 0, pdi->lowpc + baseaddr,
6751 cu->language, objfile);
c906108c
SS
6752 }
6753 break;
72929c62
JB
6754 case DW_TAG_constant:
6755 {
6756 struct psymbol_allocation_list *list;
6757
6758 if (pdi->is_external)
6759 list = &objfile->global_psymbols;
6760 else
6761 list = &objfile->static_psymbols;
f47fb265 6762 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6763 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
f47fb265 6764 list, 0, 0, cu->language, objfile);
72929c62
JB
6765 }
6766 break;
c906108c 6767 case DW_TAG_variable:
95554aad
TT
6768 if (pdi->d.locdesc)
6769 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6770
95554aad 6771 if (pdi->d.locdesc
caac4577
JG
6772 && addr == 0
6773 && !dwarf2_per_objfile->has_section_at_zero)
6774 {
6775 /* A global or static variable may also have been stripped
6776 out by the linker if unused, in which case its address
6777 will be nullified; do not add such variables into partial
6778 symbol table then. */
6779 }
6780 else if (pdi->is_external)
c906108c
SS
6781 {
6782 /* Global Variable.
6783 Don't enter into the minimal symbol tables as there is
6784 a minimal symbol table entry from the ELF symbols already.
6785 Enter into partial symbol table if it has a location
6786 descriptor or a type.
6787 If the location descriptor is missing, new_symbol will create
6788 a LOC_UNRESOLVED symbol, the address of the variable will then
6789 be determined from the minimal symbol table whenever the variable
6790 is referenced.
6791 The address for the partial symbol table entry is not
6792 used by GDB, but it comes in handy for debugging partial symbol
6793 table building. */
6794
95554aad 6795 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6796 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6797 built_actual_name != NULL,
f47fb265
MS
6798 VAR_DOMAIN, LOC_STATIC,
6799 &objfile->global_psymbols,
6800 0, addr + baseaddr,
6801 cu->language, objfile);
c906108c
SS
6802 }
6803 else
6804 {
0963b4bd 6805 /* Static Variable. Skip symbols without location descriptors. */
95554aad 6806 if (pdi->d.locdesc == NULL)
decbce07 6807 {
15d034d0 6808 xfree (built_actual_name);
decbce07
MS
6809 return;
6810 }
f47fb265 6811 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 6812 mst_file_data, objfile); */
f47fb265 6813 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6814 built_actual_name != NULL,
f47fb265
MS
6815 VAR_DOMAIN, LOC_STATIC,
6816 &objfile->static_psymbols,
6817 0, addr + baseaddr,
6818 cu->language, objfile);
c906108c
SS
6819 }
6820 break;
6821 case DW_TAG_typedef:
6822 case DW_TAG_base_type:
a02abb62 6823 case DW_TAG_subrange_type:
38d518c9 6824 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6825 built_actual_name != NULL,
176620f1 6826 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6827 &objfile->static_psymbols,
e142c38c 6828 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6829 break;
74921315 6830 case DW_TAG_imported_declaration:
72bf9492
DJ
6831 case DW_TAG_namespace:
6832 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6833 built_actual_name != NULL,
72bf9492
DJ
6834 VAR_DOMAIN, LOC_TYPEDEF,
6835 &objfile->global_psymbols,
6836 0, (CORE_ADDR) 0, cu->language, objfile);
6837 break;
530e8392
KB
6838 case DW_TAG_module:
6839 add_psymbol_to_list (actual_name, strlen (actual_name),
6840 built_actual_name != NULL,
6841 MODULE_DOMAIN, LOC_TYPEDEF,
6842 &objfile->global_psymbols,
6843 0, (CORE_ADDR) 0, cu->language, objfile);
6844 break;
c906108c 6845 case DW_TAG_class_type:
680b30c7 6846 case DW_TAG_interface_type:
c906108c
SS
6847 case DW_TAG_structure_type:
6848 case DW_TAG_union_type:
6849 case DW_TAG_enumeration_type:
fa4028e9
JB
6850 /* Skip external references. The DWARF standard says in the section
6851 about "Structure, Union, and Class Type Entries": "An incomplete
6852 structure, union or class type is represented by a structure,
6853 union or class entry that does not have a byte size attribute
6854 and that has a DW_AT_declaration attribute." */
6855 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 6856 {
15d034d0 6857 xfree (built_actual_name);
decbce07
MS
6858 return;
6859 }
fa4028e9 6860
63d06c5c
DC
6861 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6862 static vs. global. */
38d518c9 6863 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6864 built_actual_name != NULL,
176620f1 6865 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
6866 (cu->language == language_cplus
6867 || cu->language == language_java)
63d06c5c
DC
6868 ? &objfile->global_psymbols
6869 : &objfile->static_psymbols,
e142c38c 6870 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6871
c906108c
SS
6872 break;
6873 case DW_TAG_enumerator:
38d518c9 6874 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6875 built_actual_name != NULL,
176620f1 6876 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6877 (cu->language == language_cplus
6878 || cu->language == language_java)
f6fe98ef
DJ
6879 ? &objfile->global_psymbols
6880 : &objfile->static_psymbols,
e142c38c 6881 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
6882 break;
6883 default:
6884 break;
6885 }
5c4e30ca 6886
15d034d0 6887 xfree (built_actual_name);
c906108c
SS
6888}
6889
5c4e30ca
DC
6890/* Read a partial die corresponding to a namespace; also, add a symbol
6891 corresponding to that namespace to the symbol table. NAMESPACE is
6892 the name of the enclosing namespace. */
91c24f0a 6893
72bf9492
DJ
6894static void
6895add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 6896 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6897 int need_pc, struct dwarf2_cu *cu)
91c24f0a 6898{
72bf9492 6899 /* Add a symbol for the namespace. */
e7c27a73 6900
72bf9492 6901 add_partial_symbol (pdi, cu);
5c4e30ca
DC
6902
6903 /* Now scan partial symbols in that namespace. */
6904
91c24f0a 6905 if (pdi->has_children)
5734ee8b 6906 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
6907}
6908
5d7cb8df
JK
6909/* Read a partial die corresponding to a Fortran module. */
6910
6911static void
6912add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6913 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6914{
530e8392
KB
6915 /* Add a symbol for the namespace. */
6916
6917 add_partial_symbol (pdi, cu);
6918
f55ee35c 6919 /* Now scan partial symbols in that module. */
5d7cb8df
JK
6920
6921 if (pdi->has_children)
6922 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6923}
6924
bc30ff58
JB
6925/* Read a partial die corresponding to a subprogram and create a partial
6926 symbol for that subprogram. When the CU language allows it, this
6927 routine also defines a partial symbol for each nested subprogram
6928 that this subprogram contains.
6e70227d 6929
bc30ff58
JB
6930 DIE my also be a lexical block, in which case we simply search
6931 recursively for suprograms defined inside that lexical block.
6932 Again, this is only performed when the CU language allows this
6933 type of definitions. */
6934
6935static void
6936add_partial_subprogram (struct partial_die_info *pdi,
6937 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6938 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
6939{
6940 if (pdi->tag == DW_TAG_subprogram)
6941 {
6942 if (pdi->has_pc_info)
6943 {
6944 if (pdi->lowpc < *lowpc)
6945 *lowpc = pdi->lowpc;
6946 if (pdi->highpc > *highpc)
6947 *highpc = pdi->highpc;
5734ee8b
DJ
6948 if (need_pc)
6949 {
6950 CORE_ADDR baseaddr;
6951 struct objfile *objfile = cu->objfile;
6952
6953 baseaddr = ANOFFSET (objfile->section_offsets,
6954 SECT_OFF_TEXT (objfile));
6955 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
6956 pdi->lowpc + baseaddr,
6957 pdi->highpc - 1 + baseaddr,
9291a0cd 6958 cu->per_cu->v.psymtab);
5734ee8b 6959 }
481860b3
GB
6960 }
6961
6962 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6963 {
bc30ff58 6964 if (!pdi->is_declaration)
e8d05480
JB
6965 /* Ignore subprogram DIEs that do not have a name, they are
6966 illegal. Do not emit a complaint at this point, we will
6967 do so when we convert this psymtab into a symtab. */
6968 if (pdi->name)
6969 add_partial_symbol (pdi, cu);
bc30ff58
JB
6970 }
6971 }
6e70227d 6972
bc30ff58
JB
6973 if (! pdi->has_children)
6974 return;
6975
6976 if (cu->language == language_ada)
6977 {
6978 pdi = pdi->die_child;
6979 while (pdi != NULL)
6980 {
6981 fixup_partial_die (pdi, cu);
6982 if (pdi->tag == DW_TAG_subprogram
6983 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 6984 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
6985 pdi = pdi->die_sibling;
6986 }
6987 }
6988}
6989
91c24f0a
DC
6990/* Read a partial die corresponding to an enumeration type. */
6991
72bf9492
DJ
6992static void
6993add_partial_enumeration (struct partial_die_info *enum_pdi,
6994 struct dwarf2_cu *cu)
91c24f0a 6995{
72bf9492 6996 struct partial_die_info *pdi;
91c24f0a
DC
6997
6998 if (enum_pdi->name != NULL)
72bf9492
DJ
6999 add_partial_symbol (enum_pdi, cu);
7000
7001 pdi = enum_pdi->die_child;
7002 while (pdi)
91c24f0a 7003 {
72bf9492 7004 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7005 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7006 else
72bf9492
DJ
7007 add_partial_symbol (pdi, cu);
7008 pdi = pdi->die_sibling;
91c24f0a 7009 }
91c24f0a
DC
7010}
7011
6caca83c
CC
7012/* Return the initial uleb128 in the die at INFO_PTR. */
7013
7014static unsigned int
d521ce57 7015peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7016{
7017 unsigned int bytes_read;
7018
7019 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7020}
7021
4bb7a0a7
DJ
7022/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7023 Return the corresponding abbrev, or NULL if the number is zero (indicating
7024 an empty DIE). In either case *BYTES_READ will be set to the length of
7025 the initial number. */
7026
7027static struct abbrev_info *
d521ce57 7028peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7029 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7030{
7031 bfd *abfd = cu->objfile->obfd;
7032 unsigned int abbrev_number;
7033 struct abbrev_info *abbrev;
7034
7035 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7036
7037 if (abbrev_number == 0)
7038 return NULL;
7039
433df2d4 7040 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7041 if (!abbrev)
7042 {
3e43a32a
MS
7043 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7044 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
7045 }
7046
7047 return abbrev;
7048}
7049
93311388
DE
7050/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7051 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7052 DIE. Any children of the skipped DIEs will also be skipped. */
7053
d521ce57
TT
7054static const gdb_byte *
7055skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7056{
dee91e82 7057 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7058 struct abbrev_info *abbrev;
7059 unsigned int bytes_read;
7060
7061 while (1)
7062 {
7063 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7064 if (abbrev == NULL)
7065 return info_ptr + bytes_read;
7066 else
dee91e82 7067 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7068 }
7069}
7070
93311388
DE
7071/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7072 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7073 abbrev corresponding to that skipped uleb128 should be passed in
7074 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7075 children. */
7076
d521ce57
TT
7077static const gdb_byte *
7078skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7079 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7080{
7081 unsigned int bytes_read;
7082 struct attribute attr;
dee91e82
DE
7083 bfd *abfd = reader->abfd;
7084 struct dwarf2_cu *cu = reader->cu;
d521ce57 7085 const gdb_byte *buffer = reader->buffer;
f664829e 7086 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7087 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7088 unsigned int form, i;
7089
7090 for (i = 0; i < abbrev->num_attrs; i++)
7091 {
7092 /* The only abbrev we care about is DW_AT_sibling. */
7093 if (abbrev->attrs[i].name == DW_AT_sibling)
7094 {
dee91e82 7095 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7096 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7097 complaint (&symfile_complaints,
7098 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7099 else
b9502d3f
WN
7100 {
7101 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7102 const gdb_byte *sibling_ptr = buffer + off;
7103
7104 if (sibling_ptr < info_ptr)
7105 complaint (&symfile_complaints,
7106 _("DW_AT_sibling points backwards"));
22869d73
KS
7107 else if (sibling_ptr > reader->buffer_end)
7108 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7109 else
7110 return sibling_ptr;
7111 }
4bb7a0a7
DJ
7112 }
7113
7114 /* If it isn't DW_AT_sibling, skip this attribute. */
7115 form = abbrev->attrs[i].form;
7116 skip_attribute:
7117 switch (form)
7118 {
4bb7a0a7 7119 case DW_FORM_ref_addr:
ae411497
TT
7120 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7121 and later it is offset sized. */
7122 if (cu->header.version == 2)
7123 info_ptr += cu->header.addr_size;
7124 else
7125 info_ptr += cu->header.offset_size;
7126 break;
36586728
TT
7127 case DW_FORM_GNU_ref_alt:
7128 info_ptr += cu->header.offset_size;
7129 break;
ae411497 7130 case DW_FORM_addr:
4bb7a0a7
DJ
7131 info_ptr += cu->header.addr_size;
7132 break;
7133 case DW_FORM_data1:
7134 case DW_FORM_ref1:
7135 case DW_FORM_flag:
7136 info_ptr += 1;
7137 break;
2dc7f7b3
TT
7138 case DW_FORM_flag_present:
7139 break;
4bb7a0a7
DJ
7140 case DW_FORM_data2:
7141 case DW_FORM_ref2:
7142 info_ptr += 2;
7143 break;
7144 case DW_FORM_data4:
7145 case DW_FORM_ref4:
7146 info_ptr += 4;
7147 break;
7148 case DW_FORM_data8:
7149 case DW_FORM_ref8:
55f1336d 7150 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7151 info_ptr += 8;
7152 break;
7153 case DW_FORM_string:
9b1c24c8 7154 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7155 info_ptr += bytes_read;
7156 break;
2dc7f7b3 7157 case DW_FORM_sec_offset:
4bb7a0a7 7158 case DW_FORM_strp:
36586728 7159 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7160 info_ptr += cu->header.offset_size;
7161 break;
2dc7f7b3 7162 case DW_FORM_exprloc:
4bb7a0a7
DJ
7163 case DW_FORM_block:
7164 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7165 info_ptr += bytes_read;
7166 break;
7167 case DW_FORM_block1:
7168 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7169 break;
7170 case DW_FORM_block2:
7171 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7172 break;
7173 case DW_FORM_block4:
7174 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7175 break;
7176 case DW_FORM_sdata:
7177 case DW_FORM_udata:
7178 case DW_FORM_ref_udata:
3019eac3
DE
7179 case DW_FORM_GNU_addr_index:
7180 case DW_FORM_GNU_str_index:
d521ce57 7181 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7182 break;
7183 case DW_FORM_indirect:
7184 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7185 info_ptr += bytes_read;
7186 /* We need to continue parsing from here, so just go back to
7187 the top. */
7188 goto skip_attribute;
7189
7190 default:
3e43a32a
MS
7191 error (_("Dwarf Error: Cannot handle %s "
7192 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7193 dwarf_form_name (form),
7194 bfd_get_filename (abfd));
7195 }
7196 }
7197
7198 if (abbrev->has_children)
dee91e82 7199 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7200 else
7201 return info_ptr;
7202}
7203
93311388 7204/* Locate ORIG_PDI's sibling.
dee91e82 7205 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7206
d521ce57 7207static const gdb_byte *
dee91e82
DE
7208locate_pdi_sibling (const struct die_reader_specs *reader,
7209 struct partial_die_info *orig_pdi,
d521ce57 7210 const gdb_byte *info_ptr)
91c24f0a
DC
7211{
7212 /* Do we know the sibling already? */
72bf9492 7213
91c24f0a
DC
7214 if (orig_pdi->sibling)
7215 return orig_pdi->sibling;
7216
7217 /* Are there any children to deal with? */
7218
7219 if (!orig_pdi->has_children)
7220 return info_ptr;
7221
4bb7a0a7 7222 /* Skip the children the long way. */
91c24f0a 7223
dee91e82 7224 return skip_children (reader, info_ptr);
91c24f0a
DC
7225}
7226
257e7a09 7227/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7228 not NULL. */
c906108c
SS
7229
7230static void
257e7a09
YQ
7231dwarf2_read_symtab (struct partial_symtab *self,
7232 struct objfile *objfile)
c906108c 7233{
257e7a09 7234 if (self->readin)
c906108c 7235 {
442e4d9c 7236 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7237 self->filename);
442e4d9c
YQ
7238 }
7239 else
7240 {
7241 if (info_verbose)
c906108c 7242 {
442e4d9c 7243 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7244 self->filename);
442e4d9c 7245 gdb_flush (gdb_stdout);
c906108c 7246 }
c906108c 7247
442e4d9c
YQ
7248 /* Restore our global data. */
7249 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 7250
442e4d9c
YQ
7251 /* If this psymtab is constructed from a debug-only objfile, the
7252 has_section_at_zero flag will not necessarily be correct. We
7253 can get the correct value for this flag by looking at the data
7254 associated with the (presumably stripped) associated objfile. */
7255 if (objfile->separate_debug_objfile_backlink)
7256 {
7257 struct dwarf2_per_objfile *dpo_backlink
7258 = objfile_data (objfile->separate_debug_objfile_backlink,
7259 dwarf2_objfile_data_key);
9a619af0 7260
442e4d9c
YQ
7261 dwarf2_per_objfile->has_section_at_zero
7262 = dpo_backlink->has_section_at_zero;
7263 }
b2ab525c 7264
442e4d9c 7265 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7266
257e7a09 7267 psymtab_to_symtab_1 (self);
c906108c 7268
442e4d9c
YQ
7269 /* Finish up the debug error message. */
7270 if (info_verbose)
7271 printf_filtered (_("done.\n"));
c906108c 7272 }
95554aad
TT
7273
7274 process_cu_includes ();
c906108c 7275}
9cdd5dbd
DE
7276\f
7277/* Reading in full CUs. */
c906108c 7278
10b3939b
DJ
7279/* Add PER_CU to the queue. */
7280
7281static void
95554aad
TT
7282queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7283 enum language pretend_language)
10b3939b
DJ
7284{
7285 struct dwarf2_queue_item *item;
7286
7287 per_cu->queued = 1;
7288 item = xmalloc (sizeof (*item));
7289 item->per_cu = per_cu;
95554aad 7290 item->pretend_language = pretend_language;
10b3939b
DJ
7291 item->next = NULL;
7292
7293 if (dwarf2_queue == NULL)
7294 dwarf2_queue = item;
7295 else
7296 dwarf2_queue_tail->next = item;
7297
7298 dwarf2_queue_tail = item;
7299}
7300
89e63ee4
DE
7301/* If PER_CU is not yet queued, add it to the queue.
7302 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7303 dependency.
0907af0c 7304 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7305 meaning either PER_CU is already queued or it is already loaded.
7306
7307 N.B. There is an invariant here that if a CU is queued then it is loaded.
7308 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7309
7310static int
89e63ee4 7311maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7312 struct dwarf2_per_cu_data *per_cu,
7313 enum language pretend_language)
7314{
7315 /* We may arrive here during partial symbol reading, if we need full
7316 DIEs to process an unusual case (e.g. template arguments). Do
7317 not queue PER_CU, just tell our caller to load its DIEs. */
7318 if (dwarf2_per_objfile->reading_partial_symbols)
7319 {
7320 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7321 return 1;
7322 return 0;
7323 }
7324
7325 /* Mark the dependence relation so that we don't flush PER_CU
7326 too early. */
89e63ee4
DE
7327 if (dependent_cu != NULL)
7328 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7329
7330 /* If it's already on the queue, we have nothing to do. */
7331 if (per_cu->queued)
7332 return 0;
7333
7334 /* If the compilation unit is already loaded, just mark it as
7335 used. */
7336 if (per_cu->cu != NULL)
7337 {
7338 per_cu->cu->last_used = 0;
7339 return 0;
7340 }
7341
7342 /* Add it to the queue. */
7343 queue_comp_unit (per_cu, pretend_language);
7344
7345 return 1;
7346}
7347
10b3939b
DJ
7348/* Process the queue. */
7349
7350static void
a0f42c21 7351process_queue (void)
10b3939b
DJ
7352{
7353 struct dwarf2_queue_item *item, *next_item;
7354
45cfd468
DE
7355 if (dwarf2_read_debug)
7356 {
7357 fprintf_unfiltered (gdb_stdlog,
7358 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7359 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7360 }
7361
03dd20cc
DJ
7362 /* The queue starts out with one item, but following a DIE reference
7363 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7364 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7365 {
9291a0cd
TT
7366 if (dwarf2_per_objfile->using_index
7367 ? !item->per_cu->v.quick->symtab
7368 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
f4dc4d17
DE
7369 {
7370 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7371 unsigned int debug_print_threshold;
247f5c4f 7372 char buf[100];
f4dc4d17 7373
247f5c4f 7374 if (per_cu->is_debug_types)
f4dc4d17 7375 {
247f5c4f
DE
7376 struct signatured_type *sig_type =
7377 (struct signatured_type *) per_cu;
7378
7379 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7380 hex_string (sig_type->signature),
7381 per_cu->offset.sect_off);
7382 /* There can be 100s of TUs.
7383 Only print them in verbose mode. */
7384 debug_print_threshold = 2;
f4dc4d17 7385 }
247f5c4f 7386 else
73be47f5
DE
7387 {
7388 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7389 debug_print_threshold = 1;
7390 }
247f5c4f 7391
73be47f5 7392 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7393 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7394
7395 if (per_cu->is_debug_types)
7396 process_full_type_unit (per_cu, item->pretend_language);
7397 else
7398 process_full_comp_unit (per_cu, item->pretend_language);
7399
73be47f5 7400 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7401 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7402 }
10b3939b
DJ
7403
7404 item->per_cu->queued = 0;
7405 next_item = item->next;
7406 xfree (item);
7407 }
7408
7409 dwarf2_queue_tail = NULL;
45cfd468
DE
7410
7411 if (dwarf2_read_debug)
7412 {
7413 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7414 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7415 }
10b3939b
DJ
7416}
7417
7418/* Free all allocated queue entries. This function only releases anything if
7419 an error was thrown; if the queue was processed then it would have been
7420 freed as we went along. */
7421
7422static void
7423dwarf2_release_queue (void *dummy)
7424{
7425 struct dwarf2_queue_item *item, *last;
7426
7427 item = dwarf2_queue;
7428 while (item)
7429 {
7430 /* Anything still marked queued is likely to be in an
7431 inconsistent state, so discard it. */
7432 if (item->per_cu->queued)
7433 {
7434 if (item->per_cu->cu != NULL)
dee91e82 7435 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7436 item->per_cu->queued = 0;
7437 }
7438
7439 last = item;
7440 item = item->next;
7441 xfree (last);
7442 }
7443
7444 dwarf2_queue = dwarf2_queue_tail = NULL;
7445}
7446
7447/* Read in full symbols for PST, and anything it depends on. */
7448
c906108c 7449static void
fba45db2 7450psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7451{
10b3939b 7452 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7453 int i;
7454
95554aad
TT
7455 if (pst->readin)
7456 return;
7457
aaa75496 7458 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7459 if (!pst->dependencies[i]->readin
7460 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7461 {
7462 /* Inform about additional files that need to be read in. */
7463 if (info_verbose)
7464 {
a3f17187 7465 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7466 fputs_filtered (" ", gdb_stdout);
7467 wrap_here ("");
7468 fputs_filtered ("and ", gdb_stdout);
7469 wrap_here ("");
7470 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7471 wrap_here (""); /* Flush output. */
aaa75496
JB
7472 gdb_flush (gdb_stdout);
7473 }
7474 psymtab_to_symtab_1 (pst->dependencies[i]);
7475 }
7476
e38df1d0 7477 per_cu = pst->read_symtab_private;
10b3939b
DJ
7478
7479 if (per_cu == NULL)
aaa75496
JB
7480 {
7481 /* It's an include file, no symbols to read for it.
7482 Everything is in the parent symtab. */
7483 pst->readin = 1;
7484 return;
7485 }
c906108c 7486
a0f42c21 7487 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7488}
7489
dee91e82
DE
7490/* Trivial hash function for die_info: the hash value of a DIE
7491 is its offset in .debug_info for this objfile. */
10b3939b 7492
dee91e82
DE
7493static hashval_t
7494die_hash (const void *item)
10b3939b 7495{
dee91e82 7496 const struct die_info *die = item;
6502dd73 7497
dee91e82
DE
7498 return die->offset.sect_off;
7499}
63d06c5c 7500
dee91e82
DE
7501/* Trivial comparison function for die_info structures: two DIEs
7502 are equal if they have the same offset. */
98bfdba5 7503
dee91e82
DE
7504static int
7505die_eq (const void *item_lhs, const void *item_rhs)
7506{
7507 const struct die_info *die_lhs = item_lhs;
7508 const struct die_info *die_rhs = item_rhs;
c906108c 7509
dee91e82
DE
7510 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7511}
c906108c 7512
dee91e82
DE
7513/* die_reader_func for load_full_comp_unit.
7514 This is identical to read_signatured_type_reader,
7515 but is kept separate for now. */
c906108c 7516
dee91e82
DE
7517static void
7518load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7519 const gdb_byte *info_ptr,
dee91e82
DE
7520 struct die_info *comp_unit_die,
7521 int has_children,
7522 void *data)
7523{
7524 struct dwarf2_cu *cu = reader->cu;
95554aad 7525 enum language *language_ptr = data;
6caca83c 7526
dee91e82
DE
7527 gdb_assert (cu->die_hash == NULL);
7528 cu->die_hash =
7529 htab_create_alloc_ex (cu->header.length / 12,
7530 die_hash,
7531 die_eq,
7532 NULL,
7533 &cu->comp_unit_obstack,
7534 hashtab_obstack_allocate,
7535 dummy_obstack_deallocate);
e142c38c 7536
dee91e82
DE
7537 if (has_children)
7538 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7539 &info_ptr, comp_unit_die);
7540 cu->dies = comp_unit_die;
7541 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7542
7543 /* We try not to read any attributes in this function, because not
9cdd5dbd 7544 all CUs needed for references have been loaded yet, and symbol
10b3939b 7545 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7546 or we won't be able to build types correctly.
7547 Similarly, if we do not read the producer, we can not apply
7548 producer-specific interpretation. */
95554aad 7549 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7550}
10b3939b 7551
dee91e82 7552/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7553
dee91e82 7554static void
95554aad
TT
7555load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7556 enum language pretend_language)
dee91e82 7557{
3019eac3 7558 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7559
f4dc4d17
DE
7560 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7561 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7562}
7563
3da10d80
KS
7564/* Add a DIE to the delayed physname list. */
7565
7566static void
7567add_to_method_list (struct type *type, int fnfield_index, int index,
7568 const char *name, struct die_info *die,
7569 struct dwarf2_cu *cu)
7570{
7571 struct delayed_method_info mi;
7572 mi.type = type;
7573 mi.fnfield_index = fnfield_index;
7574 mi.index = index;
7575 mi.name = name;
7576 mi.die = die;
7577 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7578}
7579
7580/* A cleanup for freeing the delayed method list. */
7581
7582static void
7583free_delayed_list (void *ptr)
7584{
7585 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7586 if (cu->method_list != NULL)
7587 {
7588 VEC_free (delayed_method_info, cu->method_list);
7589 cu->method_list = NULL;
7590 }
7591}
7592
7593/* Compute the physnames of any methods on the CU's method list.
7594
7595 The computation of method physnames is delayed in order to avoid the
7596 (bad) condition that one of the method's formal parameters is of an as yet
7597 incomplete type. */
7598
7599static void
7600compute_delayed_physnames (struct dwarf2_cu *cu)
7601{
7602 int i;
7603 struct delayed_method_info *mi;
7604 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7605 {
1d06ead6 7606 const char *physname;
3da10d80
KS
7607 struct fn_fieldlist *fn_flp
7608 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7609 physname = dwarf2_physname (mi->name, mi->die, cu);
3da10d80
KS
7610 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7611 }
7612}
7613
a766d390
DE
7614/* Go objects should be embedded in a DW_TAG_module DIE,
7615 and it's not clear if/how imported objects will appear.
7616 To keep Go support simple until that's worked out,
7617 go back through what we've read and create something usable.
7618 We could do this while processing each DIE, and feels kinda cleaner,
7619 but that way is more invasive.
7620 This is to, for example, allow the user to type "p var" or "b main"
7621 without having to specify the package name, and allow lookups
7622 of module.object to work in contexts that use the expression
7623 parser. */
7624
7625static void
7626fixup_go_packaging (struct dwarf2_cu *cu)
7627{
7628 char *package_name = NULL;
7629 struct pending *list;
7630 int i;
7631
7632 for (list = global_symbols; list != NULL; list = list->next)
7633 {
7634 for (i = 0; i < list->nsyms; ++i)
7635 {
7636 struct symbol *sym = list->symbol[i];
7637
7638 if (SYMBOL_LANGUAGE (sym) == language_go
7639 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7640 {
7641 char *this_package_name = go_symbol_package_name (sym);
7642
7643 if (this_package_name == NULL)
7644 continue;
7645 if (package_name == NULL)
7646 package_name = this_package_name;
7647 else
7648 {
7649 if (strcmp (package_name, this_package_name) != 0)
7650 complaint (&symfile_complaints,
7651 _("Symtab %s has objects from two different Go packages: %s and %s"),
210bbc17 7652 (SYMBOL_SYMTAB (sym)
05cba821 7653 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
4262abfb 7654 : objfile_name (cu->objfile)),
a766d390
DE
7655 this_package_name, package_name);
7656 xfree (this_package_name);
7657 }
7658 }
7659 }
7660 }
7661
7662 if (package_name != NULL)
7663 {
7664 struct objfile *objfile = cu->objfile;
10f0c4bb
TT
7665 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7666 package_name,
7667 strlen (package_name));
a766d390 7668 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7669 saved_package_name, objfile);
a766d390
DE
7670 struct symbol *sym;
7671
7672 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7673
e623cf5d 7674 sym = allocate_symbol (objfile);
f85f34ed 7675 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7676 SYMBOL_SET_NAMES (sym, saved_package_name,
7677 strlen (saved_package_name), 0, objfile);
a766d390
DE
7678 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7679 e.g., "main" finds the "main" module and not C's main(). */
7680 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7681 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7682 SYMBOL_TYPE (sym) = type;
7683
7684 add_symbol_to_list (sym, &global_symbols);
7685
7686 xfree (package_name);
7687 }
7688}
7689
95554aad
TT
7690/* Return the symtab for PER_CU. This works properly regardless of
7691 whether we're using the index or psymtabs. */
7692
7693static struct symtab *
7694get_symtab (struct dwarf2_per_cu_data *per_cu)
7695{
7696 return (dwarf2_per_objfile->using_index
7697 ? per_cu->v.quick->symtab
7698 : per_cu->v.psymtab->symtab);
7699}
7700
7701/* A helper function for computing the list of all symbol tables
7702 included by PER_CU. */
7703
7704static void
ec94af83
DE
7705recursively_compute_inclusions (VEC (symtab_ptr) **result,
7706 htab_t all_children, htab_t all_type_symtabs,
f9125b6c
TT
7707 struct dwarf2_per_cu_data *per_cu,
7708 struct symtab *immediate_parent)
95554aad
TT
7709{
7710 void **slot;
7711 int ix;
ec94af83 7712 struct symtab *symtab;
95554aad
TT
7713 struct dwarf2_per_cu_data *iter;
7714
7715 slot = htab_find_slot (all_children, per_cu, INSERT);
7716 if (*slot != NULL)
7717 {
7718 /* This inclusion and its children have been processed. */
7719 return;
7720 }
7721
7722 *slot = per_cu;
7723 /* Only add a CU if it has a symbol table. */
ec94af83
DE
7724 symtab = get_symtab (per_cu);
7725 if (symtab != NULL)
7726 {
7727 /* If this is a type unit only add its symbol table if we haven't
7728 seen it yet (type unit per_cu's can share symtabs). */
7729 if (per_cu->is_debug_types)
7730 {
7731 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7732 if (*slot == NULL)
7733 {
7734 *slot = symtab;
7735 VEC_safe_push (symtab_ptr, *result, symtab);
f9125b6c
TT
7736 if (symtab->user == NULL)
7737 symtab->user = immediate_parent;
ec94af83
DE
7738 }
7739 }
7740 else
f9125b6c
TT
7741 {
7742 VEC_safe_push (symtab_ptr, *result, symtab);
7743 if (symtab->user == NULL)
7744 symtab->user = immediate_parent;
7745 }
ec94af83 7746 }
95554aad
TT
7747
7748 for (ix = 0;
796a7ff8 7749 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7750 ++ix)
ec94af83
DE
7751 {
7752 recursively_compute_inclusions (result, all_children,
f9125b6c 7753 all_type_symtabs, iter, symtab);
ec94af83 7754 }
95554aad
TT
7755}
7756
7757/* Compute the symtab 'includes' fields for the symtab related to
7758 PER_CU. */
7759
7760static void
7761compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7762{
f4dc4d17
DE
7763 gdb_assert (! per_cu->is_debug_types);
7764
796a7ff8 7765 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7766 {
7767 int ix, len;
ec94af83
DE
7768 struct dwarf2_per_cu_data *per_cu_iter;
7769 struct symtab *symtab_iter;
7770 VEC (symtab_ptr) *result_symtabs = NULL;
7771 htab_t all_children, all_type_symtabs;
95554aad
TT
7772 struct symtab *symtab = get_symtab (per_cu);
7773
7774 /* If we don't have a symtab, we can just skip this case. */
7775 if (symtab == NULL)
7776 return;
7777
7778 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7779 NULL, xcalloc, xfree);
ec94af83
DE
7780 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7781 NULL, xcalloc, xfree);
95554aad
TT
7782
7783 for (ix = 0;
796a7ff8 7784 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7785 ix, per_cu_iter);
95554aad 7786 ++ix)
ec94af83
DE
7787 {
7788 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c
TT
7789 all_type_symtabs, per_cu_iter,
7790 symtab);
ec94af83 7791 }
95554aad 7792
ec94af83
DE
7793 /* Now we have a transitive closure of all the included symtabs. */
7794 len = VEC_length (symtab_ptr, result_symtabs);
95554aad
TT
7795 symtab->includes
7796 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7797 (len + 1) * sizeof (struct symtab *));
7798 for (ix = 0;
ec94af83 7799 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
95554aad 7800 ++ix)
ec94af83 7801 symtab->includes[ix] = symtab_iter;
95554aad
TT
7802 symtab->includes[len] = NULL;
7803
ec94af83 7804 VEC_free (symtab_ptr, result_symtabs);
95554aad 7805 htab_delete (all_children);
ec94af83 7806 htab_delete (all_type_symtabs);
95554aad
TT
7807 }
7808}
7809
7810/* Compute the 'includes' field for the symtabs of all the CUs we just
7811 read. */
7812
7813static void
7814process_cu_includes (void)
7815{
7816 int ix;
7817 struct dwarf2_per_cu_data *iter;
7818
7819 for (ix = 0;
7820 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7821 ix, iter);
7822 ++ix)
f4dc4d17
DE
7823 {
7824 if (! iter->is_debug_types)
7825 compute_symtab_includes (iter);
7826 }
95554aad
TT
7827
7828 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7829}
7830
9cdd5dbd 7831/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
7832 already been loaded into memory. */
7833
7834static void
95554aad
TT
7835process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7836 enum language pretend_language)
10b3939b 7837{
10b3939b 7838 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 7839 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
7840 CORE_ADDR lowpc, highpc;
7841 struct symtab *symtab;
3da10d80 7842 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 7843 CORE_ADDR baseaddr;
4359dff1 7844 struct block *static_block;
10b3939b
DJ
7845
7846 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7847
10b3939b
DJ
7848 buildsym_init ();
7849 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 7850 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
7851
7852 cu->list_in_scope = &file_symbols;
c906108c 7853
95554aad
TT
7854 cu->language = pretend_language;
7855 cu->language_defn = language_def (cu->language);
7856
c906108c 7857 /* Do line number decoding in read_file_scope () */
10b3939b 7858 process_die (cu->dies, cu);
c906108c 7859
a766d390
DE
7860 /* For now fudge the Go package. */
7861 if (cu->language == language_go)
7862 fixup_go_packaging (cu);
7863
3da10d80
KS
7864 /* Now that we have processed all the DIEs in the CU, all the types
7865 should be complete, and it should now be safe to compute all of the
7866 physnames. */
7867 compute_delayed_physnames (cu);
7868 do_cleanups (delayed_list_cleanup);
7869
fae299cd
DC
7870 /* Some compilers don't define a DW_AT_high_pc attribute for the
7871 compilation unit. If the DW_AT_high_pc is missing, synthesize
7872 it, by scanning the DIE's below the compilation unit. */
10b3939b 7873 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 7874
36586728 7875 static_block
ff546935 7876 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
4359dff1
JK
7877
7878 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7879 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7880 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7881 addrmap to help ensure it has an accurate map of pc values belonging to
7882 this comp unit. */
7883 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7884
7885 symtab = end_symtab_from_static_block (static_block, objfile,
7886 SECT_OFF_TEXT (objfile), 0);
c906108c 7887
8be455d7 7888 if (symtab != NULL)
c906108c 7889 {
df15bd07 7890 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 7891
8be455d7
JK
7892 /* Set symtab language to language from DW_AT_language. If the
7893 compilation is from a C file generated by language preprocessors, do
7894 not set the language if it was already deduced by start_subfile. */
7895 if (!(cu->language == language_c && symtab->language != language_c))
7896 symtab->language = cu->language;
7897
7898 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7899 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
7900 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7901 there were bugs in prologue debug info, fixed later in GCC-4.5
7902 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
7903
7904 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7905 needed, it would be wrong due to missing DW_AT_producer there.
7906
7907 Still one can confuse GDB by using non-standard GCC compilation
7908 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7909 */
ab260dad 7910 if (cu->has_loclist && gcc_4_minor >= 5)
8be455d7 7911 symtab->locations_valid = 1;
e0d00bc7
JK
7912
7913 if (gcc_4_minor >= 5)
7914 symtab->epilogue_unwind_valid = 1;
96408a79
SA
7915
7916 symtab->call_site_htab = cu->call_site_htab;
c906108c 7917 }
9291a0cd
TT
7918
7919 if (dwarf2_per_objfile->using_index)
7920 per_cu->v.quick->symtab = symtab;
7921 else
7922 {
7923 struct partial_symtab *pst = per_cu->v.psymtab;
7924 pst->symtab = symtab;
7925 pst->readin = 1;
7926 }
c906108c 7927
95554aad
TT
7928 /* Push it for inclusion processing later. */
7929 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7930
c906108c 7931 do_cleanups (back_to);
f4dc4d17 7932}
45cfd468 7933
f4dc4d17
DE
7934/* Generate full symbol information for type unit PER_CU, whose DIEs have
7935 already been loaded into memory. */
7936
7937static void
7938process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7939 enum language pretend_language)
7940{
7941 struct dwarf2_cu *cu = per_cu->cu;
7942 struct objfile *objfile = per_cu->objfile;
7943 struct symtab *symtab;
7944 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
7945 struct signatured_type *sig_type;
7946
7947 gdb_assert (per_cu->is_debug_types);
7948 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
7949
7950 buildsym_init ();
7951 back_to = make_cleanup (really_free_pendings, NULL);
7952 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7953
7954 cu->list_in_scope = &file_symbols;
7955
7956 cu->language = pretend_language;
7957 cu->language_defn = language_def (cu->language);
7958
7959 /* The symbol tables are set up in read_type_unit_scope. */
7960 process_die (cu->dies, cu);
7961
7962 /* For now fudge the Go package. */
7963 if (cu->language == language_go)
7964 fixup_go_packaging (cu);
7965
7966 /* Now that we have processed all the DIEs in the CU, all the types
7967 should be complete, and it should now be safe to compute all of the
7968 physnames. */
7969 compute_delayed_physnames (cu);
7970 do_cleanups (delayed_list_cleanup);
7971
7972 /* TUs share symbol tables.
7973 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
7974 of it with end_expandable_symtab. Otherwise, complete the addition of
7975 this TU's symbols to the existing symtab. */
0186c6a7 7976 if (sig_type->type_unit_group->primary_symtab == NULL)
45cfd468 7977 {
f4dc4d17 7978 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
0186c6a7 7979 sig_type->type_unit_group->primary_symtab = symtab;
f4dc4d17
DE
7980
7981 if (symtab != NULL)
7982 {
7983 /* Set symtab language to language from DW_AT_language. If the
7984 compilation is from a C file generated by language preprocessors,
7985 do not set the language if it was already deduced by
7986 start_subfile. */
7987 if (!(cu->language == language_c && symtab->language != language_c))
7988 symtab->language = cu->language;
7989 }
7990 }
7991 else
7992 {
7993 augment_type_symtab (objfile,
0186c6a7
DE
7994 sig_type->type_unit_group->primary_symtab);
7995 symtab = sig_type->type_unit_group->primary_symtab;
f4dc4d17
DE
7996 }
7997
7998 if (dwarf2_per_objfile->using_index)
7999 per_cu->v.quick->symtab = symtab;
8000 else
8001 {
8002 struct partial_symtab *pst = per_cu->v.psymtab;
8003 pst->symtab = symtab;
8004 pst->readin = 1;
45cfd468 8005 }
f4dc4d17
DE
8006
8007 do_cleanups (back_to);
c906108c
SS
8008}
8009
95554aad
TT
8010/* Process an imported unit DIE. */
8011
8012static void
8013process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8014{
8015 struct attribute *attr;
8016
f4dc4d17
DE
8017 /* For now we don't handle imported units in type units. */
8018 if (cu->per_cu->is_debug_types)
8019 {
8020 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8021 " supported in type units [in module %s]"),
4262abfb 8022 objfile_name (cu->objfile));
f4dc4d17
DE
8023 }
8024
95554aad
TT
8025 attr = dwarf2_attr (die, DW_AT_import, cu);
8026 if (attr != NULL)
8027 {
8028 struct dwarf2_per_cu_data *per_cu;
8029 struct symtab *imported_symtab;
8030 sect_offset offset;
36586728 8031 int is_dwz;
95554aad
TT
8032
8033 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8034 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8035 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8036
69d751e3 8037 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8038 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8039 load_full_comp_unit (per_cu, cu->language);
8040
796a7ff8 8041 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8042 per_cu);
8043 }
8044}
8045
adde2bff
DE
8046/* Reset the in_process bit of a die. */
8047
8048static void
8049reset_die_in_process (void *arg)
8050{
8051 struct die_info *die = arg;
8c3cb9fa 8052
adde2bff
DE
8053 die->in_process = 0;
8054}
8055
c906108c
SS
8056/* Process a die and its children. */
8057
8058static void
e7c27a73 8059process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8060{
adde2bff
DE
8061 struct cleanup *in_process;
8062
8063 /* We should only be processing those not already in process. */
8064 gdb_assert (!die->in_process);
8065
8066 die->in_process = 1;
8067 in_process = make_cleanup (reset_die_in_process,die);
8068
c906108c
SS
8069 switch (die->tag)
8070 {
8071 case DW_TAG_padding:
8072 break;
8073 case DW_TAG_compile_unit:
95554aad 8074 case DW_TAG_partial_unit:
e7c27a73 8075 read_file_scope (die, cu);
c906108c 8076 break;
348e048f
DE
8077 case DW_TAG_type_unit:
8078 read_type_unit_scope (die, cu);
8079 break;
c906108c 8080 case DW_TAG_subprogram:
c906108c 8081 case DW_TAG_inlined_subroutine:
edb3359d 8082 read_func_scope (die, cu);
c906108c
SS
8083 break;
8084 case DW_TAG_lexical_block:
14898363
L
8085 case DW_TAG_try_block:
8086 case DW_TAG_catch_block:
e7c27a73 8087 read_lexical_block_scope (die, cu);
c906108c 8088 break;
96408a79
SA
8089 case DW_TAG_GNU_call_site:
8090 read_call_site_scope (die, cu);
8091 break;
c906108c 8092 case DW_TAG_class_type:
680b30c7 8093 case DW_TAG_interface_type:
c906108c
SS
8094 case DW_TAG_structure_type:
8095 case DW_TAG_union_type:
134d01f1 8096 process_structure_scope (die, cu);
c906108c
SS
8097 break;
8098 case DW_TAG_enumeration_type:
134d01f1 8099 process_enumeration_scope (die, cu);
c906108c 8100 break;
134d01f1 8101
f792889a
DJ
8102 /* These dies have a type, but processing them does not create
8103 a symbol or recurse to process the children. Therefore we can
8104 read them on-demand through read_type_die. */
c906108c 8105 case DW_TAG_subroutine_type:
72019c9c 8106 case DW_TAG_set_type:
c906108c 8107 case DW_TAG_array_type:
c906108c 8108 case DW_TAG_pointer_type:
c906108c 8109 case DW_TAG_ptr_to_member_type:
c906108c 8110 case DW_TAG_reference_type:
c906108c 8111 case DW_TAG_string_type:
c906108c 8112 break;
134d01f1 8113
c906108c 8114 case DW_TAG_base_type:
a02abb62 8115 case DW_TAG_subrange_type:
cb249c71 8116 case DW_TAG_typedef:
134d01f1
DJ
8117 /* Add a typedef symbol for the type definition, if it has a
8118 DW_AT_name. */
f792889a 8119 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8120 break;
c906108c 8121 case DW_TAG_common_block:
e7c27a73 8122 read_common_block (die, cu);
c906108c
SS
8123 break;
8124 case DW_TAG_common_inclusion:
8125 break;
d9fa45fe 8126 case DW_TAG_namespace:
4d4ec4e5 8127 cu->processing_has_namespace_info = 1;
e7c27a73 8128 read_namespace (die, cu);
d9fa45fe 8129 break;
5d7cb8df 8130 case DW_TAG_module:
4d4ec4e5 8131 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8132 read_module (die, cu);
8133 break;
d9fa45fe 8134 case DW_TAG_imported_declaration:
74921315
KS
8135 cu->processing_has_namespace_info = 1;
8136 if (read_namespace_alias (die, cu))
8137 break;
8138 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8139 case DW_TAG_imported_module:
4d4ec4e5 8140 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8141 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8142 || cu->language != language_fortran))
8143 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8144 dwarf_tag_name (die->tag));
8145 read_import_statement (die, cu);
d9fa45fe 8146 break;
95554aad
TT
8147
8148 case DW_TAG_imported_unit:
8149 process_imported_unit_die (die, cu);
8150 break;
8151
c906108c 8152 default:
e7c27a73 8153 new_symbol (die, NULL, cu);
c906108c
SS
8154 break;
8155 }
adde2bff
DE
8156
8157 do_cleanups (in_process);
c906108c 8158}
ca69b9e6
DE
8159\f
8160/* DWARF name computation. */
c906108c 8161
94af9270
KS
8162/* A helper function for dwarf2_compute_name which determines whether DIE
8163 needs to have the name of the scope prepended to the name listed in the
8164 die. */
8165
8166static int
8167die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8168{
1c809c68
TT
8169 struct attribute *attr;
8170
94af9270
KS
8171 switch (die->tag)
8172 {
8173 case DW_TAG_namespace:
8174 case DW_TAG_typedef:
8175 case DW_TAG_class_type:
8176 case DW_TAG_interface_type:
8177 case DW_TAG_structure_type:
8178 case DW_TAG_union_type:
8179 case DW_TAG_enumeration_type:
8180 case DW_TAG_enumerator:
8181 case DW_TAG_subprogram:
8182 case DW_TAG_member:
74921315 8183 case DW_TAG_imported_declaration:
94af9270
KS
8184 return 1;
8185
8186 case DW_TAG_variable:
c2b0a229 8187 case DW_TAG_constant:
94af9270
KS
8188 /* We only need to prefix "globally" visible variables. These include
8189 any variable marked with DW_AT_external or any variable that
8190 lives in a namespace. [Variables in anonymous namespaces
8191 require prefixing, but they are not DW_AT_external.] */
8192
8193 if (dwarf2_attr (die, DW_AT_specification, cu))
8194 {
8195 struct dwarf2_cu *spec_cu = cu;
9a619af0 8196
94af9270
KS
8197 return die_needs_namespace (die_specification (die, &spec_cu),
8198 spec_cu);
8199 }
8200
1c809c68 8201 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8202 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8203 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8204 return 0;
8205 /* A variable in a lexical block of some kind does not need a
8206 namespace, even though in C++ such variables may be external
8207 and have a mangled name. */
8208 if (die->parent->tag == DW_TAG_lexical_block
8209 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8210 || die->parent->tag == DW_TAG_catch_block
8211 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8212 return 0;
8213 return 1;
94af9270
KS
8214
8215 default:
8216 return 0;
8217 }
8218}
8219
98bfdba5
PA
8220/* Retrieve the last character from a mem_file. */
8221
8222static void
8223do_ui_file_peek_last (void *object, const char *buffer, long length)
8224{
8225 char *last_char_p = (char *) object;
8226
8227 if (length > 0)
8228 *last_char_p = buffer[length - 1];
8229}
8230
94af9270 8231/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8232 compute the physname for the object, which include a method's:
8233 - formal parameters (C++/Java),
8234 - receiver type (Go),
8235 - return type (Java).
8236
8237 The term "physname" is a bit confusing.
8238 For C++, for example, it is the demangled name.
8239 For Go, for example, it's the mangled name.
94af9270 8240
af6b7be1
JB
8241 For Ada, return the DIE's linkage name rather than the fully qualified
8242 name. PHYSNAME is ignored..
8243
94af9270
KS
8244 The result is allocated on the objfile_obstack and canonicalized. */
8245
8246static const char *
15d034d0
TT
8247dwarf2_compute_name (const char *name,
8248 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8249 int physname)
8250{
bb5ed363
DE
8251 struct objfile *objfile = cu->objfile;
8252
94af9270
KS
8253 if (name == NULL)
8254 name = dwarf2_name (die, cu);
8255
f55ee35c
JK
8256 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8257 compute it by typename_concat inside GDB. */
8258 if (cu->language == language_ada
8259 || (cu->language == language_fortran && physname))
8260 {
8261 /* For Ada unit, we prefer the linkage name over the name, as
8262 the former contains the exported name, which the user expects
8263 to be able to reference. Ideally, we want the user to be able
8264 to reference this entity using either natural or linkage name,
8265 but we haven't started looking at this enhancement yet. */
8266 struct attribute *attr;
8267
8268 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8269 if (attr == NULL)
8270 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8271 if (attr && DW_STRING (attr))
8272 return DW_STRING (attr);
8273 }
8274
94af9270
KS
8275 /* These are the only languages we know how to qualify names in. */
8276 if (name != NULL
f55ee35c
JK
8277 && (cu->language == language_cplus || cu->language == language_java
8278 || cu->language == language_fortran))
94af9270
KS
8279 {
8280 if (die_needs_namespace (die, cu))
8281 {
8282 long length;
0d5cff50 8283 const char *prefix;
94af9270
KS
8284 struct ui_file *buf;
8285
8286 prefix = determine_prefix (die, cu);
8287 buf = mem_fileopen ();
8288 if (*prefix != '\0')
8289 {
f55ee35c
JK
8290 char *prefixed_name = typename_concat (NULL, prefix, name,
8291 physname, cu);
9a619af0 8292
94af9270
KS
8293 fputs_unfiltered (prefixed_name, buf);
8294 xfree (prefixed_name);
8295 }
8296 else
62d5b8da 8297 fputs_unfiltered (name, buf);
94af9270 8298
98bfdba5
PA
8299 /* Template parameters may be specified in the DIE's DW_AT_name, or
8300 as children with DW_TAG_template_type_param or
8301 DW_TAG_value_type_param. If the latter, add them to the name
8302 here. If the name already has template parameters, then
8303 skip this step; some versions of GCC emit both, and
8304 it is more efficient to use the pre-computed name.
8305
8306 Something to keep in mind about this process: it is very
8307 unlikely, or in some cases downright impossible, to produce
8308 something that will match the mangled name of a function.
8309 If the definition of the function has the same debug info,
8310 we should be able to match up with it anyway. But fallbacks
8311 using the minimal symbol, for instance to find a method
8312 implemented in a stripped copy of libstdc++, will not work.
8313 If we do not have debug info for the definition, we will have to
8314 match them up some other way.
8315
8316 When we do name matching there is a related problem with function
8317 templates; two instantiated function templates are allowed to
8318 differ only by their return types, which we do not add here. */
8319
8320 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8321 {
8322 struct attribute *attr;
8323 struct die_info *child;
8324 int first = 1;
8325
8326 die->building_fullname = 1;
8327
8328 for (child = die->child; child != NULL; child = child->sibling)
8329 {
8330 struct type *type;
12df843f 8331 LONGEST value;
d521ce57 8332 const gdb_byte *bytes;
98bfdba5
PA
8333 struct dwarf2_locexpr_baton *baton;
8334 struct value *v;
8335
8336 if (child->tag != DW_TAG_template_type_param
8337 && child->tag != DW_TAG_template_value_param)
8338 continue;
8339
8340 if (first)
8341 {
8342 fputs_unfiltered ("<", buf);
8343 first = 0;
8344 }
8345 else
8346 fputs_unfiltered (", ", buf);
8347
8348 attr = dwarf2_attr (child, DW_AT_type, cu);
8349 if (attr == NULL)
8350 {
8351 complaint (&symfile_complaints,
8352 _("template parameter missing DW_AT_type"));
8353 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8354 continue;
8355 }
8356 type = die_type (child, cu);
8357
8358 if (child->tag == DW_TAG_template_type_param)
8359 {
79d43c61 8360 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8361 continue;
8362 }
8363
8364 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8365 if (attr == NULL)
8366 {
8367 complaint (&symfile_complaints,
3e43a32a
MS
8368 _("template parameter missing "
8369 "DW_AT_const_value"));
98bfdba5
PA
8370 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8371 continue;
8372 }
8373
8374 dwarf2_const_value_attr (attr, type, name,
8375 &cu->comp_unit_obstack, cu,
8376 &value, &bytes, &baton);
8377
8378 if (TYPE_NOSIGN (type))
8379 /* GDB prints characters as NUMBER 'CHAR'. If that's
8380 changed, this can use value_print instead. */
8381 c_printchar (value, type, buf);
8382 else
8383 {
8384 struct value_print_options opts;
8385
8386 if (baton != NULL)
8387 v = dwarf2_evaluate_loc_desc (type, NULL,
8388 baton->data,
8389 baton->size,
8390 baton->per_cu);
8391 else if (bytes != NULL)
8392 {
8393 v = allocate_value (type);
8394 memcpy (value_contents_writeable (v), bytes,
8395 TYPE_LENGTH (type));
8396 }
8397 else
8398 v = value_from_longest (type, value);
8399
3e43a32a
MS
8400 /* Specify decimal so that we do not depend on
8401 the radix. */
98bfdba5
PA
8402 get_formatted_print_options (&opts, 'd');
8403 opts.raw = 1;
8404 value_print (v, buf, &opts);
8405 release_value (v);
8406 value_free (v);
8407 }
8408 }
8409
8410 die->building_fullname = 0;
8411
8412 if (!first)
8413 {
8414 /* Close the argument list, with a space if necessary
8415 (nested templates). */
8416 char last_char = '\0';
8417 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8418 if (last_char == '>')
8419 fputs_unfiltered (" >", buf);
8420 else
8421 fputs_unfiltered (">", buf);
8422 }
8423 }
8424
94af9270
KS
8425 /* For Java and C++ methods, append formal parameter type
8426 information, if PHYSNAME. */
6e70227d 8427
94af9270
KS
8428 if (physname && die->tag == DW_TAG_subprogram
8429 && (cu->language == language_cplus
8430 || cu->language == language_java))
8431 {
8432 struct type *type = read_type_die (die, cu);
8433
79d43c61
TT
8434 c_type_print_args (type, buf, 1, cu->language,
8435 &type_print_raw_options);
94af9270
KS
8436
8437 if (cu->language == language_java)
8438 {
8439 /* For java, we must append the return type to method
0963b4bd 8440 names. */
94af9270
KS
8441 if (die->tag == DW_TAG_subprogram)
8442 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8443 0, 0, &type_print_raw_options);
94af9270
KS
8444 }
8445 else if (cu->language == language_cplus)
8446 {
60430eff
DJ
8447 /* Assume that an artificial first parameter is
8448 "this", but do not crash if it is not. RealView
8449 marks unnamed (and thus unused) parameters as
8450 artificial; there is no way to differentiate
8451 the two cases. */
94af9270
KS
8452 if (TYPE_NFIELDS (type) > 0
8453 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8454 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8455 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8456 0))))
94af9270
KS
8457 fputs_unfiltered (" const", buf);
8458 }
8459 }
8460
bb5ed363 8461 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
94af9270
KS
8462 &length);
8463 ui_file_delete (buf);
8464
8465 if (cu->language == language_cplus)
8466 {
15d034d0 8467 const char *cname
94af9270 8468 = dwarf2_canonicalize_name (name, cu,
bb5ed363 8469 &objfile->objfile_obstack);
9a619af0 8470
94af9270
KS
8471 if (cname != NULL)
8472 name = cname;
8473 }
8474 }
8475 }
8476
8477 return name;
8478}
8479
0114d602
DJ
8480/* Return the fully qualified name of DIE, based on its DW_AT_name.
8481 If scope qualifiers are appropriate they will be added. The result
8482 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
8483 not have a name. NAME may either be from a previous call to
8484 dwarf2_name or NULL.
8485
0963b4bd 8486 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8487
8488static const char *
15d034d0 8489dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8490{
94af9270
KS
8491 return dwarf2_compute_name (name, die, cu, 0);
8492}
0114d602 8493
94af9270
KS
8494/* Construct a physname for the given DIE in CU. NAME may either be
8495 from a previous call to dwarf2_name or NULL. The result will be
8496 allocated on the objfile_objstack or NULL if the DIE does not have a
8497 name.
0114d602 8498
94af9270 8499 The output string will be canonicalized (if C++/Java). */
0114d602 8500
94af9270 8501static const char *
15d034d0 8502dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8503{
bb5ed363 8504 struct objfile *objfile = cu->objfile;
900e11f9
JK
8505 struct attribute *attr;
8506 const char *retval, *mangled = NULL, *canon = NULL;
8507 struct cleanup *back_to;
8508 int need_copy = 1;
8509
8510 /* In this case dwarf2_compute_name is just a shortcut not building anything
8511 on its own. */
8512 if (!die_needs_namespace (die, cu))
8513 return dwarf2_compute_name (name, die, cu, 1);
8514
8515 back_to = make_cleanup (null_cleanup, NULL);
8516
8517 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8518 if (!attr)
8519 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8520
8521 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8522 has computed. */
8523 if (attr && DW_STRING (attr))
8524 {
8525 char *demangled;
8526
8527 mangled = DW_STRING (attr);
8528
8529 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8530 type. It is easier for GDB users to search for such functions as
8531 `name(params)' than `long name(params)'. In such case the minimal
8532 symbol names do not match the full symbol names but for template
8533 functions there is never a need to look up their definition from their
8534 declaration so the only disadvantage remains the minimal symbol
8535 variant `long name(params)' does not have the proper inferior type.
8536 */
8537
a766d390
DE
8538 if (cu->language == language_go)
8539 {
8540 /* This is a lie, but we already lie to the caller new_symbol_full.
8541 new_symbol_full assumes we return the mangled name.
8542 This just undoes that lie until things are cleaned up. */
8543 demangled = NULL;
8544 }
8545 else
8546 {
8de20a37
TT
8547 demangled = gdb_demangle (mangled,
8548 (DMGL_PARAMS | DMGL_ANSI
8549 | (cu->language == language_java
8550 ? DMGL_JAVA | DMGL_RET_POSTFIX
8551 : DMGL_RET_DROP)));
a766d390 8552 }
900e11f9
JK
8553 if (demangled)
8554 {
8555 make_cleanup (xfree, demangled);
8556 canon = demangled;
8557 }
8558 else
8559 {
8560 canon = mangled;
8561 need_copy = 0;
8562 }
8563 }
8564
8565 if (canon == NULL || check_physname)
8566 {
8567 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8568
8569 if (canon != NULL && strcmp (physname, canon) != 0)
8570 {
8571 /* It may not mean a bug in GDB. The compiler could also
8572 compute DW_AT_linkage_name incorrectly. But in such case
8573 GDB would need to be bug-to-bug compatible. */
8574
8575 complaint (&symfile_complaints,
8576 _("Computed physname <%s> does not match demangled <%s> "
8577 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8578 physname, canon, mangled, die->offset.sect_off,
8579 objfile_name (objfile));
900e11f9
JK
8580
8581 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8582 is available here - over computed PHYSNAME. It is safer
8583 against both buggy GDB and buggy compilers. */
8584
8585 retval = canon;
8586 }
8587 else
8588 {
8589 retval = physname;
8590 need_copy = 0;
8591 }
8592 }
8593 else
8594 retval = canon;
8595
8596 if (need_copy)
10f0c4bb 8597 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
900e11f9
JK
8598
8599 do_cleanups (back_to);
8600 return retval;
0114d602
DJ
8601}
8602
74921315
KS
8603/* Inspect DIE in CU for a namespace alias. If one exists, record
8604 a new symbol for it.
8605
8606 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8607
8608static int
8609read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8610{
8611 struct attribute *attr;
8612
8613 /* If the die does not have a name, this is not a namespace
8614 alias. */
8615 attr = dwarf2_attr (die, DW_AT_name, cu);
8616 if (attr != NULL)
8617 {
8618 int num;
8619 struct die_info *d = die;
8620 struct dwarf2_cu *imported_cu = cu;
8621
8622 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8623 keep inspecting DIEs until we hit the underlying import. */
8624#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8625 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8626 {
8627 attr = dwarf2_attr (d, DW_AT_import, cu);
8628 if (attr == NULL)
8629 break;
8630
8631 d = follow_die_ref (d, attr, &imported_cu);
8632 if (d->tag != DW_TAG_imported_declaration)
8633 break;
8634 }
8635
8636 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8637 {
8638 complaint (&symfile_complaints,
8639 _("DIE at 0x%x has too many recursively imported "
8640 "declarations"), d->offset.sect_off);
8641 return 0;
8642 }
8643
8644 if (attr != NULL)
8645 {
8646 struct type *type;
8647 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8648
8649 type = get_die_type_at_offset (offset, cu->per_cu);
8650 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8651 {
8652 /* This declaration is a global namespace alias. Add
8653 a symbol for it whose type is the aliased namespace. */
8654 new_symbol (die, type, cu);
8655 return 1;
8656 }
8657 }
8658 }
8659
8660 return 0;
8661}
8662
27aa8d6a
SW
8663/* Read the import statement specified by the given die and record it. */
8664
8665static void
8666read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8667{
bb5ed363 8668 struct objfile *objfile = cu->objfile;
27aa8d6a 8669 struct attribute *import_attr;
32019081 8670 struct die_info *imported_die, *child_die;
de4affc9 8671 struct dwarf2_cu *imported_cu;
27aa8d6a 8672 const char *imported_name;
794684b6 8673 const char *imported_name_prefix;
13387711
SW
8674 const char *canonical_name;
8675 const char *import_alias;
8676 const char *imported_declaration = NULL;
794684b6 8677 const char *import_prefix;
32019081
JK
8678 VEC (const_char_ptr) *excludes = NULL;
8679 struct cleanup *cleanups;
13387711 8680
27aa8d6a
SW
8681 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8682 if (import_attr == NULL)
8683 {
8684 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8685 dwarf_tag_name (die->tag));
8686 return;
8687 }
8688
de4affc9
CC
8689 imported_cu = cu;
8690 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8691 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8692 if (imported_name == NULL)
8693 {
8694 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8695
8696 The import in the following code:
8697 namespace A
8698 {
8699 typedef int B;
8700 }
8701
8702 int main ()
8703 {
8704 using A::B;
8705 B b;
8706 return b;
8707 }
8708
8709 ...
8710 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8711 <52> DW_AT_decl_file : 1
8712 <53> DW_AT_decl_line : 6
8713 <54> DW_AT_import : <0x75>
8714 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8715 <59> DW_AT_name : B
8716 <5b> DW_AT_decl_file : 1
8717 <5c> DW_AT_decl_line : 2
8718 <5d> DW_AT_type : <0x6e>
8719 ...
8720 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8721 <76> DW_AT_byte_size : 4
8722 <77> DW_AT_encoding : 5 (signed)
8723
8724 imports the wrong die ( 0x75 instead of 0x58 ).
8725 This case will be ignored until the gcc bug is fixed. */
8726 return;
8727 }
8728
82856980
SW
8729 /* Figure out the local name after import. */
8730 import_alias = dwarf2_name (die, cu);
27aa8d6a 8731
794684b6
SW
8732 /* Figure out where the statement is being imported to. */
8733 import_prefix = determine_prefix (die, cu);
8734
8735 /* Figure out what the scope of the imported die is and prepend it
8736 to the name of the imported die. */
de4affc9 8737 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8738
f55ee35c
JK
8739 if (imported_die->tag != DW_TAG_namespace
8740 && imported_die->tag != DW_TAG_module)
794684b6 8741 {
13387711
SW
8742 imported_declaration = imported_name;
8743 canonical_name = imported_name_prefix;
794684b6 8744 }
13387711 8745 else if (strlen (imported_name_prefix) > 0)
12aaed36
TT
8746 canonical_name = obconcat (&objfile->objfile_obstack,
8747 imported_name_prefix, "::", imported_name,
8748 (char *) NULL);
13387711
SW
8749 else
8750 canonical_name = imported_name;
794684b6 8751
32019081
JK
8752 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8753
8754 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8755 for (child_die = die->child; child_die && child_die->tag;
8756 child_die = sibling_die (child_die))
8757 {
8758 /* DWARF-4: A Fortran use statement with a “rename list” may be
8759 represented by an imported module entry with an import attribute
8760 referring to the module and owned entries corresponding to those
8761 entities that are renamed as part of being imported. */
8762
8763 if (child_die->tag != DW_TAG_imported_declaration)
8764 {
8765 complaint (&symfile_complaints,
8766 _("child DW_TAG_imported_declaration expected "
8767 "- DIE at 0x%x [in module %s]"),
4262abfb 8768 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8769 continue;
8770 }
8771
8772 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8773 if (import_attr == NULL)
8774 {
8775 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8776 dwarf_tag_name (child_die->tag));
8777 continue;
8778 }
8779
8780 imported_cu = cu;
8781 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8782 &imported_cu);
8783 imported_name = dwarf2_name (imported_die, imported_cu);
8784 if (imported_name == NULL)
8785 {
8786 complaint (&symfile_complaints,
8787 _("child DW_TAG_imported_declaration has unknown "
8788 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 8789 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8790 continue;
8791 }
8792
8793 VEC_safe_push (const_char_ptr, excludes, imported_name);
8794
8795 process_die (child_die, cu);
8796 }
8797
c0cc3a76
SW
8798 cp_add_using_directive (import_prefix,
8799 canonical_name,
8800 import_alias,
13387711 8801 imported_declaration,
32019081 8802 excludes,
12aaed36 8803 0,
bb5ed363 8804 &objfile->objfile_obstack);
32019081
JK
8805
8806 do_cleanups (cleanups);
27aa8d6a
SW
8807}
8808
f4dc4d17 8809/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 8810
cb1df416
DJ
8811static void
8812free_cu_line_header (void *arg)
8813{
8814 struct dwarf2_cu *cu = arg;
8815
8816 free_line_header (cu->line_header);
8817 cu->line_header = NULL;
8818}
8819
1b80a9fa
JK
8820/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8821 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8822 this, it was first present in GCC release 4.3.0. */
8823
8824static int
8825producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8826{
8827 if (!cu->checked_producer)
8828 check_producer (cu);
8829
8830 return cu->producer_is_gcc_lt_4_3;
8831}
8832
9291a0cd
TT
8833static void
8834find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 8835 const char **name, const char **comp_dir)
9291a0cd
TT
8836{
8837 struct attribute *attr;
8838
8839 *name = NULL;
8840 *comp_dir = NULL;
8841
8842 /* Find the filename. Do not use dwarf2_name here, since the filename
8843 is not a source language identifier. */
8844 attr = dwarf2_attr (die, DW_AT_name, cu);
8845 if (attr)
8846 {
8847 *name = DW_STRING (attr);
8848 }
8849
8850 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8851 if (attr)
8852 *comp_dir = DW_STRING (attr);
1b80a9fa
JK
8853 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8854 && IS_ABSOLUTE_PATH (*name))
9291a0cd 8855 {
15d034d0
TT
8856 char *d = ldirname (*name);
8857
8858 *comp_dir = d;
8859 if (d != NULL)
8860 make_cleanup (xfree, d);
9291a0cd
TT
8861 }
8862 if (*comp_dir != NULL)
8863 {
8864 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8865 directory, get rid of it. */
8866 char *cp = strchr (*comp_dir, ':');
8867
8868 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8869 *comp_dir = cp + 1;
8870 }
8871
8872 if (*name == NULL)
8873 *name = "<unknown>";
8874}
8875
f4dc4d17
DE
8876/* Handle DW_AT_stmt_list for a compilation unit.
8877 DIE is the DW_TAG_compile_unit die for CU.
f3f5162e
DE
8878 COMP_DIR is the compilation directory.
8879 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
2ab95328
TT
8880
8881static void
8882handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
b385a60d 8883 const char *comp_dir) /* ARI: editCase function */
2ab95328
TT
8884{
8885 struct attribute *attr;
2ab95328 8886
f4dc4d17
DE
8887 gdb_assert (! cu->per_cu->is_debug_types);
8888
2ab95328
TT
8889 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8890 if (attr)
8891 {
8892 unsigned int line_offset = DW_UNSND (attr);
8893 struct line_header *line_header
3019eac3 8894 = dwarf_decode_line_header (line_offset, cu);
2ab95328
TT
8895
8896 if (line_header)
dee91e82
DE
8897 {
8898 cu->line_header = line_header;
8899 make_cleanup (free_cu_line_header, cu);
f4dc4d17 8900 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
dee91e82 8901 }
2ab95328
TT
8902 }
8903}
8904
95554aad 8905/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 8906
c906108c 8907static void
e7c27a73 8908read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8909{
dee91e82 8910 struct objfile *objfile = dwarf2_per_objfile->objfile;
debd256d 8911 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 8912 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
8913 CORE_ADDR highpc = ((CORE_ADDR) 0);
8914 struct attribute *attr;
15d034d0
TT
8915 const char *name = NULL;
8916 const char *comp_dir = NULL;
c906108c
SS
8917 struct die_info *child_die;
8918 bfd *abfd = objfile->obfd;
e142c38c 8919 CORE_ADDR baseaddr;
6e70227d 8920
e142c38c 8921 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8922
fae299cd 8923 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
8924
8925 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8926 from finish_block. */
2acceee2 8927 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
8928 lowpc = highpc;
8929 lowpc += baseaddr;
8930 highpc += baseaddr;
8931
9291a0cd 8932 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 8933
95554aad 8934 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 8935
f4b8a18d
KW
8936 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8937 standardised yet. As a workaround for the language detection we fall
8938 back to the DW_AT_producer string. */
8939 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8940 cu->language = language_opencl;
8941
3019eac3
DE
8942 /* Similar hack for Go. */
8943 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8944 set_cu_language (DW_LANG_Go, cu);
8945
f4dc4d17 8946 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
8947
8948 /* Decode line number information if present. We do this before
8949 processing child DIEs, so that the line header table is available
8950 for DW_AT_decl_file. */
f4dc4d17 8951 handle_DW_AT_stmt_list (die, cu, comp_dir);
3019eac3
DE
8952
8953 /* Process all dies in compilation unit. */
8954 if (die->child != NULL)
8955 {
8956 child_die = die->child;
8957 while (child_die && child_die->tag)
8958 {
8959 process_die (child_die, cu);
8960 child_die = sibling_die (child_die);
8961 }
8962 }
8963
8964 /* Decode macro information, if present. Dwarf 2 macro information
8965 refers to information in the line number info statement program
8966 header, so we can only read it if we've read the header
8967 successfully. */
8968 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8969 if (attr && cu->line_header)
8970 {
8971 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8972 complaint (&symfile_complaints,
8973 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8974
09262596 8975 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
3019eac3
DE
8976 }
8977 else
8978 {
8979 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8980 if (attr && cu->line_header)
8981 {
8982 unsigned int macro_offset = DW_UNSND (attr);
8983
09262596 8984 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
3019eac3
DE
8985 }
8986 }
8987
8988 do_cleanups (back_to);
8989}
8990
f4dc4d17
DE
8991/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8992 Create the set of symtabs used by this TU, or if this TU is sharing
8993 symtabs with another TU and the symtabs have already been created
8994 then restore those symtabs in the line header.
8995 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
8996
8997static void
f4dc4d17 8998setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 8999{
f4dc4d17
DE
9000 struct objfile *objfile = dwarf2_per_objfile->objfile;
9001 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9002 struct type_unit_group *tu_group;
9003 int first_time;
9004 struct line_header *lh;
3019eac3 9005 struct attribute *attr;
f4dc4d17 9006 unsigned int i, line_offset;
0186c6a7 9007 struct signatured_type *sig_type;
3019eac3 9008
f4dc4d17 9009 gdb_assert (per_cu->is_debug_types);
0186c6a7 9010 sig_type = (struct signatured_type *) per_cu;
3019eac3 9011
f4dc4d17 9012 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9013
f4dc4d17 9014 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9015 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9016 if (sig_type->type_unit_group == NULL)
9017 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9018 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9019
9020 /* If we've already processed this stmt_list there's no real need to
9021 do it again, we could fake it and just recreate the part we need
9022 (file name,index -> symtab mapping). If data shows this optimization
9023 is useful we can do it then. */
9024 first_time = tu_group->primary_symtab == NULL;
9025
9026 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9027 debug info. */
9028 lh = NULL;
9029 if (attr != NULL)
3019eac3 9030 {
f4dc4d17
DE
9031 line_offset = DW_UNSND (attr);
9032 lh = dwarf_decode_line_header (line_offset, cu);
9033 }
9034 if (lh == NULL)
9035 {
9036 if (first_time)
9037 dwarf2_start_symtab (cu, "", NULL, 0);
9038 else
9039 {
9040 gdb_assert (tu_group->symtabs == NULL);
9041 restart_symtab (0);
9042 }
9043 /* Note: The primary symtab will get allocated at the end. */
9044 return;
3019eac3
DE
9045 }
9046
f4dc4d17
DE
9047 cu->line_header = lh;
9048 make_cleanup (free_cu_line_header, cu);
3019eac3 9049
f4dc4d17
DE
9050 if (first_time)
9051 {
9052 dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9053
f4dc4d17
DE
9054 tu_group->num_symtabs = lh->num_file_names;
9055 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9056
f4dc4d17
DE
9057 for (i = 0; i < lh->num_file_names; ++i)
9058 {
d521ce57 9059 const char *dir = NULL;
f4dc4d17 9060 struct file_entry *fe = &lh->file_names[i];
3019eac3 9061
f4dc4d17
DE
9062 if (fe->dir_index)
9063 dir = lh->include_dirs[fe->dir_index - 1];
9064 dwarf2_start_subfile (fe->name, dir, NULL);
3019eac3 9065
f4dc4d17
DE
9066 /* Note: We don't have to watch for the main subfile here, type units
9067 don't have DW_AT_name. */
3019eac3 9068
f4dc4d17
DE
9069 if (current_subfile->symtab == NULL)
9070 {
9071 /* NOTE: start_subfile will recognize when it's been passed
9072 a file it has already seen. So we can't assume there's a
9073 simple mapping from lh->file_names to subfiles,
9074 lh->file_names may contain dups. */
9075 current_subfile->symtab = allocate_symtab (current_subfile->name,
9076 objfile);
9077 }
9078
9079 fe->symtab = current_subfile->symtab;
9080 tu_group->symtabs[i] = fe->symtab;
9081 }
9082 }
9083 else
3019eac3 9084 {
f4dc4d17
DE
9085 restart_symtab (0);
9086
9087 for (i = 0; i < lh->num_file_names; ++i)
9088 {
9089 struct file_entry *fe = &lh->file_names[i];
9090
9091 fe->symtab = tu_group->symtabs[i];
9092 }
3019eac3
DE
9093 }
9094
f4dc4d17
DE
9095 /* The main symtab is allocated last. Type units don't have DW_AT_name
9096 so they don't have a "real" (so to speak) symtab anyway.
9097 There is later code that will assign the main symtab to all symbols
9098 that don't have one. We need to handle the case of a symbol with a
9099 missing symtab (DW_AT_decl_file) anyway. */
9100}
3019eac3 9101
f4dc4d17
DE
9102/* Process DW_TAG_type_unit.
9103 For TUs we want to skip the first top level sibling if it's not the
9104 actual type being defined by this TU. In this case the first top
9105 level sibling is there to provide context only. */
3019eac3 9106
f4dc4d17
DE
9107static void
9108read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9109{
9110 struct die_info *child_die;
3019eac3 9111
f4dc4d17
DE
9112 prepare_one_comp_unit (cu, die, language_minimal);
9113
9114 /* Initialize (or reinitialize) the machinery for building symtabs.
9115 We do this before processing child DIEs, so that the line header table
9116 is available for DW_AT_decl_file. */
9117 setup_type_unit_groups (die, cu);
9118
9119 if (die->child != NULL)
9120 {
9121 child_die = die->child;
9122 while (child_die && child_die->tag)
9123 {
9124 process_die (child_die, cu);
9125 child_die = sibling_die (child_die);
9126 }
9127 }
3019eac3
DE
9128}
9129\f
80626a55
DE
9130/* DWO/DWP files.
9131
9132 http://gcc.gnu.org/wiki/DebugFission
9133 http://gcc.gnu.org/wiki/DebugFissionDWP
9134
9135 To simplify handling of both DWO files ("object" files with the DWARF info)
9136 and DWP files (a file with the DWOs packaged up into one file), we treat
9137 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9138
9139static hashval_t
9140hash_dwo_file (const void *item)
9141{
9142 const struct dwo_file *dwo_file = item;
a2ce51a0 9143 hashval_t hash;
3019eac3 9144
a2ce51a0
DE
9145 hash = htab_hash_string (dwo_file->dwo_name);
9146 if (dwo_file->comp_dir != NULL)
9147 hash += htab_hash_string (dwo_file->comp_dir);
9148 return hash;
3019eac3
DE
9149}
9150
9151static int
9152eq_dwo_file (const void *item_lhs, const void *item_rhs)
9153{
9154 const struct dwo_file *lhs = item_lhs;
9155 const struct dwo_file *rhs = item_rhs;
9156
a2ce51a0
DE
9157 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9158 return 0;
9159 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9160 return lhs->comp_dir == rhs->comp_dir;
9161 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9162}
9163
9164/* Allocate a hash table for DWO files. */
9165
9166static htab_t
9167allocate_dwo_file_hash_table (void)
9168{
9169 struct objfile *objfile = dwarf2_per_objfile->objfile;
9170
9171 return htab_create_alloc_ex (41,
9172 hash_dwo_file,
9173 eq_dwo_file,
9174 NULL,
9175 &objfile->objfile_obstack,
9176 hashtab_obstack_allocate,
9177 dummy_obstack_deallocate);
9178}
9179
80626a55
DE
9180/* Lookup DWO file DWO_NAME. */
9181
9182static void **
0ac5b59e 9183lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9184{
9185 struct dwo_file find_entry;
9186 void **slot;
9187
9188 if (dwarf2_per_objfile->dwo_files == NULL)
9189 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9190
9191 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9192 find_entry.dwo_name = dwo_name;
9193 find_entry.comp_dir = comp_dir;
80626a55
DE
9194 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9195
9196 return slot;
9197}
9198
3019eac3
DE
9199static hashval_t
9200hash_dwo_unit (const void *item)
9201{
9202 const struct dwo_unit *dwo_unit = item;
9203
9204 /* This drops the top 32 bits of the id, but is ok for a hash. */
9205 return dwo_unit->signature;
9206}
9207
9208static int
9209eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9210{
9211 const struct dwo_unit *lhs = item_lhs;
9212 const struct dwo_unit *rhs = item_rhs;
9213
9214 /* The signature is assumed to be unique within the DWO file.
9215 So while object file CU dwo_id's always have the value zero,
9216 that's OK, assuming each object file DWO file has only one CU,
9217 and that's the rule for now. */
9218 return lhs->signature == rhs->signature;
9219}
9220
9221/* Allocate a hash table for DWO CUs,TUs.
9222 There is one of these tables for each of CUs,TUs for each DWO file. */
9223
9224static htab_t
9225allocate_dwo_unit_table (struct objfile *objfile)
9226{
9227 /* Start out with a pretty small number.
9228 Generally DWO files contain only one CU and maybe some TUs. */
9229 return htab_create_alloc_ex (3,
9230 hash_dwo_unit,
9231 eq_dwo_unit,
9232 NULL,
9233 &objfile->objfile_obstack,
9234 hashtab_obstack_allocate,
9235 dummy_obstack_deallocate);
9236}
9237
80626a55 9238/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9239
19c3d4c9 9240struct create_dwo_cu_data
3019eac3
DE
9241{
9242 struct dwo_file *dwo_file;
19c3d4c9 9243 struct dwo_unit dwo_unit;
3019eac3
DE
9244};
9245
19c3d4c9 9246/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9247
9248static void
19c3d4c9
DE
9249create_dwo_cu_reader (const struct die_reader_specs *reader,
9250 const gdb_byte *info_ptr,
9251 struct die_info *comp_unit_die,
9252 int has_children,
9253 void *datap)
3019eac3
DE
9254{
9255 struct dwarf2_cu *cu = reader->cu;
9256 struct objfile *objfile = dwarf2_per_objfile->objfile;
9257 sect_offset offset = cu->per_cu->offset;
8a0459fd 9258 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 9259 struct create_dwo_cu_data *data = datap;
3019eac3 9260 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9261 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9262 struct attribute *attr;
3019eac3
DE
9263
9264 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9265 if (attr == NULL)
9266 {
19c3d4c9
DE
9267 complaint (&symfile_complaints,
9268 _("Dwarf Error: debug entry at offset 0x%x is missing"
9269 " its dwo_id [in module %s]"),
9270 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9271 return;
9272 }
9273
3019eac3
DE
9274 dwo_unit->dwo_file = dwo_file;
9275 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9276 dwo_unit->section = section;
3019eac3
DE
9277 dwo_unit->offset = offset;
9278 dwo_unit->length = cu->per_cu->length;
9279
09406207 9280 if (dwarf2_read_debug)
4031ecc5
DE
9281 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9282 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9283}
9284
19c3d4c9
DE
9285/* Create the dwo_unit for the lone CU in DWO_FILE.
9286 Note: This function processes DWO files only, not DWP files. */
3019eac3 9287
19c3d4c9
DE
9288static struct dwo_unit *
9289create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9290{
9291 struct objfile *objfile = dwarf2_per_objfile->objfile;
9292 struct dwarf2_section_info *section = &dwo_file->sections.info;
9293 bfd *abfd;
9294 htab_t cu_htab;
d521ce57 9295 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9296 struct create_dwo_cu_data create_dwo_cu_data;
9297 struct dwo_unit *dwo_unit;
3019eac3
DE
9298
9299 dwarf2_read_section (objfile, section);
9300 info_ptr = section->buffer;
9301
9302 if (info_ptr == NULL)
9303 return NULL;
9304
9305 /* We can't set abfd until now because the section may be empty or
9306 not present, in which case section->asection will be NULL. */
a32a8923 9307 abfd = get_section_bfd_owner (section);
3019eac3 9308
09406207 9309 if (dwarf2_read_debug)
19c3d4c9
DE
9310 {
9311 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9312 get_section_name (section),
9313 get_section_file_name (section));
19c3d4c9 9314 }
3019eac3 9315
19c3d4c9
DE
9316 create_dwo_cu_data.dwo_file = dwo_file;
9317 dwo_unit = NULL;
3019eac3
DE
9318
9319 end_ptr = info_ptr + section->size;
9320 while (info_ptr < end_ptr)
9321 {
9322 struct dwarf2_per_cu_data per_cu;
9323
19c3d4c9
DE
9324 memset (&create_dwo_cu_data.dwo_unit, 0,
9325 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9326 memset (&per_cu, 0, sizeof (per_cu));
9327 per_cu.objfile = objfile;
9328 per_cu.is_debug_types = 0;
9329 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9330 per_cu.section = section;
3019eac3 9331
33e80786 9332 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9333 create_dwo_cu_reader,
9334 &create_dwo_cu_data);
9335
9336 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9337 {
9338 /* If we've already found one, complain. We only support one
9339 because having more than one requires hacking the dwo_name of
9340 each to match, which is highly unlikely to happen. */
9341 if (dwo_unit != NULL)
9342 {
9343 complaint (&symfile_complaints,
9344 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9345 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9346 break;
9347 }
9348
9349 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9350 *dwo_unit = create_dwo_cu_data.dwo_unit;
9351 }
3019eac3
DE
9352
9353 info_ptr += per_cu.length;
9354 }
9355
19c3d4c9 9356 return dwo_unit;
3019eac3
DE
9357}
9358
80626a55
DE
9359/* DWP file .debug_{cu,tu}_index section format:
9360 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9361
d2415c6c
DE
9362 DWP Version 1:
9363
80626a55
DE
9364 Both index sections have the same format, and serve to map a 64-bit
9365 signature to a set of section numbers. Each section begins with a header,
9366 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9367 indexes, and a pool of 32-bit section numbers. The index sections will be
9368 aligned at 8-byte boundaries in the file.
9369
d2415c6c
DE
9370 The index section header consists of:
9371
9372 V, 32 bit version number
9373 -, 32 bits unused
9374 N, 32 bit number of compilation units or type units in the index
9375 M, 32 bit number of slots in the hash table
80626a55 9376
d2415c6c 9377 Numbers are recorded using the byte order of the application binary.
80626a55 9378
d2415c6c
DE
9379 The hash table begins at offset 16 in the section, and consists of an array
9380 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9381 order of the application binary). Unused slots in the hash table are 0.
9382 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9383
d2415c6c
DE
9384 The parallel table begins immediately after the hash table
9385 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9386 array of 32-bit indexes (using the byte order of the application binary),
9387 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9388 table contains a 32-bit index into the pool of section numbers. For unused
9389 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9390
73869dc2
DE
9391 The pool of section numbers begins immediately following the hash table
9392 (at offset 16 + 12 * M from the beginning of the section). The pool of
9393 section numbers consists of an array of 32-bit words (using the byte order
9394 of the application binary). Each item in the array is indexed starting
9395 from 0. The hash table entry provides the index of the first section
9396 number in the set. Additional section numbers in the set follow, and the
9397 set is terminated by a 0 entry (section number 0 is not used in ELF).
9398
9399 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9400 section must be the first entry in the set, and the .debug_abbrev.dwo must
9401 be the second entry. Other members of the set may follow in any order.
9402
9403 ---
9404
9405 DWP Version 2:
9406
9407 DWP Version 2 combines all the .debug_info, etc. sections into one,
9408 and the entries in the index tables are now offsets into these sections.
9409 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9410 section.
9411
9412 Index Section Contents:
9413 Header
9414 Hash Table of Signatures dwp_hash_table.hash_table
9415 Parallel Table of Indices dwp_hash_table.unit_table
9416 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9417 Table of Section Sizes dwp_hash_table.v2.sizes
9418
9419 The index section header consists of:
9420
9421 V, 32 bit version number
9422 L, 32 bit number of columns in the table of section offsets
9423 N, 32 bit number of compilation units or type units in the index
9424 M, 32 bit number of slots in the hash table
9425
9426 Numbers are recorded using the byte order of the application binary.
9427
9428 The hash table has the same format as version 1.
9429 The parallel table of indices has the same format as version 1,
9430 except that the entries are origin-1 indices into the table of sections
9431 offsets and the table of section sizes.
9432
9433 The table of offsets begins immediately following the parallel table
9434 (at offset 16 + 12 * M from the beginning of the section). The table is
9435 a two-dimensional array of 32-bit words (using the byte order of the
9436 application binary), with L columns and N+1 rows, in row-major order.
9437 Each row in the array is indexed starting from 0. The first row provides
9438 a key to the remaining rows: each column in this row provides an identifier
9439 for a debug section, and the offsets in the same column of subsequent rows
9440 refer to that section. The section identifiers are:
9441
9442 DW_SECT_INFO 1 .debug_info.dwo
9443 DW_SECT_TYPES 2 .debug_types.dwo
9444 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9445 DW_SECT_LINE 4 .debug_line.dwo
9446 DW_SECT_LOC 5 .debug_loc.dwo
9447 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9448 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9449 DW_SECT_MACRO 8 .debug_macro.dwo
9450
9451 The offsets provided by the CU and TU index sections are the base offsets
9452 for the contributions made by each CU or TU to the corresponding section
9453 in the package file. Each CU and TU header contains an abbrev_offset
9454 field, used to find the abbreviations table for that CU or TU within the
9455 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9456 be interpreted as relative to the base offset given in the index section.
9457 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9458 should be interpreted as relative to the base offset for .debug_line.dwo,
9459 and offsets into other debug sections obtained from DWARF attributes should
9460 also be interpreted as relative to the corresponding base offset.
9461
9462 The table of sizes begins immediately following the table of offsets.
9463 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9464 with L columns and N rows, in row-major order. Each row in the array is
9465 indexed starting from 1 (row 0 is shared by the two tables).
9466
9467 ---
9468
9469 Hash table lookup is handled the same in version 1 and 2:
9470
9471 We assume that N and M will not exceed 2^32 - 1.
9472 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9473
d2415c6c
DE
9474 Given a 64-bit compilation unit signature or a type signature S, an entry
9475 in the hash table is located as follows:
80626a55 9476
d2415c6c
DE
9477 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9478 the low-order k bits all set to 1.
80626a55 9479
d2415c6c 9480 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9481
d2415c6c
DE
9482 3) If the hash table entry at index H matches the signature, use that
9483 entry. If the hash table entry at index H is unused (all zeroes),
9484 terminate the search: the signature is not present in the table.
80626a55 9485
d2415c6c 9486 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9487
d2415c6c 9488 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9489 to stop at an unused slot or find the match. */
80626a55
DE
9490
9491/* Create a hash table to map DWO IDs to their CU/TU entry in
9492 .debug_{info,types}.dwo in DWP_FILE.
9493 Returns NULL if there isn't one.
9494 Note: This function processes DWP files only, not DWO files. */
9495
9496static struct dwp_hash_table *
9497create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9498{
9499 struct objfile *objfile = dwarf2_per_objfile->objfile;
9500 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9501 const gdb_byte *index_ptr, *index_end;
80626a55 9502 struct dwarf2_section_info *index;
73869dc2 9503 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9504 struct dwp_hash_table *htab;
9505
9506 if (is_debug_types)
9507 index = &dwp_file->sections.tu_index;
9508 else
9509 index = &dwp_file->sections.cu_index;
9510
9511 if (dwarf2_section_empty_p (index))
9512 return NULL;
9513 dwarf2_read_section (objfile, index);
9514
9515 index_ptr = index->buffer;
9516 index_end = index_ptr + index->size;
9517
9518 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9519 index_ptr += 4;
9520 if (version == 2)
9521 nr_columns = read_4_bytes (dbfd, index_ptr);
9522 else
9523 nr_columns = 0;
9524 index_ptr += 4;
80626a55
DE
9525 nr_units = read_4_bytes (dbfd, index_ptr);
9526 index_ptr += 4;
9527 nr_slots = read_4_bytes (dbfd, index_ptr);
9528 index_ptr += 4;
9529
73869dc2 9530 if (version != 1 && version != 2)
80626a55 9531 {
21aa081e 9532 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9533 " [in module %s]"),
21aa081e 9534 pulongest (version), dwp_file->name);
80626a55
DE
9535 }
9536 if (nr_slots != (nr_slots & -nr_slots))
9537 {
21aa081e 9538 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9539 " is not power of 2 [in module %s]"),
21aa081e 9540 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9541 }
9542
9543 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9544 htab->version = version;
9545 htab->nr_columns = nr_columns;
80626a55
DE
9546 htab->nr_units = nr_units;
9547 htab->nr_slots = nr_slots;
9548 htab->hash_table = index_ptr;
9549 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9550
9551 /* Exit early if the table is empty. */
9552 if (nr_slots == 0 || nr_units == 0
9553 || (version == 2 && nr_columns == 0))
9554 {
9555 /* All must be zero. */
9556 if (nr_slots != 0 || nr_units != 0
9557 || (version == 2 && nr_columns != 0))
9558 {
9559 complaint (&symfile_complaints,
9560 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9561 " all zero [in modules %s]"),
9562 dwp_file->name);
9563 }
9564 return htab;
9565 }
9566
9567 if (version == 1)
9568 {
9569 htab->section_pool.v1.indices =
9570 htab->unit_table + sizeof (uint32_t) * nr_slots;
9571 /* It's harder to decide whether the section is too small in v1.
9572 V1 is deprecated anyway so we punt. */
9573 }
9574 else
9575 {
9576 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9577 int *ids = htab->section_pool.v2.section_ids;
9578 /* Reverse map for error checking. */
9579 int ids_seen[DW_SECT_MAX + 1];
9580 int i;
9581
9582 if (nr_columns < 2)
9583 {
9584 error (_("Dwarf Error: bad DWP hash table, too few columns"
9585 " in section table [in module %s]"),
9586 dwp_file->name);
9587 }
9588 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9589 {
9590 error (_("Dwarf Error: bad DWP hash table, too many columns"
9591 " in section table [in module %s]"),
9592 dwp_file->name);
9593 }
9594 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9595 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9596 for (i = 0; i < nr_columns; ++i)
9597 {
9598 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9599
9600 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9601 {
9602 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9603 " in section table [in module %s]"),
9604 id, dwp_file->name);
9605 }
9606 if (ids_seen[id] != -1)
9607 {
9608 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9609 " id %d in section table [in module %s]"),
9610 id, dwp_file->name);
9611 }
9612 ids_seen[id] = i;
9613 ids[i] = id;
9614 }
9615 /* Must have exactly one info or types section. */
9616 if (((ids_seen[DW_SECT_INFO] != -1)
9617 + (ids_seen[DW_SECT_TYPES] != -1))
9618 != 1)
9619 {
9620 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9621 " DWO info/types section [in module %s]"),
9622 dwp_file->name);
9623 }
9624 /* Must have an abbrev section. */
9625 if (ids_seen[DW_SECT_ABBREV] == -1)
9626 {
9627 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9628 " section [in module %s]"),
9629 dwp_file->name);
9630 }
9631 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9632 htab->section_pool.v2.sizes =
9633 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9634 * nr_units * nr_columns);
9635 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9636 * nr_units * nr_columns))
9637 > index_end)
9638 {
9639 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9640 " [in module %s]"),
9641 dwp_file->name);
9642 }
9643 }
80626a55
DE
9644
9645 return htab;
9646}
9647
9648/* Update SECTIONS with the data from SECTP.
9649
9650 This function is like the other "locate" section routines that are
9651 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9652 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9653
9654 The result is non-zero for success, or zero if an error was found. */
9655
9656static int
73869dc2
DE
9657locate_v1_virtual_dwo_sections (asection *sectp,
9658 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9659{
9660 const struct dwop_section_names *names = &dwop_section_names;
9661
9662 if (section_is_p (sectp->name, &names->abbrev_dwo))
9663 {
9664 /* There can be only one. */
73869dc2 9665 if (sections->abbrev.s.asection != NULL)
80626a55 9666 return 0;
73869dc2 9667 sections->abbrev.s.asection = sectp;
80626a55
DE
9668 sections->abbrev.size = bfd_get_section_size (sectp);
9669 }
9670 else if (section_is_p (sectp->name, &names->info_dwo)
9671 || section_is_p (sectp->name, &names->types_dwo))
9672 {
9673 /* There can be only one. */
73869dc2 9674 if (sections->info_or_types.s.asection != NULL)
80626a55 9675 return 0;
73869dc2 9676 sections->info_or_types.s.asection = sectp;
80626a55
DE
9677 sections->info_or_types.size = bfd_get_section_size (sectp);
9678 }
9679 else if (section_is_p (sectp->name, &names->line_dwo))
9680 {
9681 /* There can be only one. */
73869dc2 9682 if (sections->line.s.asection != NULL)
80626a55 9683 return 0;
73869dc2 9684 sections->line.s.asection = sectp;
80626a55
DE
9685 sections->line.size = bfd_get_section_size (sectp);
9686 }
9687 else if (section_is_p (sectp->name, &names->loc_dwo))
9688 {
9689 /* There can be only one. */
73869dc2 9690 if (sections->loc.s.asection != NULL)
80626a55 9691 return 0;
73869dc2 9692 sections->loc.s.asection = sectp;
80626a55
DE
9693 sections->loc.size = bfd_get_section_size (sectp);
9694 }
9695 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9696 {
9697 /* There can be only one. */
73869dc2 9698 if (sections->macinfo.s.asection != NULL)
80626a55 9699 return 0;
73869dc2 9700 sections->macinfo.s.asection = sectp;
80626a55
DE
9701 sections->macinfo.size = bfd_get_section_size (sectp);
9702 }
9703 else if (section_is_p (sectp->name, &names->macro_dwo))
9704 {
9705 /* There can be only one. */
73869dc2 9706 if (sections->macro.s.asection != NULL)
80626a55 9707 return 0;
73869dc2 9708 sections->macro.s.asection = sectp;
80626a55
DE
9709 sections->macro.size = bfd_get_section_size (sectp);
9710 }
9711 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9712 {
9713 /* There can be only one. */
73869dc2 9714 if (sections->str_offsets.s.asection != NULL)
80626a55 9715 return 0;
73869dc2 9716 sections->str_offsets.s.asection = sectp;
80626a55
DE
9717 sections->str_offsets.size = bfd_get_section_size (sectp);
9718 }
9719 else
9720 {
9721 /* No other kind of section is valid. */
9722 return 0;
9723 }
9724
9725 return 1;
9726}
9727
73869dc2
DE
9728/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9729 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9730 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9731 This is for DWP version 1 files. */
80626a55
DE
9732
9733static struct dwo_unit *
73869dc2
DE
9734create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9735 uint32_t unit_index,
9736 const char *comp_dir,
9737 ULONGEST signature, int is_debug_types)
80626a55
DE
9738{
9739 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
9740 const struct dwp_hash_table *dwp_htab =
9741 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
9742 bfd *dbfd = dwp_file->dbfd;
9743 const char *kind = is_debug_types ? "TU" : "CU";
9744 struct dwo_file *dwo_file;
9745 struct dwo_unit *dwo_unit;
73869dc2 9746 struct virtual_v1_dwo_sections sections;
80626a55
DE
9747 void **dwo_file_slot;
9748 char *virtual_dwo_name;
9749 struct dwarf2_section_info *cutu;
9750 struct cleanup *cleanups;
9751 int i;
9752
73869dc2
DE
9753 gdb_assert (dwp_file->version == 1);
9754
80626a55
DE
9755 if (dwarf2_read_debug)
9756 {
73869dc2 9757 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 9758 kind,
73869dc2 9759 pulongest (unit_index), hex_string (signature),
80626a55
DE
9760 dwp_file->name);
9761 }
9762
19ac8c2e 9763 /* Fetch the sections of this DWO unit.
80626a55
DE
9764 Put a limit on the number of sections we look for so that bad data
9765 doesn't cause us to loop forever. */
9766
73869dc2 9767#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
9768 (1 /* .debug_info or .debug_types */ \
9769 + 1 /* .debug_abbrev */ \
9770 + 1 /* .debug_line */ \
9771 + 1 /* .debug_loc */ \
9772 + 1 /* .debug_str_offsets */ \
19ac8c2e 9773 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
9774 + 1 /* trailing zero */)
9775
9776 memset (&sections, 0, sizeof (sections));
9777 cleanups = make_cleanup (null_cleanup, 0);
9778
73869dc2 9779 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
9780 {
9781 asection *sectp;
9782 uint32_t section_nr =
9783 read_4_bytes (dbfd,
73869dc2
DE
9784 dwp_htab->section_pool.v1.indices
9785 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
9786
9787 if (section_nr == 0)
9788 break;
9789 if (section_nr >= dwp_file->num_sections)
9790 {
9791 error (_("Dwarf Error: bad DWP hash table, section number too large"
9792 " [in module %s]"),
9793 dwp_file->name);
9794 }
9795
9796 sectp = dwp_file->elf_sections[section_nr];
73869dc2 9797 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
9798 {
9799 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9800 " [in module %s]"),
9801 dwp_file->name);
9802 }
9803 }
9804
9805 if (i < 2
a32a8923
DE
9806 || dwarf2_section_empty_p (&sections.info_or_types)
9807 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
9808 {
9809 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9810 " [in module %s]"),
9811 dwp_file->name);
9812 }
73869dc2 9813 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
9814 {
9815 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9816 " [in module %s]"),
9817 dwp_file->name);
9818 }
9819
9820 /* It's easier for the rest of the code if we fake a struct dwo_file and
9821 have dwo_unit "live" in that. At least for now.
9822
9823 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 9824 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
9825 file, we can combine them back into a virtual DWO file to save space
9826 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
9827 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9828
2792b94d
PM
9829 virtual_dwo_name =
9830 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
9831 get_section_id (&sections.abbrev),
9832 get_section_id (&sections.line),
9833 get_section_id (&sections.loc),
9834 get_section_id (&sections.str_offsets));
80626a55
DE
9835 make_cleanup (xfree, virtual_dwo_name);
9836 /* Can we use an existing virtual DWO file? */
0ac5b59e 9837 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
9838 /* Create one if necessary. */
9839 if (*dwo_file_slot == NULL)
9840 {
9841 if (dwarf2_read_debug)
9842 {
9843 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9844 virtual_dwo_name);
9845 }
9846 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
9847 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9848 virtual_dwo_name,
9849 strlen (virtual_dwo_name));
9850 dwo_file->comp_dir = comp_dir;
80626a55
DE
9851 dwo_file->sections.abbrev = sections.abbrev;
9852 dwo_file->sections.line = sections.line;
9853 dwo_file->sections.loc = sections.loc;
9854 dwo_file->sections.macinfo = sections.macinfo;
9855 dwo_file->sections.macro = sections.macro;
9856 dwo_file->sections.str_offsets = sections.str_offsets;
9857 /* The "str" section is global to the entire DWP file. */
9858 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 9859 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
9860 there's no need to record it in dwo_file.
9861 Also, we can't simply record type sections in dwo_file because
9862 we record a pointer into the vector in dwo_unit. As we collect more
9863 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
9864 for it, invalidating all copies of pointers into the previous
9865 contents. */
80626a55
DE
9866 *dwo_file_slot = dwo_file;
9867 }
9868 else
9869 {
9870 if (dwarf2_read_debug)
9871 {
9872 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9873 virtual_dwo_name);
9874 }
9875 dwo_file = *dwo_file_slot;
9876 }
9877 do_cleanups (cleanups);
9878
9879 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9880 dwo_unit->dwo_file = dwo_file;
9881 dwo_unit->signature = signature;
8a0459fd
DE
9882 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9883 sizeof (struct dwarf2_section_info));
9884 *dwo_unit->section = sections.info_or_types;
57d63ce2 9885 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
9886
9887 return dwo_unit;
9888}
9889
73869dc2
DE
9890/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9891 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9892 piece within that section used by a TU/CU, return a virtual section
9893 of just that piece. */
9894
9895static struct dwarf2_section_info
9896create_dwp_v2_section (struct dwarf2_section_info *section,
9897 bfd_size_type offset, bfd_size_type size)
9898{
9899 struct dwarf2_section_info result;
9900 asection *sectp;
9901
9902 gdb_assert (section != NULL);
9903 gdb_assert (!section->is_virtual);
9904
9905 memset (&result, 0, sizeof (result));
9906 result.s.containing_section = section;
9907 result.is_virtual = 1;
9908
9909 if (size == 0)
9910 return result;
9911
9912 sectp = get_section_bfd_section (section);
9913
9914 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
9915 bounds of the real section. This is a pretty-rare event, so just
9916 flag an error (easier) instead of a warning and trying to cope. */
9917 if (sectp == NULL
9918 || offset + size > bfd_get_section_size (sectp))
9919 {
9920 bfd *abfd = sectp->owner;
9921
9922 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
9923 " in section %s [in module %s]"),
9924 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
9925 objfile_name (dwarf2_per_objfile->objfile));
9926 }
9927
9928 result.virtual_offset = offset;
9929 result.size = size;
9930 return result;
9931}
9932
9933/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9934 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9935 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9936 This is for DWP version 2 files. */
9937
9938static struct dwo_unit *
9939create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
9940 uint32_t unit_index,
9941 const char *comp_dir,
9942 ULONGEST signature, int is_debug_types)
9943{
9944 struct objfile *objfile = dwarf2_per_objfile->objfile;
9945 const struct dwp_hash_table *dwp_htab =
9946 is_debug_types ? dwp_file->tus : dwp_file->cus;
9947 bfd *dbfd = dwp_file->dbfd;
9948 const char *kind = is_debug_types ? "TU" : "CU";
9949 struct dwo_file *dwo_file;
9950 struct dwo_unit *dwo_unit;
9951 struct virtual_v2_dwo_sections sections;
9952 void **dwo_file_slot;
9953 char *virtual_dwo_name;
9954 struct dwarf2_section_info *cutu;
9955 struct cleanup *cleanups;
9956 int i;
9957
9958 gdb_assert (dwp_file->version == 2);
9959
9960 if (dwarf2_read_debug)
9961 {
9962 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
9963 kind,
9964 pulongest (unit_index), hex_string (signature),
9965 dwp_file->name);
9966 }
9967
9968 /* Fetch the section offsets of this DWO unit. */
9969
9970 memset (&sections, 0, sizeof (sections));
9971 cleanups = make_cleanup (null_cleanup, 0);
9972
9973 for (i = 0; i < dwp_htab->nr_columns; ++i)
9974 {
9975 uint32_t offset = read_4_bytes (dbfd,
9976 dwp_htab->section_pool.v2.offsets
9977 + (((unit_index - 1) * dwp_htab->nr_columns
9978 + i)
9979 * sizeof (uint32_t)));
9980 uint32_t size = read_4_bytes (dbfd,
9981 dwp_htab->section_pool.v2.sizes
9982 + (((unit_index - 1) * dwp_htab->nr_columns
9983 + i)
9984 * sizeof (uint32_t)));
9985
9986 switch (dwp_htab->section_pool.v2.section_ids[i])
9987 {
9988 case DW_SECT_INFO:
9989 case DW_SECT_TYPES:
9990 sections.info_or_types_offset = offset;
9991 sections.info_or_types_size = size;
9992 break;
9993 case DW_SECT_ABBREV:
9994 sections.abbrev_offset = offset;
9995 sections.abbrev_size = size;
9996 break;
9997 case DW_SECT_LINE:
9998 sections.line_offset = offset;
9999 sections.line_size = size;
10000 break;
10001 case DW_SECT_LOC:
10002 sections.loc_offset = offset;
10003 sections.loc_size = size;
10004 break;
10005 case DW_SECT_STR_OFFSETS:
10006 sections.str_offsets_offset = offset;
10007 sections.str_offsets_size = size;
10008 break;
10009 case DW_SECT_MACINFO:
10010 sections.macinfo_offset = offset;
10011 sections.macinfo_size = size;
10012 break;
10013 case DW_SECT_MACRO:
10014 sections.macro_offset = offset;
10015 sections.macro_size = size;
10016 break;
10017 }
10018 }
10019
10020 /* It's easier for the rest of the code if we fake a struct dwo_file and
10021 have dwo_unit "live" in that. At least for now.
10022
10023 The DWP file can be made up of a random collection of CUs and TUs.
10024 However, for each CU + set of TUs that came from the same original DWO
10025 file, we can combine them back into a virtual DWO file to save space
10026 (fewer struct dwo_file objects to allocate). Remember that for really
10027 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10028
10029 virtual_dwo_name =
10030 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10031 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10032 (long) (sections.line_size ? sections.line_offset : 0),
10033 (long) (sections.loc_size ? sections.loc_offset : 0),
10034 (long) (sections.str_offsets_size
10035 ? sections.str_offsets_offset : 0));
10036 make_cleanup (xfree, virtual_dwo_name);
10037 /* Can we use an existing virtual DWO file? */
10038 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10039 /* Create one if necessary. */
10040 if (*dwo_file_slot == NULL)
10041 {
10042 if (dwarf2_read_debug)
10043 {
10044 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10045 virtual_dwo_name);
10046 }
10047 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10048 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10049 virtual_dwo_name,
10050 strlen (virtual_dwo_name));
10051 dwo_file->comp_dir = comp_dir;
10052 dwo_file->sections.abbrev =
10053 create_dwp_v2_section (&dwp_file->sections.abbrev,
10054 sections.abbrev_offset, sections.abbrev_size);
10055 dwo_file->sections.line =
10056 create_dwp_v2_section (&dwp_file->sections.line,
10057 sections.line_offset, sections.line_size);
10058 dwo_file->sections.loc =
10059 create_dwp_v2_section (&dwp_file->sections.loc,
10060 sections.loc_offset, sections.loc_size);
10061 dwo_file->sections.macinfo =
10062 create_dwp_v2_section (&dwp_file->sections.macinfo,
10063 sections.macinfo_offset, sections.macinfo_size);
10064 dwo_file->sections.macro =
10065 create_dwp_v2_section (&dwp_file->sections.macro,
10066 sections.macro_offset, sections.macro_size);
10067 dwo_file->sections.str_offsets =
10068 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10069 sections.str_offsets_offset,
10070 sections.str_offsets_size);
10071 /* The "str" section is global to the entire DWP file. */
10072 dwo_file->sections.str = dwp_file->sections.str;
10073 /* The info or types section is assigned below to dwo_unit,
10074 there's no need to record it in dwo_file.
10075 Also, we can't simply record type sections in dwo_file because
10076 we record a pointer into the vector in dwo_unit. As we collect more
10077 types we'll grow the vector and eventually have to reallocate space
10078 for it, invalidating all copies of pointers into the previous
10079 contents. */
10080 *dwo_file_slot = dwo_file;
10081 }
10082 else
10083 {
10084 if (dwarf2_read_debug)
10085 {
10086 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10087 virtual_dwo_name);
10088 }
10089 dwo_file = *dwo_file_slot;
10090 }
10091 do_cleanups (cleanups);
10092
10093 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10094 dwo_unit->dwo_file = dwo_file;
10095 dwo_unit->signature = signature;
10096 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10097 sizeof (struct dwarf2_section_info));
10098 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10099 ? &dwp_file->sections.types
10100 : &dwp_file->sections.info,
10101 sections.info_or_types_offset,
10102 sections.info_or_types_size);
10103 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10104
10105 return dwo_unit;
10106}
10107
57d63ce2
DE
10108/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10109 Returns NULL if the signature isn't found. */
80626a55
DE
10110
10111static struct dwo_unit *
57d63ce2
DE
10112lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10113 ULONGEST signature, int is_debug_types)
80626a55 10114{
57d63ce2
DE
10115 const struct dwp_hash_table *dwp_htab =
10116 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10117 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10118 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10119 uint32_t hash = signature & mask;
10120 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10121 unsigned int i;
10122 void **slot;
10123 struct dwo_unit find_dwo_cu, *dwo_cu;
10124
10125 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10126 find_dwo_cu.signature = signature;
19ac8c2e
DE
10127 slot = htab_find_slot (is_debug_types
10128 ? dwp_file->loaded_tus
10129 : dwp_file->loaded_cus,
10130 &find_dwo_cu, INSERT);
80626a55
DE
10131
10132 if (*slot != NULL)
10133 return *slot;
10134
10135 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10136 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10137 {
10138 ULONGEST signature_in_table;
10139
10140 signature_in_table =
57d63ce2 10141 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10142 if (signature_in_table == signature)
10143 {
57d63ce2
DE
10144 uint32_t unit_index =
10145 read_4_bytes (dbfd,
10146 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10147
73869dc2
DE
10148 if (dwp_file->version == 1)
10149 {
10150 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10151 comp_dir, signature,
10152 is_debug_types);
10153 }
10154 else
10155 {
10156 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10157 comp_dir, signature,
10158 is_debug_types);
10159 }
80626a55
DE
10160 return *slot;
10161 }
10162 if (signature_in_table == 0)
10163 return NULL;
10164 hash = (hash + hash2) & mask;
10165 }
10166
10167 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10168 " [in module %s]"),
10169 dwp_file->name);
10170}
10171
ab5088bf 10172/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10173 Open the file specified by FILE_NAME and hand it off to BFD for
10174 preliminary analysis. Return a newly initialized bfd *, which
10175 includes a canonicalized copy of FILE_NAME.
80626a55 10176 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10177 SEARCH_CWD is true if the current directory is to be searched.
10178 It will be searched before debug-file-directory.
13aaf454
DE
10179 If successful, the file is added to the bfd include table of the
10180 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10181 If unable to find/open the file, return NULL.
3019eac3
DE
10182 NOTE: This function is derived from symfile_bfd_open. */
10183
10184static bfd *
6ac97d4c 10185try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10186{
10187 bfd *sym_bfd;
80626a55 10188 int desc, flags;
3019eac3 10189 char *absolute_name;
9c02c129
DE
10190 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10191 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10192 to debug_file_directory. */
10193 char *search_path;
10194 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10195
6ac97d4c
DE
10196 if (search_cwd)
10197 {
10198 if (*debug_file_directory != '\0')
10199 search_path = concat (".", dirname_separator_string,
10200 debug_file_directory, NULL);
10201 else
10202 search_path = xstrdup (".");
10203 }
9c02c129 10204 else
6ac97d4c 10205 search_path = xstrdup (debug_file_directory);
3019eac3 10206
492c0ab7 10207 flags = OPF_RETURN_REALPATH;
80626a55
DE
10208 if (is_dwp)
10209 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10210 desc = openp (search_path, flags, file_name,
3019eac3 10211 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10212 xfree (search_path);
3019eac3
DE
10213 if (desc < 0)
10214 return NULL;
10215
bb397797 10216 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10217 xfree (absolute_name);
9c02c129
DE
10218 if (sym_bfd == NULL)
10219 return NULL;
3019eac3
DE
10220 bfd_set_cacheable (sym_bfd, 1);
10221
10222 if (!bfd_check_format (sym_bfd, bfd_object))
10223 {
cbb099e8 10224 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10225 return NULL;
10226 }
10227
13aaf454
DE
10228 /* Success. Record the bfd as having been included by the objfile's bfd.
10229 This is important because things like demangled_names_hash lives in the
10230 objfile's per_bfd space and may have references to things like symbol
10231 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10232 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10233
3019eac3
DE
10234 return sym_bfd;
10235}
10236
ab5088bf 10237/* Try to open DWO file FILE_NAME.
3019eac3
DE
10238 COMP_DIR is the DW_AT_comp_dir attribute.
10239 The result is the bfd handle of the file.
10240 If there is a problem finding or opening the file, return NULL.
10241 Upon success, the canonicalized path of the file is stored in the bfd,
10242 same as symfile_bfd_open. */
10243
10244static bfd *
ab5088bf 10245open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10246{
10247 bfd *abfd;
3019eac3 10248
80626a55 10249 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10250 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10251
10252 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10253
10254 if (comp_dir != NULL)
10255 {
80626a55 10256 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10257
10258 /* NOTE: If comp_dir is a relative path, this will also try the
10259 search path, which seems useful. */
6ac97d4c 10260 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10261 xfree (path_to_try);
10262 if (abfd != NULL)
10263 return abfd;
10264 }
10265
10266 /* That didn't work, try debug-file-directory, which, despite its name,
10267 is a list of paths. */
10268
10269 if (*debug_file_directory == '\0')
10270 return NULL;
10271
6ac97d4c 10272 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10273}
10274
80626a55
DE
10275/* This function is mapped across the sections and remembers the offset and
10276 size of each of the DWO debugging sections we are interested in. */
10277
10278static void
10279dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10280{
10281 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10282 const struct dwop_section_names *names = &dwop_section_names;
10283
10284 if (section_is_p (sectp->name, &names->abbrev_dwo))
10285 {
73869dc2 10286 dwo_sections->abbrev.s.asection = sectp;
80626a55
DE
10287 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10288 }
10289 else if (section_is_p (sectp->name, &names->info_dwo))
10290 {
73869dc2 10291 dwo_sections->info.s.asection = sectp;
80626a55
DE
10292 dwo_sections->info.size = bfd_get_section_size (sectp);
10293 }
10294 else if (section_is_p (sectp->name, &names->line_dwo))
10295 {
73869dc2 10296 dwo_sections->line.s.asection = sectp;
80626a55
DE
10297 dwo_sections->line.size = bfd_get_section_size (sectp);
10298 }
10299 else if (section_is_p (sectp->name, &names->loc_dwo))
10300 {
73869dc2 10301 dwo_sections->loc.s.asection = sectp;
80626a55
DE
10302 dwo_sections->loc.size = bfd_get_section_size (sectp);
10303 }
10304 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10305 {
73869dc2 10306 dwo_sections->macinfo.s.asection = sectp;
80626a55
DE
10307 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10308 }
10309 else if (section_is_p (sectp->name, &names->macro_dwo))
10310 {
73869dc2 10311 dwo_sections->macro.s.asection = sectp;
80626a55
DE
10312 dwo_sections->macro.size = bfd_get_section_size (sectp);
10313 }
10314 else if (section_is_p (sectp->name, &names->str_dwo))
10315 {
73869dc2 10316 dwo_sections->str.s.asection = sectp;
80626a55
DE
10317 dwo_sections->str.size = bfd_get_section_size (sectp);
10318 }
10319 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10320 {
73869dc2 10321 dwo_sections->str_offsets.s.asection = sectp;
80626a55
DE
10322 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10323 }
10324 else if (section_is_p (sectp->name, &names->types_dwo))
10325 {
10326 struct dwarf2_section_info type_section;
10327
10328 memset (&type_section, 0, sizeof (type_section));
73869dc2 10329 type_section.s.asection = sectp;
80626a55
DE
10330 type_section.size = bfd_get_section_size (sectp);
10331 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10332 &type_section);
10333 }
10334}
10335
ab5088bf 10336/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10337 by PER_CU. This is for the non-DWP case.
80626a55 10338 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10339
10340static struct dwo_file *
0ac5b59e
DE
10341open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10342 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10343{
10344 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10345 struct dwo_file *dwo_file;
10346 bfd *dbfd;
3019eac3
DE
10347 struct cleanup *cleanups;
10348
ab5088bf 10349 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10350 if (dbfd == NULL)
10351 {
10352 if (dwarf2_read_debug)
10353 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10354 return NULL;
10355 }
10356 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10357 dwo_file->dwo_name = dwo_name;
10358 dwo_file->comp_dir = comp_dir;
80626a55 10359 dwo_file->dbfd = dbfd;
3019eac3
DE
10360
10361 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10362
80626a55 10363 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10364
19c3d4c9 10365 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10366
10367 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10368 dwo_file->sections.types);
10369
10370 discard_cleanups (cleanups);
10371
80626a55
DE
10372 if (dwarf2_read_debug)
10373 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10374
3019eac3
DE
10375 return dwo_file;
10376}
10377
80626a55 10378/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10379 size of each of the DWP debugging sections common to version 1 and 2 that
10380 we are interested in. */
3019eac3 10381
80626a55 10382static void
73869dc2
DE
10383dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10384 void *dwp_file_ptr)
3019eac3 10385{
80626a55
DE
10386 struct dwp_file *dwp_file = dwp_file_ptr;
10387 const struct dwop_section_names *names = &dwop_section_names;
10388 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10389
80626a55 10390 /* Record the ELF section number for later lookup: this is what the
73869dc2 10391 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10392 gdb_assert (elf_section_nr < dwp_file->num_sections);
10393 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10394
80626a55
DE
10395 /* Look for specific sections that we need. */
10396 if (section_is_p (sectp->name, &names->str_dwo))
10397 {
73869dc2 10398 dwp_file->sections.str.s.asection = sectp;
80626a55
DE
10399 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10400 }
10401 else if (section_is_p (sectp->name, &names->cu_index))
10402 {
73869dc2 10403 dwp_file->sections.cu_index.s.asection = sectp;
80626a55
DE
10404 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10405 }
10406 else if (section_is_p (sectp->name, &names->tu_index))
10407 {
73869dc2 10408 dwp_file->sections.tu_index.s.asection = sectp;
80626a55
DE
10409 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10410 }
10411}
3019eac3 10412
73869dc2
DE
10413/* This function is mapped across the sections and remembers the offset and
10414 size of each of the DWP version 2 debugging sections that we are interested
10415 in. This is split into a separate function because we don't know if we
10416 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10417
10418static void
10419dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10420{
10421 struct dwp_file *dwp_file = dwp_file_ptr;
10422 const struct dwop_section_names *names = &dwop_section_names;
10423 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10424
10425 /* Record the ELF section number for later lookup: this is what the
10426 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10427 gdb_assert (elf_section_nr < dwp_file->num_sections);
10428 dwp_file->elf_sections[elf_section_nr] = sectp;
10429
10430 /* Look for specific sections that we need. */
10431 if (section_is_p (sectp->name, &names->abbrev_dwo))
10432 {
10433 dwp_file->sections.abbrev.s.asection = sectp;
10434 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10435 }
10436 else if (section_is_p (sectp->name, &names->info_dwo))
10437 {
10438 dwp_file->sections.info.s.asection = sectp;
10439 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10440 }
10441 else if (section_is_p (sectp->name, &names->line_dwo))
10442 {
10443 dwp_file->sections.line.s.asection = sectp;
10444 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10445 }
10446 else if (section_is_p (sectp->name, &names->loc_dwo))
10447 {
10448 dwp_file->sections.loc.s.asection = sectp;
10449 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10450 }
10451 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10452 {
10453 dwp_file->sections.macinfo.s.asection = sectp;
10454 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10455 }
10456 else if (section_is_p (sectp->name, &names->macro_dwo))
10457 {
10458 dwp_file->sections.macro.s.asection = sectp;
10459 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10460 }
10461 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10462 {
10463 dwp_file->sections.str_offsets.s.asection = sectp;
10464 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10465 }
10466 else if (section_is_p (sectp->name, &names->types_dwo))
10467 {
10468 dwp_file->sections.types.s.asection = sectp;
10469 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10470 }
10471}
10472
80626a55 10473/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10474
80626a55
DE
10475static hashval_t
10476hash_dwp_loaded_cutus (const void *item)
10477{
10478 const struct dwo_unit *dwo_unit = item;
3019eac3 10479
80626a55
DE
10480 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10481 return dwo_unit->signature;
3019eac3
DE
10482}
10483
80626a55 10484/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10485
80626a55
DE
10486static int
10487eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10488{
80626a55
DE
10489 const struct dwo_unit *dua = a;
10490 const struct dwo_unit *dub = b;
3019eac3 10491
80626a55
DE
10492 return dua->signature == dub->signature;
10493}
3019eac3 10494
80626a55 10495/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10496
80626a55
DE
10497static htab_t
10498allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10499{
10500 return htab_create_alloc_ex (3,
10501 hash_dwp_loaded_cutus,
10502 eq_dwp_loaded_cutus,
10503 NULL,
10504 &objfile->objfile_obstack,
10505 hashtab_obstack_allocate,
10506 dummy_obstack_deallocate);
10507}
3019eac3 10508
ab5088bf
DE
10509/* Try to open DWP file FILE_NAME.
10510 The result is the bfd handle of the file.
10511 If there is a problem finding or opening the file, return NULL.
10512 Upon success, the canonicalized path of the file is stored in the bfd,
10513 same as symfile_bfd_open. */
10514
10515static bfd *
10516open_dwp_file (const char *file_name)
10517{
6ac97d4c
DE
10518 bfd *abfd;
10519
10520 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10521 if (abfd != NULL)
10522 return abfd;
10523
10524 /* Work around upstream bug 15652.
10525 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10526 [Whether that's a "bug" is debatable, but it is getting in our way.]
10527 We have no real idea where the dwp file is, because gdb's realpath-ing
10528 of the executable's path may have discarded the needed info.
10529 [IWBN if the dwp file name was recorded in the executable, akin to
10530 .gnu_debuglink, but that doesn't exist yet.]
10531 Strip the directory from FILE_NAME and search again. */
10532 if (*debug_file_directory != '\0')
10533 {
10534 /* Don't implicitly search the current directory here.
10535 If the user wants to search "." to handle this case,
10536 it must be added to debug-file-directory. */
10537 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10538 0 /*search_cwd*/);
10539 }
10540
10541 return NULL;
ab5088bf
DE
10542}
10543
80626a55
DE
10544/* Initialize the use of the DWP file for the current objfile.
10545 By convention the name of the DWP file is ${objfile}.dwp.
10546 The result is NULL if it can't be found. */
a766d390 10547
80626a55 10548static struct dwp_file *
ab5088bf 10549open_and_init_dwp_file (void)
80626a55
DE
10550{
10551 struct objfile *objfile = dwarf2_per_objfile->objfile;
10552 struct dwp_file *dwp_file;
10553 char *dwp_name;
10554 bfd *dbfd;
10555 struct cleanup *cleanups;
10556
82bf32bc
JK
10557 /* Try to find first .dwp for the binary file before any symbolic links
10558 resolving. */
10559 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10560 cleanups = make_cleanup (xfree, dwp_name);
10561
ab5088bf 10562 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10563 if (dbfd == NULL
10564 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10565 {
10566 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10567 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10568 make_cleanup (xfree, dwp_name);
10569 dbfd = open_dwp_file (dwp_name);
10570 }
10571
80626a55
DE
10572 if (dbfd == NULL)
10573 {
10574 if (dwarf2_read_debug)
10575 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10576 do_cleanups (cleanups);
10577 return NULL;
3019eac3 10578 }
80626a55 10579 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10580 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10581 dwp_file->dbfd = dbfd;
10582 do_cleanups (cleanups);
c906108c 10583
80626a55
DE
10584 /* +1: section 0 is unused */
10585 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10586 dwp_file->elf_sections =
10587 OBSTACK_CALLOC (&objfile->objfile_obstack,
10588 dwp_file->num_sections, asection *);
10589
73869dc2 10590 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10591
10592 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10593
10594 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10595
73869dc2
DE
10596 /* The DWP file version is stored in the hash table. Oh well. */
10597 if (dwp_file->cus->version != dwp_file->tus->version)
10598 {
10599 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10600 pretty bizarre. We use pulongest here because that's the established
4d65956b 10601 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10602 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10603 " TU version %s [in DWP file %s]"),
10604 pulongest (dwp_file->cus->version),
10605 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10606 }
10607 dwp_file->version = dwp_file->cus->version;
10608
10609 if (dwp_file->version == 2)
10610 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10611
19ac8c2e
DE
10612 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10613 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10614
80626a55
DE
10615 if (dwarf2_read_debug)
10616 {
10617 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10618 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10619 " %s CUs, %s TUs\n",
10620 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10621 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10622 }
10623
10624 return dwp_file;
3019eac3 10625}
c906108c 10626
ab5088bf
DE
10627/* Wrapper around open_and_init_dwp_file, only open it once. */
10628
10629static struct dwp_file *
10630get_dwp_file (void)
10631{
10632 if (! dwarf2_per_objfile->dwp_checked)
10633 {
10634 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10635 dwarf2_per_objfile->dwp_checked = 1;
10636 }
10637 return dwarf2_per_objfile->dwp_file;
10638}
10639
80626a55
DE
10640/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10641 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10642 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10643 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10644 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10645
10646 This is called, for example, when wanting to read a variable with a
10647 complex location. Therefore we don't want to do file i/o for every call.
10648 Therefore we don't want to look for a DWO file on every call.
10649 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10650 then we check if we've already seen DWO_NAME, and only THEN do we check
10651 for a DWO file.
10652
1c658ad5 10653 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10654 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10655
3019eac3 10656static struct dwo_unit *
80626a55
DE
10657lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10658 const char *dwo_name, const char *comp_dir,
10659 ULONGEST signature, int is_debug_types)
3019eac3
DE
10660{
10661 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10662 const char *kind = is_debug_types ? "TU" : "CU";
10663 void **dwo_file_slot;
3019eac3 10664 struct dwo_file *dwo_file;
80626a55 10665 struct dwp_file *dwp_file;
cb1df416 10666
6a506a2d
DE
10667 /* First see if there's a DWP file.
10668 If we have a DWP file but didn't find the DWO inside it, don't
10669 look for the original DWO file. It makes gdb behave differently
10670 depending on whether one is debugging in the build tree. */
cf2c3c16 10671
ab5088bf 10672 dwp_file = get_dwp_file ();
80626a55 10673 if (dwp_file != NULL)
cf2c3c16 10674 {
80626a55
DE
10675 const struct dwp_hash_table *dwp_htab =
10676 is_debug_types ? dwp_file->tus : dwp_file->cus;
10677
10678 if (dwp_htab != NULL)
10679 {
10680 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10681 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10682 signature, is_debug_types);
80626a55
DE
10683
10684 if (dwo_cutu != NULL)
10685 {
10686 if (dwarf2_read_debug)
10687 {
10688 fprintf_unfiltered (gdb_stdlog,
10689 "Virtual DWO %s %s found: @%s\n",
10690 kind, hex_string (signature),
10691 host_address_to_string (dwo_cutu));
10692 }
10693 return dwo_cutu;
10694 }
10695 }
10696 }
6a506a2d 10697 else
80626a55 10698 {
6a506a2d 10699 /* No DWP file, look for the DWO file. */
80626a55 10700
6a506a2d
DE
10701 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10702 if (*dwo_file_slot == NULL)
80626a55 10703 {
6a506a2d
DE
10704 /* Read in the file and build a table of the CUs/TUs it contains. */
10705 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10706 }
6a506a2d
DE
10707 /* NOTE: This will be NULL if unable to open the file. */
10708 dwo_file = *dwo_file_slot;
3019eac3 10709
6a506a2d 10710 if (dwo_file != NULL)
19c3d4c9 10711 {
6a506a2d
DE
10712 struct dwo_unit *dwo_cutu = NULL;
10713
10714 if (is_debug_types && dwo_file->tus)
10715 {
10716 struct dwo_unit find_dwo_cutu;
10717
10718 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10719 find_dwo_cutu.signature = signature;
10720 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10721 }
10722 else if (!is_debug_types && dwo_file->cu)
80626a55 10723 {
6a506a2d
DE
10724 if (signature == dwo_file->cu->signature)
10725 dwo_cutu = dwo_file->cu;
10726 }
10727
10728 if (dwo_cutu != NULL)
10729 {
10730 if (dwarf2_read_debug)
10731 {
10732 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10733 kind, dwo_name, hex_string (signature),
10734 host_address_to_string (dwo_cutu));
10735 }
10736 return dwo_cutu;
80626a55
DE
10737 }
10738 }
2e276125 10739 }
9cdd5dbd 10740
80626a55
DE
10741 /* We didn't find it. This could mean a dwo_id mismatch, or
10742 someone deleted the DWO/DWP file, or the search path isn't set up
10743 correctly to find the file. */
10744
10745 if (dwarf2_read_debug)
10746 {
10747 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10748 kind, dwo_name, hex_string (signature));
10749 }
3019eac3 10750
6656a72d
DE
10751 /* This is a warning and not a complaint because it can be caused by
10752 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
10753 {
10754 /* Print the name of the DWP file if we looked there, helps the user
10755 better diagnose the problem. */
10756 char *dwp_text = NULL;
10757 struct cleanup *cleanups;
10758
10759 if (dwp_file != NULL)
10760 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10761 cleanups = make_cleanup (xfree, dwp_text);
10762
10763 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10764 " [in module %s]"),
10765 kind, dwo_name, hex_string (signature),
10766 dwp_text != NULL ? dwp_text : "",
10767 this_unit->is_debug_types ? "TU" : "CU",
10768 this_unit->offset.sect_off, objfile_name (objfile));
10769
10770 do_cleanups (cleanups);
10771 }
3019eac3 10772 return NULL;
5fb290d7
DJ
10773}
10774
80626a55
DE
10775/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10776 See lookup_dwo_cutu_unit for details. */
10777
10778static struct dwo_unit *
10779lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10780 const char *dwo_name, const char *comp_dir,
10781 ULONGEST signature)
10782{
10783 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10784}
10785
10786/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10787 See lookup_dwo_cutu_unit for details. */
10788
10789static struct dwo_unit *
10790lookup_dwo_type_unit (struct signatured_type *this_tu,
10791 const char *dwo_name, const char *comp_dir)
10792{
10793 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10794}
10795
89e63ee4
DE
10796/* Traversal function for queue_and_load_all_dwo_tus. */
10797
10798static int
10799queue_and_load_dwo_tu (void **slot, void *info)
10800{
10801 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10802 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10803 ULONGEST signature = dwo_unit->signature;
10804 struct signatured_type *sig_type =
10805 lookup_dwo_signatured_type (per_cu->cu, signature);
10806
10807 if (sig_type != NULL)
10808 {
10809 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10810
10811 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10812 a real dependency of PER_CU on SIG_TYPE. That is detected later
10813 while processing PER_CU. */
10814 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10815 load_full_type_unit (sig_cu);
10816 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10817 }
10818
10819 return 1;
10820}
10821
10822/* Queue all TUs contained in the DWO of PER_CU to be read in.
10823 The DWO may have the only definition of the type, though it may not be
10824 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10825 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10826
10827static void
10828queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10829{
10830 struct dwo_unit *dwo_unit;
10831 struct dwo_file *dwo_file;
10832
10833 gdb_assert (!per_cu->is_debug_types);
10834 gdb_assert (get_dwp_file () == NULL);
10835 gdb_assert (per_cu->cu != NULL);
10836
10837 dwo_unit = per_cu->cu->dwo_unit;
10838 gdb_assert (dwo_unit != NULL);
10839
10840 dwo_file = dwo_unit->dwo_file;
10841 if (dwo_file->tus != NULL)
10842 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10843}
10844
3019eac3
DE
10845/* Free all resources associated with DWO_FILE.
10846 Close the DWO file and munmap the sections.
10847 All memory should be on the objfile obstack. */
348e048f
DE
10848
10849static void
3019eac3 10850free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 10851{
3019eac3
DE
10852 int ix;
10853 struct dwarf2_section_info *section;
348e048f 10854
5c6fa7ab 10855 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 10856 gdb_bfd_unref (dwo_file->dbfd);
348e048f 10857
3019eac3
DE
10858 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10859}
348e048f 10860
3019eac3 10861/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 10862
3019eac3
DE
10863static void
10864free_dwo_file_cleanup (void *arg)
10865{
10866 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10867 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 10868
3019eac3
DE
10869 free_dwo_file (dwo_file, objfile);
10870}
348e048f 10871
3019eac3 10872/* Traversal function for free_dwo_files. */
2ab95328 10873
3019eac3
DE
10874static int
10875free_dwo_file_from_slot (void **slot, void *info)
10876{
10877 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10878 struct objfile *objfile = (struct objfile *) info;
348e048f 10879
3019eac3 10880 free_dwo_file (dwo_file, objfile);
348e048f 10881
3019eac3
DE
10882 return 1;
10883}
348e048f 10884
3019eac3 10885/* Free all resources associated with DWO_FILES. */
348e048f 10886
3019eac3
DE
10887static void
10888free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10889{
10890 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 10891}
3019eac3
DE
10892\f
10893/* Read in various DIEs. */
348e048f 10894
d389af10
JK
10895/* qsort helper for inherit_abstract_dies. */
10896
10897static int
10898unsigned_int_compar (const void *ap, const void *bp)
10899{
10900 unsigned int a = *(unsigned int *) ap;
10901 unsigned int b = *(unsigned int *) bp;
10902
10903 return (a > b) - (b > a);
10904}
10905
10906/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
10907 Inherit only the children of the DW_AT_abstract_origin DIE not being
10908 already referenced by DW_AT_abstract_origin from the children of the
10909 current DIE. */
d389af10
JK
10910
10911static void
10912inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
10913{
10914 struct die_info *child_die;
10915 unsigned die_children_count;
10916 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
10917 sect_offset *offsets;
10918 sect_offset *offsets_end, *offsetp;
d389af10
JK
10919 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
10920 struct die_info *origin_die;
10921 /* Iterator of the ORIGIN_DIE children. */
10922 struct die_info *origin_child_die;
10923 struct cleanup *cleanups;
10924 struct attribute *attr;
cd02d79d
PA
10925 struct dwarf2_cu *origin_cu;
10926 struct pending **origin_previous_list_in_scope;
d389af10
JK
10927
10928 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10929 if (!attr)
10930 return;
10931
cd02d79d
PA
10932 /* Note that following die references may follow to a die in a
10933 different cu. */
10934
10935 origin_cu = cu;
10936 origin_die = follow_die_ref (die, attr, &origin_cu);
10937
10938 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
10939 symbols in. */
10940 origin_previous_list_in_scope = origin_cu->list_in_scope;
10941 origin_cu->list_in_scope = cu->list_in_scope;
10942
edb3359d
DJ
10943 if (die->tag != origin_die->tag
10944 && !(die->tag == DW_TAG_inlined_subroutine
10945 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
10946 complaint (&symfile_complaints,
10947 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 10948 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
10949
10950 child_die = die->child;
10951 die_children_count = 0;
10952 while (child_die && child_die->tag)
10953 {
10954 child_die = sibling_die (child_die);
10955 die_children_count++;
10956 }
10957 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10958 cleanups = make_cleanup (xfree, offsets);
10959
10960 offsets_end = offsets;
10961 child_die = die->child;
10962 while (child_die && child_die->tag)
10963 {
c38f313d
DJ
10964 /* For each CHILD_DIE, find the corresponding child of
10965 ORIGIN_DIE. If there is more than one layer of
10966 DW_AT_abstract_origin, follow them all; there shouldn't be,
10967 but GCC versions at least through 4.4 generate this (GCC PR
10968 40573). */
10969 struct die_info *child_origin_die = child_die;
cd02d79d 10970 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 10971
c38f313d
DJ
10972 while (1)
10973 {
cd02d79d
PA
10974 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10975 child_origin_cu);
c38f313d
DJ
10976 if (attr == NULL)
10977 break;
cd02d79d
PA
10978 child_origin_die = follow_die_ref (child_origin_die, attr,
10979 &child_origin_cu);
c38f313d
DJ
10980 }
10981
d389af10
JK
10982 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10983 counterpart may exist. */
c38f313d 10984 if (child_origin_die != child_die)
d389af10 10985 {
edb3359d
DJ
10986 if (child_die->tag != child_origin_die->tag
10987 && !(child_die->tag == DW_TAG_inlined_subroutine
10988 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
10989 complaint (&symfile_complaints,
10990 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
10991 "different tags"), child_die->offset.sect_off,
10992 child_origin_die->offset.sect_off);
c38f313d
DJ
10993 if (child_origin_die->parent != origin_die)
10994 complaint (&symfile_complaints,
10995 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
10996 "different parents"), child_die->offset.sect_off,
10997 child_origin_die->offset.sect_off);
c38f313d
DJ
10998 else
10999 *offsets_end++ = child_origin_die->offset;
d389af10
JK
11000 }
11001 child_die = sibling_die (child_die);
11002 }
11003 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11004 unsigned_int_compar);
11005 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11006 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11007 complaint (&symfile_complaints,
11008 _("Multiple children of DIE 0x%x refer "
11009 "to DIE 0x%x as their abstract origin"),
b64f50a1 11010 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11011
11012 offsetp = offsets;
11013 origin_child_die = origin_die->child;
11014 while (origin_child_die && origin_child_die->tag)
11015 {
11016 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11017 while (offsetp < offsets_end
11018 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11019 offsetp++;
b64f50a1
JK
11020 if (offsetp >= offsets_end
11021 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11022 {
adde2bff
DE
11023 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11024 Check whether we're already processing ORIGIN_CHILD_DIE.
11025 This can happen with mutually referenced abstract_origins.
11026 PR 16581. */
11027 if (!origin_child_die->in_process)
11028 process_die (origin_child_die, origin_cu);
d389af10
JK
11029 }
11030 origin_child_die = sibling_die (origin_child_die);
11031 }
cd02d79d 11032 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11033
11034 do_cleanups (cleanups);
11035}
11036
c906108c 11037static void
e7c27a73 11038read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11039{
e7c27a73 11040 struct objfile *objfile = cu->objfile;
52f0bd74 11041 struct context_stack *new;
c906108c
SS
11042 CORE_ADDR lowpc;
11043 CORE_ADDR highpc;
11044 struct die_info *child_die;
edb3359d 11045 struct attribute *attr, *call_line, *call_file;
15d034d0 11046 const char *name;
e142c38c 11047 CORE_ADDR baseaddr;
801e3a5b 11048 struct block *block;
edb3359d 11049 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11050 VEC (symbolp) *template_args = NULL;
11051 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11052
11053 if (inlined_func)
11054 {
11055 /* If we do not have call site information, we can't show the
11056 caller of this inlined function. That's too confusing, so
11057 only use the scope for local variables. */
11058 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11059 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11060 if (call_line == NULL || call_file == NULL)
11061 {
11062 read_lexical_block_scope (die, cu);
11063 return;
11064 }
11065 }
c906108c 11066
e142c38c
DJ
11067 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11068
94af9270 11069 name = dwarf2_name (die, cu);
c906108c 11070
e8d05480
JB
11071 /* Ignore functions with missing or empty names. These are actually
11072 illegal according to the DWARF standard. */
11073 if (name == NULL)
11074 {
11075 complaint (&symfile_complaints,
b64f50a1
JK
11076 _("missing name for subprogram DIE at %d"),
11077 die->offset.sect_off);
e8d05480
JB
11078 return;
11079 }
11080
11081 /* Ignore functions with missing or invalid low and high pc attributes. */
11082 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11083 {
ae4d0c03
PM
11084 attr = dwarf2_attr (die, DW_AT_external, cu);
11085 if (!attr || !DW_UNSND (attr))
11086 complaint (&symfile_complaints,
3e43a32a
MS
11087 _("cannot get low and high bounds "
11088 "for subprogram DIE at %d"),
b64f50a1 11089 die->offset.sect_off);
e8d05480
JB
11090 return;
11091 }
c906108c
SS
11092
11093 lowpc += baseaddr;
11094 highpc += baseaddr;
11095
34eaf542
TT
11096 /* If we have any template arguments, then we must allocate a
11097 different sort of symbol. */
11098 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11099 {
11100 if (child_die->tag == DW_TAG_template_type_param
11101 || child_die->tag == DW_TAG_template_value_param)
11102 {
e623cf5d 11103 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11104 templ_func->base.is_cplus_template_function = 1;
11105 break;
11106 }
11107 }
11108
c906108c 11109 new = push_context (0, lowpc);
34eaf542
TT
11110 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11111 (struct symbol *) templ_func);
4c2df51b 11112
4cecd739
DJ
11113 /* If there is a location expression for DW_AT_frame_base, record
11114 it. */
e142c38c 11115 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11116 if (attr)
f1e6e072 11117 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
4c2df51b 11118
e142c38c 11119 cu->list_in_scope = &local_symbols;
c906108c 11120
639d11d3 11121 if (die->child != NULL)
c906108c 11122 {
639d11d3 11123 child_die = die->child;
c906108c
SS
11124 while (child_die && child_die->tag)
11125 {
34eaf542
TT
11126 if (child_die->tag == DW_TAG_template_type_param
11127 || child_die->tag == DW_TAG_template_value_param)
11128 {
11129 struct symbol *arg = new_symbol (child_die, NULL, cu);
11130
f1078f66
DJ
11131 if (arg != NULL)
11132 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11133 }
11134 else
11135 process_die (child_die, cu);
c906108c
SS
11136 child_die = sibling_die (child_die);
11137 }
11138 }
11139
d389af10
JK
11140 inherit_abstract_dies (die, cu);
11141
4a811a97
UW
11142 /* If we have a DW_AT_specification, we might need to import using
11143 directives from the context of the specification DIE. See the
11144 comment in determine_prefix. */
11145 if (cu->language == language_cplus
11146 && dwarf2_attr (die, DW_AT_specification, cu))
11147 {
11148 struct dwarf2_cu *spec_cu = cu;
11149 struct die_info *spec_die = die_specification (die, &spec_cu);
11150
11151 while (spec_die)
11152 {
11153 child_die = spec_die->child;
11154 while (child_die && child_die->tag)
11155 {
11156 if (child_die->tag == DW_TAG_imported_module)
11157 process_die (child_die, spec_cu);
11158 child_die = sibling_die (child_die);
11159 }
11160
11161 /* In some cases, GCC generates specification DIEs that
11162 themselves contain DW_AT_specification attributes. */
11163 spec_die = die_specification (spec_die, &spec_cu);
11164 }
11165 }
11166
c906108c
SS
11167 new = pop_context ();
11168 /* Make a block for the local symbols within. */
801e3a5b
JB
11169 block = finish_block (new->name, &local_symbols, new->old_blocks,
11170 lowpc, highpc, objfile);
11171
df8a16a1 11172 /* For C++, set the block's scope. */
195a3f6c 11173 if ((cu->language == language_cplus || cu->language == language_fortran)
4d4ec4e5 11174 && cu->processing_has_namespace_info)
195a3f6c
TT
11175 block_set_scope (block, determine_prefix (die, cu),
11176 &objfile->objfile_obstack);
df8a16a1 11177
801e3a5b
JB
11178 /* If we have address ranges, record them. */
11179 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11180
34eaf542
TT
11181 /* Attach template arguments to function. */
11182 if (! VEC_empty (symbolp, template_args))
11183 {
11184 gdb_assert (templ_func != NULL);
11185
11186 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11187 templ_func->template_arguments
11188 = obstack_alloc (&objfile->objfile_obstack,
11189 (templ_func->n_template_arguments
11190 * sizeof (struct symbol *)));
11191 memcpy (templ_func->template_arguments,
11192 VEC_address (symbolp, template_args),
11193 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11194 VEC_free (symbolp, template_args);
11195 }
11196
208d8187
JB
11197 /* In C++, we can have functions nested inside functions (e.g., when
11198 a function declares a class that has methods). This means that
11199 when we finish processing a function scope, we may need to go
11200 back to building a containing block's symbol lists. */
11201 local_symbols = new->locals;
27aa8d6a 11202 using_directives = new->using_directives;
208d8187 11203
921e78cf
JB
11204 /* If we've finished processing a top-level function, subsequent
11205 symbols go in the file symbol list. */
11206 if (outermost_context_p ())
e142c38c 11207 cu->list_in_scope = &file_symbols;
c906108c
SS
11208}
11209
11210/* Process all the DIES contained within a lexical block scope. Start
11211 a new scope, process the dies, and then close the scope. */
11212
11213static void
e7c27a73 11214read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11215{
e7c27a73 11216 struct objfile *objfile = cu->objfile;
52f0bd74 11217 struct context_stack *new;
c906108c
SS
11218 CORE_ADDR lowpc, highpc;
11219 struct die_info *child_die;
e142c38c
DJ
11220 CORE_ADDR baseaddr;
11221
11222 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11223
11224 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11225 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11226 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11227 be nasty. Might be easier to properly extend generic blocks to
af34e669 11228 describe ranges. */
d85a05f0 11229 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
11230 return;
11231 lowpc += baseaddr;
11232 highpc += baseaddr;
11233
11234 push_context (0, lowpc);
639d11d3 11235 if (die->child != NULL)
c906108c 11236 {
639d11d3 11237 child_die = die->child;
c906108c
SS
11238 while (child_die && child_die->tag)
11239 {
e7c27a73 11240 process_die (child_die, cu);
c906108c
SS
11241 child_die = sibling_die (child_die);
11242 }
11243 }
11244 new = pop_context ();
11245
8540c487 11246 if (local_symbols != NULL || using_directives != NULL)
c906108c 11247 {
801e3a5b
JB
11248 struct block *block
11249 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11250 highpc, objfile);
11251
11252 /* Note that recording ranges after traversing children, as we
11253 do here, means that recording a parent's ranges entails
11254 walking across all its children's ranges as they appear in
11255 the address map, which is quadratic behavior.
11256
11257 It would be nicer to record the parent's ranges before
11258 traversing its children, simply overriding whatever you find
11259 there. But since we don't even decide whether to create a
11260 block until after we've traversed its children, that's hard
11261 to do. */
11262 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
11263 }
11264 local_symbols = new->locals;
27aa8d6a 11265 using_directives = new->using_directives;
c906108c
SS
11266}
11267
96408a79
SA
11268/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11269
11270static void
11271read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11272{
11273 struct objfile *objfile = cu->objfile;
11274 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11275 CORE_ADDR pc, baseaddr;
11276 struct attribute *attr;
11277 struct call_site *call_site, call_site_local;
11278 void **slot;
11279 int nparams;
11280 struct die_info *child_die;
11281
11282 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11283
11284 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11285 if (!attr)
11286 {
11287 complaint (&symfile_complaints,
11288 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11289 "DIE 0x%x [in module %s]"),
4262abfb 11290 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11291 return;
11292 }
31aa7e4e 11293 pc = attr_value_as_address (attr) + baseaddr;
96408a79
SA
11294
11295 if (cu->call_site_htab == NULL)
11296 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11297 NULL, &objfile->objfile_obstack,
11298 hashtab_obstack_allocate, NULL);
11299 call_site_local.pc = pc;
11300 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11301 if (*slot != NULL)
11302 {
11303 complaint (&symfile_complaints,
11304 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11305 "DIE 0x%x [in module %s]"),
4262abfb
JK
11306 paddress (gdbarch, pc), die->offset.sect_off,
11307 objfile_name (objfile));
96408a79
SA
11308 return;
11309 }
11310
11311 /* Count parameters at the caller. */
11312
11313 nparams = 0;
11314 for (child_die = die->child; child_die && child_die->tag;
11315 child_die = sibling_die (child_die))
11316 {
11317 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11318 {
11319 complaint (&symfile_complaints,
11320 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11321 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11322 child_die->tag, child_die->offset.sect_off,
11323 objfile_name (objfile));
96408a79
SA
11324 continue;
11325 }
11326
11327 nparams++;
11328 }
11329
11330 call_site = obstack_alloc (&objfile->objfile_obstack,
11331 (sizeof (*call_site)
11332 + (sizeof (*call_site->parameter)
11333 * (nparams - 1))));
11334 *slot = call_site;
11335 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11336 call_site->pc = pc;
11337
11338 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11339 {
11340 struct die_info *func_die;
11341
11342 /* Skip also over DW_TAG_inlined_subroutine. */
11343 for (func_die = die->parent;
11344 func_die && func_die->tag != DW_TAG_subprogram
11345 && func_die->tag != DW_TAG_subroutine_type;
11346 func_die = func_die->parent);
11347
11348 /* DW_AT_GNU_all_call_sites is a superset
11349 of DW_AT_GNU_all_tail_call_sites. */
11350 if (func_die
11351 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11352 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11353 {
11354 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11355 not complete. But keep CALL_SITE for look ups via call_site_htab,
11356 both the initial caller containing the real return address PC and
11357 the final callee containing the current PC of a chain of tail
11358 calls do not need to have the tail call list complete. But any
11359 function candidate for a virtual tail call frame searched via
11360 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11361 determined unambiguously. */
11362 }
11363 else
11364 {
11365 struct type *func_type = NULL;
11366
11367 if (func_die)
11368 func_type = get_die_type (func_die, cu);
11369 if (func_type != NULL)
11370 {
11371 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11372
11373 /* Enlist this call site to the function. */
11374 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11375 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11376 }
11377 else
11378 complaint (&symfile_complaints,
11379 _("Cannot find function owning DW_TAG_GNU_call_site "
11380 "DIE 0x%x [in module %s]"),
4262abfb 11381 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11382 }
11383 }
11384
11385 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11386 if (attr == NULL)
11387 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11388 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11389 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11390 /* Keep NULL DWARF_BLOCK. */;
11391 else if (attr_form_is_block (attr))
11392 {
11393 struct dwarf2_locexpr_baton *dlbaton;
11394
11395 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11396 dlbaton->data = DW_BLOCK (attr)->data;
11397 dlbaton->size = DW_BLOCK (attr)->size;
11398 dlbaton->per_cu = cu->per_cu;
11399
11400 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11401 }
7771576e 11402 else if (attr_form_is_ref (attr))
96408a79 11403 {
96408a79
SA
11404 struct dwarf2_cu *target_cu = cu;
11405 struct die_info *target_die;
11406
ac9ec31b 11407 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11408 gdb_assert (target_cu->objfile == objfile);
11409 if (die_is_declaration (target_die, target_cu))
11410 {
9112db09
JK
11411 const char *target_physname = NULL;
11412 struct attribute *target_attr;
11413
11414 /* Prefer the mangled name; otherwise compute the demangled one. */
11415 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11416 if (target_attr == NULL)
11417 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11418 target_cu);
11419 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11420 target_physname = DW_STRING (target_attr);
11421 else
11422 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11423 if (target_physname == NULL)
11424 complaint (&symfile_complaints,
11425 _("DW_AT_GNU_call_site_target target DIE has invalid "
11426 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11427 die->offset.sect_off, objfile_name (objfile));
96408a79 11428 else
7d455152 11429 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11430 }
11431 else
11432 {
11433 CORE_ADDR lowpc;
11434
11435 /* DW_AT_entry_pc should be preferred. */
11436 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11437 complaint (&symfile_complaints,
11438 _("DW_AT_GNU_call_site_target target DIE has invalid "
11439 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11440 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11441 else
11442 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11443 }
11444 }
11445 else
11446 complaint (&symfile_complaints,
11447 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11448 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11449 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11450
11451 call_site->per_cu = cu->per_cu;
11452
11453 for (child_die = die->child;
11454 child_die && child_die->tag;
11455 child_die = sibling_die (child_die))
11456 {
96408a79 11457 struct call_site_parameter *parameter;
1788b2d3 11458 struct attribute *loc, *origin;
96408a79
SA
11459
11460 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11461 {
11462 /* Already printed the complaint above. */
11463 continue;
11464 }
11465
11466 gdb_assert (call_site->parameter_count < nparams);
11467 parameter = &call_site->parameter[call_site->parameter_count];
11468
1788b2d3
JK
11469 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11470 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11471 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11472
24c5c679 11473 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11474 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11475 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11476 {
11477 sect_offset offset;
11478
11479 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11480 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11481 if (!offset_in_cu_p (&cu->header, offset))
11482 {
11483 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11484 binding can be done only inside one CU. Such referenced DIE
11485 therefore cannot be even moved to DW_TAG_partial_unit. */
11486 complaint (&symfile_complaints,
11487 _("DW_AT_abstract_origin offset is not in CU for "
11488 "DW_TAG_GNU_call_site child DIE 0x%x "
11489 "[in module %s]"),
4262abfb 11490 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11491 continue;
11492 }
1788b2d3
JK
11493 parameter->u.param_offset.cu_off = (offset.sect_off
11494 - cu->header.offset.sect_off);
11495 }
11496 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11497 {
11498 complaint (&symfile_complaints,
11499 _("No DW_FORM_block* DW_AT_location for "
11500 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11501 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11502 continue;
11503 }
24c5c679 11504 else
96408a79 11505 {
24c5c679
JK
11506 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11507 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11508 if (parameter->u.dwarf_reg != -1)
11509 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11510 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11511 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11512 &parameter->u.fb_offset))
11513 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11514 else
11515 {
11516 complaint (&symfile_complaints,
11517 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11518 "for DW_FORM_block* DW_AT_location is supported for "
11519 "DW_TAG_GNU_call_site child DIE 0x%x "
11520 "[in module %s]"),
4262abfb 11521 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11522 continue;
11523 }
96408a79
SA
11524 }
11525
11526 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11527 if (!attr_form_is_block (attr))
11528 {
11529 complaint (&symfile_complaints,
11530 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11531 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11532 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11533 continue;
11534 }
11535 parameter->value = DW_BLOCK (attr)->data;
11536 parameter->value_size = DW_BLOCK (attr)->size;
11537
11538 /* Parameters are not pre-cleared by memset above. */
11539 parameter->data_value = NULL;
11540 parameter->data_value_size = 0;
11541 call_site->parameter_count++;
11542
11543 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11544 if (attr)
11545 {
11546 if (!attr_form_is_block (attr))
11547 complaint (&symfile_complaints,
11548 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11549 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11550 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11551 else
11552 {
11553 parameter->data_value = DW_BLOCK (attr)->data;
11554 parameter->data_value_size = DW_BLOCK (attr)->size;
11555 }
11556 }
11557 }
11558}
11559
43039443 11560/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11561 Return 1 if the attributes are present and valid, otherwise, return 0.
11562 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11563
11564static int
11565dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11566 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11567 struct partial_symtab *ranges_pst)
43039443
JK
11568{
11569 struct objfile *objfile = cu->objfile;
11570 struct comp_unit_head *cu_header = &cu->header;
11571 bfd *obfd = objfile->obfd;
11572 unsigned int addr_size = cu_header->addr_size;
11573 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11574 /* Base address selection entry. */
11575 CORE_ADDR base;
11576 int found_base;
11577 unsigned int dummy;
d521ce57 11578 const gdb_byte *buffer;
43039443
JK
11579 CORE_ADDR marker;
11580 int low_set;
11581 CORE_ADDR low = 0;
11582 CORE_ADDR high = 0;
ff013f42 11583 CORE_ADDR baseaddr;
43039443 11584
d00adf39
DE
11585 found_base = cu->base_known;
11586 base = cu->base_address;
43039443 11587
be391dca 11588 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11589 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11590 {
11591 complaint (&symfile_complaints,
11592 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11593 offset);
11594 return 0;
11595 }
dce234bc 11596 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
11597
11598 /* Read in the largest possible address. */
11599 marker = read_address (obfd, buffer, cu, &dummy);
11600 if ((marker & mask) == mask)
11601 {
11602 /* If we found the largest possible address, then
11603 read the base address. */
11604 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11605 buffer += 2 * addr_size;
11606 offset += 2 * addr_size;
11607 found_base = 1;
11608 }
11609
11610 low_set = 0;
11611
e7030f15 11612 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11613
43039443
JK
11614 while (1)
11615 {
11616 CORE_ADDR range_beginning, range_end;
11617
11618 range_beginning = read_address (obfd, buffer, cu, &dummy);
11619 buffer += addr_size;
11620 range_end = read_address (obfd, buffer, cu, &dummy);
11621 buffer += addr_size;
11622 offset += 2 * addr_size;
11623
11624 /* An end of list marker is a pair of zero addresses. */
11625 if (range_beginning == 0 && range_end == 0)
11626 /* Found the end of list entry. */
11627 break;
11628
11629 /* Each base address selection entry is a pair of 2 values.
11630 The first is the largest possible address, the second is
11631 the base address. Check for a base address here. */
11632 if ((range_beginning & mask) == mask)
11633 {
11634 /* If we found the largest possible address, then
11635 read the base address. */
11636 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11637 found_base = 1;
11638 continue;
11639 }
11640
11641 if (!found_base)
11642 {
11643 /* We have no valid base address for the ranges
11644 data. */
11645 complaint (&symfile_complaints,
11646 _("Invalid .debug_ranges data (no base address)"));
11647 return 0;
11648 }
11649
9277c30c
UW
11650 if (range_beginning > range_end)
11651 {
11652 /* Inverted range entries are invalid. */
11653 complaint (&symfile_complaints,
11654 _("Invalid .debug_ranges data (inverted range)"));
11655 return 0;
11656 }
11657
11658 /* Empty range entries have no effect. */
11659 if (range_beginning == range_end)
11660 continue;
11661
43039443
JK
11662 range_beginning += base;
11663 range_end += base;
11664
01093045
DE
11665 /* A not-uncommon case of bad debug info.
11666 Don't pollute the addrmap with bad data. */
11667 if (range_beginning + baseaddr == 0
11668 && !dwarf2_per_objfile->has_section_at_zero)
11669 {
11670 complaint (&symfile_complaints,
11671 _(".debug_ranges entry has start address of zero"
4262abfb 11672 " [in module %s]"), objfile_name (objfile));
01093045
DE
11673 continue;
11674 }
11675
9277c30c 11676 if (ranges_pst != NULL)
ff013f42 11677 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
11678 range_beginning + baseaddr,
11679 range_end - 1 + baseaddr,
ff013f42
JK
11680 ranges_pst);
11681
43039443
JK
11682 /* FIXME: This is recording everything as a low-high
11683 segment of consecutive addresses. We should have a
11684 data structure for discontiguous block ranges
11685 instead. */
11686 if (! low_set)
11687 {
11688 low = range_beginning;
11689 high = range_end;
11690 low_set = 1;
11691 }
11692 else
11693 {
11694 if (range_beginning < low)
11695 low = range_beginning;
11696 if (range_end > high)
11697 high = range_end;
11698 }
11699 }
11700
11701 if (! low_set)
11702 /* If the first entry is an end-of-list marker, the range
11703 describes an empty scope, i.e. no instructions. */
11704 return 0;
11705
11706 if (low_return)
11707 *low_return = low;
11708 if (high_return)
11709 *high_return = high;
11710 return 1;
11711}
11712
af34e669
DJ
11713/* Get low and high pc attributes from a die. Return 1 if the attributes
11714 are present and valid, otherwise, return 0. Return -1 if the range is
11715 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 11716
c906108c 11717static int
af34e669 11718dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
11719 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11720 struct partial_symtab *pst)
c906108c
SS
11721{
11722 struct attribute *attr;
91da1414 11723 struct attribute *attr_high;
af34e669
DJ
11724 CORE_ADDR low = 0;
11725 CORE_ADDR high = 0;
11726 int ret = 0;
c906108c 11727
91da1414
MW
11728 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11729 if (attr_high)
af34e669 11730 {
e142c38c 11731 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 11732 if (attr)
91da1414 11733 {
31aa7e4e
JB
11734 low = attr_value_as_address (attr);
11735 high = attr_value_as_address (attr_high);
11736 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11737 high += low;
91da1414 11738 }
af34e669
DJ
11739 else
11740 /* Found high w/o low attribute. */
11741 return 0;
11742
11743 /* Found consecutive range of addresses. */
11744 ret = 1;
11745 }
c906108c 11746 else
af34e669 11747 {
e142c38c 11748 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
11749 if (attr != NULL)
11750 {
ab435259
DE
11751 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11752 We take advantage of the fact that DW_AT_ranges does not appear
11753 in DW_TAG_compile_unit of DWO files. */
11754 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11755 unsigned int ranges_offset = (DW_UNSND (attr)
11756 + (need_ranges_base
11757 ? cu->ranges_base
11758 : 0));
2e3cf129 11759
af34e669 11760 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 11761 .debug_ranges section. */
2e3cf129 11762 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 11763 return 0;
43039443 11764 /* Found discontinuous range of addresses. */
af34e669
DJ
11765 ret = -1;
11766 }
11767 }
c906108c 11768
9373cf26
JK
11769 /* read_partial_die has also the strict LOW < HIGH requirement. */
11770 if (high <= low)
c906108c
SS
11771 return 0;
11772
11773 /* When using the GNU linker, .gnu.linkonce. sections are used to
11774 eliminate duplicate copies of functions and vtables and such.
11775 The linker will arbitrarily choose one and discard the others.
11776 The AT_*_pc values for such functions refer to local labels in
11777 these sections. If the section from that file was discarded, the
11778 labels are not in the output, so the relocs get a value of 0.
11779 If this is a discarded function, mark the pc bounds as invalid,
11780 so that GDB will ignore it. */
72dca2f5 11781 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
11782 return 0;
11783
11784 *lowpc = low;
96408a79
SA
11785 if (highpc)
11786 *highpc = high;
af34e669 11787 return ret;
c906108c
SS
11788}
11789
b084d499
JB
11790/* Assuming that DIE represents a subprogram DIE or a lexical block, get
11791 its low and high PC addresses. Do nothing if these addresses could not
11792 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11793 and HIGHPC to the high address if greater than HIGHPC. */
11794
11795static void
11796dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11797 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11798 struct dwarf2_cu *cu)
11799{
11800 CORE_ADDR low, high;
11801 struct die_info *child = die->child;
11802
d85a05f0 11803 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
11804 {
11805 *lowpc = min (*lowpc, low);
11806 *highpc = max (*highpc, high);
11807 }
11808
11809 /* If the language does not allow nested subprograms (either inside
11810 subprograms or lexical blocks), we're done. */
11811 if (cu->language != language_ada)
11812 return;
6e70227d 11813
b084d499
JB
11814 /* Check all the children of the given DIE. If it contains nested
11815 subprograms, then check their pc bounds. Likewise, we need to
11816 check lexical blocks as well, as they may also contain subprogram
11817 definitions. */
11818 while (child && child->tag)
11819 {
11820 if (child->tag == DW_TAG_subprogram
11821 || child->tag == DW_TAG_lexical_block)
11822 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11823 child = sibling_die (child);
11824 }
11825}
11826
fae299cd
DC
11827/* Get the low and high pc's represented by the scope DIE, and store
11828 them in *LOWPC and *HIGHPC. If the correct values can't be
11829 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11830
11831static void
11832get_scope_pc_bounds (struct die_info *die,
11833 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11834 struct dwarf2_cu *cu)
11835{
11836 CORE_ADDR best_low = (CORE_ADDR) -1;
11837 CORE_ADDR best_high = (CORE_ADDR) 0;
11838 CORE_ADDR current_low, current_high;
11839
d85a05f0 11840 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
11841 {
11842 best_low = current_low;
11843 best_high = current_high;
11844 }
11845 else
11846 {
11847 struct die_info *child = die->child;
11848
11849 while (child && child->tag)
11850 {
11851 switch (child->tag) {
11852 case DW_TAG_subprogram:
b084d499 11853 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
11854 break;
11855 case DW_TAG_namespace:
f55ee35c 11856 case DW_TAG_module:
fae299cd
DC
11857 /* FIXME: carlton/2004-01-16: Should we do this for
11858 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11859 that current GCC's always emit the DIEs corresponding
11860 to definitions of methods of classes as children of a
11861 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11862 the DIEs giving the declarations, which could be
11863 anywhere). But I don't see any reason why the
11864 standards says that they have to be there. */
11865 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11866
11867 if (current_low != ((CORE_ADDR) -1))
11868 {
11869 best_low = min (best_low, current_low);
11870 best_high = max (best_high, current_high);
11871 }
11872 break;
11873 default:
0963b4bd 11874 /* Ignore. */
fae299cd
DC
11875 break;
11876 }
11877
11878 child = sibling_die (child);
11879 }
11880 }
11881
11882 *lowpc = best_low;
11883 *highpc = best_high;
11884}
11885
801e3a5b
JB
11886/* Record the address ranges for BLOCK, offset by BASEADDR, as given
11887 in DIE. */
380bca97 11888
801e3a5b
JB
11889static void
11890dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11891 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11892{
bb5ed363 11893 struct objfile *objfile = cu->objfile;
801e3a5b 11894 struct attribute *attr;
91da1414 11895 struct attribute *attr_high;
801e3a5b 11896
91da1414
MW
11897 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11898 if (attr_high)
801e3a5b 11899 {
801e3a5b
JB
11900 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11901 if (attr)
11902 {
31aa7e4e
JB
11903 CORE_ADDR low = attr_value_as_address (attr);
11904 CORE_ADDR high = attr_value_as_address (attr_high);
11905
11906 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11907 high += low;
9a619af0 11908
801e3a5b
JB
11909 record_block_range (block, baseaddr + low, baseaddr + high - 1);
11910 }
11911 }
11912
11913 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11914 if (attr)
11915 {
bb5ed363 11916 bfd *obfd = objfile->obfd;
ab435259
DE
11917 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11918 We take advantage of the fact that DW_AT_ranges does not appear
11919 in DW_TAG_compile_unit of DWO files. */
11920 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
11921
11922 /* The value of the DW_AT_ranges attribute is the offset of the
11923 address range list in the .debug_ranges section. */
ab435259
DE
11924 unsigned long offset = (DW_UNSND (attr)
11925 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 11926 const gdb_byte *buffer;
801e3a5b
JB
11927
11928 /* For some target architectures, but not others, the
11929 read_address function sign-extends the addresses it returns.
11930 To recognize base address selection entries, we need a
11931 mask. */
11932 unsigned int addr_size = cu->header.addr_size;
11933 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11934
11935 /* The base address, to which the next pair is relative. Note
11936 that this 'base' is a DWARF concept: most entries in a range
11937 list are relative, to reduce the number of relocs against the
11938 debugging information. This is separate from this function's
11939 'baseaddr' argument, which GDB uses to relocate debugging
11940 information from a shared library based on the address at
11941 which the library was loaded. */
d00adf39
DE
11942 CORE_ADDR base = cu->base_address;
11943 int base_known = cu->base_known;
801e3a5b 11944
d62bfeaf 11945 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11946 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
11947 {
11948 complaint (&symfile_complaints,
11949 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
11950 offset);
11951 return;
11952 }
d62bfeaf 11953 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
11954
11955 for (;;)
11956 {
11957 unsigned int bytes_read;
11958 CORE_ADDR start, end;
11959
11960 start = read_address (obfd, buffer, cu, &bytes_read);
11961 buffer += bytes_read;
11962 end = read_address (obfd, buffer, cu, &bytes_read);
11963 buffer += bytes_read;
11964
11965 /* Did we find the end of the range list? */
11966 if (start == 0 && end == 0)
11967 break;
11968
11969 /* Did we find a base address selection entry? */
11970 else if ((start & base_select_mask) == base_select_mask)
11971 {
11972 base = end;
11973 base_known = 1;
11974 }
11975
11976 /* We found an ordinary address range. */
11977 else
11978 {
11979 if (!base_known)
11980 {
11981 complaint (&symfile_complaints,
3e43a32a
MS
11982 _("Invalid .debug_ranges data "
11983 "(no base address)"));
801e3a5b
JB
11984 return;
11985 }
11986
9277c30c
UW
11987 if (start > end)
11988 {
11989 /* Inverted range entries are invalid. */
11990 complaint (&symfile_complaints,
11991 _("Invalid .debug_ranges data "
11992 "(inverted range)"));
11993 return;
11994 }
11995
11996 /* Empty range entries have no effect. */
11997 if (start == end)
11998 continue;
11999
01093045
DE
12000 start += base + baseaddr;
12001 end += base + baseaddr;
12002
12003 /* A not-uncommon case of bad debug info.
12004 Don't pollute the addrmap with bad data. */
12005 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12006 {
12007 complaint (&symfile_complaints,
12008 _(".debug_ranges entry has start address of zero"
4262abfb 12009 " [in module %s]"), objfile_name (objfile));
01093045
DE
12010 continue;
12011 }
12012
12013 record_block_range (block, start, end - 1);
801e3a5b
JB
12014 }
12015 }
12016 }
12017}
12018
685b1105
JK
12019/* Check whether the producer field indicates either of GCC < 4.6, or the
12020 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12021
685b1105
JK
12022static void
12023check_producer (struct dwarf2_cu *cu)
60d5a603
JK
12024{
12025 const char *cs;
12026 int major, minor, release;
12027
12028 if (cu->producer == NULL)
12029 {
12030 /* For unknown compilers expect their behavior is DWARF version
12031 compliant.
12032
12033 GCC started to support .debug_types sections by -gdwarf-4 since
12034 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12035 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12036 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12037 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12038 }
685b1105 12039 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
60d5a603 12040 {
685b1105
JK
12041 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12042
ba919b58
TT
12043 cs = &cu->producer[strlen ("GNU ")];
12044 while (*cs && !isdigit (*cs))
12045 cs++;
12046 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12047 {
12048 /* Not recognized as GCC. */
12049 }
12050 else
1b80a9fa
JK
12051 {
12052 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12053 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12054 }
685b1105
JK
12055 }
12056 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12057 cu->producer_is_icc = 1;
12058 else
12059 {
12060 /* For other non-GCC compilers, expect their behavior is DWARF version
12061 compliant. */
60d5a603
JK
12062 }
12063
ba919b58 12064 cu->checked_producer = 1;
685b1105 12065}
ba919b58 12066
685b1105
JK
12067/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12068 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12069 during 4.6.0 experimental. */
12070
12071static int
12072producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12073{
12074 if (!cu->checked_producer)
12075 check_producer (cu);
12076
12077 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12078}
12079
12080/* Return the default accessibility type if it is not overriden by
12081 DW_AT_accessibility. */
12082
12083static enum dwarf_access_attribute
12084dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12085{
12086 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12087 {
12088 /* The default DWARF 2 accessibility for members is public, the default
12089 accessibility for inheritance is private. */
12090
12091 if (die->tag != DW_TAG_inheritance)
12092 return DW_ACCESS_public;
12093 else
12094 return DW_ACCESS_private;
12095 }
12096 else
12097 {
12098 /* DWARF 3+ defines the default accessibility a different way. The same
12099 rules apply now for DW_TAG_inheritance as for the members and it only
12100 depends on the container kind. */
12101
12102 if (die->parent->tag == DW_TAG_class_type)
12103 return DW_ACCESS_private;
12104 else
12105 return DW_ACCESS_public;
12106 }
12107}
12108
74ac6d43
TT
12109/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12110 offset. If the attribute was not found return 0, otherwise return
12111 1. If it was found but could not properly be handled, set *OFFSET
12112 to 0. */
12113
12114static int
12115handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12116 LONGEST *offset)
12117{
12118 struct attribute *attr;
12119
12120 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12121 if (attr != NULL)
12122 {
12123 *offset = 0;
12124
12125 /* Note that we do not check for a section offset first here.
12126 This is because DW_AT_data_member_location is new in DWARF 4,
12127 so if we see it, we can assume that a constant form is really
12128 a constant and not a section offset. */
12129 if (attr_form_is_constant (attr))
12130 *offset = dwarf2_get_attr_constant_value (attr, 0);
12131 else if (attr_form_is_section_offset (attr))
12132 dwarf2_complex_location_expr_complaint ();
12133 else if (attr_form_is_block (attr))
12134 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12135 else
12136 dwarf2_complex_location_expr_complaint ();
12137
12138 return 1;
12139 }
12140
12141 return 0;
12142}
12143
c906108c
SS
12144/* Add an aggregate field to the field list. */
12145
12146static void
107d2387 12147dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12148 struct dwarf2_cu *cu)
6e70227d 12149{
e7c27a73 12150 struct objfile *objfile = cu->objfile;
5e2b427d 12151 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12152 struct nextfield *new_field;
12153 struct attribute *attr;
12154 struct field *fp;
15d034d0 12155 const char *fieldname = "";
c906108c
SS
12156
12157 /* Allocate a new field list entry and link it in. */
12158 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 12159 make_cleanup (xfree, new_field);
c906108c 12160 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12161
12162 if (die->tag == DW_TAG_inheritance)
12163 {
12164 new_field->next = fip->baseclasses;
12165 fip->baseclasses = new_field;
12166 }
12167 else
12168 {
12169 new_field->next = fip->fields;
12170 fip->fields = new_field;
12171 }
c906108c
SS
12172 fip->nfields++;
12173
e142c38c 12174 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12175 if (attr)
12176 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12177 else
12178 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12179 if (new_field->accessibility != DW_ACCESS_public)
12180 fip->non_public_fields = 1;
60d5a603 12181
e142c38c 12182 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12183 if (attr)
12184 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12185 else
12186 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12187
12188 fp = &new_field->field;
a9a9bd0f 12189
e142c38c 12190 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12191 {
74ac6d43
TT
12192 LONGEST offset;
12193
a9a9bd0f 12194 /* Data member other than a C++ static data member. */
6e70227d 12195
c906108c 12196 /* Get type of field. */
e7c27a73 12197 fp->type = die_type (die, cu);
c906108c 12198
d6a843b5 12199 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12200
c906108c 12201 /* Get bit size of field (zero if none). */
e142c38c 12202 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12203 if (attr)
12204 {
12205 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12206 }
12207 else
12208 {
12209 FIELD_BITSIZE (*fp) = 0;
12210 }
12211
12212 /* Get bit offset of field. */
74ac6d43
TT
12213 if (handle_data_member_location (die, cu, &offset))
12214 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12215 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12216 if (attr)
12217 {
5e2b427d 12218 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12219 {
12220 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12221 additional bit offset from the MSB of the containing
12222 anonymous object to the MSB of the field. We don't
12223 have to do anything special since we don't need to
12224 know the size of the anonymous object. */
f41f5e61 12225 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12226 }
12227 else
12228 {
12229 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12230 MSB of the anonymous object, subtract off the number of
12231 bits from the MSB of the field to the MSB of the
12232 object, and then subtract off the number of bits of
12233 the field itself. The result is the bit offset of
12234 the LSB of the field. */
c906108c
SS
12235 int anonymous_size;
12236 int bit_offset = DW_UNSND (attr);
12237
e142c38c 12238 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12239 if (attr)
12240 {
12241 /* The size of the anonymous object containing
12242 the bit field is explicit, so use the
12243 indicated size (in bytes). */
12244 anonymous_size = DW_UNSND (attr);
12245 }
12246 else
12247 {
12248 /* The size of the anonymous object containing
12249 the bit field must be inferred from the type
12250 attribute of the data member containing the
12251 bit field. */
12252 anonymous_size = TYPE_LENGTH (fp->type);
12253 }
f41f5e61
PA
12254 SET_FIELD_BITPOS (*fp,
12255 (FIELD_BITPOS (*fp)
12256 + anonymous_size * bits_per_byte
12257 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12258 }
12259 }
12260
12261 /* Get name of field. */
39cbfefa
DJ
12262 fieldname = dwarf2_name (die, cu);
12263 if (fieldname == NULL)
12264 fieldname = "";
d8151005
DJ
12265
12266 /* The name is already allocated along with this objfile, so we don't
12267 need to duplicate it for the type. */
12268 fp->name = fieldname;
c906108c
SS
12269
12270 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12271 pointer or virtual base class pointer) to private. */
e142c38c 12272 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12273 {
d48cc9dd 12274 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12275 new_field->accessibility = DW_ACCESS_private;
12276 fip->non_public_fields = 1;
12277 }
12278 }
a9a9bd0f 12279 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12280 {
a9a9bd0f
DC
12281 /* C++ static member. */
12282
12283 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12284 is a declaration, but all versions of G++ as of this writing
12285 (so through at least 3.2.1) incorrectly generate
12286 DW_TAG_variable tags. */
6e70227d 12287
ff355380 12288 const char *physname;
c906108c 12289
a9a9bd0f 12290 /* Get name of field. */
39cbfefa
DJ
12291 fieldname = dwarf2_name (die, cu);
12292 if (fieldname == NULL)
c906108c
SS
12293 return;
12294
254e6b9e 12295 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12296 if (attr
12297 /* Only create a symbol if this is an external value.
12298 new_symbol checks this and puts the value in the global symbol
12299 table, which we want. If it is not external, new_symbol
12300 will try to put the value in cu->list_in_scope which is wrong. */
12301 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12302 {
12303 /* A static const member, not much different than an enum as far as
12304 we're concerned, except that we can support more types. */
12305 new_symbol (die, NULL, cu);
12306 }
12307
2df3850c 12308 /* Get physical name. */
ff355380 12309 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12310
d8151005
DJ
12311 /* The name is already allocated along with this objfile, so we don't
12312 need to duplicate it for the type. */
12313 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12314 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12315 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12316 }
12317 else if (die->tag == DW_TAG_inheritance)
12318 {
74ac6d43 12319 LONGEST offset;
d4b96c9a 12320
74ac6d43
TT
12321 /* C++ base class field. */
12322 if (handle_data_member_location (die, cu, &offset))
12323 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12324 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12325 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12326 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12327 fip->nbaseclasses++;
12328 }
12329}
12330
98751a41
JK
12331/* Add a typedef defined in the scope of the FIP's class. */
12332
12333static void
12334dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12335 struct dwarf2_cu *cu)
6e70227d 12336{
98751a41 12337 struct objfile *objfile = cu->objfile;
98751a41
JK
12338 struct typedef_field_list *new_field;
12339 struct attribute *attr;
12340 struct typedef_field *fp;
12341 char *fieldname = "";
12342
12343 /* Allocate a new field list entry and link it in. */
12344 new_field = xzalloc (sizeof (*new_field));
12345 make_cleanup (xfree, new_field);
12346
12347 gdb_assert (die->tag == DW_TAG_typedef);
12348
12349 fp = &new_field->field;
12350
12351 /* Get name of field. */
12352 fp->name = dwarf2_name (die, cu);
12353 if (fp->name == NULL)
12354 return;
12355
12356 fp->type = read_type_die (die, cu);
12357
12358 new_field->next = fip->typedef_field_list;
12359 fip->typedef_field_list = new_field;
12360 fip->typedef_field_list_count++;
12361}
12362
c906108c
SS
12363/* Create the vector of fields, and attach it to the type. */
12364
12365static void
fba45db2 12366dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12367 struct dwarf2_cu *cu)
c906108c
SS
12368{
12369 int nfields = fip->nfields;
12370
12371 /* Record the field count, allocate space for the array of fields,
12372 and create blank accessibility bitfields if necessary. */
12373 TYPE_NFIELDS (type) = nfields;
12374 TYPE_FIELDS (type) = (struct field *)
12375 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12376 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12377
b4ba55a1 12378 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12379 {
12380 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12381
12382 TYPE_FIELD_PRIVATE_BITS (type) =
12383 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12384 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12385
12386 TYPE_FIELD_PROTECTED_BITS (type) =
12387 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12388 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12389
774b6a14
TT
12390 TYPE_FIELD_IGNORE_BITS (type) =
12391 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12392 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12393 }
12394
12395 /* If the type has baseclasses, allocate and clear a bit vector for
12396 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12397 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12398 {
12399 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12400 unsigned char *pointer;
c906108c
SS
12401
12402 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
12403 pointer = TYPE_ALLOC (type, num_bytes);
12404 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12405 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12406 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12407 }
12408
3e43a32a
MS
12409 /* Copy the saved-up fields into the field vector. Start from the head of
12410 the list, adding to the tail of the field array, so that they end up in
12411 the same order in the array in which they were added to the list. */
c906108c
SS
12412 while (nfields-- > 0)
12413 {
7d0ccb61
DJ
12414 struct nextfield *fieldp;
12415
12416 if (fip->fields)
12417 {
12418 fieldp = fip->fields;
12419 fip->fields = fieldp->next;
12420 }
12421 else
12422 {
12423 fieldp = fip->baseclasses;
12424 fip->baseclasses = fieldp->next;
12425 }
12426
12427 TYPE_FIELD (type, nfields) = fieldp->field;
12428 switch (fieldp->accessibility)
c906108c 12429 {
c5aa993b 12430 case DW_ACCESS_private:
b4ba55a1
JB
12431 if (cu->language != language_ada)
12432 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12433 break;
c906108c 12434
c5aa993b 12435 case DW_ACCESS_protected:
b4ba55a1
JB
12436 if (cu->language != language_ada)
12437 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12438 break;
c906108c 12439
c5aa993b
JM
12440 case DW_ACCESS_public:
12441 break;
c906108c 12442
c5aa993b
JM
12443 default:
12444 /* Unknown accessibility. Complain and treat it as public. */
12445 {
e2e0b3e5 12446 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12447 fieldp->accessibility);
c5aa993b
JM
12448 }
12449 break;
c906108c
SS
12450 }
12451 if (nfields < fip->nbaseclasses)
12452 {
7d0ccb61 12453 switch (fieldp->virtuality)
c906108c 12454 {
c5aa993b
JM
12455 case DW_VIRTUALITY_virtual:
12456 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12457 if (cu->language == language_ada)
a73c6dcd 12458 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12459 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12460 break;
c906108c
SS
12461 }
12462 }
c906108c
SS
12463 }
12464}
12465
7d27a96d
TT
12466/* Return true if this member function is a constructor, false
12467 otherwise. */
12468
12469static int
12470dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12471{
12472 const char *fieldname;
12473 const char *typename;
12474 int len;
12475
12476 if (die->parent == NULL)
12477 return 0;
12478
12479 if (die->parent->tag != DW_TAG_structure_type
12480 && die->parent->tag != DW_TAG_union_type
12481 && die->parent->tag != DW_TAG_class_type)
12482 return 0;
12483
12484 fieldname = dwarf2_name (die, cu);
12485 typename = dwarf2_name (die->parent, cu);
12486 if (fieldname == NULL || typename == NULL)
12487 return 0;
12488
12489 len = strlen (fieldname);
12490 return (strncmp (fieldname, typename, len) == 0
12491 && (typename[len] == '\0' || typename[len] == '<'));
12492}
12493
c906108c
SS
12494/* Add a member function to the proper fieldlist. */
12495
12496static void
107d2387 12497dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12498 struct type *type, struct dwarf2_cu *cu)
c906108c 12499{
e7c27a73 12500 struct objfile *objfile = cu->objfile;
c906108c
SS
12501 struct attribute *attr;
12502 struct fnfieldlist *flp;
12503 int i;
12504 struct fn_field *fnp;
15d034d0 12505 const char *fieldname;
c906108c 12506 struct nextfnfield *new_fnfield;
f792889a 12507 struct type *this_type;
60d5a603 12508 enum dwarf_access_attribute accessibility;
c906108c 12509
b4ba55a1 12510 if (cu->language == language_ada)
a73c6dcd 12511 error (_("unexpected member function in Ada type"));
b4ba55a1 12512
2df3850c 12513 /* Get name of member function. */
39cbfefa
DJ
12514 fieldname = dwarf2_name (die, cu);
12515 if (fieldname == NULL)
2df3850c 12516 return;
c906108c 12517
c906108c
SS
12518 /* Look up member function name in fieldlist. */
12519 for (i = 0; i < fip->nfnfields; i++)
12520 {
27bfe10e 12521 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12522 break;
12523 }
12524
12525 /* Create new list element if necessary. */
12526 if (i < fip->nfnfields)
12527 flp = &fip->fnfieldlists[i];
12528 else
12529 {
12530 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12531 {
12532 fip->fnfieldlists = (struct fnfieldlist *)
12533 xrealloc (fip->fnfieldlists,
12534 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12535 * sizeof (struct fnfieldlist));
c906108c 12536 if (fip->nfnfields == 0)
c13c43fd 12537 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12538 }
12539 flp = &fip->fnfieldlists[fip->nfnfields];
12540 flp->name = fieldname;
12541 flp->length = 0;
12542 flp->head = NULL;
3da10d80 12543 i = fip->nfnfields++;
c906108c
SS
12544 }
12545
12546 /* Create a new member function field and chain it to the field list
0963b4bd 12547 entry. */
c906108c 12548 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 12549 make_cleanup (xfree, new_fnfield);
c906108c
SS
12550 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12551 new_fnfield->next = flp->head;
12552 flp->head = new_fnfield;
12553 flp->length++;
12554
12555 /* Fill in the member function field info. */
12556 fnp = &new_fnfield->fnfield;
3da10d80
KS
12557
12558 /* Delay processing of the physname until later. */
12559 if (cu->language == language_cplus || cu->language == language_java)
12560 {
12561 add_to_method_list (type, i, flp->length - 1, fieldname,
12562 die, cu);
12563 }
12564 else
12565 {
1d06ead6 12566 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12567 fnp->physname = physname ? physname : "";
12568 }
12569
c906108c 12570 fnp->type = alloc_type (objfile);
f792889a
DJ
12571 this_type = read_type_die (die, cu);
12572 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12573 {
f792889a 12574 int nparams = TYPE_NFIELDS (this_type);
c906108c 12575
f792889a 12576 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12577 of the method itself (TYPE_CODE_METHOD). */
12578 smash_to_method_type (fnp->type, type,
f792889a
DJ
12579 TYPE_TARGET_TYPE (this_type),
12580 TYPE_FIELDS (this_type),
12581 TYPE_NFIELDS (this_type),
12582 TYPE_VARARGS (this_type));
c906108c
SS
12583
12584 /* Handle static member functions.
c5aa993b 12585 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12586 member functions. G++ helps GDB by marking the first
12587 parameter for non-static member functions (which is the this
12588 pointer) as artificial. We obtain this information from
12589 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12590 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12591 fnp->voffset = VOFFSET_STATIC;
12592 }
12593 else
e2e0b3e5 12594 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12595 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12596
12597 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12598 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12599 fnp->fcontext = die_containing_type (die, cu);
c906108c 12600
3e43a32a
MS
12601 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12602 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12603
12604 /* Get accessibility. */
e142c38c 12605 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12606 if (attr)
60d5a603
JK
12607 accessibility = DW_UNSND (attr);
12608 else
12609 accessibility = dwarf2_default_access_attribute (die, cu);
12610 switch (accessibility)
c906108c 12611 {
60d5a603
JK
12612 case DW_ACCESS_private:
12613 fnp->is_private = 1;
12614 break;
12615 case DW_ACCESS_protected:
12616 fnp->is_protected = 1;
12617 break;
c906108c
SS
12618 }
12619
b02dede2 12620 /* Check for artificial methods. */
e142c38c 12621 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12622 if (attr && DW_UNSND (attr) != 0)
12623 fnp->is_artificial = 1;
12624
7d27a96d
TT
12625 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12626
0d564a31 12627 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12628 function. For older versions of GCC, this is an offset in the
12629 appropriate virtual table, as specified by DW_AT_containing_type.
12630 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12631 to the object address. */
12632
e142c38c 12633 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12634 if (attr)
8e19ed76 12635 {
aec5aa8b 12636 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12637 {
aec5aa8b
TT
12638 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12639 {
12640 /* Old-style GCC. */
12641 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12642 }
12643 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12644 || (DW_BLOCK (attr)->size > 1
12645 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12646 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12647 {
12648 struct dwarf_block blk;
12649 int offset;
12650
12651 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12652 ? 1 : 2);
12653 blk.size = DW_BLOCK (attr)->size - offset;
12654 blk.data = DW_BLOCK (attr)->data + offset;
12655 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12656 if ((fnp->voffset % cu->header.addr_size) != 0)
12657 dwarf2_complex_location_expr_complaint ();
12658 else
12659 fnp->voffset /= cu->header.addr_size;
12660 fnp->voffset += 2;
12661 }
12662 else
12663 dwarf2_complex_location_expr_complaint ();
12664
12665 if (!fnp->fcontext)
12666 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12667 }
3690dd37 12668 else if (attr_form_is_section_offset (attr))
8e19ed76 12669 {
4d3c2250 12670 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
12671 }
12672 else
12673 {
4d3c2250
KB
12674 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12675 fieldname);
8e19ed76 12676 }
0d564a31 12677 }
d48cc9dd
DJ
12678 else
12679 {
12680 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12681 if (attr && DW_UNSND (attr))
12682 {
12683 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12684 complaint (&symfile_complaints,
3e43a32a
MS
12685 _("Member function \"%s\" (offset %d) is virtual "
12686 "but the vtable offset is not specified"),
b64f50a1 12687 fieldname, die->offset.sect_off);
9655fd1a 12688 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
12689 TYPE_CPLUS_DYNAMIC (type) = 1;
12690 }
12691 }
c906108c
SS
12692}
12693
12694/* Create the vector of member function fields, and attach it to the type. */
12695
12696static void
fba45db2 12697dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12698 struct dwarf2_cu *cu)
c906108c
SS
12699{
12700 struct fnfieldlist *flp;
c906108c
SS
12701 int i;
12702
b4ba55a1 12703 if (cu->language == language_ada)
a73c6dcd 12704 error (_("unexpected member functions in Ada type"));
b4ba55a1 12705
c906108c
SS
12706 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12707 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12708 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12709
12710 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12711 {
12712 struct nextfnfield *nfp = flp->head;
12713 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12714 int k;
12715
12716 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12717 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12718 fn_flp->fn_fields = (struct fn_field *)
12719 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12720 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 12721 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
12722 }
12723
12724 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
12725}
12726
1168df01
JB
12727/* Returns non-zero if NAME is the name of a vtable member in CU's
12728 language, zero otherwise. */
12729static int
12730is_vtable_name (const char *name, struct dwarf2_cu *cu)
12731{
12732 static const char vptr[] = "_vptr";
987504bb 12733 static const char vtable[] = "vtable";
1168df01 12734
987504bb
JJ
12735 /* Look for the C++ and Java forms of the vtable. */
12736 if ((cu->language == language_java
12737 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12738 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12739 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
12740 return 1;
12741
12742 return 0;
12743}
12744
c0dd20ea 12745/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
12746 functions, with the ABI-specified layout. If TYPE describes
12747 such a structure, smash it into a member function type.
61049d3b
DJ
12748
12749 GCC shouldn't do this; it should just output pointer to member DIEs.
12750 This is GCC PR debug/28767. */
c0dd20ea 12751
0b92b5bb
TT
12752static void
12753quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 12754{
0b92b5bb 12755 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
12756
12757 /* Check for a structure with no name and two children. */
0b92b5bb
TT
12758 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12759 return;
c0dd20ea
DJ
12760
12761 /* Check for __pfn and __delta members. */
0b92b5bb
TT
12762 if (TYPE_FIELD_NAME (type, 0) == NULL
12763 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12764 || TYPE_FIELD_NAME (type, 1) == NULL
12765 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12766 return;
c0dd20ea
DJ
12767
12768 /* Find the type of the method. */
0b92b5bb 12769 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
12770 if (pfn_type == NULL
12771 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12772 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 12773 return;
c0dd20ea
DJ
12774
12775 /* Look for the "this" argument. */
12776 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12777 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 12778 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 12779 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 12780 return;
c0dd20ea
DJ
12781
12782 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
12783 new_type = alloc_type (objfile);
12784 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
12785 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12786 TYPE_VARARGS (pfn_type));
0b92b5bb 12787 smash_to_methodptr_type (type, new_type);
c0dd20ea 12788}
1168df01 12789
685b1105
JK
12790/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12791 (icc). */
12792
12793static int
12794producer_is_icc (struct dwarf2_cu *cu)
12795{
12796 if (!cu->checked_producer)
12797 check_producer (cu);
12798
12799 return cu->producer_is_icc;
12800}
12801
c906108c 12802/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
12803 (definition) to create a type for the structure or union. Fill in
12804 the type's name and general properties; the members will not be
3d1d5ea3 12805 processed until process_structure_scope.
c906108c 12806
c767944b
DJ
12807 NOTE: we need to call these functions regardless of whether or not the
12808 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c
SS
12809 structure or union. This gets the type entered into our set of
12810 user defined types.
12811
12812 However, if the structure is incomplete (an opaque struct/union)
12813 then suppress creating a symbol table entry for it since gdb only
12814 wants to find the one with the complete definition. Note that if
12815 it is complete, we just call new_symbol, which does it's own
12816 checking about whether the struct/union is anonymous or not (and
12817 suppresses creating a symbol table entry itself). */
12818
f792889a 12819static struct type *
134d01f1 12820read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12821{
e7c27a73 12822 struct objfile *objfile = cu->objfile;
c906108c
SS
12823 struct type *type;
12824 struct attribute *attr;
15d034d0 12825 const char *name;
c906108c 12826
348e048f
DE
12827 /* If the definition of this type lives in .debug_types, read that type.
12828 Don't follow DW_AT_specification though, that will take us back up
12829 the chain and we want to go down. */
45e58e77 12830 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
12831 if (attr)
12832 {
ac9ec31b 12833 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 12834
ac9ec31b 12835 /* The type's CU may not be the same as CU.
02142a6c 12836 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
12837 return set_die_type (die, type, cu);
12838 }
12839
c0dd20ea 12840 type = alloc_type (objfile);
c906108c 12841 INIT_CPLUS_SPECIFIC (type);
93311388 12842
39cbfefa
DJ
12843 name = dwarf2_name (die, cu);
12844 if (name != NULL)
c906108c 12845 {
987504bb
JJ
12846 if (cu->language == language_cplus
12847 || cu->language == language_java)
63d06c5c 12848 {
15d034d0 12849 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
12850
12851 /* dwarf2_full_name might have already finished building the DIE's
12852 type. If so, there is no need to continue. */
12853 if (get_die_type (die, cu) != NULL)
12854 return get_die_type (die, cu);
12855
12856 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
12857 if (die->tag == DW_TAG_structure_type
12858 || die->tag == DW_TAG_class_type)
12859 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
12860 }
12861 else
12862 {
d8151005
DJ
12863 /* The name is already allocated along with this objfile, so
12864 we don't need to duplicate it for the type. */
7d455152 12865 TYPE_TAG_NAME (type) = name;
94af9270
KS
12866 if (die->tag == DW_TAG_class_type)
12867 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 12868 }
c906108c
SS
12869 }
12870
12871 if (die->tag == DW_TAG_structure_type)
12872 {
12873 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12874 }
12875 else if (die->tag == DW_TAG_union_type)
12876 {
12877 TYPE_CODE (type) = TYPE_CODE_UNION;
12878 }
12879 else
12880 {
c906108c
SS
12881 TYPE_CODE (type) = TYPE_CODE_CLASS;
12882 }
12883
0cc2414c
TT
12884 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12885 TYPE_DECLARED_CLASS (type) = 1;
12886
e142c38c 12887 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12888 if (attr)
12889 {
12890 TYPE_LENGTH (type) = DW_UNSND (attr);
12891 }
12892 else
12893 {
12894 TYPE_LENGTH (type) = 0;
12895 }
12896
685b1105
JK
12897 if (producer_is_icc (cu))
12898 {
12899 /* ICC does not output the required DW_AT_declaration
12900 on incomplete types, but gives them a size of zero. */
12901 }
12902 else
12903 TYPE_STUB_SUPPORTED (type) = 1;
12904
dc718098 12905 if (die_is_declaration (die, cu))
876cecd0 12906 TYPE_STUB (type) = 1;
a6c727b2
DJ
12907 else if (attr == NULL && die->child == NULL
12908 && producer_is_realview (cu->producer))
12909 /* RealView does not output the required DW_AT_declaration
12910 on incomplete types. */
12911 TYPE_STUB (type) = 1;
dc718098 12912
c906108c
SS
12913 /* We need to add the type field to the die immediately so we don't
12914 infinitely recurse when dealing with pointers to the structure
0963b4bd 12915 type within the structure itself. */
1c379e20 12916 set_die_type (die, type, cu);
c906108c 12917
7e314c57
JK
12918 /* set_die_type should be already done. */
12919 set_descriptive_type (type, die, cu);
12920
c767944b
DJ
12921 return type;
12922}
12923
12924/* Finish creating a structure or union type, including filling in
12925 its members and creating a symbol for it. */
12926
12927static void
12928process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
12929{
12930 struct objfile *objfile = cu->objfile;
12931 struct die_info *child_die = die->child;
12932 struct type *type;
12933
12934 type = get_die_type (die, cu);
12935 if (type == NULL)
12936 type = read_structure_type (die, cu);
12937
e142c38c 12938 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
12939 {
12940 struct field_info fi;
12941 struct die_info *child_die;
34eaf542 12942 VEC (symbolp) *template_args = NULL;
c767944b 12943 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
12944
12945 memset (&fi, 0, sizeof (struct field_info));
12946
639d11d3 12947 child_die = die->child;
c906108c
SS
12948
12949 while (child_die && child_die->tag)
12950 {
a9a9bd0f
DC
12951 if (child_die->tag == DW_TAG_member
12952 || child_die->tag == DW_TAG_variable)
c906108c 12953 {
a9a9bd0f
DC
12954 /* NOTE: carlton/2002-11-05: A C++ static data member
12955 should be a DW_TAG_member that is a declaration, but
12956 all versions of G++ as of this writing (so through at
12957 least 3.2.1) incorrectly generate DW_TAG_variable
12958 tags for them instead. */
e7c27a73 12959 dwarf2_add_field (&fi, child_die, cu);
c906108c 12960 }
8713b1b1 12961 else if (child_die->tag == DW_TAG_subprogram)
c906108c 12962 {
0963b4bd 12963 /* C++ member function. */
e7c27a73 12964 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
12965 }
12966 else if (child_die->tag == DW_TAG_inheritance)
12967 {
12968 /* C++ base class field. */
e7c27a73 12969 dwarf2_add_field (&fi, child_die, cu);
c906108c 12970 }
98751a41
JK
12971 else if (child_die->tag == DW_TAG_typedef)
12972 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
12973 else if (child_die->tag == DW_TAG_template_type_param
12974 || child_die->tag == DW_TAG_template_value_param)
12975 {
12976 struct symbol *arg = new_symbol (child_die, NULL, cu);
12977
f1078f66
DJ
12978 if (arg != NULL)
12979 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
12980 }
12981
c906108c
SS
12982 child_die = sibling_die (child_die);
12983 }
12984
34eaf542
TT
12985 /* Attach template arguments to type. */
12986 if (! VEC_empty (symbolp, template_args))
12987 {
12988 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12989 TYPE_N_TEMPLATE_ARGUMENTS (type)
12990 = VEC_length (symbolp, template_args);
12991 TYPE_TEMPLATE_ARGUMENTS (type)
12992 = obstack_alloc (&objfile->objfile_obstack,
12993 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12994 * sizeof (struct symbol *)));
12995 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12996 VEC_address (symbolp, template_args),
12997 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12998 * sizeof (struct symbol *)));
12999 VEC_free (symbolp, template_args);
13000 }
13001
c906108c
SS
13002 /* Attach fields and member functions to the type. */
13003 if (fi.nfields)
e7c27a73 13004 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13005 if (fi.nfnfields)
13006 {
e7c27a73 13007 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13008
c5aa993b 13009 /* Get the type which refers to the base class (possibly this
c906108c 13010 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13011 class from the DW_AT_containing_type attribute. This use of
13012 DW_AT_containing_type is a GNU extension. */
c906108c 13013
e142c38c 13014 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13015 {
e7c27a73 13016 struct type *t = die_containing_type (die, cu);
c906108c
SS
13017
13018 TYPE_VPTR_BASETYPE (type) = t;
13019 if (type == t)
13020 {
c906108c
SS
13021 int i;
13022
13023 /* Our own class provides vtbl ptr. */
13024 for (i = TYPE_NFIELDS (t) - 1;
13025 i >= TYPE_N_BASECLASSES (t);
13026 --i)
13027 {
0d5cff50 13028 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13029
1168df01 13030 if (is_vtable_name (fieldname, cu))
c906108c
SS
13031 {
13032 TYPE_VPTR_FIELDNO (type) = i;
13033 break;
13034 }
13035 }
13036
13037 /* Complain if virtual function table field not found. */
13038 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13039 complaint (&symfile_complaints,
3e43a32a
MS
13040 _("virtual function table pointer "
13041 "not found when defining class '%s'"),
4d3c2250
KB
13042 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13043 "");
c906108c
SS
13044 }
13045 else
13046 {
13047 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13048 }
13049 }
f6235d4c
EZ
13050 else if (cu->producer
13051 && strncmp (cu->producer,
13052 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13053 {
13054 /* The IBM XLC compiler does not provide direct indication
13055 of the containing type, but the vtable pointer is
13056 always named __vfp. */
13057
13058 int i;
13059
13060 for (i = TYPE_NFIELDS (type) - 1;
13061 i >= TYPE_N_BASECLASSES (type);
13062 --i)
13063 {
13064 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13065 {
13066 TYPE_VPTR_FIELDNO (type) = i;
13067 TYPE_VPTR_BASETYPE (type) = type;
13068 break;
13069 }
13070 }
13071 }
c906108c 13072 }
98751a41
JK
13073
13074 /* Copy fi.typedef_field_list linked list elements content into the
13075 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13076 if (fi.typedef_field_list)
13077 {
13078 int i = fi.typedef_field_list_count;
13079
a0d7a4ff 13080 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
13081 TYPE_TYPEDEF_FIELD_ARRAY (type)
13082 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13083 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13084
13085 /* Reverse the list order to keep the debug info elements order. */
13086 while (--i >= 0)
13087 {
13088 struct typedef_field *dest, *src;
6e70227d 13089
98751a41
JK
13090 dest = &TYPE_TYPEDEF_FIELD (type, i);
13091 src = &fi.typedef_field_list->field;
13092 fi.typedef_field_list = fi.typedef_field_list->next;
13093 *dest = *src;
13094 }
13095 }
c767944b
DJ
13096
13097 do_cleanups (back_to);
eb2a6f42
TT
13098
13099 if (HAVE_CPLUS_STRUCT (type))
13100 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13101 }
63d06c5c 13102
bb5ed363 13103 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13104
90aeadfc
DC
13105 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13106 snapshots) has been known to create a die giving a declaration
13107 for a class that has, as a child, a die giving a definition for a
13108 nested class. So we have to process our children even if the
13109 current die is a declaration. Normally, of course, a declaration
13110 won't have any children at all. */
134d01f1 13111
90aeadfc
DC
13112 while (child_die != NULL && child_die->tag)
13113 {
13114 if (child_die->tag == DW_TAG_member
13115 || child_die->tag == DW_TAG_variable
34eaf542
TT
13116 || child_die->tag == DW_TAG_inheritance
13117 || child_die->tag == DW_TAG_template_value_param
13118 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13119 {
90aeadfc 13120 /* Do nothing. */
134d01f1 13121 }
90aeadfc
DC
13122 else
13123 process_die (child_die, cu);
134d01f1 13124
90aeadfc 13125 child_die = sibling_die (child_die);
134d01f1
DJ
13126 }
13127
fa4028e9
JB
13128 /* Do not consider external references. According to the DWARF standard,
13129 these DIEs are identified by the fact that they have no byte_size
13130 attribute, and a declaration attribute. */
13131 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13132 || !die_is_declaration (die, cu))
c767944b 13133 new_symbol (die, type, cu);
134d01f1
DJ
13134}
13135
55426c9d
JB
13136/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13137 update TYPE using some information only available in DIE's children. */
13138
13139static void
13140update_enumeration_type_from_children (struct die_info *die,
13141 struct type *type,
13142 struct dwarf2_cu *cu)
13143{
13144 struct obstack obstack;
13145 struct die_info *child_die = die->child;
13146 int unsigned_enum = 1;
13147 int flag_enum = 1;
13148 ULONGEST mask = 0;
13149 struct cleanup *old_chain;
13150
13151 obstack_init (&obstack);
13152 old_chain = make_cleanup_obstack_free (&obstack);
13153
13154 while (child_die != NULL && child_die->tag)
13155 {
13156 struct attribute *attr;
13157 LONGEST value;
13158 const gdb_byte *bytes;
13159 struct dwarf2_locexpr_baton *baton;
13160 const char *name;
13161 if (child_die->tag != DW_TAG_enumerator)
13162 continue;
13163
13164 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13165 if (attr == NULL)
13166 continue;
13167
13168 name = dwarf2_name (child_die, cu);
13169 if (name == NULL)
13170 name = "<anonymous enumerator>";
13171
13172 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13173 &value, &bytes, &baton);
13174 if (value < 0)
13175 {
13176 unsigned_enum = 0;
13177 flag_enum = 0;
13178 }
13179 else if ((mask & value) != 0)
13180 flag_enum = 0;
13181 else
13182 mask |= value;
13183
13184 /* If we already know that the enum type is neither unsigned, nor
13185 a flag type, no need to look at the rest of the enumerates. */
13186 if (!unsigned_enum && !flag_enum)
13187 break;
13188 child_die = sibling_die (child_die);
13189 }
13190
13191 if (unsigned_enum)
13192 TYPE_UNSIGNED (type) = 1;
13193 if (flag_enum)
13194 TYPE_FLAG_ENUM (type) = 1;
13195
13196 do_cleanups (old_chain);
13197}
13198
134d01f1
DJ
13199/* Given a DW_AT_enumeration_type die, set its type. We do not
13200 complete the type's fields yet, or create any symbols. */
c906108c 13201
f792889a 13202static struct type *
134d01f1 13203read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13204{
e7c27a73 13205 struct objfile *objfile = cu->objfile;
c906108c 13206 struct type *type;
c906108c 13207 struct attribute *attr;
0114d602 13208 const char *name;
134d01f1 13209
348e048f
DE
13210 /* If the definition of this type lives in .debug_types, read that type.
13211 Don't follow DW_AT_specification though, that will take us back up
13212 the chain and we want to go down. */
45e58e77 13213 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13214 if (attr)
13215 {
ac9ec31b 13216 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13217
ac9ec31b 13218 /* The type's CU may not be the same as CU.
02142a6c 13219 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13220 return set_die_type (die, type, cu);
13221 }
13222
c906108c
SS
13223 type = alloc_type (objfile);
13224
13225 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13226 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13227 if (name != NULL)
7d455152 13228 TYPE_TAG_NAME (type) = name;
c906108c 13229
0626fc76
TT
13230 attr = dwarf2_attr (die, DW_AT_type, cu);
13231 if (attr != NULL)
13232 {
13233 struct type *underlying_type = die_type (die, cu);
13234
13235 TYPE_TARGET_TYPE (type) = underlying_type;
13236 }
13237
e142c38c 13238 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13239 if (attr)
13240 {
13241 TYPE_LENGTH (type) = DW_UNSND (attr);
13242 }
13243 else
13244 {
13245 TYPE_LENGTH (type) = 0;
13246 }
13247
137033e9
JB
13248 /* The enumeration DIE can be incomplete. In Ada, any type can be
13249 declared as private in the package spec, and then defined only
13250 inside the package body. Such types are known as Taft Amendment
13251 Types. When another package uses such a type, an incomplete DIE
13252 may be generated by the compiler. */
02eb380e 13253 if (die_is_declaration (die, cu))
876cecd0 13254 TYPE_STUB (type) = 1;
02eb380e 13255
0626fc76
TT
13256 /* Finish the creation of this type by using the enum's children.
13257 We must call this even when the underlying type has been provided
13258 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13259 update_enumeration_type_from_children (die, type, cu);
13260
0626fc76
TT
13261 /* If this type has an underlying type that is not a stub, then we
13262 may use its attributes. We always use the "unsigned" attribute
13263 in this situation, because ordinarily we guess whether the type
13264 is unsigned -- but the guess can be wrong and the underlying type
13265 can tell us the reality. However, we defer to a local size
13266 attribute if one exists, because this lets the compiler override
13267 the underlying type if needed. */
13268 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13269 {
13270 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13271 if (TYPE_LENGTH (type) == 0)
13272 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13273 }
13274
3d567982
TT
13275 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13276
f792889a 13277 return set_die_type (die, type, cu);
134d01f1
DJ
13278}
13279
13280/* Given a pointer to a die which begins an enumeration, process all
13281 the dies that define the members of the enumeration, and create the
13282 symbol for the enumeration type.
13283
13284 NOTE: We reverse the order of the element list. */
13285
13286static void
13287process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13288{
f792889a 13289 struct type *this_type;
134d01f1 13290
f792889a
DJ
13291 this_type = get_die_type (die, cu);
13292 if (this_type == NULL)
13293 this_type = read_enumeration_type (die, cu);
9dc481d3 13294
639d11d3 13295 if (die->child != NULL)
c906108c 13296 {
9dc481d3
DE
13297 struct die_info *child_die;
13298 struct symbol *sym;
13299 struct field *fields = NULL;
13300 int num_fields = 0;
15d034d0 13301 const char *name;
9dc481d3 13302
639d11d3 13303 child_die = die->child;
c906108c
SS
13304 while (child_die && child_die->tag)
13305 {
13306 if (child_die->tag != DW_TAG_enumerator)
13307 {
e7c27a73 13308 process_die (child_die, cu);
c906108c
SS
13309 }
13310 else
13311 {
39cbfefa
DJ
13312 name = dwarf2_name (child_die, cu);
13313 if (name)
c906108c 13314 {
f792889a 13315 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13316
13317 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13318 {
13319 fields = (struct field *)
13320 xrealloc (fields,
13321 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13322 * sizeof (struct field));
c906108c
SS
13323 }
13324
3567439c 13325 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13326 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13327 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13328 FIELD_BITSIZE (fields[num_fields]) = 0;
13329
13330 num_fields++;
13331 }
13332 }
13333
13334 child_die = sibling_die (child_die);
13335 }
13336
13337 if (num_fields)
13338 {
f792889a
DJ
13339 TYPE_NFIELDS (this_type) = num_fields;
13340 TYPE_FIELDS (this_type) = (struct field *)
13341 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13342 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13343 sizeof (struct field) * num_fields);
b8c9b27d 13344 xfree (fields);
c906108c 13345 }
c906108c 13346 }
134d01f1 13347
6c83ed52
TT
13348 /* If we are reading an enum from a .debug_types unit, and the enum
13349 is a declaration, and the enum is not the signatured type in the
13350 unit, then we do not want to add a symbol for it. Adding a
13351 symbol would in some cases obscure the true definition of the
13352 enum, giving users an incomplete type when the definition is
13353 actually available. Note that we do not want to do this for all
13354 enums which are just declarations, because C++0x allows forward
13355 enum declarations. */
3019eac3 13356 if (cu->per_cu->is_debug_types
6c83ed52
TT
13357 && die_is_declaration (die, cu))
13358 {
52dc124a 13359 struct signatured_type *sig_type;
6c83ed52 13360
c0f78cd4 13361 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13362 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13363 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13364 return;
13365 }
13366
f792889a 13367 new_symbol (die, this_type, cu);
c906108c
SS
13368}
13369
13370/* Extract all information from a DW_TAG_array_type DIE and put it in
13371 the DIE's type field. For now, this only handles one dimensional
13372 arrays. */
13373
f792889a 13374static struct type *
e7c27a73 13375read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13376{
e7c27a73 13377 struct objfile *objfile = cu->objfile;
c906108c 13378 struct die_info *child_die;
7e314c57 13379 struct type *type;
c906108c
SS
13380 struct type *element_type, *range_type, *index_type;
13381 struct type **range_types = NULL;
13382 struct attribute *attr;
13383 int ndim = 0;
13384 struct cleanup *back_to;
15d034d0 13385 const char *name;
dc53a7ad 13386 unsigned int bit_stride = 0;
c906108c 13387
e7c27a73 13388 element_type = die_type (die, cu);
c906108c 13389
7e314c57
JK
13390 /* The die_type call above may have already set the type for this DIE. */
13391 type = get_die_type (die, cu);
13392 if (type)
13393 return type;
13394
dc53a7ad
JB
13395 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13396 if (attr != NULL)
13397 bit_stride = DW_UNSND (attr) * 8;
13398
13399 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13400 if (attr != NULL)
13401 bit_stride = DW_UNSND (attr);
13402
c906108c
SS
13403 /* Irix 6.2 native cc creates array types without children for
13404 arrays with unspecified length. */
639d11d3 13405 if (die->child == NULL)
c906108c 13406 {
46bf5051 13407 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13408 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13409 type = create_array_type_with_stride (NULL, element_type, range_type,
13410 bit_stride);
f792889a 13411 return set_die_type (die, type, cu);
c906108c
SS
13412 }
13413
13414 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13415 child_die = die->child;
c906108c
SS
13416 while (child_die && child_die->tag)
13417 {
13418 if (child_die->tag == DW_TAG_subrange_type)
13419 {
f792889a 13420 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13421
f792889a 13422 if (child_type != NULL)
a02abb62 13423 {
0963b4bd
MS
13424 /* The range type was succesfully read. Save it for the
13425 array type creation. */
a02abb62
JB
13426 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13427 {
13428 range_types = (struct type **)
13429 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13430 * sizeof (struct type *));
13431 if (ndim == 0)
13432 make_cleanup (free_current_contents, &range_types);
13433 }
f792889a 13434 range_types[ndim++] = child_type;
a02abb62 13435 }
c906108c
SS
13436 }
13437 child_die = sibling_die (child_die);
13438 }
13439
13440 /* Dwarf2 dimensions are output from left to right, create the
13441 necessary array types in backwards order. */
7ca2d3a3 13442
c906108c 13443 type = element_type;
7ca2d3a3
DL
13444
13445 if (read_array_order (die, cu) == DW_ORD_col_major)
13446 {
13447 int i = 0;
9a619af0 13448
7ca2d3a3 13449 while (i < ndim)
dc53a7ad
JB
13450 type = create_array_type_with_stride (NULL, type, range_types[i++],
13451 bit_stride);
7ca2d3a3
DL
13452 }
13453 else
13454 {
13455 while (ndim-- > 0)
dc53a7ad
JB
13456 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13457 bit_stride);
7ca2d3a3 13458 }
c906108c 13459
f5f8a009
EZ
13460 /* Understand Dwarf2 support for vector types (like they occur on
13461 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13462 array type. This is not part of the Dwarf2/3 standard yet, but a
13463 custom vendor extension. The main difference between a regular
13464 array and the vector variant is that vectors are passed by value
13465 to functions. */
e142c38c 13466 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13467 if (attr)
ea37ba09 13468 make_vector_type (type);
f5f8a009 13469
dbc98a8b
KW
13470 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13471 implementation may choose to implement triple vectors using this
13472 attribute. */
13473 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13474 if (attr)
13475 {
13476 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13477 TYPE_LENGTH (type) = DW_UNSND (attr);
13478 else
3e43a32a
MS
13479 complaint (&symfile_complaints,
13480 _("DW_AT_byte_size for array type smaller "
13481 "than the total size of elements"));
dbc98a8b
KW
13482 }
13483
39cbfefa
DJ
13484 name = dwarf2_name (die, cu);
13485 if (name)
13486 TYPE_NAME (type) = name;
6e70227d 13487
0963b4bd 13488 /* Install the type in the die. */
7e314c57
JK
13489 set_die_type (die, type, cu);
13490
13491 /* set_die_type should be already done. */
b4ba55a1
JB
13492 set_descriptive_type (type, die, cu);
13493
c906108c
SS
13494 do_cleanups (back_to);
13495
7e314c57 13496 return type;
c906108c
SS
13497}
13498
7ca2d3a3 13499static enum dwarf_array_dim_ordering
6e70227d 13500read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13501{
13502 struct attribute *attr;
13503
13504 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13505
13506 if (attr) return DW_SND (attr);
13507
0963b4bd
MS
13508 /* GNU F77 is a special case, as at 08/2004 array type info is the
13509 opposite order to the dwarf2 specification, but data is still
13510 laid out as per normal fortran.
7ca2d3a3 13511
0963b4bd
MS
13512 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13513 version checking. */
7ca2d3a3 13514
905e0470
PM
13515 if (cu->language == language_fortran
13516 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13517 {
13518 return DW_ORD_row_major;
13519 }
13520
6e70227d 13521 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13522 {
13523 case array_column_major:
13524 return DW_ORD_col_major;
13525 case array_row_major:
13526 default:
13527 return DW_ORD_row_major;
13528 };
13529}
13530
72019c9c 13531/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13532 the DIE's type field. */
72019c9c 13533
f792889a 13534static struct type *
72019c9c
GM
13535read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13536{
7e314c57
JK
13537 struct type *domain_type, *set_type;
13538 struct attribute *attr;
f792889a 13539
7e314c57
JK
13540 domain_type = die_type (die, cu);
13541
13542 /* The die_type call above may have already set the type for this DIE. */
13543 set_type = get_die_type (die, cu);
13544 if (set_type)
13545 return set_type;
13546
13547 set_type = create_set_type (NULL, domain_type);
13548
13549 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13550 if (attr)
13551 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13552
f792889a 13553 return set_die_type (die, set_type, cu);
72019c9c 13554}
7ca2d3a3 13555
0971de02
TT
13556/* A helper for read_common_block that creates a locexpr baton.
13557 SYM is the symbol which we are marking as computed.
13558 COMMON_DIE is the DIE for the common block.
13559 COMMON_LOC is the location expression attribute for the common
13560 block itself.
13561 MEMBER_LOC is the location expression attribute for the particular
13562 member of the common block that we are processing.
13563 CU is the CU from which the above come. */
13564
13565static void
13566mark_common_block_symbol_computed (struct symbol *sym,
13567 struct die_info *common_die,
13568 struct attribute *common_loc,
13569 struct attribute *member_loc,
13570 struct dwarf2_cu *cu)
13571{
13572 struct objfile *objfile = dwarf2_per_objfile->objfile;
13573 struct dwarf2_locexpr_baton *baton;
13574 gdb_byte *ptr;
13575 unsigned int cu_off;
13576 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13577 LONGEST offset = 0;
13578
13579 gdb_assert (common_loc && member_loc);
13580 gdb_assert (attr_form_is_block (common_loc));
13581 gdb_assert (attr_form_is_block (member_loc)
13582 || attr_form_is_constant (member_loc));
13583
13584 baton = obstack_alloc (&objfile->objfile_obstack,
13585 sizeof (struct dwarf2_locexpr_baton));
13586 baton->per_cu = cu->per_cu;
13587 gdb_assert (baton->per_cu);
13588
13589 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13590
13591 if (attr_form_is_constant (member_loc))
13592 {
13593 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13594 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13595 }
13596 else
13597 baton->size += DW_BLOCK (member_loc)->size;
13598
13599 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13600 baton->data = ptr;
13601
13602 *ptr++ = DW_OP_call4;
13603 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13604 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13605 ptr += 4;
13606
13607 if (attr_form_is_constant (member_loc))
13608 {
13609 *ptr++ = DW_OP_addr;
13610 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13611 ptr += cu->header.addr_size;
13612 }
13613 else
13614 {
13615 /* We have to copy the data here, because DW_OP_call4 will only
13616 use a DW_AT_location attribute. */
13617 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13618 ptr += DW_BLOCK (member_loc)->size;
13619 }
13620
13621 *ptr++ = DW_OP_plus;
13622 gdb_assert (ptr - baton->data == baton->size);
13623
0971de02 13624 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13625 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13626}
13627
4357ac6c
TT
13628/* Create appropriate locally-scoped variables for all the
13629 DW_TAG_common_block entries. Also create a struct common_block
13630 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13631 is used to sepate the common blocks name namespace from regular
13632 variable names. */
c906108c
SS
13633
13634static void
e7c27a73 13635read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13636{
0971de02
TT
13637 struct attribute *attr;
13638
13639 attr = dwarf2_attr (die, DW_AT_location, cu);
13640 if (attr)
13641 {
13642 /* Support the .debug_loc offsets. */
13643 if (attr_form_is_block (attr))
13644 {
13645 /* Ok. */
13646 }
13647 else if (attr_form_is_section_offset (attr))
13648 {
13649 dwarf2_complex_location_expr_complaint ();
13650 attr = NULL;
13651 }
13652 else
13653 {
13654 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13655 "common block member");
13656 attr = NULL;
13657 }
13658 }
13659
639d11d3 13660 if (die->child != NULL)
c906108c 13661 {
4357ac6c
TT
13662 struct objfile *objfile = cu->objfile;
13663 struct die_info *child_die;
13664 size_t n_entries = 0, size;
13665 struct common_block *common_block;
13666 struct symbol *sym;
74ac6d43 13667
4357ac6c
TT
13668 for (child_die = die->child;
13669 child_die && child_die->tag;
13670 child_die = sibling_die (child_die))
13671 ++n_entries;
13672
13673 size = (sizeof (struct common_block)
13674 + (n_entries - 1) * sizeof (struct symbol *));
13675 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13676 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13677 common_block->n_entries = 0;
13678
13679 for (child_die = die->child;
13680 child_die && child_die->tag;
13681 child_die = sibling_die (child_die))
13682 {
13683 /* Create the symbol in the DW_TAG_common_block block in the current
13684 symbol scope. */
e7c27a73 13685 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
13686 if (sym != NULL)
13687 {
13688 struct attribute *member_loc;
13689
13690 common_block->contents[common_block->n_entries++] = sym;
13691
13692 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13693 cu);
13694 if (member_loc)
13695 {
13696 /* GDB has handled this for a long time, but it is
13697 not specified by DWARF. It seems to have been
13698 emitted by gfortran at least as recently as:
13699 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13700 complaint (&symfile_complaints,
13701 _("Variable in common block has "
13702 "DW_AT_data_member_location "
13703 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
13704 child_die->offset.sect_off,
13705 objfile_name (cu->objfile));
0971de02
TT
13706
13707 if (attr_form_is_section_offset (member_loc))
13708 dwarf2_complex_location_expr_complaint ();
13709 else if (attr_form_is_constant (member_loc)
13710 || attr_form_is_block (member_loc))
13711 {
13712 if (attr)
13713 mark_common_block_symbol_computed (sym, die, attr,
13714 member_loc, cu);
13715 }
13716 else
13717 dwarf2_complex_location_expr_complaint ();
13718 }
13719 }
c906108c 13720 }
4357ac6c
TT
13721
13722 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13723 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
13724 }
13725}
13726
0114d602 13727/* Create a type for a C++ namespace. */
d9fa45fe 13728
0114d602
DJ
13729static struct type *
13730read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 13731{
e7c27a73 13732 struct objfile *objfile = cu->objfile;
0114d602 13733 const char *previous_prefix, *name;
9219021c 13734 int is_anonymous;
0114d602
DJ
13735 struct type *type;
13736
13737 /* For extensions, reuse the type of the original namespace. */
13738 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13739 {
13740 struct die_info *ext_die;
13741 struct dwarf2_cu *ext_cu = cu;
9a619af0 13742
0114d602
DJ
13743 ext_die = dwarf2_extension (die, &ext_cu);
13744 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
13745
13746 /* EXT_CU may not be the same as CU.
02142a6c 13747 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
13748 return set_die_type (die, type, cu);
13749 }
9219021c 13750
e142c38c 13751 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
13752
13753 /* Now build the name of the current namespace. */
13754
0114d602
DJ
13755 previous_prefix = determine_prefix (die, cu);
13756 if (previous_prefix[0] != '\0')
13757 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 13758 previous_prefix, name, 0, cu);
0114d602
DJ
13759
13760 /* Create the type. */
13761 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13762 objfile);
abee88f2 13763 TYPE_NAME (type) = name;
0114d602
DJ
13764 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13765
60531b24 13766 return set_die_type (die, type, cu);
0114d602
DJ
13767}
13768
13769/* Read a C++ namespace. */
13770
13771static void
13772read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13773{
13774 struct objfile *objfile = cu->objfile;
0114d602 13775 int is_anonymous;
9219021c 13776
5c4e30ca
DC
13777 /* Add a symbol associated to this if we haven't seen the namespace
13778 before. Also, add a using directive if it's an anonymous
13779 namespace. */
9219021c 13780
f2f0e013 13781 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
13782 {
13783 struct type *type;
13784
0114d602 13785 type = read_type_die (die, cu);
e7c27a73 13786 new_symbol (die, type, cu);
5c4e30ca 13787
e8e80198 13788 namespace_name (die, &is_anonymous, cu);
5c4e30ca 13789 if (is_anonymous)
0114d602
DJ
13790 {
13791 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 13792
c0cc3a76 13793 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12aaed36 13794 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 13795 }
5c4e30ca 13796 }
9219021c 13797
639d11d3 13798 if (die->child != NULL)
d9fa45fe 13799 {
639d11d3 13800 struct die_info *child_die = die->child;
6e70227d 13801
d9fa45fe
DC
13802 while (child_die && child_die->tag)
13803 {
e7c27a73 13804 process_die (child_die, cu);
d9fa45fe
DC
13805 child_die = sibling_die (child_die);
13806 }
13807 }
38d518c9
EZ
13808}
13809
f55ee35c
JK
13810/* Read a Fortran module as type. This DIE can be only a declaration used for
13811 imported module. Still we need that type as local Fortran "use ... only"
13812 declaration imports depend on the created type in determine_prefix. */
13813
13814static struct type *
13815read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13816{
13817 struct objfile *objfile = cu->objfile;
15d034d0 13818 const char *module_name;
f55ee35c
JK
13819 struct type *type;
13820
13821 module_name = dwarf2_name (die, cu);
13822 if (!module_name)
3e43a32a
MS
13823 complaint (&symfile_complaints,
13824 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 13825 die->offset.sect_off);
f55ee35c
JK
13826 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13827
13828 /* determine_prefix uses TYPE_TAG_NAME. */
13829 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13830
13831 return set_die_type (die, type, cu);
13832}
13833
5d7cb8df
JK
13834/* Read a Fortran module. */
13835
13836static void
13837read_module (struct die_info *die, struct dwarf2_cu *cu)
13838{
13839 struct die_info *child_die = die->child;
530e8392
KB
13840 struct type *type;
13841
13842 type = read_type_die (die, cu);
13843 new_symbol (die, type, cu);
5d7cb8df 13844
5d7cb8df
JK
13845 while (child_die && child_die->tag)
13846 {
13847 process_die (child_die, cu);
13848 child_die = sibling_die (child_die);
13849 }
13850}
13851
38d518c9
EZ
13852/* Return the name of the namespace represented by DIE. Set
13853 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13854 namespace. */
13855
13856static const char *
e142c38c 13857namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
13858{
13859 struct die_info *current_die;
13860 const char *name = NULL;
13861
13862 /* Loop through the extensions until we find a name. */
13863
13864 for (current_die = die;
13865 current_die != NULL;
f2f0e013 13866 current_die = dwarf2_extension (die, &cu))
38d518c9 13867 {
e142c38c 13868 name = dwarf2_name (current_die, cu);
38d518c9
EZ
13869 if (name != NULL)
13870 break;
13871 }
13872
13873 /* Is it an anonymous namespace? */
13874
13875 *is_anonymous = (name == NULL);
13876 if (*is_anonymous)
2b1dbab0 13877 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
13878
13879 return name;
d9fa45fe
DC
13880}
13881
c906108c
SS
13882/* Extract all information from a DW_TAG_pointer_type DIE and add to
13883 the user defined type vector. */
13884
f792889a 13885static struct type *
e7c27a73 13886read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13887{
5e2b427d 13888 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 13889 struct comp_unit_head *cu_header = &cu->header;
c906108c 13890 struct type *type;
8b2dbe47
KB
13891 struct attribute *attr_byte_size;
13892 struct attribute *attr_address_class;
13893 int byte_size, addr_class;
7e314c57
JK
13894 struct type *target_type;
13895
13896 target_type = die_type (die, cu);
c906108c 13897
7e314c57
JK
13898 /* The die_type call above may have already set the type for this DIE. */
13899 type = get_die_type (die, cu);
13900 if (type)
13901 return type;
13902
13903 type = lookup_pointer_type (target_type);
8b2dbe47 13904
e142c38c 13905 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
13906 if (attr_byte_size)
13907 byte_size = DW_UNSND (attr_byte_size);
c906108c 13908 else
8b2dbe47
KB
13909 byte_size = cu_header->addr_size;
13910
e142c38c 13911 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
13912 if (attr_address_class)
13913 addr_class = DW_UNSND (attr_address_class);
13914 else
13915 addr_class = DW_ADDR_none;
13916
13917 /* If the pointer size or address class is different than the
13918 default, create a type variant marked as such and set the
13919 length accordingly. */
13920 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 13921 {
5e2b427d 13922 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
13923 {
13924 int type_flags;
13925
849957d9 13926 type_flags = gdbarch_address_class_type_flags
5e2b427d 13927 (gdbarch, byte_size, addr_class);
876cecd0
TT
13928 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
13929 == 0);
8b2dbe47
KB
13930 type = make_type_with_address_space (type, type_flags);
13931 }
13932 else if (TYPE_LENGTH (type) != byte_size)
13933 {
3e43a32a
MS
13934 complaint (&symfile_complaints,
13935 _("invalid pointer size %d"), byte_size);
8b2dbe47 13936 }
6e70227d 13937 else
9a619af0
MS
13938 {
13939 /* Should we also complain about unhandled address classes? */
13940 }
c906108c 13941 }
8b2dbe47
KB
13942
13943 TYPE_LENGTH (type) = byte_size;
f792889a 13944 return set_die_type (die, type, cu);
c906108c
SS
13945}
13946
13947/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
13948 the user defined type vector. */
13949
f792889a 13950static struct type *
e7c27a73 13951read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
13952{
13953 struct type *type;
13954 struct type *to_type;
13955 struct type *domain;
13956
e7c27a73
DJ
13957 to_type = die_type (die, cu);
13958 domain = die_containing_type (die, cu);
0d5de010 13959
7e314c57
JK
13960 /* The calls above may have already set the type for this DIE. */
13961 type = get_die_type (die, cu);
13962 if (type)
13963 return type;
13964
0d5de010
DJ
13965 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
13966 type = lookup_methodptr_type (to_type);
7078baeb
TT
13967 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
13968 {
13969 struct type *new_type = alloc_type (cu->objfile);
13970
13971 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
13972 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
13973 TYPE_VARARGS (to_type));
13974 type = lookup_methodptr_type (new_type);
13975 }
0d5de010
DJ
13976 else
13977 type = lookup_memberptr_type (to_type, domain);
c906108c 13978
f792889a 13979 return set_die_type (die, type, cu);
c906108c
SS
13980}
13981
13982/* Extract all information from a DW_TAG_reference_type DIE and add to
13983 the user defined type vector. */
13984
f792889a 13985static struct type *
e7c27a73 13986read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13987{
e7c27a73 13988 struct comp_unit_head *cu_header = &cu->header;
7e314c57 13989 struct type *type, *target_type;
c906108c
SS
13990 struct attribute *attr;
13991
7e314c57
JK
13992 target_type = die_type (die, cu);
13993
13994 /* The die_type call above may have already set the type for this DIE. */
13995 type = get_die_type (die, cu);
13996 if (type)
13997 return type;
13998
13999 type = lookup_reference_type (target_type);
e142c38c 14000 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14001 if (attr)
14002 {
14003 TYPE_LENGTH (type) = DW_UNSND (attr);
14004 }
14005 else
14006 {
107d2387 14007 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14008 }
f792889a 14009 return set_die_type (die, type, cu);
c906108c
SS
14010}
14011
f792889a 14012static struct type *
e7c27a73 14013read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14014{
f792889a 14015 struct type *base_type, *cv_type;
c906108c 14016
e7c27a73 14017 base_type = die_type (die, cu);
7e314c57
JK
14018
14019 /* The die_type call above may have already set the type for this DIE. */
14020 cv_type = get_die_type (die, cu);
14021 if (cv_type)
14022 return cv_type;
14023
2f608a3a
KW
14024 /* In case the const qualifier is applied to an array type, the element type
14025 is so qualified, not the array type (section 6.7.3 of C99). */
14026 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14027 {
14028 struct type *el_type, *inner_array;
14029
14030 base_type = copy_type (base_type);
14031 inner_array = base_type;
14032
14033 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14034 {
14035 TYPE_TARGET_TYPE (inner_array) =
14036 copy_type (TYPE_TARGET_TYPE (inner_array));
14037 inner_array = TYPE_TARGET_TYPE (inner_array);
14038 }
14039
14040 el_type = TYPE_TARGET_TYPE (inner_array);
14041 TYPE_TARGET_TYPE (inner_array) =
14042 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
14043
14044 return set_die_type (die, base_type, cu);
14045 }
14046
f792889a
DJ
14047 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14048 return set_die_type (die, cv_type, cu);
c906108c
SS
14049}
14050
f792889a 14051static struct type *
e7c27a73 14052read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14053{
f792889a 14054 struct type *base_type, *cv_type;
c906108c 14055
e7c27a73 14056 base_type = die_type (die, cu);
7e314c57
JK
14057
14058 /* The die_type call above may have already set the type for this DIE. */
14059 cv_type = get_die_type (die, cu);
14060 if (cv_type)
14061 return cv_type;
14062
f792889a
DJ
14063 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14064 return set_die_type (die, cv_type, cu);
c906108c
SS
14065}
14066
06d66ee9
TT
14067/* Handle DW_TAG_restrict_type. */
14068
14069static struct type *
14070read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14071{
14072 struct type *base_type, *cv_type;
14073
14074 base_type = die_type (die, cu);
14075
14076 /* The die_type call above may have already set the type for this DIE. */
14077 cv_type = get_die_type (die, cu);
14078 if (cv_type)
14079 return cv_type;
14080
14081 cv_type = make_restrict_type (base_type);
14082 return set_die_type (die, cv_type, cu);
14083}
14084
c906108c
SS
14085/* Extract all information from a DW_TAG_string_type DIE and add to
14086 the user defined type vector. It isn't really a user defined type,
14087 but it behaves like one, with other DIE's using an AT_user_def_type
14088 attribute to reference it. */
14089
f792889a 14090static struct type *
e7c27a73 14091read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14092{
e7c27a73 14093 struct objfile *objfile = cu->objfile;
3b7538c0 14094 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14095 struct type *type, *range_type, *index_type, *char_type;
14096 struct attribute *attr;
14097 unsigned int length;
14098
e142c38c 14099 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14100 if (attr)
14101 {
14102 length = DW_UNSND (attr);
14103 }
14104 else
14105 {
0963b4bd 14106 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14107 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14108 if (attr)
14109 {
14110 length = DW_UNSND (attr);
14111 }
14112 else
14113 {
14114 length = 1;
14115 }
c906108c 14116 }
6ccb9162 14117
46bf5051 14118 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14119 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14120 char_type = language_string_char_type (cu->language_defn, gdbarch);
14121 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14122
f792889a 14123 return set_die_type (die, type, cu);
c906108c
SS
14124}
14125
4d804846
JB
14126/* Assuming that DIE corresponds to a function, returns nonzero
14127 if the function is prototyped. */
14128
14129static int
14130prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14131{
14132 struct attribute *attr;
14133
14134 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14135 if (attr && (DW_UNSND (attr) != 0))
14136 return 1;
14137
14138 /* The DWARF standard implies that the DW_AT_prototyped attribute
14139 is only meaninful for C, but the concept also extends to other
14140 languages that allow unprototyped functions (Eg: Objective C).
14141 For all other languages, assume that functions are always
14142 prototyped. */
14143 if (cu->language != language_c
14144 && cu->language != language_objc
14145 && cu->language != language_opencl)
14146 return 1;
14147
14148 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14149 prototyped and unprototyped functions; default to prototyped,
14150 since that is more common in modern code (and RealView warns
14151 about unprototyped functions). */
14152 if (producer_is_realview (cu->producer))
14153 return 1;
14154
14155 return 0;
14156}
14157
c906108c
SS
14158/* Handle DIES due to C code like:
14159
14160 struct foo
c5aa993b
JM
14161 {
14162 int (*funcp)(int a, long l);
14163 int b;
14164 };
c906108c 14165
0963b4bd 14166 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14167
f792889a 14168static struct type *
e7c27a73 14169read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14170{
bb5ed363 14171 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14172 struct type *type; /* Type that this function returns. */
14173 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14174 struct attribute *attr;
14175
e7c27a73 14176 type = die_type (die, cu);
7e314c57
JK
14177
14178 /* The die_type call above may have already set the type for this DIE. */
14179 ftype = get_die_type (die, cu);
14180 if (ftype)
14181 return ftype;
14182
0c8b41f1 14183 ftype = lookup_function_type (type);
c906108c 14184
4d804846 14185 if (prototyped_function_p (die, cu))
a6c727b2 14186 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14187
c055b101
CV
14188 /* Store the calling convention in the type if it's available in
14189 the subroutine die. Otherwise set the calling convention to
14190 the default value DW_CC_normal. */
14191 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14192 if (attr)
14193 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14194 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14195 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14196 else
14197 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
14198
14199 /* We need to add the subroutine type to the die immediately so
14200 we don't infinitely recurse when dealing with parameters
0963b4bd 14201 declared as the same subroutine type. */
76c10ea2 14202 set_die_type (die, ftype, cu);
6e70227d 14203
639d11d3 14204 if (die->child != NULL)
c906108c 14205 {
bb5ed363 14206 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14207 struct die_info *child_die;
8072405b 14208 int nparams, iparams;
c906108c
SS
14209
14210 /* Count the number of parameters.
14211 FIXME: GDB currently ignores vararg functions, but knows about
14212 vararg member functions. */
8072405b 14213 nparams = 0;
639d11d3 14214 child_die = die->child;
c906108c
SS
14215 while (child_die && child_die->tag)
14216 {
14217 if (child_die->tag == DW_TAG_formal_parameter)
14218 nparams++;
14219 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14220 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14221 child_die = sibling_die (child_die);
14222 }
14223
14224 /* Allocate storage for parameters and fill them in. */
14225 TYPE_NFIELDS (ftype) = nparams;
14226 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14227 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14228
8072405b
JK
14229 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14230 even if we error out during the parameters reading below. */
14231 for (iparams = 0; iparams < nparams; iparams++)
14232 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14233
14234 iparams = 0;
639d11d3 14235 child_die = die->child;
c906108c
SS
14236 while (child_die && child_die->tag)
14237 {
14238 if (child_die->tag == DW_TAG_formal_parameter)
14239 {
3ce3b1ba
PA
14240 struct type *arg_type;
14241
14242 /* DWARF version 2 has no clean way to discern C++
14243 static and non-static member functions. G++ helps
14244 GDB by marking the first parameter for non-static
14245 member functions (which is the this pointer) as
14246 artificial. We pass this information to
14247 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14248
14249 DWARF version 3 added DW_AT_object_pointer, which GCC
14250 4.5 does not yet generate. */
e142c38c 14251 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14252 if (attr)
14253 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14254 else
418835cc
KS
14255 {
14256 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14257
14258 /* GCC/43521: In java, the formal parameter
14259 "this" is sometimes not marked with DW_AT_artificial. */
14260 if (cu->language == language_java)
14261 {
14262 const char *name = dwarf2_name (child_die, cu);
9a619af0 14263
418835cc
KS
14264 if (name && !strcmp (name, "this"))
14265 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14266 }
14267 }
3ce3b1ba
PA
14268 arg_type = die_type (child_die, cu);
14269
14270 /* RealView does not mark THIS as const, which the testsuite
14271 expects. GCC marks THIS as const in method definitions,
14272 but not in the class specifications (GCC PR 43053). */
14273 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14274 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14275 {
14276 int is_this = 0;
14277 struct dwarf2_cu *arg_cu = cu;
14278 const char *name = dwarf2_name (child_die, cu);
14279
14280 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14281 if (attr)
14282 {
14283 /* If the compiler emits this, use it. */
14284 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14285 is_this = 1;
14286 }
14287 else if (name && strcmp (name, "this") == 0)
14288 /* Function definitions will have the argument names. */
14289 is_this = 1;
14290 else if (name == NULL && iparams == 0)
14291 /* Declarations may not have the names, so like
14292 elsewhere in GDB, assume an artificial first
14293 argument is "this". */
14294 is_this = 1;
14295
14296 if (is_this)
14297 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14298 arg_type, 0);
14299 }
14300
14301 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14302 iparams++;
14303 }
14304 child_die = sibling_die (child_die);
14305 }
14306 }
14307
76c10ea2 14308 return ftype;
c906108c
SS
14309}
14310
f792889a 14311static struct type *
e7c27a73 14312read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14313{
e7c27a73 14314 struct objfile *objfile = cu->objfile;
0114d602 14315 const char *name = NULL;
3c8e0968 14316 struct type *this_type, *target_type;
c906108c 14317
94af9270 14318 name = dwarf2_full_name (NULL, die, cu);
f792889a 14319 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14320 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14321 TYPE_NAME (this_type) = name;
f792889a 14322 set_die_type (die, this_type, cu);
3c8e0968
DE
14323 target_type = die_type (die, cu);
14324 if (target_type != this_type)
14325 TYPE_TARGET_TYPE (this_type) = target_type;
14326 else
14327 {
14328 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14329 spec and cause infinite loops in GDB. */
14330 complaint (&symfile_complaints,
14331 _("Self-referential DW_TAG_typedef "
14332 "- DIE at 0x%x [in module %s]"),
4262abfb 14333 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14334 TYPE_TARGET_TYPE (this_type) = NULL;
14335 }
f792889a 14336 return this_type;
c906108c
SS
14337}
14338
14339/* Find a representation of a given base type and install
14340 it in the TYPE field of the die. */
14341
f792889a 14342static struct type *
e7c27a73 14343read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14344{
e7c27a73 14345 struct objfile *objfile = cu->objfile;
c906108c
SS
14346 struct type *type;
14347 struct attribute *attr;
14348 int encoding = 0, size = 0;
15d034d0 14349 const char *name;
6ccb9162
UW
14350 enum type_code code = TYPE_CODE_INT;
14351 int type_flags = 0;
14352 struct type *target_type = NULL;
c906108c 14353
e142c38c 14354 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14355 if (attr)
14356 {
14357 encoding = DW_UNSND (attr);
14358 }
e142c38c 14359 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14360 if (attr)
14361 {
14362 size = DW_UNSND (attr);
14363 }
39cbfefa 14364 name = dwarf2_name (die, cu);
6ccb9162 14365 if (!name)
c906108c 14366 {
6ccb9162
UW
14367 complaint (&symfile_complaints,
14368 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14369 }
6ccb9162
UW
14370
14371 switch (encoding)
c906108c 14372 {
6ccb9162
UW
14373 case DW_ATE_address:
14374 /* Turn DW_ATE_address into a void * pointer. */
14375 code = TYPE_CODE_PTR;
14376 type_flags |= TYPE_FLAG_UNSIGNED;
14377 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14378 break;
14379 case DW_ATE_boolean:
14380 code = TYPE_CODE_BOOL;
14381 type_flags |= TYPE_FLAG_UNSIGNED;
14382 break;
14383 case DW_ATE_complex_float:
14384 code = TYPE_CODE_COMPLEX;
14385 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14386 break;
14387 case DW_ATE_decimal_float:
14388 code = TYPE_CODE_DECFLOAT;
14389 break;
14390 case DW_ATE_float:
14391 code = TYPE_CODE_FLT;
14392 break;
14393 case DW_ATE_signed:
14394 break;
14395 case DW_ATE_unsigned:
14396 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14397 if (cu->language == language_fortran
14398 && name
14399 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14400 code = TYPE_CODE_CHAR;
6ccb9162
UW
14401 break;
14402 case DW_ATE_signed_char:
6e70227d 14403 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14404 || cu->language == language_pascal
14405 || cu->language == language_fortran)
6ccb9162
UW
14406 code = TYPE_CODE_CHAR;
14407 break;
14408 case DW_ATE_unsigned_char:
868a0084 14409 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14410 || cu->language == language_pascal
14411 || cu->language == language_fortran)
6ccb9162
UW
14412 code = TYPE_CODE_CHAR;
14413 type_flags |= TYPE_FLAG_UNSIGNED;
14414 break;
75079b2b
TT
14415 case DW_ATE_UTF:
14416 /* We just treat this as an integer and then recognize the
14417 type by name elsewhere. */
14418 break;
14419
6ccb9162
UW
14420 default:
14421 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14422 dwarf_type_encoding_name (encoding));
14423 break;
c906108c 14424 }
6ccb9162 14425
0114d602
DJ
14426 type = init_type (code, size, type_flags, NULL, objfile);
14427 TYPE_NAME (type) = name;
6ccb9162
UW
14428 TYPE_TARGET_TYPE (type) = target_type;
14429
0114d602 14430 if (name && strcmp (name, "char") == 0)
876cecd0 14431 TYPE_NOSIGN (type) = 1;
0114d602 14432
f792889a 14433 return set_die_type (die, type, cu);
c906108c
SS
14434}
14435
80180f79
SA
14436/* Parse dwarf attribute if it's a block, reference or constant and put the
14437 resulting value of the attribute into struct bound_prop.
14438 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14439
14440static int
14441attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14442 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14443{
14444 struct dwarf2_property_baton *baton;
14445 struct obstack *obstack = &cu->objfile->objfile_obstack;
14446
14447 if (attr == NULL || prop == NULL)
14448 return 0;
14449
14450 if (attr_form_is_block (attr))
14451 {
14452 baton = obstack_alloc (obstack, sizeof (*baton));
14453 baton->referenced_type = NULL;
14454 baton->locexpr.per_cu = cu->per_cu;
14455 baton->locexpr.size = DW_BLOCK (attr)->size;
14456 baton->locexpr.data = DW_BLOCK (attr)->data;
14457 prop->data.baton = baton;
14458 prop->kind = PROP_LOCEXPR;
14459 gdb_assert (prop->data.baton != NULL);
14460 }
14461 else if (attr_form_is_ref (attr))
14462 {
14463 struct dwarf2_cu *target_cu = cu;
14464 struct die_info *target_die;
14465 struct attribute *target_attr;
14466
14467 target_die = follow_die_ref (die, attr, &target_cu);
14468 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14469 if (target_attr == NULL)
14470 return 0;
14471
14472 if (attr_form_is_section_offset (target_attr))
14473 {
14474 baton = obstack_alloc (obstack, sizeof (*baton));
14475 baton->referenced_type = die_type (target_die, target_cu);
14476 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14477 prop->data.baton = baton;
14478 prop->kind = PROP_LOCLIST;
14479 gdb_assert (prop->data.baton != NULL);
14480 }
14481 else if (attr_form_is_block (target_attr))
14482 {
14483 baton = obstack_alloc (obstack, sizeof (*baton));
14484 baton->referenced_type = die_type (target_die, target_cu);
14485 baton->locexpr.per_cu = cu->per_cu;
14486 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14487 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14488 prop->data.baton = baton;
14489 prop->kind = PROP_LOCEXPR;
14490 gdb_assert (prop->data.baton != NULL);
14491 }
14492 else
14493 {
14494 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14495 "dynamic property");
14496 return 0;
14497 }
14498 }
14499 else if (attr_form_is_constant (attr))
14500 {
14501 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14502 prop->kind = PROP_CONST;
14503 }
14504 else
14505 {
14506 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14507 dwarf2_name (die, cu));
14508 return 0;
14509 }
14510
14511 return 1;
14512}
14513
a02abb62
JB
14514/* Read the given DW_AT_subrange DIE. */
14515
f792889a 14516static struct type *
a02abb62
JB
14517read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14518{
4c9ad8c2 14519 struct type *base_type, *orig_base_type;
a02abb62
JB
14520 struct type *range_type;
14521 struct attribute *attr;
729efb13 14522 struct dynamic_prop low, high;
4fae6e18 14523 int low_default_is_valid;
c451ebe5 14524 int high_bound_is_count = 0;
15d034d0 14525 const char *name;
43bbcdc2 14526 LONGEST negative_mask;
e77813c8 14527
4c9ad8c2
TT
14528 orig_base_type = die_type (die, cu);
14529 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14530 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14531 creating the range type, but we use the result of check_typedef
14532 when examining properties of the type. */
14533 base_type = check_typedef (orig_base_type);
a02abb62 14534
7e314c57
JK
14535 /* The die_type call above may have already set the type for this DIE. */
14536 range_type = get_die_type (die, cu);
14537 if (range_type)
14538 return range_type;
14539
729efb13
SA
14540 low.kind = PROP_CONST;
14541 high.kind = PROP_CONST;
14542 high.data.const_val = 0;
14543
4fae6e18
JK
14544 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14545 omitting DW_AT_lower_bound. */
14546 switch (cu->language)
6e70227d 14547 {
4fae6e18
JK
14548 case language_c:
14549 case language_cplus:
729efb13 14550 low.data.const_val = 0;
4fae6e18
JK
14551 low_default_is_valid = 1;
14552 break;
14553 case language_fortran:
729efb13 14554 low.data.const_val = 1;
4fae6e18
JK
14555 low_default_is_valid = 1;
14556 break;
14557 case language_d:
14558 case language_java:
14559 case language_objc:
729efb13 14560 low.data.const_val = 0;
4fae6e18
JK
14561 low_default_is_valid = (cu->header.version >= 4);
14562 break;
14563 case language_ada:
14564 case language_m2:
14565 case language_pascal:
729efb13 14566 low.data.const_val = 1;
4fae6e18
JK
14567 low_default_is_valid = (cu->header.version >= 4);
14568 break;
14569 default:
729efb13 14570 low.data.const_val = 0;
4fae6e18
JK
14571 low_default_is_valid = 0;
14572 break;
a02abb62
JB
14573 }
14574
dd5e6932
DJ
14575 /* FIXME: For variable sized arrays either of these could be
14576 a variable rather than a constant value. We'll allow it,
14577 but we don't know how to handle it. */
e142c38c 14578 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14579 if (attr)
729efb13
SA
14580 low.data.const_val
14581 = dwarf2_get_attr_constant_value (attr, low.data.const_val);
4fae6e18
JK
14582 else if (!low_default_is_valid)
14583 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14584 "- DIE at 0x%x [in module %s]"),
4262abfb 14585 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14586
e142c38c 14587 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 14588 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
14589 {
14590 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 14591 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 14592 {
c451ebe5
SA
14593 /* If bounds are constant do the final calculation here. */
14594 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14595 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14596 else
14597 high_bound_is_count = 1;
c2ff108b 14598 }
e77813c8
PM
14599 }
14600
14601 /* Dwarf-2 specifications explicitly allows to create subrange types
14602 without specifying a base type.
14603 In that case, the base type must be set to the type of
14604 the lower bound, upper bound or count, in that order, if any of these
14605 three attributes references an object that has a type.
14606 If no base type is found, the Dwarf-2 specifications say that
14607 a signed integer type of size equal to the size of an address should
14608 be used.
14609 For the following C code: `extern char gdb_int [];'
14610 GCC produces an empty range DIE.
14611 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 14612 high bound or count are not yet handled by this code. */
e77813c8
PM
14613 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14614 {
14615 struct objfile *objfile = cu->objfile;
14616 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14617 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14618 struct type *int_type = objfile_type (objfile)->builtin_int;
14619
14620 /* Test "int", "long int", and "long long int" objfile types,
14621 and select the first one having a size above or equal to the
14622 architecture address size. */
14623 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14624 base_type = int_type;
14625 else
14626 {
14627 int_type = objfile_type (objfile)->builtin_long;
14628 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14629 base_type = int_type;
14630 else
14631 {
14632 int_type = objfile_type (objfile)->builtin_long_long;
14633 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14634 base_type = int_type;
14635 }
14636 }
14637 }
a02abb62 14638
dbb9c2b1
JB
14639 /* Normally, the DWARF producers are expected to use a signed
14640 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14641 But this is unfortunately not always the case, as witnessed
14642 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14643 is used instead. To work around that ambiguity, we treat
14644 the bounds as signed, and thus sign-extend their values, when
14645 the base type is signed. */
6e70227d 14646 negative_mask =
43bbcdc2 14647 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
729efb13
SA
14648 if (low.kind == PROP_CONST
14649 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14650 low.data.const_val |= negative_mask;
14651 if (high.kind == PROP_CONST
14652 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14653 high.data.const_val |= negative_mask;
43bbcdc2 14654
729efb13 14655 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 14656
c451ebe5
SA
14657 if (high_bound_is_count)
14658 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14659
c2ff108b
JK
14660 /* Ada expects an empty array on no boundary attributes. */
14661 if (attr == NULL && cu->language != language_ada)
729efb13 14662 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 14663
39cbfefa
DJ
14664 name = dwarf2_name (die, cu);
14665 if (name)
14666 TYPE_NAME (range_type) = name;
6e70227d 14667
e142c38c 14668 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
14669 if (attr)
14670 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14671
7e314c57
JK
14672 set_die_type (die, range_type, cu);
14673
14674 /* set_die_type should be already done. */
b4ba55a1
JB
14675 set_descriptive_type (range_type, die, cu);
14676
7e314c57 14677 return range_type;
a02abb62 14678}
6e70227d 14679
f792889a 14680static struct type *
81a17f79
JB
14681read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14682{
14683 struct type *type;
81a17f79 14684
81a17f79
JB
14685 /* For now, we only support the C meaning of an unspecified type: void. */
14686
0114d602
DJ
14687 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14688 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 14689
f792889a 14690 return set_die_type (die, type, cu);
81a17f79 14691}
a02abb62 14692
639d11d3
DC
14693/* Read a single die and all its descendents. Set the die's sibling
14694 field to NULL; set other fields in the die correctly, and set all
14695 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14696 location of the info_ptr after reading all of those dies. PARENT
14697 is the parent of the die in question. */
14698
14699static struct die_info *
dee91e82 14700read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
14701 const gdb_byte *info_ptr,
14702 const gdb_byte **new_info_ptr,
dee91e82 14703 struct die_info *parent)
639d11d3
DC
14704{
14705 struct die_info *die;
d521ce57 14706 const gdb_byte *cur_ptr;
639d11d3
DC
14707 int has_children;
14708
bf6af496 14709 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
14710 if (die == NULL)
14711 {
14712 *new_info_ptr = cur_ptr;
14713 return NULL;
14714 }
93311388 14715 store_in_ref_table (die, reader->cu);
639d11d3
DC
14716
14717 if (has_children)
bf6af496 14718 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
14719 else
14720 {
14721 die->child = NULL;
14722 *new_info_ptr = cur_ptr;
14723 }
14724
14725 die->sibling = NULL;
14726 die->parent = parent;
14727 return die;
14728}
14729
14730/* Read a die, all of its descendents, and all of its siblings; set
14731 all of the fields of all of the dies correctly. Arguments are as
14732 in read_die_and_children. */
14733
14734static struct die_info *
bf6af496 14735read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
14736 const gdb_byte *info_ptr,
14737 const gdb_byte **new_info_ptr,
bf6af496 14738 struct die_info *parent)
639d11d3
DC
14739{
14740 struct die_info *first_die, *last_sibling;
d521ce57 14741 const gdb_byte *cur_ptr;
639d11d3 14742
c906108c 14743 cur_ptr = info_ptr;
639d11d3
DC
14744 first_die = last_sibling = NULL;
14745
14746 while (1)
c906108c 14747 {
639d11d3 14748 struct die_info *die
dee91e82 14749 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 14750
1d325ec1 14751 if (die == NULL)
c906108c 14752 {
639d11d3
DC
14753 *new_info_ptr = cur_ptr;
14754 return first_die;
c906108c 14755 }
1d325ec1
DJ
14756
14757 if (!first_die)
14758 first_die = die;
c906108c 14759 else
1d325ec1
DJ
14760 last_sibling->sibling = die;
14761
14762 last_sibling = die;
c906108c 14763 }
c906108c
SS
14764}
14765
bf6af496
DE
14766/* Read a die, all of its descendents, and all of its siblings; set
14767 all of the fields of all of the dies correctly. Arguments are as
14768 in read_die_and_children.
14769 This the main entry point for reading a DIE and all its children. */
14770
14771static struct die_info *
14772read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
14773 const gdb_byte *info_ptr,
14774 const gdb_byte **new_info_ptr,
bf6af496
DE
14775 struct die_info *parent)
14776{
14777 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14778 new_info_ptr, parent);
14779
14780 if (dwarf2_die_debug)
14781 {
14782 fprintf_unfiltered (gdb_stdlog,
14783 "Read die from %s@0x%x of %s:\n",
a32a8923 14784 get_section_name (reader->die_section),
bf6af496
DE
14785 (unsigned) (info_ptr - reader->die_section->buffer),
14786 bfd_get_filename (reader->abfd));
14787 dump_die (die, dwarf2_die_debug);
14788 }
14789
14790 return die;
14791}
14792
3019eac3
DE
14793/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14794 attributes.
14795 The caller is responsible for filling in the extra attributes
14796 and updating (*DIEP)->num_attrs.
14797 Set DIEP to point to a newly allocated die with its information,
14798 except for its child, sibling, and parent fields.
14799 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 14800
d521ce57 14801static const gdb_byte *
3019eac3 14802read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 14803 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 14804 int *has_children, int num_extra_attrs)
93311388 14805{
b64f50a1
JK
14806 unsigned int abbrev_number, bytes_read, i;
14807 sect_offset offset;
93311388
DE
14808 struct abbrev_info *abbrev;
14809 struct die_info *die;
14810 struct dwarf2_cu *cu = reader->cu;
14811 bfd *abfd = reader->abfd;
14812
b64f50a1 14813 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
14814 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14815 info_ptr += bytes_read;
14816 if (!abbrev_number)
14817 {
14818 *diep = NULL;
14819 *has_children = 0;
14820 return info_ptr;
14821 }
14822
433df2d4 14823 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 14824 if (!abbrev)
348e048f
DE
14825 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14826 abbrev_number,
14827 bfd_get_filename (abfd));
14828
3019eac3 14829 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
14830 die->offset = offset;
14831 die->tag = abbrev->tag;
14832 die->abbrev = abbrev_number;
14833
3019eac3
DE
14834 /* Make the result usable.
14835 The caller needs to update num_attrs after adding the extra
14836 attributes. */
93311388
DE
14837 die->num_attrs = abbrev->num_attrs;
14838
14839 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
14840 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14841 info_ptr);
93311388
DE
14842
14843 *diep = die;
14844 *has_children = abbrev->has_children;
14845 return info_ptr;
14846}
14847
3019eac3
DE
14848/* Read a die and all its attributes.
14849 Set DIEP to point to a newly allocated die with its information,
14850 except for its child, sibling, and parent fields.
14851 Set HAS_CHILDREN to tell whether the die has children or not. */
14852
d521ce57 14853static const gdb_byte *
3019eac3 14854read_full_die (const struct die_reader_specs *reader,
d521ce57 14855 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
14856 int *has_children)
14857{
d521ce57 14858 const gdb_byte *result;
bf6af496
DE
14859
14860 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14861
14862 if (dwarf2_die_debug)
14863 {
14864 fprintf_unfiltered (gdb_stdlog,
14865 "Read die from %s@0x%x of %s:\n",
a32a8923 14866 get_section_name (reader->die_section),
bf6af496
DE
14867 (unsigned) (info_ptr - reader->die_section->buffer),
14868 bfd_get_filename (reader->abfd));
14869 dump_die (*diep, dwarf2_die_debug);
14870 }
14871
14872 return result;
3019eac3 14873}
433df2d4
DE
14874\f
14875/* Abbreviation tables.
3019eac3 14876
433df2d4 14877 In DWARF version 2, the description of the debugging information is
c906108c
SS
14878 stored in a separate .debug_abbrev section. Before we read any
14879 dies from a section we read in all abbreviations and install them
433df2d4
DE
14880 in a hash table. */
14881
14882/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14883
14884static struct abbrev_info *
14885abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14886{
14887 struct abbrev_info *abbrev;
14888
14889 abbrev = (struct abbrev_info *)
14890 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14891 memset (abbrev, 0, sizeof (struct abbrev_info));
14892 return abbrev;
14893}
14894
14895/* Add an abbreviation to the table. */
c906108c
SS
14896
14897static void
433df2d4
DE
14898abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
14899 unsigned int abbrev_number,
14900 struct abbrev_info *abbrev)
14901{
14902 unsigned int hash_number;
14903
14904 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14905 abbrev->next = abbrev_table->abbrevs[hash_number];
14906 abbrev_table->abbrevs[hash_number] = abbrev;
14907}
dee91e82 14908
433df2d4
DE
14909/* Look up an abbrev in the table.
14910 Returns NULL if the abbrev is not found. */
14911
14912static struct abbrev_info *
14913abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
14914 unsigned int abbrev_number)
c906108c 14915{
433df2d4
DE
14916 unsigned int hash_number;
14917 struct abbrev_info *abbrev;
14918
14919 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14920 abbrev = abbrev_table->abbrevs[hash_number];
14921
14922 while (abbrev)
14923 {
14924 if (abbrev->number == abbrev_number)
14925 return abbrev;
14926 abbrev = abbrev->next;
14927 }
14928 return NULL;
14929}
14930
14931/* Read in an abbrev table. */
14932
14933static struct abbrev_table *
14934abbrev_table_read_table (struct dwarf2_section_info *section,
14935 sect_offset offset)
14936{
14937 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 14938 bfd *abfd = get_section_bfd_owner (section);
433df2d4 14939 struct abbrev_table *abbrev_table;
d521ce57 14940 const gdb_byte *abbrev_ptr;
c906108c
SS
14941 struct abbrev_info *cur_abbrev;
14942 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 14943 unsigned int abbrev_form;
f3dd6933
DJ
14944 struct attr_abbrev *cur_attrs;
14945 unsigned int allocated_attrs;
c906108c 14946
70ba0933 14947 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 14948 abbrev_table->offset = offset;
433df2d4
DE
14949 obstack_init (&abbrev_table->abbrev_obstack);
14950 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
14951 (ABBREV_HASH_SIZE
14952 * sizeof (struct abbrev_info *)));
14953 memset (abbrev_table->abbrevs, 0,
14954 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 14955
433df2d4
DE
14956 dwarf2_read_section (objfile, section);
14957 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
14958 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14959 abbrev_ptr += bytes_read;
14960
f3dd6933
DJ
14961 allocated_attrs = ATTR_ALLOC_CHUNK;
14962 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 14963
0963b4bd 14964 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
14965 while (abbrev_number)
14966 {
433df2d4 14967 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
14968
14969 /* read in abbrev header */
14970 cur_abbrev->number = abbrev_number;
14971 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14972 abbrev_ptr += bytes_read;
14973 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
14974 abbrev_ptr += 1;
14975
14976 /* now read in declarations */
14977 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14978 abbrev_ptr += bytes_read;
14979 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14980 abbrev_ptr += bytes_read;
14981 while (abbrev_name)
14982 {
f3dd6933 14983 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 14984 {
f3dd6933
DJ
14985 allocated_attrs += ATTR_ALLOC_CHUNK;
14986 cur_attrs
14987 = xrealloc (cur_attrs, (allocated_attrs
14988 * sizeof (struct attr_abbrev)));
c906108c 14989 }
ae038cb0 14990
f3dd6933
DJ
14991 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
14992 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
14993 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14994 abbrev_ptr += bytes_read;
14995 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14996 abbrev_ptr += bytes_read;
14997 }
14998
433df2d4 14999 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
15000 (cur_abbrev->num_attrs
15001 * sizeof (struct attr_abbrev)));
15002 memcpy (cur_abbrev->attrs, cur_attrs,
15003 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15004
433df2d4 15005 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15006
15007 /* Get next abbreviation.
15008 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15009 always properly terminated with an abbrev number of 0.
15010 Exit loop if we encounter an abbreviation which we have
15011 already read (which means we are about to read the abbreviations
15012 for the next compile unit) or if the end of the abbreviation
15013 table is reached. */
433df2d4 15014 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15015 break;
15016 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15017 abbrev_ptr += bytes_read;
433df2d4 15018 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15019 break;
15020 }
f3dd6933
DJ
15021
15022 xfree (cur_attrs);
433df2d4 15023 return abbrev_table;
c906108c
SS
15024}
15025
433df2d4 15026/* Free the resources held by ABBREV_TABLE. */
c906108c 15027
c906108c 15028static void
433df2d4 15029abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15030{
433df2d4
DE
15031 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15032 xfree (abbrev_table);
c906108c
SS
15033}
15034
f4dc4d17
DE
15035/* Same as abbrev_table_free but as a cleanup.
15036 We pass in a pointer to the pointer to the table so that we can
15037 set the pointer to NULL when we're done. It also simplifies
15038 build_type_unit_groups. */
15039
15040static void
15041abbrev_table_free_cleanup (void *table_ptr)
15042{
15043 struct abbrev_table **abbrev_table_ptr = table_ptr;
15044
15045 if (*abbrev_table_ptr != NULL)
15046 abbrev_table_free (*abbrev_table_ptr);
15047 *abbrev_table_ptr = NULL;
15048}
15049
433df2d4
DE
15050/* Read the abbrev table for CU from ABBREV_SECTION. */
15051
15052static void
15053dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15054 struct dwarf2_section_info *abbrev_section)
c906108c 15055{
433df2d4
DE
15056 cu->abbrev_table =
15057 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15058}
c906108c 15059
433df2d4 15060/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15061
433df2d4
DE
15062static void
15063dwarf2_free_abbrev_table (void *ptr_to_cu)
15064{
15065 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 15066
a2ce51a0
DE
15067 if (cu->abbrev_table != NULL)
15068 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15069 /* Set this to NULL so that we SEGV if we try to read it later,
15070 and also because free_comp_unit verifies this is NULL. */
15071 cu->abbrev_table = NULL;
15072}
15073\f
72bf9492
DJ
15074/* Returns nonzero if TAG represents a type that we might generate a partial
15075 symbol for. */
15076
15077static int
15078is_type_tag_for_partial (int tag)
15079{
15080 switch (tag)
15081 {
15082#if 0
15083 /* Some types that would be reasonable to generate partial symbols for,
15084 that we don't at present. */
15085 case DW_TAG_array_type:
15086 case DW_TAG_file_type:
15087 case DW_TAG_ptr_to_member_type:
15088 case DW_TAG_set_type:
15089 case DW_TAG_string_type:
15090 case DW_TAG_subroutine_type:
15091#endif
15092 case DW_TAG_base_type:
15093 case DW_TAG_class_type:
680b30c7 15094 case DW_TAG_interface_type:
72bf9492
DJ
15095 case DW_TAG_enumeration_type:
15096 case DW_TAG_structure_type:
15097 case DW_TAG_subrange_type:
15098 case DW_TAG_typedef:
15099 case DW_TAG_union_type:
15100 return 1;
15101 default:
15102 return 0;
15103 }
15104}
15105
15106/* Load all DIEs that are interesting for partial symbols into memory. */
15107
15108static struct partial_die_info *
dee91e82 15109load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15110 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15111{
dee91e82 15112 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15113 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15114 struct partial_die_info *part_die;
15115 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15116 struct abbrev_info *abbrev;
15117 unsigned int bytes_read;
5afb4e99 15118 unsigned int load_all = 0;
72bf9492
DJ
15119 int nesting_level = 1;
15120
15121 parent_die = NULL;
15122 last_die = NULL;
15123
7adf1e79
DE
15124 gdb_assert (cu->per_cu != NULL);
15125 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15126 load_all = 1;
15127
72bf9492
DJ
15128 cu->partial_dies
15129 = htab_create_alloc_ex (cu->header.length / 12,
15130 partial_die_hash,
15131 partial_die_eq,
15132 NULL,
15133 &cu->comp_unit_obstack,
15134 hashtab_obstack_allocate,
15135 dummy_obstack_deallocate);
15136
15137 part_die = obstack_alloc (&cu->comp_unit_obstack,
15138 sizeof (struct partial_die_info));
15139
15140 while (1)
15141 {
15142 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15143
15144 /* A NULL abbrev means the end of a series of children. */
15145 if (abbrev == NULL)
15146 {
15147 if (--nesting_level == 0)
15148 {
15149 /* PART_DIE was probably the last thing allocated on the
15150 comp_unit_obstack, so we could call obstack_free
15151 here. We don't do that because the waste is small,
15152 and will be cleaned up when we're done with this
15153 compilation unit. This way, we're also more robust
15154 against other users of the comp_unit_obstack. */
15155 return first_die;
15156 }
15157 info_ptr += bytes_read;
15158 last_die = parent_die;
15159 parent_die = parent_die->die_parent;
15160 continue;
15161 }
15162
98bfdba5
PA
15163 /* Check for template arguments. We never save these; if
15164 they're seen, we just mark the parent, and go on our way. */
15165 if (parent_die != NULL
15166 && cu->language == language_cplus
15167 && (abbrev->tag == DW_TAG_template_type_param
15168 || abbrev->tag == DW_TAG_template_value_param))
15169 {
15170 parent_die->has_template_arguments = 1;
15171
15172 if (!load_all)
15173 {
15174 /* We don't need a partial DIE for the template argument. */
dee91e82 15175 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15176 continue;
15177 }
15178 }
15179
0d99eb77 15180 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15181 Skip their other children. */
15182 if (!load_all
15183 && cu->language == language_cplus
15184 && parent_die != NULL
15185 && parent_die->tag == DW_TAG_subprogram)
15186 {
dee91e82 15187 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15188 continue;
15189 }
15190
5afb4e99
DJ
15191 /* Check whether this DIE is interesting enough to save. Normally
15192 we would not be interested in members here, but there may be
15193 later variables referencing them via DW_AT_specification (for
15194 static members). */
15195 if (!load_all
15196 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15197 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15198 && abbrev->tag != DW_TAG_enumerator
15199 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15200 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15201 && abbrev->tag != DW_TAG_variable
5afb4e99 15202 && abbrev->tag != DW_TAG_namespace
f55ee35c 15203 && abbrev->tag != DW_TAG_module
95554aad 15204 && abbrev->tag != DW_TAG_member
74921315
KS
15205 && abbrev->tag != DW_TAG_imported_unit
15206 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15207 {
15208 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15209 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15210 continue;
15211 }
15212
dee91e82
DE
15213 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15214 info_ptr);
72bf9492
DJ
15215
15216 /* This two-pass algorithm for processing partial symbols has a
15217 high cost in cache pressure. Thus, handle some simple cases
15218 here which cover the majority of C partial symbols. DIEs
15219 which neither have specification tags in them, nor could have
15220 specification tags elsewhere pointing at them, can simply be
15221 processed and discarded.
15222
15223 This segment is also optional; scan_partial_symbols and
15224 add_partial_symbol will handle these DIEs if we chain
15225 them in normally. When compilers which do not emit large
15226 quantities of duplicate debug information are more common,
15227 this code can probably be removed. */
15228
15229 /* Any complete simple types at the top level (pretty much all
15230 of them, for a language without namespaces), can be processed
15231 directly. */
15232 if (parent_die == NULL
15233 && part_die->has_specification == 0
15234 && part_die->is_declaration == 0
d8228535 15235 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15236 || part_die->tag == DW_TAG_base_type
15237 || part_die->tag == DW_TAG_subrange_type))
15238 {
15239 if (building_psymtab && part_die->name != NULL)
04a679b8 15240 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15241 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
15242 &objfile->static_psymbols,
15243 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 15244 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15245 continue;
15246 }
15247
d8228535
JK
15248 /* The exception for DW_TAG_typedef with has_children above is
15249 a workaround of GCC PR debug/47510. In the case of this complaint
15250 type_name_no_tag_or_error will error on such types later.
15251
15252 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15253 it could not find the child DIEs referenced later, this is checked
15254 above. In correct DWARF DW_TAG_typedef should have no children. */
15255
15256 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15257 complaint (&symfile_complaints,
15258 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15259 "- DIE at 0x%x [in module %s]"),
4262abfb 15260 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15261
72bf9492
DJ
15262 /* If we're at the second level, and we're an enumerator, and
15263 our parent has no specification (meaning possibly lives in a
15264 namespace elsewhere), then we can add the partial symbol now
15265 instead of queueing it. */
15266 if (part_die->tag == DW_TAG_enumerator
15267 && parent_die != NULL
15268 && parent_die->die_parent == NULL
15269 && parent_die->tag == DW_TAG_enumeration_type
15270 && parent_die->has_specification == 0)
15271 {
15272 if (part_die->name == NULL)
3e43a32a
MS
15273 complaint (&symfile_complaints,
15274 _("malformed enumerator DIE ignored"));
72bf9492 15275 else if (building_psymtab)
04a679b8 15276 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15277 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15278 (cu->language == language_cplus
15279 || cu->language == language_java)
bb5ed363
DE
15280 ? &objfile->global_psymbols
15281 : &objfile->static_psymbols,
15282 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 15283
dee91e82 15284 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15285 continue;
15286 }
15287
15288 /* We'll save this DIE so link it in. */
15289 part_die->die_parent = parent_die;
15290 part_die->die_sibling = NULL;
15291 part_die->die_child = NULL;
15292
15293 if (last_die && last_die == parent_die)
15294 last_die->die_child = part_die;
15295 else if (last_die)
15296 last_die->die_sibling = part_die;
15297
15298 last_die = part_die;
15299
15300 if (first_die == NULL)
15301 first_die = part_die;
15302
15303 /* Maybe add the DIE to the hash table. Not all DIEs that we
15304 find interesting need to be in the hash table, because we
15305 also have the parent/sibling/child chains; only those that we
15306 might refer to by offset later during partial symbol reading.
15307
15308 For now this means things that might have be the target of a
15309 DW_AT_specification, DW_AT_abstract_origin, or
15310 DW_AT_extension. DW_AT_extension will refer only to
15311 namespaces; DW_AT_abstract_origin refers to functions (and
15312 many things under the function DIE, but we do not recurse
15313 into function DIEs during partial symbol reading) and
15314 possibly variables as well; DW_AT_specification refers to
15315 declarations. Declarations ought to have the DW_AT_declaration
15316 flag. It happens that GCC forgets to put it in sometimes, but
15317 only for functions, not for types.
15318
15319 Adding more things than necessary to the hash table is harmless
15320 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15321 wasted time in find_partial_die, when we reread the compilation
15322 unit with load_all_dies set. */
72bf9492 15323
5afb4e99 15324 if (load_all
72929c62 15325 || abbrev->tag == DW_TAG_constant
5afb4e99 15326 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15327 || abbrev->tag == DW_TAG_variable
15328 || abbrev->tag == DW_TAG_namespace
15329 || part_die->is_declaration)
15330 {
15331 void **slot;
15332
15333 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15334 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15335 *slot = part_die;
15336 }
15337
15338 part_die = obstack_alloc (&cu->comp_unit_obstack,
15339 sizeof (struct partial_die_info));
15340
15341 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15342 we have no reason to follow the children of structures; for other
98bfdba5
PA
15343 languages we have to, so that we can get at method physnames
15344 to infer fully qualified class names, for DW_AT_specification,
15345 and for C++ template arguments. For C++, we also look one level
15346 inside functions to find template arguments (if the name of the
15347 function does not already contain the template arguments).
bc30ff58
JB
15348
15349 For Ada, we need to scan the children of subprograms and lexical
15350 blocks as well because Ada allows the definition of nested
15351 entities that could be interesting for the debugger, such as
15352 nested subprograms for instance. */
72bf9492 15353 if (last_die->has_children
5afb4e99
DJ
15354 && (load_all
15355 || last_die->tag == DW_TAG_namespace
f55ee35c 15356 || last_die->tag == DW_TAG_module
72bf9492 15357 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15358 || (cu->language == language_cplus
15359 && last_die->tag == DW_TAG_subprogram
15360 && (last_die->name == NULL
15361 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15362 || (cu->language != language_c
15363 && (last_die->tag == DW_TAG_class_type
680b30c7 15364 || last_die->tag == DW_TAG_interface_type
72bf9492 15365 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15366 || last_die->tag == DW_TAG_union_type))
15367 || (cu->language == language_ada
15368 && (last_die->tag == DW_TAG_subprogram
15369 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15370 {
15371 nesting_level++;
15372 parent_die = last_die;
15373 continue;
15374 }
15375
15376 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15377 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15378
15379 /* Back to the top, do it again. */
15380 }
15381}
15382
c906108c
SS
15383/* Read a minimal amount of information into the minimal die structure. */
15384
d521ce57 15385static const gdb_byte *
dee91e82
DE
15386read_partial_die (const struct die_reader_specs *reader,
15387 struct partial_die_info *part_die,
15388 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15389 const gdb_byte *info_ptr)
c906108c 15390{
dee91e82 15391 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15392 struct objfile *objfile = cu->objfile;
d521ce57 15393 const gdb_byte *buffer = reader->buffer;
fa238c03 15394 unsigned int i;
c906108c 15395 struct attribute attr;
c5aa993b 15396 int has_low_pc_attr = 0;
c906108c 15397 int has_high_pc_attr = 0;
91da1414 15398 int high_pc_relative = 0;
c906108c 15399
72bf9492 15400 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15401
b64f50a1 15402 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15403
15404 info_ptr += abbrev_len;
15405
15406 if (abbrev == NULL)
15407 return info_ptr;
15408
c906108c
SS
15409 part_die->tag = abbrev->tag;
15410 part_die->has_children = abbrev->has_children;
c906108c
SS
15411
15412 for (i = 0; i < abbrev->num_attrs; ++i)
15413 {
dee91e82 15414 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15415
15416 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15417 partial symbol table. */
c906108c
SS
15418 switch (attr.name)
15419 {
15420 case DW_AT_name:
71c25dea
TT
15421 switch (part_die->tag)
15422 {
15423 case DW_TAG_compile_unit:
95554aad 15424 case DW_TAG_partial_unit:
348e048f 15425 case DW_TAG_type_unit:
71c25dea
TT
15426 /* Compilation units have a DW_AT_name that is a filename, not
15427 a source language identifier. */
15428 case DW_TAG_enumeration_type:
15429 case DW_TAG_enumerator:
15430 /* These tags always have simple identifiers already; no need
15431 to canonicalize them. */
15432 part_die->name = DW_STRING (&attr);
15433 break;
15434 default:
15435 part_die->name
15436 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
bb5ed363 15437 &objfile->objfile_obstack);
71c25dea
TT
15438 break;
15439 }
c906108c 15440 break;
31ef98ae 15441 case DW_AT_linkage_name:
c906108c 15442 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15443 /* Note that both forms of linkage name might appear. We
15444 assume they will be the same, and we only store the last
15445 one we see. */
94af9270
KS
15446 if (cu->language == language_ada)
15447 part_die->name = DW_STRING (&attr);
abc72ce4 15448 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15449 break;
15450 case DW_AT_low_pc:
15451 has_low_pc_attr = 1;
31aa7e4e 15452 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15453 break;
15454 case DW_AT_high_pc:
15455 has_high_pc_attr = 1;
31aa7e4e
JB
15456 part_die->highpc = attr_value_as_address (&attr);
15457 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15458 high_pc_relative = 1;
c906108c
SS
15459 break;
15460 case DW_AT_location:
0963b4bd 15461 /* Support the .debug_loc offsets. */
8e19ed76
PS
15462 if (attr_form_is_block (&attr))
15463 {
95554aad 15464 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15465 }
3690dd37 15466 else if (attr_form_is_section_offset (&attr))
8e19ed76 15467 {
4d3c2250 15468 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15469 }
15470 else
15471 {
4d3c2250
KB
15472 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15473 "partial symbol information");
8e19ed76 15474 }
c906108c 15475 break;
c906108c
SS
15476 case DW_AT_external:
15477 part_die->is_external = DW_UNSND (&attr);
15478 break;
15479 case DW_AT_declaration:
15480 part_die->is_declaration = DW_UNSND (&attr);
15481 break;
15482 case DW_AT_type:
15483 part_die->has_type = 1;
15484 break;
15485 case DW_AT_abstract_origin:
15486 case DW_AT_specification:
72bf9492
DJ
15487 case DW_AT_extension:
15488 part_die->has_specification = 1;
c764a876 15489 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15490 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15491 || cu->per_cu->is_dwz);
c906108c
SS
15492 break;
15493 case DW_AT_sibling:
15494 /* Ignore absolute siblings, they might point outside of
15495 the current compile unit. */
15496 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15497 complaint (&symfile_complaints,
15498 _("ignoring absolute DW_AT_sibling"));
c906108c 15499 else
b9502d3f
WN
15500 {
15501 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15502 const gdb_byte *sibling_ptr = buffer + off;
15503
15504 if (sibling_ptr < info_ptr)
15505 complaint (&symfile_complaints,
15506 _("DW_AT_sibling points backwards"));
22869d73
KS
15507 else if (sibling_ptr > reader->buffer_end)
15508 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15509 else
15510 part_die->sibling = sibling_ptr;
15511 }
c906108c 15512 break;
fa4028e9
JB
15513 case DW_AT_byte_size:
15514 part_die->has_byte_size = 1;
15515 break;
68511cec
CES
15516 case DW_AT_calling_convention:
15517 /* DWARF doesn't provide a way to identify a program's source-level
15518 entry point. DW_AT_calling_convention attributes are only meant
15519 to describe functions' calling conventions.
15520
15521 However, because it's a necessary piece of information in
15522 Fortran, and because DW_CC_program is the only piece of debugging
15523 information whose definition refers to a 'main program' at all,
15524 several compilers have begun marking Fortran main programs with
15525 DW_CC_program --- even when those functions use the standard
15526 calling conventions.
15527
15528 So until DWARF specifies a way to provide this information and
15529 compilers pick up the new representation, we'll support this
15530 practice. */
15531 if (DW_UNSND (&attr) == DW_CC_program
15532 && cu->language == language_fortran)
3d548a53 15533 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15534 break;
481860b3
GB
15535 case DW_AT_inline:
15536 if (DW_UNSND (&attr) == DW_INL_inlined
15537 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15538 part_die->may_be_inlined = 1;
15539 break;
95554aad
TT
15540
15541 case DW_AT_import:
15542 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15543 {
15544 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15545 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15546 || cu->per_cu->is_dwz);
15547 }
95554aad
TT
15548 break;
15549
c906108c
SS
15550 default:
15551 break;
15552 }
15553 }
15554
91da1414
MW
15555 if (high_pc_relative)
15556 part_die->highpc += part_die->lowpc;
15557
9373cf26
JK
15558 if (has_low_pc_attr && has_high_pc_attr)
15559 {
15560 /* When using the GNU linker, .gnu.linkonce. sections are used to
15561 eliminate duplicate copies of functions and vtables and such.
15562 The linker will arbitrarily choose one and discard the others.
15563 The AT_*_pc values for such functions refer to local labels in
15564 these sections. If the section from that file was discarded, the
15565 labels are not in the output, so the relocs get a value of 0.
15566 If this is a discarded function, mark the pc bounds as invalid,
15567 so that GDB will ignore it. */
15568 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15569 {
bb5ed363 15570 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15571
15572 complaint (&symfile_complaints,
15573 _("DW_AT_low_pc %s is zero "
15574 "for DIE at 0x%x [in module %s]"),
15575 paddress (gdbarch, part_die->lowpc),
4262abfb 15576 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15577 }
15578 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15579 else if (part_die->lowpc >= part_die->highpc)
15580 {
bb5ed363 15581 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15582
15583 complaint (&symfile_complaints,
15584 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15585 "for DIE at 0x%x [in module %s]"),
15586 paddress (gdbarch, part_die->lowpc),
15587 paddress (gdbarch, part_die->highpc),
4262abfb 15588 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15589 }
15590 else
15591 part_die->has_pc_info = 1;
15592 }
85cbf3d3 15593
c906108c
SS
15594 return info_ptr;
15595}
15596
72bf9492
DJ
15597/* Find a cached partial DIE at OFFSET in CU. */
15598
15599static struct partial_die_info *
b64f50a1 15600find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
15601{
15602 struct partial_die_info *lookup_die = NULL;
15603 struct partial_die_info part_die;
15604
15605 part_die.offset = offset;
b64f50a1
JK
15606 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15607 offset.sect_off);
72bf9492 15608
72bf9492
DJ
15609 return lookup_die;
15610}
15611
348e048f
DE
15612/* Find a partial DIE at OFFSET, which may or may not be in CU,
15613 except in the case of .debug_types DIEs which do not reference
15614 outside their CU (they do however referencing other types via
55f1336d 15615 DW_FORM_ref_sig8). */
72bf9492
DJ
15616
15617static struct partial_die_info *
36586728 15618find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 15619{
bb5ed363 15620 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
15621 struct dwarf2_per_cu_data *per_cu = NULL;
15622 struct partial_die_info *pd = NULL;
72bf9492 15623
36586728
TT
15624 if (offset_in_dwz == cu->per_cu->is_dwz
15625 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
15626 {
15627 pd = find_partial_die_in_comp_unit (offset, cu);
15628 if (pd != NULL)
15629 return pd;
0d99eb77
DE
15630 /* We missed recording what we needed.
15631 Load all dies and try again. */
15632 per_cu = cu->per_cu;
5afb4e99 15633 }
0d99eb77
DE
15634 else
15635 {
15636 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 15637 if (cu->per_cu->is_debug_types)
0d99eb77
DE
15638 {
15639 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15640 " external reference to offset 0x%lx [in module %s].\n"),
15641 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15642 bfd_get_filename (objfile->obfd));
15643 }
36586728
TT
15644 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15645 objfile);
72bf9492 15646
0d99eb77
DE
15647 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15648 load_partial_comp_unit (per_cu);
ae038cb0 15649
0d99eb77
DE
15650 per_cu->cu->last_used = 0;
15651 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15652 }
5afb4e99 15653
dee91e82
DE
15654 /* If we didn't find it, and not all dies have been loaded,
15655 load them all and try again. */
15656
5afb4e99
DJ
15657 if (pd == NULL && per_cu->load_all_dies == 0)
15658 {
5afb4e99 15659 per_cu->load_all_dies = 1;
fd820528
DE
15660
15661 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15662 THIS_CU->cu may already be in use. So we can't just free it and
15663 replace its DIEs with the ones we read in. Instead, we leave those
15664 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15665 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15666 set. */
dee91e82 15667 load_partial_comp_unit (per_cu);
5afb4e99
DJ
15668
15669 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15670 }
15671
15672 if (pd == NULL)
15673 internal_error (__FILE__, __LINE__,
3e43a32a
MS
15674 _("could not find partial DIE 0x%x "
15675 "in cache [from module %s]\n"),
b64f50a1 15676 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 15677 return pd;
72bf9492
DJ
15678}
15679
abc72ce4
DE
15680/* See if we can figure out if the class lives in a namespace. We do
15681 this by looking for a member function; its demangled name will
15682 contain namespace info, if there is any. */
15683
15684static void
15685guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15686 struct dwarf2_cu *cu)
15687{
15688 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15689 what template types look like, because the demangler
15690 frequently doesn't give the same name as the debug info. We
15691 could fix this by only using the demangled name to get the
15692 prefix (but see comment in read_structure_type). */
15693
15694 struct partial_die_info *real_pdi;
15695 struct partial_die_info *child_pdi;
15696
15697 /* If this DIE (this DIE's specification, if any) has a parent, then
15698 we should not do this. We'll prepend the parent's fully qualified
15699 name when we create the partial symbol. */
15700
15701 real_pdi = struct_pdi;
15702 while (real_pdi->has_specification)
36586728
TT
15703 real_pdi = find_partial_die (real_pdi->spec_offset,
15704 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
15705
15706 if (real_pdi->die_parent != NULL)
15707 return;
15708
15709 for (child_pdi = struct_pdi->die_child;
15710 child_pdi != NULL;
15711 child_pdi = child_pdi->die_sibling)
15712 {
15713 if (child_pdi->tag == DW_TAG_subprogram
15714 && child_pdi->linkage_name != NULL)
15715 {
15716 char *actual_class_name
15717 = language_class_name_from_physname (cu->language_defn,
15718 child_pdi->linkage_name);
15719 if (actual_class_name != NULL)
15720 {
15721 struct_pdi->name
10f0c4bb
TT
15722 = obstack_copy0 (&cu->objfile->objfile_obstack,
15723 actual_class_name,
15724 strlen (actual_class_name));
abc72ce4
DE
15725 xfree (actual_class_name);
15726 }
15727 break;
15728 }
15729 }
15730}
15731
72bf9492
DJ
15732/* Adjust PART_DIE before generating a symbol for it. This function
15733 may set the is_external flag or change the DIE's name. */
15734
15735static void
15736fixup_partial_die (struct partial_die_info *part_die,
15737 struct dwarf2_cu *cu)
15738{
abc72ce4
DE
15739 /* Once we've fixed up a die, there's no point in doing so again.
15740 This also avoids a memory leak if we were to call
15741 guess_partial_die_structure_name multiple times. */
15742 if (part_die->fixup_called)
15743 return;
15744
72bf9492
DJ
15745 /* If we found a reference attribute and the DIE has no name, try
15746 to find a name in the referred to DIE. */
15747
15748 if (part_die->name == NULL && part_die->has_specification)
15749 {
15750 struct partial_die_info *spec_die;
72bf9492 15751
36586728
TT
15752 spec_die = find_partial_die (part_die->spec_offset,
15753 part_die->spec_is_dwz, cu);
72bf9492 15754
10b3939b 15755 fixup_partial_die (spec_die, cu);
72bf9492
DJ
15756
15757 if (spec_die->name)
15758 {
15759 part_die->name = spec_die->name;
15760
15761 /* Copy DW_AT_external attribute if it is set. */
15762 if (spec_die->is_external)
15763 part_die->is_external = spec_die->is_external;
15764 }
15765 }
15766
15767 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
15768
15769 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 15770 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 15771
abc72ce4
DE
15772 /* If there is no parent die to provide a namespace, and there are
15773 children, see if we can determine the namespace from their linkage
122d1940 15774 name. */
abc72ce4 15775 if (cu->language == language_cplus
8b70b953 15776 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
15777 && part_die->die_parent == NULL
15778 && part_die->has_children
15779 && (part_die->tag == DW_TAG_class_type
15780 || part_die->tag == DW_TAG_structure_type
15781 || part_die->tag == DW_TAG_union_type))
15782 guess_partial_die_structure_name (part_die, cu);
15783
53832f31
TT
15784 /* GCC might emit a nameless struct or union that has a linkage
15785 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15786 if (part_die->name == NULL
96408a79
SA
15787 && (part_die->tag == DW_TAG_class_type
15788 || part_die->tag == DW_TAG_interface_type
15789 || part_die->tag == DW_TAG_structure_type
15790 || part_die->tag == DW_TAG_union_type)
53832f31
TT
15791 && part_die->linkage_name != NULL)
15792 {
15793 char *demangled;
15794
8de20a37 15795 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
15796 if (demangled)
15797 {
96408a79
SA
15798 const char *base;
15799
15800 /* Strip any leading namespaces/classes, keep only the base name.
15801 DW_AT_name for named DIEs does not contain the prefixes. */
15802 base = strrchr (demangled, ':');
15803 if (base && base > demangled && base[-1] == ':')
15804 base++;
15805 else
15806 base = demangled;
15807
10f0c4bb
TT
15808 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
15809 base, strlen (base));
53832f31
TT
15810 xfree (demangled);
15811 }
15812 }
15813
abc72ce4 15814 part_die->fixup_called = 1;
72bf9492
DJ
15815}
15816
a8329558 15817/* Read an attribute value described by an attribute form. */
c906108c 15818
d521ce57 15819static const gdb_byte *
dee91e82
DE
15820read_attribute_value (const struct die_reader_specs *reader,
15821 struct attribute *attr, unsigned form,
d521ce57 15822 const gdb_byte *info_ptr)
c906108c 15823{
dee91e82
DE
15824 struct dwarf2_cu *cu = reader->cu;
15825 bfd *abfd = reader->abfd;
e7c27a73 15826 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
15827 unsigned int bytes_read;
15828 struct dwarf_block *blk;
15829
a8329558
KW
15830 attr->form = form;
15831 switch (form)
c906108c 15832 {
c906108c 15833 case DW_FORM_ref_addr:
ae411497 15834 if (cu->header.version == 2)
4568ecf9 15835 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 15836 else
4568ecf9
DE
15837 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15838 &cu->header, &bytes_read);
ae411497
TT
15839 info_ptr += bytes_read;
15840 break;
36586728
TT
15841 case DW_FORM_GNU_ref_alt:
15842 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15843 info_ptr += bytes_read;
15844 break;
ae411497 15845 case DW_FORM_addr:
e7c27a73 15846 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 15847 info_ptr += bytes_read;
c906108c
SS
15848 break;
15849 case DW_FORM_block2:
7b5a2f43 15850 blk = dwarf_alloc_block (cu);
c906108c
SS
15851 blk->size = read_2_bytes (abfd, info_ptr);
15852 info_ptr += 2;
15853 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15854 info_ptr += blk->size;
15855 DW_BLOCK (attr) = blk;
15856 break;
15857 case DW_FORM_block4:
7b5a2f43 15858 blk = dwarf_alloc_block (cu);
c906108c
SS
15859 blk->size = read_4_bytes (abfd, info_ptr);
15860 info_ptr += 4;
15861 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15862 info_ptr += blk->size;
15863 DW_BLOCK (attr) = blk;
15864 break;
15865 case DW_FORM_data2:
15866 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15867 info_ptr += 2;
15868 break;
15869 case DW_FORM_data4:
15870 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15871 info_ptr += 4;
15872 break;
15873 case DW_FORM_data8:
15874 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15875 info_ptr += 8;
15876 break;
2dc7f7b3
TT
15877 case DW_FORM_sec_offset:
15878 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15879 info_ptr += bytes_read;
15880 break;
c906108c 15881 case DW_FORM_string:
9b1c24c8 15882 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 15883 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
15884 info_ptr += bytes_read;
15885 break;
4bdf3d34 15886 case DW_FORM_strp:
36586728
TT
15887 if (!cu->per_cu->is_dwz)
15888 {
15889 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15890 &bytes_read);
15891 DW_STRING_IS_CANONICAL (attr) = 0;
15892 info_ptr += bytes_read;
15893 break;
15894 }
15895 /* FALLTHROUGH */
15896 case DW_FORM_GNU_strp_alt:
15897 {
15898 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15899 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
15900 &bytes_read);
15901
15902 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
15903 DW_STRING_IS_CANONICAL (attr) = 0;
15904 info_ptr += bytes_read;
15905 }
4bdf3d34 15906 break;
2dc7f7b3 15907 case DW_FORM_exprloc:
c906108c 15908 case DW_FORM_block:
7b5a2f43 15909 blk = dwarf_alloc_block (cu);
c906108c
SS
15910 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15911 info_ptr += bytes_read;
15912 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15913 info_ptr += blk->size;
15914 DW_BLOCK (attr) = blk;
15915 break;
15916 case DW_FORM_block1:
7b5a2f43 15917 blk = dwarf_alloc_block (cu);
c906108c
SS
15918 blk->size = read_1_byte (abfd, info_ptr);
15919 info_ptr += 1;
15920 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15921 info_ptr += blk->size;
15922 DW_BLOCK (attr) = blk;
15923 break;
15924 case DW_FORM_data1:
15925 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15926 info_ptr += 1;
15927 break;
15928 case DW_FORM_flag:
15929 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15930 info_ptr += 1;
15931 break;
2dc7f7b3
TT
15932 case DW_FORM_flag_present:
15933 DW_UNSND (attr) = 1;
15934 break;
c906108c
SS
15935 case DW_FORM_sdata:
15936 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
15937 info_ptr += bytes_read;
15938 break;
15939 case DW_FORM_udata:
15940 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15941 info_ptr += bytes_read;
15942 break;
15943 case DW_FORM_ref1:
4568ecf9
DE
15944 DW_UNSND (attr) = (cu->header.offset.sect_off
15945 + read_1_byte (abfd, info_ptr));
c906108c
SS
15946 info_ptr += 1;
15947 break;
15948 case DW_FORM_ref2:
4568ecf9
DE
15949 DW_UNSND (attr) = (cu->header.offset.sect_off
15950 + read_2_bytes (abfd, info_ptr));
c906108c
SS
15951 info_ptr += 2;
15952 break;
15953 case DW_FORM_ref4:
4568ecf9
DE
15954 DW_UNSND (attr) = (cu->header.offset.sect_off
15955 + read_4_bytes (abfd, info_ptr));
c906108c
SS
15956 info_ptr += 4;
15957 break;
613e1657 15958 case DW_FORM_ref8:
4568ecf9
DE
15959 DW_UNSND (attr) = (cu->header.offset.sect_off
15960 + read_8_bytes (abfd, info_ptr));
613e1657
KB
15961 info_ptr += 8;
15962 break;
55f1336d 15963 case DW_FORM_ref_sig8:
ac9ec31b 15964 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
15965 info_ptr += 8;
15966 break;
c906108c 15967 case DW_FORM_ref_udata:
4568ecf9
DE
15968 DW_UNSND (attr) = (cu->header.offset.sect_off
15969 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
15970 info_ptr += bytes_read;
15971 break;
c906108c 15972 case DW_FORM_indirect:
a8329558
KW
15973 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15974 info_ptr += bytes_read;
dee91e82 15975 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 15976 break;
3019eac3
DE
15977 case DW_FORM_GNU_addr_index:
15978 if (reader->dwo_file == NULL)
15979 {
15980 /* For now flag a hard error.
15981 Later we can turn this into a complaint. */
15982 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15983 dwarf_form_name (form),
15984 bfd_get_filename (abfd));
15985 }
15986 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
15987 info_ptr += bytes_read;
15988 break;
15989 case DW_FORM_GNU_str_index:
15990 if (reader->dwo_file == NULL)
15991 {
15992 /* For now flag a hard error.
15993 Later we can turn this into a complaint if warranted. */
15994 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15995 dwarf_form_name (form),
15996 bfd_get_filename (abfd));
15997 }
15998 {
15999 ULONGEST str_index =
16000 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16001
342587c4 16002 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16003 DW_STRING_IS_CANONICAL (attr) = 0;
16004 info_ptr += bytes_read;
16005 }
16006 break;
c906108c 16007 default:
8a3fe4f8 16008 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16009 dwarf_form_name (form),
16010 bfd_get_filename (abfd));
c906108c 16011 }
28e94949 16012
36586728 16013 /* Super hack. */
7771576e 16014 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16015 attr->form = DW_FORM_GNU_ref_alt;
16016
28e94949
JB
16017 /* We have seen instances where the compiler tried to emit a byte
16018 size attribute of -1 which ended up being encoded as an unsigned
16019 0xffffffff. Although 0xffffffff is technically a valid size value,
16020 an object of this size seems pretty unlikely so we can relatively
16021 safely treat these cases as if the size attribute was invalid and
16022 treat them as zero by default. */
16023 if (attr->name == DW_AT_byte_size
16024 && form == DW_FORM_data4
16025 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16026 {
16027 complaint
16028 (&symfile_complaints,
43bbcdc2
PH
16029 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16030 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16031 DW_UNSND (attr) = 0;
16032 }
28e94949 16033
c906108c
SS
16034 return info_ptr;
16035}
16036
a8329558
KW
16037/* Read an attribute described by an abbreviated attribute. */
16038
d521ce57 16039static const gdb_byte *
dee91e82
DE
16040read_attribute (const struct die_reader_specs *reader,
16041 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16042 const gdb_byte *info_ptr)
a8329558
KW
16043{
16044 attr->name = abbrev->name;
dee91e82 16045 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16046}
16047
0963b4bd 16048/* Read dwarf information from a buffer. */
c906108c
SS
16049
16050static unsigned int
a1855c1d 16051read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16052{
fe1b8b76 16053 return bfd_get_8 (abfd, buf);
c906108c
SS
16054}
16055
16056static int
a1855c1d 16057read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16058{
fe1b8b76 16059 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16060}
16061
16062static unsigned int
a1855c1d 16063read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16064{
fe1b8b76 16065 return bfd_get_16 (abfd, buf);
c906108c
SS
16066}
16067
21ae7a4d 16068static int
a1855c1d 16069read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16070{
16071 return bfd_get_signed_16 (abfd, buf);
16072}
16073
c906108c 16074static unsigned int
a1855c1d 16075read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16076{
fe1b8b76 16077 return bfd_get_32 (abfd, buf);
c906108c
SS
16078}
16079
21ae7a4d 16080static int
a1855c1d 16081read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16082{
16083 return bfd_get_signed_32 (abfd, buf);
16084}
16085
93311388 16086static ULONGEST
a1855c1d 16087read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16088{
fe1b8b76 16089 return bfd_get_64 (abfd, buf);
c906108c
SS
16090}
16091
16092static CORE_ADDR
d521ce57 16093read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16094 unsigned int *bytes_read)
c906108c 16095{
e7c27a73 16096 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16097 CORE_ADDR retval = 0;
16098
107d2387 16099 if (cu_header->signed_addr_p)
c906108c 16100 {
107d2387
AC
16101 switch (cu_header->addr_size)
16102 {
16103 case 2:
fe1b8b76 16104 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16105 break;
16106 case 4:
fe1b8b76 16107 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16108 break;
16109 case 8:
fe1b8b76 16110 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16111 break;
16112 default:
8e65ff28 16113 internal_error (__FILE__, __LINE__,
e2e0b3e5 16114 _("read_address: bad switch, signed [in module %s]"),
659b0389 16115 bfd_get_filename (abfd));
107d2387
AC
16116 }
16117 }
16118 else
16119 {
16120 switch (cu_header->addr_size)
16121 {
16122 case 2:
fe1b8b76 16123 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16124 break;
16125 case 4:
fe1b8b76 16126 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16127 break;
16128 case 8:
fe1b8b76 16129 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16130 break;
16131 default:
8e65ff28 16132 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16133 _("read_address: bad switch, "
16134 "unsigned [in module %s]"),
659b0389 16135 bfd_get_filename (abfd));
107d2387 16136 }
c906108c 16137 }
64367e0a 16138
107d2387
AC
16139 *bytes_read = cu_header->addr_size;
16140 return retval;
c906108c
SS
16141}
16142
f7ef9339 16143/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16144 specification allows the initial length to take up either 4 bytes
16145 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16146 bytes describe the length and all offsets will be 8 bytes in length
16147 instead of 4.
16148
f7ef9339
KB
16149 An older, non-standard 64-bit format is also handled by this
16150 function. The older format in question stores the initial length
16151 as an 8-byte quantity without an escape value. Lengths greater
16152 than 2^32 aren't very common which means that the initial 4 bytes
16153 is almost always zero. Since a length value of zero doesn't make
16154 sense for the 32-bit format, this initial zero can be considered to
16155 be an escape value which indicates the presence of the older 64-bit
16156 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16157 greater than 4GB. If it becomes necessary to handle lengths
16158 somewhat larger than 4GB, we could allow other small values (such
16159 as the non-sensical values of 1, 2, and 3) to also be used as
16160 escape values indicating the presence of the old format.
f7ef9339 16161
917c78fc
MK
16162 The value returned via bytes_read should be used to increment the
16163 relevant pointer after calling read_initial_length().
c764a876 16164
613e1657
KB
16165 [ Note: read_initial_length() and read_offset() are based on the
16166 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16167 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16168 from:
16169
f7ef9339 16170 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16171
613e1657
KB
16172 This document is only a draft and is subject to change. (So beware.)
16173
f7ef9339 16174 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16175 determined empirically by examining 64-bit ELF files produced by
16176 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16177
16178 - Kevin, July 16, 2002
613e1657
KB
16179 ] */
16180
16181static LONGEST
d521ce57 16182read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16183{
fe1b8b76 16184 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16185
dd373385 16186 if (length == 0xffffffff)
613e1657 16187 {
fe1b8b76 16188 length = bfd_get_64 (abfd, buf + 4);
613e1657 16189 *bytes_read = 12;
613e1657 16190 }
dd373385 16191 else if (length == 0)
f7ef9339 16192 {
dd373385 16193 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16194 length = bfd_get_64 (abfd, buf);
f7ef9339 16195 *bytes_read = 8;
f7ef9339 16196 }
613e1657
KB
16197 else
16198 {
16199 *bytes_read = 4;
613e1657
KB
16200 }
16201
c764a876
DE
16202 return length;
16203}
dd373385 16204
c764a876
DE
16205/* Cover function for read_initial_length.
16206 Returns the length of the object at BUF, and stores the size of the
16207 initial length in *BYTES_READ and stores the size that offsets will be in
16208 *OFFSET_SIZE.
16209 If the initial length size is not equivalent to that specified in
16210 CU_HEADER then issue a complaint.
16211 This is useful when reading non-comp-unit headers. */
dd373385 16212
c764a876 16213static LONGEST
d521ce57 16214read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16215 const struct comp_unit_head *cu_header,
16216 unsigned int *bytes_read,
16217 unsigned int *offset_size)
16218{
16219 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16220
16221 gdb_assert (cu_header->initial_length_size == 4
16222 || cu_header->initial_length_size == 8
16223 || cu_header->initial_length_size == 12);
16224
16225 if (cu_header->initial_length_size != *bytes_read)
16226 complaint (&symfile_complaints,
16227 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16228
c764a876 16229 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16230 return length;
613e1657
KB
16231}
16232
16233/* Read an offset from the data stream. The size of the offset is
917c78fc 16234 given by cu_header->offset_size. */
613e1657
KB
16235
16236static LONGEST
d521ce57
TT
16237read_offset (bfd *abfd, const gdb_byte *buf,
16238 const struct comp_unit_head *cu_header,
891d2f0b 16239 unsigned int *bytes_read)
c764a876
DE
16240{
16241 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16242
c764a876
DE
16243 *bytes_read = cu_header->offset_size;
16244 return offset;
16245}
16246
16247/* Read an offset from the data stream. */
16248
16249static LONGEST
d521ce57 16250read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16251{
16252 LONGEST retval = 0;
16253
c764a876 16254 switch (offset_size)
613e1657
KB
16255 {
16256 case 4:
fe1b8b76 16257 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16258 break;
16259 case 8:
fe1b8b76 16260 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16261 break;
16262 default:
8e65ff28 16263 internal_error (__FILE__, __LINE__,
c764a876 16264 _("read_offset_1: bad switch [in module %s]"),
659b0389 16265 bfd_get_filename (abfd));
613e1657
KB
16266 }
16267
917c78fc 16268 return retval;
613e1657
KB
16269}
16270
d521ce57
TT
16271static const gdb_byte *
16272read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16273{
16274 /* If the size of a host char is 8 bits, we can return a pointer
16275 to the buffer, otherwise we have to copy the data to a buffer
16276 allocated on the temporary obstack. */
4bdf3d34 16277 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16278 return buf;
c906108c
SS
16279}
16280
d521ce57
TT
16281static const char *
16282read_direct_string (bfd *abfd, const gdb_byte *buf,
16283 unsigned int *bytes_read_ptr)
c906108c
SS
16284{
16285 /* If the size of a host char is 8 bits, we can return a pointer
16286 to the string, otherwise we have to copy the string to a buffer
16287 allocated on the temporary obstack. */
4bdf3d34 16288 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16289 if (*buf == '\0')
16290 {
16291 *bytes_read_ptr = 1;
16292 return NULL;
16293 }
d521ce57
TT
16294 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16295 return (const char *) buf;
4bdf3d34
JJ
16296}
16297
d521ce57 16298static const char *
cf2c3c16 16299read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16300{
be391dca 16301 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16302 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16303 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16304 bfd_get_filename (abfd));
dce234bc 16305 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16306 error (_("DW_FORM_strp pointing outside of "
16307 ".debug_str section [in module %s]"),
16308 bfd_get_filename (abfd));
4bdf3d34 16309 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16310 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16311 return NULL;
d521ce57 16312 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16313}
16314
36586728
TT
16315/* Read a string at offset STR_OFFSET in the .debug_str section from
16316 the .dwz file DWZ. Throw an error if the offset is too large. If
16317 the string consists of a single NUL byte, return NULL; otherwise
16318 return a pointer to the string. */
16319
d521ce57 16320static const char *
36586728
TT
16321read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16322{
16323 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16324
16325 if (dwz->str.buffer == NULL)
16326 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16327 "section [in module %s]"),
16328 bfd_get_filename (dwz->dwz_bfd));
16329 if (str_offset >= dwz->str.size)
16330 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16331 ".debug_str section [in module %s]"),
16332 bfd_get_filename (dwz->dwz_bfd));
16333 gdb_assert (HOST_CHAR_BIT == 8);
16334 if (dwz->str.buffer[str_offset] == '\0')
16335 return NULL;
d521ce57 16336 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16337}
16338
d521ce57
TT
16339static const char *
16340read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16341 const struct comp_unit_head *cu_header,
16342 unsigned int *bytes_read_ptr)
16343{
16344 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16345
16346 return read_indirect_string_at_offset (abfd, str_offset);
16347}
16348
12df843f 16349static ULONGEST
d521ce57
TT
16350read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16351 unsigned int *bytes_read_ptr)
c906108c 16352{
12df843f 16353 ULONGEST result;
ce5d95e1 16354 unsigned int num_read;
c906108c
SS
16355 int i, shift;
16356 unsigned char byte;
16357
16358 result = 0;
16359 shift = 0;
16360 num_read = 0;
16361 i = 0;
16362 while (1)
16363 {
fe1b8b76 16364 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16365 buf++;
16366 num_read++;
12df843f 16367 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16368 if ((byte & 128) == 0)
16369 {
16370 break;
16371 }
16372 shift += 7;
16373 }
16374 *bytes_read_ptr = num_read;
16375 return result;
16376}
16377
12df843f 16378static LONGEST
d521ce57
TT
16379read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16380 unsigned int *bytes_read_ptr)
c906108c 16381{
12df843f 16382 LONGEST result;
77e0b926 16383 int i, shift, num_read;
c906108c
SS
16384 unsigned char byte;
16385
16386 result = 0;
16387 shift = 0;
c906108c
SS
16388 num_read = 0;
16389 i = 0;
16390 while (1)
16391 {
fe1b8b76 16392 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16393 buf++;
16394 num_read++;
12df843f 16395 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16396 shift += 7;
16397 if ((byte & 128) == 0)
16398 {
16399 break;
16400 }
16401 }
77e0b926 16402 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16403 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16404 *bytes_read_ptr = num_read;
16405 return result;
16406}
16407
3019eac3
DE
16408/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16409 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16410 ADDR_SIZE is the size of addresses from the CU header. */
16411
16412static CORE_ADDR
16413read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16414{
16415 struct objfile *objfile = dwarf2_per_objfile->objfile;
16416 bfd *abfd = objfile->obfd;
16417 const gdb_byte *info_ptr;
16418
16419 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16420 if (dwarf2_per_objfile->addr.buffer == NULL)
16421 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16422 objfile_name (objfile));
3019eac3
DE
16423 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16424 error (_("DW_FORM_addr_index pointing outside of "
16425 ".debug_addr section [in module %s]"),
4262abfb 16426 objfile_name (objfile));
3019eac3
DE
16427 info_ptr = (dwarf2_per_objfile->addr.buffer
16428 + addr_base + addr_index * addr_size);
16429 if (addr_size == 4)
16430 return bfd_get_32 (abfd, info_ptr);
16431 else
16432 return bfd_get_64 (abfd, info_ptr);
16433}
16434
16435/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16436
16437static CORE_ADDR
16438read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16439{
16440 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16441}
16442
16443/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16444
16445static CORE_ADDR
d521ce57 16446read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16447 unsigned int *bytes_read)
16448{
16449 bfd *abfd = cu->objfile->obfd;
16450 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16451
16452 return read_addr_index (cu, addr_index);
16453}
16454
16455/* Data structure to pass results from dwarf2_read_addr_index_reader
16456 back to dwarf2_read_addr_index. */
16457
16458struct dwarf2_read_addr_index_data
16459{
16460 ULONGEST addr_base;
16461 int addr_size;
16462};
16463
16464/* die_reader_func for dwarf2_read_addr_index. */
16465
16466static void
16467dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16468 const gdb_byte *info_ptr,
3019eac3
DE
16469 struct die_info *comp_unit_die,
16470 int has_children,
16471 void *data)
16472{
16473 struct dwarf2_cu *cu = reader->cu;
16474 struct dwarf2_read_addr_index_data *aidata =
16475 (struct dwarf2_read_addr_index_data *) data;
16476
16477 aidata->addr_base = cu->addr_base;
16478 aidata->addr_size = cu->header.addr_size;
16479}
16480
16481/* Given an index in .debug_addr, fetch the value.
16482 NOTE: This can be called during dwarf expression evaluation,
16483 long after the debug information has been read, and thus per_cu->cu
16484 may no longer exist. */
16485
16486CORE_ADDR
16487dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16488 unsigned int addr_index)
16489{
16490 struct objfile *objfile = per_cu->objfile;
16491 struct dwarf2_cu *cu = per_cu->cu;
16492 ULONGEST addr_base;
16493 int addr_size;
16494
16495 /* This is intended to be called from outside this file. */
16496 dw2_setup (objfile);
16497
16498 /* We need addr_base and addr_size.
16499 If we don't have PER_CU->cu, we have to get it.
16500 Nasty, but the alternative is storing the needed info in PER_CU,
16501 which at this point doesn't seem justified: it's not clear how frequently
16502 it would get used and it would increase the size of every PER_CU.
16503 Entry points like dwarf2_per_cu_addr_size do a similar thing
16504 so we're not in uncharted territory here.
16505 Alas we need to be a bit more complicated as addr_base is contained
16506 in the DIE.
16507
16508 We don't need to read the entire CU(/TU).
16509 We just need the header and top level die.
a1b64ce1 16510
3019eac3 16511 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16512 For now we skip this optimization. */
3019eac3
DE
16513
16514 if (cu != NULL)
16515 {
16516 addr_base = cu->addr_base;
16517 addr_size = cu->header.addr_size;
16518 }
16519 else
16520 {
16521 struct dwarf2_read_addr_index_data aidata;
16522
a1b64ce1
DE
16523 /* Note: We can't use init_cutu_and_read_dies_simple here,
16524 we need addr_base. */
16525 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16526 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16527 addr_base = aidata.addr_base;
16528 addr_size = aidata.addr_size;
16529 }
16530
16531 return read_addr_index_1 (addr_index, addr_base, addr_size);
16532}
16533
57d63ce2
DE
16534/* Given a DW_FORM_GNU_str_index, fetch the string.
16535 This is only used by the Fission support. */
3019eac3 16536
d521ce57 16537static const char *
342587c4 16538read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16539{
16540 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16541 const char *objf_name = objfile_name (objfile);
3019eac3 16542 bfd *abfd = objfile->obfd;
342587c4 16543 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16544 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16545 struct dwarf2_section_info *str_offsets_section =
16546 &reader->dwo_file->sections.str_offsets;
d521ce57 16547 const gdb_byte *info_ptr;
3019eac3 16548 ULONGEST str_offset;
57d63ce2 16549 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16550
73869dc2
DE
16551 dwarf2_read_section (objfile, str_section);
16552 dwarf2_read_section (objfile, str_offsets_section);
16553 if (str_section->buffer == NULL)
57d63ce2 16554 error (_("%s used without .debug_str.dwo section"
3019eac3 16555 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16556 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16557 if (str_offsets_section->buffer == NULL)
57d63ce2 16558 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16559 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16560 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16561 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16562 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16563 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16564 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16565 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16566 + str_index * cu->header.offset_size);
16567 if (cu->header.offset_size == 4)
16568 str_offset = bfd_get_32 (abfd, info_ptr);
16569 else
16570 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16571 if (str_offset >= str_section->size)
57d63ce2 16572 error (_("Offset from %s pointing outside of"
3019eac3 16573 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16574 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16575 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16576}
16577
3019eac3
DE
16578/* Return the length of an LEB128 number in BUF. */
16579
16580static int
16581leb128_size (const gdb_byte *buf)
16582{
16583 const gdb_byte *begin = buf;
16584 gdb_byte byte;
16585
16586 while (1)
16587 {
16588 byte = *buf++;
16589 if ((byte & 128) == 0)
16590 return buf - begin;
16591 }
16592}
16593
c906108c 16594static void
e142c38c 16595set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
16596{
16597 switch (lang)
16598 {
16599 case DW_LANG_C89:
76bee0cc 16600 case DW_LANG_C99:
c906108c 16601 case DW_LANG_C:
d1be3247 16602 case DW_LANG_UPC:
e142c38c 16603 cu->language = language_c;
c906108c
SS
16604 break;
16605 case DW_LANG_C_plus_plus:
e142c38c 16606 cu->language = language_cplus;
c906108c 16607 break;
6aecb9c2
JB
16608 case DW_LANG_D:
16609 cu->language = language_d;
16610 break;
c906108c
SS
16611 case DW_LANG_Fortran77:
16612 case DW_LANG_Fortran90:
b21b22e0 16613 case DW_LANG_Fortran95:
e142c38c 16614 cu->language = language_fortran;
c906108c 16615 break;
a766d390
DE
16616 case DW_LANG_Go:
16617 cu->language = language_go;
16618 break;
c906108c 16619 case DW_LANG_Mips_Assembler:
e142c38c 16620 cu->language = language_asm;
c906108c 16621 break;
bebd888e 16622 case DW_LANG_Java:
e142c38c 16623 cu->language = language_java;
bebd888e 16624 break;
c906108c 16625 case DW_LANG_Ada83:
8aaf0b47 16626 case DW_LANG_Ada95:
bc5f45f8
JB
16627 cu->language = language_ada;
16628 break;
72019c9c
GM
16629 case DW_LANG_Modula2:
16630 cu->language = language_m2;
16631 break;
fe8e67fd
PM
16632 case DW_LANG_Pascal83:
16633 cu->language = language_pascal;
16634 break;
22566fbd
DJ
16635 case DW_LANG_ObjC:
16636 cu->language = language_objc;
16637 break;
c906108c
SS
16638 case DW_LANG_Cobol74:
16639 case DW_LANG_Cobol85:
c906108c 16640 default:
e142c38c 16641 cu->language = language_minimal;
c906108c
SS
16642 break;
16643 }
e142c38c 16644 cu->language_defn = language_def (cu->language);
c906108c
SS
16645}
16646
16647/* Return the named attribute or NULL if not there. */
16648
16649static struct attribute *
e142c38c 16650dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 16651{
a48e046c 16652 for (;;)
c906108c 16653 {
a48e046c
TT
16654 unsigned int i;
16655 struct attribute *spec = NULL;
16656
16657 for (i = 0; i < die->num_attrs; ++i)
16658 {
16659 if (die->attrs[i].name == name)
16660 return &die->attrs[i];
16661 if (die->attrs[i].name == DW_AT_specification
16662 || die->attrs[i].name == DW_AT_abstract_origin)
16663 spec = &die->attrs[i];
16664 }
16665
16666 if (!spec)
16667 break;
c906108c 16668
f2f0e013 16669 die = follow_die_ref (die, spec, &cu);
f2f0e013 16670 }
c5aa993b 16671
c906108c
SS
16672 return NULL;
16673}
16674
348e048f
DE
16675/* Return the named attribute or NULL if not there,
16676 but do not follow DW_AT_specification, etc.
16677 This is for use in contexts where we're reading .debug_types dies.
16678 Following DW_AT_specification, DW_AT_abstract_origin will take us
16679 back up the chain, and we want to go down. */
16680
16681static struct attribute *
45e58e77 16682dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
16683{
16684 unsigned int i;
16685
16686 for (i = 0; i < die->num_attrs; ++i)
16687 if (die->attrs[i].name == name)
16688 return &die->attrs[i];
16689
16690 return NULL;
16691}
16692
05cf31d1
JB
16693/* Return non-zero iff the attribute NAME is defined for the given DIE,
16694 and holds a non-zero value. This function should only be used for
2dc7f7b3 16695 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
16696
16697static int
16698dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16699{
16700 struct attribute *attr = dwarf2_attr (die, name, cu);
16701
16702 return (attr && DW_UNSND (attr));
16703}
16704
3ca72b44 16705static int
e142c38c 16706die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 16707{
05cf31d1
JB
16708 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16709 which value is non-zero. However, we have to be careful with
16710 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16711 (via dwarf2_flag_true_p) follows this attribute. So we may
16712 end up accidently finding a declaration attribute that belongs
16713 to a different DIE referenced by the specification attribute,
16714 even though the given DIE does not have a declaration attribute. */
16715 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16716 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
16717}
16718
63d06c5c 16719/* Return the die giving the specification for DIE, if there is
f2f0e013 16720 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
16721 containing the return value on output. If there is no
16722 specification, but there is an abstract origin, that is
16723 returned. */
63d06c5c
DC
16724
16725static struct die_info *
f2f0e013 16726die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 16727{
f2f0e013
DJ
16728 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16729 *spec_cu);
63d06c5c 16730
edb3359d
DJ
16731 if (spec_attr == NULL)
16732 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16733
63d06c5c
DC
16734 if (spec_attr == NULL)
16735 return NULL;
16736 else
f2f0e013 16737 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 16738}
c906108c 16739
debd256d 16740/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
16741 refers to.
16742 NOTE: This is also used as a "cleanup" function. */
16743
debd256d
JB
16744static void
16745free_line_header (struct line_header *lh)
16746{
16747 if (lh->standard_opcode_lengths)
a8bc7b56 16748 xfree (lh->standard_opcode_lengths);
debd256d
JB
16749
16750 /* Remember that all the lh->file_names[i].name pointers are
16751 pointers into debug_line_buffer, and don't need to be freed. */
16752 if (lh->file_names)
a8bc7b56 16753 xfree (lh->file_names);
debd256d
JB
16754
16755 /* Similarly for the include directory names. */
16756 if (lh->include_dirs)
a8bc7b56 16757 xfree (lh->include_dirs);
debd256d 16758
a8bc7b56 16759 xfree (lh);
debd256d
JB
16760}
16761
debd256d 16762/* Add an entry to LH's include directory table. */
ae2de4f8 16763
debd256d 16764static void
d521ce57 16765add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 16766{
debd256d
JB
16767 /* Grow the array if necessary. */
16768 if (lh->include_dirs_size == 0)
c5aa993b 16769 {
debd256d
JB
16770 lh->include_dirs_size = 1; /* for testing */
16771 lh->include_dirs = xmalloc (lh->include_dirs_size
16772 * sizeof (*lh->include_dirs));
16773 }
16774 else if (lh->num_include_dirs >= lh->include_dirs_size)
16775 {
16776 lh->include_dirs_size *= 2;
16777 lh->include_dirs = xrealloc (lh->include_dirs,
16778 (lh->include_dirs_size
16779 * sizeof (*lh->include_dirs)));
c5aa993b 16780 }
c906108c 16781
debd256d
JB
16782 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16783}
6e70227d 16784
debd256d 16785/* Add an entry to LH's file name table. */
ae2de4f8 16786
debd256d
JB
16787static void
16788add_file_name (struct line_header *lh,
d521ce57 16789 const char *name,
debd256d
JB
16790 unsigned int dir_index,
16791 unsigned int mod_time,
16792 unsigned int length)
16793{
16794 struct file_entry *fe;
16795
16796 /* Grow the array if necessary. */
16797 if (lh->file_names_size == 0)
16798 {
16799 lh->file_names_size = 1; /* for testing */
16800 lh->file_names = xmalloc (lh->file_names_size
16801 * sizeof (*lh->file_names));
16802 }
16803 else if (lh->num_file_names >= lh->file_names_size)
16804 {
16805 lh->file_names_size *= 2;
16806 lh->file_names = xrealloc (lh->file_names,
16807 (lh->file_names_size
16808 * sizeof (*lh->file_names)));
16809 }
16810
16811 fe = &lh->file_names[lh->num_file_names++];
16812 fe->name = name;
16813 fe->dir_index = dir_index;
16814 fe->mod_time = mod_time;
16815 fe->length = length;
aaa75496 16816 fe->included_p = 0;
cb1df416 16817 fe->symtab = NULL;
debd256d 16818}
6e70227d 16819
36586728
TT
16820/* A convenience function to find the proper .debug_line section for a
16821 CU. */
16822
16823static struct dwarf2_section_info *
16824get_debug_line_section (struct dwarf2_cu *cu)
16825{
16826 struct dwarf2_section_info *section;
16827
16828 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16829 DWO file. */
16830 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16831 section = &cu->dwo_unit->dwo_file->sections.line;
16832 else if (cu->per_cu->is_dwz)
16833 {
16834 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16835
16836 section = &dwz->line;
16837 }
16838 else
16839 section = &dwarf2_per_objfile->line;
16840
16841 return section;
16842}
16843
debd256d 16844/* Read the statement program header starting at OFFSET in
3019eac3 16845 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 16846 to a struct line_header, allocated using xmalloc.
debd256d
JB
16847
16848 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
16849 the returned object point into the dwarf line section buffer,
16850 and must not be freed. */
ae2de4f8 16851
debd256d 16852static struct line_header *
3019eac3 16853dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
16854{
16855 struct cleanup *back_to;
16856 struct line_header *lh;
d521ce57 16857 const gdb_byte *line_ptr;
c764a876 16858 unsigned int bytes_read, offset_size;
debd256d 16859 int i;
d521ce57 16860 const char *cur_dir, *cur_file;
3019eac3
DE
16861 struct dwarf2_section_info *section;
16862 bfd *abfd;
16863
36586728 16864 section = get_debug_line_section (cu);
3019eac3
DE
16865 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16866 if (section->buffer == NULL)
debd256d 16867 {
3019eac3
DE
16868 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16869 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16870 else
16871 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
16872 return 0;
16873 }
16874
fceca515
DE
16875 /* We can't do this until we know the section is non-empty.
16876 Only then do we know we have such a section. */
a32a8923 16877 abfd = get_section_bfd_owner (section);
fceca515 16878
a738430d
MK
16879 /* Make sure that at least there's room for the total_length field.
16880 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 16881 if (offset + 4 >= section->size)
debd256d 16882 {
4d3c2250 16883 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
16884 return 0;
16885 }
16886
16887 lh = xmalloc (sizeof (*lh));
16888 memset (lh, 0, sizeof (*lh));
16889 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16890 (void *) lh);
16891
3019eac3 16892 line_ptr = section->buffer + offset;
debd256d 16893
a738430d 16894 /* Read in the header. */
6e70227d 16895 lh->total_length =
c764a876
DE
16896 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16897 &bytes_read, &offset_size);
debd256d 16898 line_ptr += bytes_read;
3019eac3 16899 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 16900 {
4d3c2250 16901 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 16902 do_cleanups (back_to);
debd256d
JB
16903 return 0;
16904 }
16905 lh->statement_program_end = line_ptr + lh->total_length;
16906 lh->version = read_2_bytes (abfd, line_ptr);
16907 line_ptr += 2;
c764a876
DE
16908 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
16909 line_ptr += offset_size;
debd256d
JB
16910 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
16911 line_ptr += 1;
2dc7f7b3
TT
16912 if (lh->version >= 4)
16913 {
16914 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
16915 line_ptr += 1;
16916 }
16917 else
16918 lh->maximum_ops_per_instruction = 1;
16919
16920 if (lh->maximum_ops_per_instruction == 0)
16921 {
16922 lh->maximum_ops_per_instruction = 1;
16923 complaint (&symfile_complaints,
3e43a32a
MS
16924 _("invalid maximum_ops_per_instruction "
16925 "in `.debug_line' section"));
2dc7f7b3
TT
16926 }
16927
debd256d
JB
16928 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
16929 line_ptr += 1;
16930 lh->line_base = read_1_signed_byte (abfd, line_ptr);
16931 line_ptr += 1;
16932 lh->line_range = read_1_byte (abfd, line_ptr);
16933 line_ptr += 1;
16934 lh->opcode_base = read_1_byte (abfd, line_ptr);
16935 line_ptr += 1;
16936 lh->standard_opcode_lengths
fe1b8b76 16937 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
16938
16939 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
16940 for (i = 1; i < lh->opcode_base; ++i)
16941 {
16942 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
16943 line_ptr += 1;
16944 }
16945
a738430d 16946 /* Read directory table. */
9b1c24c8 16947 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
16948 {
16949 line_ptr += bytes_read;
16950 add_include_dir (lh, cur_dir);
16951 }
16952 line_ptr += bytes_read;
16953
a738430d 16954 /* Read file name table. */
9b1c24c8 16955 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
16956 {
16957 unsigned int dir_index, mod_time, length;
16958
16959 line_ptr += bytes_read;
16960 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16961 line_ptr += bytes_read;
16962 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16963 line_ptr += bytes_read;
16964 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16965 line_ptr += bytes_read;
16966
16967 add_file_name (lh, cur_file, dir_index, mod_time, length);
16968 }
16969 line_ptr += bytes_read;
6e70227d 16970 lh->statement_program_start = line_ptr;
debd256d 16971
3019eac3 16972 if (line_ptr > (section->buffer + section->size))
4d3c2250 16973 complaint (&symfile_complaints,
3e43a32a
MS
16974 _("line number info header doesn't "
16975 "fit in `.debug_line' section"));
debd256d
JB
16976
16977 discard_cleanups (back_to);
16978 return lh;
16979}
c906108c 16980
c6da4cef
DE
16981/* Subroutine of dwarf_decode_lines to simplify it.
16982 Return the file name of the psymtab for included file FILE_INDEX
16983 in line header LH of PST.
16984 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16985 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
16986 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
16987
16988 The function creates dangling cleanup registration. */
c6da4cef 16989
d521ce57 16990static const char *
c6da4cef
DE
16991psymtab_include_file_name (const struct line_header *lh, int file_index,
16992 const struct partial_symtab *pst,
16993 const char *comp_dir)
16994{
16995 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
16996 const char *include_name = fe.name;
16997 const char *include_name_to_compare = include_name;
16998 const char *dir_name = NULL;
72b9f47f
TT
16999 const char *pst_filename;
17000 char *copied_name = NULL;
c6da4cef
DE
17001 int file_is_pst;
17002
17003 if (fe.dir_index)
17004 dir_name = lh->include_dirs[fe.dir_index - 1];
17005
17006 if (!IS_ABSOLUTE_PATH (include_name)
17007 && (dir_name != NULL || comp_dir != NULL))
17008 {
17009 /* Avoid creating a duplicate psymtab for PST.
17010 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17011 Before we do the comparison, however, we need to account
17012 for DIR_NAME and COMP_DIR.
17013 First prepend dir_name (if non-NULL). If we still don't
17014 have an absolute path prepend comp_dir (if non-NULL).
17015 However, the directory we record in the include-file's
17016 psymtab does not contain COMP_DIR (to match the
17017 corresponding symtab(s)).
17018
17019 Example:
17020
17021 bash$ cd /tmp
17022 bash$ gcc -g ./hello.c
17023 include_name = "hello.c"
17024 dir_name = "."
17025 DW_AT_comp_dir = comp_dir = "/tmp"
17026 DW_AT_name = "./hello.c" */
17027
17028 if (dir_name != NULL)
17029 {
d521ce57
TT
17030 char *tem = concat (dir_name, SLASH_STRING,
17031 include_name, (char *)NULL);
17032
17033 make_cleanup (xfree, tem);
17034 include_name = tem;
c6da4cef 17035 include_name_to_compare = include_name;
c6da4cef
DE
17036 }
17037 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17038 {
d521ce57
TT
17039 char *tem = concat (comp_dir, SLASH_STRING,
17040 include_name, (char *)NULL);
17041
17042 make_cleanup (xfree, tem);
17043 include_name_to_compare = tem;
c6da4cef
DE
17044 }
17045 }
17046
17047 pst_filename = pst->filename;
17048 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17049 {
72b9f47f
TT
17050 copied_name = concat (pst->dirname, SLASH_STRING,
17051 pst_filename, (char *)NULL);
17052 pst_filename = copied_name;
c6da4cef
DE
17053 }
17054
1e3fad37 17055 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17056
72b9f47f
TT
17057 if (copied_name != NULL)
17058 xfree (copied_name);
c6da4cef
DE
17059
17060 if (file_is_pst)
17061 return NULL;
17062 return include_name;
17063}
17064
c91513d8
PP
17065/* Ignore this record_line request. */
17066
17067static void
17068noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17069{
17070 return;
17071}
17072
f3f5162e
DE
17073/* Subroutine of dwarf_decode_lines to simplify it.
17074 Process the line number information in LH. */
debd256d 17075
c906108c 17076static void
f3f5162e
DE
17077dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
17078 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 17079{
d521ce57
TT
17080 const gdb_byte *line_ptr, *extended_end;
17081 const gdb_byte *line_end;
a8c50c1f 17082 unsigned int bytes_read, extended_len;
c906108c 17083 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
17084 CORE_ADDR baseaddr;
17085 struct objfile *objfile = cu->objfile;
f3f5162e 17086 bfd *abfd = objfile->obfd;
fbf65064 17087 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 17088 const int decode_for_pst_p = (pst != NULL);
f3f5162e 17089 struct subfile *last_subfile = NULL;
c91513d8
PP
17090 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17091 = record_line;
e142c38c
DJ
17092
17093 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17094
debd256d
JB
17095 line_ptr = lh->statement_program_start;
17096 line_end = lh->statement_program_end;
c906108c
SS
17097
17098 /* Read the statement sequences until there's nothing left. */
17099 while (line_ptr < line_end)
17100 {
17101 /* state machine registers */
17102 CORE_ADDR address = 0;
17103 unsigned int file = 1;
17104 unsigned int line = 1;
17105 unsigned int column = 0;
debd256d 17106 int is_stmt = lh->default_is_stmt;
c906108c
SS
17107 int basic_block = 0;
17108 int end_sequence = 0;
fbf65064 17109 CORE_ADDR addr;
2dc7f7b3 17110 unsigned char op_index = 0;
c906108c 17111
aaa75496 17112 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 17113 {
aaa75496 17114 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17115 /* lh->include_dirs and lh->file_names are 0-based, but the
17116 directory and file name numbers in the statement program
17117 are 1-based. */
17118 struct file_entry *fe = &lh->file_names[file - 1];
d521ce57 17119 const char *dir = NULL;
a738430d 17120
debd256d
JB
17121 if (fe->dir_index)
17122 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
17123
17124 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
17125 }
17126
a738430d 17127 /* Decode the table. */
c5aa993b 17128 while (!end_sequence)
c906108c
SS
17129 {
17130 op_code = read_1_byte (abfd, line_ptr);
17131 line_ptr += 1;
59205f5a
JB
17132 if (line_ptr > line_end)
17133 {
17134 dwarf2_debug_line_missing_end_sequence_complaint ();
17135 break;
17136 }
9aa1fe7e 17137
debd256d 17138 if (op_code >= lh->opcode_base)
6e70227d 17139 {
a738430d 17140 /* Special operand. */
debd256d 17141 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
17142 address += (((op_index + (adj_opcode / lh->line_range))
17143 / lh->maximum_ops_per_instruction)
17144 * lh->minimum_instruction_length);
17145 op_index = ((op_index + (adj_opcode / lh->line_range))
17146 % lh->maximum_ops_per_instruction);
debd256d 17147 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 17148 if (lh->num_file_names < file || file == 0)
25e43795 17149 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
17150 /* For now we ignore lines not starting on an
17151 instruction boundary. */
17152 else if (op_index == 0)
25e43795
DJ
17153 {
17154 lh->file_names[file - 1].included_p = 1;
ca5f395d 17155 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17156 {
17157 if (last_subfile != current_subfile)
17158 {
17159 addr = gdbarch_addr_bits_remove (gdbarch, address);
17160 if (last_subfile)
c91513d8 17161 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
17162 last_subfile = current_subfile;
17163 }
25e43795 17164 /* Append row to matrix using current values. */
7019d805 17165 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 17166 (*p_record_line) (current_subfile, line, addr);
366da635 17167 }
25e43795 17168 }
ca5f395d 17169 basic_block = 0;
9aa1fe7e
GK
17170 }
17171 else switch (op_code)
c906108c
SS
17172 {
17173 case DW_LNS_extended_op:
3e43a32a
MS
17174 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17175 &bytes_read);
473b7be6 17176 line_ptr += bytes_read;
a8c50c1f 17177 extended_end = line_ptr + extended_len;
c906108c
SS
17178 extended_op = read_1_byte (abfd, line_ptr);
17179 line_ptr += 1;
17180 switch (extended_op)
17181 {
17182 case DW_LNE_end_sequence:
c91513d8 17183 p_record_line = record_line;
c906108c 17184 end_sequence = 1;
c906108c
SS
17185 break;
17186 case DW_LNE_set_address:
e7c27a73 17187 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8
PP
17188
17189 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
17190 {
17191 /* This line table is for a function which has been
17192 GCd by the linker. Ignore it. PR gdb/12528 */
17193
17194 long line_offset
36586728 17195 = line_ptr - get_debug_line_section (cu)->buffer;
c91513d8
PP
17196
17197 complaint (&symfile_complaints,
17198 _(".debug_line address at offset 0x%lx is 0 "
17199 "[in module %s]"),
4262abfb 17200 line_offset, objfile_name (objfile));
c91513d8
PP
17201 p_record_line = noop_record_line;
17202 }
17203
2dc7f7b3 17204 op_index = 0;
107d2387
AC
17205 line_ptr += bytes_read;
17206 address += baseaddr;
c906108c
SS
17207 break;
17208 case DW_LNE_define_file:
debd256d 17209 {
d521ce57 17210 const char *cur_file;
debd256d 17211 unsigned int dir_index, mod_time, length;
6e70227d 17212
3e43a32a
MS
17213 cur_file = read_direct_string (abfd, line_ptr,
17214 &bytes_read);
debd256d
JB
17215 line_ptr += bytes_read;
17216 dir_index =
17217 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17218 line_ptr += bytes_read;
17219 mod_time =
17220 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17221 line_ptr += bytes_read;
17222 length =
17223 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17224 line_ptr += bytes_read;
17225 add_file_name (lh, cur_file, dir_index, mod_time, length);
17226 }
c906108c 17227 break;
d0c6ba3d
CC
17228 case DW_LNE_set_discriminator:
17229 /* The discriminator is not interesting to the debugger;
17230 just ignore it. */
17231 line_ptr = extended_end;
17232 break;
c906108c 17233 default:
4d3c2250 17234 complaint (&symfile_complaints,
e2e0b3e5 17235 _("mangled .debug_line section"));
debd256d 17236 return;
c906108c 17237 }
a8c50c1f
DJ
17238 /* Make sure that we parsed the extended op correctly. If e.g.
17239 we expected a different address size than the producer used,
17240 we may have read the wrong number of bytes. */
17241 if (line_ptr != extended_end)
17242 {
17243 complaint (&symfile_complaints,
17244 _("mangled .debug_line section"));
17245 return;
17246 }
c906108c
SS
17247 break;
17248 case DW_LNS_copy:
59205f5a 17249 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17250 dwarf2_debug_line_missing_file_complaint ();
17251 else
366da635 17252 {
25e43795 17253 lh->file_names[file - 1].included_p = 1;
ca5f395d 17254 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17255 {
17256 if (last_subfile != current_subfile)
17257 {
17258 addr = gdbarch_addr_bits_remove (gdbarch, address);
17259 if (last_subfile)
c91513d8 17260 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
17261 last_subfile = current_subfile;
17262 }
7019d805 17263 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 17264 (*p_record_line) (current_subfile, line, addr);
fbf65064 17265 }
366da635 17266 }
c906108c
SS
17267 basic_block = 0;
17268 break;
17269 case DW_LNS_advance_pc:
2dc7f7b3
TT
17270 {
17271 CORE_ADDR adjust
17272 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17273
17274 address += (((op_index + adjust)
17275 / lh->maximum_ops_per_instruction)
17276 * lh->minimum_instruction_length);
17277 op_index = ((op_index + adjust)
17278 % lh->maximum_ops_per_instruction);
17279 line_ptr += bytes_read;
17280 }
c906108c
SS
17281 break;
17282 case DW_LNS_advance_line:
17283 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17284 line_ptr += bytes_read;
17285 break;
17286 case DW_LNS_set_file:
debd256d 17287 {
a738430d
MK
17288 /* The arrays lh->include_dirs and lh->file_names are
17289 0-based, but the directory and file name numbers in
17290 the statement program are 1-based. */
debd256d 17291 struct file_entry *fe;
d521ce57 17292 const char *dir = NULL;
a738430d 17293
debd256d
JB
17294 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17295 line_ptr += bytes_read;
59205f5a 17296 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17297 dwarf2_debug_line_missing_file_complaint ();
17298 else
17299 {
17300 fe = &lh->file_names[file - 1];
17301 if (fe->dir_index)
17302 dir = lh->include_dirs[fe->dir_index - 1];
17303 if (!decode_for_pst_p)
17304 {
17305 last_subfile = current_subfile;
17306 dwarf2_start_subfile (fe->name, dir, comp_dir);
17307 }
17308 }
debd256d 17309 }
c906108c
SS
17310 break;
17311 case DW_LNS_set_column:
17312 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17313 line_ptr += bytes_read;
17314 break;
17315 case DW_LNS_negate_stmt:
17316 is_stmt = (!is_stmt);
17317 break;
17318 case DW_LNS_set_basic_block:
17319 basic_block = 1;
17320 break;
c2c6d25f
JM
17321 /* Add to the address register of the state machine the
17322 address increment value corresponding to special opcode
a738430d
MK
17323 255. I.e., this value is scaled by the minimum
17324 instruction length since special opcode 255 would have
b021a221 17325 scaled the increment. */
c906108c 17326 case DW_LNS_const_add_pc:
2dc7f7b3
TT
17327 {
17328 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17329
17330 address += (((op_index + adjust)
17331 / lh->maximum_ops_per_instruction)
17332 * lh->minimum_instruction_length);
17333 op_index = ((op_index + adjust)
17334 % lh->maximum_ops_per_instruction);
17335 }
c906108c
SS
17336 break;
17337 case DW_LNS_fixed_advance_pc:
17338 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 17339 op_index = 0;
c906108c
SS
17340 line_ptr += 2;
17341 break;
9aa1fe7e 17342 default:
a738430d
MK
17343 {
17344 /* Unknown standard opcode, ignore it. */
9aa1fe7e 17345 int i;
a738430d 17346
debd256d 17347 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
17348 {
17349 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17350 line_ptr += bytes_read;
17351 }
17352 }
c906108c
SS
17353 }
17354 }
59205f5a
JB
17355 if (lh->num_file_names < file || file == 0)
17356 dwarf2_debug_line_missing_file_complaint ();
17357 else
17358 {
17359 lh->file_names[file - 1].included_p = 1;
17360 if (!decode_for_pst_p)
fbf65064
UW
17361 {
17362 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 17363 (*p_record_line) (current_subfile, 0, addr);
fbf65064 17364 }
59205f5a 17365 }
c906108c 17366 }
f3f5162e
DE
17367}
17368
17369/* Decode the Line Number Program (LNP) for the given line_header
17370 structure and CU. The actual information extracted and the type
17371 of structures created from the LNP depends on the value of PST.
17372
17373 1. If PST is NULL, then this procedure uses the data from the program
17374 to create all necessary symbol tables, and their linetables.
17375
17376 2. If PST is not NULL, this procedure reads the program to determine
17377 the list of files included by the unit represented by PST, and
17378 builds all the associated partial symbol tables.
17379
17380 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17381 It is used for relative paths in the line table.
17382 NOTE: When processing partial symtabs (pst != NULL),
17383 comp_dir == pst->dirname.
17384
17385 NOTE: It is important that psymtabs have the same file name (via strcmp)
17386 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17387 symtab we don't use it in the name of the psymtabs we create.
17388 E.g. expand_line_sal requires this when finding psymtabs to expand.
17389 A good testcase for this is mb-inline.exp. */
17390
17391static void
17392dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17393 struct dwarf2_cu *cu, struct partial_symtab *pst,
17394 int want_line_info)
17395{
17396 struct objfile *objfile = cu->objfile;
17397 const int decode_for_pst_p = (pst != NULL);
17398 struct subfile *first_subfile = current_subfile;
17399
17400 if (want_line_info)
17401 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
aaa75496
JB
17402
17403 if (decode_for_pst_p)
17404 {
17405 int file_index;
17406
17407 /* Now that we're done scanning the Line Header Program, we can
17408 create the psymtab of each included file. */
17409 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17410 if (lh->file_names[file_index].included_p == 1)
17411 {
d521ce57 17412 const char *include_name =
c6da4cef
DE
17413 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17414 if (include_name != NULL)
aaa75496
JB
17415 dwarf2_create_include_psymtab (include_name, pst, objfile);
17416 }
17417 }
cb1df416
DJ
17418 else
17419 {
17420 /* Make sure a symtab is created for every file, even files
17421 which contain only variables (i.e. no code with associated
17422 line numbers). */
cb1df416 17423 int i;
cb1df416
DJ
17424
17425 for (i = 0; i < lh->num_file_names; i++)
17426 {
d521ce57 17427 const char *dir = NULL;
f3f5162e 17428 struct file_entry *fe;
9a619af0 17429
cb1df416
DJ
17430 fe = &lh->file_names[i];
17431 if (fe->dir_index)
17432 dir = lh->include_dirs[fe->dir_index - 1];
17433 dwarf2_start_subfile (fe->name, dir, comp_dir);
17434
17435 /* Skip the main file; we don't need it, and it must be
17436 allocated last, so that it will show up before the
17437 non-primary symtabs in the objfile's symtab list. */
17438 if (current_subfile == first_subfile)
17439 continue;
17440
17441 if (current_subfile->symtab == NULL)
17442 current_subfile->symtab = allocate_symtab (current_subfile->name,
bb5ed363 17443 objfile);
cb1df416
DJ
17444 fe->symtab = current_subfile->symtab;
17445 }
17446 }
c906108c
SS
17447}
17448
17449/* Start a subfile for DWARF. FILENAME is the name of the file and
17450 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
17451 or NULL if not known. COMP_DIR is the compilation directory for the
17452 linetable's compilation unit or NULL if not known.
c906108c
SS
17453 This routine tries to keep line numbers from identical absolute and
17454 relative file names in a common subfile.
17455
17456 Using the `list' example from the GDB testsuite, which resides in
17457 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17458 of /srcdir/list0.c yields the following debugging information for list0.c:
17459
c5aa993b
JM
17460 DW_AT_name: /srcdir/list0.c
17461 DW_AT_comp_dir: /compdir
357e46e7 17462 files.files[0].name: list0.h
c5aa993b 17463 files.files[0].dir: /srcdir
357e46e7 17464 files.files[1].name: list0.c
c5aa993b 17465 files.files[1].dir: /srcdir
c906108c
SS
17466
17467 The line number information for list0.c has to end up in a single
4f1520fb
FR
17468 subfile, so that `break /srcdir/list0.c:1' works as expected.
17469 start_subfile will ensure that this happens provided that we pass the
17470 concatenation of files.files[1].dir and files.files[1].name as the
17471 subfile's name. */
c906108c
SS
17472
17473static void
d521ce57 17474dwarf2_start_subfile (const char *filename, const char *dirname,
3e43a32a 17475 const char *comp_dir)
c906108c 17476{
d521ce57 17477 char *copy = NULL;
4f1520fb
FR
17478
17479 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17480 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17481 second argument to start_subfile. To be consistent, we do the
17482 same here. In order not to lose the line information directory,
17483 we concatenate it to the filename when it makes sense.
17484 Note that the Dwarf3 standard says (speaking of filenames in line
17485 information): ``The directory index is ignored for file names
17486 that represent full path names''. Thus ignoring dirname in the
17487 `else' branch below isn't an issue. */
c906108c 17488
d5166ae1 17489 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
17490 {
17491 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17492 filename = copy;
17493 }
c906108c 17494
d521ce57 17495 start_subfile (filename, comp_dir);
4f1520fb 17496
d521ce57
TT
17497 if (copy != NULL)
17498 xfree (copy);
c906108c
SS
17499}
17500
f4dc4d17
DE
17501/* Start a symtab for DWARF.
17502 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17503
17504static void
17505dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 17506 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17
DE
17507{
17508 start_symtab (name, comp_dir, low_pc);
17509 record_debugformat ("DWARF 2");
17510 record_producer (cu->producer);
17511
17512 /* We assume that we're processing GCC output. */
17513 processing_gcc_compilation = 2;
17514
4d4ec4e5 17515 cu->processing_has_namespace_info = 0;
f4dc4d17
DE
17516}
17517
4c2df51b
DJ
17518static void
17519var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 17520 struct dwarf2_cu *cu)
4c2df51b 17521{
e7c27a73
DJ
17522 struct objfile *objfile = cu->objfile;
17523 struct comp_unit_head *cu_header = &cu->header;
17524
4c2df51b
DJ
17525 /* NOTE drow/2003-01-30: There used to be a comment and some special
17526 code here to turn a symbol with DW_AT_external and a
17527 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17528 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17529 with some versions of binutils) where shared libraries could have
17530 relocations against symbols in their debug information - the
17531 minimal symbol would have the right address, but the debug info
17532 would not. It's no longer necessary, because we will explicitly
17533 apply relocations when we read in the debug information now. */
17534
17535 /* A DW_AT_location attribute with no contents indicates that a
17536 variable has been optimized away. */
17537 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17538 {
f1e6e072 17539 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
17540 return;
17541 }
17542
17543 /* Handle one degenerate form of location expression specially, to
17544 preserve GDB's previous behavior when section offsets are
3019eac3
DE
17545 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17546 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
17547
17548 if (attr_form_is_block (attr)
3019eac3
DE
17549 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17550 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17551 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17552 && (DW_BLOCK (attr)->size
17553 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 17554 {
891d2f0b 17555 unsigned int dummy;
4c2df51b 17556
3019eac3
DE
17557 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17558 SYMBOL_VALUE_ADDRESS (sym) =
17559 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17560 else
17561 SYMBOL_VALUE_ADDRESS (sym) =
17562 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 17563 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
17564 fixup_symbol_section (sym, objfile);
17565 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17566 SYMBOL_SECTION (sym));
4c2df51b
DJ
17567 return;
17568 }
17569
17570 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17571 expression evaluator, and use LOC_COMPUTED only when necessary
17572 (i.e. when the value of a register or memory location is
17573 referenced, or a thread-local block, etc.). Then again, it might
17574 not be worthwhile. I'm assuming that it isn't unless performance
17575 or memory numbers show me otherwise. */
17576
f1e6e072 17577 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 17578
f1e6e072 17579 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 17580 cu->has_loclist = 1;
4c2df51b
DJ
17581}
17582
c906108c
SS
17583/* Given a pointer to a DWARF information entry, figure out if we need
17584 to make a symbol table entry for it, and if so, create a new entry
17585 and return a pointer to it.
17586 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
17587 used the passed type.
17588 If SPACE is not NULL, use it to hold the new symbol. If it is
17589 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
17590
17591static struct symbol *
34eaf542
TT
17592new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17593 struct symbol *space)
c906108c 17594{
e7c27a73 17595 struct objfile *objfile = cu->objfile;
c906108c 17596 struct symbol *sym = NULL;
15d034d0 17597 const char *name;
c906108c
SS
17598 struct attribute *attr = NULL;
17599 struct attribute *attr2 = NULL;
e142c38c 17600 CORE_ADDR baseaddr;
e37fd15a
SW
17601 struct pending **list_to_add = NULL;
17602
edb3359d 17603 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
17604
17605 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17606
94af9270 17607 name = dwarf2_name (die, cu);
c906108c
SS
17608 if (name)
17609 {
94af9270 17610 const char *linkagename;
34eaf542 17611 int suppress_add = 0;
94af9270 17612
34eaf542
TT
17613 if (space)
17614 sym = space;
17615 else
e623cf5d 17616 sym = allocate_symbol (objfile);
c906108c 17617 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
17618
17619 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 17620 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
17621 linkagename = dwarf2_physname (name, die, cu);
17622 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 17623
f55ee35c
JK
17624 /* Fortran does not have mangling standard and the mangling does differ
17625 between gfortran, iFort etc. */
17626 if (cu->language == language_fortran
b250c185 17627 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 17628 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 17629 dwarf2_full_name (name, die, cu),
29df156d 17630 NULL);
f55ee35c 17631
c906108c 17632 /* Default assumptions.
c5aa993b 17633 Use the passed type or decode it from the die. */
176620f1 17634 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 17635 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
17636 if (type != NULL)
17637 SYMBOL_TYPE (sym) = type;
17638 else
e7c27a73 17639 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
17640 attr = dwarf2_attr (die,
17641 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17642 cu);
c906108c
SS
17643 if (attr)
17644 {
17645 SYMBOL_LINE (sym) = DW_UNSND (attr);
17646 }
cb1df416 17647
edb3359d
DJ
17648 attr = dwarf2_attr (die,
17649 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17650 cu);
cb1df416
DJ
17651 if (attr)
17652 {
17653 int file_index = DW_UNSND (attr);
9a619af0 17654
cb1df416
DJ
17655 if (cu->line_header == NULL
17656 || file_index > cu->line_header->num_file_names)
17657 complaint (&symfile_complaints,
17658 _("file index out of range"));
1c3d648d 17659 else if (file_index > 0)
cb1df416
DJ
17660 {
17661 struct file_entry *fe;
9a619af0 17662
cb1df416
DJ
17663 fe = &cu->line_header->file_names[file_index - 1];
17664 SYMBOL_SYMTAB (sym) = fe->symtab;
17665 }
17666 }
17667
c906108c
SS
17668 switch (die->tag)
17669 {
17670 case DW_TAG_label:
e142c38c 17671 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 17672 if (attr)
31aa7e4e
JB
17673 SYMBOL_VALUE_ADDRESS (sym)
17674 = attr_value_as_address (attr) + baseaddr;
0f5238ed
TT
17675 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17676 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 17677 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 17678 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
17679 break;
17680 case DW_TAG_subprogram:
17681 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17682 finish_block. */
f1e6e072 17683 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 17684 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
17685 if ((attr2 && (DW_UNSND (attr2) != 0))
17686 || cu->language == language_ada)
c906108c 17687 {
2cfa0c8d
JB
17688 /* Subprograms marked external are stored as a global symbol.
17689 Ada subprograms, whether marked external or not, are always
17690 stored as a global symbol, because we want to be able to
17691 access them globally. For instance, we want to be able
17692 to break on a nested subprogram without having to
17693 specify the context. */
e37fd15a 17694 list_to_add = &global_symbols;
c906108c
SS
17695 }
17696 else
17697 {
e37fd15a 17698 list_to_add = cu->list_in_scope;
c906108c
SS
17699 }
17700 break;
edb3359d
DJ
17701 case DW_TAG_inlined_subroutine:
17702 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17703 finish_block. */
f1e6e072 17704 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 17705 SYMBOL_INLINED (sym) = 1;
481860b3 17706 list_to_add = cu->list_in_scope;
edb3359d 17707 break;
34eaf542
TT
17708 case DW_TAG_template_value_param:
17709 suppress_add = 1;
17710 /* Fall through. */
72929c62 17711 case DW_TAG_constant:
c906108c 17712 case DW_TAG_variable:
254e6b9e 17713 case DW_TAG_member:
0963b4bd
MS
17714 /* Compilation with minimal debug info may result in
17715 variables with missing type entries. Change the
17716 misleading `void' type to something sensible. */
c906108c 17717 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 17718 SYMBOL_TYPE (sym)
46bf5051 17719 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 17720
e142c38c 17721 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
17722 /* In the case of DW_TAG_member, we should only be called for
17723 static const members. */
17724 if (die->tag == DW_TAG_member)
17725 {
3863f96c
DE
17726 /* dwarf2_add_field uses die_is_declaration,
17727 so we do the same. */
254e6b9e
DE
17728 gdb_assert (die_is_declaration (die, cu));
17729 gdb_assert (attr);
17730 }
c906108c
SS
17731 if (attr)
17732 {
e7c27a73 17733 dwarf2_const_value (attr, sym, cu);
e142c38c 17734 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 17735 if (!suppress_add)
34eaf542
TT
17736 {
17737 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 17738 list_to_add = &global_symbols;
34eaf542 17739 else
e37fd15a 17740 list_to_add = cu->list_in_scope;
34eaf542 17741 }
c906108c
SS
17742 break;
17743 }
e142c38c 17744 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
17745 if (attr)
17746 {
e7c27a73 17747 var_decode_location (attr, sym, cu);
e142c38c 17748 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
17749
17750 /* Fortran explicitly imports any global symbols to the local
17751 scope by DW_TAG_common_block. */
17752 if (cu->language == language_fortran && die->parent
17753 && die->parent->tag == DW_TAG_common_block)
17754 attr2 = NULL;
17755
caac4577
JG
17756 if (SYMBOL_CLASS (sym) == LOC_STATIC
17757 && SYMBOL_VALUE_ADDRESS (sym) == 0
17758 && !dwarf2_per_objfile->has_section_at_zero)
17759 {
17760 /* When a static variable is eliminated by the linker,
17761 the corresponding debug information is not stripped
17762 out, but the variable address is set to null;
17763 do not add such variables into symbol table. */
17764 }
17765 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 17766 {
f55ee35c
JK
17767 /* Workaround gfortran PR debug/40040 - it uses
17768 DW_AT_location for variables in -fPIC libraries which may
17769 get overriden by other libraries/executable and get
17770 a different address. Resolve it by the minimal symbol
17771 which may come from inferior's executable using copy
17772 relocation. Make this workaround only for gfortran as for
17773 other compilers GDB cannot guess the minimal symbol
17774 Fortran mangling kind. */
17775 if (cu->language == language_fortran && die->parent
17776 && die->parent->tag == DW_TAG_module
17777 && cu->producer
17778 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
f1e6e072 17779 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 17780
1c809c68
TT
17781 /* A variable with DW_AT_external is never static,
17782 but it may be block-scoped. */
17783 list_to_add = (cu->list_in_scope == &file_symbols
17784 ? &global_symbols : cu->list_in_scope);
1c809c68 17785 }
c906108c 17786 else
e37fd15a 17787 list_to_add = cu->list_in_scope;
c906108c
SS
17788 }
17789 else
17790 {
17791 /* We do not know the address of this symbol.
c5aa993b
JM
17792 If it is an external symbol and we have type information
17793 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17794 The address of the variable will then be determined from
17795 the minimal symbol table whenever the variable is
17796 referenced. */
e142c38c 17797 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
17798
17799 /* Fortran explicitly imports any global symbols to the local
17800 scope by DW_TAG_common_block. */
17801 if (cu->language == language_fortran && die->parent
17802 && die->parent->tag == DW_TAG_common_block)
17803 {
17804 /* SYMBOL_CLASS doesn't matter here because
17805 read_common_block is going to reset it. */
17806 if (!suppress_add)
17807 list_to_add = cu->list_in_scope;
17808 }
17809 else if (attr2 && (DW_UNSND (attr2) != 0)
17810 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 17811 {
0fe7935b
DJ
17812 /* A variable with DW_AT_external is never static, but it
17813 may be block-scoped. */
17814 list_to_add = (cu->list_in_scope == &file_symbols
17815 ? &global_symbols : cu->list_in_scope);
17816
f1e6e072 17817 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 17818 }
442ddf59
JK
17819 else if (!die_is_declaration (die, cu))
17820 {
17821 /* Use the default LOC_OPTIMIZED_OUT class. */
17822 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
17823 if (!suppress_add)
17824 list_to_add = cu->list_in_scope;
442ddf59 17825 }
c906108c
SS
17826 }
17827 break;
17828 case DW_TAG_formal_parameter:
edb3359d
DJ
17829 /* If we are inside a function, mark this as an argument. If
17830 not, we might be looking at an argument to an inlined function
17831 when we do not have enough information to show inlined frames;
17832 pretend it's a local variable in that case so that the user can
17833 still see it. */
17834 if (context_stack_depth > 0
17835 && context_stack[context_stack_depth - 1].name != NULL)
17836 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 17837 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
17838 if (attr)
17839 {
e7c27a73 17840 var_decode_location (attr, sym, cu);
c906108c 17841 }
e142c38c 17842 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
17843 if (attr)
17844 {
e7c27a73 17845 dwarf2_const_value (attr, sym, cu);
c906108c 17846 }
f346a30d 17847
e37fd15a 17848 list_to_add = cu->list_in_scope;
c906108c
SS
17849 break;
17850 case DW_TAG_unspecified_parameters:
17851 /* From varargs functions; gdb doesn't seem to have any
17852 interest in this information, so just ignore it for now.
17853 (FIXME?) */
17854 break;
34eaf542
TT
17855 case DW_TAG_template_type_param:
17856 suppress_add = 1;
17857 /* Fall through. */
c906108c 17858 case DW_TAG_class_type:
680b30c7 17859 case DW_TAG_interface_type:
c906108c
SS
17860 case DW_TAG_structure_type:
17861 case DW_TAG_union_type:
72019c9c 17862 case DW_TAG_set_type:
c906108c 17863 case DW_TAG_enumeration_type:
f1e6e072 17864 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 17865 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 17866
63d06c5c 17867 {
987504bb 17868 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
17869 really ever be static objects: otherwise, if you try
17870 to, say, break of a class's method and you're in a file
17871 which doesn't mention that class, it won't work unless
17872 the check for all static symbols in lookup_symbol_aux
17873 saves you. See the OtherFileClass tests in
17874 gdb.c++/namespace.exp. */
17875
e37fd15a 17876 if (!suppress_add)
34eaf542 17877 {
34eaf542
TT
17878 list_to_add = (cu->list_in_scope == &file_symbols
17879 && (cu->language == language_cplus
17880 || cu->language == language_java)
17881 ? &global_symbols : cu->list_in_scope);
63d06c5c 17882
64382290
TT
17883 /* The semantics of C++ state that "struct foo {
17884 ... }" also defines a typedef for "foo". A Java
17885 class declaration also defines a typedef for the
17886 class. */
17887 if (cu->language == language_cplus
17888 || cu->language == language_java
17889 || cu->language == language_ada)
17890 {
17891 /* The symbol's name is already allocated along
17892 with this objfile, so we don't need to
17893 duplicate it for the type. */
17894 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17895 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
17896 }
63d06c5c
DC
17897 }
17898 }
c906108c
SS
17899 break;
17900 case DW_TAG_typedef:
f1e6e072 17901 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 17902 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 17903 list_to_add = cu->list_in_scope;
63d06c5c 17904 break;
c906108c 17905 case DW_TAG_base_type:
a02abb62 17906 case DW_TAG_subrange_type:
f1e6e072 17907 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 17908 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 17909 list_to_add = cu->list_in_scope;
c906108c
SS
17910 break;
17911 case DW_TAG_enumerator:
e142c38c 17912 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
17913 if (attr)
17914 {
e7c27a73 17915 dwarf2_const_value (attr, sym, cu);
c906108c 17916 }
63d06c5c
DC
17917 {
17918 /* NOTE: carlton/2003-11-10: See comment above in the
17919 DW_TAG_class_type, etc. block. */
17920
e142c38c 17921 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
17922 && (cu->language == language_cplus
17923 || cu->language == language_java)
e142c38c 17924 ? &global_symbols : cu->list_in_scope);
63d06c5c 17925 }
c906108c 17926 break;
74921315 17927 case DW_TAG_imported_declaration:
5c4e30ca 17928 case DW_TAG_namespace:
f1e6e072 17929 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 17930 list_to_add = &global_symbols;
5c4e30ca 17931 break;
530e8392
KB
17932 case DW_TAG_module:
17933 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17934 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
17935 list_to_add = &global_symbols;
17936 break;
4357ac6c 17937 case DW_TAG_common_block:
f1e6e072 17938 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
17939 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
17940 add_symbol_to_list (sym, cu->list_in_scope);
17941 break;
c906108c
SS
17942 default:
17943 /* Not a tag we recognize. Hopefully we aren't processing
17944 trash data, but since we must specifically ignore things
17945 we don't recognize, there is nothing else we should do at
0963b4bd 17946 this point. */
e2e0b3e5 17947 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 17948 dwarf_tag_name (die->tag));
c906108c
SS
17949 break;
17950 }
df8a16a1 17951
e37fd15a
SW
17952 if (suppress_add)
17953 {
17954 sym->hash_next = objfile->template_symbols;
17955 objfile->template_symbols = sym;
17956 list_to_add = NULL;
17957 }
17958
17959 if (list_to_add != NULL)
17960 add_symbol_to_list (sym, list_to_add);
17961
df8a16a1
DJ
17962 /* For the benefit of old versions of GCC, check for anonymous
17963 namespaces based on the demangled name. */
4d4ec4e5 17964 if (!cu->processing_has_namespace_info
94af9270 17965 && cu->language == language_cplus)
a10964d1 17966 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
17967 }
17968 return (sym);
17969}
17970
34eaf542
TT
17971/* A wrapper for new_symbol_full that always allocates a new symbol. */
17972
17973static struct symbol *
17974new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
17975{
17976 return new_symbol_full (die, type, cu, NULL);
17977}
17978
98bfdba5
PA
17979/* Given an attr with a DW_FORM_dataN value in host byte order,
17980 zero-extend it as appropriate for the symbol's type. The DWARF
17981 standard (v4) is not entirely clear about the meaning of using
17982 DW_FORM_dataN for a constant with a signed type, where the type is
17983 wider than the data. The conclusion of a discussion on the DWARF
17984 list was that this is unspecified. We choose to always zero-extend
17985 because that is the interpretation long in use by GCC. */
c906108c 17986
98bfdba5 17987static gdb_byte *
ff39bb5e 17988dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 17989 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 17990{
e7c27a73 17991 struct objfile *objfile = cu->objfile;
e17a4113
UW
17992 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
17993 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
17994 LONGEST l = DW_UNSND (attr);
17995
17996 if (bits < sizeof (*value) * 8)
17997 {
17998 l &= ((LONGEST) 1 << bits) - 1;
17999 *value = l;
18000 }
18001 else if (bits == sizeof (*value) * 8)
18002 *value = l;
18003 else
18004 {
18005 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18006 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18007 return bytes;
18008 }
18009
18010 return NULL;
18011}
18012
18013/* Read a constant value from an attribute. Either set *VALUE, or if
18014 the value does not fit in *VALUE, set *BYTES - either already
18015 allocated on the objfile obstack, or newly allocated on OBSTACK,
18016 or, set *BATON, if we translated the constant to a location
18017 expression. */
18018
18019static void
ff39bb5e 18020dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18021 const char *name, struct obstack *obstack,
18022 struct dwarf2_cu *cu,
d521ce57 18023 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18024 struct dwarf2_locexpr_baton **baton)
18025{
18026 struct objfile *objfile = cu->objfile;
18027 struct comp_unit_head *cu_header = &cu->header;
c906108c 18028 struct dwarf_block *blk;
98bfdba5
PA
18029 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18030 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18031
18032 *value = 0;
18033 *bytes = NULL;
18034 *baton = NULL;
c906108c
SS
18035
18036 switch (attr->form)
18037 {
18038 case DW_FORM_addr:
3019eac3 18039 case DW_FORM_GNU_addr_index:
ac56253d 18040 {
ac56253d
TT
18041 gdb_byte *data;
18042
98bfdba5
PA
18043 if (TYPE_LENGTH (type) != cu_header->addr_size)
18044 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18045 cu_header->addr_size,
98bfdba5 18046 TYPE_LENGTH (type));
ac56253d
TT
18047 /* Symbols of this form are reasonably rare, so we just
18048 piggyback on the existing location code rather than writing
18049 a new implementation of symbol_computed_ops. */
7919a973 18050 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
98bfdba5
PA
18051 (*baton)->per_cu = cu->per_cu;
18052 gdb_assert ((*baton)->per_cu);
ac56253d 18053
98bfdba5 18054 (*baton)->size = 2 + cu_header->addr_size;
7919a973 18055 data = obstack_alloc (obstack, (*baton)->size);
98bfdba5 18056 (*baton)->data = data;
ac56253d
TT
18057
18058 data[0] = DW_OP_addr;
18059 store_unsigned_integer (&data[1], cu_header->addr_size,
18060 byte_order, DW_ADDR (attr));
18061 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18062 }
c906108c 18063 break;
4ac36638 18064 case DW_FORM_string:
93b5768b 18065 case DW_FORM_strp:
3019eac3 18066 case DW_FORM_GNU_str_index:
36586728 18067 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18068 /* DW_STRING is already allocated on the objfile obstack, point
18069 directly to it. */
d521ce57 18070 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18071 break;
c906108c
SS
18072 case DW_FORM_block1:
18073 case DW_FORM_block2:
18074 case DW_FORM_block4:
18075 case DW_FORM_block:
2dc7f7b3 18076 case DW_FORM_exprloc:
c906108c 18077 blk = DW_BLOCK (attr);
98bfdba5
PA
18078 if (TYPE_LENGTH (type) != blk->size)
18079 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18080 TYPE_LENGTH (type));
18081 *bytes = blk->data;
c906108c 18082 break;
2df3850c
JM
18083
18084 /* The DW_AT_const_value attributes are supposed to carry the
18085 symbol's value "represented as it would be on the target
18086 architecture." By the time we get here, it's already been
18087 converted to host endianness, so we just need to sign- or
18088 zero-extend it as appropriate. */
18089 case DW_FORM_data1:
3aef2284 18090 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18091 break;
c906108c 18092 case DW_FORM_data2:
3aef2284 18093 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18094 break;
c906108c 18095 case DW_FORM_data4:
3aef2284 18096 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18097 break;
c906108c 18098 case DW_FORM_data8:
3aef2284 18099 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18100 break;
18101
c906108c 18102 case DW_FORM_sdata:
98bfdba5 18103 *value = DW_SND (attr);
2df3850c
JM
18104 break;
18105
c906108c 18106 case DW_FORM_udata:
98bfdba5 18107 *value = DW_UNSND (attr);
c906108c 18108 break;
2df3850c 18109
c906108c 18110 default:
4d3c2250 18111 complaint (&symfile_complaints,
e2e0b3e5 18112 _("unsupported const value attribute form: '%s'"),
4d3c2250 18113 dwarf_form_name (attr->form));
98bfdba5 18114 *value = 0;
c906108c
SS
18115 break;
18116 }
18117}
18118
2df3850c 18119
98bfdba5
PA
18120/* Copy constant value from an attribute to a symbol. */
18121
2df3850c 18122static void
ff39bb5e 18123dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18124 struct dwarf2_cu *cu)
2df3850c 18125{
98bfdba5
PA
18126 struct objfile *objfile = cu->objfile;
18127 struct comp_unit_head *cu_header = &cu->header;
12df843f 18128 LONGEST value;
d521ce57 18129 const gdb_byte *bytes;
98bfdba5 18130 struct dwarf2_locexpr_baton *baton;
2df3850c 18131
98bfdba5
PA
18132 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18133 SYMBOL_PRINT_NAME (sym),
18134 &objfile->objfile_obstack, cu,
18135 &value, &bytes, &baton);
2df3850c 18136
98bfdba5
PA
18137 if (baton != NULL)
18138 {
98bfdba5 18139 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18140 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18141 }
18142 else if (bytes != NULL)
18143 {
18144 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18145 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18146 }
18147 else
18148 {
18149 SYMBOL_VALUE (sym) = value;
f1e6e072 18150 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18151 }
2df3850c
JM
18152}
18153
c906108c
SS
18154/* Return the type of the die in question using its DW_AT_type attribute. */
18155
18156static struct type *
e7c27a73 18157die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18158{
c906108c 18159 struct attribute *type_attr;
c906108c 18160
e142c38c 18161 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18162 if (!type_attr)
18163 {
18164 /* A missing DW_AT_type represents a void type. */
46bf5051 18165 return objfile_type (cu->objfile)->builtin_void;
c906108c 18166 }
348e048f 18167
673bfd45 18168 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18169}
18170
b4ba55a1
JB
18171/* True iff CU's producer generates GNAT Ada auxiliary information
18172 that allows to find parallel types through that information instead
18173 of having to do expensive parallel lookups by type name. */
18174
18175static int
18176need_gnat_info (struct dwarf2_cu *cu)
18177{
18178 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18179 of GNAT produces this auxiliary information, without any indication
18180 that it is produced. Part of enhancing the FSF version of GNAT
18181 to produce that information will be to put in place an indicator
18182 that we can use in order to determine whether the descriptive type
18183 info is available or not. One suggestion that has been made is
18184 to use a new attribute, attached to the CU die. For now, assume
18185 that the descriptive type info is not available. */
18186 return 0;
18187}
18188
b4ba55a1
JB
18189/* Return the auxiliary type of the die in question using its
18190 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18191 attribute is not present. */
18192
18193static struct type *
18194die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18195{
b4ba55a1 18196 struct attribute *type_attr;
b4ba55a1
JB
18197
18198 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18199 if (!type_attr)
18200 return NULL;
18201
673bfd45 18202 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18203}
18204
18205/* If DIE has a descriptive_type attribute, then set the TYPE's
18206 descriptive type accordingly. */
18207
18208static void
18209set_descriptive_type (struct type *type, struct die_info *die,
18210 struct dwarf2_cu *cu)
18211{
18212 struct type *descriptive_type = die_descriptive_type (die, cu);
18213
18214 if (descriptive_type)
18215 {
18216 ALLOCATE_GNAT_AUX_TYPE (type);
18217 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18218 }
18219}
18220
c906108c
SS
18221/* Return the containing type of the die in question using its
18222 DW_AT_containing_type attribute. */
18223
18224static struct type *
e7c27a73 18225die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18226{
c906108c 18227 struct attribute *type_attr;
c906108c 18228
e142c38c 18229 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18230 if (!type_attr)
18231 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18232 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18233
673bfd45 18234 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18235}
18236
ac9ec31b
DE
18237/* Return an error marker type to use for the ill formed type in DIE/CU. */
18238
18239static struct type *
18240build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18241{
18242 struct objfile *objfile = dwarf2_per_objfile->objfile;
18243 char *message, *saved;
18244
18245 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18246 objfile_name (objfile),
ac9ec31b
DE
18247 cu->header.offset.sect_off,
18248 die->offset.sect_off);
18249 saved = obstack_copy0 (&objfile->objfile_obstack,
18250 message, strlen (message));
18251 xfree (message);
18252
18253 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18254}
18255
673bfd45 18256/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
18257 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18258 DW_AT_containing_type.
673bfd45
DE
18259 If there is no type substitute an error marker. */
18260
c906108c 18261static struct type *
ff39bb5e 18262lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 18263 struct dwarf2_cu *cu)
c906108c 18264{
bb5ed363 18265 struct objfile *objfile = cu->objfile;
f792889a
DJ
18266 struct type *this_type;
18267
ac9ec31b
DE
18268 gdb_assert (attr->name == DW_AT_type
18269 || attr->name == DW_AT_GNAT_descriptive_type
18270 || attr->name == DW_AT_containing_type);
18271
673bfd45
DE
18272 /* First see if we have it cached. */
18273
36586728
TT
18274 if (attr->form == DW_FORM_GNU_ref_alt)
18275 {
18276 struct dwarf2_per_cu_data *per_cu;
18277 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18278
18279 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18280 this_type = get_die_type_at_offset (offset, per_cu);
18281 }
7771576e 18282 else if (attr_form_is_ref (attr))
673bfd45 18283 {
b64f50a1 18284 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
18285
18286 this_type = get_die_type_at_offset (offset, cu->per_cu);
18287 }
55f1336d 18288 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 18289 {
ac9ec31b 18290 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 18291
ac9ec31b 18292 return get_signatured_type (die, signature, cu);
673bfd45
DE
18293 }
18294 else
18295 {
ac9ec31b
DE
18296 complaint (&symfile_complaints,
18297 _("Dwarf Error: Bad type attribute %s in DIE"
18298 " at 0x%x [in module %s]"),
18299 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 18300 objfile_name (objfile));
ac9ec31b 18301 return build_error_marker_type (cu, die);
673bfd45
DE
18302 }
18303
18304 /* If not cached we need to read it in. */
18305
18306 if (this_type == NULL)
18307 {
ac9ec31b 18308 struct die_info *type_die = NULL;
673bfd45
DE
18309 struct dwarf2_cu *type_cu = cu;
18310
7771576e 18311 if (attr_form_is_ref (attr))
ac9ec31b
DE
18312 type_die = follow_die_ref (die, attr, &type_cu);
18313 if (type_die == NULL)
18314 return build_error_marker_type (cu, die);
18315 /* If we find the type now, it's probably because the type came
3019eac3
DE
18316 from an inter-CU reference and the type's CU got expanded before
18317 ours. */
ac9ec31b 18318 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
18319 }
18320
18321 /* If we still don't have a type use an error marker. */
18322
18323 if (this_type == NULL)
ac9ec31b 18324 return build_error_marker_type (cu, die);
673bfd45 18325
f792889a 18326 return this_type;
c906108c
SS
18327}
18328
673bfd45
DE
18329/* Return the type in DIE, CU.
18330 Returns NULL for invalid types.
18331
02142a6c 18332 This first does a lookup in die_type_hash,
673bfd45
DE
18333 and only reads the die in if necessary.
18334
18335 NOTE: This can be called when reading in partial or full symbols. */
18336
f792889a 18337static struct type *
e7c27a73 18338read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18339{
f792889a
DJ
18340 struct type *this_type;
18341
18342 this_type = get_die_type (die, cu);
18343 if (this_type)
18344 return this_type;
18345
673bfd45
DE
18346 return read_type_die_1 (die, cu);
18347}
18348
18349/* Read the type in DIE, CU.
18350 Returns NULL for invalid types. */
18351
18352static struct type *
18353read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18354{
18355 struct type *this_type = NULL;
18356
c906108c
SS
18357 switch (die->tag)
18358 {
18359 case DW_TAG_class_type:
680b30c7 18360 case DW_TAG_interface_type:
c906108c
SS
18361 case DW_TAG_structure_type:
18362 case DW_TAG_union_type:
f792889a 18363 this_type = read_structure_type (die, cu);
c906108c
SS
18364 break;
18365 case DW_TAG_enumeration_type:
f792889a 18366 this_type = read_enumeration_type (die, cu);
c906108c
SS
18367 break;
18368 case DW_TAG_subprogram:
18369 case DW_TAG_subroutine_type:
edb3359d 18370 case DW_TAG_inlined_subroutine:
f792889a 18371 this_type = read_subroutine_type (die, cu);
c906108c
SS
18372 break;
18373 case DW_TAG_array_type:
f792889a 18374 this_type = read_array_type (die, cu);
c906108c 18375 break;
72019c9c 18376 case DW_TAG_set_type:
f792889a 18377 this_type = read_set_type (die, cu);
72019c9c 18378 break;
c906108c 18379 case DW_TAG_pointer_type:
f792889a 18380 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
18381 break;
18382 case DW_TAG_ptr_to_member_type:
f792889a 18383 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
18384 break;
18385 case DW_TAG_reference_type:
f792889a 18386 this_type = read_tag_reference_type (die, cu);
c906108c
SS
18387 break;
18388 case DW_TAG_const_type:
f792889a 18389 this_type = read_tag_const_type (die, cu);
c906108c
SS
18390 break;
18391 case DW_TAG_volatile_type:
f792889a 18392 this_type = read_tag_volatile_type (die, cu);
c906108c 18393 break;
06d66ee9
TT
18394 case DW_TAG_restrict_type:
18395 this_type = read_tag_restrict_type (die, cu);
18396 break;
c906108c 18397 case DW_TAG_string_type:
f792889a 18398 this_type = read_tag_string_type (die, cu);
c906108c
SS
18399 break;
18400 case DW_TAG_typedef:
f792889a 18401 this_type = read_typedef (die, cu);
c906108c 18402 break;
a02abb62 18403 case DW_TAG_subrange_type:
f792889a 18404 this_type = read_subrange_type (die, cu);
a02abb62 18405 break;
c906108c 18406 case DW_TAG_base_type:
f792889a 18407 this_type = read_base_type (die, cu);
c906108c 18408 break;
81a17f79 18409 case DW_TAG_unspecified_type:
f792889a 18410 this_type = read_unspecified_type (die, cu);
81a17f79 18411 break;
0114d602
DJ
18412 case DW_TAG_namespace:
18413 this_type = read_namespace_type (die, cu);
18414 break;
f55ee35c
JK
18415 case DW_TAG_module:
18416 this_type = read_module_type (die, cu);
18417 break;
c906108c 18418 default:
3e43a32a
MS
18419 complaint (&symfile_complaints,
18420 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 18421 dwarf_tag_name (die->tag));
c906108c
SS
18422 break;
18423 }
63d06c5c 18424
f792889a 18425 return this_type;
63d06c5c
DC
18426}
18427
abc72ce4
DE
18428/* See if we can figure out if the class lives in a namespace. We do
18429 this by looking for a member function; its demangled name will
18430 contain namespace info, if there is any.
18431 Return the computed name or NULL.
18432 Space for the result is allocated on the objfile's obstack.
18433 This is the full-die version of guess_partial_die_structure_name.
18434 In this case we know DIE has no useful parent. */
18435
18436static char *
18437guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18438{
18439 struct die_info *spec_die;
18440 struct dwarf2_cu *spec_cu;
18441 struct die_info *child;
18442
18443 spec_cu = cu;
18444 spec_die = die_specification (die, &spec_cu);
18445 if (spec_die != NULL)
18446 {
18447 die = spec_die;
18448 cu = spec_cu;
18449 }
18450
18451 for (child = die->child;
18452 child != NULL;
18453 child = child->sibling)
18454 {
18455 if (child->tag == DW_TAG_subprogram)
18456 {
18457 struct attribute *attr;
18458
18459 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18460 if (attr == NULL)
18461 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18462 if (attr != NULL)
18463 {
18464 char *actual_name
18465 = language_class_name_from_physname (cu->language_defn,
18466 DW_STRING (attr));
18467 char *name = NULL;
18468
18469 if (actual_name != NULL)
18470 {
15d034d0 18471 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
18472
18473 if (die_name != NULL
18474 && strcmp (die_name, actual_name) != 0)
18475 {
18476 /* Strip off the class name from the full name.
18477 We want the prefix. */
18478 int die_name_len = strlen (die_name);
18479 int actual_name_len = strlen (actual_name);
18480
18481 /* Test for '::' as a sanity check. */
18482 if (actual_name_len > die_name_len + 2
3e43a32a
MS
18483 && actual_name[actual_name_len
18484 - die_name_len - 1] == ':')
abc72ce4 18485 name =
10f0c4bb
TT
18486 obstack_copy0 (&cu->objfile->objfile_obstack,
18487 actual_name,
18488 actual_name_len - die_name_len - 2);
abc72ce4
DE
18489 }
18490 }
18491 xfree (actual_name);
18492 return name;
18493 }
18494 }
18495 }
18496
18497 return NULL;
18498}
18499
96408a79
SA
18500/* GCC might emit a nameless typedef that has a linkage name. Determine the
18501 prefix part in such case. See
18502 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18503
18504static char *
18505anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18506{
18507 struct attribute *attr;
18508 char *base;
18509
18510 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18511 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18512 return NULL;
18513
18514 attr = dwarf2_attr (die, DW_AT_name, cu);
18515 if (attr != NULL && DW_STRING (attr) != NULL)
18516 return NULL;
18517
18518 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18519 if (attr == NULL)
18520 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18521 if (attr == NULL || DW_STRING (attr) == NULL)
18522 return NULL;
18523
18524 /* dwarf2_name had to be already called. */
18525 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18526
18527 /* Strip the base name, keep any leading namespaces/classes. */
18528 base = strrchr (DW_STRING (attr), ':');
18529 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18530 return "";
18531
10f0c4bb
TT
18532 return obstack_copy0 (&cu->objfile->objfile_obstack,
18533 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
18534}
18535
fdde2d81 18536/* Return the name of the namespace/class that DIE is defined within,
0114d602 18537 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 18538
0114d602
DJ
18539 For example, if we're within the method foo() in the following
18540 code:
18541
18542 namespace N {
18543 class C {
18544 void foo () {
18545 }
18546 };
18547 }
18548
18549 then determine_prefix on foo's die will return "N::C". */
fdde2d81 18550
0d5cff50 18551static const char *
e142c38c 18552determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 18553{
0114d602
DJ
18554 struct die_info *parent, *spec_die;
18555 struct dwarf2_cu *spec_cu;
18556 struct type *parent_type;
96408a79 18557 char *retval;
63d06c5c 18558
f55ee35c
JK
18559 if (cu->language != language_cplus && cu->language != language_java
18560 && cu->language != language_fortran)
0114d602
DJ
18561 return "";
18562
96408a79
SA
18563 retval = anonymous_struct_prefix (die, cu);
18564 if (retval)
18565 return retval;
18566
0114d602
DJ
18567 /* We have to be careful in the presence of DW_AT_specification.
18568 For example, with GCC 3.4, given the code
18569
18570 namespace N {
18571 void foo() {
18572 // Definition of N::foo.
18573 }
18574 }
18575
18576 then we'll have a tree of DIEs like this:
18577
18578 1: DW_TAG_compile_unit
18579 2: DW_TAG_namespace // N
18580 3: DW_TAG_subprogram // declaration of N::foo
18581 4: DW_TAG_subprogram // definition of N::foo
18582 DW_AT_specification // refers to die #3
18583
18584 Thus, when processing die #4, we have to pretend that we're in
18585 the context of its DW_AT_specification, namely the contex of die
18586 #3. */
18587 spec_cu = cu;
18588 spec_die = die_specification (die, &spec_cu);
18589 if (spec_die == NULL)
18590 parent = die->parent;
18591 else
63d06c5c 18592 {
0114d602
DJ
18593 parent = spec_die->parent;
18594 cu = spec_cu;
63d06c5c 18595 }
0114d602
DJ
18596
18597 if (parent == NULL)
18598 return "";
98bfdba5
PA
18599 else if (parent->building_fullname)
18600 {
18601 const char *name;
18602 const char *parent_name;
18603
18604 /* It has been seen on RealView 2.2 built binaries,
18605 DW_TAG_template_type_param types actually _defined_ as
18606 children of the parent class:
18607
18608 enum E {};
18609 template class <class Enum> Class{};
18610 Class<enum E> class_e;
18611
18612 1: DW_TAG_class_type (Class)
18613 2: DW_TAG_enumeration_type (E)
18614 3: DW_TAG_enumerator (enum1:0)
18615 3: DW_TAG_enumerator (enum2:1)
18616 ...
18617 2: DW_TAG_template_type_param
18618 DW_AT_type DW_FORM_ref_udata (E)
18619
18620 Besides being broken debug info, it can put GDB into an
18621 infinite loop. Consider:
18622
18623 When we're building the full name for Class<E>, we'll start
18624 at Class, and go look over its template type parameters,
18625 finding E. We'll then try to build the full name of E, and
18626 reach here. We're now trying to build the full name of E,
18627 and look over the parent DIE for containing scope. In the
18628 broken case, if we followed the parent DIE of E, we'd again
18629 find Class, and once again go look at its template type
18630 arguments, etc., etc. Simply don't consider such parent die
18631 as source-level parent of this die (it can't be, the language
18632 doesn't allow it), and break the loop here. */
18633 name = dwarf2_name (die, cu);
18634 parent_name = dwarf2_name (parent, cu);
18635 complaint (&symfile_complaints,
18636 _("template param type '%s' defined within parent '%s'"),
18637 name ? name : "<unknown>",
18638 parent_name ? parent_name : "<unknown>");
18639 return "";
18640 }
63d06c5c 18641 else
0114d602
DJ
18642 switch (parent->tag)
18643 {
63d06c5c 18644 case DW_TAG_namespace:
0114d602 18645 parent_type = read_type_die (parent, cu);
acebe513
UW
18646 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18647 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18648 Work around this problem here. */
18649 if (cu->language == language_cplus
18650 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18651 return "";
0114d602
DJ
18652 /* We give a name to even anonymous namespaces. */
18653 return TYPE_TAG_NAME (parent_type);
63d06c5c 18654 case DW_TAG_class_type:
680b30c7 18655 case DW_TAG_interface_type:
63d06c5c 18656 case DW_TAG_structure_type:
0114d602 18657 case DW_TAG_union_type:
f55ee35c 18658 case DW_TAG_module:
0114d602
DJ
18659 parent_type = read_type_die (parent, cu);
18660 if (TYPE_TAG_NAME (parent_type) != NULL)
18661 return TYPE_TAG_NAME (parent_type);
18662 else
18663 /* An anonymous structure is only allowed non-static data
18664 members; no typedefs, no member functions, et cetera.
18665 So it does not need a prefix. */
18666 return "";
abc72ce4 18667 case DW_TAG_compile_unit:
95554aad 18668 case DW_TAG_partial_unit:
abc72ce4
DE
18669 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18670 if (cu->language == language_cplus
8b70b953 18671 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
18672 && die->child != NULL
18673 && (die->tag == DW_TAG_class_type
18674 || die->tag == DW_TAG_structure_type
18675 || die->tag == DW_TAG_union_type))
18676 {
18677 char *name = guess_full_die_structure_name (die, cu);
18678 if (name != NULL)
18679 return name;
18680 }
18681 return "";
3d567982
TT
18682 case DW_TAG_enumeration_type:
18683 parent_type = read_type_die (parent, cu);
18684 if (TYPE_DECLARED_CLASS (parent_type))
18685 {
18686 if (TYPE_TAG_NAME (parent_type) != NULL)
18687 return TYPE_TAG_NAME (parent_type);
18688 return "";
18689 }
18690 /* Fall through. */
63d06c5c 18691 default:
8176b9b8 18692 return determine_prefix (parent, cu);
63d06c5c 18693 }
63d06c5c
DC
18694}
18695
3e43a32a
MS
18696/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18697 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18698 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18699 an obconcat, otherwise allocate storage for the result. The CU argument is
18700 used to determine the language and hence, the appropriate separator. */
987504bb 18701
f55ee35c 18702#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
18703
18704static char *
f55ee35c
JK
18705typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18706 int physname, struct dwarf2_cu *cu)
63d06c5c 18707{
f55ee35c 18708 const char *lead = "";
5c315b68 18709 const char *sep;
63d06c5c 18710
3e43a32a
MS
18711 if (suffix == NULL || suffix[0] == '\0'
18712 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
18713 sep = "";
18714 else if (cu->language == language_java)
18715 sep = ".";
f55ee35c
JK
18716 else if (cu->language == language_fortran && physname)
18717 {
18718 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18719 DW_AT_MIPS_linkage_name is preferred and used instead. */
18720
18721 lead = "__";
18722 sep = "_MOD_";
18723 }
987504bb
JJ
18724 else
18725 sep = "::";
63d06c5c 18726
6dd47d34
DE
18727 if (prefix == NULL)
18728 prefix = "";
18729 if (suffix == NULL)
18730 suffix = "";
18731
987504bb
JJ
18732 if (obs == NULL)
18733 {
3e43a32a
MS
18734 char *retval
18735 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 18736
f55ee35c
JK
18737 strcpy (retval, lead);
18738 strcat (retval, prefix);
6dd47d34
DE
18739 strcat (retval, sep);
18740 strcat (retval, suffix);
63d06c5c
DC
18741 return retval;
18742 }
987504bb
JJ
18743 else
18744 {
18745 /* We have an obstack. */
f55ee35c 18746 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 18747 }
63d06c5c
DC
18748}
18749
c906108c
SS
18750/* Return sibling of die, NULL if no sibling. */
18751
f9aca02d 18752static struct die_info *
fba45db2 18753sibling_die (struct die_info *die)
c906108c 18754{
639d11d3 18755 return die->sibling;
c906108c
SS
18756}
18757
71c25dea
TT
18758/* Get name of a die, return NULL if not found. */
18759
15d034d0
TT
18760static const char *
18761dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
18762 struct obstack *obstack)
18763{
18764 if (name && cu->language == language_cplus)
18765 {
18766 char *canon_name = cp_canonicalize_string (name);
18767
18768 if (canon_name != NULL)
18769 {
18770 if (strcmp (canon_name, name) != 0)
10f0c4bb 18771 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
18772 xfree (canon_name);
18773 }
18774 }
18775
18776 return name;
c906108c
SS
18777}
18778
9219021c
DC
18779/* Get name of a die, return NULL if not found. */
18780
15d034d0 18781static const char *
e142c38c 18782dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
18783{
18784 struct attribute *attr;
18785
e142c38c 18786 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
18787 if ((!attr || !DW_STRING (attr))
18788 && die->tag != DW_TAG_class_type
18789 && die->tag != DW_TAG_interface_type
18790 && die->tag != DW_TAG_structure_type
18791 && die->tag != DW_TAG_union_type)
71c25dea
TT
18792 return NULL;
18793
18794 switch (die->tag)
18795 {
18796 case DW_TAG_compile_unit:
95554aad 18797 case DW_TAG_partial_unit:
71c25dea
TT
18798 /* Compilation units have a DW_AT_name that is a filename, not
18799 a source language identifier. */
18800 case DW_TAG_enumeration_type:
18801 case DW_TAG_enumerator:
18802 /* These tags always have simple identifiers already; no need
18803 to canonicalize them. */
18804 return DW_STRING (attr);
907af001 18805
418835cc
KS
18806 case DW_TAG_subprogram:
18807 /* Java constructors will all be named "<init>", so return
18808 the class name when we see this special case. */
18809 if (cu->language == language_java
18810 && DW_STRING (attr) != NULL
18811 && strcmp (DW_STRING (attr), "<init>") == 0)
18812 {
18813 struct dwarf2_cu *spec_cu = cu;
18814 struct die_info *spec_die;
18815
18816 /* GCJ will output '<init>' for Java constructor names.
18817 For this special case, return the name of the parent class. */
18818
18819 /* GCJ may output suprogram DIEs with AT_specification set.
18820 If so, use the name of the specified DIE. */
18821 spec_die = die_specification (die, &spec_cu);
18822 if (spec_die != NULL)
18823 return dwarf2_name (spec_die, spec_cu);
18824
18825 do
18826 {
18827 die = die->parent;
18828 if (die->tag == DW_TAG_class_type)
18829 return dwarf2_name (die, cu);
18830 }
95554aad
TT
18831 while (die->tag != DW_TAG_compile_unit
18832 && die->tag != DW_TAG_partial_unit);
418835cc 18833 }
907af001
UW
18834 break;
18835
18836 case DW_TAG_class_type:
18837 case DW_TAG_interface_type:
18838 case DW_TAG_structure_type:
18839 case DW_TAG_union_type:
18840 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18841 structures or unions. These were of the form "._%d" in GCC 4.1,
18842 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18843 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
18844 if (attr && DW_STRING (attr)
18845 && (strncmp (DW_STRING (attr), "._", 2) == 0
18846 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 18847 return NULL;
53832f31
TT
18848
18849 /* GCC might emit a nameless typedef that has a linkage name. See
18850 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18851 if (!attr || DW_STRING (attr) == NULL)
18852 {
df5c6c50 18853 char *demangled = NULL;
53832f31
TT
18854
18855 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18856 if (attr == NULL)
18857 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18858
18859 if (attr == NULL || DW_STRING (attr) == NULL)
18860 return NULL;
18861
df5c6c50
JK
18862 /* Avoid demangling DW_STRING (attr) the second time on a second
18863 call for the same DIE. */
18864 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 18865 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
18866
18867 if (demangled)
18868 {
96408a79
SA
18869 char *base;
18870
53832f31 18871 /* FIXME: we already did this for the partial symbol... */
10f0c4bb
TT
18872 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
18873 demangled, strlen (demangled));
53832f31
TT
18874 DW_STRING_IS_CANONICAL (attr) = 1;
18875 xfree (demangled);
96408a79
SA
18876
18877 /* Strip any leading namespaces/classes, keep only the base name.
18878 DW_AT_name for named DIEs does not contain the prefixes. */
18879 base = strrchr (DW_STRING (attr), ':');
18880 if (base && base > DW_STRING (attr) && base[-1] == ':')
18881 return &base[1];
18882 else
18883 return DW_STRING (attr);
53832f31
TT
18884 }
18885 }
907af001
UW
18886 break;
18887
71c25dea 18888 default:
907af001
UW
18889 break;
18890 }
18891
18892 if (!DW_STRING_IS_CANONICAL (attr))
18893 {
18894 DW_STRING (attr)
18895 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
18896 &cu->objfile->objfile_obstack);
18897 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 18898 }
907af001 18899 return DW_STRING (attr);
9219021c
DC
18900}
18901
18902/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
18903 is none. *EXT_CU is the CU containing DIE on input, and the CU
18904 containing the return value on output. */
9219021c
DC
18905
18906static struct die_info *
f2f0e013 18907dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
18908{
18909 struct attribute *attr;
9219021c 18910
f2f0e013 18911 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
18912 if (attr == NULL)
18913 return NULL;
18914
f2f0e013 18915 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
18916}
18917
c906108c
SS
18918/* Convert a DIE tag into its string name. */
18919
f39c6ffd 18920static const char *
aa1ee363 18921dwarf_tag_name (unsigned tag)
c906108c 18922{
f39c6ffd
TT
18923 const char *name = get_DW_TAG_name (tag);
18924
18925 if (name == NULL)
18926 return "DW_TAG_<unknown>";
18927
18928 return name;
c906108c
SS
18929}
18930
18931/* Convert a DWARF attribute code into its string name. */
18932
f39c6ffd 18933static const char *
aa1ee363 18934dwarf_attr_name (unsigned attr)
c906108c 18935{
f39c6ffd
TT
18936 const char *name;
18937
c764a876 18938#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
18939 if (attr == DW_AT_MIPS_fde)
18940 return "DW_AT_MIPS_fde";
18941#else
18942 if (attr == DW_AT_HP_block_index)
18943 return "DW_AT_HP_block_index";
c764a876 18944#endif
f39c6ffd
TT
18945
18946 name = get_DW_AT_name (attr);
18947
18948 if (name == NULL)
18949 return "DW_AT_<unknown>";
18950
18951 return name;
c906108c
SS
18952}
18953
18954/* Convert a DWARF value form code into its string name. */
18955
f39c6ffd 18956static const char *
aa1ee363 18957dwarf_form_name (unsigned form)
c906108c 18958{
f39c6ffd
TT
18959 const char *name = get_DW_FORM_name (form);
18960
18961 if (name == NULL)
18962 return "DW_FORM_<unknown>";
18963
18964 return name;
c906108c
SS
18965}
18966
18967static char *
fba45db2 18968dwarf_bool_name (unsigned mybool)
c906108c
SS
18969{
18970 if (mybool)
18971 return "TRUE";
18972 else
18973 return "FALSE";
18974}
18975
18976/* Convert a DWARF type code into its string name. */
18977
f39c6ffd 18978static const char *
aa1ee363 18979dwarf_type_encoding_name (unsigned enc)
c906108c 18980{
f39c6ffd 18981 const char *name = get_DW_ATE_name (enc);
c906108c 18982
f39c6ffd
TT
18983 if (name == NULL)
18984 return "DW_ATE_<unknown>";
c906108c 18985
f39c6ffd 18986 return name;
c906108c 18987}
c906108c 18988
f9aca02d 18989static void
d97bc12b 18990dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
18991{
18992 unsigned int i;
18993
d97bc12b
DE
18994 print_spaces (indent, f);
18995 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 18996 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
18997
18998 if (die->parent != NULL)
18999 {
19000 print_spaces (indent, f);
19001 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19002 die->parent->offset.sect_off);
d97bc12b
DE
19003 }
19004
19005 print_spaces (indent, f);
19006 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19007 dwarf_bool_name (die->child != NULL));
c906108c 19008
d97bc12b
DE
19009 print_spaces (indent, f);
19010 fprintf_unfiltered (f, " attributes:\n");
19011
c906108c
SS
19012 for (i = 0; i < die->num_attrs; ++i)
19013 {
d97bc12b
DE
19014 print_spaces (indent, f);
19015 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19016 dwarf_attr_name (die->attrs[i].name),
19017 dwarf_form_name (die->attrs[i].form));
d97bc12b 19018
c906108c
SS
19019 switch (die->attrs[i].form)
19020 {
c906108c 19021 case DW_FORM_addr:
3019eac3 19022 case DW_FORM_GNU_addr_index:
d97bc12b 19023 fprintf_unfiltered (f, "address: ");
5af949e3 19024 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19025 break;
19026 case DW_FORM_block2:
19027 case DW_FORM_block4:
19028 case DW_FORM_block:
19029 case DW_FORM_block1:
56eb65bd
SP
19030 fprintf_unfiltered (f, "block: size %s",
19031 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19032 break;
2dc7f7b3 19033 case DW_FORM_exprloc:
56eb65bd
SP
19034 fprintf_unfiltered (f, "expression: size %s",
19035 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19036 break;
4568ecf9
DE
19037 case DW_FORM_ref_addr:
19038 fprintf_unfiltered (f, "ref address: ");
19039 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19040 break;
36586728
TT
19041 case DW_FORM_GNU_ref_alt:
19042 fprintf_unfiltered (f, "alt ref address: ");
19043 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19044 break;
10b3939b
DJ
19045 case DW_FORM_ref1:
19046 case DW_FORM_ref2:
19047 case DW_FORM_ref4:
4568ecf9
DE
19048 case DW_FORM_ref8:
19049 case DW_FORM_ref_udata:
d97bc12b 19050 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19051 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19052 break;
c906108c
SS
19053 case DW_FORM_data1:
19054 case DW_FORM_data2:
19055 case DW_FORM_data4:
ce5d95e1 19056 case DW_FORM_data8:
c906108c
SS
19057 case DW_FORM_udata:
19058 case DW_FORM_sdata:
43bbcdc2
PH
19059 fprintf_unfiltered (f, "constant: %s",
19060 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19061 break;
2dc7f7b3
TT
19062 case DW_FORM_sec_offset:
19063 fprintf_unfiltered (f, "section offset: %s",
19064 pulongest (DW_UNSND (&die->attrs[i])));
19065 break;
55f1336d 19066 case DW_FORM_ref_sig8:
ac9ec31b
DE
19067 fprintf_unfiltered (f, "signature: %s",
19068 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19069 break;
c906108c 19070 case DW_FORM_string:
4bdf3d34 19071 case DW_FORM_strp:
3019eac3 19072 case DW_FORM_GNU_str_index:
36586728 19073 case DW_FORM_GNU_strp_alt:
8285870a 19074 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19075 DW_STRING (&die->attrs[i])
8285870a
JK
19076 ? DW_STRING (&die->attrs[i]) : "",
19077 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19078 break;
19079 case DW_FORM_flag:
19080 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19081 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19082 else
d97bc12b 19083 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19084 break;
2dc7f7b3
TT
19085 case DW_FORM_flag_present:
19086 fprintf_unfiltered (f, "flag: TRUE");
19087 break;
a8329558 19088 case DW_FORM_indirect:
0963b4bd
MS
19089 /* The reader will have reduced the indirect form to
19090 the "base form" so this form should not occur. */
3e43a32a
MS
19091 fprintf_unfiltered (f,
19092 "unexpected attribute form: DW_FORM_indirect");
a8329558 19093 break;
c906108c 19094 default:
d97bc12b 19095 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19096 die->attrs[i].form);
d97bc12b 19097 break;
c906108c 19098 }
d97bc12b 19099 fprintf_unfiltered (f, "\n");
c906108c
SS
19100 }
19101}
19102
f9aca02d 19103static void
d97bc12b 19104dump_die_for_error (struct die_info *die)
c906108c 19105{
d97bc12b
DE
19106 dump_die_shallow (gdb_stderr, 0, die);
19107}
19108
19109static void
19110dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19111{
19112 int indent = level * 4;
19113
19114 gdb_assert (die != NULL);
19115
19116 if (level >= max_level)
19117 return;
19118
19119 dump_die_shallow (f, indent, die);
19120
19121 if (die->child != NULL)
c906108c 19122 {
d97bc12b
DE
19123 print_spaces (indent, f);
19124 fprintf_unfiltered (f, " Children:");
19125 if (level + 1 < max_level)
19126 {
19127 fprintf_unfiltered (f, "\n");
19128 dump_die_1 (f, level + 1, max_level, die->child);
19129 }
19130 else
19131 {
3e43a32a
MS
19132 fprintf_unfiltered (f,
19133 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19134 }
19135 }
19136
19137 if (die->sibling != NULL && level > 0)
19138 {
19139 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19140 }
19141}
19142
d97bc12b
DE
19143/* This is called from the pdie macro in gdbinit.in.
19144 It's not static so gcc will keep a copy callable from gdb. */
19145
19146void
19147dump_die (struct die_info *die, int max_level)
19148{
19149 dump_die_1 (gdb_stdlog, 0, max_level, die);
19150}
19151
f9aca02d 19152static void
51545339 19153store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19154{
51545339 19155 void **slot;
c906108c 19156
b64f50a1
JK
19157 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19158 INSERT);
51545339
DJ
19159
19160 *slot = die;
c906108c
SS
19161}
19162
b64f50a1
JK
19163/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19164 required kind. */
19165
19166static sect_offset
ff39bb5e 19167dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19168{
4568ecf9 19169 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19170
7771576e 19171 if (attr_form_is_ref (attr))
b64f50a1 19172 return retval;
93311388 19173
b64f50a1 19174 retval.sect_off = 0;
93311388
DE
19175 complaint (&symfile_complaints,
19176 _("unsupported die ref attribute form: '%s'"),
19177 dwarf_form_name (attr->form));
b64f50a1 19178 return retval;
c906108c
SS
19179}
19180
43bbcdc2
PH
19181/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19182 * the value held by the attribute is not constant. */
a02abb62 19183
43bbcdc2 19184static LONGEST
ff39bb5e 19185dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19186{
19187 if (attr->form == DW_FORM_sdata)
19188 return DW_SND (attr);
19189 else if (attr->form == DW_FORM_udata
19190 || attr->form == DW_FORM_data1
19191 || attr->form == DW_FORM_data2
19192 || attr->form == DW_FORM_data4
19193 || attr->form == DW_FORM_data8)
19194 return DW_UNSND (attr);
19195 else
19196 {
3e43a32a
MS
19197 complaint (&symfile_complaints,
19198 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19199 dwarf_form_name (attr->form));
19200 return default_value;
19201 }
19202}
19203
348e048f
DE
19204/* Follow reference or signature attribute ATTR of SRC_DIE.
19205 On entry *REF_CU is the CU of SRC_DIE.
19206 On exit *REF_CU is the CU of the result. */
19207
19208static struct die_info *
ff39bb5e 19209follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19210 struct dwarf2_cu **ref_cu)
19211{
19212 struct die_info *die;
19213
7771576e 19214 if (attr_form_is_ref (attr))
348e048f 19215 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19216 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19217 die = follow_die_sig (src_die, attr, ref_cu);
19218 else
19219 {
19220 dump_die_for_error (src_die);
19221 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19222 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19223 }
19224
19225 return die;
03dd20cc
DJ
19226}
19227
5c631832 19228/* Follow reference OFFSET.
673bfd45
DE
19229 On entry *REF_CU is the CU of the source die referencing OFFSET.
19230 On exit *REF_CU is the CU of the result.
19231 Returns NULL if OFFSET is invalid. */
f504f079 19232
f9aca02d 19233static struct die_info *
36586728
TT
19234follow_die_offset (sect_offset offset, int offset_in_dwz,
19235 struct dwarf2_cu **ref_cu)
c906108c 19236{
10b3939b 19237 struct die_info temp_die;
f2f0e013 19238 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19239
348e048f
DE
19240 gdb_assert (cu->per_cu != NULL);
19241
98bfdba5
PA
19242 target_cu = cu;
19243
3019eac3 19244 if (cu->per_cu->is_debug_types)
348e048f
DE
19245 {
19246 /* .debug_types CUs cannot reference anything outside their CU.
19247 If they need to, they have to reference a signatured type via
55f1336d 19248 DW_FORM_ref_sig8. */
348e048f 19249 if (! offset_in_cu_p (&cu->header, offset))
5c631832 19250 return NULL;
348e048f 19251 }
36586728
TT
19252 else if (offset_in_dwz != cu->per_cu->is_dwz
19253 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
19254 {
19255 struct dwarf2_per_cu_data *per_cu;
9a619af0 19256
36586728
TT
19257 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19258 cu->objfile);
03dd20cc
DJ
19259
19260 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
19261 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19262 load_full_comp_unit (per_cu, cu->language);
03dd20cc 19263
10b3939b
DJ
19264 target_cu = per_cu->cu;
19265 }
98bfdba5
PA
19266 else if (cu->dies == NULL)
19267 {
19268 /* We're loading full DIEs during partial symbol reading. */
19269 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 19270 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 19271 }
c906108c 19272
f2f0e013 19273 *ref_cu = target_cu;
51545339 19274 temp_die.offset = offset;
b64f50a1 19275 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 19276}
10b3939b 19277
5c631832
JK
19278/* Follow reference attribute ATTR of SRC_DIE.
19279 On entry *REF_CU is the CU of SRC_DIE.
19280 On exit *REF_CU is the CU of the result. */
19281
19282static struct die_info *
ff39bb5e 19283follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
19284 struct dwarf2_cu **ref_cu)
19285{
b64f50a1 19286 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
19287 struct dwarf2_cu *cu = *ref_cu;
19288 struct die_info *die;
19289
36586728
TT
19290 die = follow_die_offset (offset,
19291 (attr->form == DW_FORM_GNU_ref_alt
19292 || cu->per_cu->is_dwz),
19293 ref_cu);
5c631832
JK
19294 if (!die)
19295 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19296 "at 0x%x [in module %s]"),
4262abfb
JK
19297 offset.sect_off, src_die->offset.sect_off,
19298 objfile_name (cu->objfile));
348e048f 19299
5c631832
JK
19300 return die;
19301}
19302
d83e736b
JK
19303/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19304 Returned value is intended for DW_OP_call*. Returned
19305 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
19306
19307struct dwarf2_locexpr_baton
8b9737bf
TT
19308dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19309 struct dwarf2_per_cu_data *per_cu,
19310 CORE_ADDR (*get_frame_pc) (void *baton),
19311 void *baton)
5c631832 19312{
918dd910 19313 struct dwarf2_cu *cu;
5c631832
JK
19314 struct die_info *die;
19315 struct attribute *attr;
19316 struct dwarf2_locexpr_baton retval;
19317
8cf6f0b1
TT
19318 dw2_setup (per_cu->objfile);
19319
918dd910
JK
19320 if (per_cu->cu == NULL)
19321 load_cu (per_cu);
19322 cu = per_cu->cu;
19323
36586728 19324 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
19325 if (!die)
19326 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19327 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19328
19329 attr = dwarf2_attr (die, DW_AT_location, cu);
19330 if (!attr)
19331 {
e103e986
JK
19332 /* DWARF: "If there is no such attribute, then there is no effect.".
19333 DATA is ignored if SIZE is 0. */
5c631832 19334
e103e986 19335 retval.data = NULL;
5c631832
JK
19336 retval.size = 0;
19337 }
8cf6f0b1
TT
19338 else if (attr_form_is_section_offset (attr))
19339 {
19340 struct dwarf2_loclist_baton loclist_baton;
19341 CORE_ADDR pc = (*get_frame_pc) (baton);
19342 size_t size;
19343
19344 fill_in_loclist_baton (cu, &loclist_baton, attr);
19345
19346 retval.data = dwarf2_find_location_expression (&loclist_baton,
19347 &size, pc);
19348 retval.size = size;
19349 }
5c631832
JK
19350 else
19351 {
19352 if (!attr_form_is_block (attr))
19353 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19354 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 19355 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19356
19357 retval.data = DW_BLOCK (attr)->data;
19358 retval.size = DW_BLOCK (attr)->size;
19359 }
19360 retval.per_cu = cu->per_cu;
918dd910 19361
918dd910
JK
19362 age_cached_comp_units ();
19363
5c631832 19364 return retval;
348e048f
DE
19365}
19366
8b9737bf
TT
19367/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19368 offset. */
19369
19370struct dwarf2_locexpr_baton
19371dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19372 struct dwarf2_per_cu_data *per_cu,
19373 CORE_ADDR (*get_frame_pc) (void *baton),
19374 void *baton)
19375{
19376 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19377
19378 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19379}
19380
b6807d98
TT
19381/* Write a constant of a given type as target-ordered bytes into
19382 OBSTACK. */
19383
19384static const gdb_byte *
19385write_constant_as_bytes (struct obstack *obstack,
19386 enum bfd_endian byte_order,
19387 struct type *type,
19388 ULONGEST value,
19389 LONGEST *len)
19390{
19391 gdb_byte *result;
19392
19393 *len = TYPE_LENGTH (type);
19394 result = obstack_alloc (obstack, *len);
19395 store_unsigned_integer (result, *len, byte_order, value);
19396
19397 return result;
19398}
19399
19400/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19401 pointer to the constant bytes and set LEN to the length of the
19402 data. If memory is needed, allocate it on OBSTACK. If the DIE
19403 does not have a DW_AT_const_value, return NULL. */
19404
19405const gdb_byte *
19406dwarf2_fetch_constant_bytes (sect_offset offset,
19407 struct dwarf2_per_cu_data *per_cu,
19408 struct obstack *obstack,
19409 LONGEST *len)
19410{
19411 struct dwarf2_cu *cu;
19412 struct die_info *die;
19413 struct attribute *attr;
19414 const gdb_byte *result = NULL;
19415 struct type *type;
19416 LONGEST value;
19417 enum bfd_endian byte_order;
19418
19419 dw2_setup (per_cu->objfile);
19420
19421 if (per_cu->cu == NULL)
19422 load_cu (per_cu);
19423 cu = per_cu->cu;
19424
19425 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19426 if (!die)
19427 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19428 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
19429
19430
19431 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19432 if (attr == NULL)
19433 return NULL;
19434
19435 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19436 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19437
19438 switch (attr->form)
19439 {
19440 case DW_FORM_addr:
19441 case DW_FORM_GNU_addr_index:
19442 {
19443 gdb_byte *tem;
19444
19445 *len = cu->header.addr_size;
19446 tem = obstack_alloc (obstack, *len);
19447 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19448 result = tem;
19449 }
19450 break;
19451 case DW_FORM_string:
19452 case DW_FORM_strp:
19453 case DW_FORM_GNU_str_index:
19454 case DW_FORM_GNU_strp_alt:
19455 /* DW_STRING is already allocated on the objfile obstack, point
19456 directly to it. */
19457 result = (const gdb_byte *) DW_STRING (attr);
19458 *len = strlen (DW_STRING (attr));
19459 break;
19460 case DW_FORM_block1:
19461 case DW_FORM_block2:
19462 case DW_FORM_block4:
19463 case DW_FORM_block:
19464 case DW_FORM_exprloc:
19465 result = DW_BLOCK (attr)->data;
19466 *len = DW_BLOCK (attr)->size;
19467 break;
19468
19469 /* The DW_AT_const_value attributes are supposed to carry the
19470 symbol's value "represented as it would be on the target
19471 architecture." By the time we get here, it's already been
19472 converted to host endianness, so we just need to sign- or
19473 zero-extend it as appropriate. */
19474 case DW_FORM_data1:
19475 type = die_type (die, cu);
19476 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19477 if (result == NULL)
19478 result = write_constant_as_bytes (obstack, byte_order,
19479 type, value, len);
19480 break;
19481 case DW_FORM_data2:
19482 type = die_type (die, cu);
19483 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19484 if (result == NULL)
19485 result = write_constant_as_bytes (obstack, byte_order,
19486 type, value, len);
19487 break;
19488 case DW_FORM_data4:
19489 type = die_type (die, cu);
19490 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19491 if (result == NULL)
19492 result = write_constant_as_bytes (obstack, byte_order,
19493 type, value, len);
19494 break;
19495 case DW_FORM_data8:
19496 type = die_type (die, cu);
19497 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19498 if (result == NULL)
19499 result = write_constant_as_bytes (obstack, byte_order,
19500 type, value, len);
19501 break;
19502
19503 case DW_FORM_sdata:
19504 type = die_type (die, cu);
19505 result = write_constant_as_bytes (obstack, byte_order,
19506 type, DW_SND (attr), len);
19507 break;
19508
19509 case DW_FORM_udata:
19510 type = die_type (die, cu);
19511 result = write_constant_as_bytes (obstack, byte_order,
19512 type, DW_UNSND (attr), len);
19513 break;
19514
19515 default:
19516 complaint (&symfile_complaints,
19517 _("unsupported const value attribute form: '%s'"),
19518 dwarf_form_name (attr->form));
19519 break;
19520 }
19521
19522 return result;
19523}
19524
8a9b8146
TT
19525/* Return the type of the DIE at DIE_OFFSET in the CU named by
19526 PER_CU. */
19527
19528struct type *
b64f50a1 19529dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
19530 struct dwarf2_per_cu_data *per_cu)
19531{
b64f50a1
JK
19532 sect_offset die_offset_sect;
19533
8a9b8146 19534 dw2_setup (per_cu->objfile);
b64f50a1
JK
19535
19536 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19537 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
19538}
19539
ac9ec31b 19540/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 19541 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
19542 On exit *REF_CU is the CU of the result.
19543 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
19544
19545static struct die_info *
ac9ec31b
DE
19546follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19547 struct dwarf2_cu **ref_cu)
348e048f
DE
19548{
19549 struct objfile *objfile = (*ref_cu)->objfile;
19550 struct die_info temp_die;
348e048f
DE
19551 struct dwarf2_cu *sig_cu;
19552 struct die_info *die;
19553
ac9ec31b
DE
19554 /* While it might be nice to assert sig_type->type == NULL here,
19555 we can get here for DW_AT_imported_declaration where we need
19556 the DIE not the type. */
348e048f
DE
19557
19558 /* If necessary, add it to the queue and load its DIEs. */
19559
95554aad 19560 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 19561 read_signatured_type (sig_type);
348e048f 19562
348e048f 19563 sig_cu = sig_type->per_cu.cu;
69d751e3 19564 gdb_assert (sig_cu != NULL);
3019eac3
DE
19565 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19566 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
19567 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19568 temp_die.offset.sect_off);
348e048f
DE
19569 if (die)
19570 {
796a7ff8
DE
19571 /* For .gdb_index version 7 keep track of included TUs.
19572 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19573 if (dwarf2_per_objfile->index_table != NULL
19574 && dwarf2_per_objfile->index_table->version <= 7)
19575 {
19576 VEC_safe_push (dwarf2_per_cu_ptr,
19577 (*ref_cu)->per_cu->imported_symtabs,
19578 sig_cu->per_cu);
19579 }
19580
348e048f
DE
19581 *ref_cu = sig_cu;
19582 return die;
19583 }
19584
ac9ec31b
DE
19585 return NULL;
19586}
19587
19588/* Follow signatured type referenced by ATTR in SRC_DIE.
19589 On entry *REF_CU is the CU of SRC_DIE.
19590 On exit *REF_CU is the CU of the result.
19591 The result is the DIE of the type.
19592 If the referenced type cannot be found an error is thrown. */
19593
19594static struct die_info *
ff39bb5e 19595follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
19596 struct dwarf2_cu **ref_cu)
19597{
19598 ULONGEST signature = DW_SIGNATURE (attr);
19599 struct signatured_type *sig_type;
19600 struct die_info *die;
19601
19602 gdb_assert (attr->form == DW_FORM_ref_sig8);
19603
a2ce51a0 19604 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
19605 /* sig_type will be NULL if the signatured type is missing from
19606 the debug info. */
19607 if (sig_type == NULL)
19608 {
19609 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19610 " from DIE at 0x%x [in module %s]"),
19611 hex_string (signature), src_die->offset.sect_off,
4262abfb 19612 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19613 }
19614
19615 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19616 if (die == NULL)
19617 {
19618 dump_die_for_error (src_die);
19619 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19620 " from DIE at 0x%x [in module %s]"),
19621 hex_string (signature), src_die->offset.sect_off,
4262abfb 19622 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19623 }
19624
19625 return die;
19626}
19627
19628/* Get the type specified by SIGNATURE referenced in DIE/CU,
19629 reading in and processing the type unit if necessary. */
19630
19631static struct type *
19632get_signatured_type (struct die_info *die, ULONGEST signature,
19633 struct dwarf2_cu *cu)
19634{
19635 struct signatured_type *sig_type;
19636 struct dwarf2_cu *type_cu;
19637 struct die_info *type_die;
19638 struct type *type;
19639
a2ce51a0 19640 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
19641 /* sig_type will be NULL if the signatured type is missing from
19642 the debug info. */
19643 if (sig_type == NULL)
19644 {
19645 complaint (&symfile_complaints,
19646 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19647 " from DIE at 0x%x [in module %s]"),
19648 hex_string (signature), die->offset.sect_off,
4262abfb 19649 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19650 return build_error_marker_type (cu, die);
19651 }
19652
19653 /* If we already know the type we're done. */
19654 if (sig_type->type != NULL)
19655 return sig_type->type;
19656
19657 type_cu = cu;
19658 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19659 if (type_die != NULL)
19660 {
19661 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19662 is created. This is important, for example, because for c++ classes
19663 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19664 type = read_type_die (type_die, type_cu);
19665 if (type == NULL)
19666 {
19667 complaint (&symfile_complaints,
19668 _("Dwarf Error: Cannot build signatured type %s"
19669 " referenced from DIE at 0x%x [in module %s]"),
19670 hex_string (signature), die->offset.sect_off,
4262abfb 19671 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19672 type = build_error_marker_type (cu, die);
19673 }
19674 }
19675 else
19676 {
19677 complaint (&symfile_complaints,
19678 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19679 " from DIE at 0x%x [in module %s]"),
19680 hex_string (signature), die->offset.sect_off,
4262abfb 19681 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19682 type = build_error_marker_type (cu, die);
19683 }
19684 sig_type->type = type;
19685
19686 return type;
19687}
19688
19689/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19690 reading in and processing the type unit if necessary. */
19691
19692static struct type *
ff39bb5e 19693get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 19694 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
19695{
19696 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 19697 if (attr_form_is_ref (attr))
ac9ec31b
DE
19698 {
19699 struct dwarf2_cu *type_cu = cu;
19700 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19701
19702 return read_type_die (type_die, type_cu);
19703 }
19704 else if (attr->form == DW_FORM_ref_sig8)
19705 {
19706 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19707 }
19708 else
19709 {
19710 complaint (&symfile_complaints,
19711 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19712 " at 0x%x [in module %s]"),
19713 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 19714 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19715 return build_error_marker_type (cu, die);
19716 }
348e048f
DE
19717}
19718
e5fe5e75 19719/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
19720
19721static void
e5fe5e75 19722load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 19723{
52dc124a 19724 struct signatured_type *sig_type;
348e048f 19725
f4dc4d17
DE
19726 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19727 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19728
6721b2ec
DE
19729 /* We have the per_cu, but we need the signatured_type.
19730 Fortunately this is an easy translation. */
19731 gdb_assert (per_cu->is_debug_types);
19732 sig_type = (struct signatured_type *) per_cu;
348e048f 19733
6721b2ec 19734 gdb_assert (per_cu->cu == NULL);
348e048f 19735
52dc124a 19736 read_signatured_type (sig_type);
348e048f 19737
6721b2ec 19738 gdb_assert (per_cu->cu != NULL);
348e048f
DE
19739}
19740
dee91e82
DE
19741/* die_reader_func for read_signatured_type.
19742 This is identical to load_full_comp_unit_reader,
19743 but is kept separate for now. */
348e048f
DE
19744
19745static void
dee91e82 19746read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 19747 const gdb_byte *info_ptr,
dee91e82
DE
19748 struct die_info *comp_unit_die,
19749 int has_children,
19750 void *data)
348e048f 19751{
dee91e82 19752 struct dwarf2_cu *cu = reader->cu;
348e048f 19753
dee91e82
DE
19754 gdb_assert (cu->die_hash == NULL);
19755 cu->die_hash =
19756 htab_create_alloc_ex (cu->header.length / 12,
19757 die_hash,
19758 die_eq,
19759 NULL,
19760 &cu->comp_unit_obstack,
19761 hashtab_obstack_allocate,
19762 dummy_obstack_deallocate);
348e048f 19763
dee91e82
DE
19764 if (has_children)
19765 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19766 &info_ptr, comp_unit_die);
19767 cu->dies = comp_unit_die;
19768 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
19769
19770 /* We try not to read any attributes in this function, because not
9cdd5dbd 19771 all CUs needed for references have been loaded yet, and symbol
348e048f 19772 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
19773 or we won't be able to build types correctly.
19774 Similarly, if we do not read the producer, we can not apply
19775 producer-specific interpretation. */
95554aad 19776 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 19777}
348e048f 19778
3019eac3
DE
19779/* Read in a signatured type and build its CU and DIEs.
19780 If the type is a stub for the real type in a DWO file,
19781 read in the real type from the DWO file as well. */
dee91e82
DE
19782
19783static void
19784read_signatured_type (struct signatured_type *sig_type)
19785{
19786 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 19787
3019eac3 19788 gdb_assert (per_cu->is_debug_types);
dee91e82 19789 gdb_assert (per_cu->cu == NULL);
348e048f 19790
f4dc4d17
DE
19791 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19792 read_signatured_type_reader, NULL);
7ee85ab1 19793 sig_type->per_cu.tu_read = 1;
c906108c
SS
19794}
19795
c906108c
SS
19796/* Decode simple location descriptions.
19797 Given a pointer to a dwarf block that defines a location, compute
19798 the location and return the value.
19799
4cecd739
DJ
19800 NOTE drow/2003-11-18: This function is called in two situations
19801 now: for the address of static or global variables (partial symbols
19802 only) and for offsets into structures which are expected to be
19803 (more or less) constant. The partial symbol case should go away,
19804 and only the constant case should remain. That will let this
19805 function complain more accurately. A few special modes are allowed
19806 without complaint for global variables (for instance, global
19807 register values and thread-local values).
c906108c
SS
19808
19809 A location description containing no operations indicates that the
4cecd739 19810 object is optimized out. The return value is 0 for that case.
6b992462
DJ
19811 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19812 callers will only want a very basic result and this can become a
21ae7a4d
JK
19813 complaint.
19814
19815 Note that stack[0] is unused except as a default error return. */
c906108c
SS
19816
19817static CORE_ADDR
e7c27a73 19818decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 19819{
e7c27a73 19820 struct objfile *objfile = cu->objfile;
56eb65bd
SP
19821 size_t i;
19822 size_t size = blk->size;
d521ce57 19823 const gdb_byte *data = blk->data;
21ae7a4d
JK
19824 CORE_ADDR stack[64];
19825 int stacki;
19826 unsigned int bytes_read, unsnd;
19827 gdb_byte op;
c906108c 19828
21ae7a4d
JK
19829 i = 0;
19830 stacki = 0;
19831 stack[stacki] = 0;
19832 stack[++stacki] = 0;
19833
19834 while (i < size)
19835 {
19836 op = data[i++];
19837 switch (op)
19838 {
19839 case DW_OP_lit0:
19840 case DW_OP_lit1:
19841 case DW_OP_lit2:
19842 case DW_OP_lit3:
19843 case DW_OP_lit4:
19844 case DW_OP_lit5:
19845 case DW_OP_lit6:
19846 case DW_OP_lit7:
19847 case DW_OP_lit8:
19848 case DW_OP_lit9:
19849 case DW_OP_lit10:
19850 case DW_OP_lit11:
19851 case DW_OP_lit12:
19852 case DW_OP_lit13:
19853 case DW_OP_lit14:
19854 case DW_OP_lit15:
19855 case DW_OP_lit16:
19856 case DW_OP_lit17:
19857 case DW_OP_lit18:
19858 case DW_OP_lit19:
19859 case DW_OP_lit20:
19860 case DW_OP_lit21:
19861 case DW_OP_lit22:
19862 case DW_OP_lit23:
19863 case DW_OP_lit24:
19864 case DW_OP_lit25:
19865 case DW_OP_lit26:
19866 case DW_OP_lit27:
19867 case DW_OP_lit28:
19868 case DW_OP_lit29:
19869 case DW_OP_lit30:
19870 case DW_OP_lit31:
19871 stack[++stacki] = op - DW_OP_lit0;
19872 break;
f1bea926 19873
21ae7a4d
JK
19874 case DW_OP_reg0:
19875 case DW_OP_reg1:
19876 case DW_OP_reg2:
19877 case DW_OP_reg3:
19878 case DW_OP_reg4:
19879 case DW_OP_reg5:
19880 case DW_OP_reg6:
19881 case DW_OP_reg7:
19882 case DW_OP_reg8:
19883 case DW_OP_reg9:
19884 case DW_OP_reg10:
19885 case DW_OP_reg11:
19886 case DW_OP_reg12:
19887 case DW_OP_reg13:
19888 case DW_OP_reg14:
19889 case DW_OP_reg15:
19890 case DW_OP_reg16:
19891 case DW_OP_reg17:
19892 case DW_OP_reg18:
19893 case DW_OP_reg19:
19894 case DW_OP_reg20:
19895 case DW_OP_reg21:
19896 case DW_OP_reg22:
19897 case DW_OP_reg23:
19898 case DW_OP_reg24:
19899 case DW_OP_reg25:
19900 case DW_OP_reg26:
19901 case DW_OP_reg27:
19902 case DW_OP_reg28:
19903 case DW_OP_reg29:
19904 case DW_OP_reg30:
19905 case DW_OP_reg31:
19906 stack[++stacki] = op - DW_OP_reg0;
19907 if (i < size)
19908 dwarf2_complex_location_expr_complaint ();
19909 break;
c906108c 19910
21ae7a4d
JK
19911 case DW_OP_regx:
19912 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
19913 i += bytes_read;
19914 stack[++stacki] = unsnd;
19915 if (i < size)
19916 dwarf2_complex_location_expr_complaint ();
19917 break;
c906108c 19918
21ae7a4d
JK
19919 case DW_OP_addr:
19920 stack[++stacki] = read_address (objfile->obfd, &data[i],
19921 cu, &bytes_read);
19922 i += bytes_read;
19923 break;
d53d4ac5 19924
21ae7a4d
JK
19925 case DW_OP_const1u:
19926 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
19927 i += 1;
19928 break;
19929
19930 case DW_OP_const1s:
19931 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
19932 i += 1;
19933 break;
19934
19935 case DW_OP_const2u:
19936 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
19937 i += 2;
19938 break;
19939
19940 case DW_OP_const2s:
19941 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
19942 i += 2;
19943 break;
d53d4ac5 19944
21ae7a4d
JK
19945 case DW_OP_const4u:
19946 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
19947 i += 4;
19948 break;
19949
19950 case DW_OP_const4s:
19951 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
19952 i += 4;
19953 break;
19954
585861ea
JK
19955 case DW_OP_const8u:
19956 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
19957 i += 8;
19958 break;
19959
21ae7a4d
JK
19960 case DW_OP_constu:
19961 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
19962 &bytes_read);
19963 i += bytes_read;
19964 break;
19965
19966 case DW_OP_consts:
19967 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
19968 i += bytes_read;
19969 break;
19970
19971 case DW_OP_dup:
19972 stack[stacki + 1] = stack[stacki];
19973 stacki++;
19974 break;
19975
19976 case DW_OP_plus:
19977 stack[stacki - 1] += stack[stacki];
19978 stacki--;
19979 break;
19980
19981 case DW_OP_plus_uconst:
19982 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
19983 &bytes_read);
19984 i += bytes_read;
19985 break;
19986
19987 case DW_OP_minus:
19988 stack[stacki - 1] -= stack[stacki];
19989 stacki--;
19990 break;
19991
19992 case DW_OP_deref:
19993 /* If we're not the last op, then we definitely can't encode
19994 this using GDB's address_class enum. This is valid for partial
19995 global symbols, although the variable's address will be bogus
19996 in the psymtab. */
19997 if (i < size)
19998 dwarf2_complex_location_expr_complaint ();
19999 break;
20000
20001 case DW_OP_GNU_push_tls_address:
20002 /* The top of the stack has the offset from the beginning
20003 of the thread control block at which the variable is located. */
20004 /* Nothing should follow this operator, so the top of stack would
20005 be returned. */
20006 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20007 address will be bogus in the psymtab. Make it always at least
20008 non-zero to not look as a variable garbage collected by linker
20009 which have DW_OP_addr 0. */
21ae7a4d
JK
20010 if (i < size)
20011 dwarf2_complex_location_expr_complaint ();
585861ea 20012 stack[stacki]++;
21ae7a4d
JK
20013 break;
20014
20015 case DW_OP_GNU_uninit:
20016 break;
20017
3019eac3 20018 case DW_OP_GNU_addr_index:
49f6c839 20019 case DW_OP_GNU_const_index:
3019eac3
DE
20020 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20021 &bytes_read);
20022 i += bytes_read;
20023 break;
20024
21ae7a4d
JK
20025 default:
20026 {
f39c6ffd 20027 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20028
20029 if (name)
20030 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20031 name);
20032 else
20033 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20034 op);
20035 }
20036
20037 return (stack[stacki]);
d53d4ac5 20038 }
3c6e0cb3 20039
21ae7a4d
JK
20040 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20041 outside of the allocated space. Also enforce minimum>0. */
20042 if (stacki >= ARRAY_SIZE (stack) - 1)
20043 {
20044 complaint (&symfile_complaints,
20045 _("location description stack overflow"));
20046 return 0;
20047 }
20048
20049 if (stacki <= 0)
20050 {
20051 complaint (&symfile_complaints,
20052 _("location description stack underflow"));
20053 return 0;
20054 }
20055 }
20056 return (stack[stacki]);
c906108c
SS
20057}
20058
20059/* memory allocation interface */
20060
c906108c 20061static struct dwarf_block *
7b5a2f43 20062dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
20063{
20064 struct dwarf_block *blk;
20065
20066 blk = (struct dwarf_block *)
7b5a2f43 20067 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
20068 return (blk);
20069}
20070
c906108c 20071static struct die_info *
b60c80d6 20072dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20073{
20074 struct die_info *die;
b60c80d6
DJ
20075 size_t size = sizeof (struct die_info);
20076
20077 if (num_attrs > 1)
20078 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20079
b60c80d6 20080 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20081 memset (die, 0, sizeof (struct die_info));
20082 return (die);
20083}
2e276125
JB
20084
20085\f
20086/* Macro support. */
20087
233d95b5
JK
20088/* Return file name relative to the compilation directory of file number I in
20089 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20090 responsible for freeing it. */
233d95b5 20091
2e276125 20092static char *
233d95b5 20093file_file_name (int file, struct line_header *lh)
2e276125 20094{
6a83a1e6
EZ
20095 /* Is the file number a valid index into the line header's file name
20096 table? Remember that file numbers start with one, not zero. */
20097 if (1 <= file && file <= lh->num_file_names)
20098 {
20099 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20100
233d95b5 20101 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
6a83a1e6 20102 return xstrdup (fe->name);
233d95b5
JK
20103 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20104 fe->name, NULL);
6a83a1e6 20105 }
2e276125
JB
20106 else
20107 {
6a83a1e6
EZ
20108 /* The compiler produced a bogus file number. We can at least
20109 record the macro definitions made in the file, even if we
20110 won't be able to find the file by name. */
20111 char fake_name[80];
9a619af0 20112
8c042590
PM
20113 xsnprintf (fake_name, sizeof (fake_name),
20114 "<bad macro file number %d>", file);
2e276125 20115
6e70227d 20116 complaint (&symfile_complaints,
6a83a1e6
EZ
20117 _("bad file number in macro information (%d)"),
20118 file);
2e276125 20119
6a83a1e6 20120 return xstrdup (fake_name);
2e276125
JB
20121 }
20122}
20123
233d95b5
JK
20124/* Return the full name of file number I in *LH's file name table.
20125 Use COMP_DIR as the name of the current directory of the
20126 compilation. The result is allocated using xmalloc; the caller is
20127 responsible for freeing it. */
20128static char *
20129file_full_name (int file, struct line_header *lh, const char *comp_dir)
20130{
20131 /* Is the file number a valid index into the line header's file name
20132 table? Remember that file numbers start with one, not zero. */
20133 if (1 <= file && file <= lh->num_file_names)
20134 {
20135 char *relative = file_file_name (file, lh);
20136
20137 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20138 return relative;
20139 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20140 }
20141 else
20142 return file_file_name (file, lh);
20143}
20144
2e276125
JB
20145
20146static struct macro_source_file *
20147macro_start_file (int file, int line,
20148 struct macro_source_file *current_file,
20149 const char *comp_dir,
20150 struct line_header *lh, struct objfile *objfile)
20151{
233d95b5
JK
20152 /* File name relative to the compilation directory of this source file. */
20153 char *file_name = file_file_name (file, lh);
2e276125 20154
2e276125 20155 if (! current_file)
abc9d0dc 20156 {
fc474241
DE
20157 /* Note: We don't create a macro table for this compilation unit
20158 at all until we actually get a filename. */
20159 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
20160
abc9d0dc
TT
20161 /* If we have no current file, then this must be the start_file
20162 directive for the compilation unit's main source file. */
fc474241
DE
20163 current_file = macro_set_main (macro_table, file_name);
20164 macro_define_special (macro_table);
abc9d0dc 20165 }
2e276125 20166 else
233d95b5 20167 current_file = macro_include (current_file, line, file_name);
2e276125 20168
233d95b5 20169 xfree (file_name);
6e70227d 20170
2e276125
JB
20171 return current_file;
20172}
20173
20174
20175/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20176 followed by a null byte. */
20177static char *
20178copy_string (const char *buf, int len)
20179{
20180 char *s = xmalloc (len + 1);
9a619af0 20181
2e276125
JB
20182 memcpy (s, buf, len);
20183 s[len] = '\0';
2e276125
JB
20184 return s;
20185}
20186
20187
20188static const char *
20189consume_improper_spaces (const char *p, const char *body)
20190{
20191 if (*p == ' ')
20192 {
4d3c2250 20193 complaint (&symfile_complaints,
3e43a32a
MS
20194 _("macro definition contains spaces "
20195 "in formal argument list:\n`%s'"),
4d3c2250 20196 body);
2e276125
JB
20197
20198 while (*p == ' ')
20199 p++;
20200 }
20201
20202 return p;
20203}
20204
20205
20206static void
20207parse_macro_definition (struct macro_source_file *file, int line,
20208 const char *body)
20209{
20210 const char *p;
20211
20212 /* The body string takes one of two forms. For object-like macro
20213 definitions, it should be:
20214
20215 <macro name> " " <definition>
20216
20217 For function-like macro definitions, it should be:
20218
20219 <macro name> "() " <definition>
20220 or
20221 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20222
20223 Spaces may appear only where explicitly indicated, and in the
20224 <definition>.
20225
20226 The Dwarf 2 spec says that an object-like macro's name is always
20227 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20228 the space when the macro's definition is the empty string.
2e276125
JB
20229
20230 The Dwarf 2 spec says that there should be no spaces between the
20231 formal arguments in a function-like macro's formal argument list,
20232 but versions of GCC around March 2002 include spaces after the
20233 commas. */
20234
20235
20236 /* Find the extent of the macro name. The macro name is terminated
20237 by either a space or null character (for an object-like macro) or
20238 an opening paren (for a function-like macro). */
20239 for (p = body; *p; p++)
20240 if (*p == ' ' || *p == '(')
20241 break;
20242
20243 if (*p == ' ' || *p == '\0')
20244 {
20245 /* It's an object-like macro. */
20246 int name_len = p - body;
20247 char *name = copy_string (body, name_len);
20248 const char *replacement;
20249
20250 if (*p == ' ')
20251 replacement = body + name_len + 1;
20252 else
20253 {
4d3c2250 20254 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20255 replacement = body + name_len;
20256 }
6e70227d 20257
2e276125
JB
20258 macro_define_object (file, line, name, replacement);
20259
20260 xfree (name);
20261 }
20262 else if (*p == '(')
20263 {
20264 /* It's a function-like macro. */
20265 char *name = copy_string (body, p - body);
20266 int argc = 0;
20267 int argv_size = 1;
20268 char **argv = xmalloc (argv_size * sizeof (*argv));
20269
20270 p++;
20271
20272 p = consume_improper_spaces (p, body);
20273
20274 /* Parse the formal argument list. */
20275 while (*p && *p != ')')
20276 {
20277 /* Find the extent of the current argument name. */
20278 const char *arg_start = p;
20279
20280 while (*p && *p != ',' && *p != ')' && *p != ' ')
20281 p++;
20282
20283 if (! *p || p == arg_start)
4d3c2250 20284 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20285 else
20286 {
20287 /* Make sure argv has room for the new argument. */
20288 if (argc >= argv_size)
20289 {
20290 argv_size *= 2;
20291 argv = xrealloc (argv, argv_size * sizeof (*argv));
20292 }
20293
20294 argv[argc++] = copy_string (arg_start, p - arg_start);
20295 }
20296
20297 p = consume_improper_spaces (p, body);
20298
20299 /* Consume the comma, if present. */
20300 if (*p == ',')
20301 {
20302 p++;
20303
20304 p = consume_improper_spaces (p, body);
20305 }
20306 }
20307
20308 if (*p == ')')
20309 {
20310 p++;
20311
20312 if (*p == ' ')
20313 /* Perfectly formed definition, no complaints. */
20314 macro_define_function (file, line, name,
6e70227d 20315 argc, (const char **) argv,
2e276125
JB
20316 p + 1);
20317 else if (*p == '\0')
20318 {
20319 /* Complain, but do define it. */
4d3c2250 20320 dwarf2_macro_malformed_definition_complaint (body);
2e276125 20321 macro_define_function (file, line, name,
6e70227d 20322 argc, (const char **) argv,
2e276125
JB
20323 p);
20324 }
20325 else
20326 /* Just complain. */
4d3c2250 20327 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20328 }
20329 else
20330 /* Just complain. */
4d3c2250 20331 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20332
20333 xfree (name);
20334 {
20335 int i;
20336
20337 for (i = 0; i < argc; i++)
20338 xfree (argv[i]);
20339 }
20340 xfree (argv);
20341 }
20342 else
4d3c2250 20343 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20344}
20345
cf2c3c16
TT
20346/* Skip some bytes from BYTES according to the form given in FORM.
20347 Returns the new pointer. */
2e276125 20348
d521ce57
TT
20349static const gdb_byte *
20350skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
20351 enum dwarf_form form,
20352 unsigned int offset_size,
20353 struct dwarf2_section_info *section)
2e276125 20354{
cf2c3c16 20355 unsigned int bytes_read;
2e276125 20356
cf2c3c16 20357 switch (form)
2e276125 20358 {
cf2c3c16
TT
20359 case DW_FORM_data1:
20360 case DW_FORM_flag:
20361 ++bytes;
20362 break;
20363
20364 case DW_FORM_data2:
20365 bytes += 2;
20366 break;
20367
20368 case DW_FORM_data4:
20369 bytes += 4;
20370 break;
20371
20372 case DW_FORM_data8:
20373 bytes += 8;
20374 break;
20375
20376 case DW_FORM_string:
20377 read_direct_string (abfd, bytes, &bytes_read);
20378 bytes += bytes_read;
20379 break;
20380
20381 case DW_FORM_sec_offset:
20382 case DW_FORM_strp:
36586728 20383 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
20384 bytes += offset_size;
20385 break;
20386
20387 case DW_FORM_block:
20388 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20389 bytes += bytes_read;
20390 break;
20391
20392 case DW_FORM_block1:
20393 bytes += 1 + read_1_byte (abfd, bytes);
20394 break;
20395 case DW_FORM_block2:
20396 bytes += 2 + read_2_bytes (abfd, bytes);
20397 break;
20398 case DW_FORM_block4:
20399 bytes += 4 + read_4_bytes (abfd, bytes);
20400 break;
20401
20402 case DW_FORM_sdata:
20403 case DW_FORM_udata:
3019eac3
DE
20404 case DW_FORM_GNU_addr_index:
20405 case DW_FORM_GNU_str_index:
d521ce57 20406 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
20407 if (bytes == NULL)
20408 {
20409 dwarf2_section_buffer_overflow_complaint (section);
20410 return NULL;
20411 }
cf2c3c16
TT
20412 break;
20413
20414 default:
20415 {
20416 complain:
20417 complaint (&symfile_complaints,
20418 _("invalid form 0x%x in `%s'"),
a32a8923 20419 form, get_section_name (section));
cf2c3c16
TT
20420 return NULL;
20421 }
2e276125
JB
20422 }
20423
cf2c3c16
TT
20424 return bytes;
20425}
757a13d0 20426
cf2c3c16
TT
20427/* A helper for dwarf_decode_macros that handles skipping an unknown
20428 opcode. Returns an updated pointer to the macro data buffer; or,
20429 on error, issues a complaint and returns NULL. */
757a13d0 20430
d521ce57 20431static const gdb_byte *
cf2c3c16 20432skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
20433 const gdb_byte **opcode_definitions,
20434 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
20435 bfd *abfd,
20436 unsigned int offset_size,
20437 struct dwarf2_section_info *section)
20438{
20439 unsigned int bytes_read, i;
20440 unsigned long arg;
d521ce57 20441 const gdb_byte *defn;
2e276125 20442
cf2c3c16 20443 if (opcode_definitions[opcode] == NULL)
2e276125 20444 {
cf2c3c16
TT
20445 complaint (&symfile_complaints,
20446 _("unrecognized DW_MACFINO opcode 0x%x"),
20447 opcode);
20448 return NULL;
20449 }
2e276125 20450
cf2c3c16
TT
20451 defn = opcode_definitions[opcode];
20452 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20453 defn += bytes_read;
2e276125 20454
cf2c3c16
TT
20455 for (i = 0; i < arg; ++i)
20456 {
f664829e
DE
20457 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20458 section);
cf2c3c16
TT
20459 if (mac_ptr == NULL)
20460 {
20461 /* skip_form_bytes already issued the complaint. */
20462 return NULL;
20463 }
20464 }
757a13d0 20465
cf2c3c16
TT
20466 return mac_ptr;
20467}
757a13d0 20468
cf2c3c16
TT
20469/* A helper function which parses the header of a macro section.
20470 If the macro section is the extended (for now called "GNU") type,
20471 then this updates *OFFSET_SIZE. Returns a pointer to just after
20472 the header, or issues a complaint and returns NULL on error. */
757a13d0 20473
d521ce57
TT
20474static const gdb_byte *
20475dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 20476 bfd *abfd,
d521ce57 20477 const gdb_byte *mac_ptr,
cf2c3c16
TT
20478 unsigned int *offset_size,
20479 int section_is_gnu)
20480{
20481 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 20482
cf2c3c16
TT
20483 if (section_is_gnu)
20484 {
20485 unsigned int version, flags;
757a13d0 20486
cf2c3c16
TT
20487 version = read_2_bytes (abfd, mac_ptr);
20488 if (version != 4)
20489 {
20490 complaint (&symfile_complaints,
20491 _("unrecognized version `%d' in .debug_macro section"),
20492 version);
20493 return NULL;
20494 }
20495 mac_ptr += 2;
757a13d0 20496
cf2c3c16
TT
20497 flags = read_1_byte (abfd, mac_ptr);
20498 ++mac_ptr;
20499 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 20500
cf2c3c16
TT
20501 if ((flags & 2) != 0)
20502 /* We don't need the line table offset. */
20503 mac_ptr += *offset_size;
757a13d0 20504
cf2c3c16
TT
20505 /* Vendor opcode descriptions. */
20506 if ((flags & 4) != 0)
20507 {
20508 unsigned int i, count;
757a13d0 20509
cf2c3c16
TT
20510 count = read_1_byte (abfd, mac_ptr);
20511 ++mac_ptr;
20512 for (i = 0; i < count; ++i)
20513 {
20514 unsigned int opcode, bytes_read;
20515 unsigned long arg;
20516
20517 opcode = read_1_byte (abfd, mac_ptr);
20518 ++mac_ptr;
20519 opcode_definitions[opcode] = mac_ptr;
20520 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20521 mac_ptr += bytes_read;
20522 mac_ptr += arg;
20523 }
757a13d0 20524 }
cf2c3c16 20525 }
757a13d0 20526
cf2c3c16
TT
20527 return mac_ptr;
20528}
757a13d0 20529
cf2c3c16 20530/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 20531 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
20532
20533static void
d521ce57
TT
20534dwarf_decode_macro_bytes (bfd *abfd,
20535 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 20536 struct macro_source_file *current_file,
15d034d0 20537 struct line_header *lh, const char *comp_dir,
cf2c3c16 20538 struct dwarf2_section_info *section,
36586728 20539 int section_is_gnu, int section_is_dwz,
cf2c3c16 20540 unsigned int offset_size,
8fc3fc34
TT
20541 struct objfile *objfile,
20542 htab_t include_hash)
cf2c3c16
TT
20543{
20544 enum dwarf_macro_record_type macinfo_type;
20545 int at_commandline;
d521ce57 20546 const gdb_byte *opcode_definitions[256];
757a13d0 20547
cf2c3c16
TT
20548 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20549 &offset_size, section_is_gnu);
20550 if (mac_ptr == NULL)
20551 {
20552 /* We already issued a complaint. */
20553 return;
20554 }
757a13d0
JK
20555
20556 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20557 GDB is still reading the definitions from command line. First
20558 DW_MACINFO_start_file will need to be ignored as it was already executed
20559 to create CURRENT_FILE for the main source holding also the command line
20560 definitions. On first met DW_MACINFO_start_file this flag is reset to
20561 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20562
20563 at_commandline = 1;
20564
20565 do
20566 {
20567 /* Do we at least have room for a macinfo type byte? */
20568 if (mac_ptr >= mac_end)
20569 {
f664829e 20570 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
20571 break;
20572 }
20573
20574 macinfo_type = read_1_byte (abfd, mac_ptr);
20575 mac_ptr++;
20576
cf2c3c16
TT
20577 /* Note that we rely on the fact that the corresponding GNU and
20578 DWARF constants are the same. */
757a13d0
JK
20579 switch (macinfo_type)
20580 {
20581 /* A zero macinfo type indicates the end of the macro
20582 information. */
20583 case 0:
20584 break;
2e276125 20585
cf2c3c16
TT
20586 case DW_MACRO_GNU_define:
20587 case DW_MACRO_GNU_undef:
20588 case DW_MACRO_GNU_define_indirect:
20589 case DW_MACRO_GNU_undef_indirect:
36586728
TT
20590 case DW_MACRO_GNU_define_indirect_alt:
20591 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 20592 {
891d2f0b 20593 unsigned int bytes_read;
2e276125 20594 int line;
d521ce57 20595 const char *body;
cf2c3c16 20596 int is_define;
2e276125 20597
cf2c3c16
TT
20598 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20599 mac_ptr += bytes_read;
20600
20601 if (macinfo_type == DW_MACRO_GNU_define
20602 || macinfo_type == DW_MACRO_GNU_undef)
20603 {
20604 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20605 mac_ptr += bytes_read;
20606 }
20607 else
20608 {
20609 LONGEST str_offset;
20610
20611 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20612 mac_ptr += offset_size;
2e276125 20613
36586728 20614 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
20615 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20616 || section_is_dwz)
36586728
TT
20617 {
20618 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20619
20620 body = read_indirect_string_from_dwz (dwz, str_offset);
20621 }
20622 else
20623 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
20624 }
20625
20626 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
20627 || macinfo_type == DW_MACRO_GNU_define_indirect
20628 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 20629 if (! current_file)
757a13d0
JK
20630 {
20631 /* DWARF violation as no main source is present. */
20632 complaint (&symfile_complaints,
20633 _("debug info with no main source gives macro %s "
20634 "on line %d: %s"),
cf2c3c16
TT
20635 is_define ? _("definition") : _("undefinition"),
20636 line, body);
757a13d0
JK
20637 break;
20638 }
3e43a32a
MS
20639 if ((line == 0 && !at_commandline)
20640 || (line != 0 && at_commandline))
4d3c2250 20641 complaint (&symfile_complaints,
757a13d0
JK
20642 _("debug info gives %s macro %s with %s line %d: %s"),
20643 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 20644 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
20645 line == 0 ? _("zero") : _("non-zero"), line, body);
20646
cf2c3c16 20647 if (is_define)
757a13d0 20648 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
20649 else
20650 {
20651 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
20652 || macinfo_type == DW_MACRO_GNU_undef_indirect
20653 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
20654 macro_undef (current_file, line, body);
20655 }
2e276125
JB
20656 }
20657 break;
20658
cf2c3c16 20659 case DW_MACRO_GNU_start_file:
2e276125 20660 {
891d2f0b 20661 unsigned int bytes_read;
2e276125
JB
20662 int line, file;
20663
20664 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20665 mac_ptr += bytes_read;
20666 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20667 mac_ptr += bytes_read;
20668
3e43a32a
MS
20669 if ((line == 0 && !at_commandline)
20670 || (line != 0 && at_commandline))
757a13d0
JK
20671 complaint (&symfile_complaints,
20672 _("debug info gives source %d included "
20673 "from %s at %s line %d"),
20674 file, at_commandline ? _("command-line") : _("file"),
20675 line == 0 ? _("zero") : _("non-zero"), line);
20676
20677 if (at_commandline)
20678 {
cf2c3c16
TT
20679 /* This DW_MACRO_GNU_start_file was executed in the
20680 pass one. */
757a13d0
JK
20681 at_commandline = 0;
20682 }
20683 else
20684 current_file = macro_start_file (file, line,
20685 current_file, comp_dir,
cf2c3c16 20686 lh, objfile);
2e276125
JB
20687 }
20688 break;
20689
cf2c3c16 20690 case DW_MACRO_GNU_end_file:
2e276125 20691 if (! current_file)
4d3c2250 20692 complaint (&symfile_complaints,
3e43a32a
MS
20693 _("macro debug info has an unmatched "
20694 "`close_file' directive"));
2e276125
JB
20695 else
20696 {
20697 current_file = current_file->included_by;
20698 if (! current_file)
20699 {
cf2c3c16 20700 enum dwarf_macro_record_type next_type;
2e276125
JB
20701
20702 /* GCC circa March 2002 doesn't produce the zero
20703 type byte marking the end of the compilation
20704 unit. Complain if it's not there, but exit no
20705 matter what. */
20706
20707 /* Do we at least have room for a macinfo type byte? */
20708 if (mac_ptr >= mac_end)
20709 {
f664829e 20710 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
20711 return;
20712 }
20713
20714 /* We don't increment mac_ptr here, so this is just
20715 a look-ahead. */
20716 next_type = read_1_byte (abfd, mac_ptr);
20717 if (next_type != 0)
4d3c2250 20718 complaint (&symfile_complaints,
3e43a32a
MS
20719 _("no terminating 0-type entry for "
20720 "macros in `.debug_macinfo' section"));
2e276125
JB
20721
20722 return;
20723 }
20724 }
20725 break;
20726
cf2c3c16 20727 case DW_MACRO_GNU_transparent_include:
36586728 20728 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
20729 {
20730 LONGEST offset;
8fc3fc34 20731 void **slot;
a036ba48
TT
20732 bfd *include_bfd = abfd;
20733 struct dwarf2_section_info *include_section = section;
20734 struct dwarf2_section_info alt_section;
d521ce57 20735 const gdb_byte *include_mac_end = mac_end;
a036ba48 20736 int is_dwz = section_is_dwz;
d521ce57 20737 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
20738
20739 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20740 mac_ptr += offset_size;
20741
a036ba48
TT
20742 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20743 {
20744 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20745
20746 dwarf2_read_section (dwarf2_per_objfile->objfile,
20747 &dwz->macro);
20748
a036ba48 20749 include_section = &dwz->macro;
a32a8923 20750 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
20751 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20752 is_dwz = 1;
20753 }
20754
20755 new_mac_ptr = include_section->buffer + offset;
20756 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20757
8fc3fc34
TT
20758 if (*slot != NULL)
20759 {
20760 /* This has actually happened; see
20761 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20762 complaint (&symfile_complaints,
20763 _("recursive DW_MACRO_GNU_transparent_include in "
20764 ".debug_macro section"));
20765 }
20766 else
20767 {
d521ce57 20768 *slot = (void *) new_mac_ptr;
36586728 20769
a036ba48 20770 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
36586728 20771 include_mac_end, current_file,
8fc3fc34 20772 lh, comp_dir,
36586728 20773 section, section_is_gnu, is_dwz,
8fc3fc34
TT
20774 offset_size, objfile, include_hash);
20775
d521ce57 20776 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 20777 }
cf2c3c16
TT
20778 }
20779 break;
20780
2e276125 20781 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
20782 if (!section_is_gnu)
20783 {
20784 unsigned int bytes_read;
20785 int constant;
2e276125 20786
cf2c3c16
TT
20787 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20788 mac_ptr += bytes_read;
20789 read_direct_string (abfd, mac_ptr, &bytes_read);
20790 mac_ptr += bytes_read;
2e276125 20791
cf2c3c16
TT
20792 /* We don't recognize any vendor extensions. */
20793 break;
20794 }
20795 /* FALLTHROUGH */
20796
20797 default:
20798 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 20799 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
20800 section);
20801 if (mac_ptr == NULL)
20802 return;
20803 break;
2e276125 20804 }
757a13d0 20805 } while (macinfo_type != 0);
2e276125 20806}
8e19ed76 20807
cf2c3c16 20808static void
09262596 20809dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
15d034d0 20810 const char *comp_dir, int section_is_gnu)
cf2c3c16 20811{
bb5ed363 20812 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
20813 struct line_header *lh = cu->line_header;
20814 bfd *abfd;
d521ce57 20815 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
20816 struct macro_source_file *current_file = 0;
20817 enum dwarf_macro_record_type macinfo_type;
20818 unsigned int offset_size = cu->header.offset_size;
d521ce57 20819 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
20820 struct cleanup *cleanup;
20821 htab_t include_hash;
20822 void **slot;
09262596
DE
20823 struct dwarf2_section_info *section;
20824 const char *section_name;
20825
20826 if (cu->dwo_unit != NULL)
20827 {
20828 if (section_is_gnu)
20829 {
20830 section = &cu->dwo_unit->dwo_file->sections.macro;
20831 section_name = ".debug_macro.dwo";
20832 }
20833 else
20834 {
20835 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20836 section_name = ".debug_macinfo.dwo";
20837 }
20838 }
20839 else
20840 {
20841 if (section_is_gnu)
20842 {
20843 section = &dwarf2_per_objfile->macro;
20844 section_name = ".debug_macro";
20845 }
20846 else
20847 {
20848 section = &dwarf2_per_objfile->macinfo;
20849 section_name = ".debug_macinfo";
20850 }
20851 }
cf2c3c16 20852
bb5ed363 20853 dwarf2_read_section (objfile, section);
cf2c3c16
TT
20854 if (section->buffer == NULL)
20855 {
fceca515 20856 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
20857 return;
20858 }
a32a8923 20859 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
20860
20861 /* First pass: Find the name of the base filename.
20862 This filename is needed in order to process all macros whose definition
20863 (or undefinition) comes from the command line. These macros are defined
20864 before the first DW_MACINFO_start_file entry, and yet still need to be
20865 associated to the base file.
20866
20867 To determine the base file name, we scan the macro definitions until we
20868 reach the first DW_MACINFO_start_file entry. We then initialize
20869 CURRENT_FILE accordingly so that any macro definition found before the
20870 first DW_MACINFO_start_file can still be associated to the base file. */
20871
20872 mac_ptr = section->buffer + offset;
20873 mac_end = section->buffer + section->size;
20874
20875 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20876 &offset_size, section_is_gnu);
20877 if (mac_ptr == NULL)
20878 {
20879 /* We already issued a complaint. */
20880 return;
20881 }
20882
20883 do
20884 {
20885 /* Do we at least have room for a macinfo type byte? */
20886 if (mac_ptr >= mac_end)
20887 {
20888 /* Complaint is printed during the second pass as GDB will probably
20889 stop the first pass earlier upon finding
20890 DW_MACINFO_start_file. */
20891 break;
20892 }
20893
20894 macinfo_type = read_1_byte (abfd, mac_ptr);
20895 mac_ptr++;
20896
20897 /* Note that we rely on the fact that the corresponding GNU and
20898 DWARF constants are the same. */
20899 switch (macinfo_type)
20900 {
20901 /* A zero macinfo type indicates the end of the macro
20902 information. */
20903 case 0:
20904 break;
20905
20906 case DW_MACRO_GNU_define:
20907 case DW_MACRO_GNU_undef:
20908 /* Only skip the data by MAC_PTR. */
20909 {
20910 unsigned int bytes_read;
20911
20912 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20913 mac_ptr += bytes_read;
20914 read_direct_string (abfd, mac_ptr, &bytes_read);
20915 mac_ptr += bytes_read;
20916 }
20917 break;
20918
20919 case DW_MACRO_GNU_start_file:
20920 {
20921 unsigned int bytes_read;
20922 int line, file;
20923
20924 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20925 mac_ptr += bytes_read;
20926 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20927 mac_ptr += bytes_read;
20928
20929 current_file = macro_start_file (file, line, current_file,
bb5ed363 20930 comp_dir, lh, objfile);
cf2c3c16
TT
20931 }
20932 break;
20933
20934 case DW_MACRO_GNU_end_file:
20935 /* No data to skip by MAC_PTR. */
20936 break;
20937
20938 case DW_MACRO_GNU_define_indirect:
20939 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
20940 case DW_MACRO_GNU_define_indirect_alt:
20941 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
20942 {
20943 unsigned int bytes_read;
20944
20945 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20946 mac_ptr += bytes_read;
20947 mac_ptr += offset_size;
20948 }
20949 break;
20950
20951 case DW_MACRO_GNU_transparent_include:
f7a35f02 20952 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
20953 /* Note that, according to the spec, a transparent include
20954 chain cannot call DW_MACRO_GNU_start_file. So, we can just
20955 skip this opcode. */
20956 mac_ptr += offset_size;
20957 break;
20958
20959 case DW_MACINFO_vendor_ext:
20960 /* Only skip the data by MAC_PTR. */
20961 if (!section_is_gnu)
20962 {
20963 unsigned int bytes_read;
20964
20965 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20966 mac_ptr += bytes_read;
20967 read_direct_string (abfd, mac_ptr, &bytes_read);
20968 mac_ptr += bytes_read;
20969 }
20970 /* FALLTHROUGH */
20971
20972 default:
20973 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 20974 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
20975 section);
20976 if (mac_ptr == NULL)
20977 return;
20978 break;
20979 }
20980 } while (macinfo_type != 0 && current_file == NULL);
20981
20982 /* Second pass: Process all entries.
20983
20984 Use the AT_COMMAND_LINE flag to determine whether we are still processing
20985 command-line macro definitions/undefinitions. This flag is unset when we
20986 reach the first DW_MACINFO_start_file entry. */
20987
8fc3fc34
TT
20988 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
20989 NULL, xcalloc, xfree);
20990 cleanup = make_cleanup_htab_delete (include_hash);
20991 mac_ptr = section->buffer + offset;
20992 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 20993 *slot = (void *) mac_ptr;
8fc3fc34 20994 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
36586728
TT
20995 current_file, lh, comp_dir, section,
20996 section_is_gnu, 0,
8fc3fc34
TT
20997 offset_size, objfile, include_hash);
20998 do_cleanups (cleanup);
cf2c3c16
TT
20999}
21000
8e19ed76 21001/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21002 if so return true else false. */
380bca97 21003
8e19ed76 21004static int
6e5a29e1 21005attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21006{
21007 return (attr == NULL ? 0 :
21008 attr->form == DW_FORM_block1
21009 || attr->form == DW_FORM_block2
21010 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21011 || attr->form == DW_FORM_block
21012 || attr->form == DW_FORM_exprloc);
8e19ed76 21013}
4c2df51b 21014
c6a0999f
JB
21015/* Return non-zero if ATTR's value is a section offset --- classes
21016 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21017 You may use DW_UNSND (attr) to retrieve such offsets.
21018
21019 Section 7.5.4, "Attribute Encodings", explains that no attribute
21020 may have a value that belongs to more than one of these classes; it
21021 would be ambiguous if we did, because we use the same forms for all
21022 of them. */
380bca97 21023
3690dd37 21024static int
6e5a29e1 21025attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21026{
21027 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21028 || attr->form == DW_FORM_data8
21029 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21030}
21031
3690dd37
JB
21032/* Return non-zero if ATTR's value falls in the 'constant' class, or
21033 zero otherwise. When this function returns true, you can apply
21034 dwarf2_get_attr_constant_value to it.
21035
21036 However, note that for some attributes you must check
21037 attr_form_is_section_offset before using this test. DW_FORM_data4
21038 and DW_FORM_data8 are members of both the constant class, and of
21039 the classes that contain offsets into other debug sections
21040 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21041 that, if an attribute's can be either a constant or one of the
21042 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21043 taken as section offsets, not constants. */
380bca97 21044
3690dd37 21045static int
6e5a29e1 21046attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21047{
21048 switch (attr->form)
21049 {
21050 case DW_FORM_sdata:
21051 case DW_FORM_udata:
21052 case DW_FORM_data1:
21053 case DW_FORM_data2:
21054 case DW_FORM_data4:
21055 case DW_FORM_data8:
21056 return 1;
21057 default:
21058 return 0;
21059 }
21060}
21061
7771576e
SA
21062
21063/* DW_ADDR is always stored already as sect_offset; despite for the forms
21064 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21065
21066static int
6e5a29e1 21067attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21068{
21069 switch (attr->form)
21070 {
21071 case DW_FORM_ref_addr:
21072 case DW_FORM_ref1:
21073 case DW_FORM_ref2:
21074 case DW_FORM_ref4:
21075 case DW_FORM_ref8:
21076 case DW_FORM_ref_udata:
21077 case DW_FORM_GNU_ref_alt:
21078 return 1;
21079 default:
21080 return 0;
21081 }
21082}
21083
3019eac3
DE
21084/* Return the .debug_loc section to use for CU.
21085 For DWO files use .debug_loc.dwo. */
21086
21087static struct dwarf2_section_info *
21088cu_debug_loc_section (struct dwarf2_cu *cu)
21089{
21090 if (cu->dwo_unit)
21091 return &cu->dwo_unit->dwo_file->sections.loc;
21092 return &dwarf2_per_objfile->loc;
21093}
21094
8cf6f0b1
TT
21095/* A helper function that fills in a dwarf2_loclist_baton. */
21096
21097static void
21098fill_in_loclist_baton (struct dwarf2_cu *cu,
21099 struct dwarf2_loclist_baton *baton,
ff39bb5e 21100 const struct attribute *attr)
8cf6f0b1 21101{
3019eac3
DE
21102 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21103
21104 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21105
21106 baton->per_cu = cu->per_cu;
21107 gdb_assert (baton->per_cu);
21108 /* We don't know how long the location list is, but make sure we
21109 don't run off the edge of the section. */
3019eac3
DE
21110 baton->size = section->size - DW_UNSND (attr);
21111 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21112 baton->base_address = cu->base_address;
f664829e 21113 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21114}
21115
4c2df51b 21116static void
ff39bb5e 21117dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21118 struct dwarf2_cu *cu, int is_block)
4c2df51b 21119{
bb5ed363 21120 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21121 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21122
3690dd37 21123 if (attr_form_is_section_offset (attr)
3019eac3 21124 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21125 the section. If so, fall through to the complaint in the
21126 other branch. */
3019eac3 21127 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21128 {
0d53c4c4 21129 struct dwarf2_loclist_baton *baton;
4c2df51b 21130
bb5ed363 21131 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21132 sizeof (struct dwarf2_loclist_baton));
4c2df51b 21133
8cf6f0b1 21134 fill_in_loclist_baton (cu, baton, attr);
be391dca 21135
d00adf39 21136 if (cu->base_known == 0)
0d53c4c4 21137 complaint (&symfile_complaints,
3e43a32a
MS
21138 _("Location list used without "
21139 "specifying the CU base address."));
4c2df51b 21140
f1e6e072
TT
21141 SYMBOL_ACLASS_INDEX (sym) = (is_block
21142 ? dwarf2_loclist_block_index
21143 : dwarf2_loclist_index);
0d53c4c4
DJ
21144 SYMBOL_LOCATION_BATON (sym) = baton;
21145 }
21146 else
21147 {
21148 struct dwarf2_locexpr_baton *baton;
21149
bb5ed363 21150 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21151 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
21152 baton->per_cu = cu->per_cu;
21153 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21154
21155 if (attr_form_is_block (attr))
21156 {
21157 /* Note that we're just copying the block's data pointer
21158 here, not the actual data. We're still pointing into the
6502dd73
DJ
21159 info_buffer for SYM's objfile; right now we never release
21160 that buffer, but when we do clean up properly this may
21161 need to change. */
0d53c4c4
DJ
21162 baton->size = DW_BLOCK (attr)->size;
21163 baton->data = DW_BLOCK (attr)->data;
21164 }
21165 else
21166 {
21167 dwarf2_invalid_attrib_class_complaint ("location description",
21168 SYMBOL_NATURAL_NAME (sym));
21169 baton->size = 0;
0d53c4c4 21170 }
6e70227d 21171
f1e6e072
TT
21172 SYMBOL_ACLASS_INDEX (sym) = (is_block
21173 ? dwarf2_locexpr_block_index
21174 : dwarf2_locexpr_index);
0d53c4c4
DJ
21175 SYMBOL_LOCATION_BATON (sym) = baton;
21176 }
4c2df51b 21177}
6502dd73 21178
9aa1f1e3
TT
21179/* Return the OBJFILE associated with the compilation unit CU. If CU
21180 came from a separate debuginfo file, then the master objfile is
21181 returned. */
ae0d2f24
UW
21182
21183struct objfile *
21184dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21185{
9291a0cd 21186 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21187
21188 /* Return the master objfile, so that we can report and look up the
21189 correct file containing this variable. */
21190 if (objfile->separate_debug_objfile_backlink)
21191 objfile = objfile->separate_debug_objfile_backlink;
21192
21193 return objfile;
21194}
21195
96408a79
SA
21196/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21197 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21198 CU_HEADERP first. */
21199
21200static const struct comp_unit_head *
21201per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21202 struct dwarf2_per_cu_data *per_cu)
21203{
d521ce57 21204 const gdb_byte *info_ptr;
96408a79
SA
21205
21206 if (per_cu->cu)
21207 return &per_cu->cu->header;
21208
8a0459fd 21209 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21210
21211 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21212 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21213
21214 return cu_headerp;
21215}
21216
ae0d2f24
UW
21217/* Return the address size given in the compilation unit header for CU. */
21218
98714339 21219int
ae0d2f24
UW
21220dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21221{
96408a79
SA
21222 struct comp_unit_head cu_header_local;
21223 const struct comp_unit_head *cu_headerp;
c471e790 21224
96408a79
SA
21225 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21226
21227 return cu_headerp->addr_size;
ae0d2f24
UW
21228}
21229
9eae7c52
TT
21230/* Return the offset size given in the compilation unit header for CU. */
21231
21232int
21233dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21234{
96408a79
SA
21235 struct comp_unit_head cu_header_local;
21236 const struct comp_unit_head *cu_headerp;
9c6c53f7 21237
96408a79
SA
21238 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21239
21240 return cu_headerp->offset_size;
21241}
21242
21243/* See its dwarf2loc.h declaration. */
21244
21245int
21246dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21247{
21248 struct comp_unit_head cu_header_local;
21249 const struct comp_unit_head *cu_headerp;
21250
21251 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21252
21253 if (cu_headerp->version == 2)
21254 return cu_headerp->addr_size;
21255 else
21256 return cu_headerp->offset_size;
181cebd4
JK
21257}
21258
9aa1f1e3
TT
21259/* Return the text offset of the CU. The returned offset comes from
21260 this CU's objfile. If this objfile came from a separate debuginfo
21261 file, then the offset may be different from the corresponding
21262 offset in the parent objfile. */
21263
21264CORE_ADDR
21265dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21266{
bb3fa9d0 21267 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
21268
21269 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21270}
21271
348e048f
DE
21272/* Locate the .debug_info compilation unit from CU's objfile which contains
21273 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
21274
21275static struct dwarf2_per_cu_data *
b64f50a1 21276dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 21277 unsigned int offset_in_dwz,
ae038cb0
DJ
21278 struct objfile *objfile)
21279{
21280 struct dwarf2_per_cu_data *this_cu;
21281 int low, high;
36586728 21282 const sect_offset *cu_off;
ae038cb0 21283
ae038cb0
DJ
21284 low = 0;
21285 high = dwarf2_per_objfile->n_comp_units - 1;
21286 while (high > low)
21287 {
36586728 21288 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 21289 int mid = low + (high - low) / 2;
9a619af0 21290
36586728
TT
21291 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21292 cu_off = &mid_cu->offset;
21293 if (mid_cu->is_dwz > offset_in_dwz
21294 || (mid_cu->is_dwz == offset_in_dwz
21295 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
21296 high = mid;
21297 else
21298 low = mid + 1;
21299 }
21300 gdb_assert (low == high);
36586728
TT
21301 this_cu = dwarf2_per_objfile->all_comp_units[low];
21302 cu_off = &this_cu->offset;
21303 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 21304 {
36586728 21305 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
21306 error (_("Dwarf Error: could not find partial DIE containing "
21307 "offset 0x%lx [in module %s]"),
b64f50a1 21308 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 21309
b64f50a1
JK
21310 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21311 <= offset.sect_off);
ae038cb0
DJ
21312 return dwarf2_per_objfile->all_comp_units[low-1];
21313 }
21314 else
21315 {
21316 this_cu = dwarf2_per_objfile->all_comp_units[low];
21317 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
21318 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21319 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21320 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
21321 return this_cu;
21322 }
21323}
21324
23745b47 21325/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 21326
9816fde3 21327static void
23745b47 21328init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 21329{
9816fde3 21330 memset (cu, 0, sizeof (*cu));
23745b47
DE
21331 per_cu->cu = cu;
21332 cu->per_cu = per_cu;
21333 cu->objfile = per_cu->objfile;
93311388 21334 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
21335}
21336
21337/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21338
21339static void
95554aad
TT
21340prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21341 enum language pretend_language)
9816fde3
JK
21342{
21343 struct attribute *attr;
21344
21345 /* Set the language we're debugging. */
21346 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21347 if (attr)
21348 set_cu_language (DW_UNSND (attr), cu);
21349 else
9cded63f 21350 {
95554aad 21351 cu->language = pretend_language;
9cded63f
TT
21352 cu->language_defn = language_def (cu->language);
21353 }
dee91e82
DE
21354
21355 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21356 if (attr)
21357 cu->producer = DW_STRING (attr);
93311388
DE
21358}
21359
ae038cb0
DJ
21360/* Release one cached compilation unit, CU. We unlink it from the tree
21361 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
21362 the caller is responsible for that.
21363 NOTE: DATA is a void * because this function is also used as a
21364 cleanup routine. */
ae038cb0
DJ
21365
21366static void
68dc6402 21367free_heap_comp_unit (void *data)
ae038cb0
DJ
21368{
21369 struct dwarf2_cu *cu = data;
21370
23745b47
DE
21371 gdb_assert (cu->per_cu != NULL);
21372 cu->per_cu->cu = NULL;
ae038cb0
DJ
21373 cu->per_cu = NULL;
21374
21375 obstack_free (&cu->comp_unit_obstack, NULL);
21376
21377 xfree (cu);
21378}
21379
72bf9492 21380/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 21381 when we're finished with it. We can't free the pointer itself, but be
dee91e82 21382 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
21383
21384static void
21385free_stack_comp_unit (void *data)
21386{
21387 struct dwarf2_cu *cu = data;
21388
23745b47
DE
21389 gdb_assert (cu->per_cu != NULL);
21390 cu->per_cu->cu = NULL;
21391 cu->per_cu = NULL;
21392
72bf9492
DJ
21393 obstack_free (&cu->comp_unit_obstack, NULL);
21394 cu->partial_dies = NULL;
ae038cb0
DJ
21395}
21396
21397/* Free all cached compilation units. */
21398
21399static void
21400free_cached_comp_units (void *data)
21401{
21402 struct dwarf2_per_cu_data *per_cu, **last_chain;
21403
21404 per_cu = dwarf2_per_objfile->read_in_chain;
21405 last_chain = &dwarf2_per_objfile->read_in_chain;
21406 while (per_cu != NULL)
21407 {
21408 struct dwarf2_per_cu_data *next_cu;
21409
21410 next_cu = per_cu->cu->read_in_chain;
21411
68dc6402 21412 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21413 *last_chain = next_cu;
21414
21415 per_cu = next_cu;
21416 }
21417}
21418
21419/* Increase the age counter on each cached compilation unit, and free
21420 any that are too old. */
21421
21422static void
21423age_cached_comp_units (void)
21424{
21425 struct dwarf2_per_cu_data *per_cu, **last_chain;
21426
21427 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21428 per_cu = dwarf2_per_objfile->read_in_chain;
21429 while (per_cu != NULL)
21430 {
21431 per_cu->cu->last_used ++;
21432 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21433 dwarf2_mark (per_cu->cu);
21434 per_cu = per_cu->cu->read_in_chain;
21435 }
21436
21437 per_cu = dwarf2_per_objfile->read_in_chain;
21438 last_chain = &dwarf2_per_objfile->read_in_chain;
21439 while (per_cu != NULL)
21440 {
21441 struct dwarf2_per_cu_data *next_cu;
21442
21443 next_cu = per_cu->cu->read_in_chain;
21444
21445 if (!per_cu->cu->mark)
21446 {
68dc6402 21447 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21448 *last_chain = next_cu;
21449 }
21450 else
21451 last_chain = &per_cu->cu->read_in_chain;
21452
21453 per_cu = next_cu;
21454 }
21455}
21456
21457/* Remove a single compilation unit from the cache. */
21458
21459static void
dee91e82 21460free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
21461{
21462 struct dwarf2_per_cu_data *per_cu, **last_chain;
21463
21464 per_cu = dwarf2_per_objfile->read_in_chain;
21465 last_chain = &dwarf2_per_objfile->read_in_chain;
21466 while (per_cu != NULL)
21467 {
21468 struct dwarf2_per_cu_data *next_cu;
21469
21470 next_cu = per_cu->cu->read_in_chain;
21471
dee91e82 21472 if (per_cu == target_per_cu)
ae038cb0 21473 {
68dc6402 21474 free_heap_comp_unit (per_cu->cu);
dee91e82 21475 per_cu->cu = NULL;
ae038cb0
DJ
21476 *last_chain = next_cu;
21477 break;
21478 }
21479 else
21480 last_chain = &per_cu->cu->read_in_chain;
21481
21482 per_cu = next_cu;
21483 }
21484}
21485
fe3e1990
DJ
21486/* Release all extra memory associated with OBJFILE. */
21487
21488void
21489dwarf2_free_objfile (struct objfile *objfile)
21490{
21491 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21492
21493 if (dwarf2_per_objfile == NULL)
21494 return;
21495
21496 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21497 free_cached_comp_units (NULL);
21498
7b9f3c50
DE
21499 if (dwarf2_per_objfile->quick_file_names_table)
21500 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 21501
fe3e1990
DJ
21502 /* Everything else should be on the objfile obstack. */
21503}
21504
dee91e82
DE
21505/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21506 We store these in a hash table separate from the DIEs, and preserve them
21507 when the DIEs are flushed out of cache.
21508
21509 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 21510 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
21511 or the type may come from a DWO file. Furthermore, while it's more logical
21512 to use per_cu->section+offset, with Fission the section with the data is in
21513 the DWO file but we don't know that section at the point we need it.
21514 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21515 because we can enter the lookup routine, get_die_type_at_offset, from
21516 outside this file, and thus won't necessarily have PER_CU->cu.
21517 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 21518
dee91e82 21519struct dwarf2_per_cu_offset_and_type
1c379e20 21520{
dee91e82 21521 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 21522 sect_offset offset;
1c379e20
DJ
21523 struct type *type;
21524};
21525
dee91e82 21526/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21527
21528static hashval_t
dee91e82 21529per_cu_offset_and_type_hash (const void *item)
1c379e20 21530{
dee91e82 21531 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 21532
dee91e82 21533 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
21534}
21535
dee91e82 21536/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21537
21538static int
dee91e82 21539per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 21540{
dee91e82
DE
21541 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21542 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 21543
dee91e82
DE
21544 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21545 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
21546}
21547
21548/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
21549 table if necessary. For convenience, return TYPE.
21550
21551 The DIEs reading must have careful ordering to:
21552 * Not cause infite loops trying to read in DIEs as a prerequisite for
21553 reading current DIE.
21554 * Not trying to dereference contents of still incompletely read in types
21555 while reading in other DIEs.
21556 * Enable referencing still incompletely read in types just by a pointer to
21557 the type without accessing its fields.
21558
21559 Therefore caller should follow these rules:
21560 * Try to fetch any prerequisite types we may need to build this DIE type
21561 before building the type and calling set_die_type.
e71ec853 21562 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
21563 possible before fetching more types to complete the current type.
21564 * Make the type as complete as possible before fetching more types. */
1c379e20 21565
f792889a 21566static struct type *
1c379e20
DJ
21567set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21568{
dee91e82 21569 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 21570 struct objfile *objfile = cu->objfile;
1c379e20 21571
b4ba55a1
JB
21572 /* For Ada types, make sure that the gnat-specific data is always
21573 initialized (if not already set). There are a few types where
21574 we should not be doing so, because the type-specific area is
21575 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21576 where the type-specific area is used to store the floatformat).
21577 But this is not a problem, because the gnat-specific information
21578 is actually not needed for these types. */
21579 if (need_gnat_info (cu)
21580 && TYPE_CODE (type) != TYPE_CODE_FUNC
21581 && TYPE_CODE (type) != TYPE_CODE_FLT
21582 && !HAVE_GNAT_AUX_INFO (type))
21583 INIT_GNAT_SPECIFIC (type);
21584
dee91e82 21585 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21586 {
dee91e82
DE
21587 dwarf2_per_objfile->die_type_hash =
21588 htab_create_alloc_ex (127,
21589 per_cu_offset_and_type_hash,
21590 per_cu_offset_and_type_eq,
21591 NULL,
21592 &objfile->objfile_obstack,
21593 hashtab_obstack_allocate,
21594 dummy_obstack_deallocate);
f792889a 21595 }
1c379e20 21596
dee91e82 21597 ofs.per_cu = cu->per_cu;
1c379e20
DJ
21598 ofs.offset = die->offset;
21599 ofs.type = type;
dee91e82
DE
21600 slot = (struct dwarf2_per_cu_offset_and_type **)
21601 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
21602 if (*slot)
21603 complaint (&symfile_complaints,
21604 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 21605 die->offset.sect_off);
673bfd45 21606 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 21607 **slot = ofs;
f792889a 21608 return type;
1c379e20
DJ
21609}
21610
02142a6c
DE
21611/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21612 or return NULL if the die does not have a saved type. */
1c379e20
DJ
21613
21614static struct type *
b64f50a1 21615get_die_type_at_offset (sect_offset offset,
673bfd45 21616 struct dwarf2_per_cu_data *per_cu)
1c379e20 21617{
dee91e82 21618 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 21619
dee91e82 21620 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21621 return NULL;
1c379e20 21622
dee91e82 21623 ofs.per_cu = per_cu;
673bfd45 21624 ofs.offset = offset;
dee91e82 21625 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
21626 if (slot)
21627 return slot->type;
21628 else
21629 return NULL;
21630}
21631
02142a6c 21632/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
21633 or return NULL if DIE does not have a saved type. */
21634
21635static struct type *
21636get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21637{
21638 return get_die_type_at_offset (die->offset, cu->per_cu);
21639}
21640
10b3939b
DJ
21641/* Add a dependence relationship from CU to REF_PER_CU. */
21642
21643static void
21644dwarf2_add_dependence (struct dwarf2_cu *cu,
21645 struct dwarf2_per_cu_data *ref_per_cu)
21646{
21647 void **slot;
21648
21649 if (cu->dependencies == NULL)
21650 cu->dependencies
21651 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21652 NULL, &cu->comp_unit_obstack,
21653 hashtab_obstack_allocate,
21654 dummy_obstack_deallocate);
21655
21656 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21657 if (*slot == NULL)
21658 *slot = ref_per_cu;
21659}
1c379e20 21660
f504f079
DE
21661/* Subroutine of dwarf2_mark to pass to htab_traverse.
21662 Set the mark field in every compilation unit in the
ae038cb0
DJ
21663 cache that we must keep because we are keeping CU. */
21664
10b3939b
DJ
21665static int
21666dwarf2_mark_helper (void **slot, void *data)
21667{
21668 struct dwarf2_per_cu_data *per_cu;
21669
21670 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
21671
21672 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21673 reading of the chain. As such dependencies remain valid it is not much
21674 useful to track and undo them during QUIT cleanups. */
21675 if (per_cu->cu == NULL)
21676 return 1;
21677
10b3939b
DJ
21678 if (per_cu->cu->mark)
21679 return 1;
21680 per_cu->cu->mark = 1;
21681
21682 if (per_cu->cu->dependencies != NULL)
21683 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21684
21685 return 1;
21686}
21687
f504f079
DE
21688/* Set the mark field in CU and in every other compilation unit in the
21689 cache that we must keep because we are keeping CU. */
21690
ae038cb0
DJ
21691static void
21692dwarf2_mark (struct dwarf2_cu *cu)
21693{
21694 if (cu->mark)
21695 return;
21696 cu->mark = 1;
10b3939b
DJ
21697 if (cu->dependencies != NULL)
21698 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
21699}
21700
21701static void
21702dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21703{
21704 while (per_cu)
21705 {
21706 per_cu->cu->mark = 0;
21707 per_cu = per_cu->cu->read_in_chain;
21708 }
72bf9492
DJ
21709}
21710
72bf9492
DJ
21711/* Trivial hash function for partial_die_info: the hash value of a DIE
21712 is its offset in .debug_info for this objfile. */
21713
21714static hashval_t
21715partial_die_hash (const void *item)
21716{
21717 const struct partial_die_info *part_die = item;
9a619af0 21718
b64f50a1 21719 return part_die->offset.sect_off;
72bf9492
DJ
21720}
21721
21722/* Trivial comparison function for partial_die_info structures: two DIEs
21723 are equal if they have the same offset. */
21724
21725static int
21726partial_die_eq (const void *item_lhs, const void *item_rhs)
21727{
21728 const struct partial_die_info *part_die_lhs = item_lhs;
21729 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 21730
b64f50a1 21731 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
21732}
21733
ae038cb0
DJ
21734static struct cmd_list_element *set_dwarf2_cmdlist;
21735static struct cmd_list_element *show_dwarf2_cmdlist;
21736
21737static void
21738set_dwarf2_cmd (char *args, int from_tty)
21739{
21740 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
21741}
21742
21743static void
21744show_dwarf2_cmd (char *args, int from_tty)
6e70227d 21745{
ae038cb0
DJ
21746 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21747}
21748
4bf44c1c 21749/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
21750
21751static void
c1bd65d0 21752dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
21753{
21754 struct dwarf2_per_objfile *data = d;
8b70b953 21755 int ix;
8b70b953 21756
626f2d1c
TT
21757 /* Make sure we don't accidentally use dwarf2_per_objfile while
21758 cleaning up. */
21759 dwarf2_per_objfile = NULL;
21760
59b0c7c1
JB
21761 for (ix = 0; ix < data->n_comp_units; ++ix)
21762 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 21763
59b0c7c1 21764 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 21765 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
21766 data->all_type_units[ix]->per_cu.imported_symtabs);
21767 xfree (data->all_type_units);
95554aad 21768
8b70b953 21769 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
21770
21771 if (data->dwo_files)
21772 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
21773 if (data->dwp_file)
21774 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
21775
21776 if (data->dwz_file && data->dwz_file->dwz_bfd)
21777 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
21778}
21779
21780\f
ae2de4f8 21781/* The "save gdb-index" command. */
9291a0cd
TT
21782
21783/* The contents of the hash table we create when building the string
21784 table. */
21785struct strtab_entry
21786{
21787 offset_type offset;
21788 const char *str;
21789};
21790
559a7a62
JK
21791/* Hash function for a strtab_entry.
21792
21793 Function is used only during write_hash_table so no index format backward
21794 compatibility is needed. */
b89be57b 21795
9291a0cd
TT
21796static hashval_t
21797hash_strtab_entry (const void *e)
21798{
21799 const struct strtab_entry *entry = e;
559a7a62 21800 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
21801}
21802
21803/* Equality function for a strtab_entry. */
b89be57b 21804
9291a0cd
TT
21805static int
21806eq_strtab_entry (const void *a, const void *b)
21807{
21808 const struct strtab_entry *ea = a;
21809 const struct strtab_entry *eb = b;
21810 return !strcmp (ea->str, eb->str);
21811}
21812
21813/* Create a strtab_entry hash table. */
b89be57b 21814
9291a0cd
TT
21815static htab_t
21816create_strtab (void)
21817{
21818 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21819 xfree, xcalloc, xfree);
21820}
21821
21822/* Add a string to the constant pool. Return the string's offset in
21823 host order. */
b89be57b 21824
9291a0cd
TT
21825static offset_type
21826add_string (htab_t table, struct obstack *cpool, const char *str)
21827{
21828 void **slot;
21829 struct strtab_entry entry;
21830 struct strtab_entry *result;
21831
21832 entry.str = str;
21833 slot = htab_find_slot (table, &entry, INSERT);
21834 if (*slot)
21835 result = *slot;
21836 else
21837 {
21838 result = XNEW (struct strtab_entry);
21839 result->offset = obstack_object_size (cpool);
21840 result->str = str;
21841 obstack_grow_str0 (cpool, str);
21842 *slot = result;
21843 }
21844 return result->offset;
21845}
21846
21847/* An entry in the symbol table. */
21848struct symtab_index_entry
21849{
21850 /* The name of the symbol. */
21851 const char *name;
21852 /* The offset of the name in the constant pool. */
21853 offset_type index_offset;
21854 /* A sorted vector of the indices of all the CUs that hold an object
21855 of this name. */
21856 VEC (offset_type) *cu_indices;
21857};
21858
21859/* The symbol table. This is a power-of-2-sized hash table. */
21860struct mapped_symtab
21861{
21862 offset_type n_elements;
21863 offset_type size;
21864 struct symtab_index_entry **data;
21865};
21866
21867/* Hash function for a symtab_index_entry. */
b89be57b 21868
9291a0cd
TT
21869static hashval_t
21870hash_symtab_entry (const void *e)
21871{
21872 const struct symtab_index_entry *entry = e;
21873 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21874 sizeof (offset_type) * VEC_length (offset_type,
21875 entry->cu_indices),
21876 0);
21877}
21878
21879/* Equality function for a symtab_index_entry. */
b89be57b 21880
9291a0cd
TT
21881static int
21882eq_symtab_entry (const void *a, const void *b)
21883{
21884 const struct symtab_index_entry *ea = a;
21885 const struct symtab_index_entry *eb = b;
21886 int len = VEC_length (offset_type, ea->cu_indices);
21887 if (len != VEC_length (offset_type, eb->cu_indices))
21888 return 0;
21889 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21890 VEC_address (offset_type, eb->cu_indices),
21891 sizeof (offset_type) * len);
21892}
21893
21894/* Destroy a symtab_index_entry. */
b89be57b 21895
9291a0cd
TT
21896static void
21897delete_symtab_entry (void *p)
21898{
21899 struct symtab_index_entry *entry = p;
21900 VEC_free (offset_type, entry->cu_indices);
21901 xfree (entry);
21902}
21903
21904/* Create a hash table holding symtab_index_entry objects. */
b89be57b 21905
9291a0cd 21906static htab_t
3876f04e 21907create_symbol_hash_table (void)
9291a0cd
TT
21908{
21909 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
21910 delete_symtab_entry, xcalloc, xfree);
21911}
21912
21913/* Create a new mapped symtab object. */
b89be57b 21914
9291a0cd
TT
21915static struct mapped_symtab *
21916create_mapped_symtab (void)
21917{
21918 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
21919 symtab->n_elements = 0;
21920 symtab->size = 1024;
21921 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21922 return symtab;
21923}
21924
21925/* Destroy a mapped_symtab. */
b89be57b 21926
9291a0cd
TT
21927static void
21928cleanup_mapped_symtab (void *p)
21929{
21930 struct mapped_symtab *symtab = p;
21931 /* The contents of the array are freed when the other hash table is
21932 destroyed. */
21933 xfree (symtab->data);
21934 xfree (symtab);
21935}
21936
21937/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
21938 the slot.
21939
21940 Function is used only during write_hash_table so no index format backward
21941 compatibility is needed. */
b89be57b 21942
9291a0cd
TT
21943static struct symtab_index_entry **
21944find_slot (struct mapped_symtab *symtab, const char *name)
21945{
559a7a62 21946 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
21947
21948 index = hash & (symtab->size - 1);
21949 step = ((hash * 17) & (symtab->size - 1)) | 1;
21950
21951 for (;;)
21952 {
21953 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
21954 return &symtab->data[index];
21955 index = (index + step) & (symtab->size - 1);
21956 }
21957}
21958
21959/* Expand SYMTAB's hash table. */
b89be57b 21960
9291a0cd
TT
21961static void
21962hash_expand (struct mapped_symtab *symtab)
21963{
21964 offset_type old_size = symtab->size;
21965 offset_type i;
21966 struct symtab_index_entry **old_entries = symtab->data;
21967
21968 symtab->size *= 2;
21969 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21970
21971 for (i = 0; i < old_size; ++i)
21972 {
21973 if (old_entries[i])
21974 {
21975 struct symtab_index_entry **slot = find_slot (symtab,
21976 old_entries[i]->name);
21977 *slot = old_entries[i];
21978 }
21979 }
21980
21981 xfree (old_entries);
21982}
21983
156942c7
DE
21984/* Add an entry to SYMTAB. NAME is the name of the symbol.
21985 CU_INDEX is the index of the CU in which the symbol appears.
21986 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 21987
9291a0cd
TT
21988static void
21989add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 21990 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
21991 offset_type cu_index)
21992{
21993 struct symtab_index_entry **slot;
156942c7 21994 offset_type cu_index_and_attrs;
9291a0cd
TT
21995
21996 ++symtab->n_elements;
21997 if (4 * symtab->n_elements / 3 >= symtab->size)
21998 hash_expand (symtab);
21999
22000 slot = find_slot (symtab, name);
22001 if (!*slot)
22002 {
22003 *slot = XNEW (struct symtab_index_entry);
22004 (*slot)->name = name;
156942c7 22005 /* index_offset is set later. */
9291a0cd
TT
22006 (*slot)->cu_indices = NULL;
22007 }
156942c7
DE
22008
22009 cu_index_and_attrs = 0;
22010 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22011 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22012 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22013
22014 /* We don't want to record an index value twice as we want to avoid the
22015 duplication.
22016 We process all global symbols and then all static symbols
22017 (which would allow us to avoid the duplication by only having to check
22018 the last entry pushed), but a symbol could have multiple kinds in one CU.
22019 To keep things simple we don't worry about the duplication here and
22020 sort and uniqufy the list after we've processed all symbols. */
22021 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22022}
22023
22024/* qsort helper routine for uniquify_cu_indices. */
22025
22026static int
22027offset_type_compare (const void *ap, const void *bp)
22028{
22029 offset_type a = *(offset_type *) ap;
22030 offset_type b = *(offset_type *) bp;
22031
22032 return (a > b) - (b > a);
22033}
22034
22035/* Sort and remove duplicates of all symbols' cu_indices lists. */
22036
22037static void
22038uniquify_cu_indices (struct mapped_symtab *symtab)
22039{
22040 int i;
22041
22042 for (i = 0; i < symtab->size; ++i)
22043 {
22044 struct symtab_index_entry *entry = symtab->data[i];
22045
22046 if (entry
22047 && entry->cu_indices != NULL)
22048 {
22049 unsigned int next_to_insert, next_to_check;
22050 offset_type last_value;
22051
22052 qsort (VEC_address (offset_type, entry->cu_indices),
22053 VEC_length (offset_type, entry->cu_indices),
22054 sizeof (offset_type), offset_type_compare);
22055
22056 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22057 next_to_insert = 1;
22058 for (next_to_check = 1;
22059 next_to_check < VEC_length (offset_type, entry->cu_indices);
22060 ++next_to_check)
22061 {
22062 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22063 != last_value)
22064 {
22065 last_value = VEC_index (offset_type, entry->cu_indices,
22066 next_to_check);
22067 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22068 last_value);
22069 ++next_to_insert;
22070 }
22071 }
22072 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22073 }
22074 }
9291a0cd
TT
22075}
22076
22077/* Add a vector of indices to the constant pool. */
b89be57b 22078
9291a0cd 22079static offset_type
3876f04e 22080add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22081 struct symtab_index_entry *entry)
22082{
22083 void **slot;
22084
3876f04e 22085 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22086 if (!*slot)
22087 {
22088 offset_type len = VEC_length (offset_type, entry->cu_indices);
22089 offset_type val = MAYBE_SWAP (len);
22090 offset_type iter;
22091 int i;
22092
22093 *slot = entry;
22094 entry->index_offset = obstack_object_size (cpool);
22095
22096 obstack_grow (cpool, &val, sizeof (val));
22097 for (i = 0;
22098 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22099 ++i)
22100 {
22101 val = MAYBE_SWAP (iter);
22102 obstack_grow (cpool, &val, sizeof (val));
22103 }
22104 }
22105 else
22106 {
22107 struct symtab_index_entry *old_entry = *slot;
22108 entry->index_offset = old_entry->index_offset;
22109 entry = old_entry;
22110 }
22111 return entry->index_offset;
22112}
22113
22114/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22115 constant pool entries going into the obstack CPOOL. */
b89be57b 22116
9291a0cd
TT
22117static void
22118write_hash_table (struct mapped_symtab *symtab,
22119 struct obstack *output, struct obstack *cpool)
22120{
22121 offset_type i;
3876f04e 22122 htab_t symbol_hash_table;
9291a0cd
TT
22123 htab_t str_table;
22124
3876f04e 22125 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22126 str_table = create_strtab ();
3876f04e 22127
9291a0cd
TT
22128 /* We add all the index vectors to the constant pool first, to
22129 ensure alignment is ok. */
22130 for (i = 0; i < symtab->size; ++i)
22131 {
22132 if (symtab->data[i])
3876f04e 22133 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22134 }
22135
22136 /* Now write out the hash table. */
22137 for (i = 0; i < symtab->size; ++i)
22138 {
22139 offset_type str_off, vec_off;
22140
22141 if (symtab->data[i])
22142 {
22143 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22144 vec_off = symtab->data[i]->index_offset;
22145 }
22146 else
22147 {
22148 /* While 0 is a valid constant pool index, it is not valid
22149 to have 0 for both offsets. */
22150 str_off = 0;
22151 vec_off = 0;
22152 }
22153
22154 str_off = MAYBE_SWAP (str_off);
22155 vec_off = MAYBE_SWAP (vec_off);
22156
22157 obstack_grow (output, &str_off, sizeof (str_off));
22158 obstack_grow (output, &vec_off, sizeof (vec_off));
22159 }
22160
22161 htab_delete (str_table);
3876f04e 22162 htab_delete (symbol_hash_table);
9291a0cd
TT
22163}
22164
0a5429f6
DE
22165/* Struct to map psymtab to CU index in the index file. */
22166struct psymtab_cu_index_map
22167{
22168 struct partial_symtab *psymtab;
22169 unsigned int cu_index;
22170};
22171
22172static hashval_t
22173hash_psymtab_cu_index (const void *item)
22174{
22175 const struct psymtab_cu_index_map *map = item;
22176
22177 return htab_hash_pointer (map->psymtab);
22178}
22179
22180static int
22181eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22182{
22183 const struct psymtab_cu_index_map *lhs = item_lhs;
22184 const struct psymtab_cu_index_map *rhs = item_rhs;
22185
22186 return lhs->psymtab == rhs->psymtab;
22187}
22188
22189/* Helper struct for building the address table. */
22190struct addrmap_index_data
22191{
22192 struct objfile *objfile;
22193 struct obstack *addr_obstack;
22194 htab_t cu_index_htab;
22195
22196 /* Non-zero if the previous_* fields are valid.
22197 We can't write an entry until we see the next entry (since it is only then
22198 that we know the end of the entry). */
22199 int previous_valid;
22200 /* Index of the CU in the table of all CUs in the index file. */
22201 unsigned int previous_cu_index;
0963b4bd 22202 /* Start address of the CU. */
0a5429f6
DE
22203 CORE_ADDR previous_cu_start;
22204};
22205
22206/* Write an address entry to OBSTACK. */
b89be57b 22207
9291a0cd 22208static void
0a5429f6
DE
22209add_address_entry (struct objfile *objfile, struct obstack *obstack,
22210 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 22211{
0a5429f6 22212 offset_type cu_index_to_write;
948f8e3d 22213 gdb_byte addr[8];
9291a0cd
TT
22214 CORE_ADDR baseaddr;
22215
22216 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22217
0a5429f6
DE
22218 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22219 obstack_grow (obstack, addr, 8);
22220 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22221 obstack_grow (obstack, addr, 8);
22222 cu_index_to_write = MAYBE_SWAP (cu_index);
22223 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22224}
22225
22226/* Worker function for traversing an addrmap to build the address table. */
22227
22228static int
22229add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22230{
22231 struct addrmap_index_data *data = datap;
22232 struct partial_symtab *pst = obj;
0a5429f6
DE
22233
22234 if (data->previous_valid)
22235 add_address_entry (data->objfile, data->addr_obstack,
22236 data->previous_cu_start, start_addr,
22237 data->previous_cu_index);
22238
22239 data->previous_cu_start = start_addr;
22240 if (pst != NULL)
22241 {
22242 struct psymtab_cu_index_map find_map, *map;
22243 find_map.psymtab = pst;
22244 map = htab_find (data->cu_index_htab, &find_map);
22245 gdb_assert (map != NULL);
22246 data->previous_cu_index = map->cu_index;
22247 data->previous_valid = 1;
22248 }
22249 else
22250 data->previous_valid = 0;
22251
22252 return 0;
22253}
22254
22255/* Write OBJFILE's address map to OBSTACK.
22256 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22257 in the index file. */
22258
22259static void
22260write_address_map (struct objfile *objfile, struct obstack *obstack,
22261 htab_t cu_index_htab)
22262{
22263 struct addrmap_index_data addrmap_index_data;
22264
22265 /* When writing the address table, we have to cope with the fact that
22266 the addrmap iterator only provides the start of a region; we have to
22267 wait until the next invocation to get the start of the next region. */
22268
22269 addrmap_index_data.objfile = objfile;
22270 addrmap_index_data.addr_obstack = obstack;
22271 addrmap_index_data.cu_index_htab = cu_index_htab;
22272 addrmap_index_data.previous_valid = 0;
22273
22274 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22275 &addrmap_index_data);
22276
22277 /* It's highly unlikely the last entry (end address = 0xff...ff)
22278 is valid, but we should still handle it.
22279 The end address is recorded as the start of the next region, but that
22280 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22281 anyway. */
22282 if (addrmap_index_data.previous_valid)
22283 add_address_entry (objfile, obstack,
22284 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22285 addrmap_index_data.previous_cu_index);
9291a0cd
TT
22286}
22287
156942c7
DE
22288/* Return the symbol kind of PSYM. */
22289
22290static gdb_index_symbol_kind
22291symbol_kind (struct partial_symbol *psym)
22292{
22293 domain_enum domain = PSYMBOL_DOMAIN (psym);
22294 enum address_class aclass = PSYMBOL_CLASS (psym);
22295
22296 switch (domain)
22297 {
22298 case VAR_DOMAIN:
22299 switch (aclass)
22300 {
22301 case LOC_BLOCK:
22302 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22303 case LOC_TYPEDEF:
22304 return GDB_INDEX_SYMBOL_KIND_TYPE;
22305 case LOC_COMPUTED:
22306 case LOC_CONST_BYTES:
22307 case LOC_OPTIMIZED_OUT:
22308 case LOC_STATIC:
22309 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22310 case LOC_CONST:
22311 /* Note: It's currently impossible to recognize psyms as enum values
22312 short of reading the type info. For now punt. */
22313 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22314 default:
22315 /* There are other LOC_FOO values that one might want to classify
22316 as variables, but dwarf2read.c doesn't currently use them. */
22317 return GDB_INDEX_SYMBOL_KIND_OTHER;
22318 }
22319 case STRUCT_DOMAIN:
22320 return GDB_INDEX_SYMBOL_KIND_TYPE;
22321 default:
22322 return GDB_INDEX_SYMBOL_KIND_OTHER;
22323 }
22324}
22325
9291a0cd 22326/* Add a list of partial symbols to SYMTAB. */
b89be57b 22327
9291a0cd
TT
22328static void
22329write_psymbols (struct mapped_symtab *symtab,
987d643c 22330 htab_t psyms_seen,
9291a0cd
TT
22331 struct partial_symbol **psymp,
22332 int count,
987d643c
TT
22333 offset_type cu_index,
22334 int is_static)
9291a0cd
TT
22335{
22336 for (; count-- > 0; ++psymp)
22337 {
156942c7
DE
22338 struct partial_symbol *psym = *psymp;
22339 void **slot;
987d643c 22340
156942c7 22341 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 22342 error (_("Ada is not currently supported by the index"));
987d643c 22343
987d643c 22344 /* Only add a given psymbol once. */
156942c7 22345 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
22346 if (!*slot)
22347 {
156942c7
DE
22348 gdb_index_symbol_kind kind = symbol_kind (psym);
22349
22350 *slot = psym;
22351 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22352 is_static, kind, cu_index);
987d643c 22353 }
9291a0cd
TT
22354 }
22355}
22356
22357/* Write the contents of an ("unfinished") obstack to FILE. Throw an
22358 exception if there is an error. */
b89be57b 22359
9291a0cd
TT
22360static void
22361write_obstack (FILE *file, struct obstack *obstack)
22362{
22363 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22364 file)
22365 != obstack_object_size (obstack))
22366 error (_("couldn't data write to file"));
22367}
22368
22369/* Unlink a file if the argument is not NULL. */
b89be57b 22370
9291a0cd
TT
22371static void
22372unlink_if_set (void *p)
22373{
22374 char **filename = p;
22375 if (*filename)
22376 unlink (*filename);
22377}
22378
1fd400ff
TT
22379/* A helper struct used when iterating over debug_types. */
22380struct signatured_type_index_data
22381{
22382 struct objfile *objfile;
22383 struct mapped_symtab *symtab;
22384 struct obstack *types_list;
987d643c 22385 htab_t psyms_seen;
1fd400ff
TT
22386 int cu_index;
22387};
22388
22389/* A helper function that writes a single signatured_type to an
22390 obstack. */
b89be57b 22391
1fd400ff
TT
22392static int
22393write_one_signatured_type (void **slot, void *d)
22394{
22395 struct signatured_type_index_data *info = d;
22396 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 22397 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
22398 gdb_byte val[8];
22399
22400 write_psymbols (info->symtab,
987d643c 22401 info->psyms_seen,
3e43a32a
MS
22402 info->objfile->global_psymbols.list
22403 + psymtab->globals_offset,
987d643c
TT
22404 psymtab->n_global_syms, info->cu_index,
22405 0);
1fd400ff 22406 write_psymbols (info->symtab,
987d643c 22407 info->psyms_seen,
3e43a32a
MS
22408 info->objfile->static_psymbols.list
22409 + psymtab->statics_offset,
987d643c
TT
22410 psymtab->n_static_syms, info->cu_index,
22411 1);
1fd400ff 22412
b64f50a1
JK
22413 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22414 entry->per_cu.offset.sect_off);
1fd400ff 22415 obstack_grow (info->types_list, val, 8);
3019eac3
DE
22416 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22417 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
22418 obstack_grow (info->types_list, val, 8);
22419 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22420 obstack_grow (info->types_list, val, 8);
22421
22422 ++info->cu_index;
22423
22424 return 1;
22425}
22426
95554aad
TT
22427/* Recurse into all "included" dependencies and write their symbols as
22428 if they appeared in this psymtab. */
22429
22430static void
22431recursively_write_psymbols (struct objfile *objfile,
22432 struct partial_symtab *psymtab,
22433 struct mapped_symtab *symtab,
22434 htab_t psyms_seen,
22435 offset_type cu_index)
22436{
22437 int i;
22438
22439 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22440 if (psymtab->dependencies[i]->user != NULL)
22441 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22442 symtab, psyms_seen, cu_index);
22443
22444 write_psymbols (symtab,
22445 psyms_seen,
22446 objfile->global_psymbols.list + psymtab->globals_offset,
22447 psymtab->n_global_syms, cu_index,
22448 0);
22449 write_psymbols (symtab,
22450 psyms_seen,
22451 objfile->static_psymbols.list + psymtab->statics_offset,
22452 psymtab->n_static_syms, cu_index,
22453 1);
22454}
22455
9291a0cd 22456/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 22457
9291a0cd
TT
22458static void
22459write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22460{
22461 struct cleanup *cleanup;
22462 char *filename, *cleanup_filename;
1fd400ff
TT
22463 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22464 struct obstack cu_list, types_cu_list;
9291a0cd
TT
22465 int i;
22466 FILE *out_file;
22467 struct mapped_symtab *symtab;
22468 offset_type val, size_of_contents, total_len;
22469 struct stat st;
987d643c 22470 htab_t psyms_seen;
0a5429f6
DE
22471 htab_t cu_index_htab;
22472 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 22473
9291a0cd
TT
22474 if (dwarf2_per_objfile->using_index)
22475 error (_("Cannot use an index to create the index"));
22476
8b70b953
TT
22477 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22478 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22479
260b681b
DE
22480 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22481 return;
22482
4262abfb
JK
22483 if (stat (objfile_name (objfile), &st) < 0)
22484 perror_with_name (objfile_name (objfile));
9291a0cd 22485
4262abfb 22486 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
22487 INDEX_SUFFIX, (char *) NULL);
22488 cleanup = make_cleanup (xfree, filename);
22489
614c279d 22490 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
22491 if (!out_file)
22492 error (_("Can't open `%s' for writing"), filename);
22493
22494 cleanup_filename = filename;
22495 make_cleanup (unlink_if_set, &cleanup_filename);
22496
22497 symtab = create_mapped_symtab ();
22498 make_cleanup (cleanup_mapped_symtab, symtab);
22499
22500 obstack_init (&addr_obstack);
22501 make_cleanup_obstack_free (&addr_obstack);
22502
22503 obstack_init (&cu_list);
22504 make_cleanup_obstack_free (&cu_list);
22505
1fd400ff
TT
22506 obstack_init (&types_cu_list);
22507 make_cleanup_obstack_free (&types_cu_list);
22508
987d643c
TT
22509 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22510 NULL, xcalloc, xfree);
96408a79 22511 make_cleanup_htab_delete (psyms_seen);
987d643c 22512
0a5429f6
DE
22513 /* While we're scanning CU's create a table that maps a psymtab pointer
22514 (which is what addrmap records) to its index (which is what is recorded
22515 in the index file). This will later be needed to write the address
22516 table. */
22517 cu_index_htab = htab_create_alloc (100,
22518 hash_psymtab_cu_index,
22519 eq_psymtab_cu_index,
22520 NULL, xcalloc, xfree);
96408a79 22521 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
22522 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22523 xmalloc (sizeof (struct psymtab_cu_index_map)
22524 * dwarf2_per_objfile->n_comp_units);
22525 make_cleanup (xfree, psymtab_cu_index_map);
22526
22527 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
22528 work here. Also, the debug_types entries do not appear in
22529 all_comp_units, but only in their own hash table. */
9291a0cd
TT
22530 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22531 {
3e43a32a
MS
22532 struct dwarf2_per_cu_data *per_cu
22533 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 22534 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 22535 gdb_byte val[8];
0a5429f6
DE
22536 struct psymtab_cu_index_map *map;
22537 void **slot;
9291a0cd 22538
92fac807
JK
22539 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22540 It may be referenced from a local scope but in such case it does not
22541 need to be present in .gdb_index. */
22542 if (psymtab == NULL)
22543 continue;
22544
95554aad
TT
22545 if (psymtab->user == NULL)
22546 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 22547
0a5429f6
DE
22548 map = &psymtab_cu_index_map[i];
22549 map->psymtab = psymtab;
22550 map->cu_index = i;
22551 slot = htab_find_slot (cu_index_htab, map, INSERT);
22552 gdb_assert (slot != NULL);
22553 gdb_assert (*slot == NULL);
22554 *slot = map;
9291a0cd 22555
b64f50a1
JK
22556 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22557 per_cu->offset.sect_off);
9291a0cd 22558 obstack_grow (&cu_list, val, 8);
e254ef6a 22559 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
22560 obstack_grow (&cu_list, val, 8);
22561 }
22562
0a5429f6
DE
22563 /* Dump the address map. */
22564 write_address_map (objfile, &addr_obstack, cu_index_htab);
22565
1fd400ff
TT
22566 /* Write out the .debug_type entries, if any. */
22567 if (dwarf2_per_objfile->signatured_types)
22568 {
22569 struct signatured_type_index_data sig_data;
22570
22571 sig_data.objfile = objfile;
22572 sig_data.symtab = symtab;
22573 sig_data.types_list = &types_cu_list;
987d643c 22574 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
22575 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22576 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22577 write_one_signatured_type, &sig_data);
22578 }
22579
156942c7
DE
22580 /* Now that we've processed all symbols we can shrink their cu_indices
22581 lists. */
22582 uniquify_cu_indices (symtab);
22583
9291a0cd
TT
22584 obstack_init (&constant_pool);
22585 make_cleanup_obstack_free (&constant_pool);
22586 obstack_init (&symtab_obstack);
22587 make_cleanup_obstack_free (&symtab_obstack);
22588 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22589
22590 obstack_init (&contents);
22591 make_cleanup_obstack_free (&contents);
1fd400ff 22592 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
22593 total_len = size_of_contents;
22594
22595 /* The version number. */
796a7ff8 22596 val = MAYBE_SWAP (8);
9291a0cd
TT
22597 obstack_grow (&contents, &val, sizeof (val));
22598
22599 /* The offset of the CU list from the start of the file. */
22600 val = MAYBE_SWAP (total_len);
22601 obstack_grow (&contents, &val, sizeof (val));
22602 total_len += obstack_object_size (&cu_list);
22603
1fd400ff
TT
22604 /* The offset of the types CU list from the start of the file. */
22605 val = MAYBE_SWAP (total_len);
22606 obstack_grow (&contents, &val, sizeof (val));
22607 total_len += obstack_object_size (&types_cu_list);
22608
9291a0cd
TT
22609 /* The offset of the address table from the start of the file. */
22610 val = MAYBE_SWAP (total_len);
22611 obstack_grow (&contents, &val, sizeof (val));
22612 total_len += obstack_object_size (&addr_obstack);
22613
22614 /* The offset of the symbol table from the start of the file. */
22615 val = MAYBE_SWAP (total_len);
22616 obstack_grow (&contents, &val, sizeof (val));
22617 total_len += obstack_object_size (&symtab_obstack);
22618
22619 /* The offset of the constant pool from the start of the file. */
22620 val = MAYBE_SWAP (total_len);
22621 obstack_grow (&contents, &val, sizeof (val));
22622 total_len += obstack_object_size (&constant_pool);
22623
22624 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22625
22626 write_obstack (out_file, &contents);
22627 write_obstack (out_file, &cu_list);
1fd400ff 22628 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
22629 write_obstack (out_file, &addr_obstack);
22630 write_obstack (out_file, &symtab_obstack);
22631 write_obstack (out_file, &constant_pool);
22632
22633 fclose (out_file);
22634
22635 /* We want to keep the file, so we set cleanup_filename to NULL
22636 here. See unlink_if_set. */
22637 cleanup_filename = NULL;
22638
22639 do_cleanups (cleanup);
22640}
22641
90476074
TT
22642/* Implementation of the `save gdb-index' command.
22643
22644 Note that the file format used by this command is documented in the
22645 GDB manual. Any changes here must be documented there. */
11570e71 22646
9291a0cd
TT
22647static void
22648save_gdb_index_command (char *arg, int from_tty)
22649{
22650 struct objfile *objfile;
22651
22652 if (!arg || !*arg)
96d19272 22653 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
22654
22655 ALL_OBJFILES (objfile)
22656 {
22657 struct stat st;
22658
22659 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 22660 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
22661 continue;
22662
22663 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22664 if (dwarf2_per_objfile)
22665 {
22666 volatile struct gdb_exception except;
22667
22668 TRY_CATCH (except, RETURN_MASK_ERROR)
22669 {
22670 write_psymtabs_to_index (objfile, arg);
22671 }
22672 if (except.reason < 0)
22673 exception_fprintf (gdb_stderr, except,
22674 _("Error while writing index for `%s': "),
4262abfb 22675 objfile_name (objfile));
9291a0cd
TT
22676 }
22677 }
dce234bc
PP
22678}
22679
9291a0cd
TT
22680\f
22681
9eae7c52
TT
22682int dwarf2_always_disassemble;
22683
22684static void
22685show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22686 struct cmd_list_element *c, const char *value)
22687{
3e43a32a
MS
22688 fprintf_filtered (file,
22689 _("Whether to always disassemble "
22690 "DWARF expressions is %s.\n"),
9eae7c52
TT
22691 value);
22692}
22693
900e11f9
JK
22694static void
22695show_check_physname (struct ui_file *file, int from_tty,
22696 struct cmd_list_element *c, const char *value)
22697{
22698 fprintf_filtered (file,
22699 _("Whether to check \"physname\" is %s.\n"),
22700 value);
22701}
22702
6502dd73
DJ
22703void _initialize_dwarf2_read (void);
22704
22705void
22706_initialize_dwarf2_read (void)
22707{
96d19272
JK
22708 struct cmd_list_element *c;
22709
dce234bc 22710 dwarf2_objfile_data_key
c1bd65d0 22711 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 22712
1bedd215
AC
22713 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22714Set DWARF 2 specific variables.\n\
22715Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
22716 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22717 0/*allow-unknown*/, &maintenance_set_cmdlist);
22718
1bedd215
AC
22719 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22720Show DWARF 2 specific variables\n\
22721Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
22722 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22723 0/*allow-unknown*/, &maintenance_show_cmdlist);
22724
22725 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
22726 &dwarf2_max_cache_age, _("\
22727Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22728Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22729A higher limit means that cached compilation units will be stored\n\
22730in memory longer, and more total memory will be used. Zero disables\n\
22731caching, which can slow down startup."),
2c5b56ce 22732 NULL,
920d2a44 22733 show_dwarf2_max_cache_age,
2c5b56ce 22734 &set_dwarf2_cmdlist,
ae038cb0 22735 &show_dwarf2_cmdlist);
d97bc12b 22736
9eae7c52
TT
22737 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22738 &dwarf2_always_disassemble, _("\
22739Set whether `info address' always disassembles DWARF expressions."), _("\
22740Show whether `info address' always disassembles DWARF expressions."), _("\
22741When enabled, DWARF expressions are always printed in an assembly-like\n\
22742syntax. When disabled, expressions will be printed in a more\n\
22743conversational style, when possible."),
22744 NULL,
22745 show_dwarf2_always_disassemble,
22746 &set_dwarf2_cmdlist,
22747 &show_dwarf2_cmdlist);
22748
73be47f5 22749 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
45cfd468
DE
22750Set debugging of the dwarf2 reader."), _("\
22751Show debugging of the dwarf2 reader."), _("\
73be47f5
DE
22752When enabled (non-zero), debugging messages are printed during dwarf2\n\
22753reading and symtab expansion. A value of 1 (one) provides basic\n\
22754information. A value greater than 1 provides more verbose information."),
45cfd468
DE
22755 NULL,
22756 NULL,
22757 &setdebuglist, &showdebuglist);
22758
ccce17b0 22759 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
d97bc12b
DE
22760Set debugging of the dwarf2 DIE reader."), _("\
22761Show debugging of the dwarf2 DIE reader."), _("\
22762When enabled (non-zero), DIEs are dumped after they are read in.\n\
22763The value is the maximum depth to print."),
ccce17b0
YQ
22764 NULL,
22765 NULL,
22766 &setdebuglist, &showdebuglist);
9291a0cd 22767
900e11f9
JK
22768 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22769Set cross-checking of \"physname\" code against demangler."), _("\
22770Show cross-checking of \"physname\" code against demangler."), _("\
22771When enabled, GDB's internal \"physname\" code is checked against\n\
22772the demangler."),
22773 NULL, show_check_physname,
22774 &setdebuglist, &showdebuglist);
22775
e615022a
DE
22776 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22777 no_class, &use_deprecated_index_sections, _("\
22778Set whether to use deprecated gdb_index sections."), _("\
22779Show whether to use deprecated gdb_index sections."), _("\
22780When enabled, deprecated .gdb_index sections are used anyway.\n\
22781Normally they are ignored either because of a missing feature or\n\
22782performance issue.\n\
22783Warning: This option must be enabled before gdb reads the file."),
22784 NULL,
22785 NULL,
22786 &setlist, &showlist);
22787
96d19272 22788 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 22789 _("\
fc1a9d6e 22790Save a gdb-index file.\n\
11570e71 22791Usage: save gdb-index DIRECTORY"),
96d19272
JK
22792 &save_cmdlist);
22793 set_cmd_completer (c, filename_completer);
f1e6e072
TT
22794
22795 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22796 &dwarf2_locexpr_funcs);
22797 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22798 &dwarf2_loclist_funcs);
22799
22800 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22801 &dwarf2_block_frame_base_locexpr_funcs);
22802 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22803 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 22804}
This page took 4.173604 seconds and 4 git commands to generate.