* archures.c: Update copyright.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
6aba47ca 3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
9b254dd1 4 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
c906108c
SS
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 11 support.
c906108c 12
c5aa993b 13 This file is part of GDB.
c906108c 14
c5aa993b
JM
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
a9762ec7
JB
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
c906108c 19
a9762ec7
JB
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
c906108c 24
c5aa993b 25 You should have received a copy of the GNU General Public License
a9762ec7 26 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
27
28#include "defs.h"
29#include "bfd.h"
c906108c
SS
30#include "symtab.h"
31#include "gdbtypes.h"
c906108c
SS
32#include "objfiles.h"
33#include "elf/dwarf2.h"
34#include "buildsym.h"
35#include "demangle.h"
36#include "expression.h"
d5166ae1 37#include "filenames.h" /* for DOSish file names */
2e276125 38#include "macrotab.h"
c906108c
SS
39#include "language.h"
40#include "complaints.h"
357e46e7 41#include "bcache.h"
4c2df51b
DJ
42#include "dwarf2expr.h"
43#include "dwarf2loc.h"
9219021c 44#include "cp-support.h"
72bf9492 45#include "hashtab.h"
ae038cb0
DJ
46#include "command.h"
47#include "gdbcmd.h"
4c2df51b 48
c906108c
SS
49#include <fcntl.h>
50#include "gdb_string.h"
4bdf3d34 51#include "gdb_assert.h"
c906108c
SS
52#include <sys/types.h>
53
d8151005
DJ
54/* A note on memory usage for this file.
55
56 At the present time, this code reads the debug info sections into
57 the objfile's objfile_obstack. A definite improvement for startup
58 time, on platforms which do not emit relocations for debug
59 sections, would be to use mmap instead. The object's complete
60 debug information is loaded into memory, partly to simplify
61 absolute DIE references.
62
63 Whether using obstacks or mmap, the sections should remain loaded
64 until the objfile is released, and pointers into the section data
65 can be used for any other data associated to the objfile (symbol
66 names, type names, location expressions to name a few). */
67
107d2387 68#if 0
357e46e7 69/* .debug_info header for a compilation unit
c906108c
SS
70 Because of alignment constraints, this structure has padding and cannot
71 be mapped directly onto the beginning of the .debug_info section. */
72typedef struct comp_unit_header
73 {
74 unsigned int length; /* length of the .debug_info
75 contribution */
76 unsigned short version; /* version number -- 2 for DWARF
77 version 2 */
78 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
79 unsigned char addr_size; /* byte size of an address -- 4 */
80 }
81_COMP_UNIT_HEADER;
82#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 83#endif
c906108c
SS
84
85/* .debug_pubnames header
86 Because of alignment constraints, this structure has padding and cannot
87 be mapped directly onto the beginning of the .debug_info section. */
88typedef struct pubnames_header
89 {
90 unsigned int length; /* length of the .debug_pubnames
91 contribution */
92 unsigned char version; /* version number -- 2 for DWARF
93 version 2 */
94 unsigned int info_offset; /* offset into .debug_info section */
95 unsigned int info_size; /* byte size of .debug_info section
96 portion */
97 }
98_PUBNAMES_HEADER;
99#define _ACTUAL_PUBNAMES_HEADER_SIZE 13
100
101/* .debug_pubnames header
102 Because of alignment constraints, this structure has padding and cannot
103 be mapped directly onto the beginning of the .debug_info section. */
104typedef struct aranges_header
105 {
106 unsigned int length; /* byte len of the .debug_aranges
107 contribution */
108 unsigned short version; /* version number -- 2 for DWARF
109 version 2 */
110 unsigned int info_offset; /* offset into .debug_info section */
111 unsigned char addr_size; /* byte size of an address */
112 unsigned char seg_size; /* byte size of segment descriptor */
113 }
114_ARANGES_HEADER;
115#define _ACTUAL_ARANGES_HEADER_SIZE 12
116
117/* .debug_line statement program prologue
118 Because of alignment constraints, this structure has padding and cannot
119 be mapped directly onto the beginning of the .debug_info section. */
120typedef struct statement_prologue
121 {
122 unsigned int total_length; /* byte length of the statement
123 information */
124 unsigned short version; /* version number -- 2 for DWARF
125 version 2 */
126 unsigned int prologue_length; /* # bytes between prologue &
127 stmt program */
128 unsigned char minimum_instruction_length; /* byte size of
129 smallest instr */
130 unsigned char default_is_stmt; /* initial value of is_stmt
131 register */
132 char line_base;
133 unsigned char line_range;
134 unsigned char opcode_base; /* number assigned to first special
135 opcode */
136 unsigned char *standard_opcode_lengths;
137 }
138_STATEMENT_PROLOGUE;
139
6502dd73
DJ
140static const struct objfile_data *dwarf2_objfile_data_key;
141
142struct dwarf2_per_objfile
143{
144 /* Sizes of debugging sections. */
145 unsigned int info_size;
146 unsigned int abbrev_size;
147 unsigned int line_size;
148 unsigned int pubnames_size;
149 unsigned int aranges_size;
150 unsigned int loc_size;
151 unsigned int macinfo_size;
152 unsigned int str_size;
153 unsigned int ranges_size;
154 unsigned int frame_size;
155 unsigned int eh_frame_size;
156
157 /* Loaded data from the sections. */
fe1b8b76
JB
158 gdb_byte *info_buffer;
159 gdb_byte *abbrev_buffer;
160 gdb_byte *line_buffer;
161 gdb_byte *str_buffer;
162 gdb_byte *macinfo_buffer;
163 gdb_byte *ranges_buffer;
164 gdb_byte *loc_buffer;
ae038cb0 165
10b3939b
DJ
166 /* A list of all the compilation units. This is used to locate
167 the target compilation unit of a particular reference. */
ae038cb0
DJ
168 struct dwarf2_per_cu_data **all_comp_units;
169
170 /* The number of compilation units in ALL_COMP_UNITS. */
171 int n_comp_units;
172
173 /* A chain of compilation units that are currently read in, so that
174 they can be freed later. */
175 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5
FR
176
177 /* A flag indicating wether this objfile has a section loaded at a
178 VMA of 0. */
179 int has_section_at_zero;
6502dd73
DJ
180};
181
182static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 183
086df311
DJ
184static asection *dwarf_info_section;
185static asection *dwarf_abbrev_section;
186static asection *dwarf_line_section;
187static asection *dwarf_pubnames_section;
188static asection *dwarf_aranges_section;
189static asection *dwarf_loc_section;
190static asection *dwarf_macinfo_section;
191static asection *dwarf_str_section;
192static asection *dwarf_ranges_section;
193asection *dwarf_frame_section;
194asection *dwarf_eh_frame_section;
195
c906108c
SS
196/* names of the debugging sections */
197
198#define INFO_SECTION ".debug_info"
199#define ABBREV_SECTION ".debug_abbrev"
200#define LINE_SECTION ".debug_line"
201#define PUBNAMES_SECTION ".debug_pubnames"
202#define ARANGES_SECTION ".debug_aranges"
203#define LOC_SECTION ".debug_loc"
204#define MACINFO_SECTION ".debug_macinfo"
205#define STR_SECTION ".debug_str"
af34e669 206#define RANGES_SECTION ".debug_ranges"
b6af0555
JS
207#define FRAME_SECTION ".debug_frame"
208#define EH_FRAME_SECTION ".eh_frame"
c906108c
SS
209
210/* local data types */
211
57349743
JB
212/* We hold several abbreviation tables in memory at the same time. */
213#ifndef ABBREV_HASH_SIZE
214#define ABBREV_HASH_SIZE 121
215#endif
216
107d2387
AC
217/* The data in a compilation unit header, after target2host
218 translation, looks like this. */
c906108c 219struct comp_unit_head
a738430d
MK
220{
221 unsigned long length;
222 short version;
223 unsigned int abbrev_offset;
224 unsigned char addr_size;
225 unsigned char signed_addr_p;
57349743 226
a738430d
MK
227 /* Size of file offsets; either 4 or 8. */
228 unsigned int offset_size;
57349743 229
a738430d
MK
230 /* Size of the length field; either 4 or 12. */
231 unsigned int initial_length_size;
57349743 232
a738430d
MK
233 /* Offset to the first byte of this compilation unit header in the
234 .debug_info section, for resolving relative reference dies. */
235 unsigned int offset;
57349743 236
a738430d
MK
237 /* Pointer to this compilation unit header in the .debug_info
238 section. */
fe1b8b76 239 gdb_byte *cu_head_ptr;
57349743 240
a738430d
MK
241 /* Pointer to the first die of this compilation unit. This will be
242 the first byte following the compilation unit header. */
fe1b8b76 243 gdb_byte *first_die_ptr;
af34e669 244
a738430d
MK
245 /* Pointer to the next compilation unit header in the program. */
246 struct comp_unit_head *next;
0d53c4c4 247
a738430d
MK
248 /* Base address of this compilation unit. */
249 CORE_ADDR base_address;
0d53c4c4 250
a738430d
MK
251 /* Non-zero if base_address has been set. */
252 int base_known;
253};
c906108c 254
10b3939b
DJ
255/* Fixed size for the DIE hash table. */
256#ifndef REF_HASH_SIZE
257#define REF_HASH_SIZE 1021
258#endif
259
e7c27a73
DJ
260/* Internal state when decoding a particular compilation unit. */
261struct dwarf2_cu
262{
263 /* The objfile containing this compilation unit. */
264 struct objfile *objfile;
265
266 /* The header of the compilation unit.
267
268 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
f3dd6933 269 should logically be moved to the dwarf2_cu structure. */
e7c27a73 270 struct comp_unit_head header;
e142c38c
DJ
271
272 struct function_range *first_fn, *last_fn, *cached_fn;
273
274 /* The language we are debugging. */
275 enum language language;
276 const struct language_defn *language_defn;
277
b0f35d58
DL
278 const char *producer;
279
e142c38c
DJ
280 /* The generic symbol table building routines have separate lists for
281 file scope symbols and all all other scopes (local scopes). So
282 we need to select the right one to pass to add_symbol_to_list().
283 We do it by keeping a pointer to the correct list in list_in_scope.
284
285 FIXME: The original dwarf code just treated the file scope as the
286 first local scope, and all other local scopes as nested local
287 scopes, and worked fine. Check to see if we really need to
288 distinguish these in buildsym.c. */
289 struct pending **list_in_scope;
290
f3dd6933
DJ
291 /* DWARF abbreviation table associated with this compilation unit. */
292 struct abbrev_info **dwarf2_abbrevs;
293
294 /* Storage for the abbrev table. */
295 struct obstack abbrev_obstack;
72bf9492
DJ
296
297 /* Hash table holding all the loaded partial DIEs. */
298 htab_t partial_dies;
299
300 /* Storage for things with the same lifetime as this read-in compilation
301 unit, including partial DIEs. */
302 struct obstack comp_unit_obstack;
303
ae038cb0
DJ
304 /* When multiple dwarf2_cu structures are living in memory, this field
305 chains them all together, so that they can be released efficiently.
306 We will probably also want a generation counter so that most-recently-used
307 compilation units are cached... */
308 struct dwarf2_per_cu_data *read_in_chain;
309
310 /* Backchain to our per_cu entry if the tree has been built. */
311 struct dwarf2_per_cu_data *per_cu;
312
313 /* How many compilation units ago was this CU last referenced? */
314 int last_used;
315
10b3939b
DJ
316 /* A hash table of die offsets for following references. */
317 struct die_info *die_ref_table[REF_HASH_SIZE];
318
319 /* Full DIEs if read in. */
320 struct die_info *dies;
321
322 /* A set of pointers to dwarf2_per_cu_data objects for compilation
323 units referenced by this one. Only set during full symbol processing;
324 partial symbol tables do not have dependencies. */
325 htab_t dependencies;
326
cb1df416
DJ
327 /* Header data from the line table, during full symbol processing. */
328 struct line_header *line_header;
329
ae038cb0
DJ
330 /* Mark used when releasing cached dies. */
331 unsigned int mark : 1;
332
333 /* This flag will be set if this compilation unit might include
334 inter-compilation-unit references. */
335 unsigned int has_form_ref_addr : 1;
336
72bf9492
DJ
337 /* This flag will be set if this compilation unit includes any
338 DW_TAG_namespace DIEs. If we know that there are explicit
339 DIEs for namespaces, we don't need to try to infer them
340 from mangled names. */
341 unsigned int has_namespace_info : 1;
e7c27a73
DJ
342};
343
10b3939b
DJ
344/* Persistent data held for a compilation unit, even when not
345 processing it. We put a pointer to this structure in the
346 read_symtab_private field of the psymtab. If we encounter
347 inter-compilation-unit references, we also maintain a sorted
348 list of all compilation units. */
349
ae038cb0
DJ
350struct dwarf2_per_cu_data
351{
5afb4e99 352 /* The start offset and length of this compilation unit. 2**30-1
ae038cb0
DJ
353 bytes should suffice to store the length of any compilation unit
354 - if it doesn't, GDB will fall over anyway. */
355 unsigned long offset;
5afb4e99 356 unsigned long length : 30;
ae038cb0
DJ
357
358 /* Flag indicating this compilation unit will be read in before
359 any of the current compilation units are processed. */
360 unsigned long queued : 1;
361
5afb4e99
DJ
362 /* This flag will be set if we need to load absolutely all DIEs
363 for this compilation unit, instead of just the ones we think
364 are interesting. It gets set if we look for a DIE in the
365 hash table and don't find it. */
366 unsigned int load_all_dies : 1;
367
ae038cb0
DJ
368 /* Set iff currently read in. */
369 struct dwarf2_cu *cu;
1c379e20
DJ
370
371 /* If full symbols for this CU have been read in, then this field
372 holds a map of DIE offsets to types. It isn't always possible
373 to reconstruct this information later, so we have to preserve
374 it. */
1c379e20 375 htab_t type_hash;
10b3939b 376
31ffec48
DJ
377 /* The partial symbol table associated with this compilation unit,
378 or NULL for partial units (which do not have an associated
379 symtab). */
10b3939b 380 struct partial_symtab *psymtab;
ae038cb0
DJ
381};
382
debd256d
JB
383/* The line number information for a compilation unit (found in the
384 .debug_line section) begins with a "statement program header",
385 which contains the following information. */
386struct line_header
387{
388 unsigned int total_length;
389 unsigned short version;
390 unsigned int header_length;
391 unsigned char minimum_instruction_length;
392 unsigned char default_is_stmt;
393 int line_base;
394 unsigned char line_range;
395 unsigned char opcode_base;
396
397 /* standard_opcode_lengths[i] is the number of operands for the
398 standard opcode whose value is i. This means that
399 standard_opcode_lengths[0] is unused, and the last meaningful
400 element is standard_opcode_lengths[opcode_base - 1]. */
401 unsigned char *standard_opcode_lengths;
402
403 /* The include_directories table. NOTE! These strings are not
404 allocated with xmalloc; instead, they are pointers into
405 debug_line_buffer. If you try to free them, `free' will get
406 indigestion. */
407 unsigned int num_include_dirs, include_dirs_size;
408 char **include_dirs;
409
410 /* The file_names table. NOTE! These strings are not allocated
411 with xmalloc; instead, they are pointers into debug_line_buffer.
412 Don't try to free them directly. */
413 unsigned int num_file_names, file_names_size;
414 struct file_entry
c906108c 415 {
debd256d
JB
416 char *name;
417 unsigned int dir_index;
418 unsigned int mod_time;
419 unsigned int length;
aaa75496 420 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 421 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
422 } *file_names;
423
424 /* The start and end of the statement program following this
6502dd73 425 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 426 gdb_byte *statement_program_start, *statement_program_end;
debd256d 427};
c906108c
SS
428
429/* When we construct a partial symbol table entry we only
430 need this much information. */
431struct partial_die_info
432 {
72bf9492 433 /* Offset of this DIE. */
c906108c 434 unsigned int offset;
72bf9492
DJ
435
436 /* DWARF-2 tag for this DIE. */
437 ENUM_BITFIELD(dwarf_tag) tag : 16;
438
439 /* Language code associated with this DIE. This is only used
440 for the compilation unit DIE. */
441 unsigned int language : 8;
442
443 /* Assorted flags describing the data found in this DIE. */
444 unsigned int has_children : 1;
445 unsigned int is_external : 1;
446 unsigned int is_declaration : 1;
447 unsigned int has_type : 1;
448 unsigned int has_specification : 1;
aaa75496 449 unsigned int has_stmt_list : 1;
72bf9492
DJ
450 unsigned int has_pc_info : 1;
451
452 /* Flag set if the SCOPE field of this structure has been
453 computed. */
454 unsigned int scope_set : 1;
455
fa4028e9
JB
456 /* Flag set if the DIE has a byte_size attribute. */
457 unsigned int has_byte_size : 1;
458
72bf9492
DJ
459 /* The name of this DIE. Normally the value of DW_AT_name, but
460 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
461 other fashion. */
c906108c 462 char *name;
57c22c6c 463 char *dirname;
72bf9492
DJ
464
465 /* The scope to prepend to our children. This is generally
466 allocated on the comp_unit_obstack, so will disappear
467 when this compilation unit leaves the cache. */
468 char *scope;
469
470 /* The location description associated with this DIE, if any. */
471 struct dwarf_block *locdesc;
472
473 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
474 CORE_ADDR lowpc;
475 CORE_ADDR highpc;
72bf9492
DJ
476
477 /* Pointer into the info_buffer pointing at the target of
478 DW_AT_sibling, if any. */
fe1b8b76 479 gdb_byte *sibling;
72bf9492
DJ
480
481 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
482 DW_AT_specification (or DW_AT_abstract_origin or
483 DW_AT_extension). */
484 unsigned int spec_offset;
485
aaa75496
JB
486 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
487 unsigned int line_offset;
488
72bf9492
DJ
489 /* Pointers to this DIE's parent, first child, and next sibling,
490 if any. */
491 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
492 };
493
494/* This data structure holds the information of an abbrev. */
495struct abbrev_info
496 {
497 unsigned int number; /* number identifying abbrev */
498 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
499 unsigned short has_children; /* boolean */
500 unsigned short num_attrs; /* number of attributes */
c906108c
SS
501 struct attr_abbrev *attrs; /* an array of attribute descriptions */
502 struct abbrev_info *next; /* next in chain */
503 };
504
505struct attr_abbrev
506 {
507 enum dwarf_attribute name;
508 enum dwarf_form form;
509 };
510
511/* This data structure holds a complete die structure. */
512struct die_info
513 {
c5aa993b 514 enum dwarf_tag tag; /* Tag indicating type of die */
c5aa993b
JM
515 unsigned int abbrev; /* Abbrev number */
516 unsigned int offset; /* Offset in .debug_info section */
517 unsigned int num_attrs; /* Number of attributes */
518 struct attribute *attrs; /* An array of attributes */
519 struct die_info *next_ref; /* Next die in ref hash table */
78ba4af6
JB
520
521 /* The dies in a compilation unit form an n-ary tree. PARENT
522 points to this die's parent; CHILD points to the first child of
523 this node; and all the children of a given node are chained
524 together via their SIBLING fields, terminated by a die whose
525 tag is zero. */
639d11d3
DC
526 struct die_info *child; /* Its first child, if any. */
527 struct die_info *sibling; /* Its next sibling, if any. */
528 struct die_info *parent; /* Its parent, if any. */
78ba4af6 529
c5aa993b 530 struct type *type; /* Cached type information */
c906108c
SS
531 };
532
533/* Attributes have a name and a value */
534struct attribute
535 {
536 enum dwarf_attribute name;
537 enum dwarf_form form;
538 union
539 {
540 char *str;
541 struct dwarf_block *blk;
ce5d95e1
JB
542 unsigned long unsnd;
543 long int snd;
c906108c
SS
544 CORE_ADDR addr;
545 }
546 u;
547 };
548
5fb290d7
DJ
549struct function_range
550{
551 const char *name;
552 CORE_ADDR lowpc, highpc;
553 int seen_line;
554 struct function_range *next;
555};
556
c906108c
SS
557/* Get at parts of an attribute structure */
558
559#define DW_STRING(attr) ((attr)->u.str)
560#define DW_UNSND(attr) ((attr)->u.unsnd)
561#define DW_BLOCK(attr) ((attr)->u.blk)
562#define DW_SND(attr) ((attr)->u.snd)
563#define DW_ADDR(attr) ((attr)->u.addr)
564
565/* Blocks are a bunch of untyped bytes. */
566struct dwarf_block
567 {
568 unsigned int size;
fe1b8b76 569 gdb_byte *data;
c906108c
SS
570 };
571
c906108c
SS
572#ifndef ATTR_ALLOC_CHUNK
573#define ATTR_ALLOC_CHUNK 4
574#endif
575
c906108c
SS
576/* Allocate fields for structs, unions and enums in this size. */
577#ifndef DW_FIELD_ALLOC_CHUNK
578#define DW_FIELD_ALLOC_CHUNK 4
579#endif
580
c906108c
SS
581/* A zeroed version of a partial die for initialization purposes. */
582static struct partial_die_info zeroed_partial_die;
583
c906108c
SS
584/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
585 but this would require a corresponding change in unpack_field_as_long
586 and friends. */
587static int bits_per_byte = 8;
588
589/* The routines that read and process dies for a C struct or C++ class
590 pass lists of data member fields and lists of member function fields
591 in an instance of a field_info structure, as defined below. */
592struct field_info
c5aa993b
JM
593 {
594 /* List of data member and baseclasses fields. */
595 struct nextfield
596 {
597 struct nextfield *next;
598 int accessibility;
599 int virtuality;
600 struct field field;
601 }
602 *fields;
c906108c 603
c5aa993b
JM
604 /* Number of fields. */
605 int nfields;
c906108c 606
c5aa993b
JM
607 /* Number of baseclasses. */
608 int nbaseclasses;
c906108c 609
c5aa993b
JM
610 /* Set if the accesibility of one of the fields is not public. */
611 int non_public_fields;
c906108c 612
c5aa993b
JM
613 /* Member function fields array, entries are allocated in the order they
614 are encountered in the object file. */
615 struct nextfnfield
616 {
617 struct nextfnfield *next;
618 struct fn_field fnfield;
619 }
620 *fnfields;
c906108c 621
c5aa993b
JM
622 /* Member function fieldlist array, contains name of possibly overloaded
623 member function, number of overloaded member functions and a pointer
624 to the head of the member function field chain. */
625 struct fnfieldlist
626 {
627 char *name;
628 int length;
629 struct nextfnfield *head;
630 }
631 *fnfieldlists;
c906108c 632
c5aa993b
JM
633 /* Number of entries in the fnfieldlists array. */
634 int nfnfields;
635 };
c906108c 636
10b3939b
DJ
637/* One item on the queue of compilation units to read in full symbols
638 for. */
639struct dwarf2_queue_item
640{
641 struct dwarf2_per_cu_data *per_cu;
642 struct dwarf2_queue_item *next;
643};
644
645/* The current queue. */
646static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
647
ae038cb0
DJ
648/* Loaded secondary compilation units are kept in memory until they
649 have not been referenced for the processing of this many
650 compilation units. Set this to zero to disable caching. Cache
651 sizes of up to at least twenty will improve startup time for
652 typical inter-CU-reference binaries, at an obvious memory cost. */
653static int dwarf2_max_cache_age = 5;
920d2a44
AC
654static void
655show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
656 struct cmd_list_element *c, const char *value)
657{
658 fprintf_filtered (file, _("\
659The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
660 value);
661}
662
ae038cb0 663
c906108c
SS
664/* Various complaints about symbol reading that don't abort the process */
665
4d3c2250
KB
666static void
667dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 668{
4d3c2250 669 complaint (&symfile_complaints,
e2e0b3e5 670 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
671}
672
25e43795
DJ
673static void
674dwarf2_debug_line_missing_file_complaint (void)
675{
676 complaint (&symfile_complaints,
677 _(".debug_line section has line data without a file"));
678}
679
4d3c2250
KB
680static void
681dwarf2_complex_location_expr_complaint (void)
2e276125 682{
e2e0b3e5 683 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
684}
685
4d3c2250
KB
686static void
687dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
688 int arg3)
2e276125 689{
4d3c2250 690 complaint (&symfile_complaints,
e2e0b3e5 691 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
4d3c2250
KB
692 arg2, arg3);
693}
694
695static void
696dwarf2_macros_too_long_complaint (void)
2e276125 697{
4d3c2250 698 complaint (&symfile_complaints,
e2e0b3e5 699 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
700}
701
702static void
703dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 704{
4d3c2250 705 complaint (&symfile_complaints,
e2e0b3e5 706 _("macro debug info contains a malformed macro definition:\n`%s'"),
4d3c2250
KB
707 arg1);
708}
709
710static void
711dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 712{
4d3c2250 713 complaint (&symfile_complaints,
e2e0b3e5 714 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
4d3c2250 715}
c906108c 716
c906108c
SS
717/* local function prototypes */
718
4efb68b1 719static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c
SS
720
721#if 0
a14ed312 722static void dwarf2_build_psymtabs_easy (struct objfile *, int);
c906108c
SS
723#endif
724
aaa75496
JB
725static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
726 struct objfile *);
727
728static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
729 struct partial_die_info *,
730 struct partial_symtab *);
731
a14ed312 732static void dwarf2_build_psymtabs_hard (struct objfile *, int);
c906108c 733
72bf9492
DJ
734static void scan_partial_symbols (struct partial_die_info *,
735 CORE_ADDR *, CORE_ADDR *,
736 struct dwarf2_cu *);
c906108c 737
72bf9492
DJ
738static void add_partial_symbol (struct partial_die_info *,
739 struct dwarf2_cu *);
63d06c5c 740
72bf9492 741static int pdi_needs_namespace (enum dwarf_tag tag);
91c24f0a 742
72bf9492
DJ
743static void add_partial_namespace (struct partial_die_info *pdi,
744 CORE_ADDR *lowpc, CORE_ADDR *highpc,
745 struct dwarf2_cu *cu);
63d06c5c 746
72bf9492
DJ
747static void add_partial_enumeration (struct partial_die_info *enum_pdi,
748 struct dwarf2_cu *cu);
91c24f0a 749
fe1b8b76
JB
750static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
751 gdb_byte *info_ptr,
752 bfd *abfd,
753 struct dwarf2_cu *cu);
91c24f0a 754
a14ed312 755static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 756
a14ed312 757static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 758
fe1b8b76 759gdb_byte *dwarf2_read_section (struct objfile *, asection *);
c906108c 760
e7c27a73 761static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 762
f3dd6933 763static void dwarf2_free_abbrev_table (void *);
c906108c 764
fe1b8b76 765static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 766 struct dwarf2_cu *);
72bf9492 767
57349743 768static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 769 struct dwarf2_cu *);
c906108c 770
fe1b8b76 771static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
72bf9492
DJ
772 struct dwarf2_cu *);
773
fe1b8b76
JB
774static gdb_byte *read_partial_die (struct partial_die_info *,
775 struct abbrev_info *abbrev, unsigned int,
776 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 777
72bf9492 778static struct partial_die_info *find_partial_die (unsigned long,
10b3939b 779 struct dwarf2_cu *);
72bf9492
DJ
780
781static void fixup_partial_die (struct partial_die_info *,
782 struct dwarf2_cu *);
783
fe1b8b76
JB
784static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
785 struct dwarf2_cu *, int *);
c906108c 786
fe1b8b76
JB
787static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
788 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 789
fe1b8b76
JB
790static gdb_byte *read_attribute_value (struct attribute *, unsigned,
791 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 792
fe1b8b76 793static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 794
fe1b8b76 795static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 796
fe1b8b76 797static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 798
fe1b8b76 799static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 800
fe1b8b76 801static unsigned long read_8_bytes (bfd *, gdb_byte *);
c906108c 802
fe1b8b76 803static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 804 unsigned int *);
c906108c 805
fe1b8b76 806static LONGEST read_initial_length (bfd *, gdb_byte *,
891d2f0b 807 struct comp_unit_head *, unsigned int *);
613e1657 808
fe1b8b76 809static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
891d2f0b 810 unsigned int *);
613e1657 811
fe1b8b76 812static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 813
fe1b8b76 814static char *read_string (bfd *, gdb_byte *, unsigned int *);
c906108c 815
fe1b8b76
JB
816static char *read_indirect_string (bfd *, gdb_byte *,
817 const struct comp_unit_head *,
818 unsigned int *);
4bdf3d34 819
fe1b8b76 820static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 821
fe1b8b76 822static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 823
fe1b8b76 824static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 825
e142c38c 826static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 827
e142c38c
DJ
828static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
829 struct dwarf2_cu *);
c906108c 830
05cf31d1
JB
831static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
832 struct dwarf2_cu *cu);
833
e142c38c 834static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 835
e142c38c
DJ
836static struct die_info *die_specification (struct die_info *die,
837 struct dwarf2_cu *);
63d06c5c 838
debd256d
JB
839static void free_line_header (struct line_header *lh);
840
aaa75496
JB
841static void add_file_name (struct line_header *, char *, unsigned int,
842 unsigned int, unsigned int);
843
debd256d
JB
844static struct line_header *(dwarf_decode_line_header
845 (unsigned int offset,
e7c27a73 846 bfd *abfd, struct dwarf2_cu *cu));
debd256d
JB
847
848static void dwarf_decode_lines (struct line_header *, char *, bfd *,
aaa75496 849 struct dwarf2_cu *, struct partial_symtab *);
c906108c 850
4f1520fb 851static void dwarf2_start_subfile (char *, char *, char *);
c906108c 852
a14ed312 853static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 854 struct dwarf2_cu *);
c906108c 855
a14ed312 856static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 857 struct dwarf2_cu *);
c906108c 858
2df3850c
JM
859static void dwarf2_const_value_data (struct attribute *attr,
860 struct symbol *sym,
861 int bits);
862
e7c27a73 863static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 864
e7c27a73
DJ
865static struct type *die_containing_type (struct die_info *,
866 struct dwarf2_cu *);
c906108c 867
e7c27a73 868static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
c906108c 869
e7c27a73 870static void read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 871
086ed43d 872static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 873
fe1b8b76
JB
874static char *typename_concat (struct obstack *,
875 const char *prefix,
876 const char *suffix,
987504bb 877 struct dwarf2_cu *);
63d06c5c 878
e7c27a73 879static void read_typedef (struct die_info *, struct dwarf2_cu *);
c906108c 880
e7c27a73 881static void read_base_type (struct die_info *, struct dwarf2_cu *);
c906108c 882
a02abb62
JB
883static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
884
e7c27a73 885static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 886
e7c27a73 887static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 888
e7c27a73 889static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 890
a14ed312 891static int dwarf2_get_pc_bounds (struct die_info *,
e7c27a73 892 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
c906108c 893
fae299cd
DC
894static void get_scope_pc_bounds (struct die_info *,
895 CORE_ADDR *, CORE_ADDR *,
896 struct dwarf2_cu *);
897
801e3a5b
JB
898static void dwarf2_record_block_ranges (struct die_info *, struct block *,
899 CORE_ADDR, struct dwarf2_cu *);
900
a14ed312 901static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 902 struct dwarf2_cu *);
c906108c 903
a14ed312 904static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 905 struct type *, struct dwarf2_cu *);
c906108c 906
a14ed312 907static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 908 struct die_info *, struct type *,
e7c27a73 909 struct dwarf2_cu *);
c906108c 910
a14ed312 911static void dwarf2_attach_fn_fields_to_type (struct field_info *,
e7c27a73 912 struct type *, struct dwarf2_cu *);
c906108c 913
134d01f1
DJ
914static void read_structure_type (struct die_info *, struct dwarf2_cu *);
915
916static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 917
8176b9b8
DC
918static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
919
e7c27a73 920static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 921
e7c27a73 922static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 923
38d518c9 924static const char *namespace_name (struct die_info *die,
e142c38c 925 int *is_anonymous, struct dwarf2_cu *);
38d518c9 926
134d01f1
DJ
927static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
928
929static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 930
e7c27a73 931static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 932
e7c27a73 933static void read_array_type (struct die_info *, struct dwarf2_cu *);
c906108c 934
7ca2d3a3
DL
935static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
936 struct dwarf2_cu *);
937
e7c27a73 938static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
c906108c 939
e7c27a73
DJ
940static void read_tag_ptr_to_member_type (struct die_info *,
941 struct dwarf2_cu *);
c906108c 942
e7c27a73 943static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
c906108c 944
e7c27a73 945static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
c906108c 946
e7c27a73 947static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
c906108c 948
e7c27a73 949static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
c906108c 950
e7c27a73 951static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
c906108c 952
fe1b8b76 953static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
c906108c 954
fe1b8b76 955static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 956 struct dwarf2_cu *,
fe1b8b76 957 gdb_byte **new_info_ptr,
639d11d3
DC
958 struct die_info *parent);
959
fe1b8b76 960static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 961 struct dwarf2_cu *,
fe1b8b76 962 gdb_byte **new_info_ptr,
639d11d3
DC
963 struct die_info *parent);
964
a14ed312 965static void free_die_list (struct die_info *);
c906108c 966
e7c27a73 967static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 968
e142c38c 969static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
c906108c 970
e142c38c 971static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 972
e142c38c
DJ
973static struct die_info *dwarf2_extension (struct die_info *die,
974 struct dwarf2_cu *);
9219021c 975
a14ed312 976static char *dwarf_tag_name (unsigned int);
c906108c 977
a14ed312 978static char *dwarf_attr_name (unsigned int);
c906108c 979
a14ed312 980static char *dwarf_form_name (unsigned int);
c906108c 981
a14ed312 982static char *dwarf_stack_op_name (unsigned int);
c906108c 983
a14ed312 984static char *dwarf_bool_name (unsigned int);
c906108c 985
a14ed312 986static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
987
988#if 0
a14ed312 989static char *dwarf_cfi_name (unsigned int);
c906108c 990
a14ed312 991struct die_info *copy_die (struct die_info *);
c906108c
SS
992#endif
993
f9aca02d 994static struct die_info *sibling_die (struct die_info *);
c906108c 995
f9aca02d 996static void dump_die (struct die_info *);
c906108c 997
f9aca02d 998static void dump_die_list (struct die_info *);
c906108c 999
10b3939b
DJ
1000static void store_in_ref_table (unsigned int, struct die_info *,
1001 struct dwarf2_cu *);
c906108c 1002
e142c38c
DJ
1003static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1004 struct dwarf2_cu *);
c906108c 1005
a02abb62
JB
1006static int dwarf2_get_attr_constant_value (struct attribute *, int);
1007
10b3939b
DJ
1008static struct die_info *follow_die_ref (struct die_info *,
1009 struct attribute *,
1010 struct dwarf2_cu *);
c906108c 1011
c906108c
SS
1012/* memory allocation interface */
1013
7b5a2f43 1014static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1015
f3dd6933 1016static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1017
a14ed312 1018static struct die_info *dwarf_alloc_die (void);
c906108c 1019
e142c38c 1020static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1021
e142c38c
DJ
1022static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1023 struct dwarf2_cu *);
5fb290d7 1024
2e276125 1025static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1026 char *, bfd *, struct dwarf2_cu *);
2e276125 1027
8e19ed76
PS
1028static int attr_form_is_block (struct attribute *);
1029
3690dd37
JB
1030static int attr_form_is_section_offset (struct attribute *);
1031
1032static int attr_form_is_constant (struct attribute *);
1033
93e7bd98
DJ
1034static void dwarf2_symbol_mark_computed (struct attribute *attr,
1035 struct symbol *sym,
1036 struct dwarf2_cu *cu);
4c2df51b 1037
fe1b8b76
JB
1038static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1039 struct dwarf2_cu *cu);
4bb7a0a7 1040
72bf9492
DJ
1041static void free_stack_comp_unit (void *);
1042
72bf9492
DJ
1043static hashval_t partial_die_hash (const void *item);
1044
1045static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1046
ae038cb0
DJ
1047static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1048 (unsigned long offset, struct objfile *objfile);
1049
1050static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1051 (unsigned long offset, struct objfile *objfile);
1052
1053static void free_one_comp_unit (void *);
1054
1055static void free_cached_comp_units (void *);
1056
1057static void age_cached_comp_units (void);
1058
1059static void free_one_cached_comp_unit (void *);
1060
1c379e20
DJ
1061static void set_die_type (struct die_info *, struct type *,
1062 struct dwarf2_cu *);
1063
1c379e20
DJ
1064static void reset_die_and_siblings_types (struct die_info *,
1065 struct dwarf2_cu *);
1c379e20 1066
ae038cb0
DJ
1067static void create_all_comp_units (struct objfile *);
1068
31ffec48
DJ
1069static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *,
1070 struct objfile *);
10b3939b
DJ
1071
1072static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1073
1074static void dwarf2_add_dependence (struct dwarf2_cu *,
1075 struct dwarf2_per_cu_data *);
1076
ae038cb0
DJ
1077static void dwarf2_mark (struct dwarf2_cu *);
1078
1079static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1080
72019c9c
GM
1081static void read_set_type (struct die_info *, struct dwarf2_cu *);
1082
1083
c906108c
SS
1084/* Try to locate the sections we need for DWARF 2 debugging
1085 information and return true if we have enough to do something. */
1086
1087int
6502dd73 1088dwarf2_has_info (struct objfile *objfile)
c906108c 1089{
6502dd73
DJ
1090 struct dwarf2_per_objfile *data;
1091
1092 /* Initialize per-objfile state. */
1093 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1094 memset (data, 0, sizeof (*data));
1095 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1096 dwarf2_per_objfile = data;
1097
188dd5d6
DJ
1098 dwarf_info_section = 0;
1099 dwarf_abbrev_section = 0;
1100 dwarf_line_section = 0;
1101 dwarf_str_section = 0;
1102 dwarf_macinfo_section = 0;
1103 dwarf_frame_section = 0;
1104 dwarf_eh_frame_section = 0;
1105 dwarf_ranges_section = 0;
1106 dwarf_loc_section = 0;
af34e669 1107
6502dd73 1108 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
188dd5d6 1109 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
c906108c
SS
1110}
1111
1112/* This function is mapped across the sections and remembers the
1113 offset and size of each of the debugging sections we are interested
1114 in. */
1115
1116static void
72dca2f5 1117dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
c906108c 1118{
6314a349 1119 if (strcmp (sectp->name, INFO_SECTION) == 0)
c906108c 1120 {
2c500098 1121 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
086df311 1122 dwarf_info_section = sectp;
c906108c 1123 }
6314a349 1124 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
c906108c 1125 {
2c500098 1126 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
086df311 1127 dwarf_abbrev_section = sectp;
c906108c 1128 }
6314a349 1129 else if (strcmp (sectp->name, LINE_SECTION) == 0)
c906108c 1130 {
2c500098 1131 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
086df311 1132 dwarf_line_section = sectp;
c906108c 1133 }
6314a349 1134 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
c906108c 1135 {
2c500098 1136 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
086df311 1137 dwarf_pubnames_section = sectp;
c906108c 1138 }
6314a349 1139 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
c906108c 1140 {
2c500098 1141 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
086df311 1142 dwarf_aranges_section = sectp;
c906108c 1143 }
6314a349 1144 else if (strcmp (sectp->name, LOC_SECTION) == 0)
c906108c 1145 {
2c500098 1146 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
086df311 1147 dwarf_loc_section = sectp;
c906108c 1148 }
6314a349 1149 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
c906108c 1150 {
2c500098 1151 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
0cf824c9 1152 dwarf_macinfo_section = sectp;
c906108c 1153 }
6314a349 1154 else if (strcmp (sectp->name, STR_SECTION) == 0)
c906108c 1155 {
2c500098 1156 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
086df311 1157 dwarf_str_section = sectp;
c906108c 1158 }
6314a349 1159 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
b6af0555 1160 {
2c500098 1161 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
086df311 1162 dwarf_frame_section = sectp;
b6af0555 1163 }
6314a349 1164 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
b6af0555 1165 {
3799ccc6
EZ
1166 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1167 if (aflag & SEC_HAS_CONTENTS)
1168 {
2c500098 1169 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
3799ccc6
EZ
1170 dwarf_eh_frame_section = sectp;
1171 }
b6af0555 1172 }
6314a349 1173 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
af34e669 1174 {
2c500098 1175 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
6f10aeb1 1176 dwarf_ranges_section = sectp;
af34e669 1177 }
72dca2f5
FR
1178
1179 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1180 && bfd_section_vma (abfd, sectp) == 0)
1181 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1182}
1183
1184/* Build a partial symbol table. */
1185
1186void
fba45db2 1187dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
c906108c 1188{
c906108c
SS
1189 /* We definitely need the .debug_info and .debug_abbrev sections */
1190
6502dd73
DJ
1191 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1192 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
188dd5d6
DJ
1193
1194 if (dwarf_line_section)
6502dd73 1195 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
41ff2da1 1196 else
6502dd73 1197 dwarf2_per_objfile->line_buffer = NULL;
c906108c 1198
188dd5d6 1199 if (dwarf_str_section)
6502dd73 1200 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
4bdf3d34 1201 else
6502dd73 1202 dwarf2_per_objfile->str_buffer = NULL;
4bdf3d34 1203
188dd5d6 1204 if (dwarf_macinfo_section)
6502dd73 1205 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
086df311 1206 dwarf_macinfo_section);
2e276125 1207 else
6502dd73 1208 dwarf2_per_objfile->macinfo_buffer = NULL;
2e276125 1209
188dd5d6 1210 if (dwarf_ranges_section)
6502dd73 1211 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
af34e669 1212 else
6502dd73 1213 dwarf2_per_objfile->ranges_buffer = NULL;
af34e669 1214
188dd5d6 1215 if (dwarf_loc_section)
6502dd73 1216 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
0d53c4c4 1217 else
6502dd73 1218 dwarf2_per_objfile->loc_buffer = NULL;
0d53c4c4 1219
ef96bde8
EZ
1220 if (mainline
1221 || (objfile->global_psymbols.size == 0
1222 && objfile->static_psymbols.size == 0))
c906108c
SS
1223 {
1224 init_psymbol_list (objfile, 1024);
1225 }
1226
1227#if 0
1228 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1229 {
d4f3574e 1230 /* Things are significantly easier if we have .debug_aranges and
c906108c
SS
1231 .debug_pubnames sections */
1232
d4f3574e 1233 dwarf2_build_psymtabs_easy (objfile, mainline);
c906108c
SS
1234 }
1235 else
1236#endif
1237 /* only test this case for now */
c5aa993b 1238 {
c906108c 1239 /* In this case we have to work a bit harder */
d4f3574e 1240 dwarf2_build_psymtabs_hard (objfile, mainline);
c906108c
SS
1241 }
1242}
1243
1244#if 0
1245/* Build the partial symbol table from the information in the
1246 .debug_pubnames and .debug_aranges sections. */
1247
1248static void
fba45db2 1249dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
c906108c
SS
1250{
1251 bfd *abfd = objfile->obfd;
1252 char *aranges_buffer, *pubnames_buffer;
1253 char *aranges_ptr, *pubnames_ptr;
1254 unsigned int entry_length, version, info_offset, info_size;
1255
1256 pubnames_buffer = dwarf2_read_section (objfile,
086df311 1257 dwarf_pubnames_section);
c906108c 1258 pubnames_ptr = pubnames_buffer;
6502dd73 1259 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
c906108c 1260 {
613e1657 1261 struct comp_unit_head cu_header;
891d2f0b 1262 unsigned int bytes_read;
613e1657
KB
1263
1264 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
891d2f0b 1265 &bytes_read);
613e1657 1266 pubnames_ptr += bytes_read;
c906108c
SS
1267 version = read_1_byte (abfd, pubnames_ptr);
1268 pubnames_ptr += 1;
1269 info_offset = read_4_bytes (abfd, pubnames_ptr);
1270 pubnames_ptr += 4;
1271 info_size = read_4_bytes (abfd, pubnames_ptr);
1272 pubnames_ptr += 4;
1273 }
1274
1275 aranges_buffer = dwarf2_read_section (objfile,
086df311 1276 dwarf_aranges_section);
c906108c
SS
1277
1278}
1279#endif
1280
107d2387 1281/* Read in the comp unit header information from the debug_info at
917c78fc 1282 info_ptr. */
107d2387 1283
fe1b8b76 1284static gdb_byte *
107d2387 1285read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 1286 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
1287{
1288 int signed_addr;
891d2f0b 1289 unsigned int bytes_read;
613e1657
KB
1290 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1291 &bytes_read);
1292 info_ptr += bytes_read;
107d2387
AC
1293 cu_header->version = read_2_bytes (abfd, info_ptr);
1294 info_ptr += 2;
613e1657
KB
1295 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1296 &bytes_read);
1297 info_ptr += bytes_read;
107d2387
AC
1298 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1299 info_ptr += 1;
1300 signed_addr = bfd_get_sign_extend_vma (abfd);
1301 if (signed_addr < 0)
8e65ff28 1302 internal_error (__FILE__, __LINE__,
e2e0b3e5 1303 _("read_comp_unit_head: dwarf from non elf file"));
107d2387
AC
1304 cu_header->signed_addr_p = signed_addr;
1305 return info_ptr;
1306}
1307
fe1b8b76
JB
1308static gdb_byte *
1309partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
72bf9492
DJ
1310 bfd *abfd)
1311{
fe1b8b76 1312 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
1313
1314 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1315
2b949cb6 1316 if (header->version != 2 && header->version != 3)
8a3fe4f8
AC
1317 error (_("Dwarf Error: wrong version in compilation unit header "
1318 "(is %d, should be %d) [in module %s]"), header->version,
72bf9492
DJ
1319 2, bfd_get_filename (abfd));
1320
1321 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
8a3fe4f8
AC
1322 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1323 "(offset 0x%lx + 6) [in module %s]"),
72bf9492
DJ
1324 (long) header->abbrev_offset,
1325 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1326 bfd_get_filename (abfd));
1327
1328 if (beg_of_comp_unit + header->length + header->initial_length_size
1329 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
8a3fe4f8
AC
1330 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1331 "(offset 0x%lx + 0) [in module %s]"),
72bf9492
DJ
1332 (long) header->length,
1333 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1334 bfd_get_filename (abfd));
1335
1336 return info_ptr;
1337}
1338
aaa75496
JB
1339/* Allocate a new partial symtab for file named NAME and mark this new
1340 partial symtab as being an include of PST. */
1341
1342static void
1343dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1344 struct objfile *objfile)
1345{
1346 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1347
1348 subpst->section_offsets = pst->section_offsets;
1349 subpst->textlow = 0;
1350 subpst->texthigh = 0;
1351
1352 subpst->dependencies = (struct partial_symtab **)
1353 obstack_alloc (&objfile->objfile_obstack,
1354 sizeof (struct partial_symtab *));
1355 subpst->dependencies[0] = pst;
1356 subpst->number_of_dependencies = 1;
1357
1358 subpst->globals_offset = 0;
1359 subpst->n_global_syms = 0;
1360 subpst->statics_offset = 0;
1361 subpst->n_static_syms = 0;
1362 subpst->symtab = NULL;
1363 subpst->read_symtab = pst->read_symtab;
1364 subpst->readin = 0;
1365
1366 /* No private part is necessary for include psymtabs. This property
1367 can be used to differentiate between such include psymtabs and
10b3939b 1368 the regular ones. */
58a9656e 1369 subpst->read_symtab_private = NULL;
aaa75496
JB
1370}
1371
1372/* Read the Line Number Program data and extract the list of files
1373 included by the source file represented by PST. Build an include
1374 partial symtab for each of these included files.
1375
1376 This procedure assumes that there *is* a Line Number Program in
1377 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1378 before calling this procedure. */
1379
1380static void
1381dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1382 struct partial_die_info *pdi,
1383 struct partial_symtab *pst)
1384{
1385 struct objfile *objfile = cu->objfile;
1386 bfd *abfd = objfile->obfd;
1387 struct line_header *lh;
1388
1389 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1390 if (lh == NULL)
1391 return; /* No linetable, so no includes. */
1392
1393 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1394
1395 free_line_header (lh);
1396}
1397
1398
c906108c
SS
1399/* Build the partial symbol table by doing a quick pass through the
1400 .debug_info and .debug_abbrev sections. */
1401
1402static void
fba45db2 1403dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
c906108c
SS
1404{
1405 /* Instead of reading this into a big buffer, we should probably use
1406 mmap() on architectures that support it. (FIXME) */
1407 bfd *abfd = objfile->obfd;
fe1b8b76
JB
1408 gdb_byte *info_ptr;
1409 gdb_byte *beg_of_comp_unit;
c906108c
SS
1410 struct partial_die_info comp_unit_die;
1411 struct partial_symtab *pst;
ae038cb0 1412 struct cleanup *back_to;
e142c38c 1413 CORE_ADDR lowpc, highpc, baseaddr;
c906108c 1414
6502dd73 1415 info_ptr = dwarf2_per_objfile->info_buffer;
c906108c 1416
ae038cb0
DJ
1417 /* Any cached compilation units will be linked by the per-objfile
1418 read_in_chain. Make sure to free them when we're done. */
1419 back_to = make_cleanup (free_cached_comp_units, NULL);
1420
10b3939b
DJ
1421 create_all_comp_units (objfile);
1422
6502dd73 1423 /* Since the objects we're extracting from .debug_info vary in
af703f96 1424 length, only the individual functions to extract them (like
72bf9492 1425 read_comp_unit_head and load_partial_die) can really know whether
af703f96
JB
1426 the buffer is large enough to hold another complete object.
1427
6502dd73
DJ
1428 At the moment, they don't actually check that. If .debug_info
1429 holds just one extra byte after the last compilation unit's dies,
1430 then read_comp_unit_head will happily read off the end of the
1431 buffer. read_partial_die is similarly casual. Those functions
1432 should be fixed.
af703f96
JB
1433
1434 For this loop condition, simply checking whether there's any data
1435 left at all should be sufficient. */
6502dd73
DJ
1436 while (info_ptr < (dwarf2_per_objfile->info_buffer
1437 + dwarf2_per_objfile->info_size))
c906108c 1438 {
f3dd6933 1439 struct cleanup *back_to_inner;
e7c27a73 1440 struct dwarf2_cu cu;
72bf9492
DJ
1441 struct abbrev_info *abbrev;
1442 unsigned int bytes_read;
1443 struct dwarf2_per_cu_data *this_cu;
1444
c906108c 1445 beg_of_comp_unit = info_ptr;
c906108c 1446
72bf9492
DJ
1447 memset (&cu, 0, sizeof (cu));
1448
1449 obstack_init (&cu.comp_unit_obstack);
1450
1451 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1452
e7c27a73 1453 cu.objfile = objfile;
72bf9492 1454 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
e7c27a73 1455
57349743 1456 /* Complete the cu_header */
6502dd73 1457 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
e7c27a73
DJ
1458 cu.header.first_die_ptr = info_ptr;
1459 cu.header.cu_head_ptr = beg_of_comp_unit;
57349743 1460
e142c38c
DJ
1461 cu.list_in_scope = &file_symbols;
1462
c906108c 1463 /* Read the abbrevs for this compilation unit into a table */
e7c27a73 1464 dwarf2_read_abbrevs (abfd, &cu);
72bf9492 1465 make_cleanup (dwarf2_free_abbrev_table, &cu);
c906108c 1466
10b3939b 1467 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
ae038cb0 1468
c906108c 1469 /* Read the compilation unit die */
72bf9492
DJ
1470 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1471 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1472 abfd, info_ptr, &cu);
c906108c 1473
31ffec48
DJ
1474 if (comp_unit_die.tag == DW_TAG_partial_unit)
1475 {
1476 info_ptr = (beg_of_comp_unit + cu.header.length
1477 + cu.header.initial_length_size);
1478 do_cleanups (back_to_inner);
1479 continue;
1480 }
1481
c906108c 1482 /* Set the language we're debugging */
e142c38c 1483 set_cu_language (comp_unit_die.language, &cu);
c906108c
SS
1484
1485 /* Allocate a new partial symbol table structure */
d4f3574e 1486 pst = start_psymtab_common (objfile, objfile->section_offsets,
96baa820 1487 comp_unit_die.name ? comp_unit_die.name : "",
c906108c
SS
1488 comp_unit_die.lowpc,
1489 objfile->global_psymbols.next,
1490 objfile->static_psymbols.next);
1491
ae038cb0
DJ
1492 if (comp_unit_die.dirname)
1493 pst->dirname = xstrdup (comp_unit_die.dirname);
57c22c6c 1494
10b3939b
DJ
1495 pst->read_symtab_private = (char *) this_cu;
1496
613e1657 1497 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
1498
1499 /* Store the function that reads in the rest of the symbol table */
1500 pst->read_symtab = dwarf2_psymtab_to_symtab;
1501
10b3939b
DJ
1502 /* If this compilation unit was already read in, free the
1503 cached copy in order to read it in again. This is
1504 necessary because we skipped some symbols when we first
1505 read in the compilation unit (see load_partial_dies).
1506 This problem could be avoided, but the benefit is
1507 unclear. */
1508 if (this_cu->cu != NULL)
1509 free_one_cached_comp_unit (this_cu->cu);
ae038cb0 1510
10b3939b 1511 cu.per_cu = this_cu;
ae038cb0 1512
10b3939b
DJ
1513 /* Note that this is a pointer to our stack frame, being
1514 added to a global data structure. It will be cleaned up
1515 in free_stack_comp_unit when we finish with this
1516 compilation unit. */
1517 this_cu->cu = &cu;
ae038cb0 1518
10b3939b 1519 this_cu->psymtab = pst;
ae038cb0 1520
c906108c
SS
1521 /* Check if comp unit has_children.
1522 If so, read the rest of the partial symbols from this comp unit.
1523 If not, there's no more debug_info for this comp unit. */
1524 if (comp_unit_die.has_children)
1525 {
72bf9492
DJ
1526 struct partial_die_info *first_die;
1527
91c24f0a
DC
1528 lowpc = ((CORE_ADDR) -1);
1529 highpc = ((CORE_ADDR) 0);
1530
72bf9492
DJ
1531 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1532
1533 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
c906108c 1534
91c24f0a
DC
1535 /* If we didn't find a lowpc, set it to highpc to avoid
1536 complaints from `maint check'. */
1537 if (lowpc == ((CORE_ADDR) -1))
1538 lowpc = highpc;
72bf9492 1539
c906108c
SS
1540 /* If the compilation unit didn't have an explicit address range,
1541 then use the information extracted from its child dies. */
0b010bcc 1542 if (! comp_unit_die.has_pc_info)
c906108c 1543 {
c5aa993b 1544 comp_unit_die.lowpc = lowpc;
c906108c
SS
1545 comp_unit_die.highpc = highpc;
1546 }
1547 }
c5aa993b 1548 pst->textlow = comp_unit_die.lowpc + baseaddr;
c906108c
SS
1549 pst->texthigh = comp_unit_die.highpc + baseaddr;
1550
1551 pst->n_global_syms = objfile->global_psymbols.next -
1552 (objfile->global_psymbols.list + pst->globals_offset);
1553 pst->n_static_syms = objfile->static_psymbols.next -
1554 (objfile->static_psymbols.list + pst->statics_offset);
1555 sort_pst_symbols (pst);
1556
1557 /* If there is already a psymtab or symtab for a file of this
1558 name, remove it. (If there is a symtab, more drastic things
1559 also happen.) This happens in VxWorks. */
1560 free_named_symtabs (pst->filename);
1561
dd373385
EZ
1562 info_ptr = beg_of_comp_unit + cu.header.length
1563 + cu.header.initial_length_size;
1564
aaa75496
JB
1565 if (comp_unit_die.has_stmt_list)
1566 {
1567 /* Get the list of files included in the current compilation unit,
1568 and build a psymtab for each of them. */
1569 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1570 }
1571
f3dd6933 1572 do_cleanups (back_to_inner);
c906108c 1573 }
ae038cb0
DJ
1574 do_cleanups (back_to);
1575}
1576
1577/* Load the DIEs for a secondary CU into memory. */
1578
1579static void
1580load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1581{
1582 bfd *abfd = objfile->obfd;
fe1b8b76 1583 gdb_byte *info_ptr, *beg_of_comp_unit;
ae038cb0
DJ
1584 struct partial_die_info comp_unit_die;
1585 struct dwarf2_cu *cu;
1586 struct abbrev_info *abbrev;
1587 unsigned int bytes_read;
1588 struct cleanup *back_to;
1589
1590 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1591 beg_of_comp_unit = info_ptr;
1592
1593 cu = xmalloc (sizeof (struct dwarf2_cu));
1594 memset (cu, 0, sizeof (struct dwarf2_cu));
1595
1596 obstack_init (&cu->comp_unit_obstack);
1597
1598 cu->objfile = objfile;
1599 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1600
1601 /* Complete the cu_header. */
1602 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1603 cu->header.first_die_ptr = info_ptr;
1604 cu->header.cu_head_ptr = beg_of_comp_unit;
1605
1606 /* Read the abbrevs for this compilation unit into a table. */
1607 dwarf2_read_abbrevs (abfd, cu);
1608 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1609
1610 /* Read the compilation unit die. */
1611 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1612 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1613 abfd, info_ptr, cu);
1614
1615 /* Set the language we're debugging. */
1616 set_cu_language (comp_unit_die.language, cu);
1617
1618 /* Link this compilation unit into the compilation unit tree. */
1619 this_cu->cu = cu;
1620 cu->per_cu = this_cu;
1621
1622 /* Check if comp unit has_children.
1623 If so, read the rest of the partial symbols from this comp unit.
1624 If not, there's no more debug_info for this comp unit. */
1625 if (comp_unit_die.has_children)
1626 load_partial_dies (abfd, info_ptr, 0, cu);
1627
1628 do_cleanups (back_to);
1629}
1630
1631/* Create a list of all compilation units in OBJFILE. We do this only
1632 if an inter-comp-unit reference is found; presumably if there is one,
1633 there will be many, and one will occur early in the .debug_info section.
1634 So there's no point in building this list incrementally. */
1635
1636static void
1637create_all_comp_units (struct objfile *objfile)
1638{
1639 int n_allocated;
1640 int n_comp_units;
1641 struct dwarf2_per_cu_data **all_comp_units;
fe1b8b76 1642 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
ae038cb0
DJ
1643
1644 n_comp_units = 0;
1645 n_allocated = 10;
1646 all_comp_units = xmalloc (n_allocated
1647 * sizeof (struct dwarf2_per_cu_data *));
1648
1649 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1650 {
1651 struct comp_unit_head cu_header;
fe1b8b76 1652 gdb_byte *beg_of_comp_unit;
ae038cb0
DJ
1653 struct dwarf2_per_cu_data *this_cu;
1654 unsigned long offset;
891d2f0b 1655 unsigned int bytes_read;
ae038cb0
DJ
1656
1657 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1658
1659 /* Read just enough information to find out where the next
1660 compilation unit is. */
dd373385 1661 cu_header.initial_length_size = 0;
ae038cb0
DJ
1662 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1663 &cu_header, &bytes_read);
1664
1665 /* Save the compilation unit for later lookup. */
1666 this_cu = obstack_alloc (&objfile->objfile_obstack,
1667 sizeof (struct dwarf2_per_cu_data));
1668 memset (this_cu, 0, sizeof (*this_cu));
1669 this_cu->offset = offset;
1670 this_cu->length = cu_header.length + cu_header.initial_length_size;
1671
1672 if (n_comp_units == n_allocated)
1673 {
1674 n_allocated *= 2;
1675 all_comp_units = xrealloc (all_comp_units,
1676 n_allocated
1677 * sizeof (struct dwarf2_per_cu_data *));
1678 }
1679 all_comp_units[n_comp_units++] = this_cu;
1680
1681 info_ptr = info_ptr + this_cu->length;
1682 }
1683
1684 dwarf2_per_objfile->all_comp_units
1685 = obstack_alloc (&objfile->objfile_obstack,
1686 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1687 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1688 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1689 xfree (all_comp_units);
1690 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
1691}
1692
72bf9492
DJ
1693/* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1694 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1695 in CU. */
c906108c 1696
72bf9492
DJ
1697static void
1698scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1699 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c 1700{
e7c27a73 1701 struct objfile *objfile = cu->objfile;
c906108c 1702 bfd *abfd = objfile->obfd;
72bf9492 1703 struct partial_die_info *pdi;
c906108c 1704
91c24f0a
DC
1705 /* Now, march along the PDI's, descending into ones which have
1706 interesting children but skipping the children of the other ones,
1707 until we reach the end of the compilation unit. */
c906108c 1708
72bf9492 1709 pdi = first_die;
91c24f0a 1710
72bf9492
DJ
1711 while (pdi != NULL)
1712 {
1713 fixup_partial_die (pdi, cu);
c906108c 1714
91c24f0a
DC
1715 /* Anonymous namespaces have no name but have interesting
1716 children, so we need to look at them. Ditto for anonymous
1717 enums. */
933c6fe4 1718
72bf9492
DJ
1719 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1720 || pdi->tag == DW_TAG_enumeration_type)
c906108c 1721 {
72bf9492 1722 switch (pdi->tag)
c906108c
SS
1723 {
1724 case DW_TAG_subprogram:
72bf9492 1725 if (pdi->has_pc_info)
c906108c 1726 {
72bf9492 1727 if (pdi->lowpc < *lowpc)
c906108c 1728 {
72bf9492 1729 *lowpc = pdi->lowpc;
c906108c 1730 }
72bf9492 1731 if (pdi->highpc > *highpc)
c906108c 1732 {
72bf9492 1733 *highpc = pdi->highpc;
c906108c 1734 }
72bf9492 1735 if (!pdi->is_declaration)
c906108c 1736 {
72bf9492 1737 add_partial_symbol (pdi, cu);
c906108c
SS
1738 }
1739 }
1740 break;
1741 case DW_TAG_variable:
1742 case DW_TAG_typedef:
91c24f0a 1743 case DW_TAG_union_type:
72bf9492 1744 if (!pdi->is_declaration)
63d06c5c 1745 {
72bf9492 1746 add_partial_symbol (pdi, cu);
63d06c5c
DC
1747 }
1748 break;
c906108c 1749 case DW_TAG_class_type:
680b30c7 1750 case DW_TAG_interface_type:
c906108c 1751 case DW_TAG_structure_type:
72bf9492 1752 if (!pdi->is_declaration)
c906108c 1753 {
72bf9492 1754 add_partial_symbol (pdi, cu);
c906108c
SS
1755 }
1756 break;
91c24f0a 1757 case DW_TAG_enumeration_type:
72bf9492
DJ
1758 if (!pdi->is_declaration)
1759 add_partial_enumeration (pdi, cu);
c906108c
SS
1760 break;
1761 case DW_TAG_base_type:
a02abb62 1762 case DW_TAG_subrange_type:
c906108c 1763 /* File scope base type definitions are added to the partial
c5aa993b 1764 symbol table. */
72bf9492 1765 add_partial_symbol (pdi, cu);
c906108c 1766 break;
d9fa45fe 1767 case DW_TAG_namespace:
72bf9492 1768 add_partial_namespace (pdi, lowpc, highpc, cu);
91c24f0a 1769 break;
c906108c
SS
1770 default:
1771 break;
1772 }
1773 }
1774
72bf9492
DJ
1775 /* If the die has a sibling, skip to the sibling. */
1776
1777 pdi = pdi->die_sibling;
1778 }
1779}
1780
1781/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 1782
72bf9492 1783 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
1784 name is concatenated with "::" and the partial DIE's name. For
1785 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
1786 Enumerators are an exception; they use the scope of their parent
1787 enumeration type, i.e. the name of the enumeration type is not
1788 prepended to the enumerator.
91c24f0a 1789
72bf9492
DJ
1790 There are two complexities. One is DW_AT_specification; in this
1791 case "parent" means the parent of the target of the specification,
1792 instead of the direct parent of the DIE. The other is compilers
1793 which do not emit DW_TAG_namespace; in this case we try to guess
1794 the fully qualified name of structure types from their members'
1795 linkage names. This must be done using the DIE's children rather
1796 than the children of any DW_AT_specification target. We only need
1797 to do this for structures at the top level, i.e. if the target of
1798 any DW_AT_specification (if any; otherwise the DIE itself) does not
1799 have a parent. */
1800
1801/* Compute the scope prefix associated with PDI's parent, in
1802 compilation unit CU. The result will be allocated on CU's
1803 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1804 field. NULL is returned if no prefix is necessary. */
1805static char *
1806partial_die_parent_scope (struct partial_die_info *pdi,
1807 struct dwarf2_cu *cu)
1808{
1809 char *grandparent_scope;
1810 struct partial_die_info *parent, *real_pdi;
91c24f0a 1811
72bf9492
DJ
1812 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1813 then this means the parent of the specification DIE. */
1814
1815 real_pdi = pdi;
72bf9492 1816 while (real_pdi->has_specification)
10b3939b 1817 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
1818
1819 parent = real_pdi->die_parent;
1820 if (parent == NULL)
1821 return NULL;
1822
1823 if (parent->scope_set)
1824 return parent->scope;
1825
1826 fixup_partial_die (parent, cu);
1827
10b3939b 1828 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492
DJ
1829
1830 if (parent->tag == DW_TAG_namespace
1831 || parent->tag == DW_TAG_structure_type
1832 || parent->tag == DW_TAG_class_type
680b30c7 1833 || parent->tag == DW_TAG_interface_type
72bf9492
DJ
1834 || parent->tag == DW_TAG_union_type)
1835 {
1836 if (grandparent_scope == NULL)
1837 parent->scope = parent->name;
1838 else
987504bb
JJ
1839 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1840 parent->name, cu);
72bf9492
DJ
1841 }
1842 else if (parent->tag == DW_TAG_enumeration_type)
1843 /* Enumerators should not get the name of the enumeration as a prefix. */
1844 parent->scope = grandparent_scope;
1845 else
1846 {
1847 /* FIXME drow/2004-04-01: What should we be doing with
1848 function-local names? For partial symbols, we should probably be
1849 ignoring them. */
1850 complaint (&symfile_complaints,
e2e0b3e5 1851 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
1852 parent->tag, pdi->offset);
1853 parent->scope = grandparent_scope;
c906108c
SS
1854 }
1855
72bf9492
DJ
1856 parent->scope_set = 1;
1857 return parent->scope;
1858}
1859
1860/* Return the fully scoped name associated with PDI, from compilation unit
1861 CU. The result will be allocated with malloc. */
1862static char *
1863partial_die_full_name (struct partial_die_info *pdi,
1864 struct dwarf2_cu *cu)
1865{
1866 char *parent_scope;
1867
1868 parent_scope = partial_die_parent_scope (pdi, cu);
1869 if (parent_scope == NULL)
1870 return NULL;
1871 else
987504bb 1872 return typename_concat (NULL, parent_scope, pdi->name, cu);
c906108c
SS
1873}
1874
1875static void
72bf9492 1876add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 1877{
e7c27a73 1878 struct objfile *objfile = cu->objfile;
c906108c 1879 CORE_ADDR addr = 0;
decbce07 1880 char *actual_name = NULL;
72bf9492 1881 const char *my_prefix;
5c4e30ca 1882 const struct partial_symbol *psym = NULL;
e142c38c 1883 CORE_ADDR baseaddr;
72bf9492 1884 int built_actual_name = 0;
e142c38c
DJ
1885
1886 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 1887
72bf9492 1888 if (pdi_needs_namespace (pdi->tag))
63d06c5c 1889 {
72bf9492
DJ
1890 actual_name = partial_die_full_name (pdi, cu);
1891 if (actual_name)
1892 built_actual_name = 1;
63d06c5c
DC
1893 }
1894
72bf9492
DJ
1895 if (actual_name == NULL)
1896 actual_name = pdi->name;
1897
c906108c
SS
1898 switch (pdi->tag)
1899 {
1900 case DW_TAG_subprogram:
2cfa0c8d 1901 if (pdi->is_external || cu->language == language_ada)
c906108c 1902 {
2cfa0c8d
JB
1903 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
1904 of the global scope. But in Ada, we want to be able to access
1905 nested procedures globally. So all Ada subprograms are stored
1906 in the global scope. */
38d518c9 1907 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1908 mst_text, objfile); */
38d518c9 1909 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1910 VAR_DOMAIN, LOC_BLOCK,
1911 &objfile->global_psymbols,
1912 0, pdi->lowpc + baseaddr,
e142c38c 1913 cu->language, objfile);
c906108c
SS
1914 }
1915 else
1916 {
38d518c9 1917 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1918 mst_file_text, objfile); */
38d518c9 1919 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1920 VAR_DOMAIN, LOC_BLOCK,
1921 &objfile->static_psymbols,
1922 0, pdi->lowpc + baseaddr,
e142c38c 1923 cu->language, objfile);
c906108c
SS
1924 }
1925 break;
1926 case DW_TAG_variable:
1927 if (pdi->is_external)
1928 {
1929 /* Global Variable.
1930 Don't enter into the minimal symbol tables as there is
1931 a minimal symbol table entry from the ELF symbols already.
1932 Enter into partial symbol table if it has a location
1933 descriptor or a type.
1934 If the location descriptor is missing, new_symbol will create
1935 a LOC_UNRESOLVED symbol, the address of the variable will then
1936 be determined from the minimal symbol table whenever the variable
1937 is referenced.
1938 The address for the partial symbol table entry is not
1939 used by GDB, but it comes in handy for debugging partial symbol
1940 table building. */
1941
1942 if (pdi->locdesc)
e7c27a73 1943 addr = decode_locdesc (pdi->locdesc, cu);
c906108c 1944 if (pdi->locdesc || pdi->has_type)
38d518c9 1945 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1946 VAR_DOMAIN, LOC_STATIC,
1947 &objfile->global_psymbols,
1948 0, addr + baseaddr,
e142c38c 1949 cu->language, objfile);
c906108c
SS
1950 }
1951 else
1952 {
1953 /* Static Variable. Skip symbols without location descriptors. */
1954 if (pdi->locdesc == NULL)
decbce07
MS
1955 {
1956 if (built_actual_name)
1957 xfree (actual_name);
1958 return;
1959 }
e7c27a73 1960 addr = decode_locdesc (pdi->locdesc, cu);
38d518c9 1961 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 1962 mst_file_data, objfile); */
38d518c9 1963 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1964 VAR_DOMAIN, LOC_STATIC,
1965 &objfile->static_psymbols,
1966 0, addr + baseaddr,
e142c38c 1967 cu->language, objfile);
c906108c
SS
1968 }
1969 break;
1970 case DW_TAG_typedef:
1971 case DW_TAG_base_type:
a02abb62 1972 case DW_TAG_subrange_type:
38d518c9 1973 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1974 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 1975 &objfile->static_psymbols,
e142c38c 1976 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 1977 break;
72bf9492
DJ
1978 case DW_TAG_namespace:
1979 add_psymbol_to_list (actual_name, strlen (actual_name),
1980 VAR_DOMAIN, LOC_TYPEDEF,
1981 &objfile->global_psymbols,
1982 0, (CORE_ADDR) 0, cu->language, objfile);
1983 break;
c906108c 1984 case DW_TAG_class_type:
680b30c7 1985 case DW_TAG_interface_type:
c906108c
SS
1986 case DW_TAG_structure_type:
1987 case DW_TAG_union_type:
1988 case DW_TAG_enumeration_type:
fa4028e9
JB
1989 /* Skip external references. The DWARF standard says in the section
1990 about "Structure, Union, and Class Type Entries": "An incomplete
1991 structure, union or class type is represented by a structure,
1992 union or class entry that does not have a byte size attribute
1993 and that has a DW_AT_declaration attribute." */
1994 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
1995 {
1996 if (built_actual_name)
1997 xfree (actual_name);
1998 return;
1999 }
fa4028e9 2000
63d06c5c
DC
2001 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2002 static vs. global. */
38d518c9 2003 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2004 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
2005 (cu->language == language_cplus
2006 || cu->language == language_java)
63d06c5c
DC
2007 ? &objfile->global_psymbols
2008 : &objfile->static_psymbols,
e142c38c 2009 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 2010
987504bb 2011 if (cu->language == language_cplus
8c6860bb
JB
2012 || cu->language == language_java
2013 || cu->language == language_ada)
c906108c 2014 {
987504bb 2015 /* For C++ and Java, these implicitly act as typedefs as well. */
38d518c9 2016 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2017 VAR_DOMAIN, LOC_TYPEDEF,
63d06c5c 2018 &objfile->global_psymbols,
e142c38c 2019 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
2020 }
2021 break;
2022 case DW_TAG_enumerator:
38d518c9 2023 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2024 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
2025 (cu->language == language_cplus
2026 || cu->language == language_java)
f6fe98ef
DJ
2027 ? &objfile->global_psymbols
2028 : &objfile->static_psymbols,
e142c38c 2029 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
2030 break;
2031 default:
2032 break;
2033 }
5c4e30ca
DC
2034
2035 /* Check to see if we should scan the name for possible namespace
2036 info. Only do this if this is C++, if we don't have namespace
2037 debugging info in the file, if the psym is of an appropriate type
2038 (otherwise we'll have psym == NULL), and if we actually had a
2039 mangled name to begin with. */
2040
72bf9492
DJ
2041 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2042 cases which do not set PSYM above? */
2043
e142c38c 2044 if (cu->language == language_cplus
72bf9492 2045 && cu->has_namespace_info == 0
5c4e30ca
DC
2046 && psym != NULL
2047 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2048 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2049 objfile);
72bf9492
DJ
2050
2051 if (built_actual_name)
2052 xfree (actual_name);
c906108c
SS
2053}
2054
72bf9492
DJ
2055/* Determine whether a die of type TAG living in a C++ class or
2056 namespace needs to have the name of the scope prepended to the
63d06c5c
DC
2057 name listed in the die. */
2058
2059static int
72bf9492 2060pdi_needs_namespace (enum dwarf_tag tag)
63d06c5c 2061{
63d06c5c
DC
2062 switch (tag)
2063 {
72bf9492 2064 case DW_TAG_namespace:
63d06c5c
DC
2065 case DW_TAG_typedef:
2066 case DW_TAG_class_type:
680b30c7 2067 case DW_TAG_interface_type:
63d06c5c
DC
2068 case DW_TAG_structure_type:
2069 case DW_TAG_union_type:
2070 case DW_TAG_enumeration_type:
2071 case DW_TAG_enumerator:
2072 return 1;
2073 default:
2074 return 0;
2075 }
2076}
2077
5c4e30ca
DC
2078/* Read a partial die corresponding to a namespace; also, add a symbol
2079 corresponding to that namespace to the symbol table. NAMESPACE is
2080 the name of the enclosing namespace. */
91c24f0a 2081
72bf9492
DJ
2082static void
2083add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 2084 CORE_ADDR *lowpc, CORE_ADDR *highpc,
72bf9492 2085 struct dwarf2_cu *cu)
91c24f0a 2086{
e7c27a73 2087 struct objfile *objfile = cu->objfile;
5c4e30ca 2088
72bf9492 2089 /* Add a symbol for the namespace. */
e7c27a73 2090
72bf9492 2091 add_partial_symbol (pdi, cu);
5c4e30ca
DC
2092
2093 /* Now scan partial symbols in that namespace. */
2094
91c24f0a 2095 if (pdi->has_children)
72bf9492 2096 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
91c24f0a
DC
2097}
2098
72bf9492
DJ
2099/* See if we can figure out if the class lives in a namespace. We do
2100 this by looking for a member function; its demangled name will
2101 contain namespace info, if there is any. */
63d06c5c 2102
72bf9492
DJ
2103static void
2104guess_structure_name (struct partial_die_info *struct_pdi,
2105 struct dwarf2_cu *cu)
63d06c5c 2106{
987504bb
JJ
2107 if ((cu->language == language_cplus
2108 || cu->language == language_java)
72bf9492 2109 && cu->has_namespace_info == 0
63d06c5c
DC
2110 && struct_pdi->has_children)
2111 {
63d06c5c
DC
2112 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2113 what template types look like, because the demangler
2114 frequently doesn't give the same name as the debug info. We
2115 could fix this by only using the demangled name to get the
134d01f1 2116 prefix (but see comment in read_structure_type). */
63d06c5c 2117
72bf9492
DJ
2118 struct partial_die_info *child_pdi = struct_pdi->die_child;
2119 struct partial_die_info *real_pdi;
5d51ca54 2120
72bf9492
DJ
2121 /* If this DIE (this DIE's specification, if any) has a parent, then
2122 we should not do this. We'll prepend the parent's fully qualified
2123 name when we create the partial symbol. */
5d51ca54 2124
72bf9492 2125 real_pdi = struct_pdi;
72bf9492 2126 while (real_pdi->has_specification)
10b3939b 2127 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
63d06c5c 2128
72bf9492
DJ
2129 if (real_pdi->die_parent != NULL)
2130 return;
63d06c5c 2131
72bf9492
DJ
2132 while (child_pdi != NULL)
2133 {
2134 if (child_pdi->tag == DW_TAG_subprogram)
63d06c5c 2135 {
72bf9492 2136 char *actual_class_name
31c27f77
JJ
2137 = language_class_name_from_physname (cu->language_defn,
2138 child_pdi->name);
63d06c5c 2139 if (actual_class_name != NULL)
72bf9492
DJ
2140 {
2141 struct_pdi->name
2142 = obsavestring (actual_class_name,
2143 strlen (actual_class_name),
2144 &cu->comp_unit_obstack);
2145 xfree (actual_class_name);
2146 }
63d06c5c
DC
2147 break;
2148 }
72bf9492
DJ
2149
2150 child_pdi = child_pdi->die_sibling;
63d06c5c
DC
2151 }
2152 }
63d06c5c
DC
2153}
2154
91c24f0a
DC
2155/* Read a partial die corresponding to an enumeration type. */
2156
72bf9492
DJ
2157static void
2158add_partial_enumeration (struct partial_die_info *enum_pdi,
2159 struct dwarf2_cu *cu)
91c24f0a 2160{
e7c27a73 2161 struct objfile *objfile = cu->objfile;
91c24f0a 2162 bfd *abfd = objfile->obfd;
72bf9492 2163 struct partial_die_info *pdi;
91c24f0a
DC
2164
2165 if (enum_pdi->name != NULL)
72bf9492
DJ
2166 add_partial_symbol (enum_pdi, cu);
2167
2168 pdi = enum_pdi->die_child;
2169 while (pdi)
91c24f0a 2170 {
72bf9492 2171 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 2172 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 2173 else
72bf9492
DJ
2174 add_partial_symbol (pdi, cu);
2175 pdi = pdi->die_sibling;
91c24f0a 2176 }
91c24f0a
DC
2177}
2178
4bb7a0a7
DJ
2179/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2180 Return the corresponding abbrev, or NULL if the number is zero (indicating
2181 an empty DIE). In either case *BYTES_READ will be set to the length of
2182 the initial number. */
2183
2184static struct abbrev_info *
fe1b8b76 2185peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 2186 struct dwarf2_cu *cu)
4bb7a0a7
DJ
2187{
2188 bfd *abfd = cu->objfile->obfd;
2189 unsigned int abbrev_number;
2190 struct abbrev_info *abbrev;
2191
2192 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2193
2194 if (abbrev_number == 0)
2195 return NULL;
2196
2197 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2198 if (!abbrev)
2199 {
8a3fe4f8 2200 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
4bb7a0a7
DJ
2201 bfd_get_filename (abfd));
2202 }
2203
2204 return abbrev;
2205}
2206
2207/* Scan the debug information for CU starting at INFO_PTR. Returns a
2208 pointer to the end of a series of DIEs, terminated by an empty
2209 DIE. Any children of the skipped DIEs will also be skipped. */
2210
fe1b8b76
JB
2211static gdb_byte *
2212skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
2213{
2214 struct abbrev_info *abbrev;
2215 unsigned int bytes_read;
2216
2217 while (1)
2218 {
2219 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2220 if (abbrev == NULL)
2221 return info_ptr + bytes_read;
2222 else
2223 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2224 }
2225}
2226
2227/* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2228 should point just after the initial uleb128 of a DIE, and the
2229 abbrev corresponding to that skipped uleb128 should be passed in
2230 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2231 children. */
2232
fe1b8b76
JB
2233static gdb_byte *
2234skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
4bb7a0a7
DJ
2235 struct dwarf2_cu *cu)
2236{
2237 unsigned int bytes_read;
2238 struct attribute attr;
2239 bfd *abfd = cu->objfile->obfd;
2240 unsigned int form, i;
2241
2242 for (i = 0; i < abbrev->num_attrs; i++)
2243 {
2244 /* The only abbrev we care about is DW_AT_sibling. */
2245 if (abbrev->attrs[i].name == DW_AT_sibling)
2246 {
2247 read_attribute (&attr, &abbrev->attrs[i],
2248 abfd, info_ptr, cu);
2249 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 2250 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 2251 else
6502dd73
DJ
2252 return dwarf2_per_objfile->info_buffer
2253 + dwarf2_get_ref_die_offset (&attr, cu);
4bb7a0a7
DJ
2254 }
2255
2256 /* If it isn't DW_AT_sibling, skip this attribute. */
2257 form = abbrev->attrs[i].form;
2258 skip_attribute:
2259 switch (form)
2260 {
2261 case DW_FORM_addr:
2262 case DW_FORM_ref_addr:
2263 info_ptr += cu->header.addr_size;
2264 break;
2265 case DW_FORM_data1:
2266 case DW_FORM_ref1:
2267 case DW_FORM_flag:
2268 info_ptr += 1;
2269 break;
2270 case DW_FORM_data2:
2271 case DW_FORM_ref2:
2272 info_ptr += 2;
2273 break;
2274 case DW_FORM_data4:
2275 case DW_FORM_ref4:
2276 info_ptr += 4;
2277 break;
2278 case DW_FORM_data8:
2279 case DW_FORM_ref8:
2280 info_ptr += 8;
2281 break;
2282 case DW_FORM_string:
2283 read_string (abfd, info_ptr, &bytes_read);
2284 info_ptr += bytes_read;
2285 break;
2286 case DW_FORM_strp:
2287 info_ptr += cu->header.offset_size;
2288 break;
2289 case DW_FORM_block:
2290 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2291 info_ptr += bytes_read;
2292 break;
2293 case DW_FORM_block1:
2294 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2295 break;
2296 case DW_FORM_block2:
2297 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2298 break;
2299 case DW_FORM_block4:
2300 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2301 break;
2302 case DW_FORM_sdata:
2303 case DW_FORM_udata:
2304 case DW_FORM_ref_udata:
2305 info_ptr = skip_leb128 (abfd, info_ptr);
2306 break;
2307 case DW_FORM_indirect:
2308 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2309 info_ptr += bytes_read;
2310 /* We need to continue parsing from here, so just go back to
2311 the top. */
2312 goto skip_attribute;
2313
2314 default:
8a3fe4f8 2315 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4bb7a0a7
DJ
2316 dwarf_form_name (form),
2317 bfd_get_filename (abfd));
2318 }
2319 }
2320
2321 if (abbrev->has_children)
2322 return skip_children (info_ptr, cu);
2323 else
2324 return info_ptr;
2325}
2326
2327/* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2328 the next DIE after ORIG_PDI. */
91c24f0a 2329
fe1b8b76
JB
2330static gdb_byte *
2331locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
e7c27a73 2332 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
2333{
2334 /* Do we know the sibling already? */
72bf9492 2335
91c24f0a
DC
2336 if (orig_pdi->sibling)
2337 return orig_pdi->sibling;
2338
2339 /* Are there any children to deal with? */
2340
2341 if (!orig_pdi->has_children)
2342 return info_ptr;
2343
4bb7a0a7 2344 /* Skip the children the long way. */
91c24f0a 2345
4bb7a0a7 2346 return skip_children (info_ptr, cu);
91c24f0a
DC
2347}
2348
c906108c
SS
2349/* Expand this partial symbol table into a full symbol table. */
2350
2351static void
fba45db2 2352dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2353{
2354 /* FIXME: This is barely more than a stub. */
2355 if (pst != NULL)
2356 {
2357 if (pst->readin)
2358 {
8a3fe4f8 2359 warning (_("bug: psymtab for %s is already read in."), pst->filename);
c906108c
SS
2360 }
2361 else
2362 {
2363 if (info_verbose)
2364 {
a3f17187 2365 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
c906108c
SS
2366 gdb_flush (gdb_stdout);
2367 }
2368
10b3939b
DJ
2369 /* Restore our global data. */
2370 dwarf2_per_objfile = objfile_data (pst->objfile,
2371 dwarf2_objfile_data_key);
2372
c906108c
SS
2373 psymtab_to_symtab_1 (pst);
2374
2375 /* Finish up the debug error message. */
2376 if (info_verbose)
a3f17187 2377 printf_filtered (_("done.\n"));
c906108c
SS
2378 }
2379 }
2380}
2381
10b3939b
DJ
2382/* Add PER_CU to the queue. */
2383
2384static void
2385queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2386{
2387 struct dwarf2_queue_item *item;
2388
2389 per_cu->queued = 1;
2390 item = xmalloc (sizeof (*item));
2391 item->per_cu = per_cu;
2392 item->next = NULL;
2393
2394 if (dwarf2_queue == NULL)
2395 dwarf2_queue = item;
2396 else
2397 dwarf2_queue_tail->next = item;
2398
2399 dwarf2_queue_tail = item;
2400}
2401
2402/* Process the queue. */
2403
2404static void
2405process_queue (struct objfile *objfile)
2406{
2407 struct dwarf2_queue_item *item, *next_item;
2408
2409 /* Initially, there is just one item on the queue. Load its DIEs,
2410 and the DIEs of any other compilation units it requires,
2411 transitively. */
2412
2413 for (item = dwarf2_queue; item != NULL; item = item->next)
2414 {
2415 /* Read in this compilation unit. This may add new items to
2416 the end of the queue. */
31ffec48 2417 load_full_comp_unit (item->per_cu, objfile);
10b3939b
DJ
2418
2419 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2420 dwarf2_per_objfile->read_in_chain = item->per_cu;
2421
2422 /* If this compilation unit has already had full symbols created,
2423 reset the TYPE fields in each DIE. */
31ffec48 2424 if (item->per_cu->type_hash)
10b3939b
DJ
2425 reset_die_and_siblings_types (item->per_cu->cu->dies,
2426 item->per_cu->cu);
2427 }
2428
2429 /* Now everything left on the queue needs to be read in. Process
2430 them, one at a time, removing from the queue as we finish. */
2431 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2432 {
31ffec48 2433 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
10b3939b
DJ
2434 process_full_comp_unit (item->per_cu);
2435
2436 item->per_cu->queued = 0;
2437 next_item = item->next;
2438 xfree (item);
2439 }
2440
2441 dwarf2_queue_tail = NULL;
2442}
2443
2444/* Free all allocated queue entries. This function only releases anything if
2445 an error was thrown; if the queue was processed then it would have been
2446 freed as we went along. */
2447
2448static void
2449dwarf2_release_queue (void *dummy)
2450{
2451 struct dwarf2_queue_item *item, *last;
2452
2453 item = dwarf2_queue;
2454 while (item)
2455 {
2456 /* Anything still marked queued is likely to be in an
2457 inconsistent state, so discard it. */
2458 if (item->per_cu->queued)
2459 {
2460 if (item->per_cu->cu != NULL)
2461 free_one_cached_comp_unit (item->per_cu->cu);
2462 item->per_cu->queued = 0;
2463 }
2464
2465 last = item;
2466 item = item->next;
2467 xfree (last);
2468 }
2469
2470 dwarf2_queue = dwarf2_queue_tail = NULL;
2471}
2472
2473/* Read in full symbols for PST, and anything it depends on. */
2474
c906108c 2475static void
fba45db2 2476psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2477{
10b3939b 2478 struct dwarf2_per_cu_data *per_cu;
c906108c 2479 struct cleanup *back_to;
aaa75496
JB
2480 int i;
2481
2482 for (i = 0; i < pst->number_of_dependencies; i++)
2483 if (!pst->dependencies[i]->readin)
2484 {
2485 /* Inform about additional files that need to be read in. */
2486 if (info_verbose)
2487 {
a3f17187 2488 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
2489 fputs_filtered (" ", gdb_stdout);
2490 wrap_here ("");
2491 fputs_filtered ("and ", gdb_stdout);
2492 wrap_here ("");
2493 printf_filtered ("%s...", pst->dependencies[i]->filename);
2494 wrap_here (""); /* Flush output */
2495 gdb_flush (gdb_stdout);
2496 }
2497 psymtab_to_symtab_1 (pst->dependencies[i]);
2498 }
2499
10b3939b
DJ
2500 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2501
2502 if (per_cu == NULL)
aaa75496
JB
2503 {
2504 /* It's an include file, no symbols to read for it.
2505 Everything is in the parent symtab. */
2506 pst->readin = 1;
2507 return;
2508 }
c906108c 2509
10b3939b
DJ
2510 back_to = make_cleanup (dwarf2_release_queue, NULL);
2511
2512 queue_comp_unit (per_cu);
2513
2514 process_queue (pst->objfile);
2515
2516 /* Age the cache, releasing compilation units that have not
2517 been used recently. */
2518 age_cached_comp_units ();
2519
2520 do_cleanups (back_to);
2521}
2522
2523/* Load the DIEs associated with PST and PER_CU into memory. */
2524
2525static struct dwarf2_cu *
31ffec48 2526load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b 2527{
31ffec48 2528 bfd *abfd = objfile->obfd;
10b3939b
DJ
2529 struct dwarf2_cu *cu;
2530 unsigned long offset;
fe1b8b76 2531 gdb_byte *info_ptr;
10b3939b
DJ
2532 struct cleanup *back_to, *free_cu_cleanup;
2533 struct attribute *attr;
2534 CORE_ADDR baseaddr;
6502dd73 2535
c906108c 2536 /* Set local variables from the partial symbol table info. */
10b3939b 2537 offset = per_cu->offset;
6502dd73
DJ
2538
2539 info_ptr = dwarf2_per_objfile->info_buffer + offset;
63d06c5c 2540
10b3939b
DJ
2541 cu = xmalloc (sizeof (struct dwarf2_cu));
2542 memset (cu, 0, sizeof (struct dwarf2_cu));
c906108c 2543
10b3939b
DJ
2544 /* If an error occurs while loading, release our storage. */
2545 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 2546
31ffec48 2547 cu->objfile = objfile;
e7c27a73 2548
c906108c 2549 /* read in the comp_unit header */
10b3939b 2550 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c
SS
2551
2552 /* Read the abbrevs for this compilation unit */
10b3939b
DJ
2553 dwarf2_read_abbrevs (abfd, cu);
2554 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2555
2556 cu->header.offset = offset;
c906108c 2557
10b3939b
DJ
2558 cu->per_cu = per_cu;
2559 per_cu->cu = cu;
e142c38c 2560
10b3939b
DJ
2561 /* We use this obstack for block values in dwarf_alloc_block. */
2562 obstack_init (&cu->comp_unit_obstack);
2563
2564 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2565
2566 /* We try not to read any attributes in this function, because not
2567 all objfiles needed for references have been loaded yet, and symbol
2568 table processing isn't initialized. But we have to set the CU language,
2569 or we won't be able to build types correctly. */
2570 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2571 if (attr)
2572 set_cu_language (DW_UNSND (attr), cu);
2573 else
2574 set_cu_language (language_minimal, cu);
2575
2576 do_cleanups (back_to);
e142c38c 2577
10b3939b
DJ
2578 /* We've successfully allocated this compilation unit. Let our caller
2579 clean it up when finished with it. */
2580 discard_cleanups (free_cu_cleanup);
c906108c 2581
10b3939b
DJ
2582 return cu;
2583}
2584
2585/* Generate full symbol information for PST and CU, whose DIEs have
2586 already been loaded into memory. */
2587
2588static void
2589process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2590{
2591 struct partial_symtab *pst = per_cu->psymtab;
2592 struct dwarf2_cu *cu = per_cu->cu;
2593 struct objfile *objfile = pst->objfile;
2594 bfd *abfd = objfile->obfd;
2595 CORE_ADDR lowpc, highpc;
2596 struct symtab *symtab;
2597 struct cleanup *back_to;
2598 struct attribute *attr;
2599 CORE_ADDR baseaddr;
2600
2601 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2602
2603 /* We're in the global namespace. */
2604 processing_current_prefix = "";
2605
2606 buildsym_init ();
2607 back_to = make_cleanup (really_free_pendings, NULL);
2608
2609 cu->list_in_scope = &file_symbols;
c906108c 2610
0d53c4c4
DJ
2611 /* Find the base address of the compilation unit for range lists and
2612 location lists. It will normally be specified by DW_AT_low_pc.
2613 In DWARF-3 draft 4, the base address could be overridden by
2614 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2615 compilation units with discontinuous ranges. */
2616
10b3939b
DJ
2617 cu->header.base_known = 0;
2618 cu->header.base_address = 0;
0d53c4c4 2619
10b3939b 2620 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
0d53c4c4
DJ
2621 if (attr)
2622 {
10b3939b
DJ
2623 cu->header.base_address = DW_ADDR (attr);
2624 cu->header.base_known = 1;
0d53c4c4
DJ
2625 }
2626 else
2627 {
10b3939b 2628 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
0d53c4c4
DJ
2629 if (attr)
2630 {
10b3939b
DJ
2631 cu->header.base_address = DW_ADDR (attr);
2632 cu->header.base_known = 1;
0d53c4c4
DJ
2633 }
2634 }
2635
c906108c 2636 /* Do line number decoding in read_file_scope () */
10b3939b 2637 process_die (cu->dies, cu);
c906108c 2638
fae299cd
DC
2639 /* Some compilers don't define a DW_AT_high_pc attribute for the
2640 compilation unit. If the DW_AT_high_pc is missing, synthesize
2641 it, by scanning the DIE's below the compilation unit. */
10b3939b 2642 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 2643
613e1657 2644 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
2645
2646 /* Set symtab language to language from DW_AT_language.
2647 If the compilation is from a C file generated by language preprocessors,
2648 do not set the language if it was already deduced by start_subfile. */
2649 if (symtab != NULL
10b3939b 2650 && !(cu->language == language_c && symtab->language != language_c))
c906108c 2651 {
10b3939b 2652 symtab->language = cu->language;
c906108c
SS
2653 }
2654 pst->symtab = symtab;
2655 pst->readin = 1;
c906108c
SS
2656
2657 do_cleanups (back_to);
2658}
2659
2660/* Process a die and its children. */
2661
2662static void
e7c27a73 2663process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
2664{
2665 switch (die->tag)
2666 {
2667 case DW_TAG_padding:
2668 break;
2669 case DW_TAG_compile_unit:
e7c27a73 2670 read_file_scope (die, cu);
c906108c
SS
2671 break;
2672 case DW_TAG_subprogram:
e7c27a73
DJ
2673 read_subroutine_type (die, cu);
2674 read_func_scope (die, cu);
c906108c
SS
2675 break;
2676 case DW_TAG_inlined_subroutine:
2677 /* FIXME: These are ignored for now.
c5aa993b
JM
2678 They could be used to set breakpoints on all inlined instances
2679 of a function and make GDB `next' properly over inlined functions. */
c906108c
SS
2680 break;
2681 case DW_TAG_lexical_block:
14898363
L
2682 case DW_TAG_try_block:
2683 case DW_TAG_catch_block:
e7c27a73 2684 read_lexical_block_scope (die, cu);
c906108c
SS
2685 break;
2686 case DW_TAG_class_type:
680b30c7 2687 case DW_TAG_interface_type:
c906108c
SS
2688 case DW_TAG_structure_type:
2689 case DW_TAG_union_type:
134d01f1
DJ
2690 read_structure_type (die, cu);
2691 process_structure_scope (die, cu);
c906108c
SS
2692 break;
2693 case DW_TAG_enumeration_type:
134d01f1
DJ
2694 read_enumeration_type (die, cu);
2695 process_enumeration_scope (die, cu);
c906108c 2696 break;
134d01f1
DJ
2697
2698 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2699 a symbol or process any children. Therefore it doesn't do anything
2700 that won't be done on-demand by read_type_die. */
c906108c 2701 case DW_TAG_subroutine_type:
e7c27a73 2702 read_subroutine_type (die, cu);
c906108c 2703 break;
72019c9c
GM
2704 case DW_TAG_set_type:
2705 read_set_type (die, cu);
2706 break;
c906108c 2707 case DW_TAG_array_type:
e7c27a73 2708 read_array_type (die, cu);
c906108c
SS
2709 break;
2710 case DW_TAG_pointer_type:
e7c27a73 2711 read_tag_pointer_type (die, cu);
c906108c
SS
2712 break;
2713 case DW_TAG_ptr_to_member_type:
e7c27a73 2714 read_tag_ptr_to_member_type (die, cu);
c906108c
SS
2715 break;
2716 case DW_TAG_reference_type:
e7c27a73 2717 read_tag_reference_type (die, cu);
c906108c
SS
2718 break;
2719 case DW_TAG_string_type:
e7c27a73 2720 read_tag_string_type (die, cu);
c906108c 2721 break;
134d01f1
DJ
2722 /* END FIXME */
2723
c906108c 2724 case DW_TAG_base_type:
e7c27a73 2725 read_base_type (die, cu);
134d01f1
DJ
2726 /* Add a typedef symbol for the type definition, if it has a
2727 DW_AT_name. */
2728 new_symbol (die, die->type, cu);
c906108c 2729 break;
a02abb62
JB
2730 case DW_TAG_subrange_type:
2731 read_subrange_type (die, cu);
134d01f1
DJ
2732 /* Add a typedef symbol for the type definition, if it has a
2733 DW_AT_name. */
2734 new_symbol (die, die->type, cu);
a02abb62 2735 break;
c906108c 2736 case DW_TAG_common_block:
e7c27a73 2737 read_common_block (die, cu);
c906108c
SS
2738 break;
2739 case DW_TAG_common_inclusion:
2740 break;
d9fa45fe 2741 case DW_TAG_namespace:
63d06c5c 2742 processing_has_namespace_info = 1;
e7c27a73 2743 read_namespace (die, cu);
d9fa45fe
DC
2744 break;
2745 case DW_TAG_imported_declaration:
2746 case DW_TAG_imported_module:
2747 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2748 information contained in these. DW_TAG_imported_declaration
2749 dies shouldn't have children; DW_TAG_imported_module dies
2750 shouldn't in the C++ case, but conceivably could in the
2751 Fortran case, so we'll have to replace this gdb_assert if
2752 Fortran compilers start generating that info. */
63d06c5c 2753 processing_has_namespace_info = 1;
639d11d3 2754 gdb_assert (die->child == NULL);
d9fa45fe 2755 break;
c906108c 2756 default:
e7c27a73 2757 new_symbol (die, NULL, cu);
c906108c
SS
2758 break;
2759 }
2760}
2761
5fb290d7 2762static void
e142c38c 2763initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 2764{
e142c38c 2765 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
2766}
2767
cb1df416
DJ
2768static void
2769free_cu_line_header (void *arg)
2770{
2771 struct dwarf2_cu *cu = arg;
2772
2773 free_line_header (cu->line_header);
2774 cu->line_header = NULL;
2775}
2776
c906108c 2777static void
e7c27a73 2778read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2779{
e7c27a73
DJ
2780 struct objfile *objfile = cu->objfile;
2781 struct comp_unit_head *cu_header = &cu->header;
debd256d 2782 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 2783 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
2784 CORE_ADDR highpc = ((CORE_ADDR) 0);
2785 struct attribute *attr;
e1024ff1 2786 char *name = NULL;
c906108c
SS
2787 char *comp_dir = NULL;
2788 struct die_info *child_die;
2789 bfd *abfd = objfile->obfd;
debd256d 2790 struct line_header *line_header = 0;
e142c38c
DJ
2791 CORE_ADDR baseaddr;
2792
2793 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 2794
fae299cd 2795 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
2796
2797 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2798 from finish_block. */
2acceee2 2799 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
2800 lowpc = highpc;
2801 lowpc += baseaddr;
2802 highpc += baseaddr;
2803
39cbfefa
DJ
2804 /* Find the filename. Do not use dwarf2_name here, since the filename
2805 is not a source language identifier. */
e142c38c 2806 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
2807 if (attr)
2808 {
2809 name = DW_STRING (attr);
2810 }
e1024ff1 2811
e142c38c 2812 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
c906108c 2813 if (attr)
e1024ff1
DJ
2814 comp_dir = DW_STRING (attr);
2815 else if (name != NULL && IS_ABSOLUTE_PATH (name))
c906108c 2816 {
e1024ff1
DJ
2817 comp_dir = ldirname (name);
2818 if (comp_dir != NULL)
2819 make_cleanup (xfree, comp_dir);
2820 }
2821 if (comp_dir != NULL)
2822 {
2823 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2824 directory, get rid of it. */
2825 char *cp = strchr (comp_dir, ':');
c906108c 2826
e1024ff1
DJ
2827 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2828 comp_dir = cp + 1;
c906108c
SS
2829 }
2830
e1024ff1
DJ
2831 if (name == NULL)
2832 name = "<unknown>";
2833
e142c38c 2834 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
2835 if (attr)
2836 {
e142c38c 2837 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
2838 }
2839
b0f35d58
DL
2840 attr = dwarf2_attr (die, DW_AT_producer, cu);
2841 if (attr)
2842 cu->producer = DW_STRING (attr);
303b6f5d 2843
c906108c
SS
2844 /* We assume that we're processing GCC output. */
2845 processing_gcc_compilation = 2;
c906108c 2846
c906108c
SS
2847 start_symtab (name, comp_dir, lowpc);
2848 record_debugformat ("DWARF 2");
303b6f5d 2849 record_producer (cu->producer);
c906108c 2850
e142c38c 2851 initialize_cu_func_list (cu);
c906108c 2852
cb1df416
DJ
2853 /* Decode line number information if present. We do this before
2854 processing child DIEs, so that the line header table is available
2855 for DW_AT_decl_file. */
e142c38c 2856 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
2857 if (attr)
2858 {
debd256d 2859 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 2860 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
2861 if (line_header)
2862 {
cb1df416
DJ
2863 cu->line_header = line_header;
2864 make_cleanup (free_cu_line_header, cu);
aaa75496 2865 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 2866 }
5fb290d7 2867 }
debd256d 2868
cb1df416
DJ
2869 /* Process all dies in compilation unit. */
2870 if (die->child != NULL)
2871 {
2872 child_die = die->child;
2873 while (child_die && child_die->tag)
2874 {
2875 process_die (child_die, cu);
2876 child_die = sibling_die (child_die);
2877 }
2878 }
2879
2e276125
JB
2880 /* Decode macro information, if present. Dwarf 2 macro information
2881 refers to information in the line number info statement program
2882 header, so we can only read it if we've read the header
2883 successfully. */
e142c38c 2884 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 2885 if (attr && line_header)
2e276125
JB
2886 {
2887 unsigned int macro_offset = DW_UNSND (attr);
2888 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 2889 comp_dir, abfd, cu);
2e276125 2890 }
debd256d 2891 do_cleanups (back_to);
5fb290d7
DJ
2892}
2893
2894static void
e142c38c
DJ
2895add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2896 struct dwarf2_cu *cu)
5fb290d7
DJ
2897{
2898 struct function_range *thisfn;
2899
2900 thisfn = (struct function_range *)
7b5a2f43 2901 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
2902 thisfn->name = name;
2903 thisfn->lowpc = lowpc;
2904 thisfn->highpc = highpc;
2905 thisfn->seen_line = 0;
2906 thisfn->next = NULL;
2907
e142c38c
DJ
2908 if (cu->last_fn == NULL)
2909 cu->first_fn = thisfn;
5fb290d7 2910 else
e142c38c 2911 cu->last_fn->next = thisfn;
5fb290d7 2912
e142c38c 2913 cu->last_fn = thisfn;
c906108c
SS
2914}
2915
2916static void
e7c27a73 2917read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2918{
e7c27a73 2919 struct objfile *objfile = cu->objfile;
52f0bd74 2920 struct context_stack *new;
c906108c
SS
2921 CORE_ADDR lowpc;
2922 CORE_ADDR highpc;
2923 struct die_info *child_die;
2924 struct attribute *attr;
2925 char *name;
fdde2d81
DC
2926 const char *previous_prefix = processing_current_prefix;
2927 struct cleanup *back_to = NULL;
e142c38c 2928 CORE_ADDR baseaddr;
801e3a5b 2929 struct block *block;
c906108c 2930
e142c38c
DJ
2931 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2932
2933 name = dwarf2_linkage_name (die, cu);
c906108c
SS
2934
2935 /* Ignore functions with missing or empty names and functions with
2936 missing or invalid low and high pc attributes. */
e7c27a73 2937 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
2938 return;
2939
987504bb
JJ
2940 if (cu->language == language_cplus
2941 || cu->language == language_java)
fdde2d81 2942 {
086ed43d 2943 struct die_info *spec_die = die_specification (die, cu);
fdde2d81 2944
2a35147e
JB
2945 /* NOTE: carlton/2004-01-23: We have to be careful in the
2946 presence of DW_AT_specification. For example, with GCC 3.4,
2947 given the code
2948
2949 namespace N {
2950 void foo() {
2951 // Definition of N::foo.
2952 }
2953 }
2954
2955 then we'll have a tree of DIEs like this:
2956
2957 1: DW_TAG_compile_unit
2958 2: DW_TAG_namespace // N
2959 3: DW_TAG_subprogram // declaration of N::foo
2960 4: DW_TAG_subprogram // definition of N::foo
2961 DW_AT_specification // refers to die #3
2962
2963 Thus, when processing die #4, we have to pretend that we're
2964 in the context of its DW_AT_specification, namely the contex
2965 of die #3. */
fdde2d81
DC
2966
2967 if (spec_die != NULL)
2968 {
e142c38c 2969 char *specification_prefix = determine_prefix (spec_die, cu);
fdde2d81
DC
2970 processing_current_prefix = specification_prefix;
2971 back_to = make_cleanup (xfree, specification_prefix);
2972 }
2973 }
2974
c906108c
SS
2975 lowpc += baseaddr;
2976 highpc += baseaddr;
2977
5fb290d7 2978 /* Record the function range for dwarf_decode_lines. */
e142c38c 2979 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 2980
c906108c 2981 new = push_context (0, lowpc);
e7c27a73 2982 new->name = new_symbol (die, die->type, cu);
4c2df51b 2983
4cecd739
DJ
2984 /* If there is a location expression for DW_AT_frame_base, record
2985 it. */
e142c38c 2986 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 2987 if (attr)
c034e007
AC
2988 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2989 expression is being recorded directly in the function's symbol
2990 and not in a separate frame-base object. I guess this hack is
2991 to avoid adding some sort of frame-base adjunct/annex to the
2992 function's symbol :-(. The problem with doing this is that it
2993 results in a function symbol with a location expression that
2994 has nothing to do with the location of the function, ouch! The
2995 relationship should be: a function's symbol has-a frame base; a
2996 frame-base has-a location expression. */
e7c27a73 2997 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 2998
e142c38c 2999 cu->list_in_scope = &local_symbols;
c906108c 3000
639d11d3 3001 if (die->child != NULL)
c906108c 3002 {
639d11d3 3003 child_die = die->child;
c906108c
SS
3004 while (child_die && child_die->tag)
3005 {
e7c27a73 3006 process_die (child_die, cu);
c906108c
SS
3007 child_die = sibling_die (child_die);
3008 }
3009 }
3010
3011 new = pop_context ();
3012 /* Make a block for the local symbols within. */
801e3a5b
JB
3013 block = finish_block (new->name, &local_symbols, new->old_blocks,
3014 lowpc, highpc, objfile);
3015
3016 /* If we have address ranges, record them. */
3017 dwarf2_record_block_ranges (die, block, baseaddr, cu);
208d8187
JB
3018
3019 /* In C++, we can have functions nested inside functions (e.g., when
3020 a function declares a class that has methods). This means that
3021 when we finish processing a function scope, we may need to go
3022 back to building a containing block's symbol lists. */
3023 local_symbols = new->locals;
3024 param_symbols = new->params;
3025
921e78cf
JB
3026 /* If we've finished processing a top-level function, subsequent
3027 symbols go in the file symbol list. */
3028 if (outermost_context_p ())
e142c38c 3029 cu->list_in_scope = &file_symbols;
fdde2d81
DC
3030
3031 processing_current_prefix = previous_prefix;
3032 if (back_to != NULL)
3033 do_cleanups (back_to);
c906108c
SS
3034}
3035
3036/* Process all the DIES contained within a lexical block scope. Start
3037 a new scope, process the dies, and then close the scope. */
3038
3039static void
e7c27a73 3040read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3041{
e7c27a73 3042 struct objfile *objfile = cu->objfile;
52f0bd74 3043 struct context_stack *new;
c906108c
SS
3044 CORE_ADDR lowpc, highpc;
3045 struct die_info *child_die;
e142c38c
DJ
3046 CORE_ADDR baseaddr;
3047
3048 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
3049
3050 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
3051 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3052 as multiple lexical blocks? Handling children in a sane way would
3053 be nasty. Might be easier to properly extend generic blocks to
3054 describe ranges. */
e7c27a73 3055 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
3056 return;
3057 lowpc += baseaddr;
3058 highpc += baseaddr;
3059
3060 push_context (0, lowpc);
639d11d3 3061 if (die->child != NULL)
c906108c 3062 {
639d11d3 3063 child_die = die->child;
c906108c
SS
3064 while (child_die && child_die->tag)
3065 {
e7c27a73 3066 process_die (child_die, cu);
c906108c
SS
3067 child_die = sibling_die (child_die);
3068 }
3069 }
3070 new = pop_context ();
3071
3072 if (local_symbols != NULL)
3073 {
801e3a5b
JB
3074 struct block *block
3075 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3076 highpc, objfile);
3077
3078 /* Note that recording ranges after traversing children, as we
3079 do here, means that recording a parent's ranges entails
3080 walking across all its children's ranges as they appear in
3081 the address map, which is quadratic behavior.
3082
3083 It would be nicer to record the parent's ranges before
3084 traversing its children, simply overriding whatever you find
3085 there. But since we don't even decide whether to create a
3086 block until after we've traversed its children, that's hard
3087 to do. */
3088 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
3089 }
3090 local_symbols = new->locals;
3091}
3092
43039443
JK
3093/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
3094 Return 1 if the attributes are present and valid, otherwise, return 0. */
3095
3096static int
3097dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
3098 CORE_ADDR *high_return, struct dwarf2_cu *cu)
3099{
3100 struct objfile *objfile = cu->objfile;
3101 struct comp_unit_head *cu_header = &cu->header;
3102 bfd *obfd = objfile->obfd;
3103 unsigned int addr_size = cu_header->addr_size;
3104 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3105 /* Base address selection entry. */
3106 CORE_ADDR base;
3107 int found_base;
3108 unsigned int dummy;
3109 gdb_byte *buffer;
3110 CORE_ADDR marker;
3111 int low_set;
3112 CORE_ADDR low = 0;
3113 CORE_ADDR high = 0;
3114
3115 found_base = cu_header->base_known;
3116 base = cu_header->base_address;
3117
3118 if (offset >= dwarf2_per_objfile->ranges_size)
3119 {
3120 complaint (&symfile_complaints,
3121 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3122 offset);
3123 return 0;
3124 }
3125 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3126
3127 /* Read in the largest possible address. */
3128 marker = read_address (obfd, buffer, cu, &dummy);
3129 if ((marker & mask) == mask)
3130 {
3131 /* If we found the largest possible address, then
3132 read the base address. */
3133 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3134 buffer += 2 * addr_size;
3135 offset += 2 * addr_size;
3136 found_base = 1;
3137 }
3138
3139 low_set = 0;
3140
3141 while (1)
3142 {
3143 CORE_ADDR range_beginning, range_end;
3144
3145 range_beginning = read_address (obfd, buffer, cu, &dummy);
3146 buffer += addr_size;
3147 range_end = read_address (obfd, buffer, cu, &dummy);
3148 buffer += addr_size;
3149 offset += 2 * addr_size;
3150
3151 /* An end of list marker is a pair of zero addresses. */
3152 if (range_beginning == 0 && range_end == 0)
3153 /* Found the end of list entry. */
3154 break;
3155
3156 /* Each base address selection entry is a pair of 2 values.
3157 The first is the largest possible address, the second is
3158 the base address. Check for a base address here. */
3159 if ((range_beginning & mask) == mask)
3160 {
3161 /* If we found the largest possible address, then
3162 read the base address. */
3163 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3164 found_base = 1;
3165 continue;
3166 }
3167
3168 if (!found_base)
3169 {
3170 /* We have no valid base address for the ranges
3171 data. */
3172 complaint (&symfile_complaints,
3173 _("Invalid .debug_ranges data (no base address)"));
3174 return 0;
3175 }
3176
3177 range_beginning += base;
3178 range_end += base;
3179
3180 /* FIXME: This is recording everything as a low-high
3181 segment of consecutive addresses. We should have a
3182 data structure for discontiguous block ranges
3183 instead. */
3184 if (! low_set)
3185 {
3186 low = range_beginning;
3187 high = range_end;
3188 low_set = 1;
3189 }
3190 else
3191 {
3192 if (range_beginning < low)
3193 low = range_beginning;
3194 if (range_end > high)
3195 high = range_end;
3196 }
3197 }
3198
3199 if (! low_set)
3200 /* If the first entry is an end-of-list marker, the range
3201 describes an empty scope, i.e. no instructions. */
3202 return 0;
3203
3204 if (low_return)
3205 *low_return = low;
3206 if (high_return)
3207 *high_return = high;
3208 return 1;
3209}
3210
af34e669
DJ
3211/* Get low and high pc attributes from a die. Return 1 if the attributes
3212 are present and valid, otherwise, return 0. Return -1 if the range is
3213 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 3214static int
af34e669 3215dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
e7c27a73 3216 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c
SS
3217{
3218 struct attribute *attr;
af34e669
DJ
3219 CORE_ADDR low = 0;
3220 CORE_ADDR high = 0;
3221 int ret = 0;
c906108c 3222
e142c38c 3223 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 3224 if (attr)
af34e669
DJ
3225 {
3226 high = DW_ADDR (attr);
e142c38c 3227 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
3228 if (attr)
3229 low = DW_ADDR (attr);
3230 else
3231 /* Found high w/o low attribute. */
3232 return 0;
3233
3234 /* Found consecutive range of addresses. */
3235 ret = 1;
3236 }
c906108c 3237 else
af34e669 3238 {
e142c38c 3239 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
3240 if (attr != NULL)
3241 {
af34e669 3242 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 3243 .debug_ranges section. */
43039443 3244 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu))
af34e669 3245 return 0;
43039443 3246 /* Found discontinuous range of addresses. */
af34e669
DJ
3247 ret = -1;
3248 }
3249 }
c906108c
SS
3250
3251 if (high < low)
3252 return 0;
3253
3254 /* When using the GNU linker, .gnu.linkonce. sections are used to
3255 eliminate duplicate copies of functions and vtables and such.
3256 The linker will arbitrarily choose one and discard the others.
3257 The AT_*_pc values for such functions refer to local labels in
3258 these sections. If the section from that file was discarded, the
3259 labels are not in the output, so the relocs get a value of 0.
3260 If this is a discarded function, mark the pc bounds as invalid,
3261 so that GDB will ignore it. */
72dca2f5 3262 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
3263 return 0;
3264
3265 *lowpc = low;
3266 *highpc = high;
af34e669 3267 return ret;
c906108c
SS
3268}
3269
fae299cd
DC
3270/* Get the low and high pc's represented by the scope DIE, and store
3271 them in *LOWPC and *HIGHPC. If the correct values can't be
3272 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3273
3274static void
3275get_scope_pc_bounds (struct die_info *die,
3276 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3277 struct dwarf2_cu *cu)
3278{
3279 CORE_ADDR best_low = (CORE_ADDR) -1;
3280 CORE_ADDR best_high = (CORE_ADDR) 0;
3281 CORE_ADDR current_low, current_high;
3282
3283 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3284 {
3285 best_low = current_low;
3286 best_high = current_high;
3287 }
3288 else
3289 {
3290 struct die_info *child = die->child;
3291
3292 while (child && child->tag)
3293 {
3294 switch (child->tag) {
3295 case DW_TAG_subprogram:
3296 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3297 {
3298 best_low = min (best_low, current_low);
3299 best_high = max (best_high, current_high);
3300 }
3301 break;
3302 case DW_TAG_namespace:
3303 /* FIXME: carlton/2004-01-16: Should we do this for
3304 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3305 that current GCC's always emit the DIEs corresponding
3306 to definitions of methods of classes as children of a
3307 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3308 the DIEs giving the declarations, which could be
3309 anywhere). But I don't see any reason why the
3310 standards says that they have to be there. */
3311 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3312
3313 if (current_low != ((CORE_ADDR) -1))
3314 {
3315 best_low = min (best_low, current_low);
3316 best_high = max (best_high, current_high);
3317 }
3318 break;
3319 default:
3320 /* Ignore. */
3321 break;
3322 }
3323
3324 child = sibling_die (child);
3325 }
3326 }
3327
3328 *lowpc = best_low;
3329 *highpc = best_high;
3330}
3331
801e3a5b
JB
3332/* Record the address ranges for BLOCK, offset by BASEADDR, as given
3333 in DIE. */
3334static void
3335dwarf2_record_block_ranges (struct die_info *die, struct block *block,
3336 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
3337{
3338 struct attribute *attr;
3339
3340 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3341 if (attr)
3342 {
3343 CORE_ADDR high = DW_ADDR (attr);
3344 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3345 if (attr)
3346 {
3347 CORE_ADDR low = DW_ADDR (attr);
3348 record_block_range (block, baseaddr + low, baseaddr + high - 1);
3349 }
3350 }
3351
3352 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3353 if (attr)
3354 {
3355 bfd *obfd = cu->objfile->obfd;
3356
3357 /* The value of the DW_AT_ranges attribute is the offset of the
3358 address range list in the .debug_ranges section. */
3359 unsigned long offset = DW_UNSND (attr);
3360 gdb_byte *buffer = dwarf2_per_objfile->ranges_buffer + offset;
3361
3362 /* For some target architectures, but not others, the
3363 read_address function sign-extends the addresses it returns.
3364 To recognize base address selection entries, we need a
3365 mask. */
3366 unsigned int addr_size = cu->header.addr_size;
3367 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3368
3369 /* The base address, to which the next pair is relative. Note
3370 that this 'base' is a DWARF concept: most entries in a range
3371 list are relative, to reduce the number of relocs against the
3372 debugging information. This is separate from this function's
3373 'baseaddr' argument, which GDB uses to relocate debugging
3374 information from a shared library based on the address at
3375 which the library was loaded. */
3376 CORE_ADDR base = cu->header.base_address;
3377 int base_known = cu->header.base_known;
3378
3379 if (offset >= dwarf2_per_objfile->ranges_size)
3380 {
3381 complaint (&symfile_complaints,
3382 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
3383 offset);
3384 return;
3385 }
3386
3387 for (;;)
3388 {
3389 unsigned int bytes_read;
3390 CORE_ADDR start, end;
3391
3392 start = read_address (obfd, buffer, cu, &bytes_read);
3393 buffer += bytes_read;
3394 end = read_address (obfd, buffer, cu, &bytes_read);
3395 buffer += bytes_read;
3396
3397 /* Did we find the end of the range list? */
3398 if (start == 0 && end == 0)
3399 break;
3400
3401 /* Did we find a base address selection entry? */
3402 else if ((start & base_select_mask) == base_select_mask)
3403 {
3404 base = end;
3405 base_known = 1;
3406 }
3407
3408 /* We found an ordinary address range. */
3409 else
3410 {
3411 if (!base_known)
3412 {
3413 complaint (&symfile_complaints,
3414 _("Invalid .debug_ranges data (no base address)"));
3415 return;
3416 }
3417
3418 record_block_range (block,
3419 baseaddr + base + start,
3420 baseaddr + base + end - 1);
3421 }
3422 }
3423 }
3424}
3425
c906108c
SS
3426/* Add an aggregate field to the field list. */
3427
3428static void
107d2387 3429dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73
DJ
3430 struct dwarf2_cu *cu)
3431{
3432 struct objfile *objfile = cu->objfile;
c906108c
SS
3433 struct nextfield *new_field;
3434 struct attribute *attr;
3435 struct field *fp;
3436 char *fieldname = "";
3437
3438 /* Allocate a new field list entry and link it in. */
3439 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 3440 make_cleanup (xfree, new_field);
c906108c
SS
3441 memset (new_field, 0, sizeof (struct nextfield));
3442 new_field->next = fip->fields;
3443 fip->fields = new_field;
3444 fip->nfields++;
3445
3446 /* Handle accessibility and virtuality of field.
3447 The default accessibility for members is public, the default
3448 accessibility for inheritance is private. */
3449 if (die->tag != DW_TAG_inheritance)
3450 new_field->accessibility = DW_ACCESS_public;
3451 else
3452 new_field->accessibility = DW_ACCESS_private;
3453 new_field->virtuality = DW_VIRTUALITY_none;
3454
e142c38c 3455 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3456 if (attr)
3457 new_field->accessibility = DW_UNSND (attr);
3458 if (new_field->accessibility != DW_ACCESS_public)
3459 fip->non_public_fields = 1;
e142c38c 3460 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
3461 if (attr)
3462 new_field->virtuality = DW_UNSND (attr);
3463
3464 fp = &new_field->field;
a9a9bd0f 3465
e142c38c 3466 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 3467 {
a9a9bd0f
DC
3468 /* Data member other than a C++ static data member. */
3469
c906108c 3470 /* Get type of field. */
e7c27a73 3471 fp->type = die_type (die, cu);
c906108c 3472
01ad7f36
DJ
3473 FIELD_STATIC_KIND (*fp) = 0;
3474
c906108c 3475 /* Get bit size of field (zero if none). */
e142c38c 3476 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
3477 if (attr)
3478 {
3479 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3480 }
3481 else
3482 {
3483 FIELD_BITSIZE (*fp) = 0;
3484 }
3485
3486 /* Get bit offset of field. */
e142c38c 3487 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
3488 if (attr)
3489 {
c6a0999f
JB
3490 int byte_offset;
3491
3690dd37
JB
3492 if (attr_form_is_section_offset (attr))
3493 {
3494 dwarf2_complex_location_expr_complaint ();
c6a0999f 3495 byte_offset = 0;
3690dd37
JB
3496 }
3497 else if (attr_form_is_constant (attr))
c6a0999f 3498 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
3690dd37 3499 else
c6a0999f
JB
3500 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
3501
3502 FIELD_BITPOS (*fp) = byte_offset * bits_per_byte;
c906108c
SS
3503 }
3504 else
3505 FIELD_BITPOS (*fp) = 0;
e142c38c 3506 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
3507 if (attr)
3508 {
32c9a795 3509 if (gdbarch_bits_big_endian (current_gdbarch))
c906108c
SS
3510 {
3511 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
3512 additional bit offset from the MSB of the containing
3513 anonymous object to the MSB of the field. We don't
3514 have to do anything special since we don't need to
3515 know the size of the anonymous object. */
c906108c
SS
3516 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3517 }
3518 else
3519 {
3520 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
3521 MSB of the anonymous object, subtract off the number of
3522 bits from the MSB of the field to the MSB of the
3523 object, and then subtract off the number of bits of
3524 the field itself. The result is the bit offset of
3525 the LSB of the field. */
c906108c
SS
3526 int anonymous_size;
3527 int bit_offset = DW_UNSND (attr);
3528
e142c38c 3529 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3530 if (attr)
3531 {
3532 /* The size of the anonymous object containing
3533 the bit field is explicit, so use the
3534 indicated size (in bytes). */
3535 anonymous_size = DW_UNSND (attr);
3536 }
3537 else
3538 {
3539 /* The size of the anonymous object containing
3540 the bit field must be inferred from the type
3541 attribute of the data member containing the
3542 bit field. */
3543 anonymous_size = TYPE_LENGTH (fp->type);
3544 }
3545 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3546 - bit_offset - FIELD_BITSIZE (*fp);
3547 }
3548 }
3549
3550 /* Get name of field. */
39cbfefa
DJ
3551 fieldname = dwarf2_name (die, cu);
3552 if (fieldname == NULL)
3553 fieldname = "";
d8151005
DJ
3554
3555 /* The name is already allocated along with this objfile, so we don't
3556 need to duplicate it for the type. */
3557 fp->name = fieldname;
c906108c
SS
3558
3559 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 3560 pointer or virtual base class pointer) to private. */
e142c38c 3561 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c
SS
3562 {
3563 new_field->accessibility = DW_ACCESS_private;
3564 fip->non_public_fields = 1;
3565 }
3566 }
a9a9bd0f 3567 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 3568 {
a9a9bd0f
DC
3569 /* C++ static member. */
3570
3571 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3572 is a declaration, but all versions of G++ as of this writing
3573 (so through at least 3.2.1) incorrectly generate
3574 DW_TAG_variable tags. */
3575
c906108c 3576 char *physname;
c906108c 3577
a9a9bd0f 3578 /* Get name of field. */
39cbfefa
DJ
3579 fieldname = dwarf2_name (die, cu);
3580 if (fieldname == NULL)
c906108c
SS
3581 return;
3582
2df3850c 3583 /* Get physical name. */
e142c38c 3584 physname = dwarf2_linkage_name (die, cu);
c906108c 3585
d8151005
DJ
3586 /* The name is already allocated along with this objfile, so we don't
3587 need to duplicate it for the type. */
3588 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 3589 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 3590 FIELD_NAME (*fp) = fieldname;
c906108c
SS
3591 }
3592 else if (die->tag == DW_TAG_inheritance)
3593 {
3594 /* C++ base class field. */
e142c38c 3595 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 3596 if (attr)
e7c27a73 3597 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
107d2387 3598 * bits_per_byte);
c906108c 3599 FIELD_BITSIZE (*fp) = 0;
01ad7f36 3600 FIELD_STATIC_KIND (*fp) = 0;
e7c27a73 3601 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
3602 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3603 fip->nbaseclasses++;
3604 }
3605}
3606
3607/* Create the vector of fields, and attach it to the type. */
3608
3609static void
fba45db2 3610dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3611 struct dwarf2_cu *cu)
c906108c
SS
3612{
3613 int nfields = fip->nfields;
3614
3615 /* Record the field count, allocate space for the array of fields,
3616 and create blank accessibility bitfields if necessary. */
3617 TYPE_NFIELDS (type) = nfields;
3618 TYPE_FIELDS (type) = (struct field *)
3619 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3620 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3621
3622 if (fip->non_public_fields)
3623 {
3624 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3625
3626 TYPE_FIELD_PRIVATE_BITS (type) =
3627 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3628 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3629
3630 TYPE_FIELD_PROTECTED_BITS (type) =
3631 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3632 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3633
3634 TYPE_FIELD_IGNORE_BITS (type) =
3635 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3636 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3637 }
3638
3639 /* If the type has baseclasses, allocate and clear a bit vector for
3640 TYPE_FIELD_VIRTUAL_BITS. */
3641 if (fip->nbaseclasses)
3642 {
3643 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 3644 unsigned char *pointer;
c906108c
SS
3645
3646 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
3647 pointer = TYPE_ALLOC (type, num_bytes);
3648 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
3649 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3650 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3651 }
3652
3653 /* Copy the saved-up fields into the field vector. Start from the head
3654 of the list, adding to the tail of the field array, so that they end
3655 up in the same order in the array in which they were added to the list. */
3656 while (nfields-- > 0)
3657 {
3658 TYPE_FIELD (type, nfields) = fip->fields->field;
3659 switch (fip->fields->accessibility)
3660 {
c5aa993b
JM
3661 case DW_ACCESS_private:
3662 SET_TYPE_FIELD_PRIVATE (type, nfields);
3663 break;
c906108c 3664
c5aa993b
JM
3665 case DW_ACCESS_protected:
3666 SET_TYPE_FIELD_PROTECTED (type, nfields);
3667 break;
c906108c 3668
c5aa993b
JM
3669 case DW_ACCESS_public:
3670 break;
c906108c 3671
c5aa993b
JM
3672 default:
3673 /* Unknown accessibility. Complain and treat it as public. */
3674 {
e2e0b3e5 3675 complaint (&symfile_complaints, _("unsupported accessibility %d"),
4d3c2250 3676 fip->fields->accessibility);
c5aa993b
JM
3677 }
3678 break;
c906108c
SS
3679 }
3680 if (nfields < fip->nbaseclasses)
3681 {
3682 switch (fip->fields->virtuality)
3683 {
c5aa993b
JM
3684 case DW_VIRTUALITY_virtual:
3685 case DW_VIRTUALITY_pure_virtual:
3686 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3687 break;
c906108c
SS
3688 }
3689 }
3690 fip->fields = fip->fields->next;
3691 }
3692}
3693
c906108c
SS
3694/* Add a member function to the proper fieldlist. */
3695
3696static void
107d2387 3697dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 3698 struct type *type, struct dwarf2_cu *cu)
c906108c 3699{
e7c27a73 3700 struct objfile *objfile = cu->objfile;
c906108c
SS
3701 struct attribute *attr;
3702 struct fnfieldlist *flp;
3703 int i;
3704 struct fn_field *fnp;
3705 char *fieldname;
3706 char *physname;
3707 struct nextfnfield *new_fnfield;
3708
2df3850c 3709 /* Get name of member function. */
39cbfefa
DJ
3710 fieldname = dwarf2_name (die, cu);
3711 if (fieldname == NULL)
2df3850c 3712 return;
c906108c 3713
2df3850c 3714 /* Get the mangled name. */
e142c38c 3715 physname = dwarf2_linkage_name (die, cu);
c906108c
SS
3716
3717 /* Look up member function name in fieldlist. */
3718 for (i = 0; i < fip->nfnfields; i++)
3719 {
27bfe10e 3720 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
3721 break;
3722 }
3723
3724 /* Create new list element if necessary. */
3725 if (i < fip->nfnfields)
3726 flp = &fip->fnfieldlists[i];
3727 else
3728 {
3729 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3730 {
3731 fip->fnfieldlists = (struct fnfieldlist *)
3732 xrealloc (fip->fnfieldlists,
3733 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 3734 * sizeof (struct fnfieldlist));
c906108c 3735 if (fip->nfnfields == 0)
c13c43fd 3736 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
3737 }
3738 flp = &fip->fnfieldlists[fip->nfnfields];
3739 flp->name = fieldname;
3740 flp->length = 0;
3741 flp->head = NULL;
3742 fip->nfnfields++;
3743 }
3744
3745 /* Create a new member function field and chain it to the field list
3746 entry. */
3747 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 3748 make_cleanup (xfree, new_fnfield);
c906108c
SS
3749 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3750 new_fnfield->next = flp->head;
3751 flp->head = new_fnfield;
3752 flp->length++;
3753
3754 /* Fill in the member function field info. */
3755 fnp = &new_fnfield->fnfield;
d8151005
DJ
3756 /* The name is already allocated along with this objfile, so we don't
3757 need to duplicate it for the type. */
3758 fnp->physname = physname ? physname : "";
c906108c
SS
3759 fnp->type = alloc_type (objfile);
3760 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3761 {
c906108c 3762 int nparams = TYPE_NFIELDS (die->type);
c906108c 3763
e26fb1d7
DC
3764 /* TYPE is the domain of this method, and DIE->TYPE is the type
3765 of the method itself (TYPE_CODE_METHOD). */
3766 smash_to_method_type (fnp->type, type,
ad2f7632
DJ
3767 TYPE_TARGET_TYPE (die->type),
3768 TYPE_FIELDS (die->type),
3769 TYPE_NFIELDS (die->type),
3770 TYPE_VARARGS (die->type));
c906108c
SS
3771
3772 /* Handle static member functions.
c5aa993b
JM
3773 Dwarf2 has no clean way to discern C++ static and non-static
3774 member functions. G++ helps GDB by marking the first
3775 parameter for non-static member functions (which is the
3776 this pointer) as artificial. We obtain this information
3777 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
c906108c
SS
3778 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3779 fnp->voffset = VOFFSET_STATIC;
3780 }
3781 else
e2e0b3e5 3782 complaint (&symfile_complaints, _("member function type missing for '%s'"),
4d3c2250 3783 physname);
c906108c
SS
3784
3785 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 3786 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 3787 fnp->fcontext = die_containing_type (die, cu);
c906108c
SS
3788
3789 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3790 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3791
3792 /* Get accessibility. */
e142c38c 3793 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3794 if (attr)
3795 {
3796 switch (DW_UNSND (attr))
3797 {
c5aa993b
JM
3798 case DW_ACCESS_private:
3799 fnp->is_private = 1;
3800 break;
3801 case DW_ACCESS_protected:
3802 fnp->is_protected = 1;
3803 break;
c906108c
SS
3804 }
3805 }
3806
b02dede2 3807 /* Check for artificial methods. */
e142c38c 3808 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
3809 if (attr && DW_UNSND (attr) != 0)
3810 fnp->is_artificial = 1;
3811
c906108c 3812 /* Get index in virtual function table if it is a virtual member function. */
e142c38c 3813 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
c906108c 3814 if (attr)
8e19ed76
PS
3815 {
3816 /* Support the .debug_loc offsets */
3817 if (attr_form_is_block (attr))
3818 {
e7c27a73 3819 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
8e19ed76 3820 }
3690dd37 3821 else if (attr_form_is_section_offset (attr))
8e19ed76 3822 {
4d3c2250 3823 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
3824 }
3825 else
3826 {
4d3c2250
KB
3827 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3828 fieldname);
8e19ed76
PS
3829 }
3830 }
c906108c
SS
3831}
3832
3833/* Create the vector of member function fields, and attach it to the type. */
3834
3835static void
fba45db2 3836dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3837 struct dwarf2_cu *cu)
c906108c
SS
3838{
3839 struct fnfieldlist *flp;
3840 int total_length = 0;
3841 int i;
3842
3843 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3844 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3845 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3846
3847 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3848 {
3849 struct nextfnfield *nfp = flp->head;
3850 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3851 int k;
3852
3853 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3854 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3855 fn_flp->fn_fields = (struct fn_field *)
3856 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3857 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 3858 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
3859
3860 total_length += flp->length;
3861 }
3862
3863 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3864 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3865}
3866
1168df01
JB
3867/* Returns non-zero if NAME is the name of a vtable member in CU's
3868 language, zero otherwise. */
3869static int
3870is_vtable_name (const char *name, struct dwarf2_cu *cu)
3871{
3872 static const char vptr[] = "_vptr";
987504bb 3873 static const char vtable[] = "vtable";
1168df01 3874
987504bb
JJ
3875 /* Look for the C++ and Java forms of the vtable. */
3876 if ((cu->language == language_java
3877 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3878 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3879 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
3880 return 1;
3881
3882 return 0;
3883}
3884
c0dd20ea
DJ
3885/* GCC outputs unnamed structures that are really pointers to member
3886 functions, with the ABI-specified layout. If DIE (from CU) describes
3887 such a structure, set its type, and return nonzero. Otherwise return
61049d3b
DJ
3888 zero.
3889
3890 GCC shouldn't do this; it should just output pointer to member DIEs.
3891 This is GCC PR debug/28767. */
c0dd20ea
DJ
3892
3893static int
3894quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
3895{
3896 struct objfile *objfile = cu->objfile;
3897 struct type *type;
3898 struct die_info *pfn_die, *delta_die;
3899 struct attribute *pfn_name, *delta_name;
3900 struct type *pfn_type, *domain_type;
3901
3902 /* Check for a structure with no name and two children. */
3903 if (die->tag != DW_TAG_structure_type
3904 || dwarf2_attr (die, DW_AT_name, cu) != NULL
3905 || die->child == NULL
3906 || die->child->sibling == NULL
3907 || (die->child->sibling->sibling != NULL
3908 && die->child->sibling->sibling->tag != DW_TAG_padding))
3909 return 0;
3910
3911 /* Check for __pfn and __delta members. */
3912 pfn_die = die->child;
3913 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
3914 if (pfn_die->tag != DW_TAG_member
3915 || pfn_name == NULL
3916 || DW_STRING (pfn_name) == NULL
3917 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
3918 return 0;
3919
3920 delta_die = pfn_die->sibling;
3921 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
3922 if (delta_die->tag != DW_TAG_member
3923 || delta_name == NULL
3924 || DW_STRING (delta_name) == NULL
3925 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
3926 return 0;
3927
3928 /* Find the type of the method. */
3929 pfn_type = die_type (pfn_die, cu);
3930 if (pfn_type == NULL
3931 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
3932 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
3933 return 0;
3934
3935 /* Look for the "this" argument. */
3936 pfn_type = TYPE_TARGET_TYPE (pfn_type);
3937 if (TYPE_NFIELDS (pfn_type) == 0
3938 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
3939 return 0;
3940
3941 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
3942 type = alloc_type (objfile);
3943 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
3944 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
3945 TYPE_VARARGS (pfn_type));
0d5de010 3946 type = lookup_methodptr_type (type);
c0dd20ea
DJ
3947 set_die_type (die, type, cu);
3948
3949 return 1;
3950}
1168df01 3951
c906108c
SS
3952/* Called when we find the DIE that starts a structure or union scope
3953 (definition) to process all dies that define the members of the
3954 structure or union.
3955
3956 NOTE: we need to call struct_type regardless of whether or not the
3957 DIE has an at_name attribute, since it might be an anonymous
3958 structure or union. This gets the type entered into our set of
3959 user defined types.
3960
3961 However, if the structure is incomplete (an opaque struct/union)
3962 then suppress creating a symbol table entry for it since gdb only
3963 wants to find the one with the complete definition. Note that if
3964 it is complete, we just call new_symbol, which does it's own
3965 checking about whether the struct/union is anonymous or not (and
3966 suppresses creating a symbol table entry itself). */
3967
3968static void
134d01f1 3969read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3970{
e7c27a73 3971 struct objfile *objfile = cu->objfile;
c906108c
SS
3972 struct type *type;
3973 struct attribute *attr;
63d06c5c
DC
3974 const char *previous_prefix = processing_current_prefix;
3975 struct cleanup *back_to = NULL;
39cbfefa 3976 char *name;
c906108c 3977
134d01f1
DJ
3978 if (die->type)
3979 return;
3980
c0dd20ea
DJ
3981 if (quirk_gcc_member_function_pointer (die, cu))
3982 return;
c906108c 3983
c0dd20ea 3984 type = alloc_type (objfile);
c906108c 3985 INIT_CPLUS_SPECIFIC (type);
39cbfefa
DJ
3986 name = dwarf2_name (die, cu);
3987 if (name != NULL)
c906108c 3988 {
987504bb
JJ
3989 if (cu->language == language_cplus
3990 || cu->language == language_java)
63d06c5c 3991 {
8176b9b8
DC
3992 char *new_prefix = determine_class_name (die, cu);
3993 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3994 strlen (new_prefix),
3995 &objfile->objfile_obstack);
3996 back_to = make_cleanup (xfree, new_prefix);
63d06c5c
DC
3997 processing_current_prefix = new_prefix;
3998 }
3999 else
4000 {
d8151005
DJ
4001 /* The name is already allocated along with this objfile, so
4002 we don't need to duplicate it for the type. */
39cbfefa 4003 TYPE_TAG_NAME (type) = name;
63d06c5c 4004 }
c906108c
SS
4005 }
4006
4007 if (die->tag == DW_TAG_structure_type)
4008 {
4009 TYPE_CODE (type) = TYPE_CODE_STRUCT;
4010 }
4011 else if (die->tag == DW_TAG_union_type)
4012 {
4013 TYPE_CODE (type) = TYPE_CODE_UNION;
4014 }
4015 else
4016 {
4017 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
c5aa993b 4018 in gdbtypes.h. */
c906108c
SS
4019 TYPE_CODE (type) = TYPE_CODE_CLASS;
4020 }
4021
e142c38c 4022 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4023 if (attr)
4024 {
4025 TYPE_LENGTH (type) = DW_UNSND (attr);
4026 }
4027 else
4028 {
4029 TYPE_LENGTH (type) = 0;
4030 }
4031
d77b6808 4032 TYPE_FLAGS (type) |= TYPE_FLAG_STUB_SUPPORTED;
dc718098
JB
4033 if (die_is_declaration (die, cu))
4034 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
4035
c906108c
SS
4036 /* We need to add the type field to the die immediately so we don't
4037 infinitely recurse when dealing with pointers to the structure
4038 type within the structure itself. */
1c379e20 4039 set_die_type (die, type, cu);
c906108c 4040
e142c38c 4041 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
4042 {
4043 struct field_info fi;
4044 struct die_info *child_die;
4045 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
4046
4047 memset (&fi, 0, sizeof (struct field_info));
4048
639d11d3 4049 child_die = die->child;
c906108c
SS
4050
4051 while (child_die && child_die->tag)
4052 {
a9a9bd0f
DC
4053 if (child_die->tag == DW_TAG_member
4054 || child_die->tag == DW_TAG_variable)
c906108c 4055 {
a9a9bd0f
DC
4056 /* NOTE: carlton/2002-11-05: A C++ static data member
4057 should be a DW_TAG_member that is a declaration, but
4058 all versions of G++ as of this writing (so through at
4059 least 3.2.1) incorrectly generate DW_TAG_variable
4060 tags for them instead. */
e7c27a73 4061 dwarf2_add_field (&fi, child_die, cu);
c906108c 4062 }
8713b1b1 4063 else if (child_die->tag == DW_TAG_subprogram)
c906108c
SS
4064 {
4065 /* C++ member function. */
134d01f1 4066 read_type_die (child_die, cu);
e7c27a73 4067 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
4068 }
4069 else if (child_die->tag == DW_TAG_inheritance)
4070 {
4071 /* C++ base class field. */
e7c27a73 4072 dwarf2_add_field (&fi, child_die, cu);
c906108c 4073 }
c906108c
SS
4074 child_die = sibling_die (child_die);
4075 }
4076
4077 /* Attach fields and member functions to the type. */
4078 if (fi.nfields)
e7c27a73 4079 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
4080 if (fi.nfnfields)
4081 {
e7c27a73 4082 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 4083
c5aa993b 4084 /* Get the type which refers to the base class (possibly this
c906108c
SS
4085 class itself) which contains the vtable pointer for the current
4086 class from the DW_AT_containing_type attribute. */
4087
e142c38c 4088 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 4089 {
e7c27a73 4090 struct type *t = die_containing_type (die, cu);
c906108c
SS
4091
4092 TYPE_VPTR_BASETYPE (type) = t;
4093 if (type == t)
4094 {
c906108c
SS
4095 int i;
4096
4097 /* Our own class provides vtbl ptr. */
4098 for (i = TYPE_NFIELDS (t) - 1;
4099 i >= TYPE_N_BASECLASSES (t);
4100 --i)
4101 {
4102 char *fieldname = TYPE_FIELD_NAME (t, i);
4103
1168df01 4104 if (is_vtable_name (fieldname, cu))
c906108c
SS
4105 {
4106 TYPE_VPTR_FIELDNO (type) = i;
4107 break;
4108 }
4109 }
4110
4111 /* Complain if virtual function table field not found. */
4112 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 4113 complaint (&symfile_complaints,
e2e0b3e5 4114 _("virtual function table pointer not found when defining class '%s'"),
4d3c2250
KB
4115 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
4116 "");
c906108c
SS
4117 }
4118 else
4119 {
4120 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
4121 }
4122 }
f6235d4c
EZ
4123 else if (cu->producer
4124 && strncmp (cu->producer,
4125 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
4126 {
4127 /* The IBM XLC compiler does not provide direct indication
4128 of the containing type, but the vtable pointer is
4129 always named __vfp. */
4130
4131 int i;
4132
4133 for (i = TYPE_NFIELDS (type) - 1;
4134 i >= TYPE_N_BASECLASSES (type);
4135 --i)
4136 {
4137 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
4138 {
4139 TYPE_VPTR_FIELDNO (type) = i;
4140 TYPE_VPTR_BASETYPE (type) = type;
4141 break;
4142 }
4143 }
4144 }
c906108c
SS
4145 }
4146
c906108c
SS
4147 do_cleanups (back_to);
4148 }
63d06c5c
DC
4149
4150 processing_current_prefix = previous_prefix;
4151 if (back_to != NULL)
4152 do_cleanups (back_to);
c906108c
SS
4153}
4154
134d01f1
DJ
4155static void
4156process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
4157{
4158 struct objfile *objfile = cu->objfile;
4159 const char *previous_prefix = processing_current_prefix;
90aeadfc 4160 struct die_info *child_die = die->child;
c906108c 4161
134d01f1
DJ
4162 if (TYPE_TAG_NAME (die->type) != NULL)
4163 processing_current_prefix = TYPE_TAG_NAME (die->type);
c906108c 4164
90aeadfc
DC
4165 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
4166 snapshots) has been known to create a die giving a declaration
4167 for a class that has, as a child, a die giving a definition for a
4168 nested class. So we have to process our children even if the
4169 current die is a declaration. Normally, of course, a declaration
4170 won't have any children at all. */
134d01f1 4171
90aeadfc
DC
4172 while (child_die != NULL && child_die->tag)
4173 {
4174 if (child_die->tag == DW_TAG_member
4175 || child_die->tag == DW_TAG_variable
4176 || child_die->tag == DW_TAG_inheritance)
134d01f1 4177 {
90aeadfc 4178 /* Do nothing. */
134d01f1 4179 }
90aeadfc
DC
4180 else
4181 process_die (child_die, cu);
134d01f1 4182
90aeadfc 4183 child_die = sibling_die (child_die);
134d01f1
DJ
4184 }
4185
fa4028e9
JB
4186 /* Do not consider external references. According to the DWARF standard,
4187 these DIEs are identified by the fact that they have no byte_size
4188 attribute, and a declaration attribute. */
4189 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
4190 || !die_is_declaration (die, cu))
90aeadfc
DC
4191 new_symbol (die, die->type, cu);
4192
134d01f1
DJ
4193 processing_current_prefix = previous_prefix;
4194}
4195
4196/* Given a DW_AT_enumeration_type die, set its type. We do not
4197 complete the type's fields yet, or create any symbols. */
c906108c
SS
4198
4199static void
134d01f1 4200read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4201{
e7c27a73 4202 struct objfile *objfile = cu->objfile;
c906108c 4203 struct type *type;
c906108c 4204 struct attribute *attr;
39cbfefa 4205 char *name;
134d01f1
DJ
4206
4207 if (die->type)
4208 return;
c906108c
SS
4209
4210 type = alloc_type (objfile);
4211
4212 TYPE_CODE (type) = TYPE_CODE_ENUM;
39cbfefa
DJ
4213 name = dwarf2_name (die, cu);
4214 if (name != NULL)
c906108c 4215 {
63d06c5c
DC
4216 if (processing_has_namespace_info)
4217 {
987504bb
JJ
4218 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
4219 processing_current_prefix,
4220 name, cu);
63d06c5c
DC
4221 }
4222 else
4223 {
d8151005
DJ
4224 /* The name is already allocated along with this objfile, so
4225 we don't need to duplicate it for the type. */
4226 TYPE_TAG_NAME (type) = name;
63d06c5c 4227 }
c906108c
SS
4228 }
4229
e142c38c 4230 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4231 if (attr)
4232 {
4233 TYPE_LENGTH (type) = DW_UNSND (attr);
4234 }
4235 else
4236 {
4237 TYPE_LENGTH (type) = 0;
4238 }
4239
137033e9
JB
4240 /* The enumeration DIE can be incomplete. In Ada, any type can be
4241 declared as private in the package spec, and then defined only
4242 inside the package body. Such types are known as Taft Amendment
4243 Types. When another package uses such a type, an incomplete DIE
4244 may be generated by the compiler. */
02eb380e
JB
4245 if (die_is_declaration (die, cu))
4246 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
4247
1c379e20 4248 set_die_type (die, type, cu);
134d01f1
DJ
4249}
4250
8176b9b8 4251/* Determine the name of the type represented by DIE, which should be
987504bb 4252 a named C++ or Java compound type. Return the name in question; the caller
8176b9b8
DC
4253 is responsible for xfree()'ing it. */
4254
4255static char *
4256determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4257{
4258 struct cleanup *back_to = NULL;
4259 struct die_info *spec_die = die_specification (die, cu);
4260 char *new_prefix = NULL;
4261
4262 /* If this is the definition of a class that is declared by another
4263 die, then processing_current_prefix may not be accurate; see
4264 read_func_scope for a similar example. */
4265 if (spec_die != NULL)
4266 {
4267 char *specification_prefix = determine_prefix (spec_die, cu);
4268 processing_current_prefix = specification_prefix;
4269 back_to = make_cleanup (xfree, specification_prefix);
4270 }
4271
4272 /* If we don't have namespace debug info, guess the name by trying
4273 to demangle the names of members, just like we did in
72bf9492 4274 guess_structure_name. */
8176b9b8
DC
4275 if (!processing_has_namespace_info)
4276 {
4277 struct die_info *child;
4278
4279 for (child = die->child;
4280 child != NULL && child->tag != 0;
4281 child = sibling_die (child))
4282 {
4283 if (child->tag == DW_TAG_subprogram)
4284 {
31c27f77
JJ
4285 new_prefix
4286 = language_class_name_from_physname (cu->language_defn,
4287 dwarf2_linkage_name
8176b9b8
DC
4288 (child, cu));
4289
4290 if (new_prefix != NULL)
4291 break;
4292 }
4293 }
4294 }
4295
4296 if (new_prefix == NULL)
4297 {
4298 const char *name = dwarf2_name (die, cu);
987504bb
JJ
4299 new_prefix = typename_concat (NULL, processing_current_prefix,
4300 name ? name : "<<anonymous>>",
4301 cu);
8176b9b8
DC
4302 }
4303
4304 if (back_to != NULL)
4305 do_cleanups (back_to);
4306
4307 return new_prefix;
4308}
4309
134d01f1
DJ
4310/* Given a pointer to a die which begins an enumeration, process all
4311 the dies that define the members of the enumeration, and create the
4312 symbol for the enumeration type.
4313
4314 NOTE: We reverse the order of the element list. */
4315
4316static void
4317process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4318{
4319 struct objfile *objfile = cu->objfile;
4320 struct die_info *child_die;
4321 struct field *fields;
134d01f1
DJ
4322 struct symbol *sym;
4323 int num_fields;
4324 int unsigned_enum = 1;
39cbfefa 4325 char *name;
134d01f1 4326
c906108c
SS
4327 num_fields = 0;
4328 fields = NULL;
639d11d3 4329 if (die->child != NULL)
c906108c 4330 {
639d11d3 4331 child_die = die->child;
c906108c
SS
4332 while (child_die && child_die->tag)
4333 {
4334 if (child_die->tag != DW_TAG_enumerator)
4335 {
e7c27a73 4336 process_die (child_die, cu);
c906108c
SS
4337 }
4338 else
4339 {
39cbfefa
DJ
4340 name = dwarf2_name (child_die, cu);
4341 if (name)
c906108c 4342 {
134d01f1 4343 sym = new_symbol (child_die, die->type, cu);
c906108c
SS
4344 if (SYMBOL_VALUE (sym) < 0)
4345 unsigned_enum = 0;
4346
4347 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4348 {
4349 fields = (struct field *)
4350 xrealloc (fields,
4351 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 4352 * sizeof (struct field));
c906108c
SS
4353 }
4354
22abf04a 4355 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
c906108c
SS
4356 FIELD_TYPE (fields[num_fields]) = NULL;
4357 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4358 FIELD_BITSIZE (fields[num_fields]) = 0;
01ad7f36 4359 FIELD_STATIC_KIND (fields[num_fields]) = 0;
c906108c
SS
4360
4361 num_fields++;
4362 }
4363 }
4364
4365 child_die = sibling_die (child_die);
4366 }
4367
4368 if (num_fields)
4369 {
134d01f1
DJ
4370 TYPE_NFIELDS (die->type) = num_fields;
4371 TYPE_FIELDS (die->type) = (struct field *)
4372 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4373 memcpy (TYPE_FIELDS (die->type), fields,
c906108c 4374 sizeof (struct field) * num_fields);
b8c9b27d 4375 xfree (fields);
c906108c
SS
4376 }
4377 if (unsigned_enum)
134d01f1 4378 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
c906108c 4379 }
134d01f1
DJ
4380
4381 new_symbol (die, die->type, cu);
c906108c
SS
4382}
4383
4384/* Extract all information from a DW_TAG_array_type DIE and put it in
4385 the DIE's type field. For now, this only handles one dimensional
4386 arrays. */
4387
4388static void
e7c27a73 4389read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4390{
e7c27a73 4391 struct objfile *objfile = cu->objfile;
c906108c
SS
4392 struct die_info *child_die;
4393 struct type *type = NULL;
4394 struct type *element_type, *range_type, *index_type;
4395 struct type **range_types = NULL;
4396 struct attribute *attr;
4397 int ndim = 0;
4398 struct cleanup *back_to;
39cbfefa 4399 char *name;
c906108c
SS
4400
4401 /* Return if we've already decoded this type. */
4402 if (die->type)
4403 {
4404 return;
4405 }
4406
e7c27a73 4407 element_type = die_type (die, cu);
c906108c
SS
4408
4409 /* Irix 6.2 native cc creates array types without children for
4410 arrays with unspecified length. */
639d11d3 4411 if (die->child == NULL)
c906108c 4412 {
6ccb9162 4413 index_type = builtin_type_int32;
c906108c 4414 range_type = create_range_type (NULL, index_type, 0, -1);
1c379e20
DJ
4415 set_die_type (die, create_array_type (NULL, element_type, range_type),
4416 cu);
c906108c
SS
4417 return;
4418 }
4419
4420 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 4421 child_die = die->child;
c906108c
SS
4422 while (child_die && child_die->tag)
4423 {
4424 if (child_die->tag == DW_TAG_subrange_type)
4425 {
a02abb62 4426 read_subrange_type (child_die, cu);
c906108c 4427
a02abb62
JB
4428 if (child_die->type != NULL)
4429 {
4430 /* The range type was succesfully read. Save it for
4431 the array type creation. */
4432 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4433 {
4434 range_types = (struct type **)
4435 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4436 * sizeof (struct type *));
4437 if (ndim == 0)
4438 make_cleanup (free_current_contents, &range_types);
4439 }
4440 range_types[ndim++] = child_die->type;
4441 }
c906108c
SS
4442 }
4443 child_die = sibling_die (child_die);
4444 }
4445
4446 /* Dwarf2 dimensions are output from left to right, create the
4447 necessary array types in backwards order. */
7ca2d3a3 4448
c906108c 4449 type = element_type;
7ca2d3a3
DL
4450
4451 if (read_array_order (die, cu) == DW_ORD_col_major)
4452 {
4453 int i = 0;
4454 while (i < ndim)
4455 type = create_array_type (NULL, type, range_types[i++]);
4456 }
4457 else
4458 {
4459 while (ndim-- > 0)
4460 type = create_array_type (NULL, type, range_types[ndim]);
4461 }
c906108c 4462
f5f8a009
EZ
4463 /* Understand Dwarf2 support for vector types (like they occur on
4464 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4465 array type. This is not part of the Dwarf2/3 standard yet, but a
4466 custom vendor extension. The main difference between a regular
4467 array and the vector variant is that vectors are passed by value
4468 to functions. */
e142c38c 4469 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 4470 if (attr)
ea37ba09 4471 make_vector_type (type);
f5f8a009 4472
39cbfefa
DJ
4473 name = dwarf2_name (die, cu);
4474 if (name)
4475 TYPE_NAME (type) = name;
714e295e 4476
c906108c
SS
4477 do_cleanups (back_to);
4478
4479 /* Install the type in the die. */
1c379e20 4480 set_die_type (die, type, cu);
c906108c
SS
4481}
4482
7ca2d3a3
DL
4483static enum dwarf_array_dim_ordering
4484read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4485{
4486 struct attribute *attr;
4487
4488 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4489
4490 if (attr) return DW_SND (attr);
4491
4492 /*
4493 GNU F77 is a special case, as at 08/2004 array type info is the
4494 opposite order to the dwarf2 specification, but data is still
4495 laid out as per normal fortran.
4496
4497 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4498 version checking.
4499 */
4500
4501 if (cu->language == language_fortran &&
4502 cu->producer && strstr (cu->producer, "GNU F77"))
4503 {
4504 return DW_ORD_row_major;
4505 }
4506
4507 switch (cu->language_defn->la_array_ordering)
4508 {
4509 case array_column_major:
4510 return DW_ORD_col_major;
4511 case array_row_major:
4512 default:
4513 return DW_ORD_row_major;
4514 };
4515}
4516
72019c9c
GM
4517/* Extract all information from a DW_TAG_set_type DIE and put it in
4518 the DIE's type field. */
4519
4520static void
4521read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4522{
4523 if (die->type == NULL)
4524 die->type = create_set_type ((struct type *) NULL, die_type (die, cu));
4525}
7ca2d3a3 4526
c906108c
SS
4527/* First cut: install each common block member as a global variable. */
4528
4529static void
e7c27a73 4530read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4531{
4532 struct die_info *child_die;
4533 struct attribute *attr;
4534 struct symbol *sym;
4535 CORE_ADDR base = (CORE_ADDR) 0;
4536
e142c38c 4537 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
4538 if (attr)
4539 {
8e19ed76
PS
4540 /* Support the .debug_loc offsets */
4541 if (attr_form_is_block (attr))
4542 {
e7c27a73 4543 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76 4544 }
3690dd37 4545 else if (attr_form_is_section_offset (attr))
8e19ed76 4546 {
4d3c2250 4547 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
4548 }
4549 else
4550 {
4d3c2250
KB
4551 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4552 "common block member");
8e19ed76 4553 }
c906108c 4554 }
639d11d3 4555 if (die->child != NULL)
c906108c 4556 {
639d11d3 4557 child_die = die->child;
c906108c
SS
4558 while (child_die && child_die->tag)
4559 {
e7c27a73 4560 sym = new_symbol (child_die, NULL, cu);
e142c38c 4561 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
c906108c
SS
4562 if (attr)
4563 {
4564 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 4565 base + decode_locdesc (DW_BLOCK (attr), cu);
c906108c
SS
4566 add_symbol_to_list (sym, &global_symbols);
4567 }
4568 child_die = sibling_die (child_die);
4569 }
4570 }
4571}
4572
d9fa45fe
DC
4573/* Read a C++ namespace. */
4574
d9fa45fe 4575static void
e7c27a73 4576read_namespace (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 4577{
e7c27a73 4578 struct objfile *objfile = cu->objfile;
38d518c9 4579 const char *previous_prefix = processing_current_prefix;
63d06c5c 4580 const char *name;
9219021c
DC
4581 int is_anonymous;
4582 struct die_info *current_die;
987504bb 4583 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9219021c 4584
e142c38c 4585 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
4586
4587 /* Now build the name of the current namespace. */
4588
38d518c9 4589 if (previous_prefix[0] == '\0')
9219021c 4590 {
38d518c9 4591 processing_current_prefix = name;
9219021c
DC
4592 }
4593 else
4594 {
987504bb
JJ
4595 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4596 make_cleanup (xfree, temp_name);
38d518c9 4597 processing_current_prefix = temp_name;
9219021c
DC
4598 }
4599
5c4e30ca
DC
4600 /* Add a symbol associated to this if we haven't seen the namespace
4601 before. Also, add a using directive if it's an anonymous
4602 namespace. */
9219021c 4603
e142c38c 4604 if (dwarf2_extension (die, cu) == NULL)
5c4e30ca
DC
4605 {
4606 struct type *type;
4607
4608 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4609 this cast will hopefully become unnecessary. */
4610 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
38d518c9 4611 (char *) processing_current_prefix,
5c4e30ca
DC
4612 objfile);
4613 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4614
e7c27a73 4615 new_symbol (die, type, cu);
1c379e20 4616 set_die_type (die, type, cu);
5c4e30ca
DC
4617
4618 if (is_anonymous)
38d518c9
EZ
4619 cp_add_using_directive (processing_current_prefix,
4620 strlen (previous_prefix),
4621 strlen (processing_current_prefix));
5c4e30ca 4622 }
9219021c 4623
639d11d3 4624 if (die->child != NULL)
d9fa45fe 4625 {
639d11d3 4626 struct die_info *child_die = die->child;
d9fa45fe
DC
4627
4628 while (child_die && child_die->tag)
4629 {
e7c27a73 4630 process_die (child_die, cu);
d9fa45fe
DC
4631 child_die = sibling_die (child_die);
4632 }
4633 }
9219021c 4634
38d518c9 4635 processing_current_prefix = previous_prefix;
987504bb 4636 do_cleanups (back_to);
38d518c9
EZ
4637}
4638
4639/* Return the name of the namespace represented by DIE. Set
4640 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4641 namespace. */
4642
4643static const char *
e142c38c 4644namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
4645{
4646 struct die_info *current_die;
4647 const char *name = NULL;
4648
4649 /* Loop through the extensions until we find a name. */
4650
4651 for (current_die = die;
4652 current_die != NULL;
e142c38c 4653 current_die = dwarf2_extension (die, cu))
38d518c9 4654 {
e142c38c 4655 name = dwarf2_name (current_die, cu);
38d518c9
EZ
4656 if (name != NULL)
4657 break;
4658 }
4659
4660 /* Is it an anonymous namespace? */
4661
4662 *is_anonymous = (name == NULL);
4663 if (*is_anonymous)
4664 name = "(anonymous namespace)";
4665
4666 return name;
d9fa45fe
DC
4667}
4668
c906108c
SS
4669/* Extract all information from a DW_TAG_pointer_type DIE and add to
4670 the user defined type vector. */
4671
4672static void
e7c27a73 4673read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4674{
e7c27a73 4675 struct comp_unit_head *cu_header = &cu->header;
c906108c 4676 struct type *type;
8b2dbe47
KB
4677 struct attribute *attr_byte_size;
4678 struct attribute *attr_address_class;
4679 int byte_size, addr_class;
c906108c
SS
4680
4681 if (die->type)
4682 {
4683 return;
4684 }
4685
e7c27a73 4686 type = lookup_pointer_type (die_type (die, cu));
8b2dbe47 4687
e142c38c 4688 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
4689 if (attr_byte_size)
4690 byte_size = DW_UNSND (attr_byte_size);
c906108c 4691 else
8b2dbe47
KB
4692 byte_size = cu_header->addr_size;
4693
e142c38c 4694 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
4695 if (attr_address_class)
4696 addr_class = DW_UNSND (attr_address_class);
4697 else
4698 addr_class = DW_ADDR_none;
4699
4700 /* If the pointer size or address class is different than the
4701 default, create a type variant marked as such and set the
4702 length accordingly. */
4703 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 4704 {
849957d9 4705 if (gdbarch_address_class_type_flags_p (current_gdbarch))
8b2dbe47
KB
4706 {
4707 int type_flags;
4708
849957d9
UW
4709 type_flags = gdbarch_address_class_type_flags
4710 (current_gdbarch, byte_size, addr_class);
8b2dbe47
KB
4711 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4712 type = make_type_with_address_space (type, type_flags);
4713 }
4714 else if (TYPE_LENGTH (type) != byte_size)
4715 {
e2e0b3e5 4716 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
8b2dbe47
KB
4717 }
4718 else {
4719 /* Should we also complain about unhandled address classes? */
4720 }
c906108c 4721 }
8b2dbe47
KB
4722
4723 TYPE_LENGTH (type) = byte_size;
1c379e20 4724 set_die_type (die, type, cu);
c906108c
SS
4725}
4726
4727/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4728 the user defined type vector. */
4729
4730static void
e7c27a73 4731read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4732{
e7c27a73 4733 struct objfile *objfile = cu->objfile;
c906108c
SS
4734 struct type *type;
4735 struct type *to_type;
4736 struct type *domain;
4737
4738 if (die->type)
4739 {
4740 return;
4741 }
4742
e7c27a73
DJ
4743 to_type = die_type (die, cu);
4744 domain = die_containing_type (die, cu);
0d5de010
DJ
4745
4746 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
4747 type = lookup_methodptr_type (to_type);
4748 else
4749 type = lookup_memberptr_type (to_type, domain);
c906108c 4750
1c379e20 4751 set_die_type (die, type, cu);
c906108c
SS
4752}
4753
4754/* Extract all information from a DW_TAG_reference_type DIE and add to
4755 the user defined type vector. */
4756
4757static void
e7c27a73 4758read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4759{
e7c27a73 4760 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
4761 struct type *type;
4762 struct attribute *attr;
4763
4764 if (die->type)
4765 {
4766 return;
4767 }
4768
e7c27a73 4769 type = lookup_reference_type (die_type (die, cu));
e142c38c 4770 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4771 if (attr)
4772 {
4773 TYPE_LENGTH (type) = DW_UNSND (attr);
4774 }
4775 else
4776 {
107d2387 4777 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 4778 }
1c379e20 4779 set_die_type (die, type, cu);
c906108c
SS
4780}
4781
4782static void
e7c27a73 4783read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4784{
090c42a4
JB
4785 struct type *base_type;
4786
c906108c
SS
4787 if (die->type)
4788 {
4789 return;
4790 }
4791
e7c27a73 4792 base_type = die_type (die, cu);
1c379e20
DJ
4793 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4794 cu);
c906108c
SS
4795}
4796
4797static void
e7c27a73 4798read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4799{
090c42a4
JB
4800 struct type *base_type;
4801
c906108c
SS
4802 if (die->type)
4803 {
4804 return;
4805 }
4806
e7c27a73 4807 base_type = die_type (die, cu);
1c379e20
DJ
4808 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4809 cu);
c906108c
SS
4810}
4811
4812/* Extract all information from a DW_TAG_string_type DIE and add to
4813 the user defined type vector. It isn't really a user defined type,
4814 but it behaves like one, with other DIE's using an AT_user_def_type
4815 attribute to reference it. */
4816
4817static void
e7c27a73 4818read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4819{
e7c27a73 4820 struct objfile *objfile = cu->objfile;
c906108c
SS
4821 struct type *type, *range_type, *index_type, *char_type;
4822 struct attribute *attr;
4823 unsigned int length;
4824
4825 if (die->type)
4826 {
4827 return;
4828 }
4829
e142c38c 4830 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
4831 if (attr)
4832 {
4833 length = DW_UNSND (attr);
4834 }
4835 else
4836 {
b21b22e0 4837 /* check for the DW_AT_byte_size attribute */
e142c38c 4838 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
4839 if (attr)
4840 {
4841 length = DW_UNSND (attr);
4842 }
4843 else
4844 {
4845 length = 1;
4846 }
c906108c 4847 }
6ccb9162
UW
4848
4849 index_type = builtin_type_int32;
c906108c 4850 range_type = create_range_type (NULL, index_type, 1, length);
6ccb9162
UW
4851 type = create_string_type (NULL, range_type);
4852
1c379e20 4853 set_die_type (die, type, cu);
c906108c
SS
4854}
4855
4856/* Handle DIES due to C code like:
4857
4858 struct foo
c5aa993b
JM
4859 {
4860 int (*funcp)(int a, long l);
4861 int b;
4862 };
c906108c
SS
4863
4864 ('funcp' generates a DW_TAG_subroutine_type DIE)
c5aa993b 4865 */
c906108c
SS
4866
4867static void
e7c27a73 4868read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4869{
4870 struct type *type; /* Type that this function returns */
4871 struct type *ftype; /* Function that returns above type */
4872 struct attribute *attr;
4873
4874 /* Decode the type that this subroutine returns */
4875 if (die->type)
4876 {
4877 return;
4878 }
e7c27a73 4879 type = die_type (die, cu);
1326e61b 4880 ftype = make_function_type (type, (struct type **) 0);
c906108c 4881
5b8101ae 4882 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 4883 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 4884 if ((attr && (DW_UNSND (attr) != 0))
987504bb 4885 || cu->language == language_cplus
5b8101ae
PM
4886 || cu->language == language_java
4887 || cu->language == language_pascal)
c906108c
SS
4888 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4889
639d11d3 4890 if (die->child != NULL)
c906108c
SS
4891 {
4892 struct die_info *child_die;
4893 int nparams = 0;
4894 int iparams = 0;
4895
4896 /* Count the number of parameters.
4897 FIXME: GDB currently ignores vararg functions, but knows about
4898 vararg member functions. */
639d11d3 4899 child_die = die->child;
c906108c
SS
4900 while (child_die && child_die->tag)
4901 {
4902 if (child_die->tag == DW_TAG_formal_parameter)
4903 nparams++;
4904 else if (child_die->tag == DW_TAG_unspecified_parameters)
4905 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4906 child_die = sibling_die (child_die);
4907 }
4908
4909 /* Allocate storage for parameters and fill them in. */
4910 TYPE_NFIELDS (ftype) = nparams;
4911 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 4912 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 4913
639d11d3 4914 child_die = die->child;
c906108c
SS
4915 while (child_die && child_die->tag)
4916 {
4917 if (child_die->tag == DW_TAG_formal_parameter)
4918 {
4919 /* Dwarf2 has no clean way to discern C++ static and non-static
c5aa993b
JM
4920 member functions. G++ helps GDB by marking the first
4921 parameter for non-static member functions (which is the
4922 this pointer) as artificial. We pass this information
4923 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
e142c38c 4924 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
4925 if (attr)
4926 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4927 else
4928 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
e7c27a73 4929 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
c906108c
SS
4930 iparams++;
4931 }
4932 child_die = sibling_die (child_die);
4933 }
4934 }
4935
1c379e20 4936 set_die_type (die, ftype, cu);
c906108c
SS
4937}
4938
4939static void
e7c27a73 4940read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4941{
e7c27a73 4942 struct objfile *objfile = cu->objfile;
2f038fcb
FF
4943 struct attribute *attr;
4944 char *name = NULL;
c906108c
SS
4945
4946 if (!die->type)
4947 {
39cbfefa 4948 name = dwarf2_name (die, cu);
1c379e20
DJ
4949 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4950 TYPE_FLAG_TARGET_STUB, name, objfile),
4951 cu);
e7c27a73 4952 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
c906108c
SS
4953 }
4954}
4955
4956/* Find a representation of a given base type and install
4957 it in the TYPE field of the die. */
4958
4959static void
e7c27a73 4960read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4961{
e7c27a73 4962 struct objfile *objfile = cu->objfile;
c906108c
SS
4963 struct type *type;
4964 struct attribute *attr;
4965 int encoding = 0, size = 0;
39cbfefa 4966 char *name;
6ccb9162
UW
4967 enum type_code code = TYPE_CODE_INT;
4968 int type_flags = 0;
4969 struct type *target_type = NULL;
c906108c
SS
4970
4971 /* If we've already decoded this die, this is a no-op. */
4972 if (die->type)
4973 {
4974 return;
4975 }
4976
e142c38c 4977 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
4978 if (attr)
4979 {
4980 encoding = DW_UNSND (attr);
4981 }
e142c38c 4982 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4983 if (attr)
4984 {
4985 size = DW_UNSND (attr);
4986 }
39cbfefa 4987 name = dwarf2_name (die, cu);
6ccb9162 4988 if (!name)
c906108c 4989 {
6ccb9162
UW
4990 complaint (&symfile_complaints,
4991 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 4992 }
6ccb9162
UW
4993
4994 switch (encoding)
c906108c 4995 {
6ccb9162
UW
4996 case DW_ATE_address:
4997 /* Turn DW_ATE_address into a void * pointer. */
4998 code = TYPE_CODE_PTR;
4999 type_flags |= TYPE_FLAG_UNSIGNED;
5000 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
5001 break;
5002 case DW_ATE_boolean:
5003 code = TYPE_CODE_BOOL;
5004 type_flags |= TYPE_FLAG_UNSIGNED;
5005 break;
5006 case DW_ATE_complex_float:
5007 code = TYPE_CODE_COMPLEX;
5008 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
5009 break;
5010 case DW_ATE_decimal_float:
5011 code = TYPE_CODE_DECFLOAT;
5012 break;
5013 case DW_ATE_float:
5014 code = TYPE_CODE_FLT;
5015 break;
5016 case DW_ATE_signed:
5017 break;
5018 case DW_ATE_unsigned:
5019 type_flags |= TYPE_FLAG_UNSIGNED;
5020 break;
5021 case DW_ATE_signed_char:
1760d9d5 5022 if (cu->language == language_ada || cu->language == language_m2)
6ccb9162
UW
5023 code = TYPE_CODE_CHAR;
5024 break;
5025 case DW_ATE_unsigned_char:
1760d9d5 5026 if (cu->language == language_ada || cu->language == language_m2)
6ccb9162
UW
5027 code = TYPE_CODE_CHAR;
5028 type_flags |= TYPE_FLAG_UNSIGNED;
5029 break;
5030 default:
5031 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
5032 dwarf_type_encoding_name (encoding));
5033 break;
c906108c 5034 }
6ccb9162
UW
5035
5036 type = init_type (code, size, type_flags, name, objfile);
5037 TYPE_TARGET_TYPE (type) = target_type;
5038
1c379e20 5039 set_die_type (die, type, cu);
c906108c
SS
5040}
5041
a02abb62
JB
5042/* Read the given DW_AT_subrange DIE. */
5043
5044static void
5045read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
5046{
5047 struct type *base_type;
5048 struct type *range_type;
5049 struct attribute *attr;
5050 int low = 0;
5051 int high = -1;
39cbfefa 5052 char *name;
a02abb62
JB
5053
5054 /* If we have already decoded this die, then nothing more to do. */
5055 if (die->type)
5056 return;
5057
5058 base_type = die_type (die, cu);
3d1f72c2 5059 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
a02abb62
JB
5060 {
5061 complaint (&symfile_complaints,
e2e0b3e5 5062 _("DW_AT_type missing from DW_TAG_subrange_type"));
17a912b6 5063 base_type
6ccb9162
UW
5064 = init_type (TYPE_CODE_INT, gdbarch_addr_bit (current_gdbarch) / 8,
5065 0, NULL, cu->objfile);
a02abb62
JB
5066 }
5067
e142c38c 5068 if (cu->language == language_fortran)
a02abb62
JB
5069 {
5070 /* FORTRAN implies a lower bound of 1, if not given. */
5071 low = 1;
5072 }
5073
dd5e6932
DJ
5074 /* FIXME: For variable sized arrays either of these could be
5075 a variable rather than a constant value. We'll allow it,
5076 but we don't know how to handle it. */
e142c38c 5077 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
5078 if (attr)
5079 low = dwarf2_get_attr_constant_value (attr, 0);
5080
e142c38c 5081 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62
JB
5082 if (attr)
5083 {
5084 if (attr->form == DW_FORM_block1)
5085 {
5086 /* GCC encodes arrays with unspecified or dynamic length
5087 with a DW_FORM_block1 attribute.
5088 FIXME: GDB does not yet know how to handle dynamic
5089 arrays properly, treat them as arrays with unspecified
5090 length for now.
5091
5092 FIXME: jimb/2003-09-22: GDB does not really know
5093 how to handle arrays of unspecified length
5094 either; we just represent them as zero-length
5095 arrays. Choose an appropriate upper bound given
5096 the lower bound we've computed above. */
5097 high = low - 1;
5098 }
5099 else
5100 high = dwarf2_get_attr_constant_value (attr, 1);
5101 }
5102
5103 range_type = create_range_type (NULL, base_type, low, high);
5104
39cbfefa
DJ
5105 name = dwarf2_name (die, cu);
5106 if (name)
5107 TYPE_NAME (range_type) = name;
a02abb62 5108
e142c38c 5109 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
5110 if (attr)
5111 TYPE_LENGTH (range_type) = DW_UNSND (attr);
5112
1c379e20 5113 set_die_type (die, range_type, cu);
a02abb62
JB
5114}
5115
81a17f79
JB
5116static void
5117read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
5118{
5119 struct type *type;
81a17f79
JB
5120
5121 if (die->type)
5122 return;
5123
5124 /* For now, we only support the C meaning of an unspecified type: void. */
5125
39cbfefa 5126 type = init_type (TYPE_CODE_VOID, 0, 0, dwarf2_name (die, cu),
81a17f79
JB
5127 cu->objfile);
5128
5129 set_die_type (die, type, cu);
5130}
a02abb62 5131
c906108c
SS
5132/* Read a whole compilation unit into a linked list of dies. */
5133
f9aca02d 5134static struct die_info *
fe1b8b76 5135read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
c906108c 5136{
e7c27a73 5137 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
639d11d3
DC
5138}
5139
5140/* Read a single die and all its descendents. Set the die's sibling
5141 field to NULL; set other fields in the die correctly, and set all
5142 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
5143 location of the info_ptr after reading all of those dies. PARENT
5144 is the parent of the die in question. */
5145
5146static struct die_info *
fe1b8b76 5147read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 5148 struct dwarf2_cu *cu,
fe1b8b76 5149 gdb_byte **new_info_ptr,
639d11d3
DC
5150 struct die_info *parent)
5151{
5152 struct die_info *die;
fe1b8b76 5153 gdb_byte *cur_ptr;
639d11d3
DC
5154 int has_children;
5155
e7c27a73 5156 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
10b3939b 5157 store_in_ref_table (die->offset, die, cu);
639d11d3
DC
5158
5159 if (has_children)
5160 {
e7c27a73 5161 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
639d11d3
DC
5162 new_info_ptr, die);
5163 }
5164 else
5165 {
5166 die->child = NULL;
5167 *new_info_ptr = cur_ptr;
5168 }
5169
5170 die->sibling = NULL;
5171 die->parent = parent;
5172 return die;
5173}
5174
5175/* Read a die, all of its descendents, and all of its siblings; set
5176 all of the fields of all of the dies correctly. Arguments are as
5177 in read_die_and_children. */
5178
5179static struct die_info *
fe1b8b76 5180read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 5181 struct dwarf2_cu *cu,
fe1b8b76 5182 gdb_byte **new_info_ptr,
639d11d3
DC
5183 struct die_info *parent)
5184{
5185 struct die_info *first_die, *last_sibling;
fe1b8b76 5186 gdb_byte *cur_ptr;
639d11d3 5187
c906108c 5188 cur_ptr = info_ptr;
639d11d3
DC
5189 first_die = last_sibling = NULL;
5190
5191 while (1)
c906108c 5192 {
639d11d3 5193 struct die_info *die
e7c27a73 5194 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
639d11d3
DC
5195
5196 if (!first_die)
c906108c 5197 {
639d11d3 5198 first_die = die;
c906108c 5199 }
639d11d3 5200 else
c906108c 5201 {
639d11d3 5202 last_sibling->sibling = die;
c906108c
SS
5203 }
5204
639d11d3 5205 if (die->tag == 0)
c906108c 5206 {
639d11d3
DC
5207 *new_info_ptr = cur_ptr;
5208 return first_die;
c906108c
SS
5209 }
5210 else
5211 {
639d11d3 5212 last_sibling = die;
c906108c
SS
5213 }
5214 }
c906108c
SS
5215}
5216
5217/* Free a linked list of dies. */
5218
5219static void
fba45db2 5220free_die_list (struct die_info *dies)
c906108c
SS
5221{
5222 struct die_info *die, *next;
5223
5224 die = dies;
5225 while (die)
5226 {
639d11d3
DC
5227 if (die->child != NULL)
5228 free_die_list (die->child);
5229 next = die->sibling;
b8c9b27d
KB
5230 xfree (die->attrs);
5231 xfree (die);
c906108c
SS
5232 die = next;
5233 }
5234}
5235
5236/* Read the contents of the section at OFFSET and of size SIZE from the
8b92e4d5 5237 object file specified by OBJFILE into the objfile_obstack and return it. */
c906108c 5238
fe1b8b76 5239gdb_byte *
188dd5d6 5240dwarf2_read_section (struct objfile *objfile, asection *sectp)
c906108c
SS
5241{
5242 bfd *abfd = objfile->obfd;
fe1b8b76 5243 gdb_byte *buf, *retbuf;
2c500098 5244 bfd_size_type size = bfd_get_section_size (sectp);
c906108c
SS
5245
5246 if (size == 0)
5247 return NULL;
5248
fe1b8b76
JB
5249 buf = obstack_alloc (&objfile->objfile_obstack, size);
5250 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
086df311
DJ
5251 if (retbuf != NULL)
5252 return retbuf;
5253
188dd5d6
DJ
5254 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5255 || bfd_bread (buf, size, abfd) != size)
8a3fe4f8 5256 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
188dd5d6
DJ
5257 bfd_get_filename (abfd));
5258
c906108c
SS
5259 return buf;
5260}
5261
5262/* In DWARF version 2, the description of the debugging information is
5263 stored in a separate .debug_abbrev section. Before we read any
5264 dies from a section we read in all abbreviations and install them
72bf9492
DJ
5265 in a hash table. This function also sets flags in CU describing
5266 the data found in the abbrev table. */
c906108c
SS
5267
5268static void
e7c27a73 5269dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 5270{
e7c27a73 5271 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 5272 gdb_byte *abbrev_ptr;
c906108c
SS
5273 struct abbrev_info *cur_abbrev;
5274 unsigned int abbrev_number, bytes_read, abbrev_name;
5275 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
5276 struct attr_abbrev *cur_attrs;
5277 unsigned int allocated_attrs;
c906108c 5278
57349743 5279 /* Initialize dwarf2 abbrevs */
f3dd6933
DJ
5280 obstack_init (&cu->abbrev_obstack);
5281 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5282 (ABBREV_HASH_SIZE
5283 * sizeof (struct abbrev_info *)));
5284 memset (cu->dwarf2_abbrevs, 0,
5285 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 5286
6502dd73 5287 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
c906108c
SS
5288 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5289 abbrev_ptr += bytes_read;
5290
f3dd6933
DJ
5291 allocated_attrs = ATTR_ALLOC_CHUNK;
5292 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5293
c906108c
SS
5294 /* loop until we reach an abbrev number of 0 */
5295 while (abbrev_number)
5296 {
f3dd6933 5297 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
5298
5299 /* read in abbrev header */
5300 cur_abbrev->number = abbrev_number;
5301 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5302 abbrev_ptr += bytes_read;
5303 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5304 abbrev_ptr += 1;
5305
72bf9492
DJ
5306 if (cur_abbrev->tag == DW_TAG_namespace)
5307 cu->has_namespace_info = 1;
5308
c906108c
SS
5309 /* now read in declarations */
5310 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5311 abbrev_ptr += bytes_read;
5312 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5313 abbrev_ptr += bytes_read;
5314 while (abbrev_name)
5315 {
f3dd6933 5316 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 5317 {
f3dd6933
DJ
5318 allocated_attrs += ATTR_ALLOC_CHUNK;
5319 cur_attrs
5320 = xrealloc (cur_attrs, (allocated_attrs
5321 * sizeof (struct attr_abbrev)));
c906108c 5322 }
ae038cb0
DJ
5323
5324 /* Record whether this compilation unit might have
5325 inter-compilation-unit references. If we don't know what form
5326 this attribute will have, then it might potentially be a
5327 DW_FORM_ref_addr, so we conservatively expect inter-CU
5328 references. */
5329
5330 if (abbrev_form == DW_FORM_ref_addr
5331 || abbrev_form == DW_FORM_indirect)
5332 cu->has_form_ref_addr = 1;
5333
f3dd6933
DJ
5334 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5335 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
5336 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5337 abbrev_ptr += bytes_read;
5338 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5339 abbrev_ptr += bytes_read;
5340 }
5341
f3dd6933
DJ
5342 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5343 (cur_abbrev->num_attrs
5344 * sizeof (struct attr_abbrev)));
5345 memcpy (cur_abbrev->attrs, cur_attrs,
5346 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5347
c906108c 5348 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
5349 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5350 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
5351
5352 /* Get next abbreviation.
5353 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
5354 always properly terminated with an abbrev number of 0.
5355 Exit loop if we encounter an abbreviation which we have
5356 already read (which means we are about to read the abbreviations
5357 for the next compile unit) or if the end of the abbreviation
5358 table is reached. */
6502dd73
DJ
5359 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5360 >= dwarf2_per_objfile->abbrev_size)
c906108c
SS
5361 break;
5362 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5363 abbrev_ptr += bytes_read;
e7c27a73 5364 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
5365 break;
5366 }
f3dd6933
DJ
5367
5368 xfree (cur_attrs);
c906108c
SS
5369}
5370
f3dd6933 5371/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 5372
c906108c 5373static void
f3dd6933 5374dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 5375{
f3dd6933 5376 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 5377
f3dd6933
DJ
5378 obstack_free (&cu->abbrev_obstack, NULL);
5379 cu->dwarf2_abbrevs = NULL;
c906108c
SS
5380}
5381
5382/* Lookup an abbrev_info structure in the abbrev hash table. */
5383
5384static struct abbrev_info *
e7c27a73 5385dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
5386{
5387 unsigned int hash_number;
5388 struct abbrev_info *abbrev;
5389
5390 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 5391 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
5392
5393 while (abbrev)
5394 {
5395 if (abbrev->number == number)
5396 return abbrev;
5397 else
5398 abbrev = abbrev->next;
5399 }
5400 return NULL;
5401}
5402
72bf9492
DJ
5403/* Returns nonzero if TAG represents a type that we might generate a partial
5404 symbol for. */
5405
5406static int
5407is_type_tag_for_partial (int tag)
5408{
5409 switch (tag)
5410 {
5411#if 0
5412 /* Some types that would be reasonable to generate partial symbols for,
5413 that we don't at present. */
5414 case DW_TAG_array_type:
5415 case DW_TAG_file_type:
5416 case DW_TAG_ptr_to_member_type:
5417 case DW_TAG_set_type:
5418 case DW_TAG_string_type:
5419 case DW_TAG_subroutine_type:
5420#endif
5421 case DW_TAG_base_type:
5422 case DW_TAG_class_type:
680b30c7 5423 case DW_TAG_interface_type:
72bf9492
DJ
5424 case DW_TAG_enumeration_type:
5425 case DW_TAG_structure_type:
5426 case DW_TAG_subrange_type:
5427 case DW_TAG_typedef:
5428 case DW_TAG_union_type:
5429 return 1;
5430 default:
5431 return 0;
5432 }
5433}
5434
5435/* Load all DIEs that are interesting for partial symbols into memory. */
5436
5437static struct partial_die_info *
fe1b8b76 5438load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
72bf9492
DJ
5439 struct dwarf2_cu *cu)
5440{
5441 struct partial_die_info *part_die;
5442 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5443 struct abbrev_info *abbrev;
5444 unsigned int bytes_read;
5afb4e99 5445 unsigned int load_all = 0;
72bf9492
DJ
5446
5447 int nesting_level = 1;
5448
5449 parent_die = NULL;
5450 last_die = NULL;
5451
5afb4e99
DJ
5452 if (cu->per_cu && cu->per_cu->load_all_dies)
5453 load_all = 1;
5454
72bf9492
DJ
5455 cu->partial_dies
5456 = htab_create_alloc_ex (cu->header.length / 12,
5457 partial_die_hash,
5458 partial_die_eq,
5459 NULL,
5460 &cu->comp_unit_obstack,
5461 hashtab_obstack_allocate,
5462 dummy_obstack_deallocate);
5463
5464 part_die = obstack_alloc (&cu->comp_unit_obstack,
5465 sizeof (struct partial_die_info));
5466
5467 while (1)
5468 {
5469 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5470
5471 /* A NULL abbrev means the end of a series of children. */
5472 if (abbrev == NULL)
5473 {
5474 if (--nesting_level == 0)
5475 {
5476 /* PART_DIE was probably the last thing allocated on the
5477 comp_unit_obstack, so we could call obstack_free
5478 here. We don't do that because the waste is small,
5479 and will be cleaned up when we're done with this
5480 compilation unit. This way, we're also more robust
5481 against other users of the comp_unit_obstack. */
5482 return first_die;
5483 }
5484 info_ptr += bytes_read;
5485 last_die = parent_die;
5486 parent_die = parent_die->die_parent;
5487 continue;
5488 }
5489
5afb4e99
DJ
5490 /* Check whether this DIE is interesting enough to save. Normally
5491 we would not be interested in members here, but there may be
5492 later variables referencing them via DW_AT_specification (for
5493 static members). */
5494 if (!load_all
5495 && !is_type_tag_for_partial (abbrev->tag)
72bf9492
DJ
5496 && abbrev->tag != DW_TAG_enumerator
5497 && abbrev->tag != DW_TAG_subprogram
5498 && abbrev->tag != DW_TAG_variable
5afb4e99
DJ
5499 && abbrev->tag != DW_TAG_namespace
5500 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
5501 {
5502 /* Otherwise we skip to the next sibling, if any. */
5503 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5504 continue;
5505 }
5506
5507 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5508 abfd, info_ptr, cu);
5509
5510 /* This two-pass algorithm for processing partial symbols has a
5511 high cost in cache pressure. Thus, handle some simple cases
5512 here which cover the majority of C partial symbols. DIEs
5513 which neither have specification tags in them, nor could have
5514 specification tags elsewhere pointing at them, can simply be
5515 processed and discarded.
5516
5517 This segment is also optional; scan_partial_symbols and
5518 add_partial_symbol will handle these DIEs if we chain
5519 them in normally. When compilers which do not emit large
5520 quantities of duplicate debug information are more common,
5521 this code can probably be removed. */
5522
5523 /* Any complete simple types at the top level (pretty much all
5524 of them, for a language without namespaces), can be processed
5525 directly. */
5526 if (parent_die == NULL
5527 && part_die->has_specification == 0
5528 && part_die->is_declaration == 0
5529 && (part_die->tag == DW_TAG_typedef
5530 || part_die->tag == DW_TAG_base_type
5531 || part_die->tag == DW_TAG_subrange_type))
5532 {
5533 if (building_psymtab && part_die->name != NULL)
5534 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5535 VAR_DOMAIN, LOC_TYPEDEF,
5536 &cu->objfile->static_psymbols,
5537 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5538 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5539 continue;
5540 }
5541
5542 /* If we're at the second level, and we're an enumerator, and
5543 our parent has no specification (meaning possibly lives in a
5544 namespace elsewhere), then we can add the partial symbol now
5545 instead of queueing it. */
5546 if (part_die->tag == DW_TAG_enumerator
5547 && parent_die != NULL
5548 && parent_die->die_parent == NULL
5549 && parent_die->tag == DW_TAG_enumeration_type
5550 && parent_die->has_specification == 0)
5551 {
5552 if (part_die->name == NULL)
e2e0b3e5 5553 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
72bf9492
DJ
5554 else if (building_psymtab)
5555 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5556 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
5557 (cu->language == language_cplus
5558 || cu->language == language_java)
72bf9492
DJ
5559 ? &cu->objfile->global_psymbols
5560 : &cu->objfile->static_psymbols,
5561 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5562
5563 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5564 continue;
5565 }
5566
5567 /* We'll save this DIE so link it in. */
5568 part_die->die_parent = parent_die;
5569 part_die->die_sibling = NULL;
5570 part_die->die_child = NULL;
5571
5572 if (last_die && last_die == parent_die)
5573 last_die->die_child = part_die;
5574 else if (last_die)
5575 last_die->die_sibling = part_die;
5576
5577 last_die = part_die;
5578
5579 if (first_die == NULL)
5580 first_die = part_die;
5581
5582 /* Maybe add the DIE to the hash table. Not all DIEs that we
5583 find interesting need to be in the hash table, because we
5584 also have the parent/sibling/child chains; only those that we
5585 might refer to by offset later during partial symbol reading.
5586
5587 For now this means things that might have be the target of a
5588 DW_AT_specification, DW_AT_abstract_origin, or
5589 DW_AT_extension. DW_AT_extension will refer only to
5590 namespaces; DW_AT_abstract_origin refers to functions (and
5591 many things under the function DIE, but we do not recurse
5592 into function DIEs during partial symbol reading) and
5593 possibly variables as well; DW_AT_specification refers to
5594 declarations. Declarations ought to have the DW_AT_declaration
5595 flag. It happens that GCC forgets to put it in sometimes, but
5596 only for functions, not for types.
5597
5598 Adding more things than necessary to the hash table is harmless
5599 except for the performance cost. Adding too few will result in
5afb4e99
DJ
5600 wasted time in find_partial_die, when we reread the compilation
5601 unit with load_all_dies set. */
72bf9492 5602
5afb4e99
DJ
5603 if (load_all
5604 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
5605 || abbrev->tag == DW_TAG_variable
5606 || abbrev->tag == DW_TAG_namespace
5607 || part_die->is_declaration)
5608 {
5609 void **slot;
5610
5611 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5612 part_die->offset, INSERT);
5613 *slot = part_die;
5614 }
5615
5616 part_die = obstack_alloc (&cu->comp_unit_obstack,
5617 sizeof (struct partial_die_info));
5618
5619 /* For some DIEs we want to follow their children (if any). For C
5620 we have no reason to follow the children of structures; for other
5621 languages we have to, both so that we can get at method physnames
5622 to infer fully qualified class names, and for DW_AT_specification. */
5623 if (last_die->has_children
5afb4e99
DJ
5624 && (load_all
5625 || last_die->tag == DW_TAG_namespace
72bf9492
DJ
5626 || last_die->tag == DW_TAG_enumeration_type
5627 || (cu->language != language_c
5628 && (last_die->tag == DW_TAG_class_type
680b30c7 5629 || last_die->tag == DW_TAG_interface_type
72bf9492
DJ
5630 || last_die->tag == DW_TAG_structure_type
5631 || last_die->tag == DW_TAG_union_type))))
5632 {
5633 nesting_level++;
5634 parent_die = last_die;
5635 continue;
5636 }
5637
5638 /* Otherwise we skip to the next sibling, if any. */
5639 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5640
5641 /* Back to the top, do it again. */
5642 }
5643}
5644
c906108c
SS
5645/* Read a minimal amount of information into the minimal die structure. */
5646
fe1b8b76 5647static gdb_byte *
72bf9492
DJ
5648read_partial_die (struct partial_die_info *part_die,
5649 struct abbrev_info *abbrev,
5650 unsigned int abbrev_len, bfd *abfd,
fe1b8b76 5651 gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 5652{
72bf9492 5653 unsigned int bytes_read, i;
c906108c 5654 struct attribute attr;
c5aa993b 5655 int has_low_pc_attr = 0;
c906108c
SS
5656 int has_high_pc_attr = 0;
5657
72bf9492 5658 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 5659
6502dd73 5660 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
72bf9492
DJ
5661
5662 info_ptr += abbrev_len;
5663
5664 if (abbrev == NULL)
5665 return info_ptr;
5666
c906108c
SS
5667 part_die->tag = abbrev->tag;
5668 part_die->has_children = abbrev->has_children;
c906108c
SS
5669
5670 for (i = 0; i < abbrev->num_attrs; ++i)
5671 {
e7c27a73 5672 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
5673
5674 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 5675 partial symbol table. */
c906108c
SS
5676 switch (attr.name)
5677 {
5678 case DW_AT_name:
5679
5680 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5681 if (part_die->name == NULL)
5682 part_die->name = DW_STRING (&attr);
5683 break;
57c22c6c
BR
5684 case DW_AT_comp_dir:
5685 if (part_die->dirname == NULL)
5686 part_die->dirname = DW_STRING (&attr);
5687 break;
c906108c
SS
5688 case DW_AT_MIPS_linkage_name:
5689 part_die->name = DW_STRING (&attr);
5690 break;
5691 case DW_AT_low_pc:
5692 has_low_pc_attr = 1;
5693 part_die->lowpc = DW_ADDR (&attr);
5694 break;
5695 case DW_AT_high_pc:
5696 has_high_pc_attr = 1;
5697 part_die->highpc = DW_ADDR (&attr);
5698 break;
43039443
JK
5699 case DW_AT_ranges:
5700 if (dwarf2_ranges_read (DW_UNSND (&attr), &part_die->lowpc,
5701 &part_die->highpc, cu))
5702 has_low_pc_attr = has_high_pc_attr = 1;
5703 break;
c906108c 5704 case DW_AT_location:
8e19ed76
PS
5705 /* Support the .debug_loc offsets */
5706 if (attr_form_is_block (&attr))
5707 {
5708 part_die->locdesc = DW_BLOCK (&attr);
5709 }
3690dd37 5710 else if (attr_form_is_section_offset (&attr))
8e19ed76 5711 {
4d3c2250 5712 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
5713 }
5714 else
5715 {
4d3c2250
KB
5716 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5717 "partial symbol information");
8e19ed76 5718 }
c906108c
SS
5719 break;
5720 case DW_AT_language:
5721 part_die->language = DW_UNSND (&attr);
5722 break;
5723 case DW_AT_external:
5724 part_die->is_external = DW_UNSND (&attr);
5725 break;
5726 case DW_AT_declaration:
5727 part_die->is_declaration = DW_UNSND (&attr);
5728 break;
5729 case DW_AT_type:
5730 part_die->has_type = 1;
5731 break;
5732 case DW_AT_abstract_origin:
5733 case DW_AT_specification:
72bf9492
DJ
5734 case DW_AT_extension:
5735 part_die->has_specification = 1;
5736 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
c906108c
SS
5737 break;
5738 case DW_AT_sibling:
5739 /* Ignore absolute siblings, they might point outside of
5740 the current compile unit. */
5741 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 5742 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
c906108c 5743 else
6502dd73
DJ
5744 part_die->sibling = dwarf2_per_objfile->info_buffer
5745 + dwarf2_get_ref_die_offset (&attr, cu);
c906108c 5746 break;
aaa75496
JB
5747 case DW_AT_stmt_list:
5748 part_die->has_stmt_list = 1;
5749 part_die->line_offset = DW_UNSND (&attr);
5750 break;
fa4028e9
JB
5751 case DW_AT_byte_size:
5752 part_die->has_byte_size = 1;
5753 break;
68511cec
CES
5754 case DW_AT_calling_convention:
5755 /* DWARF doesn't provide a way to identify a program's source-level
5756 entry point. DW_AT_calling_convention attributes are only meant
5757 to describe functions' calling conventions.
5758
5759 However, because it's a necessary piece of information in
5760 Fortran, and because DW_CC_program is the only piece of debugging
5761 information whose definition refers to a 'main program' at all,
5762 several compilers have begun marking Fortran main programs with
5763 DW_CC_program --- even when those functions use the standard
5764 calling conventions.
5765
5766 So until DWARF specifies a way to provide this information and
5767 compilers pick up the new representation, we'll support this
5768 practice. */
5769 if (DW_UNSND (&attr) == DW_CC_program
5770 && cu->language == language_fortran)
5771 set_main_name (part_die->name);
5772 break;
c906108c
SS
5773 default:
5774 break;
5775 }
5776 }
5777
c906108c
SS
5778 /* When using the GNU linker, .gnu.linkonce. sections are used to
5779 eliminate duplicate copies of functions and vtables and such.
5780 The linker will arbitrarily choose one and discard the others.
5781 The AT_*_pc values for such functions refer to local labels in
5782 these sections. If the section from that file was discarded, the
5783 labels are not in the output, so the relocs get a value of 0.
5784 If this is a discarded function, mark the pc bounds as invalid,
5785 so that GDB will ignore it. */
5786 if (has_low_pc_attr && has_high_pc_attr
5787 && part_die->lowpc < part_die->highpc
5788 && (part_die->lowpc != 0
72dca2f5 5789 || dwarf2_per_objfile->has_section_at_zero))
0b010bcc 5790 part_die->has_pc_info = 1;
c906108c
SS
5791 return info_ptr;
5792}
5793
72bf9492
DJ
5794/* Find a cached partial DIE at OFFSET in CU. */
5795
5796static struct partial_die_info *
5797find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5798{
5799 struct partial_die_info *lookup_die = NULL;
5800 struct partial_die_info part_die;
5801
5802 part_die.offset = offset;
5803 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5804
72bf9492
DJ
5805 return lookup_die;
5806}
5807
5808/* Find a partial DIE at OFFSET, which may or may not be in CU. */
5809
5810static struct partial_die_info *
10b3939b 5811find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
72bf9492 5812{
5afb4e99
DJ
5813 struct dwarf2_per_cu_data *per_cu = NULL;
5814 struct partial_die_info *pd = NULL;
72bf9492
DJ
5815
5816 if (offset >= cu->header.offset
5817 && offset < cu->header.offset + cu->header.length)
5afb4e99
DJ
5818 {
5819 pd = find_partial_die_in_comp_unit (offset, cu);
5820 if (pd != NULL)
5821 return pd;
5822 }
72bf9492 5823
ae038cb0
DJ
5824 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5825
ae038cb0
DJ
5826 if (per_cu->cu == NULL)
5827 {
5828 load_comp_unit (per_cu, cu->objfile);
5829 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5830 dwarf2_per_objfile->read_in_chain = per_cu;
5831 }
5832
5833 per_cu->cu->last_used = 0;
5afb4e99
DJ
5834 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5835
5836 if (pd == NULL && per_cu->load_all_dies == 0)
5837 {
5838 struct cleanup *back_to;
5839 struct partial_die_info comp_unit_die;
5840 struct abbrev_info *abbrev;
5841 unsigned int bytes_read;
5842 char *info_ptr;
5843
5844 per_cu->load_all_dies = 1;
5845
5846 /* Re-read the DIEs. */
5847 back_to = make_cleanup (null_cleanup, 0);
5848 if (per_cu->cu->dwarf2_abbrevs == NULL)
5849 {
5850 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5851 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5852 }
5853 info_ptr = per_cu->cu->header.first_die_ptr;
5854 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5855 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5856 per_cu->cu->objfile->obfd, info_ptr,
5857 per_cu->cu);
5858 if (comp_unit_die.has_children)
5859 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5860 do_cleanups (back_to);
5861
5862 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5863 }
5864
5865 if (pd == NULL)
5866 internal_error (__FILE__, __LINE__,
5867 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5868 offset, bfd_get_filename (cu->objfile->obfd));
5869 return pd;
72bf9492
DJ
5870}
5871
5872/* Adjust PART_DIE before generating a symbol for it. This function
5873 may set the is_external flag or change the DIE's name. */
5874
5875static void
5876fixup_partial_die (struct partial_die_info *part_die,
5877 struct dwarf2_cu *cu)
5878{
5879 /* If we found a reference attribute and the DIE has no name, try
5880 to find a name in the referred to DIE. */
5881
5882 if (part_die->name == NULL && part_die->has_specification)
5883 {
5884 struct partial_die_info *spec_die;
72bf9492 5885
10b3939b 5886 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 5887
10b3939b 5888 fixup_partial_die (spec_die, cu);
72bf9492
DJ
5889
5890 if (spec_die->name)
5891 {
5892 part_die->name = spec_die->name;
5893
5894 /* Copy DW_AT_external attribute if it is set. */
5895 if (spec_die->is_external)
5896 part_die->is_external = spec_die->is_external;
5897 }
5898 }
5899
5900 /* Set default names for some unnamed DIEs. */
5901 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5902 || part_die->tag == DW_TAG_class_type))
5903 part_die->name = "(anonymous class)";
5904
5905 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5906 part_die->name = "(anonymous namespace)";
5907
5908 if (part_die->tag == DW_TAG_structure_type
5909 || part_die->tag == DW_TAG_class_type
5910 || part_die->tag == DW_TAG_union_type)
5911 guess_structure_name (part_die, cu);
5912}
5913
639d11d3
DC
5914/* Read the die from the .debug_info section buffer. Set DIEP to
5915 point to a newly allocated die with its information, except for its
5916 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5917 whether the die has children or not. */
c906108c 5918
fe1b8b76
JB
5919static gdb_byte *
5920read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
e7c27a73 5921 struct dwarf2_cu *cu, int *has_children)
c906108c
SS
5922{
5923 unsigned int abbrev_number, bytes_read, i, offset;
5924 struct abbrev_info *abbrev;
5925 struct die_info *die;
5926
6502dd73 5927 offset = info_ptr - dwarf2_per_objfile->info_buffer;
c906108c
SS
5928 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5929 info_ptr += bytes_read;
5930 if (!abbrev_number)
5931 {
5932 die = dwarf_alloc_die ();
5933 die->tag = 0;
5934 die->abbrev = abbrev_number;
5935 die->type = NULL;
5936 *diep = die;
639d11d3 5937 *has_children = 0;
c906108c
SS
5938 return info_ptr;
5939 }
5940
e7c27a73 5941 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
c906108c
SS
5942 if (!abbrev)
5943 {
8a3fe4f8 5944 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
72bf9492 5945 abbrev_number,
639d11d3 5946 bfd_get_filename (abfd));
c906108c
SS
5947 }
5948 die = dwarf_alloc_die ();
5949 die->offset = offset;
5950 die->tag = abbrev->tag;
c906108c
SS
5951 die->abbrev = abbrev_number;
5952 die->type = NULL;
5953
5954 die->num_attrs = abbrev->num_attrs;
5955 die->attrs = (struct attribute *)
5956 xmalloc (die->num_attrs * sizeof (struct attribute));
5957
5958 for (i = 0; i < abbrev->num_attrs; ++i)
5959 {
5960 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
e7c27a73 5961 abfd, info_ptr, cu);
10b3939b
DJ
5962
5963 /* If this attribute is an absolute reference to a different
5964 compilation unit, make sure that compilation unit is loaded
5965 also. */
5966 if (die->attrs[i].form == DW_FORM_ref_addr
5967 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5968 || (DW_ADDR (&die->attrs[i])
5969 >= cu->header.offset + cu->header.length)))
5970 {
5971 struct dwarf2_per_cu_data *per_cu;
5972 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5973 cu->objfile);
5974
5975 /* Mark the dependence relation so that we don't flush PER_CU
5976 too early. */
5977 dwarf2_add_dependence (cu, per_cu);
5978
5979 /* If it's already on the queue, we have nothing to do. */
5980 if (per_cu->queued)
5981 continue;
5982
5983 /* If the compilation unit is already loaded, just mark it as
5984 used. */
5985 if (per_cu->cu != NULL)
5986 {
5987 per_cu->cu->last_used = 0;
5988 continue;
5989 }
5990
5991 /* Add it to the queue. */
5992 queue_comp_unit (per_cu);
5993 }
c906108c
SS
5994 }
5995
5996 *diep = die;
639d11d3 5997 *has_children = abbrev->has_children;
c906108c
SS
5998 return info_ptr;
5999}
6000
a8329558 6001/* Read an attribute value described by an attribute form. */
c906108c 6002
fe1b8b76 6003static gdb_byte *
a8329558 6004read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 6005 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 6006 struct dwarf2_cu *cu)
c906108c 6007{
e7c27a73 6008 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
6009 unsigned int bytes_read;
6010 struct dwarf_block *blk;
6011
a8329558
KW
6012 attr->form = form;
6013 switch (form)
c906108c
SS
6014 {
6015 case DW_FORM_addr:
6016 case DW_FORM_ref_addr:
e7c27a73 6017 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 6018 info_ptr += bytes_read;
c906108c
SS
6019 break;
6020 case DW_FORM_block2:
7b5a2f43 6021 blk = dwarf_alloc_block (cu);
c906108c
SS
6022 blk->size = read_2_bytes (abfd, info_ptr);
6023 info_ptr += 2;
6024 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6025 info_ptr += blk->size;
6026 DW_BLOCK (attr) = blk;
6027 break;
6028 case DW_FORM_block4:
7b5a2f43 6029 blk = dwarf_alloc_block (cu);
c906108c
SS
6030 blk->size = read_4_bytes (abfd, info_ptr);
6031 info_ptr += 4;
6032 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6033 info_ptr += blk->size;
6034 DW_BLOCK (attr) = blk;
6035 break;
6036 case DW_FORM_data2:
6037 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
6038 info_ptr += 2;
6039 break;
6040 case DW_FORM_data4:
6041 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
6042 info_ptr += 4;
6043 break;
6044 case DW_FORM_data8:
6045 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
6046 info_ptr += 8;
6047 break;
6048 case DW_FORM_string:
6049 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
6050 info_ptr += bytes_read;
6051 break;
4bdf3d34
JJ
6052 case DW_FORM_strp:
6053 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
6054 &bytes_read);
6055 info_ptr += bytes_read;
6056 break;
c906108c 6057 case DW_FORM_block:
7b5a2f43 6058 blk = dwarf_alloc_block (cu);
c906108c
SS
6059 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6060 info_ptr += bytes_read;
6061 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6062 info_ptr += blk->size;
6063 DW_BLOCK (attr) = blk;
6064 break;
6065 case DW_FORM_block1:
7b5a2f43 6066 blk = dwarf_alloc_block (cu);
c906108c
SS
6067 blk->size = read_1_byte (abfd, info_ptr);
6068 info_ptr += 1;
6069 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6070 info_ptr += blk->size;
6071 DW_BLOCK (attr) = blk;
6072 break;
6073 case DW_FORM_data1:
6074 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
6075 info_ptr += 1;
6076 break;
6077 case DW_FORM_flag:
6078 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
6079 info_ptr += 1;
6080 break;
6081 case DW_FORM_sdata:
6082 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
6083 info_ptr += bytes_read;
6084 break;
6085 case DW_FORM_udata:
6086 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6087 info_ptr += bytes_read;
6088 break;
6089 case DW_FORM_ref1:
10b3939b 6090 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
6091 info_ptr += 1;
6092 break;
6093 case DW_FORM_ref2:
10b3939b 6094 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
6095 info_ptr += 2;
6096 break;
6097 case DW_FORM_ref4:
10b3939b 6098 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
6099 info_ptr += 4;
6100 break;
613e1657 6101 case DW_FORM_ref8:
10b3939b 6102 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
6103 info_ptr += 8;
6104 break;
c906108c 6105 case DW_FORM_ref_udata:
10b3939b
DJ
6106 DW_ADDR (attr) = (cu->header.offset
6107 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
6108 info_ptr += bytes_read;
6109 break;
c906108c 6110 case DW_FORM_indirect:
a8329558
KW
6111 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6112 info_ptr += bytes_read;
e7c27a73 6113 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 6114 break;
c906108c 6115 default:
8a3fe4f8 6116 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
6117 dwarf_form_name (form),
6118 bfd_get_filename (abfd));
c906108c
SS
6119 }
6120 return info_ptr;
6121}
6122
a8329558
KW
6123/* Read an attribute described by an abbreviated attribute. */
6124
fe1b8b76 6125static gdb_byte *
a8329558 6126read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 6127 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
6128{
6129 attr->name = abbrev->name;
e7c27a73 6130 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
6131}
6132
c906108c
SS
6133/* read dwarf information from a buffer */
6134
6135static unsigned int
fe1b8b76 6136read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 6137{
fe1b8b76 6138 return bfd_get_8 (abfd, buf);
c906108c
SS
6139}
6140
6141static int
fe1b8b76 6142read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 6143{
fe1b8b76 6144 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
6145}
6146
6147static unsigned int
fe1b8b76 6148read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6149{
fe1b8b76 6150 return bfd_get_16 (abfd, buf);
c906108c
SS
6151}
6152
6153static int
fe1b8b76 6154read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6155{
fe1b8b76 6156 return bfd_get_signed_16 (abfd, buf);
c906108c
SS
6157}
6158
6159static unsigned int
fe1b8b76 6160read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6161{
fe1b8b76 6162 return bfd_get_32 (abfd, buf);
c906108c
SS
6163}
6164
6165static int
fe1b8b76 6166read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6167{
fe1b8b76 6168 return bfd_get_signed_32 (abfd, buf);
c906108c
SS
6169}
6170
ce5d95e1 6171static unsigned long
fe1b8b76 6172read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6173{
fe1b8b76 6174 return bfd_get_64 (abfd, buf);
c906108c
SS
6175}
6176
6177static CORE_ADDR
fe1b8b76 6178read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 6179 unsigned int *bytes_read)
c906108c 6180{
e7c27a73 6181 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
6182 CORE_ADDR retval = 0;
6183
107d2387 6184 if (cu_header->signed_addr_p)
c906108c 6185 {
107d2387
AC
6186 switch (cu_header->addr_size)
6187 {
6188 case 2:
fe1b8b76 6189 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
6190 break;
6191 case 4:
fe1b8b76 6192 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
6193 break;
6194 case 8:
fe1b8b76 6195 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
6196 break;
6197 default:
8e65ff28 6198 internal_error (__FILE__, __LINE__,
e2e0b3e5 6199 _("read_address: bad switch, signed [in module %s]"),
659b0389 6200 bfd_get_filename (abfd));
107d2387
AC
6201 }
6202 }
6203 else
6204 {
6205 switch (cu_header->addr_size)
6206 {
6207 case 2:
fe1b8b76 6208 retval = bfd_get_16 (abfd, buf);
107d2387
AC
6209 break;
6210 case 4:
fe1b8b76 6211 retval = bfd_get_32 (abfd, buf);
107d2387
AC
6212 break;
6213 case 8:
fe1b8b76 6214 retval = bfd_get_64 (abfd, buf);
107d2387
AC
6215 break;
6216 default:
8e65ff28 6217 internal_error (__FILE__, __LINE__,
e2e0b3e5 6218 _("read_address: bad switch, unsigned [in module %s]"),
659b0389 6219 bfd_get_filename (abfd));
107d2387 6220 }
c906108c 6221 }
64367e0a 6222
107d2387
AC
6223 *bytes_read = cu_header->addr_size;
6224 return retval;
c906108c
SS
6225}
6226
f7ef9339 6227/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
6228 specification allows the initial length to take up either 4 bytes
6229 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
6230 bytes describe the length and all offsets will be 8 bytes in length
6231 instead of 4.
6232
f7ef9339
KB
6233 An older, non-standard 64-bit format is also handled by this
6234 function. The older format in question stores the initial length
6235 as an 8-byte quantity without an escape value. Lengths greater
6236 than 2^32 aren't very common which means that the initial 4 bytes
6237 is almost always zero. Since a length value of zero doesn't make
6238 sense for the 32-bit format, this initial zero can be considered to
6239 be an escape value which indicates the presence of the older 64-bit
6240 format. As written, the code can't detect (old format) lengths
917c78fc
MK
6241 greater than 4GB. If it becomes necessary to handle lengths
6242 somewhat larger than 4GB, we could allow other small values (such
6243 as the non-sensical values of 1, 2, and 3) to also be used as
6244 escape values indicating the presence of the old format.
f7ef9339 6245
917c78fc
MK
6246 The value returned via bytes_read should be used to increment the
6247 relevant pointer after calling read_initial_length().
613e1657
KB
6248
6249 As a side effect, this function sets the fields initial_length_size
6250 and offset_size in cu_header to the values appropriate for the
6251 length field. (The format of the initial length field determines
dd373385 6252 the width of file offsets to be fetched later with read_offset().)
613e1657
KB
6253
6254 [ Note: read_initial_length() and read_offset() are based on the
6255 document entitled "DWARF Debugging Information Format", revision
f7ef9339 6256 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
6257 from:
6258
f7ef9339 6259 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
613e1657
KB
6260
6261 This document is only a draft and is subject to change. (So beware.)
6262
f7ef9339 6263 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
6264 determined empirically by examining 64-bit ELF files produced by
6265 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
6266
6267 - Kevin, July 16, 2002
613e1657
KB
6268 ] */
6269
6270static LONGEST
fe1b8b76 6271read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
891d2f0b 6272 unsigned int *bytes_read)
613e1657 6273{
fe1b8b76 6274 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 6275
dd373385 6276 if (length == 0xffffffff)
613e1657 6277 {
fe1b8b76 6278 length = bfd_get_64 (abfd, buf + 4);
613e1657 6279 *bytes_read = 12;
613e1657 6280 }
dd373385 6281 else if (length == 0)
f7ef9339 6282 {
dd373385 6283 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 6284 length = bfd_get_64 (abfd, buf);
f7ef9339 6285 *bytes_read = 8;
f7ef9339 6286 }
613e1657
KB
6287 else
6288 {
6289 *bytes_read = 4;
613e1657
KB
6290 }
6291
dd373385
EZ
6292 if (cu_header)
6293 {
6294 gdb_assert (cu_header->initial_length_size == 0
6295 || cu_header->initial_length_size == 4
6296 || cu_header->initial_length_size == 8
6297 || cu_header->initial_length_size == 12);
6298
6299 if (cu_header->initial_length_size != 0
6300 && cu_header->initial_length_size != *bytes_read)
6301 complaint (&symfile_complaints,
6302 _("intermixed 32-bit and 64-bit DWARF sections"));
6303
6304 cu_header->initial_length_size = *bytes_read;
6305 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6306 }
6307
6308 return length;
613e1657
KB
6309}
6310
6311/* Read an offset from the data stream. The size of the offset is
917c78fc 6312 given by cu_header->offset_size. */
613e1657
KB
6313
6314static LONGEST
fe1b8b76 6315read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 6316 unsigned int *bytes_read)
613e1657
KB
6317{
6318 LONGEST retval = 0;
6319
6320 switch (cu_header->offset_size)
6321 {
6322 case 4:
fe1b8b76 6323 retval = bfd_get_32 (abfd, buf);
613e1657
KB
6324 *bytes_read = 4;
6325 break;
6326 case 8:
fe1b8b76 6327 retval = bfd_get_64 (abfd, buf);
613e1657
KB
6328 *bytes_read = 8;
6329 break;
6330 default:
8e65ff28 6331 internal_error (__FILE__, __LINE__,
e2e0b3e5 6332 _("read_offset: bad switch [in module %s]"),
659b0389 6333 bfd_get_filename (abfd));
613e1657
KB
6334 }
6335
917c78fc 6336 return retval;
613e1657
KB
6337}
6338
fe1b8b76
JB
6339static gdb_byte *
6340read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
6341{
6342 /* If the size of a host char is 8 bits, we can return a pointer
6343 to the buffer, otherwise we have to copy the data to a buffer
6344 allocated on the temporary obstack. */
4bdf3d34 6345 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 6346 return buf;
c906108c
SS
6347}
6348
6349static char *
fe1b8b76 6350read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
6351{
6352 /* If the size of a host char is 8 bits, we can return a pointer
6353 to the string, otherwise we have to copy the string to a buffer
6354 allocated on the temporary obstack. */
4bdf3d34 6355 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
6356 if (*buf == '\0')
6357 {
6358 *bytes_read_ptr = 1;
6359 return NULL;
6360 }
fe1b8b76
JB
6361 *bytes_read_ptr = strlen ((char *) buf) + 1;
6362 return (char *) buf;
4bdf3d34
JJ
6363}
6364
6365static char *
fe1b8b76 6366read_indirect_string (bfd *abfd, gdb_byte *buf,
4bdf3d34
JJ
6367 const struct comp_unit_head *cu_header,
6368 unsigned int *bytes_read_ptr)
6369{
6370 LONGEST str_offset = read_offset (abfd, buf, cu_header,
891d2f0b 6371 bytes_read_ptr);
c906108c 6372
6502dd73 6373 if (dwarf2_per_objfile->str_buffer == NULL)
c906108c 6374 {
8a3fe4f8 6375 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 6376 bfd_get_filename (abfd));
4bdf3d34 6377 return NULL;
c906108c 6378 }
6502dd73 6379 if (str_offset >= dwarf2_per_objfile->str_size)
c906108c 6380 {
8a3fe4f8 6381 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
659b0389 6382 bfd_get_filename (abfd));
c906108c
SS
6383 return NULL;
6384 }
4bdf3d34 6385 gdb_assert (HOST_CHAR_BIT == 8);
6502dd73 6386 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
4bdf3d34 6387 return NULL;
fe1b8b76 6388 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
c906108c
SS
6389}
6390
ce5d95e1 6391static unsigned long
fe1b8b76 6392read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 6393{
ce5d95e1
JB
6394 unsigned long result;
6395 unsigned int num_read;
c906108c
SS
6396 int i, shift;
6397 unsigned char byte;
6398
6399 result = 0;
6400 shift = 0;
6401 num_read = 0;
6402 i = 0;
6403 while (1)
6404 {
fe1b8b76 6405 byte = bfd_get_8 (abfd, buf);
c906108c
SS
6406 buf++;
6407 num_read++;
ce5d95e1 6408 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
6409 if ((byte & 128) == 0)
6410 {
6411 break;
6412 }
6413 shift += 7;
6414 }
6415 *bytes_read_ptr = num_read;
6416 return result;
6417}
6418
ce5d95e1 6419static long
fe1b8b76 6420read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 6421{
ce5d95e1 6422 long result;
77e0b926 6423 int i, shift, num_read;
c906108c
SS
6424 unsigned char byte;
6425
6426 result = 0;
6427 shift = 0;
c906108c
SS
6428 num_read = 0;
6429 i = 0;
6430 while (1)
6431 {
fe1b8b76 6432 byte = bfd_get_8 (abfd, buf);
c906108c
SS
6433 buf++;
6434 num_read++;
ce5d95e1 6435 result |= ((long)(byte & 127) << shift);
c906108c
SS
6436 shift += 7;
6437 if ((byte & 128) == 0)
6438 {
6439 break;
6440 }
6441 }
77e0b926
DJ
6442 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6443 result |= -(((long)1) << shift);
c906108c
SS
6444 *bytes_read_ptr = num_read;
6445 return result;
6446}
6447
4bb7a0a7
DJ
6448/* Return a pointer to just past the end of an LEB128 number in BUF. */
6449
fe1b8b76
JB
6450static gdb_byte *
6451skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
6452{
6453 int byte;
6454
6455 while (1)
6456 {
fe1b8b76 6457 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
6458 buf++;
6459 if ((byte & 128) == 0)
6460 return buf;
6461 }
6462}
6463
c906108c 6464static void
e142c38c 6465set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
6466{
6467 switch (lang)
6468 {
6469 case DW_LANG_C89:
6470 case DW_LANG_C:
e142c38c 6471 cu->language = language_c;
c906108c
SS
6472 break;
6473 case DW_LANG_C_plus_plus:
e142c38c 6474 cu->language = language_cplus;
c906108c
SS
6475 break;
6476 case DW_LANG_Fortran77:
6477 case DW_LANG_Fortran90:
b21b22e0 6478 case DW_LANG_Fortran95:
e142c38c 6479 cu->language = language_fortran;
c906108c
SS
6480 break;
6481 case DW_LANG_Mips_Assembler:
e142c38c 6482 cu->language = language_asm;
c906108c 6483 break;
bebd888e 6484 case DW_LANG_Java:
e142c38c 6485 cu->language = language_java;
bebd888e 6486 break;
c906108c 6487 case DW_LANG_Ada83:
8aaf0b47 6488 case DW_LANG_Ada95:
bc5f45f8
JB
6489 cu->language = language_ada;
6490 break;
72019c9c
GM
6491 case DW_LANG_Modula2:
6492 cu->language = language_m2;
6493 break;
fe8e67fd
PM
6494 case DW_LANG_Pascal83:
6495 cu->language = language_pascal;
6496 break;
c906108c
SS
6497 case DW_LANG_Cobol74:
6498 case DW_LANG_Cobol85:
c906108c 6499 default:
e142c38c 6500 cu->language = language_minimal;
c906108c
SS
6501 break;
6502 }
e142c38c 6503 cu->language_defn = language_def (cu->language);
c906108c
SS
6504}
6505
6506/* Return the named attribute or NULL if not there. */
6507
6508static struct attribute *
e142c38c 6509dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
6510{
6511 unsigned int i;
6512 struct attribute *spec = NULL;
6513
6514 for (i = 0; i < die->num_attrs; ++i)
6515 {
6516 if (die->attrs[i].name == name)
10b3939b 6517 return &die->attrs[i];
c906108c
SS
6518 if (die->attrs[i].name == DW_AT_specification
6519 || die->attrs[i].name == DW_AT_abstract_origin)
6520 spec = &die->attrs[i];
6521 }
c906108c 6522
10b3939b
DJ
6523 if (spec)
6524 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
c5aa993b 6525
c906108c
SS
6526 return NULL;
6527}
6528
05cf31d1
JB
6529/* Return non-zero iff the attribute NAME is defined for the given DIE,
6530 and holds a non-zero value. This function should only be used for
6531 DW_FORM_flag attributes. */
6532
6533static int
6534dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6535{
6536 struct attribute *attr = dwarf2_attr (die, name, cu);
6537
6538 return (attr && DW_UNSND (attr));
6539}
6540
3ca72b44 6541static int
e142c38c 6542die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 6543{
05cf31d1
JB
6544 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6545 which value is non-zero. However, we have to be careful with
6546 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6547 (via dwarf2_flag_true_p) follows this attribute. So we may
6548 end up accidently finding a declaration attribute that belongs
6549 to a different DIE referenced by the specification attribute,
6550 even though the given DIE does not have a declaration attribute. */
6551 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6552 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
6553}
6554
63d06c5c
DC
6555/* Return the die giving the specification for DIE, if there is
6556 one. */
6557
6558static struct die_info *
e142c38c 6559die_specification (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 6560{
e142c38c 6561 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
63d06c5c
DC
6562
6563 if (spec_attr == NULL)
6564 return NULL;
6565 else
10b3939b 6566 return follow_die_ref (die, spec_attr, cu);
63d06c5c 6567}
c906108c 6568
debd256d
JB
6569/* Free the line_header structure *LH, and any arrays and strings it
6570 refers to. */
6571static void
6572free_line_header (struct line_header *lh)
6573{
6574 if (lh->standard_opcode_lengths)
a8bc7b56 6575 xfree (lh->standard_opcode_lengths);
debd256d
JB
6576
6577 /* Remember that all the lh->file_names[i].name pointers are
6578 pointers into debug_line_buffer, and don't need to be freed. */
6579 if (lh->file_names)
a8bc7b56 6580 xfree (lh->file_names);
debd256d
JB
6581
6582 /* Similarly for the include directory names. */
6583 if (lh->include_dirs)
a8bc7b56 6584 xfree (lh->include_dirs);
debd256d 6585
a8bc7b56 6586 xfree (lh);
debd256d
JB
6587}
6588
6589
6590/* Add an entry to LH's include directory table. */
6591static void
6592add_include_dir (struct line_header *lh, char *include_dir)
c906108c 6593{
debd256d
JB
6594 /* Grow the array if necessary. */
6595 if (lh->include_dirs_size == 0)
c5aa993b 6596 {
debd256d
JB
6597 lh->include_dirs_size = 1; /* for testing */
6598 lh->include_dirs = xmalloc (lh->include_dirs_size
6599 * sizeof (*lh->include_dirs));
6600 }
6601 else if (lh->num_include_dirs >= lh->include_dirs_size)
6602 {
6603 lh->include_dirs_size *= 2;
6604 lh->include_dirs = xrealloc (lh->include_dirs,
6605 (lh->include_dirs_size
6606 * sizeof (*lh->include_dirs)));
c5aa993b 6607 }
c906108c 6608
debd256d
JB
6609 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6610}
6611
6612
6613/* Add an entry to LH's file name table. */
6614static void
6615add_file_name (struct line_header *lh,
6616 char *name,
6617 unsigned int dir_index,
6618 unsigned int mod_time,
6619 unsigned int length)
6620{
6621 struct file_entry *fe;
6622
6623 /* Grow the array if necessary. */
6624 if (lh->file_names_size == 0)
6625 {
6626 lh->file_names_size = 1; /* for testing */
6627 lh->file_names = xmalloc (lh->file_names_size
6628 * sizeof (*lh->file_names));
6629 }
6630 else if (lh->num_file_names >= lh->file_names_size)
6631 {
6632 lh->file_names_size *= 2;
6633 lh->file_names = xrealloc (lh->file_names,
6634 (lh->file_names_size
6635 * sizeof (*lh->file_names)));
6636 }
6637
6638 fe = &lh->file_names[lh->num_file_names++];
6639 fe->name = name;
6640 fe->dir_index = dir_index;
6641 fe->mod_time = mod_time;
6642 fe->length = length;
aaa75496 6643 fe->included_p = 0;
cb1df416 6644 fe->symtab = NULL;
debd256d
JB
6645}
6646
6647
6648/* Read the statement program header starting at OFFSET in
6502dd73
DJ
6649 .debug_line, according to the endianness of ABFD. Return a pointer
6650 to a struct line_header, allocated using xmalloc.
debd256d
JB
6651
6652 NOTE: the strings in the include directory and file name tables of
6653 the returned object point into debug_line_buffer, and must not be
6654 freed. */
6655static struct line_header *
6656dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 6657 struct dwarf2_cu *cu)
debd256d
JB
6658{
6659 struct cleanup *back_to;
6660 struct line_header *lh;
fe1b8b76 6661 gdb_byte *line_ptr;
891d2f0b 6662 unsigned int bytes_read;
debd256d
JB
6663 int i;
6664 char *cur_dir, *cur_file;
6665
6502dd73 6666 if (dwarf2_per_objfile->line_buffer == NULL)
debd256d 6667 {
e2e0b3e5 6668 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
6669 return 0;
6670 }
6671
a738430d
MK
6672 /* Make sure that at least there's room for the total_length field.
6673 That could be 12 bytes long, but we're just going to fudge that. */
6502dd73 6674 if (offset + 4 >= dwarf2_per_objfile->line_size)
debd256d 6675 {
4d3c2250 6676 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
6677 return 0;
6678 }
6679
6680 lh = xmalloc (sizeof (*lh));
6681 memset (lh, 0, sizeof (*lh));
6682 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6683 (void *) lh);
6684
6502dd73 6685 line_ptr = dwarf2_per_objfile->line_buffer + offset;
debd256d 6686
a738430d 6687 /* Read in the header. */
dd373385
EZ
6688 lh->total_length =
6689 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
debd256d 6690 line_ptr += bytes_read;
6502dd73
DJ
6691 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6692 + dwarf2_per_objfile->line_size))
debd256d 6693 {
4d3c2250 6694 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
6695 return 0;
6696 }
6697 lh->statement_program_end = line_ptr + lh->total_length;
6698 lh->version = read_2_bytes (abfd, line_ptr);
6699 line_ptr += 2;
e7c27a73 6700 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
debd256d
JB
6701 line_ptr += bytes_read;
6702 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6703 line_ptr += 1;
6704 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6705 line_ptr += 1;
6706 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6707 line_ptr += 1;
6708 lh->line_range = read_1_byte (abfd, line_ptr);
6709 line_ptr += 1;
6710 lh->opcode_base = read_1_byte (abfd, line_ptr);
6711 line_ptr += 1;
6712 lh->standard_opcode_lengths
fe1b8b76 6713 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
6714
6715 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6716 for (i = 1; i < lh->opcode_base; ++i)
6717 {
6718 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6719 line_ptr += 1;
6720 }
6721
a738430d 6722 /* Read directory table. */
debd256d
JB
6723 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6724 {
6725 line_ptr += bytes_read;
6726 add_include_dir (lh, cur_dir);
6727 }
6728 line_ptr += bytes_read;
6729
a738430d 6730 /* Read file name table. */
debd256d
JB
6731 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6732 {
6733 unsigned int dir_index, mod_time, length;
6734
6735 line_ptr += bytes_read;
6736 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6737 line_ptr += bytes_read;
6738 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6739 line_ptr += bytes_read;
6740 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6741 line_ptr += bytes_read;
6742
6743 add_file_name (lh, cur_file, dir_index, mod_time, length);
6744 }
6745 line_ptr += bytes_read;
6746 lh->statement_program_start = line_ptr;
6747
6502dd73
DJ
6748 if (line_ptr > (dwarf2_per_objfile->line_buffer
6749 + dwarf2_per_objfile->line_size))
4d3c2250 6750 complaint (&symfile_complaints,
e2e0b3e5 6751 _("line number info header doesn't fit in `.debug_line' section"));
debd256d
JB
6752
6753 discard_cleanups (back_to);
6754 return lh;
6755}
c906108c 6756
5fb290d7
DJ
6757/* This function exists to work around a bug in certain compilers
6758 (particularly GCC 2.95), in which the first line number marker of a
6759 function does not show up until after the prologue, right before
6760 the second line number marker. This function shifts ADDRESS down
6761 to the beginning of the function if necessary, and is called on
6762 addresses passed to record_line. */
6763
6764static CORE_ADDR
e142c38c 6765check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
6766{
6767 struct function_range *fn;
6768
6769 /* Find the function_range containing address. */
e142c38c 6770 if (!cu->first_fn)
5fb290d7
DJ
6771 return address;
6772
e142c38c
DJ
6773 if (!cu->cached_fn)
6774 cu->cached_fn = cu->first_fn;
5fb290d7 6775
e142c38c 6776 fn = cu->cached_fn;
5fb290d7
DJ
6777 while (fn)
6778 if (fn->lowpc <= address && fn->highpc > address)
6779 goto found;
6780 else
6781 fn = fn->next;
6782
e142c38c
DJ
6783 fn = cu->first_fn;
6784 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
6785 if (fn->lowpc <= address && fn->highpc > address)
6786 goto found;
6787 else
6788 fn = fn->next;
6789
6790 return address;
6791
6792 found:
6793 if (fn->seen_line)
6794 return address;
6795 if (address != fn->lowpc)
4d3c2250 6796 complaint (&symfile_complaints,
e2e0b3e5 6797 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 6798 (unsigned long) address, fn->name);
5fb290d7
DJ
6799 fn->seen_line = 1;
6800 return fn->lowpc;
6801}
6802
aaa75496
JB
6803/* Decode the Line Number Program (LNP) for the given line_header
6804 structure and CU. The actual information extracted and the type
6805 of structures created from the LNP depends on the value of PST.
6806
6807 1. If PST is NULL, then this procedure uses the data from the program
6808 to create all necessary symbol tables, and their linetables.
6809 The compilation directory of the file is passed in COMP_DIR,
6810 and must not be NULL.
6811
6812 2. If PST is not NULL, this procedure reads the program to determine
6813 the list of files included by the unit represented by PST, and
6814 builds all the associated partial symbol tables. In this case,
6815 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6816 is not used to compute the full name of the symtab, and therefore
6817 omitting it when building the partial symtab does not introduce
6818 the potential for inconsistency - a partial symtab and its associated
6819 symbtab having a different fullname -). */
debd256d 6820
c906108c 6821static void
debd256d 6822dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
aaa75496 6823 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 6824{
a8c50c1f 6825 gdb_byte *line_ptr, *extended_end;
fe1b8b76 6826 gdb_byte *line_end;
a8c50c1f 6827 unsigned int bytes_read, extended_len;
c906108c 6828 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
6829 CORE_ADDR baseaddr;
6830 struct objfile *objfile = cu->objfile;
aaa75496 6831 const int decode_for_pst_p = (pst != NULL);
cb1df416 6832 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
e142c38c
DJ
6833
6834 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6835
debd256d
JB
6836 line_ptr = lh->statement_program_start;
6837 line_end = lh->statement_program_end;
c906108c
SS
6838
6839 /* Read the statement sequences until there's nothing left. */
6840 while (line_ptr < line_end)
6841 {
6842 /* state machine registers */
6843 CORE_ADDR address = 0;
6844 unsigned int file = 1;
6845 unsigned int line = 1;
6846 unsigned int column = 0;
debd256d 6847 int is_stmt = lh->default_is_stmt;
c906108c
SS
6848 int basic_block = 0;
6849 int end_sequence = 0;
6850
aaa75496 6851 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 6852 {
aaa75496 6853 /* Start a subfile for the current file of the state machine. */
debd256d
JB
6854 /* lh->include_dirs and lh->file_names are 0-based, but the
6855 directory and file name numbers in the statement program
6856 are 1-based. */
6857 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 6858 char *dir = NULL;
a738430d 6859
debd256d
JB
6860 if (fe->dir_index)
6861 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
6862
6863 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
6864 }
6865
a738430d 6866 /* Decode the table. */
c5aa993b 6867 while (!end_sequence)
c906108c
SS
6868 {
6869 op_code = read_1_byte (abfd, line_ptr);
6870 line_ptr += 1;
9aa1fe7e 6871
debd256d 6872 if (op_code >= lh->opcode_base)
a738430d
MK
6873 {
6874 /* Special operand. */
debd256d
JB
6875 adj_opcode = op_code - lh->opcode_base;
6876 address += (adj_opcode / lh->line_range)
6877 * lh->minimum_instruction_length;
6878 line += lh->line_base + (adj_opcode % lh->line_range);
25e43795
DJ
6879 if (lh->num_file_names < file)
6880 dwarf2_debug_line_missing_file_complaint ();
6881 else
6882 {
6883 lh->file_names[file - 1].included_p = 1;
6884 if (!decode_for_pst_p)
6885 {
6886 if (last_subfile != current_subfile)
6887 {
6888 if (last_subfile)
6889 record_line (last_subfile, 0, address);
6890 last_subfile = current_subfile;
6891 }
6892 /* Append row to matrix using current values. */
6893 record_line (current_subfile, line,
6894 check_cu_functions (address, cu));
366da635 6895 }
25e43795 6896 }
9aa1fe7e
GK
6897 basic_block = 1;
6898 }
6899 else switch (op_code)
c906108c
SS
6900 {
6901 case DW_LNS_extended_op:
a8c50c1f 6902 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
473b7be6 6903 line_ptr += bytes_read;
a8c50c1f 6904 extended_end = line_ptr + extended_len;
c906108c
SS
6905 extended_op = read_1_byte (abfd, line_ptr);
6906 line_ptr += 1;
6907 switch (extended_op)
6908 {
6909 case DW_LNE_end_sequence:
6910 end_sequence = 1;
25e43795
DJ
6911
6912 if (lh->num_file_names < file)
6913 dwarf2_debug_line_missing_file_complaint ();
6914 else
6915 {
6916 lh->file_names[file - 1].included_p = 1;
6917 if (!decode_for_pst_p)
6918 record_line (current_subfile, 0, address);
6919 }
c906108c
SS
6920 break;
6921 case DW_LNE_set_address:
e7c27a73 6922 address = read_address (abfd, line_ptr, cu, &bytes_read);
107d2387
AC
6923 line_ptr += bytes_read;
6924 address += baseaddr;
c906108c
SS
6925 break;
6926 case DW_LNE_define_file:
debd256d
JB
6927 {
6928 char *cur_file;
6929 unsigned int dir_index, mod_time, length;
6930
6931 cur_file = read_string (abfd, line_ptr, &bytes_read);
6932 line_ptr += bytes_read;
6933 dir_index =
6934 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6935 line_ptr += bytes_read;
6936 mod_time =
6937 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6938 line_ptr += bytes_read;
6939 length =
6940 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6941 line_ptr += bytes_read;
6942 add_file_name (lh, cur_file, dir_index, mod_time, length);
6943 }
c906108c
SS
6944 break;
6945 default:
4d3c2250 6946 complaint (&symfile_complaints,
e2e0b3e5 6947 _("mangled .debug_line section"));
debd256d 6948 return;
c906108c 6949 }
a8c50c1f
DJ
6950 /* Make sure that we parsed the extended op correctly. If e.g.
6951 we expected a different address size than the producer used,
6952 we may have read the wrong number of bytes. */
6953 if (line_ptr != extended_end)
6954 {
6955 complaint (&symfile_complaints,
6956 _("mangled .debug_line section"));
6957 return;
6958 }
c906108c
SS
6959 break;
6960 case DW_LNS_copy:
25e43795
DJ
6961 if (lh->num_file_names < file)
6962 dwarf2_debug_line_missing_file_complaint ();
6963 else
366da635 6964 {
25e43795
DJ
6965 lh->file_names[file - 1].included_p = 1;
6966 if (!decode_for_pst_p)
6967 {
6968 if (last_subfile != current_subfile)
6969 {
6970 if (last_subfile)
6971 record_line (last_subfile, 0, address);
6972 last_subfile = current_subfile;
6973 }
6974 record_line (current_subfile, line,
6975 check_cu_functions (address, cu));
6976 }
366da635 6977 }
c906108c
SS
6978 basic_block = 0;
6979 break;
6980 case DW_LNS_advance_pc:
debd256d 6981 address += lh->minimum_instruction_length
c906108c
SS
6982 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6983 line_ptr += bytes_read;
6984 break;
6985 case DW_LNS_advance_line:
6986 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6987 line_ptr += bytes_read;
6988 break;
6989 case DW_LNS_set_file:
debd256d 6990 {
a738430d
MK
6991 /* The arrays lh->include_dirs and lh->file_names are
6992 0-based, but the directory and file name numbers in
6993 the statement program are 1-based. */
debd256d 6994 struct file_entry *fe;
4f1520fb 6995 char *dir = NULL;
a738430d 6996
debd256d
JB
6997 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6998 line_ptr += bytes_read;
25e43795
DJ
6999 if (lh->num_file_names < file)
7000 dwarf2_debug_line_missing_file_complaint ();
7001 else
7002 {
7003 fe = &lh->file_names[file - 1];
7004 if (fe->dir_index)
7005 dir = lh->include_dirs[fe->dir_index - 1];
7006 if (!decode_for_pst_p)
7007 {
7008 last_subfile = current_subfile;
7009 dwarf2_start_subfile (fe->name, dir, comp_dir);
7010 }
7011 }
debd256d 7012 }
c906108c
SS
7013 break;
7014 case DW_LNS_set_column:
7015 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7016 line_ptr += bytes_read;
7017 break;
7018 case DW_LNS_negate_stmt:
7019 is_stmt = (!is_stmt);
7020 break;
7021 case DW_LNS_set_basic_block:
7022 basic_block = 1;
7023 break;
c2c6d25f
JM
7024 /* Add to the address register of the state machine the
7025 address increment value corresponding to special opcode
a738430d
MK
7026 255. I.e., this value is scaled by the minimum
7027 instruction length since special opcode 255 would have
7028 scaled the the increment. */
c906108c 7029 case DW_LNS_const_add_pc:
debd256d
JB
7030 address += (lh->minimum_instruction_length
7031 * ((255 - lh->opcode_base) / lh->line_range));
c906108c
SS
7032 break;
7033 case DW_LNS_fixed_advance_pc:
7034 address += read_2_bytes (abfd, line_ptr);
7035 line_ptr += 2;
7036 break;
9aa1fe7e 7037 default:
a738430d
MK
7038 {
7039 /* Unknown standard opcode, ignore it. */
9aa1fe7e 7040 int i;
a738430d 7041
debd256d 7042 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
7043 {
7044 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7045 line_ptr += bytes_read;
7046 }
7047 }
c906108c
SS
7048 }
7049 }
7050 }
aaa75496
JB
7051
7052 if (decode_for_pst_p)
7053 {
7054 int file_index;
7055
7056 /* Now that we're done scanning the Line Header Program, we can
7057 create the psymtab of each included file. */
7058 for (file_index = 0; file_index < lh->num_file_names; file_index++)
7059 if (lh->file_names[file_index].included_p == 1)
7060 {
5b5464ad
JB
7061 const struct file_entry fe = lh->file_names [file_index];
7062 char *include_name = fe.name;
7063 char *dir_name = NULL;
7064 char *pst_filename = pst->filename;
7065
7066 if (fe.dir_index)
7067 dir_name = lh->include_dirs[fe.dir_index - 1];
7068
7069 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
7070 {
1754f103
MK
7071 include_name = concat (dir_name, SLASH_STRING,
7072 include_name, (char *)NULL);
5b5464ad
JB
7073 make_cleanup (xfree, include_name);
7074 }
7075
7076 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
7077 {
1754f103
MK
7078 pst_filename = concat (pst->dirname, SLASH_STRING,
7079 pst_filename, (char *)NULL);
5b5464ad
JB
7080 make_cleanup (xfree, pst_filename);
7081 }
7082
7083 if (strcmp (include_name, pst_filename) != 0)
aaa75496
JB
7084 dwarf2_create_include_psymtab (include_name, pst, objfile);
7085 }
7086 }
cb1df416
DJ
7087 else
7088 {
7089 /* Make sure a symtab is created for every file, even files
7090 which contain only variables (i.e. no code with associated
7091 line numbers). */
7092
7093 int i;
7094 struct file_entry *fe;
7095
7096 for (i = 0; i < lh->num_file_names; i++)
7097 {
7098 char *dir = NULL;
7099 fe = &lh->file_names[i];
7100 if (fe->dir_index)
7101 dir = lh->include_dirs[fe->dir_index - 1];
7102 dwarf2_start_subfile (fe->name, dir, comp_dir);
7103
7104 /* Skip the main file; we don't need it, and it must be
7105 allocated last, so that it will show up before the
7106 non-primary symtabs in the objfile's symtab list. */
7107 if (current_subfile == first_subfile)
7108 continue;
7109
7110 if (current_subfile->symtab == NULL)
7111 current_subfile->symtab = allocate_symtab (current_subfile->name,
7112 cu->objfile);
7113 fe->symtab = current_subfile->symtab;
7114 }
7115 }
c906108c
SS
7116}
7117
7118/* Start a subfile for DWARF. FILENAME is the name of the file and
7119 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
7120 or NULL if not known. COMP_DIR is the compilation directory for the
7121 linetable's compilation unit or NULL if not known.
c906108c
SS
7122 This routine tries to keep line numbers from identical absolute and
7123 relative file names in a common subfile.
7124
7125 Using the `list' example from the GDB testsuite, which resides in
7126 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
7127 of /srcdir/list0.c yields the following debugging information for list0.c:
7128
c5aa993b
JM
7129 DW_AT_name: /srcdir/list0.c
7130 DW_AT_comp_dir: /compdir
357e46e7 7131 files.files[0].name: list0.h
c5aa993b 7132 files.files[0].dir: /srcdir
357e46e7 7133 files.files[1].name: list0.c
c5aa993b 7134 files.files[1].dir: /srcdir
c906108c
SS
7135
7136 The line number information for list0.c has to end up in a single
4f1520fb
FR
7137 subfile, so that `break /srcdir/list0.c:1' works as expected.
7138 start_subfile will ensure that this happens provided that we pass the
7139 concatenation of files.files[1].dir and files.files[1].name as the
7140 subfile's name. */
c906108c
SS
7141
7142static void
4f1520fb 7143dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
c906108c 7144{
4f1520fb
FR
7145 char *fullname;
7146
7147 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
7148 `start_symtab' will always pass the contents of DW_AT_comp_dir as
7149 second argument to start_subfile. To be consistent, we do the
7150 same here. In order not to lose the line information directory,
7151 we concatenate it to the filename when it makes sense.
7152 Note that the Dwarf3 standard says (speaking of filenames in line
7153 information): ``The directory index is ignored for file names
7154 that represent full path names''. Thus ignoring dirname in the
7155 `else' branch below isn't an issue. */
c906108c 7156
d5166ae1 7157 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
7158 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
7159 else
7160 fullname = filename;
c906108c 7161
4f1520fb
FR
7162 start_subfile (fullname, comp_dir);
7163
7164 if (fullname != filename)
7165 xfree (fullname);
c906108c
SS
7166}
7167
4c2df51b
DJ
7168static void
7169var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 7170 struct dwarf2_cu *cu)
4c2df51b 7171{
e7c27a73
DJ
7172 struct objfile *objfile = cu->objfile;
7173 struct comp_unit_head *cu_header = &cu->header;
7174
4c2df51b
DJ
7175 /* NOTE drow/2003-01-30: There used to be a comment and some special
7176 code here to turn a symbol with DW_AT_external and a
7177 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
7178 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
7179 with some versions of binutils) where shared libraries could have
7180 relocations against symbols in their debug information - the
7181 minimal symbol would have the right address, but the debug info
7182 would not. It's no longer necessary, because we will explicitly
7183 apply relocations when we read in the debug information now. */
7184
7185 /* A DW_AT_location attribute with no contents indicates that a
7186 variable has been optimized away. */
7187 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
7188 {
7189 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7190 return;
7191 }
7192
7193 /* Handle one degenerate form of location expression specially, to
7194 preserve GDB's previous behavior when section offsets are
7195 specified. If this is just a DW_OP_addr then mark this symbol
7196 as LOC_STATIC. */
7197
7198 if (attr_form_is_block (attr)
7199 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
7200 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
7201 {
891d2f0b 7202 unsigned int dummy;
4c2df51b
DJ
7203
7204 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 7205 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
4c2df51b
DJ
7206 fixup_symbol_section (sym, objfile);
7207 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
7208 SYMBOL_SECTION (sym));
7209 SYMBOL_CLASS (sym) = LOC_STATIC;
7210 return;
7211 }
7212
7213 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
7214 expression evaluator, and use LOC_COMPUTED only when necessary
7215 (i.e. when the value of a register or memory location is
7216 referenced, or a thread-local block, etc.). Then again, it might
7217 not be worthwhile. I'm assuming that it isn't unless performance
7218 or memory numbers show me otherwise. */
7219
e7c27a73 7220 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
7221 SYMBOL_CLASS (sym) = LOC_COMPUTED;
7222}
7223
c906108c
SS
7224/* Given a pointer to a DWARF information entry, figure out if we need
7225 to make a symbol table entry for it, and if so, create a new entry
7226 and return a pointer to it.
7227 If TYPE is NULL, determine symbol type from the die, otherwise
2df3850c 7228 used the passed type. */
c906108c
SS
7229
7230static struct symbol *
e7c27a73 7231new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
c906108c 7232{
e7c27a73 7233 struct objfile *objfile = cu->objfile;
c906108c
SS
7234 struct symbol *sym = NULL;
7235 char *name;
7236 struct attribute *attr = NULL;
7237 struct attribute *attr2 = NULL;
e142c38c
DJ
7238 CORE_ADDR baseaddr;
7239
7240 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 7241
5c4e30ca 7242 if (die->tag != DW_TAG_namespace)
e142c38c 7243 name = dwarf2_linkage_name (die, cu);
5c4e30ca
DC
7244 else
7245 name = TYPE_NAME (type);
7246
c906108c
SS
7247 if (name)
7248 {
4a146b47 7249 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
7250 sizeof (struct symbol));
7251 OBJSTAT (objfile, n_syms++);
7252 memset (sym, 0, sizeof (struct symbol));
2de7ced7
DJ
7253
7254 /* Cache this symbol's name and the name's demangled form (if any). */
e142c38c 7255 SYMBOL_LANGUAGE (sym) = cu->language;
2de7ced7 7256 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
c906108c
SS
7257
7258 /* Default assumptions.
c5aa993b 7259 Use the passed type or decode it from the die. */
176620f1 7260 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 7261 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
7262 if (type != NULL)
7263 SYMBOL_TYPE (sym) = type;
7264 else
e7c27a73 7265 SYMBOL_TYPE (sym) = die_type (die, cu);
e142c38c 7266 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
c906108c
SS
7267 if (attr)
7268 {
7269 SYMBOL_LINE (sym) = DW_UNSND (attr);
7270 }
cb1df416
DJ
7271
7272 attr = dwarf2_attr (die, DW_AT_decl_file, cu);
7273 if (attr)
7274 {
7275 int file_index = DW_UNSND (attr);
7276 if (cu->line_header == NULL
7277 || file_index > cu->line_header->num_file_names)
7278 complaint (&symfile_complaints,
7279 _("file index out of range"));
1c3d648d 7280 else if (file_index > 0)
cb1df416
DJ
7281 {
7282 struct file_entry *fe;
7283 fe = &cu->line_header->file_names[file_index - 1];
7284 SYMBOL_SYMTAB (sym) = fe->symtab;
7285 }
7286 }
7287
c906108c
SS
7288 switch (die->tag)
7289 {
7290 case DW_TAG_label:
e142c38c 7291 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
7292 if (attr)
7293 {
7294 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
7295 }
7296 SYMBOL_CLASS (sym) = LOC_LABEL;
7297 break;
7298 case DW_TAG_subprogram:
7299 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
7300 finish_block. */
7301 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 7302 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
7303 if ((attr2 && (DW_UNSND (attr2) != 0))
7304 || cu->language == language_ada)
c906108c 7305 {
2cfa0c8d
JB
7306 /* Subprograms marked external are stored as a global symbol.
7307 Ada subprograms, whether marked external or not, are always
7308 stored as a global symbol, because we want to be able to
7309 access them globally. For instance, we want to be able
7310 to break on a nested subprogram without having to
7311 specify the context. */
c906108c
SS
7312 add_symbol_to_list (sym, &global_symbols);
7313 }
7314 else
7315 {
e142c38c 7316 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7317 }
7318 break;
7319 case DW_TAG_variable:
7320 /* Compilation with minimal debug info may result in variables
7321 with missing type entries. Change the misleading `void' type
7322 to something sensible. */
7323 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499
UW
7324 SYMBOL_TYPE (sym)
7325 = builtin_type (current_gdbarch)->nodebug_data_symbol;
7326
e142c38c 7327 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7328 if (attr)
7329 {
e7c27a73 7330 dwarf2_const_value (attr, sym, cu);
e142c38c 7331 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
7332 if (attr2 && (DW_UNSND (attr2) != 0))
7333 add_symbol_to_list (sym, &global_symbols);
7334 else
e142c38c 7335 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7336 break;
7337 }
e142c38c 7338 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7339 if (attr)
7340 {
e7c27a73 7341 var_decode_location (attr, sym, cu);
e142c38c 7342 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 7343 if (attr2 && (DW_UNSND (attr2) != 0))
4c2df51b 7344 add_symbol_to_list (sym, &global_symbols);
c906108c 7345 else
e142c38c 7346 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7347 }
7348 else
7349 {
7350 /* We do not know the address of this symbol.
c5aa993b
JM
7351 If it is an external symbol and we have type information
7352 for it, enter the symbol as a LOC_UNRESOLVED symbol.
7353 The address of the variable will then be determined from
7354 the minimal symbol table whenever the variable is
7355 referenced. */
e142c38c 7356 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 7357 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 7358 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c
SS
7359 {
7360 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
7361 add_symbol_to_list (sym, &global_symbols);
7362 }
7363 }
7364 break;
7365 case DW_TAG_formal_parameter:
e142c38c 7366 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7367 if (attr)
7368 {
e7c27a73 7369 var_decode_location (attr, sym, cu);
7cf6e574
DJ
7370 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
7371 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
7372 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
c906108c 7373 }
e142c38c 7374 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7375 if (attr)
7376 {
e7c27a73 7377 dwarf2_const_value (attr, sym, cu);
c906108c 7378 }
e142c38c 7379 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7380 break;
7381 case DW_TAG_unspecified_parameters:
7382 /* From varargs functions; gdb doesn't seem to have any
7383 interest in this information, so just ignore it for now.
7384 (FIXME?) */
7385 break;
7386 case DW_TAG_class_type:
680b30c7 7387 case DW_TAG_interface_type:
c906108c
SS
7388 case DW_TAG_structure_type:
7389 case DW_TAG_union_type:
72019c9c 7390 case DW_TAG_set_type:
c906108c
SS
7391 case DW_TAG_enumeration_type:
7392 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 7393 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 7394
63d06c5c
DC
7395 /* Make sure that the symbol includes appropriate enclosing
7396 classes/namespaces in its name. These are calculated in
134d01f1 7397 read_structure_type, and the correct name is saved in
63d06c5c
DC
7398 the type. */
7399
987504bb
JJ
7400 if (cu->language == language_cplus
7401 || cu->language == language_java)
c906108c 7402 {
63d06c5c
DC
7403 struct type *type = SYMBOL_TYPE (sym);
7404
7405 if (TYPE_TAG_NAME (type) != NULL)
7406 {
7407 /* FIXME: carlton/2003-11-10: Should this use
7408 SYMBOL_SET_NAMES instead? (The same problem also
d8151005
DJ
7409 arises further down in this function.) */
7410 /* The type's name is already allocated along with
7411 this objfile, so we don't need to duplicate it
7412 for the symbol. */
7413 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
63d06c5c 7414 }
c906108c 7415 }
63d06c5c
DC
7416
7417 {
987504bb 7418 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
7419 really ever be static objects: otherwise, if you try
7420 to, say, break of a class's method and you're in a file
7421 which doesn't mention that class, it won't work unless
7422 the check for all static symbols in lookup_symbol_aux
7423 saves you. See the OtherFileClass tests in
7424 gdb.c++/namespace.exp. */
7425
7426 struct pending **list_to_add;
7427
e142c38c 7428 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
7429 && (cu->language == language_cplus
7430 || cu->language == language_java)
e142c38c 7431 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
7432
7433 add_symbol_to_list (sym, list_to_add);
7434
7435 /* The semantics of C++ state that "struct foo { ... }" also
987504bb
JJ
7436 defines a typedef for "foo". A Java class declaration also
7437 defines a typedef for the class. Synthesize a typedef symbol
7438 so that "ptype foo" works as expected. */
7439 if (cu->language == language_cplus
8c6860bb
JB
7440 || cu->language == language_java
7441 || cu->language == language_ada)
63d06c5c
DC
7442 {
7443 struct symbol *typedef_sym = (struct symbol *)
4a146b47 7444 obstack_alloc (&objfile->objfile_obstack,
63d06c5c
DC
7445 sizeof (struct symbol));
7446 *typedef_sym = *sym;
7447 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
d8151005
DJ
7448 /* The symbol's name is already allocated along with
7449 this objfile, so we don't need to duplicate it for
7450 the type. */
63d06c5c 7451 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
77ef991d 7452 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
63d06c5c
DC
7453 add_symbol_to_list (typedef_sym, list_to_add);
7454 }
7455 }
c906108c
SS
7456 break;
7457 case DW_TAG_typedef:
63d06c5c
DC
7458 if (processing_has_namespace_info
7459 && processing_current_prefix[0] != '\0')
7460 {
987504bb
JJ
7461 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7462 processing_current_prefix,
7463 name, cu);
63d06c5c
DC
7464 }
7465 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7466 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 7467 add_symbol_to_list (sym, cu->list_in_scope);
63d06c5c 7468 break;
c906108c 7469 case DW_TAG_base_type:
a02abb62 7470 case DW_TAG_subrange_type:
c906108c 7471 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 7472 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 7473 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7474 break;
7475 case DW_TAG_enumerator:
63d06c5c
DC
7476 if (processing_has_namespace_info
7477 && processing_current_prefix[0] != '\0')
7478 {
987504bb
JJ
7479 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7480 processing_current_prefix,
7481 name, cu);
63d06c5c 7482 }
e142c38c 7483 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7484 if (attr)
7485 {
e7c27a73 7486 dwarf2_const_value (attr, sym, cu);
c906108c 7487 }
63d06c5c
DC
7488 {
7489 /* NOTE: carlton/2003-11-10: See comment above in the
7490 DW_TAG_class_type, etc. block. */
7491
7492 struct pending **list_to_add;
7493
e142c38c 7494 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
7495 && (cu->language == language_cplus
7496 || cu->language == language_java)
e142c38c 7497 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
7498
7499 add_symbol_to_list (sym, list_to_add);
7500 }
c906108c 7501 break;
5c4e30ca
DC
7502 case DW_TAG_namespace:
7503 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7504 add_symbol_to_list (sym, &global_symbols);
7505 break;
c906108c
SS
7506 default:
7507 /* Not a tag we recognize. Hopefully we aren't processing
7508 trash data, but since we must specifically ignore things
7509 we don't recognize, there is nothing else we should do at
7510 this point. */
e2e0b3e5 7511 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 7512 dwarf_tag_name (die->tag));
c906108c
SS
7513 break;
7514 }
7515 }
7516 return (sym);
7517}
7518
7519/* Copy constant value from an attribute to a symbol. */
7520
7521static void
107d2387 7522dwarf2_const_value (struct attribute *attr, struct symbol *sym,
e7c27a73 7523 struct dwarf2_cu *cu)
c906108c 7524{
e7c27a73
DJ
7525 struct objfile *objfile = cu->objfile;
7526 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
7527 struct dwarf_block *blk;
7528
7529 switch (attr->form)
7530 {
7531 case DW_FORM_addr:
107d2387 7532 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
22abf04a 7533 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
7534 cu_header->addr_size,
7535 TYPE_LENGTH (SYMBOL_TYPE
7536 (sym)));
4e38b386 7537 SYMBOL_VALUE_BYTES (sym) =
4a146b47 7538 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
fbd9dcd3
AC
7539 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7540 it's body - store_unsigned_integer. */
7541 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7542 DW_ADDR (attr));
c906108c
SS
7543 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7544 break;
7545 case DW_FORM_block1:
7546 case DW_FORM_block2:
7547 case DW_FORM_block4:
7548 case DW_FORM_block:
7549 blk = DW_BLOCK (attr);
7550 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
22abf04a 7551 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
7552 blk->size,
7553 TYPE_LENGTH (SYMBOL_TYPE
7554 (sym)));
4e38b386 7555 SYMBOL_VALUE_BYTES (sym) =
4a146b47 7556 obstack_alloc (&objfile->objfile_obstack, blk->size);
c906108c
SS
7557 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7558 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7559 break;
2df3850c
JM
7560
7561 /* The DW_AT_const_value attributes are supposed to carry the
7562 symbol's value "represented as it would be on the target
7563 architecture." By the time we get here, it's already been
7564 converted to host endianness, so we just need to sign- or
7565 zero-extend it as appropriate. */
7566 case DW_FORM_data1:
7567 dwarf2_const_value_data (attr, sym, 8);
7568 break;
c906108c 7569 case DW_FORM_data2:
2df3850c
JM
7570 dwarf2_const_value_data (attr, sym, 16);
7571 break;
c906108c 7572 case DW_FORM_data4:
2df3850c
JM
7573 dwarf2_const_value_data (attr, sym, 32);
7574 break;
c906108c 7575 case DW_FORM_data8:
2df3850c
JM
7576 dwarf2_const_value_data (attr, sym, 64);
7577 break;
7578
c906108c 7579 case DW_FORM_sdata:
2df3850c
JM
7580 SYMBOL_VALUE (sym) = DW_SND (attr);
7581 SYMBOL_CLASS (sym) = LOC_CONST;
7582 break;
7583
c906108c
SS
7584 case DW_FORM_udata:
7585 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7586 SYMBOL_CLASS (sym) = LOC_CONST;
7587 break;
2df3850c 7588
c906108c 7589 default:
4d3c2250 7590 complaint (&symfile_complaints,
e2e0b3e5 7591 _("unsupported const value attribute form: '%s'"),
4d3c2250 7592 dwarf_form_name (attr->form));
c906108c
SS
7593 SYMBOL_VALUE (sym) = 0;
7594 SYMBOL_CLASS (sym) = LOC_CONST;
7595 break;
7596 }
7597}
7598
2df3850c
JM
7599
7600/* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7601 or zero-extend it as appropriate for the symbol's type. */
7602static void
7603dwarf2_const_value_data (struct attribute *attr,
7604 struct symbol *sym,
7605 int bits)
7606{
7607 LONGEST l = DW_UNSND (attr);
7608
7609 if (bits < sizeof (l) * 8)
7610 {
7611 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7612 l &= ((LONGEST) 1 << bits) - 1;
7613 else
bf9198f1 7614 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
2df3850c
JM
7615 }
7616
7617 SYMBOL_VALUE (sym) = l;
7618 SYMBOL_CLASS (sym) = LOC_CONST;
7619}
7620
7621
c906108c
SS
7622/* Return the type of the die in question using its DW_AT_type attribute. */
7623
7624static struct type *
e7c27a73 7625die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7626{
7627 struct type *type;
7628 struct attribute *type_attr;
7629 struct die_info *type_die;
c906108c 7630
e142c38c 7631 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
7632 if (!type_attr)
7633 {
7634 /* A missing DW_AT_type represents a void type. */
6ccb9162 7635 return builtin_type (current_gdbarch)->builtin_void;
c906108c
SS
7636 }
7637 else
10b3939b
DJ
7638 type_die = follow_die_ref (die, type_attr, cu);
7639
e7c27a73 7640 type = tag_type_to_type (type_die, cu);
c906108c
SS
7641 if (!type)
7642 {
7643 dump_die (type_die);
8a3fe4f8 7644 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
e7c27a73 7645 cu->objfile->name);
c906108c
SS
7646 }
7647 return type;
7648}
7649
7650/* Return the containing type of the die in question using its
7651 DW_AT_containing_type attribute. */
7652
7653static struct type *
e7c27a73 7654die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7655{
7656 struct type *type = NULL;
7657 struct attribute *type_attr;
7658 struct die_info *type_die = NULL;
c906108c 7659
e142c38c 7660 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
c906108c
SS
7661 if (type_attr)
7662 {
10b3939b 7663 type_die = follow_die_ref (die, type_attr, cu);
e7c27a73 7664 type = tag_type_to_type (type_die, cu);
c906108c
SS
7665 }
7666 if (!type)
7667 {
7668 if (type_die)
7669 dump_die (type_die);
8a3fe4f8 7670 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
e7c27a73 7671 cu->objfile->name);
c906108c
SS
7672 }
7673 return type;
7674}
7675
c906108c 7676static struct type *
e7c27a73 7677tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7678{
7679 if (die->type)
7680 {
7681 return die->type;
7682 }
7683 else
7684 {
e7c27a73 7685 read_type_die (die, cu);
c906108c
SS
7686 if (!die->type)
7687 {
7688 dump_die (die);
8a3fe4f8 7689 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
e7c27a73 7690 cu->objfile->name);
c906108c
SS
7691 }
7692 return die->type;
7693 }
7694}
7695
7696static void
e7c27a73 7697read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7698{
e142c38c 7699 char *prefix = determine_prefix (die, cu);
63d06c5c
DC
7700 const char *old_prefix = processing_current_prefix;
7701 struct cleanup *back_to = make_cleanup (xfree, prefix);
7702 processing_current_prefix = prefix;
7703
c906108c
SS
7704 switch (die->tag)
7705 {
7706 case DW_TAG_class_type:
680b30c7 7707 case DW_TAG_interface_type:
c906108c
SS
7708 case DW_TAG_structure_type:
7709 case DW_TAG_union_type:
134d01f1 7710 read_structure_type (die, cu);
c906108c
SS
7711 break;
7712 case DW_TAG_enumeration_type:
134d01f1 7713 read_enumeration_type (die, cu);
c906108c
SS
7714 break;
7715 case DW_TAG_subprogram:
7716 case DW_TAG_subroutine_type:
e7c27a73 7717 read_subroutine_type (die, cu);
c906108c
SS
7718 break;
7719 case DW_TAG_array_type:
e7c27a73 7720 read_array_type (die, cu);
c906108c 7721 break;
72019c9c
GM
7722 case DW_TAG_set_type:
7723 read_set_type (die, cu);
7724 break;
c906108c 7725 case DW_TAG_pointer_type:
e7c27a73 7726 read_tag_pointer_type (die, cu);
c906108c
SS
7727 break;
7728 case DW_TAG_ptr_to_member_type:
e7c27a73 7729 read_tag_ptr_to_member_type (die, cu);
c906108c
SS
7730 break;
7731 case DW_TAG_reference_type:
e7c27a73 7732 read_tag_reference_type (die, cu);
c906108c
SS
7733 break;
7734 case DW_TAG_const_type:
e7c27a73 7735 read_tag_const_type (die, cu);
c906108c
SS
7736 break;
7737 case DW_TAG_volatile_type:
e7c27a73 7738 read_tag_volatile_type (die, cu);
c906108c
SS
7739 break;
7740 case DW_TAG_string_type:
e7c27a73 7741 read_tag_string_type (die, cu);
c906108c
SS
7742 break;
7743 case DW_TAG_typedef:
e7c27a73 7744 read_typedef (die, cu);
c906108c 7745 break;
a02abb62
JB
7746 case DW_TAG_subrange_type:
7747 read_subrange_type (die, cu);
7748 break;
c906108c 7749 case DW_TAG_base_type:
e7c27a73 7750 read_base_type (die, cu);
c906108c 7751 break;
81a17f79
JB
7752 case DW_TAG_unspecified_type:
7753 read_unspecified_type (die, cu);
7754 break;
c906108c 7755 default:
a1f5b845 7756 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
4d3c2250 7757 dwarf_tag_name (die->tag));
c906108c
SS
7758 break;
7759 }
63d06c5c
DC
7760
7761 processing_current_prefix = old_prefix;
7762 do_cleanups (back_to);
7763}
7764
fdde2d81
DC
7765/* Return the name of the namespace/class that DIE is defined within,
7766 or "" if we can't tell. The caller should xfree the result. */
7767
7768/* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7769 therein) for an example of how to use this function to deal with
7770 DW_AT_specification. */
7771
7772static char *
e142c38c 7773determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c
DC
7774{
7775 struct die_info *parent;
7776
987504bb
JJ
7777 if (cu->language != language_cplus
7778 && cu->language != language_java)
63d06c5c
DC
7779 return NULL;
7780
7781 parent = die->parent;
7782
7783 if (parent == NULL)
7784 {
8176b9b8 7785 return xstrdup ("");
63d06c5c
DC
7786 }
7787 else
7788 {
63d06c5c
DC
7789 switch (parent->tag) {
7790 case DW_TAG_namespace:
7791 {
8176b9b8
DC
7792 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7793 before doing this check? */
7794 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7795 {
7796 return xstrdup (TYPE_TAG_NAME (parent->type));
7797 }
7798 else
7799 {
7800 int dummy;
7801 char *parent_prefix = determine_prefix (parent, cu);
987504bb 7802 char *retval = typename_concat (NULL, parent_prefix,
8176b9b8 7803 namespace_name (parent, &dummy,
987504bb
JJ
7804 cu),
7805 cu);
8176b9b8
DC
7806 xfree (parent_prefix);
7807 return retval;
7808 }
63d06c5c
DC
7809 }
7810 break;
7811 case DW_TAG_class_type:
680b30c7 7812 case DW_TAG_interface_type:
63d06c5c
DC
7813 case DW_TAG_structure_type:
7814 {
8176b9b8 7815 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
63d06c5c 7816 {
8176b9b8 7817 return xstrdup (TYPE_TAG_NAME (parent->type));
63d06c5c
DC
7818 }
7819 else
8176b9b8
DC
7820 {
7821 const char *old_prefix = processing_current_prefix;
7822 char *new_prefix = determine_prefix (parent, cu);
7823 char *retval;
7824
7825 processing_current_prefix = new_prefix;
7826 retval = determine_class_name (parent, cu);
7827 processing_current_prefix = old_prefix;
7828
7829 xfree (new_prefix);
7830 return retval;
7831 }
63d06c5c 7832 }
63d06c5c 7833 default:
8176b9b8 7834 return determine_prefix (parent, cu);
63d06c5c 7835 }
63d06c5c
DC
7836 }
7837}
7838
987504bb
JJ
7839/* Return a newly-allocated string formed by concatenating PREFIX and
7840 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7841 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7842 perform an obconcat, otherwise allocate storage for the result. The CU argument
7843 is used to determine the language and hence, the appropriate separator. */
7844
7845#define MAX_SEP_LEN 2 /* sizeof ("::") */
63d06c5c
DC
7846
7847static char *
987504bb
JJ
7848typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7849 struct dwarf2_cu *cu)
63d06c5c 7850{
987504bb 7851 char *sep;
63d06c5c 7852
987504bb
JJ
7853 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7854 sep = "";
7855 else if (cu->language == language_java)
7856 sep = ".";
7857 else
7858 sep = "::";
63d06c5c 7859
987504bb
JJ
7860 if (obs == NULL)
7861 {
7862 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7863 retval[0] = '\0';
7864
7865 if (prefix)
7866 {
7867 strcpy (retval, prefix);
7868 strcat (retval, sep);
7869 }
7870 if (suffix)
7871 strcat (retval, suffix);
7872
63d06c5c
DC
7873 return retval;
7874 }
987504bb
JJ
7875 else
7876 {
7877 /* We have an obstack. */
7878 return obconcat (obs, prefix, sep, suffix);
7879 }
63d06c5c
DC
7880}
7881
c906108c
SS
7882#if 0
7883struct die_info *
fba45db2 7884copy_die (struct die_info *old_die)
c906108c
SS
7885{
7886 struct die_info *new_die;
7887 int i, num_attrs;
7888
7889 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7890 memset (new_die, 0, sizeof (struct die_info));
7891
7892 new_die->tag = old_die->tag;
7893 new_die->has_children = old_die->has_children;
7894 new_die->abbrev = old_die->abbrev;
7895 new_die->offset = old_die->offset;
7896 new_die->type = NULL;
7897
7898 num_attrs = old_die->num_attrs;
7899 new_die->num_attrs = num_attrs;
7900 new_die->attrs = (struct attribute *)
7901 xmalloc (num_attrs * sizeof (struct attribute));
7902
7903 for (i = 0; i < old_die->num_attrs; ++i)
7904 {
7905 new_die->attrs[i].name = old_die->attrs[i].name;
7906 new_die->attrs[i].form = old_die->attrs[i].form;
7907 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7908 }
7909
7910 new_die->next = NULL;
7911 return new_die;
7912}
7913#endif
7914
7915/* Return sibling of die, NULL if no sibling. */
7916
f9aca02d 7917static struct die_info *
fba45db2 7918sibling_die (struct die_info *die)
c906108c 7919{
639d11d3 7920 return die->sibling;
c906108c
SS
7921}
7922
7923/* Get linkage name of a die, return NULL if not found. */
7924
7925static char *
e142c38c 7926dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7927{
7928 struct attribute *attr;
7929
e142c38c 7930 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
c906108c
SS
7931 if (attr && DW_STRING (attr))
7932 return DW_STRING (attr);
e142c38c 7933 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
7934 if (attr && DW_STRING (attr))
7935 return DW_STRING (attr);
7936 return NULL;
7937}
7938
9219021c
DC
7939/* Get name of a die, return NULL if not found. */
7940
7941static char *
e142c38c 7942dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
7943{
7944 struct attribute *attr;
7945
e142c38c 7946 attr = dwarf2_attr (die, DW_AT_name, cu);
9219021c
DC
7947 if (attr && DW_STRING (attr))
7948 return DW_STRING (attr);
7949 return NULL;
7950}
7951
7952/* Return the die that this die in an extension of, or NULL if there
7953 is none. */
7954
7955static struct die_info *
e142c38c 7956dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
7957{
7958 struct attribute *attr;
9219021c 7959
e142c38c 7960 attr = dwarf2_attr (die, DW_AT_extension, cu);
9219021c
DC
7961 if (attr == NULL)
7962 return NULL;
7963
10b3939b 7964 return follow_die_ref (die, attr, cu);
9219021c
DC
7965}
7966
c906108c
SS
7967/* Convert a DIE tag into its string name. */
7968
7969static char *
aa1ee363 7970dwarf_tag_name (unsigned tag)
c906108c
SS
7971{
7972 switch (tag)
7973 {
7974 case DW_TAG_padding:
7975 return "DW_TAG_padding";
7976 case DW_TAG_array_type:
7977 return "DW_TAG_array_type";
7978 case DW_TAG_class_type:
7979 return "DW_TAG_class_type";
7980 case DW_TAG_entry_point:
7981 return "DW_TAG_entry_point";
7982 case DW_TAG_enumeration_type:
7983 return "DW_TAG_enumeration_type";
7984 case DW_TAG_formal_parameter:
7985 return "DW_TAG_formal_parameter";
7986 case DW_TAG_imported_declaration:
7987 return "DW_TAG_imported_declaration";
7988 case DW_TAG_label:
7989 return "DW_TAG_label";
7990 case DW_TAG_lexical_block:
7991 return "DW_TAG_lexical_block";
7992 case DW_TAG_member:
7993 return "DW_TAG_member";
7994 case DW_TAG_pointer_type:
7995 return "DW_TAG_pointer_type";
7996 case DW_TAG_reference_type:
7997 return "DW_TAG_reference_type";
7998 case DW_TAG_compile_unit:
7999 return "DW_TAG_compile_unit";
8000 case DW_TAG_string_type:
8001 return "DW_TAG_string_type";
8002 case DW_TAG_structure_type:
8003 return "DW_TAG_structure_type";
8004 case DW_TAG_subroutine_type:
8005 return "DW_TAG_subroutine_type";
8006 case DW_TAG_typedef:
8007 return "DW_TAG_typedef";
8008 case DW_TAG_union_type:
8009 return "DW_TAG_union_type";
8010 case DW_TAG_unspecified_parameters:
8011 return "DW_TAG_unspecified_parameters";
8012 case DW_TAG_variant:
8013 return "DW_TAG_variant";
8014 case DW_TAG_common_block:
8015 return "DW_TAG_common_block";
8016 case DW_TAG_common_inclusion:
8017 return "DW_TAG_common_inclusion";
8018 case DW_TAG_inheritance:
8019 return "DW_TAG_inheritance";
8020 case DW_TAG_inlined_subroutine:
8021 return "DW_TAG_inlined_subroutine";
8022 case DW_TAG_module:
8023 return "DW_TAG_module";
8024 case DW_TAG_ptr_to_member_type:
8025 return "DW_TAG_ptr_to_member_type";
8026 case DW_TAG_set_type:
8027 return "DW_TAG_set_type";
8028 case DW_TAG_subrange_type:
8029 return "DW_TAG_subrange_type";
8030 case DW_TAG_with_stmt:
8031 return "DW_TAG_with_stmt";
8032 case DW_TAG_access_declaration:
8033 return "DW_TAG_access_declaration";
8034 case DW_TAG_base_type:
8035 return "DW_TAG_base_type";
8036 case DW_TAG_catch_block:
8037 return "DW_TAG_catch_block";
8038 case DW_TAG_const_type:
8039 return "DW_TAG_const_type";
8040 case DW_TAG_constant:
8041 return "DW_TAG_constant";
8042 case DW_TAG_enumerator:
8043 return "DW_TAG_enumerator";
8044 case DW_TAG_file_type:
8045 return "DW_TAG_file_type";
8046 case DW_TAG_friend:
8047 return "DW_TAG_friend";
8048 case DW_TAG_namelist:
8049 return "DW_TAG_namelist";
8050 case DW_TAG_namelist_item:
8051 return "DW_TAG_namelist_item";
8052 case DW_TAG_packed_type:
8053 return "DW_TAG_packed_type";
8054 case DW_TAG_subprogram:
8055 return "DW_TAG_subprogram";
8056 case DW_TAG_template_type_param:
8057 return "DW_TAG_template_type_param";
8058 case DW_TAG_template_value_param:
8059 return "DW_TAG_template_value_param";
8060 case DW_TAG_thrown_type:
8061 return "DW_TAG_thrown_type";
8062 case DW_TAG_try_block:
8063 return "DW_TAG_try_block";
8064 case DW_TAG_variant_part:
8065 return "DW_TAG_variant_part";
8066 case DW_TAG_variable:
8067 return "DW_TAG_variable";
8068 case DW_TAG_volatile_type:
8069 return "DW_TAG_volatile_type";
d9fa45fe
DC
8070 case DW_TAG_dwarf_procedure:
8071 return "DW_TAG_dwarf_procedure";
8072 case DW_TAG_restrict_type:
8073 return "DW_TAG_restrict_type";
8074 case DW_TAG_interface_type:
8075 return "DW_TAG_interface_type";
8076 case DW_TAG_namespace:
8077 return "DW_TAG_namespace";
8078 case DW_TAG_imported_module:
8079 return "DW_TAG_imported_module";
8080 case DW_TAG_unspecified_type:
8081 return "DW_TAG_unspecified_type";
8082 case DW_TAG_partial_unit:
8083 return "DW_TAG_partial_unit";
8084 case DW_TAG_imported_unit:
8085 return "DW_TAG_imported_unit";
b7619582
GF
8086 case DW_TAG_condition:
8087 return "DW_TAG_condition";
8088 case DW_TAG_shared_type:
8089 return "DW_TAG_shared_type";
c906108c
SS
8090 case DW_TAG_MIPS_loop:
8091 return "DW_TAG_MIPS_loop";
b7619582
GF
8092 case DW_TAG_HP_array_descriptor:
8093 return "DW_TAG_HP_array_descriptor";
c906108c
SS
8094 case DW_TAG_format_label:
8095 return "DW_TAG_format_label";
8096 case DW_TAG_function_template:
8097 return "DW_TAG_function_template";
8098 case DW_TAG_class_template:
8099 return "DW_TAG_class_template";
b7619582
GF
8100 case DW_TAG_GNU_BINCL:
8101 return "DW_TAG_GNU_BINCL";
8102 case DW_TAG_GNU_EINCL:
8103 return "DW_TAG_GNU_EINCL";
8104 case DW_TAG_upc_shared_type:
8105 return "DW_TAG_upc_shared_type";
8106 case DW_TAG_upc_strict_type:
8107 return "DW_TAG_upc_strict_type";
8108 case DW_TAG_upc_relaxed_type:
8109 return "DW_TAG_upc_relaxed_type";
8110 case DW_TAG_PGI_kanji_type:
8111 return "DW_TAG_PGI_kanji_type";
8112 case DW_TAG_PGI_interface_block:
8113 return "DW_TAG_PGI_interface_block";
c906108c
SS
8114 default:
8115 return "DW_TAG_<unknown>";
8116 }
8117}
8118
8119/* Convert a DWARF attribute code into its string name. */
8120
8121static char *
aa1ee363 8122dwarf_attr_name (unsigned attr)
c906108c
SS
8123{
8124 switch (attr)
8125 {
8126 case DW_AT_sibling:
8127 return "DW_AT_sibling";
8128 case DW_AT_location:
8129 return "DW_AT_location";
8130 case DW_AT_name:
8131 return "DW_AT_name";
8132 case DW_AT_ordering:
8133 return "DW_AT_ordering";
8134 case DW_AT_subscr_data:
8135 return "DW_AT_subscr_data";
8136 case DW_AT_byte_size:
8137 return "DW_AT_byte_size";
8138 case DW_AT_bit_offset:
8139 return "DW_AT_bit_offset";
8140 case DW_AT_bit_size:
8141 return "DW_AT_bit_size";
8142 case DW_AT_element_list:
8143 return "DW_AT_element_list";
8144 case DW_AT_stmt_list:
8145 return "DW_AT_stmt_list";
8146 case DW_AT_low_pc:
8147 return "DW_AT_low_pc";
8148 case DW_AT_high_pc:
8149 return "DW_AT_high_pc";
8150 case DW_AT_language:
8151 return "DW_AT_language";
8152 case DW_AT_member:
8153 return "DW_AT_member";
8154 case DW_AT_discr:
8155 return "DW_AT_discr";
8156 case DW_AT_discr_value:
8157 return "DW_AT_discr_value";
8158 case DW_AT_visibility:
8159 return "DW_AT_visibility";
8160 case DW_AT_import:
8161 return "DW_AT_import";
8162 case DW_AT_string_length:
8163 return "DW_AT_string_length";
8164 case DW_AT_common_reference:
8165 return "DW_AT_common_reference";
8166 case DW_AT_comp_dir:
8167 return "DW_AT_comp_dir";
8168 case DW_AT_const_value:
8169 return "DW_AT_const_value";
8170 case DW_AT_containing_type:
8171 return "DW_AT_containing_type";
8172 case DW_AT_default_value:
8173 return "DW_AT_default_value";
8174 case DW_AT_inline:
8175 return "DW_AT_inline";
8176 case DW_AT_is_optional:
8177 return "DW_AT_is_optional";
8178 case DW_AT_lower_bound:
8179 return "DW_AT_lower_bound";
8180 case DW_AT_producer:
8181 return "DW_AT_producer";
8182 case DW_AT_prototyped:
8183 return "DW_AT_prototyped";
8184 case DW_AT_return_addr:
8185 return "DW_AT_return_addr";
8186 case DW_AT_start_scope:
8187 return "DW_AT_start_scope";
09fa0d7c
JK
8188 case DW_AT_bit_stride:
8189 return "DW_AT_bit_stride";
c906108c
SS
8190 case DW_AT_upper_bound:
8191 return "DW_AT_upper_bound";
8192 case DW_AT_abstract_origin:
8193 return "DW_AT_abstract_origin";
8194 case DW_AT_accessibility:
8195 return "DW_AT_accessibility";
8196 case DW_AT_address_class:
8197 return "DW_AT_address_class";
8198 case DW_AT_artificial:
8199 return "DW_AT_artificial";
8200 case DW_AT_base_types:
8201 return "DW_AT_base_types";
8202 case DW_AT_calling_convention:
8203 return "DW_AT_calling_convention";
8204 case DW_AT_count:
8205 return "DW_AT_count";
8206 case DW_AT_data_member_location:
8207 return "DW_AT_data_member_location";
8208 case DW_AT_decl_column:
8209 return "DW_AT_decl_column";
8210 case DW_AT_decl_file:
8211 return "DW_AT_decl_file";
8212 case DW_AT_decl_line:
8213 return "DW_AT_decl_line";
8214 case DW_AT_declaration:
8215 return "DW_AT_declaration";
8216 case DW_AT_discr_list:
8217 return "DW_AT_discr_list";
8218 case DW_AT_encoding:
8219 return "DW_AT_encoding";
8220 case DW_AT_external:
8221 return "DW_AT_external";
8222 case DW_AT_frame_base:
8223 return "DW_AT_frame_base";
8224 case DW_AT_friend:
8225 return "DW_AT_friend";
8226 case DW_AT_identifier_case:
8227 return "DW_AT_identifier_case";
8228 case DW_AT_macro_info:
8229 return "DW_AT_macro_info";
8230 case DW_AT_namelist_items:
8231 return "DW_AT_namelist_items";
8232 case DW_AT_priority:
8233 return "DW_AT_priority";
8234 case DW_AT_segment:
8235 return "DW_AT_segment";
8236 case DW_AT_specification:
8237 return "DW_AT_specification";
8238 case DW_AT_static_link:
8239 return "DW_AT_static_link";
8240 case DW_AT_type:
8241 return "DW_AT_type";
8242 case DW_AT_use_location:
8243 return "DW_AT_use_location";
8244 case DW_AT_variable_parameter:
8245 return "DW_AT_variable_parameter";
8246 case DW_AT_virtuality:
8247 return "DW_AT_virtuality";
8248 case DW_AT_vtable_elem_location:
8249 return "DW_AT_vtable_elem_location";
b7619582 8250 /* DWARF 3 values. */
d9fa45fe
DC
8251 case DW_AT_allocated:
8252 return "DW_AT_allocated";
8253 case DW_AT_associated:
8254 return "DW_AT_associated";
8255 case DW_AT_data_location:
8256 return "DW_AT_data_location";
09fa0d7c
JK
8257 case DW_AT_byte_stride:
8258 return "DW_AT_byte_stride";
d9fa45fe
DC
8259 case DW_AT_entry_pc:
8260 return "DW_AT_entry_pc";
8261 case DW_AT_use_UTF8:
8262 return "DW_AT_use_UTF8";
8263 case DW_AT_extension:
8264 return "DW_AT_extension";
8265 case DW_AT_ranges:
8266 return "DW_AT_ranges";
8267 case DW_AT_trampoline:
8268 return "DW_AT_trampoline";
8269 case DW_AT_call_column:
8270 return "DW_AT_call_column";
8271 case DW_AT_call_file:
8272 return "DW_AT_call_file";
8273 case DW_AT_call_line:
8274 return "DW_AT_call_line";
b7619582
GF
8275 case DW_AT_description:
8276 return "DW_AT_description";
8277 case DW_AT_binary_scale:
8278 return "DW_AT_binary_scale";
8279 case DW_AT_decimal_scale:
8280 return "DW_AT_decimal_scale";
8281 case DW_AT_small:
8282 return "DW_AT_small";
8283 case DW_AT_decimal_sign:
8284 return "DW_AT_decimal_sign";
8285 case DW_AT_digit_count:
8286 return "DW_AT_digit_count";
8287 case DW_AT_picture_string:
8288 return "DW_AT_picture_string";
8289 case DW_AT_mutable:
8290 return "DW_AT_mutable";
8291 case DW_AT_threads_scaled:
8292 return "DW_AT_threads_scaled";
8293 case DW_AT_explicit:
8294 return "DW_AT_explicit";
8295 case DW_AT_object_pointer:
8296 return "DW_AT_object_pointer";
8297 case DW_AT_endianity:
8298 return "DW_AT_endianity";
8299 case DW_AT_elemental:
8300 return "DW_AT_elemental";
8301 case DW_AT_pure:
8302 return "DW_AT_pure";
8303 case DW_AT_recursive:
8304 return "DW_AT_recursive";
c906108c 8305#ifdef MIPS
b7619582 8306 /* SGI/MIPS extensions. */
c906108c
SS
8307 case DW_AT_MIPS_fde:
8308 return "DW_AT_MIPS_fde";
8309 case DW_AT_MIPS_loop_begin:
8310 return "DW_AT_MIPS_loop_begin";
8311 case DW_AT_MIPS_tail_loop_begin:
8312 return "DW_AT_MIPS_tail_loop_begin";
8313 case DW_AT_MIPS_epilog_begin:
8314 return "DW_AT_MIPS_epilog_begin";
8315 case DW_AT_MIPS_loop_unroll_factor:
8316 return "DW_AT_MIPS_loop_unroll_factor";
8317 case DW_AT_MIPS_software_pipeline_depth:
8318 return "DW_AT_MIPS_software_pipeline_depth";
8319 case DW_AT_MIPS_linkage_name:
8320 return "DW_AT_MIPS_linkage_name";
b7619582
GF
8321 case DW_AT_MIPS_stride:
8322 return "DW_AT_MIPS_stride";
8323 case DW_AT_MIPS_abstract_name:
8324 return "DW_AT_MIPS_abstract_name";
8325 case DW_AT_MIPS_clone_origin:
8326 return "DW_AT_MIPS_clone_origin";
8327 case DW_AT_MIPS_has_inlines:
8328 return "DW_AT_MIPS_has_inlines";
8329#endif
8330 /* HP extensions. */
8331 case DW_AT_HP_block_index:
8332 return "DW_AT_HP_block_index";
8333 case DW_AT_HP_unmodifiable:
8334 return "DW_AT_HP_unmodifiable";
8335 case DW_AT_HP_actuals_stmt_list:
8336 return "DW_AT_HP_actuals_stmt_list";
8337 case DW_AT_HP_proc_per_section:
8338 return "DW_AT_HP_proc_per_section";
8339 case DW_AT_HP_raw_data_ptr:
8340 return "DW_AT_HP_raw_data_ptr";
8341 case DW_AT_HP_pass_by_reference:
8342 return "DW_AT_HP_pass_by_reference";
8343 case DW_AT_HP_opt_level:
8344 return "DW_AT_HP_opt_level";
8345 case DW_AT_HP_prof_version_id:
8346 return "DW_AT_HP_prof_version_id";
8347 case DW_AT_HP_opt_flags:
8348 return "DW_AT_HP_opt_flags";
8349 case DW_AT_HP_cold_region_low_pc:
8350 return "DW_AT_HP_cold_region_low_pc";
8351 case DW_AT_HP_cold_region_high_pc:
8352 return "DW_AT_HP_cold_region_high_pc";
8353 case DW_AT_HP_all_variables_modifiable:
8354 return "DW_AT_HP_all_variables_modifiable";
8355 case DW_AT_HP_linkage_name:
8356 return "DW_AT_HP_linkage_name";
8357 case DW_AT_HP_prof_flags:
8358 return "DW_AT_HP_prof_flags";
8359 /* GNU extensions. */
c906108c
SS
8360 case DW_AT_sf_names:
8361 return "DW_AT_sf_names";
8362 case DW_AT_src_info:
8363 return "DW_AT_src_info";
8364 case DW_AT_mac_info:
8365 return "DW_AT_mac_info";
8366 case DW_AT_src_coords:
8367 return "DW_AT_src_coords";
8368 case DW_AT_body_begin:
8369 return "DW_AT_body_begin";
8370 case DW_AT_body_end:
8371 return "DW_AT_body_end";
f5f8a009
EZ
8372 case DW_AT_GNU_vector:
8373 return "DW_AT_GNU_vector";
b7619582
GF
8374 /* VMS extensions. */
8375 case DW_AT_VMS_rtnbeg_pd_address:
8376 return "DW_AT_VMS_rtnbeg_pd_address";
8377 /* UPC extension. */
8378 case DW_AT_upc_threads_scaled:
8379 return "DW_AT_upc_threads_scaled";
8380 /* PGI (STMicroelectronics) extensions. */
8381 case DW_AT_PGI_lbase:
8382 return "DW_AT_PGI_lbase";
8383 case DW_AT_PGI_soffset:
8384 return "DW_AT_PGI_soffset";
8385 case DW_AT_PGI_lstride:
8386 return "DW_AT_PGI_lstride";
c906108c
SS
8387 default:
8388 return "DW_AT_<unknown>";
8389 }
8390}
8391
8392/* Convert a DWARF value form code into its string name. */
8393
8394static char *
aa1ee363 8395dwarf_form_name (unsigned form)
c906108c
SS
8396{
8397 switch (form)
8398 {
8399 case DW_FORM_addr:
8400 return "DW_FORM_addr";
8401 case DW_FORM_block2:
8402 return "DW_FORM_block2";
8403 case DW_FORM_block4:
8404 return "DW_FORM_block4";
8405 case DW_FORM_data2:
8406 return "DW_FORM_data2";
8407 case DW_FORM_data4:
8408 return "DW_FORM_data4";
8409 case DW_FORM_data8:
8410 return "DW_FORM_data8";
8411 case DW_FORM_string:
8412 return "DW_FORM_string";
8413 case DW_FORM_block:
8414 return "DW_FORM_block";
8415 case DW_FORM_block1:
8416 return "DW_FORM_block1";
8417 case DW_FORM_data1:
8418 return "DW_FORM_data1";
8419 case DW_FORM_flag:
8420 return "DW_FORM_flag";
8421 case DW_FORM_sdata:
8422 return "DW_FORM_sdata";
8423 case DW_FORM_strp:
8424 return "DW_FORM_strp";
8425 case DW_FORM_udata:
8426 return "DW_FORM_udata";
8427 case DW_FORM_ref_addr:
8428 return "DW_FORM_ref_addr";
8429 case DW_FORM_ref1:
8430 return "DW_FORM_ref1";
8431 case DW_FORM_ref2:
8432 return "DW_FORM_ref2";
8433 case DW_FORM_ref4:
8434 return "DW_FORM_ref4";
8435 case DW_FORM_ref8:
8436 return "DW_FORM_ref8";
8437 case DW_FORM_ref_udata:
8438 return "DW_FORM_ref_udata";
8439 case DW_FORM_indirect:
8440 return "DW_FORM_indirect";
8441 default:
8442 return "DW_FORM_<unknown>";
8443 }
8444}
8445
8446/* Convert a DWARF stack opcode into its string name. */
8447
8448static char *
aa1ee363 8449dwarf_stack_op_name (unsigned op)
c906108c
SS
8450{
8451 switch (op)
8452 {
8453 case DW_OP_addr:
8454 return "DW_OP_addr";
8455 case DW_OP_deref:
8456 return "DW_OP_deref";
8457 case DW_OP_const1u:
8458 return "DW_OP_const1u";
8459 case DW_OP_const1s:
8460 return "DW_OP_const1s";
8461 case DW_OP_const2u:
8462 return "DW_OP_const2u";
8463 case DW_OP_const2s:
8464 return "DW_OP_const2s";
8465 case DW_OP_const4u:
8466 return "DW_OP_const4u";
8467 case DW_OP_const4s:
8468 return "DW_OP_const4s";
8469 case DW_OP_const8u:
8470 return "DW_OP_const8u";
8471 case DW_OP_const8s:
8472 return "DW_OP_const8s";
8473 case DW_OP_constu:
8474 return "DW_OP_constu";
8475 case DW_OP_consts:
8476 return "DW_OP_consts";
8477 case DW_OP_dup:
8478 return "DW_OP_dup";
8479 case DW_OP_drop:
8480 return "DW_OP_drop";
8481 case DW_OP_over:
8482 return "DW_OP_over";
8483 case DW_OP_pick:
8484 return "DW_OP_pick";
8485 case DW_OP_swap:
8486 return "DW_OP_swap";
8487 case DW_OP_rot:
8488 return "DW_OP_rot";
8489 case DW_OP_xderef:
8490 return "DW_OP_xderef";
8491 case DW_OP_abs:
8492 return "DW_OP_abs";
8493 case DW_OP_and:
8494 return "DW_OP_and";
8495 case DW_OP_div:
8496 return "DW_OP_div";
8497 case DW_OP_minus:
8498 return "DW_OP_minus";
8499 case DW_OP_mod:
8500 return "DW_OP_mod";
8501 case DW_OP_mul:
8502 return "DW_OP_mul";
8503 case DW_OP_neg:
8504 return "DW_OP_neg";
8505 case DW_OP_not:
8506 return "DW_OP_not";
8507 case DW_OP_or:
8508 return "DW_OP_or";
8509 case DW_OP_plus:
8510 return "DW_OP_plus";
8511 case DW_OP_plus_uconst:
8512 return "DW_OP_plus_uconst";
8513 case DW_OP_shl:
8514 return "DW_OP_shl";
8515 case DW_OP_shr:
8516 return "DW_OP_shr";
8517 case DW_OP_shra:
8518 return "DW_OP_shra";
8519 case DW_OP_xor:
8520 return "DW_OP_xor";
8521 case DW_OP_bra:
8522 return "DW_OP_bra";
8523 case DW_OP_eq:
8524 return "DW_OP_eq";
8525 case DW_OP_ge:
8526 return "DW_OP_ge";
8527 case DW_OP_gt:
8528 return "DW_OP_gt";
8529 case DW_OP_le:
8530 return "DW_OP_le";
8531 case DW_OP_lt:
8532 return "DW_OP_lt";
8533 case DW_OP_ne:
8534 return "DW_OP_ne";
8535 case DW_OP_skip:
8536 return "DW_OP_skip";
8537 case DW_OP_lit0:
8538 return "DW_OP_lit0";
8539 case DW_OP_lit1:
8540 return "DW_OP_lit1";
8541 case DW_OP_lit2:
8542 return "DW_OP_lit2";
8543 case DW_OP_lit3:
8544 return "DW_OP_lit3";
8545 case DW_OP_lit4:
8546 return "DW_OP_lit4";
8547 case DW_OP_lit5:
8548 return "DW_OP_lit5";
8549 case DW_OP_lit6:
8550 return "DW_OP_lit6";
8551 case DW_OP_lit7:
8552 return "DW_OP_lit7";
8553 case DW_OP_lit8:
8554 return "DW_OP_lit8";
8555 case DW_OP_lit9:
8556 return "DW_OP_lit9";
8557 case DW_OP_lit10:
8558 return "DW_OP_lit10";
8559 case DW_OP_lit11:
8560 return "DW_OP_lit11";
8561 case DW_OP_lit12:
8562 return "DW_OP_lit12";
8563 case DW_OP_lit13:
8564 return "DW_OP_lit13";
8565 case DW_OP_lit14:
8566 return "DW_OP_lit14";
8567 case DW_OP_lit15:
8568 return "DW_OP_lit15";
8569 case DW_OP_lit16:
8570 return "DW_OP_lit16";
8571 case DW_OP_lit17:
8572 return "DW_OP_lit17";
8573 case DW_OP_lit18:
8574 return "DW_OP_lit18";
8575 case DW_OP_lit19:
8576 return "DW_OP_lit19";
8577 case DW_OP_lit20:
8578 return "DW_OP_lit20";
8579 case DW_OP_lit21:
8580 return "DW_OP_lit21";
8581 case DW_OP_lit22:
8582 return "DW_OP_lit22";
8583 case DW_OP_lit23:
8584 return "DW_OP_lit23";
8585 case DW_OP_lit24:
8586 return "DW_OP_lit24";
8587 case DW_OP_lit25:
8588 return "DW_OP_lit25";
8589 case DW_OP_lit26:
8590 return "DW_OP_lit26";
8591 case DW_OP_lit27:
8592 return "DW_OP_lit27";
8593 case DW_OP_lit28:
8594 return "DW_OP_lit28";
8595 case DW_OP_lit29:
8596 return "DW_OP_lit29";
8597 case DW_OP_lit30:
8598 return "DW_OP_lit30";
8599 case DW_OP_lit31:
8600 return "DW_OP_lit31";
8601 case DW_OP_reg0:
8602 return "DW_OP_reg0";
8603 case DW_OP_reg1:
8604 return "DW_OP_reg1";
8605 case DW_OP_reg2:
8606 return "DW_OP_reg2";
8607 case DW_OP_reg3:
8608 return "DW_OP_reg3";
8609 case DW_OP_reg4:
8610 return "DW_OP_reg4";
8611 case DW_OP_reg5:
8612 return "DW_OP_reg5";
8613 case DW_OP_reg6:
8614 return "DW_OP_reg6";
8615 case DW_OP_reg7:
8616 return "DW_OP_reg7";
8617 case DW_OP_reg8:
8618 return "DW_OP_reg8";
8619 case DW_OP_reg9:
8620 return "DW_OP_reg9";
8621 case DW_OP_reg10:
8622 return "DW_OP_reg10";
8623 case DW_OP_reg11:
8624 return "DW_OP_reg11";
8625 case DW_OP_reg12:
8626 return "DW_OP_reg12";
8627 case DW_OP_reg13:
8628 return "DW_OP_reg13";
8629 case DW_OP_reg14:
8630 return "DW_OP_reg14";
8631 case DW_OP_reg15:
8632 return "DW_OP_reg15";
8633 case DW_OP_reg16:
8634 return "DW_OP_reg16";
8635 case DW_OP_reg17:
8636 return "DW_OP_reg17";
8637 case DW_OP_reg18:
8638 return "DW_OP_reg18";
8639 case DW_OP_reg19:
8640 return "DW_OP_reg19";
8641 case DW_OP_reg20:
8642 return "DW_OP_reg20";
8643 case DW_OP_reg21:
8644 return "DW_OP_reg21";
8645 case DW_OP_reg22:
8646 return "DW_OP_reg22";
8647 case DW_OP_reg23:
8648 return "DW_OP_reg23";
8649 case DW_OP_reg24:
8650 return "DW_OP_reg24";
8651 case DW_OP_reg25:
8652 return "DW_OP_reg25";
8653 case DW_OP_reg26:
8654 return "DW_OP_reg26";
8655 case DW_OP_reg27:
8656 return "DW_OP_reg27";
8657 case DW_OP_reg28:
8658 return "DW_OP_reg28";
8659 case DW_OP_reg29:
8660 return "DW_OP_reg29";
8661 case DW_OP_reg30:
8662 return "DW_OP_reg30";
8663 case DW_OP_reg31:
8664 return "DW_OP_reg31";
8665 case DW_OP_breg0:
8666 return "DW_OP_breg0";
8667 case DW_OP_breg1:
8668 return "DW_OP_breg1";
8669 case DW_OP_breg2:
8670 return "DW_OP_breg2";
8671 case DW_OP_breg3:
8672 return "DW_OP_breg3";
8673 case DW_OP_breg4:
8674 return "DW_OP_breg4";
8675 case DW_OP_breg5:
8676 return "DW_OP_breg5";
8677 case DW_OP_breg6:
8678 return "DW_OP_breg6";
8679 case DW_OP_breg7:
8680 return "DW_OP_breg7";
8681 case DW_OP_breg8:
8682 return "DW_OP_breg8";
8683 case DW_OP_breg9:
8684 return "DW_OP_breg9";
8685 case DW_OP_breg10:
8686 return "DW_OP_breg10";
8687 case DW_OP_breg11:
8688 return "DW_OP_breg11";
8689 case DW_OP_breg12:
8690 return "DW_OP_breg12";
8691 case DW_OP_breg13:
8692 return "DW_OP_breg13";
8693 case DW_OP_breg14:
8694 return "DW_OP_breg14";
8695 case DW_OP_breg15:
8696 return "DW_OP_breg15";
8697 case DW_OP_breg16:
8698 return "DW_OP_breg16";
8699 case DW_OP_breg17:
8700 return "DW_OP_breg17";
8701 case DW_OP_breg18:
8702 return "DW_OP_breg18";
8703 case DW_OP_breg19:
8704 return "DW_OP_breg19";
8705 case DW_OP_breg20:
8706 return "DW_OP_breg20";
8707 case DW_OP_breg21:
8708 return "DW_OP_breg21";
8709 case DW_OP_breg22:
8710 return "DW_OP_breg22";
8711 case DW_OP_breg23:
8712 return "DW_OP_breg23";
8713 case DW_OP_breg24:
8714 return "DW_OP_breg24";
8715 case DW_OP_breg25:
8716 return "DW_OP_breg25";
8717 case DW_OP_breg26:
8718 return "DW_OP_breg26";
8719 case DW_OP_breg27:
8720 return "DW_OP_breg27";
8721 case DW_OP_breg28:
8722 return "DW_OP_breg28";
8723 case DW_OP_breg29:
8724 return "DW_OP_breg29";
8725 case DW_OP_breg30:
8726 return "DW_OP_breg30";
8727 case DW_OP_breg31:
8728 return "DW_OP_breg31";
8729 case DW_OP_regx:
8730 return "DW_OP_regx";
8731 case DW_OP_fbreg:
8732 return "DW_OP_fbreg";
8733 case DW_OP_bregx:
8734 return "DW_OP_bregx";
8735 case DW_OP_piece:
8736 return "DW_OP_piece";
8737 case DW_OP_deref_size:
8738 return "DW_OP_deref_size";
8739 case DW_OP_xderef_size:
8740 return "DW_OP_xderef_size";
8741 case DW_OP_nop:
8742 return "DW_OP_nop";
b7619582 8743 /* DWARF 3 extensions. */
ed348acc
EZ
8744 case DW_OP_push_object_address:
8745 return "DW_OP_push_object_address";
8746 case DW_OP_call2:
8747 return "DW_OP_call2";
8748 case DW_OP_call4:
8749 return "DW_OP_call4";
8750 case DW_OP_call_ref:
8751 return "DW_OP_call_ref";
b7619582
GF
8752 /* GNU extensions. */
8753 case DW_OP_form_tls_address:
8754 return "DW_OP_form_tls_address";
8755 case DW_OP_call_frame_cfa:
8756 return "DW_OP_call_frame_cfa";
8757 case DW_OP_bit_piece:
8758 return "DW_OP_bit_piece";
ed348acc
EZ
8759 case DW_OP_GNU_push_tls_address:
8760 return "DW_OP_GNU_push_tls_address";
42be36b3
CT
8761 case DW_OP_GNU_uninit:
8762 return "DW_OP_GNU_uninit";
b7619582
GF
8763 /* HP extensions. */
8764 case DW_OP_HP_is_value:
8765 return "DW_OP_HP_is_value";
8766 case DW_OP_HP_fltconst4:
8767 return "DW_OP_HP_fltconst4";
8768 case DW_OP_HP_fltconst8:
8769 return "DW_OP_HP_fltconst8";
8770 case DW_OP_HP_mod_range:
8771 return "DW_OP_HP_mod_range";
8772 case DW_OP_HP_unmod_range:
8773 return "DW_OP_HP_unmod_range";
8774 case DW_OP_HP_tls:
8775 return "DW_OP_HP_tls";
c906108c
SS
8776 default:
8777 return "OP_<unknown>";
8778 }
8779}
8780
8781static char *
fba45db2 8782dwarf_bool_name (unsigned mybool)
c906108c
SS
8783{
8784 if (mybool)
8785 return "TRUE";
8786 else
8787 return "FALSE";
8788}
8789
8790/* Convert a DWARF type code into its string name. */
8791
8792static char *
aa1ee363 8793dwarf_type_encoding_name (unsigned enc)
c906108c
SS
8794{
8795 switch (enc)
8796 {
b7619582
GF
8797 case DW_ATE_void:
8798 return "DW_ATE_void";
c906108c
SS
8799 case DW_ATE_address:
8800 return "DW_ATE_address";
8801 case DW_ATE_boolean:
8802 return "DW_ATE_boolean";
8803 case DW_ATE_complex_float:
8804 return "DW_ATE_complex_float";
8805 case DW_ATE_float:
8806 return "DW_ATE_float";
8807 case DW_ATE_signed:
8808 return "DW_ATE_signed";
8809 case DW_ATE_signed_char:
8810 return "DW_ATE_signed_char";
8811 case DW_ATE_unsigned:
8812 return "DW_ATE_unsigned";
8813 case DW_ATE_unsigned_char:
8814 return "DW_ATE_unsigned_char";
b7619582 8815 /* DWARF 3. */
d9fa45fe
DC
8816 case DW_ATE_imaginary_float:
8817 return "DW_ATE_imaginary_float";
b7619582
GF
8818 case DW_ATE_packed_decimal:
8819 return "DW_ATE_packed_decimal";
8820 case DW_ATE_numeric_string:
8821 return "DW_ATE_numeric_string";
8822 case DW_ATE_edited:
8823 return "DW_ATE_edited";
8824 case DW_ATE_signed_fixed:
8825 return "DW_ATE_signed_fixed";
8826 case DW_ATE_unsigned_fixed:
8827 return "DW_ATE_unsigned_fixed";
8828 case DW_ATE_decimal_float:
8829 return "DW_ATE_decimal_float";
8830 /* HP extensions. */
8831 case DW_ATE_HP_float80:
8832 return "DW_ATE_HP_float80";
8833 case DW_ATE_HP_complex_float80:
8834 return "DW_ATE_HP_complex_float80";
8835 case DW_ATE_HP_float128:
8836 return "DW_ATE_HP_float128";
8837 case DW_ATE_HP_complex_float128:
8838 return "DW_ATE_HP_complex_float128";
8839 case DW_ATE_HP_floathpintel:
8840 return "DW_ATE_HP_floathpintel";
8841 case DW_ATE_HP_imaginary_float80:
8842 return "DW_ATE_HP_imaginary_float80";
8843 case DW_ATE_HP_imaginary_float128:
8844 return "DW_ATE_HP_imaginary_float128";
c906108c
SS
8845 default:
8846 return "DW_ATE_<unknown>";
8847 }
8848}
8849
8850/* Convert a DWARF call frame info operation to its string name. */
8851
8852#if 0
8853static char *
aa1ee363 8854dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
8855{
8856 switch (cfi_opc)
8857 {
8858 case DW_CFA_advance_loc:
8859 return "DW_CFA_advance_loc";
8860 case DW_CFA_offset:
8861 return "DW_CFA_offset";
8862 case DW_CFA_restore:
8863 return "DW_CFA_restore";
8864 case DW_CFA_nop:
8865 return "DW_CFA_nop";
8866 case DW_CFA_set_loc:
8867 return "DW_CFA_set_loc";
8868 case DW_CFA_advance_loc1:
8869 return "DW_CFA_advance_loc1";
8870 case DW_CFA_advance_loc2:
8871 return "DW_CFA_advance_loc2";
8872 case DW_CFA_advance_loc4:
8873 return "DW_CFA_advance_loc4";
8874 case DW_CFA_offset_extended:
8875 return "DW_CFA_offset_extended";
8876 case DW_CFA_restore_extended:
8877 return "DW_CFA_restore_extended";
8878 case DW_CFA_undefined:
8879 return "DW_CFA_undefined";
8880 case DW_CFA_same_value:
8881 return "DW_CFA_same_value";
8882 case DW_CFA_register:
8883 return "DW_CFA_register";
8884 case DW_CFA_remember_state:
8885 return "DW_CFA_remember_state";
8886 case DW_CFA_restore_state:
8887 return "DW_CFA_restore_state";
8888 case DW_CFA_def_cfa:
8889 return "DW_CFA_def_cfa";
8890 case DW_CFA_def_cfa_register:
8891 return "DW_CFA_def_cfa_register";
8892 case DW_CFA_def_cfa_offset:
8893 return "DW_CFA_def_cfa_offset";
b7619582 8894 /* DWARF 3. */
985cb1a3
JM
8895 case DW_CFA_def_cfa_expression:
8896 return "DW_CFA_def_cfa_expression";
8897 case DW_CFA_expression:
8898 return "DW_CFA_expression";
8899 case DW_CFA_offset_extended_sf:
8900 return "DW_CFA_offset_extended_sf";
8901 case DW_CFA_def_cfa_sf:
8902 return "DW_CFA_def_cfa_sf";
8903 case DW_CFA_def_cfa_offset_sf:
8904 return "DW_CFA_def_cfa_offset_sf";
b7619582
GF
8905 case DW_CFA_val_offset:
8906 return "DW_CFA_val_offset";
8907 case DW_CFA_val_offset_sf:
8908 return "DW_CFA_val_offset_sf";
8909 case DW_CFA_val_expression:
8910 return "DW_CFA_val_expression";
8911 /* SGI/MIPS specific. */
c906108c
SS
8912 case DW_CFA_MIPS_advance_loc8:
8913 return "DW_CFA_MIPS_advance_loc8";
b7619582 8914 /* GNU extensions. */
985cb1a3
JM
8915 case DW_CFA_GNU_window_save:
8916 return "DW_CFA_GNU_window_save";
8917 case DW_CFA_GNU_args_size:
8918 return "DW_CFA_GNU_args_size";
8919 case DW_CFA_GNU_negative_offset_extended:
8920 return "DW_CFA_GNU_negative_offset_extended";
c906108c
SS
8921 default:
8922 return "DW_CFA_<unknown>";
8923 }
8924}
8925#endif
8926
f9aca02d 8927static void
fba45db2 8928dump_die (struct die_info *die)
c906108c
SS
8929{
8930 unsigned int i;
8931
48cd0caa 8932 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
c906108c 8933 dwarf_tag_name (die->tag), die->abbrev, die->offset);
48cd0caa 8934 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
639d11d3 8935 dwarf_bool_name (die->child != NULL));
c906108c 8936
48cd0caa 8937 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
c906108c
SS
8938 for (i = 0; i < die->num_attrs; ++i)
8939 {
48cd0caa 8940 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
c906108c
SS
8941 dwarf_attr_name (die->attrs[i].name),
8942 dwarf_form_name (die->attrs[i].form));
8943 switch (die->attrs[i].form)
8944 {
8945 case DW_FORM_ref_addr:
8946 case DW_FORM_addr:
48cd0caa 8947 fprintf_unfiltered (gdb_stderr, "address: ");
ed49a04f 8948 fputs_filtered (paddress (DW_ADDR (&die->attrs[i])), gdb_stderr);
c906108c
SS
8949 break;
8950 case DW_FORM_block2:
8951 case DW_FORM_block4:
8952 case DW_FORM_block:
8953 case DW_FORM_block1:
48cd0caa 8954 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
c906108c 8955 break;
10b3939b
DJ
8956 case DW_FORM_ref1:
8957 case DW_FORM_ref2:
8958 case DW_FORM_ref4:
8959 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8960 (long) (DW_ADDR (&die->attrs[i])));
8961 break;
c906108c
SS
8962 case DW_FORM_data1:
8963 case DW_FORM_data2:
8964 case DW_FORM_data4:
ce5d95e1 8965 case DW_FORM_data8:
c906108c
SS
8966 case DW_FORM_udata:
8967 case DW_FORM_sdata:
48cd0caa 8968 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
c906108c
SS
8969 break;
8970 case DW_FORM_string:
4bdf3d34 8971 case DW_FORM_strp:
48cd0caa 8972 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
c906108c 8973 DW_STRING (&die->attrs[i])
c5aa993b 8974 ? DW_STRING (&die->attrs[i]) : "");
c906108c
SS
8975 break;
8976 case DW_FORM_flag:
8977 if (DW_UNSND (&die->attrs[i]))
48cd0caa 8978 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
c906108c 8979 else
48cd0caa 8980 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
c906108c 8981 break;
a8329558
KW
8982 case DW_FORM_indirect:
8983 /* the reader will have reduced the indirect form to
8984 the "base form" so this form should not occur */
48cd0caa 8985 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
a8329558 8986 break;
c906108c 8987 default:
48cd0caa 8988 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
c5aa993b 8989 die->attrs[i].form);
c906108c 8990 }
48cd0caa 8991 fprintf_unfiltered (gdb_stderr, "\n");
c906108c
SS
8992 }
8993}
8994
f9aca02d 8995static void
fba45db2 8996dump_die_list (struct die_info *die)
c906108c
SS
8997{
8998 while (die)
8999 {
9000 dump_die (die);
639d11d3
DC
9001 if (die->child != NULL)
9002 dump_die_list (die->child);
9003 if (die->sibling != NULL)
9004 dump_die_list (die->sibling);
c906108c
SS
9005 }
9006}
9007
f9aca02d 9008static void
10b3939b
DJ
9009store_in_ref_table (unsigned int offset, struct die_info *die,
9010 struct dwarf2_cu *cu)
c906108c
SS
9011{
9012 int h;
9013 struct die_info *old;
9014
9015 h = (offset % REF_HASH_SIZE);
10b3939b 9016 old = cu->die_ref_table[h];
c906108c 9017 die->next_ref = old;
10b3939b 9018 cu->die_ref_table[h] = die;
c906108c
SS
9019}
9020
9021static unsigned int
e142c38c 9022dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
c906108c
SS
9023{
9024 unsigned int result = 0;
9025
9026 switch (attr->form)
9027 {
9028 case DW_FORM_ref_addr:
c906108c
SS
9029 case DW_FORM_ref1:
9030 case DW_FORM_ref2:
9031 case DW_FORM_ref4:
613e1657 9032 case DW_FORM_ref8:
c906108c 9033 case DW_FORM_ref_udata:
10b3939b 9034 result = DW_ADDR (attr);
c906108c
SS
9035 break;
9036 default:
4d3c2250 9037 complaint (&symfile_complaints,
e2e0b3e5 9038 _("unsupported die ref attribute form: '%s'"),
4d3c2250 9039 dwarf_form_name (attr->form));
c906108c
SS
9040 }
9041 return result;
9042}
9043
a02abb62
JB
9044/* Return the constant value held by the given attribute. Return -1
9045 if the value held by the attribute is not constant. */
9046
9047static int
9048dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
9049{
9050 if (attr->form == DW_FORM_sdata)
9051 return DW_SND (attr);
9052 else if (attr->form == DW_FORM_udata
9053 || attr->form == DW_FORM_data1
9054 || attr->form == DW_FORM_data2
9055 || attr->form == DW_FORM_data4
9056 || attr->form == DW_FORM_data8)
9057 return DW_UNSND (attr);
9058 else
9059 {
e2e0b3e5 9060 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
a02abb62
JB
9061 dwarf_form_name (attr->form));
9062 return default_value;
9063 }
9064}
9065
f9aca02d 9066static struct die_info *
10b3939b
DJ
9067follow_die_ref (struct die_info *src_die, struct attribute *attr,
9068 struct dwarf2_cu *cu)
c906108c
SS
9069{
9070 struct die_info *die;
10b3939b 9071 unsigned int offset;
c906108c 9072 int h;
10b3939b
DJ
9073 struct die_info temp_die;
9074 struct dwarf2_cu *target_cu;
9075
9076 offset = dwarf2_get_ref_die_offset (attr, cu);
9077
9078 if (DW_ADDR (attr) < cu->header.offset
9079 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
9080 {
9081 struct dwarf2_per_cu_data *per_cu;
9082 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
9083 cu->objfile);
9084 target_cu = per_cu->cu;
9085 }
9086 else
9087 target_cu = cu;
c906108c
SS
9088
9089 h = (offset % REF_HASH_SIZE);
10b3939b 9090 die = target_cu->die_ref_table[h];
c906108c
SS
9091 while (die)
9092 {
9093 if (die->offset == offset)
10b3939b 9094 return die;
c906108c
SS
9095 die = die->next_ref;
9096 }
10b3939b 9097
8a3fe4f8
AC
9098 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
9099 "at 0x%lx [in module %s]"),
10b3939b
DJ
9100 (long) src_die->offset, (long) offset, cu->objfile->name);
9101
c906108c
SS
9102 return NULL;
9103}
9104
c906108c
SS
9105/* Decode simple location descriptions.
9106 Given a pointer to a dwarf block that defines a location, compute
9107 the location and return the value.
9108
4cecd739
DJ
9109 NOTE drow/2003-11-18: This function is called in two situations
9110 now: for the address of static or global variables (partial symbols
9111 only) and for offsets into structures which are expected to be
9112 (more or less) constant. The partial symbol case should go away,
9113 and only the constant case should remain. That will let this
9114 function complain more accurately. A few special modes are allowed
9115 without complaint for global variables (for instance, global
9116 register values and thread-local values).
c906108c
SS
9117
9118 A location description containing no operations indicates that the
4cecd739 9119 object is optimized out. The return value is 0 for that case.
6b992462
DJ
9120 FIXME drow/2003-11-16: No callers check for this case any more; soon all
9121 callers will only want a very basic result and this can become a
9122 complaint.
c906108c 9123
c906108c
SS
9124 Note that stack[0] is unused except as a default error return.
9125 Note that stack overflow is not yet handled. */
9126
9127static CORE_ADDR
e7c27a73 9128decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 9129{
e7c27a73
DJ
9130 struct objfile *objfile = cu->objfile;
9131 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
9132 int i;
9133 int size = blk->size;
fe1b8b76 9134 gdb_byte *data = blk->data;
c906108c
SS
9135 CORE_ADDR stack[64];
9136 int stacki;
9137 unsigned int bytes_read, unsnd;
fe1b8b76 9138 gdb_byte op;
c906108c
SS
9139
9140 i = 0;
9141 stacki = 0;
9142 stack[stacki] = 0;
c906108c
SS
9143
9144 while (i < size)
9145 {
c906108c
SS
9146 op = data[i++];
9147 switch (op)
9148 {
f1bea926
JM
9149 case DW_OP_lit0:
9150 case DW_OP_lit1:
9151 case DW_OP_lit2:
9152 case DW_OP_lit3:
9153 case DW_OP_lit4:
9154 case DW_OP_lit5:
9155 case DW_OP_lit6:
9156 case DW_OP_lit7:
9157 case DW_OP_lit8:
9158 case DW_OP_lit9:
9159 case DW_OP_lit10:
9160 case DW_OP_lit11:
9161 case DW_OP_lit12:
9162 case DW_OP_lit13:
9163 case DW_OP_lit14:
9164 case DW_OP_lit15:
9165 case DW_OP_lit16:
9166 case DW_OP_lit17:
9167 case DW_OP_lit18:
9168 case DW_OP_lit19:
9169 case DW_OP_lit20:
9170 case DW_OP_lit21:
9171 case DW_OP_lit22:
9172 case DW_OP_lit23:
9173 case DW_OP_lit24:
9174 case DW_OP_lit25:
9175 case DW_OP_lit26:
9176 case DW_OP_lit27:
9177 case DW_OP_lit28:
9178 case DW_OP_lit29:
9179 case DW_OP_lit30:
9180 case DW_OP_lit31:
9181 stack[++stacki] = op - DW_OP_lit0;
9182 break;
9183
c906108c
SS
9184 case DW_OP_reg0:
9185 case DW_OP_reg1:
9186 case DW_OP_reg2:
9187 case DW_OP_reg3:
9188 case DW_OP_reg4:
9189 case DW_OP_reg5:
9190 case DW_OP_reg6:
9191 case DW_OP_reg7:
9192 case DW_OP_reg8:
9193 case DW_OP_reg9:
9194 case DW_OP_reg10:
9195 case DW_OP_reg11:
9196 case DW_OP_reg12:
9197 case DW_OP_reg13:
9198 case DW_OP_reg14:
9199 case DW_OP_reg15:
9200 case DW_OP_reg16:
9201 case DW_OP_reg17:
9202 case DW_OP_reg18:
9203 case DW_OP_reg19:
9204 case DW_OP_reg20:
9205 case DW_OP_reg21:
9206 case DW_OP_reg22:
9207 case DW_OP_reg23:
9208 case DW_OP_reg24:
9209 case DW_OP_reg25:
9210 case DW_OP_reg26:
9211 case DW_OP_reg27:
9212 case DW_OP_reg28:
9213 case DW_OP_reg29:
9214 case DW_OP_reg30:
9215 case DW_OP_reg31:
c906108c 9216 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
9217 if (i < size)
9218 dwarf2_complex_location_expr_complaint ();
c906108c
SS
9219 break;
9220
9221 case DW_OP_regx:
c906108c
SS
9222 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9223 i += bytes_read;
c906108c 9224 stack[++stacki] = unsnd;
4cecd739
DJ
9225 if (i < size)
9226 dwarf2_complex_location_expr_complaint ();
c906108c
SS
9227 break;
9228
9229 case DW_OP_addr:
107d2387 9230 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 9231 cu, &bytes_read);
107d2387 9232 i += bytes_read;
c906108c
SS
9233 break;
9234
9235 case DW_OP_const1u:
9236 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
9237 i += 1;
9238 break;
9239
9240 case DW_OP_const1s:
9241 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
9242 i += 1;
9243 break;
9244
9245 case DW_OP_const2u:
9246 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
9247 i += 2;
9248 break;
9249
9250 case DW_OP_const2s:
9251 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
9252 i += 2;
9253 break;
9254
9255 case DW_OP_const4u:
9256 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
9257 i += 4;
9258 break;
9259
9260 case DW_OP_const4s:
9261 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
9262 i += 4;
9263 break;
9264
9265 case DW_OP_constu:
9266 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 9267 &bytes_read);
c906108c
SS
9268 i += bytes_read;
9269 break;
9270
9271 case DW_OP_consts:
9272 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
9273 i += bytes_read;
9274 break;
9275
f1bea926
JM
9276 case DW_OP_dup:
9277 stack[stacki + 1] = stack[stacki];
9278 stacki++;
9279 break;
9280
c906108c
SS
9281 case DW_OP_plus:
9282 stack[stacki - 1] += stack[stacki];
9283 stacki--;
9284 break;
9285
9286 case DW_OP_plus_uconst:
9287 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9288 i += bytes_read;
9289 break;
9290
9291 case DW_OP_minus:
f1bea926 9292 stack[stacki - 1] -= stack[stacki];
c906108c
SS
9293 stacki--;
9294 break;
9295
7a292a7a 9296 case DW_OP_deref:
7a292a7a 9297 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
9298 this using GDB's address_class enum. This is valid for partial
9299 global symbols, although the variable's address will be bogus
9300 in the psymtab. */
7a292a7a 9301 if (i < size)
4d3c2250 9302 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
9303 break;
9304
9d774e44 9305 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
9306 /* The top of the stack has the offset from the beginning
9307 of the thread control block at which the variable is located. */
9308 /* Nothing should follow this operator, so the top of stack would
9309 be returned. */
4cecd739
DJ
9310 /* This is valid for partial global symbols, but the variable's
9311 address will be bogus in the psymtab. */
9d774e44 9312 if (i < size)
4d3c2250 9313 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
9314 break;
9315
42be36b3
CT
9316 case DW_OP_GNU_uninit:
9317 break;
9318
c906108c 9319 default:
e2e0b3e5 9320 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
4d3c2250 9321 dwarf_stack_op_name (op));
c906108c
SS
9322 return (stack[stacki]);
9323 }
9324 }
9325 return (stack[stacki]);
9326}
9327
9328/* memory allocation interface */
9329
c906108c 9330static struct dwarf_block *
7b5a2f43 9331dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
9332{
9333 struct dwarf_block *blk;
9334
9335 blk = (struct dwarf_block *)
7b5a2f43 9336 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
9337 return (blk);
9338}
9339
9340static struct abbrev_info *
f3dd6933 9341dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
9342{
9343 struct abbrev_info *abbrev;
9344
f3dd6933
DJ
9345 abbrev = (struct abbrev_info *)
9346 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
9347 memset (abbrev, 0, sizeof (struct abbrev_info));
9348 return (abbrev);
9349}
9350
9351static struct die_info *
fba45db2 9352dwarf_alloc_die (void)
c906108c
SS
9353{
9354 struct die_info *die;
9355
9356 die = (struct die_info *) xmalloc (sizeof (struct die_info));
9357 memset (die, 0, sizeof (struct die_info));
9358 return (die);
9359}
2e276125
JB
9360
9361\f
9362/* Macro support. */
9363
9364
9365/* Return the full name of file number I in *LH's file name table.
9366 Use COMP_DIR as the name of the current directory of the
9367 compilation. The result is allocated using xmalloc; the caller is
9368 responsible for freeing it. */
9369static char *
9370file_full_name (int file, struct line_header *lh, const char *comp_dir)
9371{
6a83a1e6
EZ
9372 /* Is the file number a valid index into the line header's file name
9373 table? Remember that file numbers start with one, not zero. */
9374 if (1 <= file && file <= lh->num_file_names)
9375 {
9376 struct file_entry *fe = &lh->file_names[file - 1];
2e276125 9377
6a83a1e6
EZ
9378 if (IS_ABSOLUTE_PATH (fe->name))
9379 return xstrdup (fe->name);
9380 else
9381 {
9382 const char *dir;
9383 int dir_len;
9384 char *full_name;
9385
9386 if (fe->dir_index)
9387 dir = lh->include_dirs[fe->dir_index - 1];
9388 else
9389 dir = comp_dir;
9390
9391 if (dir)
9392 {
9393 dir_len = strlen (dir);
9394 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
9395 strcpy (full_name, dir);
9396 full_name[dir_len] = '/';
9397 strcpy (full_name + dir_len + 1, fe->name);
9398 return full_name;
9399 }
9400 else
9401 return xstrdup (fe->name);
9402 }
9403 }
2e276125
JB
9404 else
9405 {
6a83a1e6
EZ
9406 /* The compiler produced a bogus file number. We can at least
9407 record the macro definitions made in the file, even if we
9408 won't be able to find the file by name. */
9409 char fake_name[80];
9410 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 9411
6a83a1e6
EZ
9412 complaint (&symfile_complaints,
9413 _("bad file number in macro information (%d)"),
9414 file);
2e276125 9415
6a83a1e6 9416 return xstrdup (fake_name);
2e276125
JB
9417 }
9418}
9419
9420
9421static struct macro_source_file *
9422macro_start_file (int file, int line,
9423 struct macro_source_file *current_file,
9424 const char *comp_dir,
9425 struct line_header *lh, struct objfile *objfile)
9426{
9427 /* The full name of this source file. */
9428 char *full_name = file_full_name (file, lh, comp_dir);
9429
9430 /* We don't create a macro table for this compilation unit
9431 at all until we actually get a filename. */
9432 if (! pending_macros)
4a146b47 9433 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 9434 objfile->macro_cache);
2e276125
JB
9435
9436 if (! current_file)
9437 /* If we have no current file, then this must be the start_file
9438 directive for the compilation unit's main source file. */
9439 current_file = macro_set_main (pending_macros, full_name);
9440 else
9441 current_file = macro_include (current_file, line, full_name);
9442
9443 xfree (full_name);
9444
9445 return current_file;
9446}
9447
9448
9449/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9450 followed by a null byte. */
9451static char *
9452copy_string (const char *buf, int len)
9453{
9454 char *s = xmalloc (len + 1);
9455 memcpy (s, buf, len);
9456 s[len] = '\0';
9457
9458 return s;
9459}
9460
9461
9462static const char *
9463consume_improper_spaces (const char *p, const char *body)
9464{
9465 if (*p == ' ')
9466 {
4d3c2250 9467 complaint (&symfile_complaints,
e2e0b3e5 9468 _("macro definition contains spaces in formal argument list:\n`%s'"),
4d3c2250 9469 body);
2e276125
JB
9470
9471 while (*p == ' ')
9472 p++;
9473 }
9474
9475 return p;
9476}
9477
9478
9479static void
9480parse_macro_definition (struct macro_source_file *file, int line,
9481 const char *body)
9482{
9483 const char *p;
9484
9485 /* The body string takes one of two forms. For object-like macro
9486 definitions, it should be:
9487
9488 <macro name> " " <definition>
9489
9490 For function-like macro definitions, it should be:
9491
9492 <macro name> "() " <definition>
9493 or
9494 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9495
9496 Spaces may appear only where explicitly indicated, and in the
9497 <definition>.
9498
9499 The Dwarf 2 spec says that an object-like macro's name is always
9500 followed by a space, but versions of GCC around March 2002 omit
9501 the space when the macro's definition is the empty string.
9502
9503 The Dwarf 2 spec says that there should be no spaces between the
9504 formal arguments in a function-like macro's formal argument list,
9505 but versions of GCC around March 2002 include spaces after the
9506 commas. */
9507
9508
9509 /* Find the extent of the macro name. The macro name is terminated
9510 by either a space or null character (for an object-like macro) or
9511 an opening paren (for a function-like macro). */
9512 for (p = body; *p; p++)
9513 if (*p == ' ' || *p == '(')
9514 break;
9515
9516 if (*p == ' ' || *p == '\0')
9517 {
9518 /* It's an object-like macro. */
9519 int name_len = p - body;
9520 char *name = copy_string (body, name_len);
9521 const char *replacement;
9522
9523 if (*p == ' ')
9524 replacement = body + name_len + 1;
9525 else
9526 {
4d3c2250 9527 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9528 replacement = body + name_len;
9529 }
9530
9531 macro_define_object (file, line, name, replacement);
9532
9533 xfree (name);
9534 }
9535 else if (*p == '(')
9536 {
9537 /* It's a function-like macro. */
9538 char *name = copy_string (body, p - body);
9539 int argc = 0;
9540 int argv_size = 1;
9541 char **argv = xmalloc (argv_size * sizeof (*argv));
9542
9543 p++;
9544
9545 p = consume_improper_spaces (p, body);
9546
9547 /* Parse the formal argument list. */
9548 while (*p && *p != ')')
9549 {
9550 /* Find the extent of the current argument name. */
9551 const char *arg_start = p;
9552
9553 while (*p && *p != ',' && *p != ')' && *p != ' ')
9554 p++;
9555
9556 if (! *p || p == arg_start)
4d3c2250 9557 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9558 else
9559 {
9560 /* Make sure argv has room for the new argument. */
9561 if (argc >= argv_size)
9562 {
9563 argv_size *= 2;
9564 argv = xrealloc (argv, argv_size * sizeof (*argv));
9565 }
9566
9567 argv[argc++] = copy_string (arg_start, p - arg_start);
9568 }
9569
9570 p = consume_improper_spaces (p, body);
9571
9572 /* Consume the comma, if present. */
9573 if (*p == ',')
9574 {
9575 p++;
9576
9577 p = consume_improper_spaces (p, body);
9578 }
9579 }
9580
9581 if (*p == ')')
9582 {
9583 p++;
9584
9585 if (*p == ' ')
9586 /* Perfectly formed definition, no complaints. */
9587 macro_define_function (file, line, name,
9588 argc, (const char **) argv,
9589 p + 1);
9590 else if (*p == '\0')
9591 {
9592 /* Complain, but do define it. */
4d3c2250 9593 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9594 macro_define_function (file, line, name,
9595 argc, (const char **) argv,
9596 p);
9597 }
9598 else
9599 /* Just complain. */
4d3c2250 9600 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9601 }
9602 else
9603 /* Just complain. */
4d3c2250 9604 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9605
9606 xfree (name);
9607 {
9608 int i;
9609
9610 for (i = 0; i < argc; i++)
9611 xfree (argv[i]);
9612 }
9613 xfree (argv);
9614 }
9615 else
4d3c2250 9616 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9617}
9618
9619
9620static void
9621dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9622 char *comp_dir, bfd *abfd,
e7c27a73 9623 struct dwarf2_cu *cu)
2e276125 9624{
fe1b8b76 9625 gdb_byte *mac_ptr, *mac_end;
2e276125
JB
9626 struct macro_source_file *current_file = 0;
9627
6502dd73 9628 if (dwarf2_per_objfile->macinfo_buffer == NULL)
2e276125 9629 {
e2e0b3e5 9630 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
9631 return;
9632 }
9633
6502dd73
DJ
9634 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9635 mac_end = dwarf2_per_objfile->macinfo_buffer
9636 + dwarf2_per_objfile->macinfo_size;
2e276125
JB
9637
9638 for (;;)
9639 {
9640 enum dwarf_macinfo_record_type macinfo_type;
9641
9642 /* Do we at least have room for a macinfo type byte? */
9643 if (mac_ptr >= mac_end)
9644 {
4d3c2250 9645 dwarf2_macros_too_long_complaint ();
2e276125
JB
9646 return;
9647 }
9648
9649 macinfo_type = read_1_byte (abfd, mac_ptr);
9650 mac_ptr++;
9651
9652 switch (macinfo_type)
9653 {
9654 /* A zero macinfo type indicates the end of the macro
9655 information. */
9656 case 0:
9657 return;
9658
9659 case DW_MACINFO_define:
9660 case DW_MACINFO_undef:
9661 {
891d2f0b 9662 unsigned int bytes_read;
2e276125
JB
9663 int line;
9664 char *body;
9665
9666 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9667 mac_ptr += bytes_read;
9668 body = read_string (abfd, mac_ptr, &bytes_read);
9669 mac_ptr += bytes_read;
9670
9671 if (! current_file)
4d3c2250 9672 complaint (&symfile_complaints,
e2e0b3e5 9673 _("debug info gives macro %s outside of any file: %s"),
4d3c2250
KB
9674 macinfo_type ==
9675 DW_MACINFO_define ? "definition" : macinfo_type ==
9676 DW_MACINFO_undef ? "undefinition" :
9677 "something-or-other", body);
2e276125
JB
9678 else
9679 {
9680 if (macinfo_type == DW_MACINFO_define)
9681 parse_macro_definition (current_file, line, body);
9682 else if (macinfo_type == DW_MACINFO_undef)
9683 macro_undef (current_file, line, body);
9684 }
9685 }
9686 break;
9687
9688 case DW_MACINFO_start_file:
9689 {
891d2f0b 9690 unsigned int bytes_read;
2e276125
JB
9691 int line, file;
9692
9693 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9694 mac_ptr += bytes_read;
9695 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9696 mac_ptr += bytes_read;
9697
9698 current_file = macro_start_file (file, line,
9699 current_file, comp_dir,
e7c27a73 9700 lh, cu->objfile);
2e276125
JB
9701 }
9702 break;
9703
9704 case DW_MACINFO_end_file:
9705 if (! current_file)
4d3c2250 9706 complaint (&symfile_complaints,
e2e0b3e5 9707 _("macro debug info has an unmatched `close_file' directive"));
2e276125
JB
9708 else
9709 {
9710 current_file = current_file->included_by;
9711 if (! current_file)
9712 {
9713 enum dwarf_macinfo_record_type next_type;
9714
9715 /* GCC circa March 2002 doesn't produce the zero
9716 type byte marking the end of the compilation
9717 unit. Complain if it's not there, but exit no
9718 matter what. */
9719
9720 /* Do we at least have room for a macinfo type byte? */
9721 if (mac_ptr >= mac_end)
9722 {
4d3c2250 9723 dwarf2_macros_too_long_complaint ();
2e276125
JB
9724 return;
9725 }
9726
9727 /* We don't increment mac_ptr here, so this is just
9728 a look-ahead. */
9729 next_type = read_1_byte (abfd, mac_ptr);
9730 if (next_type != 0)
4d3c2250 9731 complaint (&symfile_complaints,
e2e0b3e5 9732 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
2e276125
JB
9733
9734 return;
9735 }
9736 }
9737 break;
9738
9739 case DW_MACINFO_vendor_ext:
9740 {
891d2f0b 9741 unsigned int bytes_read;
2e276125
JB
9742 int constant;
9743 char *string;
9744
9745 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9746 mac_ptr += bytes_read;
9747 string = read_string (abfd, mac_ptr, &bytes_read);
9748 mac_ptr += bytes_read;
9749
9750 /* We don't recognize any vendor extensions. */
9751 }
9752 break;
9753 }
9754 }
9755}
8e19ed76
PS
9756
9757/* Check if the attribute's form is a DW_FORM_block*
9758 if so return true else false. */
9759static int
9760attr_form_is_block (struct attribute *attr)
9761{
9762 return (attr == NULL ? 0 :
9763 attr->form == DW_FORM_block1
9764 || attr->form == DW_FORM_block2
9765 || attr->form == DW_FORM_block4
9766 || attr->form == DW_FORM_block);
9767}
4c2df51b 9768
c6a0999f
JB
9769/* Return non-zero if ATTR's value is a section offset --- classes
9770 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
9771 You may use DW_UNSND (attr) to retrieve such offsets.
9772
9773 Section 7.5.4, "Attribute Encodings", explains that no attribute
9774 may have a value that belongs to more than one of these classes; it
9775 would be ambiguous if we did, because we use the same forms for all
9776 of them. */
3690dd37
JB
9777static int
9778attr_form_is_section_offset (struct attribute *attr)
9779{
9780 return (attr->form == DW_FORM_data4
9781 || attr->form == DW_FORM_data8);
9782}
9783
9784
9785/* Return non-zero if ATTR's value falls in the 'constant' class, or
9786 zero otherwise. When this function returns true, you can apply
9787 dwarf2_get_attr_constant_value to it.
9788
9789 However, note that for some attributes you must check
9790 attr_form_is_section_offset before using this test. DW_FORM_data4
9791 and DW_FORM_data8 are members of both the constant class, and of
9792 the classes that contain offsets into other debug sections
9793 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
9794 that, if an attribute's can be either a constant or one of the
9795 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
9796 taken as section offsets, not constants. */
9797static int
9798attr_form_is_constant (struct attribute *attr)
9799{
9800 switch (attr->form)
9801 {
9802 case DW_FORM_sdata:
9803 case DW_FORM_udata:
9804 case DW_FORM_data1:
9805 case DW_FORM_data2:
9806 case DW_FORM_data4:
9807 case DW_FORM_data8:
9808 return 1;
9809 default:
9810 return 0;
9811 }
9812}
9813
4c2df51b
DJ
9814static void
9815dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 9816 struct dwarf2_cu *cu)
4c2df51b 9817{
93e7bd98
DJ
9818 struct objfile *objfile = cu->objfile;
9819
9820 /* Save the master objfile, so that we can report and look up the
9821 correct file containing this variable. */
9822 if (objfile->separate_debug_objfile_backlink)
9823 objfile = objfile->separate_debug_objfile_backlink;
9824
3690dd37 9825 if (attr_form_is_section_offset (attr)
99bcc461
DJ
9826 /* ".debug_loc" may not exist at all, or the offset may be outside
9827 the section. If so, fall through to the complaint in the
9828 other branch. */
9829 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
4c2df51b 9830 {
0d53c4c4 9831 struct dwarf2_loclist_baton *baton;
4c2df51b 9832
4a146b47 9833 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 9834 sizeof (struct dwarf2_loclist_baton));
93e7bd98 9835 baton->objfile = objfile;
4c2df51b 9836
0d53c4c4
DJ
9837 /* We don't know how long the location list is, but make sure we
9838 don't run off the edge of the section. */
6502dd73
DJ
9839 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9840 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
e7c27a73
DJ
9841 baton->base_address = cu->header.base_address;
9842 if (cu->header.base_known == 0)
0d53c4c4 9843 complaint (&symfile_complaints,
e2e0b3e5 9844 _("Location list used without specifying the CU base address."));
4c2df51b 9845
a67af2b9 9846 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
9847 SYMBOL_LOCATION_BATON (sym) = baton;
9848 }
9849 else
9850 {
9851 struct dwarf2_locexpr_baton *baton;
9852
4a146b47 9853 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 9854 sizeof (struct dwarf2_locexpr_baton));
93e7bd98 9855 baton->objfile = objfile;
0d53c4c4
DJ
9856
9857 if (attr_form_is_block (attr))
9858 {
9859 /* Note that we're just copying the block's data pointer
9860 here, not the actual data. We're still pointing into the
6502dd73
DJ
9861 info_buffer for SYM's objfile; right now we never release
9862 that buffer, but when we do clean up properly this may
9863 need to change. */
0d53c4c4
DJ
9864 baton->size = DW_BLOCK (attr)->size;
9865 baton->data = DW_BLOCK (attr)->data;
9866 }
9867 else
9868 {
9869 dwarf2_invalid_attrib_class_complaint ("location description",
9870 SYMBOL_NATURAL_NAME (sym));
9871 baton->size = 0;
9872 baton->data = NULL;
9873 }
9874
a67af2b9 9875 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
9876 SYMBOL_LOCATION_BATON (sym) = baton;
9877 }
4c2df51b 9878}
6502dd73 9879
ae038cb0 9880/* Locate the compilation unit from CU's objfile which contains the
10b3939b 9881 DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
9882
9883static struct dwarf2_per_cu_data *
9884dwarf2_find_containing_comp_unit (unsigned long offset,
9885 struct objfile *objfile)
9886{
9887 struct dwarf2_per_cu_data *this_cu;
9888 int low, high;
9889
ae038cb0
DJ
9890 low = 0;
9891 high = dwarf2_per_objfile->n_comp_units - 1;
9892 while (high > low)
9893 {
9894 int mid = low + (high - low) / 2;
9895 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9896 high = mid;
9897 else
9898 low = mid + 1;
9899 }
9900 gdb_assert (low == high);
9901 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9902 {
10b3939b 9903 if (low == 0)
8a3fe4f8
AC
9904 error (_("Dwarf Error: could not find partial DIE containing "
9905 "offset 0x%lx [in module %s]"),
10b3939b
DJ
9906 (long) offset, bfd_get_filename (objfile->obfd));
9907
ae038cb0
DJ
9908 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9909 return dwarf2_per_objfile->all_comp_units[low-1];
9910 }
9911 else
9912 {
9913 this_cu = dwarf2_per_objfile->all_comp_units[low];
9914 if (low == dwarf2_per_objfile->n_comp_units - 1
9915 && offset >= this_cu->offset + this_cu->length)
8a3fe4f8 9916 error (_("invalid dwarf2 offset %ld"), offset);
ae038cb0
DJ
9917 gdb_assert (offset < this_cu->offset + this_cu->length);
9918 return this_cu;
9919 }
9920}
9921
10b3939b
DJ
9922/* Locate the compilation unit from OBJFILE which is located at exactly
9923 OFFSET. Raises an error on failure. */
9924
ae038cb0
DJ
9925static struct dwarf2_per_cu_data *
9926dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9927{
9928 struct dwarf2_per_cu_data *this_cu;
9929 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9930 if (this_cu->offset != offset)
8a3fe4f8 9931 error (_("no compilation unit with offset %ld."), offset);
ae038cb0
DJ
9932 return this_cu;
9933}
9934
9935/* Release one cached compilation unit, CU. We unlink it from the tree
9936 of compilation units, but we don't remove it from the read_in_chain;
9937 the caller is responsible for that. */
9938
9939static void
9940free_one_comp_unit (void *data)
9941{
9942 struct dwarf2_cu *cu = data;
9943
9944 if (cu->per_cu != NULL)
9945 cu->per_cu->cu = NULL;
9946 cu->per_cu = NULL;
9947
9948 obstack_free (&cu->comp_unit_obstack, NULL);
10b3939b
DJ
9949 if (cu->dies)
9950 free_die_list (cu->dies);
ae038cb0
DJ
9951
9952 xfree (cu);
9953}
9954
72bf9492 9955/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
9956 when we're finished with it. We can't free the pointer itself, but be
9957 sure to unlink it from the cache. Also release any associated storage
9958 and perform cache maintenance.
72bf9492
DJ
9959
9960 Only used during partial symbol parsing. */
9961
9962static void
9963free_stack_comp_unit (void *data)
9964{
9965 struct dwarf2_cu *cu = data;
9966
9967 obstack_free (&cu->comp_unit_obstack, NULL);
9968 cu->partial_dies = NULL;
ae038cb0
DJ
9969
9970 if (cu->per_cu != NULL)
9971 {
9972 /* This compilation unit is on the stack in our caller, so we
9973 should not xfree it. Just unlink it. */
9974 cu->per_cu->cu = NULL;
9975 cu->per_cu = NULL;
9976
9977 /* If we had a per-cu pointer, then we may have other compilation
9978 units loaded, so age them now. */
9979 age_cached_comp_units ();
9980 }
9981}
9982
9983/* Free all cached compilation units. */
9984
9985static void
9986free_cached_comp_units (void *data)
9987{
9988 struct dwarf2_per_cu_data *per_cu, **last_chain;
9989
9990 per_cu = dwarf2_per_objfile->read_in_chain;
9991 last_chain = &dwarf2_per_objfile->read_in_chain;
9992 while (per_cu != NULL)
9993 {
9994 struct dwarf2_per_cu_data *next_cu;
9995
9996 next_cu = per_cu->cu->read_in_chain;
9997
9998 free_one_comp_unit (per_cu->cu);
9999 *last_chain = next_cu;
10000
10001 per_cu = next_cu;
10002 }
10003}
10004
10005/* Increase the age counter on each cached compilation unit, and free
10006 any that are too old. */
10007
10008static void
10009age_cached_comp_units (void)
10010{
10011 struct dwarf2_per_cu_data *per_cu, **last_chain;
10012
10013 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
10014 per_cu = dwarf2_per_objfile->read_in_chain;
10015 while (per_cu != NULL)
10016 {
10017 per_cu->cu->last_used ++;
10018 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
10019 dwarf2_mark (per_cu->cu);
10020 per_cu = per_cu->cu->read_in_chain;
10021 }
10022
10023 per_cu = dwarf2_per_objfile->read_in_chain;
10024 last_chain = &dwarf2_per_objfile->read_in_chain;
10025 while (per_cu != NULL)
10026 {
10027 struct dwarf2_per_cu_data *next_cu;
10028
10029 next_cu = per_cu->cu->read_in_chain;
10030
10031 if (!per_cu->cu->mark)
10032 {
10033 free_one_comp_unit (per_cu->cu);
10034 *last_chain = next_cu;
10035 }
10036 else
10037 last_chain = &per_cu->cu->read_in_chain;
10038
10039 per_cu = next_cu;
10040 }
10041}
10042
10043/* Remove a single compilation unit from the cache. */
10044
10045static void
10046free_one_cached_comp_unit (void *target_cu)
10047{
10048 struct dwarf2_per_cu_data *per_cu, **last_chain;
10049
10050 per_cu = dwarf2_per_objfile->read_in_chain;
10051 last_chain = &dwarf2_per_objfile->read_in_chain;
10052 while (per_cu != NULL)
10053 {
10054 struct dwarf2_per_cu_data *next_cu;
10055
10056 next_cu = per_cu->cu->read_in_chain;
10057
10058 if (per_cu->cu == target_cu)
10059 {
10060 free_one_comp_unit (per_cu->cu);
10061 *last_chain = next_cu;
10062 break;
10063 }
10064 else
10065 last_chain = &per_cu->cu->read_in_chain;
10066
10067 per_cu = next_cu;
10068 }
10069}
10070
fe3e1990
DJ
10071/* Release all extra memory associated with OBJFILE. */
10072
10073void
10074dwarf2_free_objfile (struct objfile *objfile)
10075{
10076 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10077
10078 if (dwarf2_per_objfile == NULL)
10079 return;
10080
10081 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
10082 free_cached_comp_units (NULL);
10083
10084 /* Everything else should be on the objfile obstack. */
10085}
10086
1c379e20
DJ
10087/* A pair of DIE offset and GDB type pointer. We store these
10088 in a hash table separate from the DIEs, and preserve them
10089 when the DIEs are flushed out of cache. */
10090
10091struct dwarf2_offset_and_type
10092{
10093 unsigned int offset;
10094 struct type *type;
10095};
10096
10097/* Hash function for a dwarf2_offset_and_type. */
10098
10099static hashval_t
10100offset_and_type_hash (const void *item)
10101{
10102 const struct dwarf2_offset_and_type *ofs = item;
10103 return ofs->offset;
10104}
10105
10106/* Equality function for a dwarf2_offset_and_type. */
10107
10108static int
10109offset_and_type_eq (const void *item_lhs, const void *item_rhs)
10110{
10111 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
10112 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
10113 return ofs_lhs->offset == ofs_rhs->offset;
10114}
10115
10116/* Set the type associated with DIE to TYPE. Save it in CU's hash
10117 table if necessary. */
10118
10119static void
10120set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
10121{
10122 struct dwarf2_offset_and_type **slot, ofs;
10123
10124 die->type = type;
10125
10126 if (cu->per_cu == NULL)
10127 return;
10128
10129 if (cu->per_cu->type_hash == NULL)
10130 cu->per_cu->type_hash
10131 = htab_create_alloc_ex (cu->header.length / 24,
10132 offset_and_type_hash,
10133 offset_and_type_eq,
10134 NULL,
10135 &cu->objfile->objfile_obstack,
10136 hashtab_obstack_allocate,
10137 dummy_obstack_deallocate);
10138
10139 ofs.offset = die->offset;
10140 ofs.type = type;
10141 slot = (struct dwarf2_offset_and_type **)
10142 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
10143 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
10144 **slot = ofs;
10145}
10146
1c379e20
DJ
10147/* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
10148 have a saved type. */
10149
10150static struct type *
10151get_die_type (struct die_info *die, htab_t type_hash)
10152{
10153 struct dwarf2_offset_and_type *slot, ofs;
10154
10155 ofs.offset = die->offset;
10156 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
10157 if (slot)
10158 return slot->type;
10159 else
10160 return NULL;
10161}
10162
10163/* Restore the types of the DIE tree starting at START_DIE from the hash
10164 table saved in CU. */
10165
10166static void
10167reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
10168{
10169 struct die_info *die;
10170
10171 if (cu->per_cu->type_hash == NULL)
10172 return;
10173
10174 for (die = start_die; die != NULL; die = die->sibling)
10175 {
10176 die->type = get_die_type (die, cu->per_cu->type_hash);
10177 if (die->child != NULL)
10178 reset_die_and_siblings_types (die->child, cu);
10179 }
10180}
10181
10b3939b
DJ
10182/* Set the mark field in CU and in every other compilation unit in the
10183 cache that we must keep because we are keeping CU. */
10184
10185/* Add a dependence relationship from CU to REF_PER_CU. */
10186
10187static void
10188dwarf2_add_dependence (struct dwarf2_cu *cu,
10189 struct dwarf2_per_cu_data *ref_per_cu)
10190{
10191 void **slot;
10192
10193 if (cu->dependencies == NULL)
10194 cu->dependencies
10195 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
10196 NULL, &cu->comp_unit_obstack,
10197 hashtab_obstack_allocate,
10198 dummy_obstack_deallocate);
10199
10200 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
10201 if (*slot == NULL)
10202 *slot = ref_per_cu;
10203}
1c379e20 10204
ae038cb0
DJ
10205/* Set the mark field in CU and in every other compilation unit in the
10206 cache that we must keep because we are keeping CU. */
10207
10b3939b
DJ
10208static int
10209dwarf2_mark_helper (void **slot, void *data)
10210{
10211 struct dwarf2_per_cu_data *per_cu;
10212
10213 per_cu = (struct dwarf2_per_cu_data *) *slot;
10214 if (per_cu->cu->mark)
10215 return 1;
10216 per_cu->cu->mark = 1;
10217
10218 if (per_cu->cu->dependencies != NULL)
10219 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
10220
10221 return 1;
10222}
10223
ae038cb0
DJ
10224static void
10225dwarf2_mark (struct dwarf2_cu *cu)
10226{
10227 if (cu->mark)
10228 return;
10229 cu->mark = 1;
10b3939b
DJ
10230 if (cu->dependencies != NULL)
10231 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
10232}
10233
10234static void
10235dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
10236{
10237 while (per_cu)
10238 {
10239 per_cu->cu->mark = 0;
10240 per_cu = per_cu->cu->read_in_chain;
10241 }
72bf9492
DJ
10242}
10243
72bf9492
DJ
10244/* Trivial hash function for partial_die_info: the hash value of a DIE
10245 is its offset in .debug_info for this objfile. */
10246
10247static hashval_t
10248partial_die_hash (const void *item)
10249{
10250 const struct partial_die_info *part_die = item;
10251 return part_die->offset;
10252}
10253
10254/* Trivial comparison function for partial_die_info structures: two DIEs
10255 are equal if they have the same offset. */
10256
10257static int
10258partial_die_eq (const void *item_lhs, const void *item_rhs)
10259{
10260 const struct partial_die_info *part_die_lhs = item_lhs;
10261 const struct partial_die_info *part_die_rhs = item_rhs;
10262 return part_die_lhs->offset == part_die_rhs->offset;
10263}
10264
ae038cb0
DJ
10265static struct cmd_list_element *set_dwarf2_cmdlist;
10266static struct cmd_list_element *show_dwarf2_cmdlist;
10267
10268static void
10269set_dwarf2_cmd (char *args, int from_tty)
10270{
10271 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
10272}
10273
10274static void
10275show_dwarf2_cmd (char *args, int from_tty)
10276{
10277 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
10278}
10279
6502dd73
DJ
10280void _initialize_dwarf2_read (void);
10281
10282void
10283_initialize_dwarf2_read (void)
10284{
10285 dwarf2_objfile_data_key = register_objfile_data ();
ae038cb0 10286
1bedd215
AC
10287 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
10288Set DWARF 2 specific variables.\n\
10289Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
10290 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
10291 0/*allow-unknown*/, &maintenance_set_cmdlist);
10292
1bedd215
AC
10293 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
10294Show DWARF 2 specific variables\n\
10295Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
10296 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
10297 0/*allow-unknown*/, &maintenance_show_cmdlist);
10298
10299 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
10300 &dwarf2_max_cache_age, _("\
10301Set the upper bound on the age of cached dwarf2 compilation units."), _("\
10302Show the upper bound on the age of cached dwarf2 compilation units."), _("\
10303A higher limit means that cached compilation units will be stored\n\
10304in memory longer, and more total memory will be used. Zero disables\n\
10305caching, which can slow down startup."),
2c5b56ce 10306 NULL,
920d2a44 10307 show_dwarf2_max_cache_age,
2c5b56ce 10308 &set_dwarf2_cmdlist,
ae038cb0 10309 &show_dwarf2_cmdlist);
6502dd73 10310}
This page took 1.31714 seconds and 4 git commands to generate.