Add support to show the symbolic names of the MIPS CP1 registers.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
28e7fd62 3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
9291a0cd 58#include "exceptions.h"
53ce3c39 59#include <sys/stat.h>
96d19272 60#include "completer.h"
34eaf542 61#include "vec.h"
98bfdba5 62#include "c-lang.h"
a766d390 63#include "go-lang.h"
98bfdba5 64#include "valprint.h"
3019eac3 65#include "gdbcore.h" /* for gnutarget */
156942c7 66#include "gdb/gdb-index.h"
60d5a603 67#include <ctype.h>
cbb099e8 68#include "gdb_bfd.h"
4357ac6c 69#include "f-lang.h"
05cba821 70#include "source.h"
614c279d 71#include "filestuff.h"
dc294be5 72#include "build-id.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
0e9f083f 75#include <string.h>
4bdf3d34 76#include "gdb_assert.h"
c906108c 77#include <sys/types.h>
d8151005 78
34eaf542
TT
79typedef struct symbol *symbolp;
80DEF_VEC_P (symbolp);
81
73be47f5
DE
82/* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
45cfd468 84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
73be47f5 85static unsigned int dwarf2_read_debug = 0;
45cfd468 86
d97bc12b 87/* When non-zero, dump DIEs after they are read in. */
ccce17b0 88static unsigned int dwarf2_die_debug = 0;
d97bc12b 89
900e11f9
JK
90/* When non-zero, cross-check physname against demangler. */
91static int check_physname = 0;
92
481860b3 93/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 94static int use_deprecated_index_sections = 0;
481860b3 95
6502dd73
DJ
96static const struct objfile_data *dwarf2_objfile_data_key;
97
f1e6e072
TT
98/* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100static int dwarf2_locexpr_index;
101static int dwarf2_loclist_index;
102static int dwarf2_locexpr_block_index;
103static int dwarf2_loclist_block_index;
104
73869dc2
DE
105/* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
dce234bc
PP
121struct dwarf2_section_info
122{
73869dc2
DE
123 union
124 {
e5aa3347 125 /* If this is a real section, the bfd section. */
73869dc2
DE
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 128 section. */
73869dc2
DE
129 struct dwarf2_section_info *containing_section;
130 } s;
19ac8c2e 131 /* Pointer to section data, only valid if readin. */
d521ce57 132 const gdb_byte *buffer;
73869dc2 133 /* The size of the section, real or virtual. */
dce234bc 134 bfd_size_type size;
73869dc2
DE
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
be391dca 138 /* True if we have tried to read this section. */
73869dc2
DE
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
dce234bc
PP
143};
144
8b70b953
TT
145typedef struct dwarf2_section_info dwarf2_section_info_def;
146DEF_VEC_O (dwarf2_section_info_def);
147
9291a0cd
TT
148/* All offsets in the index are of this type. It must be
149 architecture-independent. */
150typedef uint32_t offset_type;
151
152DEF_VEC_I (offset_type);
153
156942c7
DE
154/* Ensure only legit values are used. */
155#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161/* Ensure only legit values are used. */
162#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169/* Ensure we don't use more than the alloted nuber of bits for the CU. */
170#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
9291a0cd
TT
176/* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178struct mapped_index
179{
559a7a62
JK
180 /* Index data format version. */
181 int version;
182
9291a0cd
TT
183 /* The total length of the buffer. */
184 off_t total_size;
b11b1f88 185
9291a0cd
TT
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
b11b1f88 188
9291a0cd
TT
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
b11b1f88 191
3876f04e
DE
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
b11b1f88 194
9291a0cd 195 /* Size in slots, each slot is 2 offset_types. */
3876f04e 196 offset_type symbol_table_slots;
b11b1f88 197
9291a0cd
TT
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200};
201
95554aad
TT
202typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203DEF_VEC_P (dwarf2_per_cu_ptr);
204
9cdd5dbd
DE
205/* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
207
6502dd73
DJ
208struct dwarf2_per_objfile
209{
dce234bc
PP
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
dce234bc
PP
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
cf2c3c16 215 struct dwarf2_section_info macro;
dce234bc
PP
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
3019eac3 218 struct dwarf2_section_info addr;
dce234bc
PP
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
9291a0cd 221 struct dwarf2_section_info gdb_index;
ae038cb0 222
8b70b953
TT
223 VEC (dwarf2_section_info_def) *types;
224
be391dca
TT
225 /* Back link. */
226 struct objfile *objfile;
227
d467dd73 228 /* Table of all the compilation units. This is used to locate
10b3939b 229 the target compilation unit of a particular reference. */
ae038cb0
DJ
230 struct dwarf2_per_cu_data **all_comp_units;
231
232 /* The number of compilation units in ALL_COMP_UNITS. */
233 int n_comp_units;
234
1fd400ff 235 /* The number of .debug_types-related CUs. */
d467dd73 236 int n_type_units;
1fd400ff 237
a2ce51a0
DE
238 /* The .debug_types-related CUs (TUs).
239 This is stored in malloc space because we may realloc it. */
b4dd5633 240 struct signatured_type **all_type_units;
1fd400ff 241
f4dc4d17
DE
242 /* The number of entries in all_type_unit_groups. */
243 int n_type_unit_groups;
244
245 /* Table of type unit groups.
246 This exists to make it easy to iterate over all CUs and TU groups. */
247 struct type_unit_group **all_type_unit_groups;
248
249 /* Table of struct type_unit_group objects.
250 The hash key is the DW_AT_stmt_list value. */
251 htab_t type_unit_groups;
72dca2f5 252
348e048f
DE
253 /* A table mapping .debug_types signatures to its signatured_type entry.
254 This is NULL if the .debug_types section hasn't been read in yet. */
255 htab_t signatured_types;
256
f4dc4d17
DE
257 /* Type unit statistics, to see how well the scaling improvements
258 are doing. */
259 struct tu_stats
260 {
261 int nr_uniq_abbrev_tables;
262 int nr_symtabs;
263 int nr_symtab_sharers;
264 int nr_stmt_less_type_units;
265 } tu_stats;
266
267 /* A chain of compilation units that are currently read in, so that
268 they can be freed later. */
269 struct dwarf2_per_cu_data *read_in_chain;
270
3019eac3
DE
271 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
272 This is NULL if the table hasn't been allocated yet. */
273 htab_t dwo_files;
274
80626a55
DE
275 /* Non-zero if we've check for whether there is a DWP file. */
276 int dwp_checked;
277
278 /* The DWP file if there is one, or NULL. */
279 struct dwp_file *dwp_file;
280
36586728
TT
281 /* The shared '.dwz' file, if one exists. This is used when the
282 original data was compressed using 'dwz -m'. */
283 struct dwz_file *dwz_file;
284
72dca2f5
FR
285 /* A flag indicating wether this objfile has a section loaded at a
286 VMA of 0. */
287 int has_section_at_zero;
9291a0cd 288
ae2de4f8
DE
289 /* True if we are using the mapped index,
290 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
291 unsigned char using_index;
292
ae2de4f8 293 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 294 struct mapped_index *index_table;
98bfdba5 295
7b9f3c50 296 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
297 TUs typically share line table entries with a CU, so we maintain a
298 separate table of all line table entries to support the sharing.
299 Note that while there can be way more TUs than CUs, we've already
300 sorted all the TUs into "type unit groups", grouped by their
301 DW_AT_stmt_list value. Therefore the only sharing done here is with a
302 CU and its associated TU group if there is one. */
7b9f3c50
DE
303 htab_t quick_file_names_table;
304
98bfdba5
PA
305 /* Set during partial symbol reading, to prevent queueing of full
306 symbols. */
307 int reading_partial_symbols;
673bfd45 308
dee91e82 309 /* Table mapping type DIEs to their struct type *.
673bfd45 310 This is NULL if not allocated yet.
02142a6c 311 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 312 htab_t die_type_hash;
95554aad
TT
313
314 /* The CUs we recently read. */
315 VEC (dwarf2_per_cu_ptr) *just_read_cus;
6502dd73
DJ
316};
317
318static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 319
251d32d9 320/* Default names of the debugging sections. */
c906108c 321
233a11ab
CS
322/* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
9cdd5dbd
DE
325static const struct dwarf2_debug_sections dwarf2_elf_names =
326{
251d32d9
TG
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 332 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
3019eac3 336 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
24d3216f
TT
339 { ".gdb_index", ".zgdb_index" },
340 23
251d32d9 341};
c906108c 342
80626a55 343/* List of DWO/DWP sections. */
3019eac3 344
80626a55 345static const struct dwop_section_names
3019eac3
DE
346{
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
09262596
DE
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
3019eac3
DE
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
80626a55
DE
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
3019eac3 358}
80626a55 359dwop_section_names =
3019eac3
DE
360{
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
372};
373
c906108c
SS
374/* local data types */
375
107d2387
AC
376/* The data in a compilation unit header, after target2host
377 translation, looks like this. */
c906108c 378struct comp_unit_head
a738430d 379{
c764a876 380 unsigned int length;
a738430d 381 short version;
a738430d
MK
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
b64f50a1 384 sect_offset abbrev_offset;
57349743 385
a738430d
MK
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
57349743 388
a738430d
MK
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
57349743 391
a738430d
MK
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
b64f50a1 394 sect_offset offset;
57349743 395
d00adf39
DE
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
b64f50a1 398 cu_offset first_die_offset;
a738430d 399};
c906108c 400
3da10d80
KS
401/* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403struct delayed_method_info
404{
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419};
420
421typedef struct delayed_method_info delayed_method_info;
422DEF_VEC_O (delayed_method_info);
423
e7c27a73
DJ
424/* Internal state when decoding a particular compilation unit. */
425struct dwarf2_cu
426{
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
d00adf39 430 /* The header of the compilation unit. */
e7c27a73 431 struct comp_unit_head header;
e142c38c 432
d00adf39
DE
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
e142c38c
DJ
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
b0f35d58
DL
443 const char *producer;
444
e142c38c
DJ
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
433df2d4
DE
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
72bf9492 460
b64f50a1
JK
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
ae038cb0
DJ
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
69d751e3 475 /* Backlink to our per_cu entry. */
ae038cb0
DJ
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
b64f50a1
JK
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
51545339 483 htab_t die_hash;
10b3939b
DJ
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
cb1df416
DJ
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
3da10d80
KS
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
96408a79
SA
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
034e5797
DE
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
3019eac3
DE
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the stub CU/TU's DIE. */
517 ULONGEST addr_base;
518
2e3cf129
DE
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
529 ULONGEST ranges_base;
530
ae038cb0
DJ
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
8be455d7
JK
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 538 unsigned int has_loclist : 1;
ba919b58 539
1b80a9fa
JK
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
ba919b58
TT
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 546 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 547 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
554};
555
10b3939b
DJ
556/* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
28dee7f5 558 read_symtab_private field of the psymtab. */
10b3939b 559
ae038cb0
DJ
560struct dwarf2_per_cu_data
561{
36586728 562 /* The start offset and length of this compilation unit.
45452591 563 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
b64f50a1 567 sect_offset offset;
36586728 568 unsigned int length;
ae038cb0
DJ
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
c764a876 572 unsigned int queued : 1;
ae038cb0 573
0d99eb77
DE
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
0186c6a7
DE
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
3019eac3
DE
583 unsigned int is_debug_types : 1;
584
36586728
TT
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
a2ce51a0
DE
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
7ee85ab1
DE
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
3019eac3
DE
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
8a0459fd 607 struct dwarf2_section_info *section;
348e048f 608
17ea53c3
JK
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
ae038cb0 611 struct dwarf2_cu *cu;
1c379e20 612
9cdd5dbd
DE
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
616 struct objfile *objfile;
617
618 /* When using partial symbol tables, the 'psymtab' field is active.
619 Otherwise the 'quick' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
95554aad 623 or NULL for unread partial units. */
9291a0cd
TT
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
95554aad 629
796a7ff8
DE
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
649};
650
348e048f
DE
651/* Entry in the signatured_types hash table. */
652
653struct signatured_type
654{
42e7ad6c 655 /* The "per_cu" object of this type.
ac9ec31b 656 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
3019eac3 661 /* The type's signature. */
348e048f
DE
662 ULONGEST signature;
663
3019eac3 664 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
0186c6a7
DE
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
ac9ec31b
DE
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
a2ce51a0
DE
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
348e048f
DE
688};
689
0186c6a7
DE
690typedef struct signatured_type *sig_type_ptr;
691DEF_VEC_P (sig_type_ptr);
692
094b34ac
DE
693/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696struct stmt_list_hash
697{
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703};
704
f4dc4d17
DE
705/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708struct type_unit_group
709{
0186c6a7 710 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
8a0459fd 715#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
716 struct dwarf2_per_cu_data per_cu;
717
0186c6a7
DE
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
f4dc4d17
DE
722
723 /* The primary symtab.
094b34ac
DE
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the primary symtab. */
f4dc4d17
DE
726 struct symtab *primary_symtab;
727
094b34ac
DE
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
f4dc4d17
DE
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744};
745
73869dc2 746/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
747
748struct dwo_sections
749{
750 struct dwarf2_section_info abbrev;
3019eac3
DE
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
09262596
DE
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
3019eac3
DE
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
80626a55
DE
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
3019eac3
DE
759 VEC (dwarf2_section_info_def) *types;
760};
761
c88ee1f0 762/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
763
764struct dwo_unit
765{
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 775 struct dwarf2_section_info *section;
3019eac3 776
19ac8c2e 777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783};
784
73869dc2
DE
785/* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789enum dwp_v2_section_ids
790{
791 DW_SECT_MIN = 1
792};
793
80626a55 794/* Data for one DWO file.
57d63ce2
DE
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
3019eac3
DE
804
805struct dwo_file
806{
0ac5b59e 807 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
0ac5b59e
DE
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
3019eac3 815
80626a55
DE
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
3019eac3 819
73869dc2
DE
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
3019eac3
DE
823 struct dwo_sections sections;
824
19c3d4c9
DE
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
3019eac3
DE
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835};
836
80626a55
DE
837/* These sections are what may appear in a DWP file. */
838
839struct dwp_sections
840{
73869dc2 841 /* These are used by both DWP version 1 and 2. */
80626a55
DE
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
73869dc2
DE
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
80626a55
DE
862};
863
73869dc2
DE
864/* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 866
73869dc2 867struct virtual_v1_dwo_sections
80626a55
DE
868{
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 876 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
877 struct dwarf2_section_info info_or_types;
878};
879
73869dc2
DE
880/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885struct virtual_v2_dwo_sections
886{
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909};
910
80626a55
DE
911/* Contents of DWP hash tables. */
912
913struct dwp_hash_table
914{
73869dc2 915 uint32_t version, nr_columns;
80626a55 916 uint32_t nr_units, nr_slots;
73869dc2
DE
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928#define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
80626a55
DE
940};
941
942/* Data for one DWP file. */
943
944struct dwp_file
945{
946 /* Name of the file. */
947 const char *name;
948
73869dc2
DE
949 /* File format version. */
950 int version;
951
93417882 952 /* The bfd. */
80626a55
DE
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
57d63ce2 958 /* Table of CUs in the file. */
80626a55
DE
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
19ac8c2e
DE
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
80626a55 967
73869dc2
DE
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
80626a55
DE
970 unsigned int num_sections;
971 asection **elf_sections;
972};
973
36586728
TT
974/* This represents a '.dwz' file. */
975
976struct dwz_file
977{
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
2ec9a5e0 984 struct dwarf2_section_info gdb_index;
36586728
TT
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988};
989
0963b4bd
MS
990/* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
dee91e82 993 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
994
995struct die_reader_specs
996{
a32a8923 997 /* The bfd of die_section. */
93311388
DE
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
80626a55 1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1004 struct dwo_file *dwo_file;
1005
dee91e82 1006 /* The section the die comes from.
3019eac3 1007 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
d521ce57 1011 const gdb_byte *buffer;
f664829e
DE
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
a2ce51a0
DE
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
93311388
DE
1018};
1019
fd820528 1020/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1021typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1022 const gdb_byte *info_ptr,
dee91e82
DE
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
debd256d
JB
1027/* The line number information for a compilation unit (found in the
1028 .debug_line section) begins with a "statement program header",
1029 which contains the following information. */
1030struct line_header
1031{
1032 unsigned int total_length;
1033 unsigned short version;
1034 unsigned int header_length;
1035 unsigned char minimum_instruction_length;
2dc7f7b3 1036 unsigned char maximum_ops_per_instruction;
debd256d
JB
1037 unsigned char default_is_stmt;
1038 int line_base;
1039 unsigned char line_range;
1040 unsigned char opcode_base;
1041
1042 /* standard_opcode_lengths[i] is the number of operands for the
1043 standard opcode whose value is i. This means that
1044 standard_opcode_lengths[0] is unused, and the last meaningful
1045 element is standard_opcode_lengths[opcode_base - 1]. */
1046 unsigned char *standard_opcode_lengths;
1047
1048 /* The include_directories table. NOTE! These strings are not
1049 allocated with xmalloc; instead, they are pointers into
1050 debug_line_buffer. If you try to free them, `free' will get
1051 indigestion. */
1052 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1053 const char **include_dirs;
debd256d
JB
1054
1055 /* The file_names table. NOTE! These strings are not allocated
1056 with xmalloc; instead, they are pointers into debug_line_buffer.
1057 Don't try to free them directly. */
1058 unsigned int num_file_names, file_names_size;
1059 struct file_entry
c906108c 1060 {
d521ce57 1061 const char *name;
debd256d
JB
1062 unsigned int dir_index;
1063 unsigned int mod_time;
1064 unsigned int length;
aaa75496 1065 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 1066 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
1067 } *file_names;
1068
1069 /* The start and end of the statement program following this
6502dd73 1070 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1071 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1072};
c906108c
SS
1073
1074/* When we construct a partial symbol table entry we only
0963b4bd 1075 need this much information. */
c906108c
SS
1076struct partial_die_info
1077 {
72bf9492 1078 /* Offset of this DIE. */
b64f50a1 1079 sect_offset offset;
72bf9492
DJ
1080
1081 /* DWARF-2 tag for this DIE. */
1082 ENUM_BITFIELD(dwarf_tag) tag : 16;
1083
72bf9492
DJ
1084 /* Assorted flags describing the data found in this DIE. */
1085 unsigned int has_children : 1;
1086 unsigned int is_external : 1;
1087 unsigned int is_declaration : 1;
1088 unsigned int has_type : 1;
1089 unsigned int has_specification : 1;
1090 unsigned int has_pc_info : 1;
481860b3 1091 unsigned int may_be_inlined : 1;
72bf9492
DJ
1092
1093 /* Flag set if the SCOPE field of this structure has been
1094 computed. */
1095 unsigned int scope_set : 1;
1096
fa4028e9
JB
1097 /* Flag set if the DIE has a byte_size attribute. */
1098 unsigned int has_byte_size : 1;
1099
98bfdba5
PA
1100 /* Flag set if any of the DIE's children are template arguments. */
1101 unsigned int has_template_arguments : 1;
1102
abc72ce4
DE
1103 /* Flag set if fixup_partial_die has been called on this die. */
1104 unsigned int fixup_called : 1;
1105
36586728
TT
1106 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1107 unsigned int is_dwz : 1;
1108
1109 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1110 unsigned int spec_is_dwz : 1;
1111
72bf9492 1112 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1113 sometimes a default name for unnamed DIEs. */
15d034d0 1114 const char *name;
72bf9492 1115
abc72ce4
DE
1116 /* The linkage name, if present. */
1117 const char *linkage_name;
1118
72bf9492
DJ
1119 /* The scope to prepend to our children. This is generally
1120 allocated on the comp_unit_obstack, so will disappear
1121 when this compilation unit leaves the cache. */
15d034d0 1122 const char *scope;
72bf9492 1123
95554aad
TT
1124 /* Some data associated with the partial DIE. The tag determines
1125 which field is live. */
1126 union
1127 {
1128 /* The location description associated with this DIE, if any. */
1129 struct dwarf_block *locdesc;
1130 /* The offset of an import, for DW_TAG_imported_unit. */
1131 sect_offset offset;
1132 } d;
72bf9492
DJ
1133
1134 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1135 CORE_ADDR lowpc;
1136 CORE_ADDR highpc;
72bf9492 1137
93311388 1138 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1139 DW_AT_sibling, if any. */
abc72ce4
DE
1140 /* NOTE: This member isn't strictly necessary, read_partial_die could
1141 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1142 const gdb_byte *sibling;
72bf9492
DJ
1143
1144 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1145 DW_AT_specification (or DW_AT_abstract_origin or
1146 DW_AT_extension). */
b64f50a1 1147 sect_offset spec_offset;
72bf9492
DJ
1148
1149 /* Pointers to this DIE's parent, first child, and next sibling,
1150 if any. */
1151 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1152 };
1153
0963b4bd 1154/* This data structure holds the information of an abbrev. */
c906108c
SS
1155struct abbrev_info
1156 {
1157 unsigned int number; /* number identifying abbrev */
1158 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1159 unsigned short has_children; /* boolean */
1160 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1161 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1162 struct abbrev_info *next; /* next in chain */
1163 };
1164
1165struct attr_abbrev
1166 {
9d25dd43
DE
1167 ENUM_BITFIELD(dwarf_attribute) name : 16;
1168 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1169 };
1170
433df2d4
DE
1171/* Size of abbrev_table.abbrev_hash_table. */
1172#define ABBREV_HASH_SIZE 121
1173
1174/* Top level data structure to contain an abbreviation table. */
1175
1176struct abbrev_table
1177{
f4dc4d17
DE
1178 /* Where the abbrev table came from.
1179 This is used as a sanity check when the table is used. */
433df2d4
DE
1180 sect_offset offset;
1181
1182 /* Storage for the abbrev table. */
1183 struct obstack abbrev_obstack;
1184
1185 /* Hash table of abbrevs.
1186 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1187 It could be statically allocated, but the previous code didn't so we
1188 don't either. */
1189 struct abbrev_info **abbrevs;
1190};
1191
0963b4bd 1192/* Attributes have a name and a value. */
b60c80d6
DJ
1193struct attribute
1194 {
9d25dd43 1195 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1196 ENUM_BITFIELD(dwarf_form) form : 15;
1197
1198 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1199 field should be in u.str (existing only for DW_STRING) but it is kept
1200 here for better struct attribute alignment. */
1201 unsigned int string_is_canonical : 1;
1202
b60c80d6
DJ
1203 union
1204 {
15d034d0 1205 const char *str;
b60c80d6 1206 struct dwarf_block *blk;
43bbcdc2
PH
1207 ULONGEST unsnd;
1208 LONGEST snd;
b60c80d6 1209 CORE_ADDR addr;
ac9ec31b 1210 ULONGEST signature;
b60c80d6
DJ
1211 }
1212 u;
1213 };
1214
0963b4bd 1215/* This data structure holds a complete die structure. */
c906108c
SS
1216struct die_info
1217 {
76815b17
DE
1218 /* DWARF-2 tag for this DIE. */
1219 ENUM_BITFIELD(dwarf_tag) tag : 16;
1220
1221 /* Number of attributes */
98bfdba5
PA
1222 unsigned char num_attrs;
1223
1224 /* True if we're presently building the full type name for the
1225 type derived from this DIE. */
1226 unsigned char building_fullname : 1;
76815b17
DE
1227
1228 /* Abbrev number */
1229 unsigned int abbrev;
1230
93311388 1231 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1232 sect_offset offset;
78ba4af6
JB
1233
1234 /* The dies in a compilation unit form an n-ary tree. PARENT
1235 points to this die's parent; CHILD points to the first child of
1236 this node; and all the children of a given node are chained
4950bc1c 1237 together via their SIBLING fields. */
639d11d3
DC
1238 struct die_info *child; /* Its first child, if any. */
1239 struct die_info *sibling; /* Its next sibling, if any. */
1240 struct die_info *parent; /* Its parent, if any. */
c906108c 1241
b60c80d6
DJ
1242 /* An array of attributes, with NUM_ATTRS elements. There may be
1243 zero, but it's not common and zero-sized arrays are not
1244 sufficiently portable C. */
1245 struct attribute attrs[1];
c906108c
SS
1246 };
1247
0963b4bd 1248/* Get at parts of an attribute structure. */
c906108c
SS
1249
1250#define DW_STRING(attr) ((attr)->u.str)
8285870a 1251#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1252#define DW_UNSND(attr) ((attr)->u.unsnd)
1253#define DW_BLOCK(attr) ((attr)->u.blk)
1254#define DW_SND(attr) ((attr)->u.snd)
1255#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1256#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1257
0963b4bd 1258/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1259struct dwarf_block
1260 {
56eb65bd 1261 size_t size;
1d6edc3c
JK
1262
1263 /* Valid only if SIZE is not zero. */
d521ce57 1264 const gdb_byte *data;
c906108c
SS
1265 };
1266
c906108c
SS
1267#ifndef ATTR_ALLOC_CHUNK
1268#define ATTR_ALLOC_CHUNK 4
1269#endif
1270
c906108c
SS
1271/* Allocate fields for structs, unions and enums in this size. */
1272#ifndef DW_FIELD_ALLOC_CHUNK
1273#define DW_FIELD_ALLOC_CHUNK 4
1274#endif
1275
c906108c
SS
1276/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1277 but this would require a corresponding change in unpack_field_as_long
1278 and friends. */
1279static int bits_per_byte = 8;
1280
1281/* The routines that read and process dies for a C struct or C++ class
1282 pass lists of data member fields and lists of member function fields
1283 in an instance of a field_info structure, as defined below. */
1284struct field_info
c5aa993b 1285 {
0963b4bd 1286 /* List of data member and baseclasses fields. */
c5aa993b
JM
1287 struct nextfield
1288 {
1289 struct nextfield *next;
1290 int accessibility;
1291 int virtuality;
1292 struct field field;
1293 }
7d0ccb61 1294 *fields, *baseclasses;
c906108c 1295
7d0ccb61 1296 /* Number of fields (including baseclasses). */
c5aa993b 1297 int nfields;
c906108c 1298
c5aa993b
JM
1299 /* Number of baseclasses. */
1300 int nbaseclasses;
c906108c 1301
c5aa993b
JM
1302 /* Set if the accesibility of one of the fields is not public. */
1303 int non_public_fields;
c906108c 1304
c5aa993b
JM
1305 /* Member function fields array, entries are allocated in the order they
1306 are encountered in the object file. */
1307 struct nextfnfield
1308 {
1309 struct nextfnfield *next;
1310 struct fn_field fnfield;
1311 }
1312 *fnfields;
c906108c 1313
c5aa993b
JM
1314 /* Member function fieldlist array, contains name of possibly overloaded
1315 member function, number of overloaded member functions and a pointer
1316 to the head of the member function field chain. */
1317 struct fnfieldlist
1318 {
15d034d0 1319 const char *name;
c5aa993b
JM
1320 int length;
1321 struct nextfnfield *head;
1322 }
1323 *fnfieldlists;
c906108c 1324
c5aa993b
JM
1325 /* Number of entries in the fnfieldlists array. */
1326 int nfnfields;
98751a41
JK
1327
1328 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1329 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1330 struct typedef_field_list
1331 {
1332 struct typedef_field field;
1333 struct typedef_field_list *next;
1334 }
1335 *typedef_field_list;
1336 unsigned typedef_field_list_count;
c5aa993b 1337 };
c906108c 1338
10b3939b
DJ
1339/* One item on the queue of compilation units to read in full symbols
1340 for. */
1341struct dwarf2_queue_item
1342{
1343 struct dwarf2_per_cu_data *per_cu;
95554aad 1344 enum language pretend_language;
10b3939b
DJ
1345 struct dwarf2_queue_item *next;
1346};
1347
1348/* The current queue. */
1349static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1350
ae038cb0
DJ
1351/* Loaded secondary compilation units are kept in memory until they
1352 have not been referenced for the processing of this many
1353 compilation units. Set this to zero to disable caching. Cache
1354 sizes of up to at least twenty will improve startup time for
1355 typical inter-CU-reference binaries, at an obvious memory cost. */
1356static int dwarf2_max_cache_age = 5;
920d2a44
AC
1357static void
1358show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1359 struct cmd_list_element *c, const char *value)
1360{
3e43a32a
MS
1361 fprintf_filtered (file, _("The upper bound on the age of cached "
1362 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
1363 value);
1364}
4390d890 1365\f
c906108c
SS
1366/* local function prototypes */
1367
a32a8923
DE
1368static const char *get_section_name (const struct dwarf2_section_info *);
1369
1370static const char *get_section_file_name (const struct dwarf2_section_info *);
1371
4efb68b1 1372static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1373
918dd910
JK
1374static void dwarf2_find_base_address (struct die_info *die,
1375 struct dwarf2_cu *cu);
1376
0018ea6f
DE
1377static struct partial_symtab *create_partial_symtab
1378 (struct dwarf2_per_cu_data *per_cu, const char *name);
1379
c67a9c90 1380static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1381
72bf9492
DJ
1382static void scan_partial_symbols (struct partial_die_info *,
1383 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1384 int, struct dwarf2_cu *);
c906108c 1385
72bf9492
DJ
1386static void add_partial_symbol (struct partial_die_info *,
1387 struct dwarf2_cu *);
63d06c5c 1388
72bf9492
DJ
1389static void add_partial_namespace (struct partial_die_info *pdi,
1390 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1391 int need_pc, struct dwarf2_cu *cu);
63d06c5c 1392
5d7cb8df
JK
1393static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1394 CORE_ADDR *highpc, int need_pc,
1395 struct dwarf2_cu *cu);
1396
72bf9492
DJ
1397static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1398 struct dwarf2_cu *cu);
91c24f0a 1399
bc30ff58
JB
1400static void add_partial_subprogram (struct partial_die_info *pdi,
1401 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1402 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1403
257e7a09
YQ
1404static void dwarf2_read_symtab (struct partial_symtab *,
1405 struct objfile *);
c906108c 1406
a14ed312 1407static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1408
433df2d4
DE
1409static struct abbrev_info *abbrev_table_lookup_abbrev
1410 (const struct abbrev_table *, unsigned int);
1411
1412static struct abbrev_table *abbrev_table_read_table
1413 (struct dwarf2_section_info *, sect_offset);
1414
1415static void abbrev_table_free (struct abbrev_table *);
1416
f4dc4d17
DE
1417static void abbrev_table_free_cleanup (void *);
1418
dee91e82
DE
1419static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1420 struct dwarf2_section_info *);
c906108c 1421
f3dd6933 1422static void dwarf2_free_abbrev_table (void *);
c906108c 1423
d521ce57 1424static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1425
dee91e82 1426static struct partial_die_info *load_partial_dies
d521ce57 1427 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1428
d521ce57
TT
1429static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1430 struct partial_die_info *,
1431 struct abbrev_info *,
1432 unsigned int,
1433 const gdb_byte *);
c906108c 1434
36586728 1435static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1436 struct dwarf2_cu *);
72bf9492
DJ
1437
1438static void fixup_partial_die (struct partial_die_info *,
1439 struct dwarf2_cu *);
1440
d521ce57
TT
1441static const gdb_byte *read_attribute (const struct die_reader_specs *,
1442 struct attribute *, struct attr_abbrev *,
1443 const gdb_byte *);
a8329558 1444
a1855c1d 1445static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1446
a1855c1d 1447static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1448
a1855c1d 1449static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1450
a1855c1d 1451static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1452
a1855c1d 1453static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1454
d521ce57 1455static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1456 unsigned int *);
c906108c 1457
d521ce57 1458static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1459
1460static LONGEST read_checked_initial_length_and_offset
d521ce57 1461 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1462 unsigned int *, unsigned int *);
613e1657 1463
d521ce57
TT
1464static LONGEST read_offset (bfd *, const gdb_byte *,
1465 const struct comp_unit_head *,
c764a876
DE
1466 unsigned int *);
1467
d521ce57 1468static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1469
f4dc4d17
DE
1470static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1471 sect_offset);
1472
d521ce57 1473static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1474
d521ce57 1475static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1476
d521ce57
TT
1477static const char *read_indirect_string (bfd *, const gdb_byte *,
1478 const struct comp_unit_head *,
1479 unsigned int *);
4bdf3d34 1480
d521ce57 1481static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1482
d521ce57 1483static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1484
d521ce57 1485static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1486
d521ce57
TT
1487static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1488 const gdb_byte *,
3019eac3
DE
1489 unsigned int *);
1490
d521ce57
TT
1491static const char *read_str_index (const struct die_reader_specs *reader,
1492 struct dwarf2_cu *cu, ULONGEST str_index);
3019eac3 1493
e142c38c 1494static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1495
e142c38c
DJ
1496static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1497 struct dwarf2_cu *);
c906108c 1498
348e048f 1499static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1500 unsigned int);
348e048f 1501
05cf31d1
JB
1502static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1503 struct dwarf2_cu *cu);
1504
e142c38c 1505static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1506
e142c38c 1507static struct die_info *die_specification (struct die_info *die,
f2f0e013 1508 struct dwarf2_cu **);
63d06c5c 1509
debd256d
JB
1510static void free_line_header (struct line_header *lh);
1511
3019eac3
DE
1512static struct line_header *dwarf_decode_line_header (unsigned int offset,
1513 struct dwarf2_cu *cu);
debd256d 1514
f3f5162e
DE
1515static void dwarf_decode_lines (struct line_header *, const char *,
1516 struct dwarf2_cu *, struct partial_symtab *,
1517 int);
c906108c 1518
d521ce57 1519static void dwarf2_start_subfile (const char *, const char *, const char *);
c906108c 1520
f4dc4d17 1521static void dwarf2_start_symtab (struct dwarf2_cu *,
15d034d0 1522 const char *, const char *, CORE_ADDR);
f4dc4d17 1523
a14ed312 1524static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1525 struct dwarf2_cu *);
c906108c 1526
34eaf542
TT
1527static struct symbol *new_symbol_full (struct die_info *, struct type *,
1528 struct dwarf2_cu *, struct symbol *);
1529
ff39bb5e 1530static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1531 struct dwarf2_cu *);
c906108c 1532
ff39bb5e 1533static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1534 struct type *type,
1535 const char *name,
1536 struct obstack *obstack,
12df843f 1537 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1538 const gdb_byte **bytes,
98bfdba5 1539 struct dwarf2_locexpr_baton **baton);
2df3850c 1540
e7c27a73 1541static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1542
b4ba55a1
JB
1543static int need_gnat_info (struct dwarf2_cu *);
1544
3e43a32a
MS
1545static struct type *die_descriptive_type (struct die_info *,
1546 struct dwarf2_cu *);
b4ba55a1
JB
1547
1548static void set_descriptive_type (struct type *, struct die_info *,
1549 struct dwarf2_cu *);
1550
e7c27a73
DJ
1551static struct type *die_containing_type (struct die_info *,
1552 struct dwarf2_cu *);
c906108c 1553
ff39bb5e 1554static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1555 struct dwarf2_cu *);
c906108c 1556
f792889a 1557static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1558
673bfd45
DE
1559static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1560
0d5cff50 1561static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1562
6e70227d 1563static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1564 const char *suffix, int physname,
1565 struct dwarf2_cu *cu);
63d06c5c 1566
e7c27a73 1567static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1568
348e048f
DE
1569static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1570
e7c27a73 1571static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1572
e7c27a73 1573static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1574
96408a79
SA
1575static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1576
ff013f42
JK
1577static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1578 struct dwarf2_cu *, struct partial_symtab *);
1579
a14ed312 1580static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1581 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1582 struct partial_symtab *);
c906108c 1583
fae299cd
DC
1584static void get_scope_pc_bounds (struct die_info *,
1585 CORE_ADDR *, CORE_ADDR *,
1586 struct dwarf2_cu *);
1587
801e3a5b
JB
1588static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1589 CORE_ADDR, struct dwarf2_cu *);
1590
a14ed312 1591static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1592 struct dwarf2_cu *);
c906108c 1593
a14ed312 1594static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1595 struct type *, struct dwarf2_cu *);
c906108c 1596
a14ed312 1597static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1598 struct die_info *, struct type *,
e7c27a73 1599 struct dwarf2_cu *);
c906108c 1600
a14ed312 1601static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1602 struct type *,
1603 struct dwarf2_cu *);
c906108c 1604
134d01f1 1605static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1606
e7c27a73 1607static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1608
e7c27a73 1609static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1610
5d7cb8df
JK
1611static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1612
27aa8d6a
SW
1613static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1614
74921315
KS
1615static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1616
f55ee35c
JK
1617static struct type *read_module_type (struct die_info *die,
1618 struct dwarf2_cu *cu);
1619
38d518c9 1620static const char *namespace_name (struct die_info *die,
e142c38c 1621 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1622
134d01f1 1623static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1624
e7c27a73 1625static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1626
6e70227d 1627static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1628 struct dwarf2_cu *);
1629
bf6af496 1630static struct die_info *read_die_and_siblings_1
d521ce57 1631 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1632 struct die_info *);
639d11d3 1633
dee91e82 1634static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1635 const gdb_byte *info_ptr,
1636 const gdb_byte **new_info_ptr,
639d11d3
DC
1637 struct die_info *parent);
1638
d521ce57
TT
1639static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1640 struct die_info **, const gdb_byte *,
1641 int *, int);
3019eac3 1642
d521ce57
TT
1643static const gdb_byte *read_full_die (const struct die_reader_specs *,
1644 struct die_info **, const gdb_byte *,
1645 int *);
93311388 1646
e7c27a73 1647static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1648
15d034d0
TT
1649static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1650 struct obstack *);
71c25dea 1651
15d034d0 1652static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1653
15d034d0 1654static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1655 struct die_info *die,
1656 struct dwarf2_cu *cu);
1657
ca69b9e6
DE
1658static const char *dwarf2_physname (const char *name, struct die_info *die,
1659 struct dwarf2_cu *cu);
1660
e142c38c 1661static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1662 struct dwarf2_cu **);
9219021c 1663
f39c6ffd 1664static const char *dwarf_tag_name (unsigned int);
c906108c 1665
f39c6ffd 1666static const char *dwarf_attr_name (unsigned int);
c906108c 1667
f39c6ffd 1668static const char *dwarf_form_name (unsigned int);
c906108c 1669
a14ed312 1670static char *dwarf_bool_name (unsigned int);
c906108c 1671
f39c6ffd 1672static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1673
f9aca02d 1674static struct die_info *sibling_die (struct die_info *);
c906108c 1675
d97bc12b
DE
1676static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1677
1678static void dump_die_for_error (struct die_info *);
1679
1680static void dump_die_1 (struct ui_file *, int level, int max_level,
1681 struct die_info *);
c906108c 1682
d97bc12b 1683/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1684
51545339 1685static void store_in_ref_table (struct die_info *,
10b3939b 1686 struct dwarf2_cu *);
c906108c 1687
ff39bb5e 1688static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1689
ff39bb5e 1690static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1691
348e048f 1692static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1693 const struct attribute *,
348e048f
DE
1694 struct dwarf2_cu **);
1695
10b3939b 1696static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1697 const struct attribute *,
f2f0e013 1698 struct dwarf2_cu **);
c906108c 1699
348e048f 1700static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1701 const struct attribute *,
348e048f
DE
1702 struct dwarf2_cu **);
1703
ac9ec31b
DE
1704static struct type *get_signatured_type (struct die_info *, ULONGEST,
1705 struct dwarf2_cu *);
1706
1707static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1708 const struct attribute *,
ac9ec31b
DE
1709 struct dwarf2_cu *);
1710
e5fe5e75 1711static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1712
52dc124a 1713static void read_signatured_type (struct signatured_type *);
348e048f 1714
f4dc4d17 1715static struct type_unit_group *get_type_unit_group
ff39bb5e 1716 (struct dwarf2_cu *, const struct attribute *);
f4dc4d17
DE
1717
1718static void build_type_unit_groups (die_reader_func_ftype *, void *);
1719
c906108c
SS
1720/* memory allocation interface */
1721
7b5a2f43 1722static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1723
b60c80d6 1724static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1725
09262596 1726static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
15d034d0 1727 const char *, int);
2e276125 1728
6e5a29e1 1729static int attr_form_is_block (const struct attribute *);
8e19ed76 1730
6e5a29e1 1731static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1732
6e5a29e1 1733static int attr_form_is_constant (const struct attribute *);
3690dd37 1734
6e5a29e1 1735static int attr_form_is_ref (const struct attribute *);
7771576e 1736
8cf6f0b1
TT
1737static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1738 struct dwarf2_loclist_baton *baton,
ff39bb5e 1739 const struct attribute *attr);
8cf6f0b1 1740
ff39bb5e 1741static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1742 struct symbol *sym,
f1e6e072
TT
1743 struct dwarf2_cu *cu,
1744 int is_block);
4c2df51b 1745
d521ce57
TT
1746static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1747 const gdb_byte *info_ptr,
1748 struct abbrev_info *abbrev);
4bb7a0a7 1749
72bf9492
DJ
1750static void free_stack_comp_unit (void *);
1751
72bf9492
DJ
1752static hashval_t partial_die_hash (const void *item);
1753
1754static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1755
ae038cb0 1756static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1757 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1758
9816fde3 1759static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1760 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1761
1762static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1763 struct die_info *comp_unit_die,
1764 enum language pretend_language);
93311388 1765
68dc6402 1766static void free_heap_comp_unit (void *);
ae038cb0
DJ
1767
1768static void free_cached_comp_units (void *);
1769
1770static void age_cached_comp_units (void);
1771
dee91e82 1772static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1773
f792889a
DJ
1774static struct type *set_die_type (struct die_info *, struct type *,
1775 struct dwarf2_cu *);
1c379e20 1776
ae038cb0
DJ
1777static void create_all_comp_units (struct objfile *);
1778
0e50663e 1779static int create_all_type_units (struct objfile *);
1fd400ff 1780
95554aad
TT
1781static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1782 enum language);
10b3939b 1783
95554aad
TT
1784static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1785 enum language);
10b3939b 1786
f4dc4d17
DE
1787static void process_full_type_unit (struct dwarf2_per_cu_data *,
1788 enum language);
1789
10b3939b
DJ
1790static void dwarf2_add_dependence (struct dwarf2_cu *,
1791 struct dwarf2_per_cu_data *);
1792
ae038cb0
DJ
1793static void dwarf2_mark (struct dwarf2_cu *);
1794
1795static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1796
b64f50a1 1797static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1798 struct dwarf2_per_cu_data *);
673bfd45 1799
f792889a 1800static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1801
9291a0cd
TT
1802static void dwarf2_release_queue (void *dummy);
1803
95554aad
TT
1804static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1805 enum language pretend_language);
1806
a0f42c21 1807static void process_queue (void);
9291a0cd
TT
1808
1809static void find_file_and_directory (struct die_info *die,
1810 struct dwarf2_cu *cu,
15d034d0 1811 const char **name, const char **comp_dir);
9291a0cd
TT
1812
1813static char *file_full_name (int file, struct line_header *lh,
1814 const char *comp_dir);
1815
d521ce57 1816static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1817 (struct comp_unit_head *header,
1818 struct dwarf2_section_info *section,
d521ce57 1819 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1820 int is_debug_types_section);
1821
fd820528 1822static void init_cutu_and_read_dies
f4dc4d17
DE
1823 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1824 int use_existing_cu, int keep,
3019eac3
DE
1825 die_reader_func_ftype *die_reader_func, void *data);
1826
dee91e82
DE
1827static void init_cutu_and_read_dies_simple
1828 (struct dwarf2_per_cu_data *this_cu,
1829 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1830
673bfd45 1831static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1832
3019eac3
DE
1833static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1834
57d63ce2
DE
1835static struct dwo_unit *lookup_dwo_unit_in_dwp
1836 (struct dwp_file *dwp_file, const char *comp_dir,
1837 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1838
1839static struct dwp_file *get_dwp_file (void);
1840
3019eac3 1841static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1842 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1843
1844static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1845 (struct signatured_type *, const char *, const char *);
3019eac3 1846
89e63ee4
DE
1847static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1848
3019eac3
DE
1849static void free_dwo_file_cleanup (void *);
1850
95554aad
TT
1851static void process_cu_includes (void);
1852
1b80a9fa 1853static void check_producer (struct dwarf2_cu *cu);
4390d890
DE
1854\f
1855/* Various complaints about symbol reading that don't abort the process. */
1856
1857static void
1858dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1859{
1860 complaint (&symfile_complaints,
1861 _("statement list doesn't fit in .debug_line section"));
1862}
1863
1864static void
1865dwarf2_debug_line_missing_file_complaint (void)
1866{
1867 complaint (&symfile_complaints,
1868 _(".debug_line section has line data without a file"));
1869}
1870
1871static void
1872dwarf2_debug_line_missing_end_sequence_complaint (void)
1873{
1874 complaint (&symfile_complaints,
1875 _(".debug_line section has line "
1876 "program sequence without an end"));
1877}
1878
1879static void
1880dwarf2_complex_location_expr_complaint (void)
1881{
1882 complaint (&symfile_complaints, _("location expression too complex"));
1883}
1884
1885static void
1886dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1887 int arg3)
1888{
1889 complaint (&symfile_complaints,
1890 _("const value length mismatch for '%s', got %d, expected %d"),
1891 arg1, arg2, arg3);
1892}
1893
1894static void
1895dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1896{
1897 complaint (&symfile_complaints,
1898 _("debug info runs off end of %s section"
1899 " [in module %s]"),
a32a8923
DE
1900 get_section_name (section),
1901 get_section_file_name (section));
4390d890 1902}
1b80a9fa 1903
4390d890
DE
1904static void
1905dwarf2_macro_malformed_definition_complaint (const char *arg1)
1906{
1907 complaint (&symfile_complaints,
1908 _("macro debug info contains a "
1909 "malformed macro definition:\n`%s'"),
1910 arg1);
1911}
1912
1913static void
1914dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1915{
1916 complaint (&symfile_complaints,
1917 _("invalid attribute class or form for '%s' in '%s'"),
1918 arg1, arg2);
1919}
1920\f
9291a0cd
TT
1921#if WORDS_BIGENDIAN
1922
1923/* Convert VALUE between big- and little-endian. */
1924static offset_type
1925byte_swap (offset_type value)
1926{
1927 offset_type result;
1928
1929 result = (value & 0xff) << 24;
1930 result |= (value & 0xff00) << 8;
1931 result |= (value & 0xff0000) >> 8;
1932 result |= (value & 0xff000000) >> 24;
1933 return result;
1934}
1935
1936#define MAYBE_SWAP(V) byte_swap (V)
1937
1938#else
1939#define MAYBE_SWAP(V) (V)
1940#endif /* WORDS_BIGENDIAN */
1941
1942/* The suffix for an index file. */
1943#define INDEX_SUFFIX ".gdb-index"
1944
c906108c 1945/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
1946 information and return true if we have enough to do something.
1947 NAMES points to the dwarf2 section names, or is NULL if the standard
1948 ELF names are used. */
c906108c
SS
1949
1950int
251d32d9
TG
1951dwarf2_has_info (struct objfile *objfile,
1952 const struct dwarf2_debug_sections *names)
c906108c 1953{
be391dca
TT
1954 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1955 if (!dwarf2_per_objfile)
1956 {
1957 /* Initialize per-objfile state. */
1958 struct dwarf2_per_objfile *data
1959 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1960
be391dca
TT
1961 memset (data, 0, sizeof (*data));
1962 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1963 dwarf2_per_objfile = data;
6502dd73 1964
251d32d9
TG
1965 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1966 (void *) names);
be391dca
TT
1967 dwarf2_per_objfile->objfile = objfile;
1968 }
73869dc2
DE
1969 return (!dwarf2_per_objfile->info.is_virtual
1970 && dwarf2_per_objfile->info.s.asection != NULL
1971 && !dwarf2_per_objfile->abbrev.is_virtual
1972 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1973}
1974
1975/* Return the containing section of virtual section SECTION. */
1976
1977static struct dwarf2_section_info *
1978get_containing_section (const struct dwarf2_section_info *section)
1979{
1980 gdb_assert (section->is_virtual);
1981 return section->s.containing_section;
c906108c
SS
1982}
1983
a32a8923
DE
1984/* Return the bfd owner of SECTION. */
1985
1986static struct bfd *
1987get_section_bfd_owner (const struct dwarf2_section_info *section)
1988{
73869dc2
DE
1989 if (section->is_virtual)
1990 {
1991 section = get_containing_section (section);
1992 gdb_assert (!section->is_virtual);
1993 }
1994 return section->s.asection->owner;
a32a8923
DE
1995}
1996
1997/* Return the bfd section of SECTION.
1998 Returns NULL if the section is not present. */
1999
2000static asection *
2001get_section_bfd_section (const struct dwarf2_section_info *section)
2002{
73869dc2
DE
2003 if (section->is_virtual)
2004 {
2005 section = get_containing_section (section);
2006 gdb_assert (!section->is_virtual);
2007 }
2008 return section->s.asection;
a32a8923
DE
2009}
2010
2011/* Return the name of SECTION. */
2012
2013static const char *
2014get_section_name (const struct dwarf2_section_info *section)
2015{
2016 asection *sectp = get_section_bfd_section (section);
2017
2018 gdb_assert (sectp != NULL);
2019 return bfd_section_name (get_section_bfd_owner (section), sectp);
2020}
2021
2022/* Return the name of the file SECTION is in. */
2023
2024static const char *
2025get_section_file_name (const struct dwarf2_section_info *section)
2026{
2027 bfd *abfd = get_section_bfd_owner (section);
2028
2029 return bfd_get_filename (abfd);
2030}
2031
2032/* Return the id of SECTION.
2033 Returns 0 if SECTION doesn't exist. */
2034
2035static int
2036get_section_id (const struct dwarf2_section_info *section)
2037{
2038 asection *sectp = get_section_bfd_section (section);
2039
2040 if (sectp == NULL)
2041 return 0;
2042 return sectp->id;
2043}
2044
2045/* Return the flags of SECTION.
73869dc2 2046 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2047
2048static int
2049get_section_flags (const struct dwarf2_section_info *section)
2050{
2051 asection *sectp = get_section_bfd_section (section);
2052
2053 gdb_assert (sectp != NULL);
2054 return bfd_get_section_flags (sectp->owner, sectp);
2055}
2056
251d32d9
TG
2057/* When loading sections, we look either for uncompressed section or for
2058 compressed section names. */
233a11ab
CS
2059
2060static int
251d32d9
TG
2061section_is_p (const char *section_name,
2062 const struct dwarf2_section_names *names)
233a11ab 2063{
251d32d9
TG
2064 if (names->normal != NULL
2065 && strcmp (section_name, names->normal) == 0)
2066 return 1;
2067 if (names->compressed != NULL
2068 && strcmp (section_name, names->compressed) == 0)
2069 return 1;
2070 return 0;
233a11ab
CS
2071}
2072
c906108c
SS
2073/* This function is mapped across the sections and remembers the
2074 offset and size of each of the debugging sections we are interested
2075 in. */
2076
2077static void
251d32d9 2078dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2079{
251d32d9 2080 const struct dwarf2_debug_sections *names;
dc7650b8 2081 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2082
2083 if (vnames == NULL)
2084 names = &dwarf2_elf_names;
2085 else
2086 names = (const struct dwarf2_debug_sections *) vnames;
2087
dc7650b8
JK
2088 if ((aflag & SEC_HAS_CONTENTS) == 0)
2089 {
2090 }
2091 else if (section_is_p (sectp->name, &names->info))
c906108c 2092 {
73869dc2 2093 dwarf2_per_objfile->info.s.asection = sectp;
dce234bc 2094 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2095 }
251d32d9 2096 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2097 {
73869dc2 2098 dwarf2_per_objfile->abbrev.s.asection = sectp;
dce234bc 2099 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2100 }
251d32d9 2101 else if (section_is_p (sectp->name, &names->line))
c906108c 2102 {
73869dc2 2103 dwarf2_per_objfile->line.s.asection = sectp;
dce234bc 2104 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2105 }
251d32d9 2106 else if (section_is_p (sectp->name, &names->loc))
c906108c 2107 {
73869dc2 2108 dwarf2_per_objfile->loc.s.asection = sectp;
dce234bc 2109 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2110 }
251d32d9 2111 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2112 {
73869dc2 2113 dwarf2_per_objfile->macinfo.s.asection = sectp;
dce234bc 2114 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2115 }
cf2c3c16
TT
2116 else if (section_is_p (sectp->name, &names->macro))
2117 {
73869dc2 2118 dwarf2_per_objfile->macro.s.asection = sectp;
cf2c3c16
TT
2119 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2120 }
251d32d9 2121 else if (section_is_p (sectp->name, &names->str))
c906108c 2122 {
73869dc2 2123 dwarf2_per_objfile->str.s.asection = sectp;
dce234bc 2124 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2125 }
3019eac3
DE
2126 else if (section_is_p (sectp->name, &names->addr))
2127 {
73869dc2 2128 dwarf2_per_objfile->addr.s.asection = sectp;
3019eac3
DE
2129 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2130 }
251d32d9 2131 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2132 {
73869dc2 2133 dwarf2_per_objfile->frame.s.asection = sectp;
dce234bc 2134 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2135 }
251d32d9 2136 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2137 {
73869dc2 2138 dwarf2_per_objfile->eh_frame.s.asection = sectp;
dc7650b8 2139 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2140 }
251d32d9 2141 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2142 {
73869dc2 2143 dwarf2_per_objfile->ranges.s.asection = sectp;
dce234bc 2144 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2145 }
251d32d9 2146 else if (section_is_p (sectp->name, &names->types))
348e048f 2147 {
8b70b953
TT
2148 struct dwarf2_section_info type_section;
2149
2150 memset (&type_section, 0, sizeof (type_section));
73869dc2 2151 type_section.s.asection = sectp;
8b70b953
TT
2152 type_section.size = bfd_get_section_size (sectp);
2153
2154 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2155 &type_section);
348e048f 2156 }
251d32d9 2157 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2158 {
73869dc2 2159 dwarf2_per_objfile->gdb_index.s.asection = sectp;
9291a0cd
TT
2160 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2161 }
dce234bc 2162
72dca2f5
FR
2163 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2164 && bfd_section_vma (abfd, sectp) == 0)
2165 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2166}
2167
fceca515
DE
2168/* A helper function that decides whether a section is empty,
2169 or not present. */
9e0ac564
TT
2170
2171static int
19ac8c2e 2172dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2173{
73869dc2
DE
2174 if (section->is_virtual)
2175 return section->size == 0;
2176 return section->s.asection == NULL || section->size == 0;
9e0ac564
TT
2177}
2178
3019eac3
DE
2179/* Read the contents of the section INFO.
2180 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2181 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2182 of the DWO file.
dce234bc 2183 If the section is compressed, uncompress it before returning. */
c906108c 2184
dce234bc
PP
2185static void
2186dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2187{
a32a8923 2188 asection *sectp;
3019eac3 2189 bfd *abfd;
dce234bc 2190 gdb_byte *buf, *retbuf;
c906108c 2191
be391dca
TT
2192 if (info->readin)
2193 return;
dce234bc 2194 info->buffer = NULL;
be391dca 2195 info->readin = 1;
188dd5d6 2196
9e0ac564 2197 if (dwarf2_section_empty_p (info))
dce234bc 2198 return;
c906108c 2199
a32a8923 2200 sectp = get_section_bfd_section (info);
3019eac3 2201
73869dc2
DE
2202 /* If this is a virtual section we need to read in the real one first. */
2203 if (info->is_virtual)
2204 {
2205 struct dwarf2_section_info *containing_section =
2206 get_containing_section (info);
2207
2208 gdb_assert (sectp != NULL);
2209 if ((sectp->flags & SEC_RELOC) != 0)
2210 {
2211 error (_("Dwarf Error: DWP format V2 with relocations is not"
2212 " supported in section %s [in module %s]"),
2213 get_section_name (info), get_section_file_name (info));
2214 }
2215 dwarf2_read_section (objfile, containing_section);
2216 /* Other code should have already caught virtual sections that don't
2217 fit. */
2218 gdb_assert (info->virtual_offset + info->size
2219 <= containing_section->size);
2220 /* If the real section is empty or there was a problem reading the
2221 section we shouldn't get here. */
2222 gdb_assert (containing_section->buffer != NULL);
2223 info->buffer = containing_section->buffer + info->virtual_offset;
2224 return;
2225 }
2226
4bf44c1c
TT
2227 /* If the section has relocations, we must read it ourselves.
2228 Otherwise we attach it to the BFD. */
2229 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2230 {
d521ce57 2231 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2232 return;
dce234bc 2233 }
dce234bc 2234
4bf44c1c
TT
2235 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2236 info->buffer = buf;
dce234bc
PP
2237
2238 /* When debugging .o files, we may need to apply relocations; see
2239 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2240 We never compress sections in .o files, so we only need to
2241 try this when the section is not compressed. */
ac8035ab 2242 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2243 if (retbuf != NULL)
2244 {
2245 info->buffer = retbuf;
2246 return;
2247 }
2248
a32a8923
DE
2249 abfd = get_section_bfd_owner (info);
2250 gdb_assert (abfd != NULL);
2251
dce234bc
PP
2252 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2253 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2254 {
2255 error (_("Dwarf Error: Can't read DWARF data"
2256 " in section %s [in module %s]"),
2257 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2258 }
dce234bc
PP
2259}
2260
9e0ac564
TT
2261/* A helper function that returns the size of a section in a safe way.
2262 If you are positive that the section has been read before using the
2263 size, then it is safe to refer to the dwarf2_section_info object's
2264 "size" field directly. In other cases, you must call this
2265 function, because for compressed sections the size field is not set
2266 correctly until the section has been read. */
2267
2268static bfd_size_type
2269dwarf2_section_size (struct objfile *objfile,
2270 struct dwarf2_section_info *info)
2271{
2272 if (!info->readin)
2273 dwarf2_read_section (objfile, info);
2274 return info->size;
2275}
2276
dce234bc 2277/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2278 SECTION_NAME. */
af34e669 2279
dce234bc 2280void
3017a003
TG
2281dwarf2_get_section_info (struct objfile *objfile,
2282 enum dwarf2_section_enum sect,
d521ce57 2283 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2284 bfd_size_type *sizep)
2285{
2286 struct dwarf2_per_objfile *data
2287 = objfile_data (objfile, dwarf2_objfile_data_key);
2288 struct dwarf2_section_info *info;
a3b2a86b
TT
2289
2290 /* We may see an objfile without any DWARF, in which case we just
2291 return nothing. */
2292 if (data == NULL)
2293 {
2294 *sectp = NULL;
2295 *bufp = NULL;
2296 *sizep = 0;
2297 return;
2298 }
3017a003
TG
2299 switch (sect)
2300 {
2301 case DWARF2_DEBUG_FRAME:
2302 info = &data->frame;
2303 break;
2304 case DWARF2_EH_FRAME:
2305 info = &data->eh_frame;
2306 break;
2307 default:
2308 gdb_assert_not_reached ("unexpected section");
2309 }
dce234bc 2310
9e0ac564 2311 dwarf2_read_section (objfile, info);
dce234bc 2312
a32a8923 2313 *sectp = get_section_bfd_section (info);
dce234bc
PP
2314 *bufp = info->buffer;
2315 *sizep = info->size;
2316}
2317
36586728
TT
2318/* A helper function to find the sections for a .dwz file. */
2319
2320static void
2321locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2322{
2323 struct dwz_file *dwz_file = arg;
2324
2325 /* Note that we only support the standard ELF names, because .dwz
2326 is ELF-only (at the time of writing). */
2327 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2328 {
73869dc2 2329 dwz_file->abbrev.s.asection = sectp;
36586728
TT
2330 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2331 }
2332 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2333 {
73869dc2 2334 dwz_file->info.s.asection = sectp;
36586728
TT
2335 dwz_file->info.size = bfd_get_section_size (sectp);
2336 }
2337 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2338 {
73869dc2 2339 dwz_file->str.s.asection = sectp;
36586728
TT
2340 dwz_file->str.size = bfd_get_section_size (sectp);
2341 }
2342 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2343 {
73869dc2 2344 dwz_file->line.s.asection = sectp;
36586728
TT
2345 dwz_file->line.size = bfd_get_section_size (sectp);
2346 }
2347 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2348 {
73869dc2 2349 dwz_file->macro.s.asection = sectp;
36586728
TT
2350 dwz_file->macro.size = bfd_get_section_size (sectp);
2351 }
2ec9a5e0
TT
2352 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2353 {
73869dc2 2354 dwz_file->gdb_index.s.asection = sectp;
2ec9a5e0
TT
2355 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2356 }
36586728
TT
2357}
2358
4db1a1dc
TT
2359/* Open the separate '.dwz' debug file, if needed. Return NULL if
2360 there is no .gnu_debugaltlink section in the file. Error if there
2361 is such a section but the file cannot be found. */
36586728
TT
2362
2363static struct dwz_file *
2364dwarf2_get_dwz_file (void)
2365{
4db1a1dc
TT
2366 bfd *dwz_bfd;
2367 char *data;
36586728
TT
2368 struct cleanup *cleanup;
2369 const char *filename;
2370 struct dwz_file *result;
acd13123 2371 bfd_size_type buildid_len_arg;
dc294be5
TT
2372 size_t buildid_len;
2373 bfd_byte *buildid;
36586728
TT
2374
2375 if (dwarf2_per_objfile->dwz_file != NULL)
2376 return dwarf2_per_objfile->dwz_file;
2377
4db1a1dc
TT
2378 bfd_set_error (bfd_error_no_error);
2379 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2380 &buildid_len_arg, &buildid);
4db1a1dc
TT
2381 if (data == NULL)
2382 {
2383 if (bfd_get_error () == bfd_error_no_error)
2384 return NULL;
2385 error (_("could not read '.gnu_debugaltlink' section: %s"),
2386 bfd_errmsg (bfd_get_error ()));
2387 }
36586728 2388 cleanup = make_cleanup (xfree, data);
dc294be5 2389 make_cleanup (xfree, buildid);
36586728 2390
acd13123
TT
2391 buildid_len = (size_t) buildid_len_arg;
2392
f9d83a0b 2393 filename = (const char *) data;
36586728
TT
2394 if (!IS_ABSOLUTE_PATH (filename))
2395 {
4262abfb 2396 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2397 char *rel;
2398
2399 make_cleanup (xfree, abs);
2400 abs = ldirname (abs);
2401 make_cleanup (xfree, abs);
2402
2403 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2404 make_cleanup (xfree, rel);
2405 filename = rel;
2406 }
2407
dc294be5
TT
2408 /* First try the file name given in the section. If that doesn't
2409 work, try to use the build-id instead. */
36586728 2410 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2411 if (dwz_bfd != NULL)
36586728 2412 {
dc294be5
TT
2413 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2414 {
2415 gdb_bfd_unref (dwz_bfd);
2416 dwz_bfd = NULL;
2417 }
36586728
TT
2418 }
2419
dc294be5
TT
2420 if (dwz_bfd == NULL)
2421 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2422
2423 if (dwz_bfd == NULL)
2424 error (_("could not find '.gnu_debugaltlink' file for %s"),
2425 objfile_name (dwarf2_per_objfile->objfile));
2426
36586728
TT
2427 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2428 struct dwz_file);
2429 result->dwz_bfd = dwz_bfd;
2430
2431 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2432
2433 do_cleanups (cleanup);
2434
8d2cc612 2435 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2436 return result;
2437}
9291a0cd 2438\f
7b9f3c50
DE
2439/* DWARF quick_symbols_functions support. */
2440
2441/* TUs can share .debug_line entries, and there can be a lot more TUs than
2442 unique line tables, so we maintain a separate table of all .debug_line
2443 derived entries to support the sharing.
2444 All the quick functions need is the list of file names. We discard the
2445 line_header when we're done and don't need to record it here. */
2446struct quick_file_names
2447{
094b34ac
DE
2448 /* The data used to construct the hash key. */
2449 struct stmt_list_hash hash;
7b9f3c50
DE
2450
2451 /* The number of entries in file_names, real_names. */
2452 unsigned int num_file_names;
2453
2454 /* The file names from the line table, after being run through
2455 file_full_name. */
2456 const char **file_names;
2457
2458 /* The file names from the line table after being run through
2459 gdb_realpath. These are computed lazily. */
2460 const char **real_names;
2461};
2462
2463/* When using the index (and thus not using psymtabs), each CU has an
2464 object of this type. This is used to hold information needed by
2465 the various "quick" methods. */
2466struct dwarf2_per_cu_quick_data
2467{
2468 /* The file table. This can be NULL if there was no file table
2469 or it's currently not read in.
2470 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2471 struct quick_file_names *file_names;
2472
2473 /* The corresponding symbol table. This is NULL if symbols for this
2474 CU have not yet been read. */
2475 struct symtab *symtab;
2476
2477 /* A temporary mark bit used when iterating over all CUs in
2478 expand_symtabs_matching. */
2479 unsigned int mark : 1;
2480
2481 /* True if we've tried to read the file table and found there isn't one.
2482 There will be no point in trying to read it again next time. */
2483 unsigned int no_file_data : 1;
2484};
2485
094b34ac
DE
2486/* Utility hash function for a stmt_list_hash. */
2487
2488static hashval_t
2489hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2490{
2491 hashval_t v = 0;
2492
2493 if (stmt_list_hash->dwo_unit != NULL)
2494 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2495 v += stmt_list_hash->line_offset.sect_off;
2496 return v;
2497}
2498
2499/* Utility equality function for a stmt_list_hash. */
2500
2501static int
2502eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2503 const struct stmt_list_hash *rhs)
2504{
2505 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2506 return 0;
2507 if (lhs->dwo_unit != NULL
2508 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2509 return 0;
2510
2511 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2512}
2513
7b9f3c50
DE
2514/* Hash function for a quick_file_names. */
2515
2516static hashval_t
2517hash_file_name_entry (const void *e)
2518{
2519 const struct quick_file_names *file_data = e;
2520
094b34ac 2521 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2522}
2523
2524/* Equality function for a quick_file_names. */
2525
2526static int
2527eq_file_name_entry (const void *a, const void *b)
2528{
2529 const struct quick_file_names *ea = a;
2530 const struct quick_file_names *eb = b;
2531
094b34ac 2532 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2533}
2534
2535/* Delete function for a quick_file_names. */
2536
2537static void
2538delete_file_name_entry (void *e)
2539{
2540 struct quick_file_names *file_data = e;
2541 int i;
2542
2543 for (i = 0; i < file_data->num_file_names; ++i)
2544 {
2545 xfree ((void*) file_data->file_names[i]);
2546 if (file_data->real_names)
2547 xfree ((void*) file_data->real_names[i]);
2548 }
2549
2550 /* The space for the struct itself lives on objfile_obstack,
2551 so we don't free it here. */
2552}
2553
2554/* Create a quick_file_names hash table. */
2555
2556static htab_t
2557create_quick_file_names_table (unsigned int nr_initial_entries)
2558{
2559 return htab_create_alloc (nr_initial_entries,
2560 hash_file_name_entry, eq_file_name_entry,
2561 delete_file_name_entry, xcalloc, xfree);
2562}
9291a0cd 2563
918dd910
JK
2564/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2565 have to be created afterwards. You should call age_cached_comp_units after
2566 processing PER_CU->CU. dw2_setup must have been already called. */
2567
2568static void
2569load_cu (struct dwarf2_per_cu_data *per_cu)
2570{
3019eac3 2571 if (per_cu->is_debug_types)
e5fe5e75 2572 load_full_type_unit (per_cu);
918dd910 2573 else
95554aad 2574 load_full_comp_unit (per_cu, language_minimal);
918dd910 2575
918dd910 2576 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
2577
2578 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2579}
2580
a0f42c21 2581/* Read in the symbols for PER_CU. */
2fdf6df6 2582
9291a0cd 2583static void
a0f42c21 2584dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2585{
2586 struct cleanup *back_to;
2587
f4dc4d17
DE
2588 /* Skip type_unit_groups, reading the type units they contain
2589 is handled elsewhere. */
2590 if (IS_TYPE_UNIT_GROUP (per_cu))
2591 return;
2592
9291a0cd
TT
2593 back_to = make_cleanup (dwarf2_release_queue, NULL);
2594
95554aad
TT
2595 if (dwarf2_per_objfile->using_index
2596 ? per_cu->v.quick->symtab == NULL
2597 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2598 {
2599 queue_comp_unit (per_cu, language_minimal);
2600 load_cu (per_cu);
89e63ee4
DE
2601
2602 /* If we just loaded a CU from a DWO, and we're working with an index
2603 that may badly handle TUs, load all the TUs in that DWO as well.
2604 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2605 if (!per_cu->is_debug_types
2606 && per_cu->cu->dwo_unit != NULL
2607 && dwarf2_per_objfile->index_table != NULL
2608 && dwarf2_per_objfile->index_table->version <= 7
2609 /* DWP files aren't supported yet. */
2610 && get_dwp_file () == NULL)
2611 queue_and_load_all_dwo_tus (per_cu);
95554aad 2612 }
9291a0cd 2613
a0f42c21 2614 process_queue ();
9291a0cd
TT
2615
2616 /* Age the cache, releasing compilation units that have not
2617 been used recently. */
2618 age_cached_comp_units ();
2619
2620 do_cleanups (back_to);
2621}
2622
2623/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2624 the objfile from which this CU came. Returns the resulting symbol
2625 table. */
2fdf6df6 2626
9291a0cd 2627static struct symtab *
a0f42c21 2628dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2629{
95554aad 2630 gdb_assert (dwarf2_per_objfile->using_index);
9291a0cd
TT
2631 if (!per_cu->v.quick->symtab)
2632 {
2633 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2634 increment_reading_symtab ();
a0f42c21 2635 dw2_do_instantiate_symtab (per_cu);
95554aad 2636 process_cu_includes ();
9291a0cd
TT
2637 do_cleanups (back_to);
2638 }
2639 return per_cu->v.quick->symtab;
2640}
2641
f4dc4d17
DE
2642/* Return the CU given its index.
2643
2644 This is intended for loops like:
2645
2646 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2647 + dwarf2_per_objfile->n_type_units); ++i)
2648 {
2649 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2650
2651 ...;
2652 }
2653*/
2fdf6df6 2654
1fd400ff
TT
2655static struct dwarf2_per_cu_data *
2656dw2_get_cu (int index)
2657{
2658 if (index >= dwarf2_per_objfile->n_comp_units)
2659 {
f4dc4d17 2660 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2661 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2662 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2663 }
2664
2665 return dwarf2_per_objfile->all_comp_units[index];
2666}
2667
2668/* Return the primary CU given its index.
2669 The difference between this function and dw2_get_cu is in the handling
2670 of type units (TUs). Here we return the type_unit_group object.
2671
2672 This is intended for loops like:
2673
2674 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2675 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2676 {
2677 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2678
2679 ...;
2680 }
2681*/
2682
2683static struct dwarf2_per_cu_data *
2684dw2_get_primary_cu (int index)
2685{
2686 if (index >= dwarf2_per_objfile->n_comp_units)
2687 {
1fd400ff 2688 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2689 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2690 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
1fd400ff 2691 }
f4dc4d17 2692
1fd400ff
TT
2693 return dwarf2_per_objfile->all_comp_units[index];
2694}
2695
2ec9a5e0
TT
2696/* A helper for create_cus_from_index that handles a given list of
2697 CUs. */
2fdf6df6 2698
74a0d9f6 2699static void
2ec9a5e0
TT
2700create_cus_from_index_list (struct objfile *objfile,
2701 const gdb_byte *cu_list, offset_type n_elements,
2702 struct dwarf2_section_info *section,
2703 int is_dwz,
2704 int base_offset)
9291a0cd
TT
2705{
2706 offset_type i;
9291a0cd 2707
2ec9a5e0 2708 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2709 {
2710 struct dwarf2_per_cu_data *the_cu;
2711 ULONGEST offset, length;
2712
74a0d9f6
JK
2713 gdb_static_assert (sizeof (ULONGEST) >= 8);
2714 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2715 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2716 cu_list += 2 * 8;
2717
2718 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2719 struct dwarf2_per_cu_data);
b64f50a1 2720 the_cu->offset.sect_off = offset;
9291a0cd
TT
2721 the_cu->length = length;
2722 the_cu->objfile = objfile;
8a0459fd 2723 the_cu->section = section;
9291a0cd
TT
2724 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2725 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2726 the_cu->is_dwz = is_dwz;
2727 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2728 }
9291a0cd
TT
2729}
2730
2ec9a5e0 2731/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2732 the CU objects for this objfile. */
2ec9a5e0 2733
74a0d9f6 2734static void
2ec9a5e0
TT
2735create_cus_from_index (struct objfile *objfile,
2736 const gdb_byte *cu_list, offset_type cu_list_elements,
2737 const gdb_byte *dwz_list, offset_type dwz_elements)
2738{
2739 struct dwz_file *dwz;
2740
2741 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2742 dwarf2_per_objfile->all_comp_units
2743 = obstack_alloc (&objfile->objfile_obstack,
2744 dwarf2_per_objfile->n_comp_units
2745 * sizeof (struct dwarf2_per_cu_data *));
2746
74a0d9f6
JK
2747 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2748 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2749
2750 if (dwz_elements == 0)
74a0d9f6 2751 return;
2ec9a5e0
TT
2752
2753 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2754 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2755 cu_list_elements / 2);
2ec9a5e0
TT
2756}
2757
1fd400ff 2758/* Create the signatured type hash table from the index. */
673bfd45 2759
74a0d9f6 2760static void
673bfd45 2761create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2762 struct dwarf2_section_info *section,
673bfd45
DE
2763 const gdb_byte *bytes,
2764 offset_type elements)
1fd400ff
TT
2765{
2766 offset_type i;
673bfd45 2767 htab_t sig_types_hash;
1fd400ff 2768
d467dd73
DE
2769 dwarf2_per_objfile->n_type_units = elements / 3;
2770 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
2771 = xmalloc (dwarf2_per_objfile->n_type_units
2772 * sizeof (struct signatured_type *));
1fd400ff 2773
673bfd45 2774 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2775
2776 for (i = 0; i < elements; i += 3)
2777 {
52dc124a
DE
2778 struct signatured_type *sig_type;
2779 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2780 void **slot;
2781
74a0d9f6
JK
2782 gdb_static_assert (sizeof (ULONGEST) >= 8);
2783 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2784 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2785 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2786 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2787 bytes += 3 * 8;
2788
52dc124a 2789 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2790 struct signatured_type);
52dc124a 2791 sig_type->signature = signature;
3019eac3
DE
2792 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2793 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2794 sig_type->per_cu.section = section;
52dc124a
DE
2795 sig_type->per_cu.offset.sect_off = offset;
2796 sig_type->per_cu.objfile = objfile;
2797 sig_type->per_cu.v.quick
1fd400ff
TT
2798 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2799 struct dwarf2_per_cu_quick_data);
2800
52dc124a
DE
2801 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2802 *slot = sig_type;
1fd400ff 2803
b4dd5633 2804 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2805 }
2806
673bfd45 2807 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2808}
2809
9291a0cd
TT
2810/* Read the address map data from the mapped index, and use it to
2811 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2812
9291a0cd
TT
2813static void
2814create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2815{
2816 const gdb_byte *iter, *end;
2817 struct obstack temp_obstack;
2818 struct addrmap *mutable_map;
2819 struct cleanup *cleanup;
2820 CORE_ADDR baseaddr;
2821
2822 obstack_init (&temp_obstack);
2823 cleanup = make_cleanup_obstack_free (&temp_obstack);
2824 mutable_map = addrmap_create_mutable (&temp_obstack);
2825
2826 iter = index->address_table;
2827 end = iter + index->address_table_size;
2828
2829 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2830
2831 while (iter < end)
2832 {
2833 ULONGEST hi, lo, cu_index;
2834 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2835 iter += 8;
2836 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2837 iter += 8;
2838 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2839 iter += 4;
f652bce2 2840
24a55014 2841 if (lo > hi)
f652bce2 2842 {
24a55014
DE
2843 complaint (&symfile_complaints,
2844 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2845 hex_string (lo), hex_string (hi));
24a55014 2846 continue;
f652bce2 2847 }
24a55014
DE
2848
2849 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2850 {
2851 complaint (&symfile_complaints,
2852 _(".gdb_index address table has invalid CU number %u"),
2853 (unsigned) cu_index);
24a55014 2854 continue;
f652bce2 2855 }
24a55014
DE
2856
2857 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2858 dw2_get_cu (cu_index));
9291a0cd
TT
2859 }
2860
2861 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2862 &objfile->objfile_obstack);
2863 do_cleanups (cleanup);
2864}
2865
59d7bcaf
JK
2866/* The hash function for strings in the mapped index. This is the same as
2867 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2868 implementation. This is necessary because the hash function is tied to the
2869 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2870 SYMBOL_HASH_NEXT.
2871
2872 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2873
9291a0cd 2874static hashval_t
559a7a62 2875mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2876{
2877 const unsigned char *str = (const unsigned char *) p;
2878 hashval_t r = 0;
2879 unsigned char c;
2880
2881 while ((c = *str++) != 0)
559a7a62
JK
2882 {
2883 if (index_version >= 5)
2884 c = tolower (c);
2885 r = r * 67 + c - 113;
2886 }
9291a0cd
TT
2887
2888 return r;
2889}
2890
2891/* Find a slot in the mapped index INDEX for the object named NAME.
2892 If NAME is found, set *VEC_OUT to point to the CU vector in the
2893 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2894
9291a0cd
TT
2895static int
2896find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2897 offset_type **vec_out)
2898{
0cf03b49
JK
2899 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2900 offset_type hash;
9291a0cd 2901 offset_type slot, step;
559a7a62 2902 int (*cmp) (const char *, const char *);
9291a0cd 2903
0cf03b49
JK
2904 if (current_language->la_language == language_cplus
2905 || current_language->la_language == language_java
2906 || current_language->la_language == language_fortran)
2907 {
2908 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2909 not contain any. */
2910 const char *paren = strchr (name, '(');
2911
2912 if (paren)
2913 {
2914 char *dup;
2915
2916 dup = xmalloc (paren - name + 1);
2917 memcpy (dup, name, paren - name);
2918 dup[paren - name] = 0;
2919
2920 make_cleanup (xfree, dup);
2921 name = dup;
2922 }
2923 }
2924
559a7a62 2925 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2926 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2927 simulate our NAME being searched is also lowercased. */
2928 hash = mapped_index_string_hash ((index->version == 4
2929 && case_sensitivity == case_sensitive_off
2930 ? 5 : index->version),
2931 name);
2932
3876f04e
DE
2933 slot = hash & (index->symbol_table_slots - 1);
2934 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2935 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2936
2937 for (;;)
2938 {
2939 /* Convert a slot number to an offset into the table. */
2940 offset_type i = 2 * slot;
2941 const char *str;
3876f04e 2942 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2943 {
2944 do_cleanups (back_to);
2945 return 0;
2946 }
9291a0cd 2947
3876f04e 2948 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 2949 if (!cmp (name, str))
9291a0cd
TT
2950 {
2951 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2952 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 2953 do_cleanups (back_to);
9291a0cd
TT
2954 return 1;
2955 }
2956
3876f04e 2957 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2958 }
2959}
2960
2ec9a5e0
TT
2961/* A helper function that reads the .gdb_index from SECTION and fills
2962 in MAP. FILENAME is the name of the file containing the section;
2963 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2964 ok to use deprecated sections.
2965
2966 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2967 out parameters that are filled in with information about the CU and
2968 TU lists in the section.
2969
2970 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 2971
9291a0cd 2972static int
2ec9a5e0
TT
2973read_index_from_section (struct objfile *objfile,
2974 const char *filename,
2975 int deprecated_ok,
2976 struct dwarf2_section_info *section,
2977 struct mapped_index *map,
2978 const gdb_byte **cu_list,
2979 offset_type *cu_list_elements,
2980 const gdb_byte **types_list,
2981 offset_type *types_list_elements)
9291a0cd 2982{
948f8e3d 2983 const gdb_byte *addr;
2ec9a5e0 2984 offset_type version;
b3b272e1 2985 offset_type *metadata;
1fd400ff 2986 int i;
9291a0cd 2987
2ec9a5e0 2988 if (dwarf2_section_empty_p (section))
9291a0cd 2989 return 0;
82430852
JK
2990
2991 /* Older elfutils strip versions could keep the section in the main
2992 executable while splitting it for the separate debug info file. */
a32a8923 2993 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
2994 return 0;
2995
2ec9a5e0 2996 dwarf2_read_section (objfile, section);
9291a0cd 2997
2ec9a5e0 2998 addr = section->buffer;
9291a0cd 2999 /* Version check. */
1fd400ff 3000 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3001 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3002 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3003 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3004 indices. */
831adc1f 3005 if (version < 4)
481860b3
GB
3006 {
3007 static int warning_printed = 0;
3008 if (!warning_printed)
3009 {
3010 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3011 filename);
481860b3
GB
3012 warning_printed = 1;
3013 }
3014 return 0;
3015 }
3016 /* Index version 4 uses a different hash function than index version
3017 5 and later.
3018
3019 Versions earlier than 6 did not emit psymbols for inlined
3020 functions. Using these files will cause GDB not to be able to
3021 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3022 indices unless the user has done
3023 "set use-deprecated-index-sections on". */
2ec9a5e0 3024 if (version < 6 && !deprecated_ok)
481860b3
GB
3025 {
3026 static int warning_printed = 0;
3027 if (!warning_printed)
3028 {
e615022a
DE
3029 warning (_("\
3030Skipping deprecated .gdb_index section in %s.\n\
3031Do \"set use-deprecated-index-sections on\" before the file is read\n\
3032to use the section anyway."),
2ec9a5e0 3033 filename);
481860b3
GB
3034 warning_printed = 1;
3035 }
3036 return 0;
3037 }
796a7ff8 3038 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3039 of the TU (for symbols coming from TUs),
3040 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3041 Plus gold-generated indices can have duplicate entries for global symbols,
3042 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3043 These are just performance bugs, and we can't distinguish gdb-generated
3044 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3045
481860b3 3046 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3047 longer backward compatible. */
796a7ff8 3048 if (version > 8)
594e8718 3049 return 0;
9291a0cd 3050
559a7a62 3051 map->version = version;
2ec9a5e0 3052 map->total_size = section->size;
9291a0cd
TT
3053
3054 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3055
3056 i = 0;
2ec9a5e0
TT
3057 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3058 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3059 / 8);
1fd400ff
TT
3060 ++i;
3061
2ec9a5e0
TT
3062 *types_list = addr + MAYBE_SWAP (metadata[i]);
3063 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3064 - MAYBE_SWAP (metadata[i]))
3065 / 8);
987d643c 3066 ++i;
1fd400ff
TT
3067
3068 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3069 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3070 - MAYBE_SWAP (metadata[i]));
3071 ++i;
3072
3876f04e
DE
3073 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3074 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3075 - MAYBE_SWAP (metadata[i]))
3076 / (2 * sizeof (offset_type)));
1fd400ff 3077 ++i;
9291a0cd 3078
f9d83a0b 3079 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3080
2ec9a5e0
TT
3081 return 1;
3082}
3083
3084
3085/* Read the index file. If everything went ok, initialize the "quick"
3086 elements of all the CUs and return 1. Otherwise, return 0. */
3087
3088static int
3089dwarf2_read_index (struct objfile *objfile)
3090{
3091 struct mapped_index local_map, *map;
3092 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3093 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3094 struct dwz_file *dwz;
2ec9a5e0 3095
4262abfb 3096 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3097 use_deprecated_index_sections,
3098 &dwarf2_per_objfile->gdb_index, &local_map,
3099 &cu_list, &cu_list_elements,
3100 &types_list, &types_list_elements))
3101 return 0;
3102
0fefef59 3103 /* Don't use the index if it's empty. */
2ec9a5e0 3104 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3105 return 0;
3106
2ec9a5e0
TT
3107 /* If there is a .dwz file, read it so we can get its CU list as
3108 well. */
4db1a1dc
TT
3109 dwz = dwarf2_get_dwz_file ();
3110 if (dwz != NULL)
2ec9a5e0 3111 {
2ec9a5e0
TT
3112 struct mapped_index dwz_map;
3113 const gdb_byte *dwz_types_ignore;
3114 offset_type dwz_types_elements_ignore;
3115
3116 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3117 1,
3118 &dwz->gdb_index, &dwz_map,
3119 &dwz_list, &dwz_list_elements,
3120 &dwz_types_ignore,
3121 &dwz_types_elements_ignore))
3122 {
3123 warning (_("could not read '.gdb_index' section from %s; skipping"),
3124 bfd_get_filename (dwz->dwz_bfd));
3125 return 0;
3126 }
3127 }
3128
74a0d9f6
JK
3129 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3130 dwz_list_elements);
1fd400ff 3131
8b70b953
TT
3132 if (types_list_elements)
3133 {
3134 struct dwarf2_section_info *section;
3135
3136 /* We can only handle a single .debug_types when we have an
3137 index. */
3138 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3139 return 0;
3140
3141 section = VEC_index (dwarf2_section_info_def,
3142 dwarf2_per_objfile->types, 0);
3143
74a0d9f6
JK
3144 create_signatured_type_table_from_index (objfile, section, types_list,
3145 types_list_elements);
8b70b953 3146 }
9291a0cd 3147
2ec9a5e0
TT
3148 create_addrmap_from_index (objfile, &local_map);
3149
3150 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3151 *map = local_map;
9291a0cd
TT
3152
3153 dwarf2_per_objfile->index_table = map;
3154 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3155 dwarf2_per_objfile->quick_file_names_table =
3156 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3157
3158 return 1;
3159}
3160
3161/* A helper for the "quick" functions which sets the global
3162 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3163
9291a0cd
TT
3164static void
3165dw2_setup (struct objfile *objfile)
3166{
3167 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3168 gdb_assert (dwarf2_per_objfile);
3169}
3170
dee91e82 3171/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3172
dee91e82
DE
3173static void
3174dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3175 const gdb_byte *info_ptr,
dee91e82
DE
3176 struct die_info *comp_unit_die,
3177 int has_children,
3178 void *data)
9291a0cd 3179{
dee91e82
DE
3180 struct dwarf2_cu *cu = reader->cu;
3181 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3182 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3183 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3184 struct line_header *lh;
9291a0cd 3185 struct attribute *attr;
dee91e82 3186 int i;
15d034d0 3187 const char *name, *comp_dir;
7b9f3c50
DE
3188 void **slot;
3189 struct quick_file_names *qfn;
3190 unsigned int line_offset;
9291a0cd 3191
0186c6a7
DE
3192 gdb_assert (! this_cu->is_debug_types);
3193
07261596
TT
3194 /* Our callers never want to match partial units -- instead they
3195 will match the enclosing full CU. */
3196 if (comp_unit_die->tag == DW_TAG_partial_unit)
3197 {
3198 this_cu->v.quick->no_file_data = 1;
3199 return;
3200 }
3201
0186c6a7 3202 lh_cu = this_cu;
7b9f3c50
DE
3203 lh = NULL;
3204 slot = NULL;
3205 line_offset = 0;
dee91e82
DE
3206
3207 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3208 if (attr)
3209 {
7b9f3c50
DE
3210 struct quick_file_names find_entry;
3211
3212 line_offset = DW_UNSND (attr);
3213
3214 /* We may have already read in this line header (TU line header sharing).
3215 If we have we're done. */
094b34ac
DE
3216 find_entry.hash.dwo_unit = cu->dwo_unit;
3217 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3218 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3219 &find_entry, INSERT);
3220 if (*slot != NULL)
3221 {
094b34ac 3222 lh_cu->v.quick->file_names = *slot;
dee91e82 3223 return;
7b9f3c50
DE
3224 }
3225
3019eac3 3226 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3227 }
3228 if (lh == NULL)
3229 {
094b34ac 3230 lh_cu->v.quick->no_file_data = 1;
dee91e82 3231 return;
9291a0cd
TT
3232 }
3233
7b9f3c50 3234 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
3235 qfn->hash.dwo_unit = cu->dwo_unit;
3236 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3237 gdb_assert (slot != NULL);
3238 *slot = qfn;
9291a0cd 3239
dee91e82 3240 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3241
7b9f3c50
DE
3242 qfn->num_file_names = lh->num_file_names;
3243 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3244 lh->num_file_names * sizeof (char *));
9291a0cd 3245 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3246 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3247 qfn->real_names = NULL;
9291a0cd 3248
7b9f3c50 3249 free_line_header (lh);
7b9f3c50 3250
094b34ac 3251 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3252}
3253
3254/* A helper for the "quick" functions which attempts to read the line
3255 table for THIS_CU. */
3256
3257static struct quick_file_names *
e4a48d9d 3258dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3259{
0186c6a7
DE
3260 /* This should never be called for TUs. */
3261 gdb_assert (! this_cu->is_debug_types);
3262 /* Nor type unit groups. */
3263 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3264
dee91e82
DE
3265 if (this_cu->v.quick->file_names != NULL)
3266 return this_cu->v.quick->file_names;
3267 /* If we know there is no line data, no point in looking again. */
3268 if (this_cu->v.quick->no_file_data)
3269 return NULL;
3270
0186c6a7 3271 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3272
3273 if (this_cu->v.quick->no_file_data)
3274 return NULL;
3275 return this_cu->v.quick->file_names;
9291a0cd
TT
3276}
3277
3278/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3279 real path for a given file name from the line table. */
2fdf6df6 3280
9291a0cd 3281static const char *
7b9f3c50
DE
3282dw2_get_real_path (struct objfile *objfile,
3283 struct quick_file_names *qfn, int index)
9291a0cd 3284{
7b9f3c50
DE
3285 if (qfn->real_names == NULL)
3286 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
fd0a4d76 3287 qfn->num_file_names, char *);
9291a0cd 3288
7b9f3c50
DE
3289 if (qfn->real_names[index] == NULL)
3290 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3291
7b9f3c50 3292 return qfn->real_names[index];
9291a0cd
TT
3293}
3294
3295static struct symtab *
3296dw2_find_last_source_symtab (struct objfile *objfile)
3297{
3298 int index;
ae2de4f8 3299
9291a0cd
TT
3300 dw2_setup (objfile);
3301 index = dwarf2_per_objfile->n_comp_units - 1;
a0f42c21 3302 return dw2_instantiate_symtab (dw2_get_cu (index));
9291a0cd
TT
3303}
3304
7b9f3c50
DE
3305/* Traversal function for dw2_forget_cached_source_info. */
3306
3307static int
3308dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3309{
7b9f3c50 3310 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3311
7b9f3c50 3312 if (file_data->real_names)
9291a0cd 3313 {
7b9f3c50 3314 int i;
9291a0cd 3315
7b9f3c50 3316 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3317 {
7b9f3c50
DE
3318 xfree ((void*) file_data->real_names[i]);
3319 file_data->real_names[i] = NULL;
9291a0cd
TT
3320 }
3321 }
7b9f3c50
DE
3322
3323 return 1;
3324}
3325
3326static void
3327dw2_forget_cached_source_info (struct objfile *objfile)
3328{
3329 dw2_setup (objfile);
3330
3331 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3332 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3333}
3334
f8eba3c6
TT
3335/* Helper function for dw2_map_symtabs_matching_filename that expands
3336 the symtabs and calls the iterator. */
3337
3338static int
3339dw2_map_expand_apply (struct objfile *objfile,
3340 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3341 const char *name, const char *real_path,
f8eba3c6
TT
3342 int (*callback) (struct symtab *, void *),
3343 void *data)
3344{
3345 struct symtab *last_made = objfile->symtabs;
3346
3347 /* Don't visit already-expanded CUs. */
3348 if (per_cu->v.quick->symtab)
3349 return 0;
3350
3351 /* This may expand more than one symtab, and we want to iterate over
3352 all of them. */
a0f42c21 3353 dw2_instantiate_symtab (per_cu);
f8eba3c6 3354
f5b95b50 3355 return iterate_over_some_symtabs (name, real_path, callback, data,
f8eba3c6
TT
3356 objfile->symtabs, last_made);
3357}
3358
3359/* Implementation of the map_symtabs_matching_filename method. */
3360
9291a0cd 3361static int
f8eba3c6 3362dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3363 const char *real_path,
f8eba3c6
TT
3364 int (*callback) (struct symtab *, void *),
3365 void *data)
9291a0cd
TT
3366{
3367 int i;
c011a4f4 3368 const char *name_basename = lbasename (name);
9291a0cd
TT
3369
3370 dw2_setup (objfile);
ae2de4f8 3371
848e3e78
DE
3372 /* The rule is CUs specify all the files, including those used by
3373 any TU, so there's no need to scan TUs here. */
f4dc4d17 3374
848e3e78 3375 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3376 {
3377 int j;
f4dc4d17 3378 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 3379 struct quick_file_names *file_data;
9291a0cd 3380
3d7bb9d9 3381 /* We only need to look at symtabs not already expanded. */
e254ef6a 3382 if (per_cu->v.quick->symtab)
9291a0cd
TT
3383 continue;
3384
e4a48d9d 3385 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3386 if (file_data == NULL)
9291a0cd
TT
3387 continue;
3388
7b9f3c50 3389 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3390 {
7b9f3c50 3391 const char *this_name = file_data->file_names[j];
da235a7c 3392 const char *this_real_name;
9291a0cd 3393
af529f8f 3394 if (compare_filenames_for_search (this_name, name))
9291a0cd 3395 {
f5b95b50 3396 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3397 callback, data))
3398 return 1;
288e77a7 3399 continue;
4aac40c8 3400 }
9291a0cd 3401
c011a4f4
DE
3402 /* Before we invoke realpath, which can get expensive when many
3403 files are involved, do a quick comparison of the basenames. */
3404 if (! basenames_may_differ
3405 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3406 continue;
3407
da235a7c
JK
3408 this_real_name = dw2_get_real_path (objfile, file_data, j);
3409 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3410 {
da235a7c
JK
3411 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3412 callback, data))
3413 return 1;
288e77a7 3414 continue;
da235a7c 3415 }
9291a0cd 3416
da235a7c
JK
3417 if (real_path != NULL)
3418 {
af529f8f
JK
3419 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3420 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3421 if (this_real_name != NULL
af529f8f 3422 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3423 {
f5b95b50 3424 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3425 callback, data))
3426 return 1;
288e77a7 3427 continue;
9291a0cd
TT
3428 }
3429 }
3430 }
3431 }
3432
9291a0cd
TT
3433 return 0;
3434}
3435
da51c347
DE
3436/* Struct used to manage iterating over all CUs looking for a symbol. */
3437
3438struct dw2_symtab_iterator
9291a0cd 3439{
da51c347
DE
3440 /* The internalized form of .gdb_index. */
3441 struct mapped_index *index;
3442 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3443 int want_specific_block;
3444 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3445 Unused if !WANT_SPECIFIC_BLOCK. */
3446 int block_index;
3447 /* The kind of symbol we're looking for. */
3448 domain_enum domain;
3449 /* The list of CUs from the index entry of the symbol,
3450 or NULL if not found. */
3451 offset_type *vec;
3452 /* The next element in VEC to look at. */
3453 int next;
3454 /* The number of elements in VEC, or zero if there is no match. */
3455 int length;
8943b874
DE
3456 /* Have we seen a global version of the symbol?
3457 If so we can ignore all further global instances.
3458 This is to work around gold/15646, inefficient gold-generated
3459 indices. */
3460 int global_seen;
da51c347 3461};
9291a0cd 3462
da51c347
DE
3463/* Initialize the index symtab iterator ITER.
3464 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3465 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3466
9291a0cd 3467static void
da51c347
DE
3468dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3469 struct mapped_index *index,
3470 int want_specific_block,
3471 int block_index,
3472 domain_enum domain,
3473 const char *name)
3474{
3475 iter->index = index;
3476 iter->want_specific_block = want_specific_block;
3477 iter->block_index = block_index;
3478 iter->domain = domain;
3479 iter->next = 0;
8943b874 3480 iter->global_seen = 0;
da51c347
DE
3481
3482 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3483 iter->length = MAYBE_SWAP (*iter->vec);
3484 else
3485 {
3486 iter->vec = NULL;
3487 iter->length = 0;
3488 }
3489}
3490
3491/* Return the next matching CU or NULL if there are no more. */
3492
3493static struct dwarf2_per_cu_data *
3494dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3495{
3496 for ( ; iter->next < iter->length; ++iter->next)
3497 {
3498 offset_type cu_index_and_attrs =
3499 MAYBE_SWAP (iter->vec[iter->next + 1]);
3500 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3501 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3502 int want_static = iter->block_index != GLOBAL_BLOCK;
3503 /* This value is only valid for index versions >= 7. */
3504 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3505 gdb_index_symbol_kind symbol_kind =
3506 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3507 /* Only check the symbol attributes if they're present.
3508 Indices prior to version 7 don't record them,
3509 and indices >= 7 may elide them for certain symbols
3510 (gold does this). */
3511 int attrs_valid =
3512 (iter->index->version >= 7
3513 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3514
3190f0c6
DE
3515 /* Don't crash on bad data. */
3516 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3517 + dwarf2_per_objfile->n_type_units))
3518 {
3519 complaint (&symfile_complaints,
3520 _(".gdb_index entry has bad CU index"
4262abfb
JK
3521 " [in module %s]"),
3522 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3523 continue;
3524 }
3525
3526 per_cu = dw2_get_cu (cu_index);
3527
da51c347
DE
3528 /* Skip if already read in. */
3529 if (per_cu->v.quick->symtab)
3530 continue;
3531
8943b874
DE
3532 /* Check static vs global. */
3533 if (attrs_valid)
3534 {
3535 if (iter->want_specific_block
3536 && want_static != is_static)
3537 continue;
3538 /* Work around gold/15646. */
3539 if (!is_static && iter->global_seen)
3540 continue;
3541 if (!is_static)
3542 iter->global_seen = 1;
3543 }
da51c347
DE
3544
3545 /* Only check the symbol's kind if it has one. */
3546 if (attrs_valid)
3547 {
3548 switch (iter->domain)
3549 {
3550 case VAR_DOMAIN:
3551 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3552 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3553 /* Some types are also in VAR_DOMAIN. */
3554 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3555 continue;
3556 break;
3557 case STRUCT_DOMAIN:
3558 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3559 continue;
3560 break;
3561 case LABEL_DOMAIN:
3562 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3563 continue;
3564 break;
3565 default:
3566 break;
3567 }
3568 }
3569
3570 ++iter->next;
3571 return per_cu;
3572 }
3573
3574 return NULL;
3575}
3576
3577static struct symtab *
3578dw2_lookup_symbol (struct objfile *objfile, int block_index,
3579 const char *name, domain_enum domain)
9291a0cd 3580{
da51c347 3581 struct symtab *stab_best = NULL;
156942c7
DE
3582 struct mapped_index *index;
3583
9291a0cd
TT
3584 dw2_setup (objfile);
3585
156942c7
DE
3586 index = dwarf2_per_objfile->index_table;
3587
da51c347 3588 /* index is NULL if OBJF_READNOW. */
156942c7 3589 if (index)
9291a0cd 3590 {
da51c347
DE
3591 struct dw2_symtab_iterator iter;
3592 struct dwarf2_per_cu_data *per_cu;
3593
3594 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3595
da51c347 3596 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3597 {
da51c347
DE
3598 struct symbol *sym = NULL;
3599 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3600
3601 /* Some caution must be observed with overloaded functions
3602 and methods, since the index will not contain any overload
3603 information (but NAME might contain it). */
3604 if (stab->primary)
9291a0cd 3605 {
da51c347
DE
3606 struct blockvector *bv = BLOCKVECTOR (stab);
3607 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
156942c7 3608
da51c347
DE
3609 sym = lookup_block_symbol (block, name, domain);
3610 }
1fd400ff 3611
da51c347
DE
3612 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3613 {
3614 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3615 return stab;
3616
3617 stab_best = stab;
9291a0cd 3618 }
da51c347
DE
3619
3620 /* Keep looking through other CUs. */
9291a0cd
TT
3621 }
3622 }
9291a0cd 3623
da51c347 3624 return stab_best;
9291a0cd
TT
3625}
3626
3627static void
3628dw2_print_stats (struct objfile *objfile)
3629{
e4a48d9d 3630 int i, total, count;
9291a0cd
TT
3631
3632 dw2_setup (objfile);
e4a48d9d 3633 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3634 count = 0;
e4a48d9d 3635 for (i = 0; i < total; ++i)
9291a0cd 3636 {
e254ef6a 3637 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3638
e254ef6a 3639 if (!per_cu->v.quick->symtab)
9291a0cd
TT
3640 ++count;
3641 }
e4a48d9d 3642 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3643 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3644}
3645
779bd270
DE
3646/* This dumps minimal information about the index.
3647 It is called via "mt print objfiles".
3648 One use is to verify .gdb_index has been loaded by the
3649 gdb.dwarf2/gdb-index.exp testcase. */
3650
9291a0cd
TT
3651static void
3652dw2_dump (struct objfile *objfile)
3653{
779bd270
DE
3654 dw2_setup (objfile);
3655 gdb_assert (dwarf2_per_objfile->using_index);
3656 printf_filtered (".gdb_index:");
3657 if (dwarf2_per_objfile->index_table != NULL)
3658 {
3659 printf_filtered (" version %d\n",
3660 dwarf2_per_objfile->index_table->version);
3661 }
3662 else
3663 printf_filtered (" faked for \"readnow\"\n");
3664 printf_filtered ("\n");
9291a0cd
TT
3665}
3666
3667static void
3189cb12
DE
3668dw2_relocate (struct objfile *objfile,
3669 const struct section_offsets *new_offsets,
3670 const struct section_offsets *delta)
9291a0cd
TT
3671{
3672 /* There's nothing to relocate here. */
3673}
3674
3675static void
3676dw2_expand_symtabs_for_function (struct objfile *objfile,
3677 const char *func_name)
3678{
da51c347
DE
3679 struct mapped_index *index;
3680
3681 dw2_setup (objfile);
3682
3683 index = dwarf2_per_objfile->index_table;
3684
3685 /* index is NULL if OBJF_READNOW. */
3686 if (index)
3687 {
3688 struct dw2_symtab_iterator iter;
3689 struct dwarf2_per_cu_data *per_cu;
3690
3691 /* Note: It doesn't matter what we pass for block_index here. */
3692 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3693 func_name);
3694
3695 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3696 dw2_instantiate_symtab (per_cu);
3697 }
9291a0cd
TT
3698}
3699
3700static void
3701dw2_expand_all_symtabs (struct objfile *objfile)
3702{
3703 int i;
3704
3705 dw2_setup (objfile);
1fd400ff
TT
3706
3707 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3708 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3709 {
e254ef6a 3710 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3711
a0f42c21 3712 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3713 }
3714}
3715
3716static void
652a8996
JK
3717dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3718 const char *fullname)
9291a0cd
TT
3719{
3720 int i;
3721
3722 dw2_setup (objfile);
d4637a04
DE
3723
3724 /* We don't need to consider type units here.
3725 This is only called for examining code, e.g. expand_line_sal.
3726 There can be an order of magnitude (or more) more type units
3727 than comp units, and we avoid them if we can. */
3728
3729 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3730 {
3731 int j;
e254ef6a 3732 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3733 struct quick_file_names *file_data;
9291a0cd 3734
3d7bb9d9 3735 /* We only need to look at symtabs not already expanded. */
e254ef6a 3736 if (per_cu->v.quick->symtab)
9291a0cd
TT
3737 continue;
3738
e4a48d9d 3739 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3740 if (file_data == NULL)
9291a0cd
TT
3741 continue;
3742
7b9f3c50 3743 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3744 {
652a8996
JK
3745 const char *this_fullname = file_data->file_names[j];
3746
3747 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3748 {
a0f42c21 3749 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3750 break;
3751 }
3752 }
3753 }
3754}
3755
9291a0cd 3756static void
ade7ed9e
DE
3757dw2_map_matching_symbols (struct objfile *objfile,
3758 const char * name, domain_enum namespace,
3759 int global,
40658b94
PH
3760 int (*callback) (struct block *,
3761 struct symbol *, void *),
2edb89d3
JK
3762 void *data, symbol_compare_ftype *match,
3763 symbol_compare_ftype *ordered_compare)
9291a0cd 3764{
40658b94 3765 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3766 current language is Ada for a non-Ada objfile using GNU index. As Ada
3767 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3768}
3769
3770static void
f8eba3c6
TT
3771dw2_expand_symtabs_matching
3772 (struct objfile *objfile,
fbd9ab74 3773 int (*file_matcher) (const char *, void *, int basenames),
e078317b 3774 int (*name_matcher) (const char *, void *),
f8eba3c6
TT
3775 enum search_domain kind,
3776 void *data)
9291a0cd
TT
3777{
3778 int i;
3779 offset_type iter;
4b5246aa 3780 struct mapped_index *index;
9291a0cd
TT
3781
3782 dw2_setup (objfile);
ae2de4f8
DE
3783
3784 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3785 if (!dwarf2_per_objfile->index_table)
3786 return;
4b5246aa 3787 index = dwarf2_per_objfile->index_table;
9291a0cd 3788
7b08b9eb 3789 if (file_matcher != NULL)
24c79950
TT
3790 {
3791 struct cleanup *cleanup;
3792 htab_t visited_found, visited_not_found;
3793
3794 visited_found = htab_create_alloc (10,
3795 htab_hash_pointer, htab_eq_pointer,
3796 NULL, xcalloc, xfree);
3797 cleanup = make_cleanup_htab_delete (visited_found);
3798 visited_not_found = htab_create_alloc (10,
3799 htab_hash_pointer, htab_eq_pointer,
3800 NULL, xcalloc, xfree);
3801 make_cleanup_htab_delete (visited_not_found);
3802
848e3e78
DE
3803 /* The rule is CUs specify all the files, including those used by
3804 any TU, so there's no need to scan TUs here. */
3805
3806 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3807 {
3808 int j;
f4dc4d17 3809 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
24c79950
TT
3810 struct quick_file_names *file_data;
3811 void **slot;
7b08b9eb 3812
24c79950 3813 per_cu->v.quick->mark = 0;
3d7bb9d9 3814
24c79950
TT
3815 /* We only need to look at symtabs not already expanded. */
3816 if (per_cu->v.quick->symtab)
3817 continue;
7b08b9eb 3818
e4a48d9d 3819 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3820 if (file_data == NULL)
3821 continue;
7b08b9eb 3822
24c79950
TT
3823 if (htab_find (visited_not_found, file_data) != NULL)
3824 continue;
3825 else if (htab_find (visited_found, file_data) != NULL)
3826 {
3827 per_cu->v.quick->mark = 1;
3828 continue;
3829 }
3830
3831 for (j = 0; j < file_data->num_file_names; ++j)
3832 {
da235a7c
JK
3833 const char *this_real_name;
3834
fbd9ab74 3835 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3836 {
3837 per_cu->v.quick->mark = 1;
3838 break;
3839 }
da235a7c
JK
3840
3841 /* Before we invoke realpath, which can get expensive when many
3842 files are involved, do a quick comparison of the basenames. */
3843 if (!basenames_may_differ
3844 && !file_matcher (lbasename (file_data->file_names[j]),
3845 data, 1))
3846 continue;
3847
3848 this_real_name = dw2_get_real_path (objfile, file_data, j);
3849 if (file_matcher (this_real_name, data, 0))
3850 {
3851 per_cu->v.quick->mark = 1;
3852 break;
3853 }
24c79950
TT
3854 }
3855
3856 slot = htab_find_slot (per_cu->v.quick->mark
3857 ? visited_found
3858 : visited_not_found,
3859 file_data, INSERT);
3860 *slot = file_data;
3861 }
3862
3863 do_cleanups (cleanup);
3864 }
9291a0cd 3865
3876f04e 3866 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3867 {
3868 offset_type idx = 2 * iter;
3869 const char *name;
3870 offset_type *vec, vec_len, vec_idx;
8943b874 3871 int global_seen = 0;
9291a0cd 3872
3876f04e 3873 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3874 continue;
3875
3876f04e 3876 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3877
e078317b 3878 if (! (*name_matcher) (name, data))
9291a0cd
TT
3879 continue;
3880
3881 /* The name was matched, now expand corresponding CUs that were
3882 marked. */
4b5246aa 3883 vec = (offset_type *) (index->constant_pool
3876f04e 3884 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3885 vec_len = MAYBE_SWAP (vec[0]);
3886 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3887 {
e254ef6a 3888 struct dwarf2_per_cu_data *per_cu;
156942c7 3889 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3890 /* This value is only valid for index versions >= 7. */
3891 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3892 gdb_index_symbol_kind symbol_kind =
3893 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3894 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3895 /* Only check the symbol attributes if they're present.
3896 Indices prior to version 7 don't record them,
3897 and indices >= 7 may elide them for certain symbols
3898 (gold does this). */
3899 int attrs_valid =
3900 (index->version >= 7
3901 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3902
8943b874
DE
3903 /* Work around gold/15646. */
3904 if (attrs_valid)
3905 {
3906 if (!is_static && global_seen)
3907 continue;
3908 if (!is_static)
3909 global_seen = 1;
3910 }
3911
3190f0c6
DE
3912 /* Only check the symbol's kind if it has one. */
3913 if (attrs_valid)
156942c7
DE
3914 {
3915 switch (kind)
3916 {
3917 case VARIABLES_DOMAIN:
3918 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3919 continue;
3920 break;
3921 case FUNCTIONS_DOMAIN:
3922 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3923 continue;
3924 break;
3925 case TYPES_DOMAIN:
3926 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3927 continue;
3928 break;
3929 default:
3930 break;
3931 }
3932 }
3933
3190f0c6
DE
3934 /* Don't crash on bad data. */
3935 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3936 + dwarf2_per_objfile->n_type_units))
3937 {
3938 complaint (&symfile_complaints,
3939 _(".gdb_index entry has bad CU index"
4262abfb 3940 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
3941 continue;
3942 }
3943
156942c7 3944 per_cu = dw2_get_cu (cu_index);
7b08b9eb 3945 if (file_matcher == NULL || per_cu->v.quick->mark)
a0f42c21 3946 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3947 }
3948 }
3949}
3950
9703b513
TT
3951/* A helper for dw2_find_pc_sect_symtab which finds the most specific
3952 symtab. */
3953
3954static struct symtab *
3955recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3956{
3957 int i;
3958
3959 if (BLOCKVECTOR (symtab) != NULL
3960 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3961 return symtab;
3962
a3ec0bb1
DE
3963 if (symtab->includes == NULL)
3964 return NULL;
3965
9703b513
TT
3966 for (i = 0; symtab->includes[i]; ++i)
3967 {
a3ec0bb1 3968 struct symtab *s = symtab->includes[i];
9703b513
TT
3969
3970 s = recursively_find_pc_sect_symtab (s, pc);
3971 if (s != NULL)
3972 return s;
3973 }
3974
3975 return NULL;
3976}
3977
9291a0cd
TT
3978static struct symtab *
3979dw2_find_pc_sect_symtab (struct objfile *objfile,
3980 struct minimal_symbol *msymbol,
3981 CORE_ADDR pc,
3982 struct obj_section *section,
3983 int warn_if_readin)
3984{
3985 struct dwarf2_per_cu_data *data;
9703b513 3986 struct symtab *result;
9291a0cd
TT
3987
3988 dw2_setup (objfile);
3989
3990 if (!objfile->psymtabs_addrmap)
3991 return NULL;
3992
3993 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3994 if (!data)
3995 return NULL;
3996
3997 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 3998 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
3999 paddress (get_objfile_arch (objfile), pc));
4000
9703b513
TT
4001 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4002 gdb_assert (result != NULL);
4003 return result;
9291a0cd
TT
4004}
4005
9291a0cd 4006static void
44b13c5a 4007dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4008 void *data, int need_fullname)
9291a0cd
TT
4009{
4010 int i;
24c79950
TT
4011 struct cleanup *cleanup;
4012 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4013 NULL, xcalloc, xfree);
9291a0cd 4014
24c79950 4015 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4016 dw2_setup (objfile);
ae2de4f8 4017
848e3e78
DE
4018 /* The rule is CUs specify all the files, including those used by
4019 any TU, so there's no need to scan TUs here.
4020 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4021
848e3e78 4022 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
4023 {
4024 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4025
4026 if (per_cu->v.quick->symtab)
4027 {
4028 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4029 INSERT);
4030
4031 *slot = per_cu->v.quick->file_names;
4032 }
4033 }
4034
848e3e78 4035 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4036 {
4037 int j;
f4dc4d17 4038 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 4039 struct quick_file_names *file_data;
24c79950 4040 void **slot;
9291a0cd 4041
3d7bb9d9 4042 /* We only need to look at symtabs not already expanded. */
e254ef6a 4043 if (per_cu->v.quick->symtab)
9291a0cd
TT
4044 continue;
4045
e4a48d9d 4046 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4047 if (file_data == NULL)
9291a0cd
TT
4048 continue;
4049
24c79950
TT
4050 slot = htab_find_slot (visited, file_data, INSERT);
4051 if (*slot)
4052 {
4053 /* Already visited. */
4054 continue;
4055 }
4056 *slot = file_data;
4057
7b9f3c50 4058 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4059 {
74e2f255
DE
4060 const char *this_real_name;
4061
4062 if (need_fullname)
4063 this_real_name = dw2_get_real_path (objfile, file_data, j);
4064 else
4065 this_real_name = NULL;
7b9f3c50 4066 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4067 }
4068 }
24c79950
TT
4069
4070 do_cleanups (cleanup);
9291a0cd
TT
4071}
4072
4073static int
4074dw2_has_symbols (struct objfile *objfile)
4075{
4076 return 1;
4077}
4078
4079const struct quick_symbol_functions dwarf2_gdb_index_functions =
4080{
4081 dw2_has_symbols,
4082 dw2_find_last_source_symtab,
4083 dw2_forget_cached_source_info,
f8eba3c6 4084 dw2_map_symtabs_matching_filename,
9291a0cd 4085 dw2_lookup_symbol,
9291a0cd
TT
4086 dw2_print_stats,
4087 dw2_dump,
4088 dw2_relocate,
4089 dw2_expand_symtabs_for_function,
4090 dw2_expand_all_symtabs,
652a8996 4091 dw2_expand_symtabs_with_fullname,
40658b94 4092 dw2_map_matching_symbols,
9291a0cd
TT
4093 dw2_expand_symtabs_matching,
4094 dw2_find_pc_sect_symtab,
9291a0cd
TT
4095 dw2_map_symbol_filenames
4096};
4097
4098/* Initialize for reading DWARF for this objfile. Return 0 if this
4099 file will use psymtabs, or 1 if using the GNU index. */
4100
4101int
4102dwarf2_initialize_objfile (struct objfile *objfile)
4103{
4104 /* If we're about to read full symbols, don't bother with the
4105 indices. In this case we also don't care if some other debug
4106 format is making psymtabs, because they are all about to be
4107 expanded anyway. */
4108 if ((objfile->flags & OBJF_READNOW))
4109 {
4110 int i;
4111
4112 dwarf2_per_objfile->using_index = 1;
4113 create_all_comp_units (objfile);
0e50663e 4114 create_all_type_units (objfile);
7b9f3c50
DE
4115 dwarf2_per_objfile->quick_file_names_table =
4116 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4117
1fd400ff 4118 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4119 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4120 {
e254ef6a 4121 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 4122
e254ef6a
DE
4123 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4124 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4125 }
4126
4127 /* Return 1 so that gdb sees the "quick" functions. However,
4128 these functions will be no-ops because we will have expanded
4129 all symtabs. */
4130 return 1;
4131 }
4132
4133 if (dwarf2_read_index (objfile))
4134 return 1;
4135
9291a0cd
TT
4136 return 0;
4137}
4138
4139\f
4140
dce234bc
PP
4141/* Build a partial symbol table. */
4142
4143void
f29dff0a 4144dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4145{
c9bf0622
TT
4146 volatile struct gdb_exception except;
4147
f29dff0a 4148 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4149 {
4150 init_psymbol_list (objfile, 1024);
4151 }
4152
c9bf0622
TT
4153 TRY_CATCH (except, RETURN_MASK_ERROR)
4154 {
4155 /* This isn't really ideal: all the data we allocate on the
4156 objfile's obstack is still uselessly kept around. However,
4157 freeing it seems unsafe. */
4158 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4159
4160 dwarf2_build_psymtabs_hard (objfile);
4161 discard_cleanups (cleanups);
4162 }
4163 if (except.reason < 0)
4164 exception_print (gdb_stderr, except);
c906108c 4165}
c906108c 4166
1ce1cefd
DE
4167/* Return the total length of the CU described by HEADER. */
4168
4169static unsigned int
4170get_cu_length (const struct comp_unit_head *header)
4171{
4172 return header->initial_length_size + header->length;
4173}
4174
45452591
DE
4175/* Return TRUE if OFFSET is within CU_HEADER. */
4176
4177static inline int
b64f50a1 4178offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4179{
b64f50a1 4180 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4181 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4182
b64f50a1 4183 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4184}
4185
3b80fe9b
DE
4186/* Find the base address of the compilation unit for range lists and
4187 location lists. It will normally be specified by DW_AT_low_pc.
4188 In DWARF-3 draft 4, the base address could be overridden by
4189 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4190 compilation units with discontinuous ranges. */
4191
4192static void
4193dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4194{
4195 struct attribute *attr;
4196
4197 cu->base_known = 0;
4198 cu->base_address = 0;
4199
4200 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4201 if (attr)
4202 {
4203 cu->base_address = DW_ADDR (attr);
4204 cu->base_known = 1;
4205 }
4206 else
4207 {
4208 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4209 if (attr)
4210 {
4211 cu->base_address = DW_ADDR (attr);
4212 cu->base_known = 1;
4213 }
4214 }
4215}
4216
93311388
DE
4217/* Read in the comp unit header information from the debug_info at info_ptr.
4218 NOTE: This leaves members offset, first_die_offset to be filled in
4219 by the caller. */
107d2387 4220
d521ce57 4221static const gdb_byte *
107d2387 4222read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4223 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4224{
4225 int signed_addr;
891d2f0b 4226 unsigned int bytes_read;
c764a876
DE
4227
4228 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4229 cu_header->initial_length_size = bytes_read;
4230 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4231 info_ptr += bytes_read;
107d2387
AC
4232 cu_header->version = read_2_bytes (abfd, info_ptr);
4233 info_ptr += 2;
b64f50a1
JK
4234 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4235 &bytes_read);
613e1657 4236 info_ptr += bytes_read;
107d2387
AC
4237 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4238 info_ptr += 1;
4239 signed_addr = bfd_get_sign_extend_vma (abfd);
4240 if (signed_addr < 0)
8e65ff28 4241 internal_error (__FILE__, __LINE__,
e2e0b3e5 4242 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4243 cu_header->signed_addr_p = signed_addr;
c764a876 4244
107d2387
AC
4245 return info_ptr;
4246}
4247
36586728
TT
4248/* Helper function that returns the proper abbrev section for
4249 THIS_CU. */
4250
4251static struct dwarf2_section_info *
4252get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4253{
4254 struct dwarf2_section_info *abbrev;
4255
4256 if (this_cu->is_dwz)
4257 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4258 else
4259 abbrev = &dwarf2_per_objfile->abbrev;
4260
4261 return abbrev;
4262}
4263
9ff913ba
DE
4264/* Subroutine of read_and_check_comp_unit_head and
4265 read_and_check_type_unit_head to simplify them.
4266 Perform various error checking on the header. */
4267
4268static void
4269error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4270 struct dwarf2_section_info *section,
4271 struct dwarf2_section_info *abbrev_section)
9ff913ba 4272{
a32a8923
DE
4273 bfd *abfd = get_section_bfd_owner (section);
4274 const char *filename = get_section_file_name (section);
9ff913ba
DE
4275
4276 if (header->version != 2 && header->version != 3 && header->version != 4)
4277 error (_("Dwarf Error: wrong version in compilation unit header "
4278 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4279 filename);
4280
b64f50a1 4281 if (header->abbrev_offset.sect_off
36586728 4282 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4283 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4284 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4285 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4286 filename);
4287
4288 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4289 avoid potential 32-bit overflow. */
1ce1cefd 4290 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4291 > section->size)
4292 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4293 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4294 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4295 filename);
4296}
4297
4298/* Read in a CU/TU header and perform some basic error checking.
4299 The contents of the header are stored in HEADER.
4300 The result is a pointer to the start of the first DIE. */
adabb602 4301
d521ce57 4302static const gdb_byte *
9ff913ba
DE
4303read_and_check_comp_unit_head (struct comp_unit_head *header,
4304 struct dwarf2_section_info *section,
4bdcc0c1 4305 struct dwarf2_section_info *abbrev_section,
d521ce57 4306 const gdb_byte *info_ptr,
9ff913ba 4307 int is_debug_types_section)
72bf9492 4308{
d521ce57 4309 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4310 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4311
b64f50a1 4312 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4313
72bf9492
DJ
4314 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4315
460c1c54
CC
4316 /* If we're reading a type unit, skip over the signature and
4317 type_offset fields. */
b0df02fd 4318 if (is_debug_types_section)
460c1c54
CC
4319 info_ptr += 8 /*signature*/ + header->offset_size;
4320
b64f50a1 4321 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4322
4bdcc0c1 4323 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4324
4325 return info_ptr;
4326}
4327
348e048f
DE
4328/* Read in the types comp unit header information from .debug_types entry at
4329 types_ptr. The result is a pointer to one past the end of the header. */
4330
d521ce57 4331static const gdb_byte *
9ff913ba
DE
4332read_and_check_type_unit_head (struct comp_unit_head *header,
4333 struct dwarf2_section_info *section,
4bdcc0c1 4334 struct dwarf2_section_info *abbrev_section,
d521ce57 4335 const gdb_byte *info_ptr,
dee91e82
DE
4336 ULONGEST *signature,
4337 cu_offset *type_offset_in_tu)
348e048f 4338{
d521ce57 4339 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4340 bfd *abfd = get_section_bfd_owner (section);
348e048f 4341
b64f50a1 4342 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4343
9ff913ba 4344 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4345
9ff913ba
DE
4346 /* If we're reading a type unit, skip over the signature and
4347 type_offset fields. */
4348 if (signature != NULL)
4349 *signature = read_8_bytes (abfd, info_ptr);
4350 info_ptr += 8;
dee91e82
DE
4351 if (type_offset_in_tu != NULL)
4352 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4353 header->offset_size);
9ff913ba
DE
4354 info_ptr += header->offset_size;
4355
b64f50a1 4356 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4357
4bdcc0c1 4358 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4359
4360 return info_ptr;
348e048f
DE
4361}
4362
f4dc4d17
DE
4363/* Fetch the abbreviation table offset from a comp or type unit header. */
4364
4365static sect_offset
4366read_abbrev_offset (struct dwarf2_section_info *section,
4367 sect_offset offset)
4368{
a32a8923 4369 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4370 const gdb_byte *info_ptr;
f4dc4d17
DE
4371 unsigned int length, initial_length_size, offset_size;
4372 sect_offset abbrev_offset;
4373
4374 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4375 info_ptr = section->buffer + offset.sect_off;
4376 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4377 offset_size = initial_length_size == 4 ? 4 : 8;
4378 info_ptr += initial_length_size + 2 /*version*/;
4379 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4380 return abbrev_offset;
4381}
4382
aaa75496
JB
4383/* Allocate a new partial symtab for file named NAME and mark this new
4384 partial symtab as being an include of PST. */
4385
4386static void
d521ce57 4387dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4388 struct objfile *objfile)
4389{
4390 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4391
fbd9ab74
JK
4392 if (!IS_ABSOLUTE_PATH (subpst->filename))
4393 {
4394 /* It shares objfile->objfile_obstack. */
4395 subpst->dirname = pst->dirname;
4396 }
4397
aaa75496
JB
4398 subpst->section_offsets = pst->section_offsets;
4399 subpst->textlow = 0;
4400 subpst->texthigh = 0;
4401
4402 subpst->dependencies = (struct partial_symtab **)
4403 obstack_alloc (&objfile->objfile_obstack,
4404 sizeof (struct partial_symtab *));
4405 subpst->dependencies[0] = pst;
4406 subpst->number_of_dependencies = 1;
4407
4408 subpst->globals_offset = 0;
4409 subpst->n_global_syms = 0;
4410 subpst->statics_offset = 0;
4411 subpst->n_static_syms = 0;
4412 subpst->symtab = NULL;
4413 subpst->read_symtab = pst->read_symtab;
4414 subpst->readin = 0;
4415
4416 /* No private part is necessary for include psymtabs. This property
4417 can be used to differentiate between such include psymtabs and
10b3939b 4418 the regular ones. */
58a9656e 4419 subpst->read_symtab_private = NULL;
aaa75496
JB
4420}
4421
4422/* Read the Line Number Program data and extract the list of files
4423 included by the source file represented by PST. Build an include
d85a05f0 4424 partial symtab for each of these included files. */
aaa75496
JB
4425
4426static void
4427dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4428 struct die_info *die,
4429 struct partial_symtab *pst)
aaa75496 4430{
d85a05f0
DJ
4431 struct line_header *lh = NULL;
4432 struct attribute *attr;
aaa75496 4433
d85a05f0
DJ
4434 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4435 if (attr)
3019eac3 4436 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4437 if (lh == NULL)
4438 return; /* No linetable, so no includes. */
4439
c6da4cef 4440 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
f3f5162e 4441 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
aaa75496
JB
4442
4443 free_line_header (lh);
4444}
4445
348e048f 4446static hashval_t
52dc124a 4447hash_signatured_type (const void *item)
348e048f 4448{
52dc124a 4449 const struct signatured_type *sig_type = item;
9a619af0 4450
348e048f 4451 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4452 return sig_type->signature;
348e048f
DE
4453}
4454
4455static int
52dc124a 4456eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4457{
4458 const struct signatured_type *lhs = item_lhs;
4459 const struct signatured_type *rhs = item_rhs;
9a619af0 4460
348e048f
DE
4461 return lhs->signature == rhs->signature;
4462}
4463
1fd400ff
TT
4464/* Allocate a hash table for signatured types. */
4465
4466static htab_t
673bfd45 4467allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4468{
4469 return htab_create_alloc_ex (41,
52dc124a
DE
4470 hash_signatured_type,
4471 eq_signatured_type,
1fd400ff
TT
4472 NULL,
4473 &objfile->objfile_obstack,
4474 hashtab_obstack_allocate,
4475 dummy_obstack_deallocate);
4476}
4477
d467dd73 4478/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4479
4480static int
d467dd73 4481add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4482{
4483 struct signatured_type *sigt = *slot;
b4dd5633 4484 struct signatured_type ***datap = datum;
1fd400ff 4485
b4dd5633 4486 **datap = sigt;
1fd400ff
TT
4487 ++*datap;
4488
4489 return 1;
4490}
4491
c88ee1f0
DE
4492/* Create the hash table of all entries in the .debug_types
4493 (or .debug_types.dwo) section(s).
4494 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4495 otherwise it is NULL.
4496
4497 The result is a pointer to the hash table or NULL if there are no types.
4498
4499 Note: This function processes DWO files only, not DWP files. */
348e048f 4500
3019eac3
DE
4501static htab_t
4502create_debug_types_hash_table (struct dwo_file *dwo_file,
4503 VEC (dwarf2_section_info_def) *types)
348e048f 4504{
3019eac3 4505 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4506 htab_t types_htab = NULL;
8b70b953
TT
4507 int ix;
4508 struct dwarf2_section_info *section;
4bdcc0c1 4509 struct dwarf2_section_info *abbrev_section;
348e048f 4510
3019eac3
DE
4511 if (VEC_empty (dwarf2_section_info_def, types))
4512 return NULL;
348e048f 4513
4bdcc0c1
DE
4514 abbrev_section = (dwo_file != NULL
4515 ? &dwo_file->sections.abbrev
4516 : &dwarf2_per_objfile->abbrev);
4517
09406207
DE
4518 if (dwarf2_read_debug)
4519 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4520 dwo_file ? ".dwo" : "",
a32a8923 4521 get_section_file_name (abbrev_section));
09406207 4522
8b70b953 4523 for (ix = 0;
3019eac3 4524 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4525 ++ix)
4526 {
3019eac3 4527 bfd *abfd;
d521ce57 4528 const gdb_byte *info_ptr, *end_ptr;
348e048f 4529
8b70b953
TT
4530 dwarf2_read_section (objfile, section);
4531 info_ptr = section->buffer;
348e048f 4532
8b70b953
TT
4533 if (info_ptr == NULL)
4534 continue;
348e048f 4535
3019eac3 4536 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4537 not present, in which case the bfd is unknown. */
4538 abfd = get_section_bfd_owner (section);
3019eac3 4539
dee91e82
DE
4540 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4541 because we don't need to read any dies: the signature is in the
4542 header. */
8b70b953
TT
4543
4544 end_ptr = info_ptr + section->size;
4545 while (info_ptr < end_ptr)
4546 {
b64f50a1 4547 sect_offset offset;
3019eac3 4548 cu_offset type_offset_in_tu;
8b70b953 4549 ULONGEST signature;
52dc124a 4550 struct signatured_type *sig_type;
3019eac3 4551 struct dwo_unit *dwo_tu;
8b70b953 4552 void **slot;
d521ce57 4553 const gdb_byte *ptr = info_ptr;
9ff913ba 4554 struct comp_unit_head header;
dee91e82 4555 unsigned int length;
348e048f 4556
b64f50a1 4557 offset.sect_off = ptr - section->buffer;
348e048f 4558
8b70b953 4559 /* We need to read the type's signature in order to build the hash
9ff913ba 4560 table, but we don't need anything else just yet. */
348e048f 4561
4bdcc0c1
DE
4562 ptr = read_and_check_type_unit_head (&header, section,
4563 abbrev_section, ptr,
3019eac3 4564 &signature, &type_offset_in_tu);
6caca83c 4565
1ce1cefd 4566 length = get_cu_length (&header);
dee91e82 4567
6caca83c 4568 /* Skip dummy type units. */
dee91e82
DE
4569 if (ptr >= info_ptr + length
4570 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4571 {
1ce1cefd 4572 info_ptr += length;
6caca83c
CC
4573 continue;
4574 }
8b70b953 4575
0349ea22
DE
4576 if (types_htab == NULL)
4577 {
4578 if (dwo_file)
4579 types_htab = allocate_dwo_unit_table (objfile);
4580 else
4581 types_htab = allocate_signatured_type_table (objfile);
4582 }
4583
3019eac3
DE
4584 if (dwo_file)
4585 {
4586 sig_type = NULL;
4587 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4588 struct dwo_unit);
4589 dwo_tu->dwo_file = dwo_file;
4590 dwo_tu->signature = signature;
4591 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4592 dwo_tu->section = section;
3019eac3
DE
4593 dwo_tu->offset = offset;
4594 dwo_tu->length = length;
4595 }
4596 else
4597 {
4598 /* N.B.: type_offset is not usable if this type uses a DWO file.
4599 The real type_offset is in the DWO file. */
4600 dwo_tu = NULL;
4601 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4602 struct signatured_type);
4603 sig_type->signature = signature;
4604 sig_type->type_offset_in_tu = type_offset_in_tu;
4605 sig_type->per_cu.objfile = objfile;
4606 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4607 sig_type->per_cu.section = section;
3019eac3
DE
4608 sig_type->per_cu.offset = offset;
4609 sig_type->per_cu.length = length;
4610 }
8b70b953 4611
3019eac3
DE
4612 slot = htab_find_slot (types_htab,
4613 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4614 INSERT);
8b70b953
TT
4615 gdb_assert (slot != NULL);
4616 if (*slot != NULL)
4617 {
3019eac3
DE
4618 sect_offset dup_offset;
4619
4620 if (dwo_file)
4621 {
4622 const struct dwo_unit *dup_tu = *slot;
4623
4624 dup_offset = dup_tu->offset;
4625 }
4626 else
4627 {
4628 const struct signatured_type *dup_tu = *slot;
4629
4630 dup_offset = dup_tu->per_cu.offset;
4631 }
b3c8eb43 4632
8b70b953 4633 complaint (&symfile_complaints,
c88ee1f0 4634 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4635 " the entry at offset 0x%x, signature %s"),
3019eac3 4636 offset.sect_off, dup_offset.sect_off,
4031ecc5 4637 hex_string (signature));
8b70b953 4638 }
3019eac3 4639 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4640
73be47f5 4641 if (dwarf2_read_debug > 1)
4031ecc5 4642 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4643 offset.sect_off,
4031ecc5 4644 hex_string (signature));
348e048f 4645
dee91e82 4646 info_ptr += length;
8b70b953 4647 }
348e048f
DE
4648 }
4649
3019eac3
DE
4650 return types_htab;
4651}
4652
4653/* Create the hash table of all entries in the .debug_types section,
4654 and initialize all_type_units.
4655 The result is zero if there is an error (e.g. missing .debug_types section),
4656 otherwise non-zero. */
4657
4658static int
4659create_all_type_units (struct objfile *objfile)
4660{
4661 htab_t types_htab;
b4dd5633 4662 struct signatured_type **iter;
3019eac3
DE
4663
4664 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4665 if (types_htab == NULL)
4666 {
4667 dwarf2_per_objfile->signatured_types = NULL;
4668 return 0;
4669 }
4670
348e048f
DE
4671 dwarf2_per_objfile->signatured_types = types_htab;
4672
d467dd73
DE
4673 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4674 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
4675 = xmalloc (dwarf2_per_objfile->n_type_units
4676 * sizeof (struct signatured_type *));
d467dd73
DE
4677 iter = &dwarf2_per_objfile->all_type_units[0];
4678 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4679 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4680 == dwarf2_per_objfile->n_type_units);
1fd400ff 4681
348e048f
DE
4682 return 1;
4683}
4684
a2ce51a0
DE
4685/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4686 Fill in SIG_ENTRY with DWO_ENTRY. */
4687
4688static void
4689fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4690 struct signatured_type *sig_entry,
4691 struct dwo_unit *dwo_entry)
4692{
7ee85ab1 4693 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4694 gdb_assert (! sig_entry->per_cu.queued);
4695 gdb_assert (sig_entry->per_cu.cu == NULL);
4696 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4697 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4698 gdb_assert (sig_entry->signature == dwo_entry->signature);
4699 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4700 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4701 gdb_assert (sig_entry->dwo_unit == NULL);
4702
4703 sig_entry->per_cu.section = dwo_entry->section;
4704 sig_entry->per_cu.offset = dwo_entry->offset;
4705 sig_entry->per_cu.length = dwo_entry->length;
4706 sig_entry->per_cu.reading_dwo_directly = 1;
4707 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4708 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4709 sig_entry->dwo_unit = dwo_entry;
4710}
4711
4712/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4713 If we haven't read the TU yet, create the signatured_type data structure
4714 for a TU to be read in directly from a DWO file, bypassing the stub.
4715 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4716 using .gdb_index, then when reading a CU we want to stay in the DWO file
4717 containing that CU. Otherwise we could end up reading several other DWO
4718 files (due to comdat folding) to process the transitive closure of all the
4719 mentioned TUs, and that can be slow. The current DWO file will have every
4720 type signature that it needs.
a2ce51a0
DE
4721 We only do this for .gdb_index because in the psymtab case we already have
4722 to read all the DWOs to build the type unit groups. */
4723
4724static struct signatured_type *
4725lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4726{
4727 struct objfile *objfile = dwarf2_per_objfile->objfile;
4728 struct dwo_file *dwo_file;
4729 struct dwo_unit find_dwo_entry, *dwo_entry;
4730 struct signatured_type find_sig_entry, *sig_entry;
4731
4732 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4733
4734 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4735 dwo_unit of the TU itself. */
4736 dwo_file = cu->dwo_unit->dwo_file;
4737
4738 /* We only ever need to read in one copy of a signatured type.
4739 Just use the global signatured_types array. If this is the first time
4740 we're reading this type, replace the recorded data from .gdb_index with
4741 this TU. */
4742
4743 if (dwarf2_per_objfile->signatured_types == NULL)
4744 return NULL;
4745 find_sig_entry.signature = sig;
4746 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4747 if (sig_entry == NULL)
4748 return NULL;
7ee85ab1
DE
4749
4750 /* We can get here with the TU already read, *or* in the process of being
4751 read. Don't reassign it if that's the case. Also note that if the TU is
4752 already being read, it may not have come from a DWO, the program may be
4753 a mix of Fission-compiled code and non-Fission-compiled code. */
a2ce51a0 4754 /* Have we already tried to read this TU? */
7ee85ab1 4755 if (sig_entry->per_cu.tu_read)
a2ce51a0
DE
4756 return sig_entry;
4757
4758 /* Ok, this is the first time we're reading this TU. */
4759 if (dwo_file->tus == NULL)
4760 return NULL;
4761 find_dwo_entry.signature = sig;
4762 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4763 if (dwo_entry == NULL)
4764 return NULL;
4765
4766 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4767 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4768 return sig_entry;
4769}
4770
4771/* Subroutine of lookup_dwp_signatured_type.
4772 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4773
4774static struct signatured_type *
4775add_type_unit (ULONGEST sig)
4776{
4777 struct objfile *objfile = dwarf2_per_objfile->objfile;
4778 int n_type_units = dwarf2_per_objfile->n_type_units;
4779 struct signatured_type *sig_type;
4780 void **slot;
4781
4782 ++n_type_units;
4783 dwarf2_per_objfile->all_type_units =
4784 xrealloc (dwarf2_per_objfile->all_type_units,
4785 n_type_units * sizeof (struct signatured_type *));
4786 dwarf2_per_objfile->n_type_units = n_type_units;
4787 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4788 struct signatured_type);
4789 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4790 sig_type->signature = sig;
4791 sig_type->per_cu.is_debug_types = 1;
4792 sig_type->per_cu.v.quick =
4793 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4794 struct dwarf2_per_cu_quick_data);
4795 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4796 sig_type, INSERT);
4797 gdb_assert (*slot == NULL);
4798 *slot = sig_type;
4799 /* The rest of sig_type must be filled in by the caller. */
4800 return sig_type;
4801}
4802
4803/* Subroutine of lookup_signatured_type.
4804 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4805 then try the DWP file.
4806 Normally this "can't happen", but if there's a bug in signature
4807 generation and/or the DWP file is built incorrectly, it can happen.
4808 Using the type directly from the DWP file means we don't have the stub
4809 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4810 not critical. [Eventually the stub may go away for type units anyway.] */
4811
4812static struct signatured_type *
4813lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4814{
4815 struct objfile *objfile = dwarf2_per_objfile->objfile;
4816 struct dwp_file *dwp_file = get_dwp_file ();
4817 struct dwo_unit *dwo_entry;
4818 struct signatured_type find_sig_entry, *sig_entry;
4819
4820 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4821 gdb_assert (dwp_file != NULL);
4822
4823 if (dwarf2_per_objfile->signatured_types != NULL)
4824 {
4825 find_sig_entry.signature = sig;
4826 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4827 &find_sig_entry);
4828 if (sig_entry != NULL)
4829 return sig_entry;
4830 }
4831
4832 /* This is the "shouldn't happen" case.
4833 Try the DWP file and hope for the best. */
4834 if (dwp_file->tus == NULL)
4835 return NULL;
57d63ce2
DE
4836 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4837 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4838 if (dwo_entry == NULL)
4839 return NULL;
4840
4841 sig_entry = add_type_unit (sig);
4842 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4843
4844 /* The caller will signal a complaint if we return NULL.
4845 Here we don't return NULL but we still want to complain. */
4846 complaint (&symfile_complaints,
4847 _("Bad type signature %s referenced by %s at 0x%x,"
4848 " coping by using copy in DWP [in module %s]"),
4849 hex_string (sig),
4850 cu->per_cu->is_debug_types ? "TU" : "CU",
4851 cu->per_cu->offset.sect_off,
4262abfb 4852 objfile_name (objfile));
a2ce51a0
DE
4853
4854 return sig_entry;
4855}
4856
380bca97 4857/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4858 Returns NULL if signature SIG is not present in the table.
4859 It is up to the caller to complain about this. */
348e048f
DE
4860
4861static struct signatured_type *
a2ce51a0 4862lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 4863{
a2ce51a0
DE
4864 if (cu->dwo_unit
4865 && dwarf2_per_objfile->using_index)
4866 {
4867 /* We're in a DWO/DWP file, and we're using .gdb_index.
4868 These cases require special processing. */
4869 if (get_dwp_file () == NULL)
4870 return lookup_dwo_signatured_type (cu, sig);
4871 else
4872 return lookup_dwp_signatured_type (cu, sig);
4873 }
4874 else
4875 {
4876 struct signatured_type find_entry, *entry;
348e048f 4877
a2ce51a0
DE
4878 if (dwarf2_per_objfile->signatured_types == NULL)
4879 return NULL;
4880 find_entry.signature = sig;
4881 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4882 return entry;
4883 }
348e048f 4884}
42e7ad6c
DE
4885\f
4886/* Low level DIE reading support. */
348e048f 4887
d85a05f0
DJ
4888/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4889
4890static void
4891init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 4892 struct dwarf2_cu *cu,
3019eac3
DE
4893 struct dwarf2_section_info *section,
4894 struct dwo_file *dwo_file)
d85a05f0 4895{
fceca515 4896 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 4897 reader->abfd = get_section_bfd_owner (section);
d85a05f0 4898 reader->cu = cu;
3019eac3 4899 reader->dwo_file = dwo_file;
dee91e82
DE
4900 reader->die_section = section;
4901 reader->buffer = section->buffer;
f664829e 4902 reader->buffer_end = section->buffer + section->size;
a2ce51a0 4903 reader->comp_dir = NULL;
d85a05f0
DJ
4904}
4905
b0c7bfa9
DE
4906/* Subroutine of init_cutu_and_read_dies to simplify it.
4907 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4908 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4909 already.
4910
4911 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4912 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
4913 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4914 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4915 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4916 COMP_DIR must be non-NULL.
b0c7bfa9
DE
4917 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4918 are filled in with the info of the DIE from the DWO file.
4919 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4920 provided an abbrev table to use.
4921 The result is non-zero if a valid (non-dummy) DIE was found. */
4922
4923static int
4924read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4925 struct dwo_unit *dwo_unit,
4926 int abbrev_table_provided,
4927 struct die_info *stub_comp_unit_die,
a2ce51a0 4928 const char *stub_comp_dir,
b0c7bfa9 4929 struct die_reader_specs *result_reader,
d521ce57 4930 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
4931 struct die_info **result_comp_unit_die,
4932 int *result_has_children)
4933{
4934 struct objfile *objfile = dwarf2_per_objfile->objfile;
4935 struct dwarf2_cu *cu = this_cu->cu;
4936 struct dwarf2_section_info *section;
4937 bfd *abfd;
d521ce57 4938 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
4939 const char *comp_dir_string;
4940 ULONGEST signature; /* Or dwo_id. */
4941 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4942 int i,num_extra_attrs;
4943 struct dwarf2_section_info *dwo_abbrev_section;
4944 struct attribute *attr;
a2ce51a0 4945 struct attribute comp_dir_attr;
b0c7bfa9
DE
4946 struct die_info *comp_unit_die;
4947
a2ce51a0
DE
4948 /* Both can't be provided. */
4949 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4950
b0c7bfa9
DE
4951 /* These attributes aren't processed until later:
4952 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4953 However, the attribute is found in the stub which we won't have later.
4954 In order to not impose this complication on the rest of the code,
4955 we read them here and copy them to the DWO CU/TU die. */
4956
4957 stmt_list = NULL;
4958 low_pc = NULL;
4959 high_pc = NULL;
4960 ranges = NULL;
4961 comp_dir = NULL;
4962
4963 if (stub_comp_unit_die != NULL)
4964 {
4965 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4966 DWO file. */
4967 if (! this_cu->is_debug_types)
4968 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4969 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4970 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4971 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4972 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4973
4974 /* There should be a DW_AT_addr_base attribute here (if needed).
4975 We need the value before we can process DW_FORM_GNU_addr_index. */
4976 cu->addr_base = 0;
4977 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4978 if (attr)
4979 cu->addr_base = DW_UNSND (attr);
4980
4981 /* There should be a DW_AT_ranges_base attribute here (if needed).
4982 We need the value before we can process DW_AT_ranges. */
4983 cu->ranges_base = 0;
4984 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4985 if (attr)
4986 cu->ranges_base = DW_UNSND (attr);
4987 }
a2ce51a0
DE
4988 else if (stub_comp_dir != NULL)
4989 {
4990 /* Reconstruct the comp_dir attribute to simplify the code below. */
4991 comp_dir = (struct attribute *)
4992 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4993 comp_dir->name = DW_AT_comp_dir;
4994 comp_dir->form = DW_FORM_string;
4995 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4996 DW_STRING (comp_dir) = stub_comp_dir;
4997 }
b0c7bfa9
DE
4998
4999 /* Set up for reading the DWO CU/TU. */
5000 cu->dwo_unit = dwo_unit;
5001 section = dwo_unit->section;
5002 dwarf2_read_section (objfile, section);
a32a8923 5003 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5004 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5005 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5006 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5007
5008 if (this_cu->is_debug_types)
5009 {
5010 ULONGEST header_signature;
5011 cu_offset type_offset_in_tu;
5012 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5013
5014 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5015 dwo_abbrev_section,
5016 info_ptr,
5017 &header_signature,
5018 &type_offset_in_tu);
a2ce51a0
DE
5019 /* This is not an assert because it can be caused by bad debug info. */
5020 if (sig_type->signature != header_signature)
5021 {
5022 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5023 " TU at offset 0x%x [in module %s]"),
5024 hex_string (sig_type->signature),
5025 hex_string (header_signature),
5026 dwo_unit->offset.sect_off,
5027 bfd_get_filename (abfd));
5028 }
b0c7bfa9
DE
5029 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5030 /* For DWOs coming from DWP files, we don't know the CU length
5031 nor the type's offset in the TU until now. */
5032 dwo_unit->length = get_cu_length (&cu->header);
5033 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5034
5035 /* Establish the type offset that can be used to lookup the type.
5036 For DWO files, we don't know it until now. */
5037 sig_type->type_offset_in_section.sect_off =
5038 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5039 }
5040 else
5041 {
5042 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5043 dwo_abbrev_section,
5044 info_ptr, 0);
5045 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5046 /* For DWOs coming from DWP files, we don't know the CU length
5047 until now. */
5048 dwo_unit->length = get_cu_length (&cu->header);
5049 }
5050
02142a6c
DE
5051 /* Replace the CU's original abbrev table with the DWO's.
5052 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5053 if (abbrev_table_provided)
5054 {
5055 /* Don't free the provided abbrev table, the caller of
5056 init_cutu_and_read_dies owns it. */
5057 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5058 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5059 make_cleanup (dwarf2_free_abbrev_table, cu);
5060 }
5061 else
5062 {
5063 dwarf2_free_abbrev_table (cu);
5064 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5065 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5066 }
5067
5068 /* Read in the die, but leave space to copy over the attributes
5069 from the stub. This has the benefit of simplifying the rest of
5070 the code - all the work to maintain the illusion of a single
5071 DW_TAG_{compile,type}_unit DIE is done here. */
5072 num_extra_attrs = ((stmt_list != NULL)
5073 + (low_pc != NULL)
5074 + (high_pc != NULL)
5075 + (ranges != NULL)
5076 + (comp_dir != NULL));
5077 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5078 result_has_children, num_extra_attrs);
5079
5080 /* Copy over the attributes from the stub to the DIE we just read in. */
5081 comp_unit_die = *result_comp_unit_die;
5082 i = comp_unit_die->num_attrs;
5083 if (stmt_list != NULL)
5084 comp_unit_die->attrs[i++] = *stmt_list;
5085 if (low_pc != NULL)
5086 comp_unit_die->attrs[i++] = *low_pc;
5087 if (high_pc != NULL)
5088 comp_unit_die->attrs[i++] = *high_pc;
5089 if (ranges != NULL)
5090 comp_unit_die->attrs[i++] = *ranges;
5091 if (comp_dir != NULL)
5092 comp_unit_die->attrs[i++] = *comp_dir;
5093 comp_unit_die->num_attrs += num_extra_attrs;
5094
bf6af496
DE
5095 if (dwarf2_die_debug)
5096 {
5097 fprintf_unfiltered (gdb_stdlog,
5098 "Read die from %s@0x%x of %s:\n",
a32a8923 5099 get_section_name (section),
bf6af496
DE
5100 (unsigned) (begin_info_ptr - section->buffer),
5101 bfd_get_filename (abfd));
5102 dump_die (comp_unit_die, dwarf2_die_debug);
5103 }
5104
a2ce51a0
DE
5105 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5106 TUs by skipping the stub and going directly to the entry in the DWO file.
5107 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5108 to get it via circuitous means. Blech. */
5109 if (comp_dir != NULL)
5110 result_reader->comp_dir = DW_STRING (comp_dir);
5111
b0c7bfa9
DE
5112 /* Skip dummy compilation units. */
5113 if (info_ptr >= begin_info_ptr + dwo_unit->length
5114 || peek_abbrev_code (abfd, info_ptr) == 0)
5115 return 0;
5116
5117 *result_info_ptr = info_ptr;
5118 return 1;
5119}
5120
5121/* Subroutine of init_cutu_and_read_dies to simplify it.
5122 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5123 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5124
5125static struct dwo_unit *
5126lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5127 struct die_info *comp_unit_die)
5128{
5129 struct dwarf2_cu *cu = this_cu->cu;
5130 struct attribute *attr;
5131 ULONGEST signature;
5132 struct dwo_unit *dwo_unit;
5133 const char *comp_dir, *dwo_name;
5134
a2ce51a0
DE
5135 gdb_assert (cu != NULL);
5136
b0c7bfa9
DE
5137 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5138 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5139 gdb_assert (attr != NULL);
5140 dwo_name = DW_STRING (attr);
5141 comp_dir = NULL;
5142 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5143 if (attr)
5144 comp_dir = DW_STRING (attr);
5145
5146 if (this_cu->is_debug_types)
5147 {
5148 struct signatured_type *sig_type;
5149
5150 /* Since this_cu is the first member of struct signatured_type,
5151 we can go from a pointer to one to a pointer to the other. */
5152 sig_type = (struct signatured_type *) this_cu;
5153 signature = sig_type->signature;
5154 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5155 }
5156 else
5157 {
5158 struct attribute *attr;
5159
5160 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5161 if (! attr)
5162 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5163 " [in module %s]"),
4262abfb 5164 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5165 signature = DW_UNSND (attr);
5166 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5167 signature);
5168 }
5169
b0c7bfa9
DE
5170 return dwo_unit;
5171}
5172
a2ce51a0
DE
5173/* Subroutine of init_cutu_and_read_dies to simplify it.
5174 Read a TU directly from a DWO file, bypassing the stub. */
5175
5176static void
5177init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
5178 die_reader_func_ftype *die_reader_func,
5179 void *data)
5180{
5181 struct dwarf2_cu *cu;
5182 struct signatured_type *sig_type;
5183 struct cleanup *cleanups, *free_cu_cleanup;
5184 struct die_reader_specs reader;
5185 const gdb_byte *info_ptr;
5186 struct die_info *comp_unit_die;
5187 int has_children;
5188
5189 /* Verify we can do the following downcast, and that we have the
5190 data we need. */
5191 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5192 sig_type = (struct signatured_type *) this_cu;
5193 gdb_assert (sig_type->dwo_unit != NULL);
5194
5195 cleanups = make_cleanup (null_cleanup, NULL);
5196
5197 gdb_assert (this_cu->cu == NULL);
5198 cu = xmalloc (sizeof (*cu));
5199 init_one_comp_unit (cu, this_cu);
5200 /* If an error occurs while loading, release our storage. */
5201 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5202
5203 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5204 0 /* abbrev_table_provided */,
5205 NULL /* stub_comp_unit_die */,
5206 sig_type->dwo_unit->dwo_file->comp_dir,
5207 &reader, &info_ptr,
5208 &comp_unit_die, &has_children) == 0)
5209 {
5210 /* Dummy die. */
5211 do_cleanups (cleanups);
5212 return;
5213 }
5214
5215 /* All the "real" work is done here. */
5216 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5217
5218 /* This duplicates some code in init_cutu_and_read_dies,
5219 but the alternative is making the latter more complex.
5220 This function is only for the special case of using DWO files directly:
5221 no point in overly complicating the general case just to handle this. */
5222 if (keep)
5223 {
5224 /* We've successfully allocated this compilation unit. Let our
5225 caller clean it up when finished with it. */
5226 discard_cleanups (free_cu_cleanup);
5227
5228 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5229 So we have to manually free the abbrev table. */
5230 dwarf2_free_abbrev_table (cu);
5231
5232 /* Link this CU into read_in_chain. */
5233 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5234 dwarf2_per_objfile->read_in_chain = this_cu;
5235 }
5236 else
5237 do_cleanups (free_cu_cleanup);
5238
5239 do_cleanups (cleanups);
5240}
5241
fd820528 5242/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5243 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5244
f4dc4d17
DE
5245 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5246 Otherwise the table specified in the comp unit header is read in and used.
5247 This is an optimization for when we already have the abbrev table.
5248
dee91e82
DE
5249 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5250 Otherwise, a new CU is allocated with xmalloc.
5251
5252 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5253 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5254
5255 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5256 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5257
70221824 5258static void
fd820528 5259init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5260 struct abbrev_table *abbrev_table,
fd820528
DE
5261 int use_existing_cu, int keep,
5262 die_reader_func_ftype *die_reader_func,
5263 void *data)
c906108c 5264{
dee91e82 5265 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5266 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5267 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5268 struct dwarf2_cu *cu;
d521ce57 5269 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5270 struct die_reader_specs reader;
d85a05f0 5271 struct die_info *comp_unit_die;
dee91e82 5272 int has_children;
d85a05f0 5273 struct attribute *attr;
365156ad 5274 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5275 struct signatured_type *sig_type = NULL;
4bdcc0c1 5276 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5277 /* Non-zero if CU currently points to a DWO file and we need to
5278 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5279 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5280 int rereading_dwo_cu = 0;
c906108c 5281
09406207
DE
5282 if (dwarf2_die_debug)
5283 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5284 this_cu->is_debug_types ? "type" : "comp",
5285 this_cu->offset.sect_off);
5286
dee91e82
DE
5287 if (use_existing_cu)
5288 gdb_assert (keep);
23745b47 5289
a2ce51a0
DE
5290 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5291 file (instead of going through the stub), short-circuit all of this. */
5292 if (this_cu->reading_dwo_directly)
5293 {
5294 /* Narrow down the scope of possibilities to have to understand. */
5295 gdb_assert (this_cu->is_debug_types);
5296 gdb_assert (abbrev_table == NULL);
5297 gdb_assert (!use_existing_cu);
5298 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5299 return;
5300 }
5301
dee91e82
DE
5302 cleanups = make_cleanup (null_cleanup, NULL);
5303
5304 /* This is cheap if the section is already read in. */
5305 dwarf2_read_section (objfile, section);
5306
5307 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5308
5309 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5310
5311 if (use_existing_cu && this_cu->cu != NULL)
5312 {
5313 cu = this_cu->cu;
42e7ad6c
DE
5314
5315 /* If this CU is from a DWO file we need to start over, we need to
5316 refetch the attributes from the skeleton CU.
5317 This could be optimized by retrieving those attributes from when we
5318 were here the first time: the previous comp_unit_die was stored in
5319 comp_unit_obstack. But there's no data yet that we need this
5320 optimization. */
5321 if (cu->dwo_unit != NULL)
5322 rereading_dwo_cu = 1;
dee91e82
DE
5323 }
5324 else
5325 {
5326 /* If !use_existing_cu, this_cu->cu must be NULL. */
5327 gdb_assert (this_cu->cu == NULL);
5328
5329 cu = xmalloc (sizeof (*cu));
5330 init_one_comp_unit (cu, this_cu);
5331
5332 /* If an error occurs while loading, release our storage. */
365156ad 5333 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5334 }
dee91e82 5335
b0c7bfa9 5336 /* Get the header. */
42e7ad6c
DE
5337 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5338 {
5339 /* We already have the header, there's no need to read it in again. */
5340 info_ptr += cu->header.first_die_offset.cu_off;
5341 }
5342 else
5343 {
3019eac3 5344 if (this_cu->is_debug_types)
dee91e82
DE
5345 {
5346 ULONGEST signature;
42e7ad6c 5347 cu_offset type_offset_in_tu;
dee91e82 5348
4bdcc0c1
DE
5349 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5350 abbrev_section, info_ptr,
42e7ad6c
DE
5351 &signature,
5352 &type_offset_in_tu);
dee91e82 5353
42e7ad6c
DE
5354 /* Since per_cu is the first member of struct signatured_type,
5355 we can go from a pointer to one to a pointer to the other. */
5356 sig_type = (struct signatured_type *) this_cu;
5357 gdb_assert (sig_type->signature == signature);
5358 gdb_assert (sig_type->type_offset_in_tu.cu_off
5359 == type_offset_in_tu.cu_off);
dee91e82
DE
5360 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5361
42e7ad6c
DE
5362 /* LENGTH has not been set yet for type units if we're
5363 using .gdb_index. */
1ce1cefd 5364 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5365
5366 /* Establish the type offset that can be used to lookup the type. */
5367 sig_type->type_offset_in_section.sect_off =
5368 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5369 }
5370 else
5371 {
4bdcc0c1
DE
5372 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5373 abbrev_section,
5374 info_ptr, 0);
dee91e82
DE
5375
5376 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5377 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5378 }
5379 }
10b3939b 5380
6caca83c 5381 /* Skip dummy compilation units. */
dee91e82 5382 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5383 || peek_abbrev_code (abfd, info_ptr) == 0)
5384 {
dee91e82 5385 do_cleanups (cleanups);
21b2bd31 5386 return;
6caca83c
CC
5387 }
5388
433df2d4
DE
5389 /* If we don't have them yet, read the abbrevs for this compilation unit.
5390 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5391 done. Note that it's important that if the CU had an abbrev table
5392 on entry we don't free it when we're done: Somewhere up the call stack
5393 it may be in use. */
f4dc4d17
DE
5394 if (abbrev_table != NULL)
5395 {
5396 gdb_assert (cu->abbrev_table == NULL);
5397 gdb_assert (cu->header.abbrev_offset.sect_off
5398 == abbrev_table->offset.sect_off);
5399 cu->abbrev_table = abbrev_table;
5400 }
5401 else if (cu->abbrev_table == NULL)
dee91e82 5402 {
4bdcc0c1 5403 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5404 make_cleanup (dwarf2_free_abbrev_table, cu);
5405 }
42e7ad6c
DE
5406 else if (rereading_dwo_cu)
5407 {
5408 dwarf2_free_abbrev_table (cu);
5409 dwarf2_read_abbrevs (cu, abbrev_section);
5410 }
af703f96 5411
dee91e82 5412 /* Read the top level CU/TU die. */
3019eac3 5413 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5414 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5415
b0c7bfa9
DE
5416 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5417 from the DWO file.
5418 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5419 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5420 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5421 if (attr)
5422 {
3019eac3 5423 struct dwo_unit *dwo_unit;
b0c7bfa9 5424 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5425
5426 if (has_children)
6a506a2d
DE
5427 {
5428 complaint (&symfile_complaints,
5429 _("compilation unit with DW_AT_GNU_dwo_name"
5430 " has children (offset 0x%x) [in module %s]"),
5431 this_cu->offset.sect_off, bfd_get_filename (abfd));
5432 }
b0c7bfa9 5433 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5434 if (dwo_unit != NULL)
3019eac3 5435 {
6a506a2d
DE
5436 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5437 abbrev_table != NULL,
a2ce51a0 5438 comp_unit_die, NULL,
6a506a2d
DE
5439 &reader, &info_ptr,
5440 &dwo_comp_unit_die, &has_children) == 0)
5441 {
5442 /* Dummy die. */
5443 do_cleanups (cleanups);
5444 return;
5445 }
5446 comp_unit_die = dwo_comp_unit_die;
5447 }
5448 else
5449 {
5450 /* Yikes, we couldn't find the rest of the DIE, we only have
5451 the stub. A complaint has already been logged. There's
5452 not much more we can do except pass on the stub DIE to
5453 die_reader_func. We don't want to throw an error on bad
5454 debug info. */
3019eac3
DE
5455 }
5456 }
5457
b0c7bfa9 5458 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5459 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5460
b0c7bfa9 5461 /* Done, clean up. */
365156ad 5462 if (free_cu_cleanup != NULL)
348e048f 5463 {
365156ad
TT
5464 if (keep)
5465 {
5466 /* We've successfully allocated this compilation unit. Let our
5467 caller clean it up when finished with it. */
5468 discard_cleanups (free_cu_cleanup);
dee91e82 5469
365156ad
TT
5470 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5471 So we have to manually free the abbrev table. */
5472 dwarf2_free_abbrev_table (cu);
dee91e82 5473
365156ad
TT
5474 /* Link this CU into read_in_chain. */
5475 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5476 dwarf2_per_objfile->read_in_chain = this_cu;
5477 }
5478 else
5479 do_cleanups (free_cu_cleanup);
348e048f 5480 }
365156ad
TT
5481
5482 do_cleanups (cleanups);
dee91e82
DE
5483}
5484
3019eac3
DE
5485/* Read CU/TU THIS_CU in section SECTION,
5486 but do not follow DW_AT_GNU_dwo_name if present.
80626a55
DE
5487 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5488 to have already done the lookup to find the DWO/DWP file).
dee91e82
DE
5489
5490 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5491 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5492
5493 We fill in THIS_CU->length.
5494
5495 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5496 linker) then DIE_READER_FUNC will not get called.
5497
5498 THIS_CU->cu is always freed when done.
3019eac3
DE
5499 This is done in order to not leave THIS_CU->cu in a state where we have
5500 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5501
5502static void
5503init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5504 struct dwarf2_section_info *abbrev_section,
3019eac3 5505 struct dwo_file *dwo_file,
dee91e82
DE
5506 die_reader_func_ftype *die_reader_func,
5507 void *data)
5508{
5509 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5510 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5511 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5512 struct dwarf2_cu cu;
d521ce57 5513 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5514 struct die_reader_specs reader;
5515 struct cleanup *cleanups;
5516 struct die_info *comp_unit_die;
5517 int has_children;
5518
09406207
DE
5519 if (dwarf2_die_debug)
5520 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5521 this_cu->is_debug_types ? "type" : "comp",
5522 this_cu->offset.sect_off);
5523
dee91e82
DE
5524 gdb_assert (this_cu->cu == NULL);
5525
dee91e82
DE
5526 /* This is cheap if the section is already read in. */
5527 dwarf2_read_section (objfile, section);
5528
5529 init_one_comp_unit (&cu, this_cu);
5530
5531 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5532
5533 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5534 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5535 abbrev_section, info_ptr,
3019eac3 5536 this_cu->is_debug_types);
dee91e82 5537
1ce1cefd 5538 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5539
5540 /* Skip dummy compilation units. */
5541 if (info_ptr >= begin_info_ptr + this_cu->length
5542 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5543 {
dee91e82 5544 do_cleanups (cleanups);
21b2bd31 5545 return;
93311388 5546 }
72bf9492 5547
dee91e82
DE
5548 dwarf2_read_abbrevs (&cu, abbrev_section);
5549 make_cleanup (dwarf2_free_abbrev_table, &cu);
5550
3019eac3 5551 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5552 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5553
5554 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5555
5556 do_cleanups (cleanups);
5557}
5558
3019eac3
DE
5559/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5560 does not lookup the specified DWO file.
5561 This cannot be used to read DWO files.
dee91e82
DE
5562
5563 THIS_CU->cu is always freed when done.
3019eac3
DE
5564 This is done in order to not leave THIS_CU->cu in a state where we have
5565 to care whether it refers to the "main" CU or the DWO CU.
5566 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5567
5568static void
5569init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5570 die_reader_func_ftype *die_reader_func,
5571 void *data)
5572{
5573 init_cutu_and_read_dies_no_follow (this_cu,
36586728 5574 get_abbrev_section_for_cu (this_cu),
3019eac3 5575 NULL,
dee91e82
DE
5576 die_reader_func, data);
5577}
0018ea6f
DE
5578\f
5579/* Type Unit Groups.
dee91e82 5580
0018ea6f
DE
5581 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5582 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5583 so that all types coming from the same compilation (.o file) are grouped
5584 together. A future step could be to put the types in the same symtab as
5585 the CU the types ultimately came from. */
ff013f42 5586
f4dc4d17
DE
5587static hashval_t
5588hash_type_unit_group (const void *item)
5589{
094b34ac 5590 const struct type_unit_group *tu_group = item;
f4dc4d17 5591
094b34ac 5592 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5593}
348e048f
DE
5594
5595static int
f4dc4d17 5596eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5597{
f4dc4d17
DE
5598 const struct type_unit_group *lhs = item_lhs;
5599 const struct type_unit_group *rhs = item_rhs;
348e048f 5600
094b34ac 5601 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5602}
348e048f 5603
f4dc4d17
DE
5604/* Allocate a hash table for type unit groups. */
5605
5606static htab_t
5607allocate_type_unit_groups_table (void)
5608{
5609 return htab_create_alloc_ex (3,
5610 hash_type_unit_group,
5611 eq_type_unit_group,
5612 NULL,
5613 &dwarf2_per_objfile->objfile->objfile_obstack,
5614 hashtab_obstack_allocate,
5615 dummy_obstack_deallocate);
5616}
dee91e82 5617
f4dc4d17
DE
5618/* Type units that don't have DW_AT_stmt_list are grouped into their own
5619 partial symtabs. We combine several TUs per psymtab to not let the size
5620 of any one psymtab grow too big. */
5621#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5622#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5623
094b34ac 5624/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5625 Create the type_unit_group object used to hold one or more TUs. */
5626
5627static struct type_unit_group *
094b34ac 5628create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5629{
5630 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5631 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5632 struct type_unit_group *tu_group;
f4dc4d17
DE
5633
5634 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5635 struct type_unit_group);
094b34ac 5636 per_cu = &tu_group->per_cu;
f4dc4d17 5637 per_cu->objfile = objfile;
f4dc4d17 5638
094b34ac
DE
5639 if (dwarf2_per_objfile->using_index)
5640 {
5641 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5642 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5643 }
5644 else
5645 {
5646 unsigned int line_offset = line_offset_struct.sect_off;
5647 struct partial_symtab *pst;
5648 char *name;
5649
5650 /* Give the symtab a useful name for debug purposes. */
5651 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5652 name = xstrprintf ("<type_units_%d>",
5653 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5654 else
5655 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5656
5657 pst = create_partial_symtab (per_cu, name);
5658 pst->anonymous = 1;
f4dc4d17 5659
094b34ac
DE
5660 xfree (name);
5661 }
f4dc4d17 5662
094b34ac
DE
5663 tu_group->hash.dwo_unit = cu->dwo_unit;
5664 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5665
5666 return tu_group;
5667}
5668
094b34ac
DE
5669/* Look up the type_unit_group for type unit CU, and create it if necessary.
5670 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5671
5672static struct type_unit_group *
ff39bb5e 5673get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5674{
5675 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5676 struct type_unit_group *tu_group;
5677 void **slot;
5678 unsigned int line_offset;
5679 struct type_unit_group type_unit_group_for_lookup;
5680
5681 if (dwarf2_per_objfile->type_unit_groups == NULL)
5682 {
5683 dwarf2_per_objfile->type_unit_groups =
5684 allocate_type_unit_groups_table ();
5685 }
5686
5687 /* Do we need to create a new group, or can we use an existing one? */
5688
5689 if (stmt_list)
5690 {
5691 line_offset = DW_UNSND (stmt_list);
5692 ++tu_stats->nr_symtab_sharers;
5693 }
5694 else
5695 {
5696 /* Ugh, no stmt_list. Rare, but we have to handle it.
5697 We can do various things here like create one group per TU or
5698 spread them over multiple groups to split up the expansion work.
5699 To avoid worst case scenarios (too many groups or too large groups)
5700 we, umm, group them in bunches. */
5701 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5702 | (tu_stats->nr_stmt_less_type_units
5703 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5704 ++tu_stats->nr_stmt_less_type_units;
5705 }
5706
094b34ac
DE
5707 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5708 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5709 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5710 &type_unit_group_for_lookup, INSERT);
5711 if (*slot != NULL)
5712 {
5713 tu_group = *slot;
5714 gdb_assert (tu_group != NULL);
5715 }
5716 else
5717 {
5718 sect_offset line_offset_struct;
5719
5720 line_offset_struct.sect_off = line_offset;
094b34ac 5721 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5722 *slot = tu_group;
5723 ++tu_stats->nr_symtabs;
5724 }
5725
5726 return tu_group;
5727}
5728
5729/* Struct used to sort TUs by their abbreviation table offset. */
5730
5731struct tu_abbrev_offset
5732{
5733 struct signatured_type *sig_type;
5734 sect_offset abbrev_offset;
5735};
5736
5737/* Helper routine for build_type_unit_groups, passed to qsort. */
5738
5739static int
5740sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5741{
5742 const struct tu_abbrev_offset * const *a = ap;
5743 const struct tu_abbrev_offset * const *b = bp;
5744 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5745 unsigned int boff = (*b)->abbrev_offset.sect_off;
5746
5747 return (aoff > boff) - (aoff < boff);
5748}
5749
5750/* A helper function to add a type_unit_group to a table. */
5751
5752static int
5753add_type_unit_group_to_table (void **slot, void *datum)
5754{
5755 struct type_unit_group *tu_group = *slot;
5756 struct type_unit_group ***datap = datum;
5757
5758 **datap = tu_group;
5759 ++*datap;
5760
5761 return 1;
5762}
5763
5764/* Efficiently read all the type units, calling init_cutu_and_read_dies on
5765 each one passing FUNC,DATA.
5766
5767 The efficiency is because we sort TUs by the abbrev table they use and
5768 only read each abbrev table once. In one program there are 200K TUs
5769 sharing 8K abbrev tables.
5770
5771 The main purpose of this function is to support building the
5772 dwarf2_per_objfile->type_unit_groups table.
5773 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5774 can collapse the search space by grouping them by stmt_list.
5775 The savings can be significant, in the same program from above the 200K TUs
5776 share 8K stmt_list tables.
5777
5778 FUNC is expected to call get_type_unit_group, which will create the
5779 struct type_unit_group if necessary and add it to
5780 dwarf2_per_objfile->type_unit_groups. */
5781
5782static void
5783build_type_unit_groups (die_reader_func_ftype *func, void *data)
5784{
5785 struct objfile *objfile = dwarf2_per_objfile->objfile;
5786 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5787 struct cleanup *cleanups;
5788 struct abbrev_table *abbrev_table;
5789 sect_offset abbrev_offset;
5790 struct tu_abbrev_offset *sorted_by_abbrev;
5791 struct type_unit_group **iter;
5792 int i;
5793
5794 /* It's up to the caller to not call us multiple times. */
5795 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5796
5797 if (dwarf2_per_objfile->n_type_units == 0)
5798 return;
5799
5800 /* TUs typically share abbrev tables, and there can be way more TUs than
5801 abbrev tables. Sort by abbrev table to reduce the number of times we
5802 read each abbrev table in.
5803 Alternatives are to punt or to maintain a cache of abbrev tables.
5804 This is simpler and efficient enough for now.
5805
5806 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5807 symtab to use). Typically TUs with the same abbrev offset have the same
5808 stmt_list value too so in practice this should work well.
5809
5810 The basic algorithm here is:
5811
5812 sort TUs by abbrev table
5813 for each TU with same abbrev table:
5814 read abbrev table if first user
5815 read TU top level DIE
5816 [IWBN if DWO skeletons had DW_AT_stmt_list]
5817 call FUNC */
5818
5819 if (dwarf2_read_debug)
5820 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5821
5822 /* Sort in a separate table to maintain the order of all_type_units
5823 for .gdb_index: TU indices directly index all_type_units. */
5824 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5825 dwarf2_per_objfile->n_type_units);
5826 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5827 {
5828 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5829
5830 sorted_by_abbrev[i].sig_type = sig_type;
5831 sorted_by_abbrev[i].abbrev_offset =
8a0459fd 5832 read_abbrev_offset (sig_type->per_cu.section,
f4dc4d17
DE
5833 sig_type->per_cu.offset);
5834 }
5835 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5836 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5837 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5838
094b34ac
DE
5839 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5840 called any number of times, so we don't reset tu_stats here. */
5841
f4dc4d17
DE
5842 abbrev_offset.sect_off = ~(unsigned) 0;
5843 abbrev_table = NULL;
5844 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5845
5846 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5847 {
5848 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5849
5850 /* Switch to the next abbrev table if necessary. */
5851 if (abbrev_table == NULL
5852 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5853 {
5854 if (abbrev_table != NULL)
5855 {
5856 abbrev_table_free (abbrev_table);
5857 /* Reset to NULL in case abbrev_table_read_table throws
5858 an error: abbrev_table_free_cleanup will get called. */
5859 abbrev_table = NULL;
5860 }
5861 abbrev_offset = tu->abbrev_offset;
5862 abbrev_table =
5863 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5864 abbrev_offset);
5865 ++tu_stats->nr_uniq_abbrev_tables;
5866 }
5867
5868 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5869 func, data);
5870 }
5871
a2ce51a0
DE
5872 /* type_unit_groups can be NULL if there is an error in the debug info.
5873 Just create an empty table so the rest of gdb doesn't have to watch
5874 for this error case. */
5875 if (dwarf2_per_objfile->type_unit_groups == NULL)
5876 {
5877 dwarf2_per_objfile->type_unit_groups =
5878 allocate_type_unit_groups_table ();
5879 dwarf2_per_objfile->n_type_unit_groups = 0;
5880 }
5881
f4dc4d17
DE
5882 /* Create a vector of pointers to primary type units to make it easy to
5883 iterate over them and CUs. See dw2_get_primary_cu. */
5884 dwarf2_per_objfile->n_type_unit_groups =
5885 htab_elements (dwarf2_per_objfile->type_unit_groups);
5886 dwarf2_per_objfile->all_type_unit_groups =
5887 obstack_alloc (&objfile->objfile_obstack,
5888 dwarf2_per_objfile->n_type_unit_groups
5889 * sizeof (struct type_unit_group *));
5890 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5891 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5892 add_type_unit_group_to_table, &iter);
5893 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5894 == dwarf2_per_objfile->n_type_unit_groups);
5895
5896 do_cleanups (cleanups);
5897
5898 if (dwarf2_read_debug)
5899 {
5900 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5901 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5902 dwarf2_per_objfile->n_type_units);
5903 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5904 tu_stats->nr_uniq_abbrev_tables);
5905 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5906 tu_stats->nr_symtabs);
5907 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5908 tu_stats->nr_symtab_sharers);
5909 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5910 tu_stats->nr_stmt_less_type_units);
5911 }
5912}
0018ea6f
DE
5913\f
5914/* Partial symbol tables. */
5915
5916/* Create a psymtab named NAME and assign it to PER_CU.
5917
5918 The caller must fill in the following details:
5919 dirname, textlow, texthigh. */
5920
5921static struct partial_symtab *
5922create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5923{
5924 struct objfile *objfile = per_cu->objfile;
5925 struct partial_symtab *pst;
5926
5927 pst = start_psymtab_common (objfile, objfile->section_offsets,
5928 name, 0,
5929 objfile->global_psymbols.next,
5930 objfile->static_psymbols.next);
5931
5932 pst->psymtabs_addrmap_supported = 1;
5933
5934 /* This is the glue that links PST into GDB's symbol API. */
5935 pst->read_symtab_private = per_cu;
5936 pst->read_symtab = dwarf2_read_symtab;
5937 per_cu->v.psymtab = pst;
5938
5939 return pst;
5940}
5941
b93601f3
TT
5942/* The DATA object passed to process_psymtab_comp_unit_reader has this
5943 type. */
5944
5945struct process_psymtab_comp_unit_data
5946{
5947 /* True if we are reading a DW_TAG_partial_unit. */
5948
5949 int want_partial_unit;
5950
5951 /* The "pretend" language that is used if the CU doesn't declare a
5952 language. */
5953
5954 enum language pretend_language;
5955};
5956
0018ea6f
DE
5957/* die_reader_func for process_psymtab_comp_unit. */
5958
5959static void
5960process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5961 const gdb_byte *info_ptr,
0018ea6f
DE
5962 struct die_info *comp_unit_die,
5963 int has_children,
5964 void *data)
5965{
5966 struct dwarf2_cu *cu = reader->cu;
5967 struct objfile *objfile = cu->objfile;
5968 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5969 struct attribute *attr;
5970 CORE_ADDR baseaddr;
5971 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5972 struct partial_symtab *pst;
5973 int has_pc_info;
5974 const char *filename;
b93601f3 5975 struct process_psymtab_comp_unit_data *info = data;
0018ea6f 5976
b93601f3 5977 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5978 return;
5979
5980 gdb_assert (! per_cu->is_debug_types);
5981
b93601f3 5982 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5983
5984 cu->list_in_scope = &file_symbols;
5985
5986 /* Allocate a new partial symbol table structure. */
5987 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5988 if (attr == NULL || !DW_STRING (attr))
5989 filename = "";
5990 else
5991 filename = DW_STRING (attr);
5992
5993 pst = create_partial_symtab (per_cu, filename);
5994
5995 /* This must be done before calling dwarf2_build_include_psymtabs. */
5996 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5997 if (attr != NULL)
5998 pst->dirname = DW_STRING (attr);
5999
6000 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6001
6002 dwarf2_find_base_address (comp_unit_die, cu);
6003
6004 /* Possibly set the default values of LOWPC and HIGHPC from
6005 `DW_AT_ranges'. */
6006 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6007 &best_highpc, cu, pst);
6008 if (has_pc_info == 1 && best_lowpc < best_highpc)
6009 /* Store the contiguous range if it is not empty; it can be empty for
6010 CUs with no code. */
6011 addrmap_set_empty (objfile->psymtabs_addrmap,
6012 best_lowpc + baseaddr,
6013 best_highpc + baseaddr - 1, pst);
6014
6015 /* Check if comp unit has_children.
6016 If so, read the rest of the partial symbols from this comp unit.
6017 If not, there's no more debug_info for this comp unit. */
6018 if (has_children)
6019 {
6020 struct partial_die_info *first_die;
6021 CORE_ADDR lowpc, highpc;
6022
6023 lowpc = ((CORE_ADDR) -1);
6024 highpc = ((CORE_ADDR) 0);
6025
6026 first_die = load_partial_dies (reader, info_ptr, 1);
6027
6028 scan_partial_symbols (first_die, &lowpc, &highpc,
6029 ! has_pc_info, cu);
6030
6031 /* If we didn't find a lowpc, set it to highpc to avoid
6032 complaints from `maint check'. */
6033 if (lowpc == ((CORE_ADDR) -1))
6034 lowpc = highpc;
6035
6036 /* If the compilation unit didn't have an explicit address range,
6037 then use the information extracted from its child dies. */
6038 if (! has_pc_info)
6039 {
6040 best_lowpc = lowpc;
6041 best_highpc = highpc;
6042 }
6043 }
6044 pst->textlow = best_lowpc + baseaddr;
6045 pst->texthigh = best_highpc + baseaddr;
6046
6047 pst->n_global_syms = objfile->global_psymbols.next -
6048 (objfile->global_psymbols.list + pst->globals_offset);
6049 pst->n_static_syms = objfile->static_psymbols.next -
6050 (objfile->static_psymbols.list + pst->statics_offset);
6051 sort_pst_symbols (objfile, pst);
6052
6053 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6054 {
6055 int i;
6056 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6057 struct dwarf2_per_cu_data *iter;
6058
6059 /* Fill in 'dependencies' here; we fill in 'users' in a
6060 post-pass. */
6061 pst->number_of_dependencies = len;
6062 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6063 len * sizeof (struct symtab *));
6064 for (i = 0;
6065 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6066 i, iter);
6067 ++i)
6068 pst->dependencies[i] = iter->v.psymtab;
6069
6070 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6071 }
6072
6073 /* Get the list of files included in the current compilation unit,
6074 and build a psymtab for each of them. */
6075 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6076
6077 if (dwarf2_read_debug)
6078 {
6079 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6080
6081 fprintf_unfiltered (gdb_stdlog,
6082 "Psymtab for %s unit @0x%x: %s - %s"
6083 ", %d global, %d static syms\n",
6084 per_cu->is_debug_types ? "type" : "comp",
6085 per_cu->offset.sect_off,
6086 paddress (gdbarch, pst->textlow),
6087 paddress (gdbarch, pst->texthigh),
6088 pst->n_global_syms, pst->n_static_syms);
6089 }
6090}
6091
6092/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6093 Process compilation unit THIS_CU for a psymtab. */
6094
6095static void
6096process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6097 int want_partial_unit,
6098 enum language pretend_language)
0018ea6f 6099{
b93601f3
TT
6100 struct process_psymtab_comp_unit_data info;
6101
0018ea6f
DE
6102 /* If this compilation unit was already read in, free the
6103 cached copy in order to read it in again. This is
6104 necessary because we skipped some symbols when we first
6105 read in the compilation unit (see load_partial_dies).
6106 This problem could be avoided, but the benefit is unclear. */
6107 if (this_cu->cu != NULL)
6108 free_one_cached_comp_unit (this_cu);
6109
6110 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6111 info.want_partial_unit = want_partial_unit;
6112 info.pretend_language = pretend_language;
0018ea6f
DE
6113 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6114 process_psymtab_comp_unit_reader,
b93601f3 6115 &info);
0018ea6f
DE
6116
6117 /* Age out any secondary CUs. */
6118 age_cached_comp_units ();
6119}
f4dc4d17
DE
6120
6121/* Reader function for build_type_psymtabs. */
6122
6123static void
6124build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6125 const gdb_byte *info_ptr,
f4dc4d17
DE
6126 struct die_info *type_unit_die,
6127 int has_children,
6128 void *data)
6129{
6130 struct objfile *objfile = dwarf2_per_objfile->objfile;
6131 struct dwarf2_cu *cu = reader->cu;
6132 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6133 struct signatured_type *sig_type;
f4dc4d17
DE
6134 struct type_unit_group *tu_group;
6135 struct attribute *attr;
6136 struct partial_die_info *first_die;
6137 CORE_ADDR lowpc, highpc;
6138 struct partial_symtab *pst;
6139
6140 gdb_assert (data == NULL);
0186c6a7
DE
6141 gdb_assert (per_cu->is_debug_types);
6142 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6143
6144 if (! has_children)
6145 return;
6146
6147 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6148 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6149
0186c6a7 6150 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6151
6152 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6153 cu->list_in_scope = &file_symbols;
6154 pst = create_partial_symtab (per_cu, "");
6155 pst->anonymous = 1;
6156
6157 first_die = load_partial_dies (reader, info_ptr, 1);
6158
6159 lowpc = (CORE_ADDR) -1;
6160 highpc = (CORE_ADDR) 0;
6161 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6162
6163 pst->n_global_syms = objfile->global_psymbols.next -
6164 (objfile->global_psymbols.list + pst->globals_offset);
6165 pst->n_static_syms = objfile->static_psymbols.next -
6166 (objfile->static_psymbols.list + pst->statics_offset);
5c80ed9d 6167 sort_pst_symbols (objfile, pst);
f4dc4d17
DE
6168}
6169
6170/* Traversal function for build_type_psymtabs. */
6171
6172static int
6173build_type_psymtab_dependencies (void **slot, void *info)
6174{
6175 struct objfile *objfile = dwarf2_per_objfile->objfile;
6176 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6177 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6178 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6179 int len = VEC_length (sig_type_ptr, tu_group->tus);
6180 struct signatured_type *iter;
f4dc4d17
DE
6181 int i;
6182
6183 gdb_assert (len > 0);
0186c6a7 6184 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6185
6186 pst->number_of_dependencies = len;
6187 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6188 len * sizeof (struct psymtab *));
6189 for (i = 0;
0186c6a7 6190 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6191 ++i)
6192 {
0186c6a7
DE
6193 gdb_assert (iter->per_cu.is_debug_types);
6194 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6195 iter->type_unit_group = tu_group;
f4dc4d17
DE
6196 }
6197
0186c6a7 6198 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6199
6200 return 1;
6201}
6202
6203/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6204 Build partial symbol tables for the .debug_types comp-units. */
6205
6206static void
6207build_type_psymtabs (struct objfile *objfile)
6208{
0e50663e 6209 if (! create_all_type_units (objfile))
348e048f
DE
6210 return;
6211
f4dc4d17
DE
6212 build_type_unit_groups (build_type_psymtabs_reader, NULL);
6213
6214 /* Now that all TUs have been processed we can fill in the dependencies. */
6215 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6216 build_type_psymtab_dependencies, NULL);
348e048f
DE
6217}
6218
60606b2c
TT
6219/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6220
6221static void
6222psymtabs_addrmap_cleanup (void *o)
6223{
6224 struct objfile *objfile = o;
ec61707d 6225
60606b2c
TT
6226 objfile->psymtabs_addrmap = NULL;
6227}
6228
95554aad
TT
6229/* Compute the 'user' field for each psymtab in OBJFILE. */
6230
6231static void
6232set_partial_user (struct objfile *objfile)
6233{
6234 int i;
6235
6236 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6237 {
6238 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6239 struct partial_symtab *pst = per_cu->v.psymtab;
6240 int j;
6241
36586728
TT
6242 if (pst == NULL)
6243 continue;
6244
95554aad
TT
6245 for (j = 0; j < pst->number_of_dependencies; ++j)
6246 {
6247 /* Set the 'user' field only if it is not already set. */
6248 if (pst->dependencies[j]->user == NULL)
6249 pst->dependencies[j]->user = pst;
6250 }
6251 }
6252}
6253
93311388
DE
6254/* Build the partial symbol table by doing a quick pass through the
6255 .debug_info and .debug_abbrev sections. */
72bf9492 6256
93311388 6257static void
c67a9c90 6258dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6259{
60606b2c
TT
6260 struct cleanup *back_to, *addrmap_cleanup;
6261 struct obstack temp_obstack;
21b2bd31 6262 int i;
93311388 6263
45cfd468
DE
6264 if (dwarf2_read_debug)
6265 {
6266 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6267 objfile_name (objfile));
45cfd468
DE
6268 }
6269
98bfdba5
PA
6270 dwarf2_per_objfile->reading_partial_symbols = 1;
6271
be391dca 6272 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6273
93311388
DE
6274 /* Any cached compilation units will be linked by the per-objfile
6275 read_in_chain. Make sure to free them when we're done. */
6276 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6277
348e048f
DE
6278 build_type_psymtabs (objfile);
6279
93311388 6280 create_all_comp_units (objfile);
c906108c 6281
60606b2c
TT
6282 /* Create a temporary address map on a temporary obstack. We later
6283 copy this to the final obstack. */
6284 obstack_init (&temp_obstack);
6285 make_cleanup_obstack_free (&temp_obstack);
6286 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6287 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6288
21b2bd31 6289 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6290 {
21b2bd31 6291 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
aaa75496 6292
b93601f3 6293 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6294 }
ff013f42 6295
95554aad
TT
6296 set_partial_user (objfile);
6297
ff013f42
JK
6298 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6299 &objfile->objfile_obstack);
60606b2c 6300 discard_cleanups (addrmap_cleanup);
ff013f42 6301
ae038cb0 6302 do_cleanups (back_to);
45cfd468
DE
6303
6304 if (dwarf2_read_debug)
6305 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6306 objfile_name (objfile));
ae038cb0
DJ
6307}
6308
3019eac3 6309/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6310
6311static void
dee91e82 6312load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6313 const gdb_byte *info_ptr,
dee91e82
DE
6314 struct die_info *comp_unit_die,
6315 int has_children,
6316 void *data)
ae038cb0 6317{
dee91e82 6318 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6319
95554aad 6320 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6321
ae038cb0
DJ
6322 /* Check if comp unit has_children.
6323 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6324 If not, there's no more debug_info for this comp unit. */
d85a05f0 6325 if (has_children)
dee91e82
DE
6326 load_partial_dies (reader, info_ptr, 0);
6327}
98bfdba5 6328
dee91e82
DE
6329/* Load the partial DIEs for a secondary CU into memory.
6330 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6331
dee91e82
DE
6332static void
6333load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6334{
f4dc4d17
DE
6335 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6336 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6337}
6338
ae038cb0 6339static void
36586728
TT
6340read_comp_units_from_section (struct objfile *objfile,
6341 struct dwarf2_section_info *section,
6342 unsigned int is_dwz,
6343 int *n_allocated,
6344 int *n_comp_units,
6345 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6346{
d521ce57 6347 const gdb_byte *info_ptr;
a32a8923 6348 bfd *abfd = get_section_bfd_owner (section);
be391dca 6349
bf6af496
DE
6350 if (dwarf2_read_debug)
6351 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6352 get_section_name (section),
6353 get_section_file_name (section));
bf6af496 6354
36586728 6355 dwarf2_read_section (objfile, section);
ae038cb0 6356
36586728 6357 info_ptr = section->buffer;
6e70227d 6358
36586728 6359 while (info_ptr < section->buffer + section->size)
ae038cb0 6360 {
c764a876 6361 unsigned int length, initial_length_size;
ae038cb0 6362 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6363 sect_offset offset;
ae038cb0 6364
36586728 6365 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6366
6367 /* Read just enough information to find out where the next
6368 compilation unit is. */
36586728 6369 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6370
6371 /* Save the compilation unit for later lookup. */
6372 this_cu = obstack_alloc (&objfile->objfile_obstack,
6373 sizeof (struct dwarf2_per_cu_data));
6374 memset (this_cu, 0, sizeof (*this_cu));
6375 this_cu->offset = offset;
c764a876 6376 this_cu->length = length + initial_length_size;
36586728 6377 this_cu->is_dwz = is_dwz;
9291a0cd 6378 this_cu->objfile = objfile;
8a0459fd 6379 this_cu->section = section;
ae038cb0 6380
36586728 6381 if (*n_comp_units == *n_allocated)
ae038cb0 6382 {
36586728
TT
6383 *n_allocated *= 2;
6384 *all_comp_units = xrealloc (*all_comp_units,
6385 *n_allocated
6386 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 6387 }
36586728
TT
6388 (*all_comp_units)[*n_comp_units] = this_cu;
6389 ++*n_comp_units;
ae038cb0
DJ
6390
6391 info_ptr = info_ptr + this_cu->length;
6392 }
36586728
TT
6393}
6394
6395/* Create a list of all compilation units in OBJFILE.
6396 This is only done for -readnow and building partial symtabs. */
6397
6398static void
6399create_all_comp_units (struct objfile *objfile)
6400{
6401 int n_allocated;
6402 int n_comp_units;
6403 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6404 struct dwz_file *dwz;
36586728
TT
6405
6406 n_comp_units = 0;
6407 n_allocated = 10;
6408 all_comp_units = xmalloc (n_allocated
6409 * sizeof (struct dwarf2_per_cu_data *));
6410
6411 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6412 &n_allocated, &n_comp_units, &all_comp_units);
6413
4db1a1dc
TT
6414 dwz = dwarf2_get_dwz_file ();
6415 if (dwz != NULL)
6416 read_comp_units_from_section (objfile, &dwz->info, 1,
6417 &n_allocated, &n_comp_units,
6418 &all_comp_units);
ae038cb0
DJ
6419
6420 dwarf2_per_objfile->all_comp_units
6421 = obstack_alloc (&objfile->objfile_obstack,
6422 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6423 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6424 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6425 xfree (all_comp_units);
6426 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6427}
6428
5734ee8b
DJ
6429/* Process all loaded DIEs for compilation unit CU, starting at
6430 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6431 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6432 DW_AT_ranges). If NEED_PC is set, then this function will set
6433 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6434 and record the covered ranges in the addrmap. */
c906108c 6435
72bf9492
DJ
6436static void
6437scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 6438 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 6439{
72bf9492 6440 struct partial_die_info *pdi;
c906108c 6441
91c24f0a
DC
6442 /* Now, march along the PDI's, descending into ones which have
6443 interesting children but skipping the children of the other ones,
6444 until we reach the end of the compilation unit. */
c906108c 6445
72bf9492 6446 pdi = first_die;
91c24f0a 6447
72bf9492
DJ
6448 while (pdi != NULL)
6449 {
6450 fixup_partial_die (pdi, cu);
c906108c 6451
f55ee35c 6452 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6453 children, so we need to look at them. Ditto for anonymous
6454 enums. */
933c6fe4 6455
72bf9492 6456 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6457 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6458 || pdi->tag == DW_TAG_imported_unit)
c906108c 6459 {
72bf9492 6460 switch (pdi->tag)
c906108c
SS
6461 {
6462 case DW_TAG_subprogram:
5734ee8b 6463 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 6464 break;
72929c62 6465 case DW_TAG_constant:
c906108c
SS
6466 case DW_TAG_variable:
6467 case DW_TAG_typedef:
91c24f0a 6468 case DW_TAG_union_type:
72bf9492 6469 if (!pdi->is_declaration)
63d06c5c 6470 {
72bf9492 6471 add_partial_symbol (pdi, cu);
63d06c5c
DC
6472 }
6473 break;
c906108c 6474 case DW_TAG_class_type:
680b30c7 6475 case DW_TAG_interface_type:
c906108c 6476 case DW_TAG_structure_type:
72bf9492 6477 if (!pdi->is_declaration)
c906108c 6478 {
72bf9492 6479 add_partial_symbol (pdi, cu);
c906108c
SS
6480 }
6481 break;
91c24f0a 6482 case DW_TAG_enumeration_type:
72bf9492
DJ
6483 if (!pdi->is_declaration)
6484 add_partial_enumeration (pdi, cu);
c906108c
SS
6485 break;
6486 case DW_TAG_base_type:
a02abb62 6487 case DW_TAG_subrange_type:
c906108c 6488 /* File scope base type definitions are added to the partial
c5aa993b 6489 symbol table. */
72bf9492 6490 add_partial_symbol (pdi, cu);
c906108c 6491 break;
d9fa45fe 6492 case DW_TAG_namespace:
5734ee8b 6493 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 6494 break;
5d7cb8df
JK
6495 case DW_TAG_module:
6496 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6497 break;
95554aad
TT
6498 case DW_TAG_imported_unit:
6499 {
6500 struct dwarf2_per_cu_data *per_cu;
6501
f4dc4d17
DE
6502 /* For now we don't handle imported units in type units. */
6503 if (cu->per_cu->is_debug_types)
6504 {
6505 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6506 " supported in type units [in module %s]"),
4262abfb 6507 objfile_name (cu->objfile));
f4dc4d17
DE
6508 }
6509
95554aad 6510 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6511 pdi->is_dwz,
95554aad
TT
6512 cu->objfile);
6513
6514 /* Go read the partial unit, if needed. */
6515 if (per_cu->v.psymtab == NULL)
b93601f3 6516 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6517
f4dc4d17 6518 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6519 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6520 }
6521 break;
74921315
KS
6522 case DW_TAG_imported_declaration:
6523 add_partial_symbol (pdi, cu);
6524 break;
c906108c
SS
6525 default:
6526 break;
6527 }
6528 }
6529
72bf9492
DJ
6530 /* If the die has a sibling, skip to the sibling. */
6531
6532 pdi = pdi->die_sibling;
6533 }
6534}
6535
6536/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6537
72bf9492 6538 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6539 name is concatenated with "::" and the partial DIE's name. For
6540 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6541 Enumerators are an exception; they use the scope of their parent
6542 enumeration type, i.e. the name of the enumeration type is not
6543 prepended to the enumerator.
91c24f0a 6544
72bf9492
DJ
6545 There are two complexities. One is DW_AT_specification; in this
6546 case "parent" means the parent of the target of the specification,
6547 instead of the direct parent of the DIE. The other is compilers
6548 which do not emit DW_TAG_namespace; in this case we try to guess
6549 the fully qualified name of structure types from their members'
6550 linkage names. This must be done using the DIE's children rather
6551 than the children of any DW_AT_specification target. We only need
6552 to do this for structures at the top level, i.e. if the target of
6553 any DW_AT_specification (if any; otherwise the DIE itself) does not
6554 have a parent. */
6555
6556/* Compute the scope prefix associated with PDI's parent, in
6557 compilation unit CU. The result will be allocated on CU's
6558 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6559 field. NULL is returned if no prefix is necessary. */
15d034d0 6560static const char *
72bf9492
DJ
6561partial_die_parent_scope (struct partial_die_info *pdi,
6562 struct dwarf2_cu *cu)
6563{
15d034d0 6564 const char *grandparent_scope;
72bf9492 6565 struct partial_die_info *parent, *real_pdi;
91c24f0a 6566
72bf9492
DJ
6567 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6568 then this means the parent of the specification DIE. */
6569
6570 real_pdi = pdi;
72bf9492 6571 while (real_pdi->has_specification)
36586728
TT
6572 real_pdi = find_partial_die (real_pdi->spec_offset,
6573 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6574
6575 parent = real_pdi->die_parent;
6576 if (parent == NULL)
6577 return NULL;
6578
6579 if (parent->scope_set)
6580 return parent->scope;
6581
6582 fixup_partial_die (parent, cu);
6583
10b3939b 6584 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6585
acebe513
UW
6586 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6587 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6588 Work around this problem here. */
6589 if (cu->language == language_cplus
6e70227d 6590 && parent->tag == DW_TAG_namespace
acebe513
UW
6591 && strcmp (parent->name, "::") == 0
6592 && grandparent_scope == NULL)
6593 {
6594 parent->scope = NULL;
6595 parent->scope_set = 1;
6596 return NULL;
6597 }
6598
9c6c53f7
SA
6599 if (pdi->tag == DW_TAG_enumerator)
6600 /* Enumerators should not get the name of the enumeration as a prefix. */
6601 parent->scope = grandparent_scope;
6602 else if (parent->tag == DW_TAG_namespace
f55ee35c 6603 || parent->tag == DW_TAG_module
72bf9492
DJ
6604 || parent->tag == DW_TAG_structure_type
6605 || parent->tag == DW_TAG_class_type
680b30c7 6606 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6607 || parent->tag == DW_TAG_union_type
6608 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6609 {
6610 if (grandparent_scope == NULL)
6611 parent->scope = parent->name;
6612 else
3e43a32a
MS
6613 parent->scope = typename_concat (&cu->comp_unit_obstack,
6614 grandparent_scope,
f55ee35c 6615 parent->name, 0, cu);
72bf9492 6616 }
72bf9492
DJ
6617 else
6618 {
6619 /* FIXME drow/2004-04-01: What should we be doing with
6620 function-local names? For partial symbols, we should probably be
6621 ignoring them. */
6622 complaint (&symfile_complaints,
e2e0b3e5 6623 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6624 parent->tag, pdi->offset.sect_off);
72bf9492 6625 parent->scope = grandparent_scope;
c906108c
SS
6626 }
6627
72bf9492
DJ
6628 parent->scope_set = 1;
6629 return parent->scope;
6630}
6631
6632/* Return the fully scoped name associated with PDI, from compilation unit
6633 CU. The result will be allocated with malloc. */
4568ecf9 6634
72bf9492
DJ
6635static char *
6636partial_die_full_name (struct partial_die_info *pdi,
6637 struct dwarf2_cu *cu)
6638{
15d034d0 6639 const char *parent_scope;
72bf9492 6640
98bfdba5
PA
6641 /* If this is a template instantiation, we can not work out the
6642 template arguments from partial DIEs. So, unfortunately, we have
6643 to go through the full DIEs. At least any work we do building
6644 types here will be reused if full symbols are loaded later. */
6645 if (pdi->has_template_arguments)
6646 {
6647 fixup_partial_die (pdi, cu);
6648
6649 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6650 {
6651 struct die_info *die;
6652 struct attribute attr;
6653 struct dwarf2_cu *ref_cu = cu;
6654
b64f50a1 6655 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6656 attr.name = 0;
6657 attr.form = DW_FORM_ref_addr;
4568ecf9 6658 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6659 die = follow_die_ref (NULL, &attr, &ref_cu);
6660
6661 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6662 }
6663 }
6664
72bf9492
DJ
6665 parent_scope = partial_die_parent_scope (pdi, cu);
6666 if (parent_scope == NULL)
6667 return NULL;
6668 else
f55ee35c 6669 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6670}
6671
6672static void
72bf9492 6673add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6674{
e7c27a73 6675 struct objfile *objfile = cu->objfile;
c906108c 6676 CORE_ADDR addr = 0;
15d034d0 6677 const char *actual_name = NULL;
e142c38c 6678 CORE_ADDR baseaddr;
15d034d0 6679 char *built_actual_name;
e142c38c
DJ
6680
6681 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6682
15d034d0
TT
6683 built_actual_name = partial_die_full_name (pdi, cu);
6684 if (built_actual_name != NULL)
6685 actual_name = built_actual_name;
63d06c5c 6686
72bf9492
DJ
6687 if (actual_name == NULL)
6688 actual_name = pdi->name;
6689
c906108c
SS
6690 switch (pdi->tag)
6691 {
6692 case DW_TAG_subprogram:
2cfa0c8d 6693 if (pdi->is_external || cu->language == language_ada)
c906108c 6694 {
2cfa0c8d
JB
6695 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6696 of the global scope. But in Ada, we want to be able to access
6697 nested procedures globally. So all Ada subprograms are stored
6698 in the global scope. */
f47fb265 6699 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6700 mst_text, objfile); */
f47fb265 6701 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6702 built_actual_name != NULL,
f47fb265
MS
6703 VAR_DOMAIN, LOC_BLOCK,
6704 &objfile->global_psymbols,
6705 0, pdi->lowpc + baseaddr,
6706 cu->language, objfile);
c906108c
SS
6707 }
6708 else
6709 {
f47fb265 6710 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6711 mst_file_text, objfile); */
f47fb265 6712 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6713 built_actual_name != NULL,
f47fb265
MS
6714 VAR_DOMAIN, LOC_BLOCK,
6715 &objfile->static_psymbols,
6716 0, pdi->lowpc + baseaddr,
6717 cu->language, objfile);
c906108c
SS
6718 }
6719 break;
72929c62
JB
6720 case DW_TAG_constant:
6721 {
6722 struct psymbol_allocation_list *list;
6723
6724 if (pdi->is_external)
6725 list = &objfile->global_psymbols;
6726 else
6727 list = &objfile->static_psymbols;
f47fb265 6728 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6729 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
f47fb265 6730 list, 0, 0, cu->language, objfile);
72929c62
JB
6731 }
6732 break;
c906108c 6733 case DW_TAG_variable:
95554aad
TT
6734 if (pdi->d.locdesc)
6735 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6736
95554aad 6737 if (pdi->d.locdesc
caac4577
JG
6738 && addr == 0
6739 && !dwarf2_per_objfile->has_section_at_zero)
6740 {
6741 /* A global or static variable may also have been stripped
6742 out by the linker if unused, in which case its address
6743 will be nullified; do not add such variables into partial
6744 symbol table then. */
6745 }
6746 else if (pdi->is_external)
c906108c
SS
6747 {
6748 /* Global Variable.
6749 Don't enter into the minimal symbol tables as there is
6750 a minimal symbol table entry from the ELF symbols already.
6751 Enter into partial symbol table if it has a location
6752 descriptor or a type.
6753 If the location descriptor is missing, new_symbol will create
6754 a LOC_UNRESOLVED symbol, the address of the variable will then
6755 be determined from the minimal symbol table whenever the variable
6756 is referenced.
6757 The address for the partial symbol table entry is not
6758 used by GDB, but it comes in handy for debugging partial symbol
6759 table building. */
6760
95554aad 6761 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6762 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6763 built_actual_name != NULL,
f47fb265
MS
6764 VAR_DOMAIN, LOC_STATIC,
6765 &objfile->global_psymbols,
6766 0, addr + baseaddr,
6767 cu->language, objfile);
c906108c
SS
6768 }
6769 else
6770 {
0963b4bd 6771 /* Static Variable. Skip symbols without location descriptors. */
95554aad 6772 if (pdi->d.locdesc == NULL)
decbce07 6773 {
15d034d0 6774 xfree (built_actual_name);
decbce07
MS
6775 return;
6776 }
f47fb265 6777 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 6778 mst_file_data, objfile); */
f47fb265 6779 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6780 built_actual_name != NULL,
f47fb265
MS
6781 VAR_DOMAIN, LOC_STATIC,
6782 &objfile->static_psymbols,
6783 0, addr + baseaddr,
6784 cu->language, objfile);
c906108c
SS
6785 }
6786 break;
6787 case DW_TAG_typedef:
6788 case DW_TAG_base_type:
a02abb62 6789 case DW_TAG_subrange_type:
38d518c9 6790 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6791 built_actual_name != NULL,
176620f1 6792 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6793 &objfile->static_psymbols,
e142c38c 6794 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6795 break;
74921315 6796 case DW_TAG_imported_declaration:
72bf9492
DJ
6797 case DW_TAG_namespace:
6798 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6799 built_actual_name != NULL,
72bf9492
DJ
6800 VAR_DOMAIN, LOC_TYPEDEF,
6801 &objfile->global_psymbols,
6802 0, (CORE_ADDR) 0, cu->language, objfile);
6803 break;
c906108c 6804 case DW_TAG_class_type:
680b30c7 6805 case DW_TAG_interface_type:
c906108c
SS
6806 case DW_TAG_structure_type:
6807 case DW_TAG_union_type:
6808 case DW_TAG_enumeration_type:
fa4028e9
JB
6809 /* Skip external references. The DWARF standard says in the section
6810 about "Structure, Union, and Class Type Entries": "An incomplete
6811 structure, union or class type is represented by a structure,
6812 union or class entry that does not have a byte size attribute
6813 and that has a DW_AT_declaration attribute." */
6814 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 6815 {
15d034d0 6816 xfree (built_actual_name);
decbce07
MS
6817 return;
6818 }
fa4028e9 6819
63d06c5c
DC
6820 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6821 static vs. global. */
38d518c9 6822 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6823 built_actual_name != NULL,
176620f1 6824 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
6825 (cu->language == language_cplus
6826 || cu->language == language_java)
63d06c5c
DC
6827 ? &objfile->global_psymbols
6828 : &objfile->static_psymbols,
e142c38c 6829 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6830
c906108c
SS
6831 break;
6832 case DW_TAG_enumerator:
38d518c9 6833 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6834 built_actual_name != NULL,
176620f1 6835 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6836 (cu->language == language_cplus
6837 || cu->language == language_java)
f6fe98ef
DJ
6838 ? &objfile->global_psymbols
6839 : &objfile->static_psymbols,
e142c38c 6840 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
6841 break;
6842 default:
6843 break;
6844 }
5c4e30ca 6845
15d034d0 6846 xfree (built_actual_name);
c906108c
SS
6847}
6848
5c4e30ca
DC
6849/* Read a partial die corresponding to a namespace; also, add a symbol
6850 corresponding to that namespace to the symbol table. NAMESPACE is
6851 the name of the enclosing namespace. */
91c24f0a 6852
72bf9492
DJ
6853static void
6854add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 6855 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6856 int need_pc, struct dwarf2_cu *cu)
91c24f0a 6857{
72bf9492 6858 /* Add a symbol for the namespace. */
e7c27a73 6859
72bf9492 6860 add_partial_symbol (pdi, cu);
5c4e30ca
DC
6861
6862 /* Now scan partial symbols in that namespace. */
6863
91c24f0a 6864 if (pdi->has_children)
5734ee8b 6865 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
6866}
6867
5d7cb8df
JK
6868/* Read a partial die corresponding to a Fortran module. */
6869
6870static void
6871add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6872 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6873{
f55ee35c 6874 /* Now scan partial symbols in that module. */
5d7cb8df
JK
6875
6876 if (pdi->has_children)
6877 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6878}
6879
bc30ff58
JB
6880/* Read a partial die corresponding to a subprogram and create a partial
6881 symbol for that subprogram. When the CU language allows it, this
6882 routine also defines a partial symbol for each nested subprogram
6883 that this subprogram contains.
6e70227d 6884
bc30ff58
JB
6885 DIE my also be a lexical block, in which case we simply search
6886 recursively for suprograms defined inside that lexical block.
6887 Again, this is only performed when the CU language allows this
6888 type of definitions. */
6889
6890static void
6891add_partial_subprogram (struct partial_die_info *pdi,
6892 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6893 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
6894{
6895 if (pdi->tag == DW_TAG_subprogram)
6896 {
6897 if (pdi->has_pc_info)
6898 {
6899 if (pdi->lowpc < *lowpc)
6900 *lowpc = pdi->lowpc;
6901 if (pdi->highpc > *highpc)
6902 *highpc = pdi->highpc;
5734ee8b
DJ
6903 if (need_pc)
6904 {
6905 CORE_ADDR baseaddr;
6906 struct objfile *objfile = cu->objfile;
6907
6908 baseaddr = ANOFFSET (objfile->section_offsets,
6909 SECT_OFF_TEXT (objfile));
6910 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
6911 pdi->lowpc + baseaddr,
6912 pdi->highpc - 1 + baseaddr,
9291a0cd 6913 cu->per_cu->v.psymtab);
5734ee8b 6914 }
481860b3
GB
6915 }
6916
6917 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6918 {
bc30ff58 6919 if (!pdi->is_declaration)
e8d05480
JB
6920 /* Ignore subprogram DIEs that do not have a name, they are
6921 illegal. Do not emit a complaint at this point, we will
6922 do so when we convert this psymtab into a symtab. */
6923 if (pdi->name)
6924 add_partial_symbol (pdi, cu);
bc30ff58
JB
6925 }
6926 }
6e70227d 6927
bc30ff58
JB
6928 if (! pdi->has_children)
6929 return;
6930
6931 if (cu->language == language_ada)
6932 {
6933 pdi = pdi->die_child;
6934 while (pdi != NULL)
6935 {
6936 fixup_partial_die (pdi, cu);
6937 if (pdi->tag == DW_TAG_subprogram
6938 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 6939 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
6940 pdi = pdi->die_sibling;
6941 }
6942 }
6943}
6944
91c24f0a
DC
6945/* Read a partial die corresponding to an enumeration type. */
6946
72bf9492
DJ
6947static void
6948add_partial_enumeration (struct partial_die_info *enum_pdi,
6949 struct dwarf2_cu *cu)
91c24f0a 6950{
72bf9492 6951 struct partial_die_info *pdi;
91c24f0a
DC
6952
6953 if (enum_pdi->name != NULL)
72bf9492
DJ
6954 add_partial_symbol (enum_pdi, cu);
6955
6956 pdi = enum_pdi->die_child;
6957 while (pdi)
91c24f0a 6958 {
72bf9492 6959 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 6960 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 6961 else
72bf9492
DJ
6962 add_partial_symbol (pdi, cu);
6963 pdi = pdi->die_sibling;
91c24f0a 6964 }
91c24f0a
DC
6965}
6966
6caca83c
CC
6967/* Return the initial uleb128 in the die at INFO_PTR. */
6968
6969static unsigned int
d521ce57 6970peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
6971{
6972 unsigned int bytes_read;
6973
6974 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6975}
6976
4bb7a0a7
DJ
6977/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6978 Return the corresponding abbrev, or NULL if the number is zero (indicating
6979 an empty DIE). In either case *BYTES_READ will be set to the length of
6980 the initial number. */
6981
6982static struct abbrev_info *
d521ce57 6983peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 6984 struct dwarf2_cu *cu)
4bb7a0a7
DJ
6985{
6986 bfd *abfd = cu->objfile->obfd;
6987 unsigned int abbrev_number;
6988 struct abbrev_info *abbrev;
6989
6990 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6991
6992 if (abbrev_number == 0)
6993 return NULL;
6994
433df2d4 6995 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
6996 if (!abbrev)
6997 {
3e43a32a
MS
6998 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6999 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
7000 }
7001
7002 return abbrev;
7003}
7004
93311388
DE
7005/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7006 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7007 DIE. Any children of the skipped DIEs will also be skipped. */
7008
d521ce57
TT
7009static const gdb_byte *
7010skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7011{
dee91e82 7012 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7013 struct abbrev_info *abbrev;
7014 unsigned int bytes_read;
7015
7016 while (1)
7017 {
7018 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7019 if (abbrev == NULL)
7020 return info_ptr + bytes_read;
7021 else
dee91e82 7022 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7023 }
7024}
7025
93311388
DE
7026/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7027 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7028 abbrev corresponding to that skipped uleb128 should be passed in
7029 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7030 children. */
7031
d521ce57
TT
7032static const gdb_byte *
7033skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7034 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7035{
7036 unsigned int bytes_read;
7037 struct attribute attr;
dee91e82
DE
7038 bfd *abfd = reader->abfd;
7039 struct dwarf2_cu *cu = reader->cu;
d521ce57 7040 const gdb_byte *buffer = reader->buffer;
f664829e 7041 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7042 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7043 unsigned int form, i;
7044
7045 for (i = 0; i < abbrev->num_attrs; i++)
7046 {
7047 /* The only abbrev we care about is DW_AT_sibling. */
7048 if (abbrev->attrs[i].name == DW_AT_sibling)
7049 {
dee91e82 7050 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7051 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7052 complaint (&symfile_complaints,
7053 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7054 else
b9502d3f
WN
7055 {
7056 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7057 const gdb_byte *sibling_ptr = buffer + off;
7058
7059 if (sibling_ptr < info_ptr)
7060 complaint (&symfile_complaints,
7061 _("DW_AT_sibling points backwards"));
7062 else
7063 return sibling_ptr;
7064 }
4bb7a0a7
DJ
7065 }
7066
7067 /* If it isn't DW_AT_sibling, skip this attribute. */
7068 form = abbrev->attrs[i].form;
7069 skip_attribute:
7070 switch (form)
7071 {
4bb7a0a7 7072 case DW_FORM_ref_addr:
ae411497
TT
7073 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7074 and later it is offset sized. */
7075 if (cu->header.version == 2)
7076 info_ptr += cu->header.addr_size;
7077 else
7078 info_ptr += cu->header.offset_size;
7079 break;
36586728
TT
7080 case DW_FORM_GNU_ref_alt:
7081 info_ptr += cu->header.offset_size;
7082 break;
ae411497 7083 case DW_FORM_addr:
4bb7a0a7
DJ
7084 info_ptr += cu->header.addr_size;
7085 break;
7086 case DW_FORM_data1:
7087 case DW_FORM_ref1:
7088 case DW_FORM_flag:
7089 info_ptr += 1;
7090 break;
2dc7f7b3
TT
7091 case DW_FORM_flag_present:
7092 break;
4bb7a0a7
DJ
7093 case DW_FORM_data2:
7094 case DW_FORM_ref2:
7095 info_ptr += 2;
7096 break;
7097 case DW_FORM_data4:
7098 case DW_FORM_ref4:
7099 info_ptr += 4;
7100 break;
7101 case DW_FORM_data8:
7102 case DW_FORM_ref8:
55f1336d 7103 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7104 info_ptr += 8;
7105 break;
7106 case DW_FORM_string:
9b1c24c8 7107 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7108 info_ptr += bytes_read;
7109 break;
2dc7f7b3 7110 case DW_FORM_sec_offset:
4bb7a0a7 7111 case DW_FORM_strp:
36586728 7112 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7113 info_ptr += cu->header.offset_size;
7114 break;
2dc7f7b3 7115 case DW_FORM_exprloc:
4bb7a0a7
DJ
7116 case DW_FORM_block:
7117 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7118 info_ptr += bytes_read;
7119 break;
7120 case DW_FORM_block1:
7121 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7122 break;
7123 case DW_FORM_block2:
7124 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7125 break;
7126 case DW_FORM_block4:
7127 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7128 break;
7129 case DW_FORM_sdata:
7130 case DW_FORM_udata:
7131 case DW_FORM_ref_udata:
3019eac3
DE
7132 case DW_FORM_GNU_addr_index:
7133 case DW_FORM_GNU_str_index:
d521ce57 7134 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7135 break;
7136 case DW_FORM_indirect:
7137 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7138 info_ptr += bytes_read;
7139 /* We need to continue parsing from here, so just go back to
7140 the top. */
7141 goto skip_attribute;
7142
7143 default:
3e43a32a
MS
7144 error (_("Dwarf Error: Cannot handle %s "
7145 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7146 dwarf_form_name (form),
7147 bfd_get_filename (abfd));
7148 }
7149 }
7150
7151 if (abbrev->has_children)
dee91e82 7152 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7153 else
7154 return info_ptr;
7155}
7156
93311388 7157/* Locate ORIG_PDI's sibling.
dee91e82 7158 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7159
d521ce57 7160static const gdb_byte *
dee91e82
DE
7161locate_pdi_sibling (const struct die_reader_specs *reader,
7162 struct partial_die_info *orig_pdi,
d521ce57 7163 const gdb_byte *info_ptr)
91c24f0a
DC
7164{
7165 /* Do we know the sibling already? */
72bf9492 7166
91c24f0a
DC
7167 if (orig_pdi->sibling)
7168 return orig_pdi->sibling;
7169
7170 /* Are there any children to deal with? */
7171
7172 if (!orig_pdi->has_children)
7173 return info_ptr;
7174
4bb7a0a7 7175 /* Skip the children the long way. */
91c24f0a 7176
dee91e82 7177 return skip_children (reader, info_ptr);
91c24f0a
DC
7178}
7179
257e7a09 7180/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7181 not NULL. */
c906108c
SS
7182
7183static void
257e7a09
YQ
7184dwarf2_read_symtab (struct partial_symtab *self,
7185 struct objfile *objfile)
c906108c 7186{
257e7a09 7187 if (self->readin)
c906108c 7188 {
442e4d9c 7189 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7190 self->filename);
442e4d9c
YQ
7191 }
7192 else
7193 {
7194 if (info_verbose)
c906108c 7195 {
442e4d9c 7196 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7197 self->filename);
442e4d9c 7198 gdb_flush (gdb_stdout);
c906108c 7199 }
c906108c 7200
442e4d9c
YQ
7201 /* Restore our global data. */
7202 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 7203
442e4d9c
YQ
7204 /* If this psymtab is constructed from a debug-only objfile, the
7205 has_section_at_zero flag will not necessarily be correct. We
7206 can get the correct value for this flag by looking at the data
7207 associated with the (presumably stripped) associated objfile. */
7208 if (objfile->separate_debug_objfile_backlink)
7209 {
7210 struct dwarf2_per_objfile *dpo_backlink
7211 = objfile_data (objfile->separate_debug_objfile_backlink,
7212 dwarf2_objfile_data_key);
9a619af0 7213
442e4d9c
YQ
7214 dwarf2_per_objfile->has_section_at_zero
7215 = dpo_backlink->has_section_at_zero;
7216 }
b2ab525c 7217
442e4d9c 7218 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7219
257e7a09 7220 psymtab_to_symtab_1 (self);
c906108c 7221
442e4d9c
YQ
7222 /* Finish up the debug error message. */
7223 if (info_verbose)
7224 printf_filtered (_("done.\n"));
c906108c 7225 }
95554aad
TT
7226
7227 process_cu_includes ();
c906108c 7228}
9cdd5dbd
DE
7229\f
7230/* Reading in full CUs. */
c906108c 7231
10b3939b
DJ
7232/* Add PER_CU to the queue. */
7233
7234static void
95554aad
TT
7235queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7236 enum language pretend_language)
10b3939b
DJ
7237{
7238 struct dwarf2_queue_item *item;
7239
7240 per_cu->queued = 1;
7241 item = xmalloc (sizeof (*item));
7242 item->per_cu = per_cu;
95554aad 7243 item->pretend_language = pretend_language;
10b3939b
DJ
7244 item->next = NULL;
7245
7246 if (dwarf2_queue == NULL)
7247 dwarf2_queue = item;
7248 else
7249 dwarf2_queue_tail->next = item;
7250
7251 dwarf2_queue_tail = item;
7252}
7253
89e63ee4
DE
7254/* If PER_CU is not yet queued, add it to the queue.
7255 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7256 dependency.
0907af0c 7257 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7258 meaning either PER_CU is already queued or it is already loaded.
7259
7260 N.B. There is an invariant here that if a CU is queued then it is loaded.
7261 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7262
7263static int
89e63ee4 7264maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7265 struct dwarf2_per_cu_data *per_cu,
7266 enum language pretend_language)
7267{
7268 /* We may arrive here during partial symbol reading, if we need full
7269 DIEs to process an unusual case (e.g. template arguments). Do
7270 not queue PER_CU, just tell our caller to load its DIEs. */
7271 if (dwarf2_per_objfile->reading_partial_symbols)
7272 {
7273 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7274 return 1;
7275 return 0;
7276 }
7277
7278 /* Mark the dependence relation so that we don't flush PER_CU
7279 too early. */
89e63ee4
DE
7280 if (dependent_cu != NULL)
7281 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7282
7283 /* If it's already on the queue, we have nothing to do. */
7284 if (per_cu->queued)
7285 return 0;
7286
7287 /* If the compilation unit is already loaded, just mark it as
7288 used. */
7289 if (per_cu->cu != NULL)
7290 {
7291 per_cu->cu->last_used = 0;
7292 return 0;
7293 }
7294
7295 /* Add it to the queue. */
7296 queue_comp_unit (per_cu, pretend_language);
7297
7298 return 1;
7299}
7300
10b3939b
DJ
7301/* Process the queue. */
7302
7303static void
a0f42c21 7304process_queue (void)
10b3939b
DJ
7305{
7306 struct dwarf2_queue_item *item, *next_item;
7307
45cfd468
DE
7308 if (dwarf2_read_debug)
7309 {
7310 fprintf_unfiltered (gdb_stdlog,
7311 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7312 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7313 }
7314
03dd20cc
DJ
7315 /* The queue starts out with one item, but following a DIE reference
7316 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7317 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7318 {
9291a0cd
TT
7319 if (dwarf2_per_objfile->using_index
7320 ? !item->per_cu->v.quick->symtab
7321 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
f4dc4d17
DE
7322 {
7323 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7324 unsigned int debug_print_threshold;
247f5c4f 7325 char buf[100];
f4dc4d17 7326
247f5c4f 7327 if (per_cu->is_debug_types)
f4dc4d17 7328 {
247f5c4f
DE
7329 struct signatured_type *sig_type =
7330 (struct signatured_type *) per_cu;
7331
7332 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7333 hex_string (sig_type->signature),
7334 per_cu->offset.sect_off);
7335 /* There can be 100s of TUs.
7336 Only print them in verbose mode. */
7337 debug_print_threshold = 2;
f4dc4d17 7338 }
247f5c4f 7339 else
73be47f5
DE
7340 {
7341 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7342 debug_print_threshold = 1;
7343 }
247f5c4f 7344
73be47f5 7345 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7346 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7347
7348 if (per_cu->is_debug_types)
7349 process_full_type_unit (per_cu, item->pretend_language);
7350 else
7351 process_full_comp_unit (per_cu, item->pretend_language);
7352
73be47f5 7353 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7354 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7355 }
10b3939b
DJ
7356
7357 item->per_cu->queued = 0;
7358 next_item = item->next;
7359 xfree (item);
7360 }
7361
7362 dwarf2_queue_tail = NULL;
45cfd468
DE
7363
7364 if (dwarf2_read_debug)
7365 {
7366 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7367 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7368 }
10b3939b
DJ
7369}
7370
7371/* Free all allocated queue entries. This function only releases anything if
7372 an error was thrown; if the queue was processed then it would have been
7373 freed as we went along. */
7374
7375static void
7376dwarf2_release_queue (void *dummy)
7377{
7378 struct dwarf2_queue_item *item, *last;
7379
7380 item = dwarf2_queue;
7381 while (item)
7382 {
7383 /* Anything still marked queued is likely to be in an
7384 inconsistent state, so discard it. */
7385 if (item->per_cu->queued)
7386 {
7387 if (item->per_cu->cu != NULL)
dee91e82 7388 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7389 item->per_cu->queued = 0;
7390 }
7391
7392 last = item;
7393 item = item->next;
7394 xfree (last);
7395 }
7396
7397 dwarf2_queue = dwarf2_queue_tail = NULL;
7398}
7399
7400/* Read in full symbols for PST, and anything it depends on. */
7401
c906108c 7402static void
fba45db2 7403psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7404{
10b3939b 7405 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7406 int i;
7407
95554aad
TT
7408 if (pst->readin)
7409 return;
7410
aaa75496 7411 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7412 if (!pst->dependencies[i]->readin
7413 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7414 {
7415 /* Inform about additional files that need to be read in. */
7416 if (info_verbose)
7417 {
a3f17187 7418 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7419 fputs_filtered (" ", gdb_stdout);
7420 wrap_here ("");
7421 fputs_filtered ("and ", gdb_stdout);
7422 wrap_here ("");
7423 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7424 wrap_here (""); /* Flush output. */
aaa75496
JB
7425 gdb_flush (gdb_stdout);
7426 }
7427 psymtab_to_symtab_1 (pst->dependencies[i]);
7428 }
7429
e38df1d0 7430 per_cu = pst->read_symtab_private;
10b3939b
DJ
7431
7432 if (per_cu == NULL)
aaa75496
JB
7433 {
7434 /* It's an include file, no symbols to read for it.
7435 Everything is in the parent symtab. */
7436 pst->readin = 1;
7437 return;
7438 }
c906108c 7439
a0f42c21 7440 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7441}
7442
dee91e82
DE
7443/* Trivial hash function for die_info: the hash value of a DIE
7444 is its offset in .debug_info for this objfile. */
10b3939b 7445
dee91e82
DE
7446static hashval_t
7447die_hash (const void *item)
10b3939b 7448{
dee91e82 7449 const struct die_info *die = item;
6502dd73 7450
dee91e82
DE
7451 return die->offset.sect_off;
7452}
63d06c5c 7453
dee91e82
DE
7454/* Trivial comparison function for die_info structures: two DIEs
7455 are equal if they have the same offset. */
98bfdba5 7456
dee91e82
DE
7457static int
7458die_eq (const void *item_lhs, const void *item_rhs)
7459{
7460 const struct die_info *die_lhs = item_lhs;
7461 const struct die_info *die_rhs = item_rhs;
c906108c 7462
dee91e82
DE
7463 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7464}
c906108c 7465
dee91e82
DE
7466/* die_reader_func for load_full_comp_unit.
7467 This is identical to read_signatured_type_reader,
7468 but is kept separate for now. */
c906108c 7469
dee91e82
DE
7470static void
7471load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7472 const gdb_byte *info_ptr,
dee91e82
DE
7473 struct die_info *comp_unit_die,
7474 int has_children,
7475 void *data)
7476{
7477 struct dwarf2_cu *cu = reader->cu;
95554aad 7478 enum language *language_ptr = data;
6caca83c 7479
dee91e82
DE
7480 gdb_assert (cu->die_hash == NULL);
7481 cu->die_hash =
7482 htab_create_alloc_ex (cu->header.length / 12,
7483 die_hash,
7484 die_eq,
7485 NULL,
7486 &cu->comp_unit_obstack,
7487 hashtab_obstack_allocate,
7488 dummy_obstack_deallocate);
e142c38c 7489
dee91e82
DE
7490 if (has_children)
7491 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7492 &info_ptr, comp_unit_die);
7493 cu->dies = comp_unit_die;
7494 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7495
7496 /* We try not to read any attributes in this function, because not
9cdd5dbd 7497 all CUs needed for references have been loaded yet, and symbol
10b3939b 7498 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7499 or we won't be able to build types correctly.
7500 Similarly, if we do not read the producer, we can not apply
7501 producer-specific interpretation. */
95554aad 7502 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7503}
10b3939b 7504
dee91e82 7505/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7506
dee91e82 7507static void
95554aad
TT
7508load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7509 enum language pretend_language)
dee91e82 7510{
3019eac3 7511 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7512
f4dc4d17
DE
7513 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7514 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7515}
7516
3da10d80
KS
7517/* Add a DIE to the delayed physname list. */
7518
7519static void
7520add_to_method_list (struct type *type, int fnfield_index, int index,
7521 const char *name, struct die_info *die,
7522 struct dwarf2_cu *cu)
7523{
7524 struct delayed_method_info mi;
7525 mi.type = type;
7526 mi.fnfield_index = fnfield_index;
7527 mi.index = index;
7528 mi.name = name;
7529 mi.die = die;
7530 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7531}
7532
7533/* A cleanup for freeing the delayed method list. */
7534
7535static void
7536free_delayed_list (void *ptr)
7537{
7538 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7539 if (cu->method_list != NULL)
7540 {
7541 VEC_free (delayed_method_info, cu->method_list);
7542 cu->method_list = NULL;
7543 }
7544}
7545
7546/* Compute the physnames of any methods on the CU's method list.
7547
7548 The computation of method physnames is delayed in order to avoid the
7549 (bad) condition that one of the method's formal parameters is of an as yet
7550 incomplete type. */
7551
7552static void
7553compute_delayed_physnames (struct dwarf2_cu *cu)
7554{
7555 int i;
7556 struct delayed_method_info *mi;
7557 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7558 {
1d06ead6 7559 const char *physname;
3da10d80
KS
7560 struct fn_fieldlist *fn_flp
7561 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7562 physname = dwarf2_physname (mi->name, mi->die, cu);
3da10d80
KS
7563 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7564 }
7565}
7566
a766d390
DE
7567/* Go objects should be embedded in a DW_TAG_module DIE,
7568 and it's not clear if/how imported objects will appear.
7569 To keep Go support simple until that's worked out,
7570 go back through what we've read and create something usable.
7571 We could do this while processing each DIE, and feels kinda cleaner,
7572 but that way is more invasive.
7573 This is to, for example, allow the user to type "p var" or "b main"
7574 without having to specify the package name, and allow lookups
7575 of module.object to work in contexts that use the expression
7576 parser. */
7577
7578static void
7579fixup_go_packaging (struct dwarf2_cu *cu)
7580{
7581 char *package_name = NULL;
7582 struct pending *list;
7583 int i;
7584
7585 for (list = global_symbols; list != NULL; list = list->next)
7586 {
7587 for (i = 0; i < list->nsyms; ++i)
7588 {
7589 struct symbol *sym = list->symbol[i];
7590
7591 if (SYMBOL_LANGUAGE (sym) == language_go
7592 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7593 {
7594 char *this_package_name = go_symbol_package_name (sym);
7595
7596 if (this_package_name == NULL)
7597 continue;
7598 if (package_name == NULL)
7599 package_name = this_package_name;
7600 else
7601 {
7602 if (strcmp (package_name, this_package_name) != 0)
7603 complaint (&symfile_complaints,
7604 _("Symtab %s has objects from two different Go packages: %s and %s"),
210bbc17 7605 (SYMBOL_SYMTAB (sym)
05cba821 7606 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
4262abfb 7607 : objfile_name (cu->objfile)),
a766d390
DE
7608 this_package_name, package_name);
7609 xfree (this_package_name);
7610 }
7611 }
7612 }
7613 }
7614
7615 if (package_name != NULL)
7616 {
7617 struct objfile *objfile = cu->objfile;
10f0c4bb
TT
7618 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7619 package_name,
7620 strlen (package_name));
a766d390 7621 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7622 saved_package_name, objfile);
a766d390
DE
7623 struct symbol *sym;
7624
7625 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7626
e623cf5d 7627 sym = allocate_symbol (objfile);
f85f34ed 7628 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7629 SYMBOL_SET_NAMES (sym, saved_package_name,
7630 strlen (saved_package_name), 0, objfile);
a766d390
DE
7631 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7632 e.g., "main" finds the "main" module and not C's main(). */
7633 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7634 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7635 SYMBOL_TYPE (sym) = type;
7636
7637 add_symbol_to_list (sym, &global_symbols);
7638
7639 xfree (package_name);
7640 }
7641}
7642
95554aad
TT
7643/* Return the symtab for PER_CU. This works properly regardless of
7644 whether we're using the index or psymtabs. */
7645
7646static struct symtab *
7647get_symtab (struct dwarf2_per_cu_data *per_cu)
7648{
7649 return (dwarf2_per_objfile->using_index
7650 ? per_cu->v.quick->symtab
7651 : per_cu->v.psymtab->symtab);
7652}
7653
7654/* A helper function for computing the list of all symbol tables
7655 included by PER_CU. */
7656
7657static void
ec94af83
DE
7658recursively_compute_inclusions (VEC (symtab_ptr) **result,
7659 htab_t all_children, htab_t all_type_symtabs,
f9125b6c
TT
7660 struct dwarf2_per_cu_data *per_cu,
7661 struct symtab *immediate_parent)
95554aad
TT
7662{
7663 void **slot;
7664 int ix;
ec94af83 7665 struct symtab *symtab;
95554aad
TT
7666 struct dwarf2_per_cu_data *iter;
7667
7668 slot = htab_find_slot (all_children, per_cu, INSERT);
7669 if (*slot != NULL)
7670 {
7671 /* This inclusion and its children have been processed. */
7672 return;
7673 }
7674
7675 *slot = per_cu;
7676 /* Only add a CU if it has a symbol table. */
ec94af83
DE
7677 symtab = get_symtab (per_cu);
7678 if (symtab != NULL)
7679 {
7680 /* If this is a type unit only add its symbol table if we haven't
7681 seen it yet (type unit per_cu's can share symtabs). */
7682 if (per_cu->is_debug_types)
7683 {
7684 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7685 if (*slot == NULL)
7686 {
7687 *slot = symtab;
7688 VEC_safe_push (symtab_ptr, *result, symtab);
f9125b6c
TT
7689 if (symtab->user == NULL)
7690 symtab->user = immediate_parent;
ec94af83
DE
7691 }
7692 }
7693 else
f9125b6c
TT
7694 {
7695 VEC_safe_push (symtab_ptr, *result, symtab);
7696 if (symtab->user == NULL)
7697 symtab->user = immediate_parent;
7698 }
ec94af83 7699 }
95554aad
TT
7700
7701 for (ix = 0;
796a7ff8 7702 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7703 ++ix)
ec94af83
DE
7704 {
7705 recursively_compute_inclusions (result, all_children,
f9125b6c 7706 all_type_symtabs, iter, symtab);
ec94af83 7707 }
95554aad
TT
7708}
7709
7710/* Compute the symtab 'includes' fields for the symtab related to
7711 PER_CU. */
7712
7713static void
7714compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7715{
f4dc4d17
DE
7716 gdb_assert (! per_cu->is_debug_types);
7717
796a7ff8 7718 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7719 {
7720 int ix, len;
ec94af83
DE
7721 struct dwarf2_per_cu_data *per_cu_iter;
7722 struct symtab *symtab_iter;
7723 VEC (symtab_ptr) *result_symtabs = NULL;
7724 htab_t all_children, all_type_symtabs;
95554aad
TT
7725 struct symtab *symtab = get_symtab (per_cu);
7726
7727 /* If we don't have a symtab, we can just skip this case. */
7728 if (symtab == NULL)
7729 return;
7730
7731 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7732 NULL, xcalloc, xfree);
ec94af83
DE
7733 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7734 NULL, xcalloc, xfree);
95554aad
TT
7735
7736 for (ix = 0;
796a7ff8 7737 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7738 ix, per_cu_iter);
95554aad 7739 ++ix)
ec94af83
DE
7740 {
7741 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c
TT
7742 all_type_symtabs, per_cu_iter,
7743 symtab);
ec94af83 7744 }
95554aad 7745
ec94af83
DE
7746 /* Now we have a transitive closure of all the included symtabs. */
7747 len = VEC_length (symtab_ptr, result_symtabs);
95554aad
TT
7748 symtab->includes
7749 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7750 (len + 1) * sizeof (struct symtab *));
7751 for (ix = 0;
ec94af83 7752 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
95554aad 7753 ++ix)
ec94af83 7754 symtab->includes[ix] = symtab_iter;
95554aad
TT
7755 symtab->includes[len] = NULL;
7756
ec94af83 7757 VEC_free (symtab_ptr, result_symtabs);
95554aad 7758 htab_delete (all_children);
ec94af83 7759 htab_delete (all_type_symtabs);
95554aad
TT
7760 }
7761}
7762
7763/* Compute the 'includes' field for the symtabs of all the CUs we just
7764 read. */
7765
7766static void
7767process_cu_includes (void)
7768{
7769 int ix;
7770 struct dwarf2_per_cu_data *iter;
7771
7772 for (ix = 0;
7773 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7774 ix, iter);
7775 ++ix)
f4dc4d17
DE
7776 {
7777 if (! iter->is_debug_types)
7778 compute_symtab_includes (iter);
7779 }
95554aad
TT
7780
7781 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7782}
7783
9cdd5dbd 7784/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
7785 already been loaded into memory. */
7786
7787static void
95554aad
TT
7788process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7789 enum language pretend_language)
10b3939b 7790{
10b3939b 7791 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 7792 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
7793 CORE_ADDR lowpc, highpc;
7794 struct symtab *symtab;
3da10d80 7795 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 7796 CORE_ADDR baseaddr;
4359dff1 7797 struct block *static_block;
10b3939b
DJ
7798
7799 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7800
10b3939b
DJ
7801 buildsym_init ();
7802 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 7803 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
7804
7805 cu->list_in_scope = &file_symbols;
c906108c 7806
95554aad
TT
7807 cu->language = pretend_language;
7808 cu->language_defn = language_def (cu->language);
7809
c906108c 7810 /* Do line number decoding in read_file_scope () */
10b3939b 7811 process_die (cu->dies, cu);
c906108c 7812
a766d390
DE
7813 /* For now fudge the Go package. */
7814 if (cu->language == language_go)
7815 fixup_go_packaging (cu);
7816
3da10d80
KS
7817 /* Now that we have processed all the DIEs in the CU, all the types
7818 should be complete, and it should now be safe to compute all of the
7819 physnames. */
7820 compute_delayed_physnames (cu);
7821 do_cleanups (delayed_list_cleanup);
7822
fae299cd
DC
7823 /* Some compilers don't define a DW_AT_high_pc attribute for the
7824 compilation unit. If the DW_AT_high_pc is missing, synthesize
7825 it, by scanning the DIE's below the compilation unit. */
10b3939b 7826 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 7827
36586728 7828 static_block
ff546935 7829 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
4359dff1
JK
7830
7831 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7832 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7833 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7834 addrmap to help ensure it has an accurate map of pc values belonging to
7835 this comp unit. */
7836 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7837
7838 symtab = end_symtab_from_static_block (static_block, objfile,
7839 SECT_OFF_TEXT (objfile), 0);
c906108c 7840
8be455d7 7841 if (symtab != NULL)
c906108c 7842 {
df15bd07 7843 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 7844
8be455d7
JK
7845 /* Set symtab language to language from DW_AT_language. If the
7846 compilation is from a C file generated by language preprocessors, do
7847 not set the language if it was already deduced by start_subfile. */
7848 if (!(cu->language == language_c && symtab->language != language_c))
7849 symtab->language = cu->language;
7850
7851 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7852 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
7853 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7854 there were bugs in prologue debug info, fixed later in GCC-4.5
7855 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
7856
7857 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7858 needed, it would be wrong due to missing DW_AT_producer there.
7859
7860 Still one can confuse GDB by using non-standard GCC compilation
7861 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7862 */
ab260dad 7863 if (cu->has_loclist && gcc_4_minor >= 5)
8be455d7 7864 symtab->locations_valid = 1;
e0d00bc7
JK
7865
7866 if (gcc_4_minor >= 5)
7867 symtab->epilogue_unwind_valid = 1;
96408a79
SA
7868
7869 symtab->call_site_htab = cu->call_site_htab;
c906108c 7870 }
9291a0cd
TT
7871
7872 if (dwarf2_per_objfile->using_index)
7873 per_cu->v.quick->symtab = symtab;
7874 else
7875 {
7876 struct partial_symtab *pst = per_cu->v.psymtab;
7877 pst->symtab = symtab;
7878 pst->readin = 1;
7879 }
c906108c 7880
95554aad
TT
7881 /* Push it for inclusion processing later. */
7882 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7883
c906108c 7884 do_cleanups (back_to);
f4dc4d17 7885}
45cfd468 7886
f4dc4d17
DE
7887/* Generate full symbol information for type unit PER_CU, whose DIEs have
7888 already been loaded into memory. */
7889
7890static void
7891process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7892 enum language pretend_language)
7893{
7894 struct dwarf2_cu *cu = per_cu->cu;
7895 struct objfile *objfile = per_cu->objfile;
7896 struct symtab *symtab;
7897 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
7898 struct signatured_type *sig_type;
7899
7900 gdb_assert (per_cu->is_debug_types);
7901 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
7902
7903 buildsym_init ();
7904 back_to = make_cleanup (really_free_pendings, NULL);
7905 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7906
7907 cu->list_in_scope = &file_symbols;
7908
7909 cu->language = pretend_language;
7910 cu->language_defn = language_def (cu->language);
7911
7912 /* The symbol tables are set up in read_type_unit_scope. */
7913 process_die (cu->dies, cu);
7914
7915 /* For now fudge the Go package. */
7916 if (cu->language == language_go)
7917 fixup_go_packaging (cu);
7918
7919 /* Now that we have processed all the DIEs in the CU, all the types
7920 should be complete, and it should now be safe to compute all of the
7921 physnames. */
7922 compute_delayed_physnames (cu);
7923 do_cleanups (delayed_list_cleanup);
7924
7925 /* TUs share symbol tables.
7926 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
7927 of it with end_expandable_symtab. Otherwise, complete the addition of
7928 this TU's symbols to the existing symtab. */
0186c6a7 7929 if (sig_type->type_unit_group->primary_symtab == NULL)
45cfd468 7930 {
f4dc4d17 7931 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
0186c6a7 7932 sig_type->type_unit_group->primary_symtab = symtab;
f4dc4d17
DE
7933
7934 if (symtab != NULL)
7935 {
7936 /* Set symtab language to language from DW_AT_language. If the
7937 compilation is from a C file generated by language preprocessors,
7938 do not set the language if it was already deduced by
7939 start_subfile. */
7940 if (!(cu->language == language_c && symtab->language != language_c))
7941 symtab->language = cu->language;
7942 }
7943 }
7944 else
7945 {
7946 augment_type_symtab (objfile,
0186c6a7
DE
7947 sig_type->type_unit_group->primary_symtab);
7948 symtab = sig_type->type_unit_group->primary_symtab;
f4dc4d17
DE
7949 }
7950
7951 if (dwarf2_per_objfile->using_index)
7952 per_cu->v.quick->symtab = symtab;
7953 else
7954 {
7955 struct partial_symtab *pst = per_cu->v.psymtab;
7956 pst->symtab = symtab;
7957 pst->readin = 1;
45cfd468 7958 }
f4dc4d17
DE
7959
7960 do_cleanups (back_to);
c906108c
SS
7961}
7962
95554aad
TT
7963/* Process an imported unit DIE. */
7964
7965static void
7966process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7967{
7968 struct attribute *attr;
7969
f4dc4d17
DE
7970 /* For now we don't handle imported units in type units. */
7971 if (cu->per_cu->is_debug_types)
7972 {
7973 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7974 " supported in type units [in module %s]"),
4262abfb 7975 objfile_name (cu->objfile));
f4dc4d17
DE
7976 }
7977
95554aad
TT
7978 attr = dwarf2_attr (die, DW_AT_import, cu);
7979 if (attr != NULL)
7980 {
7981 struct dwarf2_per_cu_data *per_cu;
7982 struct symtab *imported_symtab;
7983 sect_offset offset;
36586728 7984 int is_dwz;
95554aad
TT
7985
7986 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
7987 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7988 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 7989
69d751e3 7990 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
7991 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7992 load_full_comp_unit (per_cu, cu->language);
7993
796a7ff8 7994 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
7995 per_cu);
7996 }
7997}
7998
c906108c
SS
7999/* Process a die and its children. */
8000
8001static void
e7c27a73 8002process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
8003{
8004 switch (die->tag)
8005 {
8006 case DW_TAG_padding:
8007 break;
8008 case DW_TAG_compile_unit:
95554aad 8009 case DW_TAG_partial_unit:
e7c27a73 8010 read_file_scope (die, cu);
c906108c 8011 break;
348e048f
DE
8012 case DW_TAG_type_unit:
8013 read_type_unit_scope (die, cu);
8014 break;
c906108c 8015 case DW_TAG_subprogram:
c906108c 8016 case DW_TAG_inlined_subroutine:
edb3359d 8017 read_func_scope (die, cu);
c906108c
SS
8018 break;
8019 case DW_TAG_lexical_block:
14898363
L
8020 case DW_TAG_try_block:
8021 case DW_TAG_catch_block:
e7c27a73 8022 read_lexical_block_scope (die, cu);
c906108c 8023 break;
96408a79
SA
8024 case DW_TAG_GNU_call_site:
8025 read_call_site_scope (die, cu);
8026 break;
c906108c 8027 case DW_TAG_class_type:
680b30c7 8028 case DW_TAG_interface_type:
c906108c
SS
8029 case DW_TAG_structure_type:
8030 case DW_TAG_union_type:
134d01f1 8031 process_structure_scope (die, cu);
c906108c
SS
8032 break;
8033 case DW_TAG_enumeration_type:
134d01f1 8034 process_enumeration_scope (die, cu);
c906108c 8035 break;
134d01f1 8036
f792889a
DJ
8037 /* These dies have a type, but processing them does not create
8038 a symbol or recurse to process the children. Therefore we can
8039 read them on-demand through read_type_die. */
c906108c 8040 case DW_TAG_subroutine_type:
72019c9c 8041 case DW_TAG_set_type:
c906108c 8042 case DW_TAG_array_type:
c906108c 8043 case DW_TAG_pointer_type:
c906108c 8044 case DW_TAG_ptr_to_member_type:
c906108c 8045 case DW_TAG_reference_type:
c906108c 8046 case DW_TAG_string_type:
c906108c 8047 break;
134d01f1 8048
c906108c 8049 case DW_TAG_base_type:
a02abb62 8050 case DW_TAG_subrange_type:
cb249c71 8051 case DW_TAG_typedef:
134d01f1
DJ
8052 /* Add a typedef symbol for the type definition, if it has a
8053 DW_AT_name. */
f792889a 8054 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8055 break;
c906108c 8056 case DW_TAG_common_block:
e7c27a73 8057 read_common_block (die, cu);
c906108c
SS
8058 break;
8059 case DW_TAG_common_inclusion:
8060 break;
d9fa45fe 8061 case DW_TAG_namespace:
4d4ec4e5 8062 cu->processing_has_namespace_info = 1;
e7c27a73 8063 read_namespace (die, cu);
d9fa45fe 8064 break;
5d7cb8df 8065 case DW_TAG_module:
4d4ec4e5 8066 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8067 read_module (die, cu);
8068 break;
d9fa45fe 8069 case DW_TAG_imported_declaration:
74921315
KS
8070 cu->processing_has_namespace_info = 1;
8071 if (read_namespace_alias (die, cu))
8072 break;
8073 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8074 case DW_TAG_imported_module:
4d4ec4e5 8075 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8076 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8077 || cu->language != language_fortran))
8078 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8079 dwarf_tag_name (die->tag));
8080 read_import_statement (die, cu);
d9fa45fe 8081 break;
95554aad
TT
8082
8083 case DW_TAG_imported_unit:
8084 process_imported_unit_die (die, cu);
8085 break;
8086
c906108c 8087 default:
e7c27a73 8088 new_symbol (die, NULL, cu);
c906108c
SS
8089 break;
8090 }
8091}
ca69b9e6
DE
8092\f
8093/* DWARF name computation. */
c906108c 8094
94af9270
KS
8095/* A helper function for dwarf2_compute_name which determines whether DIE
8096 needs to have the name of the scope prepended to the name listed in the
8097 die. */
8098
8099static int
8100die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8101{
1c809c68
TT
8102 struct attribute *attr;
8103
94af9270
KS
8104 switch (die->tag)
8105 {
8106 case DW_TAG_namespace:
8107 case DW_TAG_typedef:
8108 case DW_TAG_class_type:
8109 case DW_TAG_interface_type:
8110 case DW_TAG_structure_type:
8111 case DW_TAG_union_type:
8112 case DW_TAG_enumeration_type:
8113 case DW_TAG_enumerator:
8114 case DW_TAG_subprogram:
8115 case DW_TAG_member:
74921315 8116 case DW_TAG_imported_declaration:
94af9270
KS
8117 return 1;
8118
8119 case DW_TAG_variable:
c2b0a229 8120 case DW_TAG_constant:
94af9270
KS
8121 /* We only need to prefix "globally" visible variables. These include
8122 any variable marked with DW_AT_external or any variable that
8123 lives in a namespace. [Variables in anonymous namespaces
8124 require prefixing, but they are not DW_AT_external.] */
8125
8126 if (dwarf2_attr (die, DW_AT_specification, cu))
8127 {
8128 struct dwarf2_cu *spec_cu = cu;
9a619af0 8129
94af9270
KS
8130 return die_needs_namespace (die_specification (die, &spec_cu),
8131 spec_cu);
8132 }
8133
1c809c68 8134 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8135 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8136 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8137 return 0;
8138 /* A variable in a lexical block of some kind does not need a
8139 namespace, even though in C++ such variables may be external
8140 and have a mangled name. */
8141 if (die->parent->tag == DW_TAG_lexical_block
8142 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8143 || die->parent->tag == DW_TAG_catch_block
8144 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8145 return 0;
8146 return 1;
94af9270
KS
8147
8148 default:
8149 return 0;
8150 }
8151}
8152
98bfdba5
PA
8153/* Retrieve the last character from a mem_file. */
8154
8155static void
8156do_ui_file_peek_last (void *object, const char *buffer, long length)
8157{
8158 char *last_char_p = (char *) object;
8159
8160 if (length > 0)
8161 *last_char_p = buffer[length - 1];
8162}
8163
94af9270 8164/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8165 compute the physname for the object, which include a method's:
8166 - formal parameters (C++/Java),
8167 - receiver type (Go),
8168 - return type (Java).
8169
8170 The term "physname" is a bit confusing.
8171 For C++, for example, it is the demangled name.
8172 For Go, for example, it's the mangled name.
94af9270 8173
af6b7be1
JB
8174 For Ada, return the DIE's linkage name rather than the fully qualified
8175 name. PHYSNAME is ignored..
8176
94af9270
KS
8177 The result is allocated on the objfile_obstack and canonicalized. */
8178
8179static const char *
15d034d0
TT
8180dwarf2_compute_name (const char *name,
8181 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8182 int physname)
8183{
bb5ed363
DE
8184 struct objfile *objfile = cu->objfile;
8185
94af9270
KS
8186 if (name == NULL)
8187 name = dwarf2_name (die, cu);
8188
f55ee35c
JK
8189 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8190 compute it by typename_concat inside GDB. */
8191 if (cu->language == language_ada
8192 || (cu->language == language_fortran && physname))
8193 {
8194 /* For Ada unit, we prefer the linkage name over the name, as
8195 the former contains the exported name, which the user expects
8196 to be able to reference. Ideally, we want the user to be able
8197 to reference this entity using either natural or linkage name,
8198 but we haven't started looking at this enhancement yet. */
8199 struct attribute *attr;
8200
8201 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8202 if (attr == NULL)
8203 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8204 if (attr && DW_STRING (attr))
8205 return DW_STRING (attr);
8206 }
8207
94af9270
KS
8208 /* These are the only languages we know how to qualify names in. */
8209 if (name != NULL
f55ee35c
JK
8210 && (cu->language == language_cplus || cu->language == language_java
8211 || cu->language == language_fortran))
94af9270
KS
8212 {
8213 if (die_needs_namespace (die, cu))
8214 {
8215 long length;
0d5cff50 8216 const char *prefix;
94af9270
KS
8217 struct ui_file *buf;
8218
8219 prefix = determine_prefix (die, cu);
8220 buf = mem_fileopen ();
8221 if (*prefix != '\0')
8222 {
f55ee35c
JK
8223 char *prefixed_name = typename_concat (NULL, prefix, name,
8224 physname, cu);
9a619af0 8225
94af9270
KS
8226 fputs_unfiltered (prefixed_name, buf);
8227 xfree (prefixed_name);
8228 }
8229 else
62d5b8da 8230 fputs_unfiltered (name, buf);
94af9270 8231
98bfdba5
PA
8232 /* Template parameters may be specified in the DIE's DW_AT_name, or
8233 as children with DW_TAG_template_type_param or
8234 DW_TAG_value_type_param. If the latter, add them to the name
8235 here. If the name already has template parameters, then
8236 skip this step; some versions of GCC emit both, and
8237 it is more efficient to use the pre-computed name.
8238
8239 Something to keep in mind about this process: it is very
8240 unlikely, or in some cases downright impossible, to produce
8241 something that will match the mangled name of a function.
8242 If the definition of the function has the same debug info,
8243 we should be able to match up with it anyway. But fallbacks
8244 using the minimal symbol, for instance to find a method
8245 implemented in a stripped copy of libstdc++, will not work.
8246 If we do not have debug info for the definition, we will have to
8247 match them up some other way.
8248
8249 When we do name matching there is a related problem with function
8250 templates; two instantiated function templates are allowed to
8251 differ only by their return types, which we do not add here. */
8252
8253 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8254 {
8255 struct attribute *attr;
8256 struct die_info *child;
8257 int first = 1;
8258
8259 die->building_fullname = 1;
8260
8261 for (child = die->child; child != NULL; child = child->sibling)
8262 {
8263 struct type *type;
12df843f 8264 LONGEST value;
d521ce57 8265 const gdb_byte *bytes;
98bfdba5
PA
8266 struct dwarf2_locexpr_baton *baton;
8267 struct value *v;
8268
8269 if (child->tag != DW_TAG_template_type_param
8270 && child->tag != DW_TAG_template_value_param)
8271 continue;
8272
8273 if (first)
8274 {
8275 fputs_unfiltered ("<", buf);
8276 first = 0;
8277 }
8278 else
8279 fputs_unfiltered (", ", buf);
8280
8281 attr = dwarf2_attr (child, DW_AT_type, cu);
8282 if (attr == NULL)
8283 {
8284 complaint (&symfile_complaints,
8285 _("template parameter missing DW_AT_type"));
8286 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8287 continue;
8288 }
8289 type = die_type (child, cu);
8290
8291 if (child->tag == DW_TAG_template_type_param)
8292 {
79d43c61 8293 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8294 continue;
8295 }
8296
8297 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8298 if (attr == NULL)
8299 {
8300 complaint (&symfile_complaints,
3e43a32a
MS
8301 _("template parameter missing "
8302 "DW_AT_const_value"));
98bfdba5
PA
8303 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8304 continue;
8305 }
8306
8307 dwarf2_const_value_attr (attr, type, name,
8308 &cu->comp_unit_obstack, cu,
8309 &value, &bytes, &baton);
8310
8311 if (TYPE_NOSIGN (type))
8312 /* GDB prints characters as NUMBER 'CHAR'. If that's
8313 changed, this can use value_print instead. */
8314 c_printchar (value, type, buf);
8315 else
8316 {
8317 struct value_print_options opts;
8318
8319 if (baton != NULL)
8320 v = dwarf2_evaluate_loc_desc (type, NULL,
8321 baton->data,
8322 baton->size,
8323 baton->per_cu);
8324 else if (bytes != NULL)
8325 {
8326 v = allocate_value (type);
8327 memcpy (value_contents_writeable (v), bytes,
8328 TYPE_LENGTH (type));
8329 }
8330 else
8331 v = value_from_longest (type, value);
8332
3e43a32a
MS
8333 /* Specify decimal so that we do not depend on
8334 the radix. */
98bfdba5
PA
8335 get_formatted_print_options (&opts, 'd');
8336 opts.raw = 1;
8337 value_print (v, buf, &opts);
8338 release_value (v);
8339 value_free (v);
8340 }
8341 }
8342
8343 die->building_fullname = 0;
8344
8345 if (!first)
8346 {
8347 /* Close the argument list, with a space if necessary
8348 (nested templates). */
8349 char last_char = '\0';
8350 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8351 if (last_char == '>')
8352 fputs_unfiltered (" >", buf);
8353 else
8354 fputs_unfiltered (">", buf);
8355 }
8356 }
8357
94af9270
KS
8358 /* For Java and C++ methods, append formal parameter type
8359 information, if PHYSNAME. */
6e70227d 8360
94af9270
KS
8361 if (physname && die->tag == DW_TAG_subprogram
8362 && (cu->language == language_cplus
8363 || cu->language == language_java))
8364 {
8365 struct type *type = read_type_die (die, cu);
8366
79d43c61
TT
8367 c_type_print_args (type, buf, 1, cu->language,
8368 &type_print_raw_options);
94af9270
KS
8369
8370 if (cu->language == language_java)
8371 {
8372 /* For java, we must append the return type to method
0963b4bd 8373 names. */
94af9270
KS
8374 if (die->tag == DW_TAG_subprogram)
8375 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8376 0, 0, &type_print_raw_options);
94af9270
KS
8377 }
8378 else if (cu->language == language_cplus)
8379 {
60430eff
DJ
8380 /* Assume that an artificial first parameter is
8381 "this", but do not crash if it is not. RealView
8382 marks unnamed (and thus unused) parameters as
8383 artificial; there is no way to differentiate
8384 the two cases. */
94af9270
KS
8385 if (TYPE_NFIELDS (type) > 0
8386 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8387 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8388 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8389 0))))
94af9270
KS
8390 fputs_unfiltered (" const", buf);
8391 }
8392 }
8393
bb5ed363 8394 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
94af9270
KS
8395 &length);
8396 ui_file_delete (buf);
8397
8398 if (cu->language == language_cplus)
8399 {
15d034d0 8400 const char *cname
94af9270 8401 = dwarf2_canonicalize_name (name, cu,
bb5ed363 8402 &objfile->objfile_obstack);
9a619af0 8403
94af9270
KS
8404 if (cname != NULL)
8405 name = cname;
8406 }
8407 }
8408 }
8409
8410 return name;
8411}
8412
0114d602
DJ
8413/* Return the fully qualified name of DIE, based on its DW_AT_name.
8414 If scope qualifiers are appropriate they will be added. The result
8415 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
8416 not have a name. NAME may either be from a previous call to
8417 dwarf2_name or NULL.
8418
0963b4bd 8419 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8420
8421static const char *
15d034d0 8422dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8423{
94af9270
KS
8424 return dwarf2_compute_name (name, die, cu, 0);
8425}
0114d602 8426
94af9270
KS
8427/* Construct a physname for the given DIE in CU. NAME may either be
8428 from a previous call to dwarf2_name or NULL. The result will be
8429 allocated on the objfile_objstack or NULL if the DIE does not have a
8430 name.
0114d602 8431
94af9270 8432 The output string will be canonicalized (if C++/Java). */
0114d602 8433
94af9270 8434static const char *
15d034d0 8435dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8436{
bb5ed363 8437 struct objfile *objfile = cu->objfile;
900e11f9
JK
8438 struct attribute *attr;
8439 const char *retval, *mangled = NULL, *canon = NULL;
8440 struct cleanup *back_to;
8441 int need_copy = 1;
8442
8443 /* In this case dwarf2_compute_name is just a shortcut not building anything
8444 on its own. */
8445 if (!die_needs_namespace (die, cu))
8446 return dwarf2_compute_name (name, die, cu, 1);
8447
8448 back_to = make_cleanup (null_cleanup, NULL);
8449
8450 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8451 if (!attr)
8452 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8453
8454 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8455 has computed. */
8456 if (attr && DW_STRING (attr))
8457 {
8458 char *demangled;
8459
8460 mangled = DW_STRING (attr);
8461
8462 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8463 type. It is easier for GDB users to search for such functions as
8464 `name(params)' than `long name(params)'. In such case the minimal
8465 symbol names do not match the full symbol names but for template
8466 functions there is never a need to look up their definition from their
8467 declaration so the only disadvantage remains the minimal symbol
8468 variant `long name(params)' does not have the proper inferior type.
8469 */
8470
a766d390
DE
8471 if (cu->language == language_go)
8472 {
8473 /* This is a lie, but we already lie to the caller new_symbol_full.
8474 new_symbol_full assumes we return the mangled name.
8475 This just undoes that lie until things are cleaned up. */
8476 demangled = NULL;
8477 }
8478 else
8479 {
8de20a37
TT
8480 demangled = gdb_demangle (mangled,
8481 (DMGL_PARAMS | DMGL_ANSI
8482 | (cu->language == language_java
8483 ? DMGL_JAVA | DMGL_RET_POSTFIX
8484 : DMGL_RET_DROP)));
a766d390 8485 }
900e11f9
JK
8486 if (demangled)
8487 {
8488 make_cleanup (xfree, demangled);
8489 canon = demangled;
8490 }
8491 else
8492 {
8493 canon = mangled;
8494 need_copy = 0;
8495 }
8496 }
8497
8498 if (canon == NULL || check_physname)
8499 {
8500 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8501
8502 if (canon != NULL && strcmp (physname, canon) != 0)
8503 {
8504 /* It may not mean a bug in GDB. The compiler could also
8505 compute DW_AT_linkage_name incorrectly. But in such case
8506 GDB would need to be bug-to-bug compatible. */
8507
8508 complaint (&symfile_complaints,
8509 _("Computed physname <%s> does not match demangled <%s> "
8510 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8511 physname, canon, mangled, die->offset.sect_off,
8512 objfile_name (objfile));
900e11f9
JK
8513
8514 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8515 is available here - over computed PHYSNAME. It is safer
8516 against both buggy GDB and buggy compilers. */
8517
8518 retval = canon;
8519 }
8520 else
8521 {
8522 retval = physname;
8523 need_copy = 0;
8524 }
8525 }
8526 else
8527 retval = canon;
8528
8529 if (need_copy)
10f0c4bb 8530 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
900e11f9
JK
8531
8532 do_cleanups (back_to);
8533 return retval;
0114d602
DJ
8534}
8535
74921315
KS
8536/* Inspect DIE in CU for a namespace alias. If one exists, record
8537 a new symbol for it.
8538
8539 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8540
8541static int
8542read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8543{
8544 struct attribute *attr;
8545
8546 /* If the die does not have a name, this is not a namespace
8547 alias. */
8548 attr = dwarf2_attr (die, DW_AT_name, cu);
8549 if (attr != NULL)
8550 {
8551 int num;
8552 struct die_info *d = die;
8553 struct dwarf2_cu *imported_cu = cu;
8554
8555 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8556 keep inspecting DIEs until we hit the underlying import. */
8557#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8558 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8559 {
8560 attr = dwarf2_attr (d, DW_AT_import, cu);
8561 if (attr == NULL)
8562 break;
8563
8564 d = follow_die_ref (d, attr, &imported_cu);
8565 if (d->tag != DW_TAG_imported_declaration)
8566 break;
8567 }
8568
8569 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8570 {
8571 complaint (&symfile_complaints,
8572 _("DIE at 0x%x has too many recursively imported "
8573 "declarations"), d->offset.sect_off);
8574 return 0;
8575 }
8576
8577 if (attr != NULL)
8578 {
8579 struct type *type;
8580 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8581
8582 type = get_die_type_at_offset (offset, cu->per_cu);
8583 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8584 {
8585 /* This declaration is a global namespace alias. Add
8586 a symbol for it whose type is the aliased namespace. */
8587 new_symbol (die, type, cu);
8588 return 1;
8589 }
8590 }
8591 }
8592
8593 return 0;
8594}
8595
27aa8d6a
SW
8596/* Read the import statement specified by the given die and record it. */
8597
8598static void
8599read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8600{
bb5ed363 8601 struct objfile *objfile = cu->objfile;
27aa8d6a 8602 struct attribute *import_attr;
32019081 8603 struct die_info *imported_die, *child_die;
de4affc9 8604 struct dwarf2_cu *imported_cu;
27aa8d6a 8605 const char *imported_name;
794684b6 8606 const char *imported_name_prefix;
13387711
SW
8607 const char *canonical_name;
8608 const char *import_alias;
8609 const char *imported_declaration = NULL;
794684b6 8610 const char *import_prefix;
32019081
JK
8611 VEC (const_char_ptr) *excludes = NULL;
8612 struct cleanup *cleanups;
13387711 8613
27aa8d6a
SW
8614 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8615 if (import_attr == NULL)
8616 {
8617 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8618 dwarf_tag_name (die->tag));
8619 return;
8620 }
8621
de4affc9
CC
8622 imported_cu = cu;
8623 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8624 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8625 if (imported_name == NULL)
8626 {
8627 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8628
8629 The import in the following code:
8630 namespace A
8631 {
8632 typedef int B;
8633 }
8634
8635 int main ()
8636 {
8637 using A::B;
8638 B b;
8639 return b;
8640 }
8641
8642 ...
8643 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8644 <52> DW_AT_decl_file : 1
8645 <53> DW_AT_decl_line : 6
8646 <54> DW_AT_import : <0x75>
8647 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8648 <59> DW_AT_name : B
8649 <5b> DW_AT_decl_file : 1
8650 <5c> DW_AT_decl_line : 2
8651 <5d> DW_AT_type : <0x6e>
8652 ...
8653 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8654 <76> DW_AT_byte_size : 4
8655 <77> DW_AT_encoding : 5 (signed)
8656
8657 imports the wrong die ( 0x75 instead of 0x58 ).
8658 This case will be ignored until the gcc bug is fixed. */
8659 return;
8660 }
8661
82856980
SW
8662 /* Figure out the local name after import. */
8663 import_alias = dwarf2_name (die, cu);
27aa8d6a 8664
794684b6
SW
8665 /* Figure out where the statement is being imported to. */
8666 import_prefix = determine_prefix (die, cu);
8667
8668 /* Figure out what the scope of the imported die is and prepend it
8669 to the name of the imported die. */
de4affc9 8670 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8671
f55ee35c
JK
8672 if (imported_die->tag != DW_TAG_namespace
8673 && imported_die->tag != DW_TAG_module)
794684b6 8674 {
13387711
SW
8675 imported_declaration = imported_name;
8676 canonical_name = imported_name_prefix;
794684b6 8677 }
13387711 8678 else if (strlen (imported_name_prefix) > 0)
12aaed36
TT
8679 canonical_name = obconcat (&objfile->objfile_obstack,
8680 imported_name_prefix, "::", imported_name,
8681 (char *) NULL);
13387711
SW
8682 else
8683 canonical_name = imported_name;
794684b6 8684
32019081
JK
8685 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8686
8687 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8688 for (child_die = die->child; child_die && child_die->tag;
8689 child_die = sibling_die (child_die))
8690 {
8691 /* DWARF-4: A Fortran use statement with a “rename list” may be
8692 represented by an imported module entry with an import attribute
8693 referring to the module and owned entries corresponding to those
8694 entities that are renamed as part of being imported. */
8695
8696 if (child_die->tag != DW_TAG_imported_declaration)
8697 {
8698 complaint (&symfile_complaints,
8699 _("child DW_TAG_imported_declaration expected "
8700 "- DIE at 0x%x [in module %s]"),
4262abfb 8701 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8702 continue;
8703 }
8704
8705 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8706 if (import_attr == NULL)
8707 {
8708 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8709 dwarf_tag_name (child_die->tag));
8710 continue;
8711 }
8712
8713 imported_cu = cu;
8714 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8715 &imported_cu);
8716 imported_name = dwarf2_name (imported_die, imported_cu);
8717 if (imported_name == NULL)
8718 {
8719 complaint (&symfile_complaints,
8720 _("child DW_TAG_imported_declaration has unknown "
8721 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 8722 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8723 continue;
8724 }
8725
8726 VEC_safe_push (const_char_ptr, excludes, imported_name);
8727
8728 process_die (child_die, cu);
8729 }
8730
c0cc3a76
SW
8731 cp_add_using_directive (import_prefix,
8732 canonical_name,
8733 import_alias,
13387711 8734 imported_declaration,
32019081 8735 excludes,
12aaed36 8736 0,
bb5ed363 8737 &objfile->objfile_obstack);
32019081
JK
8738
8739 do_cleanups (cleanups);
27aa8d6a
SW
8740}
8741
f4dc4d17 8742/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 8743
cb1df416
DJ
8744static void
8745free_cu_line_header (void *arg)
8746{
8747 struct dwarf2_cu *cu = arg;
8748
8749 free_line_header (cu->line_header);
8750 cu->line_header = NULL;
8751}
8752
1b80a9fa
JK
8753/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8754 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8755 this, it was first present in GCC release 4.3.0. */
8756
8757static int
8758producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8759{
8760 if (!cu->checked_producer)
8761 check_producer (cu);
8762
8763 return cu->producer_is_gcc_lt_4_3;
8764}
8765
9291a0cd
TT
8766static void
8767find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 8768 const char **name, const char **comp_dir)
9291a0cd
TT
8769{
8770 struct attribute *attr;
8771
8772 *name = NULL;
8773 *comp_dir = NULL;
8774
8775 /* Find the filename. Do not use dwarf2_name here, since the filename
8776 is not a source language identifier. */
8777 attr = dwarf2_attr (die, DW_AT_name, cu);
8778 if (attr)
8779 {
8780 *name = DW_STRING (attr);
8781 }
8782
8783 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8784 if (attr)
8785 *comp_dir = DW_STRING (attr);
1b80a9fa
JK
8786 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8787 && IS_ABSOLUTE_PATH (*name))
9291a0cd 8788 {
15d034d0
TT
8789 char *d = ldirname (*name);
8790
8791 *comp_dir = d;
8792 if (d != NULL)
8793 make_cleanup (xfree, d);
9291a0cd
TT
8794 }
8795 if (*comp_dir != NULL)
8796 {
8797 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8798 directory, get rid of it. */
8799 char *cp = strchr (*comp_dir, ':');
8800
8801 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8802 *comp_dir = cp + 1;
8803 }
8804
8805 if (*name == NULL)
8806 *name = "<unknown>";
8807}
8808
f4dc4d17
DE
8809/* Handle DW_AT_stmt_list for a compilation unit.
8810 DIE is the DW_TAG_compile_unit die for CU.
f3f5162e
DE
8811 COMP_DIR is the compilation directory.
8812 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
2ab95328
TT
8813
8814static void
8815handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
b385a60d 8816 const char *comp_dir) /* ARI: editCase function */
2ab95328
TT
8817{
8818 struct attribute *attr;
2ab95328 8819
f4dc4d17
DE
8820 gdb_assert (! cu->per_cu->is_debug_types);
8821
2ab95328
TT
8822 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8823 if (attr)
8824 {
8825 unsigned int line_offset = DW_UNSND (attr);
8826 struct line_header *line_header
3019eac3 8827 = dwarf_decode_line_header (line_offset, cu);
2ab95328
TT
8828
8829 if (line_header)
dee91e82
DE
8830 {
8831 cu->line_header = line_header;
8832 make_cleanup (free_cu_line_header, cu);
f4dc4d17 8833 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
dee91e82 8834 }
2ab95328
TT
8835 }
8836}
8837
95554aad 8838/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 8839
c906108c 8840static void
e7c27a73 8841read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8842{
dee91e82 8843 struct objfile *objfile = dwarf2_per_objfile->objfile;
debd256d 8844 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 8845 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
8846 CORE_ADDR highpc = ((CORE_ADDR) 0);
8847 struct attribute *attr;
15d034d0
TT
8848 const char *name = NULL;
8849 const char *comp_dir = NULL;
c906108c
SS
8850 struct die_info *child_die;
8851 bfd *abfd = objfile->obfd;
e142c38c 8852 CORE_ADDR baseaddr;
6e70227d 8853
e142c38c 8854 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8855
fae299cd 8856 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
8857
8858 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8859 from finish_block. */
2acceee2 8860 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
8861 lowpc = highpc;
8862 lowpc += baseaddr;
8863 highpc += baseaddr;
8864
9291a0cd 8865 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 8866
95554aad 8867 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 8868
f4b8a18d
KW
8869 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8870 standardised yet. As a workaround for the language detection we fall
8871 back to the DW_AT_producer string. */
8872 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8873 cu->language = language_opencl;
8874
3019eac3
DE
8875 /* Similar hack for Go. */
8876 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8877 set_cu_language (DW_LANG_Go, cu);
8878
f4dc4d17 8879 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
8880
8881 /* Decode line number information if present. We do this before
8882 processing child DIEs, so that the line header table is available
8883 for DW_AT_decl_file. */
f4dc4d17 8884 handle_DW_AT_stmt_list (die, cu, comp_dir);
3019eac3
DE
8885
8886 /* Process all dies in compilation unit. */
8887 if (die->child != NULL)
8888 {
8889 child_die = die->child;
8890 while (child_die && child_die->tag)
8891 {
8892 process_die (child_die, cu);
8893 child_die = sibling_die (child_die);
8894 }
8895 }
8896
8897 /* Decode macro information, if present. Dwarf 2 macro information
8898 refers to information in the line number info statement program
8899 header, so we can only read it if we've read the header
8900 successfully. */
8901 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8902 if (attr && cu->line_header)
8903 {
8904 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8905 complaint (&symfile_complaints,
8906 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8907
09262596 8908 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
3019eac3
DE
8909 }
8910 else
8911 {
8912 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8913 if (attr && cu->line_header)
8914 {
8915 unsigned int macro_offset = DW_UNSND (attr);
8916
09262596 8917 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
3019eac3
DE
8918 }
8919 }
8920
8921 do_cleanups (back_to);
8922}
8923
f4dc4d17
DE
8924/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8925 Create the set of symtabs used by this TU, or if this TU is sharing
8926 symtabs with another TU and the symtabs have already been created
8927 then restore those symtabs in the line header.
8928 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
8929
8930static void
f4dc4d17 8931setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 8932{
f4dc4d17
DE
8933 struct objfile *objfile = dwarf2_per_objfile->objfile;
8934 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8935 struct type_unit_group *tu_group;
8936 int first_time;
8937 struct line_header *lh;
3019eac3 8938 struct attribute *attr;
f4dc4d17 8939 unsigned int i, line_offset;
0186c6a7 8940 struct signatured_type *sig_type;
3019eac3 8941
f4dc4d17 8942 gdb_assert (per_cu->is_debug_types);
0186c6a7 8943 sig_type = (struct signatured_type *) per_cu;
3019eac3 8944
f4dc4d17 8945 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 8946
f4dc4d17 8947 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 8948 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
8949 if (sig_type->type_unit_group == NULL)
8950 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8951 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
8952
8953 /* If we've already processed this stmt_list there's no real need to
8954 do it again, we could fake it and just recreate the part we need
8955 (file name,index -> symtab mapping). If data shows this optimization
8956 is useful we can do it then. */
8957 first_time = tu_group->primary_symtab == NULL;
8958
8959 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8960 debug info. */
8961 lh = NULL;
8962 if (attr != NULL)
3019eac3 8963 {
f4dc4d17
DE
8964 line_offset = DW_UNSND (attr);
8965 lh = dwarf_decode_line_header (line_offset, cu);
8966 }
8967 if (lh == NULL)
8968 {
8969 if (first_time)
8970 dwarf2_start_symtab (cu, "", NULL, 0);
8971 else
8972 {
8973 gdb_assert (tu_group->symtabs == NULL);
8974 restart_symtab (0);
8975 }
8976 /* Note: The primary symtab will get allocated at the end. */
8977 return;
3019eac3
DE
8978 }
8979
f4dc4d17
DE
8980 cu->line_header = lh;
8981 make_cleanup (free_cu_line_header, cu);
3019eac3 8982
f4dc4d17
DE
8983 if (first_time)
8984 {
8985 dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 8986
f4dc4d17
DE
8987 tu_group->num_symtabs = lh->num_file_names;
8988 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 8989
f4dc4d17
DE
8990 for (i = 0; i < lh->num_file_names; ++i)
8991 {
d521ce57 8992 const char *dir = NULL;
f4dc4d17 8993 struct file_entry *fe = &lh->file_names[i];
3019eac3 8994
f4dc4d17
DE
8995 if (fe->dir_index)
8996 dir = lh->include_dirs[fe->dir_index - 1];
8997 dwarf2_start_subfile (fe->name, dir, NULL);
3019eac3 8998
f4dc4d17
DE
8999 /* Note: We don't have to watch for the main subfile here, type units
9000 don't have DW_AT_name. */
3019eac3 9001
f4dc4d17
DE
9002 if (current_subfile->symtab == NULL)
9003 {
9004 /* NOTE: start_subfile will recognize when it's been passed
9005 a file it has already seen. So we can't assume there's a
9006 simple mapping from lh->file_names to subfiles,
9007 lh->file_names may contain dups. */
9008 current_subfile->symtab = allocate_symtab (current_subfile->name,
9009 objfile);
9010 }
9011
9012 fe->symtab = current_subfile->symtab;
9013 tu_group->symtabs[i] = fe->symtab;
9014 }
9015 }
9016 else
3019eac3 9017 {
f4dc4d17
DE
9018 restart_symtab (0);
9019
9020 for (i = 0; i < lh->num_file_names; ++i)
9021 {
9022 struct file_entry *fe = &lh->file_names[i];
9023
9024 fe->symtab = tu_group->symtabs[i];
9025 }
3019eac3
DE
9026 }
9027
f4dc4d17
DE
9028 /* The main symtab is allocated last. Type units don't have DW_AT_name
9029 so they don't have a "real" (so to speak) symtab anyway.
9030 There is later code that will assign the main symtab to all symbols
9031 that don't have one. We need to handle the case of a symbol with a
9032 missing symtab (DW_AT_decl_file) anyway. */
9033}
3019eac3 9034
f4dc4d17
DE
9035/* Process DW_TAG_type_unit.
9036 For TUs we want to skip the first top level sibling if it's not the
9037 actual type being defined by this TU. In this case the first top
9038 level sibling is there to provide context only. */
3019eac3 9039
f4dc4d17
DE
9040static void
9041read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9042{
9043 struct die_info *child_die;
3019eac3 9044
f4dc4d17
DE
9045 prepare_one_comp_unit (cu, die, language_minimal);
9046
9047 /* Initialize (or reinitialize) the machinery for building symtabs.
9048 We do this before processing child DIEs, so that the line header table
9049 is available for DW_AT_decl_file. */
9050 setup_type_unit_groups (die, cu);
9051
9052 if (die->child != NULL)
9053 {
9054 child_die = die->child;
9055 while (child_die && child_die->tag)
9056 {
9057 process_die (child_die, cu);
9058 child_die = sibling_die (child_die);
9059 }
9060 }
3019eac3
DE
9061}
9062\f
80626a55
DE
9063/* DWO/DWP files.
9064
9065 http://gcc.gnu.org/wiki/DebugFission
9066 http://gcc.gnu.org/wiki/DebugFissionDWP
9067
9068 To simplify handling of both DWO files ("object" files with the DWARF info)
9069 and DWP files (a file with the DWOs packaged up into one file), we treat
9070 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9071
9072static hashval_t
9073hash_dwo_file (const void *item)
9074{
9075 const struct dwo_file *dwo_file = item;
a2ce51a0 9076 hashval_t hash;
3019eac3 9077
a2ce51a0
DE
9078 hash = htab_hash_string (dwo_file->dwo_name);
9079 if (dwo_file->comp_dir != NULL)
9080 hash += htab_hash_string (dwo_file->comp_dir);
9081 return hash;
3019eac3
DE
9082}
9083
9084static int
9085eq_dwo_file (const void *item_lhs, const void *item_rhs)
9086{
9087 const struct dwo_file *lhs = item_lhs;
9088 const struct dwo_file *rhs = item_rhs;
9089
a2ce51a0
DE
9090 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9091 return 0;
9092 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9093 return lhs->comp_dir == rhs->comp_dir;
9094 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9095}
9096
9097/* Allocate a hash table for DWO files. */
9098
9099static htab_t
9100allocate_dwo_file_hash_table (void)
9101{
9102 struct objfile *objfile = dwarf2_per_objfile->objfile;
9103
9104 return htab_create_alloc_ex (41,
9105 hash_dwo_file,
9106 eq_dwo_file,
9107 NULL,
9108 &objfile->objfile_obstack,
9109 hashtab_obstack_allocate,
9110 dummy_obstack_deallocate);
9111}
9112
80626a55
DE
9113/* Lookup DWO file DWO_NAME. */
9114
9115static void **
0ac5b59e 9116lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9117{
9118 struct dwo_file find_entry;
9119 void **slot;
9120
9121 if (dwarf2_per_objfile->dwo_files == NULL)
9122 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9123
9124 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9125 find_entry.dwo_name = dwo_name;
9126 find_entry.comp_dir = comp_dir;
80626a55
DE
9127 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9128
9129 return slot;
9130}
9131
3019eac3
DE
9132static hashval_t
9133hash_dwo_unit (const void *item)
9134{
9135 const struct dwo_unit *dwo_unit = item;
9136
9137 /* This drops the top 32 bits of the id, but is ok for a hash. */
9138 return dwo_unit->signature;
9139}
9140
9141static int
9142eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9143{
9144 const struct dwo_unit *lhs = item_lhs;
9145 const struct dwo_unit *rhs = item_rhs;
9146
9147 /* The signature is assumed to be unique within the DWO file.
9148 So while object file CU dwo_id's always have the value zero,
9149 that's OK, assuming each object file DWO file has only one CU,
9150 and that's the rule for now. */
9151 return lhs->signature == rhs->signature;
9152}
9153
9154/* Allocate a hash table for DWO CUs,TUs.
9155 There is one of these tables for each of CUs,TUs for each DWO file. */
9156
9157static htab_t
9158allocate_dwo_unit_table (struct objfile *objfile)
9159{
9160 /* Start out with a pretty small number.
9161 Generally DWO files contain only one CU and maybe some TUs. */
9162 return htab_create_alloc_ex (3,
9163 hash_dwo_unit,
9164 eq_dwo_unit,
9165 NULL,
9166 &objfile->objfile_obstack,
9167 hashtab_obstack_allocate,
9168 dummy_obstack_deallocate);
9169}
9170
80626a55 9171/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9172
19c3d4c9 9173struct create_dwo_cu_data
3019eac3
DE
9174{
9175 struct dwo_file *dwo_file;
19c3d4c9 9176 struct dwo_unit dwo_unit;
3019eac3
DE
9177};
9178
19c3d4c9 9179/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9180
9181static void
19c3d4c9
DE
9182create_dwo_cu_reader (const struct die_reader_specs *reader,
9183 const gdb_byte *info_ptr,
9184 struct die_info *comp_unit_die,
9185 int has_children,
9186 void *datap)
3019eac3
DE
9187{
9188 struct dwarf2_cu *cu = reader->cu;
9189 struct objfile *objfile = dwarf2_per_objfile->objfile;
9190 sect_offset offset = cu->per_cu->offset;
8a0459fd 9191 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 9192 struct create_dwo_cu_data *data = datap;
3019eac3 9193 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9194 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9195 struct attribute *attr;
3019eac3
DE
9196
9197 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9198 if (attr == NULL)
9199 {
19c3d4c9
DE
9200 complaint (&symfile_complaints,
9201 _("Dwarf Error: debug entry at offset 0x%x is missing"
9202 " its dwo_id [in module %s]"),
9203 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9204 return;
9205 }
9206
3019eac3
DE
9207 dwo_unit->dwo_file = dwo_file;
9208 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9209 dwo_unit->section = section;
3019eac3
DE
9210 dwo_unit->offset = offset;
9211 dwo_unit->length = cu->per_cu->length;
9212
09406207 9213 if (dwarf2_read_debug)
4031ecc5
DE
9214 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9215 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9216}
9217
19c3d4c9
DE
9218/* Create the dwo_unit for the lone CU in DWO_FILE.
9219 Note: This function processes DWO files only, not DWP files. */
3019eac3 9220
19c3d4c9
DE
9221static struct dwo_unit *
9222create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9223{
9224 struct objfile *objfile = dwarf2_per_objfile->objfile;
9225 struct dwarf2_section_info *section = &dwo_file->sections.info;
9226 bfd *abfd;
9227 htab_t cu_htab;
d521ce57 9228 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9229 struct create_dwo_cu_data create_dwo_cu_data;
9230 struct dwo_unit *dwo_unit;
3019eac3
DE
9231
9232 dwarf2_read_section (objfile, section);
9233 info_ptr = section->buffer;
9234
9235 if (info_ptr == NULL)
9236 return NULL;
9237
9238 /* We can't set abfd until now because the section may be empty or
9239 not present, in which case section->asection will be NULL. */
a32a8923 9240 abfd = get_section_bfd_owner (section);
3019eac3 9241
09406207 9242 if (dwarf2_read_debug)
19c3d4c9
DE
9243 {
9244 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9245 get_section_name (section),
9246 get_section_file_name (section));
19c3d4c9 9247 }
3019eac3 9248
19c3d4c9
DE
9249 create_dwo_cu_data.dwo_file = dwo_file;
9250 dwo_unit = NULL;
3019eac3
DE
9251
9252 end_ptr = info_ptr + section->size;
9253 while (info_ptr < end_ptr)
9254 {
9255 struct dwarf2_per_cu_data per_cu;
9256
19c3d4c9
DE
9257 memset (&create_dwo_cu_data.dwo_unit, 0,
9258 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9259 memset (&per_cu, 0, sizeof (per_cu));
9260 per_cu.objfile = objfile;
9261 per_cu.is_debug_types = 0;
9262 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9263 per_cu.section = section;
3019eac3
DE
9264
9265 init_cutu_and_read_dies_no_follow (&per_cu,
9266 &dwo_file->sections.abbrev,
9267 dwo_file,
19c3d4c9
DE
9268 create_dwo_cu_reader,
9269 &create_dwo_cu_data);
9270
9271 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9272 {
9273 /* If we've already found one, complain. We only support one
9274 because having more than one requires hacking the dwo_name of
9275 each to match, which is highly unlikely to happen. */
9276 if (dwo_unit != NULL)
9277 {
9278 complaint (&symfile_complaints,
9279 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9280 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9281 break;
9282 }
9283
9284 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9285 *dwo_unit = create_dwo_cu_data.dwo_unit;
9286 }
3019eac3
DE
9287
9288 info_ptr += per_cu.length;
9289 }
9290
19c3d4c9 9291 return dwo_unit;
3019eac3
DE
9292}
9293
80626a55
DE
9294/* DWP file .debug_{cu,tu}_index section format:
9295 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9296
d2415c6c
DE
9297 DWP Version 1:
9298
80626a55
DE
9299 Both index sections have the same format, and serve to map a 64-bit
9300 signature to a set of section numbers. Each section begins with a header,
9301 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9302 indexes, and a pool of 32-bit section numbers. The index sections will be
9303 aligned at 8-byte boundaries in the file.
9304
d2415c6c
DE
9305 The index section header consists of:
9306
9307 V, 32 bit version number
9308 -, 32 bits unused
9309 N, 32 bit number of compilation units or type units in the index
9310 M, 32 bit number of slots in the hash table
80626a55 9311
d2415c6c 9312 Numbers are recorded using the byte order of the application binary.
80626a55 9313
d2415c6c
DE
9314 The hash table begins at offset 16 in the section, and consists of an array
9315 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9316 order of the application binary). Unused slots in the hash table are 0.
9317 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9318
d2415c6c
DE
9319 The parallel table begins immediately after the hash table
9320 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9321 array of 32-bit indexes (using the byte order of the application binary),
9322 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9323 table contains a 32-bit index into the pool of section numbers. For unused
9324 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9325
73869dc2
DE
9326 The pool of section numbers begins immediately following the hash table
9327 (at offset 16 + 12 * M from the beginning of the section). The pool of
9328 section numbers consists of an array of 32-bit words (using the byte order
9329 of the application binary). Each item in the array is indexed starting
9330 from 0. The hash table entry provides the index of the first section
9331 number in the set. Additional section numbers in the set follow, and the
9332 set is terminated by a 0 entry (section number 0 is not used in ELF).
9333
9334 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9335 section must be the first entry in the set, and the .debug_abbrev.dwo must
9336 be the second entry. Other members of the set may follow in any order.
9337
9338 ---
9339
9340 DWP Version 2:
9341
9342 DWP Version 2 combines all the .debug_info, etc. sections into one,
9343 and the entries in the index tables are now offsets into these sections.
9344 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9345 section.
9346
9347 Index Section Contents:
9348 Header
9349 Hash Table of Signatures dwp_hash_table.hash_table
9350 Parallel Table of Indices dwp_hash_table.unit_table
9351 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9352 Table of Section Sizes dwp_hash_table.v2.sizes
9353
9354 The index section header consists of:
9355
9356 V, 32 bit version number
9357 L, 32 bit number of columns in the table of section offsets
9358 N, 32 bit number of compilation units or type units in the index
9359 M, 32 bit number of slots in the hash table
9360
9361 Numbers are recorded using the byte order of the application binary.
9362
9363 The hash table has the same format as version 1.
9364 The parallel table of indices has the same format as version 1,
9365 except that the entries are origin-1 indices into the table of sections
9366 offsets and the table of section sizes.
9367
9368 The table of offsets begins immediately following the parallel table
9369 (at offset 16 + 12 * M from the beginning of the section). The table is
9370 a two-dimensional array of 32-bit words (using the byte order of the
9371 application binary), with L columns and N+1 rows, in row-major order.
9372 Each row in the array is indexed starting from 0. The first row provides
9373 a key to the remaining rows: each column in this row provides an identifier
9374 for a debug section, and the offsets in the same column of subsequent rows
9375 refer to that section. The section identifiers are:
9376
9377 DW_SECT_INFO 1 .debug_info.dwo
9378 DW_SECT_TYPES 2 .debug_types.dwo
9379 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9380 DW_SECT_LINE 4 .debug_line.dwo
9381 DW_SECT_LOC 5 .debug_loc.dwo
9382 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9383 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9384 DW_SECT_MACRO 8 .debug_macro.dwo
9385
9386 The offsets provided by the CU and TU index sections are the base offsets
9387 for the contributions made by each CU or TU to the corresponding section
9388 in the package file. Each CU and TU header contains an abbrev_offset
9389 field, used to find the abbreviations table for that CU or TU within the
9390 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9391 be interpreted as relative to the base offset given in the index section.
9392 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9393 should be interpreted as relative to the base offset for .debug_line.dwo,
9394 and offsets into other debug sections obtained from DWARF attributes should
9395 also be interpreted as relative to the corresponding base offset.
9396
9397 The table of sizes begins immediately following the table of offsets.
9398 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9399 with L columns and N rows, in row-major order. Each row in the array is
9400 indexed starting from 1 (row 0 is shared by the two tables).
9401
9402 ---
9403
9404 Hash table lookup is handled the same in version 1 and 2:
9405
9406 We assume that N and M will not exceed 2^32 - 1.
9407 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9408
d2415c6c
DE
9409 Given a 64-bit compilation unit signature or a type signature S, an entry
9410 in the hash table is located as follows:
80626a55 9411
d2415c6c
DE
9412 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9413 the low-order k bits all set to 1.
80626a55 9414
d2415c6c 9415 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9416
d2415c6c
DE
9417 3) If the hash table entry at index H matches the signature, use that
9418 entry. If the hash table entry at index H is unused (all zeroes),
9419 terminate the search: the signature is not present in the table.
80626a55 9420
d2415c6c 9421 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9422
d2415c6c 9423 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9424 to stop at an unused slot or find the match. */
80626a55
DE
9425
9426/* Create a hash table to map DWO IDs to their CU/TU entry in
9427 .debug_{info,types}.dwo in DWP_FILE.
9428 Returns NULL if there isn't one.
9429 Note: This function processes DWP files only, not DWO files. */
9430
9431static struct dwp_hash_table *
9432create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9433{
9434 struct objfile *objfile = dwarf2_per_objfile->objfile;
9435 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9436 const gdb_byte *index_ptr, *index_end;
80626a55 9437 struct dwarf2_section_info *index;
73869dc2 9438 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9439 struct dwp_hash_table *htab;
9440
9441 if (is_debug_types)
9442 index = &dwp_file->sections.tu_index;
9443 else
9444 index = &dwp_file->sections.cu_index;
9445
9446 if (dwarf2_section_empty_p (index))
9447 return NULL;
9448 dwarf2_read_section (objfile, index);
9449
9450 index_ptr = index->buffer;
9451 index_end = index_ptr + index->size;
9452
9453 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9454 index_ptr += 4;
9455 if (version == 2)
9456 nr_columns = read_4_bytes (dbfd, index_ptr);
9457 else
9458 nr_columns = 0;
9459 index_ptr += 4;
80626a55
DE
9460 nr_units = read_4_bytes (dbfd, index_ptr);
9461 index_ptr += 4;
9462 nr_slots = read_4_bytes (dbfd, index_ptr);
9463 index_ptr += 4;
9464
73869dc2 9465 if (version != 1 && version != 2)
80626a55 9466 {
21aa081e 9467 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9468 " [in module %s]"),
21aa081e 9469 pulongest (version), dwp_file->name);
80626a55
DE
9470 }
9471 if (nr_slots != (nr_slots & -nr_slots))
9472 {
21aa081e 9473 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9474 " is not power of 2 [in module %s]"),
21aa081e 9475 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9476 }
9477
9478 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9479 htab->version = version;
9480 htab->nr_columns = nr_columns;
80626a55
DE
9481 htab->nr_units = nr_units;
9482 htab->nr_slots = nr_slots;
9483 htab->hash_table = index_ptr;
9484 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9485
9486 /* Exit early if the table is empty. */
9487 if (nr_slots == 0 || nr_units == 0
9488 || (version == 2 && nr_columns == 0))
9489 {
9490 /* All must be zero. */
9491 if (nr_slots != 0 || nr_units != 0
9492 || (version == 2 && nr_columns != 0))
9493 {
9494 complaint (&symfile_complaints,
9495 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9496 " all zero [in modules %s]"),
9497 dwp_file->name);
9498 }
9499 return htab;
9500 }
9501
9502 if (version == 1)
9503 {
9504 htab->section_pool.v1.indices =
9505 htab->unit_table + sizeof (uint32_t) * nr_slots;
9506 /* It's harder to decide whether the section is too small in v1.
9507 V1 is deprecated anyway so we punt. */
9508 }
9509 else
9510 {
9511 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9512 int *ids = htab->section_pool.v2.section_ids;
9513 /* Reverse map for error checking. */
9514 int ids_seen[DW_SECT_MAX + 1];
9515 int i;
9516
9517 if (nr_columns < 2)
9518 {
9519 error (_("Dwarf Error: bad DWP hash table, too few columns"
9520 " in section table [in module %s]"),
9521 dwp_file->name);
9522 }
9523 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9524 {
9525 error (_("Dwarf Error: bad DWP hash table, too many columns"
9526 " in section table [in module %s]"),
9527 dwp_file->name);
9528 }
9529 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9530 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9531 for (i = 0; i < nr_columns; ++i)
9532 {
9533 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9534
9535 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9536 {
9537 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9538 " in section table [in module %s]"),
9539 id, dwp_file->name);
9540 }
9541 if (ids_seen[id] != -1)
9542 {
9543 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9544 " id %d in section table [in module %s]"),
9545 id, dwp_file->name);
9546 }
9547 ids_seen[id] = i;
9548 ids[i] = id;
9549 }
9550 /* Must have exactly one info or types section. */
9551 if (((ids_seen[DW_SECT_INFO] != -1)
9552 + (ids_seen[DW_SECT_TYPES] != -1))
9553 != 1)
9554 {
9555 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9556 " DWO info/types section [in module %s]"),
9557 dwp_file->name);
9558 }
9559 /* Must have an abbrev section. */
9560 if (ids_seen[DW_SECT_ABBREV] == -1)
9561 {
9562 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9563 " section [in module %s]"),
9564 dwp_file->name);
9565 }
9566 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9567 htab->section_pool.v2.sizes =
9568 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9569 * nr_units * nr_columns);
9570 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9571 * nr_units * nr_columns))
9572 > index_end)
9573 {
9574 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9575 " [in module %s]"),
9576 dwp_file->name);
9577 }
9578 }
80626a55
DE
9579
9580 return htab;
9581}
9582
9583/* Update SECTIONS with the data from SECTP.
9584
9585 This function is like the other "locate" section routines that are
9586 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9587 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9588
9589 The result is non-zero for success, or zero if an error was found. */
9590
9591static int
73869dc2
DE
9592locate_v1_virtual_dwo_sections (asection *sectp,
9593 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9594{
9595 const struct dwop_section_names *names = &dwop_section_names;
9596
9597 if (section_is_p (sectp->name, &names->abbrev_dwo))
9598 {
9599 /* There can be only one. */
73869dc2 9600 if (sections->abbrev.s.asection != NULL)
80626a55 9601 return 0;
73869dc2 9602 sections->abbrev.s.asection = sectp;
80626a55
DE
9603 sections->abbrev.size = bfd_get_section_size (sectp);
9604 }
9605 else if (section_is_p (sectp->name, &names->info_dwo)
9606 || section_is_p (sectp->name, &names->types_dwo))
9607 {
9608 /* There can be only one. */
73869dc2 9609 if (sections->info_or_types.s.asection != NULL)
80626a55 9610 return 0;
73869dc2 9611 sections->info_or_types.s.asection = sectp;
80626a55
DE
9612 sections->info_or_types.size = bfd_get_section_size (sectp);
9613 }
9614 else if (section_is_p (sectp->name, &names->line_dwo))
9615 {
9616 /* There can be only one. */
73869dc2 9617 if (sections->line.s.asection != NULL)
80626a55 9618 return 0;
73869dc2 9619 sections->line.s.asection = sectp;
80626a55
DE
9620 sections->line.size = bfd_get_section_size (sectp);
9621 }
9622 else if (section_is_p (sectp->name, &names->loc_dwo))
9623 {
9624 /* There can be only one. */
73869dc2 9625 if (sections->loc.s.asection != NULL)
80626a55 9626 return 0;
73869dc2 9627 sections->loc.s.asection = sectp;
80626a55
DE
9628 sections->loc.size = bfd_get_section_size (sectp);
9629 }
9630 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9631 {
9632 /* There can be only one. */
73869dc2 9633 if (sections->macinfo.s.asection != NULL)
80626a55 9634 return 0;
73869dc2 9635 sections->macinfo.s.asection = sectp;
80626a55
DE
9636 sections->macinfo.size = bfd_get_section_size (sectp);
9637 }
9638 else if (section_is_p (sectp->name, &names->macro_dwo))
9639 {
9640 /* There can be only one. */
73869dc2 9641 if (sections->macro.s.asection != NULL)
80626a55 9642 return 0;
73869dc2 9643 sections->macro.s.asection = sectp;
80626a55
DE
9644 sections->macro.size = bfd_get_section_size (sectp);
9645 }
9646 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9647 {
9648 /* There can be only one. */
73869dc2 9649 if (sections->str_offsets.s.asection != NULL)
80626a55 9650 return 0;
73869dc2 9651 sections->str_offsets.s.asection = sectp;
80626a55
DE
9652 sections->str_offsets.size = bfd_get_section_size (sectp);
9653 }
9654 else
9655 {
9656 /* No other kind of section is valid. */
9657 return 0;
9658 }
9659
9660 return 1;
9661}
9662
73869dc2
DE
9663/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9664 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9665 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9666 This is for DWP version 1 files. */
80626a55
DE
9667
9668static struct dwo_unit *
73869dc2
DE
9669create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9670 uint32_t unit_index,
9671 const char *comp_dir,
9672 ULONGEST signature, int is_debug_types)
80626a55
DE
9673{
9674 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
9675 const struct dwp_hash_table *dwp_htab =
9676 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
9677 bfd *dbfd = dwp_file->dbfd;
9678 const char *kind = is_debug_types ? "TU" : "CU";
9679 struct dwo_file *dwo_file;
9680 struct dwo_unit *dwo_unit;
73869dc2 9681 struct virtual_v1_dwo_sections sections;
80626a55
DE
9682 void **dwo_file_slot;
9683 char *virtual_dwo_name;
9684 struct dwarf2_section_info *cutu;
9685 struct cleanup *cleanups;
9686 int i;
9687
73869dc2
DE
9688 gdb_assert (dwp_file->version == 1);
9689
80626a55
DE
9690 if (dwarf2_read_debug)
9691 {
73869dc2 9692 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 9693 kind,
73869dc2 9694 pulongest (unit_index), hex_string (signature),
80626a55
DE
9695 dwp_file->name);
9696 }
9697
19ac8c2e 9698 /* Fetch the sections of this DWO unit.
80626a55
DE
9699 Put a limit on the number of sections we look for so that bad data
9700 doesn't cause us to loop forever. */
9701
73869dc2 9702#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
9703 (1 /* .debug_info or .debug_types */ \
9704 + 1 /* .debug_abbrev */ \
9705 + 1 /* .debug_line */ \
9706 + 1 /* .debug_loc */ \
9707 + 1 /* .debug_str_offsets */ \
19ac8c2e 9708 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
9709 + 1 /* trailing zero */)
9710
9711 memset (&sections, 0, sizeof (sections));
9712 cleanups = make_cleanup (null_cleanup, 0);
9713
73869dc2 9714 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
9715 {
9716 asection *sectp;
9717 uint32_t section_nr =
9718 read_4_bytes (dbfd,
73869dc2
DE
9719 dwp_htab->section_pool.v1.indices
9720 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
9721
9722 if (section_nr == 0)
9723 break;
9724 if (section_nr >= dwp_file->num_sections)
9725 {
9726 error (_("Dwarf Error: bad DWP hash table, section number too large"
9727 " [in module %s]"),
9728 dwp_file->name);
9729 }
9730
9731 sectp = dwp_file->elf_sections[section_nr];
73869dc2 9732 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
9733 {
9734 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9735 " [in module %s]"),
9736 dwp_file->name);
9737 }
9738 }
9739
9740 if (i < 2
a32a8923
DE
9741 || dwarf2_section_empty_p (&sections.info_or_types)
9742 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
9743 {
9744 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9745 " [in module %s]"),
9746 dwp_file->name);
9747 }
73869dc2 9748 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
9749 {
9750 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9751 " [in module %s]"),
9752 dwp_file->name);
9753 }
9754
9755 /* It's easier for the rest of the code if we fake a struct dwo_file and
9756 have dwo_unit "live" in that. At least for now.
9757
9758 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 9759 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
9760 file, we can combine them back into a virtual DWO file to save space
9761 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
9762 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9763
2792b94d
PM
9764 virtual_dwo_name =
9765 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
9766 get_section_id (&sections.abbrev),
9767 get_section_id (&sections.line),
9768 get_section_id (&sections.loc),
9769 get_section_id (&sections.str_offsets));
80626a55
DE
9770 make_cleanup (xfree, virtual_dwo_name);
9771 /* Can we use an existing virtual DWO file? */
0ac5b59e 9772 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
9773 /* Create one if necessary. */
9774 if (*dwo_file_slot == NULL)
9775 {
9776 if (dwarf2_read_debug)
9777 {
9778 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9779 virtual_dwo_name);
9780 }
9781 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
9782 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9783 virtual_dwo_name,
9784 strlen (virtual_dwo_name));
9785 dwo_file->comp_dir = comp_dir;
80626a55
DE
9786 dwo_file->sections.abbrev = sections.abbrev;
9787 dwo_file->sections.line = sections.line;
9788 dwo_file->sections.loc = sections.loc;
9789 dwo_file->sections.macinfo = sections.macinfo;
9790 dwo_file->sections.macro = sections.macro;
9791 dwo_file->sections.str_offsets = sections.str_offsets;
9792 /* The "str" section is global to the entire DWP file. */
9793 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 9794 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
9795 there's no need to record it in dwo_file.
9796 Also, we can't simply record type sections in dwo_file because
9797 we record a pointer into the vector in dwo_unit. As we collect more
9798 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
9799 for it, invalidating all copies of pointers into the previous
9800 contents. */
80626a55
DE
9801 *dwo_file_slot = dwo_file;
9802 }
9803 else
9804 {
9805 if (dwarf2_read_debug)
9806 {
9807 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9808 virtual_dwo_name);
9809 }
9810 dwo_file = *dwo_file_slot;
9811 }
9812 do_cleanups (cleanups);
9813
9814 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9815 dwo_unit->dwo_file = dwo_file;
9816 dwo_unit->signature = signature;
8a0459fd
DE
9817 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9818 sizeof (struct dwarf2_section_info));
9819 *dwo_unit->section = sections.info_or_types;
57d63ce2 9820 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
9821
9822 return dwo_unit;
9823}
9824
73869dc2
DE
9825/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9826 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9827 piece within that section used by a TU/CU, return a virtual section
9828 of just that piece. */
9829
9830static struct dwarf2_section_info
9831create_dwp_v2_section (struct dwarf2_section_info *section,
9832 bfd_size_type offset, bfd_size_type size)
9833{
9834 struct dwarf2_section_info result;
9835 asection *sectp;
9836
9837 gdb_assert (section != NULL);
9838 gdb_assert (!section->is_virtual);
9839
9840 memset (&result, 0, sizeof (result));
9841 result.s.containing_section = section;
9842 result.is_virtual = 1;
9843
9844 if (size == 0)
9845 return result;
9846
9847 sectp = get_section_bfd_section (section);
9848
9849 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
9850 bounds of the real section. This is a pretty-rare event, so just
9851 flag an error (easier) instead of a warning and trying to cope. */
9852 if (sectp == NULL
9853 || offset + size > bfd_get_section_size (sectp))
9854 {
9855 bfd *abfd = sectp->owner;
9856
9857 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
9858 " in section %s [in module %s]"),
9859 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
9860 objfile_name (dwarf2_per_objfile->objfile));
9861 }
9862
9863 result.virtual_offset = offset;
9864 result.size = size;
9865 return result;
9866}
9867
9868/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9869 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9870 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9871 This is for DWP version 2 files. */
9872
9873static struct dwo_unit *
9874create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
9875 uint32_t unit_index,
9876 const char *comp_dir,
9877 ULONGEST signature, int is_debug_types)
9878{
9879 struct objfile *objfile = dwarf2_per_objfile->objfile;
9880 const struct dwp_hash_table *dwp_htab =
9881 is_debug_types ? dwp_file->tus : dwp_file->cus;
9882 bfd *dbfd = dwp_file->dbfd;
9883 const char *kind = is_debug_types ? "TU" : "CU";
9884 struct dwo_file *dwo_file;
9885 struct dwo_unit *dwo_unit;
9886 struct virtual_v2_dwo_sections sections;
9887 void **dwo_file_slot;
9888 char *virtual_dwo_name;
9889 struct dwarf2_section_info *cutu;
9890 struct cleanup *cleanups;
9891 int i;
9892
9893 gdb_assert (dwp_file->version == 2);
9894
9895 if (dwarf2_read_debug)
9896 {
9897 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
9898 kind,
9899 pulongest (unit_index), hex_string (signature),
9900 dwp_file->name);
9901 }
9902
9903 /* Fetch the section offsets of this DWO unit. */
9904
9905 memset (&sections, 0, sizeof (sections));
9906 cleanups = make_cleanup (null_cleanup, 0);
9907
9908 for (i = 0; i < dwp_htab->nr_columns; ++i)
9909 {
9910 uint32_t offset = read_4_bytes (dbfd,
9911 dwp_htab->section_pool.v2.offsets
9912 + (((unit_index - 1) * dwp_htab->nr_columns
9913 + i)
9914 * sizeof (uint32_t)));
9915 uint32_t size = read_4_bytes (dbfd,
9916 dwp_htab->section_pool.v2.sizes
9917 + (((unit_index - 1) * dwp_htab->nr_columns
9918 + i)
9919 * sizeof (uint32_t)));
9920
9921 switch (dwp_htab->section_pool.v2.section_ids[i])
9922 {
9923 case DW_SECT_INFO:
9924 case DW_SECT_TYPES:
9925 sections.info_or_types_offset = offset;
9926 sections.info_or_types_size = size;
9927 break;
9928 case DW_SECT_ABBREV:
9929 sections.abbrev_offset = offset;
9930 sections.abbrev_size = size;
9931 break;
9932 case DW_SECT_LINE:
9933 sections.line_offset = offset;
9934 sections.line_size = size;
9935 break;
9936 case DW_SECT_LOC:
9937 sections.loc_offset = offset;
9938 sections.loc_size = size;
9939 break;
9940 case DW_SECT_STR_OFFSETS:
9941 sections.str_offsets_offset = offset;
9942 sections.str_offsets_size = size;
9943 break;
9944 case DW_SECT_MACINFO:
9945 sections.macinfo_offset = offset;
9946 sections.macinfo_size = size;
9947 break;
9948 case DW_SECT_MACRO:
9949 sections.macro_offset = offset;
9950 sections.macro_size = size;
9951 break;
9952 }
9953 }
9954
9955 /* It's easier for the rest of the code if we fake a struct dwo_file and
9956 have dwo_unit "live" in that. At least for now.
9957
9958 The DWP file can be made up of a random collection of CUs and TUs.
9959 However, for each CU + set of TUs that came from the same original DWO
9960 file, we can combine them back into a virtual DWO file to save space
9961 (fewer struct dwo_file objects to allocate). Remember that for really
9962 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9963
9964 virtual_dwo_name =
9965 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
9966 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
9967 (long) (sections.line_size ? sections.line_offset : 0),
9968 (long) (sections.loc_size ? sections.loc_offset : 0),
9969 (long) (sections.str_offsets_size
9970 ? sections.str_offsets_offset : 0));
9971 make_cleanup (xfree, virtual_dwo_name);
9972 /* Can we use an existing virtual DWO file? */
9973 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9974 /* Create one if necessary. */
9975 if (*dwo_file_slot == NULL)
9976 {
9977 if (dwarf2_read_debug)
9978 {
9979 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9980 virtual_dwo_name);
9981 }
9982 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9983 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9984 virtual_dwo_name,
9985 strlen (virtual_dwo_name));
9986 dwo_file->comp_dir = comp_dir;
9987 dwo_file->sections.abbrev =
9988 create_dwp_v2_section (&dwp_file->sections.abbrev,
9989 sections.abbrev_offset, sections.abbrev_size);
9990 dwo_file->sections.line =
9991 create_dwp_v2_section (&dwp_file->sections.line,
9992 sections.line_offset, sections.line_size);
9993 dwo_file->sections.loc =
9994 create_dwp_v2_section (&dwp_file->sections.loc,
9995 sections.loc_offset, sections.loc_size);
9996 dwo_file->sections.macinfo =
9997 create_dwp_v2_section (&dwp_file->sections.macinfo,
9998 sections.macinfo_offset, sections.macinfo_size);
9999 dwo_file->sections.macro =
10000 create_dwp_v2_section (&dwp_file->sections.macro,
10001 sections.macro_offset, sections.macro_size);
10002 dwo_file->sections.str_offsets =
10003 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10004 sections.str_offsets_offset,
10005 sections.str_offsets_size);
10006 /* The "str" section is global to the entire DWP file. */
10007 dwo_file->sections.str = dwp_file->sections.str;
10008 /* The info or types section is assigned below to dwo_unit,
10009 there's no need to record it in dwo_file.
10010 Also, we can't simply record type sections in dwo_file because
10011 we record a pointer into the vector in dwo_unit. As we collect more
10012 types we'll grow the vector and eventually have to reallocate space
10013 for it, invalidating all copies of pointers into the previous
10014 contents. */
10015 *dwo_file_slot = dwo_file;
10016 }
10017 else
10018 {
10019 if (dwarf2_read_debug)
10020 {
10021 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10022 virtual_dwo_name);
10023 }
10024 dwo_file = *dwo_file_slot;
10025 }
10026 do_cleanups (cleanups);
10027
10028 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10029 dwo_unit->dwo_file = dwo_file;
10030 dwo_unit->signature = signature;
10031 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10032 sizeof (struct dwarf2_section_info));
10033 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10034 ? &dwp_file->sections.types
10035 : &dwp_file->sections.info,
10036 sections.info_or_types_offset,
10037 sections.info_or_types_size);
10038 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10039
10040 return dwo_unit;
10041}
10042
57d63ce2
DE
10043/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10044 Returns NULL if the signature isn't found. */
80626a55
DE
10045
10046static struct dwo_unit *
57d63ce2
DE
10047lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10048 ULONGEST signature, int is_debug_types)
80626a55 10049{
57d63ce2
DE
10050 const struct dwp_hash_table *dwp_htab =
10051 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10052 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10053 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10054 uint32_t hash = signature & mask;
10055 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10056 unsigned int i;
10057 void **slot;
10058 struct dwo_unit find_dwo_cu, *dwo_cu;
10059
10060 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10061 find_dwo_cu.signature = signature;
19ac8c2e
DE
10062 slot = htab_find_slot (is_debug_types
10063 ? dwp_file->loaded_tus
10064 : dwp_file->loaded_cus,
10065 &find_dwo_cu, INSERT);
80626a55
DE
10066
10067 if (*slot != NULL)
10068 return *slot;
10069
10070 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10071 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10072 {
10073 ULONGEST signature_in_table;
10074
10075 signature_in_table =
57d63ce2 10076 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10077 if (signature_in_table == signature)
10078 {
57d63ce2
DE
10079 uint32_t unit_index =
10080 read_4_bytes (dbfd,
10081 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10082
73869dc2
DE
10083 if (dwp_file->version == 1)
10084 {
10085 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10086 comp_dir, signature,
10087 is_debug_types);
10088 }
10089 else
10090 {
10091 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10092 comp_dir, signature,
10093 is_debug_types);
10094 }
80626a55
DE
10095 return *slot;
10096 }
10097 if (signature_in_table == 0)
10098 return NULL;
10099 hash = (hash + hash2) & mask;
10100 }
10101
10102 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10103 " [in module %s]"),
10104 dwp_file->name);
10105}
10106
ab5088bf 10107/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10108 Open the file specified by FILE_NAME and hand it off to BFD for
10109 preliminary analysis. Return a newly initialized bfd *, which
10110 includes a canonicalized copy of FILE_NAME.
80626a55 10111 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10112 SEARCH_CWD is true if the current directory is to be searched.
10113 It will be searched before debug-file-directory.
10114 If unable to find/open the file, return NULL.
3019eac3
DE
10115 NOTE: This function is derived from symfile_bfd_open. */
10116
10117static bfd *
6ac97d4c 10118try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10119{
10120 bfd *sym_bfd;
80626a55 10121 int desc, flags;
3019eac3 10122 char *absolute_name;
9c02c129
DE
10123 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10124 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10125 to debug_file_directory. */
10126 char *search_path;
10127 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10128
6ac97d4c
DE
10129 if (search_cwd)
10130 {
10131 if (*debug_file_directory != '\0')
10132 search_path = concat (".", dirname_separator_string,
10133 debug_file_directory, NULL);
10134 else
10135 search_path = xstrdup (".");
10136 }
9c02c129 10137 else
6ac97d4c 10138 search_path = xstrdup (debug_file_directory);
3019eac3 10139
492c0ab7 10140 flags = OPF_RETURN_REALPATH;
80626a55
DE
10141 if (is_dwp)
10142 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10143 desc = openp (search_path, flags, file_name,
3019eac3 10144 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10145 xfree (search_path);
3019eac3
DE
10146 if (desc < 0)
10147 return NULL;
10148
bb397797 10149 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10150 xfree (absolute_name);
9c02c129
DE
10151 if (sym_bfd == NULL)
10152 return NULL;
3019eac3
DE
10153 bfd_set_cacheable (sym_bfd, 1);
10154
10155 if (!bfd_check_format (sym_bfd, bfd_object))
10156 {
cbb099e8 10157 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10158 return NULL;
10159 }
10160
3019eac3
DE
10161 return sym_bfd;
10162}
10163
ab5088bf 10164/* Try to open DWO file FILE_NAME.
3019eac3
DE
10165 COMP_DIR is the DW_AT_comp_dir attribute.
10166 The result is the bfd handle of the file.
10167 If there is a problem finding or opening the file, return NULL.
10168 Upon success, the canonicalized path of the file is stored in the bfd,
10169 same as symfile_bfd_open. */
10170
10171static bfd *
ab5088bf 10172open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10173{
10174 bfd *abfd;
3019eac3 10175
80626a55 10176 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10177 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10178
10179 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10180
10181 if (comp_dir != NULL)
10182 {
80626a55 10183 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10184
10185 /* NOTE: If comp_dir is a relative path, this will also try the
10186 search path, which seems useful. */
6ac97d4c 10187 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10188 xfree (path_to_try);
10189 if (abfd != NULL)
10190 return abfd;
10191 }
10192
10193 /* That didn't work, try debug-file-directory, which, despite its name,
10194 is a list of paths. */
10195
10196 if (*debug_file_directory == '\0')
10197 return NULL;
10198
6ac97d4c 10199 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10200}
10201
80626a55
DE
10202/* This function is mapped across the sections and remembers the offset and
10203 size of each of the DWO debugging sections we are interested in. */
10204
10205static void
10206dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10207{
10208 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10209 const struct dwop_section_names *names = &dwop_section_names;
10210
10211 if (section_is_p (sectp->name, &names->abbrev_dwo))
10212 {
73869dc2 10213 dwo_sections->abbrev.s.asection = sectp;
80626a55
DE
10214 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10215 }
10216 else if (section_is_p (sectp->name, &names->info_dwo))
10217 {
73869dc2 10218 dwo_sections->info.s.asection = sectp;
80626a55
DE
10219 dwo_sections->info.size = bfd_get_section_size (sectp);
10220 }
10221 else if (section_is_p (sectp->name, &names->line_dwo))
10222 {
73869dc2 10223 dwo_sections->line.s.asection = sectp;
80626a55
DE
10224 dwo_sections->line.size = bfd_get_section_size (sectp);
10225 }
10226 else if (section_is_p (sectp->name, &names->loc_dwo))
10227 {
73869dc2 10228 dwo_sections->loc.s.asection = sectp;
80626a55
DE
10229 dwo_sections->loc.size = bfd_get_section_size (sectp);
10230 }
10231 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10232 {
73869dc2 10233 dwo_sections->macinfo.s.asection = sectp;
80626a55
DE
10234 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10235 }
10236 else if (section_is_p (sectp->name, &names->macro_dwo))
10237 {
73869dc2 10238 dwo_sections->macro.s.asection = sectp;
80626a55
DE
10239 dwo_sections->macro.size = bfd_get_section_size (sectp);
10240 }
10241 else if (section_is_p (sectp->name, &names->str_dwo))
10242 {
73869dc2 10243 dwo_sections->str.s.asection = sectp;
80626a55
DE
10244 dwo_sections->str.size = bfd_get_section_size (sectp);
10245 }
10246 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10247 {
73869dc2 10248 dwo_sections->str_offsets.s.asection = sectp;
80626a55
DE
10249 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10250 }
10251 else if (section_is_p (sectp->name, &names->types_dwo))
10252 {
10253 struct dwarf2_section_info type_section;
10254
10255 memset (&type_section, 0, sizeof (type_section));
73869dc2 10256 type_section.s.asection = sectp;
80626a55
DE
10257 type_section.size = bfd_get_section_size (sectp);
10258 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10259 &type_section);
10260 }
10261}
10262
ab5088bf 10263/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10264 by PER_CU. This is for the non-DWP case.
80626a55 10265 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10266
10267static struct dwo_file *
0ac5b59e
DE
10268open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10269 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10270{
10271 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10272 struct dwo_file *dwo_file;
10273 bfd *dbfd;
3019eac3
DE
10274 struct cleanup *cleanups;
10275
ab5088bf 10276 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10277 if (dbfd == NULL)
10278 {
10279 if (dwarf2_read_debug)
10280 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10281 return NULL;
10282 }
10283 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10284 dwo_file->dwo_name = dwo_name;
10285 dwo_file->comp_dir = comp_dir;
80626a55 10286 dwo_file->dbfd = dbfd;
3019eac3
DE
10287
10288 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10289
80626a55 10290 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10291
19c3d4c9 10292 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10293
10294 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10295 dwo_file->sections.types);
10296
10297 discard_cleanups (cleanups);
10298
80626a55
DE
10299 if (dwarf2_read_debug)
10300 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10301
3019eac3
DE
10302 return dwo_file;
10303}
10304
80626a55 10305/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10306 size of each of the DWP debugging sections common to version 1 and 2 that
10307 we are interested in. */
3019eac3 10308
80626a55 10309static void
73869dc2
DE
10310dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10311 void *dwp_file_ptr)
3019eac3 10312{
80626a55
DE
10313 struct dwp_file *dwp_file = dwp_file_ptr;
10314 const struct dwop_section_names *names = &dwop_section_names;
10315 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10316
80626a55 10317 /* Record the ELF section number for later lookup: this is what the
73869dc2 10318 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10319 gdb_assert (elf_section_nr < dwp_file->num_sections);
10320 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10321
80626a55
DE
10322 /* Look for specific sections that we need. */
10323 if (section_is_p (sectp->name, &names->str_dwo))
10324 {
73869dc2 10325 dwp_file->sections.str.s.asection = sectp;
80626a55
DE
10326 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10327 }
10328 else if (section_is_p (sectp->name, &names->cu_index))
10329 {
73869dc2 10330 dwp_file->sections.cu_index.s.asection = sectp;
80626a55
DE
10331 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10332 }
10333 else if (section_is_p (sectp->name, &names->tu_index))
10334 {
73869dc2 10335 dwp_file->sections.tu_index.s.asection = sectp;
80626a55
DE
10336 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10337 }
10338}
3019eac3 10339
73869dc2
DE
10340/* This function is mapped across the sections and remembers the offset and
10341 size of each of the DWP version 2 debugging sections that we are interested
10342 in. This is split into a separate function because we don't know if we
10343 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10344
10345static void
10346dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10347{
10348 struct dwp_file *dwp_file = dwp_file_ptr;
10349 const struct dwop_section_names *names = &dwop_section_names;
10350 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10351
10352 /* Record the ELF section number for later lookup: this is what the
10353 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10354 gdb_assert (elf_section_nr < dwp_file->num_sections);
10355 dwp_file->elf_sections[elf_section_nr] = sectp;
10356
10357 /* Look for specific sections that we need. */
10358 if (section_is_p (sectp->name, &names->abbrev_dwo))
10359 {
10360 dwp_file->sections.abbrev.s.asection = sectp;
10361 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10362 }
10363 else if (section_is_p (sectp->name, &names->info_dwo))
10364 {
10365 dwp_file->sections.info.s.asection = sectp;
10366 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10367 }
10368 else if (section_is_p (sectp->name, &names->line_dwo))
10369 {
10370 dwp_file->sections.line.s.asection = sectp;
10371 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10372 }
10373 else if (section_is_p (sectp->name, &names->loc_dwo))
10374 {
10375 dwp_file->sections.loc.s.asection = sectp;
10376 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10377 }
10378 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10379 {
10380 dwp_file->sections.macinfo.s.asection = sectp;
10381 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10382 }
10383 else if (section_is_p (sectp->name, &names->macro_dwo))
10384 {
10385 dwp_file->sections.macro.s.asection = sectp;
10386 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10387 }
10388 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10389 {
10390 dwp_file->sections.str_offsets.s.asection = sectp;
10391 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10392 }
10393 else if (section_is_p (sectp->name, &names->types_dwo))
10394 {
10395 dwp_file->sections.types.s.asection = sectp;
10396 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10397 }
10398}
10399
80626a55 10400/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10401
80626a55
DE
10402static hashval_t
10403hash_dwp_loaded_cutus (const void *item)
10404{
10405 const struct dwo_unit *dwo_unit = item;
3019eac3 10406
80626a55
DE
10407 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10408 return dwo_unit->signature;
3019eac3
DE
10409}
10410
80626a55 10411/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10412
80626a55
DE
10413static int
10414eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10415{
80626a55
DE
10416 const struct dwo_unit *dua = a;
10417 const struct dwo_unit *dub = b;
3019eac3 10418
80626a55
DE
10419 return dua->signature == dub->signature;
10420}
3019eac3 10421
80626a55 10422/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10423
80626a55
DE
10424static htab_t
10425allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10426{
10427 return htab_create_alloc_ex (3,
10428 hash_dwp_loaded_cutus,
10429 eq_dwp_loaded_cutus,
10430 NULL,
10431 &objfile->objfile_obstack,
10432 hashtab_obstack_allocate,
10433 dummy_obstack_deallocate);
10434}
3019eac3 10435
ab5088bf
DE
10436/* Try to open DWP file FILE_NAME.
10437 The result is the bfd handle of the file.
10438 If there is a problem finding or opening the file, return NULL.
10439 Upon success, the canonicalized path of the file is stored in the bfd,
10440 same as symfile_bfd_open. */
10441
10442static bfd *
10443open_dwp_file (const char *file_name)
10444{
6ac97d4c
DE
10445 bfd *abfd;
10446
10447 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10448 if (abfd != NULL)
10449 return abfd;
10450
10451 /* Work around upstream bug 15652.
10452 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10453 [Whether that's a "bug" is debatable, but it is getting in our way.]
10454 We have no real idea where the dwp file is, because gdb's realpath-ing
10455 of the executable's path may have discarded the needed info.
10456 [IWBN if the dwp file name was recorded in the executable, akin to
10457 .gnu_debuglink, but that doesn't exist yet.]
10458 Strip the directory from FILE_NAME and search again. */
10459 if (*debug_file_directory != '\0')
10460 {
10461 /* Don't implicitly search the current directory here.
10462 If the user wants to search "." to handle this case,
10463 it must be added to debug-file-directory. */
10464 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10465 0 /*search_cwd*/);
10466 }
10467
10468 return NULL;
ab5088bf
DE
10469}
10470
80626a55
DE
10471/* Initialize the use of the DWP file for the current objfile.
10472 By convention the name of the DWP file is ${objfile}.dwp.
10473 The result is NULL if it can't be found. */
a766d390 10474
80626a55 10475static struct dwp_file *
ab5088bf 10476open_and_init_dwp_file (void)
80626a55
DE
10477{
10478 struct objfile *objfile = dwarf2_per_objfile->objfile;
10479 struct dwp_file *dwp_file;
10480 char *dwp_name;
10481 bfd *dbfd;
10482 struct cleanup *cleanups;
10483
82bf32bc
JK
10484 /* Try to find first .dwp for the binary file before any symbolic links
10485 resolving. */
10486 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10487 cleanups = make_cleanup (xfree, dwp_name);
10488
ab5088bf 10489 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10490 if (dbfd == NULL
10491 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10492 {
10493 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10494 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10495 make_cleanup (xfree, dwp_name);
10496 dbfd = open_dwp_file (dwp_name);
10497 }
10498
80626a55
DE
10499 if (dbfd == NULL)
10500 {
10501 if (dwarf2_read_debug)
10502 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10503 do_cleanups (cleanups);
10504 return NULL;
3019eac3 10505 }
80626a55 10506 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10507 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10508 dwp_file->dbfd = dbfd;
10509 do_cleanups (cleanups);
c906108c 10510
80626a55
DE
10511 /* +1: section 0 is unused */
10512 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10513 dwp_file->elf_sections =
10514 OBSTACK_CALLOC (&objfile->objfile_obstack,
10515 dwp_file->num_sections, asection *);
10516
73869dc2 10517 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10518
10519 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10520
10521 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10522
73869dc2
DE
10523 /* The DWP file version is stored in the hash table. Oh well. */
10524 if (dwp_file->cus->version != dwp_file->tus->version)
10525 {
10526 /* Technically speaking, we should try to limp along, but this is
10527 pretty bizarre. */
10528 error (_("Dwarf Error: DWP file CU version %d doesn't match"
10529 " TU version %d [in DWP file %s]"),
10530 dwp_file->cus->version, dwp_file->tus->version, dwp_name);
10531 }
10532 dwp_file->version = dwp_file->cus->version;
10533
10534 if (dwp_file->version == 2)
10535 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10536
19ac8c2e
DE
10537 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10538 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10539
80626a55
DE
10540 if (dwarf2_read_debug)
10541 {
10542 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10543 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10544 " %s CUs, %s TUs\n",
10545 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10546 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10547 }
10548
10549 return dwp_file;
3019eac3 10550}
c906108c 10551
ab5088bf
DE
10552/* Wrapper around open_and_init_dwp_file, only open it once. */
10553
10554static struct dwp_file *
10555get_dwp_file (void)
10556{
10557 if (! dwarf2_per_objfile->dwp_checked)
10558 {
10559 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10560 dwarf2_per_objfile->dwp_checked = 1;
10561 }
10562 return dwarf2_per_objfile->dwp_file;
10563}
10564
80626a55
DE
10565/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10566 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10567 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10568 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10569 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10570
10571 This is called, for example, when wanting to read a variable with a
10572 complex location. Therefore we don't want to do file i/o for every call.
10573 Therefore we don't want to look for a DWO file on every call.
10574 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10575 then we check if we've already seen DWO_NAME, and only THEN do we check
10576 for a DWO file.
10577
1c658ad5 10578 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10579 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10580
3019eac3 10581static struct dwo_unit *
80626a55
DE
10582lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10583 const char *dwo_name, const char *comp_dir,
10584 ULONGEST signature, int is_debug_types)
3019eac3
DE
10585{
10586 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10587 const char *kind = is_debug_types ? "TU" : "CU";
10588 void **dwo_file_slot;
3019eac3 10589 struct dwo_file *dwo_file;
80626a55 10590 struct dwp_file *dwp_file;
cb1df416 10591
6a506a2d
DE
10592 /* First see if there's a DWP file.
10593 If we have a DWP file but didn't find the DWO inside it, don't
10594 look for the original DWO file. It makes gdb behave differently
10595 depending on whether one is debugging in the build tree. */
cf2c3c16 10596
ab5088bf 10597 dwp_file = get_dwp_file ();
80626a55 10598 if (dwp_file != NULL)
cf2c3c16 10599 {
80626a55
DE
10600 const struct dwp_hash_table *dwp_htab =
10601 is_debug_types ? dwp_file->tus : dwp_file->cus;
10602
10603 if (dwp_htab != NULL)
10604 {
10605 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10606 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10607 signature, is_debug_types);
80626a55
DE
10608
10609 if (dwo_cutu != NULL)
10610 {
10611 if (dwarf2_read_debug)
10612 {
10613 fprintf_unfiltered (gdb_stdlog,
10614 "Virtual DWO %s %s found: @%s\n",
10615 kind, hex_string (signature),
10616 host_address_to_string (dwo_cutu));
10617 }
10618 return dwo_cutu;
10619 }
10620 }
10621 }
6a506a2d 10622 else
80626a55 10623 {
6a506a2d 10624 /* No DWP file, look for the DWO file. */
80626a55 10625
6a506a2d
DE
10626 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10627 if (*dwo_file_slot == NULL)
80626a55 10628 {
6a506a2d
DE
10629 /* Read in the file and build a table of the CUs/TUs it contains. */
10630 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10631 }
6a506a2d
DE
10632 /* NOTE: This will be NULL if unable to open the file. */
10633 dwo_file = *dwo_file_slot;
3019eac3 10634
6a506a2d 10635 if (dwo_file != NULL)
19c3d4c9 10636 {
6a506a2d
DE
10637 struct dwo_unit *dwo_cutu = NULL;
10638
10639 if (is_debug_types && dwo_file->tus)
10640 {
10641 struct dwo_unit find_dwo_cutu;
10642
10643 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10644 find_dwo_cutu.signature = signature;
10645 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10646 }
10647 else if (!is_debug_types && dwo_file->cu)
80626a55 10648 {
6a506a2d
DE
10649 if (signature == dwo_file->cu->signature)
10650 dwo_cutu = dwo_file->cu;
10651 }
10652
10653 if (dwo_cutu != NULL)
10654 {
10655 if (dwarf2_read_debug)
10656 {
10657 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10658 kind, dwo_name, hex_string (signature),
10659 host_address_to_string (dwo_cutu));
10660 }
10661 return dwo_cutu;
80626a55
DE
10662 }
10663 }
2e276125 10664 }
9cdd5dbd 10665
80626a55
DE
10666 /* We didn't find it. This could mean a dwo_id mismatch, or
10667 someone deleted the DWO/DWP file, or the search path isn't set up
10668 correctly to find the file. */
10669
10670 if (dwarf2_read_debug)
10671 {
10672 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10673 kind, dwo_name, hex_string (signature));
10674 }
3019eac3 10675
6656a72d
DE
10676 /* This is a warning and not a complaint because it can be caused by
10677 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
10678 {
10679 /* Print the name of the DWP file if we looked there, helps the user
10680 better diagnose the problem. */
10681 char *dwp_text = NULL;
10682 struct cleanup *cleanups;
10683
10684 if (dwp_file != NULL)
10685 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10686 cleanups = make_cleanup (xfree, dwp_text);
10687
10688 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10689 " [in module %s]"),
10690 kind, dwo_name, hex_string (signature),
10691 dwp_text != NULL ? dwp_text : "",
10692 this_unit->is_debug_types ? "TU" : "CU",
10693 this_unit->offset.sect_off, objfile_name (objfile));
10694
10695 do_cleanups (cleanups);
10696 }
3019eac3 10697 return NULL;
5fb290d7
DJ
10698}
10699
80626a55
DE
10700/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10701 See lookup_dwo_cutu_unit for details. */
10702
10703static struct dwo_unit *
10704lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10705 const char *dwo_name, const char *comp_dir,
10706 ULONGEST signature)
10707{
10708 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10709}
10710
10711/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10712 See lookup_dwo_cutu_unit for details. */
10713
10714static struct dwo_unit *
10715lookup_dwo_type_unit (struct signatured_type *this_tu,
10716 const char *dwo_name, const char *comp_dir)
10717{
10718 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10719}
10720
89e63ee4
DE
10721/* Traversal function for queue_and_load_all_dwo_tus. */
10722
10723static int
10724queue_and_load_dwo_tu (void **slot, void *info)
10725{
10726 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10727 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10728 ULONGEST signature = dwo_unit->signature;
10729 struct signatured_type *sig_type =
10730 lookup_dwo_signatured_type (per_cu->cu, signature);
10731
10732 if (sig_type != NULL)
10733 {
10734 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10735
10736 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10737 a real dependency of PER_CU on SIG_TYPE. That is detected later
10738 while processing PER_CU. */
10739 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10740 load_full_type_unit (sig_cu);
10741 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10742 }
10743
10744 return 1;
10745}
10746
10747/* Queue all TUs contained in the DWO of PER_CU to be read in.
10748 The DWO may have the only definition of the type, though it may not be
10749 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10750 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10751
10752static void
10753queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10754{
10755 struct dwo_unit *dwo_unit;
10756 struct dwo_file *dwo_file;
10757
10758 gdb_assert (!per_cu->is_debug_types);
10759 gdb_assert (get_dwp_file () == NULL);
10760 gdb_assert (per_cu->cu != NULL);
10761
10762 dwo_unit = per_cu->cu->dwo_unit;
10763 gdb_assert (dwo_unit != NULL);
10764
10765 dwo_file = dwo_unit->dwo_file;
10766 if (dwo_file->tus != NULL)
10767 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10768}
10769
3019eac3
DE
10770/* Free all resources associated with DWO_FILE.
10771 Close the DWO file and munmap the sections.
10772 All memory should be on the objfile obstack. */
348e048f
DE
10773
10774static void
3019eac3 10775free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 10776{
3019eac3
DE
10777 int ix;
10778 struct dwarf2_section_info *section;
348e048f 10779
5c6fa7ab 10780 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 10781 gdb_bfd_unref (dwo_file->dbfd);
348e048f 10782
3019eac3
DE
10783 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10784}
348e048f 10785
3019eac3 10786/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 10787
3019eac3
DE
10788static void
10789free_dwo_file_cleanup (void *arg)
10790{
10791 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10792 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 10793
3019eac3
DE
10794 free_dwo_file (dwo_file, objfile);
10795}
348e048f 10796
3019eac3 10797/* Traversal function for free_dwo_files. */
2ab95328 10798
3019eac3
DE
10799static int
10800free_dwo_file_from_slot (void **slot, void *info)
10801{
10802 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10803 struct objfile *objfile = (struct objfile *) info;
348e048f 10804
3019eac3 10805 free_dwo_file (dwo_file, objfile);
348e048f 10806
3019eac3
DE
10807 return 1;
10808}
348e048f 10809
3019eac3 10810/* Free all resources associated with DWO_FILES. */
348e048f 10811
3019eac3
DE
10812static void
10813free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10814{
10815 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 10816}
3019eac3
DE
10817\f
10818/* Read in various DIEs. */
348e048f 10819
d389af10
JK
10820/* qsort helper for inherit_abstract_dies. */
10821
10822static int
10823unsigned_int_compar (const void *ap, const void *bp)
10824{
10825 unsigned int a = *(unsigned int *) ap;
10826 unsigned int b = *(unsigned int *) bp;
10827
10828 return (a > b) - (b > a);
10829}
10830
10831/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
10832 Inherit only the children of the DW_AT_abstract_origin DIE not being
10833 already referenced by DW_AT_abstract_origin from the children of the
10834 current DIE. */
d389af10
JK
10835
10836static void
10837inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
10838{
10839 struct die_info *child_die;
10840 unsigned die_children_count;
10841 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
10842 sect_offset *offsets;
10843 sect_offset *offsets_end, *offsetp;
d389af10
JK
10844 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
10845 struct die_info *origin_die;
10846 /* Iterator of the ORIGIN_DIE children. */
10847 struct die_info *origin_child_die;
10848 struct cleanup *cleanups;
10849 struct attribute *attr;
cd02d79d
PA
10850 struct dwarf2_cu *origin_cu;
10851 struct pending **origin_previous_list_in_scope;
d389af10
JK
10852
10853 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10854 if (!attr)
10855 return;
10856
cd02d79d
PA
10857 /* Note that following die references may follow to a die in a
10858 different cu. */
10859
10860 origin_cu = cu;
10861 origin_die = follow_die_ref (die, attr, &origin_cu);
10862
10863 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
10864 symbols in. */
10865 origin_previous_list_in_scope = origin_cu->list_in_scope;
10866 origin_cu->list_in_scope = cu->list_in_scope;
10867
edb3359d
DJ
10868 if (die->tag != origin_die->tag
10869 && !(die->tag == DW_TAG_inlined_subroutine
10870 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
10871 complaint (&symfile_complaints,
10872 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 10873 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
10874
10875 child_die = die->child;
10876 die_children_count = 0;
10877 while (child_die && child_die->tag)
10878 {
10879 child_die = sibling_die (child_die);
10880 die_children_count++;
10881 }
10882 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10883 cleanups = make_cleanup (xfree, offsets);
10884
10885 offsets_end = offsets;
10886 child_die = die->child;
10887 while (child_die && child_die->tag)
10888 {
c38f313d
DJ
10889 /* For each CHILD_DIE, find the corresponding child of
10890 ORIGIN_DIE. If there is more than one layer of
10891 DW_AT_abstract_origin, follow them all; there shouldn't be,
10892 but GCC versions at least through 4.4 generate this (GCC PR
10893 40573). */
10894 struct die_info *child_origin_die = child_die;
cd02d79d 10895 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 10896
c38f313d
DJ
10897 while (1)
10898 {
cd02d79d
PA
10899 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10900 child_origin_cu);
c38f313d
DJ
10901 if (attr == NULL)
10902 break;
cd02d79d
PA
10903 child_origin_die = follow_die_ref (child_origin_die, attr,
10904 &child_origin_cu);
c38f313d
DJ
10905 }
10906
d389af10
JK
10907 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10908 counterpart may exist. */
c38f313d 10909 if (child_origin_die != child_die)
d389af10 10910 {
edb3359d
DJ
10911 if (child_die->tag != child_origin_die->tag
10912 && !(child_die->tag == DW_TAG_inlined_subroutine
10913 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
10914 complaint (&symfile_complaints,
10915 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
10916 "different tags"), child_die->offset.sect_off,
10917 child_origin_die->offset.sect_off);
c38f313d
DJ
10918 if (child_origin_die->parent != origin_die)
10919 complaint (&symfile_complaints,
10920 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
10921 "different parents"), child_die->offset.sect_off,
10922 child_origin_die->offset.sect_off);
c38f313d
DJ
10923 else
10924 *offsets_end++ = child_origin_die->offset;
d389af10
JK
10925 }
10926 child_die = sibling_die (child_die);
10927 }
10928 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
10929 unsigned_int_compar);
10930 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 10931 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
10932 complaint (&symfile_complaints,
10933 _("Multiple children of DIE 0x%x refer "
10934 "to DIE 0x%x as their abstract origin"),
b64f50a1 10935 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
10936
10937 offsetp = offsets;
10938 origin_child_die = origin_die->child;
10939 while (origin_child_die && origin_child_die->tag)
10940 {
10941 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
10942 while (offsetp < offsets_end
10943 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 10944 offsetp++;
b64f50a1
JK
10945 if (offsetp >= offsets_end
10946 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10
JK
10947 {
10948 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
cd02d79d 10949 process_die (origin_child_die, origin_cu);
d389af10
JK
10950 }
10951 origin_child_die = sibling_die (origin_child_die);
10952 }
cd02d79d 10953 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
10954
10955 do_cleanups (cleanups);
10956}
10957
c906108c 10958static void
e7c27a73 10959read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10960{
e7c27a73 10961 struct objfile *objfile = cu->objfile;
52f0bd74 10962 struct context_stack *new;
c906108c
SS
10963 CORE_ADDR lowpc;
10964 CORE_ADDR highpc;
10965 struct die_info *child_die;
edb3359d 10966 struct attribute *attr, *call_line, *call_file;
15d034d0 10967 const char *name;
e142c38c 10968 CORE_ADDR baseaddr;
801e3a5b 10969 struct block *block;
edb3359d 10970 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
10971 VEC (symbolp) *template_args = NULL;
10972 struct template_symbol *templ_func = NULL;
edb3359d
DJ
10973
10974 if (inlined_func)
10975 {
10976 /* If we do not have call site information, we can't show the
10977 caller of this inlined function. That's too confusing, so
10978 only use the scope for local variables. */
10979 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
10980 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
10981 if (call_line == NULL || call_file == NULL)
10982 {
10983 read_lexical_block_scope (die, cu);
10984 return;
10985 }
10986 }
c906108c 10987
e142c38c
DJ
10988 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10989
94af9270 10990 name = dwarf2_name (die, cu);
c906108c 10991
e8d05480
JB
10992 /* Ignore functions with missing or empty names. These are actually
10993 illegal according to the DWARF standard. */
10994 if (name == NULL)
10995 {
10996 complaint (&symfile_complaints,
b64f50a1
JK
10997 _("missing name for subprogram DIE at %d"),
10998 die->offset.sect_off);
e8d05480
JB
10999 return;
11000 }
11001
11002 /* Ignore functions with missing or invalid low and high pc attributes. */
11003 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11004 {
ae4d0c03
PM
11005 attr = dwarf2_attr (die, DW_AT_external, cu);
11006 if (!attr || !DW_UNSND (attr))
11007 complaint (&symfile_complaints,
3e43a32a
MS
11008 _("cannot get low and high bounds "
11009 "for subprogram DIE at %d"),
b64f50a1 11010 die->offset.sect_off);
e8d05480
JB
11011 return;
11012 }
c906108c
SS
11013
11014 lowpc += baseaddr;
11015 highpc += baseaddr;
11016
34eaf542
TT
11017 /* If we have any template arguments, then we must allocate a
11018 different sort of symbol. */
11019 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11020 {
11021 if (child_die->tag == DW_TAG_template_type_param
11022 || child_die->tag == DW_TAG_template_value_param)
11023 {
e623cf5d 11024 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11025 templ_func->base.is_cplus_template_function = 1;
11026 break;
11027 }
11028 }
11029
c906108c 11030 new = push_context (0, lowpc);
34eaf542
TT
11031 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11032 (struct symbol *) templ_func);
4c2df51b 11033
4cecd739
DJ
11034 /* If there is a location expression for DW_AT_frame_base, record
11035 it. */
e142c38c 11036 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11037 if (attr)
f1e6e072 11038 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
4c2df51b 11039
e142c38c 11040 cu->list_in_scope = &local_symbols;
c906108c 11041
639d11d3 11042 if (die->child != NULL)
c906108c 11043 {
639d11d3 11044 child_die = die->child;
c906108c
SS
11045 while (child_die && child_die->tag)
11046 {
34eaf542
TT
11047 if (child_die->tag == DW_TAG_template_type_param
11048 || child_die->tag == DW_TAG_template_value_param)
11049 {
11050 struct symbol *arg = new_symbol (child_die, NULL, cu);
11051
f1078f66
DJ
11052 if (arg != NULL)
11053 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11054 }
11055 else
11056 process_die (child_die, cu);
c906108c
SS
11057 child_die = sibling_die (child_die);
11058 }
11059 }
11060
d389af10
JK
11061 inherit_abstract_dies (die, cu);
11062
4a811a97
UW
11063 /* If we have a DW_AT_specification, we might need to import using
11064 directives from the context of the specification DIE. See the
11065 comment in determine_prefix. */
11066 if (cu->language == language_cplus
11067 && dwarf2_attr (die, DW_AT_specification, cu))
11068 {
11069 struct dwarf2_cu *spec_cu = cu;
11070 struct die_info *spec_die = die_specification (die, &spec_cu);
11071
11072 while (spec_die)
11073 {
11074 child_die = spec_die->child;
11075 while (child_die && child_die->tag)
11076 {
11077 if (child_die->tag == DW_TAG_imported_module)
11078 process_die (child_die, spec_cu);
11079 child_die = sibling_die (child_die);
11080 }
11081
11082 /* In some cases, GCC generates specification DIEs that
11083 themselves contain DW_AT_specification attributes. */
11084 spec_die = die_specification (spec_die, &spec_cu);
11085 }
11086 }
11087
c906108c
SS
11088 new = pop_context ();
11089 /* Make a block for the local symbols within. */
801e3a5b
JB
11090 block = finish_block (new->name, &local_symbols, new->old_blocks,
11091 lowpc, highpc, objfile);
11092
df8a16a1 11093 /* For C++, set the block's scope. */
195a3f6c 11094 if ((cu->language == language_cplus || cu->language == language_fortran)
4d4ec4e5 11095 && cu->processing_has_namespace_info)
195a3f6c
TT
11096 block_set_scope (block, determine_prefix (die, cu),
11097 &objfile->objfile_obstack);
df8a16a1 11098
801e3a5b
JB
11099 /* If we have address ranges, record them. */
11100 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11101
34eaf542
TT
11102 /* Attach template arguments to function. */
11103 if (! VEC_empty (symbolp, template_args))
11104 {
11105 gdb_assert (templ_func != NULL);
11106
11107 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11108 templ_func->template_arguments
11109 = obstack_alloc (&objfile->objfile_obstack,
11110 (templ_func->n_template_arguments
11111 * sizeof (struct symbol *)));
11112 memcpy (templ_func->template_arguments,
11113 VEC_address (symbolp, template_args),
11114 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11115 VEC_free (symbolp, template_args);
11116 }
11117
208d8187
JB
11118 /* In C++, we can have functions nested inside functions (e.g., when
11119 a function declares a class that has methods). This means that
11120 when we finish processing a function scope, we may need to go
11121 back to building a containing block's symbol lists. */
11122 local_symbols = new->locals;
27aa8d6a 11123 using_directives = new->using_directives;
208d8187 11124
921e78cf
JB
11125 /* If we've finished processing a top-level function, subsequent
11126 symbols go in the file symbol list. */
11127 if (outermost_context_p ())
e142c38c 11128 cu->list_in_scope = &file_symbols;
c906108c
SS
11129}
11130
11131/* Process all the DIES contained within a lexical block scope. Start
11132 a new scope, process the dies, and then close the scope. */
11133
11134static void
e7c27a73 11135read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11136{
e7c27a73 11137 struct objfile *objfile = cu->objfile;
52f0bd74 11138 struct context_stack *new;
c906108c
SS
11139 CORE_ADDR lowpc, highpc;
11140 struct die_info *child_die;
e142c38c
DJ
11141 CORE_ADDR baseaddr;
11142
11143 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11144
11145 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11146 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11147 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11148 be nasty. Might be easier to properly extend generic blocks to
af34e669 11149 describe ranges. */
d85a05f0 11150 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
11151 return;
11152 lowpc += baseaddr;
11153 highpc += baseaddr;
11154
11155 push_context (0, lowpc);
639d11d3 11156 if (die->child != NULL)
c906108c 11157 {
639d11d3 11158 child_die = die->child;
c906108c
SS
11159 while (child_die && child_die->tag)
11160 {
e7c27a73 11161 process_die (child_die, cu);
c906108c
SS
11162 child_die = sibling_die (child_die);
11163 }
11164 }
11165 new = pop_context ();
11166
8540c487 11167 if (local_symbols != NULL || using_directives != NULL)
c906108c 11168 {
801e3a5b
JB
11169 struct block *block
11170 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11171 highpc, objfile);
11172
11173 /* Note that recording ranges after traversing children, as we
11174 do here, means that recording a parent's ranges entails
11175 walking across all its children's ranges as they appear in
11176 the address map, which is quadratic behavior.
11177
11178 It would be nicer to record the parent's ranges before
11179 traversing its children, simply overriding whatever you find
11180 there. But since we don't even decide whether to create a
11181 block until after we've traversed its children, that's hard
11182 to do. */
11183 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
11184 }
11185 local_symbols = new->locals;
27aa8d6a 11186 using_directives = new->using_directives;
c906108c
SS
11187}
11188
96408a79
SA
11189/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11190
11191static void
11192read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11193{
11194 struct objfile *objfile = cu->objfile;
11195 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11196 CORE_ADDR pc, baseaddr;
11197 struct attribute *attr;
11198 struct call_site *call_site, call_site_local;
11199 void **slot;
11200 int nparams;
11201 struct die_info *child_die;
11202
11203 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11204
11205 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11206 if (!attr)
11207 {
11208 complaint (&symfile_complaints,
11209 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11210 "DIE 0x%x [in module %s]"),
4262abfb 11211 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11212 return;
11213 }
11214 pc = DW_ADDR (attr) + baseaddr;
11215
11216 if (cu->call_site_htab == NULL)
11217 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11218 NULL, &objfile->objfile_obstack,
11219 hashtab_obstack_allocate, NULL);
11220 call_site_local.pc = pc;
11221 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11222 if (*slot != NULL)
11223 {
11224 complaint (&symfile_complaints,
11225 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11226 "DIE 0x%x [in module %s]"),
4262abfb
JK
11227 paddress (gdbarch, pc), die->offset.sect_off,
11228 objfile_name (objfile));
96408a79
SA
11229 return;
11230 }
11231
11232 /* Count parameters at the caller. */
11233
11234 nparams = 0;
11235 for (child_die = die->child; child_die && child_die->tag;
11236 child_die = sibling_die (child_die))
11237 {
11238 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11239 {
11240 complaint (&symfile_complaints,
11241 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11242 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11243 child_die->tag, child_die->offset.sect_off,
11244 objfile_name (objfile));
96408a79
SA
11245 continue;
11246 }
11247
11248 nparams++;
11249 }
11250
11251 call_site = obstack_alloc (&objfile->objfile_obstack,
11252 (sizeof (*call_site)
11253 + (sizeof (*call_site->parameter)
11254 * (nparams - 1))));
11255 *slot = call_site;
11256 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11257 call_site->pc = pc;
11258
11259 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11260 {
11261 struct die_info *func_die;
11262
11263 /* Skip also over DW_TAG_inlined_subroutine. */
11264 for (func_die = die->parent;
11265 func_die && func_die->tag != DW_TAG_subprogram
11266 && func_die->tag != DW_TAG_subroutine_type;
11267 func_die = func_die->parent);
11268
11269 /* DW_AT_GNU_all_call_sites is a superset
11270 of DW_AT_GNU_all_tail_call_sites. */
11271 if (func_die
11272 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11273 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11274 {
11275 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11276 not complete. But keep CALL_SITE for look ups via call_site_htab,
11277 both the initial caller containing the real return address PC and
11278 the final callee containing the current PC of a chain of tail
11279 calls do not need to have the tail call list complete. But any
11280 function candidate for a virtual tail call frame searched via
11281 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11282 determined unambiguously. */
11283 }
11284 else
11285 {
11286 struct type *func_type = NULL;
11287
11288 if (func_die)
11289 func_type = get_die_type (func_die, cu);
11290 if (func_type != NULL)
11291 {
11292 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11293
11294 /* Enlist this call site to the function. */
11295 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11296 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11297 }
11298 else
11299 complaint (&symfile_complaints,
11300 _("Cannot find function owning DW_TAG_GNU_call_site "
11301 "DIE 0x%x [in module %s]"),
4262abfb 11302 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11303 }
11304 }
11305
11306 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11307 if (attr == NULL)
11308 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11309 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11310 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11311 /* Keep NULL DWARF_BLOCK. */;
11312 else if (attr_form_is_block (attr))
11313 {
11314 struct dwarf2_locexpr_baton *dlbaton;
11315
11316 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11317 dlbaton->data = DW_BLOCK (attr)->data;
11318 dlbaton->size = DW_BLOCK (attr)->size;
11319 dlbaton->per_cu = cu->per_cu;
11320
11321 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11322 }
7771576e 11323 else if (attr_form_is_ref (attr))
96408a79 11324 {
96408a79
SA
11325 struct dwarf2_cu *target_cu = cu;
11326 struct die_info *target_die;
11327
ac9ec31b 11328 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11329 gdb_assert (target_cu->objfile == objfile);
11330 if (die_is_declaration (target_die, target_cu))
11331 {
9112db09
JK
11332 const char *target_physname = NULL;
11333 struct attribute *target_attr;
11334
11335 /* Prefer the mangled name; otherwise compute the demangled one. */
11336 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11337 if (target_attr == NULL)
11338 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11339 target_cu);
11340 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11341 target_physname = DW_STRING (target_attr);
11342 else
11343 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11344 if (target_physname == NULL)
11345 complaint (&symfile_complaints,
11346 _("DW_AT_GNU_call_site_target target DIE has invalid "
11347 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11348 die->offset.sect_off, objfile_name (objfile));
96408a79 11349 else
7d455152 11350 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11351 }
11352 else
11353 {
11354 CORE_ADDR lowpc;
11355
11356 /* DW_AT_entry_pc should be preferred. */
11357 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11358 complaint (&symfile_complaints,
11359 _("DW_AT_GNU_call_site_target target DIE has invalid "
11360 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11361 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11362 else
11363 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11364 }
11365 }
11366 else
11367 complaint (&symfile_complaints,
11368 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11369 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11370 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11371
11372 call_site->per_cu = cu->per_cu;
11373
11374 for (child_die = die->child;
11375 child_die && child_die->tag;
11376 child_die = sibling_die (child_die))
11377 {
96408a79 11378 struct call_site_parameter *parameter;
1788b2d3 11379 struct attribute *loc, *origin;
96408a79
SA
11380
11381 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11382 {
11383 /* Already printed the complaint above. */
11384 continue;
11385 }
11386
11387 gdb_assert (call_site->parameter_count < nparams);
11388 parameter = &call_site->parameter[call_site->parameter_count];
11389
1788b2d3
JK
11390 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11391 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11392 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11393
24c5c679 11394 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11395 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11396 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11397 {
11398 sect_offset offset;
11399
11400 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11401 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11402 if (!offset_in_cu_p (&cu->header, offset))
11403 {
11404 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11405 binding can be done only inside one CU. Such referenced DIE
11406 therefore cannot be even moved to DW_TAG_partial_unit. */
11407 complaint (&symfile_complaints,
11408 _("DW_AT_abstract_origin offset is not in CU for "
11409 "DW_TAG_GNU_call_site child DIE 0x%x "
11410 "[in module %s]"),
4262abfb 11411 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11412 continue;
11413 }
1788b2d3
JK
11414 parameter->u.param_offset.cu_off = (offset.sect_off
11415 - cu->header.offset.sect_off);
11416 }
11417 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11418 {
11419 complaint (&symfile_complaints,
11420 _("No DW_FORM_block* DW_AT_location for "
11421 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11422 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11423 continue;
11424 }
24c5c679 11425 else
96408a79 11426 {
24c5c679
JK
11427 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11428 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11429 if (parameter->u.dwarf_reg != -1)
11430 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11431 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11432 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11433 &parameter->u.fb_offset))
11434 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11435 else
11436 {
11437 complaint (&symfile_complaints,
11438 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11439 "for DW_FORM_block* DW_AT_location is supported for "
11440 "DW_TAG_GNU_call_site child DIE 0x%x "
11441 "[in module %s]"),
4262abfb 11442 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11443 continue;
11444 }
96408a79
SA
11445 }
11446
11447 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11448 if (!attr_form_is_block (attr))
11449 {
11450 complaint (&symfile_complaints,
11451 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11452 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11453 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11454 continue;
11455 }
11456 parameter->value = DW_BLOCK (attr)->data;
11457 parameter->value_size = DW_BLOCK (attr)->size;
11458
11459 /* Parameters are not pre-cleared by memset above. */
11460 parameter->data_value = NULL;
11461 parameter->data_value_size = 0;
11462 call_site->parameter_count++;
11463
11464 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11465 if (attr)
11466 {
11467 if (!attr_form_is_block (attr))
11468 complaint (&symfile_complaints,
11469 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11470 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11471 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11472 else
11473 {
11474 parameter->data_value = DW_BLOCK (attr)->data;
11475 parameter->data_value_size = DW_BLOCK (attr)->size;
11476 }
11477 }
11478 }
11479}
11480
43039443 11481/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11482 Return 1 if the attributes are present and valid, otherwise, return 0.
11483 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11484
11485static int
11486dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11487 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11488 struct partial_symtab *ranges_pst)
43039443
JK
11489{
11490 struct objfile *objfile = cu->objfile;
11491 struct comp_unit_head *cu_header = &cu->header;
11492 bfd *obfd = objfile->obfd;
11493 unsigned int addr_size = cu_header->addr_size;
11494 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11495 /* Base address selection entry. */
11496 CORE_ADDR base;
11497 int found_base;
11498 unsigned int dummy;
d521ce57 11499 const gdb_byte *buffer;
43039443
JK
11500 CORE_ADDR marker;
11501 int low_set;
11502 CORE_ADDR low = 0;
11503 CORE_ADDR high = 0;
ff013f42 11504 CORE_ADDR baseaddr;
43039443 11505
d00adf39
DE
11506 found_base = cu->base_known;
11507 base = cu->base_address;
43039443 11508
be391dca 11509 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11510 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11511 {
11512 complaint (&symfile_complaints,
11513 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11514 offset);
11515 return 0;
11516 }
dce234bc 11517 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
11518
11519 /* Read in the largest possible address. */
11520 marker = read_address (obfd, buffer, cu, &dummy);
11521 if ((marker & mask) == mask)
11522 {
11523 /* If we found the largest possible address, then
11524 read the base address. */
11525 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11526 buffer += 2 * addr_size;
11527 offset += 2 * addr_size;
11528 found_base = 1;
11529 }
11530
11531 low_set = 0;
11532
e7030f15 11533 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11534
43039443
JK
11535 while (1)
11536 {
11537 CORE_ADDR range_beginning, range_end;
11538
11539 range_beginning = read_address (obfd, buffer, cu, &dummy);
11540 buffer += addr_size;
11541 range_end = read_address (obfd, buffer, cu, &dummy);
11542 buffer += addr_size;
11543 offset += 2 * addr_size;
11544
11545 /* An end of list marker is a pair of zero addresses. */
11546 if (range_beginning == 0 && range_end == 0)
11547 /* Found the end of list entry. */
11548 break;
11549
11550 /* Each base address selection entry is a pair of 2 values.
11551 The first is the largest possible address, the second is
11552 the base address. Check for a base address here. */
11553 if ((range_beginning & mask) == mask)
11554 {
11555 /* If we found the largest possible address, then
11556 read the base address. */
11557 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11558 found_base = 1;
11559 continue;
11560 }
11561
11562 if (!found_base)
11563 {
11564 /* We have no valid base address for the ranges
11565 data. */
11566 complaint (&symfile_complaints,
11567 _("Invalid .debug_ranges data (no base address)"));
11568 return 0;
11569 }
11570
9277c30c
UW
11571 if (range_beginning > range_end)
11572 {
11573 /* Inverted range entries are invalid. */
11574 complaint (&symfile_complaints,
11575 _("Invalid .debug_ranges data (inverted range)"));
11576 return 0;
11577 }
11578
11579 /* Empty range entries have no effect. */
11580 if (range_beginning == range_end)
11581 continue;
11582
43039443
JK
11583 range_beginning += base;
11584 range_end += base;
11585
01093045
DE
11586 /* A not-uncommon case of bad debug info.
11587 Don't pollute the addrmap with bad data. */
11588 if (range_beginning + baseaddr == 0
11589 && !dwarf2_per_objfile->has_section_at_zero)
11590 {
11591 complaint (&symfile_complaints,
11592 _(".debug_ranges entry has start address of zero"
4262abfb 11593 " [in module %s]"), objfile_name (objfile));
01093045
DE
11594 continue;
11595 }
11596
9277c30c 11597 if (ranges_pst != NULL)
ff013f42 11598 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
11599 range_beginning + baseaddr,
11600 range_end - 1 + baseaddr,
ff013f42
JK
11601 ranges_pst);
11602
43039443
JK
11603 /* FIXME: This is recording everything as a low-high
11604 segment of consecutive addresses. We should have a
11605 data structure for discontiguous block ranges
11606 instead. */
11607 if (! low_set)
11608 {
11609 low = range_beginning;
11610 high = range_end;
11611 low_set = 1;
11612 }
11613 else
11614 {
11615 if (range_beginning < low)
11616 low = range_beginning;
11617 if (range_end > high)
11618 high = range_end;
11619 }
11620 }
11621
11622 if (! low_set)
11623 /* If the first entry is an end-of-list marker, the range
11624 describes an empty scope, i.e. no instructions. */
11625 return 0;
11626
11627 if (low_return)
11628 *low_return = low;
11629 if (high_return)
11630 *high_return = high;
11631 return 1;
11632}
11633
af34e669
DJ
11634/* Get low and high pc attributes from a die. Return 1 if the attributes
11635 are present and valid, otherwise, return 0. Return -1 if the range is
11636 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 11637
c906108c 11638static int
af34e669 11639dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
11640 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11641 struct partial_symtab *pst)
c906108c
SS
11642{
11643 struct attribute *attr;
91da1414 11644 struct attribute *attr_high;
af34e669
DJ
11645 CORE_ADDR low = 0;
11646 CORE_ADDR high = 0;
11647 int ret = 0;
c906108c 11648
91da1414
MW
11649 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11650 if (attr_high)
af34e669 11651 {
e142c38c 11652 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 11653 if (attr)
91da1414
MW
11654 {
11655 low = DW_ADDR (attr);
3019eac3
DE
11656 if (attr_high->form == DW_FORM_addr
11657 || attr_high->form == DW_FORM_GNU_addr_index)
91da1414
MW
11658 high = DW_ADDR (attr_high);
11659 else
11660 high = low + DW_UNSND (attr_high);
11661 }
af34e669
DJ
11662 else
11663 /* Found high w/o low attribute. */
11664 return 0;
11665
11666 /* Found consecutive range of addresses. */
11667 ret = 1;
11668 }
c906108c 11669 else
af34e669 11670 {
e142c38c 11671 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
11672 if (attr != NULL)
11673 {
ab435259
DE
11674 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11675 We take advantage of the fact that DW_AT_ranges does not appear
11676 in DW_TAG_compile_unit of DWO files. */
11677 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11678 unsigned int ranges_offset = (DW_UNSND (attr)
11679 + (need_ranges_base
11680 ? cu->ranges_base
11681 : 0));
2e3cf129 11682
af34e669 11683 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 11684 .debug_ranges section. */
2e3cf129 11685 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 11686 return 0;
43039443 11687 /* Found discontinuous range of addresses. */
af34e669
DJ
11688 ret = -1;
11689 }
11690 }
c906108c 11691
9373cf26
JK
11692 /* read_partial_die has also the strict LOW < HIGH requirement. */
11693 if (high <= low)
c906108c
SS
11694 return 0;
11695
11696 /* When using the GNU linker, .gnu.linkonce. sections are used to
11697 eliminate duplicate copies of functions and vtables and such.
11698 The linker will arbitrarily choose one and discard the others.
11699 The AT_*_pc values for such functions refer to local labels in
11700 these sections. If the section from that file was discarded, the
11701 labels are not in the output, so the relocs get a value of 0.
11702 If this is a discarded function, mark the pc bounds as invalid,
11703 so that GDB will ignore it. */
72dca2f5 11704 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
11705 return 0;
11706
11707 *lowpc = low;
96408a79
SA
11708 if (highpc)
11709 *highpc = high;
af34e669 11710 return ret;
c906108c
SS
11711}
11712
b084d499
JB
11713/* Assuming that DIE represents a subprogram DIE or a lexical block, get
11714 its low and high PC addresses. Do nothing if these addresses could not
11715 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11716 and HIGHPC to the high address if greater than HIGHPC. */
11717
11718static void
11719dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11720 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11721 struct dwarf2_cu *cu)
11722{
11723 CORE_ADDR low, high;
11724 struct die_info *child = die->child;
11725
d85a05f0 11726 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
11727 {
11728 *lowpc = min (*lowpc, low);
11729 *highpc = max (*highpc, high);
11730 }
11731
11732 /* If the language does not allow nested subprograms (either inside
11733 subprograms or lexical blocks), we're done. */
11734 if (cu->language != language_ada)
11735 return;
6e70227d 11736
b084d499
JB
11737 /* Check all the children of the given DIE. If it contains nested
11738 subprograms, then check their pc bounds. Likewise, we need to
11739 check lexical blocks as well, as they may also contain subprogram
11740 definitions. */
11741 while (child && child->tag)
11742 {
11743 if (child->tag == DW_TAG_subprogram
11744 || child->tag == DW_TAG_lexical_block)
11745 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11746 child = sibling_die (child);
11747 }
11748}
11749
fae299cd
DC
11750/* Get the low and high pc's represented by the scope DIE, and store
11751 them in *LOWPC and *HIGHPC. If the correct values can't be
11752 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11753
11754static void
11755get_scope_pc_bounds (struct die_info *die,
11756 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11757 struct dwarf2_cu *cu)
11758{
11759 CORE_ADDR best_low = (CORE_ADDR) -1;
11760 CORE_ADDR best_high = (CORE_ADDR) 0;
11761 CORE_ADDR current_low, current_high;
11762
d85a05f0 11763 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
11764 {
11765 best_low = current_low;
11766 best_high = current_high;
11767 }
11768 else
11769 {
11770 struct die_info *child = die->child;
11771
11772 while (child && child->tag)
11773 {
11774 switch (child->tag) {
11775 case DW_TAG_subprogram:
b084d499 11776 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
11777 break;
11778 case DW_TAG_namespace:
f55ee35c 11779 case DW_TAG_module:
fae299cd
DC
11780 /* FIXME: carlton/2004-01-16: Should we do this for
11781 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11782 that current GCC's always emit the DIEs corresponding
11783 to definitions of methods of classes as children of a
11784 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11785 the DIEs giving the declarations, which could be
11786 anywhere). But I don't see any reason why the
11787 standards says that they have to be there. */
11788 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11789
11790 if (current_low != ((CORE_ADDR) -1))
11791 {
11792 best_low = min (best_low, current_low);
11793 best_high = max (best_high, current_high);
11794 }
11795 break;
11796 default:
0963b4bd 11797 /* Ignore. */
fae299cd
DC
11798 break;
11799 }
11800
11801 child = sibling_die (child);
11802 }
11803 }
11804
11805 *lowpc = best_low;
11806 *highpc = best_high;
11807}
11808
801e3a5b
JB
11809/* Record the address ranges for BLOCK, offset by BASEADDR, as given
11810 in DIE. */
380bca97 11811
801e3a5b
JB
11812static void
11813dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11814 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11815{
bb5ed363 11816 struct objfile *objfile = cu->objfile;
801e3a5b 11817 struct attribute *attr;
91da1414 11818 struct attribute *attr_high;
801e3a5b 11819
91da1414
MW
11820 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11821 if (attr_high)
801e3a5b 11822 {
801e3a5b
JB
11823 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11824 if (attr)
11825 {
11826 CORE_ADDR low = DW_ADDR (attr);
91da1414 11827 CORE_ADDR high;
3019eac3
DE
11828 if (attr_high->form == DW_FORM_addr
11829 || attr_high->form == DW_FORM_GNU_addr_index)
91da1414
MW
11830 high = DW_ADDR (attr_high);
11831 else
11832 high = low + DW_UNSND (attr_high);
9a619af0 11833
801e3a5b
JB
11834 record_block_range (block, baseaddr + low, baseaddr + high - 1);
11835 }
11836 }
11837
11838 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11839 if (attr)
11840 {
bb5ed363 11841 bfd *obfd = objfile->obfd;
ab435259
DE
11842 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11843 We take advantage of the fact that DW_AT_ranges does not appear
11844 in DW_TAG_compile_unit of DWO files. */
11845 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
11846
11847 /* The value of the DW_AT_ranges attribute is the offset of the
11848 address range list in the .debug_ranges section. */
ab435259
DE
11849 unsigned long offset = (DW_UNSND (attr)
11850 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 11851 const gdb_byte *buffer;
801e3a5b
JB
11852
11853 /* For some target architectures, but not others, the
11854 read_address function sign-extends the addresses it returns.
11855 To recognize base address selection entries, we need a
11856 mask. */
11857 unsigned int addr_size = cu->header.addr_size;
11858 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11859
11860 /* The base address, to which the next pair is relative. Note
11861 that this 'base' is a DWARF concept: most entries in a range
11862 list are relative, to reduce the number of relocs against the
11863 debugging information. This is separate from this function's
11864 'baseaddr' argument, which GDB uses to relocate debugging
11865 information from a shared library based on the address at
11866 which the library was loaded. */
d00adf39
DE
11867 CORE_ADDR base = cu->base_address;
11868 int base_known = cu->base_known;
801e3a5b 11869
d62bfeaf 11870 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11871 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
11872 {
11873 complaint (&symfile_complaints,
11874 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
11875 offset);
11876 return;
11877 }
d62bfeaf 11878 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
11879
11880 for (;;)
11881 {
11882 unsigned int bytes_read;
11883 CORE_ADDR start, end;
11884
11885 start = read_address (obfd, buffer, cu, &bytes_read);
11886 buffer += bytes_read;
11887 end = read_address (obfd, buffer, cu, &bytes_read);
11888 buffer += bytes_read;
11889
11890 /* Did we find the end of the range list? */
11891 if (start == 0 && end == 0)
11892 break;
11893
11894 /* Did we find a base address selection entry? */
11895 else if ((start & base_select_mask) == base_select_mask)
11896 {
11897 base = end;
11898 base_known = 1;
11899 }
11900
11901 /* We found an ordinary address range. */
11902 else
11903 {
11904 if (!base_known)
11905 {
11906 complaint (&symfile_complaints,
3e43a32a
MS
11907 _("Invalid .debug_ranges data "
11908 "(no base address)"));
801e3a5b
JB
11909 return;
11910 }
11911
9277c30c
UW
11912 if (start > end)
11913 {
11914 /* Inverted range entries are invalid. */
11915 complaint (&symfile_complaints,
11916 _("Invalid .debug_ranges data "
11917 "(inverted range)"));
11918 return;
11919 }
11920
11921 /* Empty range entries have no effect. */
11922 if (start == end)
11923 continue;
11924
01093045
DE
11925 start += base + baseaddr;
11926 end += base + baseaddr;
11927
11928 /* A not-uncommon case of bad debug info.
11929 Don't pollute the addrmap with bad data. */
11930 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
11931 {
11932 complaint (&symfile_complaints,
11933 _(".debug_ranges entry has start address of zero"
4262abfb 11934 " [in module %s]"), objfile_name (objfile));
01093045
DE
11935 continue;
11936 }
11937
11938 record_block_range (block, start, end - 1);
801e3a5b
JB
11939 }
11940 }
11941 }
11942}
11943
685b1105
JK
11944/* Check whether the producer field indicates either of GCC < 4.6, or the
11945 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 11946
685b1105
JK
11947static void
11948check_producer (struct dwarf2_cu *cu)
60d5a603
JK
11949{
11950 const char *cs;
11951 int major, minor, release;
11952
11953 if (cu->producer == NULL)
11954 {
11955 /* For unknown compilers expect their behavior is DWARF version
11956 compliant.
11957
11958 GCC started to support .debug_types sections by -gdwarf-4 since
11959 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
11960 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
11961 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
11962 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 11963 }
685b1105 11964 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
60d5a603 11965 {
685b1105
JK
11966 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
11967
ba919b58
TT
11968 cs = &cu->producer[strlen ("GNU ")];
11969 while (*cs && !isdigit (*cs))
11970 cs++;
11971 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
11972 {
11973 /* Not recognized as GCC. */
11974 }
11975 else
1b80a9fa
JK
11976 {
11977 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
11978 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
11979 }
685b1105
JK
11980 }
11981 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
11982 cu->producer_is_icc = 1;
11983 else
11984 {
11985 /* For other non-GCC compilers, expect their behavior is DWARF version
11986 compliant. */
60d5a603
JK
11987 }
11988
ba919b58 11989 cu->checked_producer = 1;
685b1105 11990}
ba919b58 11991
685b1105
JK
11992/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
11993 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
11994 during 4.6.0 experimental. */
11995
11996static int
11997producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
11998{
11999 if (!cu->checked_producer)
12000 check_producer (cu);
12001
12002 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12003}
12004
12005/* Return the default accessibility type if it is not overriden by
12006 DW_AT_accessibility. */
12007
12008static enum dwarf_access_attribute
12009dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12010{
12011 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12012 {
12013 /* The default DWARF 2 accessibility for members is public, the default
12014 accessibility for inheritance is private. */
12015
12016 if (die->tag != DW_TAG_inheritance)
12017 return DW_ACCESS_public;
12018 else
12019 return DW_ACCESS_private;
12020 }
12021 else
12022 {
12023 /* DWARF 3+ defines the default accessibility a different way. The same
12024 rules apply now for DW_TAG_inheritance as for the members and it only
12025 depends on the container kind. */
12026
12027 if (die->parent->tag == DW_TAG_class_type)
12028 return DW_ACCESS_private;
12029 else
12030 return DW_ACCESS_public;
12031 }
12032}
12033
74ac6d43
TT
12034/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12035 offset. If the attribute was not found return 0, otherwise return
12036 1. If it was found but could not properly be handled, set *OFFSET
12037 to 0. */
12038
12039static int
12040handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12041 LONGEST *offset)
12042{
12043 struct attribute *attr;
12044
12045 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12046 if (attr != NULL)
12047 {
12048 *offset = 0;
12049
12050 /* Note that we do not check for a section offset first here.
12051 This is because DW_AT_data_member_location is new in DWARF 4,
12052 so if we see it, we can assume that a constant form is really
12053 a constant and not a section offset. */
12054 if (attr_form_is_constant (attr))
12055 *offset = dwarf2_get_attr_constant_value (attr, 0);
12056 else if (attr_form_is_section_offset (attr))
12057 dwarf2_complex_location_expr_complaint ();
12058 else if (attr_form_is_block (attr))
12059 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12060 else
12061 dwarf2_complex_location_expr_complaint ();
12062
12063 return 1;
12064 }
12065
12066 return 0;
12067}
12068
c906108c
SS
12069/* Add an aggregate field to the field list. */
12070
12071static void
107d2387 12072dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12073 struct dwarf2_cu *cu)
6e70227d 12074{
e7c27a73 12075 struct objfile *objfile = cu->objfile;
5e2b427d 12076 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12077 struct nextfield *new_field;
12078 struct attribute *attr;
12079 struct field *fp;
15d034d0 12080 const char *fieldname = "";
c906108c
SS
12081
12082 /* Allocate a new field list entry and link it in. */
12083 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 12084 make_cleanup (xfree, new_field);
c906108c 12085 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12086
12087 if (die->tag == DW_TAG_inheritance)
12088 {
12089 new_field->next = fip->baseclasses;
12090 fip->baseclasses = new_field;
12091 }
12092 else
12093 {
12094 new_field->next = fip->fields;
12095 fip->fields = new_field;
12096 }
c906108c
SS
12097 fip->nfields++;
12098
e142c38c 12099 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12100 if (attr)
12101 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12102 else
12103 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12104 if (new_field->accessibility != DW_ACCESS_public)
12105 fip->non_public_fields = 1;
60d5a603 12106
e142c38c 12107 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12108 if (attr)
12109 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12110 else
12111 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12112
12113 fp = &new_field->field;
a9a9bd0f 12114
e142c38c 12115 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12116 {
74ac6d43
TT
12117 LONGEST offset;
12118
a9a9bd0f 12119 /* Data member other than a C++ static data member. */
6e70227d 12120
c906108c 12121 /* Get type of field. */
e7c27a73 12122 fp->type = die_type (die, cu);
c906108c 12123
d6a843b5 12124 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12125
c906108c 12126 /* Get bit size of field (zero if none). */
e142c38c 12127 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12128 if (attr)
12129 {
12130 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12131 }
12132 else
12133 {
12134 FIELD_BITSIZE (*fp) = 0;
12135 }
12136
12137 /* Get bit offset of field. */
74ac6d43
TT
12138 if (handle_data_member_location (die, cu, &offset))
12139 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12140 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12141 if (attr)
12142 {
5e2b427d 12143 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12144 {
12145 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12146 additional bit offset from the MSB of the containing
12147 anonymous object to the MSB of the field. We don't
12148 have to do anything special since we don't need to
12149 know the size of the anonymous object. */
f41f5e61 12150 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12151 }
12152 else
12153 {
12154 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12155 MSB of the anonymous object, subtract off the number of
12156 bits from the MSB of the field to the MSB of the
12157 object, and then subtract off the number of bits of
12158 the field itself. The result is the bit offset of
12159 the LSB of the field. */
c906108c
SS
12160 int anonymous_size;
12161 int bit_offset = DW_UNSND (attr);
12162
e142c38c 12163 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12164 if (attr)
12165 {
12166 /* The size of the anonymous object containing
12167 the bit field is explicit, so use the
12168 indicated size (in bytes). */
12169 anonymous_size = DW_UNSND (attr);
12170 }
12171 else
12172 {
12173 /* The size of the anonymous object containing
12174 the bit field must be inferred from the type
12175 attribute of the data member containing the
12176 bit field. */
12177 anonymous_size = TYPE_LENGTH (fp->type);
12178 }
f41f5e61
PA
12179 SET_FIELD_BITPOS (*fp,
12180 (FIELD_BITPOS (*fp)
12181 + anonymous_size * bits_per_byte
12182 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12183 }
12184 }
12185
12186 /* Get name of field. */
39cbfefa
DJ
12187 fieldname = dwarf2_name (die, cu);
12188 if (fieldname == NULL)
12189 fieldname = "";
d8151005
DJ
12190
12191 /* The name is already allocated along with this objfile, so we don't
12192 need to duplicate it for the type. */
12193 fp->name = fieldname;
c906108c
SS
12194
12195 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12196 pointer or virtual base class pointer) to private. */
e142c38c 12197 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12198 {
d48cc9dd 12199 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12200 new_field->accessibility = DW_ACCESS_private;
12201 fip->non_public_fields = 1;
12202 }
12203 }
a9a9bd0f 12204 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12205 {
a9a9bd0f
DC
12206 /* C++ static member. */
12207
12208 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12209 is a declaration, but all versions of G++ as of this writing
12210 (so through at least 3.2.1) incorrectly generate
12211 DW_TAG_variable tags. */
6e70227d 12212
ff355380 12213 const char *physname;
c906108c 12214
a9a9bd0f 12215 /* Get name of field. */
39cbfefa
DJ
12216 fieldname = dwarf2_name (die, cu);
12217 if (fieldname == NULL)
c906108c
SS
12218 return;
12219
254e6b9e 12220 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12221 if (attr
12222 /* Only create a symbol if this is an external value.
12223 new_symbol checks this and puts the value in the global symbol
12224 table, which we want. If it is not external, new_symbol
12225 will try to put the value in cu->list_in_scope which is wrong. */
12226 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12227 {
12228 /* A static const member, not much different than an enum as far as
12229 we're concerned, except that we can support more types. */
12230 new_symbol (die, NULL, cu);
12231 }
12232
2df3850c 12233 /* Get physical name. */
ff355380 12234 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12235
d8151005
DJ
12236 /* The name is already allocated along with this objfile, so we don't
12237 need to duplicate it for the type. */
12238 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12239 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12240 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12241 }
12242 else if (die->tag == DW_TAG_inheritance)
12243 {
74ac6d43 12244 LONGEST offset;
d4b96c9a 12245
74ac6d43
TT
12246 /* C++ base class field. */
12247 if (handle_data_member_location (die, cu, &offset))
12248 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12249 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12250 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12251 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12252 fip->nbaseclasses++;
12253 }
12254}
12255
98751a41
JK
12256/* Add a typedef defined in the scope of the FIP's class. */
12257
12258static void
12259dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12260 struct dwarf2_cu *cu)
6e70227d 12261{
98751a41 12262 struct objfile *objfile = cu->objfile;
98751a41
JK
12263 struct typedef_field_list *new_field;
12264 struct attribute *attr;
12265 struct typedef_field *fp;
12266 char *fieldname = "";
12267
12268 /* Allocate a new field list entry and link it in. */
12269 new_field = xzalloc (sizeof (*new_field));
12270 make_cleanup (xfree, new_field);
12271
12272 gdb_assert (die->tag == DW_TAG_typedef);
12273
12274 fp = &new_field->field;
12275
12276 /* Get name of field. */
12277 fp->name = dwarf2_name (die, cu);
12278 if (fp->name == NULL)
12279 return;
12280
12281 fp->type = read_type_die (die, cu);
12282
12283 new_field->next = fip->typedef_field_list;
12284 fip->typedef_field_list = new_field;
12285 fip->typedef_field_list_count++;
12286}
12287
c906108c
SS
12288/* Create the vector of fields, and attach it to the type. */
12289
12290static void
fba45db2 12291dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12292 struct dwarf2_cu *cu)
c906108c
SS
12293{
12294 int nfields = fip->nfields;
12295
12296 /* Record the field count, allocate space for the array of fields,
12297 and create blank accessibility bitfields if necessary. */
12298 TYPE_NFIELDS (type) = nfields;
12299 TYPE_FIELDS (type) = (struct field *)
12300 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12301 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12302
b4ba55a1 12303 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12304 {
12305 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12306
12307 TYPE_FIELD_PRIVATE_BITS (type) =
12308 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12309 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12310
12311 TYPE_FIELD_PROTECTED_BITS (type) =
12312 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12313 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12314
774b6a14
TT
12315 TYPE_FIELD_IGNORE_BITS (type) =
12316 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12317 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12318 }
12319
12320 /* If the type has baseclasses, allocate and clear a bit vector for
12321 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12322 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12323 {
12324 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12325 unsigned char *pointer;
c906108c
SS
12326
12327 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
12328 pointer = TYPE_ALLOC (type, num_bytes);
12329 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12330 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12331 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12332 }
12333
3e43a32a
MS
12334 /* Copy the saved-up fields into the field vector. Start from the head of
12335 the list, adding to the tail of the field array, so that they end up in
12336 the same order in the array in which they were added to the list. */
c906108c
SS
12337 while (nfields-- > 0)
12338 {
7d0ccb61
DJ
12339 struct nextfield *fieldp;
12340
12341 if (fip->fields)
12342 {
12343 fieldp = fip->fields;
12344 fip->fields = fieldp->next;
12345 }
12346 else
12347 {
12348 fieldp = fip->baseclasses;
12349 fip->baseclasses = fieldp->next;
12350 }
12351
12352 TYPE_FIELD (type, nfields) = fieldp->field;
12353 switch (fieldp->accessibility)
c906108c 12354 {
c5aa993b 12355 case DW_ACCESS_private:
b4ba55a1
JB
12356 if (cu->language != language_ada)
12357 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12358 break;
c906108c 12359
c5aa993b 12360 case DW_ACCESS_protected:
b4ba55a1
JB
12361 if (cu->language != language_ada)
12362 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12363 break;
c906108c 12364
c5aa993b
JM
12365 case DW_ACCESS_public:
12366 break;
c906108c 12367
c5aa993b
JM
12368 default:
12369 /* Unknown accessibility. Complain and treat it as public. */
12370 {
e2e0b3e5 12371 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12372 fieldp->accessibility);
c5aa993b
JM
12373 }
12374 break;
c906108c
SS
12375 }
12376 if (nfields < fip->nbaseclasses)
12377 {
7d0ccb61 12378 switch (fieldp->virtuality)
c906108c 12379 {
c5aa993b
JM
12380 case DW_VIRTUALITY_virtual:
12381 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12382 if (cu->language == language_ada)
a73c6dcd 12383 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12384 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12385 break;
c906108c
SS
12386 }
12387 }
c906108c
SS
12388 }
12389}
12390
7d27a96d
TT
12391/* Return true if this member function is a constructor, false
12392 otherwise. */
12393
12394static int
12395dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12396{
12397 const char *fieldname;
12398 const char *typename;
12399 int len;
12400
12401 if (die->parent == NULL)
12402 return 0;
12403
12404 if (die->parent->tag != DW_TAG_structure_type
12405 && die->parent->tag != DW_TAG_union_type
12406 && die->parent->tag != DW_TAG_class_type)
12407 return 0;
12408
12409 fieldname = dwarf2_name (die, cu);
12410 typename = dwarf2_name (die->parent, cu);
12411 if (fieldname == NULL || typename == NULL)
12412 return 0;
12413
12414 len = strlen (fieldname);
12415 return (strncmp (fieldname, typename, len) == 0
12416 && (typename[len] == '\0' || typename[len] == '<'));
12417}
12418
c906108c
SS
12419/* Add a member function to the proper fieldlist. */
12420
12421static void
107d2387 12422dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12423 struct type *type, struct dwarf2_cu *cu)
c906108c 12424{
e7c27a73 12425 struct objfile *objfile = cu->objfile;
c906108c
SS
12426 struct attribute *attr;
12427 struct fnfieldlist *flp;
12428 int i;
12429 struct fn_field *fnp;
15d034d0 12430 const char *fieldname;
c906108c 12431 struct nextfnfield *new_fnfield;
f792889a 12432 struct type *this_type;
60d5a603 12433 enum dwarf_access_attribute accessibility;
c906108c 12434
b4ba55a1 12435 if (cu->language == language_ada)
a73c6dcd 12436 error (_("unexpected member function in Ada type"));
b4ba55a1 12437
2df3850c 12438 /* Get name of member function. */
39cbfefa
DJ
12439 fieldname = dwarf2_name (die, cu);
12440 if (fieldname == NULL)
2df3850c 12441 return;
c906108c 12442
c906108c
SS
12443 /* Look up member function name in fieldlist. */
12444 for (i = 0; i < fip->nfnfields; i++)
12445 {
27bfe10e 12446 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12447 break;
12448 }
12449
12450 /* Create new list element if necessary. */
12451 if (i < fip->nfnfields)
12452 flp = &fip->fnfieldlists[i];
12453 else
12454 {
12455 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12456 {
12457 fip->fnfieldlists = (struct fnfieldlist *)
12458 xrealloc (fip->fnfieldlists,
12459 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12460 * sizeof (struct fnfieldlist));
c906108c 12461 if (fip->nfnfields == 0)
c13c43fd 12462 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12463 }
12464 flp = &fip->fnfieldlists[fip->nfnfields];
12465 flp->name = fieldname;
12466 flp->length = 0;
12467 flp->head = NULL;
3da10d80 12468 i = fip->nfnfields++;
c906108c
SS
12469 }
12470
12471 /* Create a new member function field and chain it to the field list
0963b4bd 12472 entry. */
c906108c 12473 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 12474 make_cleanup (xfree, new_fnfield);
c906108c
SS
12475 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12476 new_fnfield->next = flp->head;
12477 flp->head = new_fnfield;
12478 flp->length++;
12479
12480 /* Fill in the member function field info. */
12481 fnp = &new_fnfield->fnfield;
3da10d80
KS
12482
12483 /* Delay processing of the physname until later. */
12484 if (cu->language == language_cplus || cu->language == language_java)
12485 {
12486 add_to_method_list (type, i, flp->length - 1, fieldname,
12487 die, cu);
12488 }
12489 else
12490 {
1d06ead6 12491 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12492 fnp->physname = physname ? physname : "";
12493 }
12494
c906108c 12495 fnp->type = alloc_type (objfile);
f792889a
DJ
12496 this_type = read_type_die (die, cu);
12497 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12498 {
f792889a 12499 int nparams = TYPE_NFIELDS (this_type);
c906108c 12500
f792889a 12501 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12502 of the method itself (TYPE_CODE_METHOD). */
12503 smash_to_method_type (fnp->type, type,
f792889a
DJ
12504 TYPE_TARGET_TYPE (this_type),
12505 TYPE_FIELDS (this_type),
12506 TYPE_NFIELDS (this_type),
12507 TYPE_VARARGS (this_type));
c906108c
SS
12508
12509 /* Handle static member functions.
c5aa993b 12510 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12511 member functions. G++ helps GDB by marking the first
12512 parameter for non-static member functions (which is the this
12513 pointer) as artificial. We obtain this information from
12514 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12515 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12516 fnp->voffset = VOFFSET_STATIC;
12517 }
12518 else
e2e0b3e5 12519 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12520 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12521
12522 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12523 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12524 fnp->fcontext = die_containing_type (die, cu);
c906108c 12525
3e43a32a
MS
12526 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12527 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12528
12529 /* Get accessibility. */
e142c38c 12530 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12531 if (attr)
60d5a603
JK
12532 accessibility = DW_UNSND (attr);
12533 else
12534 accessibility = dwarf2_default_access_attribute (die, cu);
12535 switch (accessibility)
c906108c 12536 {
60d5a603
JK
12537 case DW_ACCESS_private:
12538 fnp->is_private = 1;
12539 break;
12540 case DW_ACCESS_protected:
12541 fnp->is_protected = 1;
12542 break;
c906108c
SS
12543 }
12544
b02dede2 12545 /* Check for artificial methods. */
e142c38c 12546 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12547 if (attr && DW_UNSND (attr) != 0)
12548 fnp->is_artificial = 1;
12549
7d27a96d
TT
12550 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12551
0d564a31 12552 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12553 function. For older versions of GCC, this is an offset in the
12554 appropriate virtual table, as specified by DW_AT_containing_type.
12555 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12556 to the object address. */
12557
e142c38c 12558 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12559 if (attr)
8e19ed76 12560 {
aec5aa8b 12561 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12562 {
aec5aa8b
TT
12563 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12564 {
12565 /* Old-style GCC. */
12566 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12567 }
12568 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12569 || (DW_BLOCK (attr)->size > 1
12570 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12571 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12572 {
12573 struct dwarf_block blk;
12574 int offset;
12575
12576 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12577 ? 1 : 2);
12578 blk.size = DW_BLOCK (attr)->size - offset;
12579 blk.data = DW_BLOCK (attr)->data + offset;
12580 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12581 if ((fnp->voffset % cu->header.addr_size) != 0)
12582 dwarf2_complex_location_expr_complaint ();
12583 else
12584 fnp->voffset /= cu->header.addr_size;
12585 fnp->voffset += 2;
12586 }
12587 else
12588 dwarf2_complex_location_expr_complaint ();
12589
12590 if (!fnp->fcontext)
12591 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12592 }
3690dd37 12593 else if (attr_form_is_section_offset (attr))
8e19ed76 12594 {
4d3c2250 12595 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
12596 }
12597 else
12598 {
4d3c2250
KB
12599 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12600 fieldname);
8e19ed76 12601 }
0d564a31 12602 }
d48cc9dd
DJ
12603 else
12604 {
12605 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12606 if (attr && DW_UNSND (attr))
12607 {
12608 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12609 complaint (&symfile_complaints,
3e43a32a
MS
12610 _("Member function \"%s\" (offset %d) is virtual "
12611 "but the vtable offset is not specified"),
b64f50a1 12612 fieldname, die->offset.sect_off);
9655fd1a 12613 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
12614 TYPE_CPLUS_DYNAMIC (type) = 1;
12615 }
12616 }
c906108c
SS
12617}
12618
12619/* Create the vector of member function fields, and attach it to the type. */
12620
12621static void
fba45db2 12622dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12623 struct dwarf2_cu *cu)
c906108c
SS
12624{
12625 struct fnfieldlist *flp;
c906108c
SS
12626 int i;
12627
b4ba55a1 12628 if (cu->language == language_ada)
a73c6dcd 12629 error (_("unexpected member functions in Ada type"));
b4ba55a1 12630
c906108c
SS
12631 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12632 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12633 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12634
12635 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12636 {
12637 struct nextfnfield *nfp = flp->head;
12638 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12639 int k;
12640
12641 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12642 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12643 fn_flp->fn_fields = (struct fn_field *)
12644 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12645 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 12646 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
12647 }
12648
12649 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
12650}
12651
1168df01
JB
12652/* Returns non-zero if NAME is the name of a vtable member in CU's
12653 language, zero otherwise. */
12654static int
12655is_vtable_name (const char *name, struct dwarf2_cu *cu)
12656{
12657 static const char vptr[] = "_vptr";
987504bb 12658 static const char vtable[] = "vtable";
1168df01 12659
987504bb
JJ
12660 /* Look for the C++ and Java forms of the vtable. */
12661 if ((cu->language == language_java
12662 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12663 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12664 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
12665 return 1;
12666
12667 return 0;
12668}
12669
c0dd20ea 12670/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
12671 functions, with the ABI-specified layout. If TYPE describes
12672 such a structure, smash it into a member function type.
61049d3b
DJ
12673
12674 GCC shouldn't do this; it should just output pointer to member DIEs.
12675 This is GCC PR debug/28767. */
c0dd20ea 12676
0b92b5bb
TT
12677static void
12678quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 12679{
0b92b5bb 12680 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
12681
12682 /* Check for a structure with no name and two children. */
0b92b5bb
TT
12683 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12684 return;
c0dd20ea
DJ
12685
12686 /* Check for __pfn and __delta members. */
0b92b5bb
TT
12687 if (TYPE_FIELD_NAME (type, 0) == NULL
12688 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12689 || TYPE_FIELD_NAME (type, 1) == NULL
12690 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12691 return;
c0dd20ea
DJ
12692
12693 /* Find the type of the method. */
0b92b5bb 12694 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
12695 if (pfn_type == NULL
12696 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12697 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 12698 return;
c0dd20ea
DJ
12699
12700 /* Look for the "this" argument. */
12701 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12702 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 12703 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 12704 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 12705 return;
c0dd20ea
DJ
12706
12707 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
12708 new_type = alloc_type (objfile);
12709 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
12710 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12711 TYPE_VARARGS (pfn_type));
0b92b5bb 12712 smash_to_methodptr_type (type, new_type);
c0dd20ea 12713}
1168df01 12714
685b1105
JK
12715/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12716 (icc). */
12717
12718static int
12719producer_is_icc (struct dwarf2_cu *cu)
12720{
12721 if (!cu->checked_producer)
12722 check_producer (cu);
12723
12724 return cu->producer_is_icc;
12725}
12726
c906108c 12727/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
12728 (definition) to create a type for the structure or union. Fill in
12729 the type's name and general properties; the members will not be
3d1d5ea3 12730 processed until process_structure_scope.
c906108c 12731
c767944b
DJ
12732 NOTE: we need to call these functions regardless of whether or not the
12733 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c
SS
12734 structure or union. This gets the type entered into our set of
12735 user defined types.
12736
12737 However, if the structure is incomplete (an opaque struct/union)
12738 then suppress creating a symbol table entry for it since gdb only
12739 wants to find the one with the complete definition. Note that if
12740 it is complete, we just call new_symbol, which does it's own
12741 checking about whether the struct/union is anonymous or not (and
12742 suppresses creating a symbol table entry itself). */
12743
f792889a 12744static struct type *
134d01f1 12745read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12746{
e7c27a73 12747 struct objfile *objfile = cu->objfile;
c906108c
SS
12748 struct type *type;
12749 struct attribute *attr;
15d034d0 12750 const char *name;
c906108c 12751
348e048f
DE
12752 /* If the definition of this type lives in .debug_types, read that type.
12753 Don't follow DW_AT_specification though, that will take us back up
12754 the chain and we want to go down. */
45e58e77 12755 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
12756 if (attr)
12757 {
ac9ec31b 12758 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 12759
ac9ec31b 12760 /* The type's CU may not be the same as CU.
02142a6c 12761 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
12762 return set_die_type (die, type, cu);
12763 }
12764
c0dd20ea 12765 type = alloc_type (objfile);
c906108c 12766 INIT_CPLUS_SPECIFIC (type);
93311388 12767
39cbfefa
DJ
12768 name = dwarf2_name (die, cu);
12769 if (name != NULL)
c906108c 12770 {
987504bb
JJ
12771 if (cu->language == language_cplus
12772 || cu->language == language_java)
63d06c5c 12773 {
15d034d0 12774 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
12775
12776 /* dwarf2_full_name might have already finished building the DIE's
12777 type. If so, there is no need to continue. */
12778 if (get_die_type (die, cu) != NULL)
12779 return get_die_type (die, cu);
12780
12781 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
12782 if (die->tag == DW_TAG_structure_type
12783 || die->tag == DW_TAG_class_type)
12784 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
12785 }
12786 else
12787 {
d8151005
DJ
12788 /* The name is already allocated along with this objfile, so
12789 we don't need to duplicate it for the type. */
7d455152 12790 TYPE_TAG_NAME (type) = name;
94af9270
KS
12791 if (die->tag == DW_TAG_class_type)
12792 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 12793 }
c906108c
SS
12794 }
12795
12796 if (die->tag == DW_TAG_structure_type)
12797 {
12798 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12799 }
12800 else if (die->tag == DW_TAG_union_type)
12801 {
12802 TYPE_CODE (type) = TYPE_CODE_UNION;
12803 }
12804 else
12805 {
c906108c
SS
12806 TYPE_CODE (type) = TYPE_CODE_CLASS;
12807 }
12808
0cc2414c
TT
12809 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12810 TYPE_DECLARED_CLASS (type) = 1;
12811
e142c38c 12812 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12813 if (attr)
12814 {
12815 TYPE_LENGTH (type) = DW_UNSND (attr);
12816 }
12817 else
12818 {
12819 TYPE_LENGTH (type) = 0;
12820 }
12821
685b1105
JK
12822 if (producer_is_icc (cu))
12823 {
12824 /* ICC does not output the required DW_AT_declaration
12825 on incomplete types, but gives them a size of zero. */
12826 }
12827 else
12828 TYPE_STUB_SUPPORTED (type) = 1;
12829
dc718098 12830 if (die_is_declaration (die, cu))
876cecd0 12831 TYPE_STUB (type) = 1;
a6c727b2
DJ
12832 else if (attr == NULL && die->child == NULL
12833 && producer_is_realview (cu->producer))
12834 /* RealView does not output the required DW_AT_declaration
12835 on incomplete types. */
12836 TYPE_STUB (type) = 1;
dc718098 12837
c906108c
SS
12838 /* We need to add the type field to the die immediately so we don't
12839 infinitely recurse when dealing with pointers to the structure
0963b4bd 12840 type within the structure itself. */
1c379e20 12841 set_die_type (die, type, cu);
c906108c 12842
7e314c57
JK
12843 /* set_die_type should be already done. */
12844 set_descriptive_type (type, die, cu);
12845
c767944b
DJ
12846 return type;
12847}
12848
12849/* Finish creating a structure or union type, including filling in
12850 its members and creating a symbol for it. */
12851
12852static void
12853process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
12854{
12855 struct objfile *objfile = cu->objfile;
12856 struct die_info *child_die = die->child;
12857 struct type *type;
12858
12859 type = get_die_type (die, cu);
12860 if (type == NULL)
12861 type = read_structure_type (die, cu);
12862
e142c38c 12863 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
12864 {
12865 struct field_info fi;
12866 struct die_info *child_die;
34eaf542 12867 VEC (symbolp) *template_args = NULL;
c767944b 12868 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
12869
12870 memset (&fi, 0, sizeof (struct field_info));
12871
639d11d3 12872 child_die = die->child;
c906108c
SS
12873
12874 while (child_die && child_die->tag)
12875 {
a9a9bd0f
DC
12876 if (child_die->tag == DW_TAG_member
12877 || child_die->tag == DW_TAG_variable)
c906108c 12878 {
a9a9bd0f
DC
12879 /* NOTE: carlton/2002-11-05: A C++ static data member
12880 should be a DW_TAG_member that is a declaration, but
12881 all versions of G++ as of this writing (so through at
12882 least 3.2.1) incorrectly generate DW_TAG_variable
12883 tags for them instead. */
e7c27a73 12884 dwarf2_add_field (&fi, child_die, cu);
c906108c 12885 }
8713b1b1 12886 else if (child_die->tag == DW_TAG_subprogram)
c906108c 12887 {
0963b4bd 12888 /* C++ member function. */
e7c27a73 12889 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
12890 }
12891 else if (child_die->tag == DW_TAG_inheritance)
12892 {
12893 /* C++ base class field. */
e7c27a73 12894 dwarf2_add_field (&fi, child_die, cu);
c906108c 12895 }
98751a41
JK
12896 else if (child_die->tag == DW_TAG_typedef)
12897 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
12898 else if (child_die->tag == DW_TAG_template_type_param
12899 || child_die->tag == DW_TAG_template_value_param)
12900 {
12901 struct symbol *arg = new_symbol (child_die, NULL, cu);
12902
f1078f66
DJ
12903 if (arg != NULL)
12904 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
12905 }
12906
c906108c
SS
12907 child_die = sibling_die (child_die);
12908 }
12909
34eaf542
TT
12910 /* Attach template arguments to type. */
12911 if (! VEC_empty (symbolp, template_args))
12912 {
12913 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12914 TYPE_N_TEMPLATE_ARGUMENTS (type)
12915 = VEC_length (symbolp, template_args);
12916 TYPE_TEMPLATE_ARGUMENTS (type)
12917 = obstack_alloc (&objfile->objfile_obstack,
12918 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12919 * sizeof (struct symbol *)));
12920 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12921 VEC_address (symbolp, template_args),
12922 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12923 * sizeof (struct symbol *)));
12924 VEC_free (symbolp, template_args);
12925 }
12926
c906108c
SS
12927 /* Attach fields and member functions to the type. */
12928 if (fi.nfields)
e7c27a73 12929 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
12930 if (fi.nfnfields)
12931 {
e7c27a73 12932 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 12933
c5aa993b 12934 /* Get the type which refers to the base class (possibly this
c906108c 12935 class itself) which contains the vtable pointer for the current
0d564a31
DJ
12936 class from the DW_AT_containing_type attribute. This use of
12937 DW_AT_containing_type is a GNU extension. */
c906108c 12938
e142c38c 12939 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 12940 {
e7c27a73 12941 struct type *t = die_containing_type (die, cu);
c906108c
SS
12942
12943 TYPE_VPTR_BASETYPE (type) = t;
12944 if (type == t)
12945 {
c906108c
SS
12946 int i;
12947
12948 /* Our own class provides vtbl ptr. */
12949 for (i = TYPE_NFIELDS (t) - 1;
12950 i >= TYPE_N_BASECLASSES (t);
12951 --i)
12952 {
0d5cff50 12953 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 12954
1168df01 12955 if (is_vtable_name (fieldname, cu))
c906108c
SS
12956 {
12957 TYPE_VPTR_FIELDNO (type) = i;
12958 break;
12959 }
12960 }
12961
12962 /* Complain if virtual function table field not found. */
12963 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 12964 complaint (&symfile_complaints,
3e43a32a
MS
12965 _("virtual function table pointer "
12966 "not found when defining class '%s'"),
4d3c2250
KB
12967 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
12968 "");
c906108c
SS
12969 }
12970 else
12971 {
12972 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
12973 }
12974 }
f6235d4c
EZ
12975 else if (cu->producer
12976 && strncmp (cu->producer,
12977 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
12978 {
12979 /* The IBM XLC compiler does not provide direct indication
12980 of the containing type, but the vtable pointer is
12981 always named __vfp. */
12982
12983 int i;
12984
12985 for (i = TYPE_NFIELDS (type) - 1;
12986 i >= TYPE_N_BASECLASSES (type);
12987 --i)
12988 {
12989 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
12990 {
12991 TYPE_VPTR_FIELDNO (type) = i;
12992 TYPE_VPTR_BASETYPE (type) = type;
12993 break;
12994 }
12995 }
12996 }
c906108c 12997 }
98751a41
JK
12998
12999 /* Copy fi.typedef_field_list linked list elements content into the
13000 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13001 if (fi.typedef_field_list)
13002 {
13003 int i = fi.typedef_field_list_count;
13004
a0d7a4ff 13005 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
13006 TYPE_TYPEDEF_FIELD_ARRAY (type)
13007 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13008 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13009
13010 /* Reverse the list order to keep the debug info elements order. */
13011 while (--i >= 0)
13012 {
13013 struct typedef_field *dest, *src;
6e70227d 13014
98751a41
JK
13015 dest = &TYPE_TYPEDEF_FIELD (type, i);
13016 src = &fi.typedef_field_list->field;
13017 fi.typedef_field_list = fi.typedef_field_list->next;
13018 *dest = *src;
13019 }
13020 }
c767944b
DJ
13021
13022 do_cleanups (back_to);
eb2a6f42
TT
13023
13024 if (HAVE_CPLUS_STRUCT (type))
13025 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13026 }
63d06c5c 13027
bb5ed363 13028 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13029
90aeadfc
DC
13030 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13031 snapshots) has been known to create a die giving a declaration
13032 for a class that has, as a child, a die giving a definition for a
13033 nested class. So we have to process our children even if the
13034 current die is a declaration. Normally, of course, a declaration
13035 won't have any children at all. */
134d01f1 13036
90aeadfc
DC
13037 while (child_die != NULL && child_die->tag)
13038 {
13039 if (child_die->tag == DW_TAG_member
13040 || child_die->tag == DW_TAG_variable
34eaf542
TT
13041 || child_die->tag == DW_TAG_inheritance
13042 || child_die->tag == DW_TAG_template_value_param
13043 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13044 {
90aeadfc 13045 /* Do nothing. */
134d01f1 13046 }
90aeadfc
DC
13047 else
13048 process_die (child_die, cu);
134d01f1 13049
90aeadfc 13050 child_die = sibling_die (child_die);
134d01f1
DJ
13051 }
13052
fa4028e9
JB
13053 /* Do not consider external references. According to the DWARF standard,
13054 these DIEs are identified by the fact that they have no byte_size
13055 attribute, and a declaration attribute. */
13056 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13057 || !die_is_declaration (die, cu))
c767944b 13058 new_symbol (die, type, cu);
134d01f1
DJ
13059}
13060
13061/* Given a DW_AT_enumeration_type die, set its type. We do not
13062 complete the type's fields yet, or create any symbols. */
c906108c 13063
f792889a 13064static struct type *
134d01f1 13065read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13066{
e7c27a73 13067 struct objfile *objfile = cu->objfile;
c906108c 13068 struct type *type;
c906108c 13069 struct attribute *attr;
0114d602 13070 const char *name;
134d01f1 13071
348e048f
DE
13072 /* If the definition of this type lives in .debug_types, read that type.
13073 Don't follow DW_AT_specification though, that will take us back up
13074 the chain and we want to go down. */
45e58e77 13075 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13076 if (attr)
13077 {
ac9ec31b 13078 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13079
ac9ec31b 13080 /* The type's CU may not be the same as CU.
02142a6c 13081 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13082 return set_die_type (die, type, cu);
13083 }
13084
c906108c
SS
13085 type = alloc_type (objfile);
13086
13087 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13088 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13089 if (name != NULL)
7d455152 13090 TYPE_TAG_NAME (type) = name;
c906108c 13091
e142c38c 13092 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13093 if (attr)
13094 {
13095 TYPE_LENGTH (type) = DW_UNSND (attr);
13096 }
13097 else
13098 {
13099 TYPE_LENGTH (type) = 0;
13100 }
13101
137033e9
JB
13102 /* The enumeration DIE can be incomplete. In Ada, any type can be
13103 declared as private in the package spec, and then defined only
13104 inside the package body. Such types are known as Taft Amendment
13105 Types. When another package uses such a type, an incomplete DIE
13106 may be generated by the compiler. */
02eb380e 13107 if (die_is_declaration (die, cu))
876cecd0 13108 TYPE_STUB (type) = 1;
02eb380e 13109
f792889a 13110 return set_die_type (die, type, cu);
134d01f1
DJ
13111}
13112
13113/* Given a pointer to a die which begins an enumeration, process all
13114 the dies that define the members of the enumeration, and create the
13115 symbol for the enumeration type.
13116
13117 NOTE: We reverse the order of the element list. */
13118
13119static void
13120process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13121{
f792889a 13122 struct type *this_type;
134d01f1 13123
f792889a
DJ
13124 this_type = get_die_type (die, cu);
13125 if (this_type == NULL)
13126 this_type = read_enumeration_type (die, cu);
9dc481d3 13127
639d11d3 13128 if (die->child != NULL)
c906108c 13129 {
9dc481d3
DE
13130 struct die_info *child_die;
13131 struct symbol *sym;
13132 struct field *fields = NULL;
13133 int num_fields = 0;
13134 int unsigned_enum = 1;
15d034d0 13135 const char *name;
cafec441
TT
13136 int flag_enum = 1;
13137 ULONGEST mask = 0;
9dc481d3 13138
639d11d3 13139 child_die = die->child;
c906108c
SS
13140 while (child_die && child_die->tag)
13141 {
13142 if (child_die->tag != DW_TAG_enumerator)
13143 {
e7c27a73 13144 process_die (child_die, cu);
c906108c
SS
13145 }
13146 else
13147 {
39cbfefa
DJ
13148 name = dwarf2_name (child_die, cu);
13149 if (name)
c906108c 13150 {
f792889a 13151 sym = new_symbol (child_die, this_type, cu);
c906108c 13152 if (SYMBOL_VALUE (sym) < 0)
cafec441
TT
13153 {
13154 unsigned_enum = 0;
13155 flag_enum = 0;
13156 }
13157 else if ((mask & SYMBOL_VALUE (sym)) != 0)
13158 flag_enum = 0;
13159 else
13160 mask |= SYMBOL_VALUE (sym);
c906108c
SS
13161
13162 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13163 {
13164 fields = (struct field *)
13165 xrealloc (fields,
13166 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13167 * sizeof (struct field));
c906108c
SS
13168 }
13169
3567439c 13170 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13171 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13172 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13173 FIELD_BITSIZE (fields[num_fields]) = 0;
13174
13175 num_fields++;
13176 }
13177 }
13178
13179 child_die = sibling_die (child_die);
13180 }
13181
13182 if (num_fields)
13183 {
f792889a
DJ
13184 TYPE_NFIELDS (this_type) = num_fields;
13185 TYPE_FIELDS (this_type) = (struct field *)
13186 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13187 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13188 sizeof (struct field) * num_fields);
b8c9b27d 13189 xfree (fields);
c906108c
SS
13190 }
13191 if (unsigned_enum)
876cecd0 13192 TYPE_UNSIGNED (this_type) = 1;
cafec441
TT
13193 if (flag_enum)
13194 TYPE_FLAG_ENUM (this_type) = 1;
c906108c 13195 }
134d01f1 13196
6c83ed52
TT
13197 /* If we are reading an enum from a .debug_types unit, and the enum
13198 is a declaration, and the enum is not the signatured type in the
13199 unit, then we do not want to add a symbol for it. Adding a
13200 symbol would in some cases obscure the true definition of the
13201 enum, giving users an incomplete type when the definition is
13202 actually available. Note that we do not want to do this for all
13203 enums which are just declarations, because C++0x allows forward
13204 enum declarations. */
3019eac3 13205 if (cu->per_cu->is_debug_types
6c83ed52
TT
13206 && die_is_declaration (die, cu))
13207 {
52dc124a 13208 struct signatured_type *sig_type;
6c83ed52 13209
c0f78cd4 13210 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13211 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13212 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13213 return;
13214 }
13215
f792889a 13216 new_symbol (die, this_type, cu);
c906108c
SS
13217}
13218
13219/* Extract all information from a DW_TAG_array_type DIE and put it in
13220 the DIE's type field. For now, this only handles one dimensional
13221 arrays. */
13222
f792889a 13223static struct type *
e7c27a73 13224read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13225{
e7c27a73 13226 struct objfile *objfile = cu->objfile;
c906108c 13227 struct die_info *child_die;
7e314c57 13228 struct type *type;
c906108c
SS
13229 struct type *element_type, *range_type, *index_type;
13230 struct type **range_types = NULL;
13231 struct attribute *attr;
13232 int ndim = 0;
13233 struct cleanup *back_to;
15d034d0 13234 const char *name;
c906108c 13235
e7c27a73 13236 element_type = die_type (die, cu);
c906108c 13237
7e314c57
JK
13238 /* The die_type call above may have already set the type for this DIE. */
13239 type = get_die_type (die, cu);
13240 if (type)
13241 return type;
13242
c906108c
SS
13243 /* Irix 6.2 native cc creates array types without children for
13244 arrays with unspecified length. */
639d11d3 13245 if (die->child == NULL)
c906108c 13246 {
46bf5051 13247 index_type = objfile_type (objfile)->builtin_int;
c906108c 13248 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
13249 type = create_array_type (NULL, element_type, range_type);
13250 return set_die_type (die, type, cu);
c906108c
SS
13251 }
13252
13253 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13254 child_die = die->child;
c906108c
SS
13255 while (child_die && child_die->tag)
13256 {
13257 if (child_die->tag == DW_TAG_subrange_type)
13258 {
f792889a 13259 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13260
f792889a 13261 if (child_type != NULL)
a02abb62 13262 {
0963b4bd
MS
13263 /* The range type was succesfully read. Save it for the
13264 array type creation. */
a02abb62
JB
13265 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13266 {
13267 range_types = (struct type **)
13268 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13269 * sizeof (struct type *));
13270 if (ndim == 0)
13271 make_cleanup (free_current_contents, &range_types);
13272 }
f792889a 13273 range_types[ndim++] = child_type;
a02abb62 13274 }
c906108c
SS
13275 }
13276 child_die = sibling_die (child_die);
13277 }
13278
13279 /* Dwarf2 dimensions are output from left to right, create the
13280 necessary array types in backwards order. */
7ca2d3a3 13281
c906108c 13282 type = element_type;
7ca2d3a3
DL
13283
13284 if (read_array_order (die, cu) == DW_ORD_col_major)
13285 {
13286 int i = 0;
9a619af0 13287
7ca2d3a3
DL
13288 while (i < ndim)
13289 type = create_array_type (NULL, type, range_types[i++]);
13290 }
13291 else
13292 {
13293 while (ndim-- > 0)
13294 type = create_array_type (NULL, type, range_types[ndim]);
13295 }
c906108c 13296
f5f8a009
EZ
13297 /* Understand Dwarf2 support for vector types (like they occur on
13298 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13299 array type. This is not part of the Dwarf2/3 standard yet, but a
13300 custom vendor extension. The main difference between a regular
13301 array and the vector variant is that vectors are passed by value
13302 to functions. */
e142c38c 13303 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13304 if (attr)
ea37ba09 13305 make_vector_type (type);
f5f8a009 13306
dbc98a8b
KW
13307 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13308 implementation may choose to implement triple vectors using this
13309 attribute. */
13310 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13311 if (attr)
13312 {
13313 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13314 TYPE_LENGTH (type) = DW_UNSND (attr);
13315 else
3e43a32a
MS
13316 complaint (&symfile_complaints,
13317 _("DW_AT_byte_size for array type smaller "
13318 "than the total size of elements"));
dbc98a8b
KW
13319 }
13320
39cbfefa
DJ
13321 name = dwarf2_name (die, cu);
13322 if (name)
13323 TYPE_NAME (type) = name;
6e70227d 13324
0963b4bd 13325 /* Install the type in the die. */
7e314c57
JK
13326 set_die_type (die, type, cu);
13327
13328 /* set_die_type should be already done. */
b4ba55a1
JB
13329 set_descriptive_type (type, die, cu);
13330
c906108c
SS
13331 do_cleanups (back_to);
13332
7e314c57 13333 return type;
c906108c
SS
13334}
13335
7ca2d3a3 13336static enum dwarf_array_dim_ordering
6e70227d 13337read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13338{
13339 struct attribute *attr;
13340
13341 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13342
13343 if (attr) return DW_SND (attr);
13344
0963b4bd
MS
13345 /* GNU F77 is a special case, as at 08/2004 array type info is the
13346 opposite order to the dwarf2 specification, but data is still
13347 laid out as per normal fortran.
7ca2d3a3 13348
0963b4bd
MS
13349 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13350 version checking. */
7ca2d3a3 13351
905e0470
PM
13352 if (cu->language == language_fortran
13353 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13354 {
13355 return DW_ORD_row_major;
13356 }
13357
6e70227d 13358 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13359 {
13360 case array_column_major:
13361 return DW_ORD_col_major;
13362 case array_row_major:
13363 default:
13364 return DW_ORD_row_major;
13365 };
13366}
13367
72019c9c 13368/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13369 the DIE's type field. */
72019c9c 13370
f792889a 13371static struct type *
72019c9c
GM
13372read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13373{
7e314c57
JK
13374 struct type *domain_type, *set_type;
13375 struct attribute *attr;
f792889a 13376
7e314c57
JK
13377 domain_type = die_type (die, cu);
13378
13379 /* The die_type call above may have already set the type for this DIE. */
13380 set_type = get_die_type (die, cu);
13381 if (set_type)
13382 return set_type;
13383
13384 set_type = create_set_type (NULL, domain_type);
13385
13386 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13387 if (attr)
13388 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13389
f792889a 13390 return set_die_type (die, set_type, cu);
72019c9c 13391}
7ca2d3a3 13392
0971de02
TT
13393/* A helper for read_common_block that creates a locexpr baton.
13394 SYM is the symbol which we are marking as computed.
13395 COMMON_DIE is the DIE for the common block.
13396 COMMON_LOC is the location expression attribute for the common
13397 block itself.
13398 MEMBER_LOC is the location expression attribute for the particular
13399 member of the common block that we are processing.
13400 CU is the CU from which the above come. */
13401
13402static void
13403mark_common_block_symbol_computed (struct symbol *sym,
13404 struct die_info *common_die,
13405 struct attribute *common_loc,
13406 struct attribute *member_loc,
13407 struct dwarf2_cu *cu)
13408{
13409 struct objfile *objfile = dwarf2_per_objfile->objfile;
13410 struct dwarf2_locexpr_baton *baton;
13411 gdb_byte *ptr;
13412 unsigned int cu_off;
13413 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13414 LONGEST offset = 0;
13415
13416 gdb_assert (common_loc && member_loc);
13417 gdb_assert (attr_form_is_block (common_loc));
13418 gdb_assert (attr_form_is_block (member_loc)
13419 || attr_form_is_constant (member_loc));
13420
13421 baton = obstack_alloc (&objfile->objfile_obstack,
13422 sizeof (struct dwarf2_locexpr_baton));
13423 baton->per_cu = cu->per_cu;
13424 gdb_assert (baton->per_cu);
13425
13426 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13427
13428 if (attr_form_is_constant (member_loc))
13429 {
13430 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13431 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13432 }
13433 else
13434 baton->size += DW_BLOCK (member_loc)->size;
13435
13436 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13437 baton->data = ptr;
13438
13439 *ptr++ = DW_OP_call4;
13440 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13441 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13442 ptr += 4;
13443
13444 if (attr_form_is_constant (member_loc))
13445 {
13446 *ptr++ = DW_OP_addr;
13447 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13448 ptr += cu->header.addr_size;
13449 }
13450 else
13451 {
13452 /* We have to copy the data here, because DW_OP_call4 will only
13453 use a DW_AT_location attribute. */
13454 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13455 ptr += DW_BLOCK (member_loc)->size;
13456 }
13457
13458 *ptr++ = DW_OP_plus;
13459 gdb_assert (ptr - baton->data == baton->size);
13460
0971de02 13461 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13462 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13463}
13464
4357ac6c
TT
13465/* Create appropriate locally-scoped variables for all the
13466 DW_TAG_common_block entries. Also create a struct common_block
13467 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13468 is used to sepate the common blocks name namespace from regular
13469 variable names. */
c906108c
SS
13470
13471static void
e7c27a73 13472read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13473{
0971de02
TT
13474 struct attribute *attr;
13475
13476 attr = dwarf2_attr (die, DW_AT_location, cu);
13477 if (attr)
13478 {
13479 /* Support the .debug_loc offsets. */
13480 if (attr_form_is_block (attr))
13481 {
13482 /* Ok. */
13483 }
13484 else if (attr_form_is_section_offset (attr))
13485 {
13486 dwarf2_complex_location_expr_complaint ();
13487 attr = NULL;
13488 }
13489 else
13490 {
13491 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13492 "common block member");
13493 attr = NULL;
13494 }
13495 }
13496
639d11d3 13497 if (die->child != NULL)
c906108c 13498 {
4357ac6c
TT
13499 struct objfile *objfile = cu->objfile;
13500 struct die_info *child_die;
13501 size_t n_entries = 0, size;
13502 struct common_block *common_block;
13503 struct symbol *sym;
74ac6d43 13504
4357ac6c
TT
13505 for (child_die = die->child;
13506 child_die && child_die->tag;
13507 child_die = sibling_die (child_die))
13508 ++n_entries;
13509
13510 size = (sizeof (struct common_block)
13511 + (n_entries - 1) * sizeof (struct symbol *));
13512 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13513 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13514 common_block->n_entries = 0;
13515
13516 for (child_die = die->child;
13517 child_die && child_die->tag;
13518 child_die = sibling_die (child_die))
13519 {
13520 /* Create the symbol in the DW_TAG_common_block block in the current
13521 symbol scope. */
e7c27a73 13522 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
13523 if (sym != NULL)
13524 {
13525 struct attribute *member_loc;
13526
13527 common_block->contents[common_block->n_entries++] = sym;
13528
13529 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13530 cu);
13531 if (member_loc)
13532 {
13533 /* GDB has handled this for a long time, but it is
13534 not specified by DWARF. It seems to have been
13535 emitted by gfortran at least as recently as:
13536 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13537 complaint (&symfile_complaints,
13538 _("Variable in common block has "
13539 "DW_AT_data_member_location "
13540 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
13541 child_die->offset.sect_off,
13542 objfile_name (cu->objfile));
0971de02
TT
13543
13544 if (attr_form_is_section_offset (member_loc))
13545 dwarf2_complex_location_expr_complaint ();
13546 else if (attr_form_is_constant (member_loc)
13547 || attr_form_is_block (member_loc))
13548 {
13549 if (attr)
13550 mark_common_block_symbol_computed (sym, die, attr,
13551 member_loc, cu);
13552 }
13553 else
13554 dwarf2_complex_location_expr_complaint ();
13555 }
13556 }
c906108c 13557 }
4357ac6c
TT
13558
13559 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13560 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
13561 }
13562}
13563
0114d602 13564/* Create a type for a C++ namespace. */
d9fa45fe 13565
0114d602
DJ
13566static struct type *
13567read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 13568{
e7c27a73 13569 struct objfile *objfile = cu->objfile;
0114d602 13570 const char *previous_prefix, *name;
9219021c 13571 int is_anonymous;
0114d602
DJ
13572 struct type *type;
13573
13574 /* For extensions, reuse the type of the original namespace. */
13575 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13576 {
13577 struct die_info *ext_die;
13578 struct dwarf2_cu *ext_cu = cu;
9a619af0 13579
0114d602
DJ
13580 ext_die = dwarf2_extension (die, &ext_cu);
13581 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
13582
13583 /* EXT_CU may not be the same as CU.
02142a6c 13584 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
13585 return set_die_type (die, type, cu);
13586 }
9219021c 13587
e142c38c 13588 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
13589
13590 /* Now build the name of the current namespace. */
13591
0114d602
DJ
13592 previous_prefix = determine_prefix (die, cu);
13593 if (previous_prefix[0] != '\0')
13594 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 13595 previous_prefix, name, 0, cu);
0114d602
DJ
13596
13597 /* Create the type. */
13598 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13599 objfile);
abee88f2 13600 TYPE_NAME (type) = name;
0114d602
DJ
13601 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13602
60531b24 13603 return set_die_type (die, type, cu);
0114d602
DJ
13604}
13605
13606/* Read a C++ namespace. */
13607
13608static void
13609read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13610{
13611 struct objfile *objfile = cu->objfile;
0114d602 13612 int is_anonymous;
9219021c 13613
5c4e30ca
DC
13614 /* Add a symbol associated to this if we haven't seen the namespace
13615 before. Also, add a using directive if it's an anonymous
13616 namespace. */
9219021c 13617
f2f0e013 13618 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
13619 {
13620 struct type *type;
13621
0114d602 13622 type = read_type_die (die, cu);
e7c27a73 13623 new_symbol (die, type, cu);
5c4e30ca 13624
e8e80198 13625 namespace_name (die, &is_anonymous, cu);
5c4e30ca 13626 if (is_anonymous)
0114d602
DJ
13627 {
13628 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 13629
c0cc3a76 13630 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12aaed36 13631 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 13632 }
5c4e30ca 13633 }
9219021c 13634
639d11d3 13635 if (die->child != NULL)
d9fa45fe 13636 {
639d11d3 13637 struct die_info *child_die = die->child;
6e70227d 13638
d9fa45fe
DC
13639 while (child_die && child_die->tag)
13640 {
e7c27a73 13641 process_die (child_die, cu);
d9fa45fe
DC
13642 child_die = sibling_die (child_die);
13643 }
13644 }
38d518c9
EZ
13645}
13646
f55ee35c
JK
13647/* Read a Fortran module as type. This DIE can be only a declaration used for
13648 imported module. Still we need that type as local Fortran "use ... only"
13649 declaration imports depend on the created type in determine_prefix. */
13650
13651static struct type *
13652read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13653{
13654 struct objfile *objfile = cu->objfile;
15d034d0 13655 const char *module_name;
f55ee35c
JK
13656 struct type *type;
13657
13658 module_name = dwarf2_name (die, cu);
13659 if (!module_name)
3e43a32a
MS
13660 complaint (&symfile_complaints,
13661 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 13662 die->offset.sect_off);
f55ee35c
JK
13663 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13664
13665 /* determine_prefix uses TYPE_TAG_NAME. */
13666 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13667
13668 return set_die_type (die, type, cu);
13669}
13670
5d7cb8df
JK
13671/* Read a Fortran module. */
13672
13673static void
13674read_module (struct die_info *die, struct dwarf2_cu *cu)
13675{
13676 struct die_info *child_die = die->child;
13677
5d7cb8df
JK
13678 while (child_die && child_die->tag)
13679 {
13680 process_die (child_die, cu);
13681 child_die = sibling_die (child_die);
13682 }
13683}
13684
38d518c9
EZ
13685/* Return the name of the namespace represented by DIE. Set
13686 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13687 namespace. */
13688
13689static const char *
e142c38c 13690namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
13691{
13692 struct die_info *current_die;
13693 const char *name = NULL;
13694
13695 /* Loop through the extensions until we find a name. */
13696
13697 for (current_die = die;
13698 current_die != NULL;
f2f0e013 13699 current_die = dwarf2_extension (die, &cu))
38d518c9 13700 {
e142c38c 13701 name = dwarf2_name (current_die, cu);
38d518c9
EZ
13702 if (name != NULL)
13703 break;
13704 }
13705
13706 /* Is it an anonymous namespace? */
13707
13708 *is_anonymous = (name == NULL);
13709 if (*is_anonymous)
2b1dbab0 13710 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
13711
13712 return name;
d9fa45fe
DC
13713}
13714
c906108c
SS
13715/* Extract all information from a DW_TAG_pointer_type DIE and add to
13716 the user defined type vector. */
13717
f792889a 13718static struct type *
e7c27a73 13719read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13720{
5e2b427d 13721 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 13722 struct comp_unit_head *cu_header = &cu->header;
c906108c 13723 struct type *type;
8b2dbe47
KB
13724 struct attribute *attr_byte_size;
13725 struct attribute *attr_address_class;
13726 int byte_size, addr_class;
7e314c57
JK
13727 struct type *target_type;
13728
13729 target_type = die_type (die, cu);
c906108c 13730
7e314c57
JK
13731 /* The die_type call above may have already set the type for this DIE. */
13732 type = get_die_type (die, cu);
13733 if (type)
13734 return type;
13735
13736 type = lookup_pointer_type (target_type);
8b2dbe47 13737
e142c38c 13738 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
13739 if (attr_byte_size)
13740 byte_size = DW_UNSND (attr_byte_size);
c906108c 13741 else
8b2dbe47
KB
13742 byte_size = cu_header->addr_size;
13743
e142c38c 13744 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
13745 if (attr_address_class)
13746 addr_class = DW_UNSND (attr_address_class);
13747 else
13748 addr_class = DW_ADDR_none;
13749
13750 /* If the pointer size or address class is different than the
13751 default, create a type variant marked as such and set the
13752 length accordingly. */
13753 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 13754 {
5e2b427d 13755 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
13756 {
13757 int type_flags;
13758
849957d9 13759 type_flags = gdbarch_address_class_type_flags
5e2b427d 13760 (gdbarch, byte_size, addr_class);
876cecd0
TT
13761 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
13762 == 0);
8b2dbe47
KB
13763 type = make_type_with_address_space (type, type_flags);
13764 }
13765 else if (TYPE_LENGTH (type) != byte_size)
13766 {
3e43a32a
MS
13767 complaint (&symfile_complaints,
13768 _("invalid pointer size %d"), byte_size);
8b2dbe47 13769 }
6e70227d 13770 else
9a619af0
MS
13771 {
13772 /* Should we also complain about unhandled address classes? */
13773 }
c906108c 13774 }
8b2dbe47
KB
13775
13776 TYPE_LENGTH (type) = byte_size;
f792889a 13777 return set_die_type (die, type, cu);
c906108c
SS
13778}
13779
13780/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
13781 the user defined type vector. */
13782
f792889a 13783static struct type *
e7c27a73 13784read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
13785{
13786 struct type *type;
13787 struct type *to_type;
13788 struct type *domain;
13789
e7c27a73
DJ
13790 to_type = die_type (die, cu);
13791 domain = die_containing_type (die, cu);
0d5de010 13792
7e314c57
JK
13793 /* The calls above may have already set the type for this DIE. */
13794 type = get_die_type (die, cu);
13795 if (type)
13796 return type;
13797
0d5de010
DJ
13798 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
13799 type = lookup_methodptr_type (to_type);
7078baeb
TT
13800 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
13801 {
13802 struct type *new_type = alloc_type (cu->objfile);
13803
13804 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
13805 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
13806 TYPE_VARARGS (to_type));
13807 type = lookup_methodptr_type (new_type);
13808 }
0d5de010
DJ
13809 else
13810 type = lookup_memberptr_type (to_type, domain);
c906108c 13811
f792889a 13812 return set_die_type (die, type, cu);
c906108c
SS
13813}
13814
13815/* Extract all information from a DW_TAG_reference_type DIE and add to
13816 the user defined type vector. */
13817
f792889a 13818static struct type *
e7c27a73 13819read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13820{
e7c27a73 13821 struct comp_unit_head *cu_header = &cu->header;
7e314c57 13822 struct type *type, *target_type;
c906108c
SS
13823 struct attribute *attr;
13824
7e314c57
JK
13825 target_type = die_type (die, cu);
13826
13827 /* The die_type call above may have already set the type for this DIE. */
13828 type = get_die_type (die, cu);
13829 if (type)
13830 return type;
13831
13832 type = lookup_reference_type (target_type);
e142c38c 13833 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13834 if (attr)
13835 {
13836 TYPE_LENGTH (type) = DW_UNSND (attr);
13837 }
13838 else
13839 {
107d2387 13840 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 13841 }
f792889a 13842 return set_die_type (die, type, cu);
c906108c
SS
13843}
13844
f792889a 13845static struct type *
e7c27a73 13846read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13847{
f792889a 13848 struct type *base_type, *cv_type;
c906108c 13849
e7c27a73 13850 base_type = die_type (die, cu);
7e314c57
JK
13851
13852 /* The die_type call above may have already set the type for this DIE. */
13853 cv_type = get_die_type (die, cu);
13854 if (cv_type)
13855 return cv_type;
13856
2f608a3a
KW
13857 /* In case the const qualifier is applied to an array type, the element type
13858 is so qualified, not the array type (section 6.7.3 of C99). */
13859 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
13860 {
13861 struct type *el_type, *inner_array;
13862
13863 base_type = copy_type (base_type);
13864 inner_array = base_type;
13865
13866 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
13867 {
13868 TYPE_TARGET_TYPE (inner_array) =
13869 copy_type (TYPE_TARGET_TYPE (inner_array));
13870 inner_array = TYPE_TARGET_TYPE (inner_array);
13871 }
13872
13873 el_type = TYPE_TARGET_TYPE (inner_array);
13874 TYPE_TARGET_TYPE (inner_array) =
13875 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
13876
13877 return set_die_type (die, base_type, cu);
13878 }
13879
f792889a
DJ
13880 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
13881 return set_die_type (die, cv_type, cu);
c906108c
SS
13882}
13883
f792889a 13884static struct type *
e7c27a73 13885read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13886{
f792889a 13887 struct type *base_type, *cv_type;
c906108c 13888
e7c27a73 13889 base_type = die_type (die, cu);
7e314c57
JK
13890
13891 /* The die_type call above may have already set the type for this DIE. */
13892 cv_type = get_die_type (die, cu);
13893 if (cv_type)
13894 return cv_type;
13895
f792889a
DJ
13896 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
13897 return set_die_type (die, cv_type, cu);
c906108c
SS
13898}
13899
06d66ee9
TT
13900/* Handle DW_TAG_restrict_type. */
13901
13902static struct type *
13903read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
13904{
13905 struct type *base_type, *cv_type;
13906
13907 base_type = die_type (die, cu);
13908
13909 /* The die_type call above may have already set the type for this DIE. */
13910 cv_type = get_die_type (die, cu);
13911 if (cv_type)
13912 return cv_type;
13913
13914 cv_type = make_restrict_type (base_type);
13915 return set_die_type (die, cv_type, cu);
13916}
13917
c906108c
SS
13918/* Extract all information from a DW_TAG_string_type DIE and add to
13919 the user defined type vector. It isn't really a user defined type,
13920 but it behaves like one, with other DIE's using an AT_user_def_type
13921 attribute to reference it. */
13922
f792889a 13923static struct type *
e7c27a73 13924read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13925{
e7c27a73 13926 struct objfile *objfile = cu->objfile;
3b7538c0 13927 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
13928 struct type *type, *range_type, *index_type, *char_type;
13929 struct attribute *attr;
13930 unsigned int length;
13931
e142c38c 13932 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
13933 if (attr)
13934 {
13935 length = DW_UNSND (attr);
13936 }
13937 else
13938 {
0963b4bd 13939 /* Check for the DW_AT_byte_size attribute. */
e142c38c 13940 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
13941 if (attr)
13942 {
13943 length = DW_UNSND (attr);
13944 }
13945 else
13946 {
13947 length = 1;
13948 }
c906108c 13949 }
6ccb9162 13950
46bf5051 13951 index_type = objfile_type (objfile)->builtin_int;
c906108c 13952 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
13953 char_type = language_string_char_type (cu->language_defn, gdbarch);
13954 type = create_string_type (NULL, char_type, range_type);
6ccb9162 13955
f792889a 13956 return set_die_type (die, type, cu);
c906108c
SS
13957}
13958
4d804846
JB
13959/* Assuming that DIE corresponds to a function, returns nonzero
13960 if the function is prototyped. */
13961
13962static int
13963prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
13964{
13965 struct attribute *attr;
13966
13967 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
13968 if (attr && (DW_UNSND (attr) != 0))
13969 return 1;
13970
13971 /* The DWARF standard implies that the DW_AT_prototyped attribute
13972 is only meaninful for C, but the concept also extends to other
13973 languages that allow unprototyped functions (Eg: Objective C).
13974 For all other languages, assume that functions are always
13975 prototyped. */
13976 if (cu->language != language_c
13977 && cu->language != language_objc
13978 && cu->language != language_opencl)
13979 return 1;
13980
13981 /* RealView does not emit DW_AT_prototyped. We can not distinguish
13982 prototyped and unprototyped functions; default to prototyped,
13983 since that is more common in modern code (and RealView warns
13984 about unprototyped functions). */
13985 if (producer_is_realview (cu->producer))
13986 return 1;
13987
13988 return 0;
13989}
13990
c906108c
SS
13991/* Handle DIES due to C code like:
13992
13993 struct foo
c5aa993b
JM
13994 {
13995 int (*funcp)(int a, long l);
13996 int b;
13997 };
c906108c 13998
0963b4bd 13999 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14000
f792889a 14001static struct type *
e7c27a73 14002read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14003{
bb5ed363 14004 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14005 struct type *type; /* Type that this function returns. */
14006 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14007 struct attribute *attr;
14008
e7c27a73 14009 type = die_type (die, cu);
7e314c57
JK
14010
14011 /* The die_type call above may have already set the type for this DIE. */
14012 ftype = get_die_type (die, cu);
14013 if (ftype)
14014 return ftype;
14015
0c8b41f1 14016 ftype = lookup_function_type (type);
c906108c 14017
4d804846 14018 if (prototyped_function_p (die, cu))
a6c727b2 14019 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14020
c055b101
CV
14021 /* Store the calling convention in the type if it's available in
14022 the subroutine die. Otherwise set the calling convention to
14023 the default value DW_CC_normal. */
14024 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14025 if (attr)
14026 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14027 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14028 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14029 else
14030 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
14031
14032 /* We need to add the subroutine type to the die immediately so
14033 we don't infinitely recurse when dealing with parameters
0963b4bd 14034 declared as the same subroutine type. */
76c10ea2 14035 set_die_type (die, ftype, cu);
6e70227d 14036
639d11d3 14037 if (die->child != NULL)
c906108c 14038 {
bb5ed363 14039 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14040 struct die_info *child_die;
8072405b 14041 int nparams, iparams;
c906108c
SS
14042
14043 /* Count the number of parameters.
14044 FIXME: GDB currently ignores vararg functions, but knows about
14045 vararg member functions. */
8072405b 14046 nparams = 0;
639d11d3 14047 child_die = die->child;
c906108c
SS
14048 while (child_die && child_die->tag)
14049 {
14050 if (child_die->tag == DW_TAG_formal_parameter)
14051 nparams++;
14052 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14053 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14054 child_die = sibling_die (child_die);
14055 }
14056
14057 /* Allocate storage for parameters and fill them in. */
14058 TYPE_NFIELDS (ftype) = nparams;
14059 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14060 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14061
8072405b
JK
14062 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14063 even if we error out during the parameters reading below. */
14064 for (iparams = 0; iparams < nparams; iparams++)
14065 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14066
14067 iparams = 0;
639d11d3 14068 child_die = die->child;
c906108c
SS
14069 while (child_die && child_die->tag)
14070 {
14071 if (child_die->tag == DW_TAG_formal_parameter)
14072 {
3ce3b1ba
PA
14073 struct type *arg_type;
14074
14075 /* DWARF version 2 has no clean way to discern C++
14076 static and non-static member functions. G++ helps
14077 GDB by marking the first parameter for non-static
14078 member functions (which is the this pointer) as
14079 artificial. We pass this information to
14080 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14081
14082 DWARF version 3 added DW_AT_object_pointer, which GCC
14083 4.5 does not yet generate. */
e142c38c 14084 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14085 if (attr)
14086 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14087 else
418835cc
KS
14088 {
14089 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14090
14091 /* GCC/43521: In java, the formal parameter
14092 "this" is sometimes not marked with DW_AT_artificial. */
14093 if (cu->language == language_java)
14094 {
14095 const char *name = dwarf2_name (child_die, cu);
9a619af0 14096
418835cc
KS
14097 if (name && !strcmp (name, "this"))
14098 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14099 }
14100 }
3ce3b1ba
PA
14101 arg_type = die_type (child_die, cu);
14102
14103 /* RealView does not mark THIS as const, which the testsuite
14104 expects. GCC marks THIS as const in method definitions,
14105 but not in the class specifications (GCC PR 43053). */
14106 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14107 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14108 {
14109 int is_this = 0;
14110 struct dwarf2_cu *arg_cu = cu;
14111 const char *name = dwarf2_name (child_die, cu);
14112
14113 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14114 if (attr)
14115 {
14116 /* If the compiler emits this, use it. */
14117 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14118 is_this = 1;
14119 }
14120 else if (name && strcmp (name, "this") == 0)
14121 /* Function definitions will have the argument names. */
14122 is_this = 1;
14123 else if (name == NULL && iparams == 0)
14124 /* Declarations may not have the names, so like
14125 elsewhere in GDB, assume an artificial first
14126 argument is "this". */
14127 is_this = 1;
14128
14129 if (is_this)
14130 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14131 arg_type, 0);
14132 }
14133
14134 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14135 iparams++;
14136 }
14137 child_die = sibling_die (child_die);
14138 }
14139 }
14140
76c10ea2 14141 return ftype;
c906108c
SS
14142}
14143
f792889a 14144static struct type *
e7c27a73 14145read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14146{
e7c27a73 14147 struct objfile *objfile = cu->objfile;
0114d602 14148 const char *name = NULL;
3c8e0968 14149 struct type *this_type, *target_type;
c906108c 14150
94af9270 14151 name = dwarf2_full_name (NULL, die, cu);
f792889a 14152 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14153 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14154 TYPE_NAME (this_type) = name;
f792889a 14155 set_die_type (die, this_type, cu);
3c8e0968
DE
14156 target_type = die_type (die, cu);
14157 if (target_type != this_type)
14158 TYPE_TARGET_TYPE (this_type) = target_type;
14159 else
14160 {
14161 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14162 spec and cause infinite loops in GDB. */
14163 complaint (&symfile_complaints,
14164 _("Self-referential DW_TAG_typedef "
14165 "- DIE at 0x%x [in module %s]"),
4262abfb 14166 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14167 TYPE_TARGET_TYPE (this_type) = NULL;
14168 }
f792889a 14169 return this_type;
c906108c
SS
14170}
14171
14172/* Find a representation of a given base type and install
14173 it in the TYPE field of the die. */
14174
f792889a 14175static struct type *
e7c27a73 14176read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14177{
e7c27a73 14178 struct objfile *objfile = cu->objfile;
c906108c
SS
14179 struct type *type;
14180 struct attribute *attr;
14181 int encoding = 0, size = 0;
15d034d0 14182 const char *name;
6ccb9162
UW
14183 enum type_code code = TYPE_CODE_INT;
14184 int type_flags = 0;
14185 struct type *target_type = NULL;
c906108c 14186
e142c38c 14187 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14188 if (attr)
14189 {
14190 encoding = DW_UNSND (attr);
14191 }
e142c38c 14192 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14193 if (attr)
14194 {
14195 size = DW_UNSND (attr);
14196 }
39cbfefa 14197 name = dwarf2_name (die, cu);
6ccb9162 14198 if (!name)
c906108c 14199 {
6ccb9162
UW
14200 complaint (&symfile_complaints,
14201 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14202 }
6ccb9162
UW
14203
14204 switch (encoding)
c906108c 14205 {
6ccb9162
UW
14206 case DW_ATE_address:
14207 /* Turn DW_ATE_address into a void * pointer. */
14208 code = TYPE_CODE_PTR;
14209 type_flags |= TYPE_FLAG_UNSIGNED;
14210 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14211 break;
14212 case DW_ATE_boolean:
14213 code = TYPE_CODE_BOOL;
14214 type_flags |= TYPE_FLAG_UNSIGNED;
14215 break;
14216 case DW_ATE_complex_float:
14217 code = TYPE_CODE_COMPLEX;
14218 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14219 break;
14220 case DW_ATE_decimal_float:
14221 code = TYPE_CODE_DECFLOAT;
14222 break;
14223 case DW_ATE_float:
14224 code = TYPE_CODE_FLT;
14225 break;
14226 case DW_ATE_signed:
14227 break;
14228 case DW_ATE_unsigned:
14229 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14230 if (cu->language == language_fortran
14231 && name
14232 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14233 code = TYPE_CODE_CHAR;
6ccb9162
UW
14234 break;
14235 case DW_ATE_signed_char:
6e70227d 14236 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14237 || cu->language == language_pascal
14238 || cu->language == language_fortran)
6ccb9162
UW
14239 code = TYPE_CODE_CHAR;
14240 break;
14241 case DW_ATE_unsigned_char:
868a0084 14242 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14243 || cu->language == language_pascal
14244 || cu->language == language_fortran)
6ccb9162
UW
14245 code = TYPE_CODE_CHAR;
14246 type_flags |= TYPE_FLAG_UNSIGNED;
14247 break;
75079b2b
TT
14248 case DW_ATE_UTF:
14249 /* We just treat this as an integer and then recognize the
14250 type by name elsewhere. */
14251 break;
14252
6ccb9162
UW
14253 default:
14254 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14255 dwarf_type_encoding_name (encoding));
14256 break;
c906108c 14257 }
6ccb9162 14258
0114d602
DJ
14259 type = init_type (code, size, type_flags, NULL, objfile);
14260 TYPE_NAME (type) = name;
6ccb9162
UW
14261 TYPE_TARGET_TYPE (type) = target_type;
14262
0114d602 14263 if (name && strcmp (name, "char") == 0)
876cecd0 14264 TYPE_NOSIGN (type) = 1;
0114d602 14265
f792889a 14266 return set_die_type (die, type, cu);
c906108c
SS
14267}
14268
a02abb62
JB
14269/* Read the given DW_AT_subrange DIE. */
14270
f792889a 14271static struct type *
a02abb62
JB
14272read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14273{
4c9ad8c2 14274 struct type *base_type, *orig_base_type;
a02abb62
JB
14275 struct type *range_type;
14276 struct attribute *attr;
4fae6e18
JK
14277 LONGEST low, high;
14278 int low_default_is_valid;
15d034d0 14279 const char *name;
43bbcdc2 14280 LONGEST negative_mask;
e77813c8 14281
4c9ad8c2
TT
14282 orig_base_type = die_type (die, cu);
14283 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14284 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14285 creating the range type, but we use the result of check_typedef
14286 when examining properties of the type. */
14287 base_type = check_typedef (orig_base_type);
a02abb62 14288
7e314c57
JK
14289 /* The die_type call above may have already set the type for this DIE. */
14290 range_type = get_die_type (die, cu);
14291 if (range_type)
14292 return range_type;
14293
4fae6e18
JK
14294 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14295 omitting DW_AT_lower_bound. */
14296 switch (cu->language)
6e70227d 14297 {
4fae6e18
JK
14298 case language_c:
14299 case language_cplus:
14300 low = 0;
14301 low_default_is_valid = 1;
14302 break;
14303 case language_fortran:
14304 low = 1;
14305 low_default_is_valid = 1;
14306 break;
14307 case language_d:
14308 case language_java:
14309 case language_objc:
14310 low = 0;
14311 low_default_is_valid = (cu->header.version >= 4);
14312 break;
14313 case language_ada:
14314 case language_m2:
14315 case language_pascal:
a02abb62 14316 low = 1;
4fae6e18
JK
14317 low_default_is_valid = (cu->header.version >= 4);
14318 break;
14319 default:
14320 low = 0;
14321 low_default_is_valid = 0;
14322 break;
a02abb62
JB
14323 }
14324
dd5e6932
DJ
14325 /* FIXME: For variable sized arrays either of these could be
14326 a variable rather than a constant value. We'll allow it,
14327 but we don't know how to handle it. */
e142c38c 14328 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14329 if (attr)
4fae6e18
JK
14330 low = dwarf2_get_attr_constant_value (attr, low);
14331 else if (!low_default_is_valid)
14332 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14333 "- DIE at 0x%x [in module %s]"),
4262abfb 14334 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14335
e142c38c 14336 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 14337 if (attr)
6e70227d 14338 {
7771576e 14339 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
a02abb62
JB
14340 {
14341 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 14342 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
14343 FIXME: GDB does not yet know how to handle dynamic
14344 arrays properly, treat them as arrays with unspecified
14345 length for now.
14346
14347 FIXME: jimb/2003-09-22: GDB does not really know
14348 how to handle arrays of unspecified length
14349 either; we just represent them as zero-length
14350 arrays. Choose an appropriate upper bound given
14351 the lower bound we've computed above. */
14352 high = low - 1;
14353 }
14354 else
14355 high = dwarf2_get_attr_constant_value (attr, 1);
14356 }
e77813c8
PM
14357 else
14358 {
14359 attr = dwarf2_attr (die, DW_AT_count, cu);
14360 if (attr)
14361 {
14362 int count = dwarf2_get_attr_constant_value (attr, 1);
14363 high = low + count - 1;
14364 }
c2ff108b
JK
14365 else
14366 {
14367 /* Unspecified array length. */
14368 high = low - 1;
14369 }
e77813c8
PM
14370 }
14371
14372 /* Dwarf-2 specifications explicitly allows to create subrange types
14373 without specifying a base type.
14374 In that case, the base type must be set to the type of
14375 the lower bound, upper bound or count, in that order, if any of these
14376 three attributes references an object that has a type.
14377 If no base type is found, the Dwarf-2 specifications say that
14378 a signed integer type of size equal to the size of an address should
14379 be used.
14380 For the following C code: `extern char gdb_int [];'
14381 GCC produces an empty range DIE.
14382 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 14383 high bound or count are not yet handled by this code. */
e77813c8
PM
14384 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14385 {
14386 struct objfile *objfile = cu->objfile;
14387 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14388 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14389 struct type *int_type = objfile_type (objfile)->builtin_int;
14390
14391 /* Test "int", "long int", and "long long int" objfile types,
14392 and select the first one having a size above or equal to the
14393 architecture address size. */
14394 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14395 base_type = int_type;
14396 else
14397 {
14398 int_type = objfile_type (objfile)->builtin_long;
14399 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14400 base_type = int_type;
14401 else
14402 {
14403 int_type = objfile_type (objfile)->builtin_long_long;
14404 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14405 base_type = int_type;
14406 }
14407 }
14408 }
a02abb62 14409
6e70227d 14410 negative_mask =
43bbcdc2
PH
14411 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14412 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
14413 low |= negative_mask;
14414 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
14415 high |= negative_mask;
14416
4c9ad8c2 14417 range_type = create_range_type (NULL, orig_base_type, low, high);
a02abb62 14418
bbb0eef6
JK
14419 /* Mark arrays with dynamic length at least as an array of unspecified
14420 length. GDB could check the boundary but before it gets implemented at
14421 least allow accessing the array elements. */
d48323d8 14422 if (attr && attr_form_is_block (attr))
bbb0eef6
JK
14423 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14424
c2ff108b
JK
14425 /* Ada expects an empty array on no boundary attributes. */
14426 if (attr == NULL && cu->language != language_ada)
14427 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14428
39cbfefa
DJ
14429 name = dwarf2_name (die, cu);
14430 if (name)
14431 TYPE_NAME (range_type) = name;
6e70227d 14432
e142c38c 14433 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
14434 if (attr)
14435 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14436
7e314c57
JK
14437 set_die_type (die, range_type, cu);
14438
14439 /* set_die_type should be already done. */
b4ba55a1
JB
14440 set_descriptive_type (range_type, die, cu);
14441
7e314c57 14442 return range_type;
a02abb62 14443}
6e70227d 14444
f792889a 14445static struct type *
81a17f79
JB
14446read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14447{
14448 struct type *type;
81a17f79 14449
81a17f79
JB
14450 /* For now, we only support the C meaning of an unspecified type: void. */
14451
0114d602
DJ
14452 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14453 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 14454
f792889a 14455 return set_die_type (die, type, cu);
81a17f79 14456}
a02abb62 14457
639d11d3
DC
14458/* Read a single die and all its descendents. Set the die's sibling
14459 field to NULL; set other fields in the die correctly, and set all
14460 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14461 location of the info_ptr after reading all of those dies. PARENT
14462 is the parent of the die in question. */
14463
14464static struct die_info *
dee91e82 14465read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
14466 const gdb_byte *info_ptr,
14467 const gdb_byte **new_info_ptr,
dee91e82 14468 struct die_info *parent)
639d11d3
DC
14469{
14470 struct die_info *die;
d521ce57 14471 const gdb_byte *cur_ptr;
639d11d3
DC
14472 int has_children;
14473
bf6af496 14474 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
14475 if (die == NULL)
14476 {
14477 *new_info_ptr = cur_ptr;
14478 return NULL;
14479 }
93311388 14480 store_in_ref_table (die, reader->cu);
639d11d3
DC
14481
14482 if (has_children)
bf6af496 14483 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
14484 else
14485 {
14486 die->child = NULL;
14487 *new_info_ptr = cur_ptr;
14488 }
14489
14490 die->sibling = NULL;
14491 die->parent = parent;
14492 return die;
14493}
14494
14495/* Read a die, all of its descendents, and all of its siblings; set
14496 all of the fields of all of the dies correctly. Arguments are as
14497 in read_die_and_children. */
14498
14499static struct die_info *
bf6af496 14500read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
14501 const gdb_byte *info_ptr,
14502 const gdb_byte **new_info_ptr,
bf6af496 14503 struct die_info *parent)
639d11d3
DC
14504{
14505 struct die_info *first_die, *last_sibling;
d521ce57 14506 const gdb_byte *cur_ptr;
639d11d3 14507
c906108c 14508 cur_ptr = info_ptr;
639d11d3
DC
14509 first_die = last_sibling = NULL;
14510
14511 while (1)
c906108c 14512 {
639d11d3 14513 struct die_info *die
dee91e82 14514 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 14515
1d325ec1 14516 if (die == NULL)
c906108c 14517 {
639d11d3
DC
14518 *new_info_ptr = cur_ptr;
14519 return first_die;
c906108c 14520 }
1d325ec1
DJ
14521
14522 if (!first_die)
14523 first_die = die;
c906108c 14524 else
1d325ec1
DJ
14525 last_sibling->sibling = die;
14526
14527 last_sibling = die;
c906108c 14528 }
c906108c
SS
14529}
14530
bf6af496
DE
14531/* Read a die, all of its descendents, and all of its siblings; set
14532 all of the fields of all of the dies correctly. Arguments are as
14533 in read_die_and_children.
14534 This the main entry point for reading a DIE and all its children. */
14535
14536static struct die_info *
14537read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
14538 const gdb_byte *info_ptr,
14539 const gdb_byte **new_info_ptr,
bf6af496
DE
14540 struct die_info *parent)
14541{
14542 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14543 new_info_ptr, parent);
14544
14545 if (dwarf2_die_debug)
14546 {
14547 fprintf_unfiltered (gdb_stdlog,
14548 "Read die from %s@0x%x of %s:\n",
a32a8923 14549 get_section_name (reader->die_section),
bf6af496
DE
14550 (unsigned) (info_ptr - reader->die_section->buffer),
14551 bfd_get_filename (reader->abfd));
14552 dump_die (die, dwarf2_die_debug);
14553 }
14554
14555 return die;
14556}
14557
3019eac3
DE
14558/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14559 attributes.
14560 The caller is responsible for filling in the extra attributes
14561 and updating (*DIEP)->num_attrs.
14562 Set DIEP to point to a newly allocated die with its information,
14563 except for its child, sibling, and parent fields.
14564 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 14565
d521ce57 14566static const gdb_byte *
3019eac3 14567read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 14568 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 14569 int *has_children, int num_extra_attrs)
93311388 14570{
b64f50a1
JK
14571 unsigned int abbrev_number, bytes_read, i;
14572 sect_offset offset;
93311388
DE
14573 struct abbrev_info *abbrev;
14574 struct die_info *die;
14575 struct dwarf2_cu *cu = reader->cu;
14576 bfd *abfd = reader->abfd;
14577
b64f50a1 14578 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
14579 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14580 info_ptr += bytes_read;
14581 if (!abbrev_number)
14582 {
14583 *diep = NULL;
14584 *has_children = 0;
14585 return info_ptr;
14586 }
14587
433df2d4 14588 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 14589 if (!abbrev)
348e048f
DE
14590 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14591 abbrev_number,
14592 bfd_get_filename (abfd));
14593
3019eac3 14594 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
14595 die->offset = offset;
14596 die->tag = abbrev->tag;
14597 die->abbrev = abbrev_number;
14598
3019eac3
DE
14599 /* Make the result usable.
14600 The caller needs to update num_attrs after adding the extra
14601 attributes. */
93311388
DE
14602 die->num_attrs = abbrev->num_attrs;
14603
14604 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
14605 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14606 info_ptr);
93311388
DE
14607
14608 *diep = die;
14609 *has_children = abbrev->has_children;
14610 return info_ptr;
14611}
14612
3019eac3
DE
14613/* Read a die and all its attributes.
14614 Set DIEP to point to a newly allocated die with its information,
14615 except for its child, sibling, and parent fields.
14616 Set HAS_CHILDREN to tell whether the die has children or not. */
14617
d521ce57 14618static const gdb_byte *
3019eac3 14619read_full_die (const struct die_reader_specs *reader,
d521ce57 14620 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
14621 int *has_children)
14622{
d521ce57 14623 const gdb_byte *result;
bf6af496
DE
14624
14625 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14626
14627 if (dwarf2_die_debug)
14628 {
14629 fprintf_unfiltered (gdb_stdlog,
14630 "Read die from %s@0x%x of %s:\n",
a32a8923 14631 get_section_name (reader->die_section),
bf6af496
DE
14632 (unsigned) (info_ptr - reader->die_section->buffer),
14633 bfd_get_filename (reader->abfd));
14634 dump_die (*diep, dwarf2_die_debug);
14635 }
14636
14637 return result;
3019eac3 14638}
433df2d4
DE
14639\f
14640/* Abbreviation tables.
3019eac3 14641
433df2d4 14642 In DWARF version 2, the description of the debugging information is
c906108c
SS
14643 stored in a separate .debug_abbrev section. Before we read any
14644 dies from a section we read in all abbreviations and install them
433df2d4
DE
14645 in a hash table. */
14646
14647/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14648
14649static struct abbrev_info *
14650abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14651{
14652 struct abbrev_info *abbrev;
14653
14654 abbrev = (struct abbrev_info *)
14655 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14656 memset (abbrev, 0, sizeof (struct abbrev_info));
14657 return abbrev;
14658}
14659
14660/* Add an abbreviation to the table. */
c906108c
SS
14661
14662static void
433df2d4
DE
14663abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
14664 unsigned int abbrev_number,
14665 struct abbrev_info *abbrev)
14666{
14667 unsigned int hash_number;
14668
14669 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14670 abbrev->next = abbrev_table->abbrevs[hash_number];
14671 abbrev_table->abbrevs[hash_number] = abbrev;
14672}
dee91e82 14673
433df2d4
DE
14674/* Look up an abbrev in the table.
14675 Returns NULL if the abbrev is not found. */
14676
14677static struct abbrev_info *
14678abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
14679 unsigned int abbrev_number)
c906108c 14680{
433df2d4
DE
14681 unsigned int hash_number;
14682 struct abbrev_info *abbrev;
14683
14684 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14685 abbrev = abbrev_table->abbrevs[hash_number];
14686
14687 while (abbrev)
14688 {
14689 if (abbrev->number == abbrev_number)
14690 return abbrev;
14691 abbrev = abbrev->next;
14692 }
14693 return NULL;
14694}
14695
14696/* Read in an abbrev table. */
14697
14698static struct abbrev_table *
14699abbrev_table_read_table (struct dwarf2_section_info *section,
14700 sect_offset offset)
14701{
14702 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 14703 bfd *abfd = get_section_bfd_owner (section);
433df2d4 14704 struct abbrev_table *abbrev_table;
d521ce57 14705 const gdb_byte *abbrev_ptr;
c906108c
SS
14706 struct abbrev_info *cur_abbrev;
14707 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 14708 unsigned int abbrev_form;
f3dd6933
DJ
14709 struct attr_abbrev *cur_attrs;
14710 unsigned int allocated_attrs;
c906108c 14711
433df2d4 14712 abbrev_table = XMALLOC (struct abbrev_table);
f4dc4d17 14713 abbrev_table->offset = offset;
433df2d4
DE
14714 obstack_init (&abbrev_table->abbrev_obstack);
14715 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
14716 (ABBREV_HASH_SIZE
14717 * sizeof (struct abbrev_info *)));
14718 memset (abbrev_table->abbrevs, 0,
14719 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 14720
433df2d4
DE
14721 dwarf2_read_section (objfile, section);
14722 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
14723 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14724 abbrev_ptr += bytes_read;
14725
f3dd6933
DJ
14726 allocated_attrs = ATTR_ALLOC_CHUNK;
14727 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 14728
0963b4bd 14729 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
14730 while (abbrev_number)
14731 {
433df2d4 14732 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
14733
14734 /* read in abbrev header */
14735 cur_abbrev->number = abbrev_number;
14736 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14737 abbrev_ptr += bytes_read;
14738 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
14739 abbrev_ptr += 1;
14740
14741 /* now read in declarations */
14742 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14743 abbrev_ptr += bytes_read;
14744 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14745 abbrev_ptr += bytes_read;
14746 while (abbrev_name)
14747 {
f3dd6933 14748 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 14749 {
f3dd6933
DJ
14750 allocated_attrs += ATTR_ALLOC_CHUNK;
14751 cur_attrs
14752 = xrealloc (cur_attrs, (allocated_attrs
14753 * sizeof (struct attr_abbrev)));
c906108c 14754 }
ae038cb0 14755
f3dd6933
DJ
14756 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
14757 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
14758 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14759 abbrev_ptr += bytes_read;
14760 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14761 abbrev_ptr += bytes_read;
14762 }
14763
433df2d4 14764 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
14765 (cur_abbrev->num_attrs
14766 * sizeof (struct attr_abbrev)));
14767 memcpy (cur_abbrev->attrs, cur_attrs,
14768 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
14769
433df2d4 14770 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
14771
14772 /* Get next abbreviation.
14773 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
14774 always properly terminated with an abbrev number of 0.
14775 Exit loop if we encounter an abbreviation which we have
14776 already read (which means we are about to read the abbreviations
14777 for the next compile unit) or if the end of the abbreviation
14778 table is reached. */
433df2d4 14779 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
14780 break;
14781 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14782 abbrev_ptr += bytes_read;
433df2d4 14783 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
14784 break;
14785 }
f3dd6933
DJ
14786
14787 xfree (cur_attrs);
433df2d4 14788 return abbrev_table;
c906108c
SS
14789}
14790
433df2d4 14791/* Free the resources held by ABBREV_TABLE. */
c906108c 14792
c906108c 14793static void
433df2d4 14794abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 14795{
433df2d4
DE
14796 obstack_free (&abbrev_table->abbrev_obstack, NULL);
14797 xfree (abbrev_table);
c906108c
SS
14798}
14799
f4dc4d17
DE
14800/* Same as abbrev_table_free but as a cleanup.
14801 We pass in a pointer to the pointer to the table so that we can
14802 set the pointer to NULL when we're done. It also simplifies
14803 build_type_unit_groups. */
14804
14805static void
14806abbrev_table_free_cleanup (void *table_ptr)
14807{
14808 struct abbrev_table **abbrev_table_ptr = table_ptr;
14809
14810 if (*abbrev_table_ptr != NULL)
14811 abbrev_table_free (*abbrev_table_ptr);
14812 *abbrev_table_ptr = NULL;
14813}
14814
433df2d4
DE
14815/* Read the abbrev table for CU from ABBREV_SECTION. */
14816
14817static void
14818dwarf2_read_abbrevs (struct dwarf2_cu *cu,
14819 struct dwarf2_section_info *abbrev_section)
c906108c 14820{
433df2d4
DE
14821 cu->abbrev_table =
14822 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
14823}
c906108c 14824
433df2d4 14825/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 14826
433df2d4
DE
14827static void
14828dwarf2_free_abbrev_table (void *ptr_to_cu)
14829{
14830 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 14831
a2ce51a0
DE
14832 if (cu->abbrev_table != NULL)
14833 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
14834 /* Set this to NULL so that we SEGV if we try to read it later,
14835 and also because free_comp_unit verifies this is NULL. */
14836 cu->abbrev_table = NULL;
14837}
14838\f
72bf9492
DJ
14839/* Returns nonzero if TAG represents a type that we might generate a partial
14840 symbol for. */
14841
14842static int
14843is_type_tag_for_partial (int tag)
14844{
14845 switch (tag)
14846 {
14847#if 0
14848 /* Some types that would be reasonable to generate partial symbols for,
14849 that we don't at present. */
14850 case DW_TAG_array_type:
14851 case DW_TAG_file_type:
14852 case DW_TAG_ptr_to_member_type:
14853 case DW_TAG_set_type:
14854 case DW_TAG_string_type:
14855 case DW_TAG_subroutine_type:
14856#endif
14857 case DW_TAG_base_type:
14858 case DW_TAG_class_type:
680b30c7 14859 case DW_TAG_interface_type:
72bf9492
DJ
14860 case DW_TAG_enumeration_type:
14861 case DW_TAG_structure_type:
14862 case DW_TAG_subrange_type:
14863 case DW_TAG_typedef:
14864 case DW_TAG_union_type:
14865 return 1;
14866 default:
14867 return 0;
14868 }
14869}
14870
14871/* Load all DIEs that are interesting for partial symbols into memory. */
14872
14873static struct partial_die_info *
dee91e82 14874load_partial_dies (const struct die_reader_specs *reader,
d521ce57 14875 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 14876{
dee91e82 14877 struct dwarf2_cu *cu = reader->cu;
bb5ed363 14878 struct objfile *objfile = cu->objfile;
72bf9492
DJ
14879 struct partial_die_info *part_die;
14880 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
14881 struct abbrev_info *abbrev;
14882 unsigned int bytes_read;
5afb4e99 14883 unsigned int load_all = 0;
72bf9492
DJ
14884 int nesting_level = 1;
14885
14886 parent_die = NULL;
14887 last_die = NULL;
14888
7adf1e79
DE
14889 gdb_assert (cu->per_cu != NULL);
14890 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
14891 load_all = 1;
14892
72bf9492
DJ
14893 cu->partial_dies
14894 = htab_create_alloc_ex (cu->header.length / 12,
14895 partial_die_hash,
14896 partial_die_eq,
14897 NULL,
14898 &cu->comp_unit_obstack,
14899 hashtab_obstack_allocate,
14900 dummy_obstack_deallocate);
14901
14902 part_die = obstack_alloc (&cu->comp_unit_obstack,
14903 sizeof (struct partial_die_info));
14904
14905 while (1)
14906 {
14907 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
14908
14909 /* A NULL abbrev means the end of a series of children. */
14910 if (abbrev == NULL)
14911 {
14912 if (--nesting_level == 0)
14913 {
14914 /* PART_DIE was probably the last thing allocated on the
14915 comp_unit_obstack, so we could call obstack_free
14916 here. We don't do that because the waste is small,
14917 and will be cleaned up when we're done with this
14918 compilation unit. This way, we're also more robust
14919 against other users of the comp_unit_obstack. */
14920 return first_die;
14921 }
14922 info_ptr += bytes_read;
14923 last_die = parent_die;
14924 parent_die = parent_die->die_parent;
14925 continue;
14926 }
14927
98bfdba5
PA
14928 /* Check for template arguments. We never save these; if
14929 they're seen, we just mark the parent, and go on our way. */
14930 if (parent_die != NULL
14931 && cu->language == language_cplus
14932 && (abbrev->tag == DW_TAG_template_type_param
14933 || abbrev->tag == DW_TAG_template_value_param))
14934 {
14935 parent_die->has_template_arguments = 1;
14936
14937 if (!load_all)
14938 {
14939 /* We don't need a partial DIE for the template argument. */
dee91e82 14940 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
14941 continue;
14942 }
14943 }
14944
0d99eb77 14945 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
14946 Skip their other children. */
14947 if (!load_all
14948 && cu->language == language_cplus
14949 && parent_die != NULL
14950 && parent_die->tag == DW_TAG_subprogram)
14951 {
dee91e82 14952 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
14953 continue;
14954 }
14955
5afb4e99
DJ
14956 /* Check whether this DIE is interesting enough to save. Normally
14957 we would not be interested in members here, but there may be
14958 later variables referencing them via DW_AT_specification (for
14959 static members). */
14960 if (!load_all
14961 && !is_type_tag_for_partial (abbrev->tag)
72929c62 14962 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
14963 && abbrev->tag != DW_TAG_enumerator
14964 && abbrev->tag != DW_TAG_subprogram
bc30ff58 14965 && abbrev->tag != DW_TAG_lexical_block
72bf9492 14966 && abbrev->tag != DW_TAG_variable
5afb4e99 14967 && abbrev->tag != DW_TAG_namespace
f55ee35c 14968 && abbrev->tag != DW_TAG_module
95554aad 14969 && abbrev->tag != DW_TAG_member
74921315
KS
14970 && abbrev->tag != DW_TAG_imported_unit
14971 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
14972 {
14973 /* Otherwise we skip to the next sibling, if any. */
dee91e82 14974 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
14975 continue;
14976 }
14977
dee91e82
DE
14978 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
14979 info_ptr);
72bf9492
DJ
14980
14981 /* This two-pass algorithm for processing partial symbols has a
14982 high cost in cache pressure. Thus, handle some simple cases
14983 here which cover the majority of C partial symbols. DIEs
14984 which neither have specification tags in them, nor could have
14985 specification tags elsewhere pointing at them, can simply be
14986 processed and discarded.
14987
14988 This segment is also optional; scan_partial_symbols and
14989 add_partial_symbol will handle these DIEs if we chain
14990 them in normally. When compilers which do not emit large
14991 quantities of duplicate debug information are more common,
14992 this code can probably be removed. */
14993
14994 /* Any complete simple types at the top level (pretty much all
14995 of them, for a language without namespaces), can be processed
14996 directly. */
14997 if (parent_die == NULL
14998 && part_die->has_specification == 0
14999 && part_die->is_declaration == 0
d8228535 15000 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15001 || part_die->tag == DW_TAG_base_type
15002 || part_die->tag == DW_TAG_subrange_type))
15003 {
15004 if (building_psymtab && part_die->name != NULL)
04a679b8 15005 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15006 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
15007 &objfile->static_psymbols,
15008 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 15009 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15010 continue;
15011 }
15012
d8228535
JK
15013 /* The exception for DW_TAG_typedef with has_children above is
15014 a workaround of GCC PR debug/47510. In the case of this complaint
15015 type_name_no_tag_or_error will error on such types later.
15016
15017 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15018 it could not find the child DIEs referenced later, this is checked
15019 above. In correct DWARF DW_TAG_typedef should have no children. */
15020
15021 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15022 complaint (&symfile_complaints,
15023 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15024 "- DIE at 0x%x [in module %s]"),
4262abfb 15025 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15026
72bf9492
DJ
15027 /* If we're at the second level, and we're an enumerator, and
15028 our parent has no specification (meaning possibly lives in a
15029 namespace elsewhere), then we can add the partial symbol now
15030 instead of queueing it. */
15031 if (part_die->tag == DW_TAG_enumerator
15032 && parent_die != NULL
15033 && parent_die->die_parent == NULL
15034 && parent_die->tag == DW_TAG_enumeration_type
15035 && parent_die->has_specification == 0)
15036 {
15037 if (part_die->name == NULL)
3e43a32a
MS
15038 complaint (&symfile_complaints,
15039 _("malformed enumerator DIE ignored"));
72bf9492 15040 else if (building_psymtab)
04a679b8 15041 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15042 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15043 (cu->language == language_cplus
15044 || cu->language == language_java)
bb5ed363
DE
15045 ? &objfile->global_psymbols
15046 : &objfile->static_psymbols,
15047 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 15048
dee91e82 15049 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15050 continue;
15051 }
15052
15053 /* We'll save this DIE so link it in. */
15054 part_die->die_parent = parent_die;
15055 part_die->die_sibling = NULL;
15056 part_die->die_child = NULL;
15057
15058 if (last_die && last_die == parent_die)
15059 last_die->die_child = part_die;
15060 else if (last_die)
15061 last_die->die_sibling = part_die;
15062
15063 last_die = part_die;
15064
15065 if (first_die == NULL)
15066 first_die = part_die;
15067
15068 /* Maybe add the DIE to the hash table. Not all DIEs that we
15069 find interesting need to be in the hash table, because we
15070 also have the parent/sibling/child chains; only those that we
15071 might refer to by offset later during partial symbol reading.
15072
15073 For now this means things that might have be the target of a
15074 DW_AT_specification, DW_AT_abstract_origin, or
15075 DW_AT_extension. DW_AT_extension will refer only to
15076 namespaces; DW_AT_abstract_origin refers to functions (and
15077 many things under the function DIE, but we do not recurse
15078 into function DIEs during partial symbol reading) and
15079 possibly variables as well; DW_AT_specification refers to
15080 declarations. Declarations ought to have the DW_AT_declaration
15081 flag. It happens that GCC forgets to put it in sometimes, but
15082 only for functions, not for types.
15083
15084 Adding more things than necessary to the hash table is harmless
15085 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15086 wasted time in find_partial_die, when we reread the compilation
15087 unit with load_all_dies set. */
72bf9492 15088
5afb4e99 15089 if (load_all
72929c62 15090 || abbrev->tag == DW_TAG_constant
5afb4e99 15091 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15092 || abbrev->tag == DW_TAG_variable
15093 || abbrev->tag == DW_TAG_namespace
15094 || part_die->is_declaration)
15095 {
15096 void **slot;
15097
15098 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15099 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15100 *slot = part_die;
15101 }
15102
15103 part_die = obstack_alloc (&cu->comp_unit_obstack,
15104 sizeof (struct partial_die_info));
15105
15106 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15107 we have no reason to follow the children of structures; for other
98bfdba5
PA
15108 languages we have to, so that we can get at method physnames
15109 to infer fully qualified class names, for DW_AT_specification,
15110 and for C++ template arguments. For C++, we also look one level
15111 inside functions to find template arguments (if the name of the
15112 function does not already contain the template arguments).
bc30ff58
JB
15113
15114 For Ada, we need to scan the children of subprograms and lexical
15115 blocks as well because Ada allows the definition of nested
15116 entities that could be interesting for the debugger, such as
15117 nested subprograms for instance. */
72bf9492 15118 if (last_die->has_children
5afb4e99
DJ
15119 && (load_all
15120 || last_die->tag == DW_TAG_namespace
f55ee35c 15121 || last_die->tag == DW_TAG_module
72bf9492 15122 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15123 || (cu->language == language_cplus
15124 && last_die->tag == DW_TAG_subprogram
15125 && (last_die->name == NULL
15126 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15127 || (cu->language != language_c
15128 && (last_die->tag == DW_TAG_class_type
680b30c7 15129 || last_die->tag == DW_TAG_interface_type
72bf9492 15130 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15131 || last_die->tag == DW_TAG_union_type))
15132 || (cu->language == language_ada
15133 && (last_die->tag == DW_TAG_subprogram
15134 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15135 {
15136 nesting_level++;
15137 parent_die = last_die;
15138 continue;
15139 }
15140
15141 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15142 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15143
15144 /* Back to the top, do it again. */
15145 }
15146}
15147
c906108c
SS
15148/* Read a minimal amount of information into the minimal die structure. */
15149
d521ce57 15150static const gdb_byte *
dee91e82
DE
15151read_partial_die (const struct die_reader_specs *reader,
15152 struct partial_die_info *part_die,
15153 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15154 const gdb_byte *info_ptr)
c906108c 15155{
dee91e82 15156 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15157 struct objfile *objfile = cu->objfile;
d521ce57 15158 const gdb_byte *buffer = reader->buffer;
fa238c03 15159 unsigned int i;
c906108c 15160 struct attribute attr;
c5aa993b 15161 int has_low_pc_attr = 0;
c906108c 15162 int has_high_pc_attr = 0;
91da1414 15163 int high_pc_relative = 0;
c906108c 15164
72bf9492 15165 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15166
b64f50a1 15167 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15168
15169 info_ptr += abbrev_len;
15170
15171 if (abbrev == NULL)
15172 return info_ptr;
15173
c906108c
SS
15174 part_die->tag = abbrev->tag;
15175 part_die->has_children = abbrev->has_children;
c906108c
SS
15176
15177 for (i = 0; i < abbrev->num_attrs; ++i)
15178 {
dee91e82 15179 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15180
15181 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15182 partial symbol table. */
c906108c
SS
15183 switch (attr.name)
15184 {
15185 case DW_AT_name:
71c25dea
TT
15186 switch (part_die->tag)
15187 {
15188 case DW_TAG_compile_unit:
95554aad 15189 case DW_TAG_partial_unit:
348e048f 15190 case DW_TAG_type_unit:
71c25dea
TT
15191 /* Compilation units have a DW_AT_name that is a filename, not
15192 a source language identifier. */
15193 case DW_TAG_enumeration_type:
15194 case DW_TAG_enumerator:
15195 /* These tags always have simple identifiers already; no need
15196 to canonicalize them. */
15197 part_die->name = DW_STRING (&attr);
15198 break;
15199 default:
15200 part_die->name
15201 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
bb5ed363 15202 &objfile->objfile_obstack);
71c25dea
TT
15203 break;
15204 }
c906108c 15205 break;
31ef98ae 15206 case DW_AT_linkage_name:
c906108c 15207 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15208 /* Note that both forms of linkage name might appear. We
15209 assume they will be the same, and we only store the last
15210 one we see. */
94af9270
KS
15211 if (cu->language == language_ada)
15212 part_die->name = DW_STRING (&attr);
abc72ce4 15213 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15214 break;
15215 case DW_AT_low_pc:
15216 has_low_pc_attr = 1;
15217 part_die->lowpc = DW_ADDR (&attr);
15218 break;
15219 case DW_AT_high_pc:
15220 has_high_pc_attr = 1;
3019eac3
DE
15221 if (attr.form == DW_FORM_addr
15222 || attr.form == DW_FORM_GNU_addr_index)
91da1414
MW
15223 part_die->highpc = DW_ADDR (&attr);
15224 else
15225 {
15226 high_pc_relative = 1;
15227 part_die->highpc = DW_UNSND (&attr);
15228 }
c906108c
SS
15229 break;
15230 case DW_AT_location:
0963b4bd 15231 /* Support the .debug_loc offsets. */
8e19ed76
PS
15232 if (attr_form_is_block (&attr))
15233 {
95554aad 15234 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15235 }
3690dd37 15236 else if (attr_form_is_section_offset (&attr))
8e19ed76 15237 {
4d3c2250 15238 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15239 }
15240 else
15241 {
4d3c2250
KB
15242 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15243 "partial symbol information");
8e19ed76 15244 }
c906108c 15245 break;
c906108c
SS
15246 case DW_AT_external:
15247 part_die->is_external = DW_UNSND (&attr);
15248 break;
15249 case DW_AT_declaration:
15250 part_die->is_declaration = DW_UNSND (&attr);
15251 break;
15252 case DW_AT_type:
15253 part_die->has_type = 1;
15254 break;
15255 case DW_AT_abstract_origin:
15256 case DW_AT_specification:
72bf9492
DJ
15257 case DW_AT_extension:
15258 part_die->has_specification = 1;
c764a876 15259 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15260 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15261 || cu->per_cu->is_dwz);
c906108c
SS
15262 break;
15263 case DW_AT_sibling:
15264 /* Ignore absolute siblings, they might point outside of
15265 the current compile unit. */
15266 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15267 complaint (&symfile_complaints,
15268 _("ignoring absolute DW_AT_sibling"));
c906108c 15269 else
b9502d3f
WN
15270 {
15271 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15272 const gdb_byte *sibling_ptr = buffer + off;
15273
15274 if (sibling_ptr < info_ptr)
15275 complaint (&symfile_complaints,
15276 _("DW_AT_sibling points backwards"));
15277 else
15278 part_die->sibling = sibling_ptr;
15279 }
c906108c 15280 break;
fa4028e9
JB
15281 case DW_AT_byte_size:
15282 part_die->has_byte_size = 1;
15283 break;
68511cec
CES
15284 case DW_AT_calling_convention:
15285 /* DWARF doesn't provide a way to identify a program's source-level
15286 entry point. DW_AT_calling_convention attributes are only meant
15287 to describe functions' calling conventions.
15288
15289 However, because it's a necessary piece of information in
15290 Fortran, and because DW_CC_program is the only piece of debugging
15291 information whose definition refers to a 'main program' at all,
15292 several compilers have begun marking Fortran main programs with
15293 DW_CC_program --- even when those functions use the standard
15294 calling conventions.
15295
15296 So until DWARF specifies a way to provide this information and
15297 compilers pick up the new representation, we'll support this
15298 practice. */
15299 if (DW_UNSND (&attr) == DW_CC_program
15300 && cu->language == language_fortran)
01f8c46d
JK
15301 {
15302 set_main_name (part_die->name);
15303
15304 /* As this DIE has a static linkage the name would be difficult
15305 to look up later. */
15306 language_of_main = language_fortran;
15307 }
68511cec 15308 break;
481860b3
GB
15309 case DW_AT_inline:
15310 if (DW_UNSND (&attr) == DW_INL_inlined
15311 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15312 part_die->may_be_inlined = 1;
15313 break;
95554aad
TT
15314
15315 case DW_AT_import:
15316 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15317 {
15318 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15319 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15320 || cu->per_cu->is_dwz);
15321 }
95554aad
TT
15322 break;
15323
c906108c
SS
15324 default:
15325 break;
15326 }
15327 }
15328
91da1414
MW
15329 if (high_pc_relative)
15330 part_die->highpc += part_die->lowpc;
15331
9373cf26
JK
15332 if (has_low_pc_attr && has_high_pc_attr)
15333 {
15334 /* When using the GNU linker, .gnu.linkonce. sections are used to
15335 eliminate duplicate copies of functions and vtables and such.
15336 The linker will arbitrarily choose one and discard the others.
15337 The AT_*_pc values for such functions refer to local labels in
15338 these sections. If the section from that file was discarded, the
15339 labels are not in the output, so the relocs get a value of 0.
15340 If this is a discarded function, mark the pc bounds as invalid,
15341 so that GDB will ignore it. */
15342 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15343 {
bb5ed363 15344 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15345
15346 complaint (&symfile_complaints,
15347 _("DW_AT_low_pc %s is zero "
15348 "for DIE at 0x%x [in module %s]"),
15349 paddress (gdbarch, part_die->lowpc),
4262abfb 15350 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15351 }
15352 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15353 else if (part_die->lowpc >= part_die->highpc)
15354 {
bb5ed363 15355 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15356
15357 complaint (&symfile_complaints,
15358 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15359 "for DIE at 0x%x [in module %s]"),
15360 paddress (gdbarch, part_die->lowpc),
15361 paddress (gdbarch, part_die->highpc),
4262abfb 15362 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15363 }
15364 else
15365 part_die->has_pc_info = 1;
15366 }
85cbf3d3 15367
c906108c
SS
15368 return info_ptr;
15369}
15370
72bf9492
DJ
15371/* Find a cached partial DIE at OFFSET in CU. */
15372
15373static struct partial_die_info *
b64f50a1 15374find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
15375{
15376 struct partial_die_info *lookup_die = NULL;
15377 struct partial_die_info part_die;
15378
15379 part_die.offset = offset;
b64f50a1
JK
15380 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15381 offset.sect_off);
72bf9492 15382
72bf9492
DJ
15383 return lookup_die;
15384}
15385
348e048f
DE
15386/* Find a partial DIE at OFFSET, which may or may not be in CU,
15387 except in the case of .debug_types DIEs which do not reference
15388 outside their CU (they do however referencing other types via
55f1336d 15389 DW_FORM_ref_sig8). */
72bf9492
DJ
15390
15391static struct partial_die_info *
36586728 15392find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 15393{
bb5ed363 15394 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
15395 struct dwarf2_per_cu_data *per_cu = NULL;
15396 struct partial_die_info *pd = NULL;
72bf9492 15397
36586728
TT
15398 if (offset_in_dwz == cu->per_cu->is_dwz
15399 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
15400 {
15401 pd = find_partial_die_in_comp_unit (offset, cu);
15402 if (pd != NULL)
15403 return pd;
0d99eb77
DE
15404 /* We missed recording what we needed.
15405 Load all dies and try again. */
15406 per_cu = cu->per_cu;
5afb4e99 15407 }
0d99eb77
DE
15408 else
15409 {
15410 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 15411 if (cu->per_cu->is_debug_types)
0d99eb77
DE
15412 {
15413 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15414 " external reference to offset 0x%lx [in module %s].\n"),
15415 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15416 bfd_get_filename (objfile->obfd));
15417 }
36586728
TT
15418 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15419 objfile);
72bf9492 15420
0d99eb77
DE
15421 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15422 load_partial_comp_unit (per_cu);
ae038cb0 15423
0d99eb77
DE
15424 per_cu->cu->last_used = 0;
15425 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15426 }
5afb4e99 15427
dee91e82
DE
15428 /* If we didn't find it, and not all dies have been loaded,
15429 load them all and try again. */
15430
5afb4e99
DJ
15431 if (pd == NULL && per_cu->load_all_dies == 0)
15432 {
5afb4e99 15433 per_cu->load_all_dies = 1;
fd820528
DE
15434
15435 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15436 THIS_CU->cu may already be in use. So we can't just free it and
15437 replace its DIEs with the ones we read in. Instead, we leave those
15438 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15439 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15440 set. */
dee91e82 15441 load_partial_comp_unit (per_cu);
5afb4e99
DJ
15442
15443 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15444 }
15445
15446 if (pd == NULL)
15447 internal_error (__FILE__, __LINE__,
3e43a32a
MS
15448 _("could not find partial DIE 0x%x "
15449 "in cache [from module %s]\n"),
b64f50a1 15450 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 15451 return pd;
72bf9492
DJ
15452}
15453
abc72ce4
DE
15454/* See if we can figure out if the class lives in a namespace. We do
15455 this by looking for a member function; its demangled name will
15456 contain namespace info, if there is any. */
15457
15458static void
15459guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15460 struct dwarf2_cu *cu)
15461{
15462 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15463 what template types look like, because the demangler
15464 frequently doesn't give the same name as the debug info. We
15465 could fix this by only using the demangled name to get the
15466 prefix (but see comment in read_structure_type). */
15467
15468 struct partial_die_info *real_pdi;
15469 struct partial_die_info *child_pdi;
15470
15471 /* If this DIE (this DIE's specification, if any) has a parent, then
15472 we should not do this. We'll prepend the parent's fully qualified
15473 name when we create the partial symbol. */
15474
15475 real_pdi = struct_pdi;
15476 while (real_pdi->has_specification)
36586728
TT
15477 real_pdi = find_partial_die (real_pdi->spec_offset,
15478 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
15479
15480 if (real_pdi->die_parent != NULL)
15481 return;
15482
15483 for (child_pdi = struct_pdi->die_child;
15484 child_pdi != NULL;
15485 child_pdi = child_pdi->die_sibling)
15486 {
15487 if (child_pdi->tag == DW_TAG_subprogram
15488 && child_pdi->linkage_name != NULL)
15489 {
15490 char *actual_class_name
15491 = language_class_name_from_physname (cu->language_defn,
15492 child_pdi->linkage_name);
15493 if (actual_class_name != NULL)
15494 {
15495 struct_pdi->name
10f0c4bb
TT
15496 = obstack_copy0 (&cu->objfile->objfile_obstack,
15497 actual_class_name,
15498 strlen (actual_class_name));
abc72ce4
DE
15499 xfree (actual_class_name);
15500 }
15501 break;
15502 }
15503 }
15504}
15505
72bf9492
DJ
15506/* Adjust PART_DIE before generating a symbol for it. This function
15507 may set the is_external flag or change the DIE's name. */
15508
15509static void
15510fixup_partial_die (struct partial_die_info *part_die,
15511 struct dwarf2_cu *cu)
15512{
abc72ce4
DE
15513 /* Once we've fixed up a die, there's no point in doing so again.
15514 This also avoids a memory leak if we were to call
15515 guess_partial_die_structure_name multiple times. */
15516 if (part_die->fixup_called)
15517 return;
15518
72bf9492
DJ
15519 /* If we found a reference attribute and the DIE has no name, try
15520 to find a name in the referred to DIE. */
15521
15522 if (part_die->name == NULL && part_die->has_specification)
15523 {
15524 struct partial_die_info *spec_die;
72bf9492 15525
36586728
TT
15526 spec_die = find_partial_die (part_die->spec_offset,
15527 part_die->spec_is_dwz, cu);
72bf9492 15528
10b3939b 15529 fixup_partial_die (spec_die, cu);
72bf9492
DJ
15530
15531 if (spec_die->name)
15532 {
15533 part_die->name = spec_die->name;
15534
15535 /* Copy DW_AT_external attribute if it is set. */
15536 if (spec_die->is_external)
15537 part_die->is_external = spec_die->is_external;
15538 }
15539 }
15540
15541 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
15542
15543 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 15544 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 15545
abc72ce4
DE
15546 /* If there is no parent die to provide a namespace, and there are
15547 children, see if we can determine the namespace from their linkage
122d1940 15548 name. */
abc72ce4 15549 if (cu->language == language_cplus
8b70b953 15550 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
15551 && part_die->die_parent == NULL
15552 && part_die->has_children
15553 && (part_die->tag == DW_TAG_class_type
15554 || part_die->tag == DW_TAG_structure_type
15555 || part_die->tag == DW_TAG_union_type))
15556 guess_partial_die_structure_name (part_die, cu);
15557
53832f31
TT
15558 /* GCC might emit a nameless struct or union that has a linkage
15559 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15560 if (part_die->name == NULL
96408a79
SA
15561 && (part_die->tag == DW_TAG_class_type
15562 || part_die->tag == DW_TAG_interface_type
15563 || part_die->tag == DW_TAG_structure_type
15564 || part_die->tag == DW_TAG_union_type)
53832f31
TT
15565 && part_die->linkage_name != NULL)
15566 {
15567 char *demangled;
15568
8de20a37 15569 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
15570 if (demangled)
15571 {
96408a79
SA
15572 const char *base;
15573
15574 /* Strip any leading namespaces/classes, keep only the base name.
15575 DW_AT_name for named DIEs does not contain the prefixes. */
15576 base = strrchr (demangled, ':');
15577 if (base && base > demangled && base[-1] == ':')
15578 base++;
15579 else
15580 base = demangled;
15581
10f0c4bb
TT
15582 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
15583 base, strlen (base));
53832f31
TT
15584 xfree (demangled);
15585 }
15586 }
15587
abc72ce4 15588 part_die->fixup_called = 1;
72bf9492
DJ
15589}
15590
a8329558 15591/* Read an attribute value described by an attribute form. */
c906108c 15592
d521ce57 15593static const gdb_byte *
dee91e82
DE
15594read_attribute_value (const struct die_reader_specs *reader,
15595 struct attribute *attr, unsigned form,
d521ce57 15596 const gdb_byte *info_ptr)
c906108c 15597{
dee91e82
DE
15598 struct dwarf2_cu *cu = reader->cu;
15599 bfd *abfd = reader->abfd;
e7c27a73 15600 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
15601 unsigned int bytes_read;
15602 struct dwarf_block *blk;
15603
a8329558
KW
15604 attr->form = form;
15605 switch (form)
c906108c 15606 {
c906108c 15607 case DW_FORM_ref_addr:
ae411497 15608 if (cu->header.version == 2)
4568ecf9 15609 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 15610 else
4568ecf9
DE
15611 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15612 &cu->header, &bytes_read);
ae411497
TT
15613 info_ptr += bytes_read;
15614 break;
36586728
TT
15615 case DW_FORM_GNU_ref_alt:
15616 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15617 info_ptr += bytes_read;
15618 break;
ae411497 15619 case DW_FORM_addr:
e7c27a73 15620 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 15621 info_ptr += bytes_read;
c906108c
SS
15622 break;
15623 case DW_FORM_block2:
7b5a2f43 15624 blk = dwarf_alloc_block (cu);
c906108c
SS
15625 blk->size = read_2_bytes (abfd, info_ptr);
15626 info_ptr += 2;
15627 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15628 info_ptr += blk->size;
15629 DW_BLOCK (attr) = blk;
15630 break;
15631 case DW_FORM_block4:
7b5a2f43 15632 blk = dwarf_alloc_block (cu);
c906108c
SS
15633 blk->size = read_4_bytes (abfd, info_ptr);
15634 info_ptr += 4;
15635 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15636 info_ptr += blk->size;
15637 DW_BLOCK (attr) = blk;
15638 break;
15639 case DW_FORM_data2:
15640 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15641 info_ptr += 2;
15642 break;
15643 case DW_FORM_data4:
15644 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15645 info_ptr += 4;
15646 break;
15647 case DW_FORM_data8:
15648 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15649 info_ptr += 8;
15650 break;
2dc7f7b3
TT
15651 case DW_FORM_sec_offset:
15652 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15653 info_ptr += bytes_read;
15654 break;
c906108c 15655 case DW_FORM_string:
9b1c24c8 15656 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 15657 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
15658 info_ptr += bytes_read;
15659 break;
4bdf3d34 15660 case DW_FORM_strp:
36586728
TT
15661 if (!cu->per_cu->is_dwz)
15662 {
15663 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15664 &bytes_read);
15665 DW_STRING_IS_CANONICAL (attr) = 0;
15666 info_ptr += bytes_read;
15667 break;
15668 }
15669 /* FALLTHROUGH */
15670 case DW_FORM_GNU_strp_alt:
15671 {
15672 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15673 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
15674 &bytes_read);
15675
15676 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
15677 DW_STRING_IS_CANONICAL (attr) = 0;
15678 info_ptr += bytes_read;
15679 }
4bdf3d34 15680 break;
2dc7f7b3 15681 case DW_FORM_exprloc:
c906108c 15682 case DW_FORM_block:
7b5a2f43 15683 blk = dwarf_alloc_block (cu);
c906108c
SS
15684 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15685 info_ptr += bytes_read;
15686 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15687 info_ptr += blk->size;
15688 DW_BLOCK (attr) = blk;
15689 break;
15690 case DW_FORM_block1:
7b5a2f43 15691 blk = dwarf_alloc_block (cu);
c906108c
SS
15692 blk->size = read_1_byte (abfd, info_ptr);
15693 info_ptr += 1;
15694 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15695 info_ptr += blk->size;
15696 DW_BLOCK (attr) = blk;
15697 break;
15698 case DW_FORM_data1:
15699 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15700 info_ptr += 1;
15701 break;
15702 case DW_FORM_flag:
15703 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15704 info_ptr += 1;
15705 break;
2dc7f7b3
TT
15706 case DW_FORM_flag_present:
15707 DW_UNSND (attr) = 1;
15708 break;
c906108c
SS
15709 case DW_FORM_sdata:
15710 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
15711 info_ptr += bytes_read;
15712 break;
15713 case DW_FORM_udata:
15714 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15715 info_ptr += bytes_read;
15716 break;
15717 case DW_FORM_ref1:
4568ecf9
DE
15718 DW_UNSND (attr) = (cu->header.offset.sect_off
15719 + read_1_byte (abfd, info_ptr));
c906108c
SS
15720 info_ptr += 1;
15721 break;
15722 case DW_FORM_ref2:
4568ecf9
DE
15723 DW_UNSND (attr) = (cu->header.offset.sect_off
15724 + read_2_bytes (abfd, info_ptr));
c906108c
SS
15725 info_ptr += 2;
15726 break;
15727 case DW_FORM_ref4:
4568ecf9
DE
15728 DW_UNSND (attr) = (cu->header.offset.sect_off
15729 + read_4_bytes (abfd, info_ptr));
c906108c
SS
15730 info_ptr += 4;
15731 break;
613e1657 15732 case DW_FORM_ref8:
4568ecf9
DE
15733 DW_UNSND (attr) = (cu->header.offset.sect_off
15734 + read_8_bytes (abfd, info_ptr));
613e1657
KB
15735 info_ptr += 8;
15736 break;
55f1336d 15737 case DW_FORM_ref_sig8:
ac9ec31b 15738 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
15739 info_ptr += 8;
15740 break;
c906108c 15741 case DW_FORM_ref_udata:
4568ecf9
DE
15742 DW_UNSND (attr) = (cu->header.offset.sect_off
15743 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
15744 info_ptr += bytes_read;
15745 break;
c906108c 15746 case DW_FORM_indirect:
a8329558
KW
15747 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15748 info_ptr += bytes_read;
dee91e82 15749 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 15750 break;
3019eac3
DE
15751 case DW_FORM_GNU_addr_index:
15752 if (reader->dwo_file == NULL)
15753 {
15754 /* For now flag a hard error.
15755 Later we can turn this into a complaint. */
15756 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15757 dwarf_form_name (form),
15758 bfd_get_filename (abfd));
15759 }
15760 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
15761 info_ptr += bytes_read;
15762 break;
15763 case DW_FORM_GNU_str_index:
15764 if (reader->dwo_file == NULL)
15765 {
15766 /* For now flag a hard error.
15767 Later we can turn this into a complaint if warranted. */
15768 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15769 dwarf_form_name (form),
15770 bfd_get_filename (abfd));
15771 }
15772 {
15773 ULONGEST str_index =
15774 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15775
15776 DW_STRING (attr) = read_str_index (reader, cu, str_index);
15777 DW_STRING_IS_CANONICAL (attr) = 0;
15778 info_ptr += bytes_read;
15779 }
15780 break;
c906108c 15781 default:
8a3fe4f8 15782 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
15783 dwarf_form_name (form),
15784 bfd_get_filename (abfd));
c906108c 15785 }
28e94949 15786
36586728 15787 /* Super hack. */
7771576e 15788 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
15789 attr->form = DW_FORM_GNU_ref_alt;
15790
28e94949
JB
15791 /* We have seen instances where the compiler tried to emit a byte
15792 size attribute of -1 which ended up being encoded as an unsigned
15793 0xffffffff. Although 0xffffffff is technically a valid size value,
15794 an object of this size seems pretty unlikely so we can relatively
15795 safely treat these cases as if the size attribute was invalid and
15796 treat them as zero by default. */
15797 if (attr->name == DW_AT_byte_size
15798 && form == DW_FORM_data4
15799 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
15800 {
15801 complaint
15802 (&symfile_complaints,
43bbcdc2
PH
15803 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
15804 hex_string (DW_UNSND (attr)));
01c66ae6
JB
15805 DW_UNSND (attr) = 0;
15806 }
28e94949 15807
c906108c
SS
15808 return info_ptr;
15809}
15810
a8329558
KW
15811/* Read an attribute described by an abbreviated attribute. */
15812
d521ce57 15813static const gdb_byte *
dee91e82
DE
15814read_attribute (const struct die_reader_specs *reader,
15815 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 15816 const gdb_byte *info_ptr)
a8329558
KW
15817{
15818 attr->name = abbrev->name;
dee91e82 15819 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
15820}
15821
0963b4bd 15822/* Read dwarf information from a buffer. */
c906108c
SS
15823
15824static unsigned int
a1855c1d 15825read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 15826{
fe1b8b76 15827 return bfd_get_8 (abfd, buf);
c906108c
SS
15828}
15829
15830static int
a1855c1d 15831read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 15832{
fe1b8b76 15833 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
15834}
15835
15836static unsigned int
a1855c1d 15837read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 15838{
fe1b8b76 15839 return bfd_get_16 (abfd, buf);
c906108c
SS
15840}
15841
21ae7a4d 15842static int
a1855c1d 15843read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
15844{
15845 return bfd_get_signed_16 (abfd, buf);
15846}
15847
c906108c 15848static unsigned int
a1855c1d 15849read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 15850{
fe1b8b76 15851 return bfd_get_32 (abfd, buf);
c906108c
SS
15852}
15853
21ae7a4d 15854static int
a1855c1d 15855read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
15856{
15857 return bfd_get_signed_32 (abfd, buf);
15858}
15859
93311388 15860static ULONGEST
a1855c1d 15861read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 15862{
fe1b8b76 15863 return bfd_get_64 (abfd, buf);
c906108c
SS
15864}
15865
15866static CORE_ADDR
d521ce57 15867read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 15868 unsigned int *bytes_read)
c906108c 15869{
e7c27a73 15870 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
15871 CORE_ADDR retval = 0;
15872
107d2387 15873 if (cu_header->signed_addr_p)
c906108c 15874 {
107d2387
AC
15875 switch (cu_header->addr_size)
15876 {
15877 case 2:
fe1b8b76 15878 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
15879 break;
15880 case 4:
fe1b8b76 15881 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
15882 break;
15883 case 8:
fe1b8b76 15884 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
15885 break;
15886 default:
8e65ff28 15887 internal_error (__FILE__, __LINE__,
e2e0b3e5 15888 _("read_address: bad switch, signed [in module %s]"),
659b0389 15889 bfd_get_filename (abfd));
107d2387
AC
15890 }
15891 }
15892 else
15893 {
15894 switch (cu_header->addr_size)
15895 {
15896 case 2:
fe1b8b76 15897 retval = bfd_get_16 (abfd, buf);
107d2387
AC
15898 break;
15899 case 4:
fe1b8b76 15900 retval = bfd_get_32 (abfd, buf);
107d2387
AC
15901 break;
15902 case 8:
fe1b8b76 15903 retval = bfd_get_64 (abfd, buf);
107d2387
AC
15904 break;
15905 default:
8e65ff28 15906 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
15907 _("read_address: bad switch, "
15908 "unsigned [in module %s]"),
659b0389 15909 bfd_get_filename (abfd));
107d2387 15910 }
c906108c 15911 }
64367e0a 15912
107d2387
AC
15913 *bytes_read = cu_header->addr_size;
15914 return retval;
c906108c
SS
15915}
15916
f7ef9339 15917/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
15918 specification allows the initial length to take up either 4 bytes
15919 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
15920 bytes describe the length and all offsets will be 8 bytes in length
15921 instead of 4.
15922
f7ef9339
KB
15923 An older, non-standard 64-bit format is also handled by this
15924 function. The older format in question stores the initial length
15925 as an 8-byte quantity without an escape value. Lengths greater
15926 than 2^32 aren't very common which means that the initial 4 bytes
15927 is almost always zero. Since a length value of zero doesn't make
15928 sense for the 32-bit format, this initial zero can be considered to
15929 be an escape value which indicates the presence of the older 64-bit
15930 format. As written, the code can't detect (old format) lengths
917c78fc
MK
15931 greater than 4GB. If it becomes necessary to handle lengths
15932 somewhat larger than 4GB, we could allow other small values (such
15933 as the non-sensical values of 1, 2, and 3) to also be used as
15934 escape values indicating the presence of the old format.
f7ef9339 15935
917c78fc
MK
15936 The value returned via bytes_read should be used to increment the
15937 relevant pointer after calling read_initial_length().
c764a876 15938
613e1657
KB
15939 [ Note: read_initial_length() and read_offset() are based on the
15940 document entitled "DWARF Debugging Information Format", revision
f7ef9339 15941 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
15942 from:
15943
f7ef9339 15944 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 15945
613e1657
KB
15946 This document is only a draft and is subject to change. (So beware.)
15947
f7ef9339 15948 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
15949 determined empirically by examining 64-bit ELF files produced by
15950 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
15951
15952 - Kevin, July 16, 2002
613e1657
KB
15953 ] */
15954
15955static LONGEST
d521ce57 15956read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 15957{
fe1b8b76 15958 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 15959
dd373385 15960 if (length == 0xffffffff)
613e1657 15961 {
fe1b8b76 15962 length = bfd_get_64 (abfd, buf + 4);
613e1657 15963 *bytes_read = 12;
613e1657 15964 }
dd373385 15965 else if (length == 0)
f7ef9339 15966 {
dd373385 15967 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 15968 length = bfd_get_64 (abfd, buf);
f7ef9339 15969 *bytes_read = 8;
f7ef9339 15970 }
613e1657
KB
15971 else
15972 {
15973 *bytes_read = 4;
613e1657
KB
15974 }
15975
c764a876
DE
15976 return length;
15977}
dd373385 15978
c764a876
DE
15979/* Cover function for read_initial_length.
15980 Returns the length of the object at BUF, and stores the size of the
15981 initial length in *BYTES_READ and stores the size that offsets will be in
15982 *OFFSET_SIZE.
15983 If the initial length size is not equivalent to that specified in
15984 CU_HEADER then issue a complaint.
15985 This is useful when reading non-comp-unit headers. */
dd373385 15986
c764a876 15987static LONGEST
d521ce57 15988read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
15989 const struct comp_unit_head *cu_header,
15990 unsigned int *bytes_read,
15991 unsigned int *offset_size)
15992{
15993 LONGEST length = read_initial_length (abfd, buf, bytes_read);
15994
15995 gdb_assert (cu_header->initial_length_size == 4
15996 || cu_header->initial_length_size == 8
15997 || cu_header->initial_length_size == 12);
15998
15999 if (cu_header->initial_length_size != *bytes_read)
16000 complaint (&symfile_complaints,
16001 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16002
c764a876 16003 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16004 return length;
613e1657
KB
16005}
16006
16007/* Read an offset from the data stream. The size of the offset is
917c78fc 16008 given by cu_header->offset_size. */
613e1657
KB
16009
16010static LONGEST
d521ce57
TT
16011read_offset (bfd *abfd, const gdb_byte *buf,
16012 const struct comp_unit_head *cu_header,
891d2f0b 16013 unsigned int *bytes_read)
c764a876
DE
16014{
16015 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16016
c764a876
DE
16017 *bytes_read = cu_header->offset_size;
16018 return offset;
16019}
16020
16021/* Read an offset from the data stream. */
16022
16023static LONGEST
d521ce57 16024read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16025{
16026 LONGEST retval = 0;
16027
c764a876 16028 switch (offset_size)
613e1657
KB
16029 {
16030 case 4:
fe1b8b76 16031 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16032 break;
16033 case 8:
fe1b8b76 16034 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16035 break;
16036 default:
8e65ff28 16037 internal_error (__FILE__, __LINE__,
c764a876 16038 _("read_offset_1: bad switch [in module %s]"),
659b0389 16039 bfd_get_filename (abfd));
613e1657
KB
16040 }
16041
917c78fc 16042 return retval;
613e1657
KB
16043}
16044
d521ce57
TT
16045static const gdb_byte *
16046read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16047{
16048 /* If the size of a host char is 8 bits, we can return a pointer
16049 to the buffer, otherwise we have to copy the data to a buffer
16050 allocated on the temporary obstack. */
4bdf3d34 16051 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16052 return buf;
c906108c
SS
16053}
16054
d521ce57
TT
16055static const char *
16056read_direct_string (bfd *abfd, const gdb_byte *buf,
16057 unsigned int *bytes_read_ptr)
c906108c
SS
16058{
16059 /* If the size of a host char is 8 bits, we can return a pointer
16060 to the string, otherwise we have to copy the string to a buffer
16061 allocated on the temporary obstack. */
4bdf3d34 16062 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16063 if (*buf == '\0')
16064 {
16065 *bytes_read_ptr = 1;
16066 return NULL;
16067 }
d521ce57
TT
16068 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16069 return (const char *) buf;
4bdf3d34
JJ
16070}
16071
d521ce57 16072static const char *
cf2c3c16 16073read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16074{
be391dca 16075 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16076 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16077 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16078 bfd_get_filename (abfd));
dce234bc 16079 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16080 error (_("DW_FORM_strp pointing outside of "
16081 ".debug_str section [in module %s]"),
16082 bfd_get_filename (abfd));
4bdf3d34 16083 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16084 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16085 return NULL;
d521ce57 16086 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16087}
16088
36586728
TT
16089/* Read a string at offset STR_OFFSET in the .debug_str section from
16090 the .dwz file DWZ. Throw an error if the offset is too large. If
16091 the string consists of a single NUL byte, return NULL; otherwise
16092 return a pointer to the string. */
16093
d521ce57 16094static const char *
36586728
TT
16095read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16096{
16097 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16098
16099 if (dwz->str.buffer == NULL)
16100 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16101 "section [in module %s]"),
16102 bfd_get_filename (dwz->dwz_bfd));
16103 if (str_offset >= dwz->str.size)
16104 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16105 ".debug_str section [in module %s]"),
16106 bfd_get_filename (dwz->dwz_bfd));
16107 gdb_assert (HOST_CHAR_BIT == 8);
16108 if (dwz->str.buffer[str_offset] == '\0')
16109 return NULL;
d521ce57 16110 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16111}
16112
d521ce57
TT
16113static const char *
16114read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16115 const struct comp_unit_head *cu_header,
16116 unsigned int *bytes_read_ptr)
16117{
16118 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16119
16120 return read_indirect_string_at_offset (abfd, str_offset);
16121}
16122
12df843f 16123static ULONGEST
d521ce57
TT
16124read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16125 unsigned int *bytes_read_ptr)
c906108c 16126{
12df843f 16127 ULONGEST result;
ce5d95e1 16128 unsigned int num_read;
c906108c
SS
16129 int i, shift;
16130 unsigned char byte;
16131
16132 result = 0;
16133 shift = 0;
16134 num_read = 0;
16135 i = 0;
16136 while (1)
16137 {
fe1b8b76 16138 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16139 buf++;
16140 num_read++;
12df843f 16141 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16142 if ((byte & 128) == 0)
16143 {
16144 break;
16145 }
16146 shift += 7;
16147 }
16148 *bytes_read_ptr = num_read;
16149 return result;
16150}
16151
12df843f 16152static LONGEST
d521ce57
TT
16153read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16154 unsigned int *bytes_read_ptr)
c906108c 16155{
12df843f 16156 LONGEST result;
77e0b926 16157 int i, shift, num_read;
c906108c
SS
16158 unsigned char byte;
16159
16160 result = 0;
16161 shift = 0;
c906108c
SS
16162 num_read = 0;
16163 i = 0;
16164 while (1)
16165 {
fe1b8b76 16166 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16167 buf++;
16168 num_read++;
12df843f 16169 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16170 shift += 7;
16171 if ((byte & 128) == 0)
16172 {
16173 break;
16174 }
16175 }
77e0b926 16176 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16177 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16178 *bytes_read_ptr = num_read;
16179 return result;
16180}
16181
3019eac3
DE
16182/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16183 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16184 ADDR_SIZE is the size of addresses from the CU header. */
16185
16186static CORE_ADDR
16187read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16188{
16189 struct objfile *objfile = dwarf2_per_objfile->objfile;
16190 bfd *abfd = objfile->obfd;
16191 const gdb_byte *info_ptr;
16192
16193 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16194 if (dwarf2_per_objfile->addr.buffer == NULL)
16195 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16196 objfile_name (objfile));
3019eac3
DE
16197 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16198 error (_("DW_FORM_addr_index pointing outside of "
16199 ".debug_addr section [in module %s]"),
4262abfb 16200 objfile_name (objfile));
3019eac3
DE
16201 info_ptr = (dwarf2_per_objfile->addr.buffer
16202 + addr_base + addr_index * addr_size);
16203 if (addr_size == 4)
16204 return bfd_get_32 (abfd, info_ptr);
16205 else
16206 return bfd_get_64 (abfd, info_ptr);
16207}
16208
16209/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16210
16211static CORE_ADDR
16212read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16213{
16214 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16215}
16216
16217/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16218
16219static CORE_ADDR
d521ce57 16220read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16221 unsigned int *bytes_read)
16222{
16223 bfd *abfd = cu->objfile->obfd;
16224 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16225
16226 return read_addr_index (cu, addr_index);
16227}
16228
16229/* Data structure to pass results from dwarf2_read_addr_index_reader
16230 back to dwarf2_read_addr_index. */
16231
16232struct dwarf2_read_addr_index_data
16233{
16234 ULONGEST addr_base;
16235 int addr_size;
16236};
16237
16238/* die_reader_func for dwarf2_read_addr_index. */
16239
16240static void
16241dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16242 const gdb_byte *info_ptr,
3019eac3
DE
16243 struct die_info *comp_unit_die,
16244 int has_children,
16245 void *data)
16246{
16247 struct dwarf2_cu *cu = reader->cu;
16248 struct dwarf2_read_addr_index_data *aidata =
16249 (struct dwarf2_read_addr_index_data *) data;
16250
16251 aidata->addr_base = cu->addr_base;
16252 aidata->addr_size = cu->header.addr_size;
16253}
16254
16255/* Given an index in .debug_addr, fetch the value.
16256 NOTE: This can be called during dwarf expression evaluation,
16257 long after the debug information has been read, and thus per_cu->cu
16258 may no longer exist. */
16259
16260CORE_ADDR
16261dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16262 unsigned int addr_index)
16263{
16264 struct objfile *objfile = per_cu->objfile;
16265 struct dwarf2_cu *cu = per_cu->cu;
16266 ULONGEST addr_base;
16267 int addr_size;
16268
16269 /* This is intended to be called from outside this file. */
16270 dw2_setup (objfile);
16271
16272 /* We need addr_base and addr_size.
16273 If we don't have PER_CU->cu, we have to get it.
16274 Nasty, but the alternative is storing the needed info in PER_CU,
16275 which at this point doesn't seem justified: it's not clear how frequently
16276 it would get used and it would increase the size of every PER_CU.
16277 Entry points like dwarf2_per_cu_addr_size do a similar thing
16278 so we're not in uncharted territory here.
16279 Alas we need to be a bit more complicated as addr_base is contained
16280 in the DIE.
16281
16282 We don't need to read the entire CU(/TU).
16283 We just need the header and top level die.
a1b64ce1 16284
3019eac3 16285 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16286 For now we skip this optimization. */
3019eac3
DE
16287
16288 if (cu != NULL)
16289 {
16290 addr_base = cu->addr_base;
16291 addr_size = cu->header.addr_size;
16292 }
16293 else
16294 {
16295 struct dwarf2_read_addr_index_data aidata;
16296
a1b64ce1
DE
16297 /* Note: We can't use init_cutu_and_read_dies_simple here,
16298 we need addr_base. */
16299 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16300 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16301 addr_base = aidata.addr_base;
16302 addr_size = aidata.addr_size;
16303 }
16304
16305 return read_addr_index_1 (addr_index, addr_base, addr_size);
16306}
16307
57d63ce2
DE
16308/* Given a DW_FORM_GNU_str_index, fetch the string.
16309 This is only used by the Fission support. */
3019eac3 16310
d521ce57 16311static const char *
3019eac3
DE
16312read_str_index (const struct die_reader_specs *reader,
16313 struct dwarf2_cu *cu, ULONGEST str_index)
16314{
16315 struct objfile *objfile = dwarf2_per_objfile->objfile;
4262abfb 16316 const char *dwo_name = objfile_name (objfile);
3019eac3 16317 bfd *abfd = objfile->obfd;
73869dc2
DE
16318 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16319 struct dwarf2_section_info *str_offsets_section =
16320 &reader->dwo_file->sections.str_offsets;
d521ce57 16321 const gdb_byte *info_ptr;
3019eac3 16322 ULONGEST str_offset;
57d63ce2 16323 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16324
73869dc2
DE
16325 dwarf2_read_section (objfile, str_section);
16326 dwarf2_read_section (objfile, str_offsets_section);
16327 if (str_section->buffer == NULL)
57d63ce2 16328 error (_("%s used without .debug_str.dwo section"
3019eac3 16329 " in CU at offset 0x%lx [in module %s]"),
57d63ce2 16330 form_name, (long) cu->header.offset.sect_off, dwo_name);
73869dc2 16331 if (str_offsets_section->buffer == NULL)
57d63ce2 16332 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16333 " in CU at offset 0x%lx [in module %s]"),
57d63ce2 16334 form_name, (long) cu->header.offset.sect_off, dwo_name);
73869dc2 16335 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16336 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16337 " section in CU at offset 0x%lx [in module %s]"),
57d63ce2 16338 form_name, (long) cu->header.offset.sect_off, dwo_name);
73869dc2 16339 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16340 + str_index * cu->header.offset_size);
16341 if (cu->header.offset_size == 4)
16342 str_offset = bfd_get_32 (abfd, info_ptr);
16343 else
16344 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16345 if (str_offset >= str_section->size)
57d63ce2 16346 error (_("Offset from %s pointing outside of"
3019eac3 16347 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
57d63ce2 16348 form_name, (long) cu->header.offset.sect_off, dwo_name);
73869dc2 16349 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16350}
16351
3019eac3
DE
16352/* Return the length of an LEB128 number in BUF. */
16353
16354static int
16355leb128_size (const gdb_byte *buf)
16356{
16357 const gdb_byte *begin = buf;
16358 gdb_byte byte;
16359
16360 while (1)
16361 {
16362 byte = *buf++;
16363 if ((byte & 128) == 0)
16364 return buf - begin;
16365 }
16366}
16367
c906108c 16368static void
e142c38c 16369set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
16370{
16371 switch (lang)
16372 {
16373 case DW_LANG_C89:
76bee0cc 16374 case DW_LANG_C99:
c906108c 16375 case DW_LANG_C:
d1be3247 16376 case DW_LANG_UPC:
e142c38c 16377 cu->language = language_c;
c906108c
SS
16378 break;
16379 case DW_LANG_C_plus_plus:
e142c38c 16380 cu->language = language_cplus;
c906108c 16381 break;
6aecb9c2
JB
16382 case DW_LANG_D:
16383 cu->language = language_d;
16384 break;
c906108c
SS
16385 case DW_LANG_Fortran77:
16386 case DW_LANG_Fortran90:
b21b22e0 16387 case DW_LANG_Fortran95:
e142c38c 16388 cu->language = language_fortran;
c906108c 16389 break;
a766d390
DE
16390 case DW_LANG_Go:
16391 cu->language = language_go;
16392 break;
c906108c 16393 case DW_LANG_Mips_Assembler:
e142c38c 16394 cu->language = language_asm;
c906108c 16395 break;
bebd888e 16396 case DW_LANG_Java:
e142c38c 16397 cu->language = language_java;
bebd888e 16398 break;
c906108c 16399 case DW_LANG_Ada83:
8aaf0b47 16400 case DW_LANG_Ada95:
bc5f45f8
JB
16401 cu->language = language_ada;
16402 break;
72019c9c
GM
16403 case DW_LANG_Modula2:
16404 cu->language = language_m2;
16405 break;
fe8e67fd
PM
16406 case DW_LANG_Pascal83:
16407 cu->language = language_pascal;
16408 break;
22566fbd
DJ
16409 case DW_LANG_ObjC:
16410 cu->language = language_objc;
16411 break;
c906108c
SS
16412 case DW_LANG_Cobol74:
16413 case DW_LANG_Cobol85:
c906108c 16414 default:
e142c38c 16415 cu->language = language_minimal;
c906108c
SS
16416 break;
16417 }
e142c38c 16418 cu->language_defn = language_def (cu->language);
c906108c
SS
16419}
16420
16421/* Return the named attribute or NULL if not there. */
16422
16423static struct attribute *
e142c38c 16424dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 16425{
a48e046c 16426 for (;;)
c906108c 16427 {
a48e046c
TT
16428 unsigned int i;
16429 struct attribute *spec = NULL;
16430
16431 for (i = 0; i < die->num_attrs; ++i)
16432 {
16433 if (die->attrs[i].name == name)
16434 return &die->attrs[i];
16435 if (die->attrs[i].name == DW_AT_specification
16436 || die->attrs[i].name == DW_AT_abstract_origin)
16437 spec = &die->attrs[i];
16438 }
16439
16440 if (!spec)
16441 break;
c906108c 16442
f2f0e013 16443 die = follow_die_ref (die, spec, &cu);
f2f0e013 16444 }
c5aa993b 16445
c906108c
SS
16446 return NULL;
16447}
16448
348e048f
DE
16449/* Return the named attribute or NULL if not there,
16450 but do not follow DW_AT_specification, etc.
16451 This is for use in contexts where we're reading .debug_types dies.
16452 Following DW_AT_specification, DW_AT_abstract_origin will take us
16453 back up the chain, and we want to go down. */
16454
16455static struct attribute *
45e58e77 16456dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
16457{
16458 unsigned int i;
16459
16460 for (i = 0; i < die->num_attrs; ++i)
16461 if (die->attrs[i].name == name)
16462 return &die->attrs[i];
16463
16464 return NULL;
16465}
16466
05cf31d1
JB
16467/* Return non-zero iff the attribute NAME is defined for the given DIE,
16468 and holds a non-zero value. This function should only be used for
2dc7f7b3 16469 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
16470
16471static int
16472dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16473{
16474 struct attribute *attr = dwarf2_attr (die, name, cu);
16475
16476 return (attr && DW_UNSND (attr));
16477}
16478
3ca72b44 16479static int
e142c38c 16480die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 16481{
05cf31d1
JB
16482 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16483 which value is non-zero. However, we have to be careful with
16484 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16485 (via dwarf2_flag_true_p) follows this attribute. So we may
16486 end up accidently finding a declaration attribute that belongs
16487 to a different DIE referenced by the specification attribute,
16488 even though the given DIE does not have a declaration attribute. */
16489 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16490 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
16491}
16492
63d06c5c 16493/* Return the die giving the specification for DIE, if there is
f2f0e013 16494 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
16495 containing the return value on output. If there is no
16496 specification, but there is an abstract origin, that is
16497 returned. */
63d06c5c
DC
16498
16499static struct die_info *
f2f0e013 16500die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 16501{
f2f0e013
DJ
16502 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16503 *spec_cu);
63d06c5c 16504
edb3359d
DJ
16505 if (spec_attr == NULL)
16506 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16507
63d06c5c
DC
16508 if (spec_attr == NULL)
16509 return NULL;
16510 else
f2f0e013 16511 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 16512}
c906108c 16513
debd256d 16514/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
16515 refers to.
16516 NOTE: This is also used as a "cleanup" function. */
16517
debd256d
JB
16518static void
16519free_line_header (struct line_header *lh)
16520{
16521 if (lh->standard_opcode_lengths)
a8bc7b56 16522 xfree (lh->standard_opcode_lengths);
debd256d
JB
16523
16524 /* Remember that all the lh->file_names[i].name pointers are
16525 pointers into debug_line_buffer, and don't need to be freed. */
16526 if (lh->file_names)
a8bc7b56 16527 xfree (lh->file_names);
debd256d
JB
16528
16529 /* Similarly for the include directory names. */
16530 if (lh->include_dirs)
a8bc7b56 16531 xfree (lh->include_dirs);
debd256d 16532
a8bc7b56 16533 xfree (lh);
debd256d
JB
16534}
16535
debd256d 16536/* Add an entry to LH's include directory table. */
ae2de4f8 16537
debd256d 16538static void
d521ce57 16539add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 16540{
debd256d
JB
16541 /* Grow the array if necessary. */
16542 if (lh->include_dirs_size == 0)
c5aa993b 16543 {
debd256d
JB
16544 lh->include_dirs_size = 1; /* for testing */
16545 lh->include_dirs = xmalloc (lh->include_dirs_size
16546 * sizeof (*lh->include_dirs));
16547 }
16548 else if (lh->num_include_dirs >= lh->include_dirs_size)
16549 {
16550 lh->include_dirs_size *= 2;
16551 lh->include_dirs = xrealloc (lh->include_dirs,
16552 (lh->include_dirs_size
16553 * sizeof (*lh->include_dirs)));
c5aa993b 16554 }
c906108c 16555
debd256d
JB
16556 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16557}
6e70227d 16558
debd256d 16559/* Add an entry to LH's file name table. */
ae2de4f8 16560
debd256d
JB
16561static void
16562add_file_name (struct line_header *lh,
d521ce57 16563 const char *name,
debd256d
JB
16564 unsigned int dir_index,
16565 unsigned int mod_time,
16566 unsigned int length)
16567{
16568 struct file_entry *fe;
16569
16570 /* Grow the array if necessary. */
16571 if (lh->file_names_size == 0)
16572 {
16573 lh->file_names_size = 1; /* for testing */
16574 lh->file_names = xmalloc (lh->file_names_size
16575 * sizeof (*lh->file_names));
16576 }
16577 else if (lh->num_file_names >= lh->file_names_size)
16578 {
16579 lh->file_names_size *= 2;
16580 lh->file_names = xrealloc (lh->file_names,
16581 (lh->file_names_size
16582 * sizeof (*lh->file_names)));
16583 }
16584
16585 fe = &lh->file_names[lh->num_file_names++];
16586 fe->name = name;
16587 fe->dir_index = dir_index;
16588 fe->mod_time = mod_time;
16589 fe->length = length;
aaa75496 16590 fe->included_p = 0;
cb1df416 16591 fe->symtab = NULL;
debd256d 16592}
6e70227d 16593
36586728
TT
16594/* A convenience function to find the proper .debug_line section for a
16595 CU. */
16596
16597static struct dwarf2_section_info *
16598get_debug_line_section (struct dwarf2_cu *cu)
16599{
16600 struct dwarf2_section_info *section;
16601
16602 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16603 DWO file. */
16604 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16605 section = &cu->dwo_unit->dwo_file->sections.line;
16606 else if (cu->per_cu->is_dwz)
16607 {
16608 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16609
16610 section = &dwz->line;
16611 }
16612 else
16613 section = &dwarf2_per_objfile->line;
16614
16615 return section;
16616}
16617
debd256d 16618/* Read the statement program header starting at OFFSET in
3019eac3 16619 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 16620 to a struct line_header, allocated using xmalloc.
debd256d
JB
16621
16622 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
16623 the returned object point into the dwarf line section buffer,
16624 and must not be freed. */
ae2de4f8 16625
debd256d 16626static struct line_header *
3019eac3 16627dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
16628{
16629 struct cleanup *back_to;
16630 struct line_header *lh;
d521ce57 16631 const gdb_byte *line_ptr;
c764a876 16632 unsigned int bytes_read, offset_size;
debd256d 16633 int i;
d521ce57 16634 const char *cur_dir, *cur_file;
3019eac3
DE
16635 struct dwarf2_section_info *section;
16636 bfd *abfd;
16637
36586728 16638 section = get_debug_line_section (cu);
3019eac3
DE
16639 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16640 if (section->buffer == NULL)
debd256d 16641 {
3019eac3
DE
16642 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16643 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16644 else
16645 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
16646 return 0;
16647 }
16648
fceca515
DE
16649 /* We can't do this until we know the section is non-empty.
16650 Only then do we know we have such a section. */
a32a8923 16651 abfd = get_section_bfd_owner (section);
fceca515 16652
a738430d
MK
16653 /* Make sure that at least there's room for the total_length field.
16654 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 16655 if (offset + 4 >= section->size)
debd256d 16656 {
4d3c2250 16657 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
16658 return 0;
16659 }
16660
16661 lh = xmalloc (sizeof (*lh));
16662 memset (lh, 0, sizeof (*lh));
16663 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16664 (void *) lh);
16665
3019eac3 16666 line_ptr = section->buffer + offset;
debd256d 16667
a738430d 16668 /* Read in the header. */
6e70227d 16669 lh->total_length =
c764a876
DE
16670 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16671 &bytes_read, &offset_size);
debd256d 16672 line_ptr += bytes_read;
3019eac3 16673 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 16674 {
4d3c2250 16675 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 16676 do_cleanups (back_to);
debd256d
JB
16677 return 0;
16678 }
16679 lh->statement_program_end = line_ptr + lh->total_length;
16680 lh->version = read_2_bytes (abfd, line_ptr);
16681 line_ptr += 2;
c764a876
DE
16682 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
16683 line_ptr += offset_size;
debd256d
JB
16684 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
16685 line_ptr += 1;
2dc7f7b3
TT
16686 if (lh->version >= 4)
16687 {
16688 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
16689 line_ptr += 1;
16690 }
16691 else
16692 lh->maximum_ops_per_instruction = 1;
16693
16694 if (lh->maximum_ops_per_instruction == 0)
16695 {
16696 lh->maximum_ops_per_instruction = 1;
16697 complaint (&symfile_complaints,
3e43a32a
MS
16698 _("invalid maximum_ops_per_instruction "
16699 "in `.debug_line' section"));
2dc7f7b3
TT
16700 }
16701
debd256d
JB
16702 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
16703 line_ptr += 1;
16704 lh->line_base = read_1_signed_byte (abfd, line_ptr);
16705 line_ptr += 1;
16706 lh->line_range = read_1_byte (abfd, line_ptr);
16707 line_ptr += 1;
16708 lh->opcode_base = read_1_byte (abfd, line_ptr);
16709 line_ptr += 1;
16710 lh->standard_opcode_lengths
fe1b8b76 16711 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
16712
16713 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
16714 for (i = 1; i < lh->opcode_base; ++i)
16715 {
16716 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
16717 line_ptr += 1;
16718 }
16719
a738430d 16720 /* Read directory table. */
9b1c24c8 16721 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
16722 {
16723 line_ptr += bytes_read;
16724 add_include_dir (lh, cur_dir);
16725 }
16726 line_ptr += bytes_read;
16727
a738430d 16728 /* Read file name table. */
9b1c24c8 16729 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
16730 {
16731 unsigned int dir_index, mod_time, length;
16732
16733 line_ptr += bytes_read;
16734 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16735 line_ptr += bytes_read;
16736 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16737 line_ptr += bytes_read;
16738 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16739 line_ptr += bytes_read;
16740
16741 add_file_name (lh, cur_file, dir_index, mod_time, length);
16742 }
16743 line_ptr += bytes_read;
6e70227d 16744 lh->statement_program_start = line_ptr;
debd256d 16745
3019eac3 16746 if (line_ptr > (section->buffer + section->size))
4d3c2250 16747 complaint (&symfile_complaints,
3e43a32a
MS
16748 _("line number info header doesn't "
16749 "fit in `.debug_line' section"));
debd256d
JB
16750
16751 discard_cleanups (back_to);
16752 return lh;
16753}
c906108c 16754
c6da4cef
DE
16755/* Subroutine of dwarf_decode_lines to simplify it.
16756 Return the file name of the psymtab for included file FILE_INDEX
16757 in line header LH of PST.
16758 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16759 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
16760 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
16761
16762 The function creates dangling cleanup registration. */
c6da4cef 16763
d521ce57 16764static const char *
c6da4cef
DE
16765psymtab_include_file_name (const struct line_header *lh, int file_index,
16766 const struct partial_symtab *pst,
16767 const char *comp_dir)
16768{
16769 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
16770 const char *include_name = fe.name;
16771 const char *include_name_to_compare = include_name;
16772 const char *dir_name = NULL;
72b9f47f
TT
16773 const char *pst_filename;
16774 char *copied_name = NULL;
c6da4cef
DE
16775 int file_is_pst;
16776
16777 if (fe.dir_index)
16778 dir_name = lh->include_dirs[fe.dir_index - 1];
16779
16780 if (!IS_ABSOLUTE_PATH (include_name)
16781 && (dir_name != NULL || comp_dir != NULL))
16782 {
16783 /* Avoid creating a duplicate psymtab for PST.
16784 We do this by comparing INCLUDE_NAME and PST_FILENAME.
16785 Before we do the comparison, however, we need to account
16786 for DIR_NAME and COMP_DIR.
16787 First prepend dir_name (if non-NULL). If we still don't
16788 have an absolute path prepend comp_dir (if non-NULL).
16789 However, the directory we record in the include-file's
16790 psymtab does not contain COMP_DIR (to match the
16791 corresponding symtab(s)).
16792
16793 Example:
16794
16795 bash$ cd /tmp
16796 bash$ gcc -g ./hello.c
16797 include_name = "hello.c"
16798 dir_name = "."
16799 DW_AT_comp_dir = comp_dir = "/tmp"
16800 DW_AT_name = "./hello.c" */
16801
16802 if (dir_name != NULL)
16803 {
d521ce57
TT
16804 char *tem = concat (dir_name, SLASH_STRING,
16805 include_name, (char *)NULL);
16806
16807 make_cleanup (xfree, tem);
16808 include_name = tem;
c6da4cef 16809 include_name_to_compare = include_name;
c6da4cef
DE
16810 }
16811 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
16812 {
d521ce57
TT
16813 char *tem = concat (comp_dir, SLASH_STRING,
16814 include_name, (char *)NULL);
16815
16816 make_cleanup (xfree, tem);
16817 include_name_to_compare = tem;
c6da4cef
DE
16818 }
16819 }
16820
16821 pst_filename = pst->filename;
16822 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
16823 {
72b9f47f
TT
16824 copied_name = concat (pst->dirname, SLASH_STRING,
16825 pst_filename, (char *)NULL);
16826 pst_filename = copied_name;
c6da4cef
DE
16827 }
16828
1e3fad37 16829 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 16830
72b9f47f
TT
16831 if (copied_name != NULL)
16832 xfree (copied_name);
c6da4cef
DE
16833
16834 if (file_is_pst)
16835 return NULL;
16836 return include_name;
16837}
16838
c91513d8
PP
16839/* Ignore this record_line request. */
16840
16841static void
16842noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
16843{
16844 return;
16845}
16846
f3f5162e
DE
16847/* Subroutine of dwarf_decode_lines to simplify it.
16848 Process the line number information in LH. */
debd256d 16849
c906108c 16850static void
f3f5162e
DE
16851dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
16852 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 16853{
d521ce57
TT
16854 const gdb_byte *line_ptr, *extended_end;
16855 const gdb_byte *line_end;
a8c50c1f 16856 unsigned int bytes_read, extended_len;
c906108c 16857 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
16858 CORE_ADDR baseaddr;
16859 struct objfile *objfile = cu->objfile;
f3f5162e 16860 bfd *abfd = objfile->obfd;
fbf65064 16861 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 16862 const int decode_for_pst_p = (pst != NULL);
f3f5162e 16863 struct subfile *last_subfile = NULL;
c91513d8
PP
16864 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
16865 = record_line;
e142c38c
DJ
16866
16867 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 16868
debd256d
JB
16869 line_ptr = lh->statement_program_start;
16870 line_end = lh->statement_program_end;
c906108c
SS
16871
16872 /* Read the statement sequences until there's nothing left. */
16873 while (line_ptr < line_end)
16874 {
16875 /* state machine registers */
16876 CORE_ADDR address = 0;
16877 unsigned int file = 1;
16878 unsigned int line = 1;
16879 unsigned int column = 0;
debd256d 16880 int is_stmt = lh->default_is_stmt;
c906108c
SS
16881 int basic_block = 0;
16882 int end_sequence = 0;
fbf65064 16883 CORE_ADDR addr;
2dc7f7b3 16884 unsigned char op_index = 0;
c906108c 16885
aaa75496 16886 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 16887 {
aaa75496 16888 /* Start a subfile for the current file of the state machine. */
debd256d
JB
16889 /* lh->include_dirs and lh->file_names are 0-based, but the
16890 directory and file name numbers in the statement program
16891 are 1-based. */
16892 struct file_entry *fe = &lh->file_names[file - 1];
d521ce57 16893 const char *dir = NULL;
a738430d 16894
debd256d
JB
16895 if (fe->dir_index)
16896 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
16897
16898 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
16899 }
16900
a738430d 16901 /* Decode the table. */
c5aa993b 16902 while (!end_sequence)
c906108c
SS
16903 {
16904 op_code = read_1_byte (abfd, line_ptr);
16905 line_ptr += 1;
59205f5a
JB
16906 if (line_ptr > line_end)
16907 {
16908 dwarf2_debug_line_missing_end_sequence_complaint ();
16909 break;
16910 }
9aa1fe7e 16911
debd256d 16912 if (op_code >= lh->opcode_base)
6e70227d 16913 {
a738430d 16914 /* Special operand. */
debd256d 16915 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
16916 address += (((op_index + (adj_opcode / lh->line_range))
16917 / lh->maximum_ops_per_instruction)
16918 * lh->minimum_instruction_length);
16919 op_index = ((op_index + (adj_opcode / lh->line_range))
16920 % lh->maximum_ops_per_instruction);
debd256d 16921 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 16922 if (lh->num_file_names < file || file == 0)
25e43795 16923 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
16924 /* For now we ignore lines not starting on an
16925 instruction boundary. */
16926 else if (op_index == 0)
25e43795
DJ
16927 {
16928 lh->file_names[file - 1].included_p = 1;
ca5f395d 16929 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
16930 {
16931 if (last_subfile != current_subfile)
16932 {
16933 addr = gdbarch_addr_bits_remove (gdbarch, address);
16934 if (last_subfile)
c91513d8 16935 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
16936 last_subfile = current_subfile;
16937 }
25e43795 16938 /* Append row to matrix using current values. */
7019d805 16939 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 16940 (*p_record_line) (current_subfile, line, addr);
366da635 16941 }
25e43795 16942 }
ca5f395d 16943 basic_block = 0;
9aa1fe7e
GK
16944 }
16945 else switch (op_code)
c906108c
SS
16946 {
16947 case DW_LNS_extended_op:
3e43a32a
MS
16948 extended_len = read_unsigned_leb128 (abfd, line_ptr,
16949 &bytes_read);
473b7be6 16950 line_ptr += bytes_read;
a8c50c1f 16951 extended_end = line_ptr + extended_len;
c906108c
SS
16952 extended_op = read_1_byte (abfd, line_ptr);
16953 line_ptr += 1;
16954 switch (extended_op)
16955 {
16956 case DW_LNE_end_sequence:
c91513d8 16957 p_record_line = record_line;
c906108c 16958 end_sequence = 1;
c906108c
SS
16959 break;
16960 case DW_LNE_set_address:
e7c27a73 16961 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8
PP
16962
16963 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
16964 {
16965 /* This line table is for a function which has been
16966 GCd by the linker. Ignore it. PR gdb/12528 */
16967
16968 long line_offset
36586728 16969 = line_ptr - get_debug_line_section (cu)->buffer;
c91513d8
PP
16970
16971 complaint (&symfile_complaints,
16972 _(".debug_line address at offset 0x%lx is 0 "
16973 "[in module %s]"),
4262abfb 16974 line_offset, objfile_name (objfile));
c91513d8
PP
16975 p_record_line = noop_record_line;
16976 }
16977
2dc7f7b3 16978 op_index = 0;
107d2387
AC
16979 line_ptr += bytes_read;
16980 address += baseaddr;
c906108c
SS
16981 break;
16982 case DW_LNE_define_file:
debd256d 16983 {
d521ce57 16984 const char *cur_file;
debd256d 16985 unsigned int dir_index, mod_time, length;
6e70227d 16986
3e43a32a
MS
16987 cur_file = read_direct_string (abfd, line_ptr,
16988 &bytes_read);
debd256d
JB
16989 line_ptr += bytes_read;
16990 dir_index =
16991 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16992 line_ptr += bytes_read;
16993 mod_time =
16994 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16995 line_ptr += bytes_read;
16996 length =
16997 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16998 line_ptr += bytes_read;
16999 add_file_name (lh, cur_file, dir_index, mod_time, length);
17000 }
c906108c 17001 break;
d0c6ba3d
CC
17002 case DW_LNE_set_discriminator:
17003 /* The discriminator is not interesting to the debugger;
17004 just ignore it. */
17005 line_ptr = extended_end;
17006 break;
c906108c 17007 default:
4d3c2250 17008 complaint (&symfile_complaints,
e2e0b3e5 17009 _("mangled .debug_line section"));
debd256d 17010 return;
c906108c 17011 }
a8c50c1f
DJ
17012 /* Make sure that we parsed the extended op correctly. If e.g.
17013 we expected a different address size than the producer used,
17014 we may have read the wrong number of bytes. */
17015 if (line_ptr != extended_end)
17016 {
17017 complaint (&symfile_complaints,
17018 _("mangled .debug_line section"));
17019 return;
17020 }
c906108c
SS
17021 break;
17022 case DW_LNS_copy:
59205f5a 17023 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17024 dwarf2_debug_line_missing_file_complaint ();
17025 else
366da635 17026 {
25e43795 17027 lh->file_names[file - 1].included_p = 1;
ca5f395d 17028 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17029 {
17030 if (last_subfile != current_subfile)
17031 {
17032 addr = gdbarch_addr_bits_remove (gdbarch, address);
17033 if (last_subfile)
c91513d8 17034 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
17035 last_subfile = current_subfile;
17036 }
7019d805 17037 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 17038 (*p_record_line) (current_subfile, line, addr);
fbf65064 17039 }
366da635 17040 }
c906108c
SS
17041 basic_block = 0;
17042 break;
17043 case DW_LNS_advance_pc:
2dc7f7b3
TT
17044 {
17045 CORE_ADDR adjust
17046 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17047
17048 address += (((op_index + adjust)
17049 / lh->maximum_ops_per_instruction)
17050 * lh->minimum_instruction_length);
17051 op_index = ((op_index + adjust)
17052 % lh->maximum_ops_per_instruction);
17053 line_ptr += bytes_read;
17054 }
c906108c
SS
17055 break;
17056 case DW_LNS_advance_line:
17057 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17058 line_ptr += bytes_read;
17059 break;
17060 case DW_LNS_set_file:
debd256d 17061 {
a738430d
MK
17062 /* The arrays lh->include_dirs and lh->file_names are
17063 0-based, but the directory and file name numbers in
17064 the statement program are 1-based. */
debd256d 17065 struct file_entry *fe;
d521ce57 17066 const char *dir = NULL;
a738430d 17067
debd256d
JB
17068 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17069 line_ptr += bytes_read;
59205f5a 17070 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17071 dwarf2_debug_line_missing_file_complaint ();
17072 else
17073 {
17074 fe = &lh->file_names[file - 1];
17075 if (fe->dir_index)
17076 dir = lh->include_dirs[fe->dir_index - 1];
17077 if (!decode_for_pst_p)
17078 {
17079 last_subfile = current_subfile;
17080 dwarf2_start_subfile (fe->name, dir, comp_dir);
17081 }
17082 }
debd256d 17083 }
c906108c
SS
17084 break;
17085 case DW_LNS_set_column:
17086 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17087 line_ptr += bytes_read;
17088 break;
17089 case DW_LNS_negate_stmt:
17090 is_stmt = (!is_stmt);
17091 break;
17092 case DW_LNS_set_basic_block:
17093 basic_block = 1;
17094 break;
c2c6d25f
JM
17095 /* Add to the address register of the state machine the
17096 address increment value corresponding to special opcode
a738430d
MK
17097 255. I.e., this value is scaled by the minimum
17098 instruction length since special opcode 255 would have
b021a221 17099 scaled the increment. */
c906108c 17100 case DW_LNS_const_add_pc:
2dc7f7b3
TT
17101 {
17102 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17103
17104 address += (((op_index + adjust)
17105 / lh->maximum_ops_per_instruction)
17106 * lh->minimum_instruction_length);
17107 op_index = ((op_index + adjust)
17108 % lh->maximum_ops_per_instruction);
17109 }
c906108c
SS
17110 break;
17111 case DW_LNS_fixed_advance_pc:
17112 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 17113 op_index = 0;
c906108c
SS
17114 line_ptr += 2;
17115 break;
9aa1fe7e 17116 default:
a738430d
MK
17117 {
17118 /* Unknown standard opcode, ignore it. */
9aa1fe7e 17119 int i;
a738430d 17120
debd256d 17121 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
17122 {
17123 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17124 line_ptr += bytes_read;
17125 }
17126 }
c906108c
SS
17127 }
17128 }
59205f5a
JB
17129 if (lh->num_file_names < file || file == 0)
17130 dwarf2_debug_line_missing_file_complaint ();
17131 else
17132 {
17133 lh->file_names[file - 1].included_p = 1;
17134 if (!decode_for_pst_p)
fbf65064
UW
17135 {
17136 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 17137 (*p_record_line) (current_subfile, 0, addr);
fbf65064 17138 }
59205f5a 17139 }
c906108c 17140 }
f3f5162e
DE
17141}
17142
17143/* Decode the Line Number Program (LNP) for the given line_header
17144 structure and CU. The actual information extracted and the type
17145 of structures created from the LNP depends on the value of PST.
17146
17147 1. If PST is NULL, then this procedure uses the data from the program
17148 to create all necessary symbol tables, and their linetables.
17149
17150 2. If PST is not NULL, this procedure reads the program to determine
17151 the list of files included by the unit represented by PST, and
17152 builds all the associated partial symbol tables.
17153
17154 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17155 It is used for relative paths in the line table.
17156 NOTE: When processing partial symtabs (pst != NULL),
17157 comp_dir == pst->dirname.
17158
17159 NOTE: It is important that psymtabs have the same file name (via strcmp)
17160 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17161 symtab we don't use it in the name of the psymtabs we create.
17162 E.g. expand_line_sal requires this when finding psymtabs to expand.
17163 A good testcase for this is mb-inline.exp. */
17164
17165static void
17166dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17167 struct dwarf2_cu *cu, struct partial_symtab *pst,
17168 int want_line_info)
17169{
17170 struct objfile *objfile = cu->objfile;
17171 const int decode_for_pst_p = (pst != NULL);
17172 struct subfile *first_subfile = current_subfile;
17173
17174 if (want_line_info)
17175 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
aaa75496
JB
17176
17177 if (decode_for_pst_p)
17178 {
17179 int file_index;
17180
17181 /* Now that we're done scanning the Line Header Program, we can
17182 create the psymtab of each included file. */
17183 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17184 if (lh->file_names[file_index].included_p == 1)
17185 {
d521ce57 17186 const char *include_name =
c6da4cef
DE
17187 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17188 if (include_name != NULL)
aaa75496
JB
17189 dwarf2_create_include_psymtab (include_name, pst, objfile);
17190 }
17191 }
cb1df416
DJ
17192 else
17193 {
17194 /* Make sure a symtab is created for every file, even files
17195 which contain only variables (i.e. no code with associated
17196 line numbers). */
cb1df416 17197 int i;
cb1df416
DJ
17198
17199 for (i = 0; i < lh->num_file_names; i++)
17200 {
d521ce57 17201 const char *dir = NULL;
f3f5162e 17202 struct file_entry *fe;
9a619af0 17203
cb1df416
DJ
17204 fe = &lh->file_names[i];
17205 if (fe->dir_index)
17206 dir = lh->include_dirs[fe->dir_index - 1];
17207 dwarf2_start_subfile (fe->name, dir, comp_dir);
17208
17209 /* Skip the main file; we don't need it, and it must be
17210 allocated last, so that it will show up before the
17211 non-primary symtabs in the objfile's symtab list. */
17212 if (current_subfile == first_subfile)
17213 continue;
17214
17215 if (current_subfile->symtab == NULL)
17216 current_subfile->symtab = allocate_symtab (current_subfile->name,
bb5ed363 17217 objfile);
cb1df416
DJ
17218 fe->symtab = current_subfile->symtab;
17219 }
17220 }
c906108c
SS
17221}
17222
17223/* Start a subfile for DWARF. FILENAME is the name of the file and
17224 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
17225 or NULL if not known. COMP_DIR is the compilation directory for the
17226 linetable's compilation unit or NULL if not known.
c906108c
SS
17227 This routine tries to keep line numbers from identical absolute and
17228 relative file names in a common subfile.
17229
17230 Using the `list' example from the GDB testsuite, which resides in
17231 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17232 of /srcdir/list0.c yields the following debugging information for list0.c:
17233
c5aa993b
JM
17234 DW_AT_name: /srcdir/list0.c
17235 DW_AT_comp_dir: /compdir
357e46e7 17236 files.files[0].name: list0.h
c5aa993b 17237 files.files[0].dir: /srcdir
357e46e7 17238 files.files[1].name: list0.c
c5aa993b 17239 files.files[1].dir: /srcdir
c906108c
SS
17240
17241 The line number information for list0.c has to end up in a single
4f1520fb
FR
17242 subfile, so that `break /srcdir/list0.c:1' works as expected.
17243 start_subfile will ensure that this happens provided that we pass the
17244 concatenation of files.files[1].dir and files.files[1].name as the
17245 subfile's name. */
c906108c
SS
17246
17247static void
d521ce57 17248dwarf2_start_subfile (const char *filename, const char *dirname,
3e43a32a 17249 const char *comp_dir)
c906108c 17250{
d521ce57 17251 char *copy = NULL;
4f1520fb
FR
17252
17253 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17254 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17255 second argument to start_subfile. To be consistent, we do the
17256 same here. In order not to lose the line information directory,
17257 we concatenate it to the filename when it makes sense.
17258 Note that the Dwarf3 standard says (speaking of filenames in line
17259 information): ``The directory index is ignored for file names
17260 that represent full path names''. Thus ignoring dirname in the
17261 `else' branch below isn't an issue. */
c906108c 17262
d5166ae1 17263 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
17264 {
17265 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17266 filename = copy;
17267 }
c906108c 17268
d521ce57 17269 start_subfile (filename, comp_dir);
4f1520fb 17270
d521ce57
TT
17271 if (copy != NULL)
17272 xfree (copy);
c906108c
SS
17273}
17274
f4dc4d17
DE
17275/* Start a symtab for DWARF.
17276 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17277
17278static void
17279dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 17280 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17
DE
17281{
17282 start_symtab (name, comp_dir, low_pc);
17283 record_debugformat ("DWARF 2");
17284 record_producer (cu->producer);
17285
17286 /* We assume that we're processing GCC output. */
17287 processing_gcc_compilation = 2;
17288
4d4ec4e5 17289 cu->processing_has_namespace_info = 0;
f4dc4d17
DE
17290}
17291
4c2df51b
DJ
17292static void
17293var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 17294 struct dwarf2_cu *cu)
4c2df51b 17295{
e7c27a73
DJ
17296 struct objfile *objfile = cu->objfile;
17297 struct comp_unit_head *cu_header = &cu->header;
17298
4c2df51b
DJ
17299 /* NOTE drow/2003-01-30: There used to be a comment and some special
17300 code here to turn a symbol with DW_AT_external and a
17301 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17302 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17303 with some versions of binutils) where shared libraries could have
17304 relocations against symbols in their debug information - the
17305 minimal symbol would have the right address, but the debug info
17306 would not. It's no longer necessary, because we will explicitly
17307 apply relocations when we read in the debug information now. */
17308
17309 /* A DW_AT_location attribute with no contents indicates that a
17310 variable has been optimized away. */
17311 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17312 {
f1e6e072 17313 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
17314 return;
17315 }
17316
17317 /* Handle one degenerate form of location expression specially, to
17318 preserve GDB's previous behavior when section offsets are
3019eac3
DE
17319 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17320 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
17321
17322 if (attr_form_is_block (attr)
3019eac3
DE
17323 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17324 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17325 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17326 && (DW_BLOCK (attr)->size
17327 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 17328 {
891d2f0b 17329 unsigned int dummy;
4c2df51b 17330
3019eac3
DE
17331 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17332 SYMBOL_VALUE_ADDRESS (sym) =
17333 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17334 else
17335 SYMBOL_VALUE_ADDRESS (sym) =
17336 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 17337 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
17338 fixup_symbol_section (sym, objfile);
17339 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17340 SYMBOL_SECTION (sym));
4c2df51b
DJ
17341 return;
17342 }
17343
17344 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17345 expression evaluator, and use LOC_COMPUTED only when necessary
17346 (i.e. when the value of a register or memory location is
17347 referenced, or a thread-local block, etc.). Then again, it might
17348 not be worthwhile. I'm assuming that it isn't unless performance
17349 or memory numbers show me otherwise. */
17350
f1e6e072 17351 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 17352
f1e6e072 17353 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 17354 cu->has_loclist = 1;
4c2df51b
DJ
17355}
17356
c906108c
SS
17357/* Given a pointer to a DWARF information entry, figure out if we need
17358 to make a symbol table entry for it, and if so, create a new entry
17359 and return a pointer to it.
17360 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
17361 used the passed type.
17362 If SPACE is not NULL, use it to hold the new symbol. If it is
17363 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
17364
17365static struct symbol *
34eaf542
TT
17366new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17367 struct symbol *space)
c906108c 17368{
e7c27a73 17369 struct objfile *objfile = cu->objfile;
c906108c 17370 struct symbol *sym = NULL;
15d034d0 17371 const char *name;
c906108c
SS
17372 struct attribute *attr = NULL;
17373 struct attribute *attr2 = NULL;
e142c38c 17374 CORE_ADDR baseaddr;
e37fd15a
SW
17375 struct pending **list_to_add = NULL;
17376
edb3359d 17377 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
17378
17379 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17380
94af9270 17381 name = dwarf2_name (die, cu);
c906108c
SS
17382 if (name)
17383 {
94af9270 17384 const char *linkagename;
34eaf542 17385 int suppress_add = 0;
94af9270 17386
34eaf542
TT
17387 if (space)
17388 sym = space;
17389 else
e623cf5d 17390 sym = allocate_symbol (objfile);
c906108c 17391 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
17392
17393 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 17394 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
17395 linkagename = dwarf2_physname (name, die, cu);
17396 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 17397
f55ee35c
JK
17398 /* Fortran does not have mangling standard and the mangling does differ
17399 between gfortran, iFort etc. */
17400 if (cu->language == language_fortran
b250c185 17401 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 17402 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 17403 dwarf2_full_name (name, die, cu),
29df156d 17404 NULL);
f55ee35c 17405
c906108c 17406 /* Default assumptions.
c5aa993b 17407 Use the passed type or decode it from the die. */
176620f1 17408 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 17409 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
17410 if (type != NULL)
17411 SYMBOL_TYPE (sym) = type;
17412 else
e7c27a73 17413 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
17414 attr = dwarf2_attr (die,
17415 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17416 cu);
c906108c
SS
17417 if (attr)
17418 {
17419 SYMBOL_LINE (sym) = DW_UNSND (attr);
17420 }
cb1df416 17421
edb3359d
DJ
17422 attr = dwarf2_attr (die,
17423 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17424 cu);
cb1df416
DJ
17425 if (attr)
17426 {
17427 int file_index = DW_UNSND (attr);
9a619af0 17428
cb1df416
DJ
17429 if (cu->line_header == NULL
17430 || file_index > cu->line_header->num_file_names)
17431 complaint (&symfile_complaints,
17432 _("file index out of range"));
1c3d648d 17433 else if (file_index > 0)
cb1df416
DJ
17434 {
17435 struct file_entry *fe;
9a619af0 17436
cb1df416
DJ
17437 fe = &cu->line_header->file_names[file_index - 1];
17438 SYMBOL_SYMTAB (sym) = fe->symtab;
17439 }
17440 }
17441
c906108c
SS
17442 switch (die->tag)
17443 {
17444 case DW_TAG_label:
e142c38c 17445 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
17446 if (attr)
17447 {
17448 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
17449 }
0f5238ed
TT
17450 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17451 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 17452 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 17453 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
17454 break;
17455 case DW_TAG_subprogram:
17456 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17457 finish_block. */
f1e6e072 17458 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 17459 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
17460 if ((attr2 && (DW_UNSND (attr2) != 0))
17461 || cu->language == language_ada)
c906108c 17462 {
2cfa0c8d
JB
17463 /* Subprograms marked external are stored as a global symbol.
17464 Ada subprograms, whether marked external or not, are always
17465 stored as a global symbol, because we want to be able to
17466 access them globally. For instance, we want to be able
17467 to break on a nested subprogram without having to
17468 specify the context. */
e37fd15a 17469 list_to_add = &global_symbols;
c906108c
SS
17470 }
17471 else
17472 {
e37fd15a 17473 list_to_add = cu->list_in_scope;
c906108c
SS
17474 }
17475 break;
edb3359d
DJ
17476 case DW_TAG_inlined_subroutine:
17477 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17478 finish_block. */
f1e6e072 17479 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 17480 SYMBOL_INLINED (sym) = 1;
481860b3 17481 list_to_add = cu->list_in_scope;
edb3359d 17482 break;
34eaf542
TT
17483 case DW_TAG_template_value_param:
17484 suppress_add = 1;
17485 /* Fall through. */
72929c62 17486 case DW_TAG_constant:
c906108c 17487 case DW_TAG_variable:
254e6b9e 17488 case DW_TAG_member:
0963b4bd
MS
17489 /* Compilation with minimal debug info may result in
17490 variables with missing type entries. Change the
17491 misleading `void' type to something sensible. */
c906108c 17492 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 17493 SYMBOL_TYPE (sym)
46bf5051 17494 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 17495
e142c38c 17496 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
17497 /* In the case of DW_TAG_member, we should only be called for
17498 static const members. */
17499 if (die->tag == DW_TAG_member)
17500 {
3863f96c
DE
17501 /* dwarf2_add_field uses die_is_declaration,
17502 so we do the same. */
254e6b9e
DE
17503 gdb_assert (die_is_declaration (die, cu));
17504 gdb_assert (attr);
17505 }
c906108c
SS
17506 if (attr)
17507 {
e7c27a73 17508 dwarf2_const_value (attr, sym, cu);
e142c38c 17509 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 17510 if (!suppress_add)
34eaf542
TT
17511 {
17512 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 17513 list_to_add = &global_symbols;
34eaf542 17514 else
e37fd15a 17515 list_to_add = cu->list_in_scope;
34eaf542 17516 }
c906108c
SS
17517 break;
17518 }
e142c38c 17519 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
17520 if (attr)
17521 {
e7c27a73 17522 var_decode_location (attr, sym, cu);
e142c38c 17523 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
17524
17525 /* Fortran explicitly imports any global symbols to the local
17526 scope by DW_TAG_common_block. */
17527 if (cu->language == language_fortran && die->parent
17528 && die->parent->tag == DW_TAG_common_block)
17529 attr2 = NULL;
17530
caac4577
JG
17531 if (SYMBOL_CLASS (sym) == LOC_STATIC
17532 && SYMBOL_VALUE_ADDRESS (sym) == 0
17533 && !dwarf2_per_objfile->has_section_at_zero)
17534 {
17535 /* When a static variable is eliminated by the linker,
17536 the corresponding debug information is not stripped
17537 out, but the variable address is set to null;
17538 do not add such variables into symbol table. */
17539 }
17540 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 17541 {
f55ee35c
JK
17542 /* Workaround gfortran PR debug/40040 - it uses
17543 DW_AT_location for variables in -fPIC libraries which may
17544 get overriden by other libraries/executable and get
17545 a different address. Resolve it by the minimal symbol
17546 which may come from inferior's executable using copy
17547 relocation. Make this workaround only for gfortran as for
17548 other compilers GDB cannot guess the minimal symbol
17549 Fortran mangling kind. */
17550 if (cu->language == language_fortran && die->parent
17551 && die->parent->tag == DW_TAG_module
17552 && cu->producer
17553 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
f1e6e072 17554 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 17555
1c809c68
TT
17556 /* A variable with DW_AT_external is never static,
17557 but it may be block-scoped. */
17558 list_to_add = (cu->list_in_scope == &file_symbols
17559 ? &global_symbols : cu->list_in_scope);
1c809c68 17560 }
c906108c 17561 else
e37fd15a 17562 list_to_add = cu->list_in_scope;
c906108c
SS
17563 }
17564 else
17565 {
17566 /* We do not know the address of this symbol.
c5aa993b
JM
17567 If it is an external symbol and we have type information
17568 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17569 The address of the variable will then be determined from
17570 the minimal symbol table whenever the variable is
17571 referenced. */
e142c38c 17572 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
17573
17574 /* Fortran explicitly imports any global symbols to the local
17575 scope by DW_TAG_common_block. */
17576 if (cu->language == language_fortran && die->parent
17577 && die->parent->tag == DW_TAG_common_block)
17578 {
17579 /* SYMBOL_CLASS doesn't matter here because
17580 read_common_block is going to reset it. */
17581 if (!suppress_add)
17582 list_to_add = cu->list_in_scope;
17583 }
17584 else if (attr2 && (DW_UNSND (attr2) != 0)
17585 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 17586 {
0fe7935b
DJ
17587 /* A variable with DW_AT_external is never static, but it
17588 may be block-scoped. */
17589 list_to_add = (cu->list_in_scope == &file_symbols
17590 ? &global_symbols : cu->list_in_scope);
17591
f1e6e072 17592 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 17593 }
442ddf59
JK
17594 else if (!die_is_declaration (die, cu))
17595 {
17596 /* Use the default LOC_OPTIMIZED_OUT class. */
17597 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
17598 if (!suppress_add)
17599 list_to_add = cu->list_in_scope;
442ddf59 17600 }
c906108c
SS
17601 }
17602 break;
17603 case DW_TAG_formal_parameter:
edb3359d
DJ
17604 /* If we are inside a function, mark this as an argument. If
17605 not, we might be looking at an argument to an inlined function
17606 when we do not have enough information to show inlined frames;
17607 pretend it's a local variable in that case so that the user can
17608 still see it. */
17609 if (context_stack_depth > 0
17610 && context_stack[context_stack_depth - 1].name != NULL)
17611 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 17612 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
17613 if (attr)
17614 {
e7c27a73 17615 var_decode_location (attr, sym, cu);
c906108c 17616 }
e142c38c 17617 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
17618 if (attr)
17619 {
e7c27a73 17620 dwarf2_const_value (attr, sym, cu);
c906108c 17621 }
f346a30d 17622
e37fd15a 17623 list_to_add = cu->list_in_scope;
c906108c
SS
17624 break;
17625 case DW_TAG_unspecified_parameters:
17626 /* From varargs functions; gdb doesn't seem to have any
17627 interest in this information, so just ignore it for now.
17628 (FIXME?) */
17629 break;
34eaf542
TT
17630 case DW_TAG_template_type_param:
17631 suppress_add = 1;
17632 /* Fall through. */
c906108c 17633 case DW_TAG_class_type:
680b30c7 17634 case DW_TAG_interface_type:
c906108c
SS
17635 case DW_TAG_structure_type:
17636 case DW_TAG_union_type:
72019c9c 17637 case DW_TAG_set_type:
c906108c 17638 case DW_TAG_enumeration_type:
f1e6e072 17639 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 17640 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 17641
63d06c5c 17642 {
987504bb 17643 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
17644 really ever be static objects: otherwise, if you try
17645 to, say, break of a class's method and you're in a file
17646 which doesn't mention that class, it won't work unless
17647 the check for all static symbols in lookup_symbol_aux
17648 saves you. See the OtherFileClass tests in
17649 gdb.c++/namespace.exp. */
17650
e37fd15a 17651 if (!suppress_add)
34eaf542 17652 {
34eaf542
TT
17653 list_to_add = (cu->list_in_scope == &file_symbols
17654 && (cu->language == language_cplus
17655 || cu->language == language_java)
17656 ? &global_symbols : cu->list_in_scope);
63d06c5c 17657
64382290
TT
17658 /* The semantics of C++ state that "struct foo {
17659 ... }" also defines a typedef for "foo". A Java
17660 class declaration also defines a typedef for the
17661 class. */
17662 if (cu->language == language_cplus
17663 || cu->language == language_java
17664 || cu->language == language_ada)
17665 {
17666 /* The symbol's name is already allocated along
17667 with this objfile, so we don't need to
17668 duplicate it for the type. */
17669 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17670 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
17671 }
63d06c5c
DC
17672 }
17673 }
c906108c
SS
17674 break;
17675 case DW_TAG_typedef:
f1e6e072 17676 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 17677 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 17678 list_to_add = cu->list_in_scope;
63d06c5c 17679 break;
c906108c 17680 case DW_TAG_base_type:
a02abb62 17681 case DW_TAG_subrange_type:
f1e6e072 17682 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 17683 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 17684 list_to_add = cu->list_in_scope;
c906108c
SS
17685 break;
17686 case DW_TAG_enumerator:
e142c38c 17687 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
17688 if (attr)
17689 {
e7c27a73 17690 dwarf2_const_value (attr, sym, cu);
c906108c 17691 }
63d06c5c
DC
17692 {
17693 /* NOTE: carlton/2003-11-10: See comment above in the
17694 DW_TAG_class_type, etc. block. */
17695
e142c38c 17696 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
17697 && (cu->language == language_cplus
17698 || cu->language == language_java)
e142c38c 17699 ? &global_symbols : cu->list_in_scope);
63d06c5c 17700 }
c906108c 17701 break;
74921315 17702 case DW_TAG_imported_declaration:
5c4e30ca 17703 case DW_TAG_namespace:
f1e6e072 17704 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 17705 list_to_add = &global_symbols;
5c4e30ca 17706 break;
4357ac6c 17707 case DW_TAG_common_block:
f1e6e072 17708 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
17709 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
17710 add_symbol_to_list (sym, cu->list_in_scope);
17711 break;
c906108c
SS
17712 default:
17713 /* Not a tag we recognize. Hopefully we aren't processing
17714 trash data, but since we must specifically ignore things
17715 we don't recognize, there is nothing else we should do at
0963b4bd 17716 this point. */
e2e0b3e5 17717 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 17718 dwarf_tag_name (die->tag));
c906108c
SS
17719 break;
17720 }
df8a16a1 17721
e37fd15a
SW
17722 if (suppress_add)
17723 {
17724 sym->hash_next = objfile->template_symbols;
17725 objfile->template_symbols = sym;
17726 list_to_add = NULL;
17727 }
17728
17729 if (list_to_add != NULL)
17730 add_symbol_to_list (sym, list_to_add);
17731
df8a16a1
DJ
17732 /* For the benefit of old versions of GCC, check for anonymous
17733 namespaces based on the demangled name. */
4d4ec4e5 17734 if (!cu->processing_has_namespace_info
94af9270 17735 && cu->language == language_cplus)
a10964d1 17736 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
17737 }
17738 return (sym);
17739}
17740
34eaf542
TT
17741/* A wrapper for new_symbol_full that always allocates a new symbol. */
17742
17743static struct symbol *
17744new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
17745{
17746 return new_symbol_full (die, type, cu, NULL);
17747}
17748
98bfdba5
PA
17749/* Given an attr with a DW_FORM_dataN value in host byte order,
17750 zero-extend it as appropriate for the symbol's type. The DWARF
17751 standard (v4) is not entirely clear about the meaning of using
17752 DW_FORM_dataN for a constant with a signed type, where the type is
17753 wider than the data. The conclusion of a discussion on the DWARF
17754 list was that this is unspecified. We choose to always zero-extend
17755 because that is the interpretation long in use by GCC. */
c906108c 17756
98bfdba5 17757static gdb_byte *
ff39bb5e 17758dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 17759 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 17760{
e7c27a73 17761 struct objfile *objfile = cu->objfile;
e17a4113
UW
17762 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
17763 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
17764 LONGEST l = DW_UNSND (attr);
17765
17766 if (bits < sizeof (*value) * 8)
17767 {
17768 l &= ((LONGEST) 1 << bits) - 1;
17769 *value = l;
17770 }
17771 else if (bits == sizeof (*value) * 8)
17772 *value = l;
17773 else
17774 {
17775 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
17776 store_unsigned_integer (bytes, bits / 8, byte_order, l);
17777 return bytes;
17778 }
17779
17780 return NULL;
17781}
17782
17783/* Read a constant value from an attribute. Either set *VALUE, or if
17784 the value does not fit in *VALUE, set *BYTES - either already
17785 allocated on the objfile obstack, or newly allocated on OBSTACK,
17786 or, set *BATON, if we translated the constant to a location
17787 expression. */
17788
17789static void
ff39bb5e 17790dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
17791 const char *name, struct obstack *obstack,
17792 struct dwarf2_cu *cu,
d521ce57 17793 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
17794 struct dwarf2_locexpr_baton **baton)
17795{
17796 struct objfile *objfile = cu->objfile;
17797 struct comp_unit_head *cu_header = &cu->header;
c906108c 17798 struct dwarf_block *blk;
98bfdba5
PA
17799 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
17800 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
17801
17802 *value = 0;
17803 *bytes = NULL;
17804 *baton = NULL;
c906108c
SS
17805
17806 switch (attr->form)
17807 {
17808 case DW_FORM_addr:
3019eac3 17809 case DW_FORM_GNU_addr_index:
ac56253d 17810 {
ac56253d
TT
17811 gdb_byte *data;
17812
98bfdba5
PA
17813 if (TYPE_LENGTH (type) != cu_header->addr_size)
17814 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 17815 cu_header->addr_size,
98bfdba5 17816 TYPE_LENGTH (type));
ac56253d
TT
17817 /* Symbols of this form are reasonably rare, so we just
17818 piggyback on the existing location code rather than writing
17819 a new implementation of symbol_computed_ops. */
7919a973 17820 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
98bfdba5
PA
17821 (*baton)->per_cu = cu->per_cu;
17822 gdb_assert ((*baton)->per_cu);
ac56253d 17823
98bfdba5 17824 (*baton)->size = 2 + cu_header->addr_size;
7919a973 17825 data = obstack_alloc (obstack, (*baton)->size);
98bfdba5 17826 (*baton)->data = data;
ac56253d
TT
17827
17828 data[0] = DW_OP_addr;
17829 store_unsigned_integer (&data[1], cu_header->addr_size,
17830 byte_order, DW_ADDR (attr));
17831 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 17832 }
c906108c 17833 break;
4ac36638 17834 case DW_FORM_string:
93b5768b 17835 case DW_FORM_strp:
3019eac3 17836 case DW_FORM_GNU_str_index:
36586728 17837 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
17838 /* DW_STRING is already allocated on the objfile obstack, point
17839 directly to it. */
d521ce57 17840 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 17841 break;
c906108c
SS
17842 case DW_FORM_block1:
17843 case DW_FORM_block2:
17844 case DW_FORM_block4:
17845 case DW_FORM_block:
2dc7f7b3 17846 case DW_FORM_exprloc:
c906108c 17847 blk = DW_BLOCK (attr);
98bfdba5
PA
17848 if (TYPE_LENGTH (type) != blk->size)
17849 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
17850 TYPE_LENGTH (type));
17851 *bytes = blk->data;
c906108c 17852 break;
2df3850c
JM
17853
17854 /* The DW_AT_const_value attributes are supposed to carry the
17855 symbol's value "represented as it would be on the target
17856 architecture." By the time we get here, it's already been
17857 converted to host endianness, so we just need to sign- or
17858 zero-extend it as appropriate. */
17859 case DW_FORM_data1:
3aef2284 17860 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 17861 break;
c906108c 17862 case DW_FORM_data2:
3aef2284 17863 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 17864 break;
c906108c 17865 case DW_FORM_data4:
3aef2284 17866 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 17867 break;
c906108c 17868 case DW_FORM_data8:
3aef2284 17869 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
17870 break;
17871
c906108c 17872 case DW_FORM_sdata:
98bfdba5 17873 *value = DW_SND (attr);
2df3850c
JM
17874 break;
17875
c906108c 17876 case DW_FORM_udata:
98bfdba5 17877 *value = DW_UNSND (attr);
c906108c 17878 break;
2df3850c 17879
c906108c 17880 default:
4d3c2250 17881 complaint (&symfile_complaints,
e2e0b3e5 17882 _("unsupported const value attribute form: '%s'"),
4d3c2250 17883 dwarf_form_name (attr->form));
98bfdba5 17884 *value = 0;
c906108c
SS
17885 break;
17886 }
17887}
17888
2df3850c 17889
98bfdba5
PA
17890/* Copy constant value from an attribute to a symbol. */
17891
2df3850c 17892static void
ff39bb5e 17893dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 17894 struct dwarf2_cu *cu)
2df3850c 17895{
98bfdba5
PA
17896 struct objfile *objfile = cu->objfile;
17897 struct comp_unit_head *cu_header = &cu->header;
12df843f 17898 LONGEST value;
d521ce57 17899 const gdb_byte *bytes;
98bfdba5 17900 struct dwarf2_locexpr_baton *baton;
2df3850c 17901
98bfdba5
PA
17902 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
17903 SYMBOL_PRINT_NAME (sym),
17904 &objfile->objfile_obstack, cu,
17905 &value, &bytes, &baton);
2df3850c 17906
98bfdba5
PA
17907 if (baton != NULL)
17908 {
98bfdba5 17909 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 17910 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
17911 }
17912 else if (bytes != NULL)
17913 {
17914 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 17915 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
17916 }
17917 else
17918 {
17919 SYMBOL_VALUE (sym) = value;
f1e6e072 17920 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 17921 }
2df3850c
JM
17922}
17923
c906108c
SS
17924/* Return the type of the die in question using its DW_AT_type attribute. */
17925
17926static struct type *
e7c27a73 17927die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17928{
c906108c 17929 struct attribute *type_attr;
c906108c 17930
e142c38c 17931 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
17932 if (!type_attr)
17933 {
17934 /* A missing DW_AT_type represents a void type. */
46bf5051 17935 return objfile_type (cu->objfile)->builtin_void;
c906108c 17936 }
348e048f 17937
673bfd45 17938 return lookup_die_type (die, type_attr, cu);
c906108c
SS
17939}
17940
b4ba55a1
JB
17941/* True iff CU's producer generates GNAT Ada auxiliary information
17942 that allows to find parallel types through that information instead
17943 of having to do expensive parallel lookups by type name. */
17944
17945static int
17946need_gnat_info (struct dwarf2_cu *cu)
17947{
17948 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
17949 of GNAT produces this auxiliary information, without any indication
17950 that it is produced. Part of enhancing the FSF version of GNAT
17951 to produce that information will be to put in place an indicator
17952 that we can use in order to determine whether the descriptive type
17953 info is available or not. One suggestion that has been made is
17954 to use a new attribute, attached to the CU die. For now, assume
17955 that the descriptive type info is not available. */
17956 return 0;
17957}
17958
b4ba55a1
JB
17959/* Return the auxiliary type of the die in question using its
17960 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
17961 attribute is not present. */
17962
17963static struct type *
17964die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
17965{
b4ba55a1 17966 struct attribute *type_attr;
b4ba55a1
JB
17967
17968 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
17969 if (!type_attr)
17970 return NULL;
17971
673bfd45 17972 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
17973}
17974
17975/* If DIE has a descriptive_type attribute, then set the TYPE's
17976 descriptive type accordingly. */
17977
17978static void
17979set_descriptive_type (struct type *type, struct die_info *die,
17980 struct dwarf2_cu *cu)
17981{
17982 struct type *descriptive_type = die_descriptive_type (die, cu);
17983
17984 if (descriptive_type)
17985 {
17986 ALLOCATE_GNAT_AUX_TYPE (type);
17987 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
17988 }
17989}
17990
c906108c
SS
17991/* Return the containing type of the die in question using its
17992 DW_AT_containing_type attribute. */
17993
17994static struct type *
e7c27a73 17995die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17996{
c906108c 17997 struct attribute *type_attr;
c906108c 17998
e142c38c 17999 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18000 if (!type_attr)
18001 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18002 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18003
673bfd45 18004 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18005}
18006
ac9ec31b
DE
18007/* Return an error marker type to use for the ill formed type in DIE/CU. */
18008
18009static struct type *
18010build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18011{
18012 struct objfile *objfile = dwarf2_per_objfile->objfile;
18013 char *message, *saved;
18014
18015 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18016 objfile_name (objfile),
ac9ec31b
DE
18017 cu->header.offset.sect_off,
18018 die->offset.sect_off);
18019 saved = obstack_copy0 (&objfile->objfile_obstack,
18020 message, strlen (message));
18021 xfree (message);
18022
18023 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18024}
18025
673bfd45 18026/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
18027 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18028 DW_AT_containing_type.
673bfd45
DE
18029 If there is no type substitute an error marker. */
18030
c906108c 18031static struct type *
ff39bb5e 18032lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 18033 struct dwarf2_cu *cu)
c906108c 18034{
bb5ed363 18035 struct objfile *objfile = cu->objfile;
f792889a
DJ
18036 struct type *this_type;
18037
ac9ec31b
DE
18038 gdb_assert (attr->name == DW_AT_type
18039 || attr->name == DW_AT_GNAT_descriptive_type
18040 || attr->name == DW_AT_containing_type);
18041
673bfd45
DE
18042 /* First see if we have it cached. */
18043
36586728
TT
18044 if (attr->form == DW_FORM_GNU_ref_alt)
18045 {
18046 struct dwarf2_per_cu_data *per_cu;
18047 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18048
18049 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18050 this_type = get_die_type_at_offset (offset, per_cu);
18051 }
7771576e 18052 else if (attr_form_is_ref (attr))
673bfd45 18053 {
b64f50a1 18054 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
18055
18056 this_type = get_die_type_at_offset (offset, cu->per_cu);
18057 }
55f1336d 18058 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 18059 {
ac9ec31b 18060 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 18061
ac9ec31b 18062 return get_signatured_type (die, signature, cu);
673bfd45
DE
18063 }
18064 else
18065 {
ac9ec31b
DE
18066 complaint (&symfile_complaints,
18067 _("Dwarf Error: Bad type attribute %s in DIE"
18068 " at 0x%x [in module %s]"),
18069 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 18070 objfile_name (objfile));
ac9ec31b 18071 return build_error_marker_type (cu, die);
673bfd45
DE
18072 }
18073
18074 /* If not cached we need to read it in. */
18075
18076 if (this_type == NULL)
18077 {
ac9ec31b 18078 struct die_info *type_die = NULL;
673bfd45
DE
18079 struct dwarf2_cu *type_cu = cu;
18080
7771576e 18081 if (attr_form_is_ref (attr))
ac9ec31b
DE
18082 type_die = follow_die_ref (die, attr, &type_cu);
18083 if (type_die == NULL)
18084 return build_error_marker_type (cu, die);
18085 /* If we find the type now, it's probably because the type came
3019eac3
DE
18086 from an inter-CU reference and the type's CU got expanded before
18087 ours. */
ac9ec31b 18088 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
18089 }
18090
18091 /* If we still don't have a type use an error marker. */
18092
18093 if (this_type == NULL)
ac9ec31b 18094 return build_error_marker_type (cu, die);
673bfd45 18095
f792889a 18096 return this_type;
c906108c
SS
18097}
18098
673bfd45
DE
18099/* Return the type in DIE, CU.
18100 Returns NULL for invalid types.
18101
02142a6c 18102 This first does a lookup in die_type_hash,
673bfd45
DE
18103 and only reads the die in if necessary.
18104
18105 NOTE: This can be called when reading in partial or full symbols. */
18106
f792889a 18107static struct type *
e7c27a73 18108read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18109{
f792889a
DJ
18110 struct type *this_type;
18111
18112 this_type = get_die_type (die, cu);
18113 if (this_type)
18114 return this_type;
18115
673bfd45
DE
18116 return read_type_die_1 (die, cu);
18117}
18118
18119/* Read the type in DIE, CU.
18120 Returns NULL for invalid types. */
18121
18122static struct type *
18123read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18124{
18125 struct type *this_type = NULL;
18126
c906108c
SS
18127 switch (die->tag)
18128 {
18129 case DW_TAG_class_type:
680b30c7 18130 case DW_TAG_interface_type:
c906108c
SS
18131 case DW_TAG_structure_type:
18132 case DW_TAG_union_type:
f792889a 18133 this_type = read_structure_type (die, cu);
c906108c
SS
18134 break;
18135 case DW_TAG_enumeration_type:
f792889a 18136 this_type = read_enumeration_type (die, cu);
c906108c
SS
18137 break;
18138 case DW_TAG_subprogram:
18139 case DW_TAG_subroutine_type:
edb3359d 18140 case DW_TAG_inlined_subroutine:
f792889a 18141 this_type = read_subroutine_type (die, cu);
c906108c
SS
18142 break;
18143 case DW_TAG_array_type:
f792889a 18144 this_type = read_array_type (die, cu);
c906108c 18145 break;
72019c9c 18146 case DW_TAG_set_type:
f792889a 18147 this_type = read_set_type (die, cu);
72019c9c 18148 break;
c906108c 18149 case DW_TAG_pointer_type:
f792889a 18150 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
18151 break;
18152 case DW_TAG_ptr_to_member_type:
f792889a 18153 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
18154 break;
18155 case DW_TAG_reference_type:
f792889a 18156 this_type = read_tag_reference_type (die, cu);
c906108c
SS
18157 break;
18158 case DW_TAG_const_type:
f792889a 18159 this_type = read_tag_const_type (die, cu);
c906108c
SS
18160 break;
18161 case DW_TAG_volatile_type:
f792889a 18162 this_type = read_tag_volatile_type (die, cu);
c906108c 18163 break;
06d66ee9
TT
18164 case DW_TAG_restrict_type:
18165 this_type = read_tag_restrict_type (die, cu);
18166 break;
c906108c 18167 case DW_TAG_string_type:
f792889a 18168 this_type = read_tag_string_type (die, cu);
c906108c
SS
18169 break;
18170 case DW_TAG_typedef:
f792889a 18171 this_type = read_typedef (die, cu);
c906108c 18172 break;
a02abb62 18173 case DW_TAG_subrange_type:
f792889a 18174 this_type = read_subrange_type (die, cu);
a02abb62 18175 break;
c906108c 18176 case DW_TAG_base_type:
f792889a 18177 this_type = read_base_type (die, cu);
c906108c 18178 break;
81a17f79 18179 case DW_TAG_unspecified_type:
f792889a 18180 this_type = read_unspecified_type (die, cu);
81a17f79 18181 break;
0114d602
DJ
18182 case DW_TAG_namespace:
18183 this_type = read_namespace_type (die, cu);
18184 break;
f55ee35c
JK
18185 case DW_TAG_module:
18186 this_type = read_module_type (die, cu);
18187 break;
c906108c 18188 default:
3e43a32a
MS
18189 complaint (&symfile_complaints,
18190 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 18191 dwarf_tag_name (die->tag));
c906108c
SS
18192 break;
18193 }
63d06c5c 18194
f792889a 18195 return this_type;
63d06c5c
DC
18196}
18197
abc72ce4
DE
18198/* See if we can figure out if the class lives in a namespace. We do
18199 this by looking for a member function; its demangled name will
18200 contain namespace info, if there is any.
18201 Return the computed name or NULL.
18202 Space for the result is allocated on the objfile's obstack.
18203 This is the full-die version of guess_partial_die_structure_name.
18204 In this case we know DIE has no useful parent. */
18205
18206static char *
18207guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18208{
18209 struct die_info *spec_die;
18210 struct dwarf2_cu *spec_cu;
18211 struct die_info *child;
18212
18213 spec_cu = cu;
18214 spec_die = die_specification (die, &spec_cu);
18215 if (spec_die != NULL)
18216 {
18217 die = spec_die;
18218 cu = spec_cu;
18219 }
18220
18221 for (child = die->child;
18222 child != NULL;
18223 child = child->sibling)
18224 {
18225 if (child->tag == DW_TAG_subprogram)
18226 {
18227 struct attribute *attr;
18228
18229 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18230 if (attr == NULL)
18231 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18232 if (attr != NULL)
18233 {
18234 char *actual_name
18235 = language_class_name_from_physname (cu->language_defn,
18236 DW_STRING (attr));
18237 char *name = NULL;
18238
18239 if (actual_name != NULL)
18240 {
15d034d0 18241 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
18242
18243 if (die_name != NULL
18244 && strcmp (die_name, actual_name) != 0)
18245 {
18246 /* Strip off the class name from the full name.
18247 We want the prefix. */
18248 int die_name_len = strlen (die_name);
18249 int actual_name_len = strlen (actual_name);
18250
18251 /* Test for '::' as a sanity check. */
18252 if (actual_name_len > die_name_len + 2
3e43a32a
MS
18253 && actual_name[actual_name_len
18254 - die_name_len - 1] == ':')
abc72ce4 18255 name =
10f0c4bb
TT
18256 obstack_copy0 (&cu->objfile->objfile_obstack,
18257 actual_name,
18258 actual_name_len - die_name_len - 2);
abc72ce4
DE
18259 }
18260 }
18261 xfree (actual_name);
18262 return name;
18263 }
18264 }
18265 }
18266
18267 return NULL;
18268}
18269
96408a79
SA
18270/* GCC might emit a nameless typedef that has a linkage name. Determine the
18271 prefix part in such case. See
18272 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18273
18274static char *
18275anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18276{
18277 struct attribute *attr;
18278 char *base;
18279
18280 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18281 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18282 return NULL;
18283
18284 attr = dwarf2_attr (die, DW_AT_name, cu);
18285 if (attr != NULL && DW_STRING (attr) != NULL)
18286 return NULL;
18287
18288 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18289 if (attr == NULL)
18290 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18291 if (attr == NULL || DW_STRING (attr) == NULL)
18292 return NULL;
18293
18294 /* dwarf2_name had to be already called. */
18295 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18296
18297 /* Strip the base name, keep any leading namespaces/classes. */
18298 base = strrchr (DW_STRING (attr), ':');
18299 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18300 return "";
18301
10f0c4bb
TT
18302 return obstack_copy0 (&cu->objfile->objfile_obstack,
18303 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
18304}
18305
fdde2d81 18306/* Return the name of the namespace/class that DIE is defined within,
0114d602 18307 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 18308
0114d602
DJ
18309 For example, if we're within the method foo() in the following
18310 code:
18311
18312 namespace N {
18313 class C {
18314 void foo () {
18315 }
18316 };
18317 }
18318
18319 then determine_prefix on foo's die will return "N::C". */
fdde2d81 18320
0d5cff50 18321static const char *
e142c38c 18322determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 18323{
0114d602
DJ
18324 struct die_info *parent, *spec_die;
18325 struct dwarf2_cu *spec_cu;
18326 struct type *parent_type;
96408a79 18327 char *retval;
63d06c5c 18328
f55ee35c
JK
18329 if (cu->language != language_cplus && cu->language != language_java
18330 && cu->language != language_fortran)
0114d602
DJ
18331 return "";
18332
96408a79
SA
18333 retval = anonymous_struct_prefix (die, cu);
18334 if (retval)
18335 return retval;
18336
0114d602
DJ
18337 /* We have to be careful in the presence of DW_AT_specification.
18338 For example, with GCC 3.4, given the code
18339
18340 namespace N {
18341 void foo() {
18342 // Definition of N::foo.
18343 }
18344 }
18345
18346 then we'll have a tree of DIEs like this:
18347
18348 1: DW_TAG_compile_unit
18349 2: DW_TAG_namespace // N
18350 3: DW_TAG_subprogram // declaration of N::foo
18351 4: DW_TAG_subprogram // definition of N::foo
18352 DW_AT_specification // refers to die #3
18353
18354 Thus, when processing die #4, we have to pretend that we're in
18355 the context of its DW_AT_specification, namely the contex of die
18356 #3. */
18357 spec_cu = cu;
18358 spec_die = die_specification (die, &spec_cu);
18359 if (spec_die == NULL)
18360 parent = die->parent;
18361 else
63d06c5c 18362 {
0114d602
DJ
18363 parent = spec_die->parent;
18364 cu = spec_cu;
63d06c5c 18365 }
0114d602
DJ
18366
18367 if (parent == NULL)
18368 return "";
98bfdba5
PA
18369 else if (parent->building_fullname)
18370 {
18371 const char *name;
18372 const char *parent_name;
18373
18374 /* It has been seen on RealView 2.2 built binaries,
18375 DW_TAG_template_type_param types actually _defined_ as
18376 children of the parent class:
18377
18378 enum E {};
18379 template class <class Enum> Class{};
18380 Class<enum E> class_e;
18381
18382 1: DW_TAG_class_type (Class)
18383 2: DW_TAG_enumeration_type (E)
18384 3: DW_TAG_enumerator (enum1:0)
18385 3: DW_TAG_enumerator (enum2:1)
18386 ...
18387 2: DW_TAG_template_type_param
18388 DW_AT_type DW_FORM_ref_udata (E)
18389
18390 Besides being broken debug info, it can put GDB into an
18391 infinite loop. Consider:
18392
18393 When we're building the full name for Class<E>, we'll start
18394 at Class, and go look over its template type parameters,
18395 finding E. We'll then try to build the full name of E, and
18396 reach here. We're now trying to build the full name of E,
18397 and look over the parent DIE for containing scope. In the
18398 broken case, if we followed the parent DIE of E, we'd again
18399 find Class, and once again go look at its template type
18400 arguments, etc., etc. Simply don't consider such parent die
18401 as source-level parent of this die (it can't be, the language
18402 doesn't allow it), and break the loop here. */
18403 name = dwarf2_name (die, cu);
18404 parent_name = dwarf2_name (parent, cu);
18405 complaint (&symfile_complaints,
18406 _("template param type '%s' defined within parent '%s'"),
18407 name ? name : "<unknown>",
18408 parent_name ? parent_name : "<unknown>");
18409 return "";
18410 }
63d06c5c 18411 else
0114d602
DJ
18412 switch (parent->tag)
18413 {
63d06c5c 18414 case DW_TAG_namespace:
0114d602 18415 parent_type = read_type_die (parent, cu);
acebe513
UW
18416 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18417 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18418 Work around this problem here. */
18419 if (cu->language == language_cplus
18420 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18421 return "";
0114d602
DJ
18422 /* We give a name to even anonymous namespaces. */
18423 return TYPE_TAG_NAME (parent_type);
63d06c5c 18424 case DW_TAG_class_type:
680b30c7 18425 case DW_TAG_interface_type:
63d06c5c 18426 case DW_TAG_structure_type:
0114d602 18427 case DW_TAG_union_type:
f55ee35c 18428 case DW_TAG_module:
0114d602
DJ
18429 parent_type = read_type_die (parent, cu);
18430 if (TYPE_TAG_NAME (parent_type) != NULL)
18431 return TYPE_TAG_NAME (parent_type);
18432 else
18433 /* An anonymous structure is only allowed non-static data
18434 members; no typedefs, no member functions, et cetera.
18435 So it does not need a prefix. */
18436 return "";
abc72ce4 18437 case DW_TAG_compile_unit:
95554aad 18438 case DW_TAG_partial_unit:
abc72ce4
DE
18439 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18440 if (cu->language == language_cplus
8b70b953 18441 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
18442 && die->child != NULL
18443 && (die->tag == DW_TAG_class_type
18444 || die->tag == DW_TAG_structure_type
18445 || die->tag == DW_TAG_union_type))
18446 {
18447 char *name = guess_full_die_structure_name (die, cu);
18448 if (name != NULL)
18449 return name;
18450 }
18451 return "";
63d06c5c 18452 default:
8176b9b8 18453 return determine_prefix (parent, cu);
63d06c5c 18454 }
63d06c5c
DC
18455}
18456
3e43a32a
MS
18457/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18458 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18459 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18460 an obconcat, otherwise allocate storage for the result. The CU argument is
18461 used to determine the language and hence, the appropriate separator. */
987504bb 18462
f55ee35c 18463#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
18464
18465static char *
f55ee35c
JK
18466typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18467 int physname, struct dwarf2_cu *cu)
63d06c5c 18468{
f55ee35c 18469 const char *lead = "";
5c315b68 18470 const char *sep;
63d06c5c 18471
3e43a32a
MS
18472 if (suffix == NULL || suffix[0] == '\0'
18473 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
18474 sep = "";
18475 else if (cu->language == language_java)
18476 sep = ".";
f55ee35c
JK
18477 else if (cu->language == language_fortran && physname)
18478 {
18479 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18480 DW_AT_MIPS_linkage_name is preferred and used instead. */
18481
18482 lead = "__";
18483 sep = "_MOD_";
18484 }
987504bb
JJ
18485 else
18486 sep = "::";
63d06c5c 18487
6dd47d34
DE
18488 if (prefix == NULL)
18489 prefix = "";
18490 if (suffix == NULL)
18491 suffix = "";
18492
987504bb
JJ
18493 if (obs == NULL)
18494 {
3e43a32a
MS
18495 char *retval
18496 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 18497
f55ee35c
JK
18498 strcpy (retval, lead);
18499 strcat (retval, prefix);
6dd47d34
DE
18500 strcat (retval, sep);
18501 strcat (retval, suffix);
63d06c5c
DC
18502 return retval;
18503 }
987504bb
JJ
18504 else
18505 {
18506 /* We have an obstack. */
f55ee35c 18507 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 18508 }
63d06c5c
DC
18509}
18510
c906108c
SS
18511/* Return sibling of die, NULL if no sibling. */
18512
f9aca02d 18513static struct die_info *
fba45db2 18514sibling_die (struct die_info *die)
c906108c 18515{
639d11d3 18516 return die->sibling;
c906108c
SS
18517}
18518
71c25dea
TT
18519/* Get name of a die, return NULL if not found. */
18520
15d034d0
TT
18521static const char *
18522dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
18523 struct obstack *obstack)
18524{
18525 if (name && cu->language == language_cplus)
18526 {
18527 char *canon_name = cp_canonicalize_string (name);
18528
18529 if (canon_name != NULL)
18530 {
18531 if (strcmp (canon_name, name) != 0)
10f0c4bb 18532 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
18533 xfree (canon_name);
18534 }
18535 }
18536
18537 return name;
c906108c
SS
18538}
18539
9219021c
DC
18540/* Get name of a die, return NULL if not found. */
18541
15d034d0 18542static const char *
e142c38c 18543dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
18544{
18545 struct attribute *attr;
18546
e142c38c 18547 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
18548 if ((!attr || !DW_STRING (attr))
18549 && die->tag != DW_TAG_class_type
18550 && die->tag != DW_TAG_interface_type
18551 && die->tag != DW_TAG_structure_type
18552 && die->tag != DW_TAG_union_type)
71c25dea
TT
18553 return NULL;
18554
18555 switch (die->tag)
18556 {
18557 case DW_TAG_compile_unit:
95554aad 18558 case DW_TAG_partial_unit:
71c25dea
TT
18559 /* Compilation units have a DW_AT_name that is a filename, not
18560 a source language identifier. */
18561 case DW_TAG_enumeration_type:
18562 case DW_TAG_enumerator:
18563 /* These tags always have simple identifiers already; no need
18564 to canonicalize them. */
18565 return DW_STRING (attr);
907af001 18566
418835cc
KS
18567 case DW_TAG_subprogram:
18568 /* Java constructors will all be named "<init>", so return
18569 the class name when we see this special case. */
18570 if (cu->language == language_java
18571 && DW_STRING (attr) != NULL
18572 && strcmp (DW_STRING (attr), "<init>") == 0)
18573 {
18574 struct dwarf2_cu *spec_cu = cu;
18575 struct die_info *spec_die;
18576
18577 /* GCJ will output '<init>' for Java constructor names.
18578 For this special case, return the name of the parent class. */
18579
18580 /* GCJ may output suprogram DIEs with AT_specification set.
18581 If so, use the name of the specified DIE. */
18582 spec_die = die_specification (die, &spec_cu);
18583 if (spec_die != NULL)
18584 return dwarf2_name (spec_die, spec_cu);
18585
18586 do
18587 {
18588 die = die->parent;
18589 if (die->tag == DW_TAG_class_type)
18590 return dwarf2_name (die, cu);
18591 }
95554aad
TT
18592 while (die->tag != DW_TAG_compile_unit
18593 && die->tag != DW_TAG_partial_unit);
418835cc 18594 }
907af001
UW
18595 break;
18596
18597 case DW_TAG_class_type:
18598 case DW_TAG_interface_type:
18599 case DW_TAG_structure_type:
18600 case DW_TAG_union_type:
18601 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18602 structures or unions. These were of the form "._%d" in GCC 4.1,
18603 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18604 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
18605 if (attr && DW_STRING (attr)
18606 && (strncmp (DW_STRING (attr), "._", 2) == 0
18607 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 18608 return NULL;
53832f31
TT
18609
18610 /* GCC might emit a nameless typedef that has a linkage name. See
18611 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18612 if (!attr || DW_STRING (attr) == NULL)
18613 {
df5c6c50 18614 char *demangled = NULL;
53832f31
TT
18615
18616 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18617 if (attr == NULL)
18618 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18619
18620 if (attr == NULL || DW_STRING (attr) == NULL)
18621 return NULL;
18622
df5c6c50
JK
18623 /* Avoid demangling DW_STRING (attr) the second time on a second
18624 call for the same DIE. */
18625 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 18626 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
18627
18628 if (demangled)
18629 {
96408a79
SA
18630 char *base;
18631
53832f31 18632 /* FIXME: we already did this for the partial symbol... */
10f0c4bb
TT
18633 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
18634 demangled, strlen (demangled));
53832f31
TT
18635 DW_STRING_IS_CANONICAL (attr) = 1;
18636 xfree (demangled);
96408a79
SA
18637
18638 /* Strip any leading namespaces/classes, keep only the base name.
18639 DW_AT_name for named DIEs does not contain the prefixes. */
18640 base = strrchr (DW_STRING (attr), ':');
18641 if (base && base > DW_STRING (attr) && base[-1] == ':')
18642 return &base[1];
18643 else
18644 return DW_STRING (attr);
53832f31
TT
18645 }
18646 }
907af001
UW
18647 break;
18648
71c25dea 18649 default:
907af001
UW
18650 break;
18651 }
18652
18653 if (!DW_STRING_IS_CANONICAL (attr))
18654 {
18655 DW_STRING (attr)
18656 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
18657 &cu->objfile->objfile_obstack);
18658 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 18659 }
907af001 18660 return DW_STRING (attr);
9219021c
DC
18661}
18662
18663/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
18664 is none. *EXT_CU is the CU containing DIE on input, and the CU
18665 containing the return value on output. */
9219021c
DC
18666
18667static struct die_info *
f2f0e013 18668dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
18669{
18670 struct attribute *attr;
9219021c 18671
f2f0e013 18672 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
18673 if (attr == NULL)
18674 return NULL;
18675
f2f0e013 18676 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
18677}
18678
c906108c
SS
18679/* Convert a DIE tag into its string name. */
18680
f39c6ffd 18681static const char *
aa1ee363 18682dwarf_tag_name (unsigned tag)
c906108c 18683{
f39c6ffd
TT
18684 const char *name = get_DW_TAG_name (tag);
18685
18686 if (name == NULL)
18687 return "DW_TAG_<unknown>";
18688
18689 return name;
c906108c
SS
18690}
18691
18692/* Convert a DWARF attribute code into its string name. */
18693
f39c6ffd 18694static const char *
aa1ee363 18695dwarf_attr_name (unsigned attr)
c906108c 18696{
f39c6ffd
TT
18697 const char *name;
18698
c764a876 18699#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
18700 if (attr == DW_AT_MIPS_fde)
18701 return "DW_AT_MIPS_fde";
18702#else
18703 if (attr == DW_AT_HP_block_index)
18704 return "DW_AT_HP_block_index";
c764a876 18705#endif
f39c6ffd
TT
18706
18707 name = get_DW_AT_name (attr);
18708
18709 if (name == NULL)
18710 return "DW_AT_<unknown>";
18711
18712 return name;
c906108c
SS
18713}
18714
18715/* Convert a DWARF value form code into its string name. */
18716
f39c6ffd 18717static const char *
aa1ee363 18718dwarf_form_name (unsigned form)
c906108c 18719{
f39c6ffd
TT
18720 const char *name = get_DW_FORM_name (form);
18721
18722 if (name == NULL)
18723 return "DW_FORM_<unknown>";
18724
18725 return name;
c906108c
SS
18726}
18727
18728static char *
fba45db2 18729dwarf_bool_name (unsigned mybool)
c906108c
SS
18730{
18731 if (mybool)
18732 return "TRUE";
18733 else
18734 return "FALSE";
18735}
18736
18737/* Convert a DWARF type code into its string name. */
18738
f39c6ffd 18739static const char *
aa1ee363 18740dwarf_type_encoding_name (unsigned enc)
c906108c 18741{
f39c6ffd 18742 const char *name = get_DW_ATE_name (enc);
c906108c 18743
f39c6ffd
TT
18744 if (name == NULL)
18745 return "DW_ATE_<unknown>";
c906108c 18746
f39c6ffd 18747 return name;
c906108c 18748}
c906108c 18749
f9aca02d 18750static void
d97bc12b 18751dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
18752{
18753 unsigned int i;
18754
d97bc12b
DE
18755 print_spaces (indent, f);
18756 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 18757 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
18758
18759 if (die->parent != NULL)
18760 {
18761 print_spaces (indent, f);
18762 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 18763 die->parent->offset.sect_off);
d97bc12b
DE
18764 }
18765
18766 print_spaces (indent, f);
18767 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 18768 dwarf_bool_name (die->child != NULL));
c906108c 18769
d97bc12b
DE
18770 print_spaces (indent, f);
18771 fprintf_unfiltered (f, " attributes:\n");
18772
c906108c
SS
18773 for (i = 0; i < die->num_attrs; ++i)
18774 {
d97bc12b
DE
18775 print_spaces (indent, f);
18776 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
18777 dwarf_attr_name (die->attrs[i].name),
18778 dwarf_form_name (die->attrs[i].form));
d97bc12b 18779
c906108c
SS
18780 switch (die->attrs[i].form)
18781 {
c906108c 18782 case DW_FORM_addr:
3019eac3 18783 case DW_FORM_GNU_addr_index:
d97bc12b 18784 fprintf_unfiltered (f, "address: ");
5af949e3 18785 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
18786 break;
18787 case DW_FORM_block2:
18788 case DW_FORM_block4:
18789 case DW_FORM_block:
18790 case DW_FORM_block1:
56eb65bd
SP
18791 fprintf_unfiltered (f, "block: size %s",
18792 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 18793 break;
2dc7f7b3 18794 case DW_FORM_exprloc:
56eb65bd
SP
18795 fprintf_unfiltered (f, "expression: size %s",
18796 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 18797 break;
4568ecf9
DE
18798 case DW_FORM_ref_addr:
18799 fprintf_unfiltered (f, "ref address: ");
18800 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18801 break;
36586728
TT
18802 case DW_FORM_GNU_ref_alt:
18803 fprintf_unfiltered (f, "alt ref address: ");
18804 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18805 break;
10b3939b
DJ
18806 case DW_FORM_ref1:
18807 case DW_FORM_ref2:
18808 case DW_FORM_ref4:
4568ecf9
DE
18809 case DW_FORM_ref8:
18810 case DW_FORM_ref_udata:
d97bc12b 18811 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 18812 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 18813 break;
c906108c
SS
18814 case DW_FORM_data1:
18815 case DW_FORM_data2:
18816 case DW_FORM_data4:
ce5d95e1 18817 case DW_FORM_data8:
c906108c
SS
18818 case DW_FORM_udata:
18819 case DW_FORM_sdata:
43bbcdc2
PH
18820 fprintf_unfiltered (f, "constant: %s",
18821 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 18822 break;
2dc7f7b3
TT
18823 case DW_FORM_sec_offset:
18824 fprintf_unfiltered (f, "section offset: %s",
18825 pulongest (DW_UNSND (&die->attrs[i])));
18826 break;
55f1336d 18827 case DW_FORM_ref_sig8:
ac9ec31b
DE
18828 fprintf_unfiltered (f, "signature: %s",
18829 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 18830 break;
c906108c 18831 case DW_FORM_string:
4bdf3d34 18832 case DW_FORM_strp:
3019eac3 18833 case DW_FORM_GNU_str_index:
36586728 18834 case DW_FORM_GNU_strp_alt:
8285870a 18835 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 18836 DW_STRING (&die->attrs[i])
8285870a
JK
18837 ? DW_STRING (&die->attrs[i]) : "",
18838 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
18839 break;
18840 case DW_FORM_flag:
18841 if (DW_UNSND (&die->attrs[i]))
d97bc12b 18842 fprintf_unfiltered (f, "flag: TRUE");
c906108c 18843 else
d97bc12b 18844 fprintf_unfiltered (f, "flag: FALSE");
c906108c 18845 break;
2dc7f7b3
TT
18846 case DW_FORM_flag_present:
18847 fprintf_unfiltered (f, "flag: TRUE");
18848 break;
a8329558 18849 case DW_FORM_indirect:
0963b4bd
MS
18850 /* The reader will have reduced the indirect form to
18851 the "base form" so this form should not occur. */
3e43a32a
MS
18852 fprintf_unfiltered (f,
18853 "unexpected attribute form: DW_FORM_indirect");
a8329558 18854 break;
c906108c 18855 default:
d97bc12b 18856 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 18857 die->attrs[i].form);
d97bc12b 18858 break;
c906108c 18859 }
d97bc12b 18860 fprintf_unfiltered (f, "\n");
c906108c
SS
18861 }
18862}
18863
f9aca02d 18864static void
d97bc12b 18865dump_die_for_error (struct die_info *die)
c906108c 18866{
d97bc12b
DE
18867 dump_die_shallow (gdb_stderr, 0, die);
18868}
18869
18870static void
18871dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
18872{
18873 int indent = level * 4;
18874
18875 gdb_assert (die != NULL);
18876
18877 if (level >= max_level)
18878 return;
18879
18880 dump_die_shallow (f, indent, die);
18881
18882 if (die->child != NULL)
c906108c 18883 {
d97bc12b
DE
18884 print_spaces (indent, f);
18885 fprintf_unfiltered (f, " Children:");
18886 if (level + 1 < max_level)
18887 {
18888 fprintf_unfiltered (f, "\n");
18889 dump_die_1 (f, level + 1, max_level, die->child);
18890 }
18891 else
18892 {
3e43a32a
MS
18893 fprintf_unfiltered (f,
18894 " [not printed, max nesting level reached]\n");
d97bc12b
DE
18895 }
18896 }
18897
18898 if (die->sibling != NULL && level > 0)
18899 {
18900 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
18901 }
18902}
18903
d97bc12b
DE
18904/* This is called from the pdie macro in gdbinit.in.
18905 It's not static so gcc will keep a copy callable from gdb. */
18906
18907void
18908dump_die (struct die_info *die, int max_level)
18909{
18910 dump_die_1 (gdb_stdlog, 0, max_level, die);
18911}
18912
f9aca02d 18913static void
51545339 18914store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18915{
51545339 18916 void **slot;
c906108c 18917
b64f50a1
JK
18918 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
18919 INSERT);
51545339
DJ
18920
18921 *slot = die;
c906108c
SS
18922}
18923
b64f50a1
JK
18924/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
18925 required kind. */
18926
18927static sect_offset
ff39bb5e 18928dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 18929{
4568ecf9 18930 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 18931
7771576e 18932 if (attr_form_is_ref (attr))
b64f50a1 18933 return retval;
93311388 18934
b64f50a1 18935 retval.sect_off = 0;
93311388
DE
18936 complaint (&symfile_complaints,
18937 _("unsupported die ref attribute form: '%s'"),
18938 dwarf_form_name (attr->form));
b64f50a1 18939 return retval;
c906108c
SS
18940}
18941
43bbcdc2
PH
18942/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
18943 * the value held by the attribute is not constant. */
a02abb62 18944
43bbcdc2 18945static LONGEST
ff39bb5e 18946dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
18947{
18948 if (attr->form == DW_FORM_sdata)
18949 return DW_SND (attr);
18950 else if (attr->form == DW_FORM_udata
18951 || attr->form == DW_FORM_data1
18952 || attr->form == DW_FORM_data2
18953 || attr->form == DW_FORM_data4
18954 || attr->form == DW_FORM_data8)
18955 return DW_UNSND (attr);
18956 else
18957 {
3e43a32a
MS
18958 complaint (&symfile_complaints,
18959 _("Attribute value is not a constant (%s)"),
a02abb62
JB
18960 dwarf_form_name (attr->form));
18961 return default_value;
18962 }
18963}
18964
348e048f
DE
18965/* Follow reference or signature attribute ATTR of SRC_DIE.
18966 On entry *REF_CU is the CU of SRC_DIE.
18967 On exit *REF_CU is the CU of the result. */
18968
18969static struct die_info *
ff39bb5e 18970follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
18971 struct dwarf2_cu **ref_cu)
18972{
18973 struct die_info *die;
18974
7771576e 18975 if (attr_form_is_ref (attr))
348e048f 18976 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 18977 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
18978 die = follow_die_sig (src_die, attr, ref_cu);
18979 else
18980 {
18981 dump_die_for_error (src_die);
18982 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 18983 objfile_name ((*ref_cu)->objfile));
348e048f
DE
18984 }
18985
18986 return die;
03dd20cc
DJ
18987}
18988
5c631832 18989/* Follow reference OFFSET.
673bfd45
DE
18990 On entry *REF_CU is the CU of the source die referencing OFFSET.
18991 On exit *REF_CU is the CU of the result.
18992 Returns NULL if OFFSET is invalid. */
f504f079 18993
f9aca02d 18994static struct die_info *
36586728
TT
18995follow_die_offset (sect_offset offset, int offset_in_dwz,
18996 struct dwarf2_cu **ref_cu)
c906108c 18997{
10b3939b 18998 struct die_info temp_die;
f2f0e013 18999 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19000
348e048f
DE
19001 gdb_assert (cu->per_cu != NULL);
19002
98bfdba5
PA
19003 target_cu = cu;
19004
3019eac3 19005 if (cu->per_cu->is_debug_types)
348e048f
DE
19006 {
19007 /* .debug_types CUs cannot reference anything outside their CU.
19008 If they need to, they have to reference a signatured type via
55f1336d 19009 DW_FORM_ref_sig8. */
348e048f 19010 if (! offset_in_cu_p (&cu->header, offset))
5c631832 19011 return NULL;
348e048f 19012 }
36586728
TT
19013 else if (offset_in_dwz != cu->per_cu->is_dwz
19014 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
19015 {
19016 struct dwarf2_per_cu_data *per_cu;
9a619af0 19017
36586728
TT
19018 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19019 cu->objfile);
03dd20cc
DJ
19020
19021 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
19022 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19023 load_full_comp_unit (per_cu, cu->language);
03dd20cc 19024
10b3939b
DJ
19025 target_cu = per_cu->cu;
19026 }
98bfdba5
PA
19027 else if (cu->dies == NULL)
19028 {
19029 /* We're loading full DIEs during partial symbol reading. */
19030 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 19031 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 19032 }
c906108c 19033
f2f0e013 19034 *ref_cu = target_cu;
51545339 19035 temp_die.offset = offset;
b64f50a1 19036 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 19037}
10b3939b 19038
5c631832
JK
19039/* Follow reference attribute ATTR of SRC_DIE.
19040 On entry *REF_CU is the CU of SRC_DIE.
19041 On exit *REF_CU is the CU of the result. */
19042
19043static struct die_info *
ff39bb5e 19044follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
19045 struct dwarf2_cu **ref_cu)
19046{
b64f50a1 19047 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
19048 struct dwarf2_cu *cu = *ref_cu;
19049 struct die_info *die;
19050
36586728
TT
19051 die = follow_die_offset (offset,
19052 (attr->form == DW_FORM_GNU_ref_alt
19053 || cu->per_cu->is_dwz),
19054 ref_cu);
5c631832
JK
19055 if (!die)
19056 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19057 "at 0x%x [in module %s]"),
4262abfb
JK
19058 offset.sect_off, src_die->offset.sect_off,
19059 objfile_name (cu->objfile));
348e048f 19060
5c631832
JK
19061 return die;
19062}
19063
d83e736b
JK
19064/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19065 Returned value is intended for DW_OP_call*. Returned
19066 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
19067
19068struct dwarf2_locexpr_baton
8b9737bf
TT
19069dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19070 struct dwarf2_per_cu_data *per_cu,
19071 CORE_ADDR (*get_frame_pc) (void *baton),
19072 void *baton)
5c631832 19073{
918dd910 19074 struct dwarf2_cu *cu;
5c631832
JK
19075 struct die_info *die;
19076 struct attribute *attr;
19077 struct dwarf2_locexpr_baton retval;
19078
8cf6f0b1
TT
19079 dw2_setup (per_cu->objfile);
19080
918dd910
JK
19081 if (per_cu->cu == NULL)
19082 load_cu (per_cu);
19083 cu = per_cu->cu;
19084
36586728 19085 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
19086 if (!die)
19087 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19088 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19089
19090 attr = dwarf2_attr (die, DW_AT_location, cu);
19091 if (!attr)
19092 {
e103e986
JK
19093 /* DWARF: "If there is no such attribute, then there is no effect.".
19094 DATA is ignored if SIZE is 0. */
5c631832 19095
e103e986 19096 retval.data = NULL;
5c631832
JK
19097 retval.size = 0;
19098 }
8cf6f0b1
TT
19099 else if (attr_form_is_section_offset (attr))
19100 {
19101 struct dwarf2_loclist_baton loclist_baton;
19102 CORE_ADDR pc = (*get_frame_pc) (baton);
19103 size_t size;
19104
19105 fill_in_loclist_baton (cu, &loclist_baton, attr);
19106
19107 retval.data = dwarf2_find_location_expression (&loclist_baton,
19108 &size, pc);
19109 retval.size = size;
19110 }
5c631832
JK
19111 else
19112 {
19113 if (!attr_form_is_block (attr))
19114 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19115 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 19116 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19117
19118 retval.data = DW_BLOCK (attr)->data;
19119 retval.size = DW_BLOCK (attr)->size;
19120 }
19121 retval.per_cu = cu->per_cu;
918dd910 19122
918dd910
JK
19123 age_cached_comp_units ();
19124
5c631832 19125 return retval;
348e048f
DE
19126}
19127
8b9737bf
TT
19128/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19129 offset. */
19130
19131struct dwarf2_locexpr_baton
19132dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19133 struct dwarf2_per_cu_data *per_cu,
19134 CORE_ADDR (*get_frame_pc) (void *baton),
19135 void *baton)
19136{
19137 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19138
19139 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19140}
19141
b6807d98
TT
19142/* Write a constant of a given type as target-ordered bytes into
19143 OBSTACK. */
19144
19145static const gdb_byte *
19146write_constant_as_bytes (struct obstack *obstack,
19147 enum bfd_endian byte_order,
19148 struct type *type,
19149 ULONGEST value,
19150 LONGEST *len)
19151{
19152 gdb_byte *result;
19153
19154 *len = TYPE_LENGTH (type);
19155 result = obstack_alloc (obstack, *len);
19156 store_unsigned_integer (result, *len, byte_order, value);
19157
19158 return result;
19159}
19160
19161/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19162 pointer to the constant bytes and set LEN to the length of the
19163 data. If memory is needed, allocate it on OBSTACK. If the DIE
19164 does not have a DW_AT_const_value, return NULL. */
19165
19166const gdb_byte *
19167dwarf2_fetch_constant_bytes (sect_offset offset,
19168 struct dwarf2_per_cu_data *per_cu,
19169 struct obstack *obstack,
19170 LONGEST *len)
19171{
19172 struct dwarf2_cu *cu;
19173 struct die_info *die;
19174 struct attribute *attr;
19175 const gdb_byte *result = NULL;
19176 struct type *type;
19177 LONGEST value;
19178 enum bfd_endian byte_order;
19179
19180 dw2_setup (per_cu->objfile);
19181
19182 if (per_cu->cu == NULL)
19183 load_cu (per_cu);
19184 cu = per_cu->cu;
19185
19186 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19187 if (!die)
19188 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19189 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
19190
19191
19192 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19193 if (attr == NULL)
19194 return NULL;
19195
19196 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19197 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19198
19199 switch (attr->form)
19200 {
19201 case DW_FORM_addr:
19202 case DW_FORM_GNU_addr_index:
19203 {
19204 gdb_byte *tem;
19205
19206 *len = cu->header.addr_size;
19207 tem = obstack_alloc (obstack, *len);
19208 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19209 result = tem;
19210 }
19211 break;
19212 case DW_FORM_string:
19213 case DW_FORM_strp:
19214 case DW_FORM_GNU_str_index:
19215 case DW_FORM_GNU_strp_alt:
19216 /* DW_STRING is already allocated on the objfile obstack, point
19217 directly to it. */
19218 result = (const gdb_byte *) DW_STRING (attr);
19219 *len = strlen (DW_STRING (attr));
19220 break;
19221 case DW_FORM_block1:
19222 case DW_FORM_block2:
19223 case DW_FORM_block4:
19224 case DW_FORM_block:
19225 case DW_FORM_exprloc:
19226 result = DW_BLOCK (attr)->data;
19227 *len = DW_BLOCK (attr)->size;
19228 break;
19229
19230 /* The DW_AT_const_value attributes are supposed to carry the
19231 symbol's value "represented as it would be on the target
19232 architecture." By the time we get here, it's already been
19233 converted to host endianness, so we just need to sign- or
19234 zero-extend it as appropriate. */
19235 case DW_FORM_data1:
19236 type = die_type (die, cu);
19237 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19238 if (result == NULL)
19239 result = write_constant_as_bytes (obstack, byte_order,
19240 type, value, len);
19241 break;
19242 case DW_FORM_data2:
19243 type = die_type (die, cu);
19244 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19245 if (result == NULL)
19246 result = write_constant_as_bytes (obstack, byte_order,
19247 type, value, len);
19248 break;
19249 case DW_FORM_data4:
19250 type = die_type (die, cu);
19251 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19252 if (result == NULL)
19253 result = write_constant_as_bytes (obstack, byte_order,
19254 type, value, len);
19255 break;
19256 case DW_FORM_data8:
19257 type = die_type (die, cu);
19258 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19259 if (result == NULL)
19260 result = write_constant_as_bytes (obstack, byte_order,
19261 type, value, len);
19262 break;
19263
19264 case DW_FORM_sdata:
19265 type = die_type (die, cu);
19266 result = write_constant_as_bytes (obstack, byte_order,
19267 type, DW_SND (attr), len);
19268 break;
19269
19270 case DW_FORM_udata:
19271 type = die_type (die, cu);
19272 result = write_constant_as_bytes (obstack, byte_order,
19273 type, DW_UNSND (attr), len);
19274 break;
19275
19276 default:
19277 complaint (&symfile_complaints,
19278 _("unsupported const value attribute form: '%s'"),
19279 dwarf_form_name (attr->form));
19280 break;
19281 }
19282
19283 return result;
19284}
19285
8a9b8146
TT
19286/* Return the type of the DIE at DIE_OFFSET in the CU named by
19287 PER_CU. */
19288
19289struct type *
b64f50a1 19290dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
19291 struct dwarf2_per_cu_data *per_cu)
19292{
b64f50a1
JK
19293 sect_offset die_offset_sect;
19294
8a9b8146 19295 dw2_setup (per_cu->objfile);
b64f50a1
JK
19296
19297 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19298 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
19299}
19300
ac9ec31b 19301/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 19302 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
19303 On exit *REF_CU is the CU of the result.
19304 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
19305
19306static struct die_info *
ac9ec31b
DE
19307follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19308 struct dwarf2_cu **ref_cu)
348e048f
DE
19309{
19310 struct objfile *objfile = (*ref_cu)->objfile;
19311 struct die_info temp_die;
348e048f
DE
19312 struct dwarf2_cu *sig_cu;
19313 struct die_info *die;
19314
ac9ec31b
DE
19315 /* While it might be nice to assert sig_type->type == NULL here,
19316 we can get here for DW_AT_imported_declaration where we need
19317 the DIE not the type. */
348e048f
DE
19318
19319 /* If necessary, add it to the queue and load its DIEs. */
19320
95554aad 19321 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 19322 read_signatured_type (sig_type);
348e048f 19323
348e048f 19324 sig_cu = sig_type->per_cu.cu;
69d751e3 19325 gdb_assert (sig_cu != NULL);
3019eac3
DE
19326 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19327 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
19328 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19329 temp_die.offset.sect_off);
348e048f
DE
19330 if (die)
19331 {
796a7ff8
DE
19332 /* For .gdb_index version 7 keep track of included TUs.
19333 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19334 if (dwarf2_per_objfile->index_table != NULL
19335 && dwarf2_per_objfile->index_table->version <= 7)
19336 {
19337 VEC_safe_push (dwarf2_per_cu_ptr,
19338 (*ref_cu)->per_cu->imported_symtabs,
19339 sig_cu->per_cu);
19340 }
19341
348e048f
DE
19342 *ref_cu = sig_cu;
19343 return die;
19344 }
19345
ac9ec31b
DE
19346 return NULL;
19347}
19348
19349/* Follow signatured type referenced by ATTR in SRC_DIE.
19350 On entry *REF_CU is the CU of SRC_DIE.
19351 On exit *REF_CU is the CU of the result.
19352 The result is the DIE of the type.
19353 If the referenced type cannot be found an error is thrown. */
19354
19355static struct die_info *
ff39bb5e 19356follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
19357 struct dwarf2_cu **ref_cu)
19358{
19359 ULONGEST signature = DW_SIGNATURE (attr);
19360 struct signatured_type *sig_type;
19361 struct die_info *die;
19362
19363 gdb_assert (attr->form == DW_FORM_ref_sig8);
19364
a2ce51a0 19365 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
19366 /* sig_type will be NULL if the signatured type is missing from
19367 the debug info. */
19368 if (sig_type == NULL)
19369 {
19370 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19371 " from DIE at 0x%x [in module %s]"),
19372 hex_string (signature), src_die->offset.sect_off,
4262abfb 19373 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19374 }
19375
19376 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19377 if (die == NULL)
19378 {
19379 dump_die_for_error (src_die);
19380 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19381 " from DIE at 0x%x [in module %s]"),
19382 hex_string (signature), src_die->offset.sect_off,
4262abfb 19383 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19384 }
19385
19386 return die;
19387}
19388
19389/* Get the type specified by SIGNATURE referenced in DIE/CU,
19390 reading in and processing the type unit if necessary. */
19391
19392static struct type *
19393get_signatured_type (struct die_info *die, ULONGEST signature,
19394 struct dwarf2_cu *cu)
19395{
19396 struct signatured_type *sig_type;
19397 struct dwarf2_cu *type_cu;
19398 struct die_info *type_die;
19399 struct type *type;
19400
a2ce51a0 19401 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
19402 /* sig_type will be NULL if the signatured type is missing from
19403 the debug info. */
19404 if (sig_type == NULL)
19405 {
19406 complaint (&symfile_complaints,
19407 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19408 " from DIE at 0x%x [in module %s]"),
19409 hex_string (signature), die->offset.sect_off,
4262abfb 19410 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19411 return build_error_marker_type (cu, die);
19412 }
19413
19414 /* If we already know the type we're done. */
19415 if (sig_type->type != NULL)
19416 return sig_type->type;
19417
19418 type_cu = cu;
19419 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19420 if (type_die != NULL)
19421 {
19422 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19423 is created. This is important, for example, because for c++ classes
19424 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19425 type = read_type_die (type_die, type_cu);
19426 if (type == NULL)
19427 {
19428 complaint (&symfile_complaints,
19429 _("Dwarf Error: Cannot build signatured type %s"
19430 " referenced from DIE at 0x%x [in module %s]"),
19431 hex_string (signature), die->offset.sect_off,
4262abfb 19432 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19433 type = build_error_marker_type (cu, die);
19434 }
19435 }
19436 else
19437 {
19438 complaint (&symfile_complaints,
19439 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19440 " from DIE at 0x%x [in module %s]"),
19441 hex_string (signature), die->offset.sect_off,
4262abfb 19442 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19443 type = build_error_marker_type (cu, die);
19444 }
19445 sig_type->type = type;
19446
19447 return type;
19448}
19449
19450/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19451 reading in and processing the type unit if necessary. */
19452
19453static struct type *
ff39bb5e 19454get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 19455 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
19456{
19457 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 19458 if (attr_form_is_ref (attr))
ac9ec31b
DE
19459 {
19460 struct dwarf2_cu *type_cu = cu;
19461 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19462
19463 return read_type_die (type_die, type_cu);
19464 }
19465 else if (attr->form == DW_FORM_ref_sig8)
19466 {
19467 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19468 }
19469 else
19470 {
19471 complaint (&symfile_complaints,
19472 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19473 " at 0x%x [in module %s]"),
19474 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 19475 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19476 return build_error_marker_type (cu, die);
19477 }
348e048f
DE
19478}
19479
e5fe5e75 19480/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
19481
19482static void
e5fe5e75 19483load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 19484{
52dc124a 19485 struct signatured_type *sig_type;
348e048f 19486
f4dc4d17
DE
19487 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19488 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19489
6721b2ec
DE
19490 /* We have the per_cu, but we need the signatured_type.
19491 Fortunately this is an easy translation. */
19492 gdb_assert (per_cu->is_debug_types);
19493 sig_type = (struct signatured_type *) per_cu;
348e048f 19494
6721b2ec 19495 gdb_assert (per_cu->cu == NULL);
348e048f 19496
52dc124a 19497 read_signatured_type (sig_type);
348e048f 19498
6721b2ec 19499 gdb_assert (per_cu->cu != NULL);
348e048f
DE
19500}
19501
dee91e82
DE
19502/* die_reader_func for read_signatured_type.
19503 This is identical to load_full_comp_unit_reader,
19504 but is kept separate for now. */
348e048f
DE
19505
19506static void
dee91e82 19507read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 19508 const gdb_byte *info_ptr,
dee91e82
DE
19509 struct die_info *comp_unit_die,
19510 int has_children,
19511 void *data)
348e048f 19512{
dee91e82 19513 struct dwarf2_cu *cu = reader->cu;
348e048f 19514
dee91e82
DE
19515 gdb_assert (cu->die_hash == NULL);
19516 cu->die_hash =
19517 htab_create_alloc_ex (cu->header.length / 12,
19518 die_hash,
19519 die_eq,
19520 NULL,
19521 &cu->comp_unit_obstack,
19522 hashtab_obstack_allocate,
19523 dummy_obstack_deallocate);
348e048f 19524
dee91e82
DE
19525 if (has_children)
19526 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19527 &info_ptr, comp_unit_die);
19528 cu->dies = comp_unit_die;
19529 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
19530
19531 /* We try not to read any attributes in this function, because not
9cdd5dbd 19532 all CUs needed for references have been loaded yet, and symbol
348e048f 19533 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
19534 or we won't be able to build types correctly.
19535 Similarly, if we do not read the producer, we can not apply
19536 producer-specific interpretation. */
95554aad 19537 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 19538}
348e048f 19539
3019eac3
DE
19540/* Read in a signatured type and build its CU and DIEs.
19541 If the type is a stub for the real type in a DWO file,
19542 read in the real type from the DWO file as well. */
dee91e82
DE
19543
19544static void
19545read_signatured_type (struct signatured_type *sig_type)
19546{
19547 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 19548
3019eac3 19549 gdb_assert (per_cu->is_debug_types);
dee91e82 19550 gdb_assert (per_cu->cu == NULL);
348e048f 19551
f4dc4d17
DE
19552 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19553 read_signatured_type_reader, NULL);
7ee85ab1 19554 sig_type->per_cu.tu_read = 1;
c906108c
SS
19555}
19556
c906108c
SS
19557/* Decode simple location descriptions.
19558 Given a pointer to a dwarf block that defines a location, compute
19559 the location and return the value.
19560
4cecd739
DJ
19561 NOTE drow/2003-11-18: This function is called in two situations
19562 now: for the address of static or global variables (partial symbols
19563 only) and for offsets into structures which are expected to be
19564 (more or less) constant. The partial symbol case should go away,
19565 and only the constant case should remain. That will let this
19566 function complain more accurately. A few special modes are allowed
19567 without complaint for global variables (for instance, global
19568 register values and thread-local values).
c906108c
SS
19569
19570 A location description containing no operations indicates that the
4cecd739 19571 object is optimized out. The return value is 0 for that case.
6b992462
DJ
19572 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19573 callers will only want a very basic result and this can become a
21ae7a4d
JK
19574 complaint.
19575
19576 Note that stack[0] is unused except as a default error return. */
c906108c
SS
19577
19578static CORE_ADDR
e7c27a73 19579decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 19580{
e7c27a73 19581 struct objfile *objfile = cu->objfile;
56eb65bd
SP
19582 size_t i;
19583 size_t size = blk->size;
d521ce57 19584 const gdb_byte *data = blk->data;
21ae7a4d
JK
19585 CORE_ADDR stack[64];
19586 int stacki;
19587 unsigned int bytes_read, unsnd;
19588 gdb_byte op;
c906108c 19589
21ae7a4d
JK
19590 i = 0;
19591 stacki = 0;
19592 stack[stacki] = 0;
19593 stack[++stacki] = 0;
19594
19595 while (i < size)
19596 {
19597 op = data[i++];
19598 switch (op)
19599 {
19600 case DW_OP_lit0:
19601 case DW_OP_lit1:
19602 case DW_OP_lit2:
19603 case DW_OP_lit3:
19604 case DW_OP_lit4:
19605 case DW_OP_lit5:
19606 case DW_OP_lit6:
19607 case DW_OP_lit7:
19608 case DW_OP_lit8:
19609 case DW_OP_lit9:
19610 case DW_OP_lit10:
19611 case DW_OP_lit11:
19612 case DW_OP_lit12:
19613 case DW_OP_lit13:
19614 case DW_OP_lit14:
19615 case DW_OP_lit15:
19616 case DW_OP_lit16:
19617 case DW_OP_lit17:
19618 case DW_OP_lit18:
19619 case DW_OP_lit19:
19620 case DW_OP_lit20:
19621 case DW_OP_lit21:
19622 case DW_OP_lit22:
19623 case DW_OP_lit23:
19624 case DW_OP_lit24:
19625 case DW_OP_lit25:
19626 case DW_OP_lit26:
19627 case DW_OP_lit27:
19628 case DW_OP_lit28:
19629 case DW_OP_lit29:
19630 case DW_OP_lit30:
19631 case DW_OP_lit31:
19632 stack[++stacki] = op - DW_OP_lit0;
19633 break;
f1bea926 19634
21ae7a4d
JK
19635 case DW_OP_reg0:
19636 case DW_OP_reg1:
19637 case DW_OP_reg2:
19638 case DW_OP_reg3:
19639 case DW_OP_reg4:
19640 case DW_OP_reg5:
19641 case DW_OP_reg6:
19642 case DW_OP_reg7:
19643 case DW_OP_reg8:
19644 case DW_OP_reg9:
19645 case DW_OP_reg10:
19646 case DW_OP_reg11:
19647 case DW_OP_reg12:
19648 case DW_OP_reg13:
19649 case DW_OP_reg14:
19650 case DW_OP_reg15:
19651 case DW_OP_reg16:
19652 case DW_OP_reg17:
19653 case DW_OP_reg18:
19654 case DW_OP_reg19:
19655 case DW_OP_reg20:
19656 case DW_OP_reg21:
19657 case DW_OP_reg22:
19658 case DW_OP_reg23:
19659 case DW_OP_reg24:
19660 case DW_OP_reg25:
19661 case DW_OP_reg26:
19662 case DW_OP_reg27:
19663 case DW_OP_reg28:
19664 case DW_OP_reg29:
19665 case DW_OP_reg30:
19666 case DW_OP_reg31:
19667 stack[++stacki] = op - DW_OP_reg0;
19668 if (i < size)
19669 dwarf2_complex_location_expr_complaint ();
19670 break;
c906108c 19671
21ae7a4d
JK
19672 case DW_OP_regx:
19673 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
19674 i += bytes_read;
19675 stack[++stacki] = unsnd;
19676 if (i < size)
19677 dwarf2_complex_location_expr_complaint ();
19678 break;
c906108c 19679
21ae7a4d
JK
19680 case DW_OP_addr:
19681 stack[++stacki] = read_address (objfile->obfd, &data[i],
19682 cu, &bytes_read);
19683 i += bytes_read;
19684 break;
d53d4ac5 19685
21ae7a4d
JK
19686 case DW_OP_const1u:
19687 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
19688 i += 1;
19689 break;
19690
19691 case DW_OP_const1s:
19692 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
19693 i += 1;
19694 break;
19695
19696 case DW_OP_const2u:
19697 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
19698 i += 2;
19699 break;
19700
19701 case DW_OP_const2s:
19702 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
19703 i += 2;
19704 break;
d53d4ac5 19705
21ae7a4d
JK
19706 case DW_OP_const4u:
19707 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
19708 i += 4;
19709 break;
19710
19711 case DW_OP_const4s:
19712 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
19713 i += 4;
19714 break;
19715
585861ea
JK
19716 case DW_OP_const8u:
19717 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
19718 i += 8;
19719 break;
19720
21ae7a4d
JK
19721 case DW_OP_constu:
19722 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
19723 &bytes_read);
19724 i += bytes_read;
19725 break;
19726
19727 case DW_OP_consts:
19728 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
19729 i += bytes_read;
19730 break;
19731
19732 case DW_OP_dup:
19733 stack[stacki + 1] = stack[stacki];
19734 stacki++;
19735 break;
19736
19737 case DW_OP_plus:
19738 stack[stacki - 1] += stack[stacki];
19739 stacki--;
19740 break;
19741
19742 case DW_OP_plus_uconst:
19743 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
19744 &bytes_read);
19745 i += bytes_read;
19746 break;
19747
19748 case DW_OP_minus:
19749 stack[stacki - 1] -= stack[stacki];
19750 stacki--;
19751 break;
19752
19753 case DW_OP_deref:
19754 /* If we're not the last op, then we definitely can't encode
19755 this using GDB's address_class enum. This is valid for partial
19756 global symbols, although the variable's address will be bogus
19757 in the psymtab. */
19758 if (i < size)
19759 dwarf2_complex_location_expr_complaint ();
19760 break;
19761
19762 case DW_OP_GNU_push_tls_address:
19763 /* The top of the stack has the offset from the beginning
19764 of the thread control block at which the variable is located. */
19765 /* Nothing should follow this operator, so the top of stack would
19766 be returned. */
19767 /* This is valid for partial global symbols, but the variable's
585861ea
JK
19768 address will be bogus in the psymtab. Make it always at least
19769 non-zero to not look as a variable garbage collected by linker
19770 which have DW_OP_addr 0. */
21ae7a4d
JK
19771 if (i < size)
19772 dwarf2_complex_location_expr_complaint ();
585861ea 19773 stack[stacki]++;
21ae7a4d
JK
19774 break;
19775
19776 case DW_OP_GNU_uninit:
19777 break;
19778
3019eac3 19779 case DW_OP_GNU_addr_index:
49f6c839 19780 case DW_OP_GNU_const_index:
3019eac3
DE
19781 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
19782 &bytes_read);
19783 i += bytes_read;
19784 break;
19785
21ae7a4d
JK
19786 default:
19787 {
f39c6ffd 19788 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
19789
19790 if (name)
19791 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
19792 name);
19793 else
19794 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
19795 op);
19796 }
19797
19798 return (stack[stacki]);
d53d4ac5 19799 }
3c6e0cb3 19800
21ae7a4d
JK
19801 /* Enforce maximum stack depth of SIZE-1 to avoid writing
19802 outside of the allocated space. Also enforce minimum>0. */
19803 if (stacki >= ARRAY_SIZE (stack) - 1)
19804 {
19805 complaint (&symfile_complaints,
19806 _("location description stack overflow"));
19807 return 0;
19808 }
19809
19810 if (stacki <= 0)
19811 {
19812 complaint (&symfile_complaints,
19813 _("location description stack underflow"));
19814 return 0;
19815 }
19816 }
19817 return (stack[stacki]);
c906108c
SS
19818}
19819
19820/* memory allocation interface */
19821
c906108c 19822static struct dwarf_block *
7b5a2f43 19823dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
19824{
19825 struct dwarf_block *blk;
19826
19827 blk = (struct dwarf_block *)
7b5a2f43 19828 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
19829 return (blk);
19830}
19831
c906108c 19832static struct die_info *
b60c80d6 19833dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
19834{
19835 struct die_info *die;
b60c80d6
DJ
19836 size_t size = sizeof (struct die_info);
19837
19838 if (num_attrs > 1)
19839 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 19840
b60c80d6 19841 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
19842 memset (die, 0, sizeof (struct die_info));
19843 return (die);
19844}
2e276125
JB
19845
19846\f
19847/* Macro support. */
19848
233d95b5
JK
19849/* Return file name relative to the compilation directory of file number I in
19850 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 19851 responsible for freeing it. */
233d95b5 19852
2e276125 19853static char *
233d95b5 19854file_file_name (int file, struct line_header *lh)
2e276125 19855{
6a83a1e6
EZ
19856 /* Is the file number a valid index into the line header's file name
19857 table? Remember that file numbers start with one, not zero. */
19858 if (1 <= file && file <= lh->num_file_names)
19859 {
19860 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 19861
233d95b5 19862 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
6a83a1e6 19863 return xstrdup (fe->name);
233d95b5
JK
19864 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
19865 fe->name, NULL);
6a83a1e6 19866 }
2e276125
JB
19867 else
19868 {
6a83a1e6
EZ
19869 /* The compiler produced a bogus file number. We can at least
19870 record the macro definitions made in the file, even if we
19871 won't be able to find the file by name. */
19872 char fake_name[80];
9a619af0 19873
8c042590
PM
19874 xsnprintf (fake_name, sizeof (fake_name),
19875 "<bad macro file number %d>", file);
2e276125 19876
6e70227d 19877 complaint (&symfile_complaints,
6a83a1e6
EZ
19878 _("bad file number in macro information (%d)"),
19879 file);
2e276125 19880
6a83a1e6 19881 return xstrdup (fake_name);
2e276125
JB
19882 }
19883}
19884
233d95b5
JK
19885/* Return the full name of file number I in *LH's file name table.
19886 Use COMP_DIR as the name of the current directory of the
19887 compilation. The result is allocated using xmalloc; the caller is
19888 responsible for freeing it. */
19889static char *
19890file_full_name (int file, struct line_header *lh, const char *comp_dir)
19891{
19892 /* Is the file number a valid index into the line header's file name
19893 table? Remember that file numbers start with one, not zero. */
19894 if (1 <= file && file <= lh->num_file_names)
19895 {
19896 char *relative = file_file_name (file, lh);
19897
19898 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
19899 return relative;
19900 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
19901 }
19902 else
19903 return file_file_name (file, lh);
19904}
19905
2e276125
JB
19906
19907static struct macro_source_file *
19908macro_start_file (int file, int line,
19909 struct macro_source_file *current_file,
19910 const char *comp_dir,
19911 struct line_header *lh, struct objfile *objfile)
19912{
233d95b5
JK
19913 /* File name relative to the compilation directory of this source file. */
19914 char *file_name = file_file_name (file, lh);
2e276125 19915
2e276125 19916 if (! current_file)
abc9d0dc 19917 {
fc474241
DE
19918 /* Note: We don't create a macro table for this compilation unit
19919 at all until we actually get a filename. */
19920 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
19921
abc9d0dc
TT
19922 /* If we have no current file, then this must be the start_file
19923 directive for the compilation unit's main source file. */
fc474241
DE
19924 current_file = macro_set_main (macro_table, file_name);
19925 macro_define_special (macro_table);
abc9d0dc 19926 }
2e276125 19927 else
233d95b5 19928 current_file = macro_include (current_file, line, file_name);
2e276125 19929
233d95b5 19930 xfree (file_name);
6e70227d 19931
2e276125
JB
19932 return current_file;
19933}
19934
19935
19936/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
19937 followed by a null byte. */
19938static char *
19939copy_string (const char *buf, int len)
19940{
19941 char *s = xmalloc (len + 1);
9a619af0 19942
2e276125
JB
19943 memcpy (s, buf, len);
19944 s[len] = '\0';
2e276125
JB
19945 return s;
19946}
19947
19948
19949static const char *
19950consume_improper_spaces (const char *p, const char *body)
19951{
19952 if (*p == ' ')
19953 {
4d3c2250 19954 complaint (&symfile_complaints,
3e43a32a
MS
19955 _("macro definition contains spaces "
19956 "in formal argument list:\n`%s'"),
4d3c2250 19957 body);
2e276125
JB
19958
19959 while (*p == ' ')
19960 p++;
19961 }
19962
19963 return p;
19964}
19965
19966
19967static void
19968parse_macro_definition (struct macro_source_file *file, int line,
19969 const char *body)
19970{
19971 const char *p;
19972
19973 /* The body string takes one of two forms. For object-like macro
19974 definitions, it should be:
19975
19976 <macro name> " " <definition>
19977
19978 For function-like macro definitions, it should be:
19979
19980 <macro name> "() " <definition>
19981 or
19982 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
19983
19984 Spaces may appear only where explicitly indicated, and in the
19985 <definition>.
19986
19987 The Dwarf 2 spec says that an object-like macro's name is always
19988 followed by a space, but versions of GCC around March 2002 omit
6e70227d 19989 the space when the macro's definition is the empty string.
2e276125
JB
19990
19991 The Dwarf 2 spec says that there should be no spaces between the
19992 formal arguments in a function-like macro's formal argument list,
19993 but versions of GCC around March 2002 include spaces after the
19994 commas. */
19995
19996
19997 /* Find the extent of the macro name. The macro name is terminated
19998 by either a space or null character (for an object-like macro) or
19999 an opening paren (for a function-like macro). */
20000 for (p = body; *p; p++)
20001 if (*p == ' ' || *p == '(')
20002 break;
20003
20004 if (*p == ' ' || *p == '\0')
20005 {
20006 /* It's an object-like macro. */
20007 int name_len = p - body;
20008 char *name = copy_string (body, name_len);
20009 const char *replacement;
20010
20011 if (*p == ' ')
20012 replacement = body + name_len + 1;
20013 else
20014 {
4d3c2250 20015 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20016 replacement = body + name_len;
20017 }
6e70227d 20018
2e276125
JB
20019 macro_define_object (file, line, name, replacement);
20020
20021 xfree (name);
20022 }
20023 else if (*p == '(')
20024 {
20025 /* It's a function-like macro. */
20026 char *name = copy_string (body, p - body);
20027 int argc = 0;
20028 int argv_size = 1;
20029 char **argv = xmalloc (argv_size * sizeof (*argv));
20030
20031 p++;
20032
20033 p = consume_improper_spaces (p, body);
20034
20035 /* Parse the formal argument list. */
20036 while (*p && *p != ')')
20037 {
20038 /* Find the extent of the current argument name. */
20039 const char *arg_start = p;
20040
20041 while (*p && *p != ',' && *p != ')' && *p != ' ')
20042 p++;
20043
20044 if (! *p || p == arg_start)
4d3c2250 20045 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20046 else
20047 {
20048 /* Make sure argv has room for the new argument. */
20049 if (argc >= argv_size)
20050 {
20051 argv_size *= 2;
20052 argv = xrealloc (argv, argv_size * sizeof (*argv));
20053 }
20054
20055 argv[argc++] = copy_string (arg_start, p - arg_start);
20056 }
20057
20058 p = consume_improper_spaces (p, body);
20059
20060 /* Consume the comma, if present. */
20061 if (*p == ',')
20062 {
20063 p++;
20064
20065 p = consume_improper_spaces (p, body);
20066 }
20067 }
20068
20069 if (*p == ')')
20070 {
20071 p++;
20072
20073 if (*p == ' ')
20074 /* Perfectly formed definition, no complaints. */
20075 macro_define_function (file, line, name,
6e70227d 20076 argc, (const char **) argv,
2e276125
JB
20077 p + 1);
20078 else if (*p == '\0')
20079 {
20080 /* Complain, but do define it. */
4d3c2250 20081 dwarf2_macro_malformed_definition_complaint (body);
2e276125 20082 macro_define_function (file, line, name,
6e70227d 20083 argc, (const char **) argv,
2e276125
JB
20084 p);
20085 }
20086 else
20087 /* Just complain. */
4d3c2250 20088 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20089 }
20090 else
20091 /* Just complain. */
4d3c2250 20092 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20093
20094 xfree (name);
20095 {
20096 int i;
20097
20098 for (i = 0; i < argc; i++)
20099 xfree (argv[i]);
20100 }
20101 xfree (argv);
20102 }
20103 else
4d3c2250 20104 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20105}
20106
cf2c3c16
TT
20107/* Skip some bytes from BYTES according to the form given in FORM.
20108 Returns the new pointer. */
2e276125 20109
d521ce57
TT
20110static const gdb_byte *
20111skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
20112 enum dwarf_form form,
20113 unsigned int offset_size,
20114 struct dwarf2_section_info *section)
2e276125 20115{
cf2c3c16 20116 unsigned int bytes_read;
2e276125 20117
cf2c3c16 20118 switch (form)
2e276125 20119 {
cf2c3c16
TT
20120 case DW_FORM_data1:
20121 case DW_FORM_flag:
20122 ++bytes;
20123 break;
20124
20125 case DW_FORM_data2:
20126 bytes += 2;
20127 break;
20128
20129 case DW_FORM_data4:
20130 bytes += 4;
20131 break;
20132
20133 case DW_FORM_data8:
20134 bytes += 8;
20135 break;
20136
20137 case DW_FORM_string:
20138 read_direct_string (abfd, bytes, &bytes_read);
20139 bytes += bytes_read;
20140 break;
20141
20142 case DW_FORM_sec_offset:
20143 case DW_FORM_strp:
36586728 20144 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
20145 bytes += offset_size;
20146 break;
20147
20148 case DW_FORM_block:
20149 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20150 bytes += bytes_read;
20151 break;
20152
20153 case DW_FORM_block1:
20154 bytes += 1 + read_1_byte (abfd, bytes);
20155 break;
20156 case DW_FORM_block2:
20157 bytes += 2 + read_2_bytes (abfd, bytes);
20158 break;
20159 case DW_FORM_block4:
20160 bytes += 4 + read_4_bytes (abfd, bytes);
20161 break;
20162
20163 case DW_FORM_sdata:
20164 case DW_FORM_udata:
3019eac3
DE
20165 case DW_FORM_GNU_addr_index:
20166 case DW_FORM_GNU_str_index:
d521ce57 20167 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
20168 if (bytes == NULL)
20169 {
20170 dwarf2_section_buffer_overflow_complaint (section);
20171 return NULL;
20172 }
cf2c3c16
TT
20173 break;
20174
20175 default:
20176 {
20177 complain:
20178 complaint (&symfile_complaints,
20179 _("invalid form 0x%x in `%s'"),
a32a8923 20180 form, get_section_name (section));
cf2c3c16
TT
20181 return NULL;
20182 }
2e276125
JB
20183 }
20184
cf2c3c16
TT
20185 return bytes;
20186}
757a13d0 20187
cf2c3c16
TT
20188/* A helper for dwarf_decode_macros that handles skipping an unknown
20189 opcode. Returns an updated pointer to the macro data buffer; or,
20190 on error, issues a complaint and returns NULL. */
757a13d0 20191
d521ce57 20192static const gdb_byte *
cf2c3c16 20193skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
20194 const gdb_byte **opcode_definitions,
20195 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
20196 bfd *abfd,
20197 unsigned int offset_size,
20198 struct dwarf2_section_info *section)
20199{
20200 unsigned int bytes_read, i;
20201 unsigned long arg;
d521ce57 20202 const gdb_byte *defn;
2e276125 20203
cf2c3c16 20204 if (opcode_definitions[opcode] == NULL)
2e276125 20205 {
cf2c3c16
TT
20206 complaint (&symfile_complaints,
20207 _("unrecognized DW_MACFINO opcode 0x%x"),
20208 opcode);
20209 return NULL;
20210 }
2e276125 20211
cf2c3c16
TT
20212 defn = opcode_definitions[opcode];
20213 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20214 defn += bytes_read;
2e276125 20215
cf2c3c16
TT
20216 for (i = 0; i < arg; ++i)
20217 {
f664829e
DE
20218 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20219 section);
cf2c3c16
TT
20220 if (mac_ptr == NULL)
20221 {
20222 /* skip_form_bytes already issued the complaint. */
20223 return NULL;
20224 }
20225 }
757a13d0 20226
cf2c3c16
TT
20227 return mac_ptr;
20228}
757a13d0 20229
cf2c3c16
TT
20230/* A helper function which parses the header of a macro section.
20231 If the macro section is the extended (for now called "GNU") type,
20232 then this updates *OFFSET_SIZE. Returns a pointer to just after
20233 the header, or issues a complaint and returns NULL on error. */
757a13d0 20234
d521ce57
TT
20235static const gdb_byte *
20236dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 20237 bfd *abfd,
d521ce57 20238 const gdb_byte *mac_ptr,
cf2c3c16
TT
20239 unsigned int *offset_size,
20240 int section_is_gnu)
20241{
20242 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 20243
cf2c3c16
TT
20244 if (section_is_gnu)
20245 {
20246 unsigned int version, flags;
757a13d0 20247
cf2c3c16
TT
20248 version = read_2_bytes (abfd, mac_ptr);
20249 if (version != 4)
20250 {
20251 complaint (&symfile_complaints,
20252 _("unrecognized version `%d' in .debug_macro section"),
20253 version);
20254 return NULL;
20255 }
20256 mac_ptr += 2;
757a13d0 20257
cf2c3c16
TT
20258 flags = read_1_byte (abfd, mac_ptr);
20259 ++mac_ptr;
20260 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 20261
cf2c3c16
TT
20262 if ((flags & 2) != 0)
20263 /* We don't need the line table offset. */
20264 mac_ptr += *offset_size;
757a13d0 20265
cf2c3c16
TT
20266 /* Vendor opcode descriptions. */
20267 if ((flags & 4) != 0)
20268 {
20269 unsigned int i, count;
757a13d0 20270
cf2c3c16
TT
20271 count = read_1_byte (abfd, mac_ptr);
20272 ++mac_ptr;
20273 for (i = 0; i < count; ++i)
20274 {
20275 unsigned int opcode, bytes_read;
20276 unsigned long arg;
20277
20278 opcode = read_1_byte (abfd, mac_ptr);
20279 ++mac_ptr;
20280 opcode_definitions[opcode] = mac_ptr;
20281 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20282 mac_ptr += bytes_read;
20283 mac_ptr += arg;
20284 }
757a13d0 20285 }
cf2c3c16 20286 }
757a13d0 20287
cf2c3c16
TT
20288 return mac_ptr;
20289}
757a13d0 20290
cf2c3c16 20291/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 20292 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
20293
20294static void
d521ce57
TT
20295dwarf_decode_macro_bytes (bfd *abfd,
20296 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 20297 struct macro_source_file *current_file,
15d034d0 20298 struct line_header *lh, const char *comp_dir,
cf2c3c16 20299 struct dwarf2_section_info *section,
36586728 20300 int section_is_gnu, int section_is_dwz,
cf2c3c16 20301 unsigned int offset_size,
8fc3fc34
TT
20302 struct objfile *objfile,
20303 htab_t include_hash)
cf2c3c16
TT
20304{
20305 enum dwarf_macro_record_type macinfo_type;
20306 int at_commandline;
d521ce57 20307 const gdb_byte *opcode_definitions[256];
757a13d0 20308
cf2c3c16
TT
20309 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20310 &offset_size, section_is_gnu);
20311 if (mac_ptr == NULL)
20312 {
20313 /* We already issued a complaint. */
20314 return;
20315 }
757a13d0
JK
20316
20317 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20318 GDB is still reading the definitions from command line. First
20319 DW_MACINFO_start_file will need to be ignored as it was already executed
20320 to create CURRENT_FILE for the main source holding also the command line
20321 definitions. On first met DW_MACINFO_start_file this flag is reset to
20322 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20323
20324 at_commandline = 1;
20325
20326 do
20327 {
20328 /* Do we at least have room for a macinfo type byte? */
20329 if (mac_ptr >= mac_end)
20330 {
f664829e 20331 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
20332 break;
20333 }
20334
20335 macinfo_type = read_1_byte (abfd, mac_ptr);
20336 mac_ptr++;
20337
cf2c3c16
TT
20338 /* Note that we rely on the fact that the corresponding GNU and
20339 DWARF constants are the same. */
757a13d0
JK
20340 switch (macinfo_type)
20341 {
20342 /* A zero macinfo type indicates the end of the macro
20343 information. */
20344 case 0:
20345 break;
2e276125 20346
cf2c3c16
TT
20347 case DW_MACRO_GNU_define:
20348 case DW_MACRO_GNU_undef:
20349 case DW_MACRO_GNU_define_indirect:
20350 case DW_MACRO_GNU_undef_indirect:
36586728
TT
20351 case DW_MACRO_GNU_define_indirect_alt:
20352 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 20353 {
891d2f0b 20354 unsigned int bytes_read;
2e276125 20355 int line;
d521ce57 20356 const char *body;
cf2c3c16 20357 int is_define;
2e276125 20358
cf2c3c16
TT
20359 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20360 mac_ptr += bytes_read;
20361
20362 if (macinfo_type == DW_MACRO_GNU_define
20363 || macinfo_type == DW_MACRO_GNU_undef)
20364 {
20365 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20366 mac_ptr += bytes_read;
20367 }
20368 else
20369 {
20370 LONGEST str_offset;
20371
20372 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20373 mac_ptr += offset_size;
2e276125 20374
36586728 20375 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
20376 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20377 || section_is_dwz)
36586728
TT
20378 {
20379 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20380
20381 body = read_indirect_string_from_dwz (dwz, str_offset);
20382 }
20383 else
20384 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
20385 }
20386
20387 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
20388 || macinfo_type == DW_MACRO_GNU_define_indirect
20389 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 20390 if (! current_file)
757a13d0
JK
20391 {
20392 /* DWARF violation as no main source is present. */
20393 complaint (&symfile_complaints,
20394 _("debug info with no main source gives macro %s "
20395 "on line %d: %s"),
cf2c3c16
TT
20396 is_define ? _("definition") : _("undefinition"),
20397 line, body);
757a13d0
JK
20398 break;
20399 }
3e43a32a
MS
20400 if ((line == 0 && !at_commandline)
20401 || (line != 0 && at_commandline))
4d3c2250 20402 complaint (&symfile_complaints,
757a13d0
JK
20403 _("debug info gives %s macro %s with %s line %d: %s"),
20404 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 20405 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
20406 line == 0 ? _("zero") : _("non-zero"), line, body);
20407
cf2c3c16 20408 if (is_define)
757a13d0 20409 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
20410 else
20411 {
20412 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
20413 || macinfo_type == DW_MACRO_GNU_undef_indirect
20414 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
20415 macro_undef (current_file, line, body);
20416 }
2e276125
JB
20417 }
20418 break;
20419
cf2c3c16 20420 case DW_MACRO_GNU_start_file:
2e276125 20421 {
891d2f0b 20422 unsigned int bytes_read;
2e276125
JB
20423 int line, file;
20424
20425 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20426 mac_ptr += bytes_read;
20427 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20428 mac_ptr += bytes_read;
20429
3e43a32a
MS
20430 if ((line == 0 && !at_commandline)
20431 || (line != 0 && at_commandline))
757a13d0
JK
20432 complaint (&symfile_complaints,
20433 _("debug info gives source %d included "
20434 "from %s at %s line %d"),
20435 file, at_commandline ? _("command-line") : _("file"),
20436 line == 0 ? _("zero") : _("non-zero"), line);
20437
20438 if (at_commandline)
20439 {
cf2c3c16
TT
20440 /* This DW_MACRO_GNU_start_file was executed in the
20441 pass one. */
757a13d0
JK
20442 at_commandline = 0;
20443 }
20444 else
20445 current_file = macro_start_file (file, line,
20446 current_file, comp_dir,
cf2c3c16 20447 lh, objfile);
2e276125
JB
20448 }
20449 break;
20450
cf2c3c16 20451 case DW_MACRO_GNU_end_file:
2e276125 20452 if (! current_file)
4d3c2250 20453 complaint (&symfile_complaints,
3e43a32a
MS
20454 _("macro debug info has an unmatched "
20455 "`close_file' directive"));
2e276125
JB
20456 else
20457 {
20458 current_file = current_file->included_by;
20459 if (! current_file)
20460 {
cf2c3c16 20461 enum dwarf_macro_record_type next_type;
2e276125
JB
20462
20463 /* GCC circa March 2002 doesn't produce the zero
20464 type byte marking the end of the compilation
20465 unit. Complain if it's not there, but exit no
20466 matter what. */
20467
20468 /* Do we at least have room for a macinfo type byte? */
20469 if (mac_ptr >= mac_end)
20470 {
f664829e 20471 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
20472 return;
20473 }
20474
20475 /* We don't increment mac_ptr here, so this is just
20476 a look-ahead. */
20477 next_type = read_1_byte (abfd, mac_ptr);
20478 if (next_type != 0)
4d3c2250 20479 complaint (&symfile_complaints,
3e43a32a
MS
20480 _("no terminating 0-type entry for "
20481 "macros in `.debug_macinfo' section"));
2e276125
JB
20482
20483 return;
20484 }
20485 }
20486 break;
20487
cf2c3c16 20488 case DW_MACRO_GNU_transparent_include:
36586728 20489 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
20490 {
20491 LONGEST offset;
8fc3fc34 20492 void **slot;
a036ba48
TT
20493 bfd *include_bfd = abfd;
20494 struct dwarf2_section_info *include_section = section;
20495 struct dwarf2_section_info alt_section;
d521ce57 20496 const gdb_byte *include_mac_end = mac_end;
a036ba48 20497 int is_dwz = section_is_dwz;
d521ce57 20498 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
20499
20500 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20501 mac_ptr += offset_size;
20502
a036ba48
TT
20503 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20504 {
20505 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20506
20507 dwarf2_read_section (dwarf2_per_objfile->objfile,
20508 &dwz->macro);
20509
a036ba48 20510 include_section = &dwz->macro;
a32a8923 20511 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
20512 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20513 is_dwz = 1;
20514 }
20515
20516 new_mac_ptr = include_section->buffer + offset;
20517 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20518
8fc3fc34
TT
20519 if (*slot != NULL)
20520 {
20521 /* This has actually happened; see
20522 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20523 complaint (&symfile_complaints,
20524 _("recursive DW_MACRO_GNU_transparent_include in "
20525 ".debug_macro section"));
20526 }
20527 else
20528 {
d521ce57 20529 *slot = (void *) new_mac_ptr;
36586728 20530
a036ba48 20531 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
36586728 20532 include_mac_end, current_file,
8fc3fc34 20533 lh, comp_dir,
36586728 20534 section, section_is_gnu, is_dwz,
8fc3fc34
TT
20535 offset_size, objfile, include_hash);
20536
d521ce57 20537 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 20538 }
cf2c3c16
TT
20539 }
20540 break;
20541
2e276125 20542 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
20543 if (!section_is_gnu)
20544 {
20545 unsigned int bytes_read;
20546 int constant;
2e276125 20547
cf2c3c16
TT
20548 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20549 mac_ptr += bytes_read;
20550 read_direct_string (abfd, mac_ptr, &bytes_read);
20551 mac_ptr += bytes_read;
2e276125 20552
cf2c3c16
TT
20553 /* We don't recognize any vendor extensions. */
20554 break;
20555 }
20556 /* FALLTHROUGH */
20557
20558 default:
20559 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 20560 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
20561 section);
20562 if (mac_ptr == NULL)
20563 return;
20564 break;
2e276125 20565 }
757a13d0 20566 } while (macinfo_type != 0);
2e276125 20567}
8e19ed76 20568
cf2c3c16 20569static void
09262596 20570dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
15d034d0 20571 const char *comp_dir, int section_is_gnu)
cf2c3c16 20572{
bb5ed363 20573 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
20574 struct line_header *lh = cu->line_header;
20575 bfd *abfd;
d521ce57 20576 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
20577 struct macro_source_file *current_file = 0;
20578 enum dwarf_macro_record_type macinfo_type;
20579 unsigned int offset_size = cu->header.offset_size;
d521ce57 20580 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
20581 struct cleanup *cleanup;
20582 htab_t include_hash;
20583 void **slot;
09262596
DE
20584 struct dwarf2_section_info *section;
20585 const char *section_name;
20586
20587 if (cu->dwo_unit != NULL)
20588 {
20589 if (section_is_gnu)
20590 {
20591 section = &cu->dwo_unit->dwo_file->sections.macro;
20592 section_name = ".debug_macro.dwo";
20593 }
20594 else
20595 {
20596 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20597 section_name = ".debug_macinfo.dwo";
20598 }
20599 }
20600 else
20601 {
20602 if (section_is_gnu)
20603 {
20604 section = &dwarf2_per_objfile->macro;
20605 section_name = ".debug_macro";
20606 }
20607 else
20608 {
20609 section = &dwarf2_per_objfile->macinfo;
20610 section_name = ".debug_macinfo";
20611 }
20612 }
cf2c3c16 20613
bb5ed363 20614 dwarf2_read_section (objfile, section);
cf2c3c16
TT
20615 if (section->buffer == NULL)
20616 {
fceca515 20617 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
20618 return;
20619 }
a32a8923 20620 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
20621
20622 /* First pass: Find the name of the base filename.
20623 This filename is needed in order to process all macros whose definition
20624 (or undefinition) comes from the command line. These macros are defined
20625 before the first DW_MACINFO_start_file entry, and yet still need to be
20626 associated to the base file.
20627
20628 To determine the base file name, we scan the macro definitions until we
20629 reach the first DW_MACINFO_start_file entry. We then initialize
20630 CURRENT_FILE accordingly so that any macro definition found before the
20631 first DW_MACINFO_start_file can still be associated to the base file. */
20632
20633 mac_ptr = section->buffer + offset;
20634 mac_end = section->buffer + section->size;
20635
20636 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20637 &offset_size, section_is_gnu);
20638 if (mac_ptr == NULL)
20639 {
20640 /* We already issued a complaint. */
20641 return;
20642 }
20643
20644 do
20645 {
20646 /* Do we at least have room for a macinfo type byte? */
20647 if (mac_ptr >= mac_end)
20648 {
20649 /* Complaint is printed during the second pass as GDB will probably
20650 stop the first pass earlier upon finding
20651 DW_MACINFO_start_file. */
20652 break;
20653 }
20654
20655 macinfo_type = read_1_byte (abfd, mac_ptr);
20656 mac_ptr++;
20657
20658 /* Note that we rely on the fact that the corresponding GNU and
20659 DWARF constants are the same. */
20660 switch (macinfo_type)
20661 {
20662 /* A zero macinfo type indicates the end of the macro
20663 information. */
20664 case 0:
20665 break;
20666
20667 case DW_MACRO_GNU_define:
20668 case DW_MACRO_GNU_undef:
20669 /* Only skip the data by MAC_PTR. */
20670 {
20671 unsigned int bytes_read;
20672
20673 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20674 mac_ptr += bytes_read;
20675 read_direct_string (abfd, mac_ptr, &bytes_read);
20676 mac_ptr += bytes_read;
20677 }
20678 break;
20679
20680 case DW_MACRO_GNU_start_file:
20681 {
20682 unsigned int bytes_read;
20683 int line, file;
20684
20685 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20686 mac_ptr += bytes_read;
20687 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20688 mac_ptr += bytes_read;
20689
20690 current_file = macro_start_file (file, line, current_file,
bb5ed363 20691 comp_dir, lh, objfile);
cf2c3c16
TT
20692 }
20693 break;
20694
20695 case DW_MACRO_GNU_end_file:
20696 /* No data to skip by MAC_PTR. */
20697 break;
20698
20699 case DW_MACRO_GNU_define_indirect:
20700 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
20701 case DW_MACRO_GNU_define_indirect_alt:
20702 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
20703 {
20704 unsigned int bytes_read;
20705
20706 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20707 mac_ptr += bytes_read;
20708 mac_ptr += offset_size;
20709 }
20710 break;
20711
20712 case DW_MACRO_GNU_transparent_include:
f7a35f02 20713 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
20714 /* Note that, according to the spec, a transparent include
20715 chain cannot call DW_MACRO_GNU_start_file. So, we can just
20716 skip this opcode. */
20717 mac_ptr += offset_size;
20718 break;
20719
20720 case DW_MACINFO_vendor_ext:
20721 /* Only skip the data by MAC_PTR. */
20722 if (!section_is_gnu)
20723 {
20724 unsigned int bytes_read;
20725
20726 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20727 mac_ptr += bytes_read;
20728 read_direct_string (abfd, mac_ptr, &bytes_read);
20729 mac_ptr += bytes_read;
20730 }
20731 /* FALLTHROUGH */
20732
20733 default:
20734 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 20735 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
20736 section);
20737 if (mac_ptr == NULL)
20738 return;
20739 break;
20740 }
20741 } while (macinfo_type != 0 && current_file == NULL);
20742
20743 /* Second pass: Process all entries.
20744
20745 Use the AT_COMMAND_LINE flag to determine whether we are still processing
20746 command-line macro definitions/undefinitions. This flag is unset when we
20747 reach the first DW_MACINFO_start_file entry. */
20748
8fc3fc34
TT
20749 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
20750 NULL, xcalloc, xfree);
20751 cleanup = make_cleanup_htab_delete (include_hash);
20752 mac_ptr = section->buffer + offset;
20753 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 20754 *slot = (void *) mac_ptr;
8fc3fc34 20755 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
36586728
TT
20756 current_file, lh, comp_dir, section,
20757 section_is_gnu, 0,
8fc3fc34
TT
20758 offset_size, objfile, include_hash);
20759 do_cleanups (cleanup);
cf2c3c16
TT
20760}
20761
8e19ed76 20762/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 20763 if so return true else false. */
380bca97 20764
8e19ed76 20765static int
6e5a29e1 20766attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
20767{
20768 return (attr == NULL ? 0 :
20769 attr->form == DW_FORM_block1
20770 || attr->form == DW_FORM_block2
20771 || attr->form == DW_FORM_block4
2dc7f7b3
TT
20772 || attr->form == DW_FORM_block
20773 || attr->form == DW_FORM_exprloc);
8e19ed76 20774}
4c2df51b 20775
c6a0999f
JB
20776/* Return non-zero if ATTR's value is a section offset --- classes
20777 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
20778 You may use DW_UNSND (attr) to retrieve such offsets.
20779
20780 Section 7.5.4, "Attribute Encodings", explains that no attribute
20781 may have a value that belongs to more than one of these classes; it
20782 would be ambiguous if we did, because we use the same forms for all
20783 of them. */
380bca97 20784
3690dd37 20785static int
6e5a29e1 20786attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
20787{
20788 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
20789 || attr->form == DW_FORM_data8
20790 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
20791}
20792
3690dd37
JB
20793/* Return non-zero if ATTR's value falls in the 'constant' class, or
20794 zero otherwise. When this function returns true, you can apply
20795 dwarf2_get_attr_constant_value to it.
20796
20797 However, note that for some attributes you must check
20798 attr_form_is_section_offset before using this test. DW_FORM_data4
20799 and DW_FORM_data8 are members of both the constant class, and of
20800 the classes that contain offsets into other debug sections
20801 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
20802 that, if an attribute's can be either a constant or one of the
20803 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
20804 taken as section offsets, not constants. */
380bca97 20805
3690dd37 20806static int
6e5a29e1 20807attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
20808{
20809 switch (attr->form)
20810 {
20811 case DW_FORM_sdata:
20812 case DW_FORM_udata:
20813 case DW_FORM_data1:
20814 case DW_FORM_data2:
20815 case DW_FORM_data4:
20816 case DW_FORM_data8:
20817 return 1;
20818 default:
20819 return 0;
20820 }
20821}
20822
7771576e
SA
20823
20824/* DW_ADDR is always stored already as sect_offset; despite for the forms
20825 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
20826
20827static int
6e5a29e1 20828attr_form_is_ref (const struct attribute *attr)
7771576e
SA
20829{
20830 switch (attr->form)
20831 {
20832 case DW_FORM_ref_addr:
20833 case DW_FORM_ref1:
20834 case DW_FORM_ref2:
20835 case DW_FORM_ref4:
20836 case DW_FORM_ref8:
20837 case DW_FORM_ref_udata:
20838 case DW_FORM_GNU_ref_alt:
20839 return 1;
20840 default:
20841 return 0;
20842 }
20843}
20844
3019eac3
DE
20845/* Return the .debug_loc section to use for CU.
20846 For DWO files use .debug_loc.dwo. */
20847
20848static struct dwarf2_section_info *
20849cu_debug_loc_section (struct dwarf2_cu *cu)
20850{
20851 if (cu->dwo_unit)
20852 return &cu->dwo_unit->dwo_file->sections.loc;
20853 return &dwarf2_per_objfile->loc;
20854}
20855
8cf6f0b1
TT
20856/* A helper function that fills in a dwarf2_loclist_baton. */
20857
20858static void
20859fill_in_loclist_baton (struct dwarf2_cu *cu,
20860 struct dwarf2_loclist_baton *baton,
ff39bb5e 20861 const struct attribute *attr)
8cf6f0b1 20862{
3019eac3
DE
20863 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20864
20865 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
20866
20867 baton->per_cu = cu->per_cu;
20868 gdb_assert (baton->per_cu);
20869 /* We don't know how long the location list is, but make sure we
20870 don't run off the edge of the section. */
3019eac3
DE
20871 baton->size = section->size - DW_UNSND (attr);
20872 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 20873 baton->base_address = cu->base_address;
f664829e 20874 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
20875}
20876
4c2df51b 20877static void
ff39bb5e 20878dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 20879 struct dwarf2_cu *cu, int is_block)
4c2df51b 20880{
bb5ed363 20881 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 20882 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 20883
3690dd37 20884 if (attr_form_is_section_offset (attr)
3019eac3 20885 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
20886 the section. If so, fall through to the complaint in the
20887 other branch. */
3019eac3 20888 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 20889 {
0d53c4c4 20890 struct dwarf2_loclist_baton *baton;
4c2df51b 20891
bb5ed363 20892 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 20893 sizeof (struct dwarf2_loclist_baton));
4c2df51b 20894
8cf6f0b1 20895 fill_in_loclist_baton (cu, baton, attr);
be391dca 20896
d00adf39 20897 if (cu->base_known == 0)
0d53c4c4 20898 complaint (&symfile_complaints,
3e43a32a
MS
20899 _("Location list used without "
20900 "specifying the CU base address."));
4c2df51b 20901
f1e6e072
TT
20902 SYMBOL_ACLASS_INDEX (sym) = (is_block
20903 ? dwarf2_loclist_block_index
20904 : dwarf2_loclist_index);
0d53c4c4
DJ
20905 SYMBOL_LOCATION_BATON (sym) = baton;
20906 }
20907 else
20908 {
20909 struct dwarf2_locexpr_baton *baton;
20910
bb5ed363 20911 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 20912 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
20913 baton->per_cu = cu->per_cu;
20914 gdb_assert (baton->per_cu);
0d53c4c4
DJ
20915
20916 if (attr_form_is_block (attr))
20917 {
20918 /* Note that we're just copying the block's data pointer
20919 here, not the actual data. We're still pointing into the
6502dd73
DJ
20920 info_buffer for SYM's objfile; right now we never release
20921 that buffer, but when we do clean up properly this may
20922 need to change. */
0d53c4c4
DJ
20923 baton->size = DW_BLOCK (attr)->size;
20924 baton->data = DW_BLOCK (attr)->data;
20925 }
20926 else
20927 {
20928 dwarf2_invalid_attrib_class_complaint ("location description",
20929 SYMBOL_NATURAL_NAME (sym));
20930 baton->size = 0;
0d53c4c4 20931 }
6e70227d 20932
f1e6e072
TT
20933 SYMBOL_ACLASS_INDEX (sym) = (is_block
20934 ? dwarf2_locexpr_block_index
20935 : dwarf2_locexpr_index);
0d53c4c4
DJ
20936 SYMBOL_LOCATION_BATON (sym) = baton;
20937 }
4c2df51b 20938}
6502dd73 20939
9aa1f1e3
TT
20940/* Return the OBJFILE associated with the compilation unit CU. If CU
20941 came from a separate debuginfo file, then the master objfile is
20942 returned. */
ae0d2f24
UW
20943
20944struct objfile *
20945dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
20946{
9291a0cd 20947 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
20948
20949 /* Return the master objfile, so that we can report and look up the
20950 correct file containing this variable. */
20951 if (objfile->separate_debug_objfile_backlink)
20952 objfile = objfile->separate_debug_objfile_backlink;
20953
20954 return objfile;
20955}
20956
96408a79
SA
20957/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
20958 (CU_HEADERP is unused in such case) or prepare a temporary copy at
20959 CU_HEADERP first. */
20960
20961static const struct comp_unit_head *
20962per_cu_header_read_in (struct comp_unit_head *cu_headerp,
20963 struct dwarf2_per_cu_data *per_cu)
20964{
d521ce57 20965 const gdb_byte *info_ptr;
96408a79
SA
20966
20967 if (per_cu->cu)
20968 return &per_cu->cu->header;
20969
8a0459fd 20970 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
20971
20972 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 20973 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
20974
20975 return cu_headerp;
20976}
20977
ae0d2f24
UW
20978/* Return the address size given in the compilation unit header for CU. */
20979
98714339 20980int
ae0d2f24
UW
20981dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
20982{
96408a79
SA
20983 struct comp_unit_head cu_header_local;
20984 const struct comp_unit_head *cu_headerp;
c471e790 20985
96408a79
SA
20986 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20987
20988 return cu_headerp->addr_size;
ae0d2f24
UW
20989}
20990
9eae7c52
TT
20991/* Return the offset size given in the compilation unit header for CU. */
20992
20993int
20994dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
20995{
96408a79
SA
20996 struct comp_unit_head cu_header_local;
20997 const struct comp_unit_head *cu_headerp;
9c6c53f7 20998
96408a79
SA
20999 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21000
21001 return cu_headerp->offset_size;
21002}
21003
21004/* See its dwarf2loc.h declaration. */
21005
21006int
21007dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21008{
21009 struct comp_unit_head cu_header_local;
21010 const struct comp_unit_head *cu_headerp;
21011
21012 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21013
21014 if (cu_headerp->version == 2)
21015 return cu_headerp->addr_size;
21016 else
21017 return cu_headerp->offset_size;
181cebd4
JK
21018}
21019
9aa1f1e3
TT
21020/* Return the text offset of the CU. The returned offset comes from
21021 this CU's objfile. If this objfile came from a separate debuginfo
21022 file, then the offset may be different from the corresponding
21023 offset in the parent objfile. */
21024
21025CORE_ADDR
21026dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21027{
bb3fa9d0 21028 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
21029
21030 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21031}
21032
348e048f
DE
21033/* Locate the .debug_info compilation unit from CU's objfile which contains
21034 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
21035
21036static struct dwarf2_per_cu_data *
b64f50a1 21037dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 21038 unsigned int offset_in_dwz,
ae038cb0
DJ
21039 struct objfile *objfile)
21040{
21041 struct dwarf2_per_cu_data *this_cu;
21042 int low, high;
36586728 21043 const sect_offset *cu_off;
ae038cb0 21044
ae038cb0
DJ
21045 low = 0;
21046 high = dwarf2_per_objfile->n_comp_units - 1;
21047 while (high > low)
21048 {
36586728 21049 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 21050 int mid = low + (high - low) / 2;
9a619af0 21051
36586728
TT
21052 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21053 cu_off = &mid_cu->offset;
21054 if (mid_cu->is_dwz > offset_in_dwz
21055 || (mid_cu->is_dwz == offset_in_dwz
21056 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
21057 high = mid;
21058 else
21059 low = mid + 1;
21060 }
21061 gdb_assert (low == high);
36586728
TT
21062 this_cu = dwarf2_per_objfile->all_comp_units[low];
21063 cu_off = &this_cu->offset;
21064 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 21065 {
36586728 21066 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
21067 error (_("Dwarf Error: could not find partial DIE containing "
21068 "offset 0x%lx [in module %s]"),
b64f50a1 21069 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 21070
b64f50a1
JK
21071 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21072 <= offset.sect_off);
ae038cb0
DJ
21073 return dwarf2_per_objfile->all_comp_units[low-1];
21074 }
21075 else
21076 {
21077 this_cu = dwarf2_per_objfile->all_comp_units[low];
21078 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
21079 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21080 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21081 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
21082 return this_cu;
21083 }
21084}
21085
23745b47 21086/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 21087
9816fde3 21088static void
23745b47 21089init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 21090{
9816fde3 21091 memset (cu, 0, sizeof (*cu));
23745b47
DE
21092 per_cu->cu = cu;
21093 cu->per_cu = per_cu;
21094 cu->objfile = per_cu->objfile;
93311388 21095 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
21096}
21097
21098/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21099
21100static void
95554aad
TT
21101prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21102 enum language pretend_language)
9816fde3
JK
21103{
21104 struct attribute *attr;
21105
21106 /* Set the language we're debugging. */
21107 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21108 if (attr)
21109 set_cu_language (DW_UNSND (attr), cu);
21110 else
9cded63f 21111 {
95554aad 21112 cu->language = pretend_language;
9cded63f
TT
21113 cu->language_defn = language_def (cu->language);
21114 }
dee91e82
DE
21115
21116 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21117 if (attr)
21118 cu->producer = DW_STRING (attr);
93311388
DE
21119}
21120
ae038cb0
DJ
21121/* Release one cached compilation unit, CU. We unlink it from the tree
21122 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
21123 the caller is responsible for that.
21124 NOTE: DATA is a void * because this function is also used as a
21125 cleanup routine. */
ae038cb0
DJ
21126
21127static void
68dc6402 21128free_heap_comp_unit (void *data)
ae038cb0
DJ
21129{
21130 struct dwarf2_cu *cu = data;
21131
23745b47
DE
21132 gdb_assert (cu->per_cu != NULL);
21133 cu->per_cu->cu = NULL;
ae038cb0
DJ
21134 cu->per_cu = NULL;
21135
21136 obstack_free (&cu->comp_unit_obstack, NULL);
21137
21138 xfree (cu);
21139}
21140
72bf9492 21141/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 21142 when we're finished with it. We can't free the pointer itself, but be
dee91e82 21143 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
21144
21145static void
21146free_stack_comp_unit (void *data)
21147{
21148 struct dwarf2_cu *cu = data;
21149
23745b47
DE
21150 gdb_assert (cu->per_cu != NULL);
21151 cu->per_cu->cu = NULL;
21152 cu->per_cu = NULL;
21153
72bf9492
DJ
21154 obstack_free (&cu->comp_unit_obstack, NULL);
21155 cu->partial_dies = NULL;
ae038cb0
DJ
21156}
21157
21158/* Free all cached compilation units. */
21159
21160static void
21161free_cached_comp_units (void *data)
21162{
21163 struct dwarf2_per_cu_data *per_cu, **last_chain;
21164
21165 per_cu = dwarf2_per_objfile->read_in_chain;
21166 last_chain = &dwarf2_per_objfile->read_in_chain;
21167 while (per_cu != NULL)
21168 {
21169 struct dwarf2_per_cu_data *next_cu;
21170
21171 next_cu = per_cu->cu->read_in_chain;
21172
68dc6402 21173 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21174 *last_chain = next_cu;
21175
21176 per_cu = next_cu;
21177 }
21178}
21179
21180/* Increase the age counter on each cached compilation unit, and free
21181 any that are too old. */
21182
21183static void
21184age_cached_comp_units (void)
21185{
21186 struct dwarf2_per_cu_data *per_cu, **last_chain;
21187
21188 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21189 per_cu = dwarf2_per_objfile->read_in_chain;
21190 while (per_cu != NULL)
21191 {
21192 per_cu->cu->last_used ++;
21193 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21194 dwarf2_mark (per_cu->cu);
21195 per_cu = per_cu->cu->read_in_chain;
21196 }
21197
21198 per_cu = dwarf2_per_objfile->read_in_chain;
21199 last_chain = &dwarf2_per_objfile->read_in_chain;
21200 while (per_cu != NULL)
21201 {
21202 struct dwarf2_per_cu_data *next_cu;
21203
21204 next_cu = per_cu->cu->read_in_chain;
21205
21206 if (!per_cu->cu->mark)
21207 {
68dc6402 21208 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21209 *last_chain = next_cu;
21210 }
21211 else
21212 last_chain = &per_cu->cu->read_in_chain;
21213
21214 per_cu = next_cu;
21215 }
21216}
21217
21218/* Remove a single compilation unit from the cache. */
21219
21220static void
dee91e82 21221free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
21222{
21223 struct dwarf2_per_cu_data *per_cu, **last_chain;
21224
21225 per_cu = dwarf2_per_objfile->read_in_chain;
21226 last_chain = &dwarf2_per_objfile->read_in_chain;
21227 while (per_cu != NULL)
21228 {
21229 struct dwarf2_per_cu_data *next_cu;
21230
21231 next_cu = per_cu->cu->read_in_chain;
21232
dee91e82 21233 if (per_cu == target_per_cu)
ae038cb0 21234 {
68dc6402 21235 free_heap_comp_unit (per_cu->cu);
dee91e82 21236 per_cu->cu = NULL;
ae038cb0
DJ
21237 *last_chain = next_cu;
21238 break;
21239 }
21240 else
21241 last_chain = &per_cu->cu->read_in_chain;
21242
21243 per_cu = next_cu;
21244 }
21245}
21246
fe3e1990
DJ
21247/* Release all extra memory associated with OBJFILE. */
21248
21249void
21250dwarf2_free_objfile (struct objfile *objfile)
21251{
21252 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21253
21254 if (dwarf2_per_objfile == NULL)
21255 return;
21256
21257 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21258 free_cached_comp_units (NULL);
21259
7b9f3c50
DE
21260 if (dwarf2_per_objfile->quick_file_names_table)
21261 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 21262
fe3e1990
DJ
21263 /* Everything else should be on the objfile obstack. */
21264}
21265
dee91e82
DE
21266/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21267 We store these in a hash table separate from the DIEs, and preserve them
21268 when the DIEs are flushed out of cache.
21269
21270 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 21271 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
21272 or the type may come from a DWO file. Furthermore, while it's more logical
21273 to use per_cu->section+offset, with Fission the section with the data is in
21274 the DWO file but we don't know that section at the point we need it.
21275 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21276 because we can enter the lookup routine, get_die_type_at_offset, from
21277 outside this file, and thus won't necessarily have PER_CU->cu.
21278 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 21279
dee91e82 21280struct dwarf2_per_cu_offset_and_type
1c379e20 21281{
dee91e82 21282 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 21283 sect_offset offset;
1c379e20
DJ
21284 struct type *type;
21285};
21286
dee91e82 21287/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21288
21289static hashval_t
dee91e82 21290per_cu_offset_and_type_hash (const void *item)
1c379e20 21291{
dee91e82 21292 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 21293
dee91e82 21294 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
21295}
21296
dee91e82 21297/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21298
21299static int
dee91e82 21300per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 21301{
dee91e82
DE
21302 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21303 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 21304
dee91e82
DE
21305 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21306 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
21307}
21308
21309/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
21310 table if necessary. For convenience, return TYPE.
21311
21312 The DIEs reading must have careful ordering to:
21313 * Not cause infite loops trying to read in DIEs as a prerequisite for
21314 reading current DIE.
21315 * Not trying to dereference contents of still incompletely read in types
21316 while reading in other DIEs.
21317 * Enable referencing still incompletely read in types just by a pointer to
21318 the type without accessing its fields.
21319
21320 Therefore caller should follow these rules:
21321 * Try to fetch any prerequisite types we may need to build this DIE type
21322 before building the type and calling set_die_type.
e71ec853 21323 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
21324 possible before fetching more types to complete the current type.
21325 * Make the type as complete as possible before fetching more types. */
1c379e20 21326
f792889a 21327static struct type *
1c379e20
DJ
21328set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21329{
dee91e82 21330 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 21331 struct objfile *objfile = cu->objfile;
1c379e20 21332
b4ba55a1
JB
21333 /* For Ada types, make sure that the gnat-specific data is always
21334 initialized (if not already set). There are a few types where
21335 we should not be doing so, because the type-specific area is
21336 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21337 where the type-specific area is used to store the floatformat).
21338 But this is not a problem, because the gnat-specific information
21339 is actually not needed for these types. */
21340 if (need_gnat_info (cu)
21341 && TYPE_CODE (type) != TYPE_CODE_FUNC
21342 && TYPE_CODE (type) != TYPE_CODE_FLT
21343 && !HAVE_GNAT_AUX_INFO (type))
21344 INIT_GNAT_SPECIFIC (type);
21345
dee91e82 21346 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21347 {
dee91e82
DE
21348 dwarf2_per_objfile->die_type_hash =
21349 htab_create_alloc_ex (127,
21350 per_cu_offset_and_type_hash,
21351 per_cu_offset_and_type_eq,
21352 NULL,
21353 &objfile->objfile_obstack,
21354 hashtab_obstack_allocate,
21355 dummy_obstack_deallocate);
f792889a 21356 }
1c379e20 21357
dee91e82 21358 ofs.per_cu = cu->per_cu;
1c379e20
DJ
21359 ofs.offset = die->offset;
21360 ofs.type = type;
dee91e82
DE
21361 slot = (struct dwarf2_per_cu_offset_and_type **)
21362 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
21363 if (*slot)
21364 complaint (&symfile_complaints,
21365 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 21366 die->offset.sect_off);
673bfd45 21367 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 21368 **slot = ofs;
f792889a 21369 return type;
1c379e20
DJ
21370}
21371
02142a6c
DE
21372/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21373 or return NULL if the die does not have a saved type. */
1c379e20
DJ
21374
21375static struct type *
b64f50a1 21376get_die_type_at_offset (sect_offset offset,
673bfd45 21377 struct dwarf2_per_cu_data *per_cu)
1c379e20 21378{
dee91e82 21379 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 21380
dee91e82 21381 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21382 return NULL;
1c379e20 21383
dee91e82 21384 ofs.per_cu = per_cu;
673bfd45 21385 ofs.offset = offset;
dee91e82 21386 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
21387 if (slot)
21388 return slot->type;
21389 else
21390 return NULL;
21391}
21392
02142a6c 21393/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
21394 or return NULL if DIE does not have a saved type. */
21395
21396static struct type *
21397get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21398{
21399 return get_die_type_at_offset (die->offset, cu->per_cu);
21400}
21401
10b3939b
DJ
21402/* Add a dependence relationship from CU to REF_PER_CU. */
21403
21404static void
21405dwarf2_add_dependence (struct dwarf2_cu *cu,
21406 struct dwarf2_per_cu_data *ref_per_cu)
21407{
21408 void **slot;
21409
21410 if (cu->dependencies == NULL)
21411 cu->dependencies
21412 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21413 NULL, &cu->comp_unit_obstack,
21414 hashtab_obstack_allocate,
21415 dummy_obstack_deallocate);
21416
21417 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21418 if (*slot == NULL)
21419 *slot = ref_per_cu;
21420}
1c379e20 21421
f504f079
DE
21422/* Subroutine of dwarf2_mark to pass to htab_traverse.
21423 Set the mark field in every compilation unit in the
ae038cb0
DJ
21424 cache that we must keep because we are keeping CU. */
21425
10b3939b
DJ
21426static int
21427dwarf2_mark_helper (void **slot, void *data)
21428{
21429 struct dwarf2_per_cu_data *per_cu;
21430
21431 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
21432
21433 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21434 reading of the chain. As such dependencies remain valid it is not much
21435 useful to track and undo them during QUIT cleanups. */
21436 if (per_cu->cu == NULL)
21437 return 1;
21438
10b3939b
DJ
21439 if (per_cu->cu->mark)
21440 return 1;
21441 per_cu->cu->mark = 1;
21442
21443 if (per_cu->cu->dependencies != NULL)
21444 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21445
21446 return 1;
21447}
21448
f504f079
DE
21449/* Set the mark field in CU and in every other compilation unit in the
21450 cache that we must keep because we are keeping CU. */
21451
ae038cb0
DJ
21452static void
21453dwarf2_mark (struct dwarf2_cu *cu)
21454{
21455 if (cu->mark)
21456 return;
21457 cu->mark = 1;
10b3939b
DJ
21458 if (cu->dependencies != NULL)
21459 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
21460}
21461
21462static void
21463dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21464{
21465 while (per_cu)
21466 {
21467 per_cu->cu->mark = 0;
21468 per_cu = per_cu->cu->read_in_chain;
21469 }
72bf9492
DJ
21470}
21471
72bf9492
DJ
21472/* Trivial hash function for partial_die_info: the hash value of a DIE
21473 is its offset in .debug_info for this objfile. */
21474
21475static hashval_t
21476partial_die_hash (const void *item)
21477{
21478 const struct partial_die_info *part_die = item;
9a619af0 21479
b64f50a1 21480 return part_die->offset.sect_off;
72bf9492
DJ
21481}
21482
21483/* Trivial comparison function for partial_die_info structures: two DIEs
21484 are equal if they have the same offset. */
21485
21486static int
21487partial_die_eq (const void *item_lhs, const void *item_rhs)
21488{
21489 const struct partial_die_info *part_die_lhs = item_lhs;
21490 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 21491
b64f50a1 21492 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
21493}
21494
ae038cb0
DJ
21495static struct cmd_list_element *set_dwarf2_cmdlist;
21496static struct cmd_list_element *show_dwarf2_cmdlist;
21497
21498static void
21499set_dwarf2_cmd (char *args, int from_tty)
21500{
21501 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
21502}
21503
21504static void
21505show_dwarf2_cmd (char *args, int from_tty)
6e70227d 21506{
ae038cb0
DJ
21507 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21508}
21509
4bf44c1c 21510/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
21511
21512static void
c1bd65d0 21513dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
21514{
21515 struct dwarf2_per_objfile *data = d;
8b70b953 21516 int ix;
8b70b953 21517
626f2d1c
TT
21518 /* Make sure we don't accidentally use dwarf2_per_objfile while
21519 cleaning up. */
21520 dwarf2_per_objfile = NULL;
21521
59b0c7c1
JB
21522 for (ix = 0; ix < data->n_comp_units; ++ix)
21523 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 21524
59b0c7c1 21525 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 21526 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
21527 data->all_type_units[ix]->per_cu.imported_symtabs);
21528 xfree (data->all_type_units);
95554aad 21529
8b70b953 21530 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
21531
21532 if (data->dwo_files)
21533 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
21534 if (data->dwp_file)
21535 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
21536
21537 if (data->dwz_file && data->dwz_file->dwz_bfd)
21538 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
21539}
21540
21541\f
ae2de4f8 21542/* The "save gdb-index" command. */
9291a0cd
TT
21543
21544/* The contents of the hash table we create when building the string
21545 table. */
21546struct strtab_entry
21547{
21548 offset_type offset;
21549 const char *str;
21550};
21551
559a7a62
JK
21552/* Hash function for a strtab_entry.
21553
21554 Function is used only during write_hash_table so no index format backward
21555 compatibility is needed. */
b89be57b 21556
9291a0cd
TT
21557static hashval_t
21558hash_strtab_entry (const void *e)
21559{
21560 const struct strtab_entry *entry = e;
559a7a62 21561 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
21562}
21563
21564/* Equality function for a strtab_entry. */
b89be57b 21565
9291a0cd
TT
21566static int
21567eq_strtab_entry (const void *a, const void *b)
21568{
21569 const struct strtab_entry *ea = a;
21570 const struct strtab_entry *eb = b;
21571 return !strcmp (ea->str, eb->str);
21572}
21573
21574/* Create a strtab_entry hash table. */
b89be57b 21575
9291a0cd
TT
21576static htab_t
21577create_strtab (void)
21578{
21579 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21580 xfree, xcalloc, xfree);
21581}
21582
21583/* Add a string to the constant pool. Return the string's offset in
21584 host order. */
b89be57b 21585
9291a0cd
TT
21586static offset_type
21587add_string (htab_t table, struct obstack *cpool, const char *str)
21588{
21589 void **slot;
21590 struct strtab_entry entry;
21591 struct strtab_entry *result;
21592
21593 entry.str = str;
21594 slot = htab_find_slot (table, &entry, INSERT);
21595 if (*slot)
21596 result = *slot;
21597 else
21598 {
21599 result = XNEW (struct strtab_entry);
21600 result->offset = obstack_object_size (cpool);
21601 result->str = str;
21602 obstack_grow_str0 (cpool, str);
21603 *slot = result;
21604 }
21605 return result->offset;
21606}
21607
21608/* An entry in the symbol table. */
21609struct symtab_index_entry
21610{
21611 /* The name of the symbol. */
21612 const char *name;
21613 /* The offset of the name in the constant pool. */
21614 offset_type index_offset;
21615 /* A sorted vector of the indices of all the CUs that hold an object
21616 of this name. */
21617 VEC (offset_type) *cu_indices;
21618};
21619
21620/* The symbol table. This is a power-of-2-sized hash table. */
21621struct mapped_symtab
21622{
21623 offset_type n_elements;
21624 offset_type size;
21625 struct symtab_index_entry **data;
21626};
21627
21628/* Hash function for a symtab_index_entry. */
b89be57b 21629
9291a0cd
TT
21630static hashval_t
21631hash_symtab_entry (const void *e)
21632{
21633 const struct symtab_index_entry *entry = e;
21634 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21635 sizeof (offset_type) * VEC_length (offset_type,
21636 entry->cu_indices),
21637 0);
21638}
21639
21640/* Equality function for a symtab_index_entry. */
b89be57b 21641
9291a0cd
TT
21642static int
21643eq_symtab_entry (const void *a, const void *b)
21644{
21645 const struct symtab_index_entry *ea = a;
21646 const struct symtab_index_entry *eb = b;
21647 int len = VEC_length (offset_type, ea->cu_indices);
21648 if (len != VEC_length (offset_type, eb->cu_indices))
21649 return 0;
21650 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21651 VEC_address (offset_type, eb->cu_indices),
21652 sizeof (offset_type) * len);
21653}
21654
21655/* Destroy a symtab_index_entry. */
b89be57b 21656
9291a0cd
TT
21657static void
21658delete_symtab_entry (void *p)
21659{
21660 struct symtab_index_entry *entry = p;
21661 VEC_free (offset_type, entry->cu_indices);
21662 xfree (entry);
21663}
21664
21665/* Create a hash table holding symtab_index_entry objects. */
b89be57b 21666
9291a0cd 21667static htab_t
3876f04e 21668create_symbol_hash_table (void)
9291a0cd
TT
21669{
21670 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
21671 delete_symtab_entry, xcalloc, xfree);
21672}
21673
21674/* Create a new mapped symtab object. */
b89be57b 21675
9291a0cd
TT
21676static struct mapped_symtab *
21677create_mapped_symtab (void)
21678{
21679 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
21680 symtab->n_elements = 0;
21681 symtab->size = 1024;
21682 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21683 return symtab;
21684}
21685
21686/* Destroy a mapped_symtab. */
b89be57b 21687
9291a0cd
TT
21688static void
21689cleanup_mapped_symtab (void *p)
21690{
21691 struct mapped_symtab *symtab = p;
21692 /* The contents of the array are freed when the other hash table is
21693 destroyed. */
21694 xfree (symtab->data);
21695 xfree (symtab);
21696}
21697
21698/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
21699 the slot.
21700
21701 Function is used only during write_hash_table so no index format backward
21702 compatibility is needed. */
b89be57b 21703
9291a0cd
TT
21704static struct symtab_index_entry **
21705find_slot (struct mapped_symtab *symtab, const char *name)
21706{
559a7a62 21707 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
21708
21709 index = hash & (symtab->size - 1);
21710 step = ((hash * 17) & (symtab->size - 1)) | 1;
21711
21712 for (;;)
21713 {
21714 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
21715 return &symtab->data[index];
21716 index = (index + step) & (symtab->size - 1);
21717 }
21718}
21719
21720/* Expand SYMTAB's hash table. */
b89be57b 21721
9291a0cd
TT
21722static void
21723hash_expand (struct mapped_symtab *symtab)
21724{
21725 offset_type old_size = symtab->size;
21726 offset_type i;
21727 struct symtab_index_entry **old_entries = symtab->data;
21728
21729 symtab->size *= 2;
21730 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21731
21732 for (i = 0; i < old_size; ++i)
21733 {
21734 if (old_entries[i])
21735 {
21736 struct symtab_index_entry **slot = find_slot (symtab,
21737 old_entries[i]->name);
21738 *slot = old_entries[i];
21739 }
21740 }
21741
21742 xfree (old_entries);
21743}
21744
156942c7
DE
21745/* Add an entry to SYMTAB. NAME is the name of the symbol.
21746 CU_INDEX is the index of the CU in which the symbol appears.
21747 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 21748
9291a0cd
TT
21749static void
21750add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 21751 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
21752 offset_type cu_index)
21753{
21754 struct symtab_index_entry **slot;
156942c7 21755 offset_type cu_index_and_attrs;
9291a0cd
TT
21756
21757 ++symtab->n_elements;
21758 if (4 * symtab->n_elements / 3 >= symtab->size)
21759 hash_expand (symtab);
21760
21761 slot = find_slot (symtab, name);
21762 if (!*slot)
21763 {
21764 *slot = XNEW (struct symtab_index_entry);
21765 (*slot)->name = name;
156942c7 21766 /* index_offset is set later. */
9291a0cd
TT
21767 (*slot)->cu_indices = NULL;
21768 }
156942c7
DE
21769
21770 cu_index_and_attrs = 0;
21771 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
21772 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
21773 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
21774
21775 /* We don't want to record an index value twice as we want to avoid the
21776 duplication.
21777 We process all global symbols and then all static symbols
21778 (which would allow us to avoid the duplication by only having to check
21779 the last entry pushed), but a symbol could have multiple kinds in one CU.
21780 To keep things simple we don't worry about the duplication here and
21781 sort and uniqufy the list after we've processed all symbols. */
21782 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
21783}
21784
21785/* qsort helper routine for uniquify_cu_indices. */
21786
21787static int
21788offset_type_compare (const void *ap, const void *bp)
21789{
21790 offset_type a = *(offset_type *) ap;
21791 offset_type b = *(offset_type *) bp;
21792
21793 return (a > b) - (b > a);
21794}
21795
21796/* Sort and remove duplicates of all symbols' cu_indices lists. */
21797
21798static void
21799uniquify_cu_indices (struct mapped_symtab *symtab)
21800{
21801 int i;
21802
21803 for (i = 0; i < symtab->size; ++i)
21804 {
21805 struct symtab_index_entry *entry = symtab->data[i];
21806
21807 if (entry
21808 && entry->cu_indices != NULL)
21809 {
21810 unsigned int next_to_insert, next_to_check;
21811 offset_type last_value;
21812
21813 qsort (VEC_address (offset_type, entry->cu_indices),
21814 VEC_length (offset_type, entry->cu_indices),
21815 sizeof (offset_type), offset_type_compare);
21816
21817 last_value = VEC_index (offset_type, entry->cu_indices, 0);
21818 next_to_insert = 1;
21819 for (next_to_check = 1;
21820 next_to_check < VEC_length (offset_type, entry->cu_indices);
21821 ++next_to_check)
21822 {
21823 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
21824 != last_value)
21825 {
21826 last_value = VEC_index (offset_type, entry->cu_indices,
21827 next_to_check);
21828 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
21829 last_value);
21830 ++next_to_insert;
21831 }
21832 }
21833 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
21834 }
21835 }
9291a0cd
TT
21836}
21837
21838/* Add a vector of indices to the constant pool. */
b89be57b 21839
9291a0cd 21840static offset_type
3876f04e 21841add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
21842 struct symtab_index_entry *entry)
21843{
21844 void **slot;
21845
3876f04e 21846 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
21847 if (!*slot)
21848 {
21849 offset_type len = VEC_length (offset_type, entry->cu_indices);
21850 offset_type val = MAYBE_SWAP (len);
21851 offset_type iter;
21852 int i;
21853
21854 *slot = entry;
21855 entry->index_offset = obstack_object_size (cpool);
21856
21857 obstack_grow (cpool, &val, sizeof (val));
21858 for (i = 0;
21859 VEC_iterate (offset_type, entry->cu_indices, i, iter);
21860 ++i)
21861 {
21862 val = MAYBE_SWAP (iter);
21863 obstack_grow (cpool, &val, sizeof (val));
21864 }
21865 }
21866 else
21867 {
21868 struct symtab_index_entry *old_entry = *slot;
21869 entry->index_offset = old_entry->index_offset;
21870 entry = old_entry;
21871 }
21872 return entry->index_offset;
21873}
21874
21875/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
21876 constant pool entries going into the obstack CPOOL. */
b89be57b 21877
9291a0cd
TT
21878static void
21879write_hash_table (struct mapped_symtab *symtab,
21880 struct obstack *output, struct obstack *cpool)
21881{
21882 offset_type i;
3876f04e 21883 htab_t symbol_hash_table;
9291a0cd
TT
21884 htab_t str_table;
21885
3876f04e 21886 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 21887 str_table = create_strtab ();
3876f04e 21888
9291a0cd
TT
21889 /* We add all the index vectors to the constant pool first, to
21890 ensure alignment is ok. */
21891 for (i = 0; i < symtab->size; ++i)
21892 {
21893 if (symtab->data[i])
3876f04e 21894 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
21895 }
21896
21897 /* Now write out the hash table. */
21898 for (i = 0; i < symtab->size; ++i)
21899 {
21900 offset_type str_off, vec_off;
21901
21902 if (symtab->data[i])
21903 {
21904 str_off = add_string (str_table, cpool, symtab->data[i]->name);
21905 vec_off = symtab->data[i]->index_offset;
21906 }
21907 else
21908 {
21909 /* While 0 is a valid constant pool index, it is not valid
21910 to have 0 for both offsets. */
21911 str_off = 0;
21912 vec_off = 0;
21913 }
21914
21915 str_off = MAYBE_SWAP (str_off);
21916 vec_off = MAYBE_SWAP (vec_off);
21917
21918 obstack_grow (output, &str_off, sizeof (str_off));
21919 obstack_grow (output, &vec_off, sizeof (vec_off));
21920 }
21921
21922 htab_delete (str_table);
3876f04e 21923 htab_delete (symbol_hash_table);
9291a0cd
TT
21924}
21925
0a5429f6
DE
21926/* Struct to map psymtab to CU index in the index file. */
21927struct psymtab_cu_index_map
21928{
21929 struct partial_symtab *psymtab;
21930 unsigned int cu_index;
21931};
21932
21933static hashval_t
21934hash_psymtab_cu_index (const void *item)
21935{
21936 const struct psymtab_cu_index_map *map = item;
21937
21938 return htab_hash_pointer (map->psymtab);
21939}
21940
21941static int
21942eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
21943{
21944 const struct psymtab_cu_index_map *lhs = item_lhs;
21945 const struct psymtab_cu_index_map *rhs = item_rhs;
21946
21947 return lhs->psymtab == rhs->psymtab;
21948}
21949
21950/* Helper struct for building the address table. */
21951struct addrmap_index_data
21952{
21953 struct objfile *objfile;
21954 struct obstack *addr_obstack;
21955 htab_t cu_index_htab;
21956
21957 /* Non-zero if the previous_* fields are valid.
21958 We can't write an entry until we see the next entry (since it is only then
21959 that we know the end of the entry). */
21960 int previous_valid;
21961 /* Index of the CU in the table of all CUs in the index file. */
21962 unsigned int previous_cu_index;
0963b4bd 21963 /* Start address of the CU. */
0a5429f6
DE
21964 CORE_ADDR previous_cu_start;
21965};
21966
21967/* Write an address entry to OBSTACK. */
b89be57b 21968
9291a0cd 21969static void
0a5429f6
DE
21970add_address_entry (struct objfile *objfile, struct obstack *obstack,
21971 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 21972{
0a5429f6 21973 offset_type cu_index_to_write;
948f8e3d 21974 gdb_byte addr[8];
9291a0cd
TT
21975 CORE_ADDR baseaddr;
21976
21977 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21978
0a5429f6
DE
21979 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
21980 obstack_grow (obstack, addr, 8);
21981 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
21982 obstack_grow (obstack, addr, 8);
21983 cu_index_to_write = MAYBE_SWAP (cu_index);
21984 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
21985}
21986
21987/* Worker function for traversing an addrmap to build the address table. */
21988
21989static int
21990add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
21991{
21992 struct addrmap_index_data *data = datap;
21993 struct partial_symtab *pst = obj;
0a5429f6
DE
21994
21995 if (data->previous_valid)
21996 add_address_entry (data->objfile, data->addr_obstack,
21997 data->previous_cu_start, start_addr,
21998 data->previous_cu_index);
21999
22000 data->previous_cu_start = start_addr;
22001 if (pst != NULL)
22002 {
22003 struct psymtab_cu_index_map find_map, *map;
22004 find_map.psymtab = pst;
22005 map = htab_find (data->cu_index_htab, &find_map);
22006 gdb_assert (map != NULL);
22007 data->previous_cu_index = map->cu_index;
22008 data->previous_valid = 1;
22009 }
22010 else
22011 data->previous_valid = 0;
22012
22013 return 0;
22014}
22015
22016/* Write OBJFILE's address map to OBSTACK.
22017 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22018 in the index file. */
22019
22020static void
22021write_address_map (struct objfile *objfile, struct obstack *obstack,
22022 htab_t cu_index_htab)
22023{
22024 struct addrmap_index_data addrmap_index_data;
22025
22026 /* When writing the address table, we have to cope with the fact that
22027 the addrmap iterator only provides the start of a region; we have to
22028 wait until the next invocation to get the start of the next region. */
22029
22030 addrmap_index_data.objfile = objfile;
22031 addrmap_index_data.addr_obstack = obstack;
22032 addrmap_index_data.cu_index_htab = cu_index_htab;
22033 addrmap_index_data.previous_valid = 0;
22034
22035 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22036 &addrmap_index_data);
22037
22038 /* It's highly unlikely the last entry (end address = 0xff...ff)
22039 is valid, but we should still handle it.
22040 The end address is recorded as the start of the next region, but that
22041 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22042 anyway. */
22043 if (addrmap_index_data.previous_valid)
22044 add_address_entry (objfile, obstack,
22045 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22046 addrmap_index_data.previous_cu_index);
9291a0cd
TT
22047}
22048
156942c7
DE
22049/* Return the symbol kind of PSYM. */
22050
22051static gdb_index_symbol_kind
22052symbol_kind (struct partial_symbol *psym)
22053{
22054 domain_enum domain = PSYMBOL_DOMAIN (psym);
22055 enum address_class aclass = PSYMBOL_CLASS (psym);
22056
22057 switch (domain)
22058 {
22059 case VAR_DOMAIN:
22060 switch (aclass)
22061 {
22062 case LOC_BLOCK:
22063 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22064 case LOC_TYPEDEF:
22065 return GDB_INDEX_SYMBOL_KIND_TYPE;
22066 case LOC_COMPUTED:
22067 case LOC_CONST_BYTES:
22068 case LOC_OPTIMIZED_OUT:
22069 case LOC_STATIC:
22070 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22071 case LOC_CONST:
22072 /* Note: It's currently impossible to recognize psyms as enum values
22073 short of reading the type info. For now punt. */
22074 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22075 default:
22076 /* There are other LOC_FOO values that one might want to classify
22077 as variables, but dwarf2read.c doesn't currently use them. */
22078 return GDB_INDEX_SYMBOL_KIND_OTHER;
22079 }
22080 case STRUCT_DOMAIN:
22081 return GDB_INDEX_SYMBOL_KIND_TYPE;
22082 default:
22083 return GDB_INDEX_SYMBOL_KIND_OTHER;
22084 }
22085}
22086
9291a0cd 22087/* Add a list of partial symbols to SYMTAB. */
b89be57b 22088
9291a0cd
TT
22089static void
22090write_psymbols (struct mapped_symtab *symtab,
987d643c 22091 htab_t psyms_seen,
9291a0cd
TT
22092 struct partial_symbol **psymp,
22093 int count,
987d643c
TT
22094 offset_type cu_index,
22095 int is_static)
9291a0cd
TT
22096{
22097 for (; count-- > 0; ++psymp)
22098 {
156942c7
DE
22099 struct partial_symbol *psym = *psymp;
22100 void **slot;
987d643c 22101
156942c7 22102 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 22103 error (_("Ada is not currently supported by the index"));
987d643c 22104
987d643c 22105 /* Only add a given psymbol once. */
156942c7 22106 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
22107 if (!*slot)
22108 {
156942c7
DE
22109 gdb_index_symbol_kind kind = symbol_kind (psym);
22110
22111 *slot = psym;
22112 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22113 is_static, kind, cu_index);
987d643c 22114 }
9291a0cd
TT
22115 }
22116}
22117
22118/* Write the contents of an ("unfinished") obstack to FILE. Throw an
22119 exception if there is an error. */
b89be57b 22120
9291a0cd
TT
22121static void
22122write_obstack (FILE *file, struct obstack *obstack)
22123{
22124 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22125 file)
22126 != obstack_object_size (obstack))
22127 error (_("couldn't data write to file"));
22128}
22129
22130/* Unlink a file if the argument is not NULL. */
b89be57b 22131
9291a0cd
TT
22132static void
22133unlink_if_set (void *p)
22134{
22135 char **filename = p;
22136 if (*filename)
22137 unlink (*filename);
22138}
22139
1fd400ff
TT
22140/* A helper struct used when iterating over debug_types. */
22141struct signatured_type_index_data
22142{
22143 struct objfile *objfile;
22144 struct mapped_symtab *symtab;
22145 struct obstack *types_list;
987d643c 22146 htab_t psyms_seen;
1fd400ff
TT
22147 int cu_index;
22148};
22149
22150/* A helper function that writes a single signatured_type to an
22151 obstack. */
b89be57b 22152
1fd400ff
TT
22153static int
22154write_one_signatured_type (void **slot, void *d)
22155{
22156 struct signatured_type_index_data *info = d;
22157 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 22158 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
22159 gdb_byte val[8];
22160
22161 write_psymbols (info->symtab,
987d643c 22162 info->psyms_seen,
3e43a32a
MS
22163 info->objfile->global_psymbols.list
22164 + psymtab->globals_offset,
987d643c
TT
22165 psymtab->n_global_syms, info->cu_index,
22166 0);
1fd400ff 22167 write_psymbols (info->symtab,
987d643c 22168 info->psyms_seen,
3e43a32a
MS
22169 info->objfile->static_psymbols.list
22170 + psymtab->statics_offset,
987d643c
TT
22171 psymtab->n_static_syms, info->cu_index,
22172 1);
1fd400ff 22173
b64f50a1
JK
22174 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22175 entry->per_cu.offset.sect_off);
1fd400ff 22176 obstack_grow (info->types_list, val, 8);
3019eac3
DE
22177 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22178 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
22179 obstack_grow (info->types_list, val, 8);
22180 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22181 obstack_grow (info->types_list, val, 8);
22182
22183 ++info->cu_index;
22184
22185 return 1;
22186}
22187
95554aad
TT
22188/* Recurse into all "included" dependencies and write their symbols as
22189 if they appeared in this psymtab. */
22190
22191static void
22192recursively_write_psymbols (struct objfile *objfile,
22193 struct partial_symtab *psymtab,
22194 struct mapped_symtab *symtab,
22195 htab_t psyms_seen,
22196 offset_type cu_index)
22197{
22198 int i;
22199
22200 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22201 if (psymtab->dependencies[i]->user != NULL)
22202 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22203 symtab, psyms_seen, cu_index);
22204
22205 write_psymbols (symtab,
22206 psyms_seen,
22207 objfile->global_psymbols.list + psymtab->globals_offset,
22208 psymtab->n_global_syms, cu_index,
22209 0);
22210 write_psymbols (symtab,
22211 psyms_seen,
22212 objfile->static_psymbols.list + psymtab->statics_offset,
22213 psymtab->n_static_syms, cu_index,
22214 1);
22215}
22216
9291a0cd 22217/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 22218
9291a0cd
TT
22219static void
22220write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22221{
22222 struct cleanup *cleanup;
22223 char *filename, *cleanup_filename;
1fd400ff
TT
22224 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22225 struct obstack cu_list, types_cu_list;
9291a0cd
TT
22226 int i;
22227 FILE *out_file;
22228 struct mapped_symtab *symtab;
22229 offset_type val, size_of_contents, total_len;
22230 struct stat st;
987d643c 22231 htab_t psyms_seen;
0a5429f6
DE
22232 htab_t cu_index_htab;
22233 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 22234
9291a0cd
TT
22235 if (dwarf2_per_objfile->using_index)
22236 error (_("Cannot use an index to create the index"));
22237
8b70b953
TT
22238 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22239 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22240
260b681b
DE
22241 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22242 return;
22243
4262abfb
JK
22244 if (stat (objfile_name (objfile), &st) < 0)
22245 perror_with_name (objfile_name (objfile));
9291a0cd 22246
4262abfb 22247 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
22248 INDEX_SUFFIX, (char *) NULL);
22249 cleanup = make_cleanup (xfree, filename);
22250
614c279d 22251 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
22252 if (!out_file)
22253 error (_("Can't open `%s' for writing"), filename);
22254
22255 cleanup_filename = filename;
22256 make_cleanup (unlink_if_set, &cleanup_filename);
22257
22258 symtab = create_mapped_symtab ();
22259 make_cleanup (cleanup_mapped_symtab, symtab);
22260
22261 obstack_init (&addr_obstack);
22262 make_cleanup_obstack_free (&addr_obstack);
22263
22264 obstack_init (&cu_list);
22265 make_cleanup_obstack_free (&cu_list);
22266
1fd400ff
TT
22267 obstack_init (&types_cu_list);
22268 make_cleanup_obstack_free (&types_cu_list);
22269
987d643c
TT
22270 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22271 NULL, xcalloc, xfree);
96408a79 22272 make_cleanup_htab_delete (psyms_seen);
987d643c 22273
0a5429f6
DE
22274 /* While we're scanning CU's create a table that maps a psymtab pointer
22275 (which is what addrmap records) to its index (which is what is recorded
22276 in the index file). This will later be needed to write the address
22277 table. */
22278 cu_index_htab = htab_create_alloc (100,
22279 hash_psymtab_cu_index,
22280 eq_psymtab_cu_index,
22281 NULL, xcalloc, xfree);
96408a79 22282 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
22283 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22284 xmalloc (sizeof (struct psymtab_cu_index_map)
22285 * dwarf2_per_objfile->n_comp_units);
22286 make_cleanup (xfree, psymtab_cu_index_map);
22287
22288 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
22289 work here. Also, the debug_types entries do not appear in
22290 all_comp_units, but only in their own hash table. */
9291a0cd
TT
22291 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22292 {
3e43a32a
MS
22293 struct dwarf2_per_cu_data *per_cu
22294 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 22295 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 22296 gdb_byte val[8];
0a5429f6
DE
22297 struct psymtab_cu_index_map *map;
22298 void **slot;
9291a0cd 22299
92fac807
JK
22300 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22301 It may be referenced from a local scope but in such case it does not
22302 need to be present in .gdb_index. */
22303 if (psymtab == NULL)
22304 continue;
22305
95554aad
TT
22306 if (psymtab->user == NULL)
22307 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 22308
0a5429f6
DE
22309 map = &psymtab_cu_index_map[i];
22310 map->psymtab = psymtab;
22311 map->cu_index = i;
22312 slot = htab_find_slot (cu_index_htab, map, INSERT);
22313 gdb_assert (slot != NULL);
22314 gdb_assert (*slot == NULL);
22315 *slot = map;
9291a0cd 22316
b64f50a1
JK
22317 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22318 per_cu->offset.sect_off);
9291a0cd 22319 obstack_grow (&cu_list, val, 8);
e254ef6a 22320 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
22321 obstack_grow (&cu_list, val, 8);
22322 }
22323
0a5429f6
DE
22324 /* Dump the address map. */
22325 write_address_map (objfile, &addr_obstack, cu_index_htab);
22326
1fd400ff
TT
22327 /* Write out the .debug_type entries, if any. */
22328 if (dwarf2_per_objfile->signatured_types)
22329 {
22330 struct signatured_type_index_data sig_data;
22331
22332 sig_data.objfile = objfile;
22333 sig_data.symtab = symtab;
22334 sig_data.types_list = &types_cu_list;
987d643c 22335 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
22336 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22337 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22338 write_one_signatured_type, &sig_data);
22339 }
22340
156942c7
DE
22341 /* Now that we've processed all symbols we can shrink their cu_indices
22342 lists. */
22343 uniquify_cu_indices (symtab);
22344
9291a0cd
TT
22345 obstack_init (&constant_pool);
22346 make_cleanup_obstack_free (&constant_pool);
22347 obstack_init (&symtab_obstack);
22348 make_cleanup_obstack_free (&symtab_obstack);
22349 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22350
22351 obstack_init (&contents);
22352 make_cleanup_obstack_free (&contents);
1fd400ff 22353 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
22354 total_len = size_of_contents;
22355
22356 /* The version number. */
796a7ff8 22357 val = MAYBE_SWAP (8);
9291a0cd
TT
22358 obstack_grow (&contents, &val, sizeof (val));
22359
22360 /* The offset of the CU list from the start of the file. */
22361 val = MAYBE_SWAP (total_len);
22362 obstack_grow (&contents, &val, sizeof (val));
22363 total_len += obstack_object_size (&cu_list);
22364
1fd400ff
TT
22365 /* The offset of the types CU list from the start of the file. */
22366 val = MAYBE_SWAP (total_len);
22367 obstack_grow (&contents, &val, sizeof (val));
22368 total_len += obstack_object_size (&types_cu_list);
22369
9291a0cd
TT
22370 /* The offset of the address table from the start of the file. */
22371 val = MAYBE_SWAP (total_len);
22372 obstack_grow (&contents, &val, sizeof (val));
22373 total_len += obstack_object_size (&addr_obstack);
22374
22375 /* The offset of the symbol table from the start of the file. */
22376 val = MAYBE_SWAP (total_len);
22377 obstack_grow (&contents, &val, sizeof (val));
22378 total_len += obstack_object_size (&symtab_obstack);
22379
22380 /* The offset of the constant pool from the start of the file. */
22381 val = MAYBE_SWAP (total_len);
22382 obstack_grow (&contents, &val, sizeof (val));
22383 total_len += obstack_object_size (&constant_pool);
22384
22385 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22386
22387 write_obstack (out_file, &contents);
22388 write_obstack (out_file, &cu_list);
1fd400ff 22389 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
22390 write_obstack (out_file, &addr_obstack);
22391 write_obstack (out_file, &symtab_obstack);
22392 write_obstack (out_file, &constant_pool);
22393
22394 fclose (out_file);
22395
22396 /* We want to keep the file, so we set cleanup_filename to NULL
22397 here. See unlink_if_set. */
22398 cleanup_filename = NULL;
22399
22400 do_cleanups (cleanup);
22401}
22402
90476074
TT
22403/* Implementation of the `save gdb-index' command.
22404
22405 Note that the file format used by this command is documented in the
22406 GDB manual. Any changes here must be documented there. */
11570e71 22407
9291a0cd
TT
22408static void
22409save_gdb_index_command (char *arg, int from_tty)
22410{
22411 struct objfile *objfile;
22412
22413 if (!arg || !*arg)
96d19272 22414 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
22415
22416 ALL_OBJFILES (objfile)
22417 {
22418 struct stat st;
22419
22420 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 22421 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
22422 continue;
22423
22424 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22425 if (dwarf2_per_objfile)
22426 {
22427 volatile struct gdb_exception except;
22428
22429 TRY_CATCH (except, RETURN_MASK_ERROR)
22430 {
22431 write_psymtabs_to_index (objfile, arg);
22432 }
22433 if (except.reason < 0)
22434 exception_fprintf (gdb_stderr, except,
22435 _("Error while writing index for `%s': "),
4262abfb 22436 objfile_name (objfile));
9291a0cd
TT
22437 }
22438 }
dce234bc
PP
22439}
22440
9291a0cd
TT
22441\f
22442
9eae7c52
TT
22443int dwarf2_always_disassemble;
22444
22445static void
22446show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22447 struct cmd_list_element *c, const char *value)
22448{
3e43a32a
MS
22449 fprintf_filtered (file,
22450 _("Whether to always disassemble "
22451 "DWARF expressions is %s.\n"),
9eae7c52
TT
22452 value);
22453}
22454
900e11f9
JK
22455static void
22456show_check_physname (struct ui_file *file, int from_tty,
22457 struct cmd_list_element *c, const char *value)
22458{
22459 fprintf_filtered (file,
22460 _("Whether to check \"physname\" is %s.\n"),
22461 value);
22462}
22463
6502dd73
DJ
22464void _initialize_dwarf2_read (void);
22465
22466void
22467_initialize_dwarf2_read (void)
22468{
96d19272
JK
22469 struct cmd_list_element *c;
22470
dce234bc 22471 dwarf2_objfile_data_key
c1bd65d0 22472 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 22473
1bedd215
AC
22474 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22475Set DWARF 2 specific variables.\n\
22476Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
22477 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22478 0/*allow-unknown*/, &maintenance_set_cmdlist);
22479
1bedd215
AC
22480 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22481Show DWARF 2 specific variables\n\
22482Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
22483 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22484 0/*allow-unknown*/, &maintenance_show_cmdlist);
22485
22486 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
22487 &dwarf2_max_cache_age, _("\
22488Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22489Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22490A higher limit means that cached compilation units will be stored\n\
22491in memory longer, and more total memory will be used. Zero disables\n\
22492caching, which can slow down startup."),
2c5b56ce 22493 NULL,
920d2a44 22494 show_dwarf2_max_cache_age,
2c5b56ce 22495 &set_dwarf2_cmdlist,
ae038cb0 22496 &show_dwarf2_cmdlist);
d97bc12b 22497
9eae7c52
TT
22498 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22499 &dwarf2_always_disassemble, _("\
22500Set whether `info address' always disassembles DWARF expressions."), _("\
22501Show whether `info address' always disassembles DWARF expressions."), _("\
22502When enabled, DWARF expressions are always printed in an assembly-like\n\
22503syntax. When disabled, expressions will be printed in a more\n\
22504conversational style, when possible."),
22505 NULL,
22506 show_dwarf2_always_disassemble,
22507 &set_dwarf2_cmdlist,
22508 &show_dwarf2_cmdlist);
22509
73be47f5 22510 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
45cfd468
DE
22511Set debugging of the dwarf2 reader."), _("\
22512Show debugging of the dwarf2 reader."), _("\
73be47f5
DE
22513When enabled (non-zero), debugging messages are printed during dwarf2\n\
22514reading and symtab expansion. A value of 1 (one) provides basic\n\
22515information. A value greater than 1 provides more verbose information."),
45cfd468
DE
22516 NULL,
22517 NULL,
22518 &setdebuglist, &showdebuglist);
22519
ccce17b0 22520 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
d97bc12b
DE
22521Set debugging of the dwarf2 DIE reader."), _("\
22522Show debugging of the dwarf2 DIE reader."), _("\
22523When enabled (non-zero), DIEs are dumped after they are read in.\n\
22524The value is the maximum depth to print."),
ccce17b0
YQ
22525 NULL,
22526 NULL,
22527 &setdebuglist, &showdebuglist);
9291a0cd 22528
900e11f9
JK
22529 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22530Set cross-checking of \"physname\" code against demangler."), _("\
22531Show cross-checking of \"physname\" code against demangler."), _("\
22532When enabled, GDB's internal \"physname\" code is checked against\n\
22533the demangler."),
22534 NULL, show_check_physname,
22535 &setdebuglist, &showdebuglist);
22536
e615022a
DE
22537 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22538 no_class, &use_deprecated_index_sections, _("\
22539Set whether to use deprecated gdb_index sections."), _("\
22540Show whether to use deprecated gdb_index sections."), _("\
22541When enabled, deprecated .gdb_index sections are used anyway.\n\
22542Normally they are ignored either because of a missing feature or\n\
22543performance issue.\n\
22544Warning: This option must be enabled before gdb reads the file."),
22545 NULL,
22546 NULL,
22547 &setlist, &showlist);
22548
96d19272 22549 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 22550 _("\
fc1a9d6e 22551Save a gdb-index file.\n\
11570e71 22552Usage: save gdb-index DIRECTORY"),
96d19272
JK
22553 &save_cmdlist);
22554 set_cmd_completer (c, filename_completer);
f1e6e072
TT
22555
22556 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22557 &dwarf2_locexpr_funcs);
22558 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22559 &dwarf2_loclist_funcs);
22560
22561 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22562 &dwarf2_block_frame_base_locexpr_funcs);
22563 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22564 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 22565}
This page took 4.888383 seconds and 4 git commands to generate.