Simplify calls to init_psymbol_list
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
42a4f53d 3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c 31#include "defs.h"
cd4fb1b2 32#include "dwarf2read.h"
87d6a7aa 33#include "dwarf-index-cache.h"
cd4fb1b2 34#include "dwarf-index-common.h"
c906108c 35#include "bfd.h"
80626a55 36#include "elf-bfd.h"
c906108c
SS
37#include "symtab.h"
38#include "gdbtypes.h"
c906108c 39#include "objfiles.h"
fa8f86ff 40#include "dwarf2.h"
804d2729 41#include "buildsym.h"
c906108c 42#include "demangle.h"
50f182aa 43#include "gdb-demangle.h"
c906108c 44#include "expression.h"
d5166ae1 45#include "filenames.h" /* for DOSish file names */
2e276125 46#include "macrotab.h"
c906108c
SS
47#include "language.h"
48#include "complaints.h"
357e46e7 49#include "bcache.h"
4c2df51b
DJ
50#include "dwarf2expr.h"
51#include "dwarf2loc.h"
9219021c 52#include "cp-support.h"
72bf9492 53#include "hashtab.h"
ae038cb0
DJ
54#include "command.h"
55#include "gdbcmd.h"
edb3359d 56#include "block.h"
ff013f42 57#include "addrmap.h"
94af9270 58#include "typeprint.h"
ccefe4c4 59#include "psympriv.h"
53ce3c39 60#include <sys/stat.h>
96d19272 61#include "completer.h"
34eaf542 62#include "vec.h"
98bfdba5 63#include "c-lang.h"
a766d390 64#include "go-lang.h"
98bfdba5 65#include "valprint.h"
3019eac3 66#include "gdbcore.h" /* for gnutarget */
156942c7 67#include "gdb/gdb-index.h"
60d5a603 68#include <ctype.h>
cbb099e8 69#include "gdb_bfd.h"
4357ac6c 70#include "f-lang.h"
05cba821 71#include "source.h"
614c279d 72#include "filestuff.h"
dc294be5 73#include "build-id.h"
22cee43f 74#include "namespace.h"
bef155c3 75#include "common/gdb_unlinker.h"
14bc53a8 76#include "common/function-view.h"
ecfb656c
PA
77#include "common/gdb_optional.h"
78#include "common/underlying.h"
d5722aa2 79#include "common/byte-vector.h"
927aa2e7 80#include "common/hash_enum.h"
bbf2f4df 81#include "filename-seen-cache.h"
b32b108a 82#include "producer.h"
c906108c 83#include <fcntl.h>
c906108c 84#include <sys/types.h>
325fac50 85#include <algorithm>
bc8f2430
JK
86#include <unordered_set>
87#include <unordered_map>
c62446b1 88#include "selftest.h"
437afbb8
JK
89#include <cmath>
90#include <set>
91#include <forward_list>
c9317f21 92#include "rust-lang.h"
b4987c95 93#include "common/pathstuff.h"
437afbb8 94
73be47f5
DE
95/* When == 1, print basic high level tracing messages.
96 When > 1, be more verbose.
b4f54984
DE
97 This is in contrast to the low level DIE reading of dwarf_die_debug. */
98static unsigned int dwarf_read_debug = 0;
45cfd468 99
d97bc12b 100/* When non-zero, dump DIEs after they are read in. */
b4f54984 101static unsigned int dwarf_die_debug = 0;
d97bc12b 102
27e0867f
DE
103/* When non-zero, dump line number entries as they are read in. */
104static unsigned int dwarf_line_debug = 0;
105
900e11f9
JK
106/* When non-zero, cross-check physname against demangler. */
107static int check_physname = 0;
108
481860b3 109/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 110static int use_deprecated_index_sections = 0;
481860b3 111
6502dd73
DJ
112static const struct objfile_data *dwarf2_objfile_data_key;
113
f1e6e072
TT
114/* The "aclass" indices for various kinds of computed DWARF symbols. */
115
116static int dwarf2_locexpr_index;
117static int dwarf2_loclist_index;
118static int dwarf2_locexpr_block_index;
119static int dwarf2_loclist_block_index;
120
3f563c84
PA
121/* An index into a (C++) symbol name component in a symbol name as
122 recorded in the mapped_index's symbol table. For each C++ symbol
123 in the symbol table, we record one entry for the start of each
124 component in the symbol in a table of name components, and then
125 sort the table, in order to be able to binary search symbol names,
126 ignoring leading namespaces, both completion and regular look up.
127 For example, for symbol "A::B::C", we'll have an entry that points
128 to "A::B::C", another that points to "B::C", and another for "C".
129 Note that function symbols in GDB index have no parameter
130 information, just the function/method names. You can convert a
131 name_component to a "const char *" using the
132 'mapped_index::symbol_name_at(offset_type)' method. */
133
134struct name_component
135{
136 /* Offset in the symbol name where the component starts. Stored as
137 a (32-bit) offset instead of a pointer to save memory and improve
138 locality on 64-bit architectures. */
139 offset_type name_offset;
140
141 /* The symbol's index in the symbol and constant pool tables of a
142 mapped_index. */
143 offset_type idx;
144};
145
44ed8f3e
PA
146/* Base class containing bits shared by both .gdb_index and
147 .debug_name indexes. */
148
149struct mapped_index_base
150{
22ca247e
TT
151 mapped_index_base () = default;
152 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153
44ed8f3e
PA
154 /* The name_component table (a sorted vector). See name_component's
155 description above. */
156 std::vector<name_component> name_components;
157
158 /* How NAME_COMPONENTS is sorted. */
159 enum case_sensitivity name_components_casing;
160
161 /* Return the number of names in the symbol table. */
162 virtual size_t symbol_name_count () const = 0;
163
164 /* Get the name of the symbol at IDX in the symbol table. */
165 virtual const char *symbol_name_at (offset_type idx) const = 0;
166
167 /* Return whether the name at IDX in the symbol table should be
168 ignored. */
169 virtual bool symbol_name_slot_invalid (offset_type idx) const
170 {
171 return false;
172 }
173
174 /* Build the symbol name component sorted vector, if we haven't
175 yet. */
176 void build_name_components ();
177
178 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
179 possible matches for LN_NO_PARAMS in the name component
180 vector. */
181 std::pair<std::vector<name_component>::const_iterator,
182 std::vector<name_component>::const_iterator>
183 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184
185 /* Prevent deleting/destroying via a base class pointer. */
186protected:
187 ~mapped_index_base() = default;
188};
189
9291a0cd
TT
190/* A description of the mapped index. The file format is described in
191 a comment by the code that writes the index. */
fc898b42 192struct mapped_index final : public mapped_index_base
9291a0cd 193{
f00a2de2
PA
194 /* A slot/bucket in the symbol table hash. */
195 struct symbol_table_slot
196 {
197 const offset_type name;
198 const offset_type vec;
199 };
200
559a7a62 201 /* Index data format version. */
3063847f 202 int version = 0;
559a7a62 203
f00a2de2
PA
204 /* The address table data. */
205 gdb::array_view<const gdb_byte> address_table;
b11b1f88 206
3876f04e 207 /* The symbol table, implemented as a hash table. */
f00a2de2 208 gdb::array_view<symbol_table_slot> symbol_table;
b11b1f88 209
9291a0cd 210 /* A pointer to the constant pool. */
3063847f 211 const char *constant_pool = nullptr;
3f563c84 212
44ed8f3e
PA
213 bool symbol_name_slot_invalid (offset_type idx) const override
214 {
215 const auto &bucket = this->symbol_table[idx];
216 return bucket.name == 0 && bucket.vec;
217 }
5c58de74 218
3f563c84
PA
219 /* Convenience method to get at the name of the symbol at IDX in the
220 symbol table. */
44ed8f3e 221 const char *symbol_name_at (offset_type idx) const override
f00a2de2 222 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
5c58de74 223
44ed8f3e
PA
224 size_t symbol_name_count () const override
225 { return this->symbol_table.size (); }
9291a0cd
TT
226};
227
927aa2e7
JK
228/* A description of the mapped .debug_names.
229 Uninitialized map has CU_COUNT 0. */
fc898b42 230struct mapped_debug_names final : public mapped_index_base
927aa2e7 231{
ed2dc618
SM
232 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
233 : dwarf2_per_objfile (dwarf2_per_objfile_)
234 {}
235
236 struct dwarf2_per_objfile *dwarf2_per_objfile;
927aa2e7
JK
237 bfd_endian dwarf5_byte_order;
238 bool dwarf5_is_dwarf64;
239 bool augmentation_is_gdb;
240 uint8_t offset_size;
241 uint32_t cu_count = 0;
242 uint32_t tu_count, bucket_count, name_count;
243 const gdb_byte *cu_table_reordered, *tu_table_reordered;
244 const uint32_t *bucket_table_reordered, *hash_table_reordered;
245 const gdb_byte *name_table_string_offs_reordered;
246 const gdb_byte *name_table_entry_offs_reordered;
247 const gdb_byte *entry_pool;
248
249 struct index_val
250 {
251 ULONGEST dwarf_tag;
252 struct attr
253 {
254 /* Attribute name DW_IDX_*. */
255 ULONGEST dw_idx;
256
257 /* Attribute form DW_FORM_*. */
258 ULONGEST form;
259
260 /* Value if FORM is DW_FORM_implicit_const. */
261 LONGEST implicit_const;
262 };
263 std::vector<attr> attr_vec;
264 };
265
266 std::unordered_map<ULONGEST, index_val> abbrev_map;
267
268 const char *namei_to_name (uint32_t namei) const;
44ed8f3e
PA
269
270 /* Implementation of the mapped_index_base virtual interface, for
271 the name_components cache. */
272
273 const char *symbol_name_at (offset_type idx) const override
274 { return namei_to_name (idx); }
275
276 size_t symbol_name_count () const override
277 { return this->name_count; }
927aa2e7
JK
278};
279
cd4fb1b2 280/* See dwarf2read.h. */
ed2dc618 281
cd4fb1b2 282dwarf2_per_objfile *
ed2dc618
SM
283get_dwarf2_per_objfile (struct objfile *objfile)
284{
285 return ((struct dwarf2_per_objfile *)
286 objfile_data (objfile, dwarf2_objfile_data_key));
287}
288
289/* Set the dwarf2_per_objfile associated to OBJFILE. */
290
291void
292set_dwarf2_per_objfile (struct objfile *objfile,
293 struct dwarf2_per_objfile *dwarf2_per_objfile)
294{
295 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
296 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
297}
c906108c 298
251d32d9 299/* Default names of the debugging sections. */
c906108c 300
233a11ab
CS
301/* Note that if the debugging section has been compressed, it might
302 have a name like .zdebug_info. */
303
9cdd5dbd
DE
304static const struct dwarf2_debug_sections dwarf2_elf_names =
305{
251d32d9
TG
306 { ".debug_info", ".zdebug_info" },
307 { ".debug_abbrev", ".zdebug_abbrev" },
308 { ".debug_line", ".zdebug_line" },
309 { ".debug_loc", ".zdebug_loc" },
43988095 310 { ".debug_loclists", ".zdebug_loclists" },
251d32d9 311 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 312 { ".debug_macro", ".zdebug_macro" },
251d32d9 313 { ".debug_str", ".zdebug_str" },
43988095 314 { ".debug_line_str", ".zdebug_line_str" },
251d32d9 315 { ".debug_ranges", ".zdebug_ranges" },
43988095 316 { ".debug_rnglists", ".zdebug_rnglists" },
251d32d9 317 { ".debug_types", ".zdebug_types" },
3019eac3 318 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
319 { ".debug_frame", ".zdebug_frame" },
320 { ".eh_frame", NULL },
24d3216f 321 { ".gdb_index", ".zgdb_index" },
927aa2e7
JK
322 { ".debug_names", ".zdebug_names" },
323 { ".debug_aranges", ".zdebug_aranges" },
24d3216f 324 23
251d32d9 325};
c906108c 326
80626a55 327/* List of DWO/DWP sections. */
3019eac3 328
80626a55 329static const struct dwop_section_names
3019eac3
DE
330{
331 struct dwarf2_section_names abbrev_dwo;
332 struct dwarf2_section_names info_dwo;
333 struct dwarf2_section_names line_dwo;
334 struct dwarf2_section_names loc_dwo;
43988095 335 struct dwarf2_section_names loclists_dwo;
09262596
DE
336 struct dwarf2_section_names macinfo_dwo;
337 struct dwarf2_section_names macro_dwo;
3019eac3
DE
338 struct dwarf2_section_names str_dwo;
339 struct dwarf2_section_names str_offsets_dwo;
340 struct dwarf2_section_names types_dwo;
80626a55
DE
341 struct dwarf2_section_names cu_index;
342 struct dwarf2_section_names tu_index;
3019eac3 343}
80626a55 344dwop_section_names =
3019eac3
DE
345{
346 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
347 { ".debug_info.dwo", ".zdebug_info.dwo" },
348 { ".debug_line.dwo", ".zdebug_line.dwo" },
349 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
43988095 350 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
09262596
DE
351 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
352 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
353 { ".debug_str.dwo", ".zdebug_str.dwo" },
354 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
355 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
356 { ".debug_cu_index", ".zdebug_cu_index" },
357 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
358};
359
c906108c
SS
360/* local data types */
361
107d2387
AC
362/* The data in a compilation unit header, after target2host
363 translation, looks like this. */
c906108c 364struct comp_unit_head
a738430d 365{
c764a876 366 unsigned int length;
a738430d 367 short version;
a738430d
MK
368 unsigned char addr_size;
369 unsigned char signed_addr_p;
9c541725 370 sect_offset abbrev_sect_off;
57349743 371
a738430d
MK
372 /* Size of file offsets; either 4 or 8. */
373 unsigned int offset_size;
57349743 374
a738430d
MK
375 /* Size of the length field; either 4 or 12. */
376 unsigned int initial_length_size;
57349743 377
43988095
JK
378 enum dwarf_unit_type unit_type;
379
a738430d
MK
380 /* Offset to the first byte of this compilation unit header in the
381 .debug_info section, for resolving relative reference dies. */
9c541725 382 sect_offset sect_off;
57349743 383
d00adf39
DE
384 /* Offset to first die in this cu from the start of the cu.
385 This will be the first byte following the compilation unit header. */
9c541725 386 cu_offset first_die_cu_offset;
43988095
JK
387
388 /* 64-bit signature of this type unit - it is valid only for
389 UNIT_TYPE DW_UT_type. */
390 ULONGEST signature;
391
392 /* For types, offset in the type's DIE of the type defined by this TU. */
9c541725 393 cu_offset type_cu_offset_in_tu;
a738430d 394};
c906108c 395
3da10d80
KS
396/* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398struct delayed_method_info
399{
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414};
415
e7c27a73
DJ
416/* Internal state when decoding a particular compilation unit. */
417struct dwarf2_cu
418{
fcd3b13d
SM
419 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
420 ~dwarf2_cu ();
421
422 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
423
d00adf39 424 /* The header of the compilation unit. */
fcd3b13d 425 struct comp_unit_head header {};
e142c38c 426
d00adf39 427 /* Base address of this compilation unit. */
fcd3b13d 428 CORE_ADDR base_address = 0;
d00adf39
DE
429
430 /* Non-zero if base_address has been set. */
fcd3b13d 431 int base_known = 0;
d00adf39 432
e142c38c 433 /* The language we are debugging. */
fcd3b13d
SM
434 enum language language = language_unknown;
435 const struct language_defn *language_defn = nullptr;
e142c38c 436
fcd3b13d 437 const char *producer = nullptr;
b0f35d58 438
804d2729
TT
439 /* The symtab builder for this CU. This is only non-NULL when full
440 symbols are being read. */
441 std::unique_ptr<buildsym_compunit> builder;
442
e142c38c
DJ
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
fcd3b13d 452 struct pending **list_in_scope = nullptr;
e142c38c 453
b64f50a1
JK
454 /* Hash table holding all the loaded partial DIEs
455 with partial_die->offset.SECT_OFF as hash. */
fcd3b13d 456 htab_t partial_dies = nullptr;
72bf9492
DJ
457
458 /* Storage for things with the same lifetime as this read-in compilation
459 unit, including partial DIEs. */
fcd3b13d 460 auto_obstack comp_unit_obstack;
72bf9492 461
ae038cb0
DJ
462 /* When multiple dwarf2_cu structures are living in memory, this field
463 chains them all together, so that they can be released efficiently.
464 We will probably also want a generation counter so that most-recently-used
465 compilation units are cached... */
fcd3b13d 466 struct dwarf2_per_cu_data *read_in_chain = nullptr;
ae038cb0 467
69d751e3 468 /* Backlink to our per_cu entry. */
ae038cb0
DJ
469 struct dwarf2_per_cu_data *per_cu;
470
471 /* How many compilation units ago was this CU last referenced? */
fcd3b13d 472 int last_used = 0;
ae038cb0 473
b64f50a1
JK
474 /* A hash table of DIE cu_offset for following references with
475 die_info->offset.sect_off as hash. */
fcd3b13d 476 htab_t die_hash = nullptr;
10b3939b
DJ
477
478 /* Full DIEs if read in. */
fcd3b13d 479 struct die_info *dies = nullptr;
10b3939b
DJ
480
481 /* A set of pointers to dwarf2_per_cu_data objects for compilation
482 units referenced by this one. Only set during full symbol processing;
483 partial symbol tables do not have dependencies. */
fcd3b13d 484 htab_t dependencies = nullptr;
10b3939b 485
cb1df416 486 /* Header data from the line table, during full symbol processing. */
fcd3b13d 487 struct line_header *line_header = nullptr;
4c8aa72d
PA
488 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
489 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
490 this is the DW_TAG_compile_unit die for this CU. We'll hold on
491 to the line header as long as this DIE is being processed. See
492 process_die_scope. */
fcd3b13d 493 die_info *line_header_die_owner = nullptr;
cb1df416 494
3da10d80
KS
495 /* A list of methods which need to have physnames computed
496 after all type information has been read. */
c89b44cd 497 std::vector<delayed_method_info> method_list;
3da10d80 498
96408a79 499 /* To be copied to symtab->call_site_htab. */
fcd3b13d 500 htab_t call_site_htab = nullptr;
96408a79 501
034e5797
DE
502 /* Non-NULL if this CU came from a DWO file.
503 There is an invariant here that is important to remember:
504 Except for attributes copied from the top level DIE in the "main"
505 (or "stub") file in preparation for reading the DWO file
506 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
507 Either there isn't a DWO file (in which case this is NULL and the point
508 is moot), or there is and either we're not going to read it (in which
509 case this is NULL) or there is and we are reading it (in which case this
510 is non-NULL). */
fcd3b13d 511 struct dwo_unit *dwo_unit = nullptr;
3019eac3
DE
512
513 /* The DW_AT_addr_base attribute if present, zero otherwise
514 (zero is a valid value though).
1dbab08b 515 Note this value comes from the Fission stub CU/TU's DIE. */
fcd3b13d 516 ULONGEST addr_base = 0;
3019eac3 517
2e3cf129
DE
518 /* The DW_AT_ranges_base attribute if present, zero otherwise
519 (zero is a valid value though).
1dbab08b 520 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 521 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
522 be used without needing to know whether DWO files are in use or not.
523 N.B. This does not apply to DW_AT_ranges appearing in
524 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
525 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
526 DW_AT_ranges_base *would* have to be applied, and we'd have to care
527 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
fcd3b13d 528 ULONGEST ranges_base = 0;
2e3cf129 529
c9317f21
TT
530 /* When reading debug info generated by older versions of rustc, we
531 have to rewrite some union types to be struct types with a
532 variant part. This rewriting must be done after the CU is fully
533 read in, because otherwise at the point of rewriting some struct
534 type might not have been fully processed. So, we keep a list of
535 all such types here and process them after expansion. */
536 std::vector<struct type *> rust_unions;
537
ae038cb0 538 /* Mark used when releasing cached dies. */
9068261f 539 bool mark : 1;
ae038cb0 540
8be455d7
JK
541 /* This CU references .debug_loc. See the symtab->locations_valid field.
542 This test is imperfect as there may exist optimized debug code not using
543 any location list and still facing inlining issues if handled as
544 unoptimized code. For a future better test see GCC PR other/32998. */
9068261f 545 bool has_loclist : 1;
ba919b58 546
9068261f 547 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
1b80a9fa
JK
548 if all the producer_is_* fields are valid. This information is cached
549 because profiling CU expansion showed excessive time spent in
550 producer_is_gxx_lt_4_6. */
9068261f
AB
551 bool checked_producer : 1;
552 bool producer_is_gxx_lt_4_6 : 1;
553 bool producer_is_gcc_lt_4_3 : 1;
eb77c9df 554 bool producer_is_icc : 1;
9068261f 555 bool producer_is_icc_lt_14 : 1;
c258c396 556 bool producer_is_codewarrior : 1;
4d4ec4e5 557
9068261f 558 /* When true, the file that we're processing is known to have
4d4ec4e5
TT
559 debugging info for C++ namespaces. GCC 3.3.x did not produce
560 this information, but later versions do. */
561
9068261f 562 bool processing_has_namespace_info : 1;
d590ff25
YQ
563
564 struct partial_die_info *find_partial_die (sect_offset sect_off);
e7c27a73
DJ
565};
566
094b34ac
DE
567/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
568 This includes type_unit_group and quick_file_names. */
569
570struct stmt_list_hash
571{
572 /* The DWO unit this table is from or NULL if there is none. */
573 struct dwo_unit *dwo_unit;
574
575 /* Offset in .debug_line or .debug_line.dwo. */
9c541725 576 sect_offset line_sect_off;
094b34ac
DE
577};
578
f4dc4d17
DE
579/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
580 an object of this type. */
581
582struct type_unit_group
583{
0186c6a7 584 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
585 To simplify things we create an artificial CU that "includes" all the
586 type units using this stmt_list so that the rest of the code still has
587 a "per_cu" handle on the symtab.
588 This PER_CU is recognized by having no section. */
8a0459fd 589#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
590 struct dwarf2_per_cu_data per_cu;
591
0186c6a7
DE
592 /* The TUs that share this DW_AT_stmt_list entry.
593 This is added to while parsing type units to build partial symtabs,
594 and is deleted afterwards and not used again. */
595 VEC (sig_type_ptr) *tus;
f4dc4d17 596
43f3e411 597 /* The compunit symtab.
094b34ac 598 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
599 so we create an essentially anonymous symtab as the compunit symtab. */
600 struct compunit_symtab *compunit_symtab;
f4dc4d17 601
094b34ac
DE
602 /* The data used to construct the hash key. */
603 struct stmt_list_hash hash;
f4dc4d17
DE
604
605 /* The number of symtabs from the line header.
606 The value here must match line_header.num_file_names. */
607 unsigned int num_symtabs;
608
609 /* The symbol tables for this TU (obtained from the files listed in
610 DW_AT_stmt_list).
611 WARNING: The order of entries here must match the order of entries
612 in the line header. After the first TU using this type_unit_group, the
613 line header for the subsequent TUs is recreated from this. This is done
614 because we need to use the same symtabs for each TU using the same
615 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
616 there's no guarantee the line header doesn't have duplicate entries. */
617 struct symtab **symtabs;
618};
619
73869dc2 620/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
621
622struct dwo_sections
623{
624 struct dwarf2_section_info abbrev;
3019eac3
DE
625 struct dwarf2_section_info line;
626 struct dwarf2_section_info loc;
43988095 627 struct dwarf2_section_info loclists;
09262596
DE
628 struct dwarf2_section_info macinfo;
629 struct dwarf2_section_info macro;
3019eac3
DE
630 struct dwarf2_section_info str;
631 struct dwarf2_section_info str_offsets;
80626a55
DE
632 /* In the case of a virtual DWO file, these two are unused. */
633 struct dwarf2_section_info info;
3019eac3
DE
634 VEC (dwarf2_section_info_def) *types;
635};
636
c88ee1f0 637/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
638
639struct dwo_unit
640{
641 /* Backlink to the containing struct dwo_file. */
642 struct dwo_file *dwo_file;
643
644 /* The "id" that distinguishes this CU/TU.
645 .debug_info calls this "dwo_id", .debug_types calls this "signature".
646 Since signatures came first, we stick with it for consistency. */
647 ULONGEST signature;
648
649 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 650 struct dwarf2_section_info *section;
3019eac3 651
9c541725
PA
652 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
653 sect_offset sect_off;
3019eac3
DE
654 unsigned int length;
655
656 /* For types, offset in the type's DIE of the type defined by this TU. */
657 cu_offset type_offset_in_tu;
658};
659
73869dc2
DE
660/* include/dwarf2.h defines the DWP section codes.
661 It defines a max value but it doesn't define a min value, which we
662 use for error checking, so provide one. */
663
664enum dwp_v2_section_ids
665{
666 DW_SECT_MIN = 1
667};
668
80626a55 669/* Data for one DWO file.
57d63ce2
DE
670
671 This includes virtual DWO files (a virtual DWO file is a DWO file as it
672 appears in a DWP file). DWP files don't really have DWO files per se -
673 comdat folding of types "loses" the DWO file they came from, and from
674 a high level view DWP files appear to contain a mass of random types.
675 However, to maintain consistency with the non-DWP case we pretend DWP
676 files contain virtual DWO files, and we assign each TU with one virtual
677 DWO file (generally based on the line and abbrev section offsets -
678 a heuristic that seems to work in practice). */
3019eac3
DE
679
680struct dwo_file
681{
0ac5b59e 682 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
683 For virtual DWO files the name is constructed from the section offsets
684 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
685 from related CU+TUs. */
0ac5b59e
DE
686 const char *dwo_name;
687
688 /* The DW_AT_comp_dir attribute. */
689 const char *comp_dir;
3019eac3 690
80626a55
DE
691 /* The bfd, when the file is open. Otherwise this is NULL.
692 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
693 bfd *dbfd;
3019eac3 694
73869dc2
DE
695 /* The sections that make up this DWO file.
696 Remember that for virtual DWO files in DWP V2, these are virtual
697 sections (for lack of a better name). */
3019eac3
DE
698 struct dwo_sections sections;
699
33c5cd75
DB
700 /* The CUs in the file.
701 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
702 an extension to handle LLVM's Link Time Optimization output (where
703 multiple source files may be compiled into a single object/dwo pair). */
704 htab_t cus;
3019eac3
DE
705
706 /* Table of TUs in the file.
707 Each element is a struct dwo_unit. */
708 htab_t tus;
709};
710
80626a55
DE
711/* These sections are what may appear in a DWP file. */
712
713struct dwp_sections
714{
73869dc2 715 /* These are used by both DWP version 1 and 2. */
80626a55
DE
716 struct dwarf2_section_info str;
717 struct dwarf2_section_info cu_index;
718 struct dwarf2_section_info tu_index;
73869dc2
DE
719
720 /* These are only used by DWP version 2 files.
721 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
722 sections are referenced by section number, and are not recorded here.
723 In DWP version 2 there is at most one copy of all these sections, each
724 section being (effectively) comprised of the concatenation of all of the
725 individual sections that exist in the version 1 format.
726 To keep the code simple we treat each of these concatenated pieces as a
727 section itself (a virtual section?). */
728 struct dwarf2_section_info abbrev;
729 struct dwarf2_section_info info;
730 struct dwarf2_section_info line;
731 struct dwarf2_section_info loc;
732 struct dwarf2_section_info macinfo;
733 struct dwarf2_section_info macro;
734 struct dwarf2_section_info str_offsets;
735 struct dwarf2_section_info types;
80626a55
DE
736};
737
73869dc2
DE
738/* These sections are what may appear in a virtual DWO file in DWP version 1.
739 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 740
73869dc2 741struct virtual_v1_dwo_sections
80626a55
DE
742{
743 struct dwarf2_section_info abbrev;
744 struct dwarf2_section_info line;
745 struct dwarf2_section_info loc;
746 struct dwarf2_section_info macinfo;
747 struct dwarf2_section_info macro;
748 struct dwarf2_section_info str_offsets;
749 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 750 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
751 struct dwarf2_section_info info_or_types;
752};
753
73869dc2
DE
754/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
755 In version 2, the sections of the DWO files are concatenated together
756 and stored in one section of that name. Thus each ELF section contains
757 several "virtual" sections. */
758
759struct virtual_v2_dwo_sections
760{
761 bfd_size_type abbrev_offset;
762 bfd_size_type abbrev_size;
763
764 bfd_size_type line_offset;
765 bfd_size_type line_size;
766
767 bfd_size_type loc_offset;
768 bfd_size_type loc_size;
769
770 bfd_size_type macinfo_offset;
771 bfd_size_type macinfo_size;
772
773 bfd_size_type macro_offset;
774 bfd_size_type macro_size;
775
776 bfd_size_type str_offsets_offset;
777 bfd_size_type str_offsets_size;
778
779 /* Each DWP hash table entry records one CU or one TU.
780 That is recorded here, and copied to dwo_unit.section. */
781 bfd_size_type info_or_types_offset;
782 bfd_size_type info_or_types_size;
783};
784
80626a55
DE
785/* Contents of DWP hash tables. */
786
787struct dwp_hash_table
788{
73869dc2 789 uint32_t version, nr_columns;
80626a55 790 uint32_t nr_units, nr_slots;
73869dc2
DE
791 const gdb_byte *hash_table, *unit_table;
792 union
793 {
794 struct
795 {
796 const gdb_byte *indices;
797 } v1;
798 struct
799 {
800 /* This is indexed by column number and gives the id of the section
801 in that column. */
802#define MAX_NR_V2_DWO_SECTIONS \
803 (1 /* .debug_info or .debug_types */ \
804 + 1 /* .debug_abbrev */ \
805 + 1 /* .debug_line */ \
806 + 1 /* .debug_loc */ \
807 + 1 /* .debug_str_offsets */ \
808 + 1 /* .debug_macro or .debug_macinfo */)
809 int section_ids[MAX_NR_V2_DWO_SECTIONS];
810 const gdb_byte *offsets;
811 const gdb_byte *sizes;
812 } v2;
813 } section_pool;
80626a55
DE
814};
815
816/* Data for one DWP file. */
817
818struct dwp_file
819{
400174b1
TT
820 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
821 : name (name_),
822 dbfd (std::move (abfd))
823 {
824 }
825
80626a55
DE
826 /* Name of the file. */
827 const char *name;
828
73869dc2 829 /* File format version. */
400174b1 830 int version = 0;
73869dc2 831
93417882 832 /* The bfd. */
400174b1 833 gdb_bfd_ref_ptr dbfd;
80626a55
DE
834
835 /* Section info for this file. */
400174b1 836 struct dwp_sections sections {};
80626a55 837
57d63ce2 838 /* Table of CUs in the file. */
400174b1 839 const struct dwp_hash_table *cus = nullptr;
80626a55
DE
840
841 /* Table of TUs in the file. */
400174b1 842 const struct dwp_hash_table *tus = nullptr;
80626a55 843
19ac8c2e 844 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
400174b1
TT
845 htab_t loaded_cus {};
846 htab_t loaded_tus {};
80626a55 847
73869dc2
DE
848 /* Table to map ELF section numbers to their sections.
849 This is only needed for the DWP V1 file format. */
400174b1
TT
850 unsigned int num_sections = 0;
851 asection **elf_sections = nullptr;
80626a55
DE
852};
853
36586728
TT
854/* This represents a '.dwz' file. */
855
856struct dwz_file
857{
7ff8cb8c
TT
858 dwz_file (gdb_bfd_ref_ptr &&bfd)
859 : dwz_bfd (std::move (bfd))
860 {
861 }
862
36586728 863 /* A dwz file can only contain a few sections. */
7ff8cb8c
TT
864 struct dwarf2_section_info abbrev {};
865 struct dwarf2_section_info info {};
866 struct dwarf2_section_info str {};
867 struct dwarf2_section_info line {};
868 struct dwarf2_section_info macro {};
869 struct dwarf2_section_info gdb_index {};
870 struct dwarf2_section_info debug_names {};
36586728
TT
871
872 /* The dwz's BFD. */
7ff8cb8c 873 gdb_bfd_ref_ptr dwz_bfd;
87d6a7aa
SM
874
875 /* If we loaded the index from an external file, this contains the
876 resources associated to the open file, memory mapping, etc. */
877 std::unique_ptr<index_cache_resource> index_cache_res;
36586728
TT
878};
879
0963b4bd
MS
880/* Struct used to pass misc. parameters to read_die_and_children, et
881 al. which are used for both .debug_info and .debug_types dies.
882 All parameters here are unchanging for the life of the call. This
dee91e82 883 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
884
885struct die_reader_specs
886{
a32a8923 887 /* The bfd of die_section. */
93311388
DE
888 bfd* abfd;
889
890 /* The CU of the DIE we are parsing. */
891 struct dwarf2_cu *cu;
892
80626a55 893 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
894 struct dwo_file *dwo_file;
895
dee91e82 896 /* The section the die comes from.
3019eac3 897 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
898 struct dwarf2_section_info *die_section;
899
900 /* die_section->buffer. */
d521ce57 901 const gdb_byte *buffer;
f664829e
DE
902
903 /* The end of the buffer. */
904 const gdb_byte *buffer_end;
a2ce51a0
DE
905
906 /* The value of the DW_AT_comp_dir attribute. */
907 const char *comp_dir;
685af9cd
TT
908
909 /* The abbreviation table to use when reading the DIEs. */
910 struct abbrev_table *abbrev_table;
93311388
DE
911};
912
fd820528 913/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 914typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 915 const gdb_byte *info_ptr,
dee91e82
DE
916 struct die_info *comp_unit_die,
917 int has_children,
918 void *data);
919
ecfb656c
PA
920/* A 1-based directory index. This is a strong typedef to prevent
921 accidentally using a directory index as a 0-based index into an
922 array/vector. */
923enum class dir_index : unsigned int {};
924
925/* Likewise, a 1-based file name index. */
926enum class file_name_index : unsigned int {};
927
52059ffd
TT
928struct file_entry
929{
fff8551c
PA
930 file_entry () = default;
931
ecfb656c 932 file_entry (const char *name_, dir_index d_index_,
fff8551c
PA
933 unsigned int mod_time_, unsigned int length_)
934 : name (name_),
ecfb656c 935 d_index (d_index_),
fff8551c
PA
936 mod_time (mod_time_),
937 length (length_)
938 {}
939
ecfb656c
PA
940 /* Return the include directory at D_INDEX stored in LH. Returns
941 NULL if D_INDEX is out of bounds. */
8c43009f
PA
942 const char *include_dir (const line_header *lh) const;
943
fff8551c
PA
944 /* The file name. Note this is an observing pointer. The memory is
945 owned by debug_line_buffer. */
946 const char *name {};
947
8c43009f 948 /* The directory index (1-based). */
ecfb656c 949 dir_index d_index {};
fff8551c
PA
950
951 unsigned int mod_time {};
952
953 unsigned int length {};
954
955 /* True if referenced by the Line Number Program. */
956 bool included_p {};
957
83769d0b 958 /* The associated symbol table, if any. */
fff8551c 959 struct symtab *symtab {};
52059ffd
TT
960};
961
debd256d
JB
962/* The line number information for a compilation unit (found in the
963 .debug_line section) begins with a "statement program header",
964 which contains the following information. */
965struct line_header
966{
fff8551c
PA
967 line_header ()
968 : offset_in_dwz {}
969 {}
970
971 /* Add an entry to the include directory table. */
972 void add_include_dir (const char *include_dir);
973
974 /* Add an entry to the file name table. */
ecfb656c 975 void add_file_name (const char *name, dir_index d_index,
fff8551c
PA
976 unsigned int mod_time, unsigned int length);
977
ecfb656c 978 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
8c43009f 979 is out of bounds. */
ecfb656c 980 const char *include_dir_at (dir_index index) const
8c43009f 981 {
ecfb656c
PA
982 /* Convert directory index number (1-based) to vector index
983 (0-based). */
984 size_t vec_index = to_underlying (index) - 1;
985
986 if (vec_index >= include_dirs.size ())
8c43009f 987 return NULL;
ecfb656c 988 return include_dirs[vec_index];
8c43009f
PA
989 }
990
ecfb656c 991 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
8c43009f 992 is out of bounds. */
ecfb656c 993 file_entry *file_name_at (file_name_index index)
8c43009f 994 {
ecfb656c
PA
995 /* Convert file name index number (1-based) to vector index
996 (0-based). */
997 size_t vec_index = to_underlying (index) - 1;
998
999 if (vec_index >= file_names.size ())
fff8551c 1000 return NULL;
ecfb656c 1001 return &file_names[vec_index];
fff8551c
PA
1002 }
1003
1004 /* Const version of the above. */
1005 const file_entry *file_name_at (unsigned int index) const
1006 {
1007 if (index >= file_names.size ())
8c43009f
PA
1008 return NULL;
1009 return &file_names[index];
1010 }
1011
527f3840 1012 /* Offset of line number information in .debug_line section. */
9c541725 1013 sect_offset sect_off {};
527f3840
JK
1014
1015 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
fff8551c
PA
1016 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1017
1018 unsigned int total_length {};
1019 unsigned short version {};
1020 unsigned int header_length {};
1021 unsigned char minimum_instruction_length {};
1022 unsigned char maximum_ops_per_instruction {};
1023 unsigned char default_is_stmt {};
1024 int line_base {};
1025 unsigned char line_range {};
1026 unsigned char opcode_base {};
debd256d
JB
1027
1028 /* standard_opcode_lengths[i] is the number of operands for the
1029 standard opcode whose value is i. This means that
1030 standard_opcode_lengths[0] is unused, and the last meaningful
1031 element is standard_opcode_lengths[opcode_base - 1]. */
fff8551c 1032 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
debd256d 1033
fff8551c
PA
1034 /* The include_directories table. Note these are observing
1035 pointers. The memory is owned by debug_line_buffer. */
1036 std::vector<const char *> include_dirs;
debd256d 1037
fff8551c
PA
1038 /* The file_names table. */
1039 std::vector<file_entry> file_names;
debd256d
JB
1040
1041 /* The start and end of the statement program following this
6502dd73 1042 header. These point into dwarf2_per_objfile->line_buffer. */
fff8551c 1043 const gdb_byte *statement_program_start {}, *statement_program_end {};
debd256d 1044};
c906108c 1045
fff8551c
PA
1046typedef std::unique_ptr<line_header> line_header_up;
1047
8c43009f
PA
1048const char *
1049file_entry::include_dir (const line_header *lh) const
1050{
ecfb656c 1051 return lh->include_dir_at (d_index);
8c43009f
PA
1052}
1053
c906108c 1054/* When we construct a partial symbol table entry we only
0963b4bd 1055 need this much information. */
6f06d47b 1056struct partial_die_info : public allocate_on_obstack
c906108c 1057 {
6f06d47b
YQ
1058 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1059
1060 /* Disable assign but still keep copy ctor, which is needed
1061 load_partial_dies. */
1062 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1063
52356b79
YQ
1064 /* Adjust the partial die before generating a symbol for it. This
1065 function may set the is_external flag or change the DIE's
1066 name. */
1067 void fixup (struct dwarf2_cu *cu);
1068
48fbe735
YQ
1069 /* Read a minimal amount of information into the minimal die
1070 structure. */
1071 const gdb_byte *read (const struct die_reader_specs *reader,
1072 const struct abbrev_info &abbrev,
1073 const gdb_byte *info_ptr);
1074
72bf9492 1075 /* Offset of this DIE. */
6f06d47b 1076 const sect_offset sect_off;
72bf9492
DJ
1077
1078 /* DWARF-2 tag for this DIE. */
6f06d47b 1079 const ENUM_BITFIELD(dwarf_tag) tag : 16;
72bf9492 1080
72bf9492 1081 /* Assorted flags describing the data found in this DIE. */
6f06d47b
YQ
1082 const unsigned int has_children : 1;
1083
72bf9492
DJ
1084 unsigned int is_external : 1;
1085 unsigned int is_declaration : 1;
1086 unsigned int has_type : 1;
1087 unsigned int has_specification : 1;
1088 unsigned int has_pc_info : 1;
481860b3 1089 unsigned int may_be_inlined : 1;
72bf9492 1090
0c1b455e
TT
1091 /* This DIE has been marked DW_AT_main_subprogram. */
1092 unsigned int main_subprogram : 1;
1093
72bf9492
DJ
1094 /* Flag set if the SCOPE field of this structure has been
1095 computed. */
1096 unsigned int scope_set : 1;
1097
fa4028e9
JB
1098 /* Flag set if the DIE has a byte_size attribute. */
1099 unsigned int has_byte_size : 1;
1100
ff908ebf
AW
1101 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1102 unsigned int has_const_value : 1;
1103
98bfdba5
PA
1104 /* Flag set if any of the DIE's children are template arguments. */
1105 unsigned int has_template_arguments : 1;
1106
52356b79 1107 /* Flag set if fixup has been called on this die. */
abc72ce4
DE
1108 unsigned int fixup_called : 1;
1109
36586728
TT
1110 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1111 unsigned int is_dwz : 1;
1112
1113 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1114 unsigned int spec_is_dwz : 1;
1115
72bf9492 1116 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1117 sometimes a default name for unnamed DIEs. */
6f06d47b 1118 const char *name = nullptr;
72bf9492 1119
abc72ce4 1120 /* The linkage name, if present. */
6f06d47b 1121 const char *linkage_name = nullptr;
abc72ce4 1122
72bf9492
DJ
1123 /* The scope to prepend to our children. This is generally
1124 allocated on the comp_unit_obstack, so will disappear
1125 when this compilation unit leaves the cache. */
6f06d47b 1126 const char *scope = nullptr;
72bf9492 1127
95554aad
TT
1128 /* Some data associated with the partial DIE. The tag determines
1129 which field is live. */
1130 union
1131 {
1132 /* The location description associated with this DIE, if any. */
1133 struct dwarf_block *locdesc;
1134 /* The offset of an import, for DW_TAG_imported_unit. */
9c541725 1135 sect_offset sect_off;
6f06d47b 1136 } d {};
72bf9492
DJ
1137
1138 /* If HAS_PC_INFO, the PC range associated with this DIE. */
6f06d47b
YQ
1139 CORE_ADDR lowpc = 0;
1140 CORE_ADDR highpc = 0;
72bf9492 1141
93311388 1142 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1143 DW_AT_sibling, if any. */
48fbe735
YQ
1144 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1145 could return DW_AT_sibling values to its caller load_partial_dies. */
6f06d47b 1146 const gdb_byte *sibling = nullptr;
72bf9492
DJ
1147
1148 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1149 DW_AT_specification (or DW_AT_abstract_origin or
1150 DW_AT_extension). */
6f06d47b 1151 sect_offset spec_offset {};
72bf9492
DJ
1152
1153 /* Pointers to this DIE's parent, first child, and next sibling,
1154 if any. */
6f06d47b
YQ
1155 struct partial_die_info *die_parent = nullptr;
1156 struct partial_die_info *die_child = nullptr;
1157 struct partial_die_info *die_sibling = nullptr;
1158
1159 friend struct partial_die_info *
1160 dwarf2_cu::find_partial_die (sect_offset sect_off);
1161
1162 private:
1163 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1164 partial_die_info (sect_offset sect_off)
1165 : partial_die_info (sect_off, DW_TAG_padding, 0)
1166 {
1167 }
1168
1169 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1170 int has_children_)
1171 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1172 {
1173 is_external = 0;
1174 is_declaration = 0;
1175 has_type = 0;
1176 has_specification = 0;
1177 has_pc_info = 0;
1178 may_be_inlined = 0;
1179 main_subprogram = 0;
1180 scope_set = 0;
1181 has_byte_size = 0;
1182 has_const_value = 0;
1183 has_template_arguments = 0;
1184 fixup_called = 0;
1185 is_dwz = 0;
1186 spec_is_dwz = 0;
1187 }
c906108c
SS
1188 };
1189
0963b4bd 1190/* This data structure holds the information of an abbrev. */
c906108c
SS
1191struct abbrev_info
1192 {
1193 unsigned int number; /* number identifying abbrev */
1194 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1195 unsigned short has_children; /* boolean */
1196 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1197 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1198 struct abbrev_info *next; /* next in chain */
1199 };
1200
1201struct attr_abbrev
1202 {
9d25dd43
DE
1203 ENUM_BITFIELD(dwarf_attribute) name : 16;
1204 ENUM_BITFIELD(dwarf_form) form : 16;
43988095
JK
1205
1206 /* It is valid only if FORM is DW_FORM_implicit_const. */
1207 LONGEST implicit_const;
c906108c
SS
1208 };
1209
433df2d4
DE
1210/* Size of abbrev_table.abbrev_hash_table. */
1211#define ABBREV_HASH_SIZE 121
1212
1213/* Top level data structure to contain an abbreviation table. */
1214
1215struct abbrev_table
1216{
685af9cd
TT
1217 explicit abbrev_table (sect_offset off)
1218 : sect_off (off)
1219 {
4a17f768 1220 m_abbrevs =
685af9cd 1221 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
4a17f768 1222 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
685af9cd
TT
1223 }
1224
1225 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1226
1227 /* Allocate space for a struct abbrev_info object in
1228 ABBREV_TABLE. */
1229 struct abbrev_info *alloc_abbrev ();
1230
1231 /* Add an abbreviation to the table. */
1232 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1233
1234 /* Look up an abbrev in the table.
1235 Returns NULL if the abbrev is not found. */
1236
1237 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1238
1239
f4dc4d17
DE
1240 /* Where the abbrev table came from.
1241 This is used as a sanity check when the table is used. */
685af9cd 1242 const sect_offset sect_off;
433df2d4
DE
1243
1244 /* Storage for the abbrev table. */
685af9cd 1245 auto_obstack abbrev_obstack;
433df2d4 1246
4a17f768
YQ
1247private:
1248
433df2d4
DE
1249 /* Hash table of abbrevs.
1250 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1251 It could be statically allocated, but the previous code didn't so we
1252 don't either. */
4a17f768 1253 struct abbrev_info **m_abbrevs;
433df2d4
DE
1254};
1255
685af9cd
TT
1256typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1257
0963b4bd 1258/* Attributes have a name and a value. */
b60c80d6
DJ
1259struct attribute
1260 {
9d25dd43 1261 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1262 ENUM_BITFIELD(dwarf_form) form : 15;
1263
1264 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1265 field should be in u.str (existing only for DW_STRING) but it is kept
1266 here for better struct attribute alignment. */
1267 unsigned int string_is_canonical : 1;
1268
b60c80d6
DJ
1269 union
1270 {
15d034d0 1271 const char *str;
b60c80d6 1272 struct dwarf_block *blk;
43bbcdc2
PH
1273 ULONGEST unsnd;
1274 LONGEST snd;
b60c80d6 1275 CORE_ADDR addr;
ac9ec31b 1276 ULONGEST signature;
b60c80d6
DJ
1277 }
1278 u;
1279 };
1280
0963b4bd 1281/* This data structure holds a complete die structure. */
c906108c
SS
1282struct die_info
1283 {
76815b17
DE
1284 /* DWARF-2 tag for this DIE. */
1285 ENUM_BITFIELD(dwarf_tag) tag : 16;
1286
1287 /* Number of attributes */
98bfdba5
PA
1288 unsigned char num_attrs;
1289
1290 /* True if we're presently building the full type name for the
1291 type derived from this DIE. */
1292 unsigned char building_fullname : 1;
76815b17 1293
adde2bff
DE
1294 /* True if this die is in process. PR 16581. */
1295 unsigned char in_process : 1;
1296
76815b17
DE
1297 /* Abbrev number */
1298 unsigned int abbrev;
1299
93311388 1300 /* Offset in .debug_info or .debug_types section. */
9c541725 1301 sect_offset sect_off;
78ba4af6
JB
1302
1303 /* The dies in a compilation unit form an n-ary tree. PARENT
1304 points to this die's parent; CHILD points to the first child of
1305 this node; and all the children of a given node are chained
4950bc1c 1306 together via their SIBLING fields. */
639d11d3
DC
1307 struct die_info *child; /* Its first child, if any. */
1308 struct die_info *sibling; /* Its next sibling, if any. */
1309 struct die_info *parent; /* Its parent, if any. */
c906108c 1310
b60c80d6
DJ
1311 /* An array of attributes, with NUM_ATTRS elements. There may be
1312 zero, but it's not common and zero-sized arrays are not
1313 sufficiently portable C. */
1314 struct attribute attrs[1];
c906108c
SS
1315 };
1316
0963b4bd 1317/* Get at parts of an attribute structure. */
c906108c
SS
1318
1319#define DW_STRING(attr) ((attr)->u.str)
8285870a 1320#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1321#define DW_UNSND(attr) ((attr)->u.unsnd)
1322#define DW_BLOCK(attr) ((attr)->u.blk)
1323#define DW_SND(attr) ((attr)->u.snd)
1324#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1325#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1326
0963b4bd 1327/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1328struct dwarf_block
1329 {
56eb65bd 1330 size_t size;
1d6edc3c
JK
1331
1332 /* Valid only if SIZE is not zero. */
d521ce57 1333 const gdb_byte *data;
c906108c
SS
1334 };
1335
c906108c
SS
1336#ifndef ATTR_ALLOC_CHUNK
1337#define ATTR_ALLOC_CHUNK 4
1338#endif
1339
c906108c
SS
1340/* Allocate fields for structs, unions and enums in this size. */
1341#ifndef DW_FIELD_ALLOC_CHUNK
1342#define DW_FIELD_ALLOC_CHUNK 4
1343#endif
1344
c906108c
SS
1345/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1346 but this would require a corresponding change in unpack_field_as_long
1347 and friends. */
1348static int bits_per_byte = 8;
1349
2ddeaf8a
TT
1350/* When reading a variant or variant part, we track a bit more
1351 information about the field, and store it in an object of this
1352 type. */
1353
1354struct variant_field
1355{
1356 /* If we see a DW_TAG_variant, then this will be the discriminant
1357 value. */
1358 ULONGEST discriminant_value;
1359 /* If we see a DW_TAG_variant, then this will be set if this is the
1360 default branch. */
1361 bool default_branch;
1362 /* While reading a DW_TAG_variant_part, this will be set if this
1363 field is the discriminant. */
1364 bool is_discriminant;
1365};
1366
52059ffd
TT
1367struct nextfield
1368{
be2daae6
TT
1369 int accessibility = 0;
1370 int virtuality = 0;
2ddeaf8a 1371 /* Extra information to describe a variant or variant part. */
be2daae6
TT
1372 struct variant_field variant {};
1373 struct field field {};
52059ffd
TT
1374};
1375
1376struct fnfieldlist
1377{
be2daae6
TT
1378 const char *name = nullptr;
1379 std::vector<struct fn_field> fnfields;
52059ffd
TT
1380};
1381
c906108c
SS
1382/* The routines that read and process dies for a C struct or C++ class
1383 pass lists of data member fields and lists of member function fields
1384 in an instance of a field_info structure, as defined below. */
1385struct field_info
c5aa993b 1386 {
0963b4bd 1387 /* List of data member and baseclasses fields. */
be2daae6
TT
1388 std::vector<struct nextfield> fields;
1389 std::vector<struct nextfield> baseclasses;
c906108c 1390
7d0ccb61 1391 /* Number of fields (including baseclasses). */
be2daae6 1392 int nfields = 0;
c906108c 1393
c5aa993b 1394 /* Set if the accesibility of one of the fields is not public. */
be2daae6 1395 int non_public_fields = 0;
c906108c 1396
c5aa993b
JM
1397 /* Member function fieldlist array, contains name of possibly overloaded
1398 member function, number of overloaded member functions and a pointer
1399 to the head of the member function field chain. */
be2daae6 1400 std::vector<struct fnfieldlist> fnfieldlists;
98751a41
JK
1401
1402 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1403 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
be2daae6 1404 std::vector<struct decl_field> typedef_field_list;
883fd55a
KS
1405
1406 /* Nested types defined by this class and the number of elements in this
1407 list. */
be2daae6 1408 std::vector<struct decl_field> nested_types_list;
c5aa993b 1409 };
c906108c 1410
10b3939b
DJ
1411/* One item on the queue of compilation units to read in full symbols
1412 for. */
1413struct dwarf2_queue_item
1414{
1415 struct dwarf2_per_cu_data *per_cu;
95554aad 1416 enum language pretend_language;
10b3939b
DJ
1417 struct dwarf2_queue_item *next;
1418};
1419
1420/* The current queue. */
1421static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1422
ae038cb0
DJ
1423/* Loaded secondary compilation units are kept in memory until they
1424 have not been referenced for the processing of this many
1425 compilation units. Set this to zero to disable caching. Cache
1426 sizes of up to at least twenty will improve startup time for
1427 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1428static int dwarf_max_cache_age = 5;
920d2a44 1429static void
b4f54984
DE
1430show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1431 struct cmd_list_element *c, const char *value)
920d2a44 1432{
3e43a32a 1433 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1434 "DWARF compilation units is %s.\n"),
920d2a44
AC
1435 value);
1436}
4390d890 1437\f
c906108c
SS
1438/* local function prototypes */
1439
a32a8923
DE
1440static const char *get_section_name (const struct dwarf2_section_info *);
1441
1442static const char *get_section_file_name (const struct dwarf2_section_info *);
1443
918dd910
JK
1444static void dwarf2_find_base_address (struct die_info *die,
1445 struct dwarf2_cu *cu);
1446
0018ea6f
DE
1447static struct partial_symtab *create_partial_symtab
1448 (struct dwarf2_per_cu_data *per_cu, const char *name);
1449
f1902523
JK
1450static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1451 const gdb_byte *info_ptr,
1452 struct die_info *type_unit_die,
1453 int has_children, void *data);
1454
ed2dc618
SM
1455static void dwarf2_build_psymtabs_hard
1456 (struct dwarf2_per_objfile *dwarf2_per_objfile);
c906108c 1457
72bf9492
DJ
1458static void scan_partial_symbols (struct partial_die_info *,
1459 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1460 int, struct dwarf2_cu *);
c906108c 1461
72bf9492
DJ
1462static void add_partial_symbol (struct partial_die_info *,
1463 struct dwarf2_cu *);
63d06c5c 1464
72bf9492
DJ
1465static void add_partial_namespace (struct partial_die_info *pdi,
1466 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1467 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1468
5d7cb8df 1469static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1470 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1471 struct dwarf2_cu *cu);
1472
72bf9492
DJ
1473static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1474 struct dwarf2_cu *cu);
91c24f0a 1475
bc30ff58
JB
1476static void add_partial_subprogram (struct partial_die_info *pdi,
1477 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1478 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1479
257e7a09
YQ
1480static void dwarf2_read_symtab (struct partial_symtab *,
1481 struct objfile *);
c906108c 1482
a14ed312 1483static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1484
685af9cd 1485static abbrev_table_up abbrev_table_read_table
ed2dc618
SM
1486 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1487 sect_offset);
433df2d4 1488
d521ce57 1489static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1490
dee91e82 1491static struct partial_die_info *load_partial_dies
d521ce57 1492 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1493
36586728 1494static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1495 struct dwarf2_cu *);
72bf9492 1496
d521ce57
TT
1497static const gdb_byte *read_attribute (const struct die_reader_specs *,
1498 struct attribute *, struct attr_abbrev *,
1499 const gdb_byte *);
a8329558 1500
a1855c1d 1501static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1502
a1855c1d 1503static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1504
a1855c1d 1505static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1506
a1855c1d 1507static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1508
a1855c1d 1509static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1510
d521ce57 1511static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1512 unsigned int *);
c906108c 1513
d521ce57 1514static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1515
1516static LONGEST read_checked_initial_length_and_offset
d521ce57 1517 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1518 unsigned int *, unsigned int *);
613e1657 1519
d521ce57
TT
1520static LONGEST read_offset (bfd *, const gdb_byte *,
1521 const struct comp_unit_head *,
c764a876
DE
1522 unsigned int *);
1523
d521ce57 1524static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1525
ed2dc618
SM
1526static sect_offset read_abbrev_offset
1527 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1528 struct dwarf2_section_info *, sect_offset);
f4dc4d17 1529
d521ce57 1530static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1531
d521ce57 1532static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1533
ed2dc618
SM
1534static const char *read_indirect_string
1535 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1536 const struct comp_unit_head *, unsigned int *);
4bdf3d34 1537
ed2dc618
SM
1538static const char *read_indirect_line_string
1539 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1540 const struct comp_unit_head *, unsigned int *);
36586728 1541
ed2dc618
SM
1542static const char *read_indirect_string_at_offset
1543 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1544 LONGEST str_offset);
927aa2e7 1545
ed2dc618
SM
1546static const char *read_indirect_string_from_dwz
1547 (struct objfile *objfile, struct dwz_file *, LONGEST);
c906108c 1548
d521ce57 1549static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1550
d521ce57
TT
1551static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1552 const gdb_byte *,
3019eac3
DE
1553 unsigned int *);
1554
d521ce57 1555static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1556 ULONGEST str_index);
3019eac3 1557
e142c38c 1558static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1559
e142c38c
DJ
1560static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1561 struct dwarf2_cu *);
c906108c 1562
348e048f 1563static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1564 unsigned int);
348e048f 1565
7d45c7c3
KB
1566static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1567 struct dwarf2_cu *cu);
1568
05cf31d1
JB
1569static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1570 struct dwarf2_cu *cu);
1571
e142c38c 1572static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1573
e142c38c 1574static struct die_info *die_specification (struct die_info *die,
f2f0e013 1575 struct dwarf2_cu **);
63d06c5c 1576
9c541725 1577static line_header_up dwarf_decode_line_header (sect_offset sect_off,
fff8551c 1578 struct dwarf2_cu *cu);
debd256d 1579
f3f5162e 1580static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1581 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1582 CORE_ADDR, int decode_mapping);
c906108c 1583
804d2729
TT
1584static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1585 const char *);
c906108c 1586
43f3e411
DE
1587static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1588 const char *, const char *,
1589 CORE_ADDR);
f4dc4d17 1590
a14ed312 1591static struct symbol *new_symbol (struct die_info *, struct type *,
5e2db402 1592 struct dwarf2_cu *, struct symbol * = NULL);
34eaf542 1593
ff39bb5e 1594static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1595 struct dwarf2_cu *);
c906108c 1596
ff39bb5e 1597static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1598 struct type *type,
1599 const char *name,
1600 struct obstack *obstack,
12df843f 1601 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1602 const gdb_byte **bytes,
98bfdba5 1603 struct dwarf2_locexpr_baton **baton);
2df3850c 1604
e7c27a73 1605static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1606
b4ba55a1
JB
1607static int need_gnat_info (struct dwarf2_cu *);
1608
3e43a32a
MS
1609static struct type *die_descriptive_type (struct die_info *,
1610 struct dwarf2_cu *);
b4ba55a1
JB
1611
1612static void set_descriptive_type (struct type *, struct die_info *,
1613 struct dwarf2_cu *);
1614
e7c27a73
DJ
1615static struct type *die_containing_type (struct die_info *,
1616 struct dwarf2_cu *);
c906108c 1617
ff39bb5e 1618static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1619 struct dwarf2_cu *);
c906108c 1620
f792889a 1621static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1622
673bfd45
DE
1623static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1624
0d5cff50 1625static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1626
6e70227d 1627static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1628 const char *suffix, int physname,
1629 struct dwarf2_cu *cu);
63d06c5c 1630
e7c27a73 1631static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1632
348e048f
DE
1633static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1634
e7c27a73 1635static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1636
e7c27a73 1637static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1638
96408a79
SA
1639static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1640
71a3c369
TT
1641static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1642
ff013f42
JK
1643static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1644 struct dwarf2_cu *, struct partial_symtab *);
1645
3a2b436a 1646/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
e385593e 1647 values. Keep the items ordered with increasing constraints compliance. */
3a2b436a
JK
1648enum pc_bounds_kind
1649{
e385593e 1650 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
3a2b436a
JK
1651 PC_BOUNDS_NOT_PRESENT,
1652
e385593e
JK
1653 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1654 were present but they do not form a valid range of PC addresses. */
1655 PC_BOUNDS_INVALID,
1656
3a2b436a
JK
1657 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1658 PC_BOUNDS_RANGES,
1659
1660 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1661 PC_BOUNDS_HIGH_LOW,
1662};
1663
1664static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1665 CORE_ADDR *, CORE_ADDR *,
1666 struct dwarf2_cu *,
1667 struct partial_symtab *);
c906108c 1668
fae299cd
DC
1669static void get_scope_pc_bounds (struct die_info *,
1670 CORE_ADDR *, CORE_ADDR *,
1671 struct dwarf2_cu *);
1672
801e3a5b
JB
1673static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1674 CORE_ADDR, struct dwarf2_cu *);
1675
a14ed312 1676static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1677 struct dwarf2_cu *);
c906108c 1678
a14ed312 1679static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1680 struct type *, struct dwarf2_cu *);
c906108c 1681
a14ed312 1682static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1683 struct die_info *, struct type *,
e7c27a73 1684 struct dwarf2_cu *);
c906108c 1685
a14ed312 1686static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1687 struct type *,
1688 struct dwarf2_cu *);
c906108c 1689
134d01f1 1690static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1691
e7c27a73 1692static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1693
e7c27a73 1694static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1695
5d7cb8df
JK
1696static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1697
804d2729 1698static struct using_direct **using_directives (struct dwarf2_cu *cu);
22cee43f 1699
27aa8d6a
SW
1700static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1701
74921315
KS
1702static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1703
f55ee35c
JK
1704static struct type *read_module_type (struct die_info *die,
1705 struct dwarf2_cu *cu);
1706
38d518c9 1707static const char *namespace_name (struct die_info *die,
e142c38c 1708 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1709
134d01f1 1710static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1711
e7c27a73 1712static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1713
6e70227d 1714static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1715 struct dwarf2_cu *);
1716
bf6af496 1717static struct die_info *read_die_and_siblings_1
d521ce57 1718 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1719 struct die_info *);
639d11d3 1720
dee91e82 1721static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1722 const gdb_byte *info_ptr,
1723 const gdb_byte **new_info_ptr,
639d11d3
DC
1724 struct die_info *parent);
1725
d521ce57
TT
1726static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1727 struct die_info **, const gdb_byte *,
1728 int *, int);
3019eac3 1729
d521ce57
TT
1730static const gdb_byte *read_full_die (const struct die_reader_specs *,
1731 struct die_info **, const gdb_byte *,
1732 int *);
93311388 1733
e7c27a73 1734static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1735
15d034d0
TT
1736static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1737 struct obstack *);
71c25dea 1738
15d034d0 1739static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1740
15d034d0 1741static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1742 struct die_info *die,
1743 struct dwarf2_cu *cu);
1744
ca69b9e6
DE
1745static const char *dwarf2_physname (const char *name, struct die_info *die,
1746 struct dwarf2_cu *cu);
1747
e142c38c 1748static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1749 struct dwarf2_cu **);
9219021c 1750
f39c6ffd 1751static const char *dwarf_tag_name (unsigned int);
c906108c 1752
f39c6ffd 1753static const char *dwarf_attr_name (unsigned int);
c906108c 1754
f39c6ffd 1755static const char *dwarf_form_name (unsigned int);
c906108c 1756
a121b7c1 1757static const char *dwarf_bool_name (unsigned int);
c906108c 1758
f39c6ffd 1759static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1760
f9aca02d 1761static struct die_info *sibling_die (struct die_info *);
c906108c 1762
d97bc12b
DE
1763static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1764
1765static void dump_die_for_error (struct die_info *);
1766
1767static void dump_die_1 (struct ui_file *, int level, int max_level,
1768 struct die_info *);
c906108c 1769
d97bc12b 1770/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1771
51545339 1772static void store_in_ref_table (struct die_info *,
10b3939b 1773 struct dwarf2_cu *);
c906108c 1774
ff39bb5e 1775static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1776
ff39bb5e 1777static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1778
348e048f 1779static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1780 const struct attribute *,
348e048f
DE
1781 struct dwarf2_cu **);
1782
10b3939b 1783static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1784 const struct attribute *,
f2f0e013 1785 struct dwarf2_cu **);
c906108c 1786
348e048f 1787static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1788 const struct attribute *,
348e048f
DE
1789 struct dwarf2_cu **);
1790
ac9ec31b
DE
1791static struct type *get_signatured_type (struct die_info *, ULONGEST,
1792 struct dwarf2_cu *);
1793
1794static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1795 const struct attribute *,
ac9ec31b
DE
1796 struct dwarf2_cu *);
1797
e5fe5e75 1798static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1799
52dc124a 1800static void read_signatured_type (struct signatured_type *);
348e048f 1801
63e43d3a
PMR
1802static int attr_to_dynamic_prop (const struct attribute *attr,
1803 struct die_info *die, struct dwarf2_cu *cu,
1804 struct dynamic_prop *prop);
1805
c906108c
SS
1806/* memory allocation interface */
1807
7b5a2f43 1808static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1809
b60c80d6 1810static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1811
43f3e411 1812static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1813
6e5a29e1 1814static int attr_form_is_block (const struct attribute *);
8e19ed76 1815
6e5a29e1 1816static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1817
6e5a29e1 1818static int attr_form_is_constant (const struct attribute *);
3690dd37 1819
6e5a29e1 1820static int attr_form_is_ref (const struct attribute *);
7771576e 1821
8cf6f0b1
TT
1822static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1823 struct dwarf2_loclist_baton *baton,
ff39bb5e 1824 const struct attribute *attr);
8cf6f0b1 1825
ff39bb5e 1826static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1827 struct symbol *sym,
f1e6e072
TT
1828 struct dwarf2_cu *cu,
1829 int is_block);
4c2df51b 1830
d521ce57
TT
1831static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1832 const gdb_byte *info_ptr,
1833 struct abbrev_info *abbrev);
4bb7a0a7 1834
72bf9492
DJ
1835static hashval_t partial_die_hash (const void *item);
1836
1837static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1838
ae038cb0 1839static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
ed2dc618
SM
1840 (sect_offset sect_off, unsigned int offset_in_dwz,
1841 struct dwarf2_per_objfile *dwarf2_per_objfile);
ae038cb0 1842
9816fde3 1843static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1844 struct die_info *comp_unit_die,
1845 enum language pretend_language);
93311388 1846
ed2dc618 1847static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
ae038cb0 1848
dee91e82 1849static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1850
f792889a
DJ
1851static struct type *set_die_type (struct die_info *, struct type *,
1852 struct dwarf2_cu *);
1c379e20 1853
ed2dc618 1854static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
ae038cb0 1855
ed2dc618 1856static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1fd400ff 1857
58f0c718 1858static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
95554aad 1859 enum language);
10b3939b 1860
95554aad
TT
1861static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1862 enum language);
10b3939b 1863
f4dc4d17
DE
1864static void process_full_type_unit (struct dwarf2_per_cu_data *,
1865 enum language);
1866
10b3939b
DJ
1867static void dwarf2_add_dependence (struct dwarf2_cu *,
1868 struct dwarf2_per_cu_data *);
1869
ae038cb0
DJ
1870static void dwarf2_mark (struct dwarf2_cu *);
1871
1872static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1873
b64f50a1 1874static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1875 struct dwarf2_per_cu_data *);
673bfd45 1876
f792889a 1877static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1878
95554aad
TT
1879static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1880 enum language pretend_language);
1881
ed2dc618 1882static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
9291a0cd 1883
b303c6f6
AB
1884/* Class, the destructor of which frees all allocated queue entries. This
1885 will only have work to do if an error was thrown while processing the
1886 dwarf. If no error was thrown then the queue entries should have all
1887 been processed, and freed, as we went along. */
1888
1889class dwarf2_queue_guard
1890{
1891public:
1892 dwarf2_queue_guard () = default;
1893
1894 /* Free any entries remaining on the queue. There should only be
1895 entries left if we hit an error while processing the dwarf. */
1896 ~dwarf2_queue_guard ()
1897 {
1898 struct dwarf2_queue_item *item, *last;
1899
1900 item = dwarf2_queue;
1901 while (item)
1902 {
1903 /* Anything still marked queued is likely to be in an
1904 inconsistent state, so discard it. */
1905 if (item->per_cu->queued)
1906 {
1907 if (item->per_cu->cu != NULL)
1908 free_one_cached_comp_unit (item->per_cu);
1909 item->per_cu->queued = 0;
1910 }
1911
1912 last = item;
1913 item = item->next;
1914 xfree (last);
1915 }
1916
1917 dwarf2_queue = dwarf2_queue_tail = NULL;
1918 }
1919};
1920
d721ba37
PA
1921/* The return type of find_file_and_directory. Note, the enclosed
1922 string pointers are only valid while this object is valid. */
1923
1924struct file_and_directory
1925{
1926 /* The filename. This is never NULL. */
1927 const char *name;
1928
1929 /* The compilation directory. NULL if not known. If we needed to
1930 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1931 points directly to the DW_AT_comp_dir string attribute owned by
1932 the obstack that owns the DIE. */
1933 const char *comp_dir;
1934
1935 /* If we needed to build a new string for comp_dir, this is what
1936 owns the storage. */
1937 std::string comp_dir_storage;
1938};
1939
1940static file_and_directory find_file_and_directory (struct die_info *die,
1941 struct dwarf2_cu *cu);
9291a0cd
TT
1942
1943static char *file_full_name (int file, struct line_header *lh,
1944 const char *comp_dir);
1945
43988095
JK
1946/* Expected enum dwarf_unit_type for read_comp_unit_head. */
1947enum class rcuh_kind { COMPILE, TYPE };
1948
d521ce57 1949static const gdb_byte *read_and_check_comp_unit_head
ed2dc618
SM
1950 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1951 struct comp_unit_head *header,
36586728 1952 struct dwarf2_section_info *section,
d521ce57 1953 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
43988095 1954 rcuh_kind section_kind);
36586728 1955
fd820528 1956static void init_cutu_and_read_dies
f4dc4d17 1957 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
58f0c718 1958 int use_existing_cu, int keep, bool skip_partial,
3019eac3
DE
1959 die_reader_func_ftype *die_reader_func, void *data);
1960
dee91e82
DE
1961static void init_cutu_and_read_dies_simple
1962 (struct dwarf2_per_cu_data *this_cu,
1963 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1964
673bfd45 1965static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1966
3019eac3
DE
1967static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1968
57d63ce2 1969static struct dwo_unit *lookup_dwo_unit_in_dwp
ed2dc618
SM
1970 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1971 struct dwp_file *dwp_file, const char *comp_dir,
57d63ce2 1972 ULONGEST signature, int is_debug_types);
a2ce51a0 1973
ed2dc618
SM
1974static struct dwp_file *get_dwp_file
1975 (struct dwarf2_per_objfile *dwarf2_per_objfile);
a2ce51a0 1976
3019eac3 1977static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1978 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1979
1980static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1981 (struct signatured_type *, const char *, const char *);
3019eac3 1982
89e63ee4
DE
1983static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1984
263db9a1 1985static void free_dwo_file (struct dwo_file *);
3019eac3 1986
263db9a1
TT
1987/* A unique_ptr helper to free a dwo_file. */
1988
1989struct dwo_file_deleter
ed2dc618 1990{
263db9a1
TT
1991 void operator() (struct dwo_file *df) const
1992 {
1993 free_dwo_file (df);
1994 }
ed2dc618
SM
1995};
1996
263db9a1
TT
1997/* A unique pointer to a dwo_file. */
1998
1999typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2000
ed2dc618 2001static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
95554aad 2002
1b80a9fa 2003static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
2004
2005static void free_line_header_voidp (void *arg);
4390d890
DE
2006\f
2007/* Various complaints about symbol reading that don't abort the process. */
2008
2009static void
2010dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2011{
b98664d3 2012 complaint (_("statement list doesn't fit in .debug_line section"));
4390d890
DE
2013}
2014
2015static void
2016dwarf2_debug_line_missing_file_complaint (void)
2017{
b98664d3 2018 complaint (_(".debug_line section has line data without a file"));
4390d890
DE
2019}
2020
2021static void
2022dwarf2_debug_line_missing_end_sequence_complaint (void)
2023{
b98664d3 2024 complaint (_(".debug_line section has line "
4390d890
DE
2025 "program sequence without an end"));
2026}
2027
2028static void
2029dwarf2_complex_location_expr_complaint (void)
2030{
b98664d3 2031 complaint (_("location expression too complex"));
4390d890
DE
2032}
2033
2034static void
2035dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2036 int arg3)
2037{
b98664d3 2038 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
4390d890
DE
2039 arg1, arg2, arg3);
2040}
2041
2042static void
2043dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2044{
b98664d3 2045 complaint (_("debug info runs off end of %s section"
4390d890 2046 " [in module %s]"),
a32a8923
DE
2047 get_section_name (section),
2048 get_section_file_name (section));
4390d890 2049}
1b80a9fa 2050
4390d890
DE
2051static void
2052dwarf2_macro_malformed_definition_complaint (const char *arg1)
2053{
b98664d3 2054 complaint (_("macro debug info contains a "
4390d890
DE
2055 "malformed macro definition:\n`%s'"),
2056 arg1);
2057}
2058
2059static void
2060dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2061{
b98664d3 2062 complaint (_("invalid attribute class or form for '%s' in '%s'"),
4390d890
DE
2063 arg1, arg2);
2064}
527f3840
JK
2065
2066/* Hash function for line_header_hash. */
2067
2068static hashval_t
2069line_header_hash (const struct line_header *ofs)
2070{
9c541725 2071 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
527f3840
JK
2072}
2073
2074/* Hash function for htab_create_alloc_ex for line_header_hash. */
2075
2076static hashval_t
2077line_header_hash_voidp (const void *item)
2078{
9a3c8263 2079 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
2080
2081 return line_header_hash (ofs);
2082}
2083
2084/* Equality function for line_header_hash. */
2085
2086static int
2087line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2088{
9a3c8263
SM
2089 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2090 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840 2091
9c541725 2092 return (ofs_lhs->sect_off == ofs_rhs->sect_off
527f3840
JK
2093 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2094}
2095
4390d890 2096\f
9291a0cd 2097
31aa7e4e
JB
2098/* Read the given attribute value as an address, taking the attribute's
2099 form into account. */
2100
2101static CORE_ADDR
2102attr_value_as_address (struct attribute *attr)
2103{
2104 CORE_ADDR addr;
2105
2106 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2107 {
2108 /* Aside from a few clearly defined exceptions, attributes that
2109 contain an address must always be in DW_FORM_addr form.
2110 Unfortunately, some compilers happen to be violating this
2111 requirement by encoding addresses using other forms, such
2112 as DW_FORM_data4 for example. For those broken compilers,
2113 we try to do our best, without any guarantee of success,
2114 to interpret the address correctly. It would also be nice
2115 to generate a complaint, but that would require us to maintain
2116 a list of legitimate cases where a non-address form is allowed,
2117 as well as update callers to pass in at least the CU's DWARF
2118 version. This is more overhead than what we're willing to
2119 expand for a pretty rare case. */
2120 addr = DW_UNSND (attr);
2121 }
2122 else
2123 addr = DW_ADDR (attr);
2124
2125 return addr;
2126}
2127
330cdd98
PA
2128/* See declaration. */
2129
2130dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2131 const dwarf2_debug_sections *names)
2132 : objfile (objfile_)
2133{
2134 if (names == NULL)
2135 names = &dwarf2_elf_names;
2136
2137 bfd *obfd = objfile->obfd;
2138
2139 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2140 locate_sections (obfd, sec, *names);
2141}
2142
fc8e7e75
SM
2143static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2144
330cdd98
PA
2145dwarf2_per_objfile::~dwarf2_per_objfile ()
2146{
2147 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2148 free_cached_comp_units ();
2149
2150 if (quick_file_names_table)
2151 htab_delete (quick_file_names_table);
2152
2153 if (line_header_hash)
2154 htab_delete (line_header_hash);
2155
b76e467d
SM
2156 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2157 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
fc8e7e75 2158
b2bdb8cf
SM
2159 for (signatured_type *sig_type : all_type_units)
2160 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
fc8e7e75
SM
2161
2162 VEC_free (dwarf2_section_info_def, types);
2163
2164 if (dwo_files != NULL)
2165 free_dwo_files (dwo_files, objfile);
fc8e7e75 2166
330cdd98
PA
2167 /* Everything else should be on the objfile obstack. */
2168}
2169
2170/* See declaration. */
2171
2172void
2173dwarf2_per_objfile::free_cached_comp_units ()
2174{
2175 dwarf2_per_cu_data *per_cu = read_in_chain;
2176 dwarf2_per_cu_data **last_chain = &read_in_chain;
2177 while (per_cu != NULL)
2178 {
2179 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2180
fcd3b13d 2181 delete per_cu->cu;
330cdd98
PA
2182 *last_chain = next_cu;
2183 per_cu = next_cu;
2184 }
2185}
2186
11ed8cad
TT
2187/* A helper class that calls free_cached_comp_units on
2188 destruction. */
2189
2190class free_cached_comp_units
2191{
2192public:
2193
2194 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2195 : m_per_objfile (per_objfile)
2196 {
2197 }
2198
2199 ~free_cached_comp_units ()
2200 {
2201 m_per_objfile->free_cached_comp_units ();
2202 }
2203
2204 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2205
2206private:
2207
2208 dwarf2_per_objfile *m_per_objfile;
2209};
2210
c906108c 2211/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2212 information and return true if we have enough to do something.
2213 NAMES points to the dwarf2 section names, or is NULL if the standard
2214 ELF names are used. */
c906108c
SS
2215
2216int
251d32d9
TG
2217dwarf2_has_info (struct objfile *objfile,
2218 const struct dwarf2_debug_sections *names)
c906108c 2219{
97cbe998
SDJ
2220 if (objfile->flags & OBJF_READNEVER)
2221 return 0;
2222
ed2dc618
SM
2223 struct dwarf2_per_objfile *dwarf2_per_objfile
2224 = get_dwarf2_per_objfile (objfile);
2225
2226 if (dwarf2_per_objfile == NULL)
be391dca
TT
2227 {
2228 /* Initialize per-objfile state. */
fd90ace4
YQ
2229 dwarf2_per_objfile
2230 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2231 names);
ed2dc618 2232 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
be391dca 2233 }
73869dc2 2234 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2235 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2236 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2237 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2238}
2239
2240/* Return the containing section of virtual section SECTION. */
2241
2242static struct dwarf2_section_info *
2243get_containing_section (const struct dwarf2_section_info *section)
2244{
2245 gdb_assert (section->is_virtual);
2246 return section->s.containing_section;
c906108c
SS
2247}
2248
a32a8923
DE
2249/* Return the bfd owner of SECTION. */
2250
2251static struct bfd *
2252get_section_bfd_owner (const struct dwarf2_section_info *section)
2253{
73869dc2
DE
2254 if (section->is_virtual)
2255 {
2256 section = get_containing_section (section);
2257 gdb_assert (!section->is_virtual);
2258 }
049412e3 2259 return section->s.section->owner;
a32a8923
DE
2260}
2261
2262/* Return the bfd section of SECTION.
2263 Returns NULL if the section is not present. */
2264
2265static asection *
2266get_section_bfd_section (const struct dwarf2_section_info *section)
2267{
73869dc2
DE
2268 if (section->is_virtual)
2269 {
2270 section = get_containing_section (section);
2271 gdb_assert (!section->is_virtual);
2272 }
049412e3 2273 return section->s.section;
a32a8923
DE
2274}
2275
2276/* Return the name of SECTION. */
2277
2278static const char *
2279get_section_name (const struct dwarf2_section_info *section)
2280{
2281 asection *sectp = get_section_bfd_section (section);
2282
2283 gdb_assert (sectp != NULL);
2284 return bfd_section_name (get_section_bfd_owner (section), sectp);
2285}
2286
2287/* Return the name of the file SECTION is in. */
2288
2289static const char *
2290get_section_file_name (const struct dwarf2_section_info *section)
2291{
2292 bfd *abfd = get_section_bfd_owner (section);
2293
2294 return bfd_get_filename (abfd);
2295}
2296
2297/* Return the id of SECTION.
2298 Returns 0 if SECTION doesn't exist. */
2299
2300static int
2301get_section_id (const struct dwarf2_section_info *section)
2302{
2303 asection *sectp = get_section_bfd_section (section);
2304
2305 if (sectp == NULL)
2306 return 0;
2307 return sectp->id;
2308}
2309
2310/* Return the flags of SECTION.
73869dc2 2311 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2312
2313static int
2314get_section_flags (const struct dwarf2_section_info *section)
2315{
2316 asection *sectp = get_section_bfd_section (section);
2317
2318 gdb_assert (sectp != NULL);
2319 return bfd_get_section_flags (sectp->owner, sectp);
2320}
2321
251d32d9
TG
2322/* When loading sections, we look either for uncompressed section or for
2323 compressed section names. */
233a11ab
CS
2324
2325static int
251d32d9
TG
2326section_is_p (const char *section_name,
2327 const struct dwarf2_section_names *names)
233a11ab 2328{
251d32d9
TG
2329 if (names->normal != NULL
2330 && strcmp (section_name, names->normal) == 0)
2331 return 1;
2332 if (names->compressed != NULL
2333 && strcmp (section_name, names->compressed) == 0)
2334 return 1;
2335 return 0;
233a11ab
CS
2336}
2337
330cdd98 2338/* See declaration. */
c906108c 2339
330cdd98
PA
2340void
2341dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2342 const dwarf2_debug_sections &names)
c906108c 2343{
dc7650b8 2344 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9 2345
dc7650b8
JK
2346 if ((aflag & SEC_HAS_CONTENTS) == 0)
2347 {
2348 }
330cdd98 2349 else if (section_is_p (sectp->name, &names.info))
c906108c 2350 {
330cdd98
PA
2351 this->info.s.section = sectp;
2352 this->info.size = bfd_get_section_size (sectp);
c906108c 2353 }
330cdd98 2354 else if (section_is_p (sectp->name, &names.abbrev))
c906108c 2355 {
330cdd98
PA
2356 this->abbrev.s.section = sectp;
2357 this->abbrev.size = bfd_get_section_size (sectp);
c906108c 2358 }
330cdd98 2359 else if (section_is_p (sectp->name, &names.line))
c906108c 2360 {
330cdd98
PA
2361 this->line.s.section = sectp;
2362 this->line.size = bfd_get_section_size (sectp);
c906108c 2363 }
330cdd98 2364 else if (section_is_p (sectp->name, &names.loc))
c906108c 2365 {
330cdd98
PA
2366 this->loc.s.section = sectp;
2367 this->loc.size = bfd_get_section_size (sectp);
c906108c 2368 }
330cdd98 2369 else if (section_is_p (sectp->name, &names.loclists))
43988095 2370 {
330cdd98
PA
2371 this->loclists.s.section = sectp;
2372 this->loclists.size = bfd_get_section_size (sectp);
43988095 2373 }
330cdd98 2374 else if (section_is_p (sectp->name, &names.macinfo))
c906108c 2375 {
330cdd98
PA
2376 this->macinfo.s.section = sectp;
2377 this->macinfo.size = bfd_get_section_size (sectp);
c906108c 2378 }
330cdd98 2379 else if (section_is_p (sectp->name, &names.macro))
cf2c3c16 2380 {
330cdd98
PA
2381 this->macro.s.section = sectp;
2382 this->macro.size = bfd_get_section_size (sectp);
cf2c3c16 2383 }
330cdd98 2384 else if (section_is_p (sectp->name, &names.str))
c906108c 2385 {
330cdd98
PA
2386 this->str.s.section = sectp;
2387 this->str.size = bfd_get_section_size (sectp);
c906108c 2388 }
330cdd98 2389 else if (section_is_p (sectp->name, &names.line_str))
43988095 2390 {
330cdd98
PA
2391 this->line_str.s.section = sectp;
2392 this->line_str.size = bfd_get_section_size (sectp);
43988095 2393 }
330cdd98 2394 else if (section_is_p (sectp->name, &names.addr))
3019eac3 2395 {
330cdd98
PA
2396 this->addr.s.section = sectp;
2397 this->addr.size = bfd_get_section_size (sectp);
3019eac3 2398 }
330cdd98 2399 else if (section_is_p (sectp->name, &names.frame))
b6af0555 2400 {
330cdd98
PA
2401 this->frame.s.section = sectp;
2402 this->frame.size = bfd_get_section_size (sectp);
b6af0555 2403 }
330cdd98 2404 else if (section_is_p (sectp->name, &names.eh_frame))
b6af0555 2405 {
330cdd98
PA
2406 this->eh_frame.s.section = sectp;
2407 this->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2408 }
330cdd98 2409 else if (section_is_p (sectp->name, &names.ranges))
af34e669 2410 {
330cdd98
PA
2411 this->ranges.s.section = sectp;
2412 this->ranges.size = bfd_get_section_size (sectp);
af34e669 2413 }
330cdd98 2414 else if (section_is_p (sectp->name, &names.rnglists))
43988095 2415 {
330cdd98
PA
2416 this->rnglists.s.section = sectp;
2417 this->rnglists.size = bfd_get_section_size (sectp);
43988095 2418 }
330cdd98 2419 else if (section_is_p (sectp->name, &names.types))
348e048f 2420 {
8b70b953
TT
2421 struct dwarf2_section_info type_section;
2422
2423 memset (&type_section, 0, sizeof (type_section));
049412e3 2424 type_section.s.section = sectp;
8b70b953
TT
2425 type_section.size = bfd_get_section_size (sectp);
2426
330cdd98 2427 VEC_safe_push (dwarf2_section_info_def, this->types,
8b70b953 2428 &type_section);
348e048f 2429 }
330cdd98 2430 else if (section_is_p (sectp->name, &names.gdb_index))
9291a0cd 2431 {
330cdd98
PA
2432 this->gdb_index.s.section = sectp;
2433 this->gdb_index.size = bfd_get_section_size (sectp);
9291a0cd 2434 }
927aa2e7
JK
2435 else if (section_is_p (sectp->name, &names.debug_names))
2436 {
2437 this->debug_names.s.section = sectp;
2438 this->debug_names.size = bfd_get_section_size (sectp);
2439 }
2440 else if (section_is_p (sectp->name, &names.debug_aranges))
2441 {
2442 this->debug_aranges.s.section = sectp;
2443 this->debug_aranges.size = bfd_get_section_size (sectp);
2444 }
dce234bc 2445
b4e1fd61 2446 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5 2447 && bfd_section_vma (abfd, sectp) == 0)
330cdd98 2448 this->has_section_at_zero = true;
c906108c
SS
2449}
2450
fceca515
DE
2451/* A helper function that decides whether a section is empty,
2452 or not present. */
9e0ac564
TT
2453
2454static int
19ac8c2e 2455dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2456{
73869dc2
DE
2457 if (section->is_virtual)
2458 return section->size == 0;
049412e3 2459 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2460}
2461
cd4fb1b2 2462/* See dwarf2read.h. */
c906108c 2463
cd4fb1b2
SM
2464void
2465dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
c906108c 2466{
a32a8923 2467 asection *sectp;
3019eac3 2468 bfd *abfd;
dce234bc 2469 gdb_byte *buf, *retbuf;
c906108c 2470
be391dca
TT
2471 if (info->readin)
2472 return;
dce234bc 2473 info->buffer = NULL;
be391dca 2474 info->readin = 1;
188dd5d6 2475
9e0ac564 2476 if (dwarf2_section_empty_p (info))
dce234bc 2477 return;
c906108c 2478
a32a8923 2479 sectp = get_section_bfd_section (info);
3019eac3 2480
73869dc2
DE
2481 /* If this is a virtual section we need to read in the real one first. */
2482 if (info->is_virtual)
2483 {
2484 struct dwarf2_section_info *containing_section =
2485 get_containing_section (info);
2486
2487 gdb_assert (sectp != NULL);
2488 if ((sectp->flags & SEC_RELOC) != 0)
2489 {
2490 error (_("Dwarf Error: DWP format V2 with relocations is not"
2491 " supported in section %s [in module %s]"),
2492 get_section_name (info), get_section_file_name (info));
2493 }
2494 dwarf2_read_section (objfile, containing_section);
2495 /* Other code should have already caught virtual sections that don't
2496 fit. */
2497 gdb_assert (info->virtual_offset + info->size
2498 <= containing_section->size);
2499 /* If the real section is empty or there was a problem reading the
2500 section we shouldn't get here. */
2501 gdb_assert (containing_section->buffer != NULL);
2502 info->buffer = containing_section->buffer + info->virtual_offset;
2503 return;
2504 }
2505
4bf44c1c
TT
2506 /* If the section has relocations, we must read it ourselves.
2507 Otherwise we attach it to the BFD. */
2508 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2509 {
d521ce57 2510 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2511 return;
dce234bc 2512 }
dce234bc 2513
224c3ddb 2514 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2515 info->buffer = buf;
dce234bc
PP
2516
2517 /* When debugging .o files, we may need to apply relocations; see
2518 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2519 We never compress sections in .o files, so we only need to
2520 try this when the section is not compressed. */
ac8035ab 2521 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2522 if (retbuf != NULL)
2523 {
2524 info->buffer = retbuf;
2525 return;
2526 }
2527
a32a8923
DE
2528 abfd = get_section_bfd_owner (info);
2529 gdb_assert (abfd != NULL);
2530
dce234bc
PP
2531 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2532 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2533 {
2534 error (_("Dwarf Error: Can't read DWARF data"
2535 " in section %s [in module %s]"),
2536 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2537 }
dce234bc
PP
2538}
2539
9e0ac564
TT
2540/* A helper function that returns the size of a section in a safe way.
2541 If you are positive that the section has been read before using the
2542 size, then it is safe to refer to the dwarf2_section_info object's
2543 "size" field directly. In other cases, you must call this
2544 function, because for compressed sections the size field is not set
2545 correctly until the section has been read. */
2546
2547static bfd_size_type
2548dwarf2_section_size (struct objfile *objfile,
2549 struct dwarf2_section_info *info)
2550{
2551 if (!info->readin)
2552 dwarf2_read_section (objfile, info);
2553 return info->size;
2554}
2555
dce234bc 2556/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2557 SECTION_NAME. */
af34e669 2558
dce234bc 2559void
3017a003
TG
2560dwarf2_get_section_info (struct objfile *objfile,
2561 enum dwarf2_section_enum sect,
d521ce57 2562 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2563 bfd_size_type *sizep)
2564{
2565 struct dwarf2_per_objfile *data
9a3c8263
SM
2566 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2567 dwarf2_objfile_data_key);
dce234bc 2568 struct dwarf2_section_info *info;
a3b2a86b
TT
2569
2570 /* We may see an objfile without any DWARF, in which case we just
2571 return nothing. */
2572 if (data == NULL)
2573 {
2574 *sectp = NULL;
2575 *bufp = NULL;
2576 *sizep = 0;
2577 return;
2578 }
3017a003
TG
2579 switch (sect)
2580 {
2581 case DWARF2_DEBUG_FRAME:
2582 info = &data->frame;
2583 break;
2584 case DWARF2_EH_FRAME:
2585 info = &data->eh_frame;
2586 break;
2587 default:
2588 gdb_assert_not_reached ("unexpected section");
2589 }
dce234bc 2590
9e0ac564 2591 dwarf2_read_section (objfile, info);
dce234bc 2592
a32a8923 2593 *sectp = get_section_bfd_section (info);
dce234bc
PP
2594 *bufp = info->buffer;
2595 *sizep = info->size;
2596}
2597
36586728
TT
2598/* A helper function to find the sections for a .dwz file. */
2599
2600static void
2601locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2602{
9a3c8263 2603 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2604
2605 /* Note that we only support the standard ELF names, because .dwz
2606 is ELF-only (at the time of writing). */
2607 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2608 {
049412e3 2609 dwz_file->abbrev.s.section = sectp;
36586728
TT
2610 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2611 }
2612 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2613 {
049412e3 2614 dwz_file->info.s.section = sectp;
36586728
TT
2615 dwz_file->info.size = bfd_get_section_size (sectp);
2616 }
2617 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2618 {
049412e3 2619 dwz_file->str.s.section = sectp;
36586728
TT
2620 dwz_file->str.size = bfd_get_section_size (sectp);
2621 }
2622 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2623 {
049412e3 2624 dwz_file->line.s.section = sectp;
36586728
TT
2625 dwz_file->line.size = bfd_get_section_size (sectp);
2626 }
2627 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2628 {
049412e3 2629 dwz_file->macro.s.section = sectp;
36586728
TT
2630 dwz_file->macro.size = bfd_get_section_size (sectp);
2631 }
2ec9a5e0
TT
2632 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2633 {
049412e3 2634 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2635 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2636 }
927aa2e7
JK
2637 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2638 {
2639 dwz_file->debug_names.s.section = sectp;
2640 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2641 }
36586728
TT
2642}
2643
4db1a1dc
TT
2644/* Open the separate '.dwz' debug file, if needed. Return NULL if
2645 there is no .gnu_debugaltlink section in the file. Error if there
2646 is such a section but the file cannot be found. */
36586728
TT
2647
2648static struct dwz_file *
ed2dc618 2649dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
36586728 2650{
36586728 2651 const char *filename;
acd13123 2652 bfd_size_type buildid_len_arg;
dc294be5
TT
2653 size_t buildid_len;
2654 bfd_byte *buildid;
36586728
TT
2655
2656 if (dwarf2_per_objfile->dwz_file != NULL)
7ff8cb8c 2657 return dwarf2_per_objfile->dwz_file.get ();
36586728 2658
4db1a1dc 2659 bfd_set_error (bfd_error_no_error);
791afaa2
TT
2660 gdb::unique_xmalloc_ptr<char> data
2661 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2662 &buildid_len_arg, &buildid));
4db1a1dc
TT
2663 if (data == NULL)
2664 {
2665 if (bfd_get_error () == bfd_error_no_error)
2666 return NULL;
2667 error (_("could not read '.gnu_debugaltlink' section: %s"),
2668 bfd_errmsg (bfd_get_error ()));
2669 }
791afaa2
TT
2670
2671 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
36586728 2672
acd13123
TT
2673 buildid_len = (size_t) buildid_len_arg;
2674
791afaa2 2675 filename = data.get ();
d721ba37
PA
2676
2677 std::string abs_storage;
36586728
TT
2678 if (!IS_ABSOLUTE_PATH (filename))
2679 {
14278e1f
TT
2680 gdb::unique_xmalloc_ptr<char> abs
2681 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728 2682
14278e1f 2683 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
d721ba37 2684 filename = abs_storage.c_str ();
36586728
TT
2685 }
2686
dc294be5
TT
2687 /* First try the file name given in the section. If that doesn't
2688 work, try to use the build-id instead. */
192b62ce 2689 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
dc294be5 2690 if (dwz_bfd != NULL)
36586728 2691 {
192b62ce
TT
2692 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2693 dwz_bfd.release ();
36586728
TT
2694 }
2695
dc294be5
TT
2696 if (dwz_bfd == NULL)
2697 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2698
2699 if (dwz_bfd == NULL)
2700 error (_("could not find '.gnu_debugaltlink' file for %s"),
2701 objfile_name (dwarf2_per_objfile->objfile));
2702
7ff8cb8c
TT
2703 std::unique_ptr<struct dwz_file> result
2704 (new struct dwz_file (std::move (dwz_bfd)));
36586728 2705
7ff8cb8c
TT
2706 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2707 result.get ());
36586728 2708
7ff8cb8c
TT
2709 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2710 result->dwz_bfd.get ());
2711 dwarf2_per_objfile->dwz_file = std::move (result);
2712 return dwarf2_per_objfile->dwz_file.get ();
36586728 2713}
9291a0cd 2714\f
7b9f3c50
DE
2715/* DWARF quick_symbols_functions support. */
2716
2717/* TUs can share .debug_line entries, and there can be a lot more TUs than
2718 unique line tables, so we maintain a separate table of all .debug_line
2719 derived entries to support the sharing.
2720 All the quick functions need is the list of file names. We discard the
2721 line_header when we're done and don't need to record it here. */
2722struct quick_file_names
2723{
094b34ac
DE
2724 /* The data used to construct the hash key. */
2725 struct stmt_list_hash hash;
7b9f3c50
DE
2726
2727 /* The number of entries in file_names, real_names. */
2728 unsigned int num_file_names;
2729
2730 /* The file names from the line table, after being run through
2731 file_full_name. */
2732 const char **file_names;
2733
2734 /* The file names from the line table after being run through
2735 gdb_realpath. These are computed lazily. */
2736 const char **real_names;
2737};
2738
2739/* When using the index (and thus not using psymtabs), each CU has an
2740 object of this type. This is used to hold information needed by
2741 the various "quick" methods. */
2742struct dwarf2_per_cu_quick_data
2743{
2744 /* The file table. This can be NULL if there was no file table
2745 or it's currently not read in.
2746 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2747 struct quick_file_names *file_names;
2748
2749 /* The corresponding symbol table. This is NULL if symbols for this
2750 CU have not yet been read. */
43f3e411 2751 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2752
2753 /* A temporary mark bit used when iterating over all CUs in
2754 expand_symtabs_matching. */
2755 unsigned int mark : 1;
2756
2757 /* True if we've tried to read the file table and found there isn't one.
2758 There will be no point in trying to read it again next time. */
2759 unsigned int no_file_data : 1;
2760};
2761
094b34ac
DE
2762/* Utility hash function for a stmt_list_hash. */
2763
2764static hashval_t
2765hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2766{
2767 hashval_t v = 0;
2768
2769 if (stmt_list_hash->dwo_unit != NULL)
2770 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
9c541725 2771 v += to_underlying (stmt_list_hash->line_sect_off);
094b34ac
DE
2772 return v;
2773}
2774
2775/* Utility equality function for a stmt_list_hash. */
2776
2777static int
2778eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2779 const struct stmt_list_hash *rhs)
2780{
2781 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2782 return 0;
2783 if (lhs->dwo_unit != NULL
2784 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2785 return 0;
2786
9c541725 2787 return lhs->line_sect_off == rhs->line_sect_off;
094b34ac
DE
2788}
2789
7b9f3c50
DE
2790/* Hash function for a quick_file_names. */
2791
2792static hashval_t
2793hash_file_name_entry (const void *e)
2794{
9a3c8263
SM
2795 const struct quick_file_names *file_data
2796 = (const struct quick_file_names *) e;
7b9f3c50 2797
094b34ac 2798 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2799}
2800
2801/* Equality function for a quick_file_names. */
2802
2803static int
2804eq_file_name_entry (const void *a, const void *b)
2805{
9a3c8263
SM
2806 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2807 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2808
094b34ac 2809 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2810}
2811
2812/* Delete function for a quick_file_names. */
2813
2814static void
2815delete_file_name_entry (void *e)
2816{
9a3c8263 2817 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2818 int i;
2819
2820 for (i = 0; i < file_data->num_file_names; ++i)
2821 {
2822 xfree ((void*) file_data->file_names[i]);
2823 if (file_data->real_names)
2824 xfree ((void*) file_data->real_names[i]);
2825 }
2826
2827 /* The space for the struct itself lives on objfile_obstack,
2828 so we don't free it here. */
2829}
2830
2831/* Create a quick_file_names hash table. */
2832
2833static htab_t
2834create_quick_file_names_table (unsigned int nr_initial_entries)
2835{
2836 return htab_create_alloc (nr_initial_entries,
2837 hash_file_name_entry, eq_file_name_entry,
2838 delete_file_name_entry, xcalloc, xfree);
2839}
9291a0cd 2840
918dd910
JK
2841/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2842 have to be created afterwards. You should call age_cached_comp_units after
2843 processing PER_CU->CU. dw2_setup must have been already called. */
2844
2845static void
58f0c718 2846load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
918dd910 2847{
3019eac3 2848 if (per_cu->is_debug_types)
e5fe5e75 2849 load_full_type_unit (per_cu);
918dd910 2850 else
58f0c718 2851 load_full_comp_unit (per_cu, skip_partial, language_minimal);
918dd910 2852
cc12ce38
DE
2853 if (per_cu->cu == NULL)
2854 return; /* Dummy CU. */
2dc860c0
DE
2855
2856 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2857}
2858
a0f42c21 2859/* Read in the symbols for PER_CU. */
2fdf6df6 2860
9291a0cd 2861static void
58f0c718 2862dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
9291a0cd 2863{
ed2dc618 2864 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9291a0cd 2865
f4dc4d17
DE
2866 /* Skip type_unit_groups, reading the type units they contain
2867 is handled elsewhere. */
2868 if (IS_TYPE_UNIT_GROUP (per_cu))
2869 return;
2870
b303c6f6
AB
2871 /* The destructor of dwarf2_queue_guard frees any entries left on
2872 the queue. After this point we're guaranteed to leave this function
2873 with the dwarf queue empty. */
2874 dwarf2_queue_guard q_guard;
9291a0cd 2875
95554aad 2876 if (dwarf2_per_objfile->using_index
43f3e411 2877 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2878 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2879 {
2880 queue_comp_unit (per_cu, language_minimal);
58f0c718 2881 load_cu (per_cu, skip_partial);
89e63ee4
DE
2882
2883 /* If we just loaded a CU from a DWO, and we're working with an index
2884 that may badly handle TUs, load all the TUs in that DWO as well.
2885 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2886 if (!per_cu->is_debug_types
cc12ce38 2887 && per_cu->cu != NULL
89e63ee4
DE
2888 && per_cu->cu->dwo_unit != NULL
2889 && dwarf2_per_objfile->index_table != NULL
2890 && dwarf2_per_objfile->index_table->version <= 7
2891 /* DWP files aren't supported yet. */
ed2dc618 2892 && get_dwp_file (dwarf2_per_objfile) == NULL)
89e63ee4 2893 queue_and_load_all_dwo_tus (per_cu);
95554aad 2894 }
9291a0cd 2895
ed2dc618 2896 process_queue (dwarf2_per_objfile);
9291a0cd
TT
2897
2898 /* Age the cache, releasing compilation units that have not
2899 been used recently. */
ed2dc618 2900 age_cached_comp_units (dwarf2_per_objfile);
9291a0cd
TT
2901}
2902
2903/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2904 the objfile from which this CU came. Returns the resulting symbol
2905 table. */
2fdf6df6 2906
43f3e411 2907static struct compunit_symtab *
58f0c718 2908dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
9291a0cd 2909{
ed2dc618
SM
2910 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2911
95554aad 2912 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2913 if (!per_cu->v.quick->compunit_symtab)
9291a0cd 2914 {
11ed8cad 2915 free_cached_comp_units freer (dwarf2_per_objfile);
c83dd867 2916 scoped_restore decrementer = increment_reading_symtab ();
58f0c718 2917 dw2_do_instantiate_symtab (per_cu, skip_partial);
ed2dc618 2918 process_cu_includes (dwarf2_per_objfile);
9291a0cd 2919 }
f194fefb 2920
43f3e411 2921 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2922}
2923
ff4c9fec 2924/* See declaration. */
f4dc4d17 2925
ff4c9fec
SM
2926dwarf2_per_cu_data *
2927dwarf2_per_objfile::get_cutu (int index)
2928{
b76e467d 2929 if (index >= this->all_comp_units.size ())
ff4c9fec 2930 {
b76e467d 2931 index -= this->all_comp_units.size ();
b2bdb8cf 2932 gdb_assert (index < this->all_type_units.size ());
ff4c9fec
SM
2933 return &this->all_type_units[index]->per_cu;
2934 }
f4dc4d17 2935
ff4c9fec
SM
2936 return this->all_comp_units[index];
2937}
f4dc4d17 2938
ff4c9fec 2939/* See declaration. */
2fdf6df6 2940
ff4c9fec
SM
2941dwarf2_per_cu_data *
2942dwarf2_per_objfile::get_cu (int index)
1fd400ff 2943{
b76e467d 2944 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
f4dc4d17 2945
ff4c9fec 2946 return this->all_comp_units[index];
f4dc4d17
DE
2947}
2948
ff4c9fec 2949/* See declaration. */
f4dc4d17 2950
ff4c9fec
SM
2951signatured_type *
2952dwarf2_per_objfile::get_tu (int index)
f4dc4d17 2953{
b2bdb8cf 2954 gdb_assert (index >= 0 && index < this->all_type_units.size ());
f4dc4d17 2955
ff4c9fec 2956 return this->all_type_units[index];
1fd400ff
TT
2957}
2958
4b514bc8
JK
2959/* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2960 objfile_obstack, and constructed with the specified field
2961 values. */
2962
2963static dwarf2_per_cu_data *
ed2dc618 2964create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
4b514bc8
JK
2965 struct dwarf2_section_info *section,
2966 int is_dwz,
2967 sect_offset sect_off, ULONGEST length)
2968{
ed2dc618 2969 struct objfile *objfile = dwarf2_per_objfile->objfile;
4b514bc8
JK
2970 dwarf2_per_cu_data *the_cu
2971 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2972 struct dwarf2_per_cu_data);
2973 the_cu->sect_off = sect_off;
2974 the_cu->length = length;
e3b94546 2975 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
4b514bc8
JK
2976 the_cu->section = section;
2977 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2978 struct dwarf2_per_cu_quick_data);
2979 the_cu->is_dwz = is_dwz;
2980 return the_cu;
2981}
2982
2ec9a5e0
TT
2983/* A helper for create_cus_from_index that handles a given list of
2984 CUs. */
2fdf6df6 2985
74a0d9f6 2986static void
12359b5e 2987create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2ec9a5e0
TT
2988 const gdb_byte *cu_list, offset_type n_elements,
2989 struct dwarf2_section_info *section,
b76e467d 2990 int is_dwz)
9291a0cd 2991{
12359b5e 2992 for (offset_type i = 0; i < n_elements; i += 2)
9291a0cd 2993 {
74a0d9f6 2994 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
2995
2996 sect_offset sect_off
2997 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2998 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2999 cu_list += 2 * 8;
3000
b76e467d 3001 dwarf2_per_cu_data *per_cu
ed2dc618
SM
3002 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3003 sect_off, length);
b76e467d 3004 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
9291a0cd 3005 }
9291a0cd
TT
3006}
3007
2ec9a5e0 3008/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 3009 the CU objects for this objfile. */
2ec9a5e0 3010
74a0d9f6 3011static void
12359b5e 3012create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2ec9a5e0
TT
3013 const gdb_byte *cu_list, offset_type cu_list_elements,
3014 const gdb_byte *dwz_list, offset_type dwz_elements)
3015{
b76e467d
SM
3016 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3017 dwarf2_per_objfile->all_comp_units.reserve
3018 ((cu_list_elements + dwz_elements) / 2);
2ec9a5e0 3019
12359b5e 3020 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
b76e467d 3021 &dwarf2_per_objfile->info, 0);
2ec9a5e0
TT
3022
3023 if (dwz_elements == 0)
74a0d9f6 3024 return;
2ec9a5e0 3025
12359b5e
SM
3026 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3027 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
b76e467d 3028 &dwz->info, 1);
2ec9a5e0
TT
3029}
3030
1fd400ff 3031/* Create the signatured type hash table from the index. */
673bfd45 3032
74a0d9f6 3033static void
12359b5e
SM
3034create_signatured_type_table_from_index
3035 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3036 struct dwarf2_section_info *section,
3037 const gdb_byte *bytes,
3038 offset_type elements)
1fd400ff 3039{
12359b5e 3040 struct objfile *objfile = dwarf2_per_objfile->objfile;
1fd400ff 3041
b2bdb8cf
SM
3042 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3043 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
1fd400ff 3044
12359b5e 3045 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff 3046
12359b5e 3047 for (offset_type i = 0; i < elements; i += 3)
1fd400ff 3048 {
52dc124a 3049 struct signatured_type *sig_type;
9c541725 3050 ULONGEST signature;
1fd400ff 3051 void **slot;
9c541725 3052 cu_offset type_offset_in_tu;
1fd400ff 3053
74a0d9f6 3054 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
3055 sect_offset sect_off
3056 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3057 type_offset_in_tu
3058 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3059 BFD_ENDIAN_LITTLE);
1fd400ff
TT
3060 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3061 bytes += 3 * 8;
3062
52dc124a 3063 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 3064 struct signatured_type);
52dc124a 3065 sig_type->signature = signature;
9c541725 3066 sig_type->type_offset_in_tu = type_offset_in_tu;
3019eac3 3067 sig_type->per_cu.is_debug_types = 1;
8a0459fd 3068 sig_type->per_cu.section = section;
9c541725 3069 sig_type->per_cu.sect_off = sect_off;
e3b94546 3070 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
52dc124a 3071 sig_type->per_cu.v.quick
1fd400ff
TT
3072 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3073 struct dwarf2_per_cu_quick_data);
3074
52dc124a
DE
3075 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3076 *slot = sig_type;
1fd400ff 3077
b2bdb8cf 3078 dwarf2_per_objfile->all_type_units.push_back (sig_type);
1fd400ff
TT
3079 }
3080
673bfd45 3081 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
3082}
3083
927aa2e7
JK
3084/* Create the signatured type hash table from .debug_names. */
3085
3086static void
3087create_signatured_type_table_from_debug_names
ed2dc618 3088 (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
3089 const mapped_debug_names &map,
3090 struct dwarf2_section_info *section,
3091 struct dwarf2_section_info *abbrev_section)
3092{
ed2dc618
SM
3093 struct objfile *objfile = dwarf2_per_objfile->objfile;
3094
927aa2e7
JK
3095 dwarf2_read_section (objfile, section);
3096 dwarf2_read_section (objfile, abbrev_section);
3097
b2bdb8cf
SM
3098 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3099 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
927aa2e7
JK
3100
3101 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3102
3103 for (uint32_t i = 0; i < map.tu_count; ++i)
3104 {
3105 struct signatured_type *sig_type;
927aa2e7 3106 void **slot;
927aa2e7
JK
3107
3108 sect_offset sect_off
3109 = (sect_offset) (extract_unsigned_integer
3110 (map.tu_table_reordered + i * map.offset_size,
3111 map.offset_size,
3112 map.dwarf5_byte_order));
3113
3114 comp_unit_head cu_header;
ed2dc618
SM
3115 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3116 abbrev_section,
927aa2e7
JK
3117 section->buffer + to_underlying (sect_off),
3118 rcuh_kind::TYPE);
3119
3120 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3121 struct signatured_type);
3122 sig_type->signature = cu_header.signature;
3123 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3124 sig_type->per_cu.is_debug_types = 1;
3125 sig_type->per_cu.section = section;
3126 sig_type->per_cu.sect_off = sect_off;
e3b94546 3127 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
927aa2e7
JK
3128 sig_type->per_cu.v.quick
3129 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3130 struct dwarf2_per_cu_quick_data);
3131
3132 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3133 *slot = sig_type;
3134
b2bdb8cf 3135 dwarf2_per_objfile->all_type_units.push_back (sig_type);
927aa2e7
JK
3136 }
3137
3138 dwarf2_per_objfile->signatured_types = sig_types_hash;
3139}
3140
9291a0cd
TT
3141/* Read the address map data from the mapped index, and use it to
3142 populate the objfile's psymtabs_addrmap. */
2fdf6df6 3143
9291a0cd 3144static void
ed2dc618
SM
3145create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3146 struct mapped_index *index)
9291a0cd 3147{
ed2dc618 3148 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 3149 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd 3150 const gdb_byte *iter, *end;
9291a0cd 3151 struct addrmap *mutable_map;
9291a0cd
TT
3152 CORE_ADDR baseaddr;
3153
8268c778
PA
3154 auto_obstack temp_obstack;
3155
9291a0cd
TT
3156 mutable_map = addrmap_create_mutable (&temp_obstack);
3157
f00a2de2
PA
3158 iter = index->address_table.data ();
3159 end = iter + index->address_table.size ();
9291a0cd
TT
3160
3161 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3162
3163 while (iter < end)
3164 {
3165 ULONGEST hi, lo, cu_index;
3166 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3167 iter += 8;
3168 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3169 iter += 8;
3170 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3171 iter += 4;
f652bce2 3172
24a55014 3173 if (lo > hi)
f652bce2 3174 {
b98664d3 3175 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 3176 hex_string (lo), hex_string (hi));
24a55014 3177 continue;
f652bce2 3178 }
24a55014 3179
b76e467d 3180 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
f652bce2 3181 {
b98664d3 3182 complaint (_(".gdb_index address table has invalid CU number %u"),
f652bce2 3183 (unsigned) cu_index);
24a55014 3184 continue;
f652bce2 3185 }
24a55014 3186
79748972
TT
3187 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3188 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
ed2dc618 3189 addrmap_set_empty (mutable_map, lo, hi - 1,
ff4c9fec 3190 dwarf2_per_objfile->get_cu (cu_index));
9291a0cd
TT
3191 }
3192
3193 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3194 &objfile->objfile_obstack);
9291a0cd
TT
3195}
3196
927aa2e7
JK
3197/* Read the address map data from DWARF-5 .debug_aranges, and use it to
3198 populate the objfile's psymtabs_addrmap. */
3199
3200static void
ed2dc618 3201create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
3202 struct dwarf2_section_info *section)
3203{
ed2dc618 3204 struct objfile *objfile = dwarf2_per_objfile->objfile;
927aa2e7
JK
3205 bfd *abfd = objfile->obfd;
3206 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3207 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3208 SECT_OFF_TEXT (objfile));
3209
3210 auto_obstack temp_obstack;
3211 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3212
3213 std::unordered_map<sect_offset,
3214 dwarf2_per_cu_data *,
3215 gdb::hash_enum<sect_offset>>
3216 debug_info_offset_to_per_cu;
b76e467d 3217 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 3218 {
927aa2e7
JK
3219 const auto insertpair
3220 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3221 if (!insertpair.second)
3222 {
3223 warning (_("Section .debug_aranges in %s has duplicate "
9d8780f0
SM
3224 "debug_info_offset %s, ignoring .debug_aranges."),
3225 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
927aa2e7
JK
3226 return;
3227 }
3228 }
3229
3230 dwarf2_read_section (objfile, section);
3231
3232 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3233
3234 const gdb_byte *addr = section->buffer;
3235
3236 while (addr < section->buffer + section->size)
3237 {
3238 const gdb_byte *const entry_addr = addr;
3239 unsigned int bytes_read;
3240
3241 const LONGEST entry_length = read_initial_length (abfd, addr,
3242 &bytes_read);
3243 addr += bytes_read;
3244
3245 const gdb_byte *const entry_end = addr + entry_length;
3246 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3247 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3248 if (addr + entry_length > section->buffer + section->size)
3249 {
3250 warning (_("Section .debug_aranges in %s entry at offset %zu "
3251 "length %s exceeds section length %s, "
3252 "ignoring .debug_aranges."),
3253 objfile_name (objfile), entry_addr - section->buffer,
3254 plongest (bytes_read + entry_length),
3255 pulongest (section->size));
3256 return;
3257 }
3258
3259 /* The version number. */
3260 const uint16_t version = read_2_bytes (abfd, addr);
3261 addr += 2;
3262 if (version != 2)
3263 {
3264 warning (_("Section .debug_aranges in %s entry at offset %zu "
3265 "has unsupported version %d, ignoring .debug_aranges."),
3266 objfile_name (objfile), entry_addr - section->buffer,
3267 version);
3268 return;
3269 }
3270
3271 const uint64_t debug_info_offset
3272 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3273 addr += offset_size;
3274 const auto per_cu_it
3275 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3276 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3277 {
3278 warning (_("Section .debug_aranges in %s entry at offset %zu "
3279 "debug_info_offset %s does not exists, "
3280 "ignoring .debug_aranges."),
3281 objfile_name (objfile), entry_addr - section->buffer,
3282 pulongest (debug_info_offset));
3283 return;
3284 }
3285 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3286
3287 const uint8_t address_size = *addr++;
3288 if (address_size < 1 || address_size > 8)
3289 {
3290 warning (_("Section .debug_aranges in %s entry at offset %zu "
3291 "address_size %u is invalid, ignoring .debug_aranges."),
3292 objfile_name (objfile), entry_addr - section->buffer,
3293 address_size);
3294 return;
3295 }
3296
3297 const uint8_t segment_selector_size = *addr++;
3298 if (segment_selector_size != 0)
3299 {
3300 warning (_("Section .debug_aranges in %s entry at offset %zu "
3301 "segment_selector_size %u is not supported, "
3302 "ignoring .debug_aranges."),
3303 objfile_name (objfile), entry_addr - section->buffer,
3304 segment_selector_size);
3305 return;
3306 }
3307
3308 /* Must pad to an alignment boundary that is twice the address
3309 size. It is undocumented by the DWARF standard but GCC does
3310 use it. */
3311 for (size_t padding = ((-(addr - section->buffer))
3312 & (2 * address_size - 1));
3313 padding > 0; padding--)
3314 if (*addr++ != 0)
3315 {
3316 warning (_("Section .debug_aranges in %s entry at offset %zu "
3317 "padding is not zero, ignoring .debug_aranges."),
3318 objfile_name (objfile), entry_addr - section->buffer);
3319 return;
3320 }
3321
3322 for (;;)
3323 {
3324 if (addr + 2 * address_size > entry_end)
3325 {
3326 warning (_("Section .debug_aranges in %s entry at offset %zu "
3327 "address list is not properly terminated, "
3328 "ignoring .debug_aranges."),
3329 objfile_name (objfile), entry_addr - section->buffer);
3330 return;
3331 }
3332 ULONGEST start = extract_unsigned_integer (addr, address_size,
3333 dwarf5_byte_order);
3334 addr += address_size;
3335 ULONGEST length = extract_unsigned_integer (addr, address_size,
3336 dwarf5_byte_order);
3337 addr += address_size;
3338 if (start == 0 && length == 0)
3339 break;
3340 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3341 {
3342 /* Symbol was eliminated due to a COMDAT group. */
3343 continue;
3344 }
3345 ULONGEST end = start + length;
79748972
TT
3346 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3347 - baseaddr);
3348 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3349 - baseaddr);
927aa2e7
JK
3350 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3351 }
3352 }
3353
3354 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3355 &objfile->objfile_obstack);
3356}
3357
9291a0cd
TT
3358/* Find a slot in the mapped index INDEX for the object named NAME.
3359 If NAME is found, set *VEC_OUT to point to the CU vector in the
109483d9
PA
3360 constant pool and return true. If NAME cannot be found, return
3361 false. */
2fdf6df6 3362
109483d9 3363static bool
9291a0cd
TT
3364find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3365 offset_type **vec_out)
3366{
0cf03b49 3367 offset_type hash;
9291a0cd 3368 offset_type slot, step;
559a7a62 3369 int (*cmp) (const char *, const char *);
9291a0cd 3370
791afaa2 3371 gdb::unique_xmalloc_ptr<char> without_params;
0cf03b49 3372 if (current_language->la_language == language_cplus
45280282
IB
3373 || current_language->la_language == language_fortran
3374 || current_language->la_language == language_d)
0cf03b49
JK
3375 {
3376 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3377 not contain any. */
a8719064 3378
72998fb3 3379 if (strchr (name, '(') != NULL)
0cf03b49 3380 {
109483d9 3381 without_params = cp_remove_params (name);
0cf03b49 3382
72998fb3 3383 if (without_params != NULL)
791afaa2 3384 name = without_params.get ();
0cf03b49
JK
3385 }
3386 }
3387
559a7a62 3388 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3389 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3390 simulate our NAME being searched is also lowercased. */
3391 hash = mapped_index_string_hash ((index->version == 4
3392 && case_sensitivity == case_sensitive_off
3393 ? 5 : index->version),
3394 name);
3395
f00a2de2
PA
3396 slot = hash & (index->symbol_table.size () - 1);
3397 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
559a7a62 3398 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3399
3400 for (;;)
3401 {
9291a0cd 3402 const char *str;
f00a2de2
PA
3403
3404 const auto &bucket = index->symbol_table[slot];
3405 if (bucket.name == 0 && bucket.vec == 0)
109483d9 3406 return false;
9291a0cd 3407
f00a2de2 3408 str = index->constant_pool + MAYBE_SWAP (bucket.name);
559a7a62 3409 if (!cmp (name, str))
9291a0cd
TT
3410 {
3411 *vec_out = (offset_type *) (index->constant_pool
f00a2de2 3412 + MAYBE_SWAP (bucket.vec));
109483d9 3413 return true;
9291a0cd
TT
3414 }
3415
f00a2de2 3416 slot = (slot + step) & (index->symbol_table.size () - 1);
9291a0cd
TT
3417 }
3418}
3419
4485a1c1
SM
3420/* A helper function that reads the .gdb_index from BUFFER and fills
3421 in MAP. FILENAME is the name of the file containing the data;
d33bc52e 3422 it is used for error reporting. DEPRECATED_OK is true if it is
2ec9a5e0
TT
3423 ok to use deprecated sections.
3424
3425 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3426 out parameters that are filled in with information about the CU and
3427 TU lists in the section.
3428
4485a1c1 3429 Returns true if all went well, false otherwise. */
2fdf6df6 3430
d33bc52e 3431static bool
4485a1c1
SM
3432read_gdb_index_from_buffer (struct objfile *objfile,
3433 const char *filename,
3434 bool deprecated_ok,
3435 gdb::array_view<const gdb_byte> buffer,
3436 struct mapped_index *map,
3437 const gdb_byte **cu_list,
3438 offset_type *cu_list_elements,
3439 const gdb_byte **types_list,
3440 offset_type *types_list_elements)
3441{
3442 const gdb_byte *addr = &buffer[0];
82430852 3443
9291a0cd 3444 /* Version check. */
4485a1c1 3445 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3446 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3447 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3448 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3449 indices. */
831adc1f 3450 if (version < 4)
481860b3
GB
3451 {
3452 static int warning_printed = 0;
3453 if (!warning_printed)
3454 {
3455 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3456 filename);
481860b3
GB
3457 warning_printed = 1;
3458 }
3459 return 0;
3460 }
3461 /* Index version 4 uses a different hash function than index version
3462 5 and later.
3463
3464 Versions earlier than 6 did not emit psymbols for inlined
3465 functions. Using these files will cause GDB not to be able to
3466 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3467 indices unless the user has done
3468 "set use-deprecated-index-sections on". */
2ec9a5e0 3469 if (version < 6 && !deprecated_ok)
481860b3
GB
3470 {
3471 static int warning_printed = 0;
3472 if (!warning_printed)
3473 {
e615022a
DE
3474 warning (_("\
3475Skipping deprecated .gdb_index section in %s.\n\
3476Do \"set use-deprecated-index-sections on\" before the file is read\n\
3477to use the section anyway."),
2ec9a5e0 3478 filename);
481860b3
GB
3479 warning_printed = 1;
3480 }
3481 return 0;
3482 }
796a7ff8 3483 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3484 of the TU (for symbols coming from TUs),
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3486 Plus gold-generated indices can have duplicate entries for global symbols,
3487 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3488 These are just performance bugs, and we can't distinguish gdb-generated
3489 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3490
481860b3 3491 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3492 longer backward compatible. */
796a7ff8 3493 if (version > 8)
594e8718 3494 return 0;
9291a0cd 3495
559a7a62 3496 map->version = version;
9291a0cd 3497
4485a1c1 3498 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff 3499
4485a1c1 3500 int i = 0;
2ec9a5e0
TT
3501 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3502 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3503 / 8);
1fd400ff
TT
3504 ++i;
3505
2ec9a5e0
TT
3506 *types_list = addr + MAYBE_SWAP (metadata[i]);
3507 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3508 - MAYBE_SWAP (metadata[i]))
3509 / 8);
987d643c 3510 ++i;
1fd400ff 3511
f00a2de2
PA
3512 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3513 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3514 map->address_table
3515 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
1fd400ff
TT
3516 ++i;
3517
f00a2de2
PA
3518 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3519 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3520 map->symbol_table
3521 = gdb::array_view<mapped_index::symbol_table_slot>
3522 ((mapped_index::symbol_table_slot *) symbol_table,
3523 (mapped_index::symbol_table_slot *) symbol_table_end);
9291a0cd 3524
f00a2de2 3525 ++i;
f9d83a0b 3526 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3527
2ec9a5e0
TT
3528 return 1;
3529}
3530
4485a1c1
SM
3531/* Callback types for dwarf2_read_gdb_index. */
3532
3533typedef gdb::function_view
3534 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3535 get_gdb_index_contents_ftype;
3536typedef gdb::function_view
3537 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3538 get_gdb_index_contents_dwz_ftype;
3539
927aa2e7 3540/* Read .gdb_index. If everything went ok, initialize the "quick"
2ec9a5e0
TT
3541 elements of all the CUs and return 1. Otherwise, return 0. */
3542
3543static int
4485a1c1
SM
3544dwarf2_read_gdb_index
3545 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3546 get_gdb_index_contents_ftype get_gdb_index_contents,
3547 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
2ec9a5e0 3548{
2ec9a5e0
TT
3549 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3550 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3551 struct dwz_file *dwz;
12359b5e 3552 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ec9a5e0 3553
4485a1c1
SM
3554 gdb::array_view<const gdb_byte> main_index_contents
3555 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3556
3557 if (main_index_contents.empty ())
3558 return 0;
3559
3063847f 3560 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
4485a1c1
SM
3561 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3562 use_deprecated_index_sections,
3563 main_index_contents, map.get (), &cu_list,
3564 &cu_list_elements, &types_list,
3565 &types_list_elements))
2ec9a5e0
TT
3566 return 0;
3567
0fefef59 3568 /* Don't use the index if it's empty. */
3063847f 3569 if (map->symbol_table.empty ())
0fefef59
DE
3570 return 0;
3571
2ec9a5e0
TT
3572 /* If there is a .dwz file, read it so we can get its CU list as
3573 well. */
ed2dc618 3574 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
4db1a1dc 3575 if (dwz != NULL)
2ec9a5e0 3576 {
2ec9a5e0
TT
3577 struct mapped_index dwz_map;
3578 const gdb_byte *dwz_types_ignore;
3579 offset_type dwz_types_elements_ignore;
3580
4485a1c1
SM
3581 gdb::array_view<const gdb_byte> dwz_index_content
3582 = get_gdb_index_contents_dwz (objfile, dwz);
3583
3584 if (dwz_index_content.empty ())
3585 return 0;
3586
3587 if (!read_gdb_index_from_buffer (objfile,
3588 bfd_get_filename (dwz->dwz_bfd), 1,
3589 dwz_index_content, &dwz_map,
3590 &dwz_list, &dwz_list_elements,
3591 &dwz_types_ignore,
3592 &dwz_types_elements_ignore))
2ec9a5e0
TT
3593 {
3594 warning (_("could not read '.gdb_index' section from %s; skipping"),
3595 bfd_get_filename (dwz->dwz_bfd));
3596 return 0;
3597 }
3598 }
3599
12359b5e
SM
3600 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3601 dwz_list, dwz_list_elements);
1fd400ff 3602
8b70b953
TT
3603 if (types_list_elements)
3604 {
3605 struct dwarf2_section_info *section;
3606
3607 /* We can only handle a single .debug_types when we have an
3608 index. */
3609 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3610 return 0;
3611
3612 section = VEC_index (dwarf2_section_info_def,
3613 dwarf2_per_objfile->types, 0);
3614
12359b5e
SM
3615 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3616 types_list, types_list_elements);
8b70b953 3617 }
9291a0cd 3618
3063847f 3619 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
9291a0cd 3620
3063847f 3621 dwarf2_per_objfile->index_table = std::move (map);
9291a0cd 3622 dwarf2_per_objfile->using_index = 1;
7b9f3c50 3623 dwarf2_per_objfile->quick_file_names_table =
b76e467d 3624 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
9291a0cd
TT
3625
3626 return 1;
3627}
3628
dee91e82 3629/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3630
dee91e82
DE
3631static void
3632dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3633 const gdb_byte *info_ptr,
dee91e82
DE
3634 struct die_info *comp_unit_die,
3635 int has_children,
3636 void *data)
9291a0cd 3637{
dee91e82 3638 struct dwarf2_cu *cu = reader->cu;
ed2dc618 3639 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
518817b3
SM
3640 struct dwarf2_per_objfile *dwarf2_per_objfile
3641 = cu->per_cu->dwarf2_per_objfile;
dee91e82 3642 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3643 struct dwarf2_per_cu_data *lh_cu;
9291a0cd 3644 struct attribute *attr;
dee91e82 3645 int i;
7b9f3c50
DE
3646 void **slot;
3647 struct quick_file_names *qfn;
9291a0cd 3648
0186c6a7
DE
3649 gdb_assert (! this_cu->is_debug_types);
3650
07261596
TT
3651 /* Our callers never want to match partial units -- instead they
3652 will match the enclosing full CU. */
3653 if (comp_unit_die->tag == DW_TAG_partial_unit)
3654 {
3655 this_cu->v.quick->no_file_data = 1;
3656 return;
3657 }
3658
0186c6a7 3659 lh_cu = this_cu;
7b9f3c50 3660 slot = NULL;
dee91e82 3661
fff8551c 3662 line_header_up lh;
9c541725 3663 sect_offset line_offset {};
fff8551c 3664
dee91e82 3665 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3666 if (attr)
3667 {
7b9f3c50
DE
3668 struct quick_file_names find_entry;
3669
9c541725 3670 line_offset = (sect_offset) DW_UNSND (attr);
7b9f3c50
DE
3671
3672 /* We may have already read in this line header (TU line header sharing).
3673 If we have we're done. */
094b34ac 3674 find_entry.hash.dwo_unit = cu->dwo_unit;
9c541725 3675 find_entry.hash.line_sect_off = line_offset;
7b9f3c50
DE
3676 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3677 &find_entry, INSERT);
3678 if (*slot != NULL)
3679 {
9a3c8263 3680 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3681 return;
7b9f3c50
DE
3682 }
3683
3019eac3 3684 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3685 }
3686 if (lh == NULL)
3687 {
094b34ac 3688 lh_cu->v.quick->no_file_data = 1;
dee91e82 3689 return;
9291a0cd
TT
3690 }
3691
8d749320 3692 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac 3693 qfn->hash.dwo_unit = cu->dwo_unit;
9c541725 3694 qfn->hash.line_sect_off = line_offset;
7b9f3c50
DE
3695 gdb_assert (slot != NULL);
3696 *slot = qfn;
9291a0cd 3697
d721ba37 3698 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
9291a0cd 3699
fff8551c 3700 qfn->num_file_names = lh->file_names.size ();
8d749320 3701 qfn->file_names =
fff8551c
PA
3702 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3703 for (i = 0; i < lh->file_names.size (); ++i)
3704 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
7b9f3c50 3705 qfn->real_names = NULL;
9291a0cd 3706
094b34ac 3707 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3708}
3709
3710/* A helper for the "quick" functions which attempts to read the line
3711 table for THIS_CU. */
3712
3713static struct quick_file_names *
e4a48d9d 3714dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3715{
0186c6a7
DE
3716 /* This should never be called for TUs. */
3717 gdb_assert (! this_cu->is_debug_types);
3718 /* Nor type unit groups. */
3719 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3720
dee91e82
DE
3721 if (this_cu->v.quick->file_names != NULL)
3722 return this_cu->v.quick->file_names;
3723 /* If we know there is no line data, no point in looking again. */
3724 if (this_cu->v.quick->no_file_data)
3725 return NULL;
3726
0186c6a7 3727 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3728
3729 if (this_cu->v.quick->no_file_data)
3730 return NULL;
3731 return this_cu->v.quick->file_names;
9291a0cd
TT
3732}
3733
3734/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3735 real path for a given file name from the line table. */
2fdf6df6 3736
9291a0cd 3737static const char *
7b9f3c50
DE
3738dw2_get_real_path (struct objfile *objfile,
3739 struct quick_file_names *qfn, int index)
9291a0cd 3740{
7b9f3c50
DE
3741 if (qfn->real_names == NULL)
3742 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3743 qfn->num_file_names, const char *);
9291a0cd 3744
7b9f3c50 3745 if (qfn->real_names[index] == NULL)
14278e1f 3746 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
9291a0cd 3747
7b9f3c50 3748 return qfn->real_names[index];
9291a0cd
TT
3749}
3750
3751static struct symtab *
3752dw2_find_last_source_symtab (struct objfile *objfile)
3753{
ed2dc618
SM
3754 struct dwarf2_per_objfile *dwarf2_per_objfile
3755 = get_dwarf2_per_objfile (objfile);
b76e467d 3756 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
58f0c718 3757 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
ae2de4f8 3758
43f3e411
DE
3759 if (cust == NULL)
3760 return NULL;
ed2dc618 3761
43f3e411 3762 return compunit_primary_filetab (cust);
9291a0cd
TT
3763}
3764
7b9f3c50
DE
3765/* Traversal function for dw2_forget_cached_source_info. */
3766
3767static int
3768dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3769{
7b9f3c50 3770 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3771
7b9f3c50 3772 if (file_data->real_names)
9291a0cd 3773 {
7b9f3c50 3774 int i;
9291a0cd 3775
7b9f3c50 3776 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3777 {
7b9f3c50
DE
3778 xfree ((void*) file_data->real_names[i]);
3779 file_data->real_names[i] = NULL;
9291a0cd
TT
3780 }
3781 }
7b9f3c50
DE
3782
3783 return 1;
3784}
3785
3786static void
3787dw2_forget_cached_source_info (struct objfile *objfile)
3788{
ed2dc618
SM
3789 struct dwarf2_per_objfile *dwarf2_per_objfile
3790 = get_dwarf2_per_objfile (objfile);
7b9f3c50
DE
3791
3792 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3793 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3794}
3795
f8eba3c6
TT
3796/* Helper function for dw2_map_symtabs_matching_filename that expands
3797 the symtabs and calls the iterator. */
3798
3799static int
3800dw2_map_expand_apply (struct objfile *objfile,
3801 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3802 const char *name, const char *real_path,
14bc53a8 3803 gdb::function_view<bool (symtab *)> callback)
f8eba3c6 3804{
43f3e411 3805 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3806
3807 /* Don't visit already-expanded CUs. */
43f3e411 3808 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3809 return 0;
3810
3811 /* This may expand more than one symtab, and we want to iterate over
3812 all of them. */
58f0c718 3813 dw2_instantiate_symtab (per_cu, false);
f8eba3c6 3814
14bc53a8
PA
3815 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3816 last_made, callback);
f8eba3c6
TT
3817}
3818
3819/* Implementation of the map_symtabs_matching_filename method. */
3820
14bc53a8
PA
3821static bool
3822dw2_map_symtabs_matching_filename
3823 (struct objfile *objfile, const char *name, const char *real_path,
3824 gdb::function_view<bool (symtab *)> callback)
9291a0cd 3825{
c011a4f4 3826 const char *name_basename = lbasename (name);
ed2dc618
SM
3827 struct dwarf2_per_objfile *dwarf2_per_objfile
3828 = get_dwarf2_per_objfile (objfile);
ae2de4f8 3829
848e3e78
DE
3830 /* The rule is CUs specify all the files, including those used by
3831 any TU, so there's no need to scan TUs here. */
f4dc4d17 3832
b76e467d 3833 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
9291a0cd 3834 {
3d7bb9d9 3835 /* We only need to look at symtabs not already expanded. */
43f3e411 3836 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3837 continue;
3838
b76e467d 3839 quick_file_names *file_data = dw2_get_file_names (per_cu);
7b9f3c50 3840 if (file_data == NULL)
9291a0cd
TT
3841 continue;
3842
b76e467d 3843 for (int j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3844 {
7b9f3c50 3845 const char *this_name = file_data->file_names[j];
da235a7c 3846 const char *this_real_name;
9291a0cd 3847
af529f8f 3848 if (compare_filenames_for_search (this_name, name))
9291a0cd 3849 {
f5b95b50 3850 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3851 callback))
3852 return true;
288e77a7 3853 continue;
4aac40c8 3854 }
9291a0cd 3855
c011a4f4
DE
3856 /* Before we invoke realpath, which can get expensive when many
3857 files are involved, do a quick comparison of the basenames. */
3858 if (! basenames_may_differ
3859 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3860 continue;
3861
da235a7c
JK
3862 this_real_name = dw2_get_real_path (objfile, file_data, j);
3863 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3864 {
da235a7c 3865 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3866 callback))
3867 return true;
288e77a7 3868 continue;
da235a7c 3869 }
9291a0cd 3870
da235a7c
JK
3871 if (real_path != NULL)
3872 {
af529f8f
JK
3873 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3874 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3875 if (this_real_name != NULL
af529f8f 3876 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3877 {
f5b95b50 3878 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3879 callback))
3880 return true;
288e77a7 3881 continue;
9291a0cd
TT
3882 }
3883 }
3884 }
3885 }
3886
14bc53a8 3887 return false;
9291a0cd
TT
3888}
3889
da51c347
DE
3890/* Struct used to manage iterating over all CUs looking for a symbol. */
3891
3892struct dw2_symtab_iterator
9291a0cd 3893{
ed2dc618
SM
3894 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3895 struct dwarf2_per_objfile *dwarf2_per_objfile;
da51c347
DE
3896 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3897 int want_specific_block;
3898 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3899 Unused if !WANT_SPECIFIC_BLOCK. */
3900 int block_index;
3901 /* The kind of symbol we're looking for. */
3902 domain_enum domain;
3903 /* The list of CUs from the index entry of the symbol,
3904 or NULL if not found. */
3905 offset_type *vec;
3906 /* The next element in VEC to look at. */
3907 int next;
3908 /* The number of elements in VEC, or zero if there is no match. */
3909 int length;
8943b874
DE
3910 /* Have we seen a global version of the symbol?
3911 If so we can ignore all further global instances.
3912 This is to work around gold/15646, inefficient gold-generated
3913 indices. */
3914 int global_seen;
da51c347 3915};
9291a0cd 3916
da51c347
DE
3917/* Initialize the index symtab iterator ITER.
3918 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3919 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3920
9291a0cd 3921static void
da51c347 3922dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
ed2dc618 3923 struct dwarf2_per_objfile *dwarf2_per_objfile,
da51c347
DE
3924 int want_specific_block,
3925 int block_index,
3926 domain_enum domain,
3927 const char *name)
3928{
ed2dc618 3929 iter->dwarf2_per_objfile = dwarf2_per_objfile;
da51c347
DE
3930 iter->want_specific_block = want_specific_block;
3931 iter->block_index = block_index;
3932 iter->domain = domain;
3933 iter->next = 0;
8943b874 3934 iter->global_seen = 0;
da51c347 3935
3063847f 3936 mapped_index *index = dwarf2_per_objfile->index_table.get ();
ed2dc618
SM
3937
3938 /* index is NULL if OBJF_READNOW. */
3939 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
da51c347
DE
3940 iter->length = MAYBE_SWAP (*iter->vec);
3941 else
3942 {
3943 iter->vec = NULL;
3944 iter->length = 0;
3945 }
3946}
3947
3948/* Return the next matching CU or NULL if there are no more. */
3949
3950static struct dwarf2_per_cu_data *
3951dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3952{
ed2dc618
SM
3953 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3954
da51c347
DE
3955 for ( ; iter->next < iter->length; ++iter->next)
3956 {
3957 offset_type cu_index_and_attrs =
3958 MAYBE_SWAP (iter->vec[iter->next + 1]);
3959 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
da51c347
DE
3960 int want_static = iter->block_index != GLOBAL_BLOCK;
3961 /* This value is only valid for index versions >= 7. */
3962 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3963 gdb_index_symbol_kind symbol_kind =
3964 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3965 /* Only check the symbol attributes if they're present.
3966 Indices prior to version 7 don't record them,
3967 and indices >= 7 may elide them for certain symbols
3968 (gold does this). */
3969 int attrs_valid =
ed2dc618 3970 (dwarf2_per_objfile->index_table->version >= 7
da51c347
DE
3971 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3972
3190f0c6 3973 /* Don't crash on bad data. */
b76e467d 3974 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 3975 + dwarf2_per_objfile->all_type_units.size ()))
3190f0c6 3976 {
b98664d3 3977 complaint (_(".gdb_index entry has bad CU index"
4262abfb
JK
3978 " [in module %s]"),
3979 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3980 continue;
3981 }
3982
ff4c9fec 3983 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3190f0c6 3984
da51c347 3985 /* Skip if already read in. */
43f3e411 3986 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3987 continue;
3988
8943b874
DE
3989 /* Check static vs global. */
3990 if (attrs_valid)
3991 {
3992 if (iter->want_specific_block
3993 && want_static != is_static)
3994 continue;
3995 /* Work around gold/15646. */
3996 if (!is_static && iter->global_seen)
3997 continue;
3998 if (!is_static)
3999 iter->global_seen = 1;
4000 }
da51c347
DE
4001
4002 /* Only check the symbol's kind if it has one. */
4003 if (attrs_valid)
4004 {
4005 switch (iter->domain)
4006 {
4007 case VAR_DOMAIN:
4008 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4009 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4010 /* Some types are also in VAR_DOMAIN. */
4011 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4012 continue;
4013 break;
4014 case STRUCT_DOMAIN:
4015 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4016 continue;
4017 break;
4018 case LABEL_DOMAIN:
4019 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4020 continue;
4021 break;
4022 default:
4023 break;
4024 }
4025 }
4026
4027 ++iter->next;
4028 return per_cu;
4029 }
4030
4031 return NULL;
4032}
4033
43f3e411 4034static struct compunit_symtab *
da51c347
DE
4035dw2_lookup_symbol (struct objfile *objfile, int block_index,
4036 const char *name, domain_enum domain)
9291a0cd 4037{
43f3e411 4038 struct compunit_symtab *stab_best = NULL;
ed2dc618
SM
4039 struct dwarf2_per_objfile *dwarf2_per_objfile
4040 = get_dwarf2_per_objfile (objfile);
9291a0cd 4041
b5ec771e
PA
4042 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4043
ed2dc618
SM
4044 struct dw2_symtab_iterator iter;
4045 struct dwarf2_per_cu_data *per_cu;
da51c347 4046
ed2dc618 4047 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
9291a0cd 4048
ed2dc618
SM
4049 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4050 {
4051 struct symbol *sym, *with_opaque = NULL;
58f0c718 4052 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
ed2dc618
SM
4053 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4054 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 4055
ed2dc618
SM
4056 sym = block_find_symbol (block, name, domain,
4057 block_find_non_opaque_type_preferred,
4058 &with_opaque);
b2e2f908 4059
ed2dc618
SM
4060 /* Some caution must be observed with overloaded functions
4061 and methods, since the index will not contain any overload
4062 information (but NAME might contain it). */
da51c347 4063
ed2dc618
SM
4064 if (sym != NULL
4065 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4066 return stab;
4067 if (with_opaque != NULL
4068 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4069 stab_best = stab;
da51c347 4070
ed2dc618 4071 /* Keep looking through other CUs. */
9291a0cd 4072 }
9291a0cd 4073
da51c347 4074 return stab_best;
9291a0cd
TT
4075}
4076
4077static void
4078dw2_print_stats (struct objfile *objfile)
4079{
ed2dc618
SM
4080 struct dwarf2_per_objfile *dwarf2_per_objfile
4081 = get_dwarf2_per_objfile (objfile);
b76e467d 4082 int total = (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 4083 + dwarf2_per_objfile->all_type_units.size ());
ed2dc618 4084 int count = 0;
9291a0cd 4085
ed2dc618 4086 for (int i = 0; i < total; ++i)
9291a0cd 4087 {
ff4c9fec 4088 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
9291a0cd 4089
43f3e411 4090 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4091 ++count;
4092 }
e4a48d9d 4093 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
4094 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4095}
4096
779bd270
DE
4097/* This dumps minimal information about the index.
4098 It is called via "mt print objfiles".
4099 One use is to verify .gdb_index has been loaded by the
4100 gdb.dwarf2/gdb-index.exp testcase. */
4101
9291a0cd
TT
4102static void
4103dw2_dump (struct objfile *objfile)
4104{
ed2dc618
SM
4105 struct dwarf2_per_objfile *dwarf2_per_objfile
4106 = get_dwarf2_per_objfile (objfile);
4107
779bd270
DE
4108 gdb_assert (dwarf2_per_objfile->using_index);
4109 printf_filtered (".gdb_index:");
4110 if (dwarf2_per_objfile->index_table != NULL)
4111 {
4112 printf_filtered (" version %d\n",
4113 dwarf2_per_objfile->index_table->version);
4114 }
4115 else
4116 printf_filtered (" faked for \"readnow\"\n");
4117 printf_filtered ("\n");
9291a0cd
TT
4118}
4119
9291a0cd
TT
4120static void
4121dw2_expand_symtabs_for_function (struct objfile *objfile,
4122 const char *func_name)
4123{
ed2dc618
SM
4124 struct dwarf2_per_objfile *dwarf2_per_objfile
4125 = get_dwarf2_per_objfile (objfile);
da51c347 4126
ed2dc618
SM
4127 struct dw2_symtab_iterator iter;
4128 struct dwarf2_per_cu_data *per_cu;
da51c347 4129
ed2dc618
SM
4130 /* Note: It doesn't matter what we pass for block_index here. */
4131 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4132 func_name);
da51c347 4133
ed2dc618 4134 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
58f0c718 4135 dw2_instantiate_symtab (per_cu, false);
da51c347 4136
9291a0cd
TT
4137}
4138
4139static void
4140dw2_expand_all_symtabs (struct objfile *objfile)
4141{
ed2dc618
SM
4142 struct dwarf2_per_objfile *dwarf2_per_objfile
4143 = get_dwarf2_per_objfile (objfile);
b76e467d 4144 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 4145 + dwarf2_per_objfile->all_type_units.size ());
9291a0cd 4146
ed2dc618 4147 for (int i = 0; i < total_units; ++i)
9291a0cd 4148 {
ff4c9fec 4149 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
9291a0cd 4150
58f0c718
TT
4151 /* We don't want to directly expand a partial CU, because if we
4152 read it with the wrong language, then assertion failures can
4153 be triggered later on. See PR symtab/23010. So, tell
4154 dw2_instantiate_symtab to skip partial CUs -- any important
4155 partial CU will be read via DW_TAG_imported_unit anyway. */
4156 dw2_instantiate_symtab (per_cu, true);
9291a0cd
TT
4157 }
4158}
4159
4160static void
652a8996
JK
4161dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4162 const char *fullname)
9291a0cd 4163{
ed2dc618
SM
4164 struct dwarf2_per_objfile *dwarf2_per_objfile
4165 = get_dwarf2_per_objfile (objfile);
d4637a04
DE
4166
4167 /* We don't need to consider type units here.
4168 This is only called for examining code, e.g. expand_line_sal.
4169 There can be an order of magnitude (or more) more type units
4170 than comp units, and we avoid them if we can. */
4171
b76e467d 4172 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
9291a0cd 4173 {
3d7bb9d9 4174 /* We only need to look at symtabs not already expanded. */
43f3e411 4175 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4176 continue;
4177
b76e467d 4178 quick_file_names *file_data = dw2_get_file_names (per_cu);
7b9f3c50 4179 if (file_data == NULL)
9291a0cd
TT
4180 continue;
4181
b76e467d 4182 for (int j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4183 {
652a8996
JK
4184 const char *this_fullname = file_data->file_names[j];
4185
4186 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 4187 {
58f0c718 4188 dw2_instantiate_symtab (per_cu, false);
9291a0cd
TT
4189 break;
4190 }
4191 }
4192 }
4193}
4194
9291a0cd 4195static void
ade7ed9e 4196dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 4197 const char * name, domain_enum domain,
ade7ed9e 4198 int global,
40658b94
PH
4199 int (*callback) (struct block *,
4200 struct symbol *, void *),
b5ec771e 4201 void *data, symbol_name_match_type match,
2edb89d3 4202 symbol_compare_ftype *ordered_compare)
9291a0cd 4203{
40658b94 4204 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
4205 current language is Ada for a non-Ada objfile using GNU index. As Ada
4206 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
4207}
4208
b5ec771e
PA
4209/* Symbol name matcher for .gdb_index names.
4210
4211 Symbol names in .gdb_index have a few particularities:
4212
4213 - There's no indication of which is the language of each symbol.
4214
4215 Since each language has its own symbol name matching algorithm,
4216 and we don't know which language is the right one, we must match
3f563c84
PA
4217 each symbol against all languages. This would be a potential
4218 performance problem if it were not mitigated by the
4219 mapped_index::name_components lookup table, which significantly
4220 reduces the number of times we need to call into this matcher,
4221 making it a non-issue.
b5ec771e
PA
4222
4223 - Symbol names in the index have no overload (parameter)
4224 information. I.e., in C++, "foo(int)" and "foo(long)" both
4225 appear as "foo" in the index, for example.
4226
4227 This means that the lookup names passed to the symbol name
4228 matcher functions must have no parameter information either
4229 because (e.g.) symbol search name "foo" does not match
4230 lookup-name "foo(int)" [while swapping search name for lookup
4231 name would match].
4232*/
4233class gdb_index_symbol_name_matcher
4234{
4235public:
4236 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4237 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4238
4239 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4240 Returns true if any matcher matches. */
4241 bool matches (const char *symbol_name);
4242
4243private:
4244 /* A reference to the lookup name we're matching against. */
4245 const lookup_name_info &m_lookup_name;
4246
4247 /* A vector holding all the different symbol name matchers, for all
4248 languages. */
4249 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4250};
4251
4252gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4253 (const lookup_name_info &lookup_name)
4254 : m_lookup_name (lookup_name)
4255{
4256 /* Prepare the vector of comparison functions upfront, to avoid
4257 doing the same work for each symbol. Care is taken to avoid
4258 matching with the same matcher more than once if/when multiple
4259 languages use the same matcher function. */
4260 auto &matchers = m_symbol_name_matcher_funcs;
4261 matchers.reserve (nr_languages);
4262
4263 matchers.push_back (default_symbol_name_matcher);
4264
4265 for (int i = 0; i < nr_languages; i++)
4266 {
4267 const language_defn *lang = language_def ((enum language) i);
c63d3e8d 4268 symbol_name_matcher_ftype *name_matcher
618daa93 4269 = get_symbol_name_matcher (lang, m_lookup_name);
c63d3e8d
PA
4270
4271 /* Don't insert the same comparison routine more than once.
4272 Note that we do this linear walk instead of a seemingly
4273 cheaper sorted insert, or use a std::set or something like
4274 that, because relative order of function addresses is not
4275 stable. This is not a problem in practice because the number
4276 of supported languages is low, and the cost here is tiny
4277 compared to the number of searches we'll do afterwards using
4278 this object. */
4279 if (name_matcher != default_symbol_name_matcher
4280 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4281 == matchers.end ()))
4282 matchers.push_back (name_matcher);
b5ec771e
PA
4283 }
4284}
4285
4286bool
4287gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4288{
4289 for (auto matches_name : m_symbol_name_matcher_funcs)
4290 if (matches_name (symbol_name, m_lookup_name, NULL))
4291 return true;
4292
4293 return false;
4294}
4295
e1ef7d7a
PA
4296/* Starting from a search name, return the string that finds the upper
4297 bound of all strings that start with SEARCH_NAME in a sorted name
4298 list. Returns the empty string to indicate that the upper bound is
4299 the end of the list. */
4300
4301static std::string
4302make_sort_after_prefix_name (const char *search_name)
4303{
4304 /* When looking to complete "func", we find the upper bound of all
4305 symbols that start with "func" by looking for where we'd insert
4306 the closest string that would follow "func" in lexicographical
4307 order. Usually, that's "func"-with-last-character-incremented,
4308 i.e. "fund". Mind non-ASCII characters, though. Usually those
4309 will be UTF-8 multi-byte sequences, but we can't be certain.
4310 Especially mind the 0xff character, which is a valid character in
4311 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4312 rule out compilers allowing it in identifiers. Note that
4313 conveniently, strcmp/strcasecmp are specified to compare
4314 characters interpreted as unsigned char. So what we do is treat
4315 the whole string as a base 256 number composed of a sequence of
4316 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4317 to 0, and carries 1 to the following more-significant position.
4318 If the very first character in SEARCH_NAME ends up incremented
4319 and carries/overflows, then the upper bound is the end of the
4320 list. The string after the empty string is also the empty
4321 string.
4322
4323 Some examples of this operation:
4324
4325 SEARCH_NAME => "+1" RESULT
4326
4327 "abc" => "abd"
4328 "ab\xff" => "ac"
4329 "\xff" "a" "\xff" => "\xff" "b"
4330 "\xff" => ""
4331 "\xff\xff" => ""
4332 "" => ""
4333
4334 Then, with these symbols for example:
4335
4336 func
4337 func1
4338 fund
4339
4340 completing "func" looks for symbols between "func" and
4341 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4342 which finds "func" and "func1", but not "fund".
4343
4344 And with:
4345
4346 funcÿ (Latin1 'ÿ' [0xff])
4347 funcÿ1
4348 fund
4349
4350 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4351 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4352
4353 And with:
4354
4355 ÿÿ (Latin1 'ÿ' [0xff])
4356 ÿÿ1
4357
4358 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4359 the end of the list.
4360 */
4361 std::string after = search_name;
4362 while (!after.empty () && (unsigned char) after.back () == 0xff)
4363 after.pop_back ();
4364 if (!after.empty ())
4365 after.back () = (unsigned char) after.back () + 1;
4366 return after;
4367}
4368
5c58de74 4369/* See declaration. */
61d96d7e 4370
5c58de74
PA
4371std::pair<std::vector<name_component>::const_iterator,
4372 std::vector<name_component>::const_iterator>
44ed8f3e 4373mapped_index_base::find_name_components_bounds
5c58de74 4374 (const lookup_name_info &lookup_name_without_params) const
3f563c84 4375{
5c58de74
PA
4376 auto *name_cmp
4377 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3f563c84
PA
4378
4379 const char *cplus
c62446b1 4380 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
9291a0cd 4381
3f563c84
PA
4382 /* Comparison function object for lower_bound that matches against a
4383 given symbol name. */
4384 auto lookup_compare_lower = [&] (const name_component &elem,
4385 const char *name)
4386 {
5c58de74 4387 const char *elem_qualified = this->symbol_name_at (elem.idx);
3f563c84
PA
4388 const char *elem_name = elem_qualified + elem.name_offset;
4389 return name_cmp (elem_name, name) < 0;
4390 };
4391
4392 /* Comparison function object for upper_bound that matches against a
4393 given symbol name. */
4394 auto lookup_compare_upper = [&] (const char *name,
4395 const name_component &elem)
4396 {
5c58de74 4397 const char *elem_qualified = this->symbol_name_at (elem.idx);
3f563c84
PA
4398 const char *elem_name = elem_qualified + elem.name_offset;
4399 return name_cmp (name, elem_name) < 0;
4400 };
4401
5c58de74
PA
4402 auto begin = this->name_components.begin ();
4403 auto end = this->name_components.end ();
3f563c84
PA
4404
4405 /* Find the lower bound. */
4406 auto lower = [&] ()
4407 {
5c58de74 4408 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
3f563c84
PA
4409 return begin;
4410 else
4411 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4412 } ();
4413
4414 /* Find the upper bound. */
4415 auto upper = [&] ()
4416 {
5c58de74 4417 if (lookup_name_without_params.completion_mode ())
3f563c84 4418 {
e1ef7d7a
PA
4419 /* In completion mode, we want UPPER to point past all
4420 symbols names that have the same prefix. I.e., with
4421 these symbols, and completing "func":
4422
4423 function << lower bound
4424 function1
4425 other_function << upper bound
4426
4427 We find the upper bound by looking for the insertion
4428 point of "func"-with-last-character-incremented,
4429 i.e. "fund". */
4430 std::string after = make_sort_after_prefix_name (cplus);
4431 if (after.empty ())
3f563c84 4432 return end;
e6b2f5ef
PA
4433 return std::lower_bound (lower, end, after.c_str (),
4434 lookup_compare_lower);
3f563c84
PA
4435 }
4436 else
4437 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4438 } ();
4439
5c58de74
PA
4440 return {lower, upper};
4441}
4442
4443/* See declaration. */
4444
4445void
44ed8f3e 4446mapped_index_base::build_name_components ()
5c58de74
PA
4447{
4448 if (!this->name_components.empty ())
4449 return;
4450
4451 this->name_components_casing = case_sensitivity;
4452 auto *name_cmp
4453 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4454
4455 /* The code below only knows how to break apart components of C++
4456 symbol names (and other languages that use '::' as
4457 namespace/module separator). If we add support for wild matching
4458 to some language that uses some other operator (E.g., Ada, Go and
4459 D use '.'), then we'll need to try splitting the symbol name
4460 according to that language too. Note that Ada does support wild
4461 matching, but doesn't currently support .gdb_index. */
44ed8f3e
PA
4462 auto count = this->symbol_name_count ();
4463 for (offset_type idx = 0; idx < count; idx++)
5c58de74 4464 {
44ed8f3e 4465 if (this->symbol_name_slot_invalid (idx))
5c58de74
PA
4466 continue;
4467
4468 const char *name = this->symbol_name_at (idx);
4469
4470 /* Add each name component to the name component table. */
4471 unsigned int previous_len = 0;
4472 for (unsigned int current_len = cp_find_first_component (name);
4473 name[current_len] != '\0';
4474 current_len += cp_find_first_component (name + current_len))
4475 {
4476 gdb_assert (name[current_len] == ':');
4477 this->name_components.push_back ({previous_len, idx});
4478 /* Skip the '::'. */
4479 current_len += 2;
4480 previous_len = current_len;
4481 }
4482 this->name_components.push_back ({previous_len, idx});
4483 }
4484
4485 /* Sort name_components elements by name. */
4486 auto name_comp_compare = [&] (const name_component &left,
4487 const name_component &right)
4488 {
4489 const char *left_qualified = this->symbol_name_at (left.idx);
4490 const char *right_qualified = this->symbol_name_at (right.idx);
4491
4492 const char *left_name = left_qualified + left.name_offset;
4493 const char *right_name = right_qualified + right.name_offset;
4494
4495 return name_cmp (left_name, right_name) < 0;
4496 };
4497
4498 std::sort (this->name_components.begin (),
4499 this->name_components.end (),
4500 name_comp_compare);
4501}
4502
4503/* Helper for dw2_expand_symtabs_matching that works with a
44ed8f3e
PA
4504 mapped_index_base instead of the containing objfile. This is split
4505 to a separate function in order to be able to unit test the
4506 name_components matching using a mock mapped_index_base. For each
5c58de74 4507 symbol name that matches, calls MATCH_CALLBACK, passing it the
44ed8f3e 4508 symbol's index in the mapped_index_base symbol table. */
5c58de74
PA
4509
4510static void
4511dw2_expand_symtabs_matching_symbol
44ed8f3e 4512 (mapped_index_base &index,
5c58de74
PA
4513 const lookup_name_info &lookup_name_in,
4514 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4515 enum search_domain kind,
4516 gdb::function_view<void (offset_type)> match_callback)
4517{
4518 lookup_name_info lookup_name_without_params
4519 = lookup_name_in.make_ignore_params ();
4520 gdb_index_symbol_name_matcher lookup_name_matcher
4521 (lookup_name_without_params);
4522
4523 /* Build the symbol name component sorted vector, if we haven't
4524 yet. */
4525 index.build_name_components ();
4526
4527 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4528
3f563c84
PA
4529 /* Now for each symbol name in range, check to see if we have a name
4530 match, and if so, call the MATCH_CALLBACK callback. */
4531
4532 /* The same symbol may appear more than once in the range though.
4533 E.g., if we're looking for symbols that complete "w", and we have
4534 a symbol named "w1::w2", we'll find the two name components for
4535 that same symbol in the range. To be sure we only call the
4536 callback once per symbol, we first collect the symbol name
4537 indexes that matched in a temporary vector and ignore
4538 duplicates. */
4539 std::vector<offset_type> matches;
5c58de74 4540 matches.reserve (std::distance (bounds.first, bounds.second));
3f563c84 4541
5c58de74 4542 for (; bounds.first != bounds.second; ++bounds.first)
3f563c84 4543 {
5c58de74 4544 const char *qualified = index.symbol_name_at (bounds.first->idx);
3f563c84
PA
4545
4546 if (!lookup_name_matcher.matches (qualified)
4547 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
9291a0cd
TT
4548 continue;
4549
5c58de74 4550 matches.push_back (bounds.first->idx);
3f563c84
PA
4551 }
4552
4553 std::sort (matches.begin (), matches.end ());
4554
4555 /* Finally call the callback, once per match. */
4556 ULONGEST prev = -1;
4557 for (offset_type idx : matches)
4558 {
4559 if (prev != idx)
4560 {
4561 match_callback (idx);
4562 prev = idx;
4563 }
4564 }
4565
4566 /* Above we use a type wider than idx's for 'prev', since 0 and
4567 (offset_type)-1 are both possible values. */
4568 static_assert (sizeof (prev) > sizeof (offset_type), "");
4569}
4570
c62446b1
PA
4571#if GDB_SELF_TEST
4572
4573namespace selftests { namespace dw2_expand_symtabs_matching {
4574
a3c5fafd
PA
4575/* A mock .gdb_index/.debug_names-like name index table, enough to
4576 exercise dw2_expand_symtabs_matching_symbol, which works with the
4577 mapped_index_base interface. Builds an index from the symbol list
4578 passed as parameter to the constructor. */
4579class mock_mapped_index : public mapped_index_base
c62446b1
PA
4580{
4581public:
a3c5fafd
PA
4582 mock_mapped_index (gdb::array_view<const char *> symbols)
4583 : m_symbol_table (symbols)
c62446b1
PA
4584 {}
4585
a3c5fafd 4586 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
c62446b1 4587
a3c5fafd 4588 /* Return the number of names in the symbol table. */
632e107b 4589 size_t symbol_name_count () const override
c62446b1 4590 {
a3c5fafd 4591 return m_symbol_table.size ();
c62446b1
PA
4592 }
4593
a3c5fafd 4594 /* Get the name of the symbol at IDX in the symbol table. */
632e107b 4595 const char *symbol_name_at (offset_type idx) const override
a3c5fafd
PA
4596 {
4597 return m_symbol_table[idx];
4598 }
c62446b1 4599
a3c5fafd
PA
4600private:
4601 gdb::array_view<const char *> m_symbol_table;
c62446b1
PA
4602};
4603
4604/* Convenience function that converts a NULL pointer to a "<null>"
4605 string, to pass to print routines. */
4606
4607static const char *
4608string_or_null (const char *str)
4609{
4610 return str != NULL ? str : "<null>";
4611}
4612
4613/* Check if a lookup_name_info built from
4614 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4615 index. EXPECTED_LIST is the list of expected matches, in expected
4616 matching order. If no match expected, then an empty list is
4617 specified. Returns true on success. On failure prints a warning
4618 indicating the file:line that failed, and returns false. */
4619
4620static bool
4621check_match (const char *file, int line,
4622 mock_mapped_index &mock_index,
4623 const char *name, symbol_name_match_type match_type,
4624 bool completion_mode,
4625 std::initializer_list<const char *> expected_list)
4626{
4627 lookup_name_info lookup_name (name, match_type, completion_mode);
4628
4629 bool matched = true;
4630
4631 auto mismatch = [&] (const char *expected_str,
4632 const char *got)
4633 {
4634 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4635 "expected=\"%s\", got=\"%s\"\n"),
4636 file, line,
4637 (match_type == symbol_name_match_type::FULL
4638 ? "FULL" : "WILD"),
4639 name, string_or_null (expected_str), string_or_null (got));
4640 matched = false;
4641 };
4642
4643 auto expected_it = expected_list.begin ();
4644 auto expected_end = expected_list.end ();
4645
a3c5fafd 4646 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
c62446b1
PA
4647 NULL, ALL_DOMAIN,
4648 [&] (offset_type idx)
4649 {
a3c5fafd 4650 const char *matched_name = mock_index.symbol_name_at (idx);
c62446b1
PA
4651 const char *expected_str
4652 = expected_it == expected_end ? NULL : *expected_it++;
4653
4654 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4655 mismatch (expected_str, matched_name);
4656 });
4657
4658 const char *expected_str
4659 = expected_it == expected_end ? NULL : *expected_it++;
4660 if (expected_str != NULL)
4661 mismatch (expected_str, NULL);
4662
4663 return matched;
4664}
4665
4666/* The symbols added to the mock mapped_index for testing (in
4667 canonical form). */
4668static const char *test_symbols[] = {
4669 "function",
4670 "std::bar",
4671 "std::zfunction",
4672 "std::zfunction2",
4673 "w1::w2",
4674 "ns::foo<char*>",
4675 "ns::foo<int>",
4676 "ns::foo<long>",
a20714ff
PA
4677 "ns2::tmpl<int>::foo2",
4678 "(anonymous namespace)::A::B::C",
c62446b1 4679
e1ef7d7a
PA
4680 /* These are used to check that the increment-last-char in the
4681 matching algorithm for completion doesn't match "t1_fund" when
4682 completing "t1_func". */
4683 "t1_func",
4684 "t1_func1",
4685 "t1_fund",
4686 "t1_fund1",
4687
4688 /* A UTF-8 name with multi-byte sequences to make sure that
4689 cp-name-parser understands this as a single identifier ("função"
4690 is "function" in PT). */
4691 u8"u8função",
4692
4693 /* \377 (0xff) is Latin1 'ÿ'. */
4694 "yfunc\377",
4695
4696 /* \377 (0xff) is Latin1 'ÿ'. */
4697 "\377",
4698 "\377\377123",
4699
c62446b1
PA
4700 /* A name with all sorts of complications. Starts with "z" to make
4701 it easier for the completion tests below. */
4702#define Z_SYM_NAME \
4703 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4704 "::tuple<(anonymous namespace)::ui*, " \
4705 "std::default_delete<(anonymous namespace)::ui>, void>"
4706
4707 Z_SYM_NAME
4708};
4709
a3c5fafd
PA
4710/* Returns true if the mapped_index_base::find_name_component_bounds
4711 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4712 in completion mode. */
5c58de74
PA
4713
4714static bool
a3c5fafd 4715check_find_bounds_finds (mapped_index_base &index,
5c58de74
PA
4716 const char *search_name,
4717 gdb::array_view<const char *> expected_syms)
4718{
4719 lookup_name_info lookup_name (search_name,
4720 symbol_name_match_type::FULL, true);
4721
4722 auto bounds = index.find_name_components_bounds (lookup_name);
4723
4724 size_t distance = std::distance (bounds.first, bounds.second);
4725 if (distance != expected_syms.size ())
4726 return false;
4727
4728 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4729 {
4730 auto nc_elem = bounds.first + exp_elem;
4731 const char *qualified = index.symbol_name_at (nc_elem->idx);
4732 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4733 return false;
4734 }
4735
4736 return true;
4737}
4738
4739/* Test the lower-level mapped_index::find_name_component_bounds
4740 method. */
4741
c62446b1 4742static void
5c58de74
PA
4743test_mapped_index_find_name_component_bounds ()
4744{
4745 mock_mapped_index mock_index (test_symbols);
4746
a3c5fafd 4747 mock_index.build_name_components ();
5c58de74
PA
4748
4749 /* Test the lower-level mapped_index::find_name_component_bounds
4750 method in completion mode. */
4751 {
4752 static const char *expected_syms[] = {
4753 "t1_func",
4754 "t1_func1",
5c58de74
PA
4755 };
4756
a3c5fafd 4757 SELF_CHECK (check_find_bounds_finds (mock_index,
5c58de74
PA
4758 "t1_func", expected_syms));
4759 }
4760
4761 /* Check that the increment-last-char in the name matching algorithm
4762 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4763 {
4764 static const char *expected_syms1[] = {
4765 "\377",
4766 "\377\377123",
4767 };
a3c5fafd 4768 SELF_CHECK (check_find_bounds_finds (mock_index,
5c58de74
PA
4769 "\377", expected_syms1));
4770
4771 static const char *expected_syms2[] = {
4772 "\377\377123",
4773 };
a3c5fafd 4774 SELF_CHECK (check_find_bounds_finds (mock_index,
5c58de74
PA
4775 "\377\377", expected_syms2));
4776 }
4777}
4778
4779/* Test dw2_expand_symtabs_matching_symbol. */
4780
4781static void
4782test_dw2_expand_symtabs_matching_symbol ()
c62446b1
PA
4783{
4784 mock_mapped_index mock_index (test_symbols);
4785
4786 /* We let all tests run until the end even if some fails, for debug
4787 convenience. */
4788 bool any_mismatch = false;
4789
4790 /* Create the expected symbols list (an initializer_list). Needed
4791 because lists have commas, and we need to pass them to CHECK,
4792 which is a macro. */
4793#define EXPECT(...) { __VA_ARGS__ }
4794
4795 /* Wrapper for check_match that passes down the current
4796 __FILE__/__LINE__. */
4797#define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4798 any_mismatch |= !check_match (__FILE__, __LINE__, \
4799 mock_index, \
4800 NAME, MATCH_TYPE, COMPLETION_MODE, \
4801 EXPECTED_LIST)
4802
4803 /* Identity checks. */
4804 for (const char *sym : test_symbols)
4805 {
4806 /* Should be able to match all existing symbols. */
4807 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4808 EXPECT (sym));
4809
4810 /* Should be able to match all existing symbols with
4811 parameters. */
4812 std::string with_params = std::string (sym) + "(int)";
4813 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4814 EXPECT (sym));
4815
4816 /* Should be able to match all existing symbols with
4817 parameters and qualifiers. */
4818 with_params = std::string (sym) + " ( int ) const";
4819 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4820 EXPECT (sym));
4821
4822 /* This should really find sym, but cp-name-parser.y doesn't
4823 know about lvalue/rvalue qualifiers yet. */
4824 with_params = std::string (sym) + " ( int ) &&";
4825 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4826 {});
4827 }
4828
e1ef7d7a
PA
4829 /* Check that the name matching algorithm for completion doesn't get
4830 confused with Latin1 'ÿ' / 0xff. */
4831 {
4832 static const char str[] = "\377";
4833 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4834 EXPECT ("\377", "\377\377123"));
4835 }
4836
4837 /* Check that the increment-last-char in the matching algorithm for
4838 completion doesn't match "t1_fund" when completing "t1_func". */
4839 {
4840 static const char str[] = "t1_func";
4841 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4842 EXPECT ("t1_func", "t1_func1"));
4843 }
4844
c62446b1
PA
4845 /* Check that completion mode works at each prefix of the expected
4846 symbol name. */
4847 {
4848 static const char str[] = "function(int)";
4849 size_t len = strlen (str);
4850 std::string lookup;
4851
4852 for (size_t i = 1; i < len; i++)
4853 {
4854 lookup.assign (str, i);
4855 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4856 EXPECT ("function"));
4857 }
4858 }
4859
4860 /* While "w" is a prefix of both components, the match function
4861 should still only be called once. */
4862 {
4863 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4864 EXPECT ("w1::w2"));
a20714ff
PA
4865 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4866 EXPECT ("w1::w2"));
c62446b1
PA
4867 }
4868
4869 /* Same, with a "complicated" symbol. */
4870 {
4871 static const char str[] = Z_SYM_NAME;
4872 size_t len = strlen (str);
4873 std::string lookup;
4874
4875 for (size_t i = 1; i < len; i++)
4876 {
4877 lookup.assign (str, i);
4878 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4879 EXPECT (Z_SYM_NAME));
4880 }
4881 }
4882
4883 /* In FULL mode, an incomplete symbol doesn't match. */
4884 {
4885 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4886 {});
4887 }
4888
4889 /* A complete symbol with parameters matches any overload, since the
4890 index has no overload info. */
4891 {
4892 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4893 EXPECT ("std::zfunction", "std::zfunction2"));
a20714ff
PA
4894 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4895 EXPECT ("std::zfunction", "std::zfunction2"));
4896 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4897 EXPECT ("std::zfunction", "std::zfunction2"));
c62446b1
PA
4898 }
4899
4900 /* Check that whitespace is ignored appropriately. A symbol with a
4901 template argument list. */
4902 {
4903 static const char expected[] = "ns::foo<int>";
4904 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4905 EXPECT (expected));
a20714ff
PA
4906 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4907 EXPECT (expected));
c62446b1
PA
4908 }
4909
4910 /* Check that whitespace is ignored appropriately. A symbol with a
4911 template argument list that includes a pointer. */
4912 {
4913 static const char expected[] = "ns::foo<char*>";
4914 /* Try both completion and non-completion modes. */
4915 static const bool completion_mode[2] = {false, true};
4916 for (size_t i = 0; i < 2; i++)
4917 {
4918 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4919 completion_mode[i], EXPECT (expected));
a20714ff
PA
4920 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4921 completion_mode[i], EXPECT (expected));
c62446b1
PA
4922
4923 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4924 completion_mode[i], EXPECT (expected));
a20714ff
PA
4925 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4926 completion_mode[i], EXPECT (expected));
c62446b1
PA
4927 }
4928 }
4929
4930 {
4931 /* Check method qualifiers are ignored. */
4932 static const char expected[] = "ns::foo<char*>";
4933 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4934 symbol_name_match_type::FULL, true, EXPECT (expected));
4935 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4936 symbol_name_match_type::FULL, true, EXPECT (expected));
a20714ff
PA
4937 CHECK_MATCH ("foo < char * > ( int ) const",
4938 symbol_name_match_type::WILD, true, EXPECT (expected));
4939 CHECK_MATCH ("foo < char * > ( int ) &&",
4940 symbol_name_match_type::WILD, true, EXPECT (expected));
c62446b1
PA
4941 }
4942
4943 /* Test lookup names that don't match anything. */
4944 {
a20714ff
PA
4945 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4946 {});
4947
c62446b1
PA
4948 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4949 {});
4950 }
4951
a20714ff
PA
4952 /* Some wild matching tests, exercising "(anonymous namespace)",
4953 which should not be confused with a parameter list. */
4954 {
4955 static const char *syms[] = {
4956 "A::B::C",
4957 "B::C",
4958 "C",
4959 "A :: B :: C ( int )",
4960 "B :: C ( int )",
4961 "C ( int )",
4962 };
4963
4964 for (const char *s : syms)
4965 {
4966 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4967 EXPECT ("(anonymous namespace)::A::B::C"));
4968 }
4969 }
4970
4971 {
4972 static const char expected[] = "ns2::tmpl<int>::foo2";
4973 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4974 EXPECT (expected));
4975 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4976 EXPECT (expected));
4977 }
4978
c62446b1
PA
4979 SELF_CHECK (!any_mismatch);
4980
4981#undef EXPECT
4982#undef CHECK_MATCH
4983}
4984
5c58de74
PA
4985static void
4986run_test ()
4987{
4988 test_mapped_index_find_name_component_bounds ();
4989 test_dw2_expand_symtabs_matching_symbol ();
4990}
4991
c62446b1
PA
4992}} // namespace selftests::dw2_expand_symtabs_matching
4993
4994#endif /* GDB_SELF_TEST */
4995
4b514bc8
JK
4996/* If FILE_MATCHER is NULL or if PER_CU has
4997 dwarf2_per_cu_quick_data::MARK set (see
4998 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4999 EXPANSION_NOTIFY on it. */
5000
5001static void
5002dw2_expand_symtabs_matching_one
5003 (struct dwarf2_per_cu_data *per_cu,
5004 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5005 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5006{
5007 if (file_matcher == NULL || per_cu->v.quick->mark)
5008 {
5009 bool symtab_was_null
5010 = (per_cu->v.quick->compunit_symtab == NULL);
5011
58f0c718 5012 dw2_instantiate_symtab (per_cu, false);
4b514bc8
JK
5013
5014 if (expansion_notify != NULL
5015 && symtab_was_null
5016 && per_cu->v.quick->compunit_symtab != NULL)
5017 expansion_notify (per_cu->v.quick->compunit_symtab);
5018 }
5019}
5020
3f563c84
PA
5021/* Helper for dw2_expand_matching symtabs. Called on each symbol
5022 matched, to expand corresponding CUs that were marked. IDX is the
5023 index of the symbol name that matched. */
5024
5025static void
5026dw2_expand_marked_cus
ed2dc618 5027 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
3f563c84
PA
5028 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5029 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5030 search_domain kind)
5031{
3f563c84
PA
5032 offset_type *vec, vec_len, vec_idx;
5033 bool global_seen = false;
ed2dc618 5034 mapped_index &index = *dwarf2_per_objfile->index_table;
3f563c84 5035
61920122 5036 vec = (offset_type *) (index.constant_pool
f00a2de2 5037 + MAYBE_SWAP (index.symbol_table[idx].vec));
61920122
PA
5038 vec_len = MAYBE_SWAP (vec[0]);
5039 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5040 {
61920122
PA
5041 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5042 /* This value is only valid for index versions >= 7. */
5043 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5044 gdb_index_symbol_kind symbol_kind =
5045 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5046 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5047 /* Only check the symbol attributes if they're present.
5048 Indices prior to version 7 don't record them,
5049 and indices >= 7 may elide them for certain symbols
5050 (gold does this). */
5051 int attrs_valid =
5052 (index.version >= 7
5053 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5054
5055 /* Work around gold/15646. */
5056 if (attrs_valid)
9291a0cd 5057 {
61920122
PA
5058 if (!is_static && global_seen)
5059 continue;
5060 if (!is_static)
5061 global_seen = true;
5062 }
3190f0c6 5063
61920122
PA
5064 /* Only check the symbol's kind if it has one. */
5065 if (attrs_valid)
5066 {
5067 switch (kind)
8943b874 5068 {
61920122
PA
5069 case VARIABLES_DOMAIN:
5070 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5071 continue;
5072 break;
5073 case FUNCTIONS_DOMAIN:
5074 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
8943b874 5075 continue;
61920122
PA
5076 break;
5077 case TYPES_DOMAIN:
5078 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5079 continue;
5080 break;
5081 default:
5082 break;
8943b874 5083 }
61920122 5084 }
8943b874 5085
61920122 5086 /* Don't crash on bad data. */
b76e467d 5087 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 5088 + dwarf2_per_objfile->all_type_units.size ()))
61920122 5089 {
b98664d3 5090 complaint (_(".gdb_index entry has bad CU index"
ed2dc618
SM
5091 " [in module %s]"),
5092 objfile_name (dwarf2_per_objfile->objfile));
61920122
PA
5093 continue;
5094 }
5095
ff4c9fec 5096 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4b514bc8
JK
5097 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5098 expansion_notify);
61920122
PA
5099 }
5100}
5101
4b514bc8
JK
5102/* If FILE_MATCHER is non-NULL, set all the
5103 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5104 that match FILE_MATCHER. */
5105
61920122 5106static void
4b514bc8 5107dw_expand_symtabs_matching_file_matcher
ed2dc618
SM
5108 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5109 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
61920122 5110{
4b514bc8 5111 if (file_matcher == NULL)
61920122
PA
5112 return;
5113
4b514bc8
JK
5114 objfile *const objfile = dwarf2_per_objfile->objfile;
5115
5116 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5117 htab_eq_pointer,
5118 NULL, xcalloc, xfree));
5119 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
61920122
PA
5120 htab_eq_pointer,
5121 NULL, xcalloc, xfree));
61920122 5122
4b514bc8
JK
5123 /* The rule is CUs specify all the files, including those used by
5124 any TU, so there's no need to scan TUs here. */
61920122 5125
b76e467d 5126 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 5127 {
927aa2e7
JK
5128 QUIT;
5129
5130 per_cu->v.quick->mark = 0;
5131
5132 /* We only need to look at symtabs not already expanded. */
5133 if (per_cu->v.quick->compunit_symtab)
5134 continue;
5135
b76e467d 5136 quick_file_names *file_data = dw2_get_file_names (per_cu);
927aa2e7
JK
5137 if (file_data == NULL)
5138 continue;
5139
5140 if (htab_find (visited_not_found.get (), file_data) != NULL)
5141 continue;
5142 else if (htab_find (visited_found.get (), file_data) != NULL)
5143 {
5144 per_cu->v.quick->mark = 1;
5145 continue;
5146 }
5147
b76e467d 5148 for (int j = 0; j < file_data->num_file_names; ++j)
927aa2e7
JK
5149 {
5150 const char *this_real_name;
5151
5152 if (file_matcher (file_data->file_names[j], false))
5153 {
5154 per_cu->v.quick->mark = 1;
5155 break;
5156 }
5157
5158 /* Before we invoke realpath, which can get expensive when many
5159 files are involved, do a quick comparison of the basenames. */
5160 if (!basenames_may_differ
5161 && !file_matcher (lbasename (file_data->file_names[j]),
5162 true))
5163 continue;
5164
5165 this_real_name = dw2_get_real_path (objfile, file_data, j);
5166 if (file_matcher (this_real_name, false))
5167 {
5168 per_cu->v.quick->mark = 1;
5169 break;
5170 }
5171 }
5172
b76e467d
SM
5173 void **slot = htab_find_slot (per_cu->v.quick->mark
5174 ? visited_found.get ()
5175 : visited_not_found.get (),
5176 file_data, INSERT);
927aa2e7
JK
5177 *slot = file_data;
5178 }
5179}
5180
5181static void
5182dw2_expand_symtabs_matching
5183 (struct objfile *objfile,
5184 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5185 const lookup_name_info &lookup_name,
5186 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5187 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5188 enum search_domain kind)
5189{
ed2dc618
SM
5190 struct dwarf2_per_objfile *dwarf2_per_objfile
5191 = get_dwarf2_per_objfile (objfile);
927aa2e7
JK
5192
5193 /* index_table is NULL if OBJF_READNOW. */
5194 if (!dwarf2_per_objfile->index_table)
5195 return;
5196
ed2dc618 5197 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
927aa2e7
JK
5198
5199 mapped_index &index = *dwarf2_per_objfile->index_table;
5200
5201 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5202 symbol_matcher,
5203 kind, [&] (offset_type idx)
5204 {
ed2dc618 5205 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
927aa2e7
JK
5206 expansion_notify, kind);
5207 });
5208}
5209
5210/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5211 symtab. */
5212
5213static struct compunit_symtab *
5214recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5215 CORE_ADDR pc)
5216{
5217 int i;
5218
5219 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5220 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5221 return cust;
5222
5223 if (cust->includes == NULL)
5224 return NULL;
5225
5226 for (i = 0; cust->includes[i]; ++i)
5227 {
5228 struct compunit_symtab *s = cust->includes[i];
5229
5230 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5231 if (s != NULL)
5232 return s;
5233 }
5234
5235 return NULL;
5236}
5237
5238static struct compunit_symtab *
5239dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5240 struct bound_minimal_symbol msymbol,
5241 CORE_ADDR pc,
5242 struct obj_section *section,
5243 int warn_if_readin)
5244{
5245 struct dwarf2_per_cu_data *data;
5246 struct compunit_symtab *result;
5247
927aa2e7
JK
5248 if (!objfile->psymtabs_addrmap)
5249 return NULL;
5250
79748972
TT
5251 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5252 SECT_OFF_TEXT (objfile));
927aa2e7 5253 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
79748972 5254 pc - baseaddr);
927aa2e7
JK
5255 if (!data)
5256 return NULL;
5257
5258 if (warn_if_readin && data->v.quick->compunit_symtab)
5259 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5260 paddress (get_objfile_arch (objfile), pc));
5261
5262 result
58f0c718
TT
5263 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5264 false),
927aa2e7
JK
5265 pc);
5266 gdb_assert (result != NULL);
5267 return result;
5268}
5269
5270static void
5271dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5272 void *data, int need_fullname)
5273{
ed2dc618
SM
5274 struct dwarf2_per_objfile *dwarf2_per_objfile
5275 = get_dwarf2_per_objfile (objfile);
927aa2e7
JK
5276
5277 if (!dwarf2_per_objfile->filenames_cache)
5278 {
5279 dwarf2_per_objfile->filenames_cache.emplace ();
5280
5281 htab_up visited (htab_create_alloc (10,
5282 htab_hash_pointer, htab_eq_pointer,
5283 NULL, xcalloc, xfree));
5284
5285 /* The rule is CUs specify all the files, including those used
5286 by any TU, so there's no need to scan TUs here. We can
5287 ignore file names coming from already-expanded CUs. */
5288
b76e467d 5289 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 5290 {
927aa2e7
JK
5291 if (per_cu->v.quick->compunit_symtab)
5292 {
5293 void **slot = htab_find_slot (visited.get (),
5294 per_cu->v.quick->file_names,
5295 INSERT);
5296
5297 *slot = per_cu->v.quick->file_names;
5298 }
5299 }
5300
b76e467d 5301 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
927aa2e7 5302 {
927aa2e7
JK
5303 /* We only need to look at symtabs not already expanded. */
5304 if (per_cu->v.quick->compunit_symtab)
5305 continue;
5306
b76e467d 5307 quick_file_names *file_data = dw2_get_file_names (per_cu);
927aa2e7
JK
5308 if (file_data == NULL)
5309 continue;
5310
b76e467d 5311 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
927aa2e7
JK
5312 if (*slot)
5313 {
5314 /* Already visited. */
5315 continue;
5316 }
5317 *slot = file_data;
5318
5319 for (int j = 0; j < file_data->num_file_names; ++j)
5320 {
5321 const char *filename = file_data->file_names[j];
5322 dwarf2_per_objfile->filenames_cache->seen (filename);
5323 }
5324 }
5325 }
5326
5327 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5328 {
5329 gdb::unique_xmalloc_ptr<char> this_real_name;
5330
5331 if (need_fullname)
5332 this_real_name = gdb_realpath (filename);
5333 (*fun) (filename, this_real_name.get (), data);
5334 });
5335}
5336
5337static int
5338dw2_has_symbols (struct objfile *objfile)
5339{
5340 return 1;
5341}
5342
5343const struct quick_symbol_functions dwarf2_gdb_index_functions =
5344{
5345 dw2_has_symbols,
5346 dw2_find_last_source_symtab,
5347 dw2_forget_cached_source_info,
5348 dw2_map_symtabs_matching_filename,
5349 dw2_lookup_symbol,
5350 dw2_print_stats,
5351 dw2_dump,
927aa2e7
JK
5352 dw2_expand_symtabs_for_function,
5353 dw2_expand_all_symtabs,
5354 dw2_expand_symtabs_with_fullname,
5355 dw2_map_matching_symbols,
5356 dw2_expand_symtabs_matching,
5357 dw2_find_pc_sect_compunit_symtab,
5358 NULL,
5359 dw2_map_symbol_filenames
5360};
5361
5362/* DWARF-5 debug_names reader. */
5363
5364/* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5365static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5366
5367/* A helper function that reads the .debug_names section in SECTION
5368 and fills in MAP. FILENAME is the name of the file containing the
5369 section; it is used for error reporting.
5370
5371 Returns true if all went well, false otherwise. */
5372
5373static bool
5374read_debug_names_from_section (struct objfile *objfile,
5375 const char *filename,
5376 struct dwarf2_section_info *section,
5377 mapped_debug_names &map)
5378{
5379 if (dwarf2_section_empty_p (section))
5380 return false;
5381
5382 /* Older elfutils strip versions could keep the section in the main
5383 executable while splitting it for the separate debug info file. */
5384 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5385 return false;
5386
5387 dwarf2_read_section (objfile, section);
5388
5389 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5390
5391 const gdb_byte *addr = section->buffer;
5392
5393 bfd *const abfd = get_section_bfd_owner (section);
5394
5395 unsigned int bytes_read;
5396 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5397 addr += bytes_read;
5398
5399 map.dwarf5_is_dwarf64 = bytes_read != 4;
5400 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5401 if (bytes_read + length != section->size)
5402 {
5403 /* There may be multiple per-CU indices. */
5404 warning (_("Section .debug_names in %s length %s does not match "
5405 "section length %s, ignoring .debug_names."),
5406 filename, plongest (bytes_read + length),
5407 pulongest (section->size));
5408 return false;
5409 }
5410
5411 /* The version number. */
5412 uint16_t version = read_2_bytes (abfd, addr);
5413 addr += 2;
5414 if (version != 5)
5415 {
5416 warning (_("Section .debug_names in %s has unsupported version %d, "
5417 "ignoring .debug_names."),
5418 filename, version);
5419 return false;
5420 }
5421
5422 /* Padding. */
5423 uint16_t padding = read_2_bytes (abfd, addr);
5424 addr += 2;
5425 if (padding != 0)
5426 {
5427 warning (_("Section .debug_names in %s has unsupported padding %d, "
5428 "ignoring .debug_names."),
5429 filename, padding);
5430 return false;
5431 }
5432
5433 /* comp_unit_count - The number of CUs in the CU list. */
5434 map.cu_count = read_4_bytes (abfd, addr);
5435 addr += 4;
5436
5437 /* local_type_unit_count - The number of TUs in the local TU
5438 list. */
5439 map.tu_count = read_4_bytes (abfd, addr);
5440 addr += 4;
5441
5442 /* foreign_type_unit_count - The number of TUs in the foreign TU
5443 list. */
5444 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5445 addr += 4;
5446 if (foreign_tu_count != 0)
5447 {
5448 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5449 "ignoring .debug_names."),
5450 filename, static_cast<unsigned long> (foreign_tu_count));
5451 return false;
5452 }
5453
5454 /* bucket_count - The number of hash buckets in the hash lookup
5455 table. */
5456 map.bucket_count = read_4_bytes (abfd, addr);
5457 addr += 4;
5458
5459 /* name_count - The number of unique names in the index. */
5460 map.name_count = read_4_bytes (abfd, addr);
5461 addr += 4;
5462
5463 /* abbrev_table_size - The size in bytes of the abbreviations
5464 table. */
5465 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5466 addr += 4;
5467
5468 /* augmentation_string_size - The size in bytes of the augmentation
5469 string. This value is rounded up to a multiple of 4. */
5470 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5471 addr += 4;
5472 map.augmentation_is_gdb = ((augmentation_string_size
5473 == sizeof (dwarf5_augmentation))
5474 && memcmp (addr, dwarf5_augmentation,
5475 sizeof (dwarf5_augmentation)) == 0);
5476 augmentation_string_size += (-augmentation_string_size) & 3;
5477 addr += augmentation_string_size;
5478
5479 /* List of CUs */
5480 map.cu_table_reordered = addr;
5481 addr += map.cu_count * map.offset_size;
5482
5483 /* List of Local TUs */
5484 map.tu_table_reordered = addr;
5485 addr += map.tu_count * map.offset_size;
5486
5487 /* Hash Lookup Table */
5488 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5489 addr += map.bucket_count * 4;
5490 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5491 addr += map.name_count * 4;
5492
5493 /* Name Table */
5494 map.name_table_string_offs_reordered = addr;
5495 addr += map.name_count * map.offset_size;
5496 map.name_table_entry_offs_reordered = addr;
5497 addr += map.name_count * map.offset_size;
5498
5499 const gdb_byte *abbrev_table_start = addr;
5500 for (;;)
5501 {
927aa2e7
JK
5502 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5503 addr += bytes_read;
5504 if (index_num == 0)
5505 break;
5506
5507 const auto insertpair
5508 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5509 if (!insertpair.second)
5510 {
5511 warning (_("Section .debug_names in %s has duplicate index %s, "
5512 "ignoring .debug_names."),
5513 filename, pulongest (index_num));
5514 return false;
5515 }
5516 mapped_debug_names::index_val &indexval = insertpair.first->second;
5517 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5518 addr += bytes_read;
5519
5520 for (;;)
5521 {
5522 mapped_debug_names::index_val::attr attr;
5523 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5524 addr += bytes_read;
5525 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5526 addr += bytes_read;
5527 if (attr.form == DW_FORM_implicit_const)
5528 {
5529 attr.implicit_const = read_signed_leb128 (abfd, addr,
5530 &bytes_read);
5531 addr += bytes_read;
5532 }
5533 if (attr.dw_idx == 0 && attr.form == 0)
5534 break;
5535 indexval.attr_vec.push_back (std::move (attr));
5536 }
5537 }
5538 if (addr != abbrev_table_start + abbrev_table_size)
5539 {
5540 warning (_("Section .debug_names in %s has abbreviation_table "
5541 "of size %zu vs. written as %u, ignoring .debug_names."),
5542 filename, addr - abbrev_table_start, abbrev_table_size);
5543 return false;
5544 }
5545 map.entry_pool = addr;
5546
5547 return true;
5548}
5549
5550/* A helper for create_cus_from_debug_names that handles the MAP's CU
5551 list. */
5552
5553static void
ed2dc618 5554create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
5555 const mapped_debug_names &map,
5556 dwarf2_section_info &section,
b76e467d 5557 bool is_dwz)
927aa2e7
JK
5558{
5559 sect_offset sect_off_prev;
5560 for (uint32_t i = 0; i <= map.cu_count; ++i)
5561 {
5562 sect_offset sect_off_next;
5563 if (i < map.cu_count)
5564 {
5565 sect_off_next
5566 = (sect_offset) (extract_unsigned_integer
5567 (map.cu_table_reordered + i * map.offset_size,
5568 map.offset_size,
5569 map.dwarf5_byte_order));
5570 }
5571 else
5572 sect_off_next = (sect_offset) section.size;
5573 if (i >= 1)
5574 {
5575 const ULONGEST length = sect_off_next - sect_off_prev;
b76e467d 5576 dwarf2_per_cu_data *per_cu
ed2dc618 5577 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
927aa2e7 5578 sect_off_prev, length);
b76e467d 5579 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
927aa2e7
JK
5580 }
5581 sect_off_prev = sect_off_next;
5582 }
5583}
5584
5585/* Read the CU list from the mapped index, and use it to create all
ed2dc618 5586 the CU objects for this dwarf2_per_objfile. */
927aa2e7
JK
5587
5588static void
ed2dc618 5589create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
927aa2e7
JK
5590 const mapped_debug_names &map,
5591 const mapped_debug_names &dwz_map)
5592{
b76e467d
SM
5593 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5594 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
927aa2e7 5595
ed2dc618
SM
5596 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5597 dwarf2_per_objfile->info,
b76e467d 5598 false /* is_dwz */);
927aa2e7
JK
5599
5600 if (dwz_map.cu_count == 0)
5601 return;
5602
ed2dc618
SM
5603 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5604 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
b76e467d 5605 true /* is_dwz */);
927aa2e7
JK
5606}
5607
5608/* Read .debug_names. If everything went ok, initialize the "quick"
5609 elements of all the CUs and return true. Otherwise, return false. */
5610
5611static bool
ed2dc618 5612dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
927aa2e7 5613{
22ca247e
TT
5614 std::unique_ptr<mapped_debug_names> map
5615 (new mapped_debug_names (dwarf2_per_objfile));
ed2dc618
SM
5616 mapped_debug_names dwz_map (dwarf2_per_objfile);
5617 struct objfile *objfile = dwarf2_per_objfile->objfile;
927aa2e7
JK
5618
5619 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5620 &dwarf2_per_objfile->debug_names,
22ca247e 5621 *map))
927aa2e7
JK
5622 return false;
5623
5624 /* Don't use the index if it's empty. */
22ca247e 5625 if (map->name_count == 0)
927aa2e7
JK
5626 return false;
5627
5628 /* If there is a .dwz file, read it so we can get its CU list as
5629 well. */
ed2dc618 5630 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
927aa2e7
JK
5631 if (dwz != NULL)
5632 {
5633 if (!read_debug_names_from_section (objfile,
5634 bfd_get_filename (dwz->dwz_bfd),
5635 &dwz->debug_names, dwz_map))
5636 {
5637 warning (_("could not read '.debug_names' section from %s; skipping"),
5638 bfd_get_filename (dwz->dwz_bfd));
5639 return false;
5640 }
5641 }
5642
22ca247e 5643 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
927aa2e7 5644
22ca247e 5645 if (map->tu_count != 0)
927aa2e7
JK
5646 {
5647 /* We can only handle a single .debug_types when we have an
5648 index. */
5649 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5650 return false;
5651
5652 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5653 dwarf2_per_objfile->types, 0);
5654
5655 create_signatured_type_table_from_debug_names
22ca247e 5656 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
927aa2e7
JK
5657 }
5658
ed2dc618
SM
5659 create_addrmap_from_aranges (dwarf2_per_objfile,
5660 &dwarf2_per_objfile->debug_aranges);
927aa2e7 5661
22ca247e 5662 dwarf2_per_objfile->debug_names_table = std::move (map);
927aa2e7
JK
5663 dwarf2_per_objfile->using_index = 1;
5664 dwarf2_per_objfile->quick_file_names_table =
b76e467d 5665 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
927aa2e7
JK
5666
5667 return true;
5668}
5669
927aa2e7
JK
5670/* Type used to manage iterating over all CUs looking for a symbol for
5671 .debug_names. */
5672
5673class dw2_debug_names_iterator
5674{
5675public:
5676 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5677 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5678 dw2_debug_names_iterator (const mapped_debug_names &map,
5679 bool want_specific_block,
5680 block_enum block_index, domain_enum domain,
5681 const char *name)
5682 : m_map (map), m_want_specific_block (want_specific_block),
5683 m_block_index (block_index), m_domain (domain),
5684 m_addr (find_vec_in_debug_names (map, name))
5685 {}
5686
5687 dw2_debug_names_iterator (const mapped_debug_names &map,
5688 search_domain search, uint32_t namei)
5689 : m_map (map),
5690 m_search (search),
5691 m_addr (find_vec_in_debug_names (map, namei))
5692 {}
5693
5694 /* Return the next matching CU or NULL if there are no more. */
5695 dwarf2_per_cu_data *next ();
5696
5697private:
5698 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5699 const char *name);
5700 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5701 uint32_t namei);
5702
5703 /* The internalized form of .debug_names. */
5704 const mapped_debug_names &m_map;
5705
5706 /* If true, only look for symbols that match BLOCK_INDEX. */
5707 const bool m_want_specific_block = false;
5708
5709 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5710 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5711 value. */
5712 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5713
5714 /* The kind of symbol we're looking for. */
5715 const domain_enum m_domain = UNDEF_DOMAIN;
5716 const search_domain m_search = ALL_DOMAIN;
5717
5718 /* The list of CUs from the index entry of the symbol, or NULL if
5719 not found. */
5720 const gdb_byte *m_addr;
5721};
5722
5723const char *
5724mapped_debug_names::namei_to_name (uint32_t namei) const
5725{
5726 const ULONGEST namei_string_offs
5727 = extract_unsigned_integer ((name_table_string_offs_reordered
5728 + namei * offset_size),
5729 offset_size,
5730 dwarf5_byte_order);
5731 return read_indirect_string_at_offset
ed2dc618 5732 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
927aa2e7
JK
5733}
5734
5735/* Find a slot in .debug_names for the object named NAME. If NAME is
5736 found, return pointer to its pool data. If NAME cannot be found,
5737 return NULL. */
5738
5739const gdb_byte *
5740dw2_debug_names_iterator::find_vec_in_debug_names
5741 (const mapped_debug_names &map, const char *name)
5742{
5743 int (*cmp) (const char *, const char *);
5744
5745 if (current_language->la_language == language_cplus
5746 || current_language->la_language == language_fortran
5747 || current_language->la_language == language_d)
5748 {
5749 /* NAME is already canonical. Drop any qualifiers as
5750 .debug_names does not contain any. */
5751
5752 if (strchr (name, '(') != NULL)
5753 {
5754 gdb::unique_xmalloc_ptr<char> without_params
5755 = cp_remove_params (name);
5756
5757 if (without_params != NULL)
5758 {
5759 name = without_params.get();
5760 }
5761 }
5762 }
5763
5764 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5765
5766 const uint32_t full_hash = dwarf5_djb_hash (name);
5767 uint32_t namei
5768 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5769 (map.bucket_table_reordered
5770 + (full_hash % map.bucket_count)), 4,
5771 map.dwarf5_byte_order);
5772 if (namei == 0)
5773 return NULL;
5774 --namei;
5775 if (namei >= map.name_count)
5776 {
b98664d3 5777 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
927aa2e7
JK
5778 "[in module %s]"),
5779 namei, map.name_count,
ed2dc618 5780 objfile_name (map.dwarf2_per_objfile->objfile));
927aa2e7
JK
5781 return NULL;
5782 }
5783
5784 for (;;)
5785 {
5786 const uint32_t namei_full_hash
5787 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5788 (map.hash_table_reordered + namei), 4,
5789 map.dwarf5_byte_order);
5790 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5791 return NULL;
5792
5793 if (full_hash == namei_full_hash)
5794 {
5795 const char *const namei_string = map.namei_to_name (namei);
5796
5797#if 0 /* An expensive sanity check. */
5798 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5799 {
b98664d3 5800 complaint (_("Wrong .debug_names hash for string at index %u "
927aa2e7
JK
5801 "[in module %s]"),
5802 namei, objfile_name (dwarf2_per_objfile->objfile));
5803 return NULL;
5804 }
5805#endif
5806
5807 if (cmp (namei_string, name) == 0)
5808 {
5809 const ULONGEST namei_entry_offs
5810 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5811 + namei * map.offset_size),
5812 map.offset_size, map.dwarf5_byte_order);
5813 return map.entry_pool + namei_entry_offs;
5814 }
5815 }
5816
5817 ++namei;
5818 if (namei >= map.name_count)
5819 return NULL;
5820 }
5821}
5822
5823const gdb_byte *
5824dw2_debug_names_iterator::find_vec_in_debug_names
5825 (const mapped_debug_names &map, uint32_t namei)
5826{
5827 if (namei >= map.name_count)
5828 {
b98664d3 5829 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
927aa2e7
JK
5830 "[in module %s]"),
5831 namei, map.name_count,
ed2dc618 5832 objfile_name (map.dwarf2_per_objfile->objfile));
927aa2e7
JK
5833 return NULL;
5834 }
5835
5836 const ULONGEST namei_entry_offs
5837 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5838 + namei * map.offset_size),
5839 map.offset_size, map.dwarf5_byte_order);
5840 return map.entry_pool + namei_entry_offs;
5841}
5842
5843/* See dw2_debug_names_iterator. */
5844
5845dwarf2_per_cu_data *
5846dw2_debug_names_iterator::next ()
5847{
5848 if (m_addr == NULL)
5849 return NULL;
5850
ed2dc618
SM
5851 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5852 struct objfile *objfile = dwarf2_per_objfile->objfile;
5853 bfd *const abfd = objfile->obfd;
927aa2e7
JK
5854
5855 again:
5856
5857 unsigned int bytes_read;
5858 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5859 m_addr += bytes_read;
5860 if (abbrev == 0)
5861 return NULL;
5862
5863 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5864 if (indexval_it == m_map.abbrev_map.cend ())
5865 {
b98664d3 5866 complaint (_("Wrong .debug_names undefined abbrev code %s "
927aa2e7 5867 "[in module %s]"),
ed2dc618 5868 pulongest (abbrev), objfile_name (objfile));
927aa2e7
JK
5869 return NULL;
5870 }
5871 const mapped_debug_names::index_val &indexval = indexval_it->second;
5872 bool have_is_static = false;
5873 bool is_static;
5874 dwarf2_per_cu_data *per_cu = NULL;
5875 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5876 {
5877 ULONGEST ull;
5878 switch (attr.form)
5879 {
5880 case DW_FORM_implicit_const:
5881 ull = attr.implicit_const;
5882 break;
5883 case DW_FORM_flag_present:
5884 ull = 1;
5885 break;
5886 case DW_FORM_udata:
5887 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5888 m_addr += bytes_read;
5889 break;
5890 default:
b98664d3 5891 complaint (_("Unsupported .debug_names form %s [in module %s]"),
927aa2e7 5892 dwarf_form_name (attr.form),
ed2dc618 5893 objfile_name (objfile));
927aa2e7
JK
5894 return NULL;
5895 }
5896 switch (attr.dw_idx)
5897 {
5898 case DW_IDX_compile_unit:
5899 /* Don't crash on bad data. */
b76e467d 5900 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
927aa2e7 5901 {
b98664d3 5902 complaint (_(".debug_names entry has bad CU index %s"
927aa2e7
JK
5903 " [in module %s]"),
5904 pulongest (ull),
5905 objfile_name (dwarf2_per_objfile->objfile));
5906 continue;
5907 }
ff4c9fec 5908 per_cu = dwarf2_per_objfile->get_cutu (ull);
927aa2e7 5909 break;
8af5c486
JK
5910 case DW_IDX_type_unit:
5911 /* Don't crash on bad data. */
b2bdb8cf 5912 if (ull >= dwarf2_per_objfile->all_type_units.size ())
8af5c486 5913 {
b98664d3 5914 complaint (_(".debug_names entry has bad TU index %s"
8af5c486
JK
5915 " [in module %s]"),
5916 pulongest (ull),
5917 objfile_name (dwarf2_per_objfile->objfile));
5918 continue;
5919 }
ff4c9fec 5920 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
8af5c486 5921 break;
927aa2e7
JK
5922 case DW_IDX_GNU_internal:
5923 if (!m_map.augmentation_is_gdb)
5924 break;
5925 have_is_static = true;
5926 is_static = true;
5927 break;
5928 case DW_IDX_GNU_external:
5929 if (!m_map.augmentation_is_gdb)
5930 break;
5931 have_is_static = true;
5932 is_static = false;
5933 break;
5934 }
5935 }
5936
5937 /* Skip if already read in. */
5938 if (per_cu->v.quick->compunit_symtab)
5939 goto again;
5940
5941 /* Check static vs global. */
5942 if (have_is_static)
5943 {
5944 const bool want_static = m_block_index != GLOBAL_BLOCK;
5945 if (m_want_specific_block && want_static != is_static)
5946 goto again;
5947 }
5948
5949 /* Match dw2_symtab_iter_next, symbol_kind
5950 and debug_names::psymbol_tag. */
5951 switch (m_domain)
5952 {
5953 case VAR_DOMAIN:
5954 switch (indexval.dwarf_tag)
5955 {
5956 case DW_TAG_variable:
5957 case DW_TAG_subprogram:
5958 /* Some types are also in VAR_DOMAIN. */
5959 case DW_TAG_typedef:
5960 case DW_TAG_structure_type:
5961 break;
5962 default:
5963 goto again;
5964 }
5965 break;
5966 case STRUCT_DOMAIN:
5967 switch (indexval.dwarf_tag)
5968 {
5969 case DW_TAG_typedef:
5970 case DW_TAG_structure_type:
5971 break;
5972 default:
5973 goto again;
5974 }
5975 break;
5976 case LABEL_DOMAIN:
5977 switch (indexval.dwarf_tag)
5978 {
5979 case 0:
5980 case DW_TAG_variable:
5981 break;
5982 default:
5983 goto again;
5984 }
5985 break;
5986 default:
5987 break;
5988 }
5989
5990 /* Match dw2_expand_symtabs_matching, symbol_kind and
5991 debug_names::psymbol_tag. */
5992 switch (m_search)
4b514bc8 5993 {
927aa2e7
JK
5994 case VARIABLES_DOMAIN:
5995 switch (indexval.dwarf_tag)
4b514bc8 5996 {
927aa2e7
JK
5997 case DW_TAG_variable:
5998 break;
5999 default:
6000 goto again;
4b514bc8 6001 }
927aa2e7
JK
6002 break;
6003 case FUNCTIONS_DOMAIN:
6004 switch (indexval.dwarf_tag)
4b514bc8 6005 {
927aa2e7
JK
6006 case DW_TAG_subprogram:
6007 break;
6008 default:
6009 goto again;
4b514bc8 6010 }
927aa2e7
JK
6011 break;
6012 case TYPES_DOMAIN:
6013 switch (indexval.dwarf_tag)
6014 {
6015 case DW_TAG_typedef:
6016 case DW_TAG_structure_type:
6017 break;
6018 default:
6019 goto again;
6020 }
6021 break;
6022 default:
6023 break;
4b514bc8 6024 }
927aa2e7
JK
6025
6026 return per_cu;
4b514bc8 6027}
61920122 6028
927aa2e7
JK
6029static struct compunit_symtab *
6030dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6031 const char *name, domain_enum domain)
4b514bc8 6032{
927aa2e7 6033 const block_enum block_index = static_cast<block_enum> (block_index_int);
ed2dc618
SM
6034 struct dwarf2_per_objfile *dwarf2_per_objfile
6035 = get_dwarf2_per_objfile (objfile);
61920122 6036
927aa2e7
JK
6037 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6038 if (!mapp)
61920122 6039 {
927aa2e7
JK
6040 /* index is NULL if OBJF_READNOW. */
6041 return NULL;
6042 }
6043 const auto &map = *mapp;
9291a0cd 6044
927aa2e7
JK
6045 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6046 block_index, domain, name);
9703b513 6047
927aa2e7
JK
6048 struct compunit_symtab *stab_best = NULL;
6049 struct dwarf2_per_cu_data *per_cu;
6050 while ((per_cu = iter.next ()) != NULL)
6051 {
6052 struct symbol *sym, *with_opaque = NULL;
58f0c718 6053 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
927aa2e7
JK
6054 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6055 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
9703b513 6056
927aa2e7
JK
6057 sym = block_find_symbol (block, name, domain,
6058 block_find_non_opaque_type_preferred,
6059 &with_opaque);
9703b513 6060
927aa2e7
JK
6061 /* Some caution must be observed with overloaded functions and
6062 methods, since the index will not contain any overload
6063 information (but NAME might contain it). */
a3ec0bb1 6064
927aa2e7
JK
6065 if (sym != NULL
6066 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6067 return stab;
6068 if (with_opaque != NULL
6069 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6070 stab_best = stab;
9703b513 6071
927aa2e7 6072 /* Keep looking through other CUs. */
9703b513
TT
6073 }
6074
927aa2e7 6075 return stab_best;
9703b513
TT
6076}
6077
927aa2e7
JK
6078/* This dumps minimal information about .debug_names. It is called
6079 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6080 uses this to verify that .debug_names has been loaded. */
9291a0cd 6081
927aa2e7
JK
6082static void
6083dw2_debug_names_dump (struct objfile *objfile)
6084{
ed2dc618
SM
6085 struct dwarf2_per_objfile *dwarf2_per_objfile
6086 = get_dwarf2_per_objfile (objfile);
6087
927aa2e7
JK
6088 gdb_assert (dwarf2_per_objfile->using_index);
6089 printf_filtered (".debug_names:");
6090 if (dwarf2_per_objfile->debug_names_table)
6091 printf_filtered (" exists\n");
6092 else
6093 printf_filtered (" faked for \"readnow\"\n");
6094 printf_filtered ("\n");
9291a0cd
TT
6095}
6096
9291a0cd 6097static void
927aa2e7
JK
6098dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6099 const char *func_name)
9291a0cd 6100{
ed2dc618
SM
6101 struct dwarf2_per_objfile *dwarf2_per_objfile
6102 = get_dwarf2_per_objfile (objfile);
ae2de4f8 6103
927aa2e7
JK
6104 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6105 if (dwarf2_per_objfile->debug_names_table)
24c79950 6106 {
927aa2e7 6107 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
24c79950 6108
927aa2e7
JK
6109 /* Note: It doesn't matter what we pass for block_index here. */
6110 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6111 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
24c79950 6112
927aa2e7
JK
6113 struct dwarf2_per_cu_data *per_cu;
6114 while ((per_cu = iter.next ()) != NULL)
58f0c718 6115 dw2_instantiate_symtab (per_cu, false);
927aa2e7
JK
6116 }
6117}
24c79950 6118
927aa2e7
JK
6119static void
6120dw2_debug_names_expand_symtabs_matching
6121 (struct objfile *objfile,
6122 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6123 const lookup_name_info &lookup_name,
6124 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6125 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6126 enum search_domain kind)
6127{
ed2dc618
SM
6128 struct dwarf2_per_objfile *dwarf2_per_objfile
6129 = get_dwarf2_per_objfile (objfile);
9291a0cd 6130
927aa2e7
JK
6131 /* debug_names_table is NULL if OBJF_READNOW. */
6132 if (!dwarf2_per_objfile->debug_names_table)
6133 return;
9291a0cd 6134
ed2dc618 6135 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
24c79950 6136
44ed8f3e 6137 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
bbf2f4df 6138
44ed8f3e
PA
6139 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6140 symbol_matcher,
6141 kind, [&] (offset_type namei)
927aa2e7 6142 {
927aa2e7
JK
6143 /* The name was matched, now expand corresponding CUs that were
6144 marked. */
6145 dw2_debug_names_iterator iter (map, kind, namei);
bbf2f4df 6146
927aa2e7
JK
6147 struct dwarf2_per_cu_data *per_cu;
6148 while ((per_cu = iter.next ()) != NULL)
6149 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6150 expansion_notify);
44ed8f3e 6151 });
9291a0cd
TT
6152}
6153
927aa2e7 6154const struct quick_symbol_functions dwarf2_debug_names_functions =
9291a0cd
TT
6155{
6156 dw2_has_symbols,
6157 dw2_find_last_source_symtab,
6158 dw2_forget_cached_source_info,
f8eba3c6 6159 dw2_map_symtabs_matching_filename,
927aa2e7 6160 dw2_debug_names_lookup_symbol,
9291a0cd 6161 dw2_print_stats,
927aa2e7 6162 dw2_debug_names_dump,
927aa2e7 6163 dw2_debug_names_expand_symtabs_for_function,
9291a0cd 6164 dw2_expand_all_symtabs,
652a8996 6165 dw2_expand_symtabs_with_fullname,
40658b94 6166 dw2_map_matching_symbols,
927aa2e7 6167 dw2_debug_names_expand_symtabs_matching,
43f3e411 6168 dw2_find_pc_sect_compunit_symtab,
71a3c369 6169 NULL,
9291a0cd
TT
6170 dw2_map_symbol_filenames
6171};
6172
4485a1c1
SM
6173/* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6174 to either a dwarf2_per_objfile or dwz_file object. */
6175
6176template <typename T>
6177static gdb::array_view<const gdb_byte>
6178get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6179{
6180 dwarf2_section_info *section = &section_owner->gdb_index;
6181
6182 if (dwarf2_section_empty_p (section))
6183 return {};
6184
6185 /* Older elfutils strip versions could keep the section in the main
6186 executable while splitting it for the separate debug info file. */
6187 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6188 return {};
6189
6190 dwarf2_read_section (obj, section);
6191
8bebfcda
PA
6192 /* dwarf2_section_info::size is a bfd_size_type, while
6193 gdb::array_view works with size_t. On 32-bit hosts, with
6194 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6195 is 32-bit. So we need an explicit narrowing conversion here.
6196 This is fine, because it's impossible to allocate or mmap an
6197 array/buffer larger than what size_t can represent. */
6198 return gdb::make_array_view (section->buffer, section->size);
4485a1c1
SM
6199}
6200
87d6a7aa
SM
6201/* Lookup the index cache for the contents of the index associated to
6202 DWARF2_OBJ. */
6203
6204static gdb::array_view<const gdb_byte>
6205get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6206{
6207 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6208 if (build_id == nullptr)
6209 return {};
6210
6211 return global_index_cache.lookup_gdb_index (build_id,
6212 &dwarf2_obj->index_cache_res);
6213}
6214
6215/* Same as the above, but for DWZ. */
6216
6217static gdb::array_view<const gdb_byte>
6218get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6219{
6220 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6221 if (build_id == nullptr)
6222 return {};
6223
6224 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6225}
6226
3c0aa29a 6227/* See symfile.h. */
9291a0cd 6228
3c0aa29a
PA
6229bool
6230dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
9291a0cd 6231{
ed2dc618
SM
6232 struct dwarf2_per_objfile *dwarf2_per_objfile
6233 = get_dwarf2_per_objfile (objfile);
6234
9291a0cd
TT
6235 /* If we're about to read full symbols, don't bother with the
6236 indices. In this case we also don't care if some other debug
6237 format is making psymtabs, because they are all about to be
6238 expanded anyway. */
6239 if ((objfile->flags & OBJF_READNOW))
6240 {
9291a0cd 6241 dwarf2_per_objfile->using_index = 1;
ed2dc618
SM
6242 create_all_comp_units (dwarf2_per_objfile);
6243 create_all_type_units (dwarf2_per_objfile);
b76e467d
SM
6244 dwarf2_per_objfile->quick_file_names_table
6245 = create_quick_file_names_table
6246 (dwarf2_per_objfile->all_comp_units.size ());
9291a0cd 6247
b76e467d 6248 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
b2bdb8cf 6249 + dwarf2_per_objfile->all_type_units.size ()); ++i)
9291a0cd 6250 {
ff4c9fec 6251 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
9291a0cd 6252
e254ef6a
DE
6253 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6254 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
6255 }
6256
6257 /* Return 1 so that gdb sees the "quick" functions. However,
6258 these functions will be no-ops because we will have expanded
6259 all symtabs. */
3c0aa29a
PA
6260 *index_kind = dw_index_kind::GDB_INDEX;
6261 return true;
9291a0cd
TT
6262 }
6263
ed2dc618 6264 if (dwarf2_read_debug_names (dwarf2_per_objfile))
3c0aa29a
PA
6265 {
6266 *index_kind = dw_index_kind::DEBUG_NAMES;
6267 return true;
6268 }
927aa2e7 6269
4485a1c1
SM
6270 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6271 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6272 get_gdb_index_contents_from_section<dwz_file>))
3c0aa29a
PA
6273 {
6274 *index_kind = dw_index_kind::GDB_INDEX;
6275 return true;
6276 }
9291a0cd 6277
87d6a7aa
SM
6278 /* ... otherwise, try to find the index in the index cache. */
6279 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6280 get_gdb_index_contents_from_cache,
6281 get_gdb_index_contents_from_cache_dwz))
6282 {
6283 global_index_cache.hit ();
6284 *index_kind = dw_index_kind::GDB_INDEX;
6285 return true;
6286 }
6287
6288 global_index_cache.miss ();
3c0aa29a 6289 return false;
9291a0cd
TT
6290}
6291
6292\f
6293
dce234bc
PP
6294/* Build a partial symbol table. */
6295
6296void
f29dff0a 6297dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 6298{
ed2dc618
SM
6299 struct dwarf2_per_objfile *dwarf2_per_objfile
6300 = get_dwarf2_per_objfile (objfile);
c9bf0622 6301
6eee24ce 6302 init_psymbol_list (objfile, 1024);
c906108c 6303
492d29ea 6304 TRY
c9bf0622
TT
6305 {
6306 /* This isn't really ideal: all the data we allocate on the
6307 objfile's obstack is still uselessly kept around. However,
6308 freeing it seems unsafe. */
906768f9 6309 psymtab_discarder psymtabs (objfile);
ed2dc618 6310 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
906768f9 6311 psymtabs.keep ();
87d6a7aa
SM
6312
6313 /* (maybe) store an index in the cache. */
6314 global_index_cache.store (dwarf2_per_objfile);
c9bf0622 6315 }
492d29ea
PA
6316 CATCH (except, RETURN_MASK_ERROR)
6317 {
6318 exception_print (gdb_stderr, except);
6319 }
6320 END_CATCH
c906108c 6321}
c906108c 6322
1ce1cefd
DE
6323/* Return the total length of the CU described by HEADER. */
6324
6325static unsigned int
6326get_cu_length (const struct comp_unit_head *header)
6327{
6328 return header->initial_length_size + header->length;
6329}
6330
9c541725 6331/* Return TRUE if SECT_OFF is within CU_HEADER. */
45452591 6332
9c541725
PA
6333static inline bool
6334offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
45452591 6335{
9c541725
PA
6336 sect_offset bottom = cu_header->sect_off;
6337 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
9a619af0 6338
9c541725 6339 return sect_off >= bottom && sect_off < top;
45452591
DE
6340}
6341
3b80fe9b
DE
6342/* Find the base address of the compilation unit for range lists and
6343 location lists. It will normally be specified by DW_AT_low_pc.
6344 In DWARF-3 draft 4, the base address could be overridden by
6345 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6346 compilation units with discontinuous ranges. */
6347
6348static void
6349dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6350{
6351 struct attribute *attr;
6352
6353 cu->base_known = 0;
6354 cu->base_address = 0;
6355
6356 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6357 if (attr)
6358 {
31aa7e4e 6359 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
6360 cu->base_known = 1;
6361 }
6362 else
6363 {
6364 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6365 if (attr)
6366 {
31aa7e4e 6367 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
6368 cu->base_known = 1;
6369 }
6370 }
6371}
6372
93311388 6373/* Read in the comp unit header information from the debug_info at info_ptr.
43988095 6374 Use rcuh_kind::COMPILE as the default type if not known by the caller.
93311388
DE
6375 NOTE: This leaves members offset, first_die_offset to be filled in
6376 by the caller. */
107d2387 6377
d521ce57 6378static const gdb_byte *
107d2387 6379read_comp_unit_head (struct comp_unit_head *cu_header,
43988095
JK
6380 const gdb_byte *info_ptr,
6381 struct dwarf2_section_info *section,
6382 rcuh_kind section_kind)
107d2387
AC
6383{
6384 int signed_addr;
891d2f0b 6385 unsigned int bytes_read;
43988095
JK
6386 const char *filename = get_section_file_name (section);
6387 bfd *abfd = get_section_bfd_owner (section);
c764a876
DE
6388
6389 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6390 cu_header->initial_length_size = bytes_read;
6391 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 6392 info_ptr += bytes_read;
107d2387 6393 cu_header->version = read_2_bytes (abfd, info_ptr);
1ea5da02
TV
6394 if (cu_header->version < 2 || cu_header->version > 5)
6395 error (_("Dwarf Error: wrong version in compilation unit header "
6396 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6397 cu_header->version, filename);
107d2387 6398 info_ptr += 2;
43988095
JK
6399 if (cu_header->version < 5)
6400 switch (section_kind)
6401 {
6402 case rcuh_kind::COMPILE:
6403 cu_header->unit_type = DW_UT_compile;
6404 break;
6405 case rcuh_kind::TYPE:
6406 cu_header->unit_type = DW_UT_type;
6407 break;
6408 default:
6409 internal_error (__FILE__, __LINE__,
6410 _("read_comp_unit_head: invalid section_kind"));
6411 }
6412 else
6413 {
6414 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6415 (read_1_byte (abfd, info_ptr));
6416 info_ptr += 1;
6417 switch (cu_header->unit_type)
6418 {
6419 case DW_UT_compile:
6420 if (section_kind != rcuh_kind::COMPILE)
6421 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6422 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6423 filename);
6424 break;
6425 case DW_UT_type:
6426 section_kind = rcuh_kind::TYPE;
6427 break;
6428 default:
6429 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6430 "(is %d, should be %d or %d) [in module %s]"),
6431 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6432 }
6433
6434 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6435 info_ptr += 1;
6436 }
9c541725
PA
6437 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6438 cu_header,
6439 &bytes_read);
613e1657 6440 info_ptr += bytes_read;
43988095
JK
6441 if (cu_header->version < 5)
6442 {
6443 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6444 info_ptr += 1;
6445 }
107d2387
AC
6446 signed_addr = bfd_get_sign_extend_vma (abfd);
6447 if (signed_addr < 0)
8e65ff28 6448 internal_error (__FILE__, __LINE__,
e2e0b3e5 6449 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 6450 cu_header->signed_addr_p = signed_addr;
c764a876 6451
43988095
JK
6452 if (section_kind == rcuh_kind::TYPE)
6453 {
6454 LONGEST type_offset;
6455
6456 cu_header->signature = read_8_bytes (abfd, info_ptr);
6457 info_ptr += 8;
6458
6459 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6460 info_ptr += bytes_read;
9c541725
PA
6461 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6462 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
43988095
JK
6463 error (_("Dwarf Error: Too big type_offset in compilation unit "
6464 "header (is %s) [in module %s]"), plongest (type_offset),
6465 filename);
6466 }
6467
107d2387
AC
6468 return info_ptr;
6469}
6470
36586728
TT
6471/* Helper function that returns the proper abbrev section for
6472 THIS_CU. */
6473
6474static struct dwarf2_section_info *
6475get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6476{
6477 struct dwarf2_section_info *abbrev;
ed2dc618 6478 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
36586728
TT
6479
6480 if (this_cu->is_dwz)
ed2dc618 6481 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
36586728
TT
6482 else
6483 abbrev = &dwarf2_per_objfile->abbrev;
6484
6485 return abbrev;
6486}
6487
9ff913ba
DE
6488/* Subroutine of read_and_check_comp_unit_head and
6489 read_and_check_type_unit_head to simplify them.
6490 Perform various error checking on the header. */
6491
6492static void
ed2dc618
SM
6493error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6494 struct comp_unit_head *header,
4bdcc0c1
DE
6495 struct dwarf2_section_info *section,
6496 struct dwarf2_section_info *abbrev_section)
9ff913ba 6497{
a32a8923 6498 const char *filename = get_section_file_name (section);
9ff913ba 6499
9c541725 6500 if (to_underlying (header->abbrev_sect_off)
36586728 6501 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9d8780f0
SM
6502 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6503 "(offset %s + 6) [in module %s]"),
6504 sect_offset_str (header->abbrev_sect_off),
6505 sect_offset_str (header->sect_off),
9ff913ba
DE
6506 filename);
6507
9c541725 6508 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
9ff913ba 6509 avoid potential 32-bit overflow. */
9c541725 6510 if (((ULONGEST) header->sect_off + get_cu_length (header))
9ff913ba 6511 > section->size)
9c541725 6512 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
9d8780f0
SM
6513 "(offset %s + 0) [in module %s]"),
6514 header->length, sect_offset_str (header->sect_off),
9ff913ba
DE
6515 filename);
6516}
6517
6518/* Read in a CU/TU header and perform some basic error checking.
6519 The contents of the header are stored in HEADER.
6520 The result is a pointer to the start of the first DIE. */
adabb602 6521
d521ce57 6522static const gdb_byte *
ed2dc618
SM
6523read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6524 struct comp_unit_head *header,
9ff913ba 6525 struct dwarf2_section_info *section,
4bdcc0c1 6526 struct dwarf2_section_info *abbrev_section,
d521ce57 6527 const gdb_byte *info_ptr,
43988095 6528 rcuh_kind section_kind)
72bf9492 6529{
d521ce57 6530 const gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492 6531
9c541725 6532 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
adabb602 6533
43988095 6534 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
9ff913ba 6535
9c541725 6536 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
348e048f 6537
ed2dc618
SM
6538 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6539 abbrev_section);
9ff913ba
DE
6540
6541 return info_ptr;
348e048f
DE
6542}
6543
f4dc4d17
DE
6544/* Fetch the abbreviation table offset from a comp or type unit header. */
6545
6546static sect_offset
ed2dc618
SM
6547read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6548 struct dwarf2_section_info *section,
9c541725 6549 sect_offset sect_off)
f4dc4d17 6550{
a32a8923 6551 bfd *abfd = get_section_bfd_owner (section);
d521ce57 6552 const gdb_byte *info_ptr;
ac298888 6553 unsigned int initial_length_size, offset_size;
43988095 6554 uint16_t version;
f4dc4d17
DE
6555
6556 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
9c541725 6557 info_ptr = section->buffer + to_underlying (sect_off);
ac298888 6558 read_initial_length (abfd, info_ptr, &initial_length_size);
f4dc4d17 6559 offset_size = initial_length_size == 4 ? 4 : 8;
43988095
JK
6560 info_ptr += initial_length_size;
6561
6562 version = read_2_bytes (abfd, info_ptr);
6563 info_ptr += 2;
6564 if (version >= 5)
6565 {
6566 /* Skip unit type and address size. */
6567 info_ptr += 2;
6568 }
6569
9c541725 6570 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
f4dc4d17
DE
6571}
6572
aaa75496
JB
6573/* Allocate a new partial symtab for file named NAME and mark this new
6574 partial symtab as being an include of PST. */
6575
6576static void
d521ce57 6577dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
6578 struct objfile *objfile)
6579{
6580 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6581
fbd9ab74
JK
6582 if (!IS_ABSOLUTE_PATH (subpst->filename))
6583 {
6584 /* It shares objfile->objfile_obstack. */
6585 subpst->dirname = pst->dirname;
6586 }
6587
8d749320
SM
6588 subpst->dependencies
6589 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
6590 subpst->dependencies[0] = pst;
6591 subpst->number_of_dependencies = 1;
6592
aaa75496 6593 subpst->read_symtab = pst->read_symtab;
aaa75496
JB
6594
6595 /* No private part is necessary for include psymtabs. This property
6596 can be used to differentiate between such include psymtabs and
10b3939b 6597 the regular ones. */
58a9656e 6598 subpst->read_symtab_private = NULL;
aaa75496
JB
6599}
6600
6601/* Read the Line Number Program data and extract the list of files
6602 included by the source file represented by PST. Build an include
d85a05f0 6603 partial symtab for each of these included files. */
aaa75496
JB
6604
6605static void
6606dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
6607 struct die_info *die,
6608 struct partial_symtab *pst)
aaa75496 6609{
fff8551c 6610 line_header_up lh;
d85a05f0 6611 struct attribute *attr;
aaa75496 6612
d85a05f0
DJ
6613 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6614 if (attr)
9c541725 6615 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
aaa75496
JB
6616 if (lh == NULL)
6617 return; /* No linetable, so no includes. */
6618
79748972
TT
6619 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6620 that we pass in the raw text_low here; that is ok because we're
6621 only decoding the line table to make include partial symtabs, and
6622 so the addresses aren't really used. */
4ae976d1 6623 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
79748972 6624 pst->raw_text_low (), 1);
aaa75496
JB
6625}
6626
348e048f 6627static hashval_t
52dc124a 6628hash_signatured_type (const void *item)
348e048f 6629{
9a3c8263
SM
6630 const struct signatured_type *sig_type
6631 = (const struct signatured_type *) item;
9a619af0 6632
348e048f 6633 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 6634 return sig_type->signature;
348e048f
DE
6635}
6636
6637static int
52dc124a 6638eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 6639{
9a3c8263
SM
6640 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6641 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 6642
348e048f
DE
6643 return lhs->signature == rhs->signature;
6644}
6645
1fd400ff
TT
6646/* Allocate a hash table for signatured types. */
6647
6648static htab_t
673bfd45 6649allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
6650{
6651 return htab_create_alloc_ex (41,
52dc124a
DE
6652 hash_signatured_type,
6653 eq_signatured_type,
1fd400ff
TT
6654 NULL,
6655 &objfile->objfile_obstack,
6656 hashtab_obstack_allocate,
6657 dummy_obstack_deallocate);
6658}
6659
d467dd73 6660/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
6661
6662static int
d467dd73 6663add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 6664{
9a3c8263 6665 struct signatured_type *sigt = (struct signatured_type *) *slot;
b2bdb8cf
SM
6666 std::vector<signatured_type *> *all_type_units
6667 = (std::vector<signatured_type *> *) datum;
1fd400ff 6668
b2bdb8cf 6669 all_type_units->push_back (sigt);
1fd400ff
TT
6670
6671 return 1;
6672}
6673
78d4d2c5 6674/* A helper for create_debug_types_hash_table. Read types from SECTION
43988095
JK
6675 and fill them into TYPES_HTAB. It will process only type units,
6676 therefore DW_UT_type. */
c88ee1f0 6677
78d4d2c5 6678static void
ed2dc618
SM
6679create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6680 struct dwo_file *dwo_file,
43988095
JK
6681 dwarf2_section_info *section, htab_t &types_htab,
6682 rcuh_kind section_kind)
348e048f 6683{
3019eac3 6684 struct objfile *objfile = dwarf2_per_objfile->objfile;
4bdcc0c1 6685 struct dwarf2_section_info *abbrev_section;
78d4d2c5
JK
6686 bfd *abfd;
6687 const gdb_byte *info_ptr, *end_ptr;
348e048f 6688
4bdcc0c1
DE
6689 abbrev_section = (dwo_file != NULL
6690 ? &dwo_file->sections.abbrev
6691 : &dwarf2_per_objfile->abbrev);
6692
b4f54984 6693 if (dwarf_read_debug)
43988095
JK
6694 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6695 get_section_name (section),
a32a8923 6696 get_section_file_name (abbrev_section));
09406207 6697
78d4d2c5
JK
6698 dwarf2_read_section (objfile, section);
6699 info_ptr = section->buffer;
348e048f 6700
78d4d2c5
JK
6701 if (info_ptr == NULL)
6702 return;
348e048f 6703
78d4d2c5
JK
6704 /* We can't set abfd until now because the section may be empty or
6705 not present, in which case the bfd is unknown. */
6706 abfd = get_section_bfd_owner (section);
348e048f 6707
78d4d2c5
JK
6708 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6709 because we don't need to read any dies: the signature is in the
6710 header. */
3019eac3 6711
78d4d2c5
JK
6712 end_ptr = info_ptr + section->size;
6713 while (info_ptr < end_ptr)
6714 {
78d4d2c5
JK
6715 struct signatured_type *sig_type;
6716 struct dwo_unit *dwo_tu;
6717 void **slot;
6718 const gdb_byte *ptr = info_ptr;
6719 struct comp_unit_head header;
6720 unsigned int length;
8b70b953 6721
9c541725 6722 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
348e048f 6723
a49dd8dd
JK
6724 /* Initialize it due to a false compiler warning. */
6725 header.signature = -1;
9c541725 6726 header.type_cu_offset_in_tu = (cu_offset) -1;
a49dd8dd 6727
78d4d2c5
JK
6728 /* We need to read the type's signature in order to build the hash
6729 table, but we don't need anything else just yet. */
348e048f 6730
ed2dc618 6731 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
43988095 6732 abbrev_section, ptr, section_kind);
348e048f 6733
78d4d2c5 6734 length = get_cu_length (&header);
6caca83c 6735
78d4d2c5
JK
6736 /* Skip dummy type units. */
6737 if (ptr >= info_ptr + length
43988095
JK
6738 || peek_abbrev_code (abfd, ptr) == 0
6739 || header.unit_type != DW_UT_type)
78d4d2c5
JK
6740 {
6741 info_ptr += length;
6742 continue;
6743 }
dee91e82 6744
78d4d2c5
JK
6745 if (types_htab == NULL)
6746 {
6747 if (dwo_file)
6748 types_htab = allocate_dwo_unit_table (objfile);
6749 else
6750 types_htab = allocate_signatured_type_table (objfile);
6751 }
8b70b953 6752
78d4d2c5
JK
6753 if (dwo_file)
6754 {
6755 sig_type = NULL;
6756 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6757 struct dwo_unit);
6758 dwo_tu->dwo_file = dwo_file;
43988095 6759 dwo_tu->signature = header.signature;
9c541725 6760 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
78d4d2c5 6761 dwo_tu->section = section;
9c541725 6762 dwo_tu->sect_off = sect_off;
78d4d2c5
JK
6763 dwo_tu->length = length;
6764 }
6765 else
6766 {
6767 /* N.B.: type_offset is not usable if this type uses a DWO file.
6768 The real type_offset is in the DWO file. */
6769 dwo_tu = NULL;
6770 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6771 struct signatured_type);
43988095 6772 sig_type->signature = header.signature;
9c541725 6773 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
e3b94546 6774 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
78d4d2c5
JK
6775 sig_type->per_cu.is_debug_types = 1;
6776 sig_type->per_cu.section = section;
9c541725 6777 sig_type->per_cu.sect_off = sect_off;
78d4d2c5
JK
6778 sig_type->per_cu.length = length;
6779 }
6780
6781 slot = htab_find_slot (types_htab,
6782 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6783 INSERT);
6784 gdb_assert (slot != NULL);
6785 if (*slot != NULL)
6786 {
9c541725 6787 sect_offset dup_sect_off;
0349ea22 6788
3019eac3
DE
6789 if (dwo_file)
6790 {
78d4d2c5
JK
6791 const struct dwo_unit *dup_tu
6792 = (const struct dwo_unit *) *slot;
6793
9c541725 6794 dup_sect_off = dup_tu->sect_off;
3019eac3
DE
6795 }
6796 else
6797 {
78d4d2c5
JK
6798 const struct signatured_type *dup_tu
6799 = (const struct signatured_type *) *slot;
6800
9c541725 6801 dup_sect_off = dup_tu->per_cu.sect_off;
3019eac3 6802 }
8b70b953 6803
b98664d3 6804 complaint (_("debug type entry at offset %s is duplicate to"
9d8780f0
SM
6805 " the entry at offset %s, signature %s"),
6806 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
43988095 6807 hex_string (header.signature));
78d4d2c5
JK
6808 }
6809 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
3019eac3 6810
78d4d2c5 6811 if (dwarf_read_debug > 1)
9d8780f0
SM
6812 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6813 sect_offset_str (sect_off),
43988095 6814 hex_string (header.signature));
3019eac3 6815
78d4d2c5
JK
6816 info_ptr += length;
6817 }
6818}
3019eac3 6819
78d4d2c5
JK
6820/* Create the hash table of all entries in the .debug_types
6821 (or .debug_types.dwo) section(s).
6822 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6823 otherwise it is NULL.
b3c8eb43 6824
78d4d2c5 6825 The result is a pointer to the hash table or NULL if there are no types.
348e048f 6826
78d4d2c5 6827 Note: This function processes DWO files only, not DWP files. */
348e048f 6828
78d4d2c5 6829static void
ed2dc618
SM
6830create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6831 struct dwo_file *dwo_file,
78d4d2c5
JK
6832 VEC (dwarf2_section_info_def) *types,
6833 htab_t &types_htab)
6834{
6835 int ix;
6836 struct dwarf2_section_info *section;
6837
6838 if (VEC_empty (dwarf2_section_info_def, types))
6839 return;
348e048f 6840
78d4d2c5
JK
6841 for (ix = 0;
6842 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6843 ++ix)
ed2dc618
SM
6844 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6845 types_htab, rcuh_kind::TYPE);
3019eac3
DE
6846}
6847
6848/* Create the hash table of all entries in the .debug_types section,
6849 and initialize all_type_units.
6850 The result is zero if there is an error (e.g. missing .debug_types section),
6851 otherwise non-zero. */
6852
6853static int
ed2dc618 6854create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
3019eac3 6855{
78d4d2c5 6856 htab_t types_htab = NULL;
3019eac3 6857
ed2dc618
SM
6858 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6859 &dwarf2_per_objfile->info, types_htab,
43988095 6860 rcuh_kind::COMPILE);
ed2dc618
SM
6861 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6862 dwarf2_per_objfile->types, types_htab);
3019eac3
DE
6863 if (types_htab == NULL)
6864 {
6865 dwarf2_per_objfile->signatured_types = NULL;
6866 return 0;
6867 }
6868
348e048f
DE
6869 dwarf2_per_objfile->signatured_types = types_htab;
6870
b2bdb8cf
SM
6871 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6872 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6873
6874 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6875 &dwarf2_per_objfile->all_type_units);
1fd400ff 6876
348e048f
DE
6877 return 1;
6878}
6879
6aa5f3a6
DE
6880/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6881 If SLOT is non-NULL, it is the entry to use in the hash table.
6882 Otherwise we find one. */
6883
6884static struct signatured_type *
ed2dc618
SM
6885add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6886 void **slot)
6aa5f3a6
DE
6887{
6888 struct objfile *objfile = dwarf2_per_objfile->objfile;
6aa5f3a6 6889
b2bdb8cf
SM
6890 if (dwarf2_per_objfile->all_type_units.size ()
6891 == dwarf2_per_objfile->all_type_units.capacity ())
6892 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6aa5f3a6 6893
b2bdb8cf
SM
6894 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6895 struct signatured_type);
6896
6897 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6aa5f3a6
DE
6898 sig_type->signature = sig;
6899 sig_type->per_cu.is_debug_types = 1;
6900 if (dwarf2_per_objfile->using_index)
6901 {
6902 sig_type->per_cu.v.quick =
6903 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6904 struct dwarf2_per_cu_quick_data);
6905 }
6906
6907 if (slot == NULL)
6908 {
6909 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6910 sig_type, INSERT);
6911 }
6912 gdb_assert (*slot == NULL);
6913 *slot = sig_type;
6914 /* The rest of sig_type must be filled in by the caller. */
6915 return sig_type;
6916}
6917
a2ce51a0
DE
6918/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6919 Fill in SIG_ENTRY with DWO_ENTRY. */
6920
6921static void
ed2dc618 6922fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
a2ce51a0
DE
6923 struct signatured_type *sig_entry,
6924 struct dwo_unit *dwo_entry)
6925{
7ee85ab1 6926 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
6927 gdb_assert (! sig_entry->per_cu.queued);
6928 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
6929 if (dwarf2_per_objfile->using_index)
6930 {
6931 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 6932 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
6933 }
6934 else
6935 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0 6936 gdb_assert (sig_entry->signature == dwo_entry->signature);
9c541725 6937 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
a2ce51a0 6938 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
6939 gdb_assert (sig_entry->dwo_unit == NULL);
6940
6941 sig_entry->per_cu.section = dwo_entry->section;
9c541725 6942 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7ee85ab1
DE
6943 sig_entry->per_cu.length = dwo_entry->length;
6944 sig_entry->per_cu.reading_dwo_directly = 1;
e3b94546 6945 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
a2ce51a0
DE
6946 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6947 sig_entry->dwo_unit = dwo_entry;
6948}
6949
6950/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
6951 If we haven't read the TU yet, create the signatured_type data structure
6952 for a TU to be read in directly from a DWO file, bypassing the stub.
6953 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6954 using .gdb_index, then when reading a CU we want to stay in the DWO file
6955 containing that CU. Otherwise we could end up reading several other DWO
6956 files (due to comdat folding) to process the transitive closure of all the
6957 mentioned TUs, and that can be slow. The current DWO file will have every
6958 type signature that it needs.
a2ce51a0
DE
6959 We only do this for .gdb_index because in the psymtab case we already have
6960 to read all the DWOs to build the type unit groups. */
6961
6962static struct signatured_type *
6963lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6964{
518817b3
SM
6965 struct dwarf2_per_objfile *dwarf2_per_objfile
6966 = cu->per_cu->dwarf2_per_objfile;
a2ce51a0
DE
6967 struct objfile *objfile = dwarf2_per_objfile->objfile;
6968 struct dwo_file *dwo_file;
6969 struct dwo_unit find_dwo_entry, *dwo_entry;
6970 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 6971 void **slot;
a2ce51a0
DE
6972
6973 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6974
6aa5f3a6
DE
6975 /* If TU skeletons have been removed then we may not have read in any
6976 TUs yet. */
6977 if (dwarf2_per_objfile->signatured_types == NULL)
6978 {
6979 dwarf2_per_objfile->signatured_types
6980 = allocate_signatured_type_table (objfile);
6981 }
a2ce51a0
DE
6982
6983 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
6984 Use the global signatured_types array to do our own comdat-folding
6985 of types. If this is the first time we're reading this TU, and
6986 the TU has an entry in .gdb_index, replace the recorded data from
6987 .gdb_index with this TU. */
a2ce51a0 6988
a2ce51a0 6989 find_sig_entry.signature = sig;
6aa5f3a6
DE
6990 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6991 &find_sig_entry, INSERT);
9a3c8263 6992 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
6993
6994 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
6995 read. Don't reassign the global entry to point to this DWO if that's
6996 the case. Also note that if the TU is already being read, it may not
6997 have come from a DWO, the program may be a mix of Fission-compiled
6998 code and non-Fission-compiled code. */
6999
7000 /* Have we already tried to read this TU?
7001 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7002 needn't exist in the global table yet). */
7003 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
7004 return sig_entry;
7005
6aa5f3a6
DE
7006 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7007 dwo_unit of the TU itself. */
7008 dwo_file = cu->dwo_unit->dwo_file;
7009
a2ce51a0
DE
7010 /* Ok, this is the first time we're reading this TU. */
7011 if (dwo_file->tus == NULL)
7012 return NULL;
7013 find_dwo_entry.signature = sig;
9a3c8263 7014 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
7015 if (dwo_entry == NULL)
7016 return NULL;
7017
6aa5f3a6
DE
7018 /* If the global table doesn't have an entry for this TU, add one. */
7019 if (sig_entry == NULL)
ed2dc618 7020 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6aa5f3a6 7021
ed2dc618 7022 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
89e63ee4 7023 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
7024 return sig_entry;
7025}
7026
a2ce51a0
DE
7027/* Subroutine of lookup_signatured_type.
7028 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
7029 then try the DWP file. If the TU stub (skeleton) has been removed then
7030 it won't be in .gdb_index. */
a2ce51a0
DE
7031
7032static struct signatured_type *
7033lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7034{
518817b3
SM
7035 struct dwarf2_per_objfile *dwarf2_per_objfile
7036 = cu->per_cu->dwarf2_per_objfile;
a2ce51a0 7037 struct objfile *objfile = dwarf2_per_objfile->objfile;
ed2dc618 7038 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
a2ce51a0
DE
7039 struct dwo_unit *dwo_entry;
7040 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 7041 void **slot;
a2ce51a0
DE
7042
7043 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7044 gdb_assert (dwp_file != NULL);
7045
6aa5f3a6
DE
7046 /* If TU skeletons have been removed then we may not have read in any
7047 TUs yet. */
7048 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 7049 {
6aa5f3a6
DE
7050 dwarf2_per_objfile->signatured_types
7051 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
7052 }
7053
6aa5f3a6
DE
7054 find_sig_entry.signature = sig;
7055 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7056 &find_sig_entry, INSERT);
9a3c8263 7057 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
7058
7059 /* Have we already tried to read this TU?
7060 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7061 needn't exist in the global table yet). */
7062 if (sig_entry != NULL)
7063 return sig_entry;
7064
a2ce51a0
DE
7065 if (dwp_file->tus == NULL)
7066 return NULL;
ed2dc618 7067 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
57d63ce2 7068 sig, 1 /* is_debug_types */);
a2ce51a0
DE
7069 if (dwo_entry == NULL)
7070 return NULL;
7071
ed2dc618
SM
7072 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7073 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
a2ce51a0 7074
a2ce51a0
DE
7075 return sig_entry;
7076}
7077
380bca97 7078/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
7079 Returns NULL if signature SIG is not present in the table.
7080 It is up to the caller to complain about this. */
348e048f
DE
7081
7082static struct signatured_type *
a2ce51a0 7083lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 7084{
518817b3
SM
7085 struct dwarf2_per_objfile *dwarf2_per_objfile
7086 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 7087
a2ce51a0
DE
7088 if (cu->dwo_unit
7089 && dwarf2_per_objfile->using_index)
7090 {
7091 /* We're in a DWO/DWP file, and we're using .gdb_index.
7092 These cases require special processing. */
ed2dc618 7093 if (get_dwp_file (dwarf2_per_objfile) == NULL)
a2ce51a0
DE
7094 return lookup_dwo_signatured_type (cu, sig);
7095 else
7096 return lookup_dwp_signatured_type (cu, sig);
7097 }
7098 else
7099 {
7100 struct signatured_type find_entry, *entry;
348e048f 7101
a2ce51a0
DE
7102 if (dwarf2_per_objfile->signatured_types == NULL)
7103 return NULL;
7104 find_entry.signature = sig;
9a3c8263
SM
7105 entry = ((struct signatured_type *)
7106 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
7107 return entry;
7108 }
348e048f 7109}
42e7ad6c
DE
7110\f
7111/* Low level DIE reading support. */
348e048f 7112
d85a05f0
DJ
7113/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7114
7115static void
7116init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 7117 struct dwarf2_cu *cu,
3019eac3 7118 struct dwarf2_section_info *section,
685af9cd
TT
7119 struct dwo_file *dwo_file,
7120 struct abbrev_table *abbrev_table)
d85a05f0 7121{
fceca515 7122 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 7123 reader->abfd = get_section_bfd_owner (section);
d85a05f0 7124 reader->cu = cu;
3019eac3 7125 reader->dwo_file = dwo_file;
dee91e82
DE
7126 reader->die_section = section;
7127 reader->buffer = section->buffer;
f664829e 7128 reader->buffer_end = section->buffer + section->size;
a2ce51a0 7129 reader->comp_dir = NULL;
685af9cd 7130 reader->abbrev_table = abbrev_table;
d85a05f0
DJ
7131}
7132
b0c7bfa9
DE
7133/* Subroutine of init_cutu_and_read_dies to simplify it.
7134 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7135 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7136 already.
7137
7138 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7139 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
7140 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7141 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
7142 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7143 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
7144 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7145 are filled in with the info of the DIE from the DWO file.
685af9cd
TT
7146 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7147 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7148 kept around for at least as long as *RESULT_READER.
7149
b0c7bfa9
DE
7150 The result is non-zero if a valid (non-dummy) DIE was found. */
7151
7152static int
7153read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7154 struct dwo_unit *dwo_unit,
b0c7bfa9 7155 struct die_info *stub_comp_unit_die,
a2ce51a0 7156 const char *stub_comp_dir,
b0c7bfa9 7157 struct die_reader_specs *result_reader,
d521ce57 7158 const gdb_byte **result_info_ptr,
b0c7bfa9 7159 struct die_info **result_comp_unit_die,
685af9cd
TT
7160 int *result_has_children,
7161 abbrev_table_up *result_dwo_abbrev_table)
b0c7bfa9 7162{
ed2dc618 7163 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
b0c7bfa9
DE
7164 struct objfile *objfile = dwarf2_per_objfile->objfile;
7165 struct dwarf2_cu *cu = this_cu->cu;
b0c7bfa9 7166 bfd *abfd;
d521ce57 7167 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
7168 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7169 int i,num_extra_attrs;
7170 struct dwarf2_section_info *dwo_abbrev_section;
7171 struct attribute *attr;
7172 struct die_info *comp_unit_die;
7173
b0aeadb3
DE
7174 /* At most one of these may be provided. */
7175 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 7176
b0c7bfa9
DE
7177 /* These attributes aren't processed until later:
7178 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
7179 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7180 referenced later. However, these attributes are found in the stub
7181 which we won't have later. In order to not impose this complication
7182 on the rest of the code, we read them here and copy them to the
7183 DWO CU/TU die. */
b0c7bfa9
DE
7184
7185 stmt_list = NULL;
7186 low_pc = NULL;
7187 high_pc = NULL;
7188 ranges = NULL;
7189 comp_dir = NULL;
7190
7191 if (stub_comp_unit_die != NULL)
7192 {
7193 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7194 DWO file. */
7195 if (! this_cu->is_debug_types)
7196 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7197 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7198 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7199 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7200 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7201
7202 /* There should be a DW_AT_addr_base attribute here (if needed).
7203 We need the value before we can process DW_FORM_GNU_addr_index. */
7204 cu->addr_base = 0;
7205 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7206 if (attr)
7207 cu->addr_base = DW_UNSND (attr);
7208
7209 /* There should be a DW_AT_ranges_base attribute here (if needed).
7210 We need the value before we can process DW_AT_ranges. */
7211 cu->ranges_base = 0;
7212 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7213 if (attr)
7214 cu->ranges_base = DW_UNSND (attr);
7215 }
a2ce51a0
DE
7216 else if (stub_comp_dir != NULL)
7217 {
7218 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 7219 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
7220 comp_dir->name = DW_AT_comp_dir;
7221 comp_dir->form = DW_FORM_string;
7222 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7223 DW_STRING (comp_dir) = stub_comp_dir;
7224 }
b0c7bfa9
DE
7225
7226 /* Set up for reading the DWO CU/TU. */
7227 cu->dwo_unit = dwo_unit;
685af9cd 7228 dwarf2_section_info *section = dwo_unit->section;
b0c7bfa9 7229 dwarf2_read_section (objfile, section);
a32a8923 7230 abfd = get_section_bfd_owner (section);
9c541725
PA
7231 begin_info_ptr = info_ptr = (section->buffer
7232 + to_underlying (dwo_unit->sect_off));
b0c7bfa9 7233 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
b0c7bfa9
DE
7234
7235 if (this_cu->is_debug_types)
7236 {
b0c7bfa9
DE
7237 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7238
ed2dc618
SM
7239 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7240 &cu->header, section,
b0c7bfa9 7241 dwo_abbrev_section,
43988095 7242 info_ptr, rcuh_kind::TYPE);
a2ce51a0 7243 /* This is not an assert because it can be caused by bad debug info. */
43988095 7244 if (sig_type->signature != cu->header.signature)
a2ce51a0
DE
7245 {
7246 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
9d8780f0 7247 " TU at offset %s [in module %s]"),
a2ce51a0 7248 hex_string (sig_type->signature),
43988095 7249 hex_string (cu->header.signature),
9d8780f0 7250 sect_offset_str (dwo_unit->sect_off),
a2ce51a0
DE
7251 bfd_get_filename (abfd));
7252 }
9c541725 7253 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
7254 /* For DWOs coming from DWP files, we don't know the CU length
7255 nor the type's offset in the TU until now. */
7256 dwo_unit->length = get_cu_length (&cu->header);
9c541725 7257 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
b0c7bfa9
DE
7258
7259 /* Establish the type offset that can be used to lookup the type.
7260 For DWO files, we don't know it until now. */
9c541725
PA
7261 sig_type->type_offset_in_section
7262 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
b0c7bfa9
DE
7263 }
7264 else
7265 {
ed2dc618
SM
7266 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7267 &cu->header, section,
b0c7bfa9 7268 dwo_abbrev_section,
43988095 7269 info_ptr, rcuh_kind::COMPILE);
9c541725 7270 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
7271 /* For DWOs coming from DWP files, we don't know the CU length
7272 until now. */
7273 dwo_unit->length = get_cu_length (&cu->header);
7274 }
7275
685af9cd
TT
7276 *result_dwo_abbrev_table
7277 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7278 cu->header.abbrev_sect_off);
7279 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7280 result_dwo_abbrev_table->get ());
b0c7bfa9
DE
7281
7282 /* Read in the die, but leave space to copy over the attributes
7283 from the stub. This has the benefit of simplifying the rest of
7284 the code - all the work to maintain the illusion of a single
7285 DW_TAG_{compile,type}_unit DIE is done here. */
7286 num_extra_attrs = ((stmt_list != NULL)
7287 + (low_pc != NULL)
7288 + (high_pc != NULL)
7289 + (ranges != NULL)
7290 + (comp_dir != NULL));
7291 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7292 result_has_children, num_extra_attrs);
7293
7294 /* Copy over the attributes from the stub to the DIE we just read in. */
7295 comp_unit_die = *result_comp_unit_die;
7296 i = comp_unit_die->num_attrs;
7297 if (stmt_list != NULL)
7298 comp_unit_die->attrs[i++] = *stmt_list;
7299 if (low_pc != NULL)
7300 comp_unit_die->attrs[i++] = *low_pc;
7301 if (high_pc != NULL)
7302 comp_unit_die->attrs[i++] = *high_pc;
7303 if (ranges != NULL)
7304 comp_unit_die->attrs[i++] = *ranges;
7305 if (comp_dir != NULL)
7306 comp_unit_die->attrs[i++] = *comp_dir;
7307 comp_unit_die->num_attrs += num_extra_attrs;
7308
b4f54984 7309 if (dwarf_die_debug)
bf6af496
DE
7310 {
7311 fprintf_unfiltered (gdb_stdlog,
7312 "Read die from %s@0x%x of %s:\n",
a32a8923 7313 get_section_name (section),
bf6af496
DE
7314 (unsigned) (begin_info_ptr - section->buffer),
7315 bfd_get_filename (abfd));
b4f54984 7316 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
7317 }
7318
a2ce51a0
DE
7319 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7320 TUs by skipping the stub and going directly to the entry in the DWO file.
7321 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7322 to get it via circuitous means. Blech. */
7323 if (comp_dir != NULL)
7324 result_reader->comp_dir = DW_STRING (comp_dir);
7325
b0c7bfa9
DE
7326 /* Skip dummy compilation units. */
7327 if (info_ptr >= begin_info_ptr + dwo_unit->length
7328 || peek_abbrev_code (abfd, info_ptr) == 0)
7329 return 0;
7330
7331 *result_info_ptr = info_ptr;
7332 return 1;
7333}
7334
7335/* Subroutine of init_cutu_and_read_dies to simplify it.
7336 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 7337 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
7338
7339static struct dwo_unit *
7340lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7341 struct die_info *comp_unit_die)
7342{
7343 struct dwarf2_cu *cu = this_cu->cu;
b0c7bfa9
DE
7344 ULONGEST signature;
7345 struct dwo_unit *dwo_unit;
7346 const char *comp_dir, *dwo_name;
7347
a2ce51a0
DE
7348 gdb_assert (cu != NULL);
7349
b0c7bfa9 7350 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
7351 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7352 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
7353
7354 if (this_cu->is_debug_types)
7355 {
7356 struct signatured_type *sig_type;
7357
7358 /* Since this_cu is the first member of struct signatured_type,
7359 we can go from a pointer to one to a pointer to the other. */
7360 sig_type = (struct signatured_type *) this_cu;
7361 signature = sig_type->signature;
7362 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7363 }
7364 else
7365 {
7366 struct attribute *attr;
7367
7368 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7369 if (! attr)
7370 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7371 " [in module %s]"),
e3b94546 7372 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
b0c7bfa9
DE
7373 signature = DW_UNSND (attr);
7374 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7375 signature);
7376 }
7377
b0c7bfa9
DE
7378 return dwo_unit;
7379}
7380
a2ce51a0 7381/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6 7382 See it for a description of the parameters.
fcd3b13d 7383 Read a TU directly from a DWO file, bypassing the stub. */
a2ce51a0
DE
7384
7385static void
6aa5f3a6
DE
7386init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7387 int use_existing_cu, int keep,
a2ce51a0
DE
7388 die_reader_func_ftype *die_reader_func,
7389 void *data)
7390{
fcd3b13d 7391 std::unique_ptr<dwarf2_cu> new_cu;
a2ce51a0 7392 struct signatured_type *sig_type;
a2ce51a0
DE
7393 struct die_reader_specs reader;
7394 const gdb_byte *info_ptr;
7395 struct die_info *comp_unit_die;
7396 int has_children;
ed2dc618 7397 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
a2ce51a0
DE
7398
7399 /* Verify we can do the following downcast, and that we have the
7400 data we need. */
7401 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7402 sig_type = (struct signatured_type *) this_cu;
7403 gdb_assert (sig_type->dwo_unit != NULL);
7404
6aa5f3a6
DE
7405 if (use_existing_cu && this_cu->cu != NULL)
7406 {
7407 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6aa5f3a6
DE
7408 /* There's no need to do the rereading_dwo_cu handling that
7409 init_cutu_and_read_dies does since we don't read the stub. */
7410 }
7411 else
7412 {
7413 /* If !use_existing_cu, this_cu->cu must be NULL. */
7414 gdb_assert (this_cu->cu == NULL);
fcd3b13d 7415 new_cu.reset (new dwarf2_cu (this_cu));
6aa5f3a6
DE
7416 }
7417
7418 /* A future optimization, if needed, would be to use an existing
7419 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7420 could share abbrev tables. */
a2ce51a0 7421
685af9cd
TT
7422 /* The abbreviation table used by READER, this must live at least as long as
7423 READER. */
7424 abbrev_table_up dwo_abbrev_table;
7425
a2ce51a0 7426 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
a2ce51a0
DE
7427 NULL /* stub_comp_unit_die */,
7428 sig_type->dwo_unit->dwo_file->comp_dir,
7429 &reader, &info_ptr,
685af9cd
TT
7430 &comp_unit_die, &has_children,
7431 &dwo_abbrev_table) == 0)
a2ce51a0
DE
7432 {
7433 /* Dummy die. */
a2ce51a0
DE
7434 return;
7435 }
7436
7437 /* All the "real" work is done here. */
7438 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7439
6aa5f3a6 7440 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
7441 but the alternative is making the latter more complex.
7442 This function is only for the special case of using DWO files directly:
7443 no point in overly complicating the general case just to handle this. */
fcd3b13d 7444 if (new_cu != NULL && keep)
a2ce51a0 7445 {
fcd3b13d
SM
7446 /* Link this CU into read_in_chain. */
7447 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7448 dwarf2_per_objfile->read_in_chain = this_cu;
7449 /* The chain owns it now. */
7450 new_cu.release ();
a2ce51a0 7451 }
a2ce51a0
DE
7452}
7453
fd820528 7454/* Initialize a CU (or TU) and read its DIEs.
3019eac3 7455 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 7456
f4dc4d17
DE
7457 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7458 Otherwise the table specified in the comp unit header is read in and used.
7459 This is an optimization for when we already have the abbrev table.
7460
dee91e82
DE
7461 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7462 Otherwise, a new CU is allocated with xmalloc.
7463
7464 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7465 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7466
7467 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 7468 linker) then DIE_READER_FUNC will not get called. */
aaa75496 7469
70221824 7470static void
fd820528 7471init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 7472 struct abbrev_table *abbrev_table,
fd820528 7473 int use_existing_cu, int keep,
58f0c718 7474 bool skip_partial,
fd820528
DE
7475 die_reader_func_ftype *die_reader_func,
7476 void *data)
c906108c 7477{
ed2dc618 7478 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
dee91e82 7479 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 7480 struct dwarf2_section_info *section = this_cu->section;
a32a8923 7481 bfd *abfd = get_section_bfd_owner (section);
dee91e82 7482 struct dwarf2_cu *cu;
d521ce57 7483 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 7484 struct die_reader_specs reader;
d85a05f0 7485 struct die_info *comp_unit_die;
dee91e82 7486 int has_children;
d85a05f0 7487 struct attribute *attr;
dee91e82 7488 struct signatured_type *sig_type = NULL;
4bdcc0c1 7489 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
7490 /* Non-zero if CU currently points to a DWO file and we need to
7491 reread it. When this happens we need to reread the skeleton die
a2ce51a0 7492 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 7493 int rereading_dwo_cu = 0;
c906108c 7494
b4f54984 7495 if (dwarf_die_debug)
9d8780f0 7496 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
09406207 7497 this_cu->is_debug_types ? "type" : "comp",
9d8780f0 7498 sect_offset_str (this_cu->sect_off));
09406207 7499
dee91e82
DE
7500 if (use_existing_cu)
7501 gdb_assert (keep);
23745b47 7502
a2ce51a0
DE
7503 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7504 file (instead of going through the stub), short-circuit all of this. */
7505 if (this_cu->reading_dwo_directly)
7506 {
7507 /* Narrow down the scope of possibilities to have to understand. */
7508 gdb_assert (this_cu->is_debug_types);
7509 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
7510 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7511 die_reader_func, data);
a2ce51a0
DE
7512 return;
7513 }
7514
dee91e82
DE
7515 /* This is cheap if the section is already read in. */
7516 dwarf2_read_section (objfile, section);
7517
9c541725 7518 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
36586728
TT
7519
7520 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82 7521
fcd3b13d 7522 std::unique_ptr<dwarf2_cu> new_cu;
dee91e82
DE
7523 if (use_existing_cu && this_cu->cu != NULL)
7524 {
7525 cu = this_cu->cu;
42e7ad6c
DE
7526 /* If this CU is from a DWO file we need to start over, we need to
7527 refetch the attributes from the skeleton CU.
7528 This could be optimized by retrieving those attributes from when we
7529 were here the first time: the previous comp_unit_die was stored in
7530 comp_unit_obstack. But there's no data yet that we need this
7531 optimization. */
7532 if (cu->dwo_unit != NULL)
7533 rereading_dwo_cu = 1;
dee91e82
DE
7534 }
7535 else
7536 {
7537 /* If !use_existing_cu, this_cu->cu must be NULL. */
7538 gdb_assert (this_cu->cu == NULL);
fcd3b13d
SM
7539 new_cu.reset (new dwarf2_cu (this_cu));
7540 cu = new_cu.get ();
42e7ad6c 7541 }
dee91e82 7542
b0c7bfa9 7543 /* Get the header. */
9c541725 7544 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
42e7ad6c
DE
7545 {
7546 /* We already have the header, there's no need to read it in again. */
9c541725 7547 info_ptr += to_underlying (cu->header.first_die_cu_offset);
42e7ad6c
DE
7548 }
7549 else
7550 {
3019eac3 7551 if (this_cu->is_debug_types)
dee91e82 7552 {
ed2dc618
SM
7553 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7554 &cu->header, section,
4bdcc0c1 7555 abbrev_section, info_ptr,
43988095 7556 rcuh_kind::TYPE);
dee91e82 7557
42e7ad6c
DE
7558 /* Since per_cu is the first member of struct signatured_type,
7559 we can go from a pointer to one to a pointer to the other. */
7560 sig_type = (struct signatured_type *) this_cu;
43988095 7561 gdb_assert (sig_type->signature == cu->header.signature);
9c541725
PA
7562 gdb_assert (sig_type->type_offset_in_tu
7563 == cu->header.type_cu_offset_in_tu);
7564 gdb_assert (this_cu->sect_off == cu->header.sect_off);
dee91e82 7565
42e7ad6c
DE
7566 /* LENGTH has not been set yet for type units if we're
7567 using .gdb_index. */
1ce1cefd 7568 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
7569
7570 /* Establish the type offset that can be used to lookup the type. */
9c541725
PA
7571 sig_type->type_offset_in_section =
7572 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
43988095
JK
7573
7574 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
7575 }
7576 else
7577 {
ed2dc618
SM
7578 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7579 &cu->header, section,
4bdcc0c1 7580 abbrev_section,
43988095
JK
7581 info_ptr,
7582 rcuh_kind::COMPILE);
dee91e82 7583
9c541725 7584 gdb_assert (this_cu->sect_off == cu->header.sect_off);
1ce1cefd 7585 gdb_assert (this_cu->length == get_cu_length (&cu->header));
43988095 7586 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
7587 }
7588 }
10b3939b 7589
6caca83c 7590 /* Skip dummy compilation units. */
dee91e82 7591 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c 7592 || peek_abbrev_code (abfd, info_ptr) == 0)
fcd3b13d 7593 return;
6caca83c 7594
433df2d4
DE
7595 /* If we don't have them yet, read the abbrevs for this compilation unit.
7596 And if we need to read them now, make sure they're freed when we're
685af9cd
TT
7597 done (own the table through ABBREV_TABLE_HOLDER). */
7598 abbrev_table_up abbrev_table_holder;
f4dc4d17 7599 if (abbrev_table != NULL)
685af9cd
TT
7600 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7601 else
f4dc4d17 7602 {
685af9cd
TT
7603 abbrev_table_holder
7604 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7605 cu->header.abbrev_sect_off);
7606 abbrev_table = abbrev_table_holder.get ();
42e7ad6c 7607 }
af703f96 7608
dee91e82 7609 /* Read the top level CU/TU die. */
685af9cd 7610 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
dee91e82 7611 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 7612
58f0c718
TT
7613 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7614 return;
7615
b0c7bfa9 7616 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
685af9cd
TT
7617 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7618 table from the DWO file and pass the ownership over to us. It will be
7619 referenced from READER, so we must make sure to free it after we're done
7620 with READER.
7621
b0c7bfa9
DE
7622 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7623 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3 7624 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
685af9cd 7625 abbrev_table_up dwo_abbrev_table;
3019eac3
DE
7626 if (attr)
7627 {
3019eac3 7628 struct dwo_unit *dwo_unit;
b0c7bfa9 7629 struct die_info *dwo_comp_unit_die;
3019eac3
DE
7630
7631 if (has_children)
6a506a2d 7632 {
b98664d3 7633 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
9d8780f0
SM
7634 " has children (offset %s) [in module %s]"),
7635 sect_offset_str (this_cu->sect_off),
7636 bfd_get_filename (abfd));
6a506a2d 7637 }
b0c7bfa9 7638 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 7639 if (dwo_unit != NULL)
3019eac3 7640 {
6a506a2d 7641 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
a2ce51a0 7642 comp_unit_die, NULL,
6a506a2d 7643 &reader, &info_ptr,
685af9cd
TT
7644 &dwo_comp_unit_die, &has_children,
7645 &dwo_abbrev_table) == 0)
6a506a2d
DE
7646 {
7647 /* Dummy die. */
6a506a2d
DE
7648 return;
7649 }
7650 comp_unit_die = dwo_comp_unit_die;
7651 }
7652 else
7653 {
7654 /* Yikes, we couldn't find the rest of the DIE, we only have
7655 the stub. A complaint has already been logged. There's
7656 not much more we can do except pass on the stub DIE to
7657 die_reader_func. We don't want to throw an error on bad
7658 debug info. */
3019eac3
DE
7659 }
7660 }
7661
b0c7bfa9 7662 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
7663 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7664
b0c7bfa9 7665 /* Done, clean up. */
fcd3b13d 7666 if (new_cu != NULL && keep)
348e048f 7667 {
fcd3b13d
SM
7668 /* Link this CU into read_in_chain. */
7669 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7670 dwarf2_per_objfile->read_in_chain = this_cu;
7671 /* The chain owns it now. */
7672 new_cu.release ();
348e048f 7673 }
dee91e82
DE
7674}
7675
33e80786
DE
7676/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7677 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7678 to have already done the lookup to find the DWO file).
dee91e82
DE
7679
7680 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 7681 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
7682
7683 We fill in THIS_CU->length.
7684
7685 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7686 linker) then DIE_READER_FUNC will not get called.
7687
7688 THIS_CU->cu is always freed when done.
3019eac3
DE
7689 This is done in order to not leave THIS_CU->cu in a state where we have
7690 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
7691
7692static void
7693init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 7694 struct dwo_file *dwo_file,
dee91e82
DE
7695 die_reader_func_ftype *die_reader_func,
7696 void *data)
7697{
ed2dc618 7698 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
dee91e82 7699 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 7700 struct dwarf2_section_info *section = this_cu->section;
a32a8923 7701 bfd *abfd = get_section_bfd_owner (section);
33e80786 7702 struct dwarf2_section_info *abbrev_section;
d521ce57 7703 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 7704 struct die_reader_specs reader;
dee91e82
DE
7705 struct die_info *comp_unit_die;
7706 int has_children;
7707
b4f54984 7708 if (dwarf_die_debug)
9d8780f0 7709 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
09406207 7710 this_cu->is_debug_types ? "type" : "comp",
9d8780f0 7711 sect_offset_str (this_cu->sect_off));
09406207 7712
dee91e82
DE
7713 gdb_assert (this_cu->cu == NULL);
7714
33e80786
DE
7715 abbrev_section = (dwo_file != NULL
7716 ? &dwo_file->sections.abbrev
7717 : get_abbrev_section_for_cu (this_cu));
7718
dee91e82
DE
7719 /* This is cheap if the section is already read in. */
7720 dwarf2_read_section (objfile, section);
7721
fcd3b13d 7722 struct dwarf2_cu cu (this_cu);
dee91e82 7723
9c541725 7724 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
ed2dc618
SM
7725 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7726 &cu.header, section,
4bdcc0c1 7727 abbrev_section, info_ptr,
43988095
JK
7728 (this_cu->is_debug_types
7729 ? rcuh_kind::TYPE
7730 : rcuh_kind::COMPILE));
dee91e82 7731
1ce1cefd 7732 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
7733
7734 /* Skip dummy compilation units. */
7735 if (info_ptr >= begin_info_ptr + this_cu->length
7736 || peek_abbrev_code (abfd, info_ptr) == 0)
fcd3b13d 7737 return;
72bf9492 7738
685af9cd
TT
7739 abbrev_table_up abbrev_table
7740 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7741 cu.header.abbrev_sect_off);
dee91e82 7742
685af9cd 7743 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
dee91e82
DE
7744 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7745
7746 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
dee91e82
DE
7747}
7748
3019eac3
DE
7749/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7750 does not lookup the specified DWO file.
7751 This cannot be used to read DWO files.
dee91e82
DE
7752
7753 THIS_CU->cu is always freed when done.
3019eac3
DE
7754 This is done in order to not leave THIS_CU->cu in a state where we have
7755 to care whether it refers to the "main" CU or the DWO CU.
7756 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
7757
7758static void
7759init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7760 die_reader_func_ftype *die_reader_func,
7761 void *data)
7762{
33e80786 7763 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 7764}
0018ea6f
DE
7765\f
7766/* Type Unit Groups.
dee91e82 7767
0018ea6f
DE
7768 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7769 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7770 so that all types coming from the same compilation (.o file) are grouped
7771 together. A future step could be to put the types in the same symtab as
7772 the CU the types ultimately came from. */
ff013f42 7773
f4dc4d17
DE
7774static hashval_t
7775hash_type_unit_group (const void *item)
7776{
9a3c8263
SM
7777 const struct type_unit_group *tu_group
7778 = (const struct type_unit_group *) item;
f4dc4d17 7779
094b34ac 7780 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 7781}
348e048f
DE
7782
7783static int
f4dc4d17 7784eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 7785{
9a3c8263
SM
7786 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7787 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 7788
094b34ac 7789 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 7790}
348e048f 7791
f4dc4d17
DE
7792/* Allocate a hash table for type unit groups. */
7793
7794static htab_t
ed2dc618 7795allocate_type_unit_groups_table (struct objfile *objfile)
f4dc4d17
DE
7796{
7797 return htab_create_alloc_ex (3,
7798 hash_type_unit_group,
7799 eq_type_unit_group,
7800 NULL,
ed2dc618 7801 &objfile->objfile_obstack,
f4dc4d17
DE
7802 hashtab_obstack_allocate,
7803 dummy_obstack_deallocate);
7804}
dee91e82 7805
f4dc4d17
DE
7806/* Type units that don't have DW_AT_stmt_list are grouped into their own
7807 partial symtabs. We combine several TUs per psymtab to not let the size
7808 of any one psymtab grow too big. */
7809#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7810#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 7811
094b34ac 7812/* Helper routine for get_type_unit_group.
f4dc4d17
DE
7813 Create the type_unit_group object used to hold one or more TUs. */
7814
7815static struct type_unit_group *
094b34ac 7816create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17 7817{
518817b3
SM
7818 struct dwarf2_per_objfile *dwarf2_per_objfile
7819 = cu->per_cu->dwarf2_per_objfile;
f4dc4d17 7820 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 7821 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 7822 struct type_unit_group *tu_group;
f4dc4d17
DE
7823
7824 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7825 struct type_unit_group);
094b34ac 7826 per_cu = &tu_group->per_cu;
518817b3 7827 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
f4dc4d17 7828
094b34ac
DE
7829 if (dwarf2_per_objfile->using_index)
7830 {
7831 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7832 struct dwarf2_per_cu_quick_data);
094b34ac
DE
7833 }
7834 else
7835 {
9c541725 7836 unsigned int line_offset = to_underlying (line_offset_struct);
094b34ac 7837 struct partial_symtab *pst;
528e1572 7838 std::string name;
094b34ac
DE
7839
7840 /* Give the symtab a useful name for debug purposes. */
7841 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
528e1572
SM
7842 name = string_printf ("<type_units_%d>",
7843 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
094b34ac 7844 else
528e1572 7845 name = string_printf ("<type_units_at_0x%x>", line_offset);
094b34ac 7846
528e1572 7847 pst = create_partial_symtab (per_cu, name.c_str ());
094b34ac 7848 pst->anonymous = 1;
094b34ac 7849 }
f4dc4d17 7850
094b34ac 7851 tu_group->hash.dwo_unit = cu->dwo_unit;
9c541725 7852 tu_group->hash.line_sect_off = line_offset_struct;
f4dc4d17
DE
7853
7854 return tu_group;
7855}
7856
094b34ac
DE
7857/* Look up the type_unit_group for type unit CU, and create it if necessary.
7858 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
7859
7860static struct type_unit_group *
ff39bb5e 7861get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17 7862{
518817b3
SM
7863 struct dwarf2_per_objfile *dwarf2_per_objfile
7864 = cu->per_cu->dwarf2_per_objfile;
f4dc4d17
DE
7865 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7866 struct type_unit_group *tu_group;
7867 void **slot;
7868 unsigned int line_offset;
7869 struct type_unit_group type_unit_group_for_lookup;
7870
7871 if (dwarf2_per_objfile->type_unit_groups == NULL)
7872 {
7873 dwarf2_per_objfile->type_unit_groups =
ed2dc618 7874 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
f4dc4d17
DE
7875 }
7876
7877 /* Do we need to create a new group, or can we use an existing one? */
7878
7879 if (stmt_list)
7880 {
7881 line_offset = DW_UNSND (stmt_list);
7882 ++tu_stats->nr_symtab_sharers;
7883 }
7884 else
7885 {
7886 /* Ugh, no stmt_list. Rare, but we have to handle it.
7887 We can do various things here like create one group per TU or
7888 spread them over multiple groups to split up the expansion work.
7889 To avoid worst case scenarios (too many groups or too large groups)
7890 we, umm, group them in bunches. */
7891 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7892 | (tu_stats->nr_stmt_less_type_units
7893 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7894 ++tu_stats->nr_stmt_less_type_units;
7895 }
7896
094b34ac 7897 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
9c541725 7898 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
f4dc4d17
DE
7899 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7900 &type_unit_group_for_lookup, INSERT);
7901 if (*slot != NULL)
7902 {
9a3c8263 7903 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
7904 gdb_assert (tu_group != NULL);
7905 }
7906 else
7907 {
9c541725 7908 sect_offset line_offset_struct = (sect_offset) line_offset;
094b34ac 7909 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
7910 *slot = tu_group;
7911 ++tu_stats->nr_symtabs;
7912 }
7913
7914 return tu_group;
7915}
0018ea6f
DE
7916\f
7917/* Partial symbol tables. */
7918
7919/* Create a psymtab named NAME and assign it to PER_CU.
7920
7921 The caller must fill in the following details:
7922 dirname, textlow, texthigh. */
7923
7924static struct partial_symtab *
7925create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7926{
e3b94546 7927 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
0018ea6f
DE
7928 struct partial_symtab *pst;
7929
939652a5 7930 pst = start_psymtab_common (objfile, name, 0);
0018ea6f
DE
7931
7932 pst->psymtabs_addrmap_supported = 1;
7933
7934 /* This is the glue that links PST into GDB's symbol API. */
7935 pst->read_symtab_private = per_cu;
7936 pst->read_symtab = dwarf2_read_symtab;
7937 per_cu->v.psymtab = pst;
7938
7939 return pst;
7940}
7941
b93601f3
TT
7942/* The DATA object passed to process_psymtab_comp_unit_reader has this
7943 type. */
7944
7945struct process_psymtab_comp_unit_data
7946{
7947 /* True if we are reading a DW_TAG_partial_unit. */
7948
7949 int want_partial_unit;
7950
7951 /* The "pretend" language that is used if the CU doesn't declare a
7952 language. */
7953
7954 enum language pretend_language;
7955};
7956
0018ea6f
DE
7957/* die_reader_func for process_psymtab_comp_unit. */
7958
7959static void
7960process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7961 const gdb_byte *info_ptr,
0018ea6f
DE
7962 struct die_info *comp_unit_die,
7963 int has_children,
7964 void *data)
7965{
7966 struct dwarf2_cu *cu = reader->cu;
518817b3 7967 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 7968 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 7969 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
7970 CORE_ADDR baseaddr;
7971 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7972 struct partial_symtab *pst;
3a2b436a 7973 enum pc_bounds_kind cu_bounds_kind;
0018ea6f 7974 const char *filename;
9a3c8263
SM
7975 struct process_psymtab_comp_unit_data *info
7976 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 7977
b93601f3 7978 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
7979 return;
7980
7981 gdb_assert (! per_cu->is_debug_types);
7982
b93601f3 7983 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f 7984
0018ea6f 7985 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
7986 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7987 if (filename == NULL)
0018ea6f 7988 filename = "";
0018ea6f
DE
7989
7990 pst = create_partial_symtab (per_cu, filename);
7991
7992 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 7993 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
7994
7995 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7996
7997 dwarf2_find_base_address (comp_unit_die, cu);
7998
7999 /* Possibly set the default values of LOWPC and HIGHPC from
8000 `DW_AT_ranges'. */
3a2b436a
JK
8001 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8002 &best_highpc, cu, pst);
8003 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
79748972
TT
8004 {
8005 CORE_ADDR low
8006 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8007 - baseaddr);
8008 CORE_ADDR high
8009 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8010 - baseaddr - 1);
8011 /* Store the contiguous range if it is not empty; it can be
8012 empty for CUs with no code. */
8013 addrmap_set_empty (objfile->psymtabs_addrmap, low, high, pst);
8014 }
0018ea6f
DE
8015
8016 /* Check if comp unit has_children.
8017 If so, read the rest of the partial symbols from this comp unit.
8018 If not, there's no more debug_info for this comp unit. */
8019 if (has_children)
8020 {
8021 struct partial_die_info *first_die;
8022 CORE_ADDR lowpc, highpc;
8023
8024 lowpc = ((CORE_ADDR) -1);
8025 highpc = ((CORE_ADDR) 0);
8026
8027 first_die = load_partial_dies (reader, info_ptr, 1);
8028
8029 scan_partial_symbols (first_die, &lowpc, &highpc,
e385593e 8030 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
0018ea6f
DE
8031
8032 /* If we didn't find a lowpc, set it to highpc to avoid
8033 complaints from `maint check'. */
8034 if (lowpc == ((CORE_ADDR) -1))
8035 lowpc = highpc;
8036
8037 /* If the compilation unit didn't have an explicit address range,
8038 then use the information extracted from its child dies. */
e385593e 8039 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
0018ea6f
DE
8040 {
8041 best_lowpc = lowpc;
8042 best_highpc = highpc;
8043 }
8044 }
4ae976d1 8045 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
79748972
TT
8046 best_lowpc + baseaddr)
8047 - baseaddr);
4ae976d1 8048 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
79748972
TT
8049 best_highpc + baseaddr)
8050 - baseaddr);
0018ea6f 8051
8763cede 8052 end_psymtab_common (objfile, pst);
0018ea6f
DE
8053
8054 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8055 {
8056 int i;
8057 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8058 struct dwarf2_per_cu_data *iter;
8059
8060 /* Fill in 'dependencies' here; we fill in 'users' in a
8061 post-pass. */
8062 pst->number_of_dependencies = len;
8d749320
SM
8063 pst->dependencies =
8064 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
8065 for (i = 0;
8066 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8067 i, iter);
8068 ++i)
8069 pst->dependencies[i] = iter->v.psymtab;
8070
8071 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8072 }
8073
8074 /* Get the list of files included in the current compilation unit,
8075 and build a psymtab for each of them. */
8076 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8077
b4f54984 8078 if (dwarf_read_debug)
b926417a
TT
8079 fprintf_unfiltered (gdb_stdlog,
8080 "Psymtab for %s unit @%s: %s - %s"
8081 ", %d global, %d static syms\n",
8082 per_cu->is_debug_types ? "type" : "comp",
8083 sect_offset_str (per_cu->sect_off),
8084 paddress (gdbarch, pst->text_low (objfile)),
8085 paddress (gdbarch, pst->text_high (objfile)),
8086 pst->n_global_syms, pst->n_static_syms);
0018ea6f
DE
8087}
8088
8089/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8090 Process compilation unit THIS_CU for a psymtab. */
8091
8092static void
8093process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
8094 int want_partial_unit,
8095 enum language pretend_language)
0018ea6f
DE
8096{
8097 /* If this compilation unit was already read in, free the
8098 cached copy in order to read it in again. This is
8099 necessary because we skipped some symbols when we first
8100 read in the compilation unit (see load_partial_dies).
8101 This problem could be avoided, but the benefit is unclear. */
8102 if (this_cu->cu != NULL)
8103 free_one_cached_comp_unit (this_cu);
8104
f1902523 8105 if (this_cu->is_debug_types)
58f0c718
TT
8106 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8107 build_type_psymtabs_reader, NULL);
f1902523
JK
8108 else
8109 {
8110 process_psymtab_comp_unit_data info;
8111 info.want_partial_unit = want_partial_unit;
8112 info.pretend_language = pretend_language;
58f0c718 8113 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
f1902523
JK
8114 process_psymtab_comp_unit_reader, &info);
8115 }
0018ea6f
DE
8116
8117 /* Age out any secondary CUs. */
ed2dc618 8118 age_cached_comp_units (this_cu->dwarf2_per_objfile);
0018ea6f 8119}
f4dc4d17
DE
8120
8121/* Reader function for build_type_psymtabs. */
8122
8123static void
8124build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 8125 const gdb_byte *info_ptr,
f4dc4d17
DE
8126 struct die_info *type_unit_die,
8127 int has_children,
8128 void *data)
8129{
ed2dc618 8130 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 8131 = reader->cu->per_cu->dwarf2_per_objfile;
f4dc4d17
DE
8132 struct objfile *objfile = dwarf2_per_objfile->objfile;
8133 struct dwarf2_cu *cu = reader->cu;
8134 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 8135 struct signatured_type *sig_type;
f4dc4d17
DE
8136 struct type_unit_group *tu_group;
8137 struct attribute *attr;
8138 struct partial_die_info *first_die;
8139 CORE_ADDR lowpc, highpc;
8140 struct partial_symtab *pst;
8141
8142 gdb_assert (data == NULL);
0186c6a7
DE
8143 gdb_assert (per_cu->is_debug_types);
8144 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8145
8146 if (! has_children)
8147 return;
8148
8149 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 8150 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 8151
0186c6a7 8152 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
8153
8154 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
f4dc4d17
DE
8155 pst = create_partial_symtab (per_cu, "");
8156 pst->anonymous = 1;
8157
8158 first_die = load_partial_dies (reader, info_ptr, 1);
8159
8160 lowpc = (CORE_ADDR) -1;
8161 highpc = (CORE_ADDR) 0;
8162 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8163
8763cede 8164 end_psymtab_common (objfile, pst);
f4dc4d17
DE
8165}
8166
73051182
DE
8167/* Struct used to sort TUs by their abbreviation table offset. */
8168
8169struct tu_abbrev_offset
8170{
b2bdb8cf
SM
8171 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8172 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8173 {}
8174
8175 signatured_type *sig_type;
73051182
DE
8176 sect_offset abbrev_offset;
8177};
8178
484cf504 8179/* Helper routine for build_type_psymtabs_1, passed to std::sort. */
73051182 8180
484cf504
TT
8181static bool
8182sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8183 const struct tu_abbrev_offset &b)
73051182 8184{
484cf504 8185 return a.abbrev_offset < b.abbrev_offset;
73051182
DE
8186}
8187
8188/* Efficiently read all the type units.
8189 This does the bulk of the work for build_type_psymtabs.
8190
8191 The efficiency is because we sort TUs by the abbrev table they use and
8192 only read each abbrev table once. In one program there are 200K TUs
8193 sharing 8K abbrev tables.
8194
8195 The main purpose of this function is to support building the
8196 dwarf2_per_objfile->type_unit_groups table.
8197 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8198 can collapse the search space by grouping them by stmt_list.
8199 The savings can be significant, in the same program from above the 200K TUs
8200 share 8K stmt_list tables.
8201
8202 FUNC is expected to call get_type_unit_group, which will create the
8203 struct type_unit_group if necessary and add it to
8204 dwarf2_per_objfile->type_unit_groups. */
8205
8206static void
ed2dc618 8207build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
73051182 8208{
73051182 8209 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
685af9cd 8210 abbrev_table_up abbrev_table;
73051182 8211 sect_offset abbrev_offset;
73051182
DE
8212
8213 /* It's up to the caller to not call us multiple times. */
8214 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8215
b2bdb8cf 8216 if (dwarf2_per_objfile->all_type_units.empty ())
73051182
DE
8217 return;
8218
8219 /* TUs typically share abbrev tables, and there can be way more TUs than
8220 abbrev tables. Sort by abbrev table to reduce the number of times we
8221 read each abbrev table in.
8222 Alternatives are to punt or to maintain a cache of abbrev tables.
8223 This is simpler and efficient enough for now.
8224
8225 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8226 symtab to use). Typically TUs with the same abbrev offset have the same
8227 stmt_list value too so in practice this should work well.
8228
8229 The basic algorithm here is:
8230
8231 sort TUs by abbrev table
8232 for each TU with same abbrev table:
8233 read abbrev table if first user
8234 read TU top level DIE
8235 [IWBN if DWO skeletons had DW_AT_stmt_list]
8236 call FUNC */
8237
b4f54984 8238 if (dwarf_read_debug)
73051182
DE
8239 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8240
8241 /* Sort in a separate table to maintain the order of all_type_units
8242 for .gdb_index: TU indices directly index all_type_units. */
b2bdb8cf
SM
8243 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8244 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8245
8246 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8247 sorted_by_abbrev.emplace_back
8248 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8249 sig_type->per_cu.section,
8250 sig_type->per_cu.sect_off));
73051182 8251
484cf504
TT
8252 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8253 sort_tu_by_abbrev_offset);
73051182 8254
9c541725 8255 abbrev_offset = (sect_offset) ~(unsigned) 0;
73051182 8256
b2bdb8cf 8257 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
73051182 8258 {
73051182
DE
8259 /* Switch to the next abbrev table if necessary. */
8260 if (abbrev_table == NULL
b2bdb8cf 8261 || tu.abbrev_offset != abbrev_offset)
73051182 8262 {
b2bdb8cf 8263 abbrev_offset = tu.abbrev_offset;
73051182 8264 abbrev_table =
ed2dc618
SM
8265 abbrev_table_read_table (dwarf2_per_objfile,
8266 &dwarf2_per_objfile->abbrev,
73051182
DE
8267 abbrev_offset);
8268 ++tu_stats->nr_uniq_abbrev_tables;
8269 }
8270
b2bdb8cf 8271 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
58f0c718 8272 0, 0, false, build_type_psymtabs_reader, NULL);
73051182 8273 }
6aa5f3a6 8274}
73051182 8275
6aa5f3a6
DE
8276/* Print collected type unit statistics. */
8277
8278static void
ed2dc618 8279print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
6aa5f3a6
DE
8280{
8281 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8282
8283 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
b2bdb8cf
SM
8284 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8285 dwarf2_per_objfile->all_type_units.size ());
6aa5f3a6
DE
8286 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8287 tu_stats->nr_uniq_abbrev_tables);
8288 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8289 tu_stats->nr_symtabs);
8290 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8291 tu_stats->nr_symtab_sharers);
8292 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8293 tu_stats->nr_stmt_less_type_units);
8294 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8295 tu_stats->nr_all_type_units_reallocs);
73051182
DE
8296}
8297
f4dc4d17
DE
8298/* Traversal function for build_type_psymtabs. */
8299
8300static int
8301build_type_psymtab_dependencies (void **slot, void *info)
8302{
ed2dc618
SM
8303 struct dwarf2_per_objfile *dwarf2_per_objfile
8304 = (struct dwarf2_per_objfile *) info;
f4dc4d17
DE
8305 struct objfile *objfile = dwarf2_per_objfile->objfile;
8306 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 8307 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 8308 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
8309 int len = VEC_length (sig_type_ptr, tu_group->tus);
8310 struct signatured_type *iter;
f4dc4d17
DE
8311 int i;
8312
8313 gdb_assert (len > 0);
0186c6a7 8314 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
8315
8316 pst->number_of_dependencies = len;
8d749320
SM
8317 pst->dependencies =
8318 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 8319 for (i = 0;
0186c6a7 8320 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
8321 ++i)
8322 {
0186c6a7
DE
8323 gdb_assert (iter->per_cu.is_debug_types);
8324 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 8325 iter->type_unit_group = tu_group;
f4dc4d17
DE
8326 }
8327
0186c6a7 8328 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
8329
8330 return 1;
8331}
8332
8333/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8334 Build partial symbol tables for the .debug_types comp-units. */
8335
8336static void
ed2dc618 8337build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
348e048f 8338{
ed2dc618 8339 if (! create_all_type_units (dwarf2_per_objfile))
348e048f
DE
8340 return;
8341
ed2dc618 8342 build_type_psymtabs_1 (dwarf2_per_objfile);
6aa5f3a6 8343}
f4dc4d17 8344
6aa5f3a6
DE
8345/* Traversal function for process_skeletonless_type_unit.
8346 Read a TU in a DWO file and build partial symbols for it. */
8347
8348static int
8349process_skeletonless_type_unit (void **slot, void *info)
8350{
8351 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
ed2dc618
SM
8352 struct dwarf2_per_objfile *dwarf2_per_objfile
8353 = (struct dwarf2_per_objfile *) info;
6aa5f3a6
DE
8354 struct signatured_type find_entry, *entry;
8355
8356 /* If this TU doesn't exist in the global table, add it and read it in. */
8357
8358 if (dwarf2_per_objfile->signatured_types == NULL)
8359 {
8360 dwarf2_per_objfile->signatured_types
ed2dc618 8361 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
6aa5f3a6
DE
8362 }
8363
8364 find_entry.signature = dwo_unit->signature;
8365 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8366 INSERT);
8367 /* If we've already seen this type there's nothing to do. What's happening
8368 is we're doing our own version of comdat-folding here. */
8369 if (*slot != NULL)
8370 return 1;
8371
8372 /* This does the job that create_all_type_units would have done for
8373 this TU. */
ed2dc618
SM
8374 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8375 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
6aa5f3a6
DE
8376 *slot = entry;
8377
8378 /* This does the job that build_type_psymtabs_1 would have done. */
58f0c718 8379 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
6aa5f3a6
DE
8380 build_type_psymtabs_reader, NULL);
8381
8382 return 1;
8383}
8384
8385/* Traversal function for process_skeletonless_type_units. */
8386
8387static int
8388process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8389{
8390 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8391
8392 if (dwo_file->tus != NULL)
8393 {
8394 htab_traverse_noresize (dwo_file->tus,
8395 process_skeletonless_type_unit, info);
8396 }
8397
8398 return 1;
8399}
8400
8401/* Scan all TUs of DWO files, verifying we've processed them.
8402 This is needed in case a TU was emitted without its skeleton.
8403 Note: This can't be done until we know what all the DWO files are. */
8404
8405static void
ed2dc618 8406process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6aa5f3a6
DE
8407{
8408 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
ed2dc618 8409 if (get_dwp_file (dwarf2_per_objfile) == NULL
6aa5f3a6
DE
8410 && dwarf2_per_objfile->dwo_files != NULL)
8411 {
8412 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8413 process_dwo_file_for_skeletonless_type_units,
ed2dc618 8414 dwarf2_per_objfile);
6aa5f3a6 8415 }
348e048f
DE
8416}
8417
ed2dc618 8418/* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
95554aad
TT
8419
8420static void
ed2dc618 8421set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
95554aad 8422{
b76e467d 8423 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
95554aad 8424 {
95554aad 8425 struct partial_symtab *pst = per_cu->v.psymtab;
95554aad 8426
36586728
TT
8427 if (pst == NULL)
8428 continue;
8429
b76e467d 8430 for (int j = 0; j < pst->number_of_dependencies; ++j)
95554aad
TT
8431 {
8432 /* Set the 'user' field only if it is not already set. */
8433 if (pst->dependencies[j]->user == NULL)
8434 pst->dependencies[j]->user = pst;
8435 }
8436 }
8437}
8438
93311388
DE
8439/* Build the partial symbol table by doing a quick pass through the
8440 .debug_info and .debug_abbrev sections. */
72bf9492 8441
93311388 8442static void
ed2dc618 8443dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
93311388 8444{
ed2dc618 8445 struct objfile *objfile = dwarf2_per_objfile->objfile;
93311388 8446
b4f54984 8447 if (dwarf_read_debug)
45cfd468
DE
8448 {
8449 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 8450 objfile_name (objfile));
45cfd468
DE
8451 }
8452
98bfdba5
PA
8453 dwarf2_per_objfile->reading_partial_symbols = 1;
8454
be391dca 8455 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 8456
93311388
DE
8457 /* Any cached compilation units will be linked by the per-objfile
8458 read_in_chain. Make sure to free them when we're done. */
11ed8cad 8459 free_cached_comp_units freer (dwarf2_per_objfile);
72bf9492 8460
ed2dc618 8461 build_type_psymtabs (dwarf2_per_objfile);
348e048f 8462
ed2dc618 8463 create_all_comp_units (dwarf2_per_objfile);
c906108c 8464
60606b2c
TT
8465 /* Create a temporary address map on a temporary obstack. We later
8466 copy this to the final obstack. */
8268c778 8467 auto_obstack temp_obstack;
791afaa2
TT
8468
8469 scoped_restore save_psymtabs_addrmap
8470 = make_scoped_restore (&objfile->psymtabs_addrmap,
8471 addrmap_create_mutable (&temp_obstack));
72bf9492 8472
b76e467d
SM
8473 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8474 process_psymtab_comp_unit (per_cu, 0, language_minimal);
ff013f42 8475
6aa5f3a6 8476 /* This has to wait until we read the CUs, we need the list of DWOs. */
ed2dc618 8477 process_skeletonless_type_units (dwarf2_per_objfile);
6aa5f3a6
DE
8478
8479 /* Now that all TUs have been processed we can fill in the dependencies. */
8480 if (dwarf2_per_objfile->type_unit_groups != NULL)
8481 {
8482 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
ed2dc618 8483 build_type_psymtab_dependencies, dwarf2_per_objfile);
6aa5f3a6
DE
8484 }
8485
b4f54984 8486 if (dwarf_read_debug)
ed2dc618 8487 print_tu_stats (dwarf2_per_objfile);
6aa5f3a6 8488
ed2dc618 8489 set_partial_user (dwarf2_per_objfile);
95554aad 8490
ff013f42
JK
8491 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8492 &objfile->objfile_obstack);
791afaa2
TT
8493 /* At this point we want to keep the address map. */
8494 save_psymtabs_addrmap.release ();
ff013f42 8495
b4f54984 8496 if (dwarf_read_debug)
45cfd468 8497 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 8498 objfile_name (objfile));
ae038cb0
DJ
8499}
8500
3019eac3 8501/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
8502
8503static void
dee91e82 8504load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 8505 const gdb_byte *info_ptr,
dee91e82
DE
8506 struct die_info *comp_unit_die,
8507 int has_children,
8508 void *data)
ae038cb0 8509{
dee91e82 8510 struct dwarf2_cu *cu = reader->cu;
ae038cb0 8511
95554aad 8512 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 8513
ae038cb0
DJ
8514 /* Check if comp unit has_children.
8515 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 8516 If not, there's no more debug_info for this comp unit. */
d85a05f0 8517 if (has_children)
dee91e82
DE
8518 load_partial_dies (reader, info_ptr, 0);
8519}
98bfdba5 8520
dee91e82
DE
8521/* Load the partial DIEs for a secondary CU into memory.
8522 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 8523
dee91e82
DE
8524static void
8525load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8526{
58f0c718 8527 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
f4dc4d17 8528 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
8529}
8530
ae038cb0 8531static void
ed2dc618 8532read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
36586728 8533 struct dwarf2_section_info *section,
f1902523 8534 struct dwarf2_section_info *abbrev_section,
b76e467d 8535 unsigned int is_dwz)
ae038cb0 8536{
d521ce57 8537 const gdb_byte *info_ptr;
ed2dc618 8538 struct objfile *objfile = dwarf2_per_objfile->objfile;
be391dca 8539
b4f54984 8540 if (dwarf_read_debug)
bf6af496 8541 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
8542 get_section_name (section),
8543 get_section_file_name (section));
bf6af496 8544
36586728 8545 dwarf2_read_section (objfile, section);
ae038cb0 8546
36586728 8547 info_ptr = section->buffer;
6e70227d 8548
36586728 8549 while (info_ptr < section->buffer + section->size)
ae038cb0 8550 {
ae038cb0 8551 struct dwarf2_per_cu_data *this_cu;
ae038cb0 8552
9c541725 8553 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
ae038cb0 8554
f1902523 8555 comp_unit_head cu_header;
ed2dc618
SM
8556 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8557 abbrev_section, info_ptr,
8558 rcuh_kind::COMPILE);
ae038cb0
DJ
8559
8560 /* Save the compilation unit for later lookup. */
f1902523
JK
8561 if (cu_header.unit_type != DW_UT_type)
8562 {
8563 this_cu = XOBNEW (&objfile->objfile_obstack,
8564 struct dwarf2_per_cu_data);
8565 memset (this_cu, 0, sizeof (*this_cu));
8566 }
8567 else
8568 {
8569 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8570 struct signatured_type);
8571 memset (sig_type, 0, sizeof (*sig_type));
8572 sig_type->signature = cu_header.signature;
8573 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8574 this_cu = &sig_type->per_cu;
8575 }
8576 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
9c541725 8577 this_cu->sect_off = sect_off;
f1902523 8578 this_cu->length = cu_header.length + cu_header.initial_length_size;
36586728 8579 this_cu->is_dwz = is_dwz;
e3b94546 8580 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8a0459fd 8581 this_cu->section = section;
ae038cb0 8582
b76e467d 8583 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
ae038cb0
DJ
8584
8585 info_ptr = info_ptr + this_cu->length;
8586 }
36586728
TT
8587}
8588
8589/* Create a list of all compilation units in OBJFILE.
8590 This is only done for -readnow and building partial symtabs. */
8591
8592static void
ed2dc618 8593create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
36586728 8594{
b76e467d 8595 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
ed2dc618 8596 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
b76e467d 8597 &dwarf2_per_objfile->abbrev, 0);
36586728 8598
b76e467d 8599 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
4db1a1dc 8600 if (dwz != NULL)
ed2dc618 8601 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
b76e467d 8602 1);
c906108c
SS
8603}
8604
5734ee8b 8605/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 8606 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 8607 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
8608 DW_AT_ranges). See the comments of add_partial_subprogram on how
8609 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 8610
72bf9492
DJ
8611static void
8612scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
8613 CORE_ADDR *highpc, int set_addrmap,
8614 struct dwarf2_cu *cu)
c906108c 8615{
72bf9492 8616 struct partial_die_info *pdi;
c906108c 8617
91c24f0a
DC
8618 /* Now, march along the PDI's, descending into ones which have
8619 interesting children but skipping the children of the other ones,
8620 until we reach the end of the compilation unit. */
c906108c 8621
72bf9492 8622 pdi = first_die;
91c24f0a 8623
72bf9492
DJ
8624 while (pdi != NULL)
8625 {
52356b79 8626 pdi->fixup (cu);
c906108c 8627
f55ee35c 8628 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
8629 children, so we need to look at them. Ditto for anonymous
8630 enums. */
933c6fe4 8631
72bf9492 8632 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad 8633 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
b1dc1806
XR
8634 || pdi->tag == DW_TAG_imported_unit
8635 || pdi->tag == DW_TAG_inlined_subroutine)
c906108c 8636 {
72bf9492 8637 switch (pdi->tag)
c906108c
SS
8638 {
8639 case DW_TAG_subprogram:
b1dc1806 8640 case DW_TAG_inlined_subroutine:
cdc07690 8641 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 8642 break;
72929c62 8643 case DW_TAG_constant:
c906108c
SS
8644 case DW_TAG_variable:
8645 case DW_TAG_typedef:
91c24f0a 8646 case DW_TAG_union_type:
72bf9492 8647 if (!pdi->is_declaration)
63d06c5c 8648 {
72bf9492 8649 add_partial_symbol (pdi, cu);
63d06c5c
DC
8650 }
8651 break;
c906108c 8652 case DW_TAG_class_type:
680b30c7 8653 case DW_TAG_interface_type:
c906108c 8654 case DW_TAG_structure_type:
72bf9492 8655 if (!pdi->is_declaration)
c906108c 8656 {
72bf9492 8657 add_partial_symbol (pdi, cu);
c906108c 8658 }
b7fee5a3
KS
8659 if ((cu->language == language_rust
8660 || cu->language == language_cplus) && pdi->has_children)
e98c9e7c
TT
8661 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8662 set_addrmap, cu);
c906108c 8663 break;
91c24f0a 8664 case DW_TAG_enumeration_type:
72bf9492
DJ
8665 if (!pdi->is_declaration)
8666 add_partial_enumeration (pdi, cu);
c906108c
SS
8667 break;
8668 case DW_TAG_base_type:
a02abb62 8669 case DW_TAG_subrange_type:
c906108c 8670 /* File scope base type definitions are added to the partial
c5aa993b 8671 symbol table. */
72bf9492 8672 add_partial_symbol (pdi, cu);
c906108c 8673 break;
d9fa45fe 8674 case DW_TAG_namespace:
cdc07690 8675 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 8676 break;
5d7cb8df 8677 case DW_TAG_module:
cdc07690 8678 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 8679 break;
95554aad
TT
8680 case DW_TAG_imported_unit:
8681 {
8682 struct dwarf2_per_cu_data *per_cu;
8683
f4dc4d17
DE
8684 /* For now we don't handle imported units in type units. */
8685 if (cu->per_cu->is_debug_types)
8686 {
8687 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8688 " supported in type units [in module %s]"),
518817b3 8689 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
f4dc4d17
DE
8690 }
8691
e3b94546
SM
8692 per_cu = dwarf2_find_containing_comp_unit
8693 (pdi->d.sect_off, pdi->is_dwz,
518817b3 8694 cu->per_cu->dwarf2_per_objfile);
95554aad
TT
8695
8696 /* Go read the partial unit, if needed. */
8697 if (per_cu->v.psymtab == NULL)
b93601f3 8698 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 8699
f4dc4d17 8700 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 8701 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
8702 }
8703 break;
74921315
KS
8704 case DW_TAG_imported_declaration:
8705 add_partial_symbol (pdi, cu);
8706 break;
c906108c
SS
8707 default:
8708 break;
8709 }
8710 }
8711
72bf9492
DJ
8712 /* If the die has a sibling, skip to the sibling. */
8713
8714 pdi = pdi->die_sibling;
8715 }
8716}
8717
8718/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 8719
72bf9492 8720 Normally, this is simple. For C++, the parent DIE's fully scoped
9c37b5ae 8721 name is concatenated with "::" and the partial DIE's name.
72bf9492
DJ
8722 Enumerators are an exception; they use the scope of their parent
8723 enumeration type, i.e. the name of the enumeration type is not
8724 prepended to the enumerator.
91c24f0a 8725
72bf9492
DJ
8726 There are two complexities. One is DW_AT_specification; in this
8727 case "parent" means the parent of the target of the specification,
8728 instead of the direct parent of the DIE. The other is compilers
8729 which do not emit DW_TAG_namespace; in this case we try to guess
8730 the fully qualified name of structure types from their members'
8731 linkage names. This must be done using the DIE's children rather
8732 than the children of any DW_AT_specification target. We only need
8733 to do this for structures at the top level, i.e. if the target of
8734 any DW_AT_specification (if any; otherwise the DIE itself) does not
8735 have a parent. */
8736
8737/* Compute the scope prefix associated with PDI's parent, in
8738 compilation unit CU. The result will be allocated on CU's
8739 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8740 field. NULL is returned if no prefix is necessary. */
15d034d0 8741static const char *
72bf9492
DJ
8742partial_die_parent_scope (struct partial_die_info *pdi,
8743 struct dwarf2_cu *cu)
8744{
15d034d0 8745 const char *grandparent_scope;
72bf9492 8746 struct partial_die_info *parent, *real_pdi;
91c24f0a 8747
72bf9492
DJ
8748 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8749 then this means the parent of the specification DIE. */
8750
8751 real_pdi = pdi;
72bf9492 8752 while (real_pdi->has_specification)
36586728
TT
8753 real_pdi = find_partial_die (real_pdi->spec_offset,
8754 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
8755
8756 parent = real_pdi->die_parent;
8757 if (parent == NULL)
8758 return NULL;
8759
8760 if (parent->scope_set)
8761 return parent->scope;
8762
52356b79 8763 parent->fixup (cu);
72bf9492 8764
10b3939b 8765 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 8766
acebe513
UW
8767 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8768 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8769 Work around this problem here. */
8770 if (cu->language == language_cplus
6e70227d 8771 && parent->tag == DW_TAG_namespace
acebe513
UW
8772 && strcmp (parent->name, "::") == 0
8773 && grandparent_scope == NULL)
8774 {
8775 parent->scope = NULL;
8776 parent->scope_set = 1;
8777 return NULL;
8778 }
8779
9c6c53f7
SA
8780 if (pdi->tag == DW_TAG_enumerator)
8781 /* Enumerators should not get the name of the enumeration as a prefix. */
8782 parent->scope = grandparent_scope;
8783 else if (parent->tag == DW_TAG_namespace
f55ee35c 8784 || parent->tag == DW_TAG_module
72bf9492
DJ
8785 || parent->tag == DW_TAG_structure_type
8786 || parent->tag == DW_TAG_class_type
680b30c7 8787 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
8788 || parent->tag == DW_TAG_union_type
8789 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
8790 {
8791 if (grandparent_scope == NULL)
8792 parent->scope = parent->name;
8793 else
3e43a32a
MS
8794 parent->scope = typename_concat (&cu->comp_unit_obstack,
8795 grandparent_scope,
f55ee35c 8796 parent->name, 0, cu);
72bf9492 8797 }
72bf9492
DJ
8798 else
8799 {
8800 /* FIXME drow/2004-04-01: What should we be doing with
8801 function-local names? For partial symbols, we should probably be
8802 ignoring them. */
b98664d3 8803 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
9d8780f0 8804 parent->tag, sect_offset_str (pdi->sect_off));
72bf9492 8805 parent->scope = grandparent_scope;
c906108c
SS
8806 }
8807
72bf9492
DJ
8808 parent->scope_set = 1;
8809 return parent->scope;
8810}
8811
8812/* Return the fully scoped name associated with PDI, from compilation unit
8813 CU. The result will be allocated with malloc. */
4568ecf9 8814
72bf9492
DJ
8815static char *
8816partial_die_full_name (struct partial_die_info *pdi,
8817 struct dwarf2_cu *cu)
8818{
15d034d0 8819 const char *parent_scope;
72bf9492 8820
98bfdba5
PA
8821 /* If this is a template instantiation, we can not work out the
8822 template arguments from partial DIEs. So, unfortunately, we have
8823 to go through the full DIEs. At least any work we do building
8824 types here will be reused if full symbols are loaded later. */
8825 if (pdi->has_template_arguments)
8826 {
52356b79 8827 pdi->fixup (cu);
98bfdba5
PA
8828
8829 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8830 {
8831 struct die_info *die;
8832 struct attribute attr;
8833 struct dwarf2_cu *ref_cu = cu;
8834
b64f50a1 8835 /* DW_FORM_ref_addr is using section offset. */
b4069958 8836 attr.name = (enum dwarf_attribute) 0;
98bfdba5 8837 attr.form = DW_FORM_ref_addr;
9c541725 8838 attr.u.unsnd = to_underlying (pdi->sect_off);
98bfdba5
PA
8839 die = follow_die_ref (NULL, &attr, &ref_cu);
8840
8841 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8842 }
8843 }
8844
72bf9492
DJ
8845 parent_scope = partial_die_parent_scope (pdi, cu);
8846 if (parent_scope == NULL)
8847 return NULL;
8848 else
f55ee35c 8849 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
8850}
8851
8852static void
72bf9492 8853add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 8854{
518817b3
SM
8855 struct dwarf2_per_objfile *dwarf2_per_objfile
8856 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 8857 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 8858 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 8859 CORE_ADDR addr = 0;
15d034d0 8860 const char *actual_name = NULL;
e142c38c 8861 CORE_ADDR baseaddr;
15d034d0 8862 char *built_actual_name;
e142c38c
DJ
8863
8864 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8865
15d034d0
TT
8866 built_actual_name = partial_die_full_name (pdi, cu);
8867 if (built_actual_name != NULL)
8868 actual_name = built_actual_name;
63d06c5c 8869
72bf9492
DJ
8870 if (actual_name == NULL)
8871 actual_name = pdi->name;
8872
c906108c
SS
8873 switch (pdi->tag)
8874 {
b1dc1806 8875 case DW_TAG_inlined_subroutine:
c906108c 8876 case DW_TAG_subprogram:
79748972
TT
8877 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8878 - baseaddr);
2cfa0c8d 8879 if (pdi->is_external || cu->language == language_ada)
c906108c 8880 {
2cfa0c8d
JB
8881 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8882 of the global scope. But in Ada, we want to be able to access
8883 nested procedures globally. So all Ada subprograms are stored
8884 in the global scope. */
f47fb265 8885 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8886 built_actual_name != NULL,
f47fb265 8887 VAR_DOMAIN, LOC_BLOCK,
79748972 8888 SECT_OFF_TEXT (objfile),
75aedd27 8889 psymbol_placement::GLOBAL,
79748972
TT
8890 addr,
8891 cu->language, objfile);
c906108c
SS
8892 }
8893 else
8894 {
f47fb265 8895 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8896 built_actual_name != NULL,
f47fb265 8897 VAR_DOMAIN, LOC_BLOCK,
79748972 8898 SECT_OFF_TEXT (objfile),
75aedd27 8899 psymbol_placement::STATIC,
1762568f 8900 addr, cu->language, objfile);
c906108c 8901 }
0c1b455e
TT
8902
8903 if (pdi->main_subprogram && actual_name != NULL)
8904 set_objfile_main_name (objfile, actual_name, cu->language);
c906108c 8905 break;
72929c62 8906 case DW_TAG_constant:
75aedd27
TT
8907 add_psymbol_to_list (actual_name, strlen (actual_name),
8908 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8909 -1, (pdi->is_external
8910 ? psymbol_placement::GLOBAL
8911 : psymbol_placement::STATIC),
8912 0, cu->language, objfile);
72929c62 8913 break;
c906108c 8914 case DW_TAG_variable:
95554aad
TT
8915 if (pdi->d.locdesc)
8916 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 8917
95554aad 8918 if (pdi->d.locdesc
caac4577
JG
8919 && addr == 0
8920 && !dwarf2_per_objfile->has_section_at_zero)
8921 {
8922 /* A global or static variable may also have been stripped
8923 out by the linker if unused, in which case its address
8924 will be nullified; do not add such variables into partial
8925 symbol table then. */
8926 }
8927 else if (pdi->is_external)
c906108c
SS
8928 {
8929 /* Global Variable.
8930 Don't enter into the minimal symbol tables as there is
8931 a minimal symbol table entry from the ELF symbols already.
8932 Enter into partial symbol table if it has a location
8933 descriptor or a type.
8934 If the location descriptor is missing, new_symbol will create
8935 a LOC_UNRESOLVED symbol, the address of the variable will then
8936 be determined from the minimal symbol table whenever the variable
8937 is referenced.
8938 The address for the partial symbol table entry is not
8939 used by GDB, but it comes in handy for debugging partial symbol
8940 table building. */
8941
95554aad 8942 if (pdi->d.locdesc || pdi->has_type)
f47fb265 8943 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8944 built_actual_name != NULL,
f47fb265 8945 VAR_DOMAIN, LOC_STATIC,
79748972 8946 SECT_OFF_TEXT (objfile),
75aedd27 8947 psymbol_placement::GLOBAL,
79748972 8948 addr, cu->language, objfile);
c906108c
SS
8949 }
8950 else
8951 {
ff908ebf
AW
8952 int has_loc = pdi->d.locdesc != NULL;
8953
8954 /* Static Variable. Skip symbols whose value we cannot know (those
8955 without location descriptors or constant values). */
8956 if (!has_loc && !pdi->has_const_value)
decbce07 8957 {
15d034d0 8958 xfree (built_actual_name);
decbce07
MS
8959 return;
8960 }
ff908ebf 8961
f47fb265 8962 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8963 built_actual_name != NULL,
f47fb265 8964 VAR_DOMAIN, LOC_STATIC,
79748972 8965 SECT_OFF_TEXT (objfile),
75aedd27 8966 psymbol_placement::STATIC,
79748972 8967 has_loc ? addr : 0,
f47fb265 8968 cu->language, objfile);
c906108c
SS
8969 }
8970 break;
8971 case DW_TAG_typedef:
8972 case DW_TAG_base_type:
a02abb62 8973 case DW_TAG_subrange_type:
38d518c9 8974 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8975 built_actual_name != NULL,
79748972 8976 VAR_DOMAIN, LOC_TYPEDEF, -1,
75aedd27 8977 psymbol_placement::STATIC,
1762568f 8978 0, cu->language, objfile);
c906108c 8979 break;
74921315 8980 case DW_TAG_imported_declaration:
72bf9492
DJ
8981 case DW_TAG_namespace:
8982 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 8983 built_actual_name != NULL,
79748972 8984 VAR_DOMAIN, LOC_TYPEDEF, -1,
75aedd27 8985 psymbol_placement::GLOBAL,
1762568f 8986 0, cu->language, objfile);
72bf9492 8987 break;
530e8392
KB
8988 case DW_TAG_module:
8989 add_psymbol_to_list (actual_name, strlen (actual_name),
8990 built_actual_name != NULL,
79748972 8991 MODULE_DOMAIN, LOC_TYPEDEF, -1,
75aedd27 8992 psymbol_placement::GLOBAL,
1762568f 8993 0, cu->language, objfile);
530e8392 8994 break;
c906108c 8995 case DW_TAG_class_type:
680b30c7 8996 case DW_TAG_interface_type:
c906108c
SS
8997 case DW_TAG_structure_type:
8998 case DW_TAG_union_type:
8999 case DW_TAG_enumeration_type:
fa4028e9
JB
9000 /* Skip external references. The DWARF standard says in the section
9001 about "Structure, Union, and Class Type Entries": "An incomplete
9002 structure, union or class type is represented by a structure,
9003 union or class entry that does not have a byte size attribute
9004 and that has a DW_AT_declaration attribute." */
9005 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 9006 {
15d034d0 9007 xfree (built_actual_name);
decbce07
MS
9008 return;
9009 }
fa4028e9 9010
63d06c5c
DC
9011 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9012 static vs. global. */
38d518c9 9013 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 9014 built_actual_name != NULL,
79748972 9015 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9c37b5ae 9016 cu->language == language_cplus
75aedd27
TT
9017 ? psymbol_placement::GLOBAL
9018 : psymbol_placement::STATIC,
1762568f 9019 0, cu->language, objfile);
c906108c 9020
c906108c
SS
9021 break;
9022 case DW_TAG_enumerator:
38d518c9 9023 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 9024 built_actual_name != NULL,
79748972 9025 VAR_DOMAIN, LOC_CONST, -1,
9c37b5ae 9026 cu->language == language_cplus
75aedd27
TT
9027 ? psymbol_placement::GLOBAL
9028 : psymbol_placement::STATIC,
1762568f 9029 0, cu->language, objfile);
c906108c
SS
9030 break;
9031 default:
9032 break;
9033 }
5c4e30ca 9034
15d034d0 9035 xfree (built_actual_name);
c906108c
SS
9036}
9037
5c4e30ca
DC
9038/* Read a partial die corresponding to a namespace; also, add a symbol
9039 corresponding to that namespace to the symbol table. NAMESPACE is
9040 the name of the enclosing namespace. */
91c24f0a 9041
72bf9492
DJ
9042static void
9043add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 9044 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 9045 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 9046{
72bf9492 9047 /* Add a symbol for the namespace. */
e7c27a73 9048
72bf9492 9049 add_partial_symbol (pdi, cu);
5c4e30ca
DC
9050
9051 /* Now scan partial symbols in that namespace. */
9052
91c24f0a 9053 if (pdi->has_children)
cdc07690 9054 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
9055}
9056
5d7cb8df
JK
9057/* Read a partial die corresponding to a Fortran module. */
9058
9059static void
9060add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 9061 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 9062{
530e8392
KB
9063 /* Add a symbol for the namespace. */
9064
9065 add_partial_symbol (pdi, cu);
9066
f55ee35c 9067 /* Now scan partial symbols in that module. */
5d7cb8df
JK
9068
9069 if (pdi->has_children)
cdc07690 9070 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
9071}
9072
b1dc1806
XR
9073/* Read a partial die corresponding to a subprogram or an inlined
9074 subprogram and create a partial symbol for that subprogram.
9075 When the CU language allows it, this routine also defines a partial
9076 symbol for each nested subprogram that this subprogram contains.
9077 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9078 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
6e70227d 9079
cdc07690
YQ
9080 PDI may also be a lexical block, in which case we simply search
9081 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
9082 Again, this is only performed when the CU language allows this
9083 type of definitions. */
9084
9085static void
9086add_partial_subprogram (struct partial_die_info *pdi,
9087 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 9088 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58 9089{
b1dc1806 9090 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
bc30ff58
JB
9091 {
9092 if (pdi->has_pc_info)
9093 {
9094 if (pdi->lowpc < *lowpc)
9095 *lowpc = pdi->lowpc;
9096 if (pdi->highpc > *highpc)
9097 *highpc = pdi->highpc;
cdc07690 9098 if (set_addrmap)
5734ee8b 9099 {
518817b3 9100 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a
MR
9101 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9102 CORE_ADDR baseaddr;
b926417a
TT
9103 CORE_ADDR this_highpc;
9104 CORE_ADDR this_lowpc;
5734ee8b
DJ
9105
9106 baseaddr = ANOFFSET (objfile->section_offsets,
9107 SECT_OFF_TEXT (objfile));
b926417a
TT
9108 this_lowpc
9109 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9110 pdi->lowpc + baseaddr)
9111 - baseaddr);
9112 this_highpc
9113 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9114 pdi->highpc + baseaddr)
9115 - baseaddr);
9116 addrmap_set_empty (objfile->psymtabs_addrmap,
9117 this_lowpc, this_highpc - 1,
9291a0cd 9118 cu->per_cu->v.psymtab);
5734ee8b 9119 }
481860b3
GB
9120 }
9121
9122 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9123 {
bc30ff58 9124 if (!pdi->is_declaration)
e8d05480
JB
9125 /* Ignore subprogram DIEs that do not have a name, they are
9126 illegal. Do not emit a complaint at this point, we will
9127 do so when we convert this psymtab into a symtab. */
9128 if (pdi->name)
9129 add_partial_symbol (pdi, cu);
bc30ff58
JB
9130 }
9131 }
6e70227d 9132
bc30ff58
JB
9133 if (! pdi->has_children)
9134 return;
9135
9136 if (cu->language == language_ada)
9137 {
9138 pdi = pdi->die_child;
9139 while (pdi != NULL)
9140 {
52356b79 9141 pdi->fixup (cu);
bc30ff58 9142 if (pdi->tag == DW_TAG_subprogram
b1dc1806 9143 || pdi->tag == DW_TAG_inlined_subroutine
bc30ff58 9144 || pdi->tag == DW_TAG_lexical_block)
cdc07690 9145 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
9146 pdi = pdi->die_sibling;
9147 }
9148 }
9149}
9150
91c24f0a
DC
9151/* Read a partial die corresponding to an enumeration type. */
9152
72bf9492
DJ
9153static void
9154add_partial_enumeration (struct partial_die_info *enum_pdi,
9155 struct dwarf2_cu *cu)
91c24f0a 9156{
72bf9492 9157 struct partial_die_info *pdi;
91c24f0a
DC
9158
9159 if (enum_pdi->name != NULL)
72bf9492
DJ
9160 add_partial_symbol (enum_pdi, cu);
9161
9162 pdi = enum_pdi->die_child;
9163 while (pdi)
91c24f0a 9164 {
72bf9492 9165 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
b98664d3 9166 complaint (_("malformed enumerator DIE ignored"));
91c24f0a 9167 else
72bf9492
DJ
9168 add_partial_symbol (pdi, cu);
9169 pdi = pdi->die_sibling;
91c24f0a 9170 }
91c24f0a
DC
9171}
9172
6caca83c
CC
9173/* Return the initial uleb128 in the die at INFO_PTR. */
9174
9175static unsigned int
d521ce57 9176peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
9177{
9178 unsigned int bytes_read;
9179
9180 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9181}
9182
685af9cd
TT
9183/* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9184 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9185
4bb7a0a7
DJ
9186 Return the corresponding abbrev, or NULL if the number is zero (indicating
9187 an empty DIE). In either case *BYTES_READ will be set to the length of
9188 the initial number. */
9189
9190static struct abbrev_info *
685af9cd
TT
9191peek_die_abbrev (const die_reader_specs &reader,
9192 const gdb_byte *info_ptr, unsigned int *bytes_read)
4bb7a0a7 9193{
685af9cd 9194 dwarf2_cu *cu = reader.cu;
518817b3 9195 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
685af9cd
TT
9196 unsigned int abbrev_number
9197 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4bb7a0a7
DJ
9198
9199 if (abbrev_number == 0)
9200 return NULL;
9201
685af9cd 9202 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
4bb7a0a7
DJ
9203 if (!abbrev)
9204 {
422b9917 9205 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9d8780f0 9206 " at offset %s [in module %s]"),
422b9917 9207 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9d8780f0 9208 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
4bb7a0a7
DJ
9209 }
9210
9211 return abbrev;
9212}
9213
93311388
DE
9214/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9215 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
9216 DIE. Any children of the skipped DIEs will also be skipped. */
9217
d521ce57
TT
9218static const gdb_byte *
9219skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 9220{
4bb7a0a7
DJ
9221 while (1)
9222 {
685af9cd
TT
9223 unsigned int bytes_read;
9224 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9225
4bb7a0a7
DJ
9226 if (abbrev == NULL)
9227 return info_ptr + bytes_read;
9228 else
dee91e82 9229 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
9230 }
9231}
9232
93311388
DE
9233/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9234 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
9235 abbrev corresponding to that skipped uleb128 should be passed in
9236 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9237 children. */
9238
d521ce57
TT
9239static const gdb_byte *
9240skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 9241 struct abbrev_info *abbrev)
4bb7a0a7
DJ
9242{
9243 unsigned int bytes_read;
9244 struct attribute attr;
dee91e82
DE
9245 bfd *abfd = reader->abfd;
9246 struct dwarf2_cu *cu = reader->cu;
d521ce57 9247 const gdb_byte *buffer = reader->buffer;
f664829e 9248 const gdb_byte *buffer_end = reader->buffer_end;
4bb7a0a7
DJ
9249 unsigned int form, i;
9250
9251 for (i = 0; i < abbrev->num_attrs; i++)
9252 {
9253 /* The only abbrev we care about is DW_AT_sibling. */
9254 if (abbrev->attrs[i].name == DW_AT_sibling)
9255 {
dee91e82 9256 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 9257 if (attr.form == DW_FORM_ref_addr)
b98664d3 9258 complaint (_("ignoring absolute DW_AT_sibling"));
4bb7a0a7 9259 else
b9502d3f 9260 {
9c541725
PA
9261 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9262 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
9263
9264 if (sibling_ptr < info_ptr)
b98664d3 9265 complaint (_("DW_AT_sibling points backwards"));
22869d73
KS
9266 else if (sibling_ptr > reader->buffer_end)
9267 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
9268 else
9269 return sibling_ptr;
9270 }
4bb7a0a7
DJ
9271 }
9272
9273 /* If it isn't DW_AT_sibling, skip this attribute. */
9274 form = abbrev->attrs[i].form;
9275 skip_attribute:
9276 switch (form)
9277 {
4bb7a0a7 9278 case DW_FORM_ref_addr:
ae411497
TT
9279 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9280 and later it is offset sized. */
9281 if (cu->header.version == 2)
9282 info_ptr += cu->header.addr_size;
9283 else
9284 info_ptr += cu->header.offset_size;
9285 break;
36586728
TT
9286 case DW_FORM_GNU_ref_alt:
9287 info_ptr += cu->header.offset_size;
9288 break;
ae411497 9289 case DW_FORM_addr:
4bb7a0a7
DJ
9290 info_ptr += cu->header.addr_size;
9291 break;
9292 case DW_FORM_data1:
9293 case DW_FORM_ref1:
9294 case DW_FORM_flag:
9295 info_ptr += 1;
9296 break;
2dc7f7b3 9297 case DW_FORM_flag_present:
43988095 9298 case DW_FORM_implicit_const:
2dc7f7b3 9299 break;
4bb7a0a7
DJ
9300 case DW_FORM_data2:
9301 case DW_FORM_ref2:
9302 info_ptr += 2;
9303 break;
9304 case DW_FORM_data4:
9305 case DW_FORM_ref4:
9306 info_ptr += 4;
9307 break;
9308 case DW_FORM_data8:
9309 case DW_FORM_ref8:
55f1336d 9310 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
9311 info_ptr += 8;
9312 break;
0224619f
JK
9313 case DW_FORM_data16:
9314 info_ptr += 16;
9315 break;
4bb7a0a7 9316 case DW_FORM_string:
9b1c24c8 9317 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
9318 info_ptr += bytes_read;
9319 break;
2dc7f7b3 9320 case DW_FORM_sec_offset:
4bb7a0a7 9321 case DW_FORM_strp:
36586728 9322 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
9323 info_ptr += cu->header.offset_size;
9324 break;
2dc7f7b3 9325 case DW_FORM_exprloc:
4bb7a0a7
DJ
9326 case DW_FORM_block:
9327 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9328 info_ptr += bytes_read;
9329 break;
9330 case DW_FORM_block1:
9331 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9332 break;
9333 case DW_FORM_block2:
9334 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9335 break;
9336 case DW_FORM_block4:
9337 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9338 break;
9339 case DW_FORM_sdata:
9340 case DW_FORM_udata:
9341 case DW_FORM_ref_udata:
3019eac3
DE
9342 case DW_FORM_GNU_addr_index:
9343 case DW_FORM_GNU_str_index:
d521ce57 9344 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
9345 break;
9346 case DW_FORM_indirect:
9347 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9348 info_ptr += bytes_read;
9349 /* We need to continue parsing from here, so just go back to
9350 the top. */
9351 goto skip_attribute;
9352
9353 default:
3e43a32a
MS
9354 error (_("Dwarf Error: Cannot handle %s "
9355 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
9356 dwarf_form_name (form),
9357 bfd_get_filename (abfd));
9358 }
9359 }
9360
9361 if (abbrev->has_children)
dee91e82 9362 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
9363 else
9364 return info_ptr;
9365}
9366
93311388 9367/* Locate ORIG_PDI's sibling.
dee91e82 9368 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 9369
d521ce57 9370static const gdb_byte *
dee91e82
DE
9371locate_pdi_sibling (const struct die_reader_specs *reader,
9372 struct partial_die_info *orig_pdi,
d521ce57 9373 const gdb_byte *info_ptr)
91c24f0a
DC
9374{
9375 /* Do we know the sibling already? */
72bf9492 9376
91c24f0a
DC
9377 if (orig_pdi->sibling)
9378 return orig_pdi->sibling;
9379
9380 /* Are there any children to deal with? */
9381
9382 if (!orig_pdi->has_children)
9383 return info_ptr;
9384
4bb7a0a7 9385 /* Skip the children the long way. */
91c24f0a 9386
dee91e82 9387 return skip_children (reader, info_ptr);
91c24f0a
DC
9388}
9389
257e7a09 9390/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 9391 not NULL. */
c906108c
SS
9392
9393static void
257e7a09
YQ
9394dwarf2_read_symtab (struct partial_symtab *self,
9395 struct objfile *objfile)
c906108c 9396{
ed2dc618
SM
9397 struct dwarf2_per_objfile *dwarf2_per_objfile
9398 = get_dwarf2_per_objfile (objfile);
9399
257e7a09 9400 if (self->readin)
c906108c 9401 {
442e4d9c 9402 warning (_("bug: psymtab for %s is already read in."),
257e7a09 9403 self->filename);
442e4d9c
YQ
9404 }
9405 else
9406 {
9407 if (info_verbose)
c906108c 9408 {
442e4d9c 9409 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 9410 self->filename);
442e4d9c 9411 gdb_flush (gdb_stdout);
c906108c 9412 }
c906108c 9413
442e4d9c
YQ
9414 /* If this psymtab is constructed from a debug-only objfile, the
9415 has_section_at_zero flag will not necessarily be correct. We
9416 can get the correct value for this flag by looking at the data
9417 associated with the (presumably stripped) associated objfile. */
9418 if (objfile->separate_debug_objfile_backlink)
9419 {
9420 struct dwarf2_per_objfile *dpo_backlink
ed2dc618 9421 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9a619af0 9422
442e4d9c
YQ
9423 dwarf2_per_objfile->has_section_at_zero
9424 = dpo_backlink->has_section_at_zero;
9425 }
b2ab525c 9426
442e4d9c 9427 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 9428
257e7a09 9429 psymtab_to_symtab_1 (self);
c906108c 9430
442e4d9c
YQ
9431 /* Finish up the debug error message. */
9432 if (info_verbose)
9433 printf_filtered (_("done.\n"));
c906108c 9434 }
95554aad 9435
ed2dc618 9436 process_cu_includes (dwarf2_per_objfile);
c906108c 9437}
9cdd5dbd
DE
9438\f
9439/* Reading in full CUs. */
c906108c 9440
10b3939b
DJ
9441/* Add PER_CU to the queue. */
9442
9443static void
95554aad
TT
9444queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9445 enum language pretend_language)
10b3939b
DJ
9446{
9447 struct dwarf2_queue_item *item;
9448
9449 per_cu->queued = 1;
8d749320 9450 item = XNEW (struct dwarf2_queue_item);
10b3939b 9451 item->per_cu = per_cu;
95554aad 9452 item->pretend_language = pretend_language;
10b3939b
DJ
9453 item->next = NULL;
9454
9455 if (dwarf2_queue == NULL)
9456 dwarf2_queue = item;
9457 else
9458 dwarf2_queue_tail->next = item;
9459
9460 dwarf2_queue_tail = item;
9461}
9462
89e63ee4
DE
9463/* If PER_CU is not yet queued, add it to the queue.
9464 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9465 dependency.
0907af0c 9466 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
9467 meaning either PER_CU is already queued or it is already loaded.
9468
9469 N.B. There is an invariant here that if a CU is queued then it is loaded.
9470 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
9471
9472static int
89e63ee4 9473maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
9474 struct dwarf2_per_cu_data *per_cu,
9475 enum language pretend_language)
9476{
9477 /* We may arrive here during partial symbol reading, if we need full
9478 DIEs to process an unusual case (e.g. template arguments). Do
9479 not queue PER_CU, just tell our caller to load its DIEs. */
ed2dc618 9480 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
0907af0c
DE
9481 {
9482 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9483 return 1;
9484 return 0;
9485 }
9486
9487 /* Mark the dependence relation so that we don't flush PER_CU
9488 too early. */
89e63ee4
DE
9489 if (dependent_cu != NULL)
9490 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
9491
9492 /* If it's already on the queue, we have nothing to do. */
9493 if (per_cu->queued)
9494 return 0;
9495
9496 /* If the compilation unit is already loaded, just mark it as
9497 used. */
9498 if (per_cu->cu != NULL)
9499 {
9500 per_cu->cu->last_used = 0;
9501 return 0;
9502 }
9503
9504 /* Add it to the queue. */
9505 queue_comp_unit (per_cu, pretend_language);
9506
9507 return 1;
9508}
9509
10b3939b
DJ
9510/* Process the queue. */
9511
9512static void
ed2dc618 9513process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
10b3939b
DJ
9514{
9515 struct dwarf2_queue_item *item, *next_item;
9516
b4f54984 9517 if (dwarf_read_debug)
45cfd468
DE
9518 {
9519 fprintf_unfiltered (gdb_stdlog,
9520 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 9521 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
9522 }
9523
03dd20cc
DJ
9524 /* The queue starts out with one item, but following a DIE reference
9525 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
9526 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9527 {
cc12ce38
DE
9528 if ((dwarf2_per_objfile->using_index
9529 ? !item->per_cu->v.quick->compunit_symtab
9530 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9531 /* Skip dummy CUs. */
9532 && item->per_cu->cu != NULL)
f4dc4d17
DE
9533 {
9534 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 9535 unsigned int debug_print_threshold;
247f5c4f 9536 char buf[100];
f4dc4d17 9537
247f5c4f 9538 if (per_cu->is_debug_types)
f4dc4d17 9539 {
247f5c4f
DE
9540 struct signatured_type *sig_type =
9541 (struct signatured_type *) per_cu;
9542
9d8780f0 9543 sprintf (buf, "TU %s at offset %s",
73be47f5 9544 hex_string (sig_type->signature),
9d8780f0 9545 sect_offset_str (per_cu->sect_off));
73be47f5
DE
9546 /* There can be 100s of TUs.
9547 Only print them in verbose mode. */
9548 debug_print_threshold = 2;
f4dc4d17 9549 }
247f5c4f 9550 else
73be47f5 9551 {
9d8780f0
SM
9552 sprintf (buf, "CU at offset %s",
9553 sect_offset_str (per_cu->sect_off));
73be47f5
DE
9554 debug_print_threshold = 1;
9555 }
247f5c4f 9556
b4f54984 9557 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 9558 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
9559
9560 if (per_cu->is_debug_types)
9561 process_full_type_unit (per_cu, item->pretend_language);
9562 else
9563 process_full_comp_unit (per_cu, item->pretend_language);
9564
b4f54984 9565 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 9566 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 9567 }
10b3939b
DJ
9568
9569 item->per_cu->queued = 0;
9570 next_item = item->next;
9571 xfree (item);
9572 }
9573
9574 dwarf2_queue_tail = NULL;
45cfd468 9575
b4f54984 9576 if (dwarf_read_debug)
45cfd468
DE
9577 {
9578 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 9579 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 9580 }
10b3939b
DJ
9581}
9582
10b3939b
DJ
9583/* Read in full symbols for PST, and anything it depends on. */
9584
c906108c 9585static void
fba45db2 9586psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 9587{
10b3939b 9588 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
9589 int i;
9590
95554aad
TT
9591 if (pst->readin)
9592 return;
9593
aaa75496 9594 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
9595 if (!pst->dependencies[i]->readin
9596 && pst->dependencies[i]->user == NULL)
aaa75496
JB
9597 {
9598 /* Inform about additional files that need to be read in. */
9599 if (info_verbose)
9600 {
a3f17187 9601 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
9602 fputs_filtered (" ", gdb_stdout);
9603 wrap_here ("");
9604 fputs_filtered ("and ", gdb_stdout);
9605 wrap_here ("");
9606 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 9607 wrap_here (""); /* Flush output. */
aaa75496
JB
9608 gdb_flush (gdb_stdout);
9609 }
9610 psymtab_to_symtab_1 (pst->dependencies[i]);
9611 }
9612
9a3c8263 9613 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
9614
9615 if (per_cu == NULL)
aaa75496
JB
9616 {
9617 /* It's an include file, no symbols to read for it.
9618 Everything is in the parent symtab. */
9619 pst->readin = 1;
9620 return;
9621 }
c906108c 9622
58f0c718 9623 dw2_do_instantiate_symtab (per_cu, false);
10b3939b
DJ
9624}
9625
dee91e82
DE
9626/* Trivial hash function for die_info: the hash value of a DIE
9627 is its offset in .debug_info for this objfile. */
10b3939b 9628
dee91e82
DE
9629static hashval_t
9630die_hash (const void *item)
10b3939b 9631{
9a3c8263 9632 const struct die_info *die = (const struct die_info *) item;
6502dd73 9633
9c541725 9634 return to_underlying (die->sect_off);
dee91e82 9635}
63d06c5c 9636
dee91e82
DE
9637/* Trivial comparison function for die_info structures: two DIEs
9638 are equal if they have the same offset. */
98bfdba5 9639
dee91e82
DE
9640static int
9641die_eq (const void *item_lhs, const void *item_rhs)
9642{
9a3c8263
SM
9643 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9644 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 9645
9c541725 9646 return die_lhs->sect_off == die_rhs->sect_off;
dee91e82 9647}
c906108c 9648
dee91e82
DE
9649/* die_reader_func for load_full_comp_unit.
9650 This is identical to read_signatured_type_reader,
9651 but is kept separate for now. */
c906108c 9652
dee91e82
DE
9653static void
9654load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 9655 const gdb_byte *info_ptr,
dee91e82
DE
9656 struct die_info *comp_unit_die,
9657 int has_children,
9658 void *data)
9659{
9660 struct dwarf2_cu *cu = reader->cu;
9a3c8263 9661 enum language *language_ptr = (enum language *) data;
6caca83c 9662
dee91e82
DE
9663 gdb_assert (cu->die_hash == NULL);
9664 cu->die_hash =
9665 htab_create_alloc_ex (cu->header.length / 12,
9666 die_hash,
9667 die_eq,
9668 NULL,
9669 &cu->comp_unit_obstack,
9670 hashtab_obstack_allocate,
9671 dummy_obstack_deallocate);
e142c38c 9672
dee91e82
DE
9673 if (has_children)
9674 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9675 &info_ptr, comp_unit_die);
9676 cu->dies = comp_unit_die;
9677 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
9678
9679 /* We try not to read any attributes in this function, because not
9cdd5dbd 9680 all CUs needed for references have been loaded yet, and symbol
10b3939b 9681 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
9682 or we won't be able to build types correctly.
9683 Similarly, if we do not read the producer, we can not apply
9684 producer-specific interpretation. */
95554aad 9685 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 9686}
10b3939b 9687
dee91e82 9688/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 9689
dee91e82 9690static void
95554aad 9691load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
58f0c718 9692 bool skip_partial,
95554aad 9693 enum language pretend_language)
dee91e82 9694{
3019eac3 9695 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 9696
58f0c718 9697 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
f4dc4d17 9698 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
9699}
9700
3da10d80
KS
9701/* Add a DIE to the delayed physname list. */
9702
9703static void
9704add_to_method_list (struct type *type, int fnfield_index, int index,
9705 const char *name, struct die_info *die,
9706 struct dwarf2_cu *cu)
9707{
9708 struct delayed_method_info mi;
9709 mi.type = type;
9710 mi.fnfield_index = fnfield_index;
9711 mi.index = index;
9712 mi.name = name;
9713 mi.die = die;
c89b44cd 9714 cu->method_list.push_back (mi);
3da10d80
KS
9715}
9716
3693fdb3
PA
9717/* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9718 "const" / "volatile". If so, decrements LEN by the length of the
9719 modifier and return true. Otherwise return false. */
9720
9721template<size_t N>
9722static bool
9723check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9724{
9725 size_t mod_len = sizeof (mod) - 1;
9726 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9727 {
9728 len -= mod_len;
9729 return true;
9730 }
9731 return false;
9732}
9733
3da10d80
KS
9734/* Compute the physnames of any methods on the CU's method list.
9735
9736 The computation of method physnames is delayed in order to avoid the
9737 (bad) condition that one of the method's formal parameters is of an as yet
9738 incomplete type. */
9739
9740static void
9741compute_delayed_physnames (struct dwarf2_cu *cu)
9742{
3693fdb3 9743 /* Only C++ delays computing physnames. */
c89b44cd 9744 if (cu->method_list.empty ())
3693fdb3
PA
9745 return;
9746 gdb_assert (cu->language == language_cplus);
9747
52941706 9748 for (const delayed_method_info &mi : cu->method_list)
3da10d80 9749 {
1d06ead6 9750 const char *physname;
3da10d80 9751 struct fn_fieldlist *fn_flp
c89b44cd
TT
9752 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9753 physname = dwarf2_physname (mi.name, mi.die, cu);
9754 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
005e54bb 9755 = physname ? physname : "";
3693fdb3
PA
9756
9757 /* Since there's no tag to indicate whether a method is a
9758 const/volatile overload, extract that information out of the
9759 demangled name. */
9760 if (physname != NULL)
9761 {
9762 size_t len = strlen (physname);
9763
9764 while (1)
9765 {
9766 if (physname[len] == ')') /* shortcut */
9767 break;
9768 else if (check_modifier (physname, len, " const"))
c89b44cd 9769 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
3693fdb3 9770 else if (check_modifier (physname, len, " volatile"))
c89b44cd 9771 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
3693fdb3
PA
9772 else
9773 break;
9774 }
9775 }
3da10d80 9776 }
c89b44cd
TT
9777
9778 /* The list is no longer needed. */
9779 cu->method_list.clear ();
3da10d80
KS
9780}
9781
380618d6
KS
9782/* A wrapper for add_symbol_to_list to ensure that SYMBOL's language is
9783 the same as all other symbols in LISTHEAD. If a new symbol is added
9784 with a different language, this function asserts. */
9785
9786static inline void
9787dw2_add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
9788{
9789 /* Only assert if LISTHEAD already contains symbols of a different
9790 language (dict_create_hashed/insert_symbol_hashed requires that all
9791 symbols in this list are of the same language). */
9792 gdb_assert ((*listhead) == NULL
9793 || (SYMBOL_LANGUAGE ((*listhead)->symbol[0])
9794 == SYMBOL_LANGUAGE (symbol)));
9795
9796 add_symbol_to_list (symbol, listhead);
9797}
9798
a766d390
DE
9799/* Go objects should be embedded in a DW_TAG_module DIE,
9800 and it's not clear if/how imported objects will appear.
9801 To keep Go support simple until that's worked out,
9802 go back through what we've read and create something usable.
9803 We could do this while processing each DIE, and feels kinda cleaner,
9804 but that way is more invasive.
9805 This is to, for example, allow the user to type "p var" or "b main"
9806 without having to specify the package name, and allow lookups
9807 of module.object to work in contexts that use the expression
9808 parser. */
9809
9810static void
9811fixup_go_packaging (struct dwarf2_cu *cu)
9812{
9813 char *package_name = NULL;
9814 struct pending *list;
9815 int i;
9816
804d2729
TT
9817 for (list = *cu->builder->get_global_symbols ();
9818 list != NULL;
9819 list = list->next)
a766d390
DE
9820 {
9821 for (i = 0; i < list->nsyms; ++i)
9822 {
9823 struct symbol *sym = list->symbol[i];
9824
9825 if (SYMBOL_LANGUAGE (sym) == language_go
9826 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9827 {
9828 char *this_package_name = go_symbol_package_name (sym);
9829
9830 if (this_package_name == NULL)
9831 continue;
9832 if (package_name == NULL)
9833 package_name = this_package_name;
9834 else
9835 {
518817b3
SM
9836 struct objfile *objfile
9837 = cu->per_cu->dwarf2_per_objfile->objfile;
a766d390 9838 if (strcmp (package_name, this_package_name) != 0)
b98664d3 9839 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
9840 (symbol_symtab (sym) != NULL
9841 ? symtab_to_filename_for_display
9842 (symbol_symtab (sym))
e3b94546 9843 : objfile_name (objfile)),
a766d390
DE
9844 this_package_name, package_name);
9845 xfree (this_package_name);
9846 }
9847 }
9848 }
9849 }
9850
9851 if (package_name != NULL)
9852 {
518817b3 9853 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
34a68019 9854 const char *saved_package_name
224c3ddb
SM
9855 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9856 package_name,
9857 strlen (package_name));
19f392bc
UW
9858 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9859 saved_package_name);
a766d390
DE
9860 struct symbol *sym;
9861
e623cf5d 9862 sym = allocate_symbol (objfile);
f85f34ed 9863 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
9864 SYMBOL_SET_NAMES (sym, saved_package_name,
9865 strlen (saved_package_name), 0, objfile);
a766d390
DE
9866 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9867 e.g., "main" finds the "main" module and not C's main(). */
9868 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 9869 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
9870 SYMBOL_TYPE (sym) = type;
9871
380618d6 9872 dw2_add_symbol_to_list (sym, cu->builder->get_global_symbols ());
a766d390
DE
9873
9874 xfree (package_name);
9875 }
9876}
9877
c9317f21
TT
9878/* Allocate a fully-qualified name consisting of the two parts on the
9879 obstack. */
9880
9881static const char *
9882rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9883{
9884 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9885}
9886
9887/* A helper that allocates a struct discriminant_info to attach to a
9888 union type. */
9889
9890static struct discriminant_info *
9891alloc_discriminant_info (struct type *type, int discriminant_index,
9892 int default_index)
9893{
9894 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
c7b15a66
TT
9895 gdb_assert (discriminant_index == -1
9896 || (discriminant_index >= 0
9897 && discriminant_index < TYPE_NFIELDS (type)));
c9317f21 9898 gdb_assert (default_index == -1
c7b15a66 9899 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
c9317f21
TT
9900
9901 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9902
9903 struct discriminant_info *disc
9904 = ((struct discriminant_info *)
9905 TYPE_ZALLOC (type,
9906 offsetof (struct discriminant_info, discriminants)
9907 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9908 disc->default_index = default_index;
9909 disc->discriminant_index = discriminant_index;
9910
9911 struct dynamic_prop prop;
9912 prop.kind = PROP_UNDEFINED;
9913 prop.data.baton = disc;
9914
9915 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9916
9917 return disc;
9918}
9919
9920/* Some versions of rustc emitted enums in an unusual way.
9921
9922 Ordinary enums were emitted as unions. The first element of each
9923 structure in the union was named "RUST$ENUM$DISR". This element
9924 held the discriminant.
9925
9926 These versions of Rust also implemented the "non-zero"
9927 optimization. When the enum had two values, and one is empty and
9928 the other holds a pointer that cannot be zero, the pointer is used
9929 as the discriminant, with a zero value meaning the empty variant.
9930 Here, the union's first member is of the form
9931 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9932 where the fieldnos are the indices of the fields that should be
9933 traversed in order to find the field (which may be several fields deep)
9934 and the variantname is the name of the variant of the case when the
9935 field is zero.
9936
9937 This function recognizes whether TYPE is of one of these forms,
9938 and, if so, smashes it to be a variant type. */
9939
9940static void
9941quirk_rust_enum (struct type *type, struct objfile *objfile)
9942{
9943 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9944
9945 /* We don't need to deal with empty enums. */
9946 if (TYPE_NFIELDS (type) == 0)
9947 return;
9948
9949#define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9950 if (TYPE_NFIELDS (type) == 1
9951 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9952 {
9953 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9954
9955 /* Decode the field name to find the offset of the
9956 discriminant. */
9957 ULONGEST bit_offset = 0;
9958 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9959 while (name[0] >= '0' && name[0] <= '9')
9960 {
9961 char *tail;
9962 unsigned long index = strtoul (name, &tail, 10);
9963 name = tail;
9964 if (*name != '$'
9965 || index >= TYPE_NFIELDS (field_type)
9966 || (TYPE_FIELD_LOC_KIND (field_type, index)
9967 != FIELD_LOC_KIND_BITPOS))
9968 {
b98664d3 9969 complaint (_("Could not parse Rust enum encoding string \"%s\""
c9317f21
TT
9970 "[in module %s]"),
9971 TYPE_FIELD_NAME (type, 0),
9972 objfile_name (objfile));
9973 return;
9974 }
9975 ++name;
9976
9977 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9978 field_type = TYPE_FIELD_TYPE (field_type, index);
9979 }
9980
9981 /* Make a union to hold the variants. */
9982 struct type *union_type = alloc_type (objfile);
9983 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9984 TYPE_NFIELDS (union_type) = 3;
9985 TYPE_FIELDS (union_type)
9986 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9987 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
2b4424c3 9988 set_type_align (union_type, TYPE_RAW_ALIGN (type));
c9317f21
TT
9989
9990 /* Put the discriminant must at index 0. */
9991 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9992 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9993 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9994 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9995
9996 /* The order of fields doesn't really matter, so put the real
9997 field at index 1 and the data-less field at index 2. */
9998 struct discriminant_info *disc
9999 = alloc_discriminant_info (union_type, 0, 1);
10000 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10001 TYPE_FIELD_NAME (union_type, 1)
10002 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10003 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10004 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10005 TYPE_FIELD_NAME (union_type, 1));
10006
10007 const char *dataless_name
10008 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10009 name);
10010 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10011 dataless_name);
10012 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10013 /* NAME points into the original discriminant name, which
10014 already has the correct lifetime. */
10015 TYPE_FIELD_NAME (union_type, 2) = name;
10016 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10017 disc->discriminants[2] = 0;
10018
10019 /* Smash this type to be a structure type. We have to do this
10020 because the type has already been recorded. */
10021 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10022 TYPE_NFIELDS (type) = 1;
10023 TYPE_FIELDS (type)
10024 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10025
10026 /* Install the variant part. */
10027 TYPE_FIELD_TYPE (type, 0) = union_type;
10028 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10029 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10030 }
10031 else if (TYPE_NFIELDS (type) == 1)
10032 {
10033 /* We assume that a union with a single field is a univariant
10034 enum. */
10035 /* Smash this type to be a structure type. We have to do this
10036 because the type has already been recorded. */
10037 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10038
10039 /* Make a union to hold the variants. */
10040 struct type *union_type = alloc_type (objfile);
10041 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10042 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10043 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
2b4424c3 10044 set_type_align (union_type, TYPE_RAW_ALIGN (type));
c9317f21
TT
10045 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10046
10047 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10048 const char *variant_name
10049 = rust_last_path_segment (TYPE_NAME (field_type));
10050 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10051 TYPE_NAME (field_type)
10052 = rust_fully_qualify (&objfile->objfile_obstack,
c7b15a66 10053 TYPE_NAME (type), variant_name);
c9317f21
TT
10054
10055 /* Install the union in the outer struct type. */
10056 TYPE_NFIELDS (type) = 1;
10057 TYPE_FIELDS (type)
10058 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10059 TYPE_FIELD_TYPE (type, 0) = union_type;
10060 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10061 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10062
10063 alloc_discriminant_info (union_type, -1, 0);
10064 }
10065 else
10066 {
10067 struct type *disr_type = nullptr;
10068 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10069 {
10070 disr_type = TYPE_FIELD_TYPE (type, i);
10071
a037790e
TT
10072 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10073 {
10074 /* All fields of a true enum will be structs. */
10075 return;
10076 }
10077 else if (TYPE_NFIELDS (disr_type) == 0)
c9317f21
TT
10078 {
10079 /* Could be data-less variant, so keep going. */
a037790e 10080 disr_type = nullptr;
c9317f21
TT
10081 }
10082 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10083 "RUST$ENUM$DISR") != 0)
10084 {
10085 /* Not a Rust enum. */
10086 return;
10087 }
10088 else
10089 {
10090 /* Found one. */
10091 break;
10092 }
10093 }
10094
10095 /* If we got here without a discriminant, then it's probably
10096 just a union. */
10097 if (disr_type == nullptr)
10098 return;
10099
10100 /* Smash this type to be a structure type. We have to do this
10101 because the type has already been recorded. */
10102 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10103
10104 /* Make a union to hold the variants. */
10105 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10106 struct type *union_type = alloc_type (objfile);
10107 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10108 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10109 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
2b4424c3 10110 set_type_align (union_type, TYPE_RAW_ALIGN (type));
c9317f21
TT
10111 TYPE_FIELDS (union_type)
10112 = (struct field *) TYPE_ZALLOC (union_type,
10113 (TYPE_NFIELDS (union_type)
10114 * sizeof (struct field)));
10115
10116 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10117 TYPE_NFIELDS (type) * sizeof (struct field));
10118
10119 /* Install the discriminant at index 0 in the union. */
10120 TYPE_FIELD (union_type, 0) = *disr_field;
10121 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10122 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10123
10124 /* Install the union in the outer struct type. */
10125 TYPE_FIELD_TYPE (type, 0) = union_type;
10126 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10127 TYPE_NFIELDS (type) = 1;
10128
10129 /* Set the size and offset of the union type. */
10130 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10131
10132 /* We need a way to find the correct discriminant given a
10133 variant name. For convenience we build a map here. */
10134 struct type *enum_type = FIELD_TYPE (*disr_field);
10135 std::unordered_map<std::string, ULONGEST> discriminant_map;
10136 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10137 {
10138 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10139 {
10140 const char *name
10141 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10142 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10143 }
10144 }
10145
10146 int n_fields = TYPE_NFIELDS (union_type);
10147 struct discriminant_info *disc
10148 = alloc_discriminant_info (union_type, 0, -1);
10149 /* Skip the discriminant here. */
10150 for (int i = 1; i < n_fields; ++i)
10151 {
10152 /* Find the final word in the name of this variant's type.
10153 That name can be used to look up the correct
10154 discriminant. */
10155 const char *variant_name
10156 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10157 i)));
10158
10159 auto iter = discriminant_map.find (variant_name);
10160 if (iter != discriminant_map.end ())
10161 disc->discriminants[i] = iter->second;
10162
bedda9ac 10163 /* Remove the discriminant field, if it exists. */
c9317f21 10164 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
bedda9ac
TT
10165 if (TYPE_NFIELDS (sub_type) > 0)
10166 {
10167 --TYPE_NFIELDS (sub_type);
10168 ++TYPE_FIELDS (sub_type);
10169 }
c9317f21
TT
10170 TYPE_FIELD_NAME (union_type, i) = variant_name;
10171 TYPE_NAME (sub_type)
10172 = rust_fully_qualify (&objfile->objfile_obstack,
10173 TYPE_NAME (type), variant_name);
10174 }
10175 }
10176}
10177
10178/* Rewrite some Rust unions to be structures with variants parts. */
10179
10180static void
10181rust_union_quirks (struct dwarf2_cu *cu)
10182{
10183 gdb_assert (cu->language == language_rust);
52941706
SM
10184 for (type *type_ : cu->rust_unions)
10185 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
2d79090e
TT
10186 /* We don't need this any more. */
10187 cu->rust_unions.clear ();
c9317f21
TT
10188}
10189
95554aad
TT
10190/* Return the symtab for PER_CU. This works properly regardless of
10191 whether we're using the index or psymtabs. */
10192
43f3e411
DE
10193static struct compunit_symtab *
10194get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad 10195{
ed2dc618 10196 return (per_cu->dwarf2_per_objfile->using_index
43f3e411
DE
10197 ? per_cu->v.quick->compunit_symtab
10198 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
10199}
10200
10201/* A helper function for computing the list of all symbol tables
10202 included by PER_CU. */
10203
10204static void
4c39bc03 10205recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
ec94af83 10206 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 10207 struct dwarf2_per_cu_data *per_cu,
43f3e411 10208 struct compunit_symtab *immediate_parent)
95554aad
TT
10209{
10210 void **slot;
10211 int ix;
43f3e411 10212 struct compunit_symtab *cust;
95554aad
TT
10213 struct dwarf2_per_cu_data *iter;
10214
10215 slot = htab_find_slot (all_children, per_cu, INSERT);
10216 if (*slot != NULL)
10217 {
10218 /* This inclusion and its children have been processed. */
10219 return;
10220 }
10221
10222 *slot = per_cu;
10223 /* Only add a CU if it has a symbol table. */
43f3e411
DE
10224 cust = get_compunit_symtab (per_cu);
10225 if (cust != NULL)
ec94af83
DE
10226 {
10227 /* If this is a type unit only add its symbol table if we haven't
10228 seen it yet (type unit per_cu's can share symtabs). */
10229 if (per_cu->is_debug_types)
10230 {
43f3e411 10231 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
10232 if (*slot == NULL)
10233 {
43f3e411 10234 *slot = cust;
4c39bc03 10235 result->push_back (cust);
43f3e411
DE
10236 if (cust->user == NULL)
10237 cust->user = immediate_parent;
ec94af83
DE
10238 }
10239 }
10240 else
f9125b6c 10241 {
4c39bc03 10242 result->push_back (cust);
43f3e411
DE
10243 if (cust->user == NULL)
10244 cust->user = immediate_parent;
f9125b6c 10245 }
ec94af83 10246 }
95554aad
TT
10247
10248 for (ix = 0;
796a7ff8 10249 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 10250 ++ix)
ec94af83
DE
10251 {
10252 recursively_compute_inclusions (result, all_children,
43f3e411 10253 all_type_symtabs, iter, cust);
ec94af83 10254 }
95554aad
TT
10255}
10256
43f3e411 10257/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
10258 PER_CU. */
10259
10260static void
43f3e411 10261compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 10262{
f4dc4d17
DE
10263 gdb_assert (! per_cu->is_debug_types);
10264
796a7ff8 10265 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
10266 {
10267 int ix, len;
ec94af83 10268 struct dwarf2_per_cu_data *per_cu_iter;
4c39bc03 10269 std::vector<compunit_symtab *> result_symtabs;
ec94af83 10270 htab_t all_children, all_type_symtabs;
43f3e411 10271 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
10272
10273 /* If we don't have a symtab, we can just skip this case. */
43f3e411 10274 if (cust == NULL)
95554aad
TT
10275 return;
10276
10277 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10278 NULL, xcalloc, xfree);
ec94af83
DE
10279 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10280 NULL, xcalloc, xfree);
95554aad
TT
10281
10282 for (ix = 0;
796a7ff8 10283 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 10284 ix, per_cu_iter);
95554aad 10285 ++ix)
ec94af83
DE
10286 {
10287 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 10288 all_type_symtabs, per_cu_iter,
43f3e411 10289 cust);
ec94af83 10290 }
95554aad 10291
ec94af83 10292 /* Now we have a transitive closure of all the included symtabs. */
4c39bc03 10293 len = result_symtabs.size ();
43f3e411 10294 cust->includes
ed2dc618 10295 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
8d749320 10296 struct compunit_symtab *, len + 1);
4c39bc03
TT
10297 memcpy (cust->includes, result_symtabs.data (),
10298 len * sizeof (compunit_symtab *));
43f3e411 10299 cust->includes[len] = NULL;
95554aad 10300
95554aad 10301 htab_delete (all_children);
ec94af83 10302 htab_delete (all_type_symtabs);
95554aad
TT
10303 }
10304}
10305
10306/* Compute the 'includes' field for the symtabs of all the CUs we just
10307 read. */
10308
10309static void
ed2dc618 10310process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
95554aad 10311{
71b73764 10312 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
f4dc4d17
DE
10313 {
10314 if (! iter->is_debug_types)
43f3e411 10315 compute_compunit_symtab_includes (iter);
f4dc4d17 10316 }
95554aad 10317
c5d0225d 10318 dwarf2_per_objfile->just_read_cus.clear ();
95554aad
TT
10319}
10320
9cdd5dbd 10321/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
10322 already been loaded into memory. */
10323
10324static void
95554aad
TT
10325process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10326 enum language pretend_language)
10b3939b 10327{
10b3939b 10328 struct dwarf2_cu *cu = per_cu->cu;
ed2dc618
SM
10329 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10330 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 10331 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 10332 CORE_ADDR lowpc, highpc;
43f3e411 10333 struct compunit_symtab *cust;
10b3939b 10334 CORE_ADDR baseaddr;
4359dff1 10335 struct block *static_block;
3e29f34a 10336 CORE_ADDR addr;
10b3939b
DJ
10337
10338 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10339
c89b44cd
TT
10340 /* Clear the list here in case something was left over. */
10341 cu->method_list.clear ();
10b3939b 10342
95554aad
TT
10343 cu->language = pretend_language;
10344 cu->language_defn = language_def (cu->language);
10345
c906108c 10346 /* Do line number decoding in read_file_scope () */
10b3939b 10347 process_die (cu->dies, cu);
c906108c 10348
a766d390
DE
10349 /* For now fudge the Go package. */
10350 if (cu->language == language_go)
10351 fixup_go_packaging (cu);
10352
3da10d80
KS
10353 /* Now that we have processed all the DIEs in the CU, all the types
10354 should be complete, and it should now be safe to compute all of the
10355 physnames. */
10356 compute_delayed_physnames (cu);
3da10d80 10357
c9317f21
TT
10358 if (cu->language == language_rust)
10359 rust_union_quirks (cu);
10360
fae299cd
DC
10361 /* Some compilers don't define a DW_AT_high_pc attribute for the
10362 compilation unit. If the DW_AT_high_pc is missing, synthesize
10363 it, by scanning the DIE's below the compilation unit. */
10b3939b 10364 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 10365
3e29f34a 10366 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
804d2729 10367 static_block = cu->builder->end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
10368
10369 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10370 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10371 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10372 addrmap to help ensure it has an accurate map of pc values belonging to
10373 this comp unit. */
10374 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10375
804d2729
TT
10376 cust = cu->builder->end_symtab_from_static_block (static_block,
10377 SECT_OFF_TEXT (objfile),
10378 0);
c906108c 10379
43f3e411 10380 if (cust != NULL)
c906108c 10381 {
df15bd07 10382 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 10383
8be455d7
JK
10384 /* Set symtab language to language from DW_AT_language. If the
10385 compilation is from a C file generated by language preprocessors, do
10386 not set the language if it was already deduced by start_subfile. */
43f3e411 10387 if (!(cu->language == language_c
40e3ad0e 10388 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 10389 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
10390
10391 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10392 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
10393 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10394 there were bugs in prologue debug info, fixed later in GCC-4.5
10395 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
10396
10397 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10398 needed, it would be wrong due to missing DW_AT_producer there.
10399
10400 Still one can confuse GDB by using non-standard GCC compilation
10401 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10402 */
ab260dad 10403 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 10404 cust->locations_valid = 1;
e0d00bc7
JK
10405
10406 if (gcc_4_minor >= 5)
43f3e411 10407 cust->epilogue_unwind_valid = 1;
96408a79 10408
43f3e411 10409 cust->call_site_htab = cu->call_site_htab;
c906108c 10410 }
9291a0cd
TT
10411
10412 if (dwarf2_per_objfile->using_index)
43f3e411 10413 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
10414 else
10415 {
10416 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 10417 pst->compunit_symtab = cust;
9291a0cd
TT
10418 pst->readin = 1;
10419 }
c906108c 10420
95554aad 10421 /* Push it for inclusion processing later. */
c5d0225d 10422 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
804d2729
TT
10423
10424 /* Not needed any more. */
10425 cu->builder.reset ();
f4dc4d17 10426}
45cfd468 10427
f4dc4d17
DE
10428/* Generate full symbol information for type unit PER_CU, whose DIEs have
10429 already been loaded into memory. */
10430
10431static void
10432process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10433 enum language pretend_language)
10434{
10435 struct dwarf2_cu *cu = per_cu->cu;
ed2dc618
SM
10436 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10437 struct objfile *objfile = dwarf2_per_objfile->objfile;
43f3e411 10438 struct compunit_symtab *cust;
0186c6a7
DE
10439 struct signatured_type *sig_type;
10440
10441 gdb_assert (per_cu->is_debug_types);
10442 sig_type = (struct signatured_type *) per_cu;
f4dc4d17 10443
c89b44cd
TT
10444 /* Clear the list here in case something was left over. */
10445 cu->method_list.clear ();
f4dc4d17 10446
f4dc4d17
DE
10447 cu->language = pretend_language;
10448 cu->language_defn = language_def (cu->language);
10449
10450 /* The symbol tables are set up in read_type_unit_scope. */
10451 process_die (cu->dies, cu);
10452
10453 /* For now fudge the Go package. */
10454 if (cu->language == language_go)
10455 fixup_go_packaging (cu);
10456
10457 /* Now that we have processed all the DIEs in the CU, all the types
10458 should be complete, and it should now be safe to compute all of the
10459 physnames. */
10460 compute_delayed_physnames (cu);
f4dc4d17 10461
c9317f21
TT
10462 if (cu->language == language_rust)
10463 rust_union_quirks (cu);
10464
f4dc4d17
DE
10465 /* TUs share symbol tables.
10466 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
10467 of it with end_expandable_symtab. Otherwise, complete the addition of
10468 this TU's symbols to the existing symtab. */
43f3e411 10469 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 10470 {
804d2729 10471 cust = cu->builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
43f3e411 10472 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 10473
43f3e411 10474 if (cust != NULL)
f4dc4d17
DE
10475 {
10476 /* Set symtab language to language from DW_AT_language. If the
10477 compilation is from a C file generated by language preprocessors,
10478 do not set the language if it was already deduced by
10479 start_subfile. */
43f3e411
DE
10480 if (!(cu->language == language_c
10481 && COMPUNIT_FILETABS (cust)->language != language_c))
10482 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
10483 }
10484 }
10485 else
10486 {
804d2729 10487 cu->builder->augment_type_symtab ();
43f3e411 10488 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
10489 }
10490
10491 if (dwarf2_per_objfile->using_index)
43f3e411 10492 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
10493 else
10494 {
10495 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 10496 pst->compunit_symtab = cust;
f4dc4d17 10497 pst->readin = 1;
45cfd468 10498 }
804d2729
TT
10499
10500 /* Not needed any more. */
10501 cu->builder.reset ();
c906108c
SS
10502}
10503
95554aad
TT
10504/* Process an imported unit DIE. */
10505
10506static void
10507process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10508{
10509 struct attribute *attr;
10510
f4dc4d17
DE
10511 /* For now we don't handle imported units in type units. */
10512 if (cu->per_cu->is_debug_types)
10513 {
10514 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10515 " supported in type units [in module %s]"),
518817b3 10516 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
f4dc4d17
DE
10517 }
10518
95554aad
TT
10519 attr = dwarf2_attr (die, DW_AT_import, cu);
10520 if (attr != NULL)
10521 {
9c541725
PA
10522 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10523 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10524 dwarf2_per_cu_data *per_cu
e3b94546 10525 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
518817b3 10526 cu->per_cu->dwarf2_per_objfile);
95554aad 10527
69d751e3 10528 /* If necessary, add it to the queue and load its DIEs. */
95554aad 10529 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
58f0c718 10530 load_full_comp_unit (per_cu, false, cu->language);
95554aad 10531
796a7ff8 10532 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
10533 per_cu);
10534 }
10535}
10536
4c8aa72d
PA
10537/* RAII object that represents a process_die scope: i.e.,
10538 starts/finishes processing a DIE. */
10539class process_die_scope
adde2bff 10540{
4c8aa72d
PA
10541public:
10542 process_die_scope (die_info *die, dwarf2_cu *cu)
10543 : m_die (die), m_cu (cu)
10544 {
10545 /* We should only be processing DIEs not already in process. */
10546 gdb_assert (!m_die->in_process);
10547 m_die->in_process = true;
10548 }
8c3cb9fa 10549
4c8aa72d
PA
10550 ~process_die_scope ()
10551 {
10552 m_die->in_process = false;
10553
10554 /* If we're done processing the DIE for the CU that owns the line
10555 header, we don't need the line header anymore. */
10556 if (m_cu->line_header_die_owner == m_die)
10557 {
10558 delete m_cu->line_header;
10559 m_cu->line_header = NULL;
10560 m_cu->line_header_die_owner = NULL;
10561 }
10562 }
10563
10564private:
10565 die_info *m_die;
10566 dwarf2_cu *m_cu;
10567};
adde2bff 10568
c906108c
SS
10569/* Process a die and its children. */
10570
10571static void
e7c27a73 10572process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10573{
4c8aa72d 10574 process_die_scope scope (die, cu);
adde2bff 10575
c906108c
SS
10576 switch (die->tag)
10577 {
10578 case DW_TAG_padding:
10579 break;
10580 case DW_TAG_compile_unit:
95554aad 10581 case DW_TAG_partial_unit:
e7c27a73 10582 read_file_scope (die, cu);
c906108c 10583 break;
348e048f
DE
10584 case DW_TAG_type_unit:
10585 read_type_unit_scope (die, cu);
10586 break;
c906108c 10587 case DW_TAG_subprogram:
c906108c 10588 case DW_TAG_inlined_subroutine:
edb3359d 10589 read_func_scope (die, cu);
c906108c
SS
10590 break;
10591 case DW_TAG_lexical_block:
14898363
L
10592 case DW_TAG_try_block:
10593 case DW_TAG_catch_block:
e7c27a73 10594 read_lexical_block_scope (die, cu);
c906108c 10595 break;
216f72a1 10596 case DW_TAG_call_site:
96408a79
SA
10597 case DW_TAG_GNU_call_site:
10598 read_call_site_scope (die, cu);
10599 break;
c906108c 10600 case DW_TAG_class_type:
680b30c7 10601 case DW_TAG_interface_type:
c906108c
SS
10602 case DW_TAG_structure_type:
10603 case DW_TAG_union_type:
134d01f1 10604 process_structure_scope (die, cu);
c906108c
SS
10605 break;
10606 case DW_TAG_enumeration_type:
134d01f1 10607 process_enumeration_scope (die, cu);
c906108c 10608 break;
134d01f1 10609
f792889a
DJ
10610 /* These dies have a type, but processing them does not create
10611 a symbol or recurse to process the children. Therefore we can
10612 read them on-demand through read_type_die. */
c906108c 10613 case DW_TAG_subroutine_type:
72019c9c 10614 case DW_TAG_set_type:
c906108c 10615 case DW_TAG_array_type:
c906108c 10616 case DW_TAG_pointer_type:
c906108c 10617 case DW_TAG_ptr_to_member_type:
c906108c 10618 case DW_TAG_reference_type:
4297a3f0 10619 case DW_TAG_rvalue_reference_type:
c906108c 10620 case DW_TAG_string_type:
c906108c 10621 break;
134d01f1 10622
c906108c 10623 case DW_TAG_base_type:
a02abb62 10624 case DW_TAG_subrange_type:
cb249c71 10625 case DW_TAG_typedef:
134d01f1
DJ
10626 /* Add a typedef symbol for the type definition, if it has a
10627 DW_AT_name. */
f792889a 10628 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 10629 break;
c906108c 10630 case DW_TAG_common_block:
e7c27a73 10631 read_common_block (die, cu);
c906108c
SS
10632 break;
10633 case DW_TAG_common_inclusion:
10634 break;
d9fa45fe 10635 case DW_TAG_namespace:
9068261f 10636 cu->processing_has_namespace_info = true;
e7c27a73 10637 read_namespace (die, cu);
d9fa45fe 10638 break;
5d7cb8df 10639 case DW_TAG_module:
9068261f 10640 cu->processing_has_namespace_info = true;
5d7cb8df
JK
10641 read_module (die, cu);
10642 break;
d9fa45fe 10643 case DW_TAG_imported_declaration:
9068261f 10644 cu->processing_has_namespace_info = true;
74921315
KS
10645 if (read_namespace_alias (die, cu))
10646 break;
86a73007
TT
10647 /* The declaration is not a global namespace alias. */
10648 /* Fall through. */
d9fa45fe 10649 case DW_TAG_imported_module:
9068261f 10650 cu->processing_has_namespace_info = true;
27aa8d6a
SW
10651 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10652 || cu->language != language_fortran))
b98664d3 10653 complaint (_("Tag '%s' has unexpected children"),
27aa8d6a
SW
10654 dwarf_tag_name (die->tag));
10655 read_import_statement (die, cu);
d9fa45fe 10656 break;
95554aad
TT
10657
10658 case DW_TAG_imported_unit:
10659 process_imported_unit_die (die, cu);
10660 break;
10661
71a3c369
TT
10662 case DW_TAG_variable:
10663 read_variable (die, cu);
10664 break;
10665
c906108c 10666 default:
e7c27a73 10667 new_symbol (die, NULL, cu);
c906108c
SS
10668 break;
10669 }
10670}
ca69b9e6
DE
10671\f
10672/* DWARF name computation. */
c906108c 10673
94af9270
KS
10674/* A helper function for dwarf2_compute_name which determines whether DIE
10675 needs to have the name of the scope prepended to the name listed in the
10676 die. */
10677
10678static int
10679die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10680{
1c809c68
TT
10681 struct attribute *attr;
10682
94af9270
KS
10683 switch (die->tag)
10684 {
10685 case DW_TAG_namespace:
10686 case DW_TAG_typedef:
10687 case DW_TAG_class_type:
10688 case DW_TAG_interface_type:
10689 case DW_TAG_structure_type:
10690 case DW_TAG_union_type:
10691 case DW_TAG_enumeration_type:
10692 case DW_TAG_enumerator:
10693 case DW_TAG_subprogram:
08a76f8a 10694 case DW_TAG_inlined_subroutine:
94af9270 10695 case DW_TAG_member:
74921315 10696 case DW_TAG_imported_declaration:
94af9270
KS
10697 return 1;
10698
10699 case DW_TAG_variable:
c2b0a229 10700 case DW_TAG_constant:
94af9270
KS
10701 /* We only need to prefix "globally" visible variables. These include
10702 any variable marked with DW_AT_external or any variable that
10703 lives in a namespace. [Variables in anonymous namespaces
10704 require prefixing, but they are not DW_AT_external.] */
10705
10706 if (dwarf2_attr (die, DW_AT_specification, cu))
10707 {
10708 struct dwarf2_cu *spec_cu = cu;
9a619af0 10709
94af9270
KS
10710 return die_needs_namespace (die_specification (die, &spec_cu),
10711 spec_cu);
10712 }
10713
1c809c68 10714 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
10715 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10716 && die->parent->tag != DW_TAG_module)
1c809c68
TT
10717 return 0;
10718 /* A variable in a lexical block of some kind does not need a
10719 namespace, even though in C++ such variables may be external
10720 and have a mangled name. */
10721 if (die->parent->tag == DW_TAG_lexical_block
10722 || die->parent->tag == DW_TAG_try_block
1054b214
TT
10723 || die->parent->tag == DW_TAG_catch_block
10724 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
10725 return 0;
10726 return 1;
94af9270
KS
10727
10728 default:
10729 return 0;
10730 }
10731}
10732
73b9be8b
KS
10733/* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10734 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10735 defined for the given DIE. */
10736
10737static struct attribute *
10738dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10739{
10740 struct attribute *attr;
10741
10742 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10743 if (attr == NULL)
10744 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10745
10746 return attr;
10747}
10748
10749/* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10750 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10751 defined for the given DIE. */
10752
10753static const char *
10754dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10755{
10756 const char *linkage_name;
10757
10758 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10759 if (linkage_name == NULL)
10760 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10761
10762 return linkage_name;
10763}
10764
94af9270 10765/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390 10766 compute the physname for the object, which include a method's:
9c37b5ae 10767 - formal parameters (C++),
a766d390 10768 - receiver type (Go),
a766d390
DE
10769
10770 The term "physname" is a bit confusing.
10771 For C++, for example, it is the demangled name.
10772 For Go, for example, it's the mangled name.
94af9270 10773
af6b7be1
JB
10774 For Ada, return the DIE's linkage name rather than the fully qualified
10775 name. PHYSNAME is ignored..
10776
94af9270
KS
10777 The result is allocated on the objfile_obstack and canonicalized. */
10778
10779static const char *
15d034d0
TT
10780dwarf2_compute_name (const char *name,
10781 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
10782 int physname)
10783{
518817b3 10784 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
bb5ed363 10785
94af9270
KS
10786 if (name == NULL)
10787 name = dwarf2_name (die, cu);
10788
2ee7123e
DE
10789 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10790 but otherwise compute it by typename_concat inside GDB.
10791 FIXME: Actually this is not really true, or at least not always true.
10792 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
5e2db402 10793 Fortran names because there is no mangling standard. So new_symbol
2ee7123e
DE
10794 will set the demangled name to the result of dwarf2_full_name, and it is
10795 the demangled name that GDB uses if it exists. */
f55ee35c
JK
10796 if (cu->language == language_ada
10797 || (cu->language == language_fortran && physname))
10798 {
10799 /* For Ada unit, we prefer the linkage name over the name, as
10800 the former contains the exported name, which the user expects
10801 to be able to reference. Ideally, we want the user to be able
10802 to reference this entity using either natural or linkage name,
10803 but we haven't started looking at this enhancement yet. */
73b9be8b 10804 const char *linkage_name = dw2_linkage_name (die, cu);
f55ee35c 10805
2ee7123e
DE
10806 if (linkage_name != NULL)
10807 return linkage_name;
f55ee35c
JK
10808 }
10809
94af9270
KS
10810 /* These are the only languages we know how to qualify names in. */
10811 if (name != NULL
9c37b5ae 10812 && (cu->language == language_cplus
c44af4eb
TT
10813 || cu->language == language_fortran || cu->language == language_d
10814 || cu->language == language_rust))
94af9270
KS
10815 {
10816 if (die_needs_namespace (die, cu))
10817 {
0d5cff50 10818 const char *prefix;
34a68019 10819 const char *canonical_name = NULL;
94af9270 10820
d7e74731
PA
10821 string_file buf;
10822
94af9270 10823 prefix = determine_prefix (die, cu);
94af9270
KS
10824 if (*prefix != '\0')
10825 {
f55ee35c
JK
10826 char *prefixed_name = typename_concat (NULL, prefix, name,
10827 physname, cu);
9a619af0 10828
d7e74731 10829 buf.puts (prefixed_name);
94af9270
KS
10830 xfree (prefixed_name);
10831 }
10832 else
d7e74731 10833 buf.puts (name);
94af9270 10834
98bfdba5
PA
10835 /* Template parameters may be specified in the DIE's DW_AT_name, or
10836 as children with DW_TAG_template_type_param or
10837 DW_TAG_value_type_param. If the latter, add them to the name
10838 here. If the name already has template parameters, then
10839 skip this step; some versions of GCC emit both, and
10840 it is more efficient to use the pre-computed name.
10841
10842 Something to keep in mind about this process: it is very
10843 unlikely, or in some cases downright impossible, to produce
10844 something that will match the mangled name of a function.
10845 If the definition of the function has the same debug info,
10846 we should be able to match up with it anyway. But fallbacks
10847 using the minimal symbol, for instance to find a method
10848 implemented in a stripped copy of libstdc++, will not work.
10849 If we do not have debug info for the definition, we will have to
10850 match them up some other way.
10851
10852 When we do name matching there is a related problem with function
10853 templates; two instantiated function templates are allowed to
10854 differ only by their return types, which we do not add here. */
10855
10856 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10857 {
10858 struct attribute *attr;
10859 struct die_info *child;
10860 int first = 1;
10861
10862 die->building_fullname = 1;
10863
10864 for (child = die->child; child != NULL; child = child->sibling)
10865 {
10866 struct type *type;
12df843f 10867 LONGEST value;
d521ce57 10868 const gdb_byte *bytes;
98bfdba5
PA
10869 struct dwarf2_locexpr_baton *baton;
10870 struct value *v;
10871
10872 if (child->tag != DW_TAG_template_type_param
10873 && child->tag != DW_TAG_template_value_param)
10874 continue;
10875
10876 if (first)
10877 {
d7e74731 10878 buf.puts ("<");
98bfdba5
PA
10879 first = 0;
10880 }
10881 else
d7e74731 10882 buf.puts (", ");
98bfdba5
PA
10883
10884 attr = dwarf2_attr (child, DW_AT_type, cu);
10885 if (attr == NULL)
10886 {
b98664d3 10887 complaint (_("template parameter missing DW_AT_type"));
d7e74731 10888 buf.puts ("UNKNOWN_TYPE");
98bfdba5
PA
10889 continue;
10890 }
10891 type = die_type (child, cu);
10892
10893 if (child->tag == DW_TAG_template_type_param)
10894 {
c1ec8cea
TT
10895 c_print_type (type, "", &buf, -1, 0, cu->language,
10896 &type_print_raw_options);
98bfdba5
PA
10897 continue;
10898 }
10899
10900 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10901 if (attr == NULL)
10902 {
b98664d3 10903 complaint (_("template parameter missing "
3e43a32a 10904 "DW_AT_const_value"));
d7e74731 10905 buf.puts ("UNKNOWN_VALUE");
98bfdba5
PA
10906 continue;
10907 }
10908
10909 dwarf2_const_value_attr (attr, type, name,
10910 &cu->comp_unit_obstack, cu,
10911 &value, &bytes, &baton);
10912
10913 if (TYPE_NOSIGN (type))
10914 /* GDB prints characters as NUMBER 'CHAR'. If that's
10915 changed, this can use value_print instead. */
d7e74731 10916 c_printchar (value, type, &buf);
98bfdba5
PA
10917 else
10918 {
10919 struct value_print_options opts;
10920
10921 if (baton != NULL)
10922 v = dwarf2_evaluate_loc_desc (type, NULL,
10923 baton->data,
10924 baton->size,
10925 baton->per_cu);
10926 else if (bytes != NULL)
10927 {
10928 v = allocate_value (type);
10929 memcpy (value_contents_writeable (v), bytes,
10930 TYPE_LENGTH (type));
10931 }
10932 else
10933 v = value_from_longest (type, value);
10934
3e43a32a
MS
10935 /* Specify decimal so that we do not depend on
10936 the radix. */
98bfdba5
PA
10937 get_formatted_print_options (&opts, 'd');
10938 opts.raw = 1;
d7e74731 10939 value_print (v, &buf, &opts);
98bfdba5 10940 release_value (v);
98bfdba5
PA
10941 }
10942 }
10943
10944 die->building_fullname = 0;
10945
10946 if (!first)
10947 {
10948 /* Close the argument list, with a space if necessary
10949 (nested templates). */
d7e74731
PA
10950 if (!buf.empty () && buf.string ().back () == '>')
10951 buf.puts (" >");
98bfdba5 10952 else
d7e74731 10953 buf.puts (">");
98bfdba5
PA
10954 }
10955 }
10956
9c37b5ae 10957 /* For C++ methods, append formal parameter type
94af9270 10958 information, if PHYSNAME. */
6e70227d 10959
94af9270 10960 if (physname && die->tag == DW_TAG_subprogram
9c37b5ae 10961 && cu->language == language_cplus)
94af9270
KS
10962 {
10963 struct type *type = read_type_die (die, cu);
10964
d7e74731 10965 c_type_print_args (type, &buf, 1, cu->language,
79d43c61 10966 &type_print_raw_options);
94af9270 10967
9c37b5ae 10968 if (cu->language == language_cplus)
94af9270 10969 {
60430eff
DJ
10970 /* Assume that an artificial first parameter is
10971 "this", but do not crash if it is not. RealView
10972 marks unnamed (and thus unused) parameters as
10973 artificial; there is no way to differentiate
10974 the two cases. */
94af9270
KS
10975 if (TYPE_NFIELDS (type) > 0
10976 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 10977 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
10978 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10979 0))))
d7e74731 10980 buf.puts (" const");
94af9270
KS
10981 }
10982 }
10983
d7e74731 10984 const std::string &intermediate_name = buf.string ();
94af9270
KS
10985
10986 if (cu->language == language_cplus)
34a68019 10987 canonical_name
322a8516 10988 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
34a68019
TT
10989 &objfile->per_bfd->storage_obstack);
10990
10991 /* If we only computed INTERMEDIATE_NAME, or if
10992 INTERMEDIATE_NAME is already canonical, then we need to
10993 copy it to the appropriate obstack. */
322a8516 10994 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
224c3ddb
SM
10995 name = ((const char *)
10996 obstack_copy0 (&objfile->per_bfd->storage_obstack,
322a8516
PA
10997 intermediate_name.c_str (),
10998 intermediate_name.length ()));
34a68019
TT
10999 else
11000 name = canonical_name;
94af9270
KS
11001 }
11002 }
11003
11004 return name;
11005}
11006
0114d602
DJ
11007/* Return the fully qualified name of DIE, based on its DW_AT_name.
11008 If scope qualifiers are appropriate they will be added. The result
34a68019 11009 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
11010 not have a name. NAME may either be from a previous call to
11011 dwarf2_name or NULL.
11012
9c37b5ae 11013 The output string will be canonicalized (if C++). */
0114d602
DJ
11014
11015static const char *
15d034d0 11016dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 11017{
94af9270
KS
11018 return dwarf2_compute_name (name, die, cu, 0);
11019}
0114d602 11020
94af9270
KS
11021/* Construct a physname for the given DIE in CU. NAME may either be
11022 from a previous call to dwarf2_name or NULL. The result will be
11023 allocated on the objfile_objstack or NULL if the DIE does not have a
11024 name.
0114d602 11025
9c37b5ae 11026 The output string will be canonicalized (if C++). */
0114d602 11027
94af9270 11028static const char *
15d034d0 11029dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 11030{
518817b3 11031 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
900e11f9 11032 const char *retval, *mangled = NULL, *canon = NULL;
900e11f9
JK
11033 int need_copy = 1;
11034
11035 /* In this case dwarf2_compute_name is just a shortcut not building anything
11036 on its own. */
11037 if (!die_needs_namespace (die, cu))
11038 return dwarf2_compute_name (name, die, cu, 1);
11039
73b9be8b 11040 mangled = dw2_linkage_name (die, cu);
900e11f9 11041
e98c9e7c
TT
11042 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11043 See https://github.com/rust-lang/rust/issues/32925. */
11044 if (cu->language == language_rust && mangled != NULL
11045 && strchr (mangled, '{') != NULL)
11046 mangled = NULL;
11047
900e11f9
JK
11048 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11049 has computed. */
791afaa2 11050 gdb::unique_xmalloc_ptr<char> demangled;
7d45c7c3 11051 if (mangled != NULL)
900e11f9 11052 {
900e11f9 11053
59cc4834
JB
11054 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11055 {
11056 /* Do nothing (do not demangle the symbol name). */
11057 }
11058 else if (cu->language == language_go)
a766d390 11059 {
5e2db402
TT
11060 /* This is a lie, but we already lie to the caller new_symbol.
11061 new_symbol assumes we return the mangled name.
a766d390 11062 This just undoes that lie until things are cleaned up. */
a766d390
DE
11063 }
11064 else
11065 {
0eb876f5
JB
11066 /* Use DMGL_RET_DROP for C++ template functions to suppress
11067 their return type. It is easier for GDB users to search
11068 for such functions as `name(params)' than `long name(params)'.
11069 In such case the minimal symbol names do not match the full
11070 symbol names but for template functions there is never a need
11071 to look up their definition from their declaration so
11072 the only disadvantage remains the minimal symbol variant
11073 `long name(params)' does not have the proper inferior type. */
791afaa2
TT
11074 demangled.reset (gdb_demangle (mangled,
11075 (DMGL_PARAMS | DMGL_ANSI
11076 | DMGL_RET_DROP)));
a766d390 11077 }
900e11f9 11078 if (demangled)
791afaa2 11079 canon = demangled.get ();
900e11f9
JK
11080 else
11081 {
11082 canon = mangled;
11083 need_copy = 0;
11084 }
11085 }
11086
11087 if (canon == NULL || check_physname)
11088 {
11089 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11090
11091 if (canon != NULL && strcmp (physname, canon) != 0)
11092 {
11093 /* It may not mean a bug in GDB. The compiler could also
11094 compute DW_AT_linkage_name incorrectly. But in such case
11095 GDB would need to be bug-to-bug compatible. */
11096
b98664d3 11097 complaint (_("Computed physname <%s> does not match demangled <%s> "
9d8780f0
SM
11098 "(from linkage <%s>) - DIE at %s [in module %s]"),
11099 physname, canon, mangled, sect_offset_str (die->sect_off),
4262abfb 11100 objfile_name (objfile));
900e11f9
JK
11101
11102 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11103 is available here - over computed PHYSNAME. It is safer
11104 against both buggy GDB and buggy compilers. */
11105
11106 retval = canon;
11107 }
11108 else
11109 {
11110 retval = physname;
11111 need_copy = 0;
11112 }
11113 }
11114 else
11115 retval = canon;
11116
11117 if (need_copy)
224c3ddb
SM
11118 retval = ((const char *)
11119 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11120 retval, strlen (retval)));
900e11f9 11121
900e11f9 11122 return retval;
0114d602
DJ
11123}
11124
74921315
KS
11125/* Inspect DIE in CU for a namespace alias. If one exists, record
11126 a new symbol for it.
11127
11128 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11129
11130static int
11131read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11132{
11133 struct attribute *attr;
11134
11135 /* If the die does not have a name, this is not a namespace
11136 alias. */
11137 attr = dwarf2_attr (die, DW_AT_name, cu);
11138 if (attr != NULL)
11139 {
11140 int num;
11141 struct die_info *d = die;
11142 struct dwarf2_cu *imported_cu = cu;
11143
11144 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11145 keep inspecting DIEs until we hit the underlying import. */
11146#define MAX_NESTED_IMPORTED_DECLARATIONS 100
11147 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11148 {
11149 attr = dwarf2_attr (d, DW_AT_import, cu);
11150 if (attr == NULL)
11151 break;
11152
11153 d = follow_die_ref (d, attr, &imported_cu);
11154 if (d->tag != DW_TAG_imported_declaration)
11155 break;
11156 }
11157
11158 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11159 {
b98664d3 11160 complaint (_("DIE at %s has too many recursively imported "
9d8780f0 11161 "declarations"), sect_offset_str (d->sect_off));
74921315
KS
11162 return 0;
11163 }
11164
11165 if (attr != NULL)
11166 {
11167 struct type *type;
9c541725 11168 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
74921315 11169
9c541725 11170 type = get_die_type_at_offset (sect_off, cu->per_cu);
74921315
KS
11171 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11172 {
11173 /* This declaration is a global namespace alias. Add
11174 a symbol for it whose type is the aliased namespace. */
11175 new_symbol (die, type, cu);
11176 return 1;
11177 }
11178 }
11179 }
11180
11181 return 0;
11182}
11183
22cee43f 11184/* Return the using directives repository (global or local?) to use in the
804d2729 11185 current context for CU.
22cee43f
PMR
11186
11187 For Ada, imported declarations can materialize renamings, which *may* be
11188 global. However it is impossible (for now?) in DWARF to distinguish
11189 "external" imported declarations and "static" ones. As all imported
11190 declarations seem to be static in all other languages, make them all CU-wide
11191 global only in Ada. */
11192
11193static struct using_direct **
804d2729 11194using_directives (struct dwarf2_cu *cu)
22cee43f 11195{
804d2729
TT
11196 if (cu->language == language_ada && cu->builder->outermost_context_p ())
11197 return cu->builder->get_global_using_directives ();
22cee43f 11198 else
804d2729 11199 return cu->builder->get_local_using_directives ();
22cee43f
PMR
11200}
11201
27aa8d6a
SW
11202/* Read the import statement specified by the given die and record it. */
11203
11204static void
11205read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11206{
518817b3 11207 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
27aa8d6a 11208 struct attribute *import_attr;
32019081 11209 struct die_info *imported_die, *child_die;
de4affc9 11210 struct dwarf2_cu *imported_cu;
27aa8d6a 11211 const char *imported_name;
794684b6 11212 const char *imported_name_prefix;
13387711
SW
11213 const char *canonical_name;
11214 const char *import_alias;
11215 const char *imported_declaration = NULL;
794684b6 11216 const char *import_prefix;
eb1e02fd 11217 std::vector<const char *> excludes;
13387711 11218
27aa8d6a
SW
11219 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11220 if (import_attr == NULL)
11221 {
b98664d3 11222 complaint (_("Tag '%s' has no DW_AT_import"),
27aa8d6a
SW
11223 dwarf_tag_name (die->tag));
11224 return;
11225 }
11226
de4affc9
CC
11227 imported_cu = cu;
11228 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11229 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
11230 if (imported_name == NULL)
11231 {
11232 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11233
11234 The import in the following code:
11235 namespace A
11236 {
11237 typedef int B;
11238 }
11239
11240 int main ()
11241 {
11242 using A::B;
11243 B b;
11244 return b;
11245 }
11246
11247 ...
11248 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11249 <52> DW_AT_decl_file : 1
11250 <53> DW_AT_decl_line : 6
11251 <54> DW_AT_import : <0x75>
11252 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11253 <59> DW_AT_name : B
11254 <5b> DW_AT_decl_file : 1
11255 <5c> DW_AT_decl_line : 2
11256 <5d> DW_AT_type : <0x6e>
11257 ...
11258 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11259 <76> DW_AT_byte_size : 4
11260 <77> DW_AT_encoding : 5 (signed)
11261
11262 imports the wrong die ( 0x75 instead of 0x58 ).
11263 This case will be ignored until the gcc bug is fixed. */
11264 return;
11265 }
11266
82856980
SW
11267 /* Figure out the local name after import. */
11268 import_alias = dwarf2_name (die, cu);
27aa8d6a 11269
794684b6
SW
11270 /* Figure out where the statement is being imported to. */
11271 import_prefix = determine_prefix (die, cu);
11272
11273 /* Figure out what the scope of the imported die is and prepend it
11274 to the name of the imported die. */
de4affc9 11275 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 11276
f55ee35c
JK
11277 if (imported_die->tag != DW_TAG_namespace
11278 && imported_die->tag != DW_TAG_module)
794684b6 11279 {
13387711
SW
11280 imported_declaration = imported_name;
11281 canonical_name = imported_name_prefix;
794684b6 11282 }
13387711 11283 else if (strlen (imported_name_prefix) > 0)
12aaed36 11284 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
11285 imported_name_prefix,
11286 (cu->language == language_d ? "." : "::"),
11287 imported_name, (char *) NULL);
13387711
SW
11288 else
11289 canonical_name = imported_name;
794684b6 11290
32019081
JK
11291 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11292 for (child_die = die->child; child_die && child_die->tag;
11293 child_die = sibling_die (child_die))
11294 {
11295 /* DWARF-4: A Fortran use statement with a “rename list” may be
11296 represented by an imported module entry with an import attribute
11297 referring to the module and owned entries corresponding to those
11298 entities that are renamed as part of being imported. */
11299
11300 if (child_die->tag != DW_TAG_imported_declaration)
11301 {
b98664d3 11302 complaint (_("child DW_TAG_imported_declaration expected "
9d8780f0
SM
11303 "- DIE at %s [in module %s]"),
11304 sect_offset_str (child_die->sect_off),
11305 objfile_name (objfile));
32019081
JK
11306 continue;
11307 }
11308
11309 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11310 if (import_attr == NULL)
11311 {
b98664d3 11312 complaint (_("Tag '%s' has no DW_AT_import"),
32019081
JK
11313 dwarf_tag_name (child_die->tag));
11314 continue;
11315 }
11316
11317 imported_cu = cu;
11318 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11319 &imported_cu);
11320 imported_name = dwarf2_name (imported_die, imported_cu);
11321 if (imported_name == NULL)
11322 {
b98664d3 11323 complaint (_("child DW_TAG_imported_declaration has unknown "
9d8780f0
SM
11324 "imported name - DIE at %s [in module %s]"),
11325 sect_offset_str (child_die->sect_off),
11326 objfile_name (objfile));
32019081
JK
11327 continue;
11328 }
11329
eb1e02fd 11330 excludes.push_back (imported_name);
32019081
JK
11331
11332 process_die (child_die, cu);
11333 }
11334
804d2729 11335 add_using_directive (using_directives (cu),
22cee43f
PMR
11336 import_prefix,
11337 canonical_name,
11338 import_alias,
11339 imported_declaration,
11340 excludes,
11341 0,
11342 &objfile->objfile_obstack);
27aa8d6a
SW
11343}
11344
5230b05a
WT
11345/* ICC<14 does not output the required DW_AT_declaration on incomplete
11346 types, but gives them a size of zero. Starting with version 14,
11347 ICC is compatible with GCC. */
11348
9068261f 11349static bool
5230b05a
WT
11350producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11351{
11352 if (!cu->checked_producer)
11353 check_producer (cu);
11354
11355 return cu->producer_is_icc_lt_14;
11356}
11357
eb77c9df
AB
11358/* ICC generates a DW_AT_type for C void functions. This was observed on
11359 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11360 which says that void functions should not have a DW_AT_type. */
11361
11362static bool
11363producer_is_icc (struct dwarf2_cu *cu)
11364{
11365 if (!cu->checked_producer)
11366 check_producer (cu);
11367
11368 return cu->producer_is_icc;
11369}
11370
1b80a9fa
JK
11371/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11372 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11373 this, it was first present in GCC release 4.3.0. */
11374
9068261f 11375static bool
1b80a9fa
JK
11376producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11377{
11378 if (!cu->checked_producer)
11379 check_producer (cu);
11380
11381 return cu->producer_is_gcc_lt_4_3;
11382}
11383
d721ba37
PA
11384static file_and_directory
11385find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9291a0cd 11386{
d721ba37
PA
11387 file_and_directory res;
11388
9291a0cd
TT
11389 /* Find the filename. Do not use dwarf2_name here, since the filename
11390 is not a source language identifier. */
d721ba37
PA
11391 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11392 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 11393
d721ba37
PA
11394 if (res.comp_dir == NULL
11395 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11396 && IS_ABSOLUTE_PATH (res.name))
9291a0cd 11397 {
d721ba37
PA
11398 res.comp_dir_storage = ldirname (res.name);
11399 if (!res.comp_dir_storage.empty ())
11400 res.comp_dir = res.comp_dir_storage.c_str ();
9291a0cd 11401 }
d721ba37 11402 if (res.comp_dir != NULL)
9291a0cd
TT
11403 {
11404 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11405 directory, get rid of it. */
d721ba37 11406 const char *cp = strchr (res.comp_dir, ':');
9291a0cd 11407
d721ba37
PA
11408 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11409 res.comp_dir = cp + 1;
9291a0cd
TT
11410 }
11411
d721ba37
PA
11412 if (res.name == NULL)
11413 res.name = "<unknown>";
11414
11415 return res;
9291a0cd
TT
11416}
11417
f4dc4d17
DE
11418/* Handle DW_AT_stmt_list for a compilation unit.
11419 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
11420 COMP_DIR is the compilation directory. LOWPC is passed to
11421 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
11422
11423static void
11424handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 11425 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 11426{
518817b3
SM
11427 struct dwarf2_per_objfile *dwarf2_per_objfile
11428 = cu->per_cu->dwarf2_per_objfile;
527f3840 11429 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 11430 struct attribute *attr;
527f3840
JK
11431 struct line_header line_header_local;
11432 hashval_t line_header_local_hash;
527f3840
JK
11433 void **slot;
11434 int decode_mapping;
2ab95328 11435
f4dc4d17
DE
11436 gdb_assert (! cu->per_cu->is_debug_types);
11437
2ab95328 11438 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
11439 if (attr == NULL)
11440 return;
11441
9c541725 11442 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
527f3840
JK
11443
11444 /* The line header hash table is only created if needed (it exists to
11445 prevent redundant reading of the line table for partial_units).
11446 If we're given a partial_unit, we'll need it. If we're given a
11447 compile_unit, then use the line header hash table if it's already
11448 created, but don't create one just yet. */
11449
11450 if (dwarf2_per_objfile->line_header_hash == NULL
11451 && die->tag == DW_TAG_partial_unit)
2ab95328 11452 {
527f3840
JK
11453 dwarf2_per_objfile->line_header_hash
11454 = htab_create_alloc_ex (127, line_header_hash_voidp,
11455 line_header_eq_voidp,
11456 free_line_header_voidp,
11457 &objfile->objfile_obstack,
11458 hashtab_obstack_allocate,
11459 dummy_obstack_deallocate);
11460 }
2ab95328 11461
9c541725 11462 line_header_local.sect_off = line_offset;
527f3840
JK
11463 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11464 line_header_local_hash = line_header_hash (&line_header_local);
11465 if (dwarf2_per_objfile->line_header_hash != NULL)
11466 {
11467 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11468 &line_header_local,
11469 line_header_local_hash, NO_INSERT);
11470
11471 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11472 is not present in *SLOT (since if there is something in *SLOT then
11473 it will be for a partial_unit). */
11474 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 11475 {
527f3840 11476 gdb_assert (*slot != NULL);
9a3c8263 11477 cu->line_header = (struct line_header *) *slot;
527f3840 11478 return;
dee91e82 11479 }
2ab95328 11480 }
527f3840
JK
11481
11482 /* dwarf_decode_line_header does not yet provide sufficient information.
11483 We always have to call also dwarf_decode_lines for it. */
fff8551c
PA
11484 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11485 if (lh == NULL)
527f3840 11486 return;
4c8aa72d
PA
11487
11488 cu->line_header = lh.release ();
11489 cu->line_header_die_owner = die;
527f3840
JK
11490
11491 if (dwarf2_per_objfile->line_header_hash == NULL)
11492 slot = NULL;
11493 else
11494 {
11495 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11496 &line_header_local,
11497 line_header_local_hash, INSERT);
11498 gdb_assert (slot != NULL);
11499 }
11500 if (slot != NULL && *slot == NULL)
11501 {
11502 /* This newly decoded line number information unit will be owned
11503 by line_header_hash hash table. */
11504 *slot = cu->line_header;
4c8aa72d 11505 cu->line_header_die_owner = NULL;
527f3840
JK
11506 }
11507 else
11508 {
11509 /* We cannot free any current entry in (*slot) as that struct line_header
11510 may be already used by multiple CUs. Create only temporary decoded
11511 line_header for this CU - it may happen at most once for each line
11512 number information unit. And if we're not using line_header_hash
11513 then this is what we want as well. */
11514 gdb_assert (die->tag != DW_TAG_partial_unit);
527f3840
JK
11515 }
11516 decode_mapping = (die->tag != DW_TAG_partial_unit);
11517 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11518 decode_mapping);
fff8551c 11519
2ab95328
TT
11520}
11521
95554aad 11522/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 11523
c906108c 11524static void
e7c27a73 11525read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11526{
518817b3
SM
11527 struct dwarf2_per_objfile *dwarf2_per_objfile
11528 = cu->per_cu->dwarf2_per_objfile;
dee91e82 11529 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 11530 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2acceee2 11531 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
11532 CORE_ADDR highpc = ((CORE_ADDR) 0);
11533 struct attribute *attr;
c906108c 11534 struct die_info *child_die;
e142c38c 11535 CORE_ADDR baseaddr;
6e70227d 11536
380618d6 11537 prepare_one_comp_unit (cu, die, cu->language);
e142c38c 11538 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 11539
fae299cd 11540 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
11541
11542 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11543 from finish_block. */
2acceee2 11544 if (lowpc == ((CORE_ADDR) -1))
c906108c 11545 lowpc = highpc;
3e29f34a 11546 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 11547
d721ba37 11548 file_and_directory fnd = find_file_and_directory (die, cu);
e1024ff1 11549
f4b8a18d
KW
11550 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11551 standardised yet. As a workaround for the language detection we fall
11552 back to the DW_AT_producer string. */
11553 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11554 cu->language = language_opencl;
11555
3019eac3
DE
11556 /* Similar hack for Go. */
11557 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11558 set_cu_language (DW_LANG_Go, cu);
11559
d721ba37 11560 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
3019eac3
DE
11561
11562 /* Decode line number information if present. We do this before
11563 processing child DIEs, so that the line header table is available
11564 for DW_AT_decl_file. */
d721ba37 11565 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
3019eac3
DE
11566
11567 /* Process all dies in compilation unit. */
11568 if (die->child != NULL)
11569 {
11570 child_die = die->child;
11571 while (child_die && child_die->tag)
11572 {
11573 process_die (child_die, cu);
11574 child_die = sibling_die (child_die);
11575 }
11576 }
11577
11578 /* Decode macro information, if present. Dwarf 2 macro information
11579 refers to information in the line number info statement program
11580 header, so we can only read it if we've read the header
11581 successfully. */
0af92d60
JK
11582 attr = dwarf2_attr (die, DW_AT_macros, cu);
11583 if (attr == NULL)
11584 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
3019eac3
DE
11585 if (attr && cu->line_header)
11586 {
11587 if (dwarf2_attr (die, DW_AT_macro_info, cu))
b98664d3 11588 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
3019eac3 11589
43f3e411 11590 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
11591 }
11592 else
11593 {
11594 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11595 if (attr && cu->line_header)
11596 {
11597 unsigned int macro_offset = DW_UNSND (attr);
11598
43f3e411 11599 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
11600 }
11601 }
3019eac3
DE
11602}
11603
f4dc4d17
DE
11604/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11605 Create the set of symtabs used by this TU, or if this TU is sharing
11606 symtabs with another TU and the symtabs have already been created
11607 then restore those symtabs in the line header.
11608 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
11609
11610static void
f4dc4d17 11611setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 11612{
f4dc4d17
DE
11613 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11614 struct type_unit_group *tu_group;
11615 int first_time;
3019eac3 11616 struct attribute *attr;
9c541725 11617 unsigned int i;
0186c6a7 11618 struct signatured_type *sig_type;
3019eac3 11619
f4dc4d17 11620 gdb_assert (per_cu->is_debug_types);
0186c6a7 11621 sig_type = (struct signatured_type *) per_cu;
3019eac3 11622
f4dc4d17 11623 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 11624
f4dc4d17 11625 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 11626 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
11627 if (sig_type->type_unit_group == NULL)
11628 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11629 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
11630
11631 /* If we've already processed this stmt_list there's no real need to
11632 do it again, we could fake it and just recreate the part we need
11633 (file name,index -> symtab mapping). If data shows this optimization
11634 is useful we can do it then. */
43f3e411 11635 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
11636
11637 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11638 debug info. */
fff8551c 11639 line_header_up lh;
f4dc4d17 11640 if (attr != NULL)
3019eac3 11641 {
9c541725 11642 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
f4dc4d17
DE
11643 lh = dwarf_decode_line_header (line_offset, cu);
11644 }
11645 if (lh == NULL)
11646 {
11647 if (first_time)
11648 dwarf2_start_symtab (cu, "", NULL, 0);
11649 else
11650 {
11651 gdb_assert (tu_group->symtabs == NULL);
804d2729
TT
11652 gdb_assert (cu->builder == nullptr);
11653 struct compunit_symtab *cust = tu_group->compunit_symtab;
11654 cu->builder.reset (new struct buildsym_compunit
11655 (COMPUNIT_OBJFILE (cust), "",
11656 COMPUNIT_DIRNAME (cust),
11657 compunit_language (cust),
11658 0, cust));
f4dc4d17 11659 }
f4dc4d17 11660 return;
3019eac3
DE
11661 }
11662
4c8aa72d
PA
11663 cu->line_header = lh.release ();
11664 cu->line_header_die_owner = die;
3019eac3 11665
f4dc4d17
DE
11666 if (first_time)
11667 {
43f3e411 11668 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 11669
1fd60fc0
DE
11670 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11671 still initializing it, and our caller (a few levels up)
11672 process_full_type_unit still needs to know if this is the first
11673 time. */
11674
4c8aa72d
PA
11675 tu_group->num_symtabs = cu->line_header->file_names.size ();
11676 tu_group->symtabs = XNEWVEC (struct symtab *,
11677 cu->line_header->file_names.size ());
3019eac3 11678
4c8aa72d 11679 for (i = 0; i < cu->line_header->file_names.size (); ++i)
f4dc4d17 11680 {
4c8aa72d 11681 file_entry &fe = cu->line_header->file_names[i];
3019eac3 11682
804d2729 11683 dwarf2_start_subfile (cu, fe.name, fe.include_dir (cu->line_header));
3019eac3 11684
804d2729 11685 if (cu->builder->get_current_subfile ()->symtab == NULL)
f4dc4d17 11686 {
4c8aa72d
PA
11687 /* NOTE: start_subfile will recognize when it's been
11688 passed a file it has already seen. So we can't
11689 assume there's a simple mapping from
11690 cu->line_header->file_names to subfiles, plus
11691 cu->line_header->file_names may contain dups. */
804d2729
TT
11692 cu->builder->get_current_subfile ()->symtab
11693 = allocate_symtab (cust,
11694 cu->builder->get_current_subfile ()->name);
f4dc4d17
DE
11695 }
11696
804d2729 11697 fe.symtab = cu->builder->get_current_subfile ()->symtab;
8c43009f 11698 tu_group->symtabs[i] = fe.symtab;
f4dc4d17
DE
11699 }
11700 }
11701 else
3019eac3 11702 {
804d2729
TT
11703 gdb_assert (cu->builder == nullptr);
11704 struct compunit_symtab *cust = tu_group->compunit_symtab;
11705 cu->builder.reset (new struct buildsym_compunit
11706 (COMPUNIT_OBJFILE (cust), "",
11707 COMPUNIT_DIRNAME (cust),
11708 compunit_language (cust),
11709 0, cust));
f4dc4d17 11710
4c8aa72d 11711 for (i = 0; i < cu->line_header->file_names.size (); ++i)
f4dc4d17 11712 {
4c8aa72d 11713 file_entry &fe = cu->line_header->file_names[i];
f4dc4d17 11714
4c8aa72d 11715 fe.symtab = tu_group->symtabs[i];
f4dc4d17 11716 }
3019eac3
DE
11717 }
11718
f4dc4d17
DE
11719 /* The main symtab is allocated last. Type units don't have DW_AT_name
11720 so they don't have a "real" (so to speak) symtab anyway.
11721 There is later code that will assign the main symtab to all symbols
11722 that don't have one. We need to handle the case of a symbol with a
11723 missing symtab (DW_AT_decl_file) anyway. */
11724}
3019eac3 11725
f4dc4d17
DE
11726/* Process DW_TAG_type_unit.
11727 For TUs we want to skip the first top level sibling if it's not the
11728 actual type being defined by this TU. In this case the first top
11729 level sibling is there to provide context only. */
3019eac3 11730
f4dc4d17
DE
11731static void
11732read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11733{
11734 struct die_info *child_die;
3019eac3 11735
f4dc4d17
DE
11736 prepare_one_comp_unit (cu, die, language_minimal);
11737
11738 /* Initialize (or reinitialize) the machinery for building symtabs.
11739 We do this before processing child DIEs, so that the line header table
11740 is available for DW_AT_decl_file. */
11741 setup_type_unit_groups (die, cu);
11742
11743 if (die->child != NULL)
11744 {
11745 child_die = die->child;
11746 while (child_die && child_die->tag)
11747 {
11748 process_die (child_die, cu);
11749 child_die = sibling_die (child_die);
11750 }
11751 }
3019eac3
DE
11752}
11753\f
80626a55
DE
11754/* DWO/DWP files.
11755
11756 http://gcc.gnu.org/wiki/DebugFission
11757 http://gcc.gnu.org/wiki/DebugFissionDWP
11758
11759 To simplify handling of both DWO files ("object" files with the DWARF info)
11760 and DWP files (a file with the DWOs packaged up into one file), we treat
11761 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
11762
11763static hashval_t
11764hash_dwo_file (const void *item)
11765{
9a3c8263 11766 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 11767 hashval_t hash;
3019eac3 11768
a2ce51a0
DE
11769 hash = htab_hash_string (dwo_file->dwo_name);
11770 if (dwo_file->comp_dir != NULL)
11771 hash += htab_hash_string (dwo_file->comp_dir);
11772 return hash;
3019eac3
DE
11773}
11774
11775static int
11776eq_dwo_file (const void *item_lhs, const void *item_rhs)
11777{
9a3c8263
SM
11778 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11779 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 11780
a2ce51a0
DE
11781 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11782 return 0;
11783 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11784 return lhs->comp_dir == rhs->comp_dir;
11785 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
11786}
11787
11788/* Allocate a hash table for DWO files. */
11789
11790static htab_t
ed2dc618 11791allocate_dwo_file_hash_table (struct objfile *objfile)
3019eac3 11792{
3019eac3
DE
11793 return htab_create_alloc_ex (41,
11794 hash_dwo_file,
11795 eq_dwo_file,
11796 NULL,
11797 &objfile->objfile_obstack,
11798 hashtab_obstack_allocate,
11799 dummy_obstack_deallocate);
11800}
11801
80626a55
DE
11802/* Lookup DWO file DWO_NAME. */
11803
11804static void **
ed2dc618
SM
11805lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11806 const char *dwo_name,
11807 const char *comp_dir)
80626a55
DE
11808{
11809 struct dwo_file find_entry;
11810 void **slot;
11811
11812 if (dwarf2_per_objfile->dwo_files == NULL)
ed2dc618
SM
11813 dwarf2_per_objfile->dwo_files
11814 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
80626a55
DE
11815
11816 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
11817 find_entry.dwo_name = dwo_name;
11818 find_entry.comp_dir = comp_dir;
80626a55
DE
11819 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11820
11821 return slot;
11822}
11823
3019eac3
DE
11824static hashval_t
11825hash_dwo_unit (const void *item)
11826{
9a3c8263 11827 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
11828
11829 /* This drops the top 32 bits of the id, but is ok for a hash. */
11830 return dwo_unit->signature;
11831}
11832
11833static int
11834eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11835{
9a3c8263
SM
11836 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11837 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
11838
11839 /* The signature is assumed to be unique within the DWO file.
11840 So while object file CU dwo_id's always have the value zero,
11841 that's OK, assuming each object file DWO file has only one CU,
11842 and that's the rule for now. */
11843 return lhs->signature == rhs->signature;
11844}
11845
11846/* Allocate a hash table for DWO CUs,TUs.
11847 There is one of these tables for each of CUs,TUs for each DWO file. */
11848
11849static htab_t
11850allocate_dwo_unit_table (struct objfile *objfile)
11851{
11852 /* Start out with a pretty small number.
11853 Generally DWO files contain only one CU and maybe some TUs. */
11854 return htab_create_alloc_ex (3,
11855 hash_dwo_unit,
11856 eq_dwo_unit,
11857 NULL,
11858 &objfile->objfile_obstack,
11859 hashtab_obstack_allocate,
11860 dummy_obstack_deallocate);
11861}
11862
80626a55 11863/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 11864
19c3d4c9 11865struct create_dwo_cu_data
3019eac3
DE
11866{
11867 struct dwo_file *dwo_file;
19c3d4c9 11868 struct dwo_unit dwo_unit;
3019eac3
DE
11869};
11870
19c3d4c9 11871/* die_reader_func for create_dwo_cu. */
3019eac3
DE
11872
11873static void
19c3d4c9
DE
11874create_dwo_cu_reader (const struct die_reader_specs *reader,
11875 const gdb_byte *info_ptr,
11876 struct die_info *comp_unit_die,
11877 int has_children,
11878 void *datap)
3019eac3
DE
11879{
11880 struct dwarf2_cu *cu = reader->cu;
9c541725 11881 sect_offset sect_off = cu->per_cu->sect_off;
8a0459fd 11882 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 11883 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 11884 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 11885 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 11886 struct attribute *attr;
3019eac3
DE
11887
11888 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11889 if (attr == NULL)
11890 {
b98664d3 11891 complaint (_("Dwarf Error: debug entry at offset %s is missing"
19c3d4c9 11892 " its dwo_id [in module %s]"),
9d8780f0 11893 sect_offset_str (sect_off), dwo_file->dwo_name);
3019eac3
DE
11894 return;
11895 }
11896
3019eac3
DE
11897 dwo_unit->dwo_file = dwo_file;
11898 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 11899 dwo_unit->section = section;
9c541725 11900 dwo_unit->sect_off = sect_off;
3019eac3
DE
11901 dwo_unit->length = cu->per_cu->length;
11902
b4f54984 11903 if (dwarf_read_debug)
9d8780f0
SM
11904 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11905 sect_offset_str (sect_off),
9c541725 11906 hex_string (dwo_unit->signature));
3019eac3
DE
11907}
11908
33c5cd75 11909/* Create the dwo_units for the CUs in a DWO_FILE.
19c3d4c9 11910 Note: This function processes DWO files only, not DWP files. */
3019eac3 11911
33c5cd75 11912static void
ed2dc618
SM
11913create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11914 struct dwo_file &dwo_file, dwarf2_section_info &section,
33c5cd75 11915 htab_t &cus_htab)
3019eac3
DE
11916{
11917 struct objfile *objfile = dwarf2_per_objfile->objfile;
d521ce57 11918 const gdb_byte *info_ptr, *end_ptr;
3019eac3 11919
33c5cd75
DB
11920 dwarf2_read_section (objfile, &section);
11921 info_ptr = section.buffer;
3019eac3
DE
11922
11923 if (info_ptr == NULL)
33c5cd75 11924 return;
3019eac3 11925
b4f54984 11926 if (dwarf_read_debug)
19c3d4c9
DE
11927 {
11928 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
33c5cd75
DB
11929 get_section_name (&section),
11930 get_section_file_name (&section));
19c3d4c9 11931 }
3019eac3 11932
33c5cd75 11933 end_ptr = info_ptr + section.size;
3019eac3
DE
11934 while (info_ptr < end_ptr)
11935 {
11936 struct dwarf2_per_cu_data per_cu;
33c5cd75
DB
11937 struct create_dwo_cu_data create_dwo_cu_data;
11938 struct dwo_unit *dwo_unit;
11939 void **slot;
11940 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
3019eac3 11941
19c3d4c9
DE
11942 memset (&create_dwo_cu_data.dwo_unit, 0,
11943 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3 11944 memset (&per_cu, 0, sizeof (per_cu));
e3b94546 11945 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3019eac3 11946 per_cu.is_debug_types = 0;
33c5cd75
DB
11947 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11948 per_cu.section = &section;
c5ed0576 11949 create_dwo_cu_data.dwo_file = &dwo_file;
33c5cd75
DB
11950
11951 init_cutu_and_read_dies_no_follow (
11952 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11953 info_ptr += per_cu.length;
11954
11955 // If the unit could not be parsed, skip it.
11956 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11957 continue;
3019eac3 11958
33c5cd75
DB
11959 if (cus_htab == NULL)
11960 cus_htab = allocate_dwo_unit_table (objfile);
19c3d4c9 11961
33c5cd75
DB
11962 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11963 *dwo_unit = create_dwo_cu_data.dwo_unit;
11964 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11965 gdb_assert (slot != NULL);
11966 if (*slot != NULL)
19c3d4c9 11967 {
33c5cd75
DB
11968 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11969 sect_offset dup_sect_off = dup_cu->sect_off;
19c3d4c9 11970
b98664d3 11971 complaint (_("debug cu entry at offset %s is duplicate to"
9d8780f0
SM
11972 " the entry at offset %s, signature %s"),
11973 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
33c5cd75 11974 hex_string (dwo_unit->signature));
19c3d4c9 11975 }
33c5cd75 11976 *slot = (void *)dwo_unit;
3019eac3 11977 }
3019eac3
DE
11978}
11979
80626a55
DE
11980/* DWP file .debug_{cu,tu}_index section format:
11981 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11982
d2415c6c
DE
11983 DWP Version 1:
11984
80626a55
DE
11985 Both index sections have the same format, and serve to map a 64-bit
11986 signature to a set of section numbers. Each section begins with a header,
11987 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11988 indexes, and a pool of 32-bit section numbers. The index sections will be
11989 aligned at 8-byte boundaries in the file.
11990
d2415c6c
DE
11991 The index section header consists of:
11992
11993 V, 32 bit version number
11994 -, 32 bits unused
11995 N, 32 bit number of compilation units or type units in the index
11996 M, 32 bit number of slots in the hash table
80626a55 11997
d2415c6c 11998 Numbers are recorded using the byte order of the application binary.
80626a55 11999
d2415c6c
DE
12000 The hash table begins at offset 16 in the section, and consists of an array
12001 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12002 order of the application binary). Unused slots in the hash table are 0.
12003 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 12004
d2415c6c
DE
12005 The parallel table begins immediately after the hash table
12006 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12007 array of 32-bit indexes (using the byte order of the application binary),
12008 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12009 table contains a 32-bit index into the pool of section numbers. For unused
12010 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 12011
73869dc2
DE
12012 The pool of section numbers begins immediately following the hash table
12013 (at offset 16 + 12 * M from the beginning of the section). The pool of
12014 section numbers consists of an array of 32-bit words (using the byte order
12015 of the application binary). Each item in the array is indexed starting
12016 from 0. The hash table entry provides the index of the first section
12017 number in the set. Additional section numbers in the set follow, and the
12018 set is terminated by a 0 entry (section number 0 is not used in ELF).
12019
12020 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12021 section must be the first entry in the set, and the .debug_abbrev.dwo must
12022 be the second entry. Other members of the set may follow in any order.
12023
12024 ---
12025
12026 DWP Version 2:
12027
12028 DWP Version 2 combines all the .debug_info, etc. sections into one,
12029 and the entries in the index tables are now offsets into these sections.
12030 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12031 section.
12032
12033 Index Section Contents:
12034 Header
12035 Hash Table of Signatures dwp_hash_table.hash_table
12036 Parallel Table of Indices dwp_hash_table.unit_table
12037 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12038 Table of Section Sizes dwp_hash_table.v2.sizes
12039
12040 The index section header consists of:
12041
12042 V, 32 bit version number
12043 L, 32 bit number of columns in the table of section offsets
12044 N, 32 bit number of compilation units or type units in the index
12045 M, 32 bit number of slots in the hash table
12046
12047 Numbers are recorded using the byte order of the application binary.
12048
12049 The hash table has the same format as version 1.
12050 The parallel table of indices has the same format as version 1,
12051 except that the entries are origin-1 indices into the table of sections
12052 offsets and the table of section sizes.
12053
12054 The table of offsets begins immediately following the parallel table
12055 (at offset 16 + 12 * M from the beginning of the section). The table is
12056 a two-dimensional array of 32-bit words (using the byte order of the
12057 application binary), with L columns and N+1 rows, in row-major order.
12058 Each row in the array is indexed starting from 0. The first row provides
12059 a key to the remaining rows: each column in this row provides an identifier
12060 for a debug section, and the offsets in the same column of subsequent rows
12061 refer to that section. The section identifiers are:
12062
12063 DW_SECT_INFO 1 .debug_info.dwo
12064 DW_SECT_TYPES 2 .debug_types.dwo
12065 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12066 DW_SECT_LINE 4 .debug_line.dwo
12067 DW_SECT_LOC 5 .debug_loc.dwo
12068 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12069 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12070 DW_SECT_MACRO 8 .debug_macro.dwo
12071
12072 The offsets provided by the CU and TU index sections are the base offsets
12073 for the contributions made by each CU or TU to the corresponding section
12074 in the package file. Each CU and TU header contains an abbrev_offset
12075 field, used to find the abbreviations table for that CU or TU within the
12076 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12077 be interpreted as relative to the base offset given in the index section.
12078 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12079 should be interpreted as relative to the base offset for .debug_line.dwo,
12080 and offsets into other debug sections obtained from DWARF attributes should
12081 also be interpreted as relative to the corresponding base offset.
12082
12083 The table of sizes begins immediately following the table of offsets.
12084 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12085 with L columns and N rows, in row-major order. Each row in the array is
12086 indexed starting from 1 (row 0 is shared by the two tables).
12087
12088 ---
12089
12090 Hash table lookup is handled the same in version 1 and 2:
12091
12092 We assume that N and M will not exceed 2^32 - 1.
12093 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12094
d2415c6c
DE
12095 Given a 64-bit compilation unit signature or a type signature S, an entry
12096 in the hash table is located as follows:
80626a55 12097
d2415c6c
DE
12098 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12099 the low-order k bits all set to 1.
80626a55 12100
d2415c6c 12101 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 12102
d2415c6c
DE
12103 3) If the hash table entry at index H matches the signature, use that
12104 entry. If the hash table entry at index H is unused (all zeroes),
12105 terminate the search: the signature is not present in the table.
80626a55 12106
d2415c6c 12107 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 12108
d2415c6c 12109 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 12110 to stop at an unused slot or find the match. */
80626a55
DE
12111
12112/* Create a hash table to map DWO IDs to their CU/TU entry in
12113 .debug_{info,types}.dwo in DWP_FILE.
12114 Returns NULL if there isn't one.
12115 Note: This function processes DWP files only, not DWO files. */
12116
12117static struct dwp_hash_table *
ed2dc618
SM
12118create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12119 struct dwp_file *dwp_file, int is_debug_types)
80626a55
DE
12120{
12121 struct objfile *objfile = dwarf2_per_objfile->objfile;
400174b1 12122 bfd *dbfd = dwp_file->dbfd.get ();
948f8e3d 12123 const gdb_byte *index_ptr, *index_end;
80626a55 12124 struct dwarf2_section_info *index;
73869dc2 12125 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
12126 struct dwp_hash_table *htab;
12127
12128 if (is_debug_types)
12129 index = &dwp_file->sections.tu_index;
12130 else
12131 index = &dwp_file->sections.cu_index;
12132
12133 if (dwarf2_section_empty_p (index))
12134 return NULL;
12135 dwarf2_read_section (objfile, index);
12136
12137 index_ptr = index->buffer;
12138 index_end = index_ptr + index->size;
12139
12140 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
12141 index_ptr += 4;
12142 if (version == 2)
12143 nr_columns = read_4_bytes (dbfd, index_ptr);
12144 else
12145 nr_columns = 0;
12146 index_ptr += 4;
80626a55
DE
12147 nr_units = read_4_bytes (dbfd, index_ptr);
12148 index_ptr += 4;
12149 nr_slots = read_4_bytes (dbfd, index_ptr);
12150 index_ptr += 4;
12151
73869dc2 12152 if (version != 1 && version != 2)
80626a55 12153 {
21aa081e 12154 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 12155 " [in module %s]"),
21aa081e 12156 pulongest (version), dwp_file->name);
80626a55
DE
12157 }
12158 if (nr_slots != (nr_slots & -nr_slots))
12159 {
21aa081e 12160 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 12161 " is not power of 2 [in module %s]"),
21aa081e 12162 pulongest (nr_slots), dwp_file->name);
80626a55
DE
12163 }
12164
12165 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
12166 htab->version = version;
12167 htab->nr_columns = nr_columns;
80626a55
DE
12168 htab->nr_units = nr_units;
12169 htab->nr_slots = nr_slots;
12170 htab->hash_table = index_ptr;
12171 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
12172
12173 /* Exit early if the table is empty. */
12174 if (nr_slots == 0 || nr_units == 0
12175 || (version == 2 && nr_columns == 0))
12176 {
12177 /* All must be zero. */
12178 if (nr_slots != 0 || nr_units != 0
12179 || (version == 2 && nr_columns != 0))
12180 {
b98664d3 12181 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
73869dc2
DE
12182 " all zero [in modules %s]"),
12183 dwp_file->name);
12184 }
12185 return htab;
12186 }
12187
12188 if (version == 1)
12189 {
12190 htab->section_pool.v1.indices =
12191 htab->unit_table + sizeof (uint32_t) * nr_slots;
12192 /* It's harder to decide whether the section is too small in v1.
12193 V1 is deprecated anyway so we punt. */
12194 }
12195 else
12196 {
12197 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12198 int *ids = htab->section_pool.v2.section_ids;
04fd5eed 12199 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
73869dc2
DE
12200 /* Reverse map for error checking. */
12201 int ids_seen[DW_SECT_MAX + 1];
12202 int i;
12203
12204 if (nr_columns < 2)
12205 {
12206 error (_("Dwarf Error: bad DWP hash table, too few columns"
12207 " in section table [in module %s]"),
12208 dwp_file->name);
12209 }
12210 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12211 {
12212 error (_("Dwarf Error: bad DWP hash table, too many columns"
12213 " in section table [in module %s]"),
12214 dwp_file->name);
12215 }
04fd5eed
GB
12216 memset (ids, 255, sizeof_ids);
12217 memset (ids_seen, 255, sizeof (ids_seen));
73869dc2
DE
12218 for (i = 0; i < nr_columns; ++i)
12219 {
12220 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12221
12222 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12223 {
12224 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12225 " in section table [in module %s]"),
12226 id, dwp_file->name);
12227 }
12228 if (ids_seen[id] != -1)
12229 {
12230 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12231 " id %d in section table [in module %s]"),
12232 id, dwp_file->name);
12233 }
12234 ids_seen[id] = i;
12235 ids[i] = id;
12236 }
12237 /* Must have exactly one info or types section. */
12238 if (((ids_seen[DW_SECT_INFO] != -1)
12239 + (ids_seen[DW_SECT_TYPES] != -1))
12240 != 1)
12241 {
12242 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12243 " DWO info/types section [in module %s]"),
12244 dwp_file->name);
12245 }
12246 /* Must have an abbrev section. */
12247 if (ids_seen[DW_SECT_ABBREV] == -1)
12248 {
12249 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12250 " section [in module %s]"),
12251 dwp_file->name);
12252 }
12253 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12254 htab->section_pool.v2.sizes =
12255 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12256 * nr_units * nr_columns);
12257 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12258 * nr_units * nr_columns))
12259 > index_end)
12260 {
12261 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12262 " [in module %s]"),
12263 dwp_file->name);
12264 }
12265 }
80626a55
DE
12266
12267 return htab;
12268}
12269
12270/* Update SECTIONS with the data from SECTP.
12271
12272 This function is like the other "locate" section routines that are
12273 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 12274 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
12275
12276 The result is non-zero for success, or zero if an error was found. */
12277
12278static int
73869dc2
DE
12279locate_v1_virtual_dwo_sections (asection *sectp,
12280 struct virtual_v1_dwo_sections *sections)
80626a55
DE
12281{
12282 const struct dwop_section_names *names = &dwop_section_names;
12283
12284 if (section_is_p (sectp->name, &names->abbrev_dwo))
12285 {
12286 /* There can be only one. */
049412e3 12287 if (sections->abbrev.s.section != NULL)
80626a55 12288 return 0;
049412e3 12289 sections->abbrev.s.section = sectp;
80626a55
DE
12290 sections->abbrev.size = bfd_get_section_size (sectp);
12291 }
12292 else if (section_is_p (sectp->name, &names->info_dwo)
12293 || section_is_p (sectp->name, &names->types_dwo))
12294 {
12295 /* There can be only one. */
049412e3 12296 if (sections->info_or_types.s.section != NULL)
80626a55 12297 return 0;
049412e3 12298 sections->info_or_types.s.section = sectp;
80626a55
DE
12299 sections->info_or_types.size = bfd_get_section_size (sectp);
12300 }
12301 else if (section_is_p (sectp->name, &names->line_dwo))
12302 {
12303 /* There can be only one. */
049412e3 12304 if (sections->line.s.section != NULL)
80626a55 12305 return 0;
049412e3 12306 sections->line.s.section = sectp;
80626a55
DE
12307 sections->line.size = bfd_get_section_size (sectp);
12308 }
12309 else if (section_is_p (sectp->name, &names->loc_dwo))
12310 {
12311 /* There can be only one. */
049412e3 12312 if (sections->loc.s.section != NULL)
80626a55 12313 return 0;
049412e3 12314 sections->loc.s.section = sectp;
80626a55
DE
12315 sections->loc.size = bfd_get_section_size (sectp);
12316 }
12317 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12318 {
12319 /* There can be only one. */
049412e3 12320 if (sections->macinfo.s.section != NULL)
80626a55 12321 return 0;
049412e3 12322 sections->macinfo.s.section = sectp;
80626a55
DE
12323 sections->macinfo.size = bfd_get_section_size (sectp);
12324 }
12325 else if (section_is_p (sectp->name, &names->macro_dwo))
12326 {
12327 /* There can be only one. */
049412e3 12328 if (sections->macro.s.section != NULL)
80626a55 12329 return 0;
049412e3 12330 sections->macro.s.section = sectp;
80626a55
DE
12331 sections->macro.size = bfd_get_section_size (sectp);
12332 }
12333 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12334 {
12335 /* There can be only one. */
049412e3 12336 if (sections->str_offsets.s.section != NULL)
80626a55 12337 return 0;
049412e3 12338 sections->str_offsets.s.section = sectp;
80626a55
DE
12339 sections->str_offsets.size = bfd_get_section_size (sectp);
12340 }
12341 else
12342 {
12343 /* No other kind of section is valid. */
12344 return 0;
12345 }
12346
12347 return 1;
12348}
12349
73869dc2
DE
12350/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12351 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12352 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12353 This is for DWP version 1 files. */
80626a55
DE
12354
12355static struct dwo_unit *
ed2dc618
SM
12356create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12357 struct dwp_file *dwp_file,
73869dc2
DE
12358 uint32_t unit_index,
12359 const char *comp_dir,
12360 ULONGEST signature, int is_debug_types)
80626a55
DE
12361{
12362 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
12363 const struct dwp_hash_table *dwp_htab =
12364 is_debug_types ? dwp_file->tus : dwp_file->cus;
400174b1 12365 bfd *dbfd = dwp_file->dbfd.get ();
80626a55
DE
12366 const char *kind = is_debug_types ? "TU" : "CU";
12367 struct dwo_file *dwo_file;
12368 struct dwo_unit *dwo_unit;
73869dc2 12369 struct virtual_v1_dwo_sections sections;
80626a55 12370 void **dwo_file_slot;
80626a55
DE
12371 int i;
12372
73869dc2
DE
12373 gdb_assert (dwp_file->version == 1);
12374
b4f54984 12375 if (dwarf_read_debug)
80626a55 12376 {
73869dc2 12377 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 12378 kind,
73869dc2 12379 pulongest (unit_index), hex_string (signature),
80626a55
DE
12380 dwp_file->name);
12381 }
12382
19ac8c2e 12383 /* Fetch the sections of this DWO unit.
80626a55
DE
12384 Put a limit on the number of sections we look for so that bad data
12385 doesn't cause us to loop forever. */
12386
73869dc2 12387#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
12388 (1 /* .debug_info or .debug_types */ \
12389 + 1 /* .debug_abbrev */ \
12390 + 1 /* .debug_line */ \
12391 + 1 /* .debug_loc */ \
12392 + 1 /* .debug_str_offsets */ \
19ac8c2e 12393 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
12394 + 1 /* trailing zero */)
12395
12396 memset (&sections, 0, sizeof (sections));
80626a55 12397
73869dc2 12398 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
12399 {
12400 asection *sectp;
12401 uint32_t section_nr =
12402 read_4_bytes (dbfd,
73869dc2
DE
12403 dwp_htab->section_pool.v1.indices
12404 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
12405
12406 if (section_nr == 0)
12407 break;
12408 if (section_nr >= dwp_file->num_sections)
12409 {
12410 error (_("Dwarf Error: bad DWP hash table, section number too large"
12411 " [in module %s]"),
12412 dwp_file->name);
12413 }
12414
12415 sectp = dwp_file->elf_sections[section_nr];
73869dc2 12416 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
12417 {
12418 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12419 " [in module %s]"),
12420 dwp_file->name);
12421 }
12422 }
12423
12424 if (i < 2
a32a8923
DE
12425 || dwarf2_section_empty_p (&sections.info_or_types)
12426 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
12427 {
12428 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12429 " [in module %s]"),
12430 dwp_file->name);
12431 }
73869dc2 12432 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
12433 {
12434 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12435 " [in module %s]"),
12436 dwp_file->name);
12437 }
12438
12439 /* It's easier for the rest of the code if we fake a struct dwo_file and
12440 have dwo_unit "live" in that. At least for now.
12441
12442 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 12443 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
12444 file, we can combine them back into a virtual DWO file to save space
12445 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
12446 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12447
791afaa2
TT
12448 std::string virtual_dwo_name =
12449 string_printf ("virtual-dwo/%d-%d-%d-%d",
12450 get_section_id (&sections.abbrev),
12451 get_section_id (&sections.line),
12452 get_section_id (&sections.loc),
12453 get_section_id (&sections.str_offsets));
80626a55 12454 /* Can we use an existing virtual DWO file? */
ed2dc618
SM
12455 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12456 virtual_dwo_name.c_str (),
12457 comp_dir);
80626a55
DE
12458 /* Create one if necessary. */
12459 if (*dwo_file_slot == NULL)
12460 {
b4f54984 12461 if (dwarf_read_debug)
80626a55
DE
12462 {
12463 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
791afaa2 12464 virtual_dwo_name.c_str ());
80626a55
DE
12465 }
12466 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
12467 dwo_file->dwo_name
12468 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
791afaa2
TT
12469 virtual_dwo_name.c_str (),
12470 virtual_dwo_name.size ());
0ac5b59e 12471 dwo_file->comp_dir = comp_dir;
80626a55
DE
12472 dwo_file->sections.abbrev = sections.abbrev;
12473 dwo_file->sections.line = sections.line;
12474 dwo_file->sections.loc = sections.loc;
12475 dwo_file->sections.macinfo = sections.macinfo;
12476 dwo_file->sections.macro = sections.macro;
12477 dwo_file->sections.str_offsets = sections.str_offsets;
12478 /* The "str" section is global to the entire DWP file. */
12479 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 12480 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
12481 there's no need to record it in dwo_file.
12482 Also, we can't simply record type sections in dwo_file because
12483 we record a pointer into the vector in dwo_unit. As we collect more
12484 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
12485 for it, invalidating all copies of pointers into the previous
12486 contents. */
80626a55
DE
12487 *dwo_file_slot = dwo_file;
12488 }
12489 else
12490 {
b4f54984 12491 if (dwarf_read_debug)
80626a55
DE
12492 {
12493 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
791afaa2 12494 virtual_dwo_name.c_str ());
80626a55 12495 }
9a3c8263 12496 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55 12497 }
80626a55
DE
12498
12499 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12500 dwo_unit->dwo_file = dwo_file;
12501 dwo_unit->signature = signature;
8d749320
SM
12502 dwo_unit->section =
12503 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 12504 *dwo_unit->section = sections.info_or_types;
57d63ce2 12505 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
12506
12507 return dwo_unit;
12508}
12509
73869dc2
DE
12510/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12511 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12512 piece within that section used by a TU/CU, return a virtual section
12513 of just that piece. */
12514
12515static struct dwarf2_section_info
ed2dc618
SM
12516create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12517 struct dwarf2_section_info *section,
73869dc2
DE
12518 bfd_size_type offset, bfd_size_type size)
12519{
12520 struct dwarf2_section_info result;
12521 asection *sectp;
12522
12523 gdb_assert (section != NULL);
12524 gdb_assert (!section->is_virtual);
12525
12526 memset (&result, 0, sizeof (result));
12527 result.s.containing_section = section;
12528 result.is_virtual = 1;
12529
12530 if (size == 0)
12531 return result;
12532
12533 sectp = get_section_bfd_section (section);
12534
12535 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12536 bounds of the real section. This is a pretty-rare event, so just
12537 flag an error (easier) instead of a warning and trying to cope. */
12538 if (sectp == NULL
12539 || offset + size > bfd_get_section_size (sectp))
12540 {
73869dc2
DE
12541 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12542 " in section %s [in module %s]"),
12543 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12544 objfile_name (dwarf2_per_objfile->objfile));
12545 }
12546
12547 result.virtual_offset = offset;
12548 result.size = size;
12549 return result;
12550}
12551
12552/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12553 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12554 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12555 This is for DWP version 2 files. */
12556
12557static struct dwo_unit *
ed2dc618
SM
12558create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12559 struct dwp_file *dwp_file,
73869dc2
DE
12560 uint32_t unit_index,
12561 const char *comp_dir,
12562 ULONGEST signature, int is_debug_types)
12563{
12564 struct objfile *objfile = dwarf2_per_objfile->objfile;
12565 const struct dwp_hash_table *dwp_htab =
12566 is_debug_types ? dwp_file->tus : dwp_file->cus;
400174b1 12567 bfd *dbfd = dwp_file->dbfd.get ();
73869dc2
DE
12568 const char *kind = is_debug_types ? "TU" : "CU";
12569 struct dwo_file *dwo_file;
12570 struct dwo_unit *dwo_unit;
12571 struct virtual_v2_dwo_sections sections;
12572 void **dwo_file_slot;
73869dc2
DE
12573 int i;
12574
12575 gdb_assert (dwp_file->version == 2);
12576
b4f54984 12577 if (dwarf_read_debug)
73869dc2
DE
12578 {
12579 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12580 kind,
12581 pulongest (unit_index), hex_string (signature),
12582 dwp_file->name);
12583 }
12584
12585 /* Fetch the section offsets of this DWO unit. */
12586
12587 memset (&sections, 0, sizeof (sections));
73869dc2
DE
12588
12589 for (i = 0; i < dwp_htab->nr_columns; ++i)
12590 {
12591 uint32_t offset = read_4_bytes (dbfd,
12592 dwp_htab->section_pool.v2.offsets
12593 + (((unit_index - 1) * dwp_htab->nr_columns
12594 + i)
12595 * sizeof (uint32_t)));
12596 uint32_t size = read_4_bytes (dbfd,
12597 dwp_htab->section_pool.v2.sizes
12598 + (((unit_index - 1) * dwp_htab->nr_columns
12599 + i)
12600 * sizeof (uint32_t)));
12601
12602 switch (dwp_htab->section_pool.v2.section_ids[i])
12603 {
12604 case DW_SECT_INFO:
12605 case DW_SECT_TYPES:
12606 sections.info_or_types_offset = offset;
12607 sections.info_or_types_size = size;
12608 break;
12609 case DW_SECT_ABBREV:
12610 sections.abbrev_offset = offset;
12611 sections.abbrev_size = size;
12612 break;
12613 case DW_SECT_LINE:
12614 sections.line_offset = offset;
12615 sections.line_size = size;
12616 break;
12617 case DW_SECT_LOC:
12618 sections.loc_offset = offset;
12619 sections.loc_size = size;
12620 break;
12621 case DW_SECT_STR_OFFSETS:
12622 sections.str_offsets_offset = offset;
12623 sections.str_offsets_size = size;
12624 break;
12625 case DW_SECT_MACINFO:
12626 sections.macinfo_offset = offset;
12627 sections.macinfo_size = size;
12628 break;
12629 case DW_SECT_MACRO:
12630 sections.macro_offset = offset;
12631 sections.macro_size = size;
12632 break;
12633 }
12634 }
12635
12636 /* It's easier for the rest of the code if we fake a struct dwo_file and
12637 have dwo_unit "live" in that. At least for now.
12638
12639 The DWP file can be made up of a random collection of CUs and TUs.
12640 However, for each CU + set of TUs that came from the same original DWO
12641 file, we can combine them back into a virtual DWO file to save space
12642 (fewer struct dwo_file objects to allocate). Remember that for really
12643 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12644
791afaa2
TT
12645 std::string virtual_dwo_name =
12646 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12647 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12648 (long) (sections.line_size ? sections.line_offset : 0),
12649 (long) (sections.loc_size ? sections.loc_offset : 0),
12650 (long) (sections.str_offsets_size
12651 ? sections.str_offsets_offset : 0));
73869dc2 12652 /* Can we use an existing virtual DWO file? */
ed2dc618
SM
12653 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12654 virtual_dwo_name.c_str (),
12655 comp_dir);
73869dc2
DE
12656 /* Create one if necessary. */
12657 if (*dwo_file_slot == NULL)
12658 {
b4f54984 12659 if (dwarf_read_debug)
73869dc2
DE
12660 {
12661 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
791afaa2 12662 virtual_dwo_name.c_str ());
73869dc2
DE
12663 }
12664 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
12665 dwo_file->dwo_name
12666 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
791afaa2
TT
12667 virtual_dwo_name.c_str (),
12668 virtual_dwo_name.size ());
73869dc2
DE
12669 dwo_file->comp_dir = comp_dir;
12670 dwo_file->sections.abbrev =
ed2dc618 12671 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
73869dc2
DE
12672 sections.abbrev_offset, sections.abbrev_size);
12673 dwo_file->sections.line =
ed2dc618 12674 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
73869dc2
DE
12675 sections.line_offset, sections.line_size);
12676 dwo_file->sections.loc =
ed2dc618 12677 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
73869dc2
DE
12678 sections.loc_offset, sections.loc_size);
12679 dwo_file->sections.macinfo =
ed2dc618 12680 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
73869dc2
DE
12681 sections.macinfo_offset, sections.macinfo_size);
12682 dwo_file->sections.macro =
ed2dc618 12683 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
73869dc2
DE
12684 sections.macro_offset, sections.macro_size);
12685 dwo_file->sections.str_offsets =
ed2dc618
SM
12686 create_dwp_v2_section (dwarf2_per_objfile,
12687 &dwp_file->sections.str_offsets,
73869dc2
DE
12688 sections.str_offsets_offset,
12689 sections.str_offsets_size);
12690 /* The "str" section is global to the entire DWP file. */
12691 dwo_file->sections.str = dwp_file->sections.str;
12692 /* The info or types section is assigned below to dwo_unit,
12693 there's no need to record it in dwo_file.
12694 Also, we can't simply record type sections in dwo_file because
12695 we record a pointer into the vector in dwo_unit. As we collect more
12696 types we'll grow the vector and eventually have to reallocate space
12697 for it, invalidating all copies of pointers into the previous
12698 contents. */
12699 *dwo_file_slot = dwo_file;
12700 }
12701 else
12702 {
b4f54984 12703 if (dwarf_read_debug)
73869dc2
DE
12704 {
12705 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
791afaa2 12706 virtual_dwo_name.c_str ());
73869dc2 12707 }
9a3c8263 12708 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2 12709 }
73869dc2
DE
12710
12711 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12712 dwo_unit->dwo_file = dwo_file;
12713 dwo_unit->signature = signature;
8d749320
SM
12714 dwo_unit->section =
12715 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
ed2dc618
SM
12716 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12717 is_debug_types
73869dc2
DE
12718 ? &dwp_file->sections.types
12719 : &dwp_file->sections.info,
12720 sections.info_or_types_offset,
12721 sections.info_or_types_size);
12722 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12723
12724 return dwo_unit;
12725}
12726
57d63ce2
DE
12727/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12728 Returns NULL if the signature isn't found. */
80626a55
DE
12729
12730static struct dwo_unit *
ed2dc618
SM
12731lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12732 struct dwp_file *dwp_file, const char *comp_dir,
57d63ce2 12733 ULONGEST signature, int is_debug_types)
80626a55 12734{
57d63ce2
DE
12735 const struct dwp_hash_table *dwp_htab =
12736 is_debug_types ? dwp_file->tus : dwp_file->cus;
400174b1 12737 bfd *dbfd = dwp_file->dbfd.get ();
57d63ce2 12738 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
12739 uint32_t hash = signature & mask;
12740 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12741 unsigned int i;
12742 void **slot;
870f88f7 12743 struct dwo_unit find_dwo_cu;
80626a55
DE
12744
12745 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12746 find_dwo_cu.signature = signature;
19ac8c2e
DE
12747 slot = htab_find_slot (is_debug_types
12748 ? dwp_file->loaded_tus
12749 : dwp_file->loaded_cus,
12750 &find_dwo_cu, INSERT);
80626a55
DE
12751
12752 if (*slot != NULL)
9a3c8263 12753 return (struct dwo_unit *) *slot;
80626a55
DE
12754
12755 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 12756 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
12757 {
12758 ULONGEST signature_in_table;
12759
12760 signature_in_table =
57d63ce2 12761 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
12762 if (signature_in_table == signature)
12763 {
57d63ce2
DE
12764 uint32_t unit_index =
12765 read_4_bytes (dbfd,
12766 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 12767
73869dc2
DE
12768 if (dwp_file->version == 1)
12769 {
ed2dc618
SM
12770 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12771 dwp_file, unit_index,
73869dc2
DE
12772 comp_dir, signature,
12773 is_debug_types);
12774 }
12775 else
12776 {
ed2dc618
SM
12777 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12778 dwp_file, unit_index,
73869dc2
DE
12779 comp_dir, signature,
12780 is_debug_types);
12781 }
9a3c8263 12782 return (struct dwo_unit *) *slot;
80626a55
DE
12783 }
12784 if (signature_in_table == 0)
12785 return NULL;
12786 hash = (hash + hash2) & mask;
12787 }
12788
12789 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12790 " [in module %s]"),
12791 dwp_file->name);
12792}
12793
ab5088bf 12794/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
12795 Open the file specified by FILE_NAME and hand it off to BFD for
12796 preliminary analysis. Return a newly initialized bfd *, which
12797 includes a canonicalized copy of FILE_NAME.
80626a55 12798 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
12799 SEARCH_CWD is true if the current directory is to be searched.
12800 It will be searched before debug-file-directory.
13aaf454
DE
12801 If successful, the file is added to the bfd include table of the
12802 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 12803 If unable to find/open the file, return NULL.
3019eac3
DE
12804 NOTE: This function is derived from symfile_bfd_open. */
12805
192b62ce 12806static gdb_bfd_ref_ptr
ed2dc618
SM
12807try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12808 const char *file_name, int is_dwp, int search_cwd)
3019eac3 12809{
24b9144d 12810 int desc;
9c02c129
DE
12811 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12812 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12813 to debug_file_directory. */
e0cc99a6 12814 const char *search_path;
9c02c129
DE
12815 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12816
e0cc99a6 12817 gdb::unique_xmalloc_ptr<char> search_path_holder;
6ac97d4c
DE
12818 if (search_cwd)
12819 {
12820 if (*debug_file_directory != '\0')
e0cc99a6
TT
12821 {
12822 search_path_holder.reset (concat (".", dirname_separator_string,
12823 debug_file_directory,
12824 (char *) NULL));
12825 search_path = search_path_holder.get ();
12826 }
6ac97d4c 12827 else
e0cc99a6 12828 search_path = ".";
6ac97d4c 12829 }
9c02c129 12830 else
e0cc99a6 12831 search_path = debug_file_directory;
3019eac3 12832
24b9144d 12833 openp_flags flags = OPF_RETURN_REALPATH;
80626a55
DE
12834 if (is_dwp)
12835 flags |= OPF_SEARCH_IN_PATH;
e0cc99a6
TT
12836
12837 gdb::unique_xmalloc_ptr<char> absolute_name;
9c02c129 12838 desc = openp (search_path, flags, file_name,
3019eac3
DE
12839 O_RDONLY | O_BINARY, &absolute_name);
12840 if (desc < 0)
12841 return NULL;
12842
e0cc99a6
TT
12843 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12844 gnutarget, desc));
9c02c129
DE
12845 if (sym_bfd == NULL)
12846 return NULL;
192b62ce 12847 bfd_set_cacheable (sym_bfd.get (), 1);
3019eac3 12848
192b62ce
TT
12849 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12850 return NULL;
3019eac3 12851
13aaf454
DE
12852 /* Success. Record the bfd as having been included by the objfile's bfd.
12853 This is important because things like demangled_names_hash lives in the
12854 objfile's per_bfd space and may have references to things like symbol
12855 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
192b62ce 12856 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
13aaf454 12857
3019eac3
DE
12858 return sym_bfd;
12859}
12860
ab5088bf 12861/* Try to open DWO file FILE_NAME.
3019eac3
DE
12862 COMP_DIR is the DW_AT_comp_dir attribute.
12863 The result is the bfd handle of the file.
12864 If there is a problem finding or opening the file, return NULL.
12865 Upon success, the canonicalized path of the file is stored in the bfd,
12866 same as symfile_bfd_open. */
12867
192b62ce 12868static gdb_bfd_ref_ptr
ed2dc618
SM
12869open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12870 const char *file_name, const char *comp_dir)
3019eac3 12871{
80626a55 12872 if (IS_ABSOLUTE_PATH (file_name))
ed2dc618
SM
12873 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12874 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
12875
12876 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12877
12878 if (comp_dir != NULL)
12879 {
b36cec19
PA
12880 char *path_to_try = concat (comp_dir, SLASH_STRING,
12881 file_name, (char *) NULL);
3019eac3
DE
12882
12883 /* NOTE: If comp_dir is a relative path, this will also try the
12884 search path, which seems useful. */
ed2dc618
SM
12885 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12886 path_to_try,
12887 0 /*is_dwp*/,
192b62ce 12888 1 /*search_cwd*/));
3019eac3
DE
12889 xfree (path_to_try);
12890 if (abfd != NULL)
12891 return abfd;
12892 }
12893
12894 /* That didn't work, try debug-file-directory, which, despite its name,
12895 is a list of paths. */
12896
12897 if (*debug_file_directory == '\0')
12898 return NULL;
12899
ed2dc618
SM
12900 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12901 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
12902}
12903
80626a55
DE
12904/* This function is mapped across the sections and remembers the offset and
12905 size of each of the DWO debugging sections we are interested in. */
12906
12907static void
12908dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12909{
9a3c8263 12910 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
12911 const struct dwop_section_names *names = &dwop_section_names;
12912
12913 if (section_is_p (sectp->name, &names->abbrev_dwo))
12914 {
049412e3 12915 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
12916 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12917 }
12918 else if (section_is_p (sectp->name, &names->info_dwo))
12919 {
049412e3 12920 dwo_sections->info.s.section = sectp;
80626a55
DE
12921 dwo_sections->info.size = bfd_get_section_size (sectp);
12922 }
12923 else if (section_is_p (sectp->name, &names->line_dwo))
12924 {
049412e3 12925 dwo_sections->line.s.section = sectp;
80626a55
DE
12926 dwo_sections->line.size = bfd_get_section_size (sectp);
12927 }
12928 else if (section_is_p (sectp->name, &names->loc_dwo))
12929 {
049412e3 12930 dwo_sections->loc.s.section = sectp;
80626a55
DE
12931 dwo_sections->loc.size = bfd_get_section_size (sectp);
12932 }
12933 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12934 {
049412e3 12935 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
12936 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12937 }
12938 else if (section_is_p (sectp->name, &names->macro_dwo))
12939 {
049412e3 12940 dwo_sections->macro.s.section = sectp;
80626a55
DE
12941 dwo_sections->macro.size = bfd_get_section_size (sectp);
12942 }
12943 else if (section_is_p (sectp->name, &names->str_dwo))
12944 {
049412e3 12945 dwo_sections->str.s.section = sectp;
80626a55
DE
12946 dwo_sections->str.size = bfd_get_section_size (sectp);
12947 }
12948 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12949 {
049412e3 12950 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
12951 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12952 }
12953 else if (section_is_p (sectp->name, &names->types_dwo))
12954 {
12955 struct dwarf2_section_info type_section;
12956
12957 memset (&type_section, 0, sizeof (type_section));
049412e3 12958 type_section.s.section = sectp;
80626a55
DE
12959 type_section.size = bfd_get_section_size (sectp);
12960 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12961 &type_section);
12962 }
12963}
12964
ab5088bf 12965/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 12966 by PER_CU. This is for the non-DWP case.
80626a55 12967 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
12968
12969static struct dwo_file *
0ac5b59e
DE
12970open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12971 const char *dwo_name, const char *comp_dir)
3019eac3 12972{
ed2dc618 12973 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3019eac3 12974 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 12975
ed2dc618 12976 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
80626a55
DE
12977 if (dbfd == NULL)
12978 {
b4f54984 12979 if (dwarf_read_debug)
80626a55
DE
12980 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12981 return NULL;
12982 }
263db9a1
TT
12983
12984 /* We use a unique pointer here, despite the obstack allocation,
12985 because a dwo_file needs some cleanup if it is abandoned. */
12986 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12987 struct dwo_file));
0ac5b59e
DE
12988 dwo_file->dwo_name = dwo_name;
12989 dwo_file->comp_dir = comp_dir;
192b62ce 12990 dwo_file->dbfd = dbfd.release ();
3019eac3 12991
192b62ce
TT
12992 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12993 &dwo_file->sections);
3019eac3 12994
ed2dc618
SM
12995 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12996 dwo_file->cus);
3019eac3 12997
263db9a1 12998 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
ed2dc618 12999 dwo_file->sections.types, dwo_file->tus);
3019eac3 13000
b4f54984 13001 if (dwarf_read_debug)
80626a55
DE
13002 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13003
263db9a1 13004 return dwo_file.release ();
3019eac3
DE
13005}
13006
80626a55 13007/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
13008 size of each of the DWP debugging sections common to version 1 and 2 that
13009 we are interested in. */
3019eac3 13010
80626a55 13011static void
73869dc2
DE
13012dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13013 void *dwp_file_ptr)
3019eac3 13014{
9a3c8263 13015 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
13016 const struct dwop_section_names *names = &dwop_section_names;
13017 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 13018
80626a55 13019 /* Record the ELF section number for later lookup: this is what the
73869dc2 13020 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
13021 gdb_assert (elf_section_nr < dwp_file->num_sections);
13022 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 13023
80626a55
DE
13024 /* Look for specific sections that we need. */
13025 if (section_is_p (sectp->name, &names->str_dwo))
13026 {
049412e3 13027 dwp_file->sections.str.s.section = sectp;
80626a55
DE
13028 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13029 }
13030 else if (section_is_p (sectp->name, &names->cu_index))
13031 {
049412e3 13032 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
13033 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13034 }
13035 else if (section_is_p (sectp->name, &names->tu_index))
13036 {
049412e3 13037 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
13038 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13039 }
13040}
3019eac3 13041
73869dc2
DE
13042/* This function is mapped across the sections and remembers the offset and
13043 size of each of the DWP version 2 debugging sections that we are interested
13044 in. This is split into a separate function because we don't know if we
13045 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13046
13047static void
13048dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13049{
9a3c8263 13050 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
13051 const struct dwop_section_names *names = &dwop_section_names;
13052 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13053
13054 /* Record the ELF section number for later lookup: this is what the
13055 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13056 gdb_assert (elf_section_nr < dwp_file->num_sections);
13057 dwp_file->elf_sections[elf_section_nr] = sectp;
13058
13059 /* Look for specific sections that we need. */
13060 if (section_is_p (sectp->name, &names->abbrev_dwo))
13061 {
049412e3 13062 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
13063 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13064 }
13065 else if (section_is_p (sectp->name, &names->info_dwo))
13066 {
049412e3 13067 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
13068 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13069 }
13070 else if (section_is_p (sectp->name, &names->line_dwo))
13071 {
049412e3 13072 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
13073 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13074 }
13075 else if (section_is_p (sectp->name, &names->loc_dwo))
13076 {
049412e3 13077 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
13078 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13079 }
13080 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13081 {
049412e3 13082 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
13083 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13084 }
13085 else if (section_is_p (sectp->name, &names->macro_dwo))
13086 {
049412e3 13087 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
13088 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13089 }
13090 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13091 {
049412e3 13092 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
13093 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13094 }
13095 else if (section_is_p (sectp->name, &names->types_dwo))
13096 {
049412e3 13097 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
13098 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13099 }
13100}
13101
80626a55 13102/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 13103
80626a55
DE
13104static hashval_t
13105hash_dwp_loaded_cutus (const void *item)
13106{
9a3c8263 13107 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 13108
80626a55
DE
13109 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13110 return dwo_unit->signature;
3019eac3
DE
13111}
13112
80626a55 13113/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 13114
80626a55
DE
13115static int
13116eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 13117{
9a3c8263
SM
13118 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13119 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 13120
80626a55
DE
13121 return dua->signature == dub->signature;
13122}
3019eac3 13123
80626a55 13124/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 13125
80626a55
DE
13126static htab_t
13127allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13128{
13129 return htab_create_alloc_ex (3,
13130 hash_dwp_loaded_cutus,
13131 eq_dwp_loaded_cutus,
13132 NULL,
13133 &objfile->objfile_obstack,
13134 hashtab_obstack_allocate,
13135 dummy_obstack_deallocate);
13136}
3019eac3 13137
ab5088bf
DE
13138/* Try to open DWP file FILE_NAME.
13139 The result is the bfd handle of the file.
13140 If there is a problem finding or opening the file, return NULL.
13141 Upon success, the canonicalized path of the file is stored in the bfd,
13142 same as symfile_bfd_open. */
13143
192b62ce 13144static gdb_bfd_ref_ptr
ed2dc618
SM
13145open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13146 const char *file_name)
ab5088bf 13147{
ed2dc618
SM
13148 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13149 1 /*is_dwp*/,
192b62ce 13150 1 /*search_cwd*/));
6ac97d4c
DE
13151 if (abfd != NULL)
13152 return abfd;
13153
13154 /* Work around upstream bug 15652.
13155 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13156 [Whether that's a "bug" is debatable, but it is getting in our way.]
13157 We have no real idea where the dwp file is, because gdb's realpath-ing
13158 of the executable's path may have discarded the needed info.
13159 [IWBN if the dwp file name was recorded in the executable, akin to
13160 .gnu_debuglink, but that doesn't exist yet.]
13161 Strip the directory from FILE_NAME and search again. */
13162 if (*debug_file_directory != '\0')
13163 {
13164 /* Don't implicitly search the current directory here.
13165 If the user wants to search "." to handle this case,
13166 it must be added to debug-file-directory. */
ed2dc618
SM
13167 return try_open_dwop_file (dwarf2_per_objfile,
13168 lbasename (file_name), 1 /*is_dwp*/,
6ac97d4c
DE
13169 0 /*search_cwd*/);
13170 }
13171
13172 return NULL;
ab5088bf
DE
13173}
13174
80626a55
DE
13175/* Initialize the use of the DWP file for the current objfile.
13176 By convention the name of the DWP file is ${objfile}.dwp.
13177 The result is NULL if it can't be found. */
a766d390 13178
400174b1 13179static std::unique_ptr<struct dwp_file>
ed2dc618 13180open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
80626a55
DE
13181{
13182 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55 13183
82bf32bc
JK
13184 /* Try to find first .dwp for the binary file before any symbolic links
13185 resolving. */
6c447423
DE
13186
13187 /* If the objfile is a debug file, find the name of the real binary
13188 file and get the name of dwp file from there. */
d721ba37 13189 std::string dwp_name;
6c447423
DE
13190 if (objfile->separate_debug_objfile_backlink != NULL)
13191 {
13192 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13193 const char *backlink_basename = lbasename (backlink->original_name);
6c447423 13194
d721ba37 13195 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
6c447423
DE
13196 }
13197 else
d721ba37
PA
13198 dwp_name = objfile->original_name;
13199
13200 dwp_name += ".dwp";
80626a55 13201
ed2dc618 13202 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
82bf32bc
JK
13203 if (dbfd == NULL
13204 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13205 {
13206 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
d721ba37
PA
13207 dwp_name = objfile_name (objfile);
13208 dwp_name += ".dwp";
ed2dc618 13209 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
82bf32bc
JK
13210 }
13211
80626a55
DE
13212 if (dbfd == NULL)
13213 {
b4f54984 13214 if (dwarf_read_debug)
d721ba37 13215 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
400174b1 13216 return std::unique_ptr<dwp_file> ();
3019eac3 13217 }
400174b1
TT
13218
13219 const char *name = bfd_get_filename (dbfd.get ());
13220 std::unique_ptr<struct dwp_file> dwp_file
13221 (new struct dwp_file (name, std::move (dbfd)));
c906108c 13222
80626a55 13223 /* +1: section 0 is unused */
192b62ce 13224 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
80626a55
DE
13225 dwp_file->elf_sections =
13226 OBSTACK_CALLOC (&objfile->objfile_obstack,
13227 dwp_file->num_sections, asection *);
13228
400174b1
TT
13229 bfd_map_over_sections (dwp_file->dbfd.get (),
13230 dwarf2_locate_common_dwp_sections,
13231 dwp_file.get ());
80626a55 13232
400174b1
TT
13233 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13234 0);
80626a55 13235
400174b1
TT
13236 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13237 1);
80626a55 13238
73869dc2 13239 /* The DWP file version is stored in the hash table. Oh well. */
08302ed2
DE
13240 if (dwp_file->cus && dwp_file->tus
13241 && dwp_file->cus->version != dwp_file->tus->version)
73869dc2
DE
13242 {
13243 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 13244 pretty bizarre. We use pulongest here because that's the established
4d65956b 13245 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
13246 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13247 " TU version %s [in DWP file %s]"),
13248 pulongest (dwp_file->cus->version),
d721ba37 13249 pulongest (dwp_file->tus->version), dwp_name.c_str ());
73869dc2 13250 }
08302ed2
DE
13251
13252 if (dwp_file->cus)
13253 dwp_file->version = dwp_file->cus->version;
13254 else if (dwp_file->tus)
13255 dwp_file->version = dwp_file->tus->version;
13256 else
13257 dwp_file->version = 2;
73869dc2
DE
13258
13259 if (dwp_file->version == 2)
400174b1
TT
13260 bfd_map_over_sections (dwp_file->dbfd.get (),
13261 dwarf2_locate_v2_dwp_sections,
13262 dwp_file.get ());
73869dc2 13263
19ac8c2e
DE
13264 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13265 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 13266
b4f54984 13267 if (dwarf_read_debug)
80626a55
DE
13268 {
13269 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13270 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
13271 " %s CUs, %s TUs\n",
13272 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13273 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
13274 }
13275
13276 return dwp_file;
3019eac3 13277}
c906108c 13278
ab5088bf
DE
13279/* Wrapper around open_and_init_dwp_file, only open it once. */
13280
13281static struct dwp_file *
ed2dc618 13282get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
ab5088bf
DE
13283{
13284 if (! dwarf2_per_objfile->dwp_checked)
13285 {
ed2dc618
SM
13286 dwarf2_per_objfile->dwp_file
13287 = open_and_init_dwp_file (dwarf2_per_objfile);
ab5088bf
DE
13288 dwarf2_per_objfile->dwp_checked = 1;
13289 }
400174b1 13290 return dwarf2_per_objfile->dwp_file.get ();
ab5088bf
DE
13291}
13292
80626a55
DE
13293/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13294 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13295 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 13296 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
13297 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13298
13299 This is called, for example, when wanting to read a variable with a
13300 complex location. Therefore we don't want to do file i/o for every call.
13301 Therefore we don't want to look for a DWO file on every call.
13302 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13303 then we check if we've already seen DWO_NAME, and only THEN do we check
13304 for a DWO file.
13305
1c658ad5 13306 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 13307 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 13308
3019eac3 13309static struct dwo_unit *
80626a55
DE
13310lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13311 const char *dwo_name, const char *comp_dir,
13312 ULONGEST signature, int is_debug_types)
3019eac3 13313{
ed2dc618 13314 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
3019eac3 13315 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
13316 const char *kind = is_debug_types ? "TU" : "CU";
13317 void **dwo_file_slot;
3019eac3 13318 struct dwo_file *dwo_file;
80626a55 13319 struct dwp_file *dwp_file;
cb1df416 13320
6a506a2d
DE
13321 /* First see if there's a DWP file.
13322 If we have a DWP file but didn't find the DWO inside it, don't
13323 look for the original DWO file. It makes gdb behave differently
13324 depending on whether one is debugging in the build tree. */
cf2c3c16 13325
ed2dc618 13326 dwp_file = get_dwp_file (dwarf2_per_objfile);
80626a55 13327 if (dwp_file != NULL)
cf2c3c16 13328 {
80626a55
DE
13329 const struct dwp_hash_table *dwp_htab =
13330 is_debug_types ? dwp_file->tus : dwp_file->cus;
13331
13332 if (dwp_htab != NULL)
13333 {
13334 struct dwo_unit *dwo_cutu =
ed2dc618 13335 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
57d63ce2 13336 signature, is_debug_types);
80626a55
DE
13337
13338 if (dwo_cutu != NULL)
13339 {
b4f54984 13340 if (dwarf_read_debug)
80626a55
DE
13341 {
13342 fprintf_unfiltered (gdb_stdlog,
13343 "Virtual DWO %s %s found: @%s\n",
13344 kind, hex_string (signature),
13345 host_address_to_string (dwo_cutu));
13346 }
13347 return dwo_cutu;
13348 }
13349 }
13350 }
6a506a2d 13351 else
80626a55 13352 {
6a506a2d 13353 /* No DWP file, look for the DWO file. */
80626a55 13354
ed2dc618
SM
13355 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13356 dwo_name, comp_dir);
6a506a2d 13357 if (*dwo_file_slot == NULL)
80626a55 13358 {
6a506a2d
DE
13359 /* Read in the file and build a table of the CUs/TUs it contains. */
13360 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 13361 }
6a506a2d 13362 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 13363 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 13364
6a506a2d 13365 if (dwo_file != NULL)
19c3d4c9 13366 {
6a506a2d
DE
13367 struct dwo_unit *dwo_cutu = NULL;
13368
13369 if (is_debug_types && dwo_file->tus)
13370 {
13371 struct dwo_unit find_dwo_cutu;
13372
13373 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13374 find_dwo_cutu.signature = signature;
9a3c8263
SM
13375 dwo_cutu
13376 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d 13377 }
33c5cd75 13378 else if (!is_debug_types && dwo_file->cus)
80626a55 13379 {
33c5cd75
DB
13380 struct dwo_unit find_dwo_cutu;
13381
13382 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13383 find_dwo_cutu.signature = signature;
13384 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13385 &find_dwo_cutu);
6a506a2d
DE
13386 }
13387
13388 if (dwo_cutu != NULL)
13389 {
b4f54984 13390 if (dwarf_read_debug)
6a506a2d
DE
13391 {
13392 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13393 kind, dwo_name, hex_string (signature),
13394 host_address_to_string (dwo_cutu));
13395 }
13396 return dwo_cutu;
80626a55
DE
13397 }
13398 }
2e276125 13399 }
9cdd5dbd 13400
80626a55
DE
13401 /* We didn't find it. This could mean a dwo_id mismatch, or
13402 someone deleted the DWO/DWP file, or the search path isn't set up
13403 correctly to find the file. */
13404
b4f54984 13405 if (dwarf_read_debug)
80626a55
DE
13406 {
13407 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13408 kind, dwo_name, hex_string (signature));
13409 }
3019eac3 13410
6656a72d
DE
13411 /* This is a warning and not a complaint because it can be caused by
13412 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
13413 {
13414 /* Print the name of the DWP file if we looked there, helps the user
13415 better diagnose the problem. */
791afaa2 13416 std::string dwp_text;
43942612
DE
13417
13418 if (dwp_file != NULL)
791afaa2
TT
13419 dwp_text = string_printf (" [in DWP file %s]",
13420 lbasename (dwp_file->name));
43942612 13421
9d8780f0 13422 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
43942612
DE
13423 " [in module %s]"),
13424 kind, dwo_name, hex_string (signature),
791afaa2 13425 dwp_text.c_str (),
43942612 13426 this_unit->is_debug_types ? "TU" : "CU",
9d8780f0 13427 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
43942612 13428 }
3019eac3 13429 return NULL;
5fb290d7
DJ
13430}
13431
80626a55
DE
13432/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13433 See lookup_dwo_cutu_unit for details. */
13434
13435static struct dwo_unit *
13436lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13437 const char *dwo_name, const char *comp_dir,
13438 ULONGEST signature)
13439{
13440 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13441}
13442
13443/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13444 See lookup_dwo_cutu_unit for details. */
13445
13446static struct dwo_unit *
13447lookup_dwo_type_unit (struct signatured_type *this_tu,
13448 const char *dwo_name, const char *comp_dir)
13449{
13450 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13451}
13452
89e63ee4
DE
13453/* Traversal function for queue_and_load_all_dwo_tus. */
13454
13455static int
13456queue_and_load_dwo_tu (void **slot, void *info)
13457{
13458 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13459 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13460 ULONGEST signature = dwo_unit->signature;
13461 struct signatured_type *sig_type =
13462 lookup_dwo_signatured_type (per_cu->cu, signature);
13463
13464 if (sig_type != NULL)
13465 {
13466 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13467
13468 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13469 a real dependency of PER_CU on SIG_TYPE. That is detected later
13470 while processing PER_CU. */
13471 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13472 load_full_type_unit (sig_cu);
13473 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13474 }
13475
13476 return 1;
13477}
13478
13479/* Queue all TUs contained in the DWO of PER_CU to be read in.
13480 The DWO may have the only definition of the type, though it may not be
13481 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13482 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13483
13484static void
13485queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13486{
13487 struct dwo_unit *dwo_unit;
13488 struct dwo_file *dwo_file;
13489
13490 gdb_assert (!per_cu->is_debug_types);
ed2dc618 13491 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
89e63ee4
DE
13492 gdb_assert (per_cu->cu != NULL);
13493
13494 dwo_unit = per_cu->cu->dwo_unit;
13495 gdb_assert (dwo_unit != NULL);
13496
13497 dwo_file = dwo_unit->dwo_file;
13498 if (dwo_file->tus != NULL)
13499 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13500}
13501
3019eac3 13502/* Free all resources associated with DWO_FILE.
5dafb3d1 13503 Close the DWO file and munmap the sections. */
348e048f
DE
13504
13505static void
5dafb3d1 13506free_dwo_file (struct dwo_file *dwo_file)
348e048f 13507{
5c6fa7ab 13508 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 13509 gdb_bfd_unref (dwo_file->dbfd);
348e048f 13510
3019eac3
DE
13511 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13512}
348e048f 13513
3019eac3 13514/* Traversal function for free_dwo_files. */
2ab95328 13515
3019eac3
DE
13516static int
13517free_dwo_file_from_slot (void **slot, void *info)
13518{
13519 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
348e048f 13520
5dafb3d1 13521 free_dwo_file (dwo_file);
348e048f 13522
3019eac3
DE
13523 return 1;
13524}
348e048f 13525
3019eac3 13526/* Free all resources associated with DWO_FILES. */
348e048f 13527
3019eac3
DE
13528static void
13529free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13530{
13531 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 13532}
3019eac3
DE
13533\f
13534/* Read in various DIEs. */
348e048f 13535
d389af10 13536/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
13537 Inherit only the children of the DW_AT_abstract_origin DIE not being
13538 already referenced by DW_AT_abstract_origin from the children of the
13539 current DIE. */
d389af10
JK
13540
13541static void
13542inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13543{
13544 struct die_info *child_die;
791afaa2 13545 sect_offset *offsetp;
d389af10
JK
13546 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13547 struct die_info *origin_die;
13548 /* Iterator of the ORIGIN_DIE children. */
13549 struct die_info *origin_child_die;
d389af10 13550 struct attribute *attr;
cd02d79d
PA
13551 struct dwarf2_cu *origin_cu;
13552 struct pending **origin_previous_list_in_scope;
d389af10
JK
13553
13554 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13555 if (!attr)
13556 return;
13557
cd02d79d
PA
13558 /* Note that following die references may follow to a die in a
13559 different cu. */
13560
13561 origin_cu = cu;
13562 origin_die = follow_die_ref (die, attr, &origin_cu);
13563
13564 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13565 symbols in. */
13566 origin_previous_list_in_scope = origin_cu->list_in_scope;
13567 origin_cu->list_in_scope = cu->list_in_scope;
13568
edb3359d
DJ
13569 if (die->tag != origin_die->tag
13570 && !(die->tag == DW_TAG_inlined_subroutine
13571 && origin_die->tag == DW_TAG_subprogram))
b98664d3 13572 complaint (_("DIE %s and its abstract origin %s have different tags"),
9d8780f0
SM
13573 sect_offset_str (die->sect_off),
13574 sect_offset_str (origin_die->sect_off));
d389af10 13575
791afaa2 13576 std::vector<sect_offset> offsets;
d389af10 13577
3ea89b92
PMR
13578 for (child_die = die->child;
13579 child_die && child_die->tag;
13580 child_die = sibling_die (child_die))
13581 {
13582 struct die_info *child_origin_die;
13583 struct dwarf2_cu *child_origin_cu;
13584
13585 /* We are trying to process concrete instance entries:
216f72a1 13586 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
3ea89b92
PMR
13587 it's not relevant to our analysis here. i.e. detecting DIEs that are
13588 present in the abstract instance but not referenced in the concrete
13589 one. */
216f72a1
JK
13590 if (child_die->tag == DW_TAG_call_site
13591 || child_die->tag == DW_TAG_GNU_call_site)
3ea89b92
PMR
13592 continue;
13593
c38f313d
DJ
13594 /* For each CHILD_DIE, find the corresponding child of
13595 ORIGIN_DIE. If there is more than one layer of
13596 DW_AT_abstract_origin, follow them all; there shouldn't be,
13597 but GCC versions at least through 4.4 generate this (GCC PR
13598 40573). */
3ea89b92
PMR
13599 child_origin_die = child_die;
13600 child_origin_cu = cu;
c38f313d
DJ
13601 while (1)
13602 {
cd02d79d
PA
13603 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13604 child_origin_cu);
c38f313d
DJ
13605 if (attr == NULL)
13606 break;
cd02d79d
PA
13607 child_origin_die = follow_die_ref (child_origin_die, attr,
13608 &child_origin_cu);
c38f313d
DJ
13609 }
13610
d389af10
JK
13611 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13612 counterpart may exist. */
c38f313d 13613 if (child_origin_die != child_die)
d389af10 13614 {
edb3359d
DJ
13615 if (child_die->tag != child_origin_die->tag
13616 && !(child_die->tag == DW_TAG_inlined_subroutine
13617 && child_origin_die->tag == DW_TAG_subprogram))
b98664d3 13618 complaint (_("Child DIE %s and its abstract origin %s have "
9c541725 13619 "different tags"),
9d8780f0
SM
13620 sect_offset_str (child_die->sect_off),
13621 sect_offset_str (child_origin_die->sect_off));
c38f313d 13622 if (child_origin_die->parent != origin_die)
b98664d3 13623 complaint (_("Child DIE %s and its abstract origin %s have "
9c541725 13624 "different parents"),
9d8780f0
SM
13625 sect_offset_str (child_die->sect_off),
13626 sect_offset_str (child_origin_die->sect_off));
c38f313d 13627 else
791afaa2 13628 offsets.push_back (child_origin_die->sect_off);
d389af10 13629 }
d389af10 13630 }
791afaa2
TT
13631 std::sort (offsets.begin (), offsets.end ());
13632 sect_offset *offsets_end = offsets.data () + offsets.size ();
13633 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
9c541725 13634 if (offsetp[-1] == *offsetp)
b98664d3 13635 complaint (_("Multiple children of DIE %s refer "
9d8780f0
SM
13636 "to DIE %s as their abstract origin"),
13637 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
d389af10 13638
791afaa2 13639 offsetp = offsets.data ();
d389af10
JK
13640 origin_child_die = origin_die->child;
13641 while (origin_child_die && origin_child_die->tag)
13642 {
13643 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1 13644 while (offsetp < offsets_end
9c541725 13645 && *offsetp < origin_child_die->sect_off)
d389af10 13646 offsetp++;
b64f50a1 13647 if (offsetp >= offsets_end
9c541725 13648 || *offsetp > origin_child_die->sect_off)
d389af10 13649 {
adde2bff
DE
13650 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13651 Check whether we're already processing ORIGIN_CHILD_DIE.
13652 This can happen with mutually referenced abstract_origins.
13653 PR 16581. */
13654 if (!origin_child_die->in_process)
13655 process_die (origin_child_die, origin_cu);
d389af10
JK
13656 }
13657 origin_child_die = sibling_die (origin_child_die);
13658 }
cd02d79d 13659 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
13660}
13661
c906108c 13662static void
e7c27a73 13663read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13664{
518817b3 13665 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 13666 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 13667 struct context_stack *newobj;
c906108c
SS
13668 CORE_ADDR lowpc;
13669 CORE_ADDR highpc;
13670 struct die_info *child_die;
edb3359d 13671 struct attribute *attr, *call_line, *call_file;
15d034d0 13672 const char *name;
e142c38c 13673 CORE_ADDR baseaddr;
801e3a5b 13674 struct block *block;
edb3359d 13675 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
2f4732b0 13676 std::vector<struct symbol *> template_args;
34eaf542 13677 struct template_symbol *templ_func = NULL;
edb3359d
DJ
13678
13679 if (inlined_func)
13680 {
13681 /* If we do not have call site information, we can't show the
13682 caller of this inlined function. That's too confusing, so
13683 only use the scope for local variables. */
13684 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13685 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13686 if (call_line == NULL || call_file == NULL)
13687 {
13688 read_lexical_block_scope (die, cu);
13689 return;
13690 }
13691 }
c906108c 13692
e142c38c
DJ
13693 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13694
94af9270 13695 name = dwarf2_name (die, cu);
c906108c 13696
e8d05480
JB
13697 /* Ignore functions with missing or empty names. These are actually
13698 illegal according to the DWARF standard. */
13699 if (name == NULL)
13700 {
b98664d3 13701 complaint (_("missing name for subprogram DIE at %s"),
9d8780f0 13702 sect_offset_str (die->sect_off));
e8d05480
JB
13703 return;
13704 }
13705
13706 /* Ignore functions with missing or invalid low and high pc attributes. */
3a2b436a 13707 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
e385593e 13708 <= PC_BOUNDS_INVALID)
e8d05480 13709 {
ae4d0c03
PM
13710 attr = dwarf2_attr (die, DW_AT_external, cu);
13711 if (!attr || !DW_UNSND (attr))
b98664d3 13712 complaint (_("cannot get low and high bounds "
9d8780f0
SM
13713 "for subprogram DIE at %s"),
13714 sect_offset_str (die->sect_off));
e8d05480
JB
13715 return;
13716 }
c906108c 13717
3e29f34a
MR
13718 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13719 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 13720
34eaf542
TT
13721 /* If we have any template arguments, then we must allocate a
13722 different sort of symbol. */
13723 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13724 {
13725 if (child_die->tag == DW_TAG_template_type_param
13726 || child_die->tag == DW_TAG_template_value_param)
13727 {
e623cf5d 13728 templ_func = allocate_template_symbol (objfile);
cf724bc9 13729 templ_func->subclass = SYMBOL_TEMPLATE;
34eaf542
TT
13730 break;
13731 }
13732 }
13733
804d2729 13734 newobj = cu->builder->push_context (0, lowpc);
5e2db402
TT
13735 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13736 (struct symbol *) templ_func);
4c2df51b 13737
4cecd739
DJ
13738 /* If there is a location expression for DW_AT_frame_base, record
13739 it. */
e142c38c 13740 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 13741 if (attr)
fe978cb0 13742 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 13743
63e43d3a
PMR
13744 /* If there is a location for the static link, record it. */
13745 newobj->static_link = NULL;
13746 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13747 if (attr)
13748 {
224c3ddb
SM
13749 newobj->static_link
13750 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
13751 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13752 }
13753
804d2729 13754 cu->list_in_scope = cu->builder->get_local_symbols ();
c906108c 13755
639d11d3 13756 if (die->child != NULL)
c906108c 13757 {
639d11d3 13758 child_die = die->child;
c906108c
SS
13759 while (child_die && child_die->tag)
13760 {
34eaf542
TT
13761 if (child_die->tag == DW_TAG_template_type_param
13762 || child_die->tag == DW_TAG_template_value_param)
13763 {
13764 struct symbol *arg = new_symbol (child_die, NULL, cu);
13765
f1078f66 13766 if (arg != NULL)
2f4732b0 13767 template_args.push_back (arg);
34eaf542
TT
13768 }
13769 else
13770 process_die (child_die, cu);
c906108c
SS
13771 child_die = sibling_die (child_die);
13772 }
13773 }
13774
d389af10
JK
13775 inherit_abstract_dies (die, cu);
13776
4a811a97
UW
13777 /* If we have a DW_AT_specification, we might need to import using
13778 directives from the context of the specification DIE. See the
13779 comment in determine_prefix. */
13780 if (cu->language == language_cplus
13781 && dwarf2_attr (die, DW_AT_specification, cu))
13782 {
13783 struct dwarf2_cu *spec_cu = cu;
13784 struct die_info *spec_die = die_specification (die, &spec_cu);
13785
13786 while (spec_die)
13787 {
13788 child_die = spec_die->child;
13789 while (child_die && child_die->tag)
13790 {
13791 if (child_die->tag == DW_TAG_imported_module)
13792 process_die (child_die, spec_cu);
13793 child_die = sibling_die (child_die);
13794 }
13795
13796 /* In some cases, GCC generates specification DIEs that
13797 themselves contain DW_AT_specification attributes. */
13798 spec_die = die_specification (spec_die, &spec_cu);
13799 }
13800 }
13801
804d2729 13802 struct context_stack cstk = cu->builder->pop_context ();
c906108c 13803 /* Make a block for the local symbols within. */
804d2729
TT
13804 block = cu->builder->finish_block (cstk.name, cstk.old_blocks,
13805 cstk.static_link, lowpc, highpc);
801e3a5b 13806
df8a16a1 13807 /* For C++, set the block's scope. */
45280282
IB
13808 if ((cu->language == language_cplus
13809 || cu->language == language_fortran
c44af4eb
TT
13810 || cu->language == language_d
13811 || cu->language == language_rust)
4d4ec4e5 13812 && cu->processing_has_namespace_info)
195a3f6c
TT
13813 block_set_scope (block, determine_prefix (die, cu),
13814 &objfile->objfile_obstack);
df8a16a1 13815
801e3a5b
JB
13816 /* If we have address ranges, record them. */
13817 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 13818
a60f3166 13819 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
3e29f34a 13820
34eaf542 13821 /* Attach template arguments to function. */
2f4732b0 13822 if (!template_args.empty ())
34eaf542
TT
13823 {
13824 gdb_assert (templ_func != NULL);
13825
2f4732b0 13826 templ_func->n_template_arguments = template_args.size ();
34eaf542 13827 templ_func->template_arguments
8d749320
SM
13828 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13829 templ_func->n_template_arguments);
34eaf542 13830 memcpy (templ_func->template_arguments,
2f4732b0 13831 template_args.data (),
34eaf542 13832 (templ_func->n_template_arguments * sizeof (struct symbol *)));
3e1d3d8c
TT
13833
13834 /* Make sure that the symtab is set on the new symbols. Even
13835 though they don't appear in this symtab directly, other parts
13836 of gdb assume that symbols do, and this is reasonably
13837 true. */
8634679f 13838 for (symbol *sym : template_args)
3e1d3d8c 13839 symbol_set_symtab (sym, symbol_symtab (templ_func));
34eaf542
TT
13840 }
13841
208d8187
JB
13842 /* In C++, we can have functions nested inside functions (e.g., when
13843 a function declares a class that has methods). This means that
13844 when we finish processing a function scope, we may need to go
13845 back to building a containing block's symbol lists. */
804d2729
TT
13846 *cu->builder->get_local_symbols () = cstk.locals;
13847 cu->builder->set_local_using_directives (cstk.local_using_directives);
208d8187 13848
921e78cf
JB
13849 /* If we've finished processing a top-level function, subsequent
13850 symbols go in the file symbol list. */
804d2729
TT
13851 if (cu->builder->outermost_context_p ())
13852 cu->list_in_scope = cu->builder->get_file_symbols ();
c906108c
SS
13853}
13854
13855/* Process all the DIES contained within a lexical block scope. Start
13856 a new scope, process the dies, and then close the scope. */
13857
13858static void
e7c27a73 13859read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13860{
518817b3 13861 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 13862 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
13863 CORE_ADDR lowpc, highpc;
13864 struct die_info *child_die;
e142c38c
DJ
13865 CORE_ADDR baseaddr;
13866
13867 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
13868
13869 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
13870 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13871 as multiple lexical blocks? Handling children in a sane way would
6e70227d 13872 be nasty. Might be easier to properly extend generic blocks to
af34e669 13873 describe ranges. */
e385593e
JK
13874 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13875 {
13876 case PC_BOUNDS_NOT_PRESENT:
13877 /* DW_TAG_lexical_block has no attributes, process its children as if
13878 there was no wrapping by that DW_TAG_lexical_block.
13879 GCC does no longer produces such DWARF since GCC r224161. */
13880 for (child_die = die->child;
13881 child_die != NULL && child_die->tag;
13882 child_die = sibling_die (child_die))
13883 process_die (child_die, cu);
13884 return;
13885 case PC_BOUNDS_INVALID:
13886 return;
13887 }
3e29f34a
MR
13888 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13889 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 13890
804d2729 13891 cu->builder->push_context (0, lowpc);
639d11d3 13892 if (die->child != NULL)
c906108c 13893 {
639d11d3 13894 child_die = die->child;
c906108c
SS
13895 while (child_die && child_die->tag)
13896 {
e7c27a73 13897 process_die (child_die, cu);
c906108c
SS
13898 child_die = sibling_die (child_die);
13899 }
13900 }
3ea89b92 13901 inherit_abstract_dies (die, cu);
804d2729 13902 struct context_stack cstk = cu->builder->pop_context ();
c906108c 13903
804d2729
TT
13904 if (*cu->builder->get_local_symbols () != NULL
13905 || (*cu->builder->get_local_using_directives ()) != NULL)
c906108c 13906 {
801e3a5b 13907 struct block *block
804d2729
TT
13908 = cu->builder->finish_block (0, cstk.old_blocks, NULL,
13909 cstk.start_addr, highpc);
801e3a5b
JB
13910
13911 /* Note that recording ranges after traversing children, as we
13912 do here, means that recording a parent's ranges entails
13913 walking across all its children's ranges as they appear in
13914 the address map, which is quadratic behavior.
13915
13916 It would be nicer to record the parent's ranges before
13917 traversing its children, simply overriding whatever you find
13918 there. But since we don't even decide whether to create a
13919 block until after we've traversed its children, that's hard
13920 to do. */
13921 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 13922 }
804d2729
TT
13923 *cu->builder->get_local_symbols () = cstk.locals;
13924 cu->builder->set_local_using_directives (cstk.local_using_directives);
c906108c
SS
13925}
13926
216f72a1 13927/* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
96408a79
SA
13928
13929static void
13930read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13931{
518817b3 13932 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
96408a79
SA
13933 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13934 CORE_ADDR pc, baseaddr;
13935 struct attribute *attr;
13936 struct call_site *call_site, call_site_local;
13937 void **slot;
13938 int nparams;
13939 struct die_info *child_die;
13940
13941 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13942
216f72a1
JK
13943 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13944 if (attr == NULL)
13945 {
13946 /* This was a pre-DWARF-5 GNU extension alias
13947 for DW_AT_call_return_pc. */
13948 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13949 }
96408a79
SA
13950 if (!attr)
13951 {
b98664d3 13952 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
9d8780f0
SM
13953 "DIE %s [in module %s]"),
13954 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79
SA
13955 return;
13956 }
31aa7e4e 13957 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 13958 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
13959
13960 if (cu->call_site_htab == NULL)
13961 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13962 NULL, &objfile->objfile_obstack,
13963 hashtab_obstack_allocate, NULL);
13964 call_site_local.pc = pc;
13965 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13966 if (*slot != NULL)
13967 {
b98664d3 13968 complaint (_("Duplicate PC %s for DW_TAG_call_site "
9d8780f0
SM
13969 "DIE %s [in module %s]"),
13970 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
4262abfb 13971 objfile_name (objfile));
96408a79
SA
13972 return;
13973 }
13974
13975 /* Count parameters at the caller. */
13976
13977 nparams = 0;
13978 for (child_die = die->child; child_die && child_die->tag;
13979 child_die = sibling_die (child_die))
13980 {
216f72a1
JK
13981 if (child_die->tag != DW_TAG_call_site_parameter
13982 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79 13983 {
b98664d3 13984 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
9d8780f0
SM
13985 "DW_TAG_call_site child DIE %s [in module %s]"),
13986 child_die->tag, sect_offset_str (child_die->sect_off),
4262abfb 13987 objfile_name (objfile));
96408a79
SA
13988 continue;
13989 }
13990
13991 nparams++;
13992 }
13993
224c3ddb
SM
13994 call_site
13995 = ((struct call_site *)
13996 obstack_alloc (&objfile->objfile_obstack,
13997 sizeof (*call_site)
13998 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
13999 *slot = call_site;
14000 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14001 call_site->pc = pc;
14002
216f72a1
JK
14003 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14004 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
96408a79
SA
14005 {
14006 struct die_info *func_die;
14007
14008 /* Skip also over DW_TAG_inlined_subroutine. */
14009 for (func_die = die->parent;
14010 func_die && func_die->tag != DW_TAG_subprogram
14011 && func_die->tag != DW_TAG_subroutine_type;
14012 func_die = func_die->parent);
14013
216f72a1
JK
14014 /* DW_AT_call_all_calls is a superset
14015 of DW_AT_call_all_tail_calls. */
96408a79 14016 if (func_die
216f72a1 14017 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
96408a79 14018 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
216f72a1 14019 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
96408a79
SA
14020 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14021 {
14022 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14023 not complete. But keep CALL_SITE for look ups via call_site_htab,
14024 both the initial caller containing the real return address PC and
14025 the final callee containing the current PC of a chain of tail
14026 calls do not need to have the tail call list complete. But any
14027 function candidate for a virtual tail call frame searched via
14028 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14029 determined unambiguously. */
14030 }
14031 else
14032 {
14033 struct type *func_type = NULL;
14034
14035 if (func_die)
14036 func_type = get_die_type (func_die, cu);
14037 if (func_type != NULL)
14038 {
14039 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14040
14041 /* Enlist this call site to the function. */
14042 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14043 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14044 }
14045 else
b98664d3 14046 complaint (_("Cannot find function owning DW_TAG_call_site "
9d8780f0
SM
14047 "DIE %s [in module %s]"),
14048 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79
SA
14049 }
14050 }
14051
216f72a1
JK
14052 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14053 if (attr == NULL)
14054 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14055 if (attr == NULL)
14056 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
96408a79 14057 if (attr == NULL)
216f72a1
JK
14058 {
14059 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14060 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14061 }
96408a79
SA
14062 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14063 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14064 /* Keep NULL DWARF_BLOCK. */;
14065 else if (attr_form_is_block (attr))
14066 {
14067 struct dwarf2_locexpr_baton *dlbaton;
14068
8d749320 14069 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
14070 dlbaton->data = DW_BLOCK (attr)->data;
14071 dlbaton->size = DW_BLOCK (attr)->size;
14072 dlbaton->per_cu = cu->per_cu;
14073
14074 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14075 }
7771576e 14076 else if (attr_form_is_ref (attr))
96408a79 14077 {
96408a79
SA
14078 struct dwarf2_cu *target_cu = cu;
14079 struct die_info *target_die;
14080
ac9ec31b 14081 target_die = follow_die_ref (die, attr, &target_cu);
518817b3 14082 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
96408a79
SA
14083 if (die_is_declaration (target_die, target_cu))
14084 {
7d45c7c3 14085 const char *target_physname;
9112db09
JK
14086
14087 /* Prefer the mangled name; otherwise compute the demangled one. */
73b9be8b 14088 target_physname = dw2_linkage_name (target_die, target_cu);
7d45c7c3 14089 if (target_physname == NULL)
9112db09 14090 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79 14091 if (target_physname == NULL)
b98664d3 14092 complaint (_("DW_AT_call_target target DIE has invalid "
9d8780f0
SM
14093 "physname, for referencing DIE %s [in module %s]"),
14094 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79 14095 else
7d455152 14096 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
14097 }
14098 else
14099 {
14100 CORE_ADDR lowpc;
14101
14102 /* DW_AT_entry_pc should be preferred. */
3a2b436a 14103 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
e385593e 14104 <= PC_BOUNDS_INVALID)
b98664d3 14105 complaint (_("DW_AT_call_target target DIE has invalid "
9d8780f0
SM
14106 "low pc, for referencing DIE %s [in module %s]"),
14107 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79 14108 else
3e29f34a
MR
14109 {
14110 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14111 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14112 }
96408a79
SA
14113 }
14114 }
14115 else
b98664d3 14116 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
9d8780f0
SM
14117 "block nor reference, for DIE %s [in module %s]"),
14118 sect_offset_str (die->sect_off), objfile_name (objfile));
96408a79
SA
14119
14120 call_site->per_cu = cu->per_cu;
14121
14122 for (child_die = die->child;
14123 child_die && child_die->tag;
14124 child_die = sibling_die (child_die))
14125 {
96408a79 14126 struct call_site_parameter *parameter;
1788b2d3 14127 struct attribute *loc, *origin;
96408a79 14128
216f72a1
JK
14129 if (child_die->tag != DW_TAG_call_site_parameter
14130 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79
SA
14131 {
14132 /* Already printed the complaint above. */
14133 continue;
14134 }
14135
14136 gdb_assert (call_site->parameter_count < nparams);
14137 parameter = &call_site->parameter[call_site->parameter_count];
14138
1788b2d3
JK
14139 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14140 specifies DW_TAG_formal_parameter. Value of the data assumed for the
216f72a1 14141 register is contained in DW_AT_call_value. */
96408a79 14142
24c5c679 14143 loc = dwarf2_attr (child_die, DW_AT_location, cu);
216f72a1
JK
14144 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14145 if (origin == NULL)
14146 {
14147 /* This was a pre-DWARF-5 GNU extension alias
14148 for DW_AT_call_parameter. */
14149 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14150 }
7771576e 14151 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3 14152 {
1788b2d3 14153 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9c541725
PA
14154
14155 sect_offset sect_off
14156 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14157 if (!offset_in_cu_p (&cu->header, sect_off))
d76b7dbc
JK
14158 {
14159 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14160 binding can be done only inside one CU. Such referenced DIE
14161 therefore cannot be even moved to DW_TAG_partial_unit. */
b98664d3 14162 complaint (_("DW_AT_call_parameter offset is not in CU for "
9d8780f0
SM
14163 "DW_TAG_call_site child DIE %s [in module %s]"),
14164 sect_offset_str (child_die->sect_off),
9c541725 14165 objfile_name (objfile));
d76b7dbc
JK
14166 continue;
14167 }
9c541725
PA
14168 parameter->u.param_cu_off
14169 = (cu_offset) (sect_off - cu->header.sect_off);
1788b2d3
JK
14170 }
14171 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79 14172 {
b98664d3 14173 complaint (_("No DW_FORM_block* DW_AT_location for "
9d8780f0
SM
14174 "DW_TAG_call_site child DIE %s [in module %s]"),
14175 sect_offset_str (child_die->sect_off), objfile_name (objfile));
96408a79
SA
14176 continue;
14177 }
24c5c679 14178 else
96408a79 14179 {
24c5c679
JK
14180 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14181 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14182 if (parameter->u.dwarf_reg != -1)
14183 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14184 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14185 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14186 &parameter->u.fb_offset))
14187 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14188 else
14189 {
b98664d3 14190 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
24c5c679 14191 "for DW_FORM_block* DW_AT_location is supported for "
9d8780f0 14192 "DW_TAG_call_site child DIE %s "
24c5c679 14193 "[in module %s]"),
9d8780f0 14194 sect_offset_str (child_die->sect_off),
9c541725 14195 objfile_name (objfile));
24c5c679
JK
14196 continue;
14197 }
96408a79
SA
14198 }
14199
216f72a1
JK
14200 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14201 if (attr == NULL)
14202 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
96408a79
SA
14203 if (!attr_form_is_block (attr))
14204 {
b98664d3 14205 complaint (_("No DW_FORM_block* DW_AT_call_value for "
9d8780f0
SM
14206 "DW_TAG_call_site child DIE %s [in module %s]"),
14207 sect_offset_str (child_die->sect_off),
9c541725 14208 objfile_name (objfile));
96408a79
SA
14209 continue;
14210 }
14211 parameter->value = DW_BLOCK (attr)->data;
14212 parameter->value_size = DW_BLOCK (attr)->size;
14213
14214 /* Parameters are not pre-cleared by memset above. */
14215 parameter->data_value = NULL;
14216 parameter->data_value_size = 0;
14217 call_site->parameter_count++;
14218
216f72a1
JK
14219 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14220 if (attr == NULL)
14221 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
96408a79
SA
14222 if (attr)
14223 {
14224 if (!attr_form_is_block (attr))
b98664d3 14225 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
9d8780f0
SM
14226 "DW_TAG_call_site child DIE %s [in module %s]"),
14227 sect_offset_str (child_die->sect_off),
9c541725 14228 objfile_name (objfile));
96408a79
SA
14229 else
14230 {
14231 parameter->data_value = DW_BLOCK (attr)->data;
14232 parameter->data_value_size = DW_BLOCK (attr)->size;
14233 }
14234 }
14235 }
14236}
14237
71a3c369
TT
14238/* Helper function for read_variable. If DIE represents a virtual
14239 table, then return the type of the concrete object that is
14240 associated with the virtual table. Otherwise, return NULL. */
14241
14242static struct type *
14243rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14244{
14245 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14246 if (attr == NULL)
14247 return NULL;
14248
14249 /* Find the type DIE. */
14250 struct die_info *type_die = NULL;
14251 struct dwarf2_cu *type_cu = cu;
14252
14253 if (attr_form_is_ref (attr))
14254 type_die = follow_die_ref (die, attr, &type_cu);
14255 if (type_die == NULL)
14256 return NULL;
14257
14258 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14259 return NULL;
14260 return die_containing_type (type_die, type_cu);
14261}
14262
14263/* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14264
14265static void
14266read_variable (struct die_info *die, struct dwarf2_cu *cu)
14267{
14268 struct rust_vtable_symbol *storage = NULL;
14269
14270 if (cu->language == language_rust)
14271 {
14272 struct type *containing_type = rust_containing_type (die, cu);
14273
14274 if (containing_type != NULL)
14275 {
518817b3 14276 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
71a3c369
TT
14277
14278 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14279 struct rust_vtable_symbol);
14280 initialize_objfile_symbol (storage);
14281 storage->concrete_type = containing_type;
cf724bc9 14282 storage->subclass = SYMBOL_RUST_VTABLE;
71a3c369
TT
14283 }
14284 }
14285
e4a62c65
TV
14286 struct symbol *res = new_symbol (die, NULL, cu, storage);
14287 struct attribute *abstract_origin
14288 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14289 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14290 if (res == NULL && loc && abstract_origin)
14291 {
14292 /* We have a variable without a name, but with a location and an abstract
14293 origin. This may be a concrete instance of an abstract variable
14294 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14295 later. */
14296 struct dwarf2_cu *origin_cu = cu;
14297 struct die_info *origin_die
14298 = follow_die_ref (die, abstract_origin, &origin_cu);
14299 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14300 dpo->abstract_to_concrete[origin_die].push_back (die);
14301 }
71a3c369
TT
14302}
14303
43988095
JK
14304/* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14305 reading .debug_rnglists.
14306 Callback's type should be:
14307 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14308 Return true if the attributes are present and valid, otherwise,
14309 return false. */
14310
14311template <typename Callback>
14312static bool
14313dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14314 Callback &&callback)
14315{
ed2dc618 14316 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 14317 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 14318 struct objfile *objfile = dwarf2_per_objfile->objfile;
43988095 14319 bfd *obfd = objfile->obfd;
43988095
JK
14320 /* Base address selection entry. */
14321 CORE_ADDR base;
14322 int found_base;
43988095 14323 const gdb_byte *buffer;
43988095
JK
14324 CORE_ADDR baseaddr;
14325 bool overflow = false;
14326
14327 found_base = cu->base_known;
14328 base = cu->base_address;
14329
14330 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14331 if (offset >= dwarf2_per_objfile->rnglists.size)
14332 {
b98664d3 14333 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
43988095
JK
14334 offset);
14335 return false;
14336 }
14337 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14338
14339 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14340
14341 while (1)
14342 {
7814882a
JK
14343 /* Initialize it due to a false compiler warning. */
14344 CORE_ADDR range_beginning = 0, range_end = 0;
43988095
JK
14345 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14346 + dwarf2_per_objfile->rnglists.size);
14347 unsigned int bytes_read;
14348
14349 if (buffer == buf_end)
14350 {
14351 overflow = true;
14352 break;
14353 }
14354 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14355 switch (rlet)
14356 {
14357 case DW_RLE_end_of_list:
14358 break;
14359 case DW_RLE_base_address:
14360 if (buffer + cu->header.addr_size > buf_end)
14361 {
14362 overflow = true;
14363 break;
14364 }
14365 base = read_address (obfd, buffer, cu, &bytes_read);
14366 found_base = 1;
14367 buffer += bytes_read;
14368 break;
14369 case DW_RLE_start_length:
14370 if (buffer + cu->header.addr_size > buf_end)
14371 {
14372 overflow = true;
14373 break;
14374 }
14375 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14376 buffer += bytes_read;
14377 range_end = (range_beginning
14378 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14379 buffer += bytes_read;
14380 if (buffer > buf_end)
14381 {
14382 overflow = true;
14383 break;
14384 }
14385 break;
14386 case DW_RLE_offset_pair:
14387 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14388 buffer += bytes_read;
14389 if (buffer > buf_end)
14390 {
14391 overflow = true;
14392 break;
14393 }
14394 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14395 buffer += bytes_read;
14396 if (buffer > buf_end)
14397 {
14398 overflow = true;
14399 break;
14400 }
14401 break;
14402 case DW_RLE_start_end:
14403 if (buffer + 2 * cu->header.addr_size > buf_end)
14404 {
14405 overflow = true;
14406 break;
14407 }
14408 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14409 buffer += bytes_read;
14410 range_end = read_address (obfd, buffer, cu, &bytes_read);
14411 buffer += bytes_read;
14412 break;
14413 default:
b98664d3 14414 complaint (_("Invalid .debug_rnglists data (no base address)"));
43988095
JK
14415 return false;
14416 }
14417 if (rlet == DW_RLE_end_of_list || overflow)
14418 break;
14419 if (rlet == DW_RLE_base_address)
14420 continue;
14421
14422 if (!found_base)
14423 {
14424 /* We have no valid base address for the ranges
14425 data. */
b98664d3 14426 complaint (_("Invalid .debug_rnglists data (no base address)"));
43988095
JK
14427 return false;
14428 }
14429
14430 if (range_beginning > range_end)
14431 {
14432 /* Inverted range entries are invalid. */
b98664d3 14433 complaint (_("Invalid .debug_rnglists data (inverted range)"));
43988095
JK
14434 return false;
14435 }
14436
14437 /* Empty range entries have no effect. */
14438 if (range_beginning == range_end)
14439 continue;
14440
14441 range_beginning += base;
14442 range_end += base;
14443
14444 /* A not-uncommon case of bad debug info.
14445 Don't pollute the addrmap with bad data. */
14446 if (range_beginning + baseaddr == 0
14447 && !dwarf2_per_objfile->has_section_at_zero)
14448 {
b98664d3 14449 complaint (_(".debug_rnglists entry has start address of zero"
43988095
JK
14450 " [in module %s]"), objfile_name (objfile));
14451 continue;
14452 }
14453
14454 callback (range_beginning, range_end);
14455 }
14456
14457 if (overflow)
14458 {
b98664d3 14459 complaint (_("Offset %d is not terminated "
43988095
JK
14460 "for DW_AT_ranges attribute"),
14461 offset);
14462 return false;
14463 }
14464
14465 return true;
14466}
14467
14468/* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14469 Callback's type should be:
14470 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
5f46c5a5 14471 Return 1 if the attributes are present and valid, otherwise, return 0. */
43039443 14472
43988095 14473template <typename Callback>
43039443 14474static int
5f46c5a5 14475dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
43988095 14476 Callback &&callback)
43039443 14477{
ed2dc618 14478 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 14479 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 14480 struct objfile *objfile = dwarf2_per_objfile->objfile;
43039443
JK
14481 struct comp_unit_head *cu_header = &cu->header;
14482 bfd *obfd = objfile->obfd;
14483 unsigned int addr_size = cu_header->addr_size;
14484 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14485 /* Base address selection entry. */
14486 CORE_ADDR base;
14487 int found_base;
14488 unsigned int dummy;
d521ce57 14489 const gdb_byte *buffer;
ff013f42 14490 CORE_ADDR baseaddr;
43039443 14491
43988095
JK
14492 if (cu_header->version >= 5)
14493 return dwarf2_rnglists_process (offset, cu, callback);
14494
d00adf39
DE
14495 found_base = cu->base_known;
14496 base = cu->base_address;
43039443 14497
be391dca 14498 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 14499 if (offset >= dwarf2_per_objfile->ranges.size)
43039443 14500 {
b98664d3 14501 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
43039443
JK
14502 offset);
14503 return 0;
14504 }
dce234bc 14505 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 14506
e7030f15 14507 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 14508
43039443
JK
14509 while (1)
14510 {
14511 CORE_ADDR range_beginning, range_end;
14512
14513 range_beginning = read_address (obfd, buffer, cu, &dummy);
14514 buffer += addr_size;
14515 range_end = read_address (obfd, buffer, cu, &dummy);
14516 buffer += addr_size;
14517 offset += 2 * addr_size;
14518
14519 /* An end of list marker is a pair of zero addresses. */
14520 if (range_beginning == 0 && range_end == 0)
14521 /* Found the end of list entry. */
14522 break;
14523
14524 /* Each base address selection entry is a pair of 2 values.
14525 The first is the largest possible address, the second is
14526 the base address. Check for a base address here. */
14527 if ((range_beginning & mask) == mask)
14528 {
28d2bfb9
AB
14529 /* If we found the largest possible address, then we already
14530 have the base address in range_end. */
14531 base = range_end;
43039443
JK
14532 found_base = 1;
14533 continue;
14534 }
14535
14536 if (!found_base)
14537 {
14538 /* We have no valid base address for the ranges
14539 data. */
b98664d3 14540 complaint (_("Invalid .debug_ranges data (no base address)"));
43039443
JK
14541 return 0;
14542 }
14543
9277c30c
UW
14544 if (range_beginning > range_end)
14545 {
14546 /* Inverted range entries are invalid. */
b98664d3 14547 complaint (_("Invalid .debug_ranges data (inverted range)"));
9277c30c
UW
14548 return 0;
14549 }
14550
14551 /* Empty range entries have no effect. */
14552 if (range_beginning == range_end)
14553 continue;
14554
43039443
JK
14555 range_beginning += base;
14556 range_end += base;
14557
01093045
DE
14558 /* A not-uncommon case of bad debug info.
14559 Don't pollute the addrmap with bad data. */
14560 if (range_beginning + baseaddr == 0
14561 && !dwarf2_per_objfile->has_section_at_zero)
14562 {
b98664d3 14563 complaint (_(".debug_ranges entry has start address of zero"
4262abfb 14564 " [in module %s]"), objfile_name (objfile));
01093045
DE
14565 continue;
14566 }
14567
5f46c5a5
JK
14568 callback (range_beginning, range_end);
14569 }
14570
14571 return 1;
14572}
14573
14574/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14575 Return 1 if the attributes are present and valid, otherwise, return 0.
14576 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14577
14578static int
14579dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14580 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14581 struct partial_symtab *ranges_pst)
14582{
518817b3 14583 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
5f46c5a5
JK
14584 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14585 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14586 SECT_OFF_TEXT (objfile));
14587 int low_set = 0;
14588 CORE_ADDR low = 0;
14589 CORE_ADDR high = 0;
14590 int retval;
14591
14592 retval = dwarf2_ranges_process (offset, cu,
14593 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14594 {
9277c30c 14595 if (ranges_pst != NULL)
3e29f34a
MR
14596 {
14597 CORE_ADDR lowpc;
14598 CORE_ADDR highpc;
14599
79748972
TT
14600 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14601 range_beginning + baseaddr)
14602 - baseaddr);
14603 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14604 range_end + baseaddr)
14605 - baseaddr);
3e29f34a
MR
14606 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14607 ranges_pst);
14608 }
ff013f42 14609
43039443
JK
14610 /* FIXME: This is recording everything as a low-high
14611 segment of consecutive addresses. We should have a
14612 data structure for discontiguous block ranges
14613 instead. */
14614 if (! low_set)
14615 {
14616 low = range_beginning;
14617 high = range_end;
14618 low_set = 1;
14619 }
14620 else
14621 {
14622 if (range_beginning < low)
14623 low = range_beginning;
14624 if (range_end > high)
14625 high = range_end;
14626 }
5f46c5a5
JK
14627 });
14628 if (!retval)
14629 return 0;
43039443
JK
14630
14631 if (! low_set)
14632 /* If the first entry is an end-of-list marker, the range
14633 describes an empty scope, i.e. no instructions. */
14634 return 0;
14635
14636 if (low_return)
14637 *low_return = low;
14638 if (high_return)
14639 *high_return = high;
14640 return 1;
14641}
14642
3a2b436a
JK
14643/* Get low and high pc attributes from a die. See enum pc_bounds_kind
14644 definition for the return value. *LOWPC and *HIGHPC are set iff
e385593e 14645 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
380bca97 14646
3a2b436a 14647static enum pc_bounds_kind
af34e669 14648dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
14649 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14650 struct partial_symtab *pst)
c906108c 14651{
518817b3
SM
14652 struct dwarf2_per_objfile *dwarf2_per_objfile
14653 = cu->per_cu->dwarf2_per_objfile;
c906108c 14654 struct attribute *attr;
91da1414 14655 struct attribute *attr_high;
af34e669
DJ
14656 CORE_ADDR low = 0;
14657 CORE_ADDR high = 0;
e385593e 14658 enum pc_bounds_kind ret;
c906108c 14659
91da1414
MW
14660 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14661 if (attr_high)
af34e669 14662 {
e142c38c 14663 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 14664 if (attr)
91da1414 14665 {
31aa7e4e
JB
14666 low = attr_value_as_address (attr);
14667 high = attr_value_as_address (attr_high);
14668 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14669 high += low;
91da1414 14670 }
af34e669
DJ
14671 else
14672 /* Found high w/o low attribute. */
e385593e 14673 return PC_BOUNDS_INVALID;
af34e669
DJ
14674
14675 /* Found consecutive range of addresses. */
3a2b436a 14676 ret = PC_BOUNDS_HIGH_LOW;
af34e669 14677 }
c906108c 14678 else
af34e669 14679 {
e142c38c 14680 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
14681 if (attr != NULL)
14682 {
ab435259
DE
14683 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14684 We take advantage of the fact that DW_AT_ranges does not appear
14685 in DW_TAG_compile_unit of DWO files. */
14686 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14687 unsigned int ranges_offset = (DW_UNSND (attr)
14688 + (need_ranges_base
14689 ? cu->ranges_base
14690 : 0));
2e3cf129 14691
af34e669 14692 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 14693 .debug_ranges section. */
2e3cf129 14694 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
e385593e 14695 return PC_BOUNDS_INVALID;
43039443 14696 /* Found discontinuous range of addresses. */
3a2b436a 14697 ret = PC_BOUNDS_RANGES;
af34e669 14698 }
e385593e
JK
14699 else
14700 return PC_BOUNDS_NOT_PRESENT;
af34e669 14701 }
c906108c 14702
48fbe735 14703 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
9373cf26 14704 if (high <= low)
e385593e 14705 return PC_BOUNDS_INVALID;
c906108c
SS
14706
14707 /* When using the GNU linker, .gnu.linkonce. sections are used to
14708 eliminate duplicate copies of functions and vtables and such.
14709 The linker will arbitrarily choose one and discard the others.
14710 The AT_*_pc values for such functions refer to local labels in
14711 these sections. If the section from that file was discarded, the
14712 labels are not in the output, so the relocs get a value of 0.
14713 If this is a discarded function, mark the pc bounds as invalid,
14714 so that GDB will ignore it. */
72dca2f5 14715 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
e385593e 14716 return PC_BOUNDS_INVALID;
c906108c
SS
14717
14718 *lowpc = low;
96408a79
SA
14719 if (highpc)
14720 *highpc = high;
af34e669 14721 return ret;
c906108c
SS
14722}
14723
b084d499
JB
14724/* Assuming that DIE represents a subprogram DIE or a lexical block, get
14725 its low and high PC addresses. Do nothing if these addresses could not
14726 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14727 and HIGHPC to the high address if greater than HIGHPC. */
14728
14729static void
14730dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14731 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14732 struct dwarf2_cu *cu)
14733{
14734 CORE_ADDR low, high;
14735 struct die_info *child = die->child;
14736
e385593e 14737 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
b084d499 14738 {
325fac50
PA
14739 *lowpc = std::min (*lowpc, low);
14740 *highpc = std::max (*highpc, high);
b084d499
JB
14741 }
14742
14743 /* If the language does not allow nested subprograms (either inside
14744 subprograms or lexical blocks), we're done. */
14745 if (cu->language != language_ada)
14746 return;
6e70227d 14747
b084d499
JB
14748 /* Check all the children of the given DIE. If it contains nested
14749 subprograms, then check their pc bounds. Likewise, we need to
14750 check lexical blocks as well, as they may also contain subprogram
14751 definitions. */
14752 while (child && child->tag)
14753 {
14754 if (child->tag == DW_TAG_subprogram
14755 || child->tag == DW_TAG_lexical_block)
14756 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14757 child = sibling_die (child);
14758 }
14759}
14760
fae299cd
DC
14761/* Get the low and high pc's represented by the scope DIE, and store
14762 them in *LOWPC and *HIGHPC. If the correct values can't be
14763 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14764
14765static void
14766get_scope_pc_bounds (struct die_info *die,
14767 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14768 struct dwarf2_cu *cu)
14769{
14770 CORE_ADDR best_low = (CORE_ADDR) -1;
14771 CORE_ADDR best_high = (CORE_ADDR) 0;
14772 CORE_ADDR current_low, current_high;
14773
3a2b436a 14774 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
e385593e 14775 >= PC_BOUNDS_RANGES)
fae299cd
DC
14776 {
14777 best_low = current_low;
14778 best_high = current_high;
14779 }
14780 else
14781 {
14782 struct die_info *child = die->child;
14783
14784 while (child && child->tag)
14785 {
14786 switch (child->tag) {
14787 case DW_TAG_subprogram:
b084d499 14788 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
14789 break;
14790 case DW_TAG_namespace:
f55ee35c 14791 case DW_TAG_module:
fae299cd
DC
14792 /* FIXME: carlton/2004-01-16: Should we do this for
14793 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14794 that current GCC's always emit the DIEs corresponding
14795 to definitions of methods of classes as children of a
14796 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14797 the DIEs giving the declarations, which could be
14798 anywhere). But I don't see any reason why the
14799 standards says that they have to be there. */
14800 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14801
14802 if (current_low != ((CORE_ADDR) -1))
14803 {
325fac50
PA
14804 best_low = std::min (best_low, current_low);
14805 best_high = std::max (best_high, current_high);
fae299cd
DC
14806 }
14807 break;
14808 default:
0963b4bd 14809 /* Ignore. */
fae299cd
DC
14810 break;
14811 }
14812
14813 child = sibling_die (child);
14814 }
14815 }
14816
14817 *lowpc = best_low;
14818 *highpc = best_high;
14819}
14820
801e3a5b
JB
14821/* Record the address ranges for BLOCK, offset by BASEADDR, as given
14822 in DIE. */
380bca97 14823
801e3a5b
JB
14824static void
14825dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14826 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14827{
518817b3 14828 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3e29f34a 14829 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 14830 struct attribute *attr;
91da1414 14831 struct attribute *attr_high;
801e3a5b 14832
91da1414
MW
14833 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14834 if (attr_high)
801e3a5b 14835 {
801e3a5b
JB
14836 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14837 if (attr)
14838 {
31aa7e4e
JB
14839 CORE_ADDR low = attr_value_as_address (attr);
14840 CORE_ADDR high = attr_value_as_address (attr_high);
14841
14842 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14843 high += low;
9a619af0 14844
3e29f34a
MR
14845 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14846 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
804d2729 14847 cu->builder->record_block_range (block, low, high - 1);
801e3a5b
JB
14848 }
14849 }
14850
14851 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14852 if (attr)
14853 {
ab435259
DE
14854 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14855 We take advantage of the fact that DW_AT_ranges does not appear
14856 in DW_TAG_compile_unit of DWO files. */
14857 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
14858
14859 /* The value of the DW_AT_ranges attribute is the offset of the
14860 address range list in the .debug_ranges section. */
ab435259
DE
14861 unsigned long offset = (DW_UNSND (attr)
14862 + (need_ranges_base ? cu->ranges_base : 0));
801e3a5b 14863
2d5f09ec 14864 std::vector<blockrange> blockvec;
5f46c5a5
JK
14865 dwarf2_ranges_process (offset, cu,
14866 [&] (CORE_ADDR start, CORE_ADDR end)
14867 {
58fdfd2c
JK
14868 start += baseaddr;
14869 end += baseaddr;
5f46c5a5
JK
14870 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14871 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
804d2729 14872 cu->builder->record_block_range (block, start, end - 1);
2d5f09ec 14873 blockvec.emplace_back (start, end);
5f46c5a5 14874 });
2d5f09ec
KB
14875
14876 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
801e3a5b
JB
14877 }
14878}
14879
685b1105
JK
14880/* Check whether the producer field indicates either of GCC < 4.6, or the
14881 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 14882
685b1105
JK
14883static void
14884check_producer (struct dwarf2_cu *cu)
60d5a603 14885{
38360086 14886 int major, minor;
60d5a603
JK
14887
14888 if (cu->producer == NULL)
14889 {
14890 /* For unknown compilers expect their behavior is DWARF version
14891 compliant.
14892
14893 GCC started to support .debug_types sections by -gdwarf-4 since
14894 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14895 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14896 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14897 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 14898 }
b1ffba5a 14899 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 14900 {
38360086
MW
14901 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14902 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 14903 }
5230b05a 14904 else if (producer_is_icc (cu->producer, &major, &minor))
eb77c9df
AB
14905 {
14906 cu->producer_is_icc = true;
14907 cu->producer_is_icc_lt_14 = major < 14;
14908 }
c258c396
JD
14909 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14910 cu->producer_is_codewarrior = true;
685b1105
JK
14911 else
14912 {
14913 /* For other non-GCC compilers, expect their behavior is DWARF version
14914 compliant. */
60d5a603
JK
14915 }
14916
9068261f 14917 cu->checked_producer = true;
685b1105 14918}
ba919b58 14919
685b1105
JK
14920/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14921 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14922 during 4.6.0 experimental. */
14923
9068261f 14924static bool
685b1105
JK
14925producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14926{
14927 if (!cu->checked_producer)
14928 check_producer (cu);
14929
14930 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
14931}
14932
c258c396
JD
14933
14934/* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14935 with incorrect is_stmt attributes. */
14936
14937static bool
14938producer_is_codewarrior (struct dwarf2_cu *cu)
14939{
14940 if (!cu->checked_producer)
14941 check_producer (cu);
14942
14943 return cu->producer_is_codewarrior;
14944}
14945
60d5a603
JK
14946/* Return the default accessibility type if it is not overriden by
14947 DW_AT_accessibility. */
14948
14949static enum dwarf_access_attribute
14950dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14951{
14952 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14953 {
14954 /* The default DWARF 2 accessibility for members is public, the default
14955 accessibility for inheritance is private. */
14956
14957 if (die->tag != DW_TAG_inheritance)
14958 return DW_ACCESS_public;
14959 else
14960 return DW_ACCESS_private;
14961 }
14962 else
14963 {
14964 /* DWARF 3+ defines the default accessibility a different way. The same
14965 rules apply now for DW_TAG_inheritance as for the members and it only
14966 depends on the container kind. */
14967
14968 if (die->parent->tag == DW_TAG_class_type)
14969 return DW_ACCESS_private;
14970 else
14971 return DW_ACCESS_public;
14972 }
14973}
14974
74ac6d43
TT
14975/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14976 offset. If the attribute was not found return 0, otherwise return
14977 1. If it was found but could not properly be handled, set *OFFSET
14978 to 0. */
14979
14980static int
14981handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14982 LONGEST *offset)
14983{
14984 struct attribute *attr;
14985
14986 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14987 if (attr != NULL)
14988 {
14989 *offset = 0;
14990
14991 /* Note that we do not check for a section offset first here.
14992 This is because DW_AT_data_member_location is new in DWARF 4,
14993 so if we see it, we can assume that a constant form is really
14994 a constant and not a section offset. */
14995 if (attr_form_is_constant (attr))
14996 *offset = dwarf2_get_attr_constant_value (attr, 0);
14997 else if (attr_form_is_section_offset (attr))
14998 dwarf2_complex_location_expr_complaint ();
14999 else if (attr_form_is_block (attr))
15000 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15001 else
15002 dwarf2_complex_location_expr_complaint ();
15003
15004 return 1;
15005 }
15006
15007 return 0;
15008}
15009
c906108c
SS
15010/* Add an aggregate field to the field list. */
15011
15012static void
107d2387 15013dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 15014 struct dwarf2_cu *cu)
6e70227d 15015{
518817b3 15016 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
5e2b427d 15017 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
15018 struct nextfield *new_field;
15019 struct attribute *attr;
15020 struct field *fp;
15d034d0 15021 const char *fieldname = "";
c906108c 15022
7d0ccb61
DJ
15023 if (die->tag == DW_TAG_inheritance)
15024 {
be2daae6
TT
15025 fip->baseclasses.emplace_back ();
15026 new_field = &fip->baseclasses.back ();
7d0ccb61
DJ
15027 }
15028 else
15029 {
be2daae6
TT
15030 fip->fields.emplace_back ();
15031 new_field = &fip->fields.back ();
7d0ccb61 15032 }
be2daae6 15033
c906108c
SS
15034 fip->nfields++;
15035
e142c38c 15036 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
15037 if (attr)
15038 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
15039 else
15040 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
15041 if (new_field->accessibility != DW_ACCESS_public)
15042 fip->non_public_fields = 1;
60d5a603 15043
e142c38c 15044 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
15045 if (attr)
15046 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
15047 else
15048 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
15049
15050 fp = &new_field->field;
a9a9bd0f 15051
e142c38c 15052 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 15053 {
74ac6d43
TT
15054 LONGEST offset;
15055
a9a9bd0f 15056 /* Data member other than a C++ static data member. */
6e70227d 15057
c906108c 15058 /* Get type of field. */
e7c27a73 15059 fp->type = die_type (die, cu);
c906108c 15060
d6a843b5 15061 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 15062
c906108c 15063 /* Get bit size of field (zero if none). */
e142c38c 15064 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
15065 if (attr)
15066 {
15067 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15068 }
15069 else
15070 {
15071 FIELD_BITSIZE (*fp) = 0;
15072 }
15073
15074 /* Get bit offset of field. */
74ac6d43
TT
15075 if (handle_data_member_location (die, cu, &offset))
15076 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 15077 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
15078 if (attr)
15079 {
5e2b427d 15080 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
15081 {
15082 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
15083 additional bit offset from the MSB of the containing
15084 anonymous object to the MSB of the field. We don't
15085 have to do anything special since we don't need to
15086 know the size of the anonymous object. */
f41f5e61 15087 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
15088 }
15089 else
15090 {
15091 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
15092 MSB of the anonymous object, subtract off the number of
15093 bits from the MSB of the field to the MSB of the
15094 object, and then subtract off the number of bits of
15095 the field itself. The result is the bit offset of
15096 the LSB of the field. */
c906108c
SS
15097 int anonymous_size;
15098 int bit_offset = DW_UNSND (attr);
15099
e142c38c 15100 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
15101 if (attr)
15102 {
15103 /* The size of the anonymous object containing
15104 the bit field is explicit, so use the
15105 indicated size (in bytes). */
15106 anonymous_size = DW_UNSND (attr);
15107 }
15108 else
15109 {
15110 /* The size of the anonymous object containing
15111 the bit field must be inferred from the type
15112 attribute of the data member containing the
15113 bit field. */
15114 anonymous_size = TYPE_LENGTH (fp->type);
15115 }
f41f5e61
PA
15116 SET_FIELD_BITPOS (*fp,
15117 (FIELD_BITPOS (*fp)
15118 + anonymous_size * bits_per_byte
15119 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
15120 }
15121 }
da5b30da
AA
15122 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15123 if (attr != NULL)
15124 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15125 + dwarf2_get_attr_constant_value (attr, 0)));
c906108c
SS
15126
15127 /* Get name of field. */
39cbfefa
DJ
15128 fieldname = dwarf2_name (die, cu);
15129 if (fieldname == NULL)
15130 fieldname = "";
d8151005
DJ
15131
15132 /* The name is already allocated along with this objfile, so we don't
15133 need to duplicate it for the type. */
15134 fp->name = fieldname;
c906108c
SS
15135
15136 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 15137 pointer or virtual base class pointer) to private. */
e142c38c 15138 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 15139 {
d48cc9dd 15140 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
15141 new_field->accessibility = DW_ACCESS_private;
15142 fip->non_public_fields = 1;
15143 }
15144 }
a9a9bd0f 15145 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 15146 {
a9a9bd0f
DC
15147 /* C++ static member. */
15148
15149 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15150 is a declaration, but all versions of G++ as of this writing
15151 (so through at least 3.2.1) incorrectly generate
15152 DW_TAG_variable tags. */
6e70227d 15153
ff355380 15154 const char *physname;
c906108c 15155
a9a9bd0f 15156 /* Get name of field. */
39cbfefa
DJ
15157 fieldname = dwarf2_name (die, cu);
15158 if (fieldname == NULL)
c906108c
SS
15159 return;
15160
254e6b9e 15161 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
15162 if (attr
15163 /* Only create a symbol if this is an external value.
15164 new_symbol checks this and puts the value in the global symbol
15165 table, which we want. If it is not external, new_symbol
15166 will try to put the value in cu->list_in_scope which is wrong. */
15167 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
15168 {
15169 /* A static const member, not much different than an enum as far as
15170 we're concerned, except that we can support more types. */
15171 new_symbol (die, NULL, cu);
15172 }
15173
2df3850c 15174 /* Get physical name. */
ff355380 15175 physname = dwarf2_physname (fieldname, die, cu);
c906108c 15176
d8151005
DJ
15177 /* The name is already allocated along with this objfile, so we don't
15178 need to duplicate it for the type. */
15179 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 15180 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 15181 FIELD_NAME (*fp) = fieldname;
c906108c
SS
15182 }
15183 else if (die->tag == DW_TAG_inheritance)
15184 {
74ac6d43 15185 LONGEST offset;
d4b96c9a 15186
74ac6d43
TT
15187 /* C++ base class field. */
15188 if (handle_data_member_location (die, cu, &offset))
15189 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 15190 FIELD_BITSIZE (*fp) = 0;
e7c27a73 15191 FIELD_TYPE (*fp) = die_type (die, cu);
a737d952 15192 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
c906108c 15193 }
2ddeaf8a
TT
15194 else if (die->tag == DW_TAG_variant_part)
15195 {
15196 /* process_structure_scope will treat this DIE as a union. */
15197 process_structure_scope (die, cu);
15198
15199 /* The variant part is relative to the start of the enclosing
15200 structure. */
15201 SET_FIELD_BITPOS (*fp, 0);
15202 fp->type = get_die_type (die, cu);
15203 fp->artificial = 1;
15204 fp->name = "<<variant>>";
c8c81635
TT
15205
15206 /* Normally a DW_TAG_variant_part won't have a size, but our
15207 representation requires one, so set it to the maximum of the
15208 child sizes. */
15209 if (TYPE_LENGTH (fp->type) == 0)
15210 {
15211 unsigned max = 0;
15212 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15213 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15214 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15215 TYPE_LENGTH (fp->type) = max;
15216 }
2ddeaf8a
TT
15217 }
15218 else
15219 gdb_assert_not_reached ("missing case in dwarf2_add_field");
c906108c
SS
15220}
15221
883fd55a
KS
15222/* Can the type given by DIE define another type? */
15223
15224static bool
15225type_can_define_types (const struct die_info *die)
15226{
15227 switch (die->tag)
15228 {
15229 case DW_TAG_typedef:
15230 case DW_TAG_class_type:
15231 case DW_TAG_structure_type:
15232 case DW_TAG_union_type:
15233 case DW_TAG_enumeration_type:
15234 return true;
15235
15236 default:
15237 return false;
15238 }
15239}
15240
15241/* Add a type definition defined in the scope of the FIP's class. */
98751a41
JK
15242
15243static void
883fd55a
KS
15244dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15245 struct dwarf2_cu *cu)
6e70227d 15246{
be2daae6
TT
15247 struct decl_field fp;
15248 memset (&fp, 0, sizeof (fp));
98751a41 15249
883fd55a 15250 gdb_assert (type_can_define_types (die));
98751a41 15251
883fd55a 15252 /* Get name of field. NULL is okay here, meaning an anonymous type. */
be2daae6
TT
15253 fp.name = dwarf2_name (die, cu);
15254 fp.type = read_type_die (die, cu);
98751a41 15255
c191a687
KS
15256 /* Save accessibility. */
15257 enum dwarf_access_attribute accessibility;
15258 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15259 if (attr != NULL)
15260 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15261 else
15262 accessibility = dwarf2_default_access_attribute (die, cu);
15263 switch (accessibility)
15264 {
15265 case DW_ACCESS_public:
15266 /* The assumed value if neither private nor protected. */
15267 break;
15268 case DW_ACCESS_private:
be2daae6 15269 fp.is_private = 1;
c191a687
KS
15270 break;
15271 case DW_ACCESS_protected:
be2daae6 15272 fp.is_protected = 1;
c191a687
KS
15273 break;
15274 default:
b98664d3 15275 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
c191a687
KS
15276 }
15277
883fd55a 15278 if (die->tag == DW_TAG_typedef)
be2daae6 15279 fip->typedef_field_list.push_back (fp);
883fd55a 15280 else
be2daae6 15281 fip->nested_types_list.push_back (fp);
98751a41
JK
15282}
15283
c906108c
SS
15284/* Create the vector of fields, and attach it to the type. */
15285
15286static void
fba45db2 15287dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 15288 struct dwarf2_cu *cu)
c906108c
SS
15289{
15290 int nfields = fip->nfields;
15291
15292 /* Record the field count, allocate space for the array of fields,
15293 and create blank accessibility bitfields if necessary. */
15294 TYPE_NFIELDS (type) = nfields;
15295 TYPE_FIELDS (type) = (struct field *)
be2daae6 15296 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
c906108c 15297
b4ba55a1 15298 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
15299 {
15300 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15301
15302 TYPE_FIELD_PRIVATE_BITS (type) =
15303 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15304 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15305
15306 TYPE_FIELD_PROTECTED_BITS (type) =
15307 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15308 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15309
774b6a14
TT
15310 TYPE_FIELD_IGNORE_BITS (type) =
15311 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15312 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
15313 }
15314
15315 /* If the type has baseclasses, allocate and clear a bit vector for
15316 TYPE_FIELD_VIRTUAL_BITS. */
be2daae6 15317 if (!fip->baseclasses.empty () && cu->language != language_ada)
c906108c 15318 {
be2daae6 15319 int num_bytes = B_BYTES (fip->baseclasses.size ());
fe1b8b76 15320 unsigned char *pointer;
c906108c
SS
15321
15322 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 15323 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 15324 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
be2daae6
TT
15325 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15326 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
c906108c
SS
15327 }
15328
2ddeaf8a
TT
15329 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15330 {
15331 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15332
be2daae6 15333 for (int index = 0; index < nfields; ++index)
2ddeaf8a 15334 {
be2daae6
TT
15335 struct nextfield &field = fip->fields[index];
15336
15337 if (field.variant.is_discriminant)
2ddeaf8a 15338 di->discriminant_index = index;
be2daae6 15339 else if (field.variant.default_branch)
2ddeaf8a
TT
15340 di->default_index = index;
15341 else
be2daae6 15342 di->discriminants[index] = field.variant.discriminant_value;
2ddeaf8a
TT
15343 }
15344 }
15345
be2daae6
TT
15346 /* Copy the saved-up fields into the field vector. */
15347 for (int i = 0; i < nfields; ++i)
c906108c 15348 {
be2daae6
TT
15349 struct nextfield &field
15350 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15351 : fip->fields[i - fip->baseclasses.size ()]);
7d0ccb61 15352
be2daae6
TT
15353 TYPE_FIELD (type, i) = field.field;
15354 switch (field.accessibility)
c906108c 15355 {
c5aa993b 15356 case DW_ACCESS_private:
b4ba55a1 15357 if (cu->language != language_ada)
be2daae6 15358 SET_TYPE_FIELD_PRIVATE (type, i);
c5aa993b 15359 break;
c906108c 15360
c5aa993b 15361 case DW_ACCESS_protected:
b4ba55a1 15362 if (cu->language != language_ada)
be2daae6 15363 SET_TYPE_FIELD_PROTECTED (type, i);
c5aa993b 15364 break;
c906108c 15365
c5aa993b
JM
15366 case DW_ACCESS_public:
15367 break;
c906108c 15368
c5aa993b
JM
15369 default:
15370 /* Unknown accessibility. Complain and treat it as public. */
15371 {
b98664d3 15372 complaint (_("unsupported accessibility %d"),
be2daae6 15373 field.accessibility);
c5aa993b
JM
15374 }
15375 break;
c906108c 15376 }
be2daae6 15377 if (i < fip->baseclasses.size ())
c906108c 15378 {
be2daae6 15379 switch (field.virtuality)
c906108c 15380 {
c5aa993b
JM
15381 case DW_VIRTUALITY_virtual:
15382 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 15383 if (cu->language == language_ada)
a73c6dcd 15384 error (_("unexpected virtuality in component of Ada type"));
be2daae6 15385 SET_TYPE_FIELD_VIRTUAL (type, i);
c5aa993b 15386 break;
c906108c
SS
15387 }
15388 }
c906108c
SS
15389 }
15390}
15391
7d27a96d
TT
15392/* Return true if this member function is a constructor, false
15393 otherwise. */
15394
15395static int
15396dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15397{
15398 const char *fieldname;
fe978cb0 15399 const char *type_name;
7d27a96d
TT
15400 int len;
15401
15402 if (die->parent == NULL)
15403 return 0;
15404
15405 if (die->parent->tag != DW_TAG_structure_type
15406 && die->parent->tag != DW_TAG_union_type
15407 && die->parent->tag != DW_TAG_class_type)
15408 return 0;
15409
15410 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
15411 type_name = dwarf2_name (die->parent, cu);
15412 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
15413 return 0;
15414
15415 len = strlen (fieldname);
fe978cb0
PA
15416 return (strncmp (fieldname, type_name, len) == 0
15417 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
15418}
15419
c906108c
SS
15420/* Add a member function to the proper fieldlist. */
15421
15422static void
107d2387 15423dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 15424 struct type *type, struct dwarf2_cu *cu)
c906108c 15425{
518817b3 15426 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 15427 struct attribute *attr;
c906108c 15428 int i;
be2daae6 15429 struct fnfieldlist *flp = nullptr;
c906108c 15430 struct fn_field *fnp;
15d034d0 15431 const char *fieldname;
f792889a 15432 struct type *this_type;
60d5a603 15433 enum dwarf_access_attribute accessibility;
c906108c 15434
b4ba55a1 15435 if (cu->language == language_ada)
a73c6dcd 15436 error (_("unexpected member function in Ada type"));
b4ba55a1 15437
2df3850c 15438 /* Get name of member function. */
39cbfefa
DJ
15439 fieldname = dwarf2_name (die, cu);
15440 if (fieldname == NULL)
2df3850c 15441 return;
c906108c 15442
c906108c 15443 /* Look up member function name in fieldlist. */
be2daae6 15444 for (i = 0; i < fip->fnfieldlists.size (); i++)
c906108c 15445 {
27bfe10e 15446 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
be2daae6
TT
15447 {
15448 flp = &fip->fnfieldlists[i];
15449 break;
15450 }
c906108c
SS
15451 }
15452
be2daae6
TT
15453 /* Create a new fnfieldlist if necessary. */
15454 if (flp == nullptr)
c906108c 15455 {
be2daae6
TT
15456 fip->fnfieldlists.emplace_back ();
15457 flp = &fip->fnfieldlists.back ();
c906108c 15458 flp->name = fieldname;
be2daae6 15459 i = fip->fnfieldlists.size () - 1;
c906108c
SS
15460 }
15461
be2daae6
TT
15462 /* Create a new member function field and add it to the vector of
15463 fnfieldlists. */
15464 flp->fnfields.emplace_back ();
15465 fnp = &flp->fnfields.back ();
3da10d80
KS
15466
15467 /* Delay processing of the physname until later. */
9c37b5ae 15468 if (cu->language == language_cplus)
be2daae6
TT
15469 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15470 die, cu);
3da10d80
KS
15471 else
15472 {
1d06ead6 15473 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
15474 fnp->physname = physname ? physname : "";
15475 }
15476
c906108c 15477 fnp->type = alloc_type (objfile);
f792889a
DJ
15478 this_type = read_type_die (die, cu);
15479 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 15480 {
f792889a 15481 int nparams = TYPE_NFIELDS (this_type);
c906108c 15482
f792889a 15483 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
15484 of the method itself (TYPE_CODE_METHOD). */
15485 smash_to_method_type (fnp->type, type,
f792889a
DJ
15486 TYPE_TARGET_TYPE (this_type),
15487 TYPE_FIELDS (this_type),
15488 TYPE_NFIELDS (this_type),
15489 TYPE_VARARGS (this_type));
c906108c
SS
15490
15491 /* Handle static member functions.
c5aa993b 15492 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
15493 member functions. G++ helps GDB by marking the first
15494 parameter for non-static member functions (which is the this
15495 pointer) as artificial. We obtain this information from
15496 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 15497 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
15498 fnp->voffset = VOFFSET_STATIC;
15499 }
15500 else
b98664d3 15501 complaint (_("member function type missing for '%s'"),
3da10d80 15502 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
15503
15504 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 15505 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 15506 fnp->fcontext = die_containing_type (die, cu);
c906108c 15507
3e43a32a
MS
15508 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15509 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
15510
15511 /* Get accessibility. */
e142c38c 15512 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 15513 if (attr)
aead7601 15514 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
15515 else
15516 accessibility = dwarf2_default_access_attribute (die, cu);
15517 switch (accessibility)
c906108c 15518 {
60d5a603
JK
15519 case DW_ACCESS_private:
15520 fnp->is_private = 1;
15521 break;
15522 case DW_ACCESS_protected:
15523 fnp->is_protected = 1;
15524 break;
c906108c
SS
15525 }
15526
b02dede2 15527 /* Check for artificial methods. */
e142c38c 15528 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
15529 if (attr && DW_UNSND (attr) != 0)
15530 fnp->is_artificial = 1;
15531
7d27a96d
TT
15532 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15533
0d564a31 15534 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
15535 function. For older versions of GCC, this is an offset in the
15536 appropriate virtual table, as specified by DW_AT_containing_type.
15537 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
15538 to the object address. */
15539
e142c38c 15540 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 15541 if (attr)
8e19ed76 15542 {
aec5aa8b 15543 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 15544 {
aec5aa8b
TT
15545 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15546 {
15547 /* Old-style GCC. */
15548 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15549 }
15550 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15551 || (DW_BLOCK (attr)->size > 1
15552 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15553 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15554 {
aec5aa8b
TT
15555 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15556 if ((fnp->voffset % cu->header.addr_size) != 0)
15557 dwarf2_complex_location_expr_complaint ();
15558 else
15559 fnp->voffset /= cu->header.addr_size;
15560 fnp->voffset += 2;
15561 }
15562 else
15563 dwarf2_complex_location_expr_complaint ();
15564
15565 if (!fnp->fcontext)
7e993ebf
KS
15566 {
15567 /* If there is no `this' field and no DW_AT_containing_type,
15568 we cannot actually find a base class context for the
15569 vtable! */
15570 if (TYPE_NFIELDS (this_type) == 0
15571 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15572 {
b98664d3 15573 complaint (_("cannot determine context for virtual member "
9d8780f0
SM
15574 "function \"%s\" (offset %s)"),
15575 fieldname, sect_offset_str (die->sect_off));
7e993ebf
KS
15576 }
15577 else
15578 {
15579 fnp->fcontext
15580 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15581 }
15582 }
aec5aa8b 15583 }
3690dd37 15584 else if (attr_form_is_section_offset (attr))
8e19ed76 15585 {
4d3c2250 15586 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15587 }
15588 else
15589 {
4d3c2250
KB
15590 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15591 fieldname);
8e19ed76 15592 }
0d564a31 15593 }
d48cc9dd
DJ
15594 else
15595 {
15596 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15597 if (attr && DW_UNSND (attr))
15598 {
15599 /* GCC does this, as of 2008-08-25; PR debug/37237. */
b98664d3 15600 complaint (_("Member function \"%s\" (offset %s) is virtual "
3e43a32a 15601 "but the vtable offset is not specified"),
9d8780f0 15602 fieldname, sect_offset_str (die->sect_off));
9655fd1a 15603 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
15604 TYPE_CPLUS_DYNAMIC (type) = 1;
15605 }
15606 }
c906108c
SS
15607}
15608
15609/* Create the vector of member function fields, and attach it to the type. */
15610
15611static void
fba45db2 15612dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 15613 struct dwarf2_cu *cu)
c906108c 15614{
b4ba55a1 15615 if (cu->language == language_ada)
a73c6dcd 15616 error (_("unexpected member functions in Ada type"));
b4ba55a1 15617
c906108c
SS
15618 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15619 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
be2daae6
TT
15620 TYPE_ALLOC (type,
15621 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
c906108c 15622
be2daae6 15623 for (int i = 0; i < fip->fnfieldlists.size (); i++)
c906108c 15624 {
be2daae6 15625 struct fnfieldlist &nf = fip->fnfieldlists[i];
c906108c 15626 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
c906108c 15627
be2daae6
TT
15628 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15629 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
c906108c 15630 fn_flp->fn_fields = (struct fn_field *)
be2daae6
TT
15631 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15632
15633 for (int k = 0; k < nf.fnfields.size (); ++k)
15634 fn_flp->fn_fields[k] = nf.fnfields[k];
c906108c
SS
15635 }
15636
be2daae6 15637 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
c906108c
SS
15638}
15639
1168df01
JB
15640/* Returns non-zero if NAME is the name of a vtable member in CU's
15641 language, zero otherwise. */
15642static int
15643is_vtable_name (const char *name, struct dwarf2_cu *cu)
15644{
15645 static const char vptr[] = "_vptr";
15646
9c37b5ae
TT
15647 /* Look for the C++ form of the vtable. */
15648 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
1168df01
JB
15649 return 1;
15650
15651 return 0;
15652}
15653
c0dd20ea 15654/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
15655 functions, with the ABI-specified layout. If TYPE describes
15656 such a structure, smash it into a member function type.
61049d3b
DJ
15657
15658 GCC shouldn't do this; it should just output pointer to member DIEs.
15659 This is GCC PR debug/28767. */
c0dd20ea 15660
0b92b5bb
TT
15661static void
15662quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 15663{
09e2d7c7 15664 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
15665
15666 /* Check for a structure with no name and two children. */
0b92b5bb
TT
15667 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15668 return;
c0dd20ea
DJ
15669
15670 /* Check for __pfn and __delta members. */
0b92b5bb
TT
15671 if (TYPE_FIELD_NAME (type, 0) == NULL
15672 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15673 || TYPE_FIELD_NAME (type, 1) == NULL
15674 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15675 return;
c0dd20ea
DJ
15676
15677 /* Find the type of the method. */
0b92b5bb 15678 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
15679 if (pfn_type == NULL
15680 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15681 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 15682 return;
c0dd20ea
DJ
15683
15684 /* Look for the "this" argument. */
15685 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15686 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 15687 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 15688 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 15689 return;
c0dd20ea 15690
09e2d7c7 15691 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 15692 new_type = alloc_type (objfile);
09e2d7c7 15693 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
15694 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15695 TYPE_VARARGS (pfn_type));
0b92b5bb 15696 smash_to_methodptr_type (type, new_type);
c0dd20ea 15697}
1168df01 15698
2b4424c3
TT
15699/* If the DIE has a DW_AT_alignment attribute, return its value, doing
15700 appropriate error checking and issuing complaints if there is a
15701 problem. */
15702
15703static ULONGEST
15704get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15705{
15706 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15707
15708 if (attr == nullptr)
15709 return 0;
15710
15711 if (!attr_form_is_constant (attr))
15712 {
b98664d3 15713 complaint (_("DW_AT_alignment must have constant form"
2b4424c3
TT
15714 " - DIE at %s [in module %s]"),
15715 sect_offset_str (die->sect_off),
15716 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15717 return 0;
15718 }
15719
15720 ULONGEST align;
15721 if (attr->form == DW_FORM_sdata)
15722 {
15723 LONGEST val = DW_SND (attr);
15724 if (val < 0)
15725 {
b98664d3 15726 complaint (_("DW_AT_alignment value must not be negative"
2b4424c3
TT
15727 " - DIE at %s [in module %s]"),
15728 sect_offset_str (die->sect_off),
15729 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15730 return 0;
15731 }
15732 align = val;
15733 }
15734 else
15735 align = DW_UNSND (attr);
15736
15737 if (align == 0)
15738 {
b98664d3 15739 complaint (_("DW_AT_alignment value must not be zero"
2b4424c3
TT
15740 " - DIE at %s [in module %s]"),
15741 sect_offset_str (die->sect_off),
15742 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15743 return 0;
15744 }
15745 if ((align & (align - 1)) != 0)
15746 {
b98664d3 15747 complaint (_("DW_AT_alignment value must be a power of 2"
2b4424c3
TT
15748 " - DIE at %s [in module %s]"),
15749 sect_offset_str (die->sect_off),
15750 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15751 return 0;
15752 }
15753
15754 return align;
15755}
15756
15757/* If the DIE has a DW_AT_alignment attribute, use its value to set
15758 the alignment for TYPE. */
15759
15760static void
15761maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15762 struct type *type)
15763{
15764 if (!set_type_align (type, get_alignment (cu, die)))
b98664d3 15765 complaint (_("DW_AT_alignment value too large"
2b4424c3
TT
15766 " - DIE at %s [in module %s]"),
15767 sect_offset_str (die->sect_off),
15768 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15769}
685b1105 15770
c906108c 15771/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
15772 (definition) to create a type for the structure or union. Fill in
15773 the type's name and general properties; the members will not be
83655187
DE
15774 processed until process_structure_scope. A symbol table entry for
15775 the type will also not be done until process_structure_scope (assuming
15776 the type has a name).
c906108c 15777
c767944b
DJ
15778 NOTE: we need to call these functions regardless of whether or not the
15779 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 15780 structure or union. This gets the type entered into our set of
83655187 15781 user defined types. */
c906108c 15782
f792889a 15783static struct type *
134d01f1 15784read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 15785{
518817b3 15786 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c
SS
15787 struct type *type;
15788 struct attribute *attr;
15d034d0 15789 const char *name;
c906108c 15790
348e048f
DE
15791 /* If the definition of this type lives in .debug_types, read that type.
15792 Don't follow DW_AT_specification though, that will take us back up
15793 the chain and we want to go down. */
45e58e77 15794 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
15795 if (attr)
15796 {
ac9ec31b 15797 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 15798
ac9ec31b 15799 /* The type's CU may not be the same as CU.
02142a6c 15800 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
15801 return set_die_type (die, type, cu);
15802 }
15803
c0dd20ea 15804 type = alloc_type (objfile);
c906108c 15805 INIT_CPLUS_SPECIFIC (type);
93311388 15806
39cbfefa
DJ
15807 name = dwarf2_name (die, cu);
15808 if (name != NULL)
c906108c 15809 {
987504bb 15810 if (cu->language == language_cplus
c44af4eb
TT
15811 || cu->language == language_d
15812 || cu->language == language_rust)
63d06c5c 15813 {
15d034d0 15814 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
15815
15816 /* dwarf2_full_name might have already finished building the DIE's
15817 type. If so, there is no need to continue. */
15818 if (get_die_type (die, cu) != NULL)
15819 return get_die_type (die, cu);
15820
e86ca25f 15821 TYPE_NAME (type) = full_name;
63d06c5c
DC
15822 }
15823 else
15824 {
d8151005
DJ
15825 /* The name is already allocated along with this objfile, so
15826 we don't need to duplicate it for the type. */
e86ca25f 15827 TYPE_NAME (type) = name;
63d06c5c 15828 }
c906108c
SS
15829 }
15830
15831 if (die->tag == DW_TAG_structure_type)
15832 {
15833 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15834 }
15835 else if (die->tag == DW_TAG_union_type)
15836 {
15837 TYPE_CODE (type) = TYPE_CODE_UNION;
15838 }
2ddeaf8a
TT
15839 else if (die->tag == DW_TAG_variant_part)
15840 {
15841 TYPE_CODE (type) = TYPE_CODE_UNION;
15842 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15843 }
c906108c
SS
15844 else
15845 {
4753d33b 15846 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
15847 }
15848
0cc2414c
TT
15849 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15850 TYPE_DECLARED_CLASS (type) = 1;
15851
e142c38c 15852 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
15853 if (attr)
15854 {
155bfbd3
JB
15855 if (attr_form_is_constant (attr))
15856 TYPE_LENGTH (type) = DW_UNSND (attr);
15857 else
15858 {
15859 /* For the moment, dynamic type sizes are not supported
15860 by GDB's struct type. The actual size is determined
15861 on-demand when resolving the type of a given object,
15862 so set the type's length to zero for now. Otherwise,
15863 we record an expression as the length, and that expression
15864 could lead to a very large value, which could eventually
15865 lead to us trying to allocate that much memory when creating
15866 a value of that type. */
15867 TYPE_LENGTH (type) = 0;
15868 }
c906108c
SS
15869 }
15870 else
15871 {
15872 TYPE_LENGTH (type) = 0;
15873 }
15874
2b4424c3
TT
15875 maybe_set_alignment (cu, die, type);
15876
5230b05a 15877 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
685b1105 15878 {
5230b05a
WT
15879 /* ICC<14 does not output the required DW_AT_declaration on
15880 incomplete types, but gives them a size of zero. */
422b1cb0 15881 TYPE_STUB (type) = 1;
685b1105
JK
15882 }
15883 else
15884 TYPE_STUB_SUPPORTED (type) = 1;
15885
dc718098 15886 if (die_is_declaration (die, cu))
876cecd0 15887 TYPE_STUB (type) = 1;
a6c727b2
DJ
15888 else if (attr == NULL && die->child == NULL
15889 && producer_is_realview (cu->producer))
15890 /* RealView does not output the required DW_AT_declaration
15891 on incomplete types. */
15892 TYPE_STUB (type) = 1;
dc718098 15893
c906108c
SS
15894 /* We need to add the type field to the die immediately so we don't
15895 infinitely recurse when dealing with pointers to the structure
0963b4bd 15896 type within the structure itself. */
1c379e20 15897 set_die_type (die, type, cu);
c906108c 15898
7e314c57
JK
15899 /* set_die_type should be already done. */
15900 set_descriptive_type (type, die, cu);
15901
c767944b
DJ
15902 return type;
15903}
15904
2ddeaf8a
TT
15905/* A helper for process_structure_scope that handles a single member
15906 DIE. */
15907
15908static void
15909handle_struct_member_die (struct die_info *child_die, struct type *type,
15910 struct field_info *fi,
15911 std::vector<struct symbol *> *template_args,
15912 struct dwarf2_cu *cu)
15913{
15914 if (child_die->tag == DW_TAG_member
15915 || child_die->tag == DW_TAG_variable
15916 || child_die->tag == DW_TAG_variant_part)
15917 {
15918 /* NOTE: carlton/2002-11-05: A C++ static data member
15919 should be a DW_TAG_member that is a declaration, but
15920 all versions of G++ as of this writing (so through at
15921 least 3.2.1) incorrectly generate DW_TAG_variable
15922 tags for them instead. */
15923 dwarf2_add_field (fi, child_die, cu);
15924 }
15925 else if (child_die->tag == DW_TAG_subprogram)
15926 {
15927 /* Rust doesn't have member functions in the C++ sense.
15928 However, it does emit ordinary functions as children
15929 of a struct DIE. */
15930 if (cu->language == language_rust)
15931 read_func_scope (child_die, cu);
15932 else
15933 {
15934 /* C++ member function. */
15935 dwarf2_add_member_fn (fi, child_die, type, cu);
15936 }
15937 }
15938 else if (child_die->tag == DW_TAG_inheritance)
15939 {
15940 /* C++ base class field. */
15941 dwarf2_add_field (fi, child_die, cu);
15942 }
15943 else if (type_can_define_types (child_die))
15944 dwarf2_add_type_defn (fi, child_die, cu);
15945 else if (child_die->tag == DW_TAG_template_type_param
15946 || child_die->tag == DW_TAG_template_value_param)
15947 {
15948 struct symbol *arg = new_symbol (child_die, NULL, cu);
15949
15950 if (arg != NULL)
15951 template_args->push_back (arg);
15952 }
15953 else if (child_die->tag == DW_TAG_variant)
15954 {
15955 /* In a variant we want to get the discriminant and also add a
15956 field for our sole member child. */
15957 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15958
15959 for (struct die_info *variant_child = child_die->child;
15960 variant_child != NULL;
15961 variant_child = sibling_die (variant_child))
15962 {
15963 if (variant_child->tag == DW_TAG_member)
15964 {
15965 handle_struct_member_die (variant_child, type, fi,
15966 template_args, cu);
15967 /* Only handle the one. */
15968 break;
15969 }
15970 }
15971
15972 /* We don't handle this but we might as well report it if we see
15973 it. */
15974 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
b98664d3 15975 complaint (_("DW_AT_discr_list is not supported yet"
2ddeaf8a
TT
15976 " - DIE at %s [in module %s]"),
15977 sect_offset_str (child_die->sect_off),
15978 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15979
15980 /* The first field was just added, so we can stash the
15981 discriminant there. */
be2daae6 15982 gdb_assert (!fi->fields.empty ());
2ddeaf8a 15983 if (discr == NULL)
be2daae6 15984 fi->fields.back ().variant.default_branch = true;
2ddeaf8a 15985 else
be2daae6 15986 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
2ddeaf8a
TT
15987 }
15988}
15989
c767944b
DJ
15990/* Finish creating a structure or union type, including filling in
15991 its members and creating a symbol for it. */
15992
15993static void
15994process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15995{
518817b3 15996 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
ca040673 15997 struct die_info *child_die;
c767944b
DJ
15998 struct type *type;
15999
16000 type = get_die_type (die, cu);
16001 if (type == NULL)
16002 type = read_structure_type (die, cu);
16003
2ddeaf8a
TT
16004 /* When reading a DW_TAG_variant_part, we need to notice when we
16005 read the discriminant member, so we can record it later in the
16006 discriminant_info. */
16007 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16008 sect_offset discr_offset;
3e1d3d8c 16009 bool has_template_parameters = false;
2ddeaf8a
TT
16010
16011 if (is_variant_part)
16012 {
16013 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16014 if (discr == NULL)
16015 {
16016 /* Maybe it's a univariant form, an extension we support.
16017 In this case arrange not to check the offset. */
16018 is_variant_part = false;
16019 }
16020 else if (attr_form_is_ref (discr))
16021 {
16022 struct dwarf2_cu *target_cu = cu;
16023 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16024
16025 discr_offset = target_die->sect_off;
16026 }
16027 else
16028 {
b98664d3 16029 complaint (_("DW_AT_discr does not have DIE reference form"
2ddeaf8a
TT
16030 " - DIE at %s [in module %s]"),
16031 sect_offset_str (die->sect_off),
16032 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16033 is_variant_part = false;
16034 }
16035 }
16036
e142c38c 16037 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
16038 {
16039 struct field_info fi;
2f4732b0 16040 std::vector<struct symbol *> template_args;
c906108c 16041
639d11d3 16042 child_die = die->child;
c906108c
SS
16043
16044 while (child_die && child_die->tag)
16045 {
2ddeaf8a 16046 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
34eaf542 16047
2ddeaf8a 16048 if (is_variant_part && discr_offset == child_die->sect_off)
be2daae6 16049 fi.fields.back ().variant.is_discriminant = true;
34eaf542 16050
c906108c
SS
16051 child_die = sibling_die (child_die);
16052 }
16053
34eaf542 16054 /* Attach template arguments to type. */
2f4732b0 16055 if (!template_args.empty ())
34eaf542 16056 {
3e1d3d8c 16057 has_template_parameters = true;
34eaf542 16058 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2f4732b0 16059 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
34eaf542 16060 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
16061 = XOBNEWVEC (&objfile->objfile_obstack,
16062 struct symbol *,
16063 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542 16064 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
2f4732b0 16065 template_args.data (),
34eaf542
TT
16066 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16067 * sizeof (struct symbol *)));
34eaf542
TT
16068 }
16069
c906108c
SS
16070 /* Attach fields and member functions to the type. */
16071 if (fi.nfields)
e7c27a73 16072 dwarf2_attach_fields_to_type (&fi, type, cu);
be2daae6 16073 if (!fi.fnfieldlists.empty ())
c906108c 16074 {
e7c27a73 16075 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 16076
c5aa993b 16077 /* Get the type which refers to the base class (possibly this
c906108c 16078 class itself) which contains the vtable pointer for the current
0d564a31
DJ
16079 class from the DW_AT_containing_type attribute. This use of
16080 DW_AT_containing_type is a GNU extension. */
c906108c 16081
e142c38c 16082 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 16083 {
e7c27a73 16084 struct type *t = die_containing_type (die, cu);
c906108c 16085
ae6ae975 16086 set_type_vptr_basetype (type, t);
c906108c
SS
16087 if (type == t)
16088 {
c906108c
SS
16089 int i;
16090
16091 /* Our own class provides vtbl ptr. */
16092 for (i = TYPE_NFIELDS (t) - 1;
16093 i >= TYPE_N_BASECLASSES (t);
16094 --i)
16095 {
0d5cff50 16096 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 16097
1168df01 16098 if (is_vtable_name (fieldname, cu))
c906108c 16099 {
ae6ae975 16100 set_type_vptr_fieldno (type, i);
c906108c
SS
16101 break;
16102 }
16103 }
16104
16105 /* Complain if virtual function table field not found. */
16106 if (i < TYPE_N_BASECLASSES (t))
b98664d3 16107 complaint (_("virtual function table pointer "
3e43a32a 16108 "not found when defining class '%s'"),
e86ca25f 16109 TYPE_NAME (type) ? TYPE_NAME (type) : "");
c906108c
SS
16110 }
16111 else
16112 {
ae6ae975 16113 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
16114 }
16115 }
f6235d4c 16116 else if (cu->producer
61012eef 16117 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
16118 {
16119 /* The IBM XLC compiler does not provide direct indication
16120 of the containing type, but the vtable pointer is
16121 always named __vfp. */
16122
16123 int i;
16124
16125 for (i = TYPE_NFIELDS (type) - 1;
16126 i >= TYPE_N_BASECLASSES (type);
16127 --i)
16128 {
16129 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16130 {
ae6ae975
DE
16131 set_type_vptr_fieldno (type, i);
16132 set_type_vptr_basetype (type, type);
f6235d4c
EZ
16133 break;
16134 }
16135 }
16136 }
c906108c 16137 }
98751a41
JK
16138
16139 /* Copy fi.typedef_field_list linked list elements content into the
16140 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
be2daae6 16141 if (!fi.typedef_field_list.empty ())
98751a41 16142 {
be2daae6 16143 int count = fi.typedef_field_list.size ();
98751a41 16144
a0d7a4ff 16145 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 16146 TYPE_TYPEDEF_FIELD_ARRAY (type)
883fd55a 16147 = ((struct decl_field *)
be2daae6
TT
16148 TYPE_ALLOC (type,
16149 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16150 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
6e70227d 16151
be2daae6
TT
16152 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16153 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
98751a41 16154 }
c767944b 16155
883fd55a
KS
16156 /* Copy fi.nested_types_list linked list elements content into the
16157 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
be2daae6 16158 if (!fi.nested_types_list.empty () && cu->language != language_ada)
883fd55a 16159 {
be2daae6 16160 int count = fi.nested_types_list.size ();
883fd55a
KS
16161
16162 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16163 TYPE_NESTED_TYPES_ARRAY (type)
16164 = ((struct decl_field *)
be2daae6
TT
16165 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16166 TYPE_NESTED_TYPES_COUNT (type) = count;
883fd55a 16167
be2daae6
TT
16168 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16169 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
883fd55a 16170 }
c906108c 16171 }
63d06c5c 16172
bb5ed363 16173 quirk_gcc_member_function_pointer (type, objfile);
c9317f21
TT
16174 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16175 cu->rust_unions.push_back (type);
0b92b5bb 16176
90aeadfc
DC
16177 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16178 snapshots) has been known to create a die giving a declaration
16179 for a class that has, as a child, a die giving a definition for a
16180 nested class. So we have to process our children even if the
16181 current die is a declaration. Normally, of course, a declaration
16182 won't have any children at all. */
134d01f1 16183
ca040673
DE
16184 child_die = die->child;
16185
90aeadfc
DC
16186 while (child_die != NULL && child_die->tag)
16187 {
16188 if (child_die->tag == DW_TAG_member
16189 || child_die->tag == DW_TAG_variable
34eaf542
TT
16190 || child_die->tag == DW_TAG_inheritance
16191 || child_die->tag == DW_TAG_template_value_param
16192 || child_die->tag == DW_TAG_template_type_param)
134d01f1 16193 {
90aeadfc 16194 /* Do nothing. */
134d01f1 16195 }
90aeadfc
DC
16196 else
16197 process_die (child_die, cu);
134d01f1 16198
90aeadfc 16199 child_die = sibling_die (child_die);
134d01f1
DJ
16200 }
16201
fa4028e9
JB
16202 /* Do not consider external references. According to the DWARF standard,
16203 these DIEs are identified by the fact that they have no byte_size
16204 attribute, and a declaration attribute. */
16205 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16206 || !die_is_declaration (die, cu))
3e1d3d8c
TT
16207 {
16208 struct symbol *sym = new_symbol (die, type, cu);
16209
16210 if (has_template_parameters)
16211 {
16212 /* Make sure that the symtab is set on the new symbols.
16213 Even though they don't appear in this symtab directly,
16214 other parts of gdb assume that symbols do, and this is
16215 reasonably true. */
16216 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16217 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i),
16218 symbol_symtab (sym));
16219 }
16220 }
134d01f1
DJ
16221}
16222
55426c9d
JB
16223/* Assuming DIE is an enumeration type, and TYPE is its associated type,
16224 update TYPE using some information only available in DIE's children. */
16225
16226static void
16227update_enumeration_type_from_children (struct die_info *die,
16228 struct type *type,
16229 struct dwarf2_cu *cu)
16230{
60f7655a 16231 struct die_info *child_die;
55426c9d
JB
16232 int unsigned_enum = 1;
16233 int flag_enum = 1;
16234 ULONGEST mask = 0;
55426c9d 16235
8268c778 16236 auto_obstack obstack;
55426c9d 16237
60f7655a
DE
16238 for (child_die = die->child;
16239 child_die != NULL && child_die->tag;
16240 child_die = sibling_die (child_die))
55426c9d
JB
16241 {
16242 struct attribute *attr;
16243 LONGEST value;
16244 const gdb_byte *bytes;
16245 struct dwarf2_locexpr_baton *baton;
16246 const char *name;
60f7655a 16247
55426c9d
JB
16248 if (child_die->tag != DW_TAG_enumerator)
16249 continue;
16250
16251 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16252 if (attr == NULL)
16253 continue;
16254
16255 name = dwarf2_name (child_die, cu);
16256 if (name == NULL)
16257 name = "<anonymous enumerator>";
16258
16259 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16260 &value, &bytes, &baton);
16261 if (value < 0)
16262 {
16263 unsigned_enum = 0;
16264 flag_enum = 0;
16265 }
16266 else if ((mask & value) != 0)
16267 flag_enum = 0;
16268 else
16269 mask |= value;
16270
16271 /* If we already know that the enum type is neither unsigned, nor
16272 a flag type, no need to look at the rest of the enumerates. */
16273 if (!unsigned_enum && !flag_enum)
16274 break;
55426c9d
JB
16275 }
16276
16277 if (unsigned_enum)
16278 TYPE_UNSIGNED (type) = 1;
16279 if (flag_enum)
16280 TYPE_FLAG_ENUM (type) = 1;
55426c9d
JB
16281}
16282
134d01f1
DJ
16283/* Given a DW_AT_enumeration_type die, set its type. We do not
16284 complete the type's fields yet, or create any symbols. */
c906108c 16285
f792889a 16286static struct type *
134d01f1 16287read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16288{
518817b3 16289 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 16290 struct type *type;
c906108c 16291 struct attribute *attr;
0114d602 16292 const char *name;
134d01f1 16293
348e048f
DE
16294 /* If the definition of this type lives in .debug_types, read that type.
16295 Don't follow DW_AT_specification though, that will take us back up
16296 the chain and we want to go down. */
45e58e77 16297 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
16298 if (attr)
16299 {
ac9ec31b 16300 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 16301
ac9ec31b 16302 /* The type's CU may not be the same as CU.
02142a6c 16303 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
16304 return set_die_type (die, type, cu);
16305 }
16306
c906108c
SS
16307 type = alloc_type (objfile);
16308
16309 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 16310 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 16311 if (name != NULL)
e86ca25f 16312 TYPE_NAME (type) = name;
c906108c 16313
0626fc76
TT
16314 attr = dwarf2_attr (die, DW_AT_type, cu);
16315 if (attr != NULL)
16316 {
16317 struct type *underlying_type = die_type (die, cu);
16318
16319 TYPE_TARGET_TYPE (type) = underlying_type;
16320 }
16321
e142c38c 16322 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
16323 if (attr)
16324 {
16325 TYPE_LENGTH (type) = DW_UNSND (attr);
16326 }
16327 else
16328 {
16329 TYPE_LENGTH (type) = 0;
16330 }
16331
2b4424c3
TT
16332 maybe_set_alignment (cu, die, type);
16333
137033e9
JB
16334 /* The enumeration DIE can be incomplete. In Ada, any type can be
16335 declared as private in the package spec, and then defined only
16336 inside the package body. Such types are known as Taft Amendment
16337 Types. When another package uses such a type, an incomplete DIE
16338 may be generated by the compiler. */
02eb380e 16339 if (die_is_declaration (die, cu))
876cecd0 16340 TYPE_STUB (type) = 1;
02eb380e 16341
0626fc76
TT
16342 /* Finish the creation of this type by using the enum's children.
16343 We must call this even when the underlying type has been provided
16344 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
16345 update_enumeration_type_from_children (die, type, cu);
16346
0626fc76
TT
16347 /* If this type has an underlying type that is not a stub, then we
16348 may use its attributes. We always use the "unsigned" attribute
16349 in this situation, because ordinarily we guess whether the type
16350 is unsigned -- but the guess can be wrong and the underlying type
16351 can tell us the reality. However, we defer to a local size
16352 attribute if one exists, because this lets the compiler override
16353 the underlying type if needed. */
16354 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16355 {
16356 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16357 if (TYPE_LENGTH (type) == 0)
16358 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
2b4424c3
TT
16359 if (TYPE_RAW_ALIGN (type) == 0
16360 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16361 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
0626fc76
TT
16362 }
16363
3d567982
TT
16364 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16365
f792889a 16366 return set_die_type (die, type, cu);
134d01f1
DJ
16367}
16368
16369/* Given a pointer to a die which begins an enumeration, process all
16370 the dies that define the members of the enumeration, and create the
16371 symbol for the enumeration type.
16372
16373 NOTE: We reverse the order of the element list. */
16374
16375static void
16376process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16377{
f792889a 16378 struct type *this_type;
134d01f1 16379
f792889a
DJ
16380 this_type = get_die_type (die, cu);
16381 if (this_type == NULL)
16382 this_type = read_enumeration_type (die, cu);
9dc481d3 16383
639d11d3 16384 if (die->child != NULL)
c906108c 16385 {
9dc481d3
DE
16386 struct die_info *child_die;
16387 struct symbol *sym;
16388 struct field *fields = NULL;
16389 int num_fields = 0;
15d034d0 16390 const char *name;
9dc481d3 16391
639d11d3 16392 child_die = die->child;
c906108c
SS
16393 while (child_die && child_die->tag)
16394 {
16395 if (child_die->tag != DW_TAG_enumerator)
16396 {
e7c27a73 16397 process_die (child_die, cu);
c906108c
SS
16398 }
16399 else
16400 {
39cbfefa
DJ
16401 name = dwarf2_name (child_die, cu);
16402 if (name)
c906108c 16403 {
f792889a 16404 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
16405
16406 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16407 {
16408 fields = (struct field *)
16409 xrealloc (fields,
16410 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 16411 * sizeof (struct field));
c906108c
SS
16412 }
16413
3567439c 16414 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 16415 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 16416 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
16417 FIELD_BITSIZE (fields[num_fields]) = 0;
16418
16419 num_fields++;
16420 }
16421 }
16422
16423 child_die = sibling_die (child_die);
16424 }
16425
16426 if (num_fields)
16427 {
f792889a
DJ
16428 TYPE_NFIELDS (this_type) = num_fields;
16429 TYPE_FIELDS (this_type) = (struct field *)
16430 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16431 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 16432 sizeof (struct field) * num_fields);
b8c9b27d 16433 xfree (fields);
c906108c 16434 }
c906108c 16435 }
134d01f1 16436
6c83ed52
TT
16437 /* If we are reading an enum from a .debug_types unit, and the enum
16438 is a declaration, and the enum is not the signatured type in the
16439 unit, then we do not want to add a symbol for it. Adding a
16440 symbol would in some cases obscure the true definition of the
16441 enum, giving users an incomplete type when the definition is
16442 actually available. Note that we do not want to do this for all
16443 enums which are just declarations, because C++0x allows forward
16444 enum declarations. */
3019eac3 16445 if (cu->per_cu->is_debug_types
6c83ed52
TT
16446 && die_is_declaration (die, cu))
16447 {
52dc124a 16448 struct signatured_type *sig_type;
6c83ed52 16449
c0f78cd4 16450 sig_type = (struct signatured_type *) cu->per_cu;
9c541725
PA
16451 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16452 if (sig_type->type_offset_in_section != die->sect_off)
6c83ed52
TT
16453 return;
16454 }
16455
f792889a 16456 new_symbol (die, this_type, cu);
c906108c
SS
16457}
16458
16459/* Extract all information from a DW_TAG_array_type DIE and put it in
16460 the DIE's type field. For now, this only handles one dimensional
16461 arrays. */
16462
f792889a 16463static struct type *
e7c27a73 16464read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16465{
518817b3 16466 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 16467 struct die_info *child_die;
7e314c57 16468 struct type *type;
c906108c 16469 struct type *element_type, *range_type, *index_type;
c906108c 16470 struct attribute *attr;
15d034d0 16471 const char *name;
a405673c 16472 struct dynamic_prop *byte_stride_prop = NULL;
dc53a7ad 16473 unsigned int bit_stride = 0;
c906108c 16474
e7c27a73 16475 element_type = die_type (die, cu);
c906108c 16476
7e314c57
JK
16477 /* The die_type call above may have already set the type for this DIE. */
16478 type = get_die_type (die, cu);
16479 if (type)
16480 return type;
16481
dc53a7ad
JB
16482 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16483 if (attr != NULL)
a405673c
JB
16484 {
16485 int stride_ok;
16486
16487 byte_stride_prop
16488 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16489 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16490 if (!stride_ok)
16491 {
b98664d3 16492 complaint (_("unable to read array DW_AT_byte_stride "
9d8780f0
SM
16493 " - DIE at %s [in module %s]"),
16494 sect_offset_str (die->sect_off),
518817b3 16495 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
a405673c
JB
16496 /* Ignore this attribute. We will likely not be able to print
16497 arrays of this type correctly, but there is little we can do
16498 to help if we cannot read the attribute's value. */
16499 byte_stride_prop = NULL;
16500 }
16501 }
dc53a7ad
JB
16502
16503 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16504 if (attr != NULL)
16505 bit_stride = DW_UNSND (attr);
16506
c906108c
SS
16507 /* Irix 6.2 native cc creates array types without children for
16508 arrays with unspecified length. */
639d11d3 16509 if (die->child == NULL)
c906108c 16510 {
46bf5051 16511 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 16512 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad 16513 type = create_array_type_with_stride (NULL, element_type, range_type,
a405673c 16514 byte_stride_prop, bit_stride);
f792889a 16515 return set_die_type (die, type, cu);
c906108c
SS
16516 }
16517
791afaa2 16518 std::vector<struct type *> range_types;
639d11d3 16519 child_die = die->child;
c906108c
SS
16520 while (child_die && child_die->tag)
16521 {
16522 if (child_die->tag == DW_TAG_subrange_type)
16523 {
f792889a 16524 struct type *child_type = read_type_die (child_die, cu);
9a619af0 16525
f792889a 16526 if (child_type != NULL)
a02abb62 16527 {
0963b4bd
MS
16528 /* The range type was succesfully read. Save it for the
16529 array type creation. */
791afaa2 16530 range_types.push_back (child_type);
a02abb62 16531 }
c906108c
SS
16532 }
16533 child_die = sibling_die (child_die);
16534 }
16535
16536 /* Dwarf2 dimensions are output from left to right, create the
16537 necessary array types in backwards order. */
7ca2d3a3 16538
c906108c 16539 type = element_type;
7ca2d3a3
DL
16540
16541 if (read_array_order (die, cu) == DW_ORD_col_major)
16542 {
16543 int i = 0;
9a619af0 16544
791afaa2 16545 while (i < range_types.size ())
dc53a7ad 16546 type = create_array_type_with_stride (NULL, type, range_types[i++],
a405673c 16547 byte_stride_prop, bit_stride);
7ca2d3a3
DL
16548 }
16549 else
16550 {
791afaa2 16551 size_t ndim = range_types.size ();
7ca2d3a3 16552 while (ndim-- > 0)
dc53a7ad 16553 type = create_array_type_with_stride (NULL, type, range_types[ndim],
a405673c 16554 byte_stride_prop, bit_stride);
7ca2d3a3 16555 }
c906108c 16556
f5f8a009
EZ
16557 /* Understand Dwarf2 support for vector types (like they occur on
16558 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16559 array type. This is not part of the Dwarf2/3 standard yet, but a
16560 custom vendor extension. The main difference between a regular
16561 array and the vector variant is that vectors are passed by value
16562 to functions. */
e142c38c 16563 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 16564 if (attr)
ea37ba09 16565 make_vector_type (type);
f5f8a009 16566
dbc98a8b
KW
16567 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16568 implementation may choose to implement triple vectors using this
16569 attribute. */
16570 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16571 if (attr)
16572 {
16573 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16574 TYPE_LENGTH (type) = DW_UNSND (attr);
16575 else
b98664d3 16576 complaint (_("DW_AT_byte_size for array type smaller "
3e43a32a 16577 "than the total size of elements"));
dbc98a8b
KW
16578 }
16579
39cbfefa
DJ
16580 name = dwarf2_name (die, cu);
16581 if (name)
16582 TYPE_NAME (type) = name;
6e70227d 16583
2b4424c3
TT
16584 maybe_set_alignment (cu, die, type);
16585
0963b4bd 16586 /* Install the type in the die. */
7e314c57
JK
16587 set_die_type (die, type, cu);
16588
16589 /* set_die_type should be already done. */
b4ba55a1
JB
16590 set_descriptive_type (type, die, cu);
16591
7e314c57 16592 return type;
c906108c
SS
16593}
16594
7ca2d3a3 16595static enum dwarf_array_dim_ordering
6e70227d 16596read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
16597{
16598 struct attribute *attr;
16599
16600 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16601
aead7601
SM
16602 if (attr)
16603 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 16604
0963b4bd
MS
16605 /* GNU F77 is a special case, as at 08/2004 array type info is the
16606 opposite order to the dwarf2 specification, but data is still
16607 laid out as per normal fortran.
7ca2d3a3 16608
0963b4bd
MS
16609 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16610 version checking. */
7ca2d3a3 16611
905e0470
PM
16612 if (cu->language == language_fortran
16613 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
16614 {
16615 return DW_ORD_row_major;
16616 }
16617
6e70227d 16618 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
16619 {
16620 case array_column_major:
16621 return DW_ORD_col_major;
16622 case array_row_major:
16623 default:
16624 return DW_ORD_row_major;
16625 };
16626}
16627
72019c9c 16628/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 16629 the DIE's type field. */
72019c9c 16630
f792889a 16631static struct type *
72019c9c
GM
16632read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16633{
7e314c57
JK
16634 struct type *domain_type, *set_type;
16635 struct attribute *attr;
f792889a 16636
7e314c57
JK
16637 domain_type = die_type (die, cu);
16638
16639 /* The die_type call above may have already set the type for this DIE. */
16640 set_type = get_die_type (die, cu);
16641 if (set_type)
16642 return set_type;
16643
16644 set_type = create_set_type (NULL, domain_type);
16645
16646 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
16647 if (attr)
16648 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 16649
2b4424c3
TT
16650 maybe_set_alignment (cu, die, set_type);
16651
f792889a 16652 return set_die_type (die, set_type, cu);
72019c9c 16653}
7ca2d3a3 16654
0971de02
TT
16655/* A helper for read_common_block that creates a locexpr baton.
16656 SYM is the symbol which we are marking as computed.
16657 COMMON_DIE is the DIE for the common block.
16658 COMMON_LOC is the location expression attribute for the common
16659 block itself.
16660 MEMBER_LOC is the location expression attribute for the particular
16661 member of the common block that we are processing.
16662 CU is the CU from which the above come. */
16663
16664static void
16665mark_common_block_symbol_computed (struct symbol *sym,
16666 struct die_info *common_die,
16667 struct attribute *common_loc,
16668 struct attribute *member_loc,
16669 struct dwarf2_cu *cu)
16670{
518817b3
SM
16671 struct dwarf2_per_objfile *dwarf2_per_objfile
16672 = cu->per_cu->dwarf2_per_objfile;
0971de02
TT
16673 struct objfile *objfile = dwarf2_per_objfile->objfile;
16674 struct dwarf2_locexpr_baton *baton;
16675 gdb_byte *ptr;
16676 unsigned int cu_off;
16677 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16678 LONGEST offset = 0;
16679
16680 gdb_assert (common_loc && member_loc);
16681 gdb_assert (attr_form_is_block (common_loc));
16682 gdb_assert (attr_form_is_block (member_loc)
16683 || attr_form_is_constant (member_loc));
16684
8d749320 16685 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
16686 baton->per_cu = cu->per_cu;
16687 gdb_assert (baton->per_cu);
16688
16689 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16690
16691 if (attr_form_is_constant (member_loc))
16692 {
16693 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16694 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16695 }
16696 else
16697 baton->size += DW_BLOCK (member_loc)->size;
16698
224c3ddb 16699 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
16700 baton->data = ptr;
16701
16702 *ptr++ = DW_OP_call4;
9c541725 16703 cu_off = common_die->sect_off - cu->per_cu->sect_off;
0971de02
TT
16704 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16705 ptr += 4;
16706
16707 if (attr_form_is_constant (member_loc))
16708 {
16709 *ptr++ = DW_OP_addr;
16710 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16711 ptr += cu->header.addr_size;
16712 }
16713 else
16714 {
16715 /* We have to copy the data here, because DW_OP_call4 will only
16716 use a DW_AT_location attribute. */
16717 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16718 ptr += DW_BLOCK (member_loc)->size;
16719 }
16720
16721 *ptr++ = DW_OP_plus;
16722 gdb_assert (ptr - baton->data == baton->size);
16723
0971de02 16724 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 16725 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
16726}
16727
4357ac6c
TT
16728/* Create appropriate locally-scoped variables for all the
16729 DW_TAG_common_block entries. Also create a struct common_block
16730 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16731 is used to sepate the common blocks name namespace from regular
16732 variable names. */
c906108c
SS
16733
16734static void
e7c27a73 16735read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16736{
0971de02
TT
16737 struct attribute *attr;
16738
16739 attr = dwarf2_attr (die, DW_AT_location, cu);
16740 if (attr)
16741 {
16742 /* Support the .debug_loc offsets. */
16743 if (attr_form_is_block (attr))
16744 {
16745 /* Ok. */
16746 }
16747 else if (attr_form_is_section_offset (attr))
16748 {
16749 dwarf2_complex_location_expr_complaint ();
16750 attr = NULL;
16751 }
16752 else
16753 {
16754 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16755 "common block member");
16756 attr = NULL;
16757 }
16758 }
16759
639d11d3 16760 if (die->child != NULL)
c906108c 16761 {
518817b3 16762 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
4357ac6c
TT
16763 struct die_info *child_die;
16764 size_t n_entries = 0, size;
16765 struct common_block *common_block;
16766 struct symbol *sym;
74ac6d43 16767
4357ac6c
TT
16768 for (child_die = die->child;
16769 child_die && child_die->tag;
16770 child_die = sibling_die (child_die))
16771 ++n_entries;
16772
16773 size = (sizeof (struct common_block)
16774 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
16775 common_block
16776 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16777 size);
4357ac6c
TT
16778 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16779 common_block->n_entries = 0;
16780
16781 for (child_die = die->child;
16782 child_die && child_die->tag;
16783 child_die = sibling_die (child_die))
16784 {
16785 /* Create the symbol in the DW_TAG_common_block block in the current
16786 symbol scope. */
e7c27a73 16787 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
16788 if (sym != NULL)
16789 {
16790 struct attribute *member_loc;
16791
16792 common_block->contents[common_block->n_entries++] = sym;
16793
16794 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16795 cu);
16796 if (member_loc)
16797 {
16798 /* GDB has handled this for a long time, but it is
16799 not specified by DWARF. It seems to have been
16800 emitted by gfortran at least as recently as:
16801 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
b98664d3 16802 complaint (_("Variable in common block has "
0971de02 16803 "DW_AT_data_member_location "
9d8780f0
SM
16804 "- DIE at %s [in module %s]"),
16805 sect_offset_str (child_die->sect_off),
518817b3 16806 objfile_name (objfile));
0971de02
TT
16807
16808 if (attr_form_is_section_offset (member_loc))
16809 dwarf2_complex_location_expr_complaint ();
16810 else if (attr_form_is_constant (member_loc)
16811 || attr_form_is_block (member_loc))
16812 {
16813 if (attr)
16814 mark_common_block_symbol_computed (sym, die, attr,
16815 member_loc, cu);
16816 }
16817 else
16818 dwarf2_complex_location_expr_complaint ();
16819 }
16820 }
c906108c 16821 }
4357ac6c
TT
16822
16823 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16824 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
16825 }
16826}
16827
0114d602 16828/* Create a type for a C++ namespace. */
d9fa45fe 16829
0114d602
DJ
16830static struct type *
16831read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 16832{
518817b3 16833 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0114d602 16834 const char *previous_prefix, *name;
9219021c 16835 int is_anonymous;
0114d602
DJ
16836 struct type *type;
16837
16838 /* For extensions, reuse the type of the original namespace. */
16839 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16840 {
16841 struct die_info *ext_die;
16842 struct dwarf2_cu *ext_cu = cu;
9a619af0 16843
0114d602
DJ
16844 ext_die = dwarf2_extension (die, &ext_cu);
16845 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
16846
16847 /* EXT_CU may not be the same as CU.
02142a6c 16848 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
16849 return set_die_type (die, type, cu);
16850 }
9219021c 16851
e142c38c 16852 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
16853
16854 /* Now build the name of the current namespace. */
16855
0114d602
DJ
16856 previous_prefix = determine_prefix (die, cu);
16857 if (previous_prefix[0] != '\0')
16858 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 16859 previous_prefix, name, 0, cu);
0114d602
DJ
16860
16861 /* Create the type. */
19f392bc 16862 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
0114d602 16863
60531b24 16864 return set_die_type (die, type, cu);
0114d602
DJ
16865}
16866
22cee43f 16867/* Read a namespace scope. */
0114d602
DJ
16868
16869static void
16870read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16871{
518817b3 16872 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0114d602 16873 int is_anonymous;
9219021c 16874
5c4e30ca
DC
16875 /* Add a symbol associated to this if we haven't seen the namespace
16876 before. Also, add a using directive if it's an anonymous
16877 namespace. */
9219021c 16878
f2f0e013 16879 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
16880 {
16881 struct type *type;
16882
0114d602 16883 type = read_type_die (die, cu);
e7c27a73 16884 new_symbol (die, type, cu);
5c4e30ca 16885
e8e80198 16886 namespace_name (die, &is_anonymous, cu);
5c4e30ca 16887 if (is_anonymous)
0114d602
DJ
16888 {
16889 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 16890
eb1e02fd 16891 std::vector<const char *> excludes;
804d2729 16892 add_using_directive (using_directives (cu),
22cee43f 16893 previous_prefix, TYPE_NAME (type), NULL,
eb1e02fd 16894 NULL, excludes, 0, &objfile->objfile_obstack);
0114d602 16895 }
5c4e30ca 16896 }
9219021c 16897
639d11d3 16898 if (die->child != NULL)
d9fa45fe 16899 {
639d11d3 16900 struct die_info *child_die = die->child;
6e70227d 16901
d9fa45fe
DC
16902 while (child_die && child_die->tag)
16903 {
e7c27a73 16904 process_die (child_die, cu);
d9fa45fe
DC
16905 child_die = sibling_die (child_die);
16906 }
16907 }
38d518c9
EZ
16908}
16909
f55ee35c
JK
16910/* Read a Fortran module as type. This DIE can be only a declaration used for
16911 imported module. Still we need that type as local Fortran "use ... only"
16912 declaration imports depend on the created type in determine_prefix. */
16913
16914static struct type *
16915read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16916{
518817b3 16917 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15d034d0 16918 const char *module_name;
f55ee35c
JK
16919 struct type *type;
16920
16921 module_name = dwarf2_name (die, cu);
16922 if (!module_name)
b98664d3 16923 complaint (_("DW_TAG_module has no name, offset %s"),
9d8780f0 16924 sect_offset_str (die->sect_off));
19f392bc 16925 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
f55ee35c 16926
f55ee35c
JK
16927 return set_die_type (die, type, cu);
16928}
16929
5d7cb8df
JK
16930/* Read a Fortran module. */
16931
16932static void
16933read_module (struct die_info *die, struct dwarf2_cu *cu)
16934{
16935 struct die_info *child_die = die->child;
530e8392
KB
16936 struct type *type;
16937
16938 type = read_type_die (die, cu);
16939 new_symbol (die, type, cu);
5d7cb8df 16940
5d7cb8df
JK
16941 while (child_die && child_die->tag)
16942 {
16943 process_die (child_die, cu);
16944 child_die = sibling_die (child_die);
16945 }
16946}
16947
38d518c9
EZ
16948/* Return the name of the namespace represented by DIE. Set
16949 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16950 namespace. */
16951
16952static const char *
e142c38c 16953namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
16954{
16955 struct die_info *current_die;
16956 const char *name = NULL;
16957
16958 /* Loop through the extensions until we find a name. */
16959
16960 for (current_die = die;
16961 current_die != NULL;
f2f0e013 16962 current_die = dwarf2_extension (die, &cu))
38d518c9 16963 {
96553a0c
DE
16964 /* We don't use dwarf2_name here so that we can detect the absence
16965 of a name -> anonymous namespace. */
7d45c7c3 16966 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 16967
38d518c9
EZ
16968 if (name != NULL)
16969 break;
16970 }
16971
16972 /* Is it an anonymous namespace? */
16973
16974 *is_anonymous = (name == NULL);
16975 if (*is_anonymous)
2b1dbab0 16976 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
16977
16978 return name;
d9fa45fe
DC
16979}
16980
c906108c
SS
16981/* Extract all information from a DW_TAG_pointer_type DIE and add to
16982 the user defined type vector. */
16983
f792889a 16984static struct type *
e7c27a73 16985read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16986{
518817b3
SM
16987 struct gdbarch *gdbarch
16988 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
e7c27a73 16989 struct comp_unit_head *cu_header = &cu->header;
c906108c 16990 struct type *type;
8b2dbe47
KB
16991 struct attribute *attr_byte_size;
16992 struct attribute *attr_address_class;
16993 int byte_size, addr_class;
7e314c57
JK
16994 struct type *target_type;
16995
16996 target_type = die_type (die, cu);
c906108c 16997
7e314c57
JK
16998 /* The die_type call above may have already set the type for this DIE. */
16999 type = get_die_type (die, cu);
17000 if (type)
17001 return type;
17002
17003 type = lookup_pointer_type (target_type);
8b2dbe47 17004
e142c38c 17005 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
17006 if (attr_byte_size)
17007 byte_size = DW_UNSND (attr_byte_size);
c906108c 17008 else
8b2dbe47
KB
17009 byte_size = cu_header->addr_size;
17010
e142c38c 17011 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
17012 if (attr_address_class)
17013 addr_class = DW_UNSND (attr_address_class);
17014 else
17015 addr_class = DW_ADDR_none;
17016
2b4424c3
TT
17017 ULONGEST alignment = get_alignment (cu, die);
17018
17019 /* If the pointer size, alignment, or address class is different
17020 than the default, create a type variant marked as such and set
17021 the length accordingly. */
17022 if (TYPE_LENGTH (type) != byte_size
17023 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17024 && alignment != TYPE_RAW_ALIGN (type))
17025 || addr_class != DW_ADDR_none)
c906108c 17026 {
5e2b427d 17027 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
17028 {
17029 int type_flags;
17030
849957d9 17031 type_flags = gdbarch_address_class_type_flags
5e2b427d 17032 (gdbarch, byte_size, addr_class);
876cecd0
TT
17033 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17034 == 0);
8b2dbe47
KB
17035 type = make_type_with_address_space (type, type_flags);
17036 }
17037 else if (TYPE_LENGTH (type) != byte_size)
17038 {
b98664d3 17039 complaint (_("invalid pointer size %d"), byte_size);
8b2dbe47 17040 }
2b4424c3
TT
17041 else if (TYPE_RAW_ALIGN (type) != alignment)
17042 {
b98664d3 17043 complaint (_("Invalid DW_AT_alignment"
2b4424c3
TT
17044 " - DIE at %s [in module %s]"),
17045 sect_offset_str (die->sect_off),
17046 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17047 }
6e70227d 17048 else
9a619af0
MS
17049 {
17050 /* Should we also complain about unhandled address classes? */
17051 }
c906108c 17052 }
8b2dbe47
KB
17053
17054 TYPE_LENGTH (type) = byte_size;
2b4424c3 17055 set_type_align (type, alignment);
f792889a 17056 return set_die_type (die, type, cu);
c906108c
SS
17057}
17058
17059/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17060 the user defined type vector. */
17061
f792889a 17062static struct type *
e7c27a73 17063read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
17064{
17065 struct type *type;
17066 struct type *to_type;
17067 struct type *domain;
17068
e7c27a73
DJ
17069 to_type = die_type (die, cu);
17070 domain = die_containing_type (die, cu);
0d5de010 17071
7e314c57
JK
17072 /* The calls above may have already set the type for this DIE. */
17073 type = get_die_type (die, cu);
17074 if (type)
17075 return type;
17076
0d5de010
DJ
17077 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17078 type = lookup_methodptr_type (to_type);
7078baeb
TT
17079 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17080 {
518817b3
SM
17081 struct type *new_type
17082 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
7078baeb
TT
17083
17084 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17085 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17086 TYPE_VARARGS (to_type));
17087 type = lookup_methodptr_type (new_type);
17088 }
0d5de010
DJ
17089 else
17090 type = lookup_memberptr_type (to_type, domain);
c906108c 17091
f792889a 17092 return set_die_type (die, type, cu);
c906108c
SS
17093}
17094
4297a3f0 17095/* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
c906108c
SS
17096 the user defined type vector. */
17097
f792889a 17098static struct type *
4297a3f0
AV
17099read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17100 enum type_code refcode)
c906108c 17101{
e7c27a73 17102 struct comp_unit_head *cu_header = &cu->header;
7e314c57 17103 struct type *type, *target_type;
c906108c
SS
17104 struct attribute *attr;
17105
4297a3f0
AV
17106 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17107
7e314c57
JK
17108 target_type = die_type (die, cu);
17109
17110 /* The die_type call above may have already set the type for this DIE. */
17111 type = get_die_type (die, cu);
17112 if (type)
17113 return type;
17114
4297a3f0 17115 type = lookup_reference_type (target_type, refcode);
e142c38c 17116 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
17117 if (attr)
17118 {
17119 TYPE_LENGTH (type) = DW_UNSND (attr);
17120 }
17121 else
17122 {
107d2387 17123 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 17124 }
2b4424c3 17125 maybe_set_alignment (cu, die, type);
f792889a 17126 return set_die_type (die, type, cu);
c906108c
SS
17127}
17128
cf363f18
MW
17129/* Add the given cv-qualifiers to the element type of the array. GCC
17130 outputs DWARF type qualifiers that apply to an array, not the
17131 element type. But GDB relies on the array element type to carry
17132 the cv-qualifiers. This mimics section 6.7.3 of the C99
17133 specification. */
17134
17135static struct type *
17136add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17137 struct type *base_type, int cnst, int voltl)
17138{
17139 struct type *el_type, *inner_array;
17140
17141 base_type = copy_type (base_type);
17142 inner_array = base_type;
17143
17144 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17145 {
17146 TYPE_TARGET_TYPE (inner_array) =
17147 copy_type (TYPE_TARGET_TYPE (inner_array));
17148 inner_array = TYPE_TARGET_TYPE (inner_array);
17149 }
17150
17151 el_type = TYPE_TARGET_TYPE (inner_array);
17152 cnst |= TYPE_CONST (el_type);
17153 voltl |= TYPE_VOLATILE (el_type);
17154 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17155
17156 return set_die_type (die, base_type, cu);
17157}
17158
f792889a 17159static struct type *
e7c27a73 17160read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17161{
f792889a 17162 struct type *base_type, *cv_type;
c906108c 17163
e7c27a73 17164 base_type = die_type (die, cu);
7e314c57
JK
17165
17166 /* The die_type call above may have already set the type for this DIE. */
17167 cv_type = get_die_type (die, cu);
17168 if (cv_type)
17169 return cv_type;
17170
2f608a3a
KW
17171 /* In case the const qualifier is applied to an array type, the element type
17172 is so qualified, not the array type (section 6.7.3 of C99). */
17173 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 17174 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 17175
f792889a
DJ
17176 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17177 return set_die_type (die, cv_type, cu);
c906108c
SS
17178}
17179
f792889a 17180static struct type *
e7c27a73 17181read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17182{
f792889a 17183 struct type *base_type, *cv_type;
c906108c 17184
e7c27a73 17185 base_type = die_type (die, cu);
7e314c57
JK
17186
17187 /* The die_type call above may have already set the type for this DIE. */
17188 cv_type = get_die_type (die, cu);
17189 if (cv_type)
17190 return cv_type;
17191
cf363f18
MW
17192 /* In case the volatile qualifier is applied to an array type, the
17193 element type is so qualified, not the array type (section 6.7.3
17194 of C99). */
17195 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17196 return add_array_cv_type (die, cu, base_type, 0, 1);
17197
f792889a
DJ
17198 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17199 return set_die_type (die, cv_type, cu);
c906108c
SS
17200}
17201
06d66ee9
TT
17202/* Handle DW_TAG_restrict_type. */
17203
17204static struct type *
17205read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17206{
17207 struct type *base_type, *cv_type;
17208
17209 base_type = die_type (die, cu);
17210
17211 /* The die_type call above may have already set the type for this DIE. */
17212 cv_type = get_die_type (die, cu);
17213 if (cv_type)
17214 return cv_type;
17215
17216 cv_type = make_restrict_type (base_type);
17217 return set_die_type (die, cv_type, cu);
17218}
17219
a2c2acaf
MW
17220/* Handle DW_TAG_atomic_type. */
17221
17222static struct type *
17223read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17224{
17225 struct type *base_type, *cv_type;
17226
17227 base_type = die_type (die, cu);
17228
17229 /* The die_type call above may have already set the type for this DIE. */
17230 cv_type = get_die_type (die, cu);
17231 if (cv_type)
17232 return cv_type;
17233
17234 cv_type = make_atomic_type (base_type);
17235 return set_die_type (die, cv_type, cu);
17236}
17237
c906108c
SS
17238/* Extract all information from a DW_TAG_string_type DIE and add to
17239 the user defined type vector. It isn't really a user defined type,
17240 but it behaves like one, with other DIE's using an AT_user_def_type
17241 attribute to reference it. */
17242
f792889a 17243static struct type *
e7c27a73 17244read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17245{
518817b3 17246 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
3b7538c0 17247 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
17248 struct type *type, *range_type, *index_type, *char_type;
17249 struct attribute *attr;
17250 unsigned int length;
17251
e142c38c 17252 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
17253 if (attr)
17254 {
17255 length = DW_UNSND (attr);
17256 }
17257 else
17258 {
0963b4bd 17259 /* Check for the DW_AT_byte_size attribute. */
e142c38c 17260 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
17261 if (attr)
17262 {
17263 length = DW_UNSND (attr);
17264 }
17265 else
17266 {
17267 length = 1;
17268 }
c906108c 17269 }
6ccb9162 17270
46bf5051 17271 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 17272 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
17273 char_type = language_string_char_type (cu->language_defn, gdbarch);
17274 type = create_string_type (NULL, char_type, range_type);
6ccb9162 17275
f792889a 17276 return set_die_type (die, type, cu);
c906108c
SS
17277}
17278
4d804846
JB
17279/* Assuming that DIE corresponds to a function, returns nonzero
17280 if the function is prototyped. */
17281
17282static int
17283prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17284{
17285 struct attribute *attr;
17286
17287 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17288 if (attr && (DW_UNSND (attr) != 0))
17289 return 1;
17290
17291 /* The DWARF standard implies that the DW_AT_prototyped attribute
17292 is only meaninful for C, but the concept also extends to other
17293 languages that allow unprototyped functions (Eg: Objective C).
17294 For all other languages, assume that functions are always
17295 prototyped. */
17296 if (cu->language != language_c
17297 && cu->language != language_objc
17298 && cu->language != language_opencl)
17299 return 1;
17300
17301 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17302 prototyped and unprototyped functions; default to prototyped,
17303 since that is more common in modern code (and RealView warns
17304 about unprototyped functions). */
17305 if (producer_is_realview (cu->producer))
17306 return 1;
17307
17308 return 0;
17309}
17310
c906108c
SS
17311/* Handle DIES due to C code like:
17312
17313 struct foo
c5aa993b
JM
17314 {
17315 int (*funcp)(int a, long l);
17316 int b;
17317 };
c906108c 17318
0963b4bd 17319 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 17320
f792889a 17321static struct type *
e7c27a73 17322read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17323{
518817b3 17324 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0963b4bd
MS
17325 struct type *type; /* Type that this function returns. */
17326 struct type *ftype; /* Function that returns above type. */
c906108c
SS
17327 struct attribute *attr;
17328
e7c27a73 17329 type = die_type (die, cu);
7e314c57
JK
17330
17331 /* The die_type call above may have already set the type for this DIE. */
17332 ftype = get_die_type (die, cu);
17333 if (ftype)
17334 return ftype;
17335
0c8b41f1 17336 ftype = lookup_function_type (type);
c906108c 17337
4d804846 17338 if (prototyped_function_p (die, cu))
a6c727b2 17339 TYPE_PROTOTYPED (ftype) = 1;
c906108c 17340
c055b101
CV
17341 /* Store the calling convention in the type if it's available in
17342 the subroutine die. Otherwise set the calling convention to
17343 the default value DW_CC_normal. */
17344 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
17345 if (attr)
17346 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17347 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17348 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17349 else
17350 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 17351
743649fd
MW
17352 /* Record whether the function returns normally to its caller or not
17353 if the DWARF producer set that information. */
17354 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17355 if (attr && (DW_UNSND (attr) != 0))
17356 TYPE_NO_RETURN (ftype) = 1;
17357
76c10ea2
GM
17358 /* We need to add the subroutine type to the die immediately so
17359 we don't infinitely recurse when dealing with parameters
0963b4bd 17360 declared as the same subroutine type. */
76c10ea2 17361 set_die_type (die, ftype, cu);
6e70227d 17362
639d11d3 17363 if (die->child != NULL)
c906108c 17364 {
bb5ed363 17365 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 17366 struct die_info *child_die;
8072405b 17367 int nparams, iparams;
c906108c
SS
17368
17369 /* Count the number of parameters.
17370 FIXME: GDB currently ignores vararg functions, but knows about
17371 vararg member functions. */
8072405b 17372 nparams = 0;
639d11d3 17373 child_die = die->child;
c906108c
SS
17374 while (child_die && child_die->tag)
17375 {
17376 if (child_die->tag == DW_TAG_formal_parameter)
17377 nparams++;
17378 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 17379 TYPE_VARARGS (ftype) = 1;
c906108c
SS
17380 child_die = sibling_die (child_die);
17381 }
17382
17383 /* Allocate storage for parameters and fill them in. */
17384 TYPE_NFIELDS (ftype) = nparams;
17385 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 17386 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 17387
8072405b
JK
17388 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17389 even if we error out during the parameters reading below. */
17390 for (iparams = 0; iparams < nparams; iparams++)
17391 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17392
17393 iparams = 0;
639d11d3 17394 child_die = die->child;
c906108c
SS
17395 while (child_die && child_die->tag)
17396 {
17397 if (child_die->tag == DW_TAG_formal_parameter)
17398 {
3ce3b1ba
PA
17399 struct type *arg_type;
17400
17401 /* DWARF version 2 has no clean way to discern C++
17402 static and non-static member functions. G++ helps
17403 GDB by marking the first parameter for non-static
17404 member functions (which is the this pointer) as
17405 artificial. We pass this information to
17406 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17407
17408 DWARF version 3 added DW_AT_object_pointer, which GCC
17409 4.5 does not yet generate. */
e142c38c 17410 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
17411 if (attr)
17412 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17413 else
9c37b5ae 17414 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
3ce3b1ba
PA
17415 arg_type = die_type (child_die, cu);
17416
17417 /* RealView does not mark THIS as const, which the testsuite
17418 expects. GCC marks THIS as const in method definitions,
17419 but not in the class specifications (GCC PR 43053). */
17420 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17421 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17422 {
17423 int is_this = 0;
17424 struct dwarf2_cu *arg_cu = cu;
17425 const char *name = dwarf2_name (child_die, cu);
17426
17427 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17428 if (attr)
17429 {
17430 /* If the compiler emits this, use it. */
17431 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17432 is_this = 1;
17433 }
17434 else if (name && strcmp (name, "this") == 0)
17435 /* Function definitions will have the argument names. */
17436 is_this = 1;
17437 else if (name == NULL && iparams == 0)
17438 /* Declarations may not have the names, so like
17439 elsewhere in GDB, assume an artificial first
17440 argument is "this". */
17441 is_this = 1;
17442
17443 if (is_this)
17444 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17445 arg_type, 0);
17446 }
17447
17448 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
17449 iparams++;
17450 }
17451 child_die = sibling_die (child_die);
17452 }
17453 }
17454
76c10ea2 17455 return ftype;
c906108c
SS
17456}
17457
f792889a 17458static struct type *
e7c27a73 17459read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17460{
518817b3 17461 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
0114d602 17462 const char *name = NULL;
3c8e0968 17463 struct type *this_type, *target_type;
c906108c 17464
94af9270 17465 name = dwarf2_full_name (NULL, die, cu);
19f392bc
UW
17466 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17467 TYPE_TARGET_STUB (this_type) = 1;
f792889a 17468 set_die_type (die, this_type, cu);
3c8e0968
DE
17469 target_type = die_type (die, cu);
17470 if (target_type != this_type)
17471 TYPE_TARGET_TYPE (this_type) = target_type;
17472 else
17473 {
17474 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17475 spec and cause infinite loops in GDB. */
b98664d3 17476 complaint (_("Self-referential DW_TAG_typedef "
9d8780f0
SM
17477 "- DIE at %s [in module %s]"),
17478 sect_offset_str (die->sect_off), objfile_name (objfile));
3c8e0968
DE
17479 TYPE_TARGET_TYPE (this_type) = NULL;
17480 }
f792889a 17481 return this_type;
c906108c
SS
17482}
17483
9b790ce7
UW
17484/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17485 (which may be different from NAME) to the architecture back-end to allow
17486 it to guess the correct format if necessary. */
17487
17488static struct type *
17489dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17490 const char *name_hint)
17491{
17492 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17493 const struct floatformat **format;
17494 struct type *type;
17495
17496 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17497 if (format)
17498 type = init_float_type (objfile, bits, name, format);
17499 else
77b7c781 17500 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
9b790ce7
UW
17501
17502 return type;
17503}
17504
eb77c9df
AB
17505/* Allocate an integer type of size BITS and name NAME. */
17506
17507static struct type *
17508dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17509 int bits, int unsigned_p, const char *name)
17510{
17511 struct type *type;
17512
17513 /* Versions of Intel's C Compiler generate an integer type called "void"
17514 instead of using DW_TAG_unspecified_type. This has been seen on
17515 at least versions 14, 17, and 18. */
35ee2dc2
AB
17516 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17517 && strcmp (name, "void") == 0)
eb77c9df
AB
17518 type = objfile_type (objfile)->builtin_void;
17519 else
17520 type = init_integer_type (objfile, bits, unsigned_p, name);
17521
17522 return type;
17523}
17524
c906108c
SS
17525/* Find a representation of a given base type and install
17526 it in the TYPE field of the die. */
17527
f792889a 17528static struct type *
e7c27a73 17529read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17530{
518817b3 17531 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c
SS
17532 struct type *type;
17533 struct attribute *attr;
19f392bc 17534 int encoding = 0, bits = 0;
15d034d0 17535 const char *name;
c906108c 17536
e142c38c 17537 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
17538 if (attr)
17539 {
17540 encoding = DW_UNSND (attr);
17541 }
e142c38c 17542 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
17543 if (attr)
17544 {
19f392bc 17545 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
c906108c 17546 }
39cbfefa 17547 name = dwarf2_name (die, cu);
6ccb9162 17548 if (!name)
c906108c 17549 {
b98664d3 17550 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
c906108c 17551 }
6ccb9162
UW
17552
17553 switch (encoding)
c906108c 17554 {
6ccb9162
UW
17555 case DW_ATE_address:
17556 /* Turn DW_ATE_address into a void * pointer. */
77b7c781 17557 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
19f392bc 17558 type = init_pointer_type (objfile, bits, name, type);
6ccb9162
UW
17559 break;
17560 case DW_ATE_boolean:
19f392bc 17561 type = init_boolean_type (objfile, bits, 1, name);
6ccb9162
UW
17562 break;
17563 case DW_ATE_complex_float:
9b790ce7 17564 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
19f392bc 17565 type = init_complex_type (objfile, name, type);
6ccb9162
UW
17566 break;
17567 case DW_ATE_decimal_float:
19f392bc 17568 type = init_decfloat_type (objfile, bits, name);
6ccb9162
UW
17569 break;
17570 case DW_ATE_float:
9b790ce7 17571 type = dwarf2_init_float_type (objfile, bits, name, name);
6ccb9162
UW
17572 break;
17573 case DW_ATE_signed:
eb77c9df 17574 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
6ccb9162
UW
17575 break;
17576 case DW_ATE_unsigned:
3b2b8fea
TT
17577 if (cu->language == language_fortran
17578 && name
61012eef 17579 && startswith (name, "character("))
19f392bc
UW
17580 type = init_character_type (objfile, bits, 1, name);
17581 else
eb77c9df 17582 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
6ccb9162
UW
17583 break;
17584 case DW_ATE_signed_char:
6e70227d 17585 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
17586 || cu->language == language_pascal
17587 || cu->language == language_fortran)
19f392bc
UW
17588 type = init_character_type (objfile, bits, 0, name);
17589 else
eb77c9df 17590 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
6ccb9162
UW
17591 break;
17592 case DW_ATE_unsigned_char:
868a0084 17593 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea 17594 || cu->language == language_pascal
c44af4eb
TT
17595 || cu->language == language_fortran
17596 || cu->language == language_rust)
19f392bc
UW
17597 type = init_character_type (objfile, bits, 1, name);
17598 else
eb77c9df 17599 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
6ccb9162 17600 break;
75079b2b 17601 case DW_ATE_UTF:
53e710ac
PA
17602 {
17603 gdbarch *arch = get_objfile_arch (objfile);
17604
17605 if (bits == 16)
17606 type = builtin_type (arch)->builtin_char16;
17607 else if (bits == 32)
17608 type = builtin_type (arch)->builtin_char32;
17609 else
17610 {
b98664d3 17611 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
53e710ac 17612 bits);
eb77c9df 17613 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
53e710ac
PA
17614 }
17615 return set_die_type (die, type, cu);
17616 }
75079b2b
TT
17617 break;
17618
6ccb9162 17619 default:
b98664d3 17620 complaint (_("unsupported DW_AT_encoding: '%s'"),
6ccb9162 17621 dwarf_type_encoding_name (encoding));
77b7c781 17622 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
6ccb9162 17623 break;
c906108c 17624 }
6ccb9162 17625
0114d602 17626 if (name && strcmp (name, "char") == 0)
876cecd0 17627 TYPE_NOSIGN (type) = 1;
0114d602 17628
2b4424c3
TT
17629 maybe_set_alignment (cu, die, type);
17630
f792889a 17631 return set_die_type (die, type, cu);
c906108c
SS
17632}
17633
80180f79
SA
17634/* Parse dwarf attribute if it's a block, reference or constant and put the
17635 resulting value of the attribute into struct bound_prop.
17636 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17637
17638static int
17639attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17640 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17641{
17642 struct dwarf2_property_baton *baton;
518817b3
SM
17643 struct obstack *obstack
17644 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
80180f79
SA
17645
17646 if (attr == NULL || prop == NULL)
17647 return 0;
17648
17649 if (attr_form_is_block (attr))
17650 {
8d749320 17651 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
17652 baton->referenced_type = NULL;
17653 baton->locexpr.per_cu = cu->per_cu;
17654 baton->locexpr.size = DW_BLOCK (attr)->size;
17655 baton->locexpr.data = DW_BLOCK (attr)->data;
17656 prop->data.baton = baton;
17657 prop->kind = PROP_LOCEXPR;
17658 gdb_assert (prop->data.baton != NULL);
17659 }
17660 else if (attr_form_is_ref (attr))
17661 {
17662 struct dwarf2_cu *target_cu = cu;
17663 struct die_info *target_die;
17664 struct attribute *target_attr;
17665
17666 target_die = follow_die_ref (die, attr, &target_cu);
17667 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
17668 if (target_attr == NULL)
17669 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17670 target_cu);
80180f79
SA
17671 if (target_attr == NULL)
17672 return 0;
17673
df25ebbd 17674 switch (target_attr->name)
80180f79 17675 {
df25ebbd
JB
17676 case DW_AT_location:
17677 if (attr_form_is_section_offset (target_attr))
17678 {
8d749320 17679 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
17680 baton->referenced_type = die_type (target_die, target_cu);
17681 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17682 prop->data.baton = baton;
17683 prop->kind = PROP_LOCLIST;
17684 gdb_assert (prop->data.baton != NULL);
17685 }
17686 else if (attr_form_is_block (target_attr))
17687 {
8d749320 17688 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
17689 baton->referenced_type = die_type (target_die, target_cu);
17690 baton->locexpr.per_cu = cu->per_cu;
17691 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17692 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17693 prop->data.baton = baton;
17694 prop->kind = PROP_LOCEXPR;
17695 gdb_assert (prop->data.baton != NULL);
17696 }
17697 else
17698 {
17699 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17700 "dynamic property");
17701 return 0;
17702 }
17703 break;
17704 case DW_AT_data_member_location:
17705 {
17706 LONGEST offset;
17707
17708 if (!handle_data_member_location (target_die, target_cu,
17709 &offset))
17710 return 0;
17711
8d749320 17712 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
17713 baton->referenced_type = read_type_die (target_die->parent,
17714 target_cu);
df25ebbd
JB
17715 baton->offset_info.offset = offset;
17716 baton->offset_info.type = die_type (target_die, target_cu);
17717 prop->data.baton = baton;
17718 prop->kind = PROP_ADDR_OFFSET;
17719 break;
17720 }
80180f79
SA
17721 }
17722 }
17723 else if (attr_form_is_constant (attr))
17724 {
17725 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17726 prop->kind = PROP_CONST;
17727 }
17728 else
17729 {
17730 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17731 dwarf2_name (die, cu));
17732 return 0;
17733 }
17734
17735 return 1;
17736}
17737
a02abb62
JB
17738/* Read the given DW_AT_subrange DIE. */
17739
f792889a 17740static struct type *
a02abb62
JB
17741read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17742{
4c9ad8c2 17743 struct type *base_type, *orig_base_type;
a02abb62
JB
17744 struct type *range_type;
17745 struct attribute *attr;
729efb13 17746 struct dynamic_prop low, high;
4fae6e18 17747 int low_default_is_valid;
c451ebe5 17748 int high_bound_is_count = 0;
15d034d0 17749 const char *name;
d359392f 17750 ULONGEST negative_mask;
e77813c8 17751
4c9ad8c2
TT
17752 orig_base_type = die_type (die, cu);
17753 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17754 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17755 creating the range type, but we use the result of check_typedef
17756 when examining properties of the type. */
17757 base_type = check_typedef (orig_base_type);
a02abb62 17758
7e314c57
JK
17759 /* The die_type call above may have already set the type for this DIE. */
17760 range_type = get_die_type (die, cu);
17761 if (range_type)
17762 return range_type;
17763
729efb13
SA
17764 low.kind = PROP_CONST;
17765 high.kind = PROP_CONST;
17766 high.data.const_val = 0;
17767
4fae6e18
JK
17768 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17769 omitting DW_AT_lower_bound. */
17770 switch (cu->language)
6e70227d 17771 {
4fae6e18
JK
17772 case language_c:
17773 case language_cplus:
729efb13 17774 low.data.const_val = 0;
4fae6e18
JK
17775 low_default_is_valid = 1;
17776 break;
17777 case language_fortran:
729efb13 17778 low.data.const_val = 1;
4fae6e18
JK
17779 low_default_is_valid = 1;
17780 break;
17781 case language_d:
4fae6e18 17782 case language_objc:
c44af4eb 17783 case language_rust:
729efb13 17784 low.data.const_val = 0;
4fae6e18
JK
17785 low_default_is_valid = (cu->header.version >= 4);
17786 break;
17787 case language_ada:
17788 case language_m2:
17789 case language_pascal:
729efb13 17790 low.data.const_val = 1;
4fae6e18
JK
17791 low_default_is_valid = (cu->header.version >= 4);
17792 break;
17793 default:
729efb13 17794 low.data.const_val = 0;
4fae6e18
JK
17795 low_default_is_valid = 0;
17796 break;
a02abb62
JB
17797 }
17798
e142c38c 17799 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 17800 if (attr)
11c1ba78 17801 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18 17802 else if (!low_default_is_valid)
b98664d3 17803 complaint (_("Missing DW_AT_lower_bound "
9d8780f0
SM
17804 "- DIE at %s [in module %s]"),
17805 sect_offset_str (die->sect_off),
518817b3 17806 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
a02abb62 17807
506f5c41
TV
17808 struct attribute *attr_ub, *attr_count;
17809 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 17810 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8 17811 {
506f5c41 17812 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 17813 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 17814 {
c451ebe5
SA
17815 /* If bounds are constant do the final calculation here. */
17816 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17817 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17818 else
17819 high_bound_is_count = 1;
c2ff108b 17820 }
506f5c41
TV
17821 else
17822 {
17823 if (attr_ub != NULL)
17824 complaint (_("Unresolved DW_AT_upper_bound "
17825 "- DIE at %s [in module %s]"),
17826 sect_offset_str (die->sect_off),
17827 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17828 if (attr_count != NULL)
17829 complaint (_("Unresolved DW_AT_count "
17830 "- DIE at %s [in module %s]"),
17831 sect_offset_str (die->sect_off),
17832 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17833 }
17834
e77813c8
PM
17835 }
17836
17837 /* Dwarf-2 specifications explicitly allows to create subrange types
17838 without specifying a base type.
17839 In that case, the base type must be set to the type of
17840 the lower bound, upper bound or count, in that order, if any of these
17841 three attributes references an object that has a type.
17842 If no base type is found, the Dwarf-2 specifications say that
17843 a signed integer type of size equal to the size of an address should
17844 be used.
17845 For the following C code: `extern char gdb_int [];'
17846 GCC produces an empty range DIE.
17847 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 17848 high bound or count are not yet handled by this code. */
e77813c8
PM
17849 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17850 {
518817b3 17851 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
e77813c8
PM
17852 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17853 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17854 struct type *int_type = objfile_type (objfile)->builtin_int;
17855
17856 /* Test "int", "long int", and "long long int" objfile types,
17857 and select the first one having a size above or equal to the
17858 architecture address size. */
17859 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17860 base_type = int_type;
17861 else
17862 {
17863 int_type = objfile_type (objfile)->builtin_long;
17864 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17865 base_type = int_type;
17866 else
17867 {
17868 int_type = objfile_type (objfile)->builtin_long_long;
17869 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17870 base_type = int_type;
17871 }
17872 }
17873 }
a02abb62 17874
dbb9c2b1
JB
17875 /* Normally, the DWARF producers are expected to use a signed
17876 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17877 But this is unfortunately not always the case, as witnessed
17878 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17879 is used instead. To work around that ambiguity, we treat
17880 the bounds as signed, and thus sign-extend their values, when
17881 the base type is signed. */
6e70227d 17882 negative_mask =
d359392f 17883 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
17884 if (low.kind == PROP_CONST
17885 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17886 low.data.const_val |= negative_mask;
17887 if (high.kind == PROP_CONST
17888 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17889 high.data.const_val |= negative_mask;
43bbcdc2 17890
729efb13 17891 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 17892
c451ebe5
SA
17893 if (high_bound_is_count)
17894 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17895
c2ff108b
JK
17896 /* Ada expects an empty array on no boundary attributes. */
17897 if (attr == NULL && cu->language != language_ada)
729efb13 17898 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 17899
39cbfefa
DJ
17900 name = dwarf2_name (die, cu);
17901 if (name)
17902 TYPE_NAME (range_type) = name;
6e70227d 17903
e142c38c 17904 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
17905 if (attr)
17906 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17907
2b4424c3
TT
17908 maybe_set_alignment (cu, die, range_type);
17909
7e314c57
JK
17910 set_die_type (die, range_type, cu);
17911
17912 /* set_die_type should be already done. */
b4ba55a1
JB
17913 set_descriptive_type (range_type, die, cu);
17914
7e314c57 17915 return range_type;
a02abb62 17916}
6e70227d 17917
f792889a 17918static struct type *
81a17f79
JB
17919read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17920{
17921 struct type *type;
81a17f79 17922
518817b3
SM
17923 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17924 NULL);
0114d602 17925 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 17926
74a2f8ff
JB
17927 /* In Ada, an unspecified type is typically used when the description
17928 of the type is defered to a different unit. When encountering
17929 such a type, we treat it as a stub, and try to resolve it later on,
17930 when needed. */
17931 if (cu->language == language_ada)
17932 TYPE_STUB (type) = 1;
17933
f792889a 17934 return set_die_type (die, type, cu);
81a17f79 17935}
a02abb62 17936
639d11d3
DC
17937/* Read a single die and all its descendents. Set the die's sibling
17938 field to NULL; set other fields in the die correctly, and set all
17939 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17940 location of the info_ptr after reading all of those dies. PARENT
17941 is the parent of the die in question. */
17942
17943static struct die_info *
dee91e82 17944read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
17945 const gdb_byte *info_ptr,
17946 const gdb_byte **new_info_ptr,
dee91e82 17947 struct die_info *parent)
639d11d3
DC
17948{
17949 struct die_info *die;
d521ce57 17950 const gdb_byte *cur_ptr;
639d11d3
DC
17951 int has_children;
17952
bf6af496 17953 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
17954 if (die == NULL)
17955 {
17956 *new_info_ptr = cur_ptr;
17957 return NULL;
17958 }
93311388 17959 store_in_ref_table (die, reader->cu);
639d11d3
DC
17960
17961 if (has_children)
bf6af496 17962 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
17963 else
17964 {
17965 die->child = NULL;
17966 *new_info_ptr = cur_ptr;
17967 }
17968
17969 die->sibling = NULL;
17970 die->parent = parent;
17971 return die;
17972}
17973
17974/* Read a die, all of its descendents, and all of its siblings; set
17975 all of the fields of all of the dies correctly. Arguments are as
17976 in read_die_and_children. */
17977
17978static struct die_info *
bf6af496 17979read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
17980 const gdb_byte *info_ptr,
17981 const gdb_byte **new_info_ptr,
bf6af496 17982 struct die_info *parent)
639d11d3
DC
17983{
17984 struct die_info *first_die, *last_sibling;
d521ce57 17985 const gdb_byte *cur_ptr;
639d11d3 17986
c906108c 17987 cur_ptr = info_ptr;
639d11d3
DC
17988 first_die = last_sibling = NULL;
17989
17990 while (1)
c906108c 17991 {
639d11d3 17992 struct die_info *die
dee91e82 17993 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 17994
1d325ec1 17995 if (die == NULL)
c906108c 17996 {
639d11d3
DC
17997 *new_info_ptr = cur_ptr;
17998 return first_die;
c906108c 17999 }
1d325ec1
DJ
18000
18001 if (!first_die)
18002 first_die = die;
c906108c 18003 else
1d325ec1
DJ
18004 last_sibling->sibling = die;
18005
18006 last_sibling = die;
c906108c 18007 }
c906108c
SS
18008}
18009
bf6af496
DE
18010/* Read a die, all of its descendents, and all of its siblings; set
18011 all of the fields of all of the dies correctly. Arguments are as
18012 in read_die_and_children.
18013 This the main entry point for reading a DIE and all its children. */
18014
18015static struct die_info *
18016read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
18017 const gdb_byte *info_ptr,
18018 const gdb_byte **new_info_ptr,
bf6af496
DE
18019 struct die_info *parent)
18020{
18021 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18022 new_info_ptr, parent);
18023
b4f54984 18024 if (dwarf_die_debug)
bf6af496
DE
18025 {
18026 fprintf_unfiltered (gdb_stdlog,
18027 "Read die from %s@0x%x of %s:\n",
a32a8923 18028 get_section_name (reader->die_section),
bf6af496
DE
18029 (unsigned) (info_ptr - reader->die_section->buffer),
18030 bfd_get_filename (reader->abfd));
b4f54984 18031 dump_die (die, dwarf_die_debug);
bf6af496
DE
18032 }
18033
18034 return die;
18035}
18036
3019eac3
DE
18037/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18038 attributes.
18039 The caller is responsible for filling in the extra attributes
18040 and updating (*DIEP)->num_attrs.
18041 Set DIEP to point to a newly allocated die with its information,
18042 except for its child, sibling, and parent fields.
18043 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 18044
d521ce57 18045static const gdb_byte *
3019eac3 18046read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 18047 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 18048 int *has_children, int num_extra_attrs)
93311388 18049{
b64f50a1 18050 unsigned int abbrev_number, bytes_read, i;
93311388
DE
18051 struct abbrev_info *abbrev;
18052 struct die_info *die;
18053 struct dwarf2_cu *cu = reader->cu;
18054 bfd *abfd = reader->abfd;
18055
9c541725 18056 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
93311388
DE
18057 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18058 info_ptr += bytes_read;
18059 if (!abbrev_number)
18060 {
18061 *diep = NULL;
18062 *has_children = 0;
18063 return info_ptr;
18064 }
18065
685af9cd 18066 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
93311388 18067 if (!abbrev)
348e048f
DE
18068 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18069 abbrev_number,
18070 bfd_get_filename (abfd));
18071
3019eac3 18072 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
9c541725 18073 die->sect_off = sect_off;
93311388
DE
18074 die->tag = abbrev->tag;
18075 die->abbrev = abbrev_number;
18076
3019eac3
DE
18077 /* Make the result usable.
18078 The caller needs to update num_attrs after adding the extra
18079 attributes. */
93311388
DE
18080 die->num_attrs = abbrev->num_attrs;
18081
18082 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
18083 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18084 info_ptr);
93311388
DE
18085
18086 *diep = die;
18087 *has_children = abbrev->has_children;
18088 return info_ptr;
18089}
18090
3019eac3
DE
18091/* Read a die and all its attributes.
18092 Set DIEP to point to a newly allocated die with its information,
18093 except for its child, sibling, and parent fields.
18094 Set HAS_CHILDREN to tell whether the die has children or not. */
18095
d521ce57 18096static const gdb_byte *
3019eac3 18097read_full_die (const struct die_reader_specs *reader,
d521ce57 18098 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
18099 int *has_children)
18100{
d521ce57 18101 const gdb_byte *result;
bf6af496
DE
18102
18103 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18104
b4f54984 18105 if (dwarf_die_debug)
bf6af496
DE
18106 {
18107 fprintf_unfiltered (gdb_stdlog,
18108 "Read die from %s@0x%x of %s:\n",
a32a8923 18109 get_section_name (reader->die_section),
bf6af496
DE
18110 (unsigned) (info_ptr - reader->die_section->buffer),
18111 bfd_get_filename (reader->abfd));
b4f54984 18112 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
18113 }
18114
18115 return result;
3019eac3 18116}
433df2d4
DE
18117\f
18118/* Abbreviation tables.
3019eac3 18119
433df2d4 18120 In DWARF version 2, the description of the debugging information is
c906108c
SS
18121 stored in a separate .debug_abbrev section. Before we read any
18122 dies from a section we read in all abbreviations and install them
433df2d4
DE
18123 in a hash table. */
18124
18125/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18126
685af9cd
TT
18127struct abbrev_info *
18128abbrev_table::alloc_abbrev ()
433df2d4
DE
18129{
18130 struct abbrev_info *abbrev;
18131
685af9cd 18132 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
433df2d4 18133 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 18134
433df2d4
DE
18135 return abbrev;
18136}
18137
18138/* Add an abbreviation to the table. */
c906108c 18139
685af9cd
TT
18140void
18141abbrev_table::add_abbrev (unsigned int abbrev_number,
18142 struct abbrev_info *abbrev)
433df2d4
DE
18143{
18144 unsigned int hash_number;
18145
18146 hash_number = abbrev_number % ABBREV_HASH_SIZE;
4a17f768
YQ
18147 abbrev->next = m_abbrevs[hash_number];
18148 m_abbrevs[hash_number] = abbrev;
433df2d4 18149}
dee91e82 18150
433df2d4
DE
18151/* Look up an abbrev in the table.
18152 Returns NULL if the abbrev is not found. */
18153
685af9cd
TT
18154struct abbrev_info *
18155abbrev_table::lookup_abbrev (unsigned int abbrev_number)
c906108c 18156{
433df2d4
DE
18157 unsigned int hash_number;
18158 struct abbrev_info *abbrev;
18159
18160 hash_number = abbrev_number % ABBREV_HASH_SIZE;
4a17f768 18161 abbrev = m_abbrevs[hash_number];
433df2d4
DE
18162
18163 while (abbrev)
18164 {
18165 if (abbrev->number == abbrev_number)
18166 return abbrev;
18167 abbrev = abbrev->next;
18168 }
18169 return NULL;
18170}
18171
18172/* Read in an abbrev table. */
18173
685af9cd 18174static abbrev_table_up
ed2dc618
SM
18175abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18176 struct dwarf2_section_info *section,
9c541725 18177 sect_offset sect_off)
433df2d4
DE
18178{
18179 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 18180 bfd *abfd = get_section_bfd_owner (section);
d521ce57 18181 const gdb_byte *abbrev_ptr;
c906108c
SS
18182 struct abbrev_info *cur_abbrev;
18183 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 18184 unsigned int abbrev_form;
f3dd6933
DJ
18185 struct attr_abbrev *cur_attrs;
18186 unsigned int allocated_attrs;
c906108c 18187
685af9cd 18188 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
c906108c 18189
433df2d4 18190 dwarf2_read_section (objfile, section);
9c541725 18191 abbrev_ptr = section->buffer + to_underlying (sect_off);
c906108c
SS
18192 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18193 abbrev_ptr += bytes_read;
18194
f3dd6933 18195 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 18196 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 18197
0963b4bd 18198 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
18199 while (abbrev_number)
18200 {
685af9cd 18201 cur_abbrev = abbrev_table->alloc_abbrev ();
c906108c
SS
18202
18203 /* read in abbrev header */
18204 cur_abbrev->number = abbrev_number;
aead7601
SM
18205 cur_abbrev->tag
18206 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
18207 abbrev_ptr += bytes_read;
18208 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18209 abbrev_ptr += 1;
18210
18211 /* now read in declarations */
22d2f3ab 18212 for (;;)
c906108c 18213 {
43988095
JK
18214 LONGEST implicit_const;
18215
22d2f3ab
JK
18216 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18217 abbrev_ptr += bytes_read;
18218 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18219 abbrev_ptr += bytes_read;
43988095
JK
18220 if (abbrev_form == DW_FORM_implicit_const)
18221 {
18222 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18223 &bytes_read);
18224 abbrev_ptr += bytes_read;
18225 }
18226 else
18227 {
18228 /* Initialize it due to a false compiler warning. */
18229 implicit_const = -1;
18230 }
22d2f3ab
JK
18231
18232 if (abbrev_name == 0)
18233 break;
18234
f3dd6933 18235 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 18236 {
f3dd6933
DJ
18237 allocated_attrs += ATTR_ALLOC_CHUNK;
18238 cur_attrs
224c3ddb 18239 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 18240 }
ae038cb0 18241
aead7601
SM
18242 cur_attrs[cur_abbrev->num_attrs].name
18243 = (enum dwarf_attribute) abbrev_name;
22d2f3ab 18244 cur_attrs[cur_abbrev->num_attrs].form
aead7601 18245 = (enum dwarf_form) abbrev_form;
43988095 18246 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
22d2f3ab 18247 ++cur_abbrev->num_attrs;
c906108c
SS
18248 }
18249
8d749320
SM
18250 cur_abbrev->attrs =
18251 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18252 cur_abbrev->num_attrs);
f3dd6933
DJ
18253 memcpy (cur_abbrev->attrs, cur_attrs,
18254 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18255
685af9cd 18256 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
c906108c
SS
18257
18258 /* Get next abbreviation.
18259 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
18260 always properly terminated with an abbrev number of 0.
18261 Exit loop if we encounter an abbreviation which we have
18262 already read (which means we are about to read the abbreviations
18263 for the next compile unit) or if the end of the abbreviation
18264 table is reached. */
433df2d4 18265 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
18266 break;
18267 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18268 abbrev_ptr += bytes_read;
685af9cd 18269 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
c906108c
SS
18270 break;
18271 }
f3dd6933
DJ
18272
18273 xfree (cur_attrs);
433df2d4 18274 return abbrev_table;
c906108c
SS
18275}
18276
72bf9492
DJ
18277/* Returns nonzero if TAG represents a type that we might generate a partial
18278 symbol for. */
18279
18280static int
18281is_type_tag_for_partial (int tag)
18282{
18283 switch (tag)
18284 {
18285#if 0
18286 /* Some types that would be reasonable to generate partial symbols for,
18287 that we don't at present. */
18288 case DW_TAG_array_type:
18289 case DW_TAG_file_type:
18290 case DW_TAG_ptr_to_member_type:
18291 case DW_TAG_set_type:
18292 case DW_TAG_string_type:
18293 case DW_TAG_subroutine_type:
18294#endif
18295 case DW_TAG_base_type:
18296 case DW_TAG_class_type:
680b30c7 18297 case DW_TAG_interface_type:
72bf9492
DJ
18298 case DW_TAG_enumeration_type:
18299 case DW_TAG_structure_type:
18300 case DW_TAG_subrange_type:
18301 case DW_TAG_typedef:
18302 case DW_TAG_union_type:
18303 return 1;
18304 default:
18305 return 0;
18306 }
18307}
18308
18309/* Load all DIEs that are interesting for partial symbols into memory. */
18310
18311static struct partial_die_info *
dee91e82 18312load_partial_dies (const struct die_reader_specs *reader,
d521ce57 18313 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 18314{
dee91e82 18315 struct dwarf2_cu *cu = reader->cu;
518817b3 18316 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
72bf9492 18317 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
72bf9492 18318 unsigned int bytes_read;
5afb4e99 18319 unsigned int load_all = 0;
72bf9492
DJ
18320 int nesting_level = 1;
18321
18322 parent_die = NULL;
18323 last_die = NULL;
18324
7adf1e79
DE
18325 gdb_assert (cu->per_cu != NULL);
18326 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
18327 load_all = 1;
18328
72bf9492
DJ
18329 cu->partial_dies
18330 = htab_create_alloc_ex (cu->header.length / 12,
18331 partial_die_hash,
18332 partial_die_eq,
18333 NULL,
18334 &cu->comp_unit_obstack,
18335 hashtab_obstack_allocate,
18336 dummy_obstack_deallocate);
18337
72bf9492
DJ
18338 while (1)
18339 {
685af9cd 18340 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
72bf9492
DJ
18341
18342 /* A NULL abbrev means the end of a series of children. */
18343 if (abbrev == NULL)
18344 {
18345 if (--nesting_level == 0)
cd9983dd
YQ
18346 return first_die;
18347
72bf9492
DJ
18348 info_ptr += bytes_read;
18349 last_die = parent_die;
18350 parent_die = parent_die->die_parent;
18351 continue;
18352 }
18353
98bfdba5
PA
18354 /* Check for template arguments. We never save these; if
18355 they're seen, we just mark the parent, and go on our way. */
18356 if (parent_die != NULL
18357 && cu->language == language_cplus
18358 && (abbrev->tag == DW_TAG_template_type_param
18359 || abbrev->tag == DW_TAG_template_value_param))
18360 {
18361 parent_die->has_template_arguments = 1;
18362
18363 if (!load_all)
18364 {
18365 /* We don't need a partial DIE for the template argument. */
dee91e82 18366 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
18367 continue;
18368 }
18369 }
18370
0d99eb77 18371 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
18372 Skip their other children. */
18373 if (!load_all
18374 && cu->language == language_cplus
18375 && parent_die != NULL
18376 && parent_die->tag == DW_TAG_subprogram)
18377 {
dee91e82 18378 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
18379 continue;
18380 }
18381
5afb4e99
DJ
18382 /* Check whether this DIE is interesting enough to save. Normally
18383 we would not be interested in members here, but there may be
18384 later variables referencing them via DW_AT_specification (for
18385 static members). */
18386 if (!load_all
18387 && !is_type_tag_for_partial (abbrev->tag)
72929c62 18388 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
18389 && abbrev->tag != DW_TAG_enumerator
18390 && abbrev->tag != DW_TAG_subprogram
b1dc1806 18391 && abbrev->tag != DW_TAG_inlined_subroutine
bc30ff58 18392 && abbrev->tag != DW_TAG_lexical_block
72bf9492 18393 && abbrev->tag != DW_TAG_variable
5afb4e99 18394 && abbrev->tag != DW_TAG_namespace
f55ee35c 18395 && abbrev->tag != DW_TAG_module
95554aad 18396 && abbrev->tag != DW_TAG_member
74921315
KS
18397 && abbrev->tag != DW_TAG_imported_unit
18398 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
18399 {
18400 /* Otherwise we skip to the next sibling, if any. */
dee91e82 18401 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
18402 continue;
18403 }
18404
6f06d47b
YQ
18405 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18406 abbrev);
cd9983dd 18407
48fbe735 18408 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
72bf9492
DJ
18409
18410 /* This two-pass algorithm for processing partial symbols has a
18411 high cost in cache pressure. Thus, handle some simple cases
18412 here which cover the majority of C partial symbols. DIEs
18413 which neither have specification tags in them, nor could have
18414 specification tags elsewhere pointing at them, can simply be
18415 processed and discarded.
18416
18417 This segment is also optional; scan_partial_symbols and
18418 add_partial_symbol will handle these DIEs if we chain
18419 them in normally. When compilers which do not emit large
18420 quantities of duplicate debug information are more common,
18421 this code can probably be removed. */
18422
18423 /* Any complete simple types at the top level (pretty much all
18424 of them, for a language without namespaces), can be processed
18425 directly. */
18426 if (parent_die == NULL
cd9983dd
YQ
18427 && pdi.has_specification == 0
18428 && pdi.is_declaration == 0
18429 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18430 || pdi.tag == DW_TAG_base_type
18431 || pdi.tag == DW_TAG_subrange_type))
72bf9492 18432 {
cd9983dd
YQ
18433 if (building_psymtab && pdi.name != NULL)
18434 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
79748972 18435 VAR_DOMAIN, LOC_TYPEDEF, -1,
75aedd27 18436 psymbol_placement::STATIC,
1762568f 18437 0, cu->language, objfile);
cd9983dd 18438 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
72bf9492
DJ
18439 continue;
18440 }
18441
d8228535
JK
18442 /* The exception for DW_TAG_typedef with has_children above is
18443 a workaround of GCC PR debug/47510. In the case of this complaint
a737d952 18444 type_name_or_error will error on such types later.
d8228535
JK
18445
18446 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18447 it could not find the child DIEs referenced later, this is checked
18448 above. In correct DWARF DW_TAG_typedef should have no children. */
18449
cd9983dd 18450 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
b98664d3 18451 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
9d8780f0 18452 "- DIE at %s [in module %s]"),
cd9983dd 18453 sect_offset_str (pdi.sect_off), objfile_name (objfile));
d8228535 18454
72bf9492
DJ
18455 /* If we're at the second level, and we're an enumerator, and
18456 our parent has no specification (meaning possibly lives in a
18457 namespace elsewhere), then we can add the partial symbol now
18458 instead of queueing it. */
cd9983dd 18459 if (pdi.tag == DW_TAG_enumerator
72bf9492
DJ
18460 && parent_die != NULL
18461 && parent_die->die_parent == NULL
18462 && parent_die->tag == DW_TAG_enumeration_type
18463 && parent_die->has_specification == 0)
18464 {
cd9983dd 18465 if (pdi.name == NULL)
b98664d3 18466 complaint (_("malformed enumerator DIE ignored"));
72bf9492 18467 else if (building_psymtab)
cd9983dd 18468 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
79748972 18469 VAR_DOMAIN, LOC_CONST, -1,
9c37b5ae 18470 cu->language == language_cplus
75aedd27
TT
18471 ? psymbol_placement::GLOBAL
18472 : psymbol_placement::STATIC,
1762568f 18473 0, cu->language, objfile);
72bf9492 18474
cd9983dd 18475 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
72bf9492
DJ
18476 continue;
18477 }
18478
cd9983dd 18479 struct partial_die_info *part_die
6f06d47b 18480 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
cd9983dd 18481
72bf9492
DJ
18482 /* We'll save this DIE so link it in. */
18483 part_die->die_parent = parent_die;
18484 part_die->die_sibling = NULL;
18485 part_die->die_child = NULL;
18486
18487 if (last_die && last_die == parent_die)
18488 last_die->die_child = part_die;
18489 else if (last_die)
18490 last_die->die_sibling = part_die;
18491
18492 last_die = part_die;
18493
18494 if (first_die == NULL)
18495 first_die = part_die;
18496
18497 /* Maybe add the DIE to the hash table. Not all DIEs that we
18498 find interesting need to be in the hash table, because we
18499 also have the parent/sibling/child chains; only those that we
18500 might refer to by offset later during partial symbol reading.
18501
18502 For now this means things that might have be the target of a
18503 DW_AT_specification, DW_AT_abstract_origin, or
18504 DW_AT_extension. DW_AT_extension will refer only to
18505 namespaces; DW_AT_abstract_origin refers to functions (and
18506 many things under the function DIE, but we do not recurse
18507 into function DIEs during partial symbol reading) and
18508 possibly variables as well; DW_AT_specification refers to
18509 declarations. Declarations ought to have the DW_AT_declaration
18510 flag. It happens that GCC forgets to put it in sometimes, but
18511 only for functions, not for types.
18512
18513 Adding more things than necessary to the hash table is harmless
18514 except for the performance cost. Adding too few will result in
5afb4e99
DJ
18515 wasted time in find_partial_die, when we reread the compilation
18516 unit with load_all_dies set. */
72bf9492 18517
5afb4e99 18518 if (load_all
72929c62 18519 || abbrev->tag == DW_TAG_constant
5afb4e99 18520 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
18521 || abbrev->tag == DW_TAG_variable
18522 || abbrev->tag == DW_TAG_namespace
18523 || part_die->is_declaration)
18524 {
18525 void **slot;
18526
18527 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9c541725
PA
18528 to_underlying (part_die->sect_off),
18529 INSERT);
72bf9492
DJ
18530 *slot = part_die;
18531 }
18532
72bf9492 18533 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 18534 we have no reason to follow the children of structures; for other
98bfdba5
PA
18535 languages we have to, so that we can get at method physnames
18536 to infer fully qualified class names, for DW_AT_specification,
18537 and for C++ template arguments. For C++, we also look one level
18538 inside functions to find template arguments (if the name of the
18539 function does not already contain the template arguments).
bc30ff58
JB
18540
18541 For Ada, we need to scan the children of subprograms and lexical
18542 blocks as well because Ada allows the definition of nested
18543 entities that could be interesting for the debugger, such as
18544 nested subprograms for instance. */
72bf9492 18545 if (last_die->has_children
5afb4e99
DJ
18546 && (load_all
18547 || last_die->tag == DW_TAG_namespace
f55ee35c 18548 || last_die->tag == DW_TAG_module
72bf9492 18549 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
18550 || (cu->language == language_cplus
18551 && last_die->tag == DW_TAG_subprogram
18552 && (last_die->name == NULL
18553 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
18554 || (cu->language != language_c
18555 && (last_die->tag == DW_TAG_class_type
680b30c7 18556 || last_die->tag == DW_TAG_interface_type
72bf9492 18557 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
18558 || last_die->tag == DW_TAG_union_type))
18559 || (cu->language == language_ada
18560 && (last_die->tag == DW_TAG_subprogram
18561 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
18562 {
18563 nesting_level++;
18564 parent_die = last_die;
18565 continue;
18566 }
18567
18568 /* Otherwise we skip to the next sibling, if any. */
dee91e82 18569 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
18570
18571 /* Back to the top, do it again. */
18572 }
18573}
18574
6f06d47b
YQ
18575partial_die_info::partial_die_info (sect_offset sect_off_,
18576 struct abbrev_info *abbrev)
18577 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18578{
18579}
18580
35cc7ed7
YQ
18581/* Read a minimal amount of information into the minimal die structure.
18582 INFO_PTR should point just after the initial uleb128 of a DIE. */
c906108c 18583
48fbe735
YQ
18584const gdb_byte *
18585partial_die_info::read (const struct die_reader_specs *reader,
18586 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
c906108c 18587{
dee91e82 18588 struct dwarf2_cu *cu = reader->cu;
518817b3
SM
18589 struct dwarf2_per_objfile *dwarf2_per_objfile
18590 = cu->per_cu->dwarf2_per_objfile;
fa238c03 18591 unsigned int i;
c5aa993b 18592 int has_low_pc_attr = 0;
c906108c 18593 int has_high_pc_attr = 0;
91da1414 18594 int high_pc_relative = 0;
c906108c 18595
fd0a254f 18596 for (i = 0; i < abbrev.num_attrs; ++i)
c906108c 18597 {
48fbe735
YQ
18598 struct attribute attr;
18599
fd0a254f 18600 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
c906108c
SS
18601
18602 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 18603 partial symbol table. */
c906108c
SS
18604 switch (attr.name)
18605 {
18606 case DW_AT_name:
48fbe735 18607 switch (tag)
71c25dea
TT
18608 {
18609 case DW_TAG_compile_unit:
95554aad 18610 case DW_TAG_partial_unit:
348e048f 18611 case DW_TAG_type_unit:
71c25dea
TT
18612 /* Compilation units have a DW_AT_name that is a filename, not
18613 a source language identifier. */
18614 case DW_TAG_enumeration_type:
18615 case DW_TAG_enumerator:
18616 /* These tags always have simple identifiers already; no need
18617 to canonicalize them. */
48fbe735 18618 name = DW_STRING (&attr);
71c25dea
TT
18619 break;
18620 default:
48fbe735
YQ
18621 {
18622 struct objfile *objfile = dwarf2_per_objfile->objfile;
18623
18624 name
18625 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18626 &objfile->per_bfd->storage_obstack);
18627 }
71c25dea
TT
18628 break;
18629 }
c906108c 18630 break;
31ef98ae 18631 case DW_AT_linkage_name:
c906108c 18632 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
18633 /* Note that both forms of linkage name might appear. We
18634 assume they will be the same, and we only store the last
18635 one we see. */
94af9270 18636 if (cu->language == language_ada)
48fbe735
YQ
18637 name = DW_STRING (&attr);
18638 linkage_name = DW_STRING (&attr);
c906108c
SS
18639 break;
18640 case DW_AT_low_pc:
18641 has_low_pc_attr = 1;
48fbe735 18642 lowpc = attr_value_as_address (&attr);
c906108c
SS
18643 break;
18644 case DW_AT_high_pc:
18645 has_high_pc_attr = 1;
48fbe735 18646 highpc = attr_value_as_address (&attr);
31aa7e4e
JB
18647 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18648 high_pc_relative = 1;
c906108c
SS
18649 break;
18650 case DW_AT_location:
0963b4bd 18651 /* Support the .debug_loc offsets. */
8e19ed76
PS
18652 if (attr_form_is_block (&attr))
18653 {
48fbe735 18654 d.locdesc = DW_BLOCK (&attr);
8e19ed76 18655 }
3690dd37 18656 else if (attr_form_is_section_offset (&attr))
8e19ed76 18657 {
4d3c2250 18658 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
18659 }
18660 else
18661 {
4d3c2250
KB
18662 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18663 "partial symbol information");
8e19ed76 18664 }
c906108c 18665 break;
c906108c 18666 case DW_AT_external:
48fbe735 18667 is_external = DW_UNSND (&attr);
c906108c
SS
18668 break;
18669 case DW_AT_declaration:
48fbe735 18670 is_declaration = DW_UNSND (&attr);
c906108c
SS
18671 break;
18672 case DW_AT_type:
48fbe735 18673 has_type = 1;
c906108c
SS
18674 break;
18675 case DW_AT_abstract_origin:
18676 case DW_AT_specification:
72bf9492 18677 case DW_AT_extension:
48fbe735
YQ
18678 has_specification = 1;
18679 spec_offset = dwarf2_get_ref_die_offset (&attr);
18680 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
36586728 18681 || cu->per_cu->is_dwz);
c906108c
SS
18682 break;
18683 case DW_AT_sibling:
18684 /* Ignore absolute siblings, they might point outside of
18685 the current compile unit. */
18686 if (attr.form == DW_FORM_ref_addr)
b98664d3 18687 complaint (_("ignoring absolute DW_AT_sibling"));
c906108c 18688 else
b9502d3f 18689 {
48fbe735 18690 const gdb_byte *buffer = reader->buffer;
9c541725
PA
18691 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18692 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
18693
18694 if (sibling_ptr < info_ptr)
b98664d3 18695 complaint (_("DW_AT_sibling points backwards"));
22869d73
KS
18696 else if (sibling_ptr > reader->buffer_end)
18697 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f 18698 else
48fbe735 18699 sibling = sibling_ptr;
b9502d3f 18700 }
c906108c 18701 break;
fa4028e9 18702 case DW_AT_byte_size:
48fbe735 18703 has_byte_size = 1;
fa4028e9 18704 break;
ff908ebf 18705 case DW_AT_const_value:
48fbe735 18706 has_const_value = 1;
ff908ebf 18707 break;
68511cec
CES
18708 case DW_AT_calling_convention:
18709 /* DWARF doesn't provide a way to identify a program's source-level
18710 entry point. DW_AT_calling_convention attributes are only meant
18711 to describe functions' calling conventions.
18712
18713 However, because it's a necessary piece of information in
0c1b455e
TT
18714 Fortran, and before DWARF 4 DW_CC_program was the only
18715 piece of debugging information whose definition refers to
18716 a 'main program' at all, several compilers marked Fortran
18717 main programs with DW_CC_program --- even when those
18718 functions use the standard calling conventions.
18719
18720 Although DWARF now specifies a way to provide this
18721 information, we support this practice for backward
18722 compatibility. */
68511cec 18723 if (DW_UNSND (&attr) == DW_CC_program
0c1b455e 18724 && cu->language == language_fortran)
48fbe735 18725 main_subprogram = 1;
68511cec 18726 break;
481860b3
GB
18727 case DW_AT_inline:
18728 if (DW_UNSND (&attr) == DW_INL_inlined
18729 || DW_UNSND (&attr) == DW_INL_declared_inlined)
48fbe735 18730 may_be_inlined = 1;
481860b3 18731 break;
95554aad
TT
18732
18733 case DW_AT_import:
48fbe735 18734 if (tag == DW_TAG_imported_unit)
36586728 18735 {
48fbe735
YQ
18736 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18737 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
36586728
TT
18738 || cu->per_cu->is_dwz);
18739 }
95554aad
TT
18740 break;
18741
0c1b455e 18742 case DW_AT_main_subprogram:
48fbe735 18743 main_subprogram = DW_UNSND (&attr);
0c1b455e
TT
18744 break;
18745
c906108c
SS
18746 default:
18747 break;
18748 }
18749 }
18750
91da1414 18751 if (high_pc_relative)
48fbe735 18752 highpc += lowpc;
91da1414 18753
9373cf26
JK
18754 if (has_low_pc_attr && has_high_pc_attr)
18755 {
18756 /* When using the GNU linker, .gnu.linkonce. sections are used to
18757 eliminate duplicate copies of functions and vtables and such.
18758 The linker will arbitrarily choose one and discard the others.
18759 The AT_*_pc values for such functions refer to local labels in
18760 these sections. If the section from that file was discarded, the
18761 labels are not in the output, so the relocs get a value of 0.
18762 If this is a discarded function, mark the pc bounds as invalid,
18763 so that GDB will ignore it. */
48fbe735 18764 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
9373cf26 18765 {
48fbe735 18766 struct objfile *objfile = dwarf2_per_objfile->objfile;
bb5ed363 18767 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26 18768
b98664d3 18769 complaint (_("DW_AT_low_pc %s is zero "
9d8780f0 18770 "for DIE at %s [in module %s]"),
48fbe735
YQ
18771 paddress (gdbarch, lowpc),
18772 sect_offset_str (sect_off),
9d8780f0 18773 objfile_name (objfile));
9373cf26
JK
18774 }
18775 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
48fbe735 18776 else if (lowpc >= highpc)
9373cf26 18777 {
48fbe735 18778 struct objfile *objfile = dwarf2_per_objfile->objfile;
bb5ed363 18779 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26 18780
b98664d3 18781 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
9d8780f0 18782 "for DIE at %s [in module %s]"),
48fbe735
YQ
18783 paddress (gdbarch, lowpc),
18784 paddress (gdbarch, highpc),
18785 sect_offset_str (sect_off),
9c541725 18786 objfile_name (objfile));
9373cf26
JK
18787 }
18788 else
48fbe735 18789 has_pc_info = 1;
9373cf26 18790 }
85cbf3d3 18791
c906108c
SS
18792 return info_ptr;
18793}
18794
72bf9492
DJ
18795/* Find a cached partial DIE at OFFSET in CU. */
18796
d590ff25
YQ
18797struct partial_die_info *
18798dwarf2_cu::find_partial_die (sect_offset sect_off)
72bf9492
DJ
18799{
18800 struct partial_die_info *lookup_die = NULL;
6f06d47b 18801 struct partial_die_info part_die (sect_off);
72bf9492 18802
9a3c8263 18803 lookup_die = ((struct partial_die_info *)
d590ff25 18804 htab_find_with_hash (partial_dies, &part_die,
9c541725 18805 to_underlying (sect_off)));
72bf9492 18806
72bf9492
DJ
18807 return lookup_die;
18808}
18809
348e048f
DE
18810/* Find a partial DIE at OFFSET, which may or may not be in CU,
18811 except in the case of .debug_types DIEs which do not reference
18812 outside their CU (they do however referencing other types via
55f1336d 18813 DW_FORM_ref_sig8). */
72bf9492
DJ
18814
18815static struct partial_die_info *
9c541725 18816find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 18817{
518817b3
SM
18818 struct dwarf2_per_objfile *dwarf2_per_objfile
18819 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 18820 struct objfile *objfile = dwarf2_per_objfile->objfile;
5afb4e99
DJ
18821 struct dwarf2_per_cu_data *per_cu = NULL;
18822 struct partial_die_info *pd = NULL;
72bf9492 18823
36586728 18824 if (offset_in_dwz == cu->per_cu->is_dwz
9c541725 18825 && offset_in_cu_p (&cu->header, sect_off))
5afb4e99 18826 {
d590ff25 18827 pd = cu->find_partial_die (sect_off);
5afb4e99
DJ
18828 if (pd != NULL)
18829 return pd;
0d99eb77
DE
18830 /* We missed recording what we needed.
18831 Load all dies and try again. */
18832 per_cu = cu->per_cu;
5afb4e99 18833 }
0d99eb77
DE
18834 else
18835 {
18836 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 18837 if (cu->per_cu->is_debug_types)
0d99eb77 18838 {
9d8780f0
SM
18839 error (_("Dwarf Error: Type Unit at offset %s contains"
18840 " external reference to offset %s [in module %s].\n"),
18841 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
0d99eb77
DE
18842 bfd_get_filename (objfile->obfd));
18843 }
9c541725 18844 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
ed2dc618 18845 dwarf2_per_objfile);
72bf9492 18846
0d99eb77
DE
18847 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18848 load_partial_comp_unit (per_cu);
ae038cb0 18849
0d99eb77 18850 per_cu->cu->last_used = 0;
d590ff25 18851 pd = per_cu->cu->find_partial_die (sect_off);
0d99eb77 18852 }
5afb4e99 18853
dee91e82
DE
18854 /* If we didn't find it, and not all dies have been loaded,
18855 load them all and try again. */
18856
5afb4e99
DJ
18857 if (pd == NULL && per_cu->load_all_dies == 0)
18858 {
5afb4e99 18859 per_cu->load_all_dies = 1;
fd820528
DE
18860
18861 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18862 THIS_CU->cu may already be in use. So we can't just free it and
18863 replace its DIEs with the ones we read in. Instead, we leave those
18864 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18865 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18866 set. */
dee91e82 18867 load_partial_comp_unit (per_cu);
5afb4e99 18868
d590ff25 18869 pd = per_cu->cu->find_partial_die (sect_off);
5afb4e99
DJ
18870 }
18871
18872 if (pd == NULL)
18873 internal_error (__FILE__, __LINE__,
9d8780f0 18874 _("could not find partial DIE %s "
3e43a32a 18875 "in cache [from module %s]\n"),
9d8780f0 18876 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
5afb4e99 18877 return pd;
72bf9492
DJ
18878}
18879
abc72ce4
DE
18880/* See if we can figure out if the class lives in a namespace. We do
18881 this by looking for a member function; its demangled name will
18882 contain namespace info, if there is any. */
18883
18884static void
18885guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18886 struct dwarf2_cu *cu)
18887{
18888 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18889 what template types look like, because the demangler
18890 frequently doesn't give the same name as the debug info. We
18891 could fix this by only using the demangled name to get the
18892 prefix (but see comment in read_structure_type). */
18893
18894 struct partial_die_info *real_pdi;
18895 struct partial_die_info *child_pdi;
18896
18897 /* If this DIE (this DIE's specification, if any) has a parent, then
18898 we should not do this. We'll prepend the parent's fully qualified
18899 name when we create the partial symbol. */
18900
18901 real_pdi = struct_pdi;
18902 while (real_pdi->has_specification)
36586728
TT
18903 real_pdi = find_partial_die (real_pdi->spec_offset,
18904 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
18905
18906 if (real_pdi->die_parent != NULL)
18907 return;
18908
18909 for (child_pdi = struct_pdi->die_child;
18910 child_pdi != NULL;
18911 child_pdi = child_pdi->die_sibling)
18912 {
18913 if (child_pdi->tag == DW_TAG_subprogram
18914 && child_pdi->linkage_name != NULL)
18915 {
18916 char *actual_class_name
18917 = language_class_name_from_physname (cu->language_defn,
18918 child_pdi->linkage_name);
18919 if (actual_class_name != NULL)
18920 {
518817b3 18921 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
abc72ce4 18922 struct_pdi->name
224c3ddb 18923 = ((const char *)
e3b94546 18924 obstack_copy0 (&objfile->per_bfd->storage_obstack,
224c3ddb
SM
18925 actual_class_name,
18926 strlen (actual_class_name)));
abc72ce4
DE
18927 xfree (actual_class_name);
18928 }
18929 break;
18930 }
18931 }
18932}
18933
52356b79
YQ
18934void
18935partial_die_info::fixup (struct dwarf2_cu *cu)
72bf9492 18936{
abc72ce4
DE
18937 /* Once we've fixed up a die, there's no point in doing so again.
18938 This also avoids a memory leak if we were to call
18939 guess_partial_die_structure_name multiple times. */
52356b79 18940 if (fixup_called)
abc72ce4
DE
18941 return;
18942
72bf9492
DJ
18943 /* If we found a reference attribute and the DIE has no name, try
18944 to find a name in the referred to DIE. */
18945
52356b79 18946 if (name == NULL && has_specification)
72bf9492
DJ
18947 {
18948 struct partial_die_info *spec_die;
72bf9492 18949
52356b79 18950 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
72bf9492 18951
52356b79 18952 spec_die->fixup (cu);
72bf9492
DJ
18953
18954 if (spec_die->name)
18955 {
52356b79 18956 name = spec_die->name;
72bf9492
DJ
18957
18958 /* Copy DW_AT_external attribute if it is set. */
18959 if (spec_die->is_external)
52356b79 18960 is_external = spec_die->is_external;
72bf9492
DJ
18961 }
18962 }
18963
18964 /* Set default names for some unnamed DIEs. */
72bf9492 18965
52356b79
YQ
18966 if (name == NULL && tag == DW_TAG_namespace)
18967 name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 18968
abc72ce4
DE
18969 /* If there is no parent die to provide a namespace, and there are
18970 children, see if we can determine the namespace from their linkage
122d1940 18971 name. */
abc72ce4 18972 if (cu->language == language_cplus
518817b3
SM
18973 && !VEC_empty (dwarf2_section_info_def,
18974 cu->per_cu->dwarf2_per_objfile->types)
52356b79
YQ
18975 && die_parent == NULL
18976 && has_children
18977 && (tag == DW_TAG_class_type
18978 || tag == DW_TAG_structure_type
18979 || tag == DW_TAG_union_type))
18980 guess_partial_die_structure_name (this, cu);
abc72ce4 18981
53832f31
TT
18982 /* GCC might emit a nameless struct or union that has a linkage
18983 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
52356b79
YQ
18984 if (name == NULL
18985 && (tag == DW_TAG_class_type
18986 || tag == DW_TAG_interface_type
18987 || tag == DW_TAG_structure_type
18988 || tag == DW_TAG_union_type)
18989 && linkage_name != NULL)
53832f31
TT
18990 {
18991 char *demangled;
18992
52356b79 18993 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
53832f31
TT
18994 if (demangled)
18995 {
96408a79
SA
18996 const char *base;
18997
18998 /* Strip any leading namespaces/classes, keep only the base name.
18999 DW_AT_name for named DIEs does not contain the prefixes. */
19000 base = strrchr (demangled, ':');
19001 if (base && base > demangled && base[-1] == ':')
19002 base++;
19003 else
19004 base = demangled;
19005
518817b3 19006 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
52356b79 19007 name
224c3ddb 19008 = ((const char *)
e3b94546 19009 obstack_copy0 (&objfile->per_bfd->storage_obstack,
224c3ddb 19010 base, strlen (base)));
53832f31
TT
19011 xfree (demangled);
19012 }
19013 }
19014
52356b79 19015 fixup_called = 1;
72bf9492
DJ
19016}
19017
a8329558 19018/* Read an attribute value described by an attribute form. */
c906108c 19019
d521ce57 19020static const gdb_byte *
dee91e82
DE
19021read_attribute_value (const struct die_reader_specs *reader,
19022 struct attribute *attr, unsigned form,
43988095 19023 LONGEST implicit_const, const gdb_byte *info_ptr)
c906108c 19024{
dee91e82 19025 struct dwarf2_cu *cu = reader->cu;
518817b3
SM
19026 struct dwarf2_per_objfile *dwarf2_per_objfile
19027 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 19028 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 19029 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 19030 bfd *abfd = reader->abfd;
e7c27a73 19031 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
19032 unsigned int bytes_read;
19033 struct dwarf_block *blk;
19034
aead7601 19035 attr->form = (enum dwarf_form) form;
a8329558 19036 switch (form)
c906108c 19037 {
c906108c 19038 case DW_FORM_ref_addr:
ae411497 19039 if (cu->header.version == 2)
4568ecf9 19040 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 19041 else
4568ecf9
DE
19042 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19043 &cu->header, &bytes_read);
ae411497
TT
19044 info_ptr += bytes_read;
19045 break;
36586728
TT
19046 case DW_FORM_GNU_ref_alt:
19047 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19048 info_ptr += bytes_read;
19049 break;
ae411497 19050 case DW_FORM_addr:
e7c27a73 19051 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 19052 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 19053 info_ptr += bytes_read;
c906108c
SS
19054 break;
19055 case DW_FORM_block2:
7b5a2f43 19056 blk = dwarf_alloc_block (cu);
c906108c
SS
19057 blk->size = read_2_bytes (abfd, info_ptr);
19058 info_ptr += 2;
19059 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19060 info_ptr += blk->size;
19061 DW_BLOCK (attr) = blk;
19062 break;
19063 case DW_FORM_block4:
7b5a2f43 19064 blk = dwarf_alloc_block (cu);
c906108c
SS
19065 blk->size = read_4_bytes (abfd, info_ptr);
19066 info_ptr += 4;
19067 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19068 info_ptr += blk->size;
19069 DW_BLOCK (attr) = blk;
19070 break;
19071 case DW_FORM_data2:
19072 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19073 info_ptr += 2;
19074 break;
19075 case DW_FORM_data4:
19076 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19077 info_ptr += 4;
19078 break;
19079 case DW_FORM_data8:
19080 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19081 info_ptr += 8;
19082 break;
0224619f
JK
19083 case DW_FORM_data16:
19084 blk = dwarf_alloc_block (cu);
19085 blk->size = 16;
19086 blk->data = read_n_bytes (abfd, info_ptr, 16);
19087 info_ptr += 16;
19088 DW_BLOCK (attr) = blk;
19089 break;
2dc7f7b3
TT
19090 case DW_FORM_sec_offset:
19091 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19092 info_ptr += bytes_read;
19093 break;
c906108c 19094 case DW_FORM_string:
9b1c24c8 19095 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 19096 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
19097 info_ptr += bytes_read;
19098 break;
4bdf3d34 19099 case DW_FORM_strp:
36586728
TT
19100 if (!cu->per_cu->is_dwz)
19101 {
ed2dc618
SM
19102 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19103 abfd, info_ptr, cu_header,
36586728
TT
19104 &bytes_read);
19105 DW_STRING_IS_CANONICAL (attr) = 0;
19106 info_ptr += bytes_read;
19107 break;
19108 }
19109 /* FALLTHROUGH */
43988095
JK
19110 case DW_FORM_line_strp:
19111 if (!cu->per_cu->is_dwz)
19112 {
ed2dc618
SM
19113 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19114 abfd, info_ptr,
43988095
JK
19115 cu_header, &bytes_read);
19116 DW_STRING_IS_CANONICAL (attr) = 0;
19117 info_ptr += bytes_read;
19118 break;
19119 }
19120 /* FALLTHROUGH */
36586728
TT
19121 case DW_FORM_GNU_strp_alt:
19122 {
ed2dc618 19123 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
36586728
TT
19124 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19125 &bytes_read);
19126
ed2dc618
SM
19127 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19128 dwz, str_offset);
36586728
TT
19129 DW_STRING_IS_CANONICAL (attr) = 0;
19130 info_ptr += bytes_read;
19131 }
4bdf3d34 19132 break;
2dc7f7b3 19133 case DW_FORM_exprloc:
c906108c 19134 case DW_FORM_block:
7b5a2f43 19135 blk = dwarf_alloc_block (cu);
c906108c
SS
19136 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19137 info_ptr += bytes_read;
19138 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19139 info_ptr += blk->size;
19140 DW_BLOCK (attr) = blk;
19141 break;
19142 case DW_FORM_block1:
7b5a2f43 19143 blk = dwarf_alloc_block (cu);
c906108c
SS
19144 blk->size = read_1_byte (abfd, info_ptr);
19145 info_ptr += 1;
19146 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19147 info_ptr += blk->size;
19148 DW_BLOCK (attr) = blk;
19149 break;
19150 case DW_FORM_data1:
19151 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19152 info_ptr += 1;
19153 break;
19154 case DW_FORM_flag:
19155 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19156 info_ptr += 1;
19157 break;
2dc7f7b3
TT
19158 case DW_FORM_flag_present:
19159 DW_UNSND (attr) = 1;
19160 break;
c906108c
SS
19161 case DW_FORM_sdata:
19162 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19163 info_ptr += bytes_read;
19164 break;
19165 case DW_FORM_udata:
19166 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19167 info_ptr += bytes_read;
19168 break;
19169 case DW_FORM_ref1:
9c541725 19170 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19171 + read_1_byte (abfd, info_ptr));
c906108c
SS
19172 info_ptr += 1;
19173 break;
19174 case DW_FORM_ref2:
9c541725 19175 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19176 + read_2_bytes (abfd, info_ptr));
c906108c
SS
19177 info_ptr += 2;
19178 break;
19179 case DW_FORM_ref4:
9c541725 19180 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19181 + read_4_bytes (abfd, info_ptr));
c906108c
SS
19182 info_ptr += 4;
19183 break;
613e1657 19184 case DW_FORM_ref8:
9c541725 19185 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19186 + read_8_bytes (abfd, info_ptr));
613e1657
KB
19187 info_ptr += 8;
19188 break;
55f1336d 19189 case DW_FORM_ref_sig8:
ac9ec31b 19190 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
19191 info_ptr += 8;
19192 break;
c906108c 19193 case DW_FORM_ref_udata:
9c541725 19194 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 19195 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
19196 info_ptr += bytes_read;
19197 break;
c906108c 19198 case DW_FORM_indirect:
a8329558
KW
19199 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19200 info_ptr += bytes_read;
43988095
JK
19201 if (form == DW_FORM_implicit_const)
19202 {
19203 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19204 info_ptr += bytes_read;
19205 }
19206 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19207 info_ptr);
19208 break;
19209 case DW_FORM_implicit_const:
19210 DW_SND (attr) = implicit_const;
a8329558 19211 break;
3019eac3
DE
19212 case DW_FORM_GNU_addr_index:
19213 if (reader->dwo_file == NULL)
19214 {
19215 /* For now flag a hard error.
19216 Later we can turn this into a complaint. */
19217 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19218 dwarf_form_name (form),
19219 bfd_get_filename (abfd));
19220 }
19221 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19222 info_ptr += bytes_read;
19223 break;
19224 case DW_FORM_GNU_str_index:
19225 if (reader->dwo_file == NULL)
19226 {
19227 /* For now flag a hard error.
19228 Later we can turn this into a complaint if warranted. */
19229 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19230 dwarf_form_name (form),
19231 bfd_get_filename (abfd));
19232 }
19233 {
19234 ULONGEST str_index =
19235 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19236
342587c4 19237 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
19238 DW_STRING_IS_CANONICAL (attr) = 0;
19239 info_ptr += bytes_read;
19240 }
19241 break;
c906108c 19242 default:
8a3fe4f8 19243 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
19244 dwarf_form_name (form),
19245 bfd_get_filename (abfd));
c906108c 19246 }
28e94949 19247
36586728 19248 /* Super hack. */
7771576e 19249 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
19250 attr->form = DW_FORM_GNU_ref_alt;
19251
28e94949
JB
19252 /* We have seen instances where the compiler tried to emit a byte
19253 size attribute of -1 which ended up being encoded as an unsigned
19254 0xffffffff. Although 0xffffffff is technically a valid size value,
19255 an object of this size seems pretty unlikely so we can relatively
19256 safely treat these cases as if the size attribute was invalid and
19257 treat them as zero by default. */
19258 if (attr->name == DW_AT_byte_size
19259 && form == DW_FORM_data4
19260 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
19261 {
19262 complaint
b98664d3 19263 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
43bbcdc2 19264 hex_string (DW_UNSND (attr)));
01c66ae6
JB
19265 DW_UNSND (attr) = 0;
19266 }
28e94949 19267
c906108c
SS
19268 return info_ptr;
19269}
19270
a8329558
KW
19271/* Read an attribute described by an abbreviated attribute. */
19272
d521ce57 19273static const gdb_byte *
dee91e82
DE
19274read_attribute (const struct die_reader_specs *reader,
19275 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 19276 const gdb_byte *info_ptr)
a8329558
KW
19277{
19278 attr->name = abbrev->name;
43988095
JK
19279 return read_attribute_value (reader, attr, abbrev->form,
19280 abbrev->implicit_const, info_ptr);
a8329558
KW
19281}
19282
0963b4bd 19283/* Read dwarf information from a buffer. */
c906108c
SS
19284
19285static unsigned int
a1855c1d 19286read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 19287{
fe1b8b76 19288 return bfd_get_8 (abfd, buf);
c906108c
SS
19289}
19290
19291static int
a1855c1d 19292read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 19293{
fe1b8b76 19294 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
19295}
19296
19297static unsigned int
a1855c1d 19298read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 19299{
fe1b8b76 19300 return bfd_get_16 (abfd, buf);
c906108c
SS
19301}
19302
21ae7a4d 19303static int
a1855c1d 19304read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
19305{
19306 return bfd_get_signed_16 (abfd, buf);
19307}
19308
c906108c 19309static unsigned int
a1855c1d 19310read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 19311{
fe1b8b76 19312 return bfd_get_32 (abfd, buf);
c906108c
SS
19313}
19314
21ae7a4d 19315static int
a1855c1d 19316read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
19317{
19318 return bfd_get_signed_32 (abfd, buf);
19319}
19320
93311388 19321static ULONGEST
a1855c1d 19322read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 19323{
fe1b8b76 19324 return bfd_get_64 (abfd, buf);
c906108c
SS
19325}
19326
19327static CORE_ADDR
d521ce57 19328read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 19329 unsigned int *bytes_read)
c906108c 19330{
e7c27a73 19331 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
19332 CORE_ADDR retval = 0;
19333
107d2387 19334 if (cu_header->signed_addr_p)
c906108c 19335 {
107d2387
AC
19336 switch (cu_header->addr_size)
19337 {
19338 case 2:
fe1b8b76 19339 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
19340 break;
19341 case 4:
fe1b8b76 19342 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
19343 break;
19344 case 8:
fe1b8b76 19345 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
19346 break;
19347 default:
8e65ff28 19348 internal_error (__FILE__, __LINE__,
e2e0b3e5 19349 _("read_address: bad switch, signed [in module %s]"),
659b0389 19350 bfd_get_filename (abfd));
107d2387
AC
19351 }
19352 }
19353 else
19354 {
19355 switch (cu_header->addr_size)
19356 {
19357 case 2:
fe1b8b76 19358 retval = bfd_get_16 (abfd, buf);
107d2387
AC
19359 break;
19360 case 4:
fe1b8b76 19361 retval = bfd_get_32 (abfd, buf);
107d2387
AC
19362 break;
19363 case 8:
fe1b8b76 19364 retval = bfd_get_64 (abfd, buf);
107d2387
AC
19365 break;
19366 default:
8e65ff28 19367 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
19368 _("read_address: bad switch, "
19369 "unsigned [in module %s]"),
659b0389 19370 bfd_get_filename (abfd));
107d2387 19371 }
c906108c 19372 }
64367e0a 19373
107d2387
AC
19374 *bytes_read = cu_header->addr_size;
19375 return retval;
c906108c
SS
19376}
19377
f7ef9339 19378/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
19379 specification allows the initial length to take up either 4 bytes
19380 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19381 bytes describe the length and all offsets will be 8 bytes in length
19382 instead of 4.
19383
f7ef9339
KB
19384 An older, non-standard 64-bit format is also handled by this
19385 function. The older format in question stores the initial length
19386 as an 8-byte quantity without an escape value. Lengths greater
19387 than 2^32 aren't very common which means that the initial 4 bytes
19388 is almost always zero. Since a length value of zero doesn't make
19389 sense for the 32-bit format, this initial zero can be considered to
19390 be an escape value which indicates the presence of the older 64-bit
19391 format. As written, the code can't detect (old format) lengths
917c78fc
MK
19392 greater than 4GB. If it becomes necessary to handle lengths
19393 somewhat larger than 4GB, we could allow other small values (such
19394 as the non-sensical values of 1, 2, and 3) to also be used as
19395 escape values indicating the presence of the old format.
f7ef9339 19396
917c78fc
MK
19397 The value returned via bytes_read should be used to increment the
19398 relevant pointer after calling read_initial_length().
c764a876 19399
613e1657
KB
19400 [ Note: read_initial_length() and read_offset() are based on the
19401 document entitled "DWARF Debugging Information Format", revision
f7ef9339 19402 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
19403 from:
19404
f7ef9339 19405 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 19406
613e1657
KB
19407 This document is only a draft and is subject to change. (So beware.)
19408
f7ef9339 19409 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
19410 determined empirically by examining 64-bit ELF files produced by
19411 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
19412
19413 - Kevin, July 16, 2002
613e1657
KB
19414 ] */
19415
19416static LONGEST
d521ce57 19417read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 19418{
fe1b8b76 19419 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 19420
dd373385 19421 if (length == 0xffffffff)
613e1657 19422 {
fe1b8b76 19423 length = bfd_get_64 (abfd, buf + 4);
613e1657 19424 *bytes_read = 12;
613e1657 19425 }
dd373385 19426 else if (length == 0)
f7ef9339 19427 {
dd373385 19428 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 19429 length = bfd_get_64 (abfd, buf);
f7ef9339 19430 *bytes_read = 8;
f7ef9339 19431 }
613e1657
KB
19432 else
19433 {
19434 *bytes_read = 4;
613e1657
KB
19435 }
19436
c764a876
DE
19437 return length;
19438}
dd373385 19439
c764a876
DE
19440/* Cover function for read_initial_length.
19441 Returns the length of the object at BUF, and stores the size of the
19442 initial length in *BYTES_READ and stores the size that offsets will be in
19443 *OFFSET_SIZE.
19444 If the initial length size is not equivalent to that specified in
19445 CU_HEADER then issue a complaint.
19446 This is useful when reading non-comp-unit headers. */
dd373385 19447
c764a876 19448static LONGEST
d521ce57 19449read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
19450 const struct comp_unit_head *cu_header,
19451 unsigned int *bytes_read,
19452 unsigned int *offset_size)
19453{
19454 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19455
19456 gdb_assert (cu_header->initial_length_size == 4
19457 || cu_header->initial_length_size == 8
19458 || cu_header->initial_length_size == 12);
19459
19460 if (cu_header->initial_length_size != *bytes_read)
b98664d3 19461 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 19462
c764a876 19463 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 19464 return length;
613e1657
KB
19465}
19466
19467/* Read an offset from the data stream. The size of the offset is
917c78fc 19468 given by cu_header->offset_size. */
613e1657
KB
19469
19470static LONGEST
d521ce57
TT
19471read_offset (bfd *abfd, const gdb_byte *buf,
19472 const struct comp_unit_head *cu_header,
891d2f0b 19473 unsigned int *bytes_read)
c764a876
DE
19474{
19475 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 19476
c764a876
DE
19477 *bytes_read = cu_header->offset_size;
19478 return offset;
19479}
19480
19481/* Read an offset from the data stream. */
19482
19483static LONGEST
d521ce57 19484read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
19485{
19486 LONGEST retval = 0;
19487
c764a876 19488 switch (offset_size)
613e1657
KB
19489 {
19490 case 4:
fe1b8b76 19491 retval = bfd_get_32 (abfd, buf);
613e1657
KB
19492 break;
19493 case 8:
fe1b8b76 19494 retval = bfd_get_64 (abfd, buf);
613e1657
KB
19495 break;
19496 default:
8e65ff28 19497 internal_error (__FILE__, __LINE__,
c764a876 19498 _("read_offset_1: bad switch [in module %s]"),
659b0389 19499 bfd_get_filename (abfd));
613e1657
KB
19500 }
19501
917c78fc 19502 return retval;
613e1657
KB
19503}
19504
d521ce57
TT
19505static const gdb_byte *
19506read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
19507{
19508 /* If the size of a host char is 8 bits, we can return a pointer
19509 to the buffer, otherwise we have to copy the data to a buffer
19510 allocated on the temporary obstack. */
4bdf3d34 19511 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 19512 return buf;
c906108c
SS
19513}
19514
d521ce57
TT
19515static const char *
19516read_direct_string (bfd *abfd, const gdb_byte *buf,
19517 unsigned int *bytes_read_ptr)
c906108c
SS
19518{
19519 /* If the size of a host char is 8 bits, we can return a pointer
19520 to the string, otherwise we have to copy the string to a buffer
19521 allocated on the temporary obstack. */
4bdf3d34 19522 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
19523 if (*buf == '\0')
19524 {
19525 *bytes_read_ptr = 1;
19526 return NULL;
19527 }
d521ce57
TT
19528 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19529 return (const char *) buf;
4bdf3d34
JJ
19530}
19531
43988095
JK
19532/* Return pointer to string at section SECT offset STR_OFFSET with error
19533 reporting strings FORM_NAME and SECT_NAME. */
19534
d521ce57 19535static const char *
ed2dc618
SM
19536read_indirect_string_at_offset_from (struct objfile *objfile,
19537 bfd *abfd, LONGEST str_offset,
43988095
JK
19538 struct dwarf2_section_info *sect,
19539 const char *form_name,
19540 const char *sect_name)
19541{
ed2dc618 19542 dwarf2_read_section (objfile, sect);
43988095
JK
19543 if (sect->buffer == NULL)
19544 error (_("%s used without %s section [in module %s]"),
19545 form_name, sect_name, bfd_get_filename (abfd));
19546 if (str_offset >= sect->size)
19547 error (_("%s pointing outside of %s section [in module %s]"),
19548 form_name, sect_name, bfd_get_filename (abfd));
4bdf3d34 19549 gdb_assert (HOST_CHAR_BIT == 8);
43988095 19550 if (sect->buffer[str_offset] == '\0')
4bdf3d34 19551 return NULL;
43988095
JK
19552 return (const char *) (sect->buffer + str_offset);
19553}
19554
19555/* Return pointer to string at .debug_str offset STR_OFFSET. */
19556
19557static const char *
ed2dc618
SM
19558read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19559 bfd *abfd, LONGEST str_offset)
43988095 19560{
ed2dc618
SM
19561 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19562 abfd, str_offset,
43988095
JK
19563 &dwarf2_per_objfile->str,
19564 "DW_FORM_strp", ".debug_str");
19565}
19566
19567/* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19568
19569static const char *
ed2dc618
SM
19570read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19571 bfd *abfd, LONGEST str_offset)
43988095 19572{
ed2dc618
SM
19573 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19574 abfd, str_offset,
43988095
JK
19575 &dwarf2_per_objfile->line_str,
19576 "DW_FORM_line_strp",
19577 ".debug_line_str");
c906108c
SS
19578}
19579
36586728
TT
19580/* Read a string at offset STR_OFFSET in the .debug_str section from
19581 the .dwz file DWZ. Throw an error if the offset is too large. If
19582 the string consists of a single NUL byte, return NULL; otherwise
19583 return a pointer to the string. */
19584
d521ce57 19585static const char *
ed2dc618
SM
19586read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19587 LONGEST str_offset)
36586728 19588{
ed2dc618 19589 dwarf2_read_section (objfile, &dwz->str);
36586728
TT
19590
19591 if (dwz->str.buffer == NULL)
19592 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19593 "section [in module %s]"),
19594 bfd_get_filename (dwz->dwz_bfd));
19595 if (str_offset >= dwz->str.size)
19596 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19597 ".debug_str section [in module %s]"),
19598 bfd_get_filename (dwz->dwz_bfd));
19599 gdb_assert (HOST_CHAR_BIT == 8);
19600 if (dwz->str.buffer[str_offset] == '\0')
19601 return NULL;
d521ce57 19602 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
19603}
19604
43988095
JK
19605/* Return pointer to string at .debug_str offset as read from BUF.
19606 BUF is assumed to be in a compilation unit described by CU_HEADER.
19607 Return *BYTES_READ_PTR count of bytes read from BUF. */
19608
d521ce57 19609static const char *
ed2dc618
SM
19610read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19611 const gdb_byte *buf,
cf2c3c16
TT
19612 const struct comp_unit_head *cu_header,
19613 unsigned int *bytes_read_ptr)
19614{
19615 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19616
ed2dc618 19617 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
cf2c3c16
TT
19618}
19619
43988095
JK
19620/* Return pointer to string at .debug_line_str offset as read from BUF.
19621 BUF is assumed to be in a compilation unit described by CU_HEADER.
19622 Return *BYTES_READ_PTR count of bytes read from BUF. */
19623
19624static const char *
ed2dc618
SM
19625read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19626 bfd *abfd, const gdb_byte *buf,
43988095
JK
19627 const struct comp_unit_head *cu_header,
19628 unsigned int *bytes_read_ptr)
19629{
19630 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19631
ed2dc618
SM
19632 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19633 str_offset);
43988095
JK
19634}
19635
19636ULONGEST
d521ce57 19637read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
43988095 19638 unsigned int *bytes_read_ptr)
c906108c 19639{
12df843f 19640 ULONGEST result;
ce5d95e1 19641 unsigned int num_read;
870f88f7 19642 int shift;
c906108c
SS
19643 unsigned char byte;
19644
19645 result = 0;
19646 shift = 0;
19647 num_read = 0;
c906108c
SS
19648 while (1)
19649 {
fe1b8b76 19650 byte = bfd_get_8 (abfd, buf);
c906108c
SS
19651 buf++;
19652 num_read++;
12df843f 19653 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
19654 if ((byte & 128) == 0)
19655 {
19656 break;
19657 }
19658 shift += 7;
19659 }
19660 *bytes_read_ptr = num_read;
19661 return result;
19662}
19663
12df843f 19664static LONGEST
d521ce57
TT
19665read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19666 unsigned int *bytes_read_ptr)
c906108c 19667{
4dd1b460 19668 ULONGEST result;
870f88f7 19669 int shift, num_read;
c906108c
SS
19670 unsigned char byte;
19671
19672 result = 0;
19673 shift = 0;
c906108c 19674 num_read = 0;
c906108c
SS
19675 while (1)
19676 {
fe1b8b76 19677 byte = bfd_get_8 (abfd, buf);
c906108c
SS
19678 buf++;
19679 num_read++;
4dd1b460 19680 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
19681 shift += 7;
19682 if ((byte & 128) == 0)
19683 {
19684 break;
19685 }
19686 }
77e0b926 19687 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
4dd1b460 19688 result |= -(((ULONGEST) 1) << shift);
c906108c
SS
19689 *bytes_read_ptr = num_read;
19690 return result;
19691}
19692
3019eac3
DE
19693/* Given index ADDR_INDEX in .debug_addr, fetch the value.
19694 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19695 ADDR_SIZE is the size of addresses from the CU header. */
19696
19697static CORE_ADDR
ed2dc618
SM
19698read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19699 unsigned int addr_index, ULONGEST addr_base, int addr_size)
3019eac3
DE
19700{
19701 struct objfile *objfile = dwarf2_per_objfile->objfile;
19702 bfd *abfd = objfile->obfd;
19703 const gdb_byte *info_ptr;
19704
19705 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19706 if (dwarf2_per_objfile->addr.buffer == NULL)
19707 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 19708 objfile_name (objfile));
3019eac3
DE
19709 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19710 error (_("DW_FORM_addr_index pointing outside of "
19711 ".debug_addr section [in module %s]"),
4262abfb 19712 objfile_name (objfile));
3019eac3
DE
19713 info_ptr = (dwarf2_per_objfile->addr.buffer
19714 + addr_base + addr_index * addr_size);
19715 if (addr_size == 4)
19716 return bfd_get_32 (abfd, info_ptr);
19717 else
19718 return bfd_get_64 (abfd, info_ptr);
19719}
19720
19721/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19722
19723static CORE_ADDR
19724read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19725{
518817b3
SM
19726 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19727 cu->addr_base, cu->header.addr_size);
3019eac3
DE
19728}
19729
19730/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19731
19732static CORE_ADDR
d521ce57 19733read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
19734 unsigned int *bytes_read)
19735{
518817b3 19736 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
3019eac3
DE
19737 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19738
19739 return read_addr_index (cu, addr_index);
19740}
19741
19742/* Data structure to pass results from dwarf2_read_addr_index_reader
19743 back to dwarf2_read_addr_index. */
19744
19745struct dwarf2_read_addr_index_data
19746{
19747 ULONGEST addr_base;
19748 int addr_size;
19749};
19750
19751/* die_reader_func for dwarf2_read_addr_index. */
19752
19753static void
19754dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 19755 const gdb_byte *info_ptr,
3019eac3
DE
19756 struct die_info *comp_unit_die,
19757 int has_children,
19758 void *data)
19759{
19760 struct dwarf2_cu *cu = reader->cu;
19761 struct dwarf2_read_addr_index_data *aidata =
19762 (struct dwarf2_read_addr_index_data *) data;
19763
19764 aidata->addr_base = cu->addr_base;
19765 aidata->addr_size = cu->header.addr_size;
19766}
19767
19768/* Given an index in .debug_addr, fetch the value.
19769 NOTE: This can be called during dwarf expression evaluation,
19770 long after the debug information has been read, and thus per_cu->cu
19771 may no longer exist. */
19772
19773CORE_ADDR
19774dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19775 unsigned int addr_index)
19776{
ed2dc618 19777 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3019eac3
DE
19778 struct dwarf2_cu *cu = per_cu->cu;
19779 ULONGEST addr_base;
19780 int addr_size;
19781
3019eac3
DE
19782 /* We need addr_base and addr_size.
19783 If we don't have PER_CU->cu, we have to get it.
19784 Nasty, but the alternative is storing the needed info in PER_CU,
19785 which at this point doesn't seem justified: it's not clear how frequently
19786 it would get used and it would increase the size of every PER_CU.
19787 Entry points like dwarf2_per_cu_addr_size do a similar thing
19788 so we're not in uncharted territory here.
19789 Alas we need to be a bit more complicated as addr_base is contained
19790 in the DIE.
19791
19792 We don't need to read the entire CU(/TU).
19793 We just need the header and top level die.
a1b64ce1 19794
3019eac3 19795 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 19796 For now we skip this optimization. */
3019eac3
DE
19797
19798 if (cu != NULL)
19799 {
19800 addr_base = cu->addr_base;
19801 addr_size = cu->header.addr_size;
19802 }
19803 else
19804 {
19805 struct dwarf2_read_addr_index_data aidata;
19806
a1b64ce1
DE
19807 /* Note: We can't use init_cutu_and_read_dies_simple here,
19808 we need addr_base. */
58f0c718 19809 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
a1b64ce1 19810 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
19811 addr_base = aidata.addr_base;
19812 addr_size = aidata.addr_size;
19813 }
19814
ed2dc618
SM
19815 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19816 addr_size);
3019eac3
DE
19817}
19818
57d63ce2
DE
19819/* Given a DW_FORM_GNU_str_index, fetch the string.
19820 This is only used by the Fission support. */
3019eac3 19821
d521ce57 19822static const char *
342587c4 19823read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3 19824{
ed2dc618 19825 struct dwarf2_cu *cu = reader->cu;
518817b3
SM
19826 struct dwarf2_per_objfile *dwarf2_per_objfile
19827 = cu->per_cu->dwarf2_per_objfile;
3019eac3 19828 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 19829 const char *objf_name = objfile_name (objfile);
3019eac3 19830 bfd *abfd = objfile->obfd;
73869dc2
DE
19831 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19832 struct dwarf2_section_info *str_offsets_section =
19833 &reader->dwo_file->sections.str_offsets;
d521ce57 19834 const gdb_byte *info_ptr;
3019eac3 19835 ULONGEST str_offset;
57d63ce2 19836 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 19837
73869dc2
DE
19838 dwarf2_read_section (objfile, str_section);
19839 dwarf2_read_section (objfile, str_offsets_section);
19840 if (str_section->buffer == NULL)
57d63ce2 19841 error (_("%s used without .debug_str.dwo section"
9d8780f0
SM
19842 " in CU at offset %s [in module %s]"),
19843 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 19844 if (str_offsets_section->buffer == NULL)
57d63ce2 19845 error (_("%s used without .debug_str_offsets.dwo section"
9d8780f0
SM
19846 " in CU at offset %s [in module %s]"),
19847 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 19848 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 19849 error (_("%s pointing outside of .debug_str_offsets.dwo"
9d8780f0
SM
19850 " section in CU at offset %s [in module %s]"),
19851 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 19852 info_ptr = (str_offsets_section->buffer
3019eac3
DE
19853 + str_index * cu->header.offset_size);
19854 if (cu->header.offset_size == 4)
19855 str_offset = bfd_get_32 (abfd, info_ptr);
19856 else
19857 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 19858 if (str_offset >= str_section->size)
57d63ce2 19859 error (_("Offset from %s pointing outside of"
9d8780f0
SM
19860 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19861 form_name, sect_offset_str (cu->header.sect_off), objf_name);
73869dc2 19862 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
19863}
19864
3019eac3
DE
19865/* Return the length of an LEB128 number in BUF. */
19866
19867static int
19868leb128_size (const gdb_byte *buf)
19869{
19870 const gdb_byte *begin = buf;
19871 gdb_byte byte;
19872
19873 while (1)
19874 {
19875 byte = *buf++;
19876 if ((byte & 128) == 0)
19877 return buf - begin;
19878 }
19879}
19880
c906108c 19881static void
e142c38c 19882set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
19883{
19884 switch (lang)
19885 {
19886 case DW_LANG_C89:
76bee0cc 19887 case DW_LANG_C99:
0cfd832f 19888 case DW_LANG_C11:
c906108c 19889 case DW_LANG_C:
d1be3247 19890 case DW_LANG_UPC:
e142c38c 19891 cu->language = language_c;
c906108c 19892 break;
9c37b5ae 19893 case DW_LANG_Java:
c906108c 19894 case DW_LANG_C_plus_plus:
0cfd832f
MW
19895 case DW_LANG_C_plus_plus_11:
19896 case DW_LANG_C_plus_plus_14:
e142c38c 19897 cu->language = language_cplus;
c906108c 19898 break;
6aecb9c2
JB
19899 case DW_LANG_D:
19900 cu->language = language_d;
19901 break;
c906108c
SS
19902 case DW_LANG_Fortran77:
19903 case DW_LANG_Fortran90:
b21b22e0 19904 case DW_LANG_Fortran95:
f7de9aab
MW
19905 case DW_LANG_Fortran03:
19906 case DW_LANG_Fortran08:
e142c38c 19907 cu->language = language_fortran;
c906108c 19908 break;
a766d390
DE
19909 case DW_LANG_Go:
19910 cu->language = language_go;
19911 break;
c906108c 19912 case DW_LANG_Mips_Assembler:
e142c38c 19913 cu->language = language_asm;
c906108c
SS
19914 break;
19915 case DW_LANG_Ada83:
8aaf0b47 19916 case DW_LANG_Ada95:
bc5f45f8
JB
19917 cu->language = language_ada;
19918 break;
72019c9c
GM
19919 case DW_LANG_Modula2:
19920 cu->language = language_m2;
19921 break;
fe8e67fd
PM
19922 case DW_LANG_Pascal83:
19923 cu->language = language_pascal;
19924 break;
22566fbd
DJ
19925 case DW_LANG_ObjC:
19926 cu->language = language_objc;
19927 break;
c44af4eb
TT
19928 case DW_LANG_Rust:
19929 case DW_LANG_Rust_old:
19930 cu->language = language_rust;
19931 break;
c906108c
SS
19932 case DW_LANG_Cobol74:
19933 case DW_LANG_Cobol85:
c906108c 19934 default:
e142c38c 19935 cu->language = language_minimal;
c906108c
SS
19936 break;
19937 }
e142c38c 19938 cu->language_defn = language_def (cu->language);
c906108c
SS
19939}
19940
19941/* Return the named attribute or NULL if not there. */
19942
19943static struct attribute *
e142c38c 19944dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 19945{
a48e046c 19946 for (;;)
c906108c 19947 {
a48e046c
TT
19948 unsigned int i;
19949 struct attribute *spec = NULL;
19950
19951 for (i = 0; i < die->num_attrs; ++i)
19952 {
19953 if (die->attrs[i].name == name)
19954 return &die->attrs[i];
19955 if (die->attrs[i].name == DW_AT_specification
19956 || die->attrs[i].name == DW_AT_abstract_origin)
19957 spec = &die->attrs[i];
19958 }
19959
19960 if (!spec)
19961 break;
c906108c 19962
f2f0e013 19963 die = follow_die_ref (die, spec, &cu);
f2f0e013 19964 }
c5aa993b 19965
c906108c
SS
19966 return NULL;
19967}
19968
348e048f
DE
19969/* Return the named attribute or NULL if not there,
19970 but do not follow DW_AT_specification, etc.
19971 This is for use in contexts where we're reading .debug_types dies.
19972 Following DW_AT_specification, DW_AT_abstract_origin will take us
19973 back up the chain, and we want to go down. */
19974
19975static struct attribute *
45e58e77 19976dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
19977{
19978 unsigned int i;
19979
19980 for (i = 0; i < die->num_attrs; ++i)
19981 if (die->attrs[i].name == name)
19982 return &die->attrs[i];
19983
19984 return NULL;
19985}
19986
7d45c7c3
KB
19987/* Return the string associated with a string-typed attribute, or NULL if it
19988 is either not found or is of an incorrect type. */
19989
19990static const char *
19991dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19992{
19993 struct attribute *attr;
19994 const char *str = NULL;
19995
19996 attr = dwarf2_attr (die, name, cu);
19997
19998 if (attr != NULL)
19999 {
43988095 20000 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
b3340438
L
20001 || attr->form == DW_FORM_string
20002 || attr->form == DW_FORM_GNU_str_index
16eb6b2d 20003 || attr->form == DW_FORM_GNU_strp_alt)
7d45c7c3
KB
20004 str = DW_STRING (attr);
20005 else
b98664d3 20006 complaint (_("string type expected for attribute %s for "
9d8780f0
SM
20007 "DIE at %s in module %s"),
20008 dwarf_attr_name (name), sect_offset_str (die->sect_off),
518817b3 20009 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
7d45c7c3
KB
20010 }
20011
20012 return str;
20013}
20014
05cf31d1
JB
20015/* Return non-zero iff the attribute NAME is defined for the given DIE,
20016 and holds a non-zero value. This function should only be used for
2dc7f7b3 20017 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
20018
20019static int
20020dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20021{
20022 struct attribute *attr = dwarf2_attr (die, name, cu);
20023
20024 return (attr && DW_UNSND (attr));
20025}
20026
3ca72b44 20027static int
e142c38c 20028die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 20029{
05cf31d1
JB
20030 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20031 which value is non-zero. However, we have to be careful with
20032 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20033 (via dwarf2_flag_true_p) follows this attribute. So we may
20034 end up accidently finding a declaration attribute that belongs
20035 to a different DIE referenced by the specification attribute,
20036 even though the given DIE does not have a declaration attribute. */
20037 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20038 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
20039}
20040
63d06c5c 20041/* Return the die giving the specification for DIE, if there is
f2f0e013 20042 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
20043 containing the return value on output. If there is no
20044 specification, but there is an abstract origin, that is
20045 returned. */
63d06c5c
DC
20046
20047static struct die_info *
f2f0e013 20048die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 20049{
f2f0e013
DJ
20050 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20051 *spec_cu);
63d06c5c 20052
edb3359d
DJ
20053 if (spec_attr == NULL)
20054 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20055
63d06c5c
DC
20056 if (spec_attr == NULL)
20057 return NULL;
20058 else
f2f0e013 20059 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 20060}
c906108c 20061
527f3840
JK
20062/* Stub for free_line_header to match void * callback types. */
20063
20064static void
20065free_line_header_voidp (void *arg)
20066{
9a3c8263 20067 struct line_header *lh = (struct line_header *) arg;
527f3840 20068
fff8551c 20069 delete lh;
527f3840
JK
20070}
20071
fff8551c
PA
20072void
20073line_header::add_include_dir (const char *include_dir)
c906108c 20074{
27e0867f 20075 if (dwarf_line_debug >= 2)
fff8551c
PA
20076 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20077 include_dirs.size () + 1, include_dir);
27e0867f 20078
fff8551c 20079 include_dirs.push_back (include_dir);
debd256d 20080}
6e70227d 20081
fff8551c
PA
20082void
20083line_header::add_file_name (const char *name,
ecfb656c 20084 dir_index d_index,
fff8551c
PA
20085 unsigned int mod_time,
20086 unsigned int length)
debd256d 20087{
27e0867f
DE
20088 if (dwarf_line_debug >= 2)
20089 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
fff8551c 20090 (unsigned) file_names.size () + 1, name);
27e0867f 20091
ecfb656c 20092 file_names.emplace_back (name, d_index, mod_time, length);
debd256d 20093}
6e70227d 20094
83769d0b 20095/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
20096
20097static struct dwarf2_section_info *
20098get_debug_line_section (struct dwarf2_cu *cu)
20099{
20100 struct dwarf2_section_info *section;
518817b3
SM
20101 struct dwarf2_per_objfile *dwarf2_per_objfile
20102 = cu->per_cu->dwarf2_per_objfile;
36586728
TT
20103
20104 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20105 DWO file. */
20106 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20107 section = &cu->dwo_unit->dwo_file->sections.line;
20108 else if (cu->per_cu->is_dwz)
20109 {
ed2dc618 20110 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
36586728
TT
20111
20112 section = &dwz->line;
20113 }
20114 else
20115 section = &dwarf2_per_objfile->line;
20116
20117 return section;
20118}
20119
43988095
JK
20120/* Read directory or file name entry format, starting with byte of
20121 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20122 entries count and the entries themselves in the described entry
20123 format. */
20124
20125static void
ed2dc618
SM
20126read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20127 bfd *abfd, const gdb_byte **bufp,
43988095
JK
20128 struct line_header *lh,
20129 const struct comp_unit_head *cu_header,
20130 void (*callback) (struct line_header *lh,
20131 const char *name,
ecfb656c 20132 dir_index d_index,
43988095
JK
20133 unsigned int mod_time,
20134 unsigned int length))
20135{
20136 gdb_byte format_count, formati;
20137 ULONGEST data_count, datai;
20138 const gdb_byte *buf = *bufp;
20139 const gdb_byte *format_header_data;
43988095
JK
20140 unsigned int bytes_read;
20141
20142 format_count = read_1_byte (abfd, buf);
20143 buf += 1;
20144 format_header_data = buf;
20145 for (formati = 0; formati < format_count; formati++)
20146 {
20147 read_unsigned_leb128 (abfd, buf, &bytes_read);
20148 buf += bytes_read;
20149 read_unsigned_leb128 (abfd, buf, &bytes_read);
20150 buf += bytes_read;
20151 }
20152
20153 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20154 buf += bytes_read;
20155 for (datai = 0; datai < data_count; datai++)
20156 {
20157 const gdb_byte *format = format_header_data;
20158 struct file_entry fe;
20159
43988095
JK
20160 for (formati = 0; formati < format_count; formati++)
20161 {
ecfb656c 20162 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 20163 format += bytes_read;
43988095 20164
ecfb656c 20165 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 20166 format += bytes_read;
ecfb656c
PA
20167
20168 gdb::optional<const char *> string;
20169 gdb::optional<unsigned int> uint;
20170
43988095
JK
20171 switch (form)
20172 {
20173 case DW_FORM_string:
ecfb656c 20174 string.emplace (read_direct_string (abfd, buf, &bytes_read));
43988095
JK
20175 buf += bytes_read;
20176 break;
20177
20178 case DW_FORM_line_strp:
ed2dc618
SM
20179 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20180 abfd, buf,
ecfb656c
PA
20181 cu_header,
20182 &bytes_read));
43988095
JK
20183 buf += bytes_read;
20184 break;
20185
20186 case DW_FORM_data1:
ecfb656c 20187 uint.emplace (read_1_byte (abfd, buf));
43988095
JK
20188 buf += 1;
20189 break;
20190
20191 case DW_FORM_data2:
ecfb656c 20192 uint.emplace (read_2_bytes (abfd, buf));
43988095
JK
20193 buf += 2;
20194 break;
20195
20196 case DW_FORM_data4:
ecfb656c 20197 uint.emplace (read_4_bytes (abfd, buf));
43988095
JK
20198 buf += 4;
20199 break;
20200
20201 case DW_FORM_data8:
ecfb656c 20202 uint.emplace (read_8_bytes (abfd, buf));
43988095
JK
20203 buf += 8;
20204 break;
20205
20206 case DW_FORM_udata:
ecfb656c 20207 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
43988095
JK
20208 buf += bytes_read;
20209 break;
20210
20211 case DW_FORM_block:
20212 /* It is valid only for DW_LNCT_timestamp which is ignored by
20213 current GDB. */
20214 break;
20215 }
ecfb656c
PA
20216
20217 switch (content_type)
20218 {
20219 case DW_LNCT_path:
20220 if (string.has_value ())
20221 fe.name = *string;
20222 break;
20223 case DW_LNCT_directory_index:
20224 if (uint.has_value ())
20225 fe.d_index = (dir_index) *uint;
20226 break;
20227 case DW_LNCT_timestamp:
20228 if (uint.has_value ())
20229 fe.mod_time = *uint;
20230 break;
20231 case DW_LNCT_size:
20232 if (uint.has_value ())
20233 fe.length = *uint;
20234 break;
20235 case DW_LNCT_MD5:
20236 break;
20237 default:
b98664d3 20238 complaint (_("Unknown format content type %s"),
ecfb656c
PA
20239 pulongest (content_type));
20240 }
43988095
JK
20241 }
20242
ecfb656c 20243 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
43988095
JK
20244 }
20245
20246 *bufp = buf;
20247}
20248
debd256d 20249/* Read the statement program header starting at OFFSET in
3019eac3 20250 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 20251 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
20252 Returns NULL if there is a problem reading the header, e.g., if it
20253 has a version we don't understand.
debd256d
JB
20254
20255 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
20256 the returned object point into the dwarf line section buffer,
20257 and must not be freed. */
ae2de4f8 20258
fff8551c 20259static line_header_up
9c541725 20260dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
debd256d 20261{
d521ce57 20262 const gdb_byte *line_ptr;
c764a876 20263 unsigned int bytes_read, offset_size;
debd256d 20264 int i;
d521ce57 20265 const char *cur_dir, *cur_file;
3019eac3
DE
20266 struct dwarf2_section_info *section;
20267 bfd *abfd;
518817b3
SM
20268 struct dwarf2_per_objfile *dwarf2_per_objfile
20269 = cu->per_cu->dwarf2_per_objfile;
3019eac3 20270
36586728 20271 section = get_debug_line_section (cu);
3019eac3
DE
20272 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20273 if (section->buffer == NULL)
debd256d 20274 {
3019eac3 20275 if (cu->dwo_unit && cu->per_cu->is_debug_types)
b98664d3 20276 complaint (_("missing .debug_line.dwo section"));
3019eac3 20277 else
b98664d3 20278 complaint (_("missing .debug_line section"));
debd256d
JB
20279 return 0;
20280 }
20281
fceca515
DE
20282 /* We can't do this until we know the section is non-empty.
20283 Only then do we know we have such a section. */
a32a8923 20284 abfd = get_section_bfd_owner (section);
fceca515 20285
a738430d
MK
20286 /* Make sure that at least there's room for the total_length field.
20287 That could be 12 bytes long, but we're just going to fudge that. */
9c541725 20288 if (to_underlying (sect_off) + 4 >= section->size)
debd256d 20289 {
4d3c2250 20290 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
20291 return 0;
20292 }
20293
fff8551c 20294 line_header_up lh (new line_header ());
debd256d 20295
9c541725 20296 lh->sect_off = sect_off;
527f3840
JK
20297 lh->offset_in_dwz = cu->per_cu->is_dwz;
20298
9c541725 20299 line_ptr = section->buffer + to_underlying (sect_off);
debd256d 20300
a738430d 20301 /* Read in the header. */
6e70227d 20302 lh->total_length =
c764a876
DE
20303 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20304 &bytes_read, &offset_size);
debd256d 20305 line_ptr += bytes_read;
3019eac3 20306 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 20307 {
4d3c2250 20308 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
20309 return 0;
20310 }
20311 lh->statement_program_end = line_ptr + lh->total_length;
20312 lh->version = read_2_bytes (abfd, line_ptr);
20313 line_ptr += 2;
43988095 20314 if (lh->version > 5)
cd366ee8
DE
20315 {
20316 /* This is a version we don't understand. The format could have
20317 changed in ways we don't handle properly so just punt. */
b98664d3 20318 complaint (_("unsupported version in .debug_line section"));
cd366ee8
DE
20319 return NULL;
20320 }
43988095
JK
20321 if (lh->version >= 5)
20322 {
20323 gdb_byte segment_selector_size;
20324
20325 /* Skip address size. */
20326 read_1_byte (abfd, line_ptr);
20327 line_ptr += 1;
20328
20329 segment_selector_size = read_1_byte (abfd, line_ptr);
20330 line_ptr += 1;
20331 if (segment_selector_size != 0)
20332 {
b98664d3 20333 complaint (_("unsupported segment selector size %u "
43988095
JK
20334 "in .debug_line section"),
20335 segment_selector_size);
20336 return NULL;
20337 }
20338 }
c764a876
DE
20339 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20340 line_ptr += offset_size;
debd256d
JB
20341 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20342 line_ptr += 1;
2dc7f7b3
TT
20343 if (lh->version >= 4)
20344 {
20345 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20346 line_ptr += 1;
20347 }
20348 else
20349 lh->maximum_ops_per_instruction = 1;
20350
20351 if (lh->maximum_ops_per_instruction == 0)
20352 {
20353 lh->maximum_ops_per_instruction = 1;
b98664d3 20354 complaint (_("invalid maximum_ops_per_instruction "
3e43a32a 20355 "in `.debug_line' section"));
2dc7f7b3
TT
20356 }
20357
debd256d
JB
20358 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20359 line_ptr += 1;
20360 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20361 line_ptr += 1;
20362 lh->line_range = read_1_byte (abfd, line_ptr);
20363 line_ptr += 1;
20364 lh->opcode_base = read_1_byte (abfd, line_ptr);
20365 line_ptr += 1;
fff8551c 20366 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
debd256d
JB
20367
20368 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20369 for (i = 1; i < lh->opcode_base; ++i)
20370 {
20371 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20372 line_ptr += 1;
20373 }
20374
43988095 20375 if (lh->version >= 5)
debd256d 20376 {
43988095 20377 /* Read directory table. */
ed2dc618
SM
20378 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20379 &cu->header,
b926417a 20380 [] (struct line_header *header, const char *name,
ecfb656c 20381 dir_index d_index, unsigned int mod_time,
fff8551c
PA
20382 unsigned int length)
20383 {
b926417a 20384 header->add_include_dir (name);
fff8551c 20385 });
debd256d 20386
43988095 20387 /* Read file name table. */
ed2dc618
SM
20388 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20389 &cu->header,
b926417a 20390 [] (struct line_header *header, const char *name,
ecfb656c 20391 dir_index d_index, unsigned int mod_time,
fff8551c
PA
20392 unsigned int length)
20393 {
b926417a 20394 header->add_file_name (name, d_index, mod_time, length);
fff8551c 20395 });
43988095
JK
20396 }
20397 else
debd256d 20398 {
43988095
JK
20399 /* Read directory table. */
20400 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20401 {
20402 line_ptr += bytes_read;
fff8551c 20403 lh->add_include_dir (cur_dir);
43988095 20404 }
debd256d
JB
20405 line_ptr += bytes_read;
20406
43988095
JK
20407 /* Read file name table. */
20408 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20409 {
ecfb656c
PA
20410 unsigned int mod_time, length;
20411 dir_index d_index;
43988095
JK
20412
20413 line_ptr += bytes_read;
ecfb656c 20414 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
43988095
JK
20415 line_ptr += bytes_read;
20416 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20417 line_ptr += bytes_read;
20418 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20419 line_ptr += bytes_read;
20420
ecfb656c 20421 lh->add_file_name (cur_file, d_index, mod_time, length);
43988095
JK
20422 }
20423 line_ptr += bytes_read;
debd256d 20424 }
6e70227d 20425 lh->statement_program_start = line_ptr;
debd256d 20426
3019eac3 20427 if (line_ptr > (section->buffer + section->size))
b98664d3 20428 complaint (_("line number info header doesn't "
3e43a32a 20429 "fit in `.debug_line' section"));
debd256d 20430
debd256d
JB
20431 return lh;
20432}
c906108c 20433
c6da4cef
DE
20434/* Subroutine of dwarf_decode_lines to simplify it.
20435 Return the file name of the psymtab for included file FILE_INDEX
20436 in line header LH of PST.
20437 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
c89b44cd
TT
20438 If space for the result is malloc'd, *NAME_HOLDER will be set.
20439 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
c6da4cef 20440
d521ce57 20441static const char *
c6da4cef
DE
20442psymtab_include_file_name (const struct line_header *lh, int file_index,
20443 const struct partial_symtab *pst,
c89b44cd
TT
20444 const char *comp_dir,
20445 gdb::unique_xmalloc_ptr<char> *name_holder)
c6da4cef 20446{
8c43009f 20447 const file_entry &fe = lh->file_names[file_index];
d521ce57
TT
20448 const char *include_name = fe.name;
20449 const char *include_name_to_compare = include_name;
72b9f47f 20450 const char *pst_filename;
c6da4cef
DE
20451 int file_is_pst;
20452
8c43009f 20453 const char *dir_name = fe.include_dir (lh);
c6da4cef 20454
c89b44cd 20455 gdb::unique_xmalloc_ptr<char> hold_compare;
c6da4cef
DE
20456 if (!IS_ABSOLUTE_PATH (include_name)
20457 && (dir_name != NULL || comp_dir != NULL))
20458 {
20459 /* Avoid creating a duplicate psymtab for PST.
20460 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20461 Before we do the comparison, however, we need to account
20462 for DIR_NAME and COMP_DIR.
20463 First prepend dir_name (if non-NULL). If we still don't
20464 have an absolute path prepend comp_dir (if non-NULL).
20465 However, the directory we record in the include-file's
20466 psymtab does not contain COMP_DIR (to match the
20467 corresponding symtab(s)).
20468
20469 Example:
20470
20471 bash$ cd /tmp
20472 bash$ gcc -g ./hello.c
20473 include_name = "hello.c"
20474 dir_name = "."
20475 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
20476 DW_AT_name = "./hello.c"
20477
20478 */
c6da4cef
DE
20479
20480 if (dir_name != NULL)
20481 {
c89b44cd
TT
20482 name_holder->reset (concat (dir_name, SLASH_STRING,
20483 include_name, (char *) NULL));
20484 include_name = name_holder->get ();
c6da4cef 20485 include_name_to_compare = include_name;
c6da4cef
DE
20486 }
20487 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20488 {
c89b44cd
TT
20489 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20490 include_name, (char *) NULL));
20491 include_name_to_compare = hold_compare.get ();
c6da4cef
DE
20492 }
20493 }
20494
20495 pst_filename = pst->filename;
c89b44cd 20496 gdb::unique_xmalloc_ptr<char> copied_name;
c6da4cef
DE
20497 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20498 {
c89b44cd
TT
20499 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20500 pst_filename, (char *) NULL));
20501 pst_filename = copied_name.get ();
c6da4cef
DE
20502 }
20503
1e3fad37 20504 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 20505
c6da4cef
DE
20506 if (file_is_pst)
20507 return NULL;
20508 return include_name;
20509}
20510
d9b3de22
DE
20511/* State machine to track the state of the line number program. */
20512
6f77053d 20513class lnp_state_machine
d9b3de22 20514{
6f77053d
PA
20515public:
20516 /* Initialize a machine state for the start of a line number
20517 program. */
804d2729
TT
20518 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20519 bool record_lines_p);
6f77053d 20520
8c43009f
PA
20521 file_entry *current_file ()
20522 {
20523 /* lh->file_names is 0-based, but the file name numbers in the
20524 statement program are 1-based. */
6f77053d
PA
20525 return m_line_header->file_name_at (m_file);
20526 }
20527
20528 /* Record the line in the state machine. END_SEQUENCE is true if
20529 we're processing the end of a sequence. */
20530 void record_line (bool end_sequence);
20531
7ab6656f
OJ
20532 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20533 nop-out rest of the lines in this sequence. */
6f77053d
PA
20534 void check_line_address (struct dwarf2_cu *cu,
20535 const gdb_byte *line_ptr,
7ab6656f 20536 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
6f77053d
PA
20537
20538 void handle_set_discriminator (unsigned int discriminator)
20539 {
20540 m_discriminator = discriminator;
20541 m_line_has_non_zero_discriminator |= discriminator != 0;
20542 }
20543
20544 /* Handle DW_LNE_set_address. */
20545 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20546 {
20547 m_op_index = 0;
20548 address += baseaddr;
20549 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20550 }
20551
20552 /* Handle DW_LNS_advance_pc. */
20553 void handle_advance_pc (CORE_ADDR adjust);
20554
20555 /* Handle a special opcode. */
20556 void handle_special_opcode (unsigned char op_code);
20557
20558 /* Handle DW_LNS_advance_line. */
20559 void handle_advance_line (int line_delta)
20560 {
20561 advance_line (line_delta);
20562 }
20563
20564 /* Handle DW_LNS_set_file. */
20565 void handle_set_file (file_name_index file);
20566
20567 /* Handle DW_LNS_negate_stmt. */
20568 void handle_negate_stmt ()
20569 {
20570 m_is_stmt = !m_is_stmt;
20571 }
20572
20573 /* Handle DW_LNS_const_add_pc. */
20574 void handle_const_add_pc ();
20575
20576 /* Handle DW_LNS_fixed_advance_pc. */
20577 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20578 {
20579 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20580 m_op_index = 0;
20581 }
20582
20583 /* Handle DW_LNS_copy. */
20584 void handle_copy ()
20585 {
20586 record_line (false);
20587 m_discriminator = 0;
20588 }
20589
20590 /* Handle DW_LNE_end_sequence. */
20591 void handle_end_sequence ()
20592 {
804d2729 20593 m_currently_recording_lines = true;
6f77053d
PA
20594 }
20595
20596private:
20597 /* Advance the line by LINE_DELTA. */
20598 void advance_line (int line_delta)
20599 {
20600 m_line += line_delta;
20601
20602 if (line_delta != 0)
20603 m_line_has_non_zero_discriminator = m_discriminator != 0;
8c43009f
PA
20604 }
20605
804d2729
TT
20606 struct dwarf2_cu *m_cu;
20607
6f77053d
PA
20608 gdbarch *m_gdbarch;
20609
20610 /* True if we're recording lines.
20611 Otherwise we're building partial symtabs and are just interested in
20612 finding include files mentioned by the line number program. */
20613 bool m_record_lines_p;
20614
8c43009f 20615 /* The line number header. */
6f77053d 20616 line_header *m_line_header;
8c43009f 20617
6f77053d
PA
20618 /* These are part of the standard DWARF line number state machine,
20619 and initialized according to the DWARF spec. */
d9b3de22 20620
6f77053d 20621 unsigned char m_op_index = 0;
8c43009f 20622 /* The line table index (1-based) of the current file. */
6f77053d
PA
20623 file_name_index m_file = (file_name_index) 1;
20624 unsigned int m_line = 1;
20625
20626 /* These are initialized in the constructor. */
20627
20628 CORE_ADDR m_address;
20629 bool m_is_stmt;
20630 unsigned int m_discriminator;
d9b3de22
DE
20631
20632 /* Additional bits of state we need to track. */
20633
20634 /* The last file that we called dwarf2_start_subfile for.
20635 This is only used for TLLs. */
6f77053d 20636 unsigned int m_last_file = 0;
d9b3de22 20637 /* The last file a line number was recorded for. */
6f77053d 20638 struct subfile *m_last_subfile = NULL;
d9b3de22 20639
804d2729
TT
20640 /* When true, record the lines we decode. */
20641 bool m_currently_recording_lines = false;
d9b3de22
DE
20642
20643 /* The last line number that was recorded, used to coalesce
20644 consecutive entries for the same line. This can happen, for
20645 example, when discriminators are present. PR 17276. */
6f77053d
PA
20646 unsigned int m_last_line = 0;
20647 bool m_line_has_non_zero_discriminator = false;
8c43009f 20648};
d9b3de22 20649
6f77053d
PA
20650void
20651lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20652{
20653 CORE_ADDR addr_adj = (((m_op_index + adjust)
20654 / m_line_header->maximum_ops_per_instruction)
20655 * m_line_header->minimum_instruction_length);
20656 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20657 m_op_index = ((m_op_index + adjust)
20658 % m_line_header->maximum_ops_per_instruction);
20659}
d9b3de22 20660
6f77053d
PA
20661void
20662lnp_state_machine::handle_special_opcode (unsigned char op_code)
d9b3de22 20663{
6f77053d
PA
20664 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20665 CORE_ADDR addr_adj = (((m_op_index
20666 + (adj_opcode / m_line_header->line_range))
20667 / m_line_header->maximum_ops_per_instruction)
20668 * m_line_header->minimum_instruction_length);
20669 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20670 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20671 % m_line_header->maximum_ops_per_instruction);
d9b3de22 20672
6f77053d
PA
20673 int line_delta = (m_line_header->line_base
20674 + (adj_opcode % m_line_header->line_range));
20675 advance_line (line_delta);
20676 record_line (false);
20677 m_discriminator = 0;
20678}
d9b3de22 20679
6f77053d
PA
20680void
20681lnp_state_machine::handle_set_file (file_name_index file)
20682{
20683 m_file = file;
20684
20685 const file_entry *fe = current_file ();
20686 if (fe == NULL)
20687 dwarf2_debug_line_missing_file_complaint ();
20688 else if (m_record_lines_p)
20689 {
20690 const char *dir = fe->include_dir (m_line_header);
20691
804d2729 20692 m_last_subfile = m_cu->builder->get_current_subfile ();
6f77053d 20693 m_line_has_non_zero_discriminator = m_discriminator != 0;
804d2729 20694 dwarf2_start_subfile (m_cu, fe->name, dir);
6f77053d
PA
20695 }
20696}
20697
20698void
20699lnp_state_machine::handle_const_add_pc ()
20700{
20701 CORE_ADDR adjust
20702 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20703
20704 CORE_ADDR addr_adj
20705 = (((m_op_index + adjust)
20706 / m_line_header->maximum_ops_per_instruction)
20707 * m_line_header->minimum_instruction_length);
20708
20709 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20710 m_op_index = ((m_op_index + adjust)
20711 % m_line_header->maximum_ops_per_instruction);
20712}
d9b3de22 20713
a05a36a5
DE
20714/* Return non-zero if we should add LINE to the line number table.
20715 LINE is the line to add, LAST_LINE is the last line that was added,
20716 LAST_SUBFILE is the subfile for LAST_LINE.
20717 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20718 had a non-zero discriminator.
20719
20720 We have to be careful in the presence of discriminators.
20721 E.g., for this line:
20722
20723 for (i = 0; i < 100000; i++);
20724
20725 clang can emit four line number entries for that one line,
20726 each with a different discriminator.
20727 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20728
20729 However, we want gdb to coalesce all four entries into one.
20730 Otherwise the user could stepi into the middle of the line and
20731 gdb would get confused about whether the pc really was in the
20732 middle of the line.
20733
20734 Things are further complicated by the fact that two consecutive
20735 line number entries for the same line is a heuristic used by gcc
20736 to denote the end of the prologue. So we can't just discard duplicate
20737 entries, we have to be selective about it. The heuristic we use is
20738 that we only collapse consecutive entries for the same line if at least
20739 one of those entries has a non-zero discriminator. PR 17276.
20740
20741 Note: Addresses in the line number state machine can never go backwards
20742 within one sequence, thus this coalescing is ok. */
20743
20744static int
804d2729
TT
20745dwarf_record_line_p (struct dwarf2_cu *cu,
20746 unsigned int line, unsigned int last_line,
a05a36a5
DE
20747 int line_has_non_zero_discriminator,
20748 struct subfile *last_subfile)
20749{
804d2729 20750 if (cu->builder->get_current_subfile () != last_subfile)
a05a36a5
DE
20751 return 1;
20752 if (line != last_line)
20753 return 1;
20754 /* Same line for the same file that we've seen already.
20755 As a last check, for pr 17276, only record the line if the line
20756 has never had a non-zero discriminator. */
20757 if (!line_has_non_zero_discriminator)
20758 return 1;
20759 return 0;
20760}
20761
804d2729
TT
20762/* Use the CU's builder to record line number LINE beginning at
20763 address ADDRESS in the line table of subfile SUBFILE. */
252a6764
DE
20764
20765static void
d9b3de22
DE
20766dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20767 unsigned int line, CORE_ADDR address,
804d2729 20768 struct dwarf2_cu *cu)
252a6764
DE
20769{
20770 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20771
27e0867f
DE
20772 if (dwarf_line_debug)
20773 {
20774 fprintf_unfiltered (gdb_stdlog,
20775 "Recording line %u, file %s, address %s\n",
20776 line, lbasename (subfile->name),
20777 paddress (gdbarch, address));
20778 }
20779
804d2729
TT
20780 if (cu != nullptr)
20781 cu->builder->record_line (subfile, line, addr);
252a6764
DE
20782}
20783
20784/* Subroutine of dwarf_decode_lines_1 to simplify it.
20785 Mark the end of a set of line number records.
d9b3de22 20786 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
20787 If SUBFILE is NULL the request is ignored. */
20788
20789static void
20790dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
804d2729 20791 CORE_ADDR address, struct dwarf2_cu *cu)
252a6764 20792{
27e0867f
DE
20793 if (subfile == NULL)
20794 return;
20795
20796 if (dwarf_line_debug)
20797 {
20798 fprintf_unfiltered (gdb_stdlog,
20799 "Finishing current line, file %s, address %s\n",
20800 lbasename (subfile->name),
20801 paddress (gdbarch, address));
20802 }
20803
804d2729 20804 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
d9b3de22
DE
20805}
20806
6f77053d
PA
20807void
20808lnp_state_machine::record_line (bool end_sequence)
d9b3de22 20809{
d9b3de22
DE
20810 if (dwarf_line_debug)
20811 {
20812 fprintf_unfiltered (gdb_stdlog,
20813 "Processing actual line %u: file %u,"
20814 " address %s, is_stmt %u, discrim %u\n",
6f77053d
PA
20815 m_line, to_underlying (m_file),
20816 paddress (m_gdbarch, m_address),
20817 m_is_stmt, m_discriminator);
d9b3de22
DE
20818 }
20819
6f77053d 20820 file_entry *fe = current_file ();
8c43009f
PA
20821
20822 if (fe == NULL)
d9b3de22
DE
20823 dwarf2_debug_line_missing_file_complaint ();
20824 /* For now we ignore lines not starting on an instruction boundary.
20825 But not when processing end_sequence for compatibility with the
20826 previous version of the code. */
6f77053d 20827 else if (m_op_index == 0 || end_sequence)
d9b3de22 20828 {
8c43009f 20829 fe->included_p = 1;
c258c396 20830 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
d9b3de22 20831 {
804d2729
TT
20832 if (m_last_subfile != m_cu->builder->get_current_subfile ()
20833 || end_sequence)
d9b3de22 20834 {
804d2729
TT
20835 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20836 m_currently_recording_lines ? m_cu : nullptr);
d9b3de22
DE
20837 }
20838
20839 if (!end_sequence)
20840 {
804d2729 20841 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
6f77053d
PA
20842 m_line_has_non_zero_discriminator,
20843 m_last_subfile))
d9b3de22 20844 {
804d2729
TT
20845 dwarf_record_line_1 (m_gdbarch,
20846 m_cu->builder->get_current_subfile (),
6f77053d 20847 m_line, m_address,
804d2729 20848 m_currently_recording_lines ? m_cu : nullptr);
d9b3de22 20849 }
804d2729 20850 m_last_subfile = m_cu->builder->get_current_subfile ();
6f77053d 20851 m_last_line = m_line;
d9b3de22
DE
20852 }
20853 }
20854 }
20855}
20856
804d2729
TT
20857lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20858 line_header *lh, bool record_lines_p)
d9b3de22 20859{
804d2729 20860 m_cu = cu;
6f77053d
PA
20861 m_gdbarch = arch;
20862 m_record_lines_p = record_lines_p;
20863 m_line_header = lh;
d9b3de22 20864
804d2729 20865 m_currently_recording_lines = true;
d9b3de22 20866
d9b3de22
DE
20867 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20868 was a line entry for it so that the backend has a chance to adjust it
20869 and also record it in case it needs it. This is currently used by MIPS
20870 code, cf. `mips_adjust_dwarf2_line'. */
6f77053d
PA
20871 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20872 m_is_stmt = lh->default_is_stmt;
20873 m_discriminator = 0;
252a6764
DE
20874}
20875
6f77053d
PA
20876void
20877lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20878 const gdb_byte *line_ptr,
7ab6656f 20879 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
924c2928 20880{
7ab6656f
OJ
20881 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20882 the pc range of the CU. However, we restrict the test to only ADDRESS
20883 values of zero to preserve GDB's previous behaviour which is to handle
20884 the specific case of a function being GC'd by the linker. */
924c2928 20885
7ab6656f 20886 if (address == 0 && address < unrelocated_lowpc)
924c2928
DE
20887 {
20888 /* This line table is for a function which has been
20889 GCd by the linker. Ignore it. PR gdb/12528 */
20890
518817b3 20891 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
924c2928
DE
20892 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20893
b98664d3 20894 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
924c2928 20895 line_offset, objfile_name (objfile));
804d2729
TT
20896 m_currently_recording_lines = false;
20897 /* Note: m_currently_recording_lines is left as false until we see
20898 DW_LNE_end_sequence. */
924c2928
DE
20899 }
20900}
20901
f3f5162e 20902/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
20903 Process the line number information in LH.
20904 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20905 program in order to set included_p for every referenced header. */
debd256d 20906
c906108c 20907static void
43f3e411
DE
20908dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20909 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 20910{
d521ce57
TT
20911 const gdb_byte *line_ptr, *extended_end;
20912 const gdb_byte *line_end;
a8c50c1f 20913 unsigned int bytes_read, extended_len;
699ca60a 20914 unsigned char op_code, extended_op;
e142c38c 20915 CORE_ADDR baseaddr;
518817b3 20916 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
f3f5162e 20917 bfd *abfd = objfile->obfd;
fbf65064 20918 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6f77053d
PA
20919 /* True if we're recording line info (as opposed to building partial
20920 symtabs and just interested in finding include files mentioned by
20921 the line number program). */
20922 bool record_lines_p = !decode_for_pst_p;
e142c38c
DJ
20923
20924 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 20925
debd256d
JB
20926 line_ptr = lh->statement_program_start;
20927 line_end = lh->statement_program_end;
c906108c
SS
20928
20929 /* Read the statement sequences until there's nothing left. */
20930 while (line_ptr < line_end)
20931 {
6f77053d
PA
20932 /* The DWARF line number program state machine. Reset the state
20933 machine at the start of each sequence. */
804d2729 20934 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
6f77053d 20935 bool end_sequence = false;
d9b3de22 20936
8c43009f 20937 if (record_lines_p)
c906108c 20938 {
8c43009f
PA
20939 /* Start a subfile for the current file of the state
20940 machine. */
20941 const file_entry *fe = state_machine.current_file ();
20942
20943 if (fe != NULL)
804d2729 20944 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
c906108c
SS
20945 }
20946
a738430d 20947 /* Decode the table. */
d9b3de22 20948 while (line_ptr < line_end && !end_sequence)
c906108c
SS
20949 {
20950 op_code = read_1_byte (abfd, line_ptr);
20951 line_ptr += 1;
9aa1fe7e 20952
debd256d 20953 if (op_code >= lh->opcode_base)
6e70227d 20954 {
8e07a239 20955 /* Special opcode. */
6f77053d 20956 state_machine.handle_special_opcode (op_code);
9aa1fe7e
GK
20957 }
20958 else switch (op_code)
c906108c
SS
20959 {
20960 case DW_LNS_extended_op:
3e43a32a
MS
20961 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20962 &bytes_read);
473b7be6 20963 line_ptr += bytes_read;
a8c50c1f 20964 extended_end = line_ptr + extended_len;
c906108c
SS
20965 extended_op = read_1_byte (abfd, line_ptr);
20966 line_ptr += 1;
20967 switch (extended_op)
20968 {
20969 case DW_LNE_end_sequence:
6f77053d
PA
20970 state_machine.handle_end_sequence ();
20971 end_sequence = true;
c906108c
SS
20972 break;
20973 case DW_LNE_set_address:
d9b3de22
DE
20974 {
20975 CORE_ADDR address
20976 = read_address (abfd, line_ptr, cu, &bytes_read);
d9b3de22 20977 line_ptr += bytes_read;
6f77053d
PA
20978
20979 state_machine.check_line_address (cu, line_ptr,
7ab6656f 20980 lowpc - baseaddr, address);
6f77053d 20981 state_machine.handle_set_address (baseaddr, address);
d9b3de22 20982 }
c906108c
SS
20983 break;
20984 case DW_LNE_define_file:
debd256d 20985 {
d521ce57 20986 const char *cur_file;
ecfb656c
PA
20987 unsigned int mod_time, length;
20988 dir_index dindex;
6e70227d 20989
3e43a32a
MS
20990 cur_file = read_direct_string (abfd, line_ptr,
20991 &bytes_read);
debd256d 20992 line_ptr += bytes_read;
ecfb656c 20993 dindex = (dir_index)
debd256d
JB
20994 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20995 line_ptr += bytes_read;
20996 mod_time =
20997 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20998 line_ptr += bytes_read;
20999 length =
21000 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21001 line_ptr += bytes_read;
ecfb656c 21002 lh->add_file_name (cur_file, dindex, mod_time, length);
debd256d 21003 }
c906108c 21004 break;
d0c6ba3d 21005 case DW_LNE_set_discriminator:
6f77053d
PA
21006 {
21007 /* The discriminator is not interesting to the
21008 debugger; just ignore it. We still need to
21009 check its value though:
21010 if there are consecutive entries for the same
21011 (non-prologue) line we want to coalesce them.
21012 PR 17276. */
21013 unsigned int discr
21014 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21015 line_ptr += bytes_read;
21016
21017 state_machine.handle_set_discriminator (discr);
21018 }
d0c6ba3d 21019 break;
c906108c 21020 default:
b98664d3 21021 complaint (_("mangled .debug_line section"));
debd256d 21022 return;
c906108c 21023 }
a8c50c1f
DJ
21024 /* Make sure that we parsed the extended op correctly. If e.g.
21025 we expected a different address size than the producer used,
21026 we may have read the wrong number of bytes. */
21027 if (line_ptr != extended_end)
21028 {
b98664d3 21029 complaint (_("mangled .debug_line section"));
a8c50c1f
DJ
21030 return;
21031 }
c906108c
SS
21032 break;
21033 case DW_LNS_copy:
6f77053d 21034 state_machine.handle_copy ();
c906108c
SS
21035 break;
21036 case DW_LNS_advance_pc:
2dc7f7b3
TT
21037 {
21038 CORE_ADDR adjust
21039 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
2dc7f7b3 21040 line_ptr += bytes_read;
6f77053d
PA
21041
21042 state_machine.handle_advance_pc (adjust);
2dc7f7b3 21043 }
c906108c
SS
21044 break;
21045 case DW_LNS_advance_line:
a05a36a5
DE
21046 {
21047 int line_delta
21048 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
a05a36a5 21049 line_ptr += bytes_read;
6f77053d
PA
21050
21051 state_machine.handle_advance_line (line_delta);
a05a36a5 21052 }
c906108c
SS
21053 break;
21054 case DW_LNS_set_file:
d9b3de22 21055 {
6f77053d 21056 file_name_index file
ecfb656c
PA
21057 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21058 &bytes_read);
d9b3de22 21059 line_ptr += bytes_read;
8c43009f 21060
6f77053d 21061 state_machine.handle_set_file (file);
d9b3de22 21062 }
c906108c
SS
21063 break;
21064 case DW_LNS_set_column:
0ad93d4f 21065 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
21066 line_ptr += bytes_read;
21067 break;
21068 case DW_LNS_negate_stmt:
6f77053d 21069 state_machine.handle_negate_stmt ();
c906108c
SS
21070 break;
21071 case DW_LNS_set_basic_block:
c906108c 21072 break;
c2c6d25f
JM
21073 /* Add to the address register of the state machine the
21074 address increment value corresponding to special opcode
a738430d
MK
21075 255. I.e., this value is scaled by the minimum
21076 instruction length since special opcode 255 would have
b021a221 21077 scaled the increment. */
c906108c 21078 case DW_LNS_const_add_pc:
6f77053d 21079 state_machine.handle_const_add_pc ();
c906108c
SS
21080 break;
21081 case DW_LNS_fixed_advance_pc:
3e29f34a 21082 {
6f77053d 21083 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
3e29f34a 21084 line_ptr += 2;
6f77053d
PA
21085
21086 state_machine.handle_fixed_advance_pc (addr_adj);
3e29f34a 21087 }
c906108c 21088 break;
9aa1fe7e 21089 default:
a738430d
MK
21090 {
21091 /* Unknown standard opcode, ignore it. */
9aa1fe7e 21092 int i;
a738430d 21093
debd256d 21094 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
21095 {
21096 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21097 line_ptr += bytes_read;
21098 }
21099 }
c906108c
SS
21100 }
21101 }
d9b3de22
DE
21102
21103 if (!end_sequence)
21104 dwarf2_debug_line_missing_end_sequence_complaint ();
21105
21106 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21107 in which case we still finish recording the last line). */
6f77053d 21108 state_machine.record_line (true);
c906108c 21109 }
f3f5162e
DE
21110}
21111
21112/* Decode the Line Number Program (LNP) for the given line_header
21113 structure and CU. The actual information extracted and the type
21114 of structures created from the LNP depends on the value of PST.
21115
21116 1. If PST is NULL, then this procedure uses the data from the program
21117 to create all necessary symbol tables, and their linetables.
21118
21119 2. If PST is not NULL, this procedure reads the program to determine
21120 the list of files included by the unit represented by PST, and
21121 builds all the associated partial symbol tables.
21122
21123 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21124 It is used for relative paths in the line table.
21125 NOTE: When processing partial symtabs (pst != NULL),
21126 comp_dir == pst->dirname.
21127
21128 NOTE: It is important that psymtabs have the same file name (via strcmp)
21129 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21130 symtab we don't use it in the name of the psymtabs we create.
21131 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
21132 A good testcase for this is mb-inline.exp.
21133
527f3840
JK
21134 LOWPC is the lowest address in CU (or 0 if not known).
21135
21136 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21137 for its PC<->lines mapping information. Otherwise only the filename
21138 table is read in. */
f3f5162e
DE
21139
21140static void
21141dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 21142 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 21143 CORE_ADDR lowpc, int decode_mapping)
f3f5162e 21144{
518817b3 21145 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
f3f5162e 21146 const int decode_for_pst_p = (pst != NULL);
f3f5162e 21147
527f3840
JK
21148 if (decode_mapping)
21149 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
21150
21151 if (decode_for_pst_p)
21152 {
21153 int file_index;
21154
21155 /* Now that we're done scanning the Line Header Program, we can
21156 create the psymtab of each included file. */
fff8551c 21157 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
aaa75496
JB
21158 if (lh->file_names[file_index].included_p == 1)
21159 {
c89b44cd 21160 gdb::unique_xmalloc_ptr<char> name_holder;
d521ce57 21161 const char *include_name =
c89b44cd
TT
21162 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21163 &name_holder);
c6da4cef 21164 if (include_name != NULL)
aaa75496
JB
21165 dwarf2_create_include_psymtab (include_name, pst, objfile);
21166 }
21167 }
cb1df416
DJ
21168 else
21169 {
21170 /* Make sure a symtab is created for every file, even files
21171 which contain only variables (i.e. no code with associated
21172 line numbers). */
804d2729 21173 struct compunit_symtab *cust = cu->builder->get_compunit_symtab ();
cb1df416 21174 int i;
cb1df416 21175
fff8551c 21176 for (i = 0; i < lh->file_names.size (); i++)
cb1df416 21177 {
8c43009f 21178 file_entry &fe = lh->file_names[i];
9a619af0 21179
804d2729 21180 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
cb1df416 21181
804d2729 21182 if (cu->builder->get_current_subfile ()->symtab == NULL)
43f3e411 21183 {
804d2729
TT
21184 cu->builder->get_current_subfile ()->symtab
21185 = allocate_symtab (cust,
21186 cu->builder->get_current_subfile ()->name);
43f3e411 21187 }
804d2729 21188 fe.symtab = cu->builder->get_current_subfile ()->symtab;
cb1df416
DJ
21189 }
21190 }
c906108c
SS
21191}
21192
21193/* Start a subfile for DWARF. FILENAME is the name of the file and
21194 DIRNAME the name of the source directory which contains FILENAME
4d663531 21195 or NULL if not known.
c906108c
SS
21196 This routine tries to keep line numbers from identical absolute and
21197 relative file names in a common subfile.
21198
21199 Using the `list' example from the GDB testsuite, which resides in
21200 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21201 of /srcdir/list0.c yields the following debugging information for list0.c:
21202
c5aa993b 21203 DW_AT_name: /srcdir/list0.c
4d663531 21204 DW_AT_comp_dir: /compdir
357e46e7 21205 files.files[0].name: list0.h
c5aa993b 21206 files.files[0].dir: /srcdir
357e46e7 21207 files.files[1].name: list0.c
c5aa993b 21208 files.files[1].dir: /srcdir
c906108c
SS
21209
21210 The line number information for list0.c has to end up in a single
4f1520fb
FR
21211 subfile, so that `break /srcdir/list0.c:1' works as expected.
21212 start_subfile will ensure that this happens provided that we pass the
21213 concatenation of files.files[1].dir and files.files[1].name as the
21214 subfile's name. */
c906108c
SS
21215
21216static void
804d2729
TT
21217dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21218 const char *dirname)
c906108c 21219{
d521ce57 21220 char *copy = NULL;
4f1520fb 21221
4d663531 21222 /* In order not to lose the line information directory,
4f1520fb
FR
21223 we concatenate it to the filename when it makes sense.
21224 Note that the Dwarf3 standard says (speaking of filenames in line
21225 information): ``The directory index is ignored for file names
21226 that represent full path names''. Thus ignoring dirname in the
21227 `else' branch below isn't an issue. */
c906108c 21228
d5166ae1 21229 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
21230 {
21231 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21232 filename = copy;
21233 }
c906108c 21234
804d2729 21235 cu->builder->start_subfile (filename);
4f1520fb 21236
d521ce57
TT
21237 if (copy != NULL)
21238 xfree (copy);
c906108c
SS
21239}
21240
804d2729
TT
21241/* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21242 buildsym_compunit constructor. */
f4dc4d17 21243
43f3e411 21244static struct compunit_symtab *
f4dc4d17 21245dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 21246 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 21247{
804d2729 21248 gdb_assert (cu->builder == nullptr);
43f3e411 21249
804d2729
TT
21250 cu->builder.reset (new struct buildsym_compunit
21251 (cu->per_cu->dwarf2_per_objfile->objfile,
21252 name, comp_dir, cu->language, low_pc));
93b8bea4 21253
804d2729
TT
21254 cu->list_in_scope = cu->builder->get_file_symbols ();
21255
21256 cu->builder->record_debugformat ("DWARF 2");
21257 cu->builder->record_producer (cu->producer);
f4dc4d17 21258
9068261f 21259 cu->processing_has_namespace_info = false;
43f3e411 21260
804d2729 21261 return cu->builder->get_compunit_symtab ();
f4dc4d17
DE
21262}
21263
4c2df51b
DJ
21264static void
21265var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 21266 struct dwarf2_cu *cu)
4c2df51b 21267{
518817b3 21268 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
e7c27a73
DJ
21269 struct comp_unit_head *cu_header = &cu->header;
21270
4c2df51b
DJ
21271 /* NOTE drow/2003-01-30: There used to be a comment and some special
21272 code here to turn a symbol with DW_AT_external and a
21273 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21274 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21275 with some versions of binutils) where shared libraries could have
21276 relocations against symbols in their debug information - the
21277 minimal symbol would have the right address, but the debug info
21278 would not. It's no longer necessary, because we will explicitly
21279 apply relocations when we read in the debug information now. */
21280
21281 /* A DW_AT_location attribute with no contents indicates that a
21282 variable has been optimized away. */
21283 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21284 {
f1e6e072 21285 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
21286 return;
21287 }
21288
21289 /* Handle one degenerate form of location expression specially, to
21290 preserve GDB's previous behavior when section offsets are
3019eac3
DE
21291 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21292 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
21293
21294 if (attr_form_is_block (attr)
3019eac3
DE
21295 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21296 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21297 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21298 && (DW_BLOCK (attr)->size
21299 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 21300 {
891d2f0b 21301 unsigned int dummy;
4c2df51b 21302
3019eac3
DE
21303 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21304 SYMBOL_VALUE_ADDRESS (sym) =
21305 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21306 else
21307 SYMBOL_VALUE_ADDRESS (sym) =
21308 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 21309 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
21310 fixup_symbol_section (sym, objfile);
21311 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21312 SYMBOL_SECTION (sym));
4c2df51b
DJ
21313 return;
21314 }
21315
21316 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21317 expression evaluator, and use LOC_COMPUTED only when necessary
21318 (i.e. when the value of a register or memory location is
21319 referenced, or a thread-local block, etc.). Then again, it might
21320 not be worthwhile. I'm assuming that it isn't unless performance
21321 or memory numbers show me otherwise. */
21322
f1e6e072 21323 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 21324
f1e6e072 21325 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
9068261f 21326 cu->has_loclist = true;
4c2df51b
DJ
21327}
21328
c906108c
SS
21329/* Given a pointer to a DWARF information entry, figure out if we need
21330 to make a symbol table entry for it, and if so, create a new entry
21331 and return a pointer to it.
21332 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
21333 used the passed type.
21334 If SPACE is not NULL, use it to hold the new symbol. If it is
21335 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
21336
21337static struct symbol *
5e2db402
TT
21338new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21339 struct symbol *space)
c906108c 21340{
518817b3
SM
21341 struct dwarf2_per_objfile *dwarf2_per_objfile
21342 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 21343 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 21344 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 21345 struct symbol *sym = NULL;
15d034d0 21346 const char *name;
c906108c
SS
21347 struct attribute *attr = NULL;
21348 struct attribute *attr2 = NULL;
e142c38c 21349 CORE_ADDR baseaddr;
e37fd15a
SW
21350 struct pending **list_to_add = NULL;
21351
edb3359d 21352 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
21353
21354 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 21355
94af9270 21356 name = dwarf2_name (die, cu);
c906108c
SS
21357 if (name)
21358 {
94af9270 21359 const char *linkagename;
34eaf542 21360 int suppress_add = 0;
94af9270 21361
34eaf542
TT
21362 if (space)
21363 sym = space;
21364 else
e623cf5d 21365 sym = allocate_symbol (objfile);
c906108c 21366 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
21367
21368 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 21369 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
21370 linkagename = dwarf2_physname (name, die, cu);
21371 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 21372
f55ee35c
JK
21373 /* Fortran does not have mangling standard and the mangling does differ
21374 between gfortran, iFort etc. */
21375 if (cu->language == language_fortran
b250c185 21376 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 21377 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 21378 dwarf2_full_name (name, die, cu),
29df156d 21379 NULL);
f55ee35c 21380
c906108c 21381 /* Default assumptions.
c5aa993b 21382 Use the passed type or decode it from the die. */
176620f1 21383 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 21384 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
21385 if (type != NULL)
21386 SYMBOL_TYPE (sym) = type;
21387 else
e7c27a73 21388 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
21389 attr = dwarf2_attr (die,
21390 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21391 cu);
c906108c
SS
21392 if (attr)
21393 {
21394 SYMBOL_LINE (sym) = DW_UNSND (attr);
21395 }
cb1df416 21396
edb3359d
DJ
21397 attr = dwarf2_attr (die,
21398 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21399 cu);
cb1df416
DJ
21400 if (attr)
21401 {
ecfb656c 21402 file_name_index file_index = (file_name_index) DW_UNSND (attr);
8c43009f 21403 struct file_entry *fe;
9a619af0 21404
ecfb656c
PA
21405 if (cu->line_header != NULL)
21406 fe = cu->line_header->file_name_at (file_index);
8c43009f
PA
21407 else
21408 fe = NULL;
21409
21410 if (fe == NULL)
b98664d3 21411 complaint (_("file index out of range"));
8c43009f
PA
21412 else
21413 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
21414 }
21415
c906108c
SS
21416 switch (die->tag)
21417 {
21418 case DW_TAG_label:
e142c38c 21419 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 21420 if (attr)
3e29f34a
MR
21421 {
21422 CORE_ADDR addr;
21423
21424 addr = attr_value_as_address (attr);
21425 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21426 SYMBOL_VALUE_ADDRESS (sym) = addr;
21427 }
0f5238ed
TT
21428 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21429 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 21430 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
380618d6 21431 dw2_add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
21432 break;
21433 case DW_TAG_subprogram:
21434 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21435 finish_block. */
f1e6e072 21436 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 21437 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
21438 if ((attr2 && (DW_UNSND (attr2) != 0))
21439 || cu->language == language_ada)
c906108c 21440 {
2cfa0c8d
JB
21441 /* Subprograms marked external are stored as a global symbol.
21442 Ada subprograms, whether marked external or not, are always
21443 stored as a global symbol, because we want to be able to
21444 access them globally. For instance, we want to be able
21445 to break on a nested subprogram without having to
21446 specify the context. */
804d2729 21447 list_to_add = cu->builder->get_global_symbols ();
c906108c
SS
21448 }
21449 else
21450 {
e37fd15a 21451 list_to_add = cu->list_in_scope;
c906108c
SS
21452 }
21453 break;
edb3359d
DJ
21454 case DW_TAG_inlined_subroutine:
21455 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21456 finish_block. */
f1e6e072 21457 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 21458 SYMBOL_INLINED (sym) = 1;
481860b3 21459 list_to_add = cu->list_in_scope;
edb3359d 21460 break;
34eaf542
TT
21461 case DW_TAG_template_value_param:
21462 suppress_add = 1;
21463 /* Fall through. */
72929c62 21464 case DW_TAG_constant:
c906108c 21465 case DW_TAG_variable:
254e6b9e 21466 case DW_TAG_member:
0963b4bd
MS
21467 /* Compilation with minimal debug info may result in
21468 variables with missing type entries. Change the
21469 misleading `void' type to something sensible. */
c906108c 21470 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
46a4882b 21471 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
64c50499 21472
e142c38c 21473 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
21474 /* In the case of DW_TAG_member, we should only be called for
21475 static const members. */
21476 if (die->tag == DW_TAG_member)
21477 {
3863f96c
DE
21478 /* dwarf2_add_field uses die_is_declaration,
21479 so we do the same. */
254e6b9e
DE
21480 gdb_assert (die_is_declaration (die, cu));
21481 gdb_assert (attr);
21482 }
c906108c
SS
21483 if (attr)
21484 {
e7c27a73 21485 dwarf2_const_value (attr, sym, cu);
e142c38c 21486 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 21487 if (!suppress_add)
34eaf542
TT
21488 {
21489 if (attr2 && (DW_UNSND (attr2) != 0))
804d2729 21490 list_to_add = cu->builder->get_global_symbols ();
34eaf542 21491 else
e37fd15a 21492 list_to_add = cu->list_in_scope;
34eaf542 21493 }
c906108c
SS
21494 break;
21495 }
e142c38c 21496 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
21497 if (attr)
21498 {
e7c27a73 21499 var_decode_location (attr, sym, cu);
e142c38c 21500 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
21501
21502 /* Fortran explicitly imports any global symbols to the local
21503 scope by DW_TAG_common_block. */
21504 if (cu->language == language_fortran && die->parent
21505 && die->parent->tag == DW_TAG_common_block)
21506 attr2 = NULL;
21507
caac4577
JG
21508 if (SYMBOL_CLASS (sym) == LOC_STATIC
21509 && SYMBOL_VALUE_ADDRESS (sym) == 0
21510 && !dwarf2_per_objfile->has_section_at_zero)
21511 {
21512 /* When a static variable is eliminated by the linker,
21513 the corresponding debug information is not stripped
21514 out, but the variable address is set to null;
21515 do not add such variables into symbol table. */
21516 }
21517 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 21518 {
f55ee35c
JK
21519 /* Workaround gfortran PR debug/40040 - it uses
21520 DW_AT_location for variables in -fPIC libraries which may
21521 get overriden by other libraries/executable and get
21522 a different address. Resolve it by the minimal symbol
21523 which may come from inferior's executable using copy
21524 relocation. Make this workaround only for gfortran as for
21525 other compilers GDB cannot guess the minimal symbol
21526 Fortran mangling kind. */
21527 if (cu->language == language_fortran && die->parent
21528 && die->parent->tag == DW_TAG_module
21529 && cu->producer
28586665 21530 && startswith (cu->producer, "GNU Fortran"))
f1e6e072 21531 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 21532
1c809c68
TT
21533 /* A variable with DW_AT_external is never static,
21534 but it may be block-scoped. */
804d2729
TT
21535 list_to_add
21536 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21537 ? cu->builder->get_global_symbols ()
21538 : cu->list_in_scope);
1c809c68 21539 }
c906108c 21540 else
e37fd15a 21541 list_to_add = cu->list_in_scope;
c906108c
SS
21542 }
21543 else
21544 {
21545 /* We do not know the address of this symbol.
c5aa993b
JM
21546 If it is an external symbol and we have type information
21547 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21548 The address of the variable will then be determined from
21549 the minimal symbol table whenever the variable is
21550 referenced. */
e142c38c 21551 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
21552
21553 /* Fortran explicitly imports any global symbols to the local
21554 scope by DW_TAG_common_block. */
21555 if (cu->language == language_fortran && die->parent
21556 && die->parent->tag == DW_TAG_common_block)
21557 {
21558 /* SYMBOL_CLASS doesn't matter here because
21559 read_common_block is going to reset it. */
21560 if (!suppress_add)
21561 list_to_add = cu->list_in_scope;
21562 }
21563 else if (attr2 && (DW_UNSND (attr2) != 0)
21564 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 21565 {
0fe7935b
DJ
21566 /* A variable with DW_AT_external is never static, but it
21567 may be block-scoped. */
804d2729
TT
21568 list_to_add
21569 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21570 ? cu->builder->get_global_symbols ()
21571 : cu->list_in_scope);
0fe7935b 21572
f1e6e072 21573 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 21574 }
442ddf59
JK
21575 else if (!die_is_declaration (die, cu))
21576 {
21577 /* Use the default LOC_OPTIMIZED_OUT class. */
21578 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
21579 if (!suppress_add)
21580 list_to_add = cu->list_in_scope;
442ddf59 21581 }
c906108c
SS
21582 }
21583 break;
21584 case DW_TAG_formal_parameter:
a60f3166
TT
21585 {
21586 /* If we are inside a function, mark this as an argument. If
21587 not, we might be looking at an argument to an inlined function
21588 when we do not have enough information to show inlined frames;
21589 pretend it's a local variable in that case so that the user can
21590 still see it. */
804d2729
TT
21591 struct context_stack *curr
21592 = cu->builder->get_current_context_stack ();
a60f3166
TT
21593 if (curr != nullptr && curr->name != nullptr)
21594 SYMBOL_IS_ARGUMENT (sym) = 1;
21595 attr = dwarf2_attr (die, DW_AT_location, cu);
21596 if (attr)
21597 {
21598 var_decode_location (attr, sym, cu);
21599 }
21600 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21601 if (attr)
21602 {
21603 dwarf2_const_value (attr, sym, cu);
21604 }
f346a30d 21605
a60f3166
TT
21606 list_to_add = cu->list_in_scope;
21607 }
c906108c
SS
21608 break;
21609 case DW_TAG_unspecified_parameters:
21610 /* From varargs functions; gdb doesn't seem to have any
21611 interest in this information, so just ignore it for now.
21612 (FIXME?) */
21613 break;
34eaf542
TT
21614 case DW_TAG_template_type_param:
21615 suppress_add = 1;
21616 /* Fall through. */
c906108c 21617 case DW_TAG_class_type:
680b30c7 21618 case DW_TAG_interface_type:
c906108c
SS
21619 case DW_TAG_structure_type:
21620 case DW_TAG_union_type:
72019c9c 21621 case DW_TAG_set_type:
c906108c 21622 case DW_TAG_enumeration_type:
f1e6e072 21623 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 21624 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 21625
63d06c5c 21626 {
9c37b5ae 21627 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
63d06c5c
DC
21628 really ever be static objects: otherwise, if you try
21629 to, say, break of a class's method and you're in a file
21630 which doesn't mention that class, it won't work unless
21631 the check for all static symbols in lookup_symbol_aux
21632 saves you. See the OtherFileClass tests in
21633 gdb.c++/namespace.exp. */
21634
e37fd15a 21635 if (!suppress_add)
34eaf542 21636 {
804d2729
TT
21637 list_to_add
21638 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21639 && cu->language == language_cplus
21640 ? cu->builder->get_global_symbols ()
21641 : cu->list_in_scope);
63d06c5c 21642
64382290 21643 /* The semantics of C++ state that "struct foo {
9c37b5ae 21644 ... }" also defines a typedef for "foo". */
64382290 21645 if (cu->language == language_cplus
45280282 21646 || cu->language == language_ada
c44af4eb
TT
21647 || cu->language == language_d
21648 || cu->language == language_rust)
64382290
TT
21649 {
21650 /* The symbol's name is already allocated along
21651 with this objfile, so we don't need to
21652 duplicate it for the type. */
21653 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21654 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21655 }
63d06c5c
DC
21656 }
21657 }
c906108c
SS
21658 break;
21659 case DW_TAG_typedef:
f1e6e072 21660 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 21661 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 21662 list_to_add = cu->list_in_scope;
63d06c5c 21663 break;
c906108c 21664 case DW_TAG_base_type:
a02abb62 21665 case DW_TAG_subrange_type:
f1e6e072 21666 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 21667 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 21668 list_to_add = cu->list_in_scope;
c906108c
SS
21669 break;
21670 case DW_TAG_enumerator:
e142c38c 21671 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
21672 if (attr)
21673 {
e7c27a73 21674 dwarf2_const_value (attr, sym, cu);
c906108c 21675 }
63d06c5c
DC
21676 {
21677 /* NOTE: carlton/2003-11-10: See comment above in the
21678 DW_TAG_class_type, etc. block. */
21679
804d2729
TT
21680 list_to_add
21681 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21682 && cu->language == language_cplus
21683 ? cu->builder->get_global_symbols ()
21684 : cu->list_in_scope);
63d06c5c 21685 }
c906108c 21686 break;
74921315 21687 case DW_TAG_imported_declaration:
5c4e30ca 21688 case DW_TAG_namespace:
f1e6e072 21689 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
804d2729 21690 list_to_add = cu->builder->get_global_symbols ();
5c4e30ca 21691 break;
530e8392
KB
21692 case DW_TAG_module:
21693 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21694 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
804d2729 21695 list_to_add = cu->builder->get_global_symbols ();
530e8392 21696 break;
4357ac6c 21697 case DW_TAG_common_block:
f1e6e072 21698 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c 21699 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
380618d6 21700 dw2_add_symbol_to_list (sym, cu->list_in_scope);
4357ac6c 21701 break;
c906108c
SS
21702 default:
21703 /* Not a tag we recognize. Hopefully we aren't processing
21704 trash data, but since we must specifically ignore things
21705 we don't recognize, there is nothing else we should do at
0963b4bd 21706 this point. */
b98664d3 21707 complaint (_("unsupported tag: '%s'"),
4d3c2250 21708 dwarf_tag_name (die->tag));
c906108c
SS
21709 break;
21710 }
df8a16a1 21711
e37fd15a
SW
21712 if (suppress_add)
21713 {
21714 sym->hash_next = objfile->template_symbols;
21715 objfile->template_symbols = sym;
21716 list_to_add = NULL;
21717 }
21718
21719 if (list_to_add != NULL)
380618d6 21720 dw2_add_symbol_to_list (sym, list_to_add);
e37fd15a 21721
df8a16a1
DJ
21722 /* For the benefit of old versions of GCC, check for anonymous
21723 namespaces based on the demangled name. */
4d4ec4e5 21724 if (!cu->processing_has_namespace_info
94af9270 21725 && cu->language == language_cplus)
804d2729 21726 cp_scan_for_anonymous_namespaces (cu->builder.get (), sym, objfile);
c906108c
SS
21727 }
21728 return (sym);
21729}
21730
98bfdba5
PA
21731/* Given an attr with a DW_FORM_dataN value in host byte order,
21732 zero-extend it as appropriate for the symbol's type. The DWARF
21733 standard (v4) is not entirely clear about the meaning of using
21734 DW_FORM_dataN for a constant with a signed type, where the type is
21735 wider than the data. The conclusion of a discussion on the DWARF
21736 list was that this is unspecified. We choose to always zero-extend
21737 because that is the interpretation long in use by GCC. */
c906108c 21738
98bfdba5 21739static gdb_byte *
ff39bb5e 21740dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 21741 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 21742{
518817b3 21743 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
e17a4113
UW
21744 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21745 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
21746 LONGEST l = DW_UNSND (attr);
21747
21748 if (bits < sizeof (*value) * 8)
21749 {
21750 l &= ((LONGEST) 1 << bits) - 1;
21751 *value = l;
21752 }
21753 else if (bits == sizeof (*value) * 8)
21754 *value = l;
21755 else
21756 {
224c3ddb 21757 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
21758 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21759 return bytes;
21760 }
21761
21762 return NULL;
21763}
21764
21765/* Read a constant value from an attribute. Either set *VALUE, or if
21766 the value does not fit in *VALUE, set *BYTES - either already
21767 allocated on the objfile obstack, or newly allocated on OBSTACK,
21768 or, set *BATON, if we translated the constant to a location
21769 expression. */
21770
21771static void
ff39bb5e 21772dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
21773 const char *name, struct obstack *obstack,
21774 struct dwarf2_cu *cu,
d521ce57 21775 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
21776 struct dwarf2_locexpr_baton **baton)
21777{
518817b3 21778 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
98bfdba5 21779 struct comp_unit_head *cu_header = &cu->header;
c906108c 21780 struct dwarf_block *blk;
98bfdba5
PA
21781 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21782 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21783
21784 *value = 0;
21785 *bytes = NULL;
21786 *baton = NULL;
c906108c
SS
21787
21788 switch (attr->form)
21789 {
21790 case DW_FORM_addr:
3019eac3 21791 case DW_FORM_GNU_addr_index:
ac56253d 21792 {
ac56253d
TT
21793 gdb_byte *data;
21794
98bfdba5
PA
21795 if (TYPE_LENGTH (type) != cu_header->addr_size)
21796 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 21797 cu_header->addr_size,
98bfdba5 21798 TYPE_LENGTH (type));
ac56253d
TT
21799 /* Symbols of this form are reasonably rare, so we just
21800 piggyback on the existing location code rather than writing
21801 a new implementation of symbol_computed_ops. */
8d749320 21802 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
21803 (*baton)->per_cu = cu->per_cu;
21804 gdb_assert ((*baton)->per_cu);
ac56253d 21805
98bfdba5 21806 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 21807 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 21808 (*baton)->data = data;
ac56253d
TT
21809
21810 data[0] = DW_OP_addr;
21811 store_unsigned_integer (&data[1], cu_header->addr_size,
21812 byte_order, DW_ADDR (attr));
21813 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 21814 }
c906108c 21815 break;
4ac36638 21816 case DW_FORM_string:
93b5768b 21817 case DW_FORM_strp:
3019eac3 21818 case DW_FORM_GNU_str_index:
36586728 21819 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
21820 /* DW_STRING is already allocated on the objfile obstack, point
21821 directly to it. */
d521ce57 21822 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 21823 break;
c906108c
SS
21824 case DW_FORM_block1:
21825 case DW_FORM_block2:
21826 case DW_FORM_block4:
21827 case DW_FORM_block:
2dc7f7b3 21828 case DW_FORM_exprloc:
0224619f 21829 case DW_FORM_data16:
c906108c 21830 blk = DW_BLOCK (attr);
98bfdba5
PA
21831 if (TYPE_LENGTH (type) != blk->size)
21832 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21833 TYPE_LENGTH (type));
21834 *bytes = blk->data;
c906108c 21835 break;
2df3850c
JM
21836
21837 /* The DW_AT_const_value attributes are supposed to carry the
21838 symbol's value "represented as it would be on the target
21839 architecture." By the time we get here, it's already been
21840 converted to host endianness, so we just need to sign- or
21841 zero-extend it as appropriate. */
21842 case DW_FORM_data1:
3aef2284 21843 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 21844 break;
c906108c 21845 case DW_FORM_data2:
3aef2284 21846 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 21847 break;
c906108c 21848 case DW_FORM_data4:
3aef2284 21849 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 21850 break;
c906108c 21851 case DW_FORM_data8:
3aef2284 21852 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
21853 break;
21854
c906108c 21855 case DW_FORM_sdata:
663c44ac 21856 case DW_FORM_implicit_const:
98bfdba5 21857 *value = DW_SND (attr);
2df3850c
JM
21858 break;
21859
c906108c 21860 case DW_FORM_udata:
98bfdba5 21861 *value = DW_UNSND (attr);
c906108c 21862 break;
2df3850c 21863
c906108c 21864 default:
b98664d3 21865 complaint (_("unsupported const value attribute form: '%s'"),
4d3c2250 21866 dwarf_form_name (attr->form));
98bfdba5 21867 *value = 0;
c906108c
SS
21868 break;
21869 }
21870}
21871
2df3850c 21872
98bfdba5
PA
21873/* Copy constant value from an attribute to a symbol. */
21874
2df3850c 21875static void
ff39bb5e 21876dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 21877 struct dwarf2_cu *cu)
2df3850c 21878{
518817b3 21879 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
12df843f 21880 LONGEST value;
d521ce57 21881 const gdb_byte *bytes;
98bfdba5 21882 struct dwarf2_locexpr_baton *baton;
2df3850c 21883
98bfdba5
PA
21884 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21885 SYMBOL_PRINT_NAME (sym),
21886 &objfile->objfile_obstack, cu,
21887 &value, &bytes, &baton);
2df3850c 21888
98bfdba5
PA
21889 if (baton != NULL)
21890 {
98bfdba5 21891 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 21892 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
21893 }
21894 else if (bytes != NULL)
21895 {
21896 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 21897 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
21898 }
21899 else
21900 {
21901 SYMBOL_VALUE (sym) = value;
f1e6e072 21902 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 21903 }
2df3850c
JM
21904}
21905
c906108c
SS
21906/* Return the type of the die in question using its DW_AT_type attribute. */
21907
21908static struct type *
e7c27a73 21909die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 21910{
c906108c 21911 struct attribute *type_attr;
c906108c 21912
e142c38c 21913 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
21914 if (!type_attr)
21915 {
518817b3 21916 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 21917 /* A missing DW_AT_type represents a void type. */
518817b3 21918 return objfile_type (objfile)->builtin_void;
c906108c 21919 }
348e048f 21920
673bfd45 21921 return lookup_die_type (die, type_attr, cu);
c906108c
SS
21922}
21923
b4ba55a1
JB
21924/* True iff CU's producer generates GNAT Ada auxiliary information
21925 that allows to find parallel types through that information instead
21926 of having to do expensive parallel lookups by type name. */
21927
21928static int
21929need_gnat_info (struct dwarf2_cu *cu)
21930{
de4cb04a
JB
21931 /* Assume that the Ada compiler was GNAT, which always produces
21932 the auxiliary information. */
21933 return (cu->language == language_ada);
b4ba55a1
JB
21934}
21935
b4ba55a1
JB
21936/* Return the auxiliary type of the die in question using its
21937 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21938 attribute is not present. */
21939
21940static struct type *
21941die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21942{
b4ba55a1 21943 struct attribute *type_attr;
b4ba55a1
JB
21944
21945 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21946 if (!type_attr)
21947 return NULL;
21948
673bfd45 21949 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
21950}
21951
21952/* If DIE has a descriptive_type attribute, then set the TYPE's
21953 descriptive type accordingly. */
21954
21955static void
21956set_descriptive_type (struct type *type, struct die_info *die,
21957 struct dwarf2_cu *cu)
21958{
21959 struct type *descriptive_type = die_descriptive_type (die, cu);
21960
21961 if (descriptive_type)
21962 {
21963 ALLOCATE_GNAT_AUX_TYPE (type);
21964 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21965 }
21966}
21967
c906108c
SS
21968/* Return the containing type of the die in question using its
21969 DW_AT_containing_type attribute. */
21970
21971static struct type *
e7c27a73 21972die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 21973{
c906108c 21974 struct attribute *type_attr;
518817b3 21975 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
c906108c 21976
e142c38c 21977 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
21978 if (!type_attr)
21979 error (_("Dwarf Error: Problem turning containing type into gdb type "
518817b3 21980 "[in module %s]"), objfile_name (objfile));
33ac96f0 21981
673bfd45 21982 return lookup_die_type (die, type_attr, cu);
c906108c
SS
21983}
21984
ac9ec31b
DE
21985/* Return an error marker type to use for the ill formed type in DIE/CU. */
21986
21987static struct type *
21988build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21989{
518817b3
SM
21990 struct dwarf2_per_objfile *dwarf2_per_objfile
21991 = cu->per_cu->dwarf2_per_objfile;
ac9ec31b 21992 struct objfile *objfile = dwarf2_per_objfile->objfile;
528e1572 21993 char *saved;
ac9ec31b 21994
528e1572
SM
21995 std::string message
21996 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21997 objfile_name (objfile),
21998 sect_offset_str (cu->header.sect_off),
21999 sect_offset_str (die->sect_off));
224c3ddb 22000 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
528e1572 22001 message.c_str (), message.length ());
ac9ec31b 22002
19f392bc 22003 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
ac9ec31b
DE
22004}
22005
673bfd45 22006/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
22007 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22008 DW_AT_containing_type.
673bfd45
DE
22009 If there is no type substitute an error marker. */
22010
c906108c 22011static struct type *
ff39bb5e 22012lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 22013 struct dwarf2_cu *cu)
c906108c 22014{
518817b3
SM
22015 struct dwarf2_per_objfile *dwarf2_per_objfile
22016 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 22017 struct objfile *objfile = dwarf2_per_objfile->objfile;
f792889a
DJ
22018 struct type *this_type;
22019
ac9ec31b
DE
22020 gdb_assert (attr->name == DW_AT_type
22021 || attr->name == DW_AT_GNAT_descriptive_type
22022 || attr->name == DW_AT_containing_type);
22023
673bfd45
DE
22024 /* First see if we have it cached. */
22025
36586728
TT
22026 if (attr->form == DW_FORM_GNU_ref_alt)
22027 {
22028 struct dwarf2_per_cu_data *per_cu;
9c541725 22029 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
36586728 22030
ed2dc618
SM
22031 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22032 dwarf2_per_objfile);
9c541725 22033 this_type = get_die_type_at_offset (sect_off, per_cu);
36586728 22034 }
7771576e 22035 else if (attr_form_is_ref (attr))
673bfd45 22036 {
9c541725 22037 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
673bfd45 22038
9c541725 22039 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
673bfd45 22040 }
55f1336d 22041 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 22042 {
ac9ec31b 22043 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 22044
ac9ec31b 22045 return get_signatured_type (die, signature, cu);
673bfd45
DE
22046 }
22047 else
22048 {
b98664d3 22049 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
9d8780f0
SM
22050 " at %s [in module %s]"),
22051 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
4262abfb 22052 objfile_name (objfile));
ac9ec31b 22053 return build_error_marker_type (cu, die);
673bfd45
DE
22054 }
22055
22056 /* If not cached we need to read it in. */
22057
22058 if (this_type == NULL)
22059 {
ac9ec31b 22060 struct die_info *type_die = NULL;
673bfd45
DE
22061 struct dwarf2_cu *type_cu = cu;
22062
7771576e 22063 if (attr_form_is_ref (attr))
ac9ec31b
DE
22064 type_die = follow_die_ref (die, attr, &type_cu);
22065 if (type_die == NULL)
22066 return build_error_marker_type (cu, die);
22067 /* If we find the type now, it's probably because the type came
3019eac3
DE
22068 from an inter-CU reference and the type's CU got expanded before
22069 ours. */
ac9ec31b 22070 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
22071 }
22072
22073 /* If we still don't have a type use an error marker. */
22074
22075 if (this_type == NULL)
ac9ec31b 22076 return build_error_marker_type (cu, die);
673bfd45 22077
f792889a 22078 return this_type;
c906108c
SS
22079}
22080
673bfd45
DE
22081/* Return the type in DIE, CU.
22082 Returns NULL for invalid types.
22083
02142a6c 22084 This first does a lookup in die_type_hash,
673bfd45
DE
22085 and only reads the die in if necessary.
22086
22087 NOTE: This can be called when reading in partial or full symbols. */
22088
f792889a 22089static struct type *
e7c27a73 22090read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 22091{
f792889a
DJ
22092 struct type *this_type;
22093
22094 this_type = get_die_type (die, cu);
22095 if (this_type)
22096 return this_type;
22097
673bfd45
DE
22098 return read_type_die_1 (die, cu);
22099}
22100
22101/* Read the type in DIE, CU.
22102 Returns NULL for invalid types. */
22103
22104static struct type *
22105read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22106{
22107 struct type *this_type = NULL;
22108
c906108c
SS
22109 switch (die->tag)
22110 {
22111 case DW_TAG_class_type:
680b30c7 22112 case DW_TAG_interface_type:
c906108c
SS
22113 case DW_TAG_structure_type:
22114 case DW_TAG_union_type:
f792889a 22115 this_type = read_structure_type (die, cu);
c906108c
SS
22116 break;
22117 case DW_TAG_enumeration_type:
f792889a 22118 this_type = read_enumeration_type (die, cu);
c906108c
SS
22119 break;
22120 case DW_TAG_subprogram:
22121 case DW_TAG_subroutine_type:
edb3359d 22122 case DW_TAG_inlined_subroutine:
f792889a 22123 this_type = read_subroutine_type (die, cu);
c906108c
SS
22124 break;
22125 case DW_TAG_array_type:
f792889a 22126 this_type = read_array_type (die, cu);
c906108c 22127 break;
72019c9c 22128 case DW_TAG_set_type:
f792889a 22129 this_type = read_set_type (die, cu);
72019c9c 22130 break;
c906108c 22131 case DW_TAG_pointer_type:
f792889a 22132 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
22133 break;
22134 case DW_TAG_ptr_to_member_type:
f792889a 22135 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
22136 break;
22137 case DW_TAG_reference_type:
4297a3f0
AV
22138 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22139 break;
22140 case DW_TAG_rvalue_reference_type:
22141 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
c906108c
SS
22142 break;
22143 case DW_TAG_const_type:
f792889a 22144 this_type = read_tag_const_type (die, cu);
c906108c
SS
22145 break;
22146 case DW_TAG_volatile_type:
f792889a 22147 this_type = read_tag_volatile_type (die, cu);
c906108c 22148 break;
06d66ee9
TT
22149 case DW_TAG_restrict_type:
22150 this_type = read_tag_restrict_type (die, cu);
22151 break;
c906108c 22152 case DW_TAG_string_type:
f792889a 22153 this_type = read_tag_string_type (die, cu);
c906108c
SS
22154 break;
22155 case DW_TAG_typedef:
f792889a 22156 this_type = read_typedef (die, cu);
c906108c 22157 break;
a02abb62 22158 case DW_TAG_subrange_type:
f792889a 22159 this_type = read_subrange_type (die, cu);
a02abb62 22160 break;
c906108c 22161 case DW_TAG_base_type:
f792889a 22162 this_type = read_base_type (die, cu);
c906108c 22163 break;
81a17f79 22164 case DW_TAG_unspecified_type:
f792889a 22165 this_type = read_unspecified_type (die, cu);
81a17f79 22166 break;
0114d602
DJ
22167 case DW_TAG_namespace:
22168 this_type = read_namespace_type (die, cu);
22169 break;
f55ee35c
JK
22170 case DW_TAG_module:
22171 this_type = read_module_type (die, cu);
22172 break;
a2c2acaf
MW
22173 case DW_TAG_atomic_type:
22174 this_type = read_tag_atomic_type (die, cu);
22175 break;
c906108c 22176 default:
b98664d3 22177 complaint (_("unexpected tag in read_type_die: '%s'"),
4d3c2250 22178 dwarf_tag_name (die->tag));
c906108c
SS
22179 break;
22180 }
63d06c5c 22181
f792889a 22182 return this_type;
63d06c5c
DC
22183}
22184
abc72ce4
DE
22185/* See if we can figure out if the class lives in a namespace. We do
22186 this by looking for a member function; its demangled name will
22187 contain namespace info, if there is any.
22188 Return the computed name or NULL.
22189 Space for the result is allocated on the objfile's obstack.
22190 This is the full-die version of guess_partial_die_structure_name.
22191 In this case we know DIE has no useful parent. */
22192
22193static char *
22194guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22195{
22196 struct die_info *spec_die;
22197 struct dwarf2_cu *spec_cu;
22198 struct die_info *child;
518817b3 22199 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
abc72ce4
DE
22200
22201 spec_cu = cu;
22202 spec_die = die_specification (die, &spec_cu);
22203 if (spec_die != NULL)
22204 {
22205 die = spec_die;
22206 cu = spec_cu;
22207 }
22208
22209 for (child = die->child;
22210 child != NULL;
22211 child = child->sibling)
22212 {
22213 if (child->tag == DW_TAG_subprogram)
22214 {
73b9be8b 22215 const char *linkage_name = dw2_linkage_name (child, cu);
abc72ce4 22216
7d45c7c3 22217 if (linkage_name != NULL)
abc72ce4
DE
22218 {
22219 char *actual_name
22220 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 22221 linkage_name);
abc72ce4
DE
22222 char *name = NULL;
22223
22224 if (actual_name != NULL)
22225 {
15d034d0 22226 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
22227
22228 if (die_name != NULL
22229 && strcmp (die_name, actual_name) != 0)
22230 {
22231 /* Strip off the class name from the full name.
22232 We want the prefix. */
22233 int die_name_len = strlen (die_name);
22234 int actual_name_len = strlen (actual_name);
22235
22236 /* Test for '::' as a sanity check. */
22237 if (actual_name_len > die_name_len + 2
3e43a32a
MS
22238 && actual_name[actual_name_len
22239 - die_name_len - 1] == ':')
224c3ddb 22240 name = (char *) obstack_copy0 (
e3b94546 22241 &objfile->per_bfd->storage_obstack,
224c3ddb 22242 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
22243 }
22244 }
22245 xfree (actual_name);
22246 return name;
22247 }
22248 }
22249 }
22250
22251 return NULL;
22252}
22253
96408a79
SA
22254/* GCC might emit a nameless typedef that has a linkage name. Determine the
22255 prefix part in such case. See
22256 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22257
a121b7c1 22258static const char *
96408a79
SA
22259anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22260{
22261 struct attribute *attr;
e6a959d6 22262 const char *base;
96408a79
SA
22263
22264 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22265 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22266 return NULL;
22267
7d45c7c3 22268 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
22269 return NULL;
22270
73b9be8b 22271 attr = dw2_linkage_name_attr (die, cu);
96408a79
SA
22272 if (attr == NULL || DW_STRING (attr) == NULL)
22273 return NULL;
22274
22275 /* dwarf2_name had to be already called. */
22276 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22277
22278 /* Strip the base name, keep any leading namespaces/classes. */
22279 base = strrchr (DW_STRING (attr), ':');
22280 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22281 return "";
22282
518817b3 22283 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
e3b94546 22284 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
224c3ddb
SM
22285 DW_STRING (attr),
22286 &base[-1] - DW_STRING (attr));
96408a79
SA
22287}
22288
fdde2d81 22289/* Return the name of the namespace/class that DIE is defined within,
0114d602 22290 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 22291
0114d602
DJ
22292 For example, if we're within the method foo() in the following
22293 code:
22294
22295 namespace N {
22296 class C {
22297 void foo () {
22298 }
22299 };
22300 }
22301
22302 then determine_prefix on foo's die will return "N::C". */
fdde2d81 22303
0d5cff50 22304static const char *
e142c38c 22305determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 22306{
518817b3
SM
22307 struct dwarf2_per_objfile *dwarf2_per_objfile
22308 = cu->per_cu->dwarf2_per_objfile;
0114d602
DJ
22309 struct die_info *parent, *spec_die;
22310 struct dwarf2_cu *spec_cu;
22311 struct type *parent_type;
a121b7c1 22312 const char *retval;
63d06c5c 22313
9c37b5ae 22314 if (cu->language != language_cplus
c44af4eb
TT
22315 && cu->language != language_fortran && cu->language != language_d
22316 && cu->language != language_rust)
0114d602
DJ
22317 return "";
22318
96408a79
SA
22319 retval = anonymous_struct_prefix (die, cu);
22320 if (retval)
22321 return retval;
22322
0114d602
DJ
22323 /* We have to be careful in the presence of DW_AT_specification.
22324 For example, with GCC 3.4, given the code
22325
22326 namespace N {
22327 void foo() {
22328 // Definition of N::foo.
22329 }
22330 }
22331
22332 then we'll have a tree of DIEs like this:
22333
22334 1: DW_TAG_compile_unit
22335 2: DW_TAG_namespace // N
22336 3: DW_TAG_subprogram // declaration of N::foo
22337 4: DW_TAG_subprogram // definition of N::foo
22338 DW_AT_specification // refers to die #3
22339
22340 Thus, when processing die #4, we have to pretend that we're in
22341 the context of its DW_AT_specification, namely the contex of die
22342 #3. */
22343 spec_cu = cu;
22344 spec_die = die_specification (die, &spec_cu);
22345 if (spec_die == NULL)
22346 parent = die->parent;
22347 else
63d06c5c 22348 {
0114d602
DJ
22349 parent = spec_die->parent;
22350 cu = spec_cu;
63d06c5c 22351 }
0114d602
DJ
22352
22353 if (parent == NULL)
22354 return "";
98bfdba5
PA
22355 else if (parent->building_fullname)
22356 {
22357 const char *name;
22358 const char *parent_name;
22359
22360 /* It has been seen on RealView 2.2 built binaries,
22361 DW_TAG_template_type_param types actually _defined_ as
22362 children of the parent class:
22363
22364 enum E {};
22365 template class <class Enum> Class{};
22366 Class<enum E> class_e;
22367
22368 1: DW_TAG_class_type (Class)
22369 2: DW_TAG_enumeration_type (E)
22370 3: DW_TAG_enumerator (enum1:0)
22371 3: DW_TAG_enumerator (enum2:1)
22372 ...
22373 2: DW_TAG_template_type_param
22374 DW_AT_type DW_FORM_ref_udata (E)
22375
22376 Besides being broken debug info, it can put GDB into an
22377 infinite loop. Consider:
22378
22379 When we're building the full name for Class<E>, we'll start
22380 at Class, and go look over its template type parameters,
22381 finding E. We'll then try to build the full name of E, and
22382 reach here. We're now trying to build the full name of E,
22383 and look over the parent DIE for containing scope. In the
22384 broken case, if we followed the parent DIE of E, we'd again
22385 find Class, and once again go look at its template type
22386 arguments, etc., etc. Simply don't consider such parent die
22387 as source-level parent of this die (it can't be, the language
22388 doesn't allow it), and break the loop here. */
22389 name = dwarf2_name (die, cu);
22390 parent_name = dwarf2_name (parent, cu);
b98664d3 22391 complaint (_("template param type '%s' defined within parent '%s'"),
98bfdba5
PA
22392 name ? name : "<unknown>",
22393 parent_name ? parent_name : "<unknown>");
22394 return "";
22395 }
63d06c5c 22396 else
0114d602
DJ
22397 switch (parent->tag)
22398 {
63d06c5c 22399 case DW_TAG_namespace:
0114d602 22400 parent_type = read_type_die (parent, cu);
acebe513
UW
22401 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22402 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22403 Work around this problem here. */
22404 if (cu->language == language_cplus
e86ca25f 22405 && strcmp (TYPE_NAME (parent_type), "::") == 0)
acebe513 22406 return "";
0114d602 22407 /* We give a name to even anonymous namespaces. */
e86ca25f 22408 return TYPE_NAME (parent_type);
63d06c5c 22409 case DW_TAG_class_type:
680b30c7 22410 case DW_TAG_interface_type:
63d06c5c 22411 case DW_TAG_structure_type:
0114d602 22412 case DW_TAG_union_type:
f55ee35c 22413 case DW_TAG_module:
0114d602 22414 parent_type = read_type_die (parent, cu);
e86ca25f
TT
22415 if (TYPE_NAME (parent_type) != NULL)
22416 return TYPE_NAME (parent_type);
0114d602
DJ
22417 else
22418 /* An anonymous structure is only allowed non-static data
22419 members; no typedefs, no member functions, et cetera.
22420 So it does not need a prefix. */
22421 return "";
abc72ce4 22422 case DW_TAG_compile_unit:
95554aad 22423 case DW_TAG_partial_unit:
abc72ce4
DE
22424 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22425 if (cu->language == language_cplus
8b70b953 22426 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
22427 && die->child != NULL
22428 && (die->tag == DW_TAG_class_type
22429 || die->tag == DW_TAG_structure_type
22430 || die->tag == DW_TAG_union_type))
22431 {
22432 char *name = guess_full_die_structure_name (die, cu);
22433 if (name != NULL)
22434 return name;
22435 }
22436 return "";
3d567982
TT
22437 case DW_TAG_enumeration_type:
22438 parent_type = read_type_die (parent, cu);
22439 if (TYPE_DECLARED_CLASS (parent_type))
22440 {
e86ca25f
TT
22441 if (TYPE_NAME (parent_type) != NULL)
22442 return TYPE_NAME (parent_type);
3d567982
TT
22443 return "";
22444 }
22445 /* Fall through. */
63d06c5c 22446 default:
8176b9b8 22447 return determine_prefix (parent, cu);
63d06c5c 22448 }
63d06c5c
DC
22449}
22450
3e43a32a
MS
22451/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22452 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22453 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22454 an obconcat, otherwise allocate storage for the result. The CU argument is
22455 used to determine the language and hence, the appropriate separator. */
987504bb 22456
f55ee35c 22457#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
22458
22459static char *
f55ee35c
JK
22460typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22461 int physname, struct dwarf2_cu *cu)
63d06c5c 22462{
f55ee35c 22463 const char *lead = "";
5c315b68 22464 const char *sep;
63d06c5c 22465
3e43a32a
MS
22466 if (suffix == NULL || suffix[0] == '\0'
22467 || prefix == NULL || prefix[0] == '\0')
987504bb 22468 sep = "";
45280282
IB
22469 else if (cu->language == language_d)
22470 {
22471 /* For D, the 'main' function could be defined in any module, but it
22472 should never be prefixed. */
22473 if (strcmp (suffix, "D main") == 0)
22474 {
22475 prefix = "";
22476 sep = "";
22477 }
22478 else
22479 sep = ".";
22480 }
f55ee35c
JK
22481 else if (cu->language == language_fortran && physname)
22482 {
22483 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22484 DW_AT_MIPS_linkage_name is preferred and used instead. */
22485
22486 lead = "__";
22487 sep = "_MOD_";
22488 }
987504bb
JJ
22489 else
22490 sep = "::";
63d06c5c 22491
6dd47d34
DE
22492 if (prefix == NULL)
22493 prefix = "";
22494 if (suffix == NULL)
22495 suffix = "";
22496
987504bb
JJ
22497 if (obs == NULL)
22498 {
3e43a32a 22499 char *retval
224c3ddb
SM
22500 = ((char *)
22501 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 22502
f55ee35c
JK
22503 strcpy (retval, lead);
22504 strcat (retval, prefix);
6dd47d34
DE
22505 strcat (retval, sep);
22506 strcat (retval, suffix);
63d06c5c
DC
22507 return retval;
22508 }
987504bb
JJ
22509 else
22510 {
22511 /* We have an obstack. */
f55ee35c 22512 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 22513 }
63d06c5c
DC
22514}
22515
c906108c
SS
22516/* Return sibling of die, NULL if no sibling. */
22517
f9aca02d 22518static struct die_info *
fba45db2 22519sibling_die (struct die_info *die)
c906108c 22520{
639d11d3 22521 return die->sibling;
c906108c
SS
22522}
22523
71c25dea
TT
22524/* Get name of a die, return NULL if not found. */
22525
15d034d0
TT
22526static const char *
22527dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
22528 struct obstack *obstack)
22529{
22530 if (name && cu->language == language_cplus)
22531 {
2f408ecb 22532 std::string canon_name = cp_canonicalize_string (name);
71c25dea 22533
2f408ecb 22534 if (!canon_name.empty ())
71c25dea 22535 {
2f408ecb
PA
22536 if (canon_name != name)
22537 name = (const char *) obstack_copy0 (obstack,
22538 canon_name.c_str (),
22539 canon_name.length ());
71c25dea
TT
22540 }
22541 }
22542
22543 return name;
c906108c
SS
22544}
22545
96553a0c
DE
22546/* Get name of a die, return NULL if not found.
22547 Anonymous namespaces are converted to their magic string. */
9219021c 22548
15d034d0 22549static const char *
e142c38c 22550dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
22551{
22552 struct attribute *attr;
518817b3 22553 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9219021c 22554
e142c38c 22555 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 22556 if ((!attr || !DW_STRING (attr))
96553a0c 22557 && die->tag != DW_TAG_namespace
53832f31
TT
22558 && die->tag != DW_TAG_class_type
22559 && die->tag != DW_TAG_interface_type
22560 && die->tag != DW_TAG_structure_type
22561 && die->tag != DW_TAG_union_type)
71c25dea
TT
22562 return NULL;
22563
22564 switch (die->tag)
22565 {
22566 case DW_TAG_compile_unit:
95554aad 22567 case DW_TAG_partial_unit:
71c25dea
TT
22568 /* Compilation units have a DW_AT_name that is a filename, not
22569 a source language identifier. */
22570 case DW_TAG_enumeration_type:
22571 case DW_TAG_enumerator:
22572 /* These tags always have simple identifiers already; no need
22573 to canonicalize them. */
22574 return DW_STRING (attr);
907af001 22575
96553a0c
DE
22576 case DW_TAG_namespace:
22577 if (attr != NULL && DW_STRING (attr) != NULL)
22578 return DW_STRING (attr);
22579 return CP_ANONYMOUS_NAMESPACE_STR;
22580
907af001
UW
22581 case DW_TAG_class_type:
22582 case DW_TAG_interface_type:
22583 case DW_TAG_structure_type:
22584 case DW_TAG_union_type:
22585 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22586 structures or unions. These were of the form "._%d" in GCC 4.1,
22587 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22588 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 22589 if (attr && DW_STRING (attr)
61012eef
GB
22590 && (startswith (DW_STRING (attr), "._")
22591 || startswith (DW_STRING (attr), "<anonymous")))
907af001 22592 return NULL;
53832f31
TT
22593
22594 /* GCC might emit a nameless typedef that has a linkage name. See
22595 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22596 if (!attr || DW_STRING (attr) == NULL)
22597 {
df5c6c50 22598 char *demangled = NULL;
53832f31 22599
73b9be8b 22600 attr = dw2_linkage_name_attr (die, cu);
53832f31
TT
22601 if (attr == NULL || DW_STRING (attr) == NULL)
22602 return NULL;
22603
df5c6c50
JK
22604 /* Avoid demangling DW_STRING (attr) the second time on a second
22605 call for the same DIE. */
22606 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 22607 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
22608
22609 if (demangled)
22610 {
e6a959d6 22611 const char *base;
96408a79 22612
53832f31 22613 /* FIXME: we already did this for the partial symbol... */
34a68019 22614 DW_STRING (attr)
224c3ddb 22615 = ((const char *)
e3b94546 22616 obstack_copy0 (&objfile->per_bfd->storage_obstack,
224c3ddb 22617 demangled, strlen (demangled)));
53832f31
TT
22618 DW_STRING_IS_CANONICAL (attr) = 1;
22619 xfree (demangled);
96408a79
SA
22620
22621 /* Strip any leading namespaces/classes, keep only the base name.
22622 DW_AT_name for named DIEs does not contain the prefixes. */
22623 base = strrchr (DW_STRING (attr), ':');
22624 if (base && base > DW_STRING (attr) && base[-1] == ':')
22625 return &base[1];
22626 else
22627 return DW_STRING (attr);
53832f31
TT
22628 }
22629 }
907af001
UW
22630 break;
22631
71c25dea 22632 default:
907af001
UW
22633 break;
22634 }
22635
22636 if (!DW_STRING_IS_CANONICAL (attr))
22637 {
22638 DW_STRING (attr)
22639 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
e3b94546 22640 &objfile->per_bfd->storage_obstack);
907af001 22641 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 22642 }
907af001 22643 return DW_STRING (attr);
9219021c
DC
22644}
22645
22646/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
22647 is none. *EXT_CU is the CU containing DIE on input, and the CU
22648 containing the return value on output. */
9219021c
DC
22649
22650static struct die_info *
f2f0e013 22651dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
22652{
22653 struct attribute *attr;
9219021c 22654
f2f0e013 22655 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
22656 if (attr == NULL)
22657 return NULL;
22658
f2f0e013 22659 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
22660}
22661
c906108c
SS
22662/* Convert a DIE tag into its string name. */
22663
f39c6ffd 22664static const char *
aa1ee363 22665dwarf_tag_name (unsigned tag)
c906108c 22666{
f39c6ffd
TT
22667 const char *name = get_DW_TAG_name (tag);
22668
22669 if (name == NULL)
22670 return "DW_TAG_<unknown>";
22671
22672 return name;
c906108c
SS
22673}
22674
22675/* Convert a DWARF attribute code into its string name. */
22676
f39c6ffd 22677static const char *
aa1ee363 22678dwarf_attr_name (unsigned attr)
c906108c 22679{
f39c6ffd
TT
22680 const char *name;
22681
c764a876 22682#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
22683 if (attr == DW_AT_MIPS_fde)
22684 return "DW_AT_MIPS_fde";
22685#else
22686 if (attr == DW_AT_HP_block_index)
22687 return "DW_AT_HP_block_index";
c764a876 22688#endif
f39c6ffd
TT
22689
22690 name = get_DW_AT_name (attr);
22691
22692 if (name == NULL)
22693 return "DW_AT_<unknown>";
22694
22695 return name;
c906108c
SS
22696}
22697
22698/* Convert a DWARF value form code into its string name. */
22699
f39c6ffd 22700static const char *
aa1ee363 22701dwarf_form_name (unsigned form)
c906108c 22702{
f39c6ffd
TT
22703 const char *name = get_DW_FORM_name (form);
22704
22705 if (name == NULL)
22706 return "DW_FORM_<unknown>";
22707
22708 return name;
c906108c
SS
22709}
22710
a121b7c1 22711static const char *
fba45db2 22712dwarf_bool_name (unsigned mybool)
c906108c
SS
22713{
22714 if (mybool)
22715 return "TRUE";
22716 else
22717 return "FALSE";
22718}
22719
22720/* Convert a DWARF type code into its string name. */
22721
f39c6ffd 22722static const char *
aa1ee363 22723dwarf_type_encoding_name (unsigned enc)
c906108c 22724{
f39c6ffd 22725 const char *name = get_DW_ATE_name (enc);
c906108c 22726
f39c6ffd
TT
22727 if (name == NULL)
22728 return "DW_ATE_<unknown>";
c906108c 22729
f39c6ffd 22730 return name;
c906108c 22731}
c906108c 22732
f9aca02d 22733static void
d97bc12b 22734dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
22735{
22736 unsigned int i;
22737
d97bc12b 22738 print_spaces (indent, f);
9d8780f0 22739 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
9c541725 22740 dwarf_tag_name (die->tag), die->abbrev,
9d8780f0 22741 sect_offset_str (die->sect_off));
d97bc12b
DE
22742
22743 if (die->parent != NULL)
22744 {
22745 print_spaces (indent, f);
9d8780f0
SM
22746 fprintf_unfiltered (f, " parent at offset: %s\n",
22747 sect_offset_str (die->parent->sect_off));
d97bc12b
DE
22748 }
22749
22750 print_spaces (indent, f);
22751 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 22752 dwarf_bool_name (die->child != NULL));
c906108c 22753
d97bc12b
DE
22754 print_spaces (indent, f);
22755 fprintf_unfiltered (f, " attributes:\n");
22756
c906108c
SS
22757 for (i = 0; i < die->num_attrs; ++i)
22758 {
d97bc12b
DE
22759 print_spaces (indent, f);
22760 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
22761 dwarf_attr_name (die->attrs[i].name),
22762 dwarf_form_name (die->attrs[i].form));
d97bc12b 22763
c906108c
SS
22764 switch (die->attrs[i].form)
22765 {
c906108c 22766 case DW_FORM_addr:
3019eac3 22767 case DW_FORM_GNU_addr_index:
d97bc12b 22768 fprintf_unfiltered (f, "address: ");
5af949e3 22769 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
22770 break;
22771 case DW_FORM_block2:
22772 case DW_FORM_block4:
22773 case DW_FORM_block:
22774 case DW_FORM_block1:
56eb65bd
SP
22775 fprintf_unfiltered (f, "block: size %s",
22776 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 22777 break;
2dc7f7b3 22778 case DW_FORM_exprloc:
56eb65bd
SP
22779 fprintf_unfiltered (f, "expression: size %s",
22780 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 22781 break;
0224619f
JK
22782 case DW_FORM_data16:
22783 fprintf_unfiltered (f, "constant of 16 bytes");
22784 break;
4568ecf9
DE
22785 case DW_FORM_ref_addr:
22786 fprintf_unfiltered (f, "ref address: ");
22787 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22788 break;
36586728
TT
22789 case DW_FORM_GNU_ref_alt:
22790 fprintf_unfiltered (f, "alt ref address: ");
22791 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22792 break;
10b3939b
DJ
22793 case DW_FORM_ref1:
22794 case DW_FORM_ref2:
22795 case DW_FORM_ref4:
4568ecf9
DE
22796 case DW_FORM_ref8:
22797 case DW_FORM_ref_udata:
d97bc12b 22798 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 22799 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 22800 break;
c906108c
SS
22801 case DW_FORM_data1:
22802 case DW_FORM_data2:
22803 case DW_FORM_data4:
ce5d95e1 22804 case DW_FORM_data8:
c906108c
SS
22805 case DW_FORM_udata:
22806 case DW_FORM_sdata:
43bbcdc2
PH
22807 fprintf_unfiltered (f, "constant: %s",
22808 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 22809 break;
2dc7f7b3
TT
22810 case DW_FORM_sec_offset:
22811 fprintf_unfiltered (f, "section offset: %s",
22812 pulongest (DW_UNSND (&die->attrs[i])));
22813 break;
55f1336d 22814 case DW_FORM_ref_sig8:
ac9ec31b
DE
22815 fprintf_unfiltered (f, "signature: %s",
22816 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 22817 break;
c906108c 22818 case DW_FORM_string:
4bdf3d34 22819 case DW_FORM_strp:
43988095 22820 case DW_FORM_line_strp:
3019eac3 22821 case DW_FORM_GNU_str_index:
36586728 22822 case DW_FORM_GNU_strp_alt:
8285870a 22823 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 22824 DW_STRING (&die->attrs[i])
8285870a
JK
22825 ? DW_STRING (&die->attrs[i]) : "",
22826 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
22827 break;
22828 case DW_FORM_flag:
22829 if (DW_UNSND (&die->attrs[i]))
d97bc12b 22830 fprintf_unfiltered (f, "flag: TRUE");
c906108c 22831 else
d97bc12b 22832 fprintf_unfiltered (f, "flag: FALSE");
c906108c 22833 break;
2dc7f7b3
TT
22834 case DW_FORM_flag_present:
22835 fprintf_unfiltered (f, "flag: TRUE");
22836 break;
a8329558 22837 case DW_FORM_indirect:
0963b4bd
MS
22838 /* The reader will have reduced the indirect form to
22839 the "base form" so this form should not occur. */
3e43a32a
MS
22840 fprintf_unfiltered (f,
22841 "unexpected attribute form: DW_FORM_indirect");
a8329558 22842 break;
663c44ac
JK
22843 case DW_FORM_implicit_const:
22844 fprintf_unfiltered (f, "constant: %s",
22845 plongest (DW_SND (&die->attrs[i])));
22846 break;
c906108c 22847 default:
d97bc12b 22848 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 22849 die->attrs[i].form);
d97bc12b 22850 break;
c906108c 22851 }
d97bc12b 22852 fprintf_unfiltered (f, "\n");
c906108c
SS
22853 }
22854}
22855
f9aca02d 22856static void
d97bc12b 22857dump_die_for_error (struct die_info *die)
c906108c 22858{
d97bc12b
DE
22859 dump_die_shallow (gdb_stderr, 0, die);
22860}
22861
22862static void
22863dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22864{
22865 int indent = level * 4;
22866
22867 gdb_assert (die != NULL);
22868
22869 if (level >= max_level)
22870 return;
22871
22872 dump_die_shallow (f, indent, die);
22873
22874 if (die->child != NULL)
c906108c 22875 {
d97bc12b
DE
22876 print_spaces (indent, f);
22877 fprintf_unfiltered (f, " Children:");
22878 if (level + 1 < max_level)
22879 {
22880 fprintf_unfiltered (f, "\n");
22881 dump_die_1 (f, level + 1, max_level, die->child);
22882 }
22883 else
22884 {
3e43a32a
MS
22885 fprintf_unfiltered (f,
22886 " [not printed, max nesting level reached]\n");
d97bc12b
DE
22887 }
22888 }
22889
22890 if (die->sibling != NULL && level > 0)
22891 {
22892 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
22893 }
22894}
22895
d97bc12b
DE
22896/* This is called from the pdie macro in gdbinit.in.
22897 It's not static so gcc will keep a copy callable from gdb. */
22898
22899void
22900dump_die (struct die_info *die, int max_level)
22901{
22902 dump_die_1 (gdb_stdlog, 0, max_level, die);
22903}
22904
f9aca02d 22905static void
51545339 22906store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 22907{
51545339 22908 void **slot;
c906108c 22909
9c541725
PA
22910 slot = htab_find_slot_with_hash (cu->die_hash, die,
22911 to_underlying (die->sect_off),
b64f50a1 22912 INSERT);
51545339
DJ
22913
22914 *slot = die;
c906108c
SS
22915}
22916
b64f50a1
JK
22917/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22918 required kind. */
22919
22920static sect_offset
ff39bb5e 22921dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 22922{
7771576e 22923 if (attr_form_is_ref (attr))
9c541725 22924 return (sect_offset) DW_UNSND (attr);
93311388 22925
b98664d3 22926 complaint (_("unsupported die ref attribute form: '%s'"),
93311388 22927 dwarf_form_name (attr->form));
9c541725 22928 return {};
c906108c
SS
22929}
22930
43bbcdc2
PH
22931/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22932 * the value held by the attribute is not constant. */
a02abb62 22933
43bbcdc2 22934static LONGEST
ff39bb5e 22935dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62 22936{
663c44ac 22937 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
a02abb62
JB
22938 return DW_SND (attr);
22939 else if (attr->form == DW_FORM_udata
22940 || attr->form == DW_FORM_data1
22941 || attr->form == DW_FORM_data2
22942 || attr->form == DW_FORM_data4
22943 || attr->form == DW_FORM_data8)
22944 return DW_UNSND (attr);
22945 else
22946 {
0224619f 22947 /* For DW_FORM_data16 see attr_form_is_constant. */
b98664d3 22948 complaint (_("Attribute value is not a constant (%s)"),
a02abb62
JB
22949 dwarf_form_name (attr->form));
22950 return default_value;
22951 }
22952}
22953
348e048f
DE
22954/* Follow reference or signature attribute ATTR of SRC_DIE.
22955 On entry *REF_CU is the CU of SRC_DIE.
22956 On exit *REF_CU is the CU of the result. */
22957
22958static struct die_info *
ff39bb5e 22959follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
22960 struct dwarf2_cu **ref_cu)
22961{
22962 struct die_info *die;
22963
7771576e 22964 if (attr_form_is_ref (attr))
348e048f 22965 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 22966 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
22967 die = follow_die_sig (src_die, attr, ref_cu);
22968 else
22969 {
22970 dump_die_for_error (src_die);
22971 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
518817b3 22972 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
348e048f
DE
22973 }
22974
22975 return die;
03dd20cc
DJ
22976}
22977
5c631832 22978/* Follow reference OFFSET.
673bfd45
DE
22979 On entry *REF_CU is the CU of the source die referencing OFFSET.
22980 On exit *REF_CU is the CU of the result.
22981 Returns NULL if OFFSET is invalid. */
f504f079 22982
f9aca02d 22983static struct die_info *
9c541725 22984follow_die_offset (sect_offset sect_off, int offset_in_dwz,
36586728 22985 struct dwarf2_cu **ref_cu)
c906108c 22986{
10b3939b 22987 struct die_info temp_die;
f2f0e013 22988 struct dwarf2_cu *target_cu, *cu = *ref_cu;
518817b3
SM
22989 struct dwarf2_per_objfile *dwarf2_per_objfile
22990 = cu->per_cu->dwarf2_per_objfile;
10b3939b 22991
348e048f
DE
22992 gdb_assert (cu->per_cu != NULL);
22993
98bfdba5
PA
22994 target_cu = cu;
22995
3019eac3 22996 if (cu->per_cu->is_debug_types)
348e048f
DE
22997 {
22998 /* .debug_types CUs cannot reference anything outside their CU.
22999 If they need to, they have to reference a signatured type via
55f1336d 23000 DW_FORM_ref_sig8. */
9c541725 23001 if (!offset_in_cu_p (&cu->header, sect_off))
5c631832 23002 return NULL;
348e048f 23003 }
36586728 23004 else if (offset_in_dwz != cu->per_cu->is_dwz
9c541725 23005 || !offset_in_cu_p (&cu->header, sect_off))
10b3939b
DJ
23006 {
23007 struct dwarf2_per_cu_data *per_cu;
9a619af0 23008
9c541725 23009 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
ed2dc618 23010 dwarf2_per_objfile);
03dd20cc
DJ
23011
23012 /* If necessary, add it to the queue and load its DIEs. */
95554aad 23013 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
58f0c718 23014 load_full_comp_unit (per_cu, false, cu->language);
03dd20cc 23015
10b3939b
DJ
23016 target_cu = per_cu->cu;
23017 }
98bfdba5
PA
23018 else if (cu->dies == NULL)
23019 {
23020 /* We're loading full DIEs during partial symbol reading. */
23021 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
58f0c718 23022 load_full_comp_unit (cu->per_cu, false, language_minimal);
98bfdba5 23023 }
c906108c 23024
f2f0e013 23025 *ref_cu = target_cu;
9c541725 23026 temp_die.sect_off = sect_off;
9a3c8263 23027 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
9c541725
PA
23028 &temp_die,
23029 to_underlying (sect_off));
5c631832 23030}
10b3939b 23031
5c631832
JK
23032/* Follow reference attribute ATTR of SRC_DIE.
23033 On entry *REF_CU is the CU of SRC_DIE.
23034 On exit *REF_CU is the CU of the result. */
23035
23036static struct die_info *
ff39bb5e 23037follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
23038 struct dwarf2_cu **ref_cu)
23039{
9c541725 23040 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
5c631832
JK
23041 struct dwarf2_cu *cu = *ref_cu;
23042 struct die_info *die;
23043
9c541725 23044 die = follow_die_offset (sect_off,
36586728
TT
23045 (attr->form == DW_FORM_GNU_ref_alt
23046 || cu->per_cu->is_dwz),
23047 ref_cu);
5c631832 23048 if (!die)
9d8780f0
SM
23049 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23050 "at %s [in module %s]"),
23051 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
518817b3 23052 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
348e048f 23053
5c631832
JK
23054 return die;
23055}
23056
9c541725 23057/* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
d83e736b 23058 Returned value is intended for DW_OP_call*. Returned
e3b94546
SM
23059 dwarf2_locexpr_baton->data has lifetime of
23060 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
5c631832
JK
23061
23062struct dwarf2_locexpr_baton
9c541725 23063dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
8b9737bf
TT
23064 struct dwarf2_per_cu_data *per_cu,
23065 CORE_ADDR (*get_frame_pc) (void *baton),
e4a62c65 23066 void *baton, bool resolve_abstract_p)
5c631832 23067{
918dd910 23068 struct dwarf2_cu *cu;
5c631832
JK
23069 struct die_info *die;
23070 struct attribute *attr;
23071 struct dwarf2_locexpr_baton retval;
12359b5e
SM
23072 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23073 struct objfile *objfile = dwarf2_per_objfile->objfile;
8cf6f0b1 23074
918dd910 23075 if (per_cu->cu == NULL)
58f0c718 23076 load_cu (per_cu, false);
918dd910 23077 cu = per_cu->cu;
cc12ce38
DE
23078 if (cu == NULL)
23079 {
23080 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23081 Instead just throw an error, not much else we can do. */
9d8780f0
SM
23082 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23083 sect_offset_str (sect_off), objfile_name (objfile));
cc12ce38 23084 }
918dd910 23085
9c541725 23086 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
5c631832 23087 if (!die)
9d8780f0
SM
23088 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23089 sect_offset_str (sect_off), objfile_name (objfile));
5c631832
JK
23090
23091 attr = dwarf2_attr (die, DW_AT_location, cu);
e4a62c65
TV
23092 if (!attr && resolve_abstract_p
23093 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23094 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23095 {
23096 CORE_ADDR pc = (*get_frame_pc) (baton);
23097
23098 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23099 {
23100 if (!cand->parent
23101 || cand->parent->tag != DW_TAG_subprogram)
23102 continue;
23103
23104 CORE_ADDR pc_low, pc_high;
23105 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23106 if (pc_low == ((CORE_ADDR) -1)
23107 || !(pc_low <= pc && pc < pc_high))
23108 continue;
23109
23110 die = cand;
23111 attr = dwarf2_attr (die, DW_AT_location, cu);
23112 break;
23113 }
23114 }
23115
5c631832
JK
23116 if (!attr)
23117 {
e103e986
JK
23118 /* DWARF: "If there is no such attribute, then there is no effect.".
23119 DATA is ignored if SIZE is 0. */
5c631832 23120
e103e986 23121 retval.data = NULL;
5c631832
JK
23122 retval.size = 0;
23123 }
8cf6f0b1
TT
23124 else if (attr_form_is_section_offset (attr))
23125 {
23126 struct dwarf2_loclist_baton loclist_baton;
23127 CORE_ADDR pc = (*get_frame_pc) (baton);
23128 size_t size;
23129
23130 fill_in_loclist_baton (cu, &loclist_baton, attr);
23131
23132 retval.data = dwarf2_find_location_expression (&loclist_baton,
23133 &size, pc);
23134 retval.size = size;
23135 }
5c631832
JK
23136 else
23137 {
23138 if (!attr_form_is_block (attr))
9d8780f0 23139 error (_("Dwarf Error: DIE at %s referenced in module %s "
5c631832 23140 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
9d8780f0 23141 sect_offset_str (sect_off), objfile_name (objfile));
5c631832
JK
23142
23143 retval.data = DW_BLOCK (attr)->data;
23144 retval.size = DW_BLOCK (attr)->size;
23145 }
23146 retval.per_cu = cu->per_cu;
918dd910 23147
ed2dc618 23148 age_cached_comp_units (dwarf2_per_objfile);
918dd910 23149
5c631832 23150 return retval;
348e048f
DE
23151}
23152
8b9737bf
TT
23153/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23154 offset. */
23155
23156struct dwarf2_locexpr_baton
23157dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23158 struct dwarf2_per_cu_data *per_cu,
23159 CORE_ADDR (*get_frame_pc) (void *baton),
23160 void *baton)
23161{
9c541725 23162 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
8b9737bf 23163
9c541725 23164 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
8b9737bf
TT
23165}
23166
b6807d98
TT
23167/* Write a constant of a given type as target-ordered bytes into
23168 OBSTACK. */
23169
23170static const gdb_byte *
23171write_constant_as_bytes (struct obstack *obstack,
23172 enum bfd_endian byte_order,
23173 struct type *type,
23174 ULONGEST value,
23175 LONGEST *len)
23176{
23177 gdb_byte *result;
23178
23179 *len = TYPE_LENGTH (type);
224c3ddb 23180 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
23181 store_unsigned_integer (result, *len, byte_order, value);
23182
23183 return result;
23184}
23185
23186/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23187 pointer to the constant bytes and set LEN to the length of the
23188 data. If memory is needed, allocate it on OBSTACK. If the DIE
23189 does not have a DW_AT_const_value, return NULL. */
23190
23191const gdb_byte *
9c541725 23192dwarf2_fetch_constant_bytes (sect_offset sect_off,
b6807d98
TT
23193 struct dwarf2_per_cu_data *per_cu,
23194 struct obstack *obstack,
23195 LONGEST *len)
23196{
23197 struct dwarf2_cu *cu;
23198 struct die_info *die;
23199 struct attribute *attr;
23200 const gdb_byte *result = NULL;
23201 struct type *type;
23202 LONGEST value;
23203 enum bfd_endian byte_order;
e3b94546 23204 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
b6807d98 23205
b6807d98 23206 if (per_cu->cu == NULL)
58f0c718 23207 load_cu (per_cu, false);
b6807d98 23208 cu = per_cu->cu;
cc12ce38
DE
23209 if (cu == NULL)
23210 {
23211 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23212 Instead just throw an error, not much else we can do. */
9d8780f0
SM
23213 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23214 sect_offset_str (sect_off), objfile_name (objfile));
cc12ce38 23215 }
b6807d98 23216
9c541725 23217 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
b6807d98 23218 if (!die)
9d8780f0
SM
23219 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23220 sect_offset_str (sect_off), objfile_name (objfile));
b6807d98
TT
23221
23222 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23223 if (attr == NULL)
23224 return NULL;
23225
e3b94546 23226 byte_order = (bfd_big_endian (objfile->obfd)
b6807d98
TT
23227 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23228
23229 switch (attr->form)
23230 {
23231 case DW_FORM_addr:
23232 case DW_FORM_GNU_addr_index:
23233 {
23234 gdb_byte *tem;
23235
23236 *len = cu->header.addr_size;
224c3ddb 23237 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
23238 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23239 result = tem;
23240 }
23241 break;
23242 case DW_FORM_string:
23243 case DW_FORM_strp:
23244 case DW_FORM_GNU_str_index:
23245 case DW_FORM_GNU_strp_alt:
23246 /* DW_STRING is already allocated on the objfile obstack, point
23247 directly to it. */
23248 result = (const gdb_byte *) DW_STRING (attr);
23249 *len = strlen (DW_STRING (attr));
23250 break;
23251 case DW_FORM_block1:
23252 case DW_FORM_block2:
23253 case DW_FORM_block4:
23254 case DW_FORM_block:
23255 case DW_FORM_exprloc:
0224619f 23256 case DW_FORM_data16:
b6807d98
TT
23257 result = DW_BLOCK (attr)->data;
23258 *len = DW_BLOCK (attr)->size;
23259 break;
23260
23261 /* The DW_AT_const_value attributes are supposed to carry the
23262 symbol's value "represented as it would be on the target
23263 architecture." By the time we get here, it's already been
23264 converted to host endianness, so we just need to sign- or
23265 zero-extend it as appropriate. */
23266 case DW_FORM_data1:
23267 type = die_type (die, cu);
23268 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23269 if (result == NULL)
23270 result = write_constant_as_bytes (obstack, byte_order,
23271 type, value, len);
23272 break;
23273 case DW_FORM_data2:
23274 type = die_type (die, cu);
23275 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23276 if (result == NULL)
23277 result = write_constant_as_bytes (obstack, byte_order,
23278 type, value, len);
23279 break;
23280 case DW_FORM_data4:
23281 type = die_type (die, cu);
23282 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23283 if (result == NULL)
23284 result = write_constant_as_bytes (obstack, byte_order,
23285 type, value, len);
23286 break;
23287 case DW_FORM_data8:
23288 type = die_type (die, cu);
23289 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23290 if (result == NULL)
23291 result = write_constant_as_bytes (obstack, byte_order,
23292 type, value, len);
23293 break;
23294
23295 case DW_FORM_sdata:
663c44ac 23296 case DW_FORM_implicit_const:
b6807d98
TT
23297 type = die_type (die, cu);
23298 result = write_constant_as_bytes (obstack, byte_order,
23299 type, DW_SND (attr), len);
23300 break;
23301
23302 case DW_FORM_udata:
23303 type = die_type (die, cu);
23304 result = write_constant_as_bytes (obstack, byte_order,
23305 type, DW_UNSND (attr), len);
23306 break;
23307
23308 default:
b98664d3 23309 complaint (_("unsupported const value attribute form: '%s'"),
b6807d98
TT
23310 dwarf_form_name (attr->form));
23311 break;
23312 }
23313
23314 return result;
23315}
23316
7942e96e
AA
23317/* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23318 valid type for this die is found. */
23319
23320struct type *
9c541725 23321dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
7942e96e
AA
23322 struct dwarf2_per_cu_data *per_cu)
23323{
23324 struct dwarf2_cu *cu;
23325 struct die_info *die;
23326
7942e96e 23327 if (per_cu->cu == NULL)
58f0c718 23328 load_cu (per_cu, false);
7942e96e
AA
23329 cu = per_cu->cu;
23330 if (!cu)
23331 return NULL;
23332
9c541725 23333 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
7942e96e
AA
23334 if (!die)
23335 return NULL;
23336
23337 return die_type (die, cu);
23338}
23339
8a9b8146
TT
23340/* Return the type of the DIE at DIE_OFFSET in the CU named by
23341 PER_CU. */
23342
23343struct type *
b64f50a1 23344dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
23345 struct dwarf2_per_cu_data *per_cu)
23346{
9c541725 23347 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
b64f50a1 23348 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
23349}
23350
ac9ec31b 23351/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 23352 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
23353 On exit *REF_CU is the CU of the result.
23354 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
23355
23356static struct die_info *
ac9ec31b
DE
23357follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23358 struct dwarf2_cu **ref_cu)
348e048f 23359{
348e048f 23360 struct die_info temp_die;
348e048f
DE
23361 struct dwarf2_cu *sig_cu;
23362 struct die_info *die;
23363
ac9ec31b
DE
23364 /* While it might be nice to assert sig_type->type == NULL here,
23365 we can get here for DW_AT_imported_declaration where we need
23366 the DIE not the type. */
348e048f
DE
23367
23368 /* If necessary, add it to the queue and load its DIEs. */
23369
95554aad 23370 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 23371 read_signatured_type (sig_type);
348e048f 23372
348e048f 23373 sig_cu = sig_type->per_cu.cu;
69d751e3 23374 gdb_assert (sig_cu != NULL);
9c541725
PA
23375 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23376 temp_die.sect_off = sig_type->type_offset_in_section;
9a3c8263 23377 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
9c541725 23378 to_underlying (temp_die.sect_off));
348e048f
DE
23379 if (die)
23380 {
ed2dc618 23381 struct dwarf2_per_objfile *dwarf2_per_objfile
518817b3 23382 = (*ref_cu)->per_cu->dwarf2_per_objfile;
ed2dc618 23383
796a7ff8
DE
23384 /* For .gdb_index version 7 keep track of included TUs.
23385 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23386 if (dwarf2_per_objfile->index_table != NULL
23387 && dwarf2_per_objfile->index_table->version <= 7)
23388 {
23389 VEC_safe_push (dwarf2_per_cu_ptr,
23390 (*ref_cu)->per_cu->imported_symtabs,
23391 sig_cu->per_cu);
23392 }
23393
348e048f
DE
23394 *ref_cu = sig_cu;
23395 return die;
23396 }
23397
ac9ec31b
DE
23398 return NULL;
23399}
23400
23401/* Follow signatured type referenced by ATTR in SRC_DIE.
23402 On entry *REF_CU is the CU of SRC_DIE.
23403 On exit *REF_CU is the CU of the result.
23404 The result is the DIE of the type.
23405 If the referenced type cannot be found an error is thrown. */
23406
23407static struct die_info *
ff39bb5e 23408follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
23409 struct dwarf2_cu **ref_cu)
23410{
23411 ULONGEST signature = DW_SIGNATURE (attr);
23412 struct signatured_type *sig_type;
23413 struct die_info *die;
23414
23415 gdb_assert (attr->form == DW_FORM_ref_sig8);
23416
a2ce51a0 23417 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
23418 /* sig_type will be NULL if the signatured type is missing from
23419 the debug info. */
23420 if (sig_type == NULL)
23421 {
23422 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
9d8780f0
SM
23423 " from DIE at %s [in module %s]"),
23424 hex_string (signature), sect_offset_str (src_die->sect_off),
518817b3 23425 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
ac9ec31b
DE
23426 }
23427
23428 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23429 if (die == NULL)
23430 {
23431 dump_die_for_error (src_die);
23432 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
9d8780f0
SM
23433 " from DIE at %s [in module %s]"),
23434 hex_string (signature), sect_offset_str (src_die->sect_off),
518817b3 23435 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
ac9ec31b
DE
23436 }
23437
23438 return die;
23439}
23440
23441/* Get the type specified by SIGNATURE referenced in DIE/CU,
23442 reading in and processing the type unit if necessary. */
23443
23444static struct type *
23445get_signatured_type (struct die_info *die, ULONGEST signature,
23446 struct dwarf2_cu *cu)
23447{
518817b3
SM
23448 struct dwarf2_per_objfile *dwarf2_per_objfile
23449 = cu->per_cu->dwarf2_per_objfile;
ac9ec31b
DE
23450 struct signatured_type *sig_type;
23451 struct dwarf2_cu *type_cu;
23452 struct die_info *type_die;
23453 struct type *type;
23454
a2ce51a0 23455 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
23456 /* sig_type will be NULL if the signatured type is missing from
23457 the debug info. */
23458 if (sig_type == NULL)
23459 {
b98664d3 23460 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
9d8780f0
SM
23461 " from DIE at %s [in module %s]"),
23462 hex_string (signature), sect_offset_str (die->sect_off),
4262abfb 23463 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
23464 return build_error_marker_type (cu, die);
23465 }
23466
23467 /* If we already know the type we're done. */
23468 if (sig_type->type != NULL)
23469 return sig_type->type;
23470
23471 type_cu = cu;
23472 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23473 if (type_die != NULL)
23474 {
23475 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23476 is created. This is important, for example, because for c++ classes
23477 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23478 type = read_type_die (type_die, type_cu);
23479 if (type == NULL)
23480 {
b98664d3 23481 complaint (_("Dwarf Error: Cannot build signatured type %s"
9d8780f0
SM
23482 " referenced from DIE at %s [in module %s]"),
23483 hex_string (signature), sect_offset_str (die->sect_off),
4262abfb 23484 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
23485 type = build_error_marker_type (cu, die);
23486 }
23487 }
23488 else
23489 {
b98664d3 23490 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
9d8780f0
SM
23491 " from DIE at %s [in module %s]"),
23492 hex_string (signature), sect_offset_str (die->sect_off),
4262abfb 23493 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
23494 type = build_error_marker_type (cu, die);
23495 }
23496 sig_type->type = type;
23497
23498 return type;
23499}
23500
23501/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23502 reading in and processing the type unit if necessary. */
23503
23504static struct type *
ff39bb5e 23505get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 23506 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
23507{
23508 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 23509 if (attr_form_is_ref (attr))
ac9ec31b
DE
23510 {
23511 struct dwarf2_cu *type_cu = cu;
23512 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23513
23514 return read_type_die (type_die, type_cu);
23515 }
23516 else if (attr->form == DW_FORM_ref_sig8)
23517 {
23518 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23519 }
23520 else
23521 {
518817b3
SM
23522 struct dwarf2_per_objfile *dwarf2_per_objfile
23523 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 23524
b98664d3 23525 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
9d8780f0
SM
23526 " at %s [in module %s]"),
23527 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
4262abfb 23528 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
23529 return build_error_marker_type (cu, die);
23530 }
348e048f
DE
23531}
23532
e5fe5e75 23533/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
23534
23535static void
e5fe5e75 23536load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 23537{
52dc124a 23538 struct signatured_type *sig_type;
348e048f 23539
f4dc4d17
DE
23540 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23541 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23542
6721b2ec
DE
23543 /* We have the per_cu, but we need the signatured_type.
23544 Fortunately this is an easy translation. */
23545 gdb_assert (per_cu->is_debug_types);
23546 sig_type = (struct signatured_type *) per_cu;
348e048f 23547
6721b2ec 23548 gdb_assert (per_cu->cu == NULL);
348e048f 23549
52dc124a 23550 read_signatured_type (sig_type);
348e048f 23551
6721b2ec 23552 gdb_assert (per_cu->cu != NULL);
348e048f
DE
23553}
23554
dee91e82
DE
23555/* die_reader_func for read_signatured_type.
23556 This is identical to load_full_comp_unit_reader,
23557 but is kept separate for now. */
348e048f
DE
23558
23559static void
dee91e82 23560read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 23561 const gdb_byte *info_ptr,
dee91e82
DE
23562 struct die_info *comp_unit_die,
23563 int has_children,
23564 void *data)
348e048f 23565{
dee91e82 23566 struct dwarf2_cu *cu = reader->cu;
348e048f 23567
dee91e82
DE
23568 gdb_assert (cu->die_hash == NULL);
23569 cu->die_hash =
23570 htab_create_alloc_ex (cu->header.length / 12,
23571 die_hash,
23572 die_eq,
23573 NULL,
23574 &cu->comp_unit_obstack,
23575 hashtab_obstack_allocate,
23576 dummy_obstack_deallocate);
348e048f 23577
dee91e82
DE
23578 if (has_children)
23579 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23580 &info_ptr, comp_unit_die);
23581 cu->dies = comp_unit_die;
23582 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
23583
23584 /* We try not to read any attributes in this function, because not
9cdd5dbd 23585 all CUs needed for references have been loaded yet, and symbol
348e048f 23586 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
23587 or we won't be able to build types correctly.
23588 Similarly, if we do not read the producer, we can not apply
23589 producer-specific interpretation. */
95554aad 23590 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 23591}
348e048f 23592
3019eac3
DE
23593/* Read in a signatured type and build its CU and DIEs.
23594 If the type is a stub for the real type in a DWO file,
23595 read in the real type from the DWO file as well. */
dee91e82
DE
23596
23597static void
23598read_signatured_type (struct signatured_type *sig_type)
23599{
23600 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 23601
3019eac3 23602 gdb_assert (per_cu->is_debug_types);
dee91e82 23603 gdb_assert (per_cu->cu == NULL);
348e048f 23604
58f0c718 23605 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
f4dc4d17 23606 read_signatured_type_reader, NULL);
7ee85ab1 23607 sig_type->per_cu.tu_read = 1;
c906108c
SS
23608}
23609
c906108c
SS
23610/* Decode simple location descriptions.
23611 Given a pointer to a dwarf block that defines a location, compute
23612 the location and return the value.
23613
4cecd739
DJ
23614 NOTE drow/2003-11-18: This function is called in two situations
23615 now: for the address of static or global variables (partial symbols
23616 only) and for offsets into structures which are expected to be
23617 (more or less) constant. The partial symbol case should go away,
23618 and only the constant case should remain. That will let this
23619 function complain more accurately. A few special modes are allowed
23620 without complaint for global variables (for instance, global
23621 register values and thread-local values).
c906108c
SS
23622
23623 A location description containing no operations indicates that the
4cecd739 23624 object is optimized out. The return value is 0 for that case.
6b992462
DJ
23625 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23626 callers will only want a very basic result and this can become a
21ae7a4d
JK
23627 complaint.
23628
23629 Note that stack[0] is unused except as a default error return. */
c906108c
SS
23630
23631static CORE_ADDR
e7c27a73 23632decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 23633{
518817b3 23634 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
56eb65bd
SP
23635 size_t i;
23636 size_t size = blk->size;
d521ce57 23637 const gdb_byte *data = blk->data;
21ae7a4d
JK
23638 CORE_ADDR stack[64];
23639 int stacki;
23640 unsigned int bytes_read, unsnd;
23641 gdb_byte op;
c906108c 23642
21ae7a4d
JK
23643 i = 0;
23644 stacki = 0;
23645 stack[stacki] = 0;
23646 stack[++stacki] = 0;
23647
23648 while (i < size)
23649 {
23650 op = data[i++];
23651 switch (op)
23652 {
23653 case DW_OP_lit0:
23654 case DW_OP_lit1:
23655 case DW_OP_lit2:
23656 case DW_OP_lit3:
23657 case DW_OP_lit4:
23658 case DW_OP_lit5:
23659 case DW_OP_lit6:
23660 case DW_OP_lit7:
23661 case DW_OP_lit8:
23662 case DW_OP_lit9:
23663 case DW_OP_lit10:
23664 case DW_OP_lit11:
23665 case DW_OP_lit12:
23666 case DW_OP_lit13:
23667 case DW_OP_lit14:
23668 case DW_OP_lit15:
23669 case DW_OP_lit16:
23670 case DW_OP_lit17:
23671 case DW_OP_lit18:
23672 case DW_OP_lit19:
23673 case DW_OP_lit20:
23674 case DW_OP_lit21:
23675 case DW_OP_lit22:
23676 case DW_OP_lit23:
23677 case DW_OP_lit24:
23678 case DW_OP_lit25:
23679 case DW_OP_lit26:
23680 case DW_OP_lit27:
23681 case DW_OP_lit28:
23682 case DW_OP_lit29:
23683 case DW_OP_lit30:
23684 case DW_OP_lit31:
23685 stack[++stacki] = op - DW_OP_lit0;
23686 break;
f1bea926 23687
21ae7a4d
JK
23688 case DW_OP_reg0:
23689 case DW_OP_reg1:
23690 case DW_OP_reg2:
23691 case DW_OP_reg3:
23692 case DW_OP_reg4:
23693 case DW_OP_reg5:
23694 case DW_OP_reg6:
23695 case DW_OP_reg7:
23696 case DW_OP_reg8:
23697 case DW_OP_reg9:
23698 case DW_OP_reg10:
23699 case DW_OP_reg11:
23700 case DW_OP_reg12:
23701 case DW_OP_reg13:
23702 case DW_OP_reg14:
23703 case DW_OP_reg15:
23704 case DW_OP_reg16:
23705 case DW_OP_reg17:
23706 case DW_OP_reg18:
23707 case DW_OP_reg19:
23708 case DW_OP_reg20:
23709 case DW_OP_reg21:
23710 case DW_OP_reg22:
23711 case DW_OP_reg23:
23712 case DW_OP_reg24:
23713 case DW_OP_reg25:
23714 case DW_OP_reg26:
23715 case DW_OP_reg27:
23716 case DW_OP_reg28:
23717 case DW_OP_reg29:
23718 case DW_OP_reg30:
23719 case DW_OP_reg31:
23720 stack[++stacki] = op - DW_OP_reg0;
23721 if (i < size)
23722 dwarf2_complex_location_expr_complaint ();
23723 break;
c906108c 23724
21ae7a4d
JK
23725 case DW_OP_regx:
23726 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23727 i += bytes_read;
23728 stack[++stacki] = unsnd;
23729 if (i < size)
23730 dwarf2_complex_location_expr_complaint ();
23731 break;
c906108c 23732
21ae7a4d
JK
23733 case DW_OP_addr:
23734 stack[++stacki] = read_address (objfile->obfd, &data[i],
23735 cu, &bytes_read);
23736 i += bytes_read;
23737 break;
d53d4ac5 23738
21ae7a4d
JK
23739 case DW_OP_const1u:
23740 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23741 i += 1;
23742 break;
23743
23744 case DW_OP_const1s:
23745 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23746 i += 1;
23747 break;
23748
23749 case DW_OP_const2u:
23750 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23751 i += 2;
23752 break;
23753
23754 case DW_OP_const2s:
23755 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23756 i += 2;
23757 break;
d53d4ac5 23758
21ae7a4d
JK
23759 case DW_OP_const4u:
23760 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23761 i += 4;
23762 break;
23763
23764 case DW_OP_const4s:
23765 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23766 i += 4;
23767 break;
23768
585861ea
JK
23769 case DW_OP_const8u:
23770 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23771 i += 8;
23772 break;
23773
21ae7a4d
JK
23774 case DW_OP_constu:
23775 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23776 &bytes_read);
23777 i += bytes_read;
23778 break;
23779
23780 case DW_OP_consts:
23781 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23782 i += bytes_read;
23783 break;
23784
23785 case DW_OP_dup:
23786 stack[stacki + 1] = stack[stacki];
23787 stacki++;
23788 break;
23789
23790 case DW_OP_plus:
23791 stack[stacki - 1] += stack[stacki];
23792 stacki--;
23793 break;
23794
23795 case DW_OP_plus_uconst:
23796 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23797 &bytes_read);
23798 i += bytes_read;
23799 break;
23800
23801 case DW_OP_minus:
23802 stack[stacki - 1] -= stack[stacki];
23803 stacki--;
23804 break;
23805
23806 case DW_OP_deref:
23807 /* If we're not the last op, then we definitely can't encode
23808 this using GDB's address_class enum. This is valid for partial
23809 global symbols, although the variable's address will be bogus
23810 in the psymtab. */
23811 if (i < size)
23812 dwarf2_complex_location_expr_complaint ();
23813 break;
23814
23815 case DW_OP_GNU_push_tls_address:
4aa4e28b 23816 case DW_OP_form_tls_address:
21ae7a4d
JK
23817 /* The top of the stack has the offset from the beginning
23818 of the thread control block at which the variable is located. */
23819 /* Nothing should follow this operator, so the top of stack would
23820 be returned. */
23821 /* This is valid for partial global symbols, but the variable's
585861ea
JK
23822 address will be bogus in the psymtab. Make it always at least
23823 non-zero to not look as a variable garbage collected by linker
23824 which have DW_OP_addr 0. */
21ae7a4d
JK
23825 if (i < size)
23826 dwarf2_complex_location_expr_complaint ();
585861ea 23827 stack[stacki]++;
21ae7a4d
JK
23828 break;
23829
23830 case DW_OP_GNU_uninit:
23831 break;
23832
3019eac3 23833 case DW_OP_GNU_addr_index:
49f6c839 23834 case DW_OP_GNU_const_index:
3019eac3
DE
23835 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23836 &bytes_read);
23837 i += bytes_read;
23838 break;
23839
21ae7a4d
JK
23840 default:
23841 {
f39c6ffd 23842 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
23843
23844 if (name)
b98664d3 23845 complaint (_("unsupported stack op: '%s'"),
21ae7a4d
JK
23846 name);
23847 else
b98664d3 23848 complaint (_("unsupported stack op: '%02x'"),
21ae7a4d
JK
23849 op);
23850 }
23851
23852 return (stack[stacki]);
d53d4ac5 23853 }
3c6e0cb3 23854
21ae7a4d
JK
23855 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23856 outside of the allocated space. Also enforce minimum>0. */
23857 if (stacki >= ARRAY_SIZE (stack) - 1)
23858 {
b98664d3 23859 complaint (_("location description stack overflow"));
21ae7a4d
JK
23860 return 0;
23861 }
23862
23863 if (stacki <= 0)
23864 {
b98664d3 23865 complaint (_("location description stack underflow"));
21ae7a4d
JK
23866 return 0;
23867 }
23868 }
23869 return (stack[stacki]);
c906108c
SS
23870}
23871
23872/* memory allocation interface */
23873
c906108c 23874static struct dwarf_block *
7b5a2f43 23875dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 23876{
8d749320 23877 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
23878}
23879
c906108c 23880static struct die_info *
b60c80d6 23881dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
23882{
23883 struct die_info *die;
b60c80d6
DJ
23884 size_t size = sizeof (struct die_info);
23885
23886 if (num_attrs > 1)
23887 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 23888
b60c80d6 23889 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
23890 memset (die, 0, sizeof (struct die_info));
23891 return (die);
23892}
2e276125
JB
23893
23894\f
23895/* Macro support. */
23896
233d95b5
JK
23897/* Return file name relative to the compilation directory of file number I in
23898 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 23899 responsible for freeing it. */
233d95b5 23900
2e276125 23901static char *
233d95b5 23902file_file_name (int file, struct line_header *lh)
2e276125 23903{
6a83a1e6
EZ
23904 /* Is the file number a valid index into the line header's file name
23905 table? Remember that file numbers start with one, not zero. */
fff8551c 23906 if (1 <= file && file <= lh->file_names.size ())
6a83a1e6 23907 {
8c43009f 23908 const file_entry &fe = lh->file_names[file - 1];
6e70227d 23909
8c43009f
PA
23910 if (!IS_ABSOLUTE_PATH (fe.name))
23911 {
23912 const char *dir = fe.include_dir (lh);
23913 if (dir != NULL)
23914 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23915 }
23916 return xstrdup (fe.name);
6a83a1e6 23917 }
2e276125
JB
23918 else
23919 {
6a83a1e6
EZ
23920 /* The compiler produced a bogus file number. We can at least
23921 record the macro definitions made in the file, even if we
23922 won't be able to find the file by name. */
23923 char fake_name[80];
9a619af0 23924
8c042590
PM
23925 xsnprintf (fake_name, sizeof (fake_name),
23926 "<bad macro file number %d>", file);
2e276125 23927
b98664d3 23928 complaint (_("bad file number in macro information (%d)"),
6a83a1e6 23929 file);
2e276125 23930
6a83a1e6 23931 return xstrdup (fake_name);
2e276125
JB
23932 }
23933}
23934
233d95b5
JK
23935/* Return the full name of file number I in *LH's file name table.
23936 Use COMP_DIR as the name of the current directory of the
23937 compilation. The result is allocated using xmalloc; the caller is
23938 responsible for freeing it. */
23939static char *
23940file_full_name (int file, struct line_header *lh, const char *comp_dir)
23941{
23942 /* Is the file number a valid index into the line header's file name
23943 table? Remember that file numbers start with one, not zero. */
fff8551c 23944 if (1 <= file && file <= lh->file_names.size ())
233d95b5
JK
23945 {
23946 char *relative = file_file_name (file, lh);
23947
23948 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23949 return relative;
b36cec19
PA
23950 return reconcat (relative, comp_dir, SLASH_STRING,
23951 relative, (char *) NULL);
233d95b5
JK
23952 }
23953 else
23954 return file_file_name (file, lh);
23955}
23956
2e276125
JB
23957
23958static struct macro_source_file *
804d2729
TT
23959macro_start_file (struct dwarf2_cu *cu,
23960 int file, int line,
2e276125 23961 struct macro_source_file *current_file,
43f3e411 23962 struct line_header *lh)
2e276125 23963{
233d95b5
JK
23964 /* File name relative to the compilation directory of this source file. */
23965 char *file_name = file_file_name (file, lh);
2e276125 23966
2e276125 23967 if (! current_file)
abc9d0dc 23968 {
fc474241
DE
23969 /* Note: We don't create a macro table for this compilation unit
23970 at all until we actually get a filename. */
804d2729 23971 struct macro_table *macro_table = cu->builder->get_macro_table ();
fc474241 23972
abc9d0dc
TT
23973 /* If we have no current file, then this must be the start_file
23974 directive for the compilation unit's main source file. */
fc474241
DE
23975 current_file = macro_set_main (macro_table, file_name);
23976 macro_define_special (macro_table);
abc9d0dc 23977 }
2e276125 23978 else
233d95b5 23979 current_file = macro_include (current_file, line, file_name);
2e276125 23980
233d95b5 23981 xfree (file_name);
6e70227d 23982
2e276125
JB
23983 return current_file;
23984}
23985
2e276125
JB
23986static const char *
23987consume_improper_spaces (const char *p, const char *body)
23988{
23989 if (*p == ' ')
23990 {
b98664d3 23991 complaint (_("macro definition contains spaces "
3e43a32a 23992 "in formal argument list:\n`%s'"),
4d3c2250 23993 body);
2e276125
JB
23994
23995 while (*p == ' ')
23996 p++;
23997 }
23998
23999 return p;
24000}
24001
24002
24003static void
24004parse_macro_definition (struct macro_source_file *file, int line,
24005 const char *body)
24006{
24007 const char *p;
24008
24009 /* The body string takes one of two forms. For object-like macro
24010 definitions, it should be:
24011
24012 <macro name> " " <definition>
24013
24014 For function-like macro definitions, it should be:
24015
24016 <macro name> "() " <definition>
24017 or
24018 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24019
24020 Spaces may appear only where explicitly indicated, and in the
24021 <definition>.
24022
24023 The Dwarf 2 spec says that an object-like macro's name is always
24024 followed by a space, but versions of GCC around March 2002 omit
6e70227d 24025 the space when the macro's definition is the empty string.
2e276125
JB
24026
24027 The Dwarf 2 spec says that there should be no spaces between the
24028 formal arguments in a function-like macro's formal argument list,
24029 but versions of GCC around March 2002 include spaces after the
24030 commas. */
24031
24032
24033 /* Find the extent of the macro name. The macro name is terminated
24034 by either a space or null character (for an object-like macro) or
24035 an opening paren (for a function-like macro). */
24036 for (p = body; *p; p++)
24037 if (*p == ' ' || *p == '(')
24038 break;
24039
24040 if (*p == ' ' || *p == '\0')
24041 {
24042 /* It's an object-like macro. */
24043 int name_len = p - body;
3f8a7804 24044 char *name = savestring (body, name_len);
2e276125
JB
24045 const char *replacement;
24046
24047 if (*p == ' ')
24048 replacement = body + name_len + 1;
24049 else
24050 {
4d3c2250 24051 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24052 replacement = body + name_len;
24053 }
6e70227d 24054
2e276125
JB
24055 macro_define_object (file, line, name, replacement);
24056
24057 xfree (name);
24058 }
24059 else if (*p == '(')
24060 {
24061 /* It's a function-like macro. */
3f8a7804 24062 char *name = savestring (body, p - body);
2e276125
JB
24063 int argc = 0;
24064 int argv_size = 1;
8d749320 24065 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
24066
24067 p++;
24068
24069 p = consume_improper_spaces (p, body);
24070
24071 /* Parse the formal argument list. */
24072 while (*p && *p != ')')
24073 {
24074 /* Find the extent of the current argument name. */
24075 const char *arg_start = p;
24076
24077 while (*p && *p != ',' && *p != ')' && *p != ' ')
24078 p++;
24079
24080 if (! *p || p == arg_start)
4d3c2250 24081 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24082 else
24083 {
24084 /* Make sure argv has room for the new argument. */
24085 if (argc >= argv_size)
24086 {
24087 argv_size *= 2;
224c3ddb 24088 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
24089 }
24090
3f8a7804 24091 argv[argc++] = savestring (arg_start, p - arg_start);
2e276125
JB
24092 }
24093
24094 p = consume_improper_spaces (p, body);
24095
24096 /* Consume the comma, if present. */
24097 if (*p == ',')
24098 {
24099 p++;
24100
24101 p = consume_improper_spaces (p, body);
24102 }
24103 }
24104
24105 if (*p == ')')
24106 {
24107 p++;
24108
24109 if (*p == ' ')
24110 /* Perfectly formed definition, no complaints. */
24111 macro_define_function (file, line, name,
6e70227d 24112 argc, (const char **) argv,
2e276125
JB
24113 p + 1);
24114 else if (*p == '\0')
24115 {
24116 /* Complain, but do define it. */
4d3c2250 24117 dwarf2_macro_malformed_definition_complaint (body);
2e276125 24118 macro_define_function (file, line, name,
6e70227d 24119 argc, (const char **) argv,
2e276125
JB
24120 p);
24121 }
24122 else
24123 /* Just complain. */
4d3c2250 24124 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24125 }
24126 else
24127 /* Just complain. */
4d3c2250 24128 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24129
24130 xfree (name);
24131 {
24132 int i;
24133
24134 for (i = 0; i < argc; i++)
24135 xfree (argv[i]);
24136 }
24137 xfree (argv);
24138 }
24139 else
4d3c2250 24140 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
24141}
24142
cf2c3c16
TT
24143/* Skip some bytes from BYTES according to the form given in FORM.
24144 Returns the new pointer. */
2e276125 24145
d521ce57
TT
24146static const gdb_byte *
24147skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
24148 enum dwarf_form form,
24149 unsigned int offset_size,
24150 struct dwarf2_section_info *section)
2e276125 24151{
cf2c3c16 24152 unsigned int bytes_read;
2e276125 24153
cf2c3c16 24154 switch (form)
2e276125 24155 {
cf2c3c16
TT
24156 case DW_FORM_data1:
24157 case DW_FORM_flag:
24158 ++bytes;
24159 break;
24160
24161 case DW_FORM_data2:
24162 bytes += 2;
24163 break;
24164
24165 case DW_FORM_data4:
24166 bytes += 4;
24167 break;
24168
24169 case DW_FORM_data8:
24170 bytes += 8;
24171 break;
24172
0224619f
JK
24173 case DW_FORM_data16:
24174 bytes += 16;
24175 break;
24176
cf2c3c16
TT
24177 case DW_FORM_string:
24178 read_direct_string (abfd, bytes, &bytes_read);
24179 bytes += bytes_read;
24180 break;
24181
24182 case DW_FORM_sec_offset:
24183 case DW_FORM_strp:
36586728 24184 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
24185 bytes += offset_size;
24186 break;
24187
24188 case DW_FORM_block:
24189 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24190 bytes += bytes_read;
24191 break;
24192
24193 case DW_FORM_block1:
24194 bytes += 1 + read_1_byte (abfd, bytes);
24195 break;
24196 case DW_FORM_block2:
24197 bytes += 2 + read_2_bytes (abfd, bytes);
24198 break;
24199 case DW_FORM_block4:
24200 bytes += 4 + read_4_bytes (abfd, bytes);
24201 break;
24202
24203 case DW_FORM_sdata:
24204 case DW_FORM_udata:
3019eac3
DE
24205 case DW_FORM_GNU_addr_index:
24206 case DW_FORM_GNU_str_index:
d521ce57 24207 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
24208 if (bytes == NULL)
24209 {
24210 dwarf2_section_buffer_overflow_complaint (section);
24211 return NULL;
24212 }
cf2c3c16
TT
24213 break;
24214
663c44ac
JK
24215 case DW_FORM_implicit_const:
24216 break;
24217
cf2c3c16
TT
24218 default:
24219 {
b98664d3 24220 complaint (_("invalid form 0x%x in `%s'"),
a32a8923 24221 form, get_section_name (section));
cf2c3c16
TT
24222 return NULL;
24223 }
2e276125
JB
24224 }
24225
cf2c3c16
TT
24226 return bytes;
24227}
757a13d0 24228
cf2c3c16
TT
24229/* A helper for dwarf_decode_macros that handles skipping an unknown
24230 opcode. Returns an updated pointer to the macro data buffer; or,
24231 on error, issues a complaint and returns NULL. */
757a13d0 24232
d521ce57 24233static const gdb_byte *
cf2c3c16 24234skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
24235 const gdb_byte **opcode_definitions,
24236 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
24237 bfd *abfd,
24238 unsigned int offset_size,
24239 struct dwarf2_section_info *section)
24240{
24241 unsigned int bytes_read, i;
24242 unsigned long arg;
d521ce57 24243 const gdb_byte *defn;
2e276125 24244
cf2c3c16 24245 if (opcode_definitions[opcode] == NULL)
2e276125 24246 {
b98664d3 24247 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
cf2c3c16
TT
24248 opcode);
24249 return NULL;
24250 }
2e276125 24251
cf2c3c16
TT
24252 defn = opcode_definitions[opcode];
24253 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24254 defn += bytes_read;
2e276125 24255
cf2c3c16
TT
24256 for (i = 0; i < arg; ++i)
24257 {
aead7601
SM
24258 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24259 (enum dwarf_form) defn[i], offset_size,
f664829e 24260 section);
cf2c3c16
TT
24261 if (mac_ptr == NULL)
24262 {
24263 /* skip_form_bytes already issued the complaint. */
24264 return NULL;
24265 }
24266 }
757a13d0 24267
cf2c3c16
TT
24268 return mac_ptr;
24269}
757a13d0 24270
cf2c3c16
TT
24271/* A helper function which parses the header of a macro section.
24272 If the macro section is the extended (for now called "GNU") type,
24273 then this updates *OFFSET_SIZE. Returns a pointer to just after
24274 the header, or issues a complaint and returns NULL on error. */
757a13d0 24275
d521ce57
TT
24276static const gdb_byte *
24277dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 24278 bfd *abfd,
d521ce57 24279 const gdb_byte *mac_ptr,
cf2c3c16
TT
24280 unsigned int *offset_size,
24281 int section_is_gnu)
24282{
24283 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 24284
cf2c3c16
TT
24285 if (section_is_gnu)
24286 {
24287 unsigned int version, flags;
757a13d0 24288
cf2c3c16 24289 version = read_2_bytes (abfd, mac_ptr);
0af92d60 24290 if (version != 4 && version != 5)
cf2c3c16 24291 {
b98664d3 24292 complaint (_("unrecognized version `%d' in .debug_macro section"),
cf2c3c16
TT
24293 version);
24294 return NULL;
24295 }
24296 mac_ptr += 2;
757a13d0 24297
cf2c3c16
TT
24298 flags = read_1_byte (abfd, mac_ptr);
24299 ++mac_ptr;
24300 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 24301
cf2c3c16
TT
24302 if ((flags & 2) != 0)
24303 /* We don't need the line table offset. */
24304 mac_ptr += *offset_size;
757a13d0 24305
cf2c3c16
TT
24306 /* Vendor opcode descriptions. */
24307 if ((flags & 4) != 0)
24308 {
24309 unsigned int i, count;
757a13d0 24310
cf2c3c16
TT
24311 count = read_1_byte (abfd, mac_ptr);
24312 ++mac_ptr;
24313 for (i = 0; i < count; ++i)
24314 {
24315 unsigned int opcode, bytes_read;
24316 unsigned long arg;
24317
24318 opcode = read_1_byte (abfd, mac_ptr);
24319 ++mac_ptr;
24320 opcode_definitions[opcode] = mac_ptr;
24321 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24322 mac_ptr += bytes_read;
24323 mac_ptr += arg;
24324 }
757a13d0 24325 }
cf2c3c16 24326 }
757a13d0 24327
cf2c3c16
TT
24328 return mac_ptr;
24329}
757a13d0 24330
cf2c3c16 24331/* A helper for dwarf_decode_macros that handles the GNU extensions,
0af92d60 24332 including DW_MACRO_import. */
cf2c3c16
TT
24333
24334static void
804d2729 24335dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
ed2dc618 24336 bfd *abfd,
d521ce57 24337 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 24338 struct macro_source_file *current_file,
43f3e411 24339 struct line_header *lh,
cf2c3c16 24340 struct dwarf2_section_info *section,
36586728 24341 int section_is_gnu, int section_is_dwz,
cf2c3c16 24342 unsigned int offset_size,
8fc3fc34 24343 htab_t include_hash)
cf2c3c16 24344{
804d2729
TT
24345 struct dwarf2_per_objfile *dwarf2_per_objfile
24346 = cu->per_cu->dwarf2_per_objfile;
4d663531 24347 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
24348 enum dwarf_macro_record_type macinfo_type;
24349 int at_commandline;
d521ce57 24350 const gdb_byte *opcode_definitions[256];
757a13d0 24351
cf2c3c16
TT
24352 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24353 &offset_size, section_is_gnu);
24354 if (mac_ptr == NULL)
24355 {
24356 /* We already issued a complaint. */
24357 return;
24358 }
757a13d0
JK
24359
24360 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24361 GDB is still reading the definitions from command line. First
24362 DW_MACINFO_start_file will need to be ignored as it was already executed
24363 to create CURRENT_FILE for the main source holding also the command line
24364 definitions. On first met DW_MACINFO_start_file this flag is reset to
24365 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24366
24367 at_commandline = 1;
24368
24369 do
24370 {
24371 /* Do we at least have room for a macinfo type byte? */
24372 if (mac_ptr >= mac_end)
24373 {
f664829e 24374 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
24375 break;
24376 }
24377
aead7601 24378 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
24379 mac_ptr++;
24380
cf2c3c16
TT
24381 /* Note that we rely on the fact that the corresponding GNU and
24382 DWARF constants are the same. */
132448f8
SM
24383 DIAGNOSTIC_PUSH
24384 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
757a13d0
JK
24385 switch (macinfo_type)
24386 {
24387 /* A zero macinfo type indicates the end of the macro
24388 information. */
24389 case 0:
24390 break;
2e276125 24391
0af92d60
JK
24392 case DW_MACRO_define:
24393 case DW_MACRO_undef:
24394 case DW_MACRO_define_strp:
24395 case DW_MACRO_undef_strp:
24396 case DW_MACRO_define_sup:
24397 case DW_MACRO_undef_sup:
2e276125 24398 {
891d2f0b 24399 unsigned int bytes_read;
2e276125 24400 int line;
d521ce57 24401 const char *body;
cf2c3c16 24402 int is_define;
2e276125 24403
cf2c3c16
TT
24404 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24405 mac_ptr += bytes_read;
24406
0af92d60
JK
24407 if (macinfo_type == DW_MACRO_define
24408 || macinfo_type == DW_MACRO_undef)
cf2c3c16
TT
24409 {
24410 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24411 mac_ptr += bytes_read;
24412 }
24413 else
24414 {
24415 LONGEST str_offset;
24416
24417 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24418 mac_ptr += offset_size;
2e276125 24419
0af92d60
JK
24420 if (macinfo_type == DW_MACRO_define_sup
24421 || macinfo_type == DW_MACRO_undef_sup
f7a35f02 24422 || section_is_dwz)
36586728 24423 {
ed2dc618
SM
24424 struct dwz_file *dwz
24425 = dwarf2_get_dwz_file (dwarf2_per_objfile);
36586728 24426
ed2dc618
SM
24427 body = read_indirect_string_from_dwz (objfile,
24428 dwz, str_offset);
36586728
TT
24429 }
24430 else
ed2dc618
SM
24431 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24432 abfd, str_offset);
cf2c3c16
TT
24433 }
24434
0af92d60
JK
24435 is_define = (macinfo_type == DW_MACRO_define
24436 || macinfo_type == DW_MACRO_define_strp
24437 || macinfo_type == DW_MACRO_define_sup);
2e276125 24438 if (! current_file)
757a13d0
JK
24439 {
24440 /* DWARF violation as no main source is present. */
b98664d3 24441 complaint (_("debug info with no main source gives macro %s "
757a13d0 24442 "on line %d: %s"),
cf2c3c16
TT
24443 is_define ? _("definition") : _("undefinition"),
24444 line, body);
757a13d0
JK
24445 break;
24446 }
3e43a32a
MS
24447 if ((line == 0 && !at_commandline)
24448 || (line != 0 && at_commandline))
b98664d3 24449 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
757a13d0 24450 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 24451 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
24452 line == 0 ? _("zero") : _("non-zero"), line, body);
24453
cf2c3c16 24454 if (is_define)
757a13d0 24455 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
24456 else
24457 {
0af92d60
JK
24458 gdb_assert (macinfo_type == DW_MACRO_undef
24459 || macinfo_type == DW_MACRO_undef_strp
24460 || macinfo_type == DW_MACRO_undef_sup);
cf2c3c16
TT
24461 macro_undef (current_file, line, body);
24462 }
2e276125
JB
24463 }
24464 break;
24465
0af92d60 24466 case DW_MACRO_start_file:
2e276125 24467 {
891d2f0b 24468 unsigned int bytes_read;
2e276125
JB
24469 int line, file;
24470
24471 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24472 mac_ptr += bytes_read;
24473 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24474 mac_ptr += bytes_read;
24475
3e43a32a
MS
24476 if ((line == 0 && !at_commandline)
24477 || (line != 0 && at_commandline))
b98664d3 24478 complaint (_("debug info gives source %d included "
757a13d0
JK
24479 "from %s at %s line %d"),
24480 file, at_commandline ? _("command-line") : _("file"),
24481 line == 0 ? _("zero") : _("non-zero"), line);
24482
24483 if (at_commandline)
24484 {
0af92d60 24485 /* This DW_MACRO_start_file was executed in the
cf2c3c16 24486 pass one. */
757a13d0
JK
24487 at_commandline = 0;
24488 }
24489 else
804d2729
TT
24490 current_file = macro_start_file (cu, file, line, current_file,
24491 lh);
2e276125
JB
24492 }
24493 break;
24494
0af92d60 24495 case DW_MACRO_end_file:
2e276125 24496 if (! current_file)
b98664d3 24497 complaint (_("macro debug info has an unmatched "
3e43a32a 24498 "`close_file' directive"));
2e276125
JB
24499 else
24500 {
24501 current_file = current_file->included_by;
24502 if (! current_file)
24503 {
cf2c3c16 24504 enum dwarf_macro_record_type next_type;
2e276125
JB
24505
24506 /* GCC circa March 2002 doesn't produce the zero
24507 type byte marking the end of the compilation
24508 unit. Complain if it's not there, but exit no
24509 matter what. */
24510
24511 /* Do we at least have room for a macinfo type byte? */
24512 if (mac_ptr >= mac_end)
24513 {
f664829e 24514 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
24515 return;
24516 }
24517
24518 /* We don't increment mac_ptr here, so this is just
24519 a look-ahead. */
aead7601
SM
24520 next_type
24521 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24522 mac_ptr);
2e276125 24523 if (next_type != 0)
b98664d3 24524 complaint (_("no terminating 0-type entry for "
3e43a32a 24525 "macros in `.debug_macinfo' section"));
2e276125
JB
24526
24527 return;
24528 }
24529 }
24530 break;
24531
0af92d60
JK
24532 case DW_MACRO_import:
24533 case DW_MACRO_import_sup:
cf2c3c16
TT
24534 {
24535 LONGEST offset;
8fc3fc34 24536 void **slot;
a036ba48
TT
24537 bfd *include_bfd = abfd;
24538 struct dwarf2_section_info *include_section = section;
d521ce57 24539 const gdb_byte *include_mac_end = mac_end;
a036ba48 24540 int is_dwz = section_is_dwz;
d521ce57 24541 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
24542
24543 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24544 mac_ptr += offset_size;
24545
0af92d60 24546 if (macinfo_type == DW_MACRO_import_sup)
a036ba48 24547 {
ed2dc618 24548 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
a036ba48 24549
4d663531 24550 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 24551
a036ba48 24552 include_section = &dwz->macro;
a32a8923 24553 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
24554 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24555 is_dwz = 1;
24556 }
24557
24558 new_mac_ptr = include_section->buffer + offset;
24559 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24560
8fc3fc34
TT
24561 if (*slot != NULL)
24562 {
24563 /* This has actually happened; see
24564 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
b98664d3 24565 complaint (_("recursive DW_MACRO_import in "
8fc3fc34
TT
24566 ".debug_macro section"));
24567 }
24568 else
24569 {
d521ce57 24570 *slot = (void *) new_mac_ptr;
36586728 24571
804d2729 24572 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
43f3e411 24573 include_mac_end, current_file, lh,
36586728 24574 section, section_is_gnu, is_dwz,
4d663531 24575 offset_size, include_hash);
8fc3fc34 24576
d521ce57 24577 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 24578 }
cf2c3c16
TT
24579 }
24580 break;
24581
2e276125 24582 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
24583 if (!section_is_gnu)
24584 {
24585 unsigned int bytes_read;
2e276125 24586
ac298888
TT
24587 /* This reads the constant, but since we don't recognize
24588 any vendor extensions, we ignore it. */
24589 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
cf2c3c16
TT
24590 mac_ptr += bytes_read;
24591 read_direct_string (abfd, mac_ptr, &bytes_read);
24592 mac_ptr += bytes_read;
2e276125 24593
cf2c3c16
TT
24594 /* We don't recognize any vendor extensions. */
24595 break;
24596 }
24597 /* FALLTHROUGH */
24598
24599 default:
24600 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 24601 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
24602 section);
24603 if (mac_ptr == NULL)
24604 return;
24605 break;
2e276125 24606 }
132448f8 24607 DIAGNOSTIC_POP
757a13d0 24608 } while (macinfo_type != 0);
2e276125 24609}
8e19ed76 24610
cf2c3c16 24611static void
09262596 24612dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 24613 int section_is_gnu)
cf2c3c16 24614{
518817b3
SM
24615 struct dwarf2_per_objfile *dwarf2_per_objfile
24616 = cu->per_cu->dwarf2_per_objfile;
bb5ed363 24617 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
24618 struct line_header *lh = cu->line_header;
24619 bfd *abfd;
d521ce57 24620 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
24621 struct macro_source_file *current_file = 0;
24622 enum dwarf_macro_record_type macinfo_type;
24623 unsigned int offset_size = cu->header.offset_size;
d521ce57 24624 const gdb_byte *opcode_definitions[256];
8fc3fc34 24625 void **slot;
09262596
DE
24626 struct dwarf2_section_info *section;
24627 const char *section_name;
24628
24629 if (cu->dwo_unit != NULL)
24630 {
24631 if (section_is_gnu)
24632 {
24633 section = &cu->dwo_unit->dwo_file->sections.macro;
24634 section_name = ".debug_macro.dwo";
24635 }
24636 else
24637 {
24638 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24639 section_name = ".debug_macinfo.dwo";
24640 }
24641 }
24642 else
24643 {
24644 if (section_is_gnu)
24645 {
24646 section = &dwarf2_per_objfile->macro;
24647 section_name = ".debug_macro";
24648 }
24649 else
24650 {
24651 section = &dwarf2_per_objfile->macinfo;
24652 section_name = ".debug_macinfo";
24653 }
24654 }
cf2c3c16 24655
bb5ed363 24656 dwarf2_read_section (objfile, section);
cf2c3c16
TT
24657 if (section->buffer == NULL)
24658 {
b98664d3 24659 complaint (_("missing %s section"), section_name);
cf2c3c16
TT
24660 return;
24661 }
a32a8923 24662 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
24663
24664 /* First pass: Find the name of the base filename.
24665 This filename is needed in order to process all macros whose definition
24666 (or undefinition) comes from the command line. These macros are defined
24667 before the first DW_MACINFO_start_file entry, and yet still need to be
24668 associated to the base file.
24669
24670 To determine the base file name, we scan the macro definitions until we
24671 reach the first DW_MACINFO_start_file entry. We then initialize
24672 CURRENT_FILE accordingly so that any macro definition found before the
24673 first DW_MACINFO_start_file can still be associated to the base file. */
24674
24675 mac_ptr = section->buffer + offset;
24676 mac_end = section->buffer + section->size;
24677
24678 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24679 &offset_size, section_is_gnu);
24680 if (mac_ptr == NULL)
24681 {
24682 /* We already issued a complaint. */
24683 return;
24684 }
24685
24686 do
24687 {
24688 /* Do we at least have room for a macinfo type byte? */
24689 if (mac_ptr >= mac_end)
24690 {
24691 /* Complaint is printed during the second pass as GDB will probably
24692 stop the first pass earlier upon finding
24693 DW_MACINFO_start_file. */
24694 break;
24695 }
24696
aead7601 24697 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
24698 mac_ptr++;
24699
24700 /* Note that we rely on the fact that the corresponding GNU and
24701 DWARF constants are the same. */
132448f8
SM
24702 DIAGNOSTIC_PUSH
24703 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
cf2c3c16
TT
24704 switch (macinfo_type)
24705 {
24706 /* A zero macinfo type indicates the end of the macro
24707 information. */
24708 case 0:
24709 break;
24710
0af92d60
JK
24711 case DW_MACRO_define:
24712 case DW_MACRO_undef:
cf2c3c16
TT
24713 /* Only skip the data by MAC_PTR. */
24714 {
24715 unsigned int bytes_read;
24716
24717 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24718 mac_ptr += bytes_read;
24719 read_direct_string (abfd, mac_ptr, &bytes_read);
24720 mac_ptr += bytes_read;
24721 }
24722 break;
24723
0af92d60 24724 case DW_MACRO_start_file:
cf2c3c16
TT
24725 {
24726 unsigned int bytes_read;
24727 int line, file;
24728
24729 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24730 mac_ptr += bytes_read;
24731 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24732 mac_ptr += bytes_read;
24733
804d2729 24734 current_file = macro_start_file (cu, file, line, current_file, lh);
cf2c3c16
TT
24735 }
24736 break;
24737
0af92d60 24738 case DW_MACRO_end_file:
cf2c3c16
TT
24739 /* No data to skip by MAC_PTR. */
24740 break;
24741
0af92d60
JK
24742 case DW_MACRO_define_strp:
24743 case DW_MACRO_undef_strp:
24744 case DW_MACRO_define_sup:
24745 case DW_MACRO_undef_sup:
cf2c3c16
TT
24746 {
24747 unsigned int bytes_read;
24748
24749 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24750 mac_ptr += bytes_read;
24751 mac_ptr += offset_size;
24752 }
24753 break;
24754
0af92d60
JK
24755 case DW_MACRO_import:
24756 case DW_MACRO_import_sup:
cf2c3c16 24757 /* Note that, according to the spec, a transparent include
0af92d60 24758 chain cannot call DW_MACRO_start_file. So, we can just
cf2c3c16
TT
24759 skip this opcode. */
24760 mac_ptr += offset_size;
24761 break;
24762
24763 case DW_MACINFO_vendor_ext:
24764 /* Only skip the data by MAC_PTR. */
24765 if (!section_is_gnu)
24766 {
24767 unsigned int bytes_read;
24768
24769 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24770 mac_ptr += bytes_read;
24771 read_direct_string (abfd, mac_ptr, &bytes_read);
24772 mac_ptr += bytes_read;
24773 }
24774 /* FALLTHROUGH */
24775
24776 default:
24777 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 24778 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
24779 section);
24780 if (mac_ptr == NULL)
24781 return;
24782 break;
24783 }
132448f8 24784 DIAGNOSTIC_POP
cf2c3c16
TT
24785 } while (macinfo_type != 0 && current_file == NULL);
24786
24787 /* Second pass: Process all entries.
24788
24789 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24790 command-line macro definitions/undefinitions. This flag is unset when we
24791 reach the first DW_MACINFO_start_file entry. */
24792
fc4007c9
TT
24793 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24794 htab_eq_pointer,
24795 NULL, xcalloc, xfree));
8fc3fc34 24796 mac_ptr = section->buffer + offset;
fc4007c9 24797 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
d521ce57 24798 *slot = (void *) mac_ptr;
804d2729 24799 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
43f3e411 24800 current_file, lh, section,
fc4007c9
TT
24801 section_is_gnu, 0, offset_size,
24802 include_hash.get ());
cf2c3c16
TT
24803}
24804
8e19ed76 24805/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 24806 if so return true else false. */
380bca97 24807
8e19ed76 24808static int
6e5a29e1 24809attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
24810{
24811 return (attr == NULL ? 0 :
24812 attr->form == DW_FORM_block1
24813 || attr->form == DW_FORM_block2
24814 || attr->form == DW_FORM_block4
2dc7f7b3
TT
24815 || attr->form == DW_FORM_block
24816 || attr->form == DW_FORM_exprloc);
8e19ed76 24817}
4c2df51b 24818
c6a0999f
JB
24819/* Return non-zero if ATTR's value is a section offset --- classes
24820 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24821 You may use DW_UNSND (attr) to retrieve such offsets.
24822
24823 Section 7.5.4, "Attribute Encodings", explains that no attribute
24824 may have a value that belongs to more than one of these classes; it
24825 would be ambiguous if we did, because we use the same forms for all
24826 of them. */
380bca97 24827
3690dd37 24828static int
6e5a29e1 24829attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
24830{
24831 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
24832 || attr->form == DW_FORM_data8
24833 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
24834}
24835
3690dd37
JB
24836/* Return non-zero if ATTR's value falls in the 'constant' class, or
24837 zero otherwise. When this function returns true, you can apply
24838 dwarf2_get_attr_constant_value to it.
24839
24840 However, note that for some attributes you must check
24841 attr_form_is_section_offset before using this test. DW_FORM_data4
24842 and DW_FORM_data8 are members of both the constant class, and of
24843 the classes that contain offsets into other debug sections
24844 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24845 that, if an attribute's can be either a constant or one of the
24846 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
0224619f
JK
24847 taken as section offsets, not constants.
24848
24849 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24850 cannot handle that. */
380bca97 24851
3690dd37 24852static int
6e5a29e1 24853attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
24854{
24855 switch (attr->form)
24856 {
24857 case DW_FORM_sdata:
24858 case DW_FORM_udata:
24859 case DW_FORM_data1:
24860 case DW_FORM_data2:
24861 case DW_FORM_data4:
24862 case DW_FORM_data8:
663c44ac 24863 case DW_FORM_implicit_const:
3690dd37
JB
24864 return 1;
24865 default:
24866 return 0;
24867 }
24868}
24869
7771576e
SA
24870
24871/* DW_ADDR is always stored already as sect_offset; despite for the forms
24872 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24873
24874static int
6e5a29e1 24875attr_form_is_ref (const struct attribute *attr)
7771576e
SA
24876{
24877 switch (attr->form)
24878 {
24879 case DW_FORM_ref_addr:
24880 case DW_FORM_ref1:
24881 case DW_FORM_ref2:
24882 case DW_FORM_ref4:
24883 case DW_FORM_ref8:
24884 case DW_FORM_ref_udata:
24885 case DW_FORM_GNU_ref_alt:
24886 return 1;
24887 default:
24888 return 0;
24889 }
24890}
24891
3019eac3
DE
24892/* Return the .debug_loc section to use for CU.
24893 For DWO files use .debug_loc.dwo. */
24894
24895static struct dwarf2_section_info *
24896cu_debug_loc_section (struct dwarf2_cu *cu)
24897{
518817b3
SM
24898 struct dwarf2_per_objfile *dwarf2_per_objfile
24899 = cu->per_cu->dwarf2_per_objfile;
ed2dc618 24900
3019eac3 24901 if (cu->dwo_unit)
43988095
JK
24902 {
24903 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24904
24905 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24906 }
24907 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24908 : &dwarf2_per_objfile->loc);
3019eac3
DE
24909}
24910
8cf6f0b1
TT
24911/* A helper function that fills in a dwarf2_loclist_baton. */
24912
24913static void
24914fill_in_loclist_baton (struct dwarf2_cu *cu,
24915 struct dwarf2_loclist_baton *baton,
ff39bb5e 24916 const struct attribute *attr)
8cf6f0b1 24917{
518817b3
SM
24918 struct dwarf2_per_objfile *dwarf2_per_objfile
24919 = cu->per_cu->dwarf2_per_objfile;
3019eac3
DE
24920 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24921
24922 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
24923
24924 baton->per_cu = cu->per_cu;
24925 gdb_assert (baton->per_cu);
24926 /* We don't know how long the location list is, but make sure we
24927 don't run off the edge of the section. */
3019eac3
DE
24928 baton->size = section->size - DW_UNSND (attr);
24929 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 24930 baton->base_address = cu->base_address;
f664829e 24931 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
24932}
24933
4c2df51b 24934static void
ff39bb5e 24935dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 24936 struct dwarf2_cu *cu, int is_block)
4c2df51b 24937{
518817b3
SM
24938 struct dwarf2_per_objfile *dwarf2_per_objfile
24939 = cu->per_cu->dwarf2_per_objfile;
bb5ed363 24940 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 24941 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 24942
3690dd37 24943 if (attr_form_is_section_offset (attr)
3019eac3 24944 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
24945 the section. If so, fall through to the complaint in the
24946 other branch. */
3019eac3 24947 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 24948 {
0d53c4c4 24949 struct dwarf2_loclist_baton *baton;
4c2df51b 24950
8d749320 24951 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 24952
8cf6f0b1 24953 fill_in_loclist_baton (cu, baton, attr);
be391dca 24954
d00adf39 24955 if (cu->base_known == 0)
b98664d3 24956 complaint (_("Location list used without "
3e43a32a 24957 "specifying the CU base address."));
4c2df51b 24958
f1e6e072
TT
24959 SYMBOL_ACLASS_INDEX (sym) = (is_block
24960 ? dwarf2_loclist_block_index
24961 : dwarf2_loclist_index);
0d53c4c4
DJ
24962 SYMBOL_LOCATION_BATON (sym) = baton;
24963 }
24964 else
24965 {
24966 struct dwarf2_locexpr_baton *baton;
24967
8d749320 24968 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
24969 baton->per_cu = cu->per_cu;
24970 gdb_assert (baton->per_cu);
0d53c4c4
DJ
24971
24972 if (attr_form_is_block (attr))
24973 {
24974 /* Note that we're just copying the block's data pointer
24975 here, not the actual data. We're still pointing into the
6502dd73
DJ
24976 info_buffer for SYM's objfile; right now we never release
24977 that buffer, but when we do clean up properly this may
24978 need to change. */
0d53c4c4
DJ
24979 baton->size = DW_BLOCK (attr)->size;
24980 baton->data = DW_BLOCK (attr)->data;
24981 }
24982 else
24983 {
24984 dwarf2_invalid_attrib_class_complaint ("location description",
24985 SYMBOL_NATURAL_NAME (sym));
24986 baton->size = 0;
0d53c4c4 24987 }
6e70227d 24988
f1e6e072
TT
24989 SYMBOL_ACLASS_INDEX (sym) = (is_block
24990 ? dwarf2_locexpr_block_index
24991 : dwarf2_locexpr_index);
0d53c4c4
DJ
24992 SYMBOL_LOCATION_BATON (sym) = baton;
24993 }
4c2df51b 24994}
6502dd73 24995
9aa1f1e3
TT
24996/* Return the OBJFILE associated with the compilation unit CU. If CU
24997 came from a separate debuginfo file, then the master objfile is
24998 returned. */
ae0d2f24
UW
24999
25000struct objfile *
25001dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25002{
e3b94546 25003 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
ae0d2f24
UW
25004
25005 /* Return the master objfile, so that we can report and look up the
25006 correct file containing this variable. */
25007 if (objfile->separate_debug_objfile_backlink)
25008 objfile = objfile->separate_debug_objfile_backlink;
25009
25010 return objfile;
25011}
25012
96408a79
SA
25013/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25014 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25015 CU_HEADERP first. */
25016
25017static const struct comp_unit_head *
25018per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25019 struct dwarf2_per_cu_data *per_cu)
25020{
d521ce57 25021 const gdb_byte *info_ptr;
96408a79
SA
25022
25023 if (per_cu->cu)
25024 return &per_cu->cu->header;
25025
9c541725 25026 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
96408a79
SA
25027
25028 memset (cu_headerp, 0, sizeof (*cu_headerp));
43988095
JK
25029 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25030 rcuh_kind::COMPILE);
96408a79
SA
25031
25032 return cu_headerp;
25033}
25034
ae0d2f24
UW
25035/* Return the address size given in the compilation unit header for CU. */
25036
98714339 25037int
ae0d2f24
UW
25038dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25039{
96408a79
SA
25040 struct comp_unit_head cu_header_local;
25041 const struct comp_unit_head *cu_headerp;
c471e790 25042
96408a79
SA
25043 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25044
25045 return cu_headerp->addr_size;
ae0d2f24
UW
25046}
25047
9eae7c52
TT
25048/* Return the offset size given in the compilation unit header for CU. */
25049
25050int
25051dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25052{
96408a79
SA
25053 struct comp_unit_head cu_header_local;
25054 const struct comp_unit_head *cu_headerp;
9c6c53f7 25055
96408a79
SA
25056 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25057
25058 return cu_headerp->offset_size;
25059}
25060
25061/* See its dwarf2loc.h declaration. */
25062
25063int
25064dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25065{
25066 struct comp_unit_head cu_header_local;
25067 const struct comp_unit_head *cu_headerp;
25068
25069 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25070
25071 if (cu_headerp->version == 2)
25072 return cu_headerp->addr_size;
25073 else
25074 return cu_headerp->offset_size;
181cebd4
JK
25075}
25076
9aa1f1e3
TT
25077/* Return the text offset of the CU. The returned offset comes from
25078 this CU's objfile. If this objfile came from a separate debuginfo
25079 file, then the offset may be different from the corresponding
25080 offset in the parent objfile. */
25081
25082CORE_ADDR
25083dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25084{
e3b94546 25085 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
9aa1f1e3
TT
25086
25087 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25088}
25089
43988095
JK
25090/* Return DWARF version number of PER_CU. */
25091
25092short
25093dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25094{
25095 return per_cu->dwarf_version;
25096}
25097
348e048f
DE
25098/* Locate the .debug_info compilation unit from CU's objfile which contains
25099 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
25100
25101static struct dwarf2_per_cu_data *
9c541725 25102dwarf2_find_containing_comp_unit (sect_offset sect_off,
36586728 25103 unsigned int offset_in_dwz,
ed2dc618 25104 struct dwarf2_per_objfile *dwarf2_per_objfile)
ae038cb0
DJ
25105{
25106 struct dwarf2_per_cu_data *this_cu;
25107 int low, high;
25108
ae038cb0 25109 low = 0;
b76e467d 25110 high = dwarf2_per_objfile->all_comp_units.size () - 1;
ae038cb0
DJ
25111 while (high > low)
25112 {
36586728 25113 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 25114 int mid = low + (high - low) / 2;
9a619af0 25115
36586728 25116 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
36586728 25117 if (mid_cu->is_dwz > offset_in_dwz
81fbbaf9 25118 || (mid_cu->is_dwz == offset_in_dwz
45b8ae0c 25119 && mid_cu->sect_off + mid_cu->length >= sect_off))
ae038cb0
DJ
25120 high = mid;
25121 else
25122 low = mid + 1;
25123 }
25124 gdb_assert (low == high);
36586728 25125 this_cu = dwarf2_per_objfile->all_comp_units[low];
45b8ae0c 25126 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
ae038cb0 25127 {
36586728 25128 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8 25129 error (_("Dwarf Error: could not find partial DIE containing "
9d8780f0
SM
25130 "offset %s [in module %s]"),
25131 sect_offset_str (sect_off),
ed2dc618 25132 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
10b3939b 25133
9c541725
PA
25134 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25135 <= sect_off);
ae038cb0
DJ
25136 return dwarf2_per_objfile->all_comp_units[low-1];
25137 }
25138 else
25139 {
25140 this_cu = dwarf2_per_objfile->all_comp_units[low];
b76e467d 25141 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
9c541725 25142 && sect_off >= this_cu->sect_off + this_cu->length)
9d8780f0 25143 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
9c541725 25144 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
ae038cb0
DJ
25145 return this_cu;
25146 }
25147}
25148
23745b47 25149/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 25150
fcd3b13d
SM
25151dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25152 : per_cu (per_cu_),
9068261f
AB
25153 mark (false),
25154 has_loclist (false),
25155 checked_producer (false),
25156 producer_is_gxx_lt_4_6 (false),
25157 producer_is_gcc_lt_4_3 (false),
eb77c9df 25158 producer_is_icc (false),
9068261f 25159 producer_is_icc_lt_14 (false),
c258c396 25160 producer_is_codewarrior (false),
9068261f 25161 processing_has_namespace_info (false)
93311388 25162{
fcd3b13d
SM
25163 per_cu->cu = this;
25164}
25165
25166/* Destroy a dwarf2_cu. */
25167
25168dwarf2_cu::~dwarf2_cu ()
25169{
25170 per_cu->cu = NULL;
9816fde3
JK
25171}
25172
25173/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25174
25175static void
95554aad
TT
25176prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25177 enum language pretend_language)
9816fde3
JK
25178{
25179 struct attribute *attr;
25180
25181 /* Set the language we're debugging. */
25182 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25183 if (attr)
25184 set_cu_language (DW_UNSND (attr), cu);
25185 else
9cded63f 25186 {
95554aad 25187 cu->language = pretend_language;
9cded63f
TT
25188 cu->language_defn = language_def (cu->language);
25189 }
dee91e82 25190
7d45c7c3 25191 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
25192}
25193
ae038cb0
DJ
25194/* Increase the age counter on each cached compilation unit, and free
25195 any that are too old. */
25196
25197static void
ed2dc618 25198age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
ae038cb0
DJ
25199{
25200 struct dwarf2_per_cu_data *per_cu, **last_chain;
25201
25202 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25203 per_cu = dwarf2_per_objfile->read_in_chain;
25204 while (per_cu != NULL)
25205 {
25206 per_cu->cu->last_used ++;
b4f54984 25207 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
25208 dwarf2_mark (per_cu->cu);
25209 per_cu = per_cu->cu->read_in_chain;
25210 }
25211
25212 per_cu = dwarf2_per_objfile->read_in_chain;
25213 last_chain = &dwarf2_per_objfile->read_in_chain;
25214 while (per_cu != NULL)
25215 {
25216 struct dwarf2_per_cu_data *next_cu;
25217
25218 next_cu = per_cu->cu->read_in_chain;
25219
25220 if (!per_cu->cu->mark)
25221 {
fcd3b13d 25222 delete per_cu->cu;
ae038cb0
DJ
25223 *last_chain = next_cu;
25224 }
25225 else
25226 last_chain = &per_cu->cu->read_in_chain;
25227
25228 per_cu = next_cu;
25229 }
25230}
25231
25232/* Remove a single compilation unit from the cache. */
25233
25234static void
dee91e82 25235free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
25236{
25237 struct dwarf2_per_cu_data *per_cu, **last_chain;
ed2dc618
SM
25238 struct dwarf2_per_objfile *dwarf2_per_objfile
25239 = target_per_cu->dwarf2_per_objfile;
ae038cb0
DJ
25240
25241 per_cu = dwarf2_per_objfile->read_in_chain;
25242 last_chain = &dwarf2_per_objfile->read_in_chain;
25243 while (per_cu != NULL)
25244 {
25245 struct dwarf2_per_cu_data *next_cu;
25246
25247 next_cu = per_cu->cu->read_in_chain;
25248
dee91e82 25249 if (per_cu == target_per_cu)
ae038cb0 25250 {
fcd3b13d 25251 delete per_cu->cu;
dee91e82 25252 per_cu->cu = NULL;
ae038cb0
DJ
25253 *last_chain = next_cu;
25254 break;
25255 }
25256 else
25257 last_chain = &per_cu->cu->read_in_chain;
25258
25259 per_cu = next_cu;
25260 }
25261}
25262
d95d3aef 25263/* Cleanup function for the dwarf2_per_objfile data. */
fe3e1990 25264
d95d3aef
TT
25265static void
25266dwarf2_free_objfile (struct objfile *objfile, void *datum)
fe3e1990 25267{
ed2dc618 25268 struct dwarf2_per_objfile *dwarf2_per_objfile
d95d3aef 25269 = static_cast<struct dwarf2_per_objfile *> (datum);
fe3e1990 25270
fd90ace4 25271 delete dwarf2_per_objfile;
fe3e1990
DJ
25272}
25273
dee91e82
DE
25274/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25275 We store these in a hash table separate from the DIEs, and preserve them
25276 when the DIEs are flushed out of cache.
25277
25278 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 25279 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
25280 or the type may come from a DWO file. Furthermore, while it's more logical
25281 to use per_cu->section+offset, with Fission the section with the data is in
25282 the DWO file but we don't know that section at the point we need it.
25283 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25284 because we can enter the lookup routine, get_die_type_at_offset, from
25285 outside this file, and thus won't necessarily have PER_CU->cu.
25286 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 25287
dee91e82 25288struct dwarf2_per_cu_offset_and_type
1c379e20 25289{
dee91e82 25290 const struct dwarf2_per_cu_data *per_cu;
9c541725 25291 sect_offset sect_off;
1c379e20
DJ
25292 struct type *type;
25293};
25294
dee91e82 25295/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
25296
25297static hashval_t
dee91e82 25298per_cu_offset_and_type_hash (const void *item)
1c379e20 25299{
9a3c8263
SM
25300 const struct dwarf2_per_cu_offset_and_type *ofs
25301 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 25302
9c541725 25303 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
1c379e20
DJ
25304}
25305
dee91e82 25306/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
25307
25308static int
dee91e82 25309per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 25310{
9a3c8263
SM
25311 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25312 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25313 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25314 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 25315
dee91e82 25316 return (ofs_lhs->per_cu == ofs_rhs->per_cu
9c541725 25317 && ofs_lhs->sect_off == ofs_rhs->sect_off);
1c379e20
DJ
25318}
25319
25320/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
25321 table if necessary. For convenience, return TYPE.
25322
25323 The DIEs reading must have careful ordering to:
25324 * Not cause infite loops trying to read in DIEs as a prerequisite for
25325 reading current DIE.
25326 * Not trying to dereference contents of still incompletely read in types
25327 while reading in other DIEs.
25328 * Enable referencing still incompletely read in types just by a pointer to
25329 the type without accessing its fields.
25330
25331 Therefore caller should follow these rules:
25332 * Try to fetch any prerequisite types we may need to build this DIE type
25333 before building the type and calling set_die_type.
e71ec853 25334 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
25335 possible before fetching more types to complete the current type.
25336 * Make the type as complete as possible before fetching more types. */
1c379e20 25337
f792889a 25338static struct type *
1c379e20
DJ
25339set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25340{
518817b3
SM
25341 struct dwarf2_per_objfile *dwarf2_per_objfile
25342 = cu->per_cu->dwarf2_per_objfile;
dee91e82 25343 struct dwarf2_per_cu_offset_and_type **slot, ofs;
ed2dc618 25344 struct objfile *objfile = dwarf2_per_objfile->objfile;
3cdcd0ce
JB
25345 struct attribute *attr;
25346 struct dynamic_prop prop;
1c379e20 25347
b4ba55a1
JB
25348 /* For Ada types, make sure that the gnat-specific data is always
25349 initialized (if not already set). There are a few types where
25350 we should not be doing so, because the type-specific area is
25351 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25352 where the type-specific area is used to store the floatformat).
25353 But this is not a problem, because the gnat-specific information
25354 is actually not needed for these types. */
25355 if (need_gnat_info (cu)
25356 && TYPE_CODE (type) != TYPE_CODE_FUNC
25357 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
25358 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25359 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25360 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
25361 && !HAVE_GNAT_AUX_INFO (type))
25362 INIT_GNAT_SPECIFIC (type);
25363
3f2f83dd
KB
25364 /* Read DW_AT_allocated and set in type. */
25365 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25366 if (attr_form_is_block (attr))
25367 {
25368 if (attr_to_dynamic_prop (attr, die, cu, &prop))
50a82047 25369 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
3f2f83dd
KB
25370 }
25371 else if (attr != NULL)
25372 {
b98664d3 25373 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
9c541725 25374 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
9d8780f0 25375 sect_offset_str (die->sect_off));
3f2f83dd
KB
25376 }
25377
25378 /* Read DW_AT_associated and set in type. */
25379 attr = dwarf2_attr (die, DW_AT_associated, cu);
25380 if (attr_form_is_block (attr))
25381 {
25382 if (attr_to_dynamic_prop (attr, die, cu, &prop))
50a82047 25383 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
3f2f83dd
KB
25384 }
25385 else if (attr != NULL)
25386 {
b98664d3 25387 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
9c541725 25388 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
9d8780f0 25389 sect_offset_str (die->sect_off));
3f2f83dd
KB
25390 }
25391
3cdcd0ce
JB
25392 /* Read DW_AT_data_location and set in type. */
25393 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25394 if (attr_to_dynamic_prop (attr, die, cu, &prop))
50a82047 25395 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
3cdcd0ce 25396
dee91e82 25397 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 25398 {
dee91e82
DE
25399 dwarf2_per_objfile->die_type_hash =
25400 htab_create_alloc_ex (127,
25401 per_cu_offset_and_type_hash,
25402 per_cu_offset_and_type_eq,
25403 NULL,
25404 &objfile->objfile_obstack,
25405 hashtab_obstack_allocate,
25406 dummy_obstack_deallocate);
f792889a 25407 }
1c379e20 25408
dee91e82 25409 ofs.per_cu = cu->per_cu;
9c541725 25410 ofs.sect_off = die->sect_off;
1c379e20 25411 ofs.type = type;
dee91e82
DE
25412 slot = (struct dwarf2_per_cu_offset_and_type **)
25413 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57 25414 if (*slot)
b98664d3 25415 complaint (_("A problem internal to GDB: DIE %s has type already set"),
9d8780f0 25416 sect_offset_str (die->sect_off));
8d749320
SM
25417 *slot = XOBNEW (&objfile->objfile_obstack,
25418 struct dwarf2_per_cu_offset_and_type);
1c379e20 25419 **slot = ofs;
f792889a 25420 return type;
1c379e20
DJ
25421}
25422
9c541725 25423/* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
02142a6c 25424 or return NULL if the die does not have a saved type. */
1c379e20
DJ
25425
25426static struct type *
9c541725 25427get_die_type_at_offset (sect_offset sect_off,
673bfd45 25428 struct dwarf2_per_cu_data *per_cu)
1c379e20 25429{
dee91e82 25430 struct dwarf2_per_cu_offset_and_type *slot, ofs;
ed2dc618 25431 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
f792889a 25432
dee91e82 25433 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 25434 return NULL;
1c379e20 25435
dee91e82 25436 ofs.per_cu = per_cu;
9c541725 25437 ofs.sect_off = sect_off;
9a3c8263
SM
25438 slot = ((struct dwarf2_per_cu_offset_and_type *)
25439 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
25440 if (slot)
25441 return slot->type;
25442 else
25443 return NULL;
25444}
25445
02142a6c 25446/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
25447 or return NULL if DIE does not have a saved type. */
25448
25449static struct type *
25450get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25451{
9c541725 25452 return get_die_type_at_offset (die->sect_off, cu->per_cu);
673bfd45
DE
25453}
25454
10b3939b
DJ
25455/* Add a dependence relationship from CU to REF_PER_CU. */
25456
25457static void
25458dwarf2_add_dependence (struct dwarf2_cu *cu,
25459 struct dwarf2_per_cu_data *ref_per_cu)
25460{
25461 void **slot;
25462
25463 if (cu->dependencies == NULL)
25464 cu->dependencies
25465 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25466 NULL, &cu->comp_unit_obstack,
25467 hashtab_obstack_allocate,
25468 dummy_obstack_deallocate);
25469
25470 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25471 if (*slot == NULL)
25472 *slot = ref_per_cu;
25473}
1c379e20 25474
f504f079
DE
25475/* Subroutine of dwarf2_mark to pass to htab_traverse.
25476 Set the mark field in every compilation unit in the
ae038cb0
DJ
25477 cache that we must keep because we are keeping CU. */
25478
10b3939b
DJ
25479static int
25480dwarf2_mark_helper (void **slot, void *data)
25481{
25482 struct dwarf2_per_cu_data *per_cu;
25483
25484 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
25485
25486 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25487 reading of the chain. As such dependencies remain valid it is not much
25488 useful to track and undo them during QUIT cleanups. */
25489 if (per_cu->cu == NULL)
25490 return 1;
25491
10b3939b
DJ
25492 if (per_cu->cu->mark)
25493 return 1;
9068261f 25494 per_cu->cu->mark = true;
10b3939b
DJ
25495
25496 if (per_cu->cu->dependencies != NULL)
25497 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25498
25499 return 1;
25500}
25501
f504f079
DE
25502/* Set the mark field in CU and in every other compilation unit in the
25503 cache that we must keep because we are keeping CU. */
25504
ae038cb0
DJ
25505static void
25506dwarf2_mark (struct dwarf2_cu *cu)
25507{
25508 if (cu->mark)
25509 return;
9068261f 25510 cu->mark = true;
10b3939b
DJ
25511 if (cu->dependencies != NULL)
25512 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
25513}
25514
25515static void
25516dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25517{
25518 while (per_cu)
25519 {
9068261f 25520 per_cu->cu->mark = false;
ae038cb0
DJ
25521 per_cu = per_cu->cu->read_in_chain;
25522 }
72bf9492
DJ
25523}
25524
72bf9492
DJ
25525/* Trivial hash function for partial_die_info: the hash value of a DIE
25526 is its offset in .debug_info for this objfile. */
25527
25528static hashval_t
25529partial_die_hash (const void *item)
25530{
9a3c8263
SM
25531 const struct partial_die_info *part_die
25532 = (const struct partial_die_info *) item;
9a619af0 25533
9c541725 25534 return to_underlying (part_die->sect_off);
72bf9492
DJ
25535}
25536
25537/* Trivial comparison function for partial_die_info structures: two DIEs
25538 are equal if they have the same offset. */
25539
25540static int
25541partial_die_eq (const void *item_lhs, const void *item_rhs)
25542{
9a3c8263
SM
25543 const struct partial_die_info *part_die_lhs
25544 = (const struct partial_die_info *) item_lhs;
25545 const struct partial_die_info *part_die_rhs
25546 = (const struct partial_die_info *) item_rhs;
9a619af0 25547
9c541725 25548 return part_die_lhs->sect_off == part_die_rhs->sect_off;
72bf9492
DJ
25549}
25550
3c3bb058
AB
25551struct cmd_list_element *set_dwarf_cmdlist;
25552struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
25553
25554static void
981a3fb3 25555set_dwarf_cmd (const char *args, int from_tty)
ae038cb0 25556{
b4f54984 25557 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 25558 gdb_stdout);
ae038cb0
DJ
25559}
25560
25561static void
981a3fb3 25562show_dwarf_cmd (const char *args, int from_tty)
6e70227d 25563{
b4f54984 25564 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
25565}
25566
cd4fb1b2 25567int dwarf_always_disassemble;
437afbb8 25568
437afbb8 25569static void
cd4fb1b2
SM
25570show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25571 struct cmd_list_element *c, const char *value)
9291a0cd 25572{
cd4fb1b2
SM
25573 fprintf_filtered (file,
25574 _("Whether to always disassemble "
25575 "DWARF expressions is %s.\n"),
25576 value);
9291a0cd
TT
25577}
25578
9291a0cd 25579static void
cd4fb1b2
SM
25580show_check_physname (struct ui_file *file, int from_tty,
25581 struct cmd_list_element *c, const char *value)
9291a0cd 25582{
cd4fb1b2
SM
25583 fprintf_filtered (file,
25584 _("Whether to check \"physname\" is %s.\n"),
25585 value);
9291a0cd
TT
25586}
25587
cd4fb1b2
SM
25588void
25589_initialize_dwarf2_read (void)
9291a0cd 25590{
d95d3aef
TT
25591 dwarf2_objfile_data_key
25592 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
156942c7 25593
cd4fb1b2
SM
25594 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25595Set DWARF specific variables.\n\
25596Configure DWARF variables such as the cache size"),
25597 &set_dwarf_cmdlist, "maintenance set dwarf ",
25598 0/*allow-unknown*/, &maintenance_set_cmdlist);
156942c7 25599
cd4fb1b2
SM
25600 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25601Show DWARF specific variables\n\
25602Show DWARF variables such as the cache size"),
25603 &show_dwarf_cmdlist, "maintenance show dwarf ",
25604 0/*allow-unknown*/, &maintenance_show_cmdlist);
156942c7 25605
cd4fb1b2
SM
25606 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25607 &dwarf_max_cache_age, _("\
25608Set the upper bound on the age of cached DWARF compilation units."), _("\
25609Show the upper bound on the age of cached DWARF compilation units."), _("\
25610A higher limit means that cached compilation units will be stored\n\
25611in memory longer, and more total memory will be used. Zero disables\n\
25612caching, which can slow down startup."),
25613 NULL,
25614 show_dwarf_max_cache_age,
25615 &set_dwarf_cmdlist,
25616 &show_dwarf_cmdlist);
156942c7 25617
cd4fb1b2
SM
25618 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25619 &dwarf_always_disassemble, _("\
25620Set whether `info address' always disassembles DWARF expressions."), _("\
25621Show whether `info address' always disassembles DWARF expressions."), _("\
25622When enabled, DWARF expressions are always printed in an assembly-like\n\
25623syntax. When disabled, expressions will be printed in a more\n\
25624conversational style, when possible."),
25625 NULL,
25626 show_dwarf_always_disassemble,
25627 &set_dwarf_cmdlist,
25628 &show_dwarf_cmdlist);
9291a0cd 25629
cd4fb1b2
SM
25630 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25631Set debugging of the DWARF reader."), _("\
25632Show debugging of the DWARF reader."), _("\
25633When enabled (non-zero), debugging messages are printed during DWARF\n\
25634reading and symtab expansion. A value of 1 (one) provides basic\n\
25635information. A value greater than 1 provides more verbose information."),
25636 NULL,
25637 NULL,
25638 &setdebuglist, &showdebuglist);
9291a0cd 25639
cd4fb1b2
SM
25640 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25641Set debugging of the DWARF DIE reader."), _("\
25642Show debugging of the DWARF DIE reader."), _("\
25643When enabled (non-zero), DIEs are dumped after they are read in.\n\
25644The value is the maximum depth to print."),
25645 NULL,
25646 NULL,
25647 &setdebuglist, &showdebuglist);
9291a0cd 25648
cd4fb1b2
SM
25649 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25650Set debugging of the dwarf line reader."), _("\
25651Show debugging of the dwarf line reader."), _("\
25652When enabled (non-zero), line number entries are dumped as they are read in.\n\
25653A value of 1 (one) provides basic information.\n\
25654A value greater than 1 provides more verbose information."),
25655 NULL,
25656 NULL,
25657 &setdebuglist, &showdebuglist);
437afbb8 25658
cd4fb1b2
SM
25659 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25660Set cross-checking of \"physname\" code against demangler."), _("\
25661Show cross-checking of \"physname\" code against demangler."), _("\
25662When enabled, GDB's internal \"physname\" code is checked against\n\
25663the demangler."),
25664 NULL, show_check_physname,
25665 &setdebuglist, &showdebuglist);
900e11f9 25666
e615022a
DE
25667 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25668 no_class, &use_deprecated_index_sections, _("\
25669Set whether to use deprecated gdb_index sections."), _("\
25670Show whether to use deprecated gdb_index sections."), _("\
25671When enabled, deprecated .gdb_index sections are used anyway.\n\
25672Normally they are ignored either because of a missing feature or\n\
25673performance issue.\n\
25674Warning: This option must be enabled before gdb reads the file."),
25675 NULL,
25676 NULL,
25677 &setlist, &showlist);
25678
f1e6e072
TT
25679 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25680 &dwarf2_locexpr_funcs);
25681 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25682 &dwarf2_loclist_funcs);
25683
25684 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25685 &dwarf2_block_frame_base_locexpr_funcs);
25686 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25687 &dwarf2_block_frame_base_loclist_funcs);
c62446b1
PA
25688
25689#if GDB_SELF_TEST
25690 selftests::register_test ("dw2_expand_symtabs_matching",
25691 selftests::dw2_expand_symtabs_matching::run_test);
25692#endif
6502dd73 25693}
This page took 4.491164 seconds and 4 git commands to generate.