Fix recent compiler warnings.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
61baf725 3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270 55#include "typeprint.h"
ccefe4c4 56#include "psympriv.h"
53ce3c39 57#include <sys/stat.h>
96d19272 58#include "completer.h"
34eaf542 59#include "vec.h"
98bfdba5 60#include "c-lang.h"
a766d390 61#include "go-lang.h"
98bfdba5 62#include "valprint.h"
3019eac3 63#include "gdbcore.h" /* for gnutarget */
156942c7 64#include "gdb/gdb-index.h"
60d5a603 65#include <ctype.h>
cbb099e8 66#include "gdb_bfd.h"
4357ac6c 67#include "f-lang.h"
05cba821 68#include "source.h"
614c279d 69#include "filestuff.h"
dc294be5 70#include "build-id.h"
22cee43f 71#include "namespace.h"
bef155c3 72#include "common/gdb_unlinker.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
c906108c 75#include <sys/types.h>
325fac50 76#include <algorithm>
d8151005 77
34eaf542
TT
78typedef struct symbol *symbolp;
79DEF_VEC_P (symbolp);
80
73be47f5
DE
81/* When == 1, print basic high level tracing messages.
82 When > 1, be more verbose.
b4f54984
DE
83 This is in contrast to the low level DIE reading of dwarf_die_debug. */
84static unsigned int dwarf_read_debug = 0;
45cfd468 85
d97bc12b 86/* When non-zero, dump DIEs after they are read in. */
b4f54984 87static unsigned int dwarf_die_debug = 0;
d97bc12b 88
27e0867f
DE
89/* When non-zero, dump line number entries as they are read in. */
90static unsigned int dwarf_line_debug = 0;
91
900e11f9
JK
92/* When non-zero, cross-check physname against demangler. */
93static int check_physname = 0;
94
481860b3 95/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 96static int use_deprecated_index_sections = 0;
481860b3 97
6502dd73
DJ
98static const struct objfile_data *dwarf2_objfile_data_key;
99
f1e6e072
TT
100/* The "aclass" indices for various kinds of computed DWARF symbols. */
101
102static int dwarf2_locexpr_index;
103static int dwarf2_loclist_index;
104static int dwarf2_locexpr_block_index;
105static int dwarf2_loclist_block_index;
106
73869dc2
DE
107/* A descriptor for dwarf sections.
108
109 S.ASECTION, SIZE are typically initialized when the objfile is first
110 scanned. BUFFER, READIN are filled in later when the section is read.
111 If the section contained compressed data then SIZE is updated to record
112 the uncompressed size of the section.
113
114 DWP file format V2 introduces a wrinkle that is easiest to handle by
115 creating the concept of virtual sections contained within a real section.
116 In DWP V2 the sections of the input DWO files are concatenated together
117 into one section, but section offsets are kept relative to the original
118 input section.
119 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
120 the real section this "virtual" section is contained in, and BUFFER,SIZE
121 describe the virtual section. */
122
dce234bc
PP
123struct dwarf2_section_info
124{
73869dc2
DE
125 union
126 {
e5aa3347 127 /* If this is a real section, the bfd section. */
049412e3 128 asection *section;
73869dc2 129 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 130 section. */
73869dc2
DE
131 struct dwarf2_section_info *containing_section;
132 } s;
19ac8c2e 133 /* Pointer to section data, only valid if readin. */
d521ce57 134 const gdb_byte *buffer;
73869dc2 135 /* The size of the section, real or virtual. */
dce234bc 136 bfd_size_type size;
73869dc2
DE
137 /* If this is a virtual section, the offset in the real section.
138 Only valid if is_virtual. */
139 bfd_size_type virtual_offset;
be391dca 140 /* True if we have tried to read this section. */
73869dc2
DE
141 char readin;
142 /* True if this is a virtual section, False otherwise.
049412e3 143 This specifies which of s.section and s.containing_section to use. */
73869dc2 144 char is_virtual;
dce234bc
PP
145};
146
8b70b953
TT
147typedef struct dwarf2_section_info dwarf2_section_info_def;
148DEF_VEC_O (dwarf2_section_info_def);
149
9291a0cd
TT
150/* All offsets in the index are of this type. It must be
151 architecture-independent. */
152typedef uint32_t offset_type;
153
154DEF_VEC_I (offset_type);
155
156942c7
DE
156/* Ensure only legit values are used. */
157#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
158 do { \
159 gdb_assert ((unsigned int) (value) <= 1); \
160 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
161 } while (0)
162
163/* Ensure only legit values are used. */
164#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
165 do { \
166 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
167 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
168 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
169 } while (0)
170
171/* Ensure we don't use more than the alloted nuber of bits for the CU. */
172#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
173 do { \
174 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
175 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
176 } while (0)
177
9291a0cd
TT
178/* A description of the mapped index. The file format is described in
179 a comment by the code that writes the index. */
180struct mapped_index
181{
559a7a62
JK
182 /* Index data format version. */
183 int version;
184
9291a0cd
TT
185 /* The total length of the buffer. */
186 off_t total_size;
b11b1f88 187
9291a0cd
TT
188 /* A pointer to the address table data. */
189 const gdb_byte *address_table;
b11b1f88 190
9291a0cd
TT
191 /* Size of the address table data in bytes. */
192 offset_type address_table_size;
b11b1f88 193
3876f04e
DE
194 /* The symbol table, implemented as a hash table. */
195 const offset_type *symbol_table;
b11b1f88 196
9291a0cd 197 /* Size in slots, each slot is 2 offset_types. */
3876f04e 198 offset_type symbol_table_slots;
b11b1f88 199
9291a0cd
TT
200 /* A pointer to the constant pool. */
201 const char *constant_pool;
202};
203
95554aad
TT
204typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
205DEF_VEC_P (dwarf2_per_cu_ptr);
206
52059ffd
TT
207struct tu_stats
208{
209 int nr_uniq_abbrev_tables;
210 int nr_symtabs;
211 int nr_symtab_sharers;
212 int nr_stmt_less_type_units;
213 int nr_all_type_units_reallocs;
214};
215
9cdd5dbd
DE
216/* Collection of data recorded per objfile.
217 This hangs off of dwarf2_objfile_data_key. */
218
6502dd73
DJ
219struct dwarf2_per_objfile
220{
dce234bc
PP
221 struct dwarf2_section_info info;
222 struct dwarf2_section_info abbrev;
223 struct dwarf2_section_info line;
dce234bc 224 struct dwarf2_section_info loc;
43988095 225 struct dwarf2_section_info loclists;
dce234bc 226 struct dwarf2_section_info macinfo;
cf2c3c16 227 struct dwarf2_section_info macro;
dce234bc 228 struct dwarf2_section_info str;
43988095 229 struct dwarf2_section_info line_str;
dce234bc 230 struct dwarf2_section_info ranges;
43988095 231 struct dwarf2_section_info rnglists;
3019eac3 232 struct dwarf2_section_info addr;
dce234bc
PP
233 struct dwarf2_section_info frame;
234 struct dwarf2_section_info eh_frame;
9291a0cd 235 struct dwarf2_section_info gdb_index;
ae038cb0 236
8b70b953
TT
237 VEC (dwarf2_section_info_def) *types;
238
be391dca
TT
239 /* Back link. */
240 struct objfile *objfile;
241
d467dd73 242 /* Table of all the compilation units. This is used to locate
10b3939b 243 the target compilation unit of a particular reference. */
ae038cb0
DJ
244 struct dwarf2_per_cu_data **all_comp_units;
245
246 /* The number of compilation units in ALL_COMP_UNITS. */
247 int n_comp_units;
248
1fd400ff 249 /* The number of .debug_types-related CUs. */
d467dd73 250 int n_type_units;
1fd400ff 251
6aa5f3a6
DE
252 /* The number of elements allocated in all_type_units.
253 If there are skeleton-less TUs, we add them to all_type_units lazily. */
254 int n_allocated_type_units;
255
a2ce51a0
DE
256 /* The .debug_types-related CUs (TUs).
257 This is stored in malloc space because we may realloc it. */
b4dd5633 258 struct signatured_type **all_type_units;
1fd400ff 259
f4dc4d17
DE
260 /* Table of struct type_unit_group objects.
261 The hash key is the DW_AT_stmt_list value. */
262 htab_t type_unit_groups;
72dca2f5 263
348e048f
DE
264 /* A table mapping .debug_types signatures to its signatured_type entry.
265 This is NULL if the .debug_types section hasn't been read in yet. */
266 htab_t signatured_types;
267
f4dc4d17
DE
268 /* Type unit statistics, to see how well the scaling improvements
269 are doing. */
52059ffd 270 struct tu_stats tu_stats;
f4dc4d17
DE
271
272 /* A chain of compilation units that are currently read in, so that
273 they can be freed later. */
274 struct dwarf2_per_cu_data *read_in_chain;
275
3019eac3
DE
276 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
277 This is NULL if the table hasn't been allocated yet. */
278 htab_t dwo_files;
279
80626a55
DE
280 /* Non-zero if we've check for whether there is a DWP file. */
281 int dwp_checked;
282
283 /* The DWP file if there is one, or NULL. */
284 struct dwp_file *dwp_file;
285
36586728
TT
286 /* The shared '.dwz' file, if one exists. This is used when the
287 original data was compressed using 'dwz -m'. */
288 struct dwz_file *dwz_file;
289
72dca2f5
FR
290 /* A flag indicating wether this objfile has a section loaded at a
291 VMA of 0. */
292 int has_section_at_zero;
9291a0cd 293
ae2de4f8
DE
294 /* True if we are using the mapped index,
295 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
296 unsigned char using_index;
297
ae2de4f8 298 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 299 struct mapped_index *index_table;
98bfdba5 300
7b9f3c50 301 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
302 TUs typically share line table entries with a CU, so we maintain a
303 separate table of all line table entries to support the sharing.
304 Note that while there can be way more TUs than CUs, we've already
305 sorted all the TUs into "type unit groups", grouped by their
306 DW_AT_stmt_list value. Therefore the only sharing done here is with a
307 CU and its associated TU group if there is one. */
7b9f3c50
DE
308 htab_t quick_file_names_table;
309
98bfdba5
PA
310 /* Set during partial symbol reading, to prevent queueing of full
311 symbols. */
312 int reading_partial_symbols;
673bfd45 313
dee91e82 314 /* Table mapping type DIEs to their struct type *.
673bfd45 315 This is NULL if not allocated yet.
02142a6c 316 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 317 htab_t die_type_hash;
95554aad
TT
318
319 /* The CUs we recently read. */
320 VEC (dwarf2_per_cu_ptr) *just_read_cus;
527f3840
JK
321
322 /* Table containing line_header indexed by offset and offset_in_dwz. */
323 htab_t line_header_hash;
6502dd73
DJ
324};
325
326static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 327
251d32d9 328/* Default names of the debugging sections. */
c906108c 329
233a11ab
CS
330/* Note that if the debugging section has been compressed, it might
331 have a name like .zdebug_info. */
332
9cdd5dbd
DE
333static const struct dwarf2_debug_sections dwarf2_elf_names =
334{
251d32d9
TG
335 { ".debug_info", ".zdebug_info" },
336 { ".debug_abbrev", ".zdebug_abbrev" },
337 { ".debug_line", ".zdebug_line" },
338 { ".debug_loc", ".zdebug_loc" },
43988095 339 { ".debug_loclists", ".zdebug_loclists" },
251d32d9 340 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 341 { ".debug_macro", ".zdebug_macro" },
251d32d9 342 { ".debug_str", ".zdebug_str" },
43988095 343 { ".debug_line_str", ".zdebug_line_str" },
251d32d9 344 { ".debug_ranges", ".zdebug_ranges" },
43988095 345 { ".debug_rnglists", ".zdebug_rnglists" },
251d32d9 346 { ".debug_types", ".zdebug_types" },
3019eac3 347 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
348 { ".debug_frame", ".zdebug_frame" },
349 { ".eh_frame", NULL },
24d3216f
TT
350 { ".gdb_index", ".zgdb_index" },
351 23
251d32d9 352};
c906108c 353
80626a55 354/* List of DWO/DWP sections. */
3019eac3 355
80626a55 356static const struct dwop_section_names
3019eac3
DE
357{
358 struct dwarf2_section_names abbrev_dwo;
359 struct dwarf2_section_names info_dwo;
360 struct dwarf2_section_names line_dwo;
361 struct dwarf2_section_names loc_dwo;
43988095 362 struct dwarf2_section_names loclists_dwo;
09262596
DE
363 struct dwarf2_section_names macinfo_dwo;
364 struct dwarf2_section_names macro_dwo;
3019eac3
DE
365 struct dwarf2_section_names str_dwo;
366 struct dwarf2_section_names str_offsets_dwo;
367 struct dwarf2_section_names types_dwo;
80626a55
DE
368 struct dwarf2_section_names cu_index;
369 struct dwarf2_section_names tu_index;
3019eac3 370}
80626a55 371dwop_section_names =
3019eac3
DE
372{
373 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
374 { ".debug_info.dwo", ".zdebug_info.dwo" },
375 { ".debug_line.dwo", ".zdebug_line.dwo" },
376 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
43988095 377 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
09262596
DE
378 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
379 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
380 { ".debug_str.dwo", ".zdebug_str.dwo" },
381 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
382 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
383 { ".debug_cu_index", ".zdebug_cu_index" },
384 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
385};
386
c906108c
SS
387/* local data types */
388
107d2387
AC
389/* The data in a compilation unit header, after target2host
390 translation, looks like this. */
c906108c 391struct comp_unit_head
a738430d 392{
c764a876 393 unsigned int length;
a738430d 394 short version;
a738430d
MK
395 unsigned char addr_size;
396 unsigned char signed_addr_p;
b64f50a1 397 sect_offset abbrev_offset;
57349743 398
a738430d
MK
399 /* Size of file offsets; either 4 or 8. */
400 unsigned int offset_size;
57349743 401
a738430d
MK
402 /* Size of the length field; either 4 or 12. */
403 unsigned int initial_length_size;
57349743 404
43988095
JK
405 enum dwarf_unit_type unit_type;
406
a738430d
MK
407 /* Offset to the first byte of this compilation unit header in the
408 .debug_info section, for resolving relative reference dies. */
b64f50a1 409 sect_offset offset;
57349743 410
d00adf39
DE
411 /* Offset to first die in this cu from the start of the cu.
412 This will be the first byte following the compilation unit header. */
b64f50a1 413 cu_offset first_die_offset;
43988095
JK
414
415 /* 64-bit signature of this type unit - it is valid only for
416 UNIT_TYPE DW_UT_type. */
417 ULONGEST signature;
418
419 /* For types, offset in the type's DIE of the type defined by this TU. */
420 cu_offset type_offset_in_tu;
a738430d 421};
c906108c 422
3da10d80
KS
423/* Type used for delaying computation of method physnames.
424 See comments for compute_delayed_physnames. */
425struct delayed_method_info
426{
427 /* The type to which the method is attached, i.e., its parent class. */
428 struct type *type;
429
430 /* The index of the method in the type's function fieldlists. */
431 int fnfield_index;
432
433 /* The index of the method in the fieldlist. */
434 int index;
435
436 /* The name of the DIE. */
437 const char *name;
438
439 /* The DIE associated with this method. */
440 struct die_info *die;
441};
442
443typedef struct delayed_method_info delayed_method_info;
444DEF_VEC_O (delayed_method_info);
445
e7c27a73
DJ
446/* Internal state when decoding a particular compilation unit. */
447struct dwarf2_cu
448{
449 /* The objfile containing this compilation unit. */
450 struct objfile *objfile;
451
d00adf39 452 /* The header of the compilation unit. */
e7c27a73 453 struct comp_unit_head header;
e142c38c 454
d00adf39
DE
455 /* Base address of this compilation unit. */
456 CORE_ADDR base_address;
457
458 /* Non-zero if base_address has been set. */
459 int base_known;
460
e142c38c
DJ
461 /* The language we are debugging. */
462 enum language language;
463 const struct language_defn *language_defn;
464
b0f35d58
DL
465 const char *producer;
466
e142c38c
DJ
467 /* The generic symbol table building routines have separate lists for
468 file scope symbols and all all other scopes (local scopes). So
469 we need to select the right one to pass to add_symbol_to_list().
470 We do it by keeping a pointer to the correct list in list_in_scope.
471
472 FIXME: The original dwarf code just treated the file scope as the
473 first local scope, and all other local scopes as nested local
474 scopes, and worked fine. Check to see if we really need to
475 distinguish these in buildsym.c. */
476 struct pending **list_in_scope;
477
433df2d4
DE
478 /* The abbrev table for this CU.
479 Normally this points to the abbrev table in the objfile.
480 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
481 struct abbrev_table *abbrev_table;
72bf9492 482
b64f50a1
JK
483 /* Hash table holding all the loaded partial DIEs
484 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
485 htab_t partial_dies;
486
487 /* Storage for things with the same lifetime as this read-in compilation
488 unit, including partial DIEs. */
489 struct obstack comp_unit_obstack;
490
ae038cb0
DJ
491 /* When multiple dwarf2_cu structures are living in memory, this field
492 chains them all together, so that they can be released efficiently.
493 We will probably also want a generation counter so that most-recently-used
494 compilation units are cached... */
495 struct dwarf2_per_cu_data *read_in_chain;
496
69d751e3 497 /* Backlink to our per_cu entry. */
ae038cb0
DJ
498 struct dwarf2_per_cu_data *per_cu;
499
500 /* How many compilation units ago was this CU last referenced? */
501 int last_used;
502
b64f50a1
JK
503 /* A hash table of DIE cu_offset for following references with
504 die_info->offset.sect_off as hash. */
51545339 505 htab_t die_hash;
10b3939b
DJ
506
507 /* Full DIEs if read in. */
508 struct die_info *dies;
509
510 /* A set of pointers to dwarf2_per_cu_data objects for compilation
511 units referenced by this one. Only set during full symbol processing;
512 partial symbol tables do not have dependencies. */
513 htab_t dependencies;
514
cb1df416
DJ
515 /* Header data from the line table, during full symbol processing. */
516 struct line_header *line_header;
517
3da10d80
KS
518 /* A list of methods which need to have physnames computed
519 after all type information has been read. */
520 VEC (delayed_method_info) *method_list;
521
96408a79
SA
522 /* To be copied to symtab->call_site_htab. */
523 htab_t call_site_htab;
524
034e5797
DE
525 /* Non-NULL if this CU came from a DWO file.
526 There is an invariant here that is important to remember:
527 Except for attributes copied from the top level DIE in the "main"
528 (or "stub") file in preparation for reading the DWO file
529 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
530 Either there isn't a DWO file (in which case this is NULL and the point
531 is moot), or there is and either we're not going to read it (in which
532 case this is NULL) or there is and we are reading it (in which case this
533 is non-NULL). */
3019eac3
DE
534 struct dwo_unit *dwo_unit;
535
536 /* The DW_AT_addr_base attribute if present, zero otherwise
537 (zero is a valid value though).
1dbab08b 538 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
539 ULONGEST addr_base;
540
2e3cf129
DE
541 /* The DW_AT_ranges_base attribute if present, zero otherwise
542 (zero is a valid value though).
1dbab08b 543 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 544 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
545 be used without needing to know whether DWO files are in use or not.
546 N.B. This does not apply to DW_AT_ranges appearing in
547 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
548 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
549 DW_AT_ranges_base *would* have to be applied, and we'd have to care
550 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
551 ULONGEST ranges_base;
552
ae038cb0
DJ
553 /* Mark used when releasing cached dies. */
554 unsigned int mark : 1;
555
8be455d7
JK
556 /* This CU references .debug_loc. See the symtab->locations_valid field.
557 This test is imperfect as there may exist optimized debug code not using
558 any location list and still facing inlining issues if handled as
559 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 560 unsigned int has_loclist : 1;
ba919b58 561
1b80a9fa
JK
562 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
563 if all the producer_is_* fields are valid. This information is cached
564 because profiling CU expansion showed excessive time spent in
565 producer_is_gxx_lt_4_6. */
ba919b58
TT
566 unsigned int checked_producer : 1;
567 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 568 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 569 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
570
571 /* When set, the file that we're processing is known to have
572 debugging info for C++ namespaces. GCC 3.3.x did not produce
573 this information, but later versions do. */
574
575 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
576};
577
10b3939b
DJ
578/* Persistent data held for a compilation unit, even when not
579 processing it. We put a pointer to this structure in the
28dee7f5 580 read_symtab_private field of the psymtab. */
10b3939b 581
ae038cb0
DJ
582struct dwarf2_per_cu_data
583{
36586728 584 /* The start offset and length of this compilation unit.
45452591 585 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
586 initial_length_size.
587 If the DIE refers to a DWO file, this is always of the original die,
588 not the DWO file. */
b64f50a1 589 sect_offset offset;
36586728 590 unsigned int length;
ae038cb0 591
43988095
JK
592 /* DWARF standard version this data has been read from (such as 4 or 5). */
593 short dwarf_version;
594
ae038cb0
DJ
595 /* Flag indicating this compilation unit will be read in before
596 any of the current compilation units are processed. */
c764a876 597 unsigned int queued : 1;
ae038cb0 598
0d99eb77
DE
599 /* This flag will be set when reading partial DIEs if we need to load
600 absolutely all DIEs for this compilation unit, instead of just the ones
601 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
602 hash table and don't find it. */
603 unsigned int load_all_dies : 1;
604
0186c6a7
DE
605 /* Non-zero if this CU is from .debug_types.
606 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
607 this is non-zero. */
3019eac3
DE
608 unsigned int is_debug_types : 1;
609
36586728
TT
610 /* Non-zero if this CU is from the .dwz file. */
611 unsigned int is_dwz : 1;
612
a2ce51a0
DE
613 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
614 This flag is only valid if is_debug_types is true.
615 We can't read a CU directly from a DWO file: There are required
616 attributes in the stub. */
617 unsigned int reading_dwo_directly : 1;
618
7ee85ab1
DE
619 /* Non-zero if the TU has been read.
620 This is used to assist the "Stay in DWO Optimization" for Fission:
621 When reading a DWO, it's faster to read TUs from the DWO instead of
622 fetching them from random other DWOs (due to comdat folding).
623 If the TU has already been read, the optimization is unnecessary
624 (and unwise - we don't want to change where gdb thinks the TU lives
625 "midflight").
626 This flag is only valid if is_debug_types is true. */
627 unsigned int tu_read : 1;
628
3019eac3
DE
629 /* The section this CU/TU lives in.
630 If the DIE refers to a DWO file, this is always the original die,
631 not the DWO file. */
8a0459fd 632 struct dwarf2_section_info *section;
348e048f 633
17ea53c3 634 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
635 of the CU cache it gets reset to NULL again. This is left as NULL for
636 dummy CUs (a CU header, but nothing else). */
ae038cb0 637 struct dwarf2_cu *cu;
1c379e20 638
9cdd5dbd
DE
639 /* The corresponding objfile.
640 Normally we can get the objfile from dwarf2_per_objfile.
641 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
642 struct objfile *objfile;
643
fffbe6a8
YQ
644 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
645 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
646 union
647 {
648 /* The partial symbol table associated with this compilation unit,
95554aad 649 or NULL for unread partial units. */
9291a0cd
TT
650 struct partial_symtab *psymtab;
651
652 /* Data needed by the "quick" functions. */
653 struct dwarf2_per_cu_quick_data *quick;
654 } v;
95554aad 655
796a7ff8
DE
656 /* The CUs we import using DW_TAG_imported_unit. This is filled in
657 while reading psymtabs, used to compute the psymtab dependencies,
658 and then cleared. Then it is filled in again while reading full
659 symbols, and only deleted when the objfile is destroyed.
660
661 This is also used to work around a difference between the way gold
662 generates .gdb_index version <=7 and the way gdb does. Arguably this
663 is a gold bug. For symbols coming from TUs, gold records in the index
664 the CU that includes the TU instead of the TU itself. This breaks
665 dw2_lookup_symbol: It assumes that if the index says symbol X lives
666 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
667 will find X. Alas TUs live in their own symtab, so after expanding CU Y
668 we need to look in TU Z to find X. Fortunately, this is akin to
669 DW_TAG_imported_unit, so we just use the same mechanism: For
670 .gdb_index version <=7 this also records the TUs that the CU referred
671 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
672 indices so we only pay a price for gold generated indices.
673 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 674 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
675};
676
348e048f
DE
677/* Entry in the signatured_types hash table. */
678
679struct signatured_type
680{
42e7ad6c 681 /* The "per_cu" object of this type.
ac9ec31b 682 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
683 N.B.: This is the first member so that it's easy to convert pointers
684 between them. */
685 struct dwarf2_per_cu_data per_cu;
686
3019eac3 687 /* The type's signature. */
348e048f
DE
688 ULONGEST signature;
689
3019eac3 690 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
691 If this TU is a DWO stub and the definition lives in a DWO file
692 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
693 cu_offset type_offset_in_tu;
694
695 /* Offset in the section of the type's DIE.
696 If the definition lives in a DWO file, this is the offset in the
697 .debug_types.dwo section.
698 The value is zero until the actual value is known.
699 Zero is otherwise not a valid section offset. */
700 sect_offset type_offset_in_section;
0186c6a7
DE
701
702 /* Type units are grouped by their DW_AT_stmt_list entry so that they
703 can share them. This points to the containing symtab. */
704 struct type_unit_group *type_unit_group;
ac9ec31b
DE
705
706 /* The type.
707 The first time we encounter this type we fully read it in and install it
708 in the symbol tables. Subsequent times we only need the type. */
709 struct type *type;
a2ce51a0
DE
710
711 /* Containing DWO unit.
712 This field is valid iff per_cu.reading_dwo_directly. */
713 struct dwo_unit *dwo_unit;
348e048f
DE
714};
715
0186c6a7
DE
716typedef struct signatured_type *sig_type_ptr;
717DEF_VEC_P (sig_type_ptr);
718
094b34ac
DE
719/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
720 This includes type_unit_group and quick_file_names. */
721
722struct stmt_list_hash
723{
724 /* The DWO unit this table is from or NULL if there is none. */
725 struct dwo_unit *dwo_unit;
726
727 /* Offset in .debug_line or .debug_line.dwo. */
728 sect_offset line_offset;
729};
730
f4dc4d17
DE
731/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
732 an object of this type. */
733
734struct type_unit_group
735{
0186c6a7 736 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
737 To simplify things we create an artificial CU that "includes" all the
738 type units using this stmt_list so that the rest of the code still has
739 a "per_cu" handle on the symtab.
740 This PER_CU is recognized by having no section. */
8a0459fd 741#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
742 struct dwarf2_per_cu_data per_cu;
743
0186c6a7
DE
744 /* The TUs that share this DW_AT_stmt_list entry.
745 This is added to while parsing type units to build partial symtabs,
746 and is deleted afterwards and not used again. */
747 VEC (sig_type_ptr) *tus;
f4dc4d17 748
43f3e411 749 /* The compunit symtab.
094b34ac 750 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
751 so we create an essentially anonymous symtab as the compunit symtab. */
752 struct compunit_symtab *compunit_symtab;
f4dc4d17 753
094b34ac
DE
754 /* The data used to construct the hash key. */
755 struct stmt_list_hash hash;
f4dc4d17
DE
756
757 /* The number of symtabs from the line header.
758 The value here must match line_header.num_file_names. */
759 unsigned int num_symtabs;
760
761 /* The symbol tables for this TU (obtained from the files listed in
762 DW_AT_stmt_list).
763 WARNING: The order of entries here must match the order of entries
764 in the line header. After the first TU using this type_unit_group, the
765 line header for the subsequent TUs is recreated from this. This is done
766 because we need to use the same symtabs for each TU using the same
767 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
768 there's no guarantee the line header doesn't have duplicate entries. */
769 struct symtab **symtabs;
770};
771
73869dc2 772/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
773
774struct dwo_sections
775{
776 struct dwarf2_section_info abbrev;
3019eac3
DE
777 struct dwarf2_section_info line;
778 struct dwarf2_section_info loc;
43988095 779 struct dwarf2_section_info loclists;
09262596
DE
780 struct dwarf2_section_info macinfo;
781 struct dwarf2_section_info macro;
3019eac3
DE
782 struct dwarf2_section_info str;
783 struct dwarf2_section_info str_offsets;
80626a55
DE
784 /* In the case of a virtual DWO file, these two are unused. */
785 struct dwarf2_section_info info;
3019eac3
DE
786 VEC (dwarf2_section_info_def) *types;
787};
788
c88ee1f0 789/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
790
791struct dwo_unit
792{
793 /* Backlink to the containing struct dwo_file. */
794 struct dwo_file *dwo_file;
795
796 /* The "id" that distinguishes this CU/TU.
797 .debug_info calls this "dwo_id", .debug_types calls this "signature".
798 Since signatures came first, we stick with it for consistency. */
799 ULONGEST signature;
800
801 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 802 struct dwarf2_section_info *section;
3019eac3 803
19ac8c2e 804 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
805 sect_offset offset;
806 unsigned int length;
807
808 /* For types, offset in the type's DIE of the type defined by this TU. */
809 cu_offset type_offset_in_tu;
810};
811
73869dc2
DE
812/* include/dwarf2.h defines the DWP section codes.
813 It defines a max value but it doesn't define a min value, which we
814 use for error checking, so provide one. */
815
816enum dwp_v2_section_ids
817{
818 DW_SECT_MIN = 1
819};
820
80626a55 821/* Data for one DWO file.
57d63ce2
DE
822
823 This includes virtual DWO files (a virtual DWO file is a DWO file as it
824 appears in a DWP file). DWP files don't really have DWO files per se -
825 comdat folding of types "loses" the DWO file they came from, and from
826 a high level view DWP files appear to contain a mass of random types.
827 However, to maintain consistency with the non-DWP case we pretend DWP
828 files contain virtual DWO files, and we assign each TU with one virtual
829 DWO file (generally based on the line and abbrev section offsets -
830 a heuristic that seems to work in practice). */
3019eac3
DE
831
832struct dwo_file
833{
0ac5b59e 834 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
835 For virtual DWO files the name is constructed from the section offsets
836 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
837 from related CU+TUs. */
0ac5b59e
DE
838 const char *dwo_name;
839
840 /* The DW_AT_comp_dir attribute. */
841 const char *comp_dir;
3019eac3 842
80626a55
DE
843 /* The bfd, when the file is open. Otherwise this is NULL.
844 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
845 bfd *dbfd;
3019eac3 846
73869dc2
DE
847 /* The sections that make up this DWO file.
848 Remember that for virtual DWO files in DWP V2, these are virtual
849 sections (for lack of a better name). */
3019eac3
DE
850 struct dwo_sections sections;
851
19c3d4c9
DE
852 /* The CU in the file.
853 We only support one because having more than one requires hacking the
854 dwo_name of each to match, which is highly unlikely to happen.
855 Doing this means all TUs can share comp_dir: We also assume that
856 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
857 struct dwo_unit *cu;
3019eac3
DE
858
859 /* Table of TUs in the file.
860 Each element is a struct dwo_unit. */
861 htab_t tus;
862};
863
80626a55
DE
864/* These sections are what may appear in a DWP file. */
865
866struct dwp_sections
867{
73869dc2 868 /* These are used by both DWP version 1 and 2. */
80626a55
DE
869 struct dwarf2_section_info str;
870 struct dwarf2_section_info cu_index;
871 struct dwarf2_section_info tu_index;
73869dc2
DE
872
873 /* These are only used by DWP version 2 files.
874 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
875 sections are referenced by section number, and are not recorded here.
876 In DWP version 2 there is at most one copy of all these sections, each
877 section being (effectively) comprised of the concatenation of all of the
878 individual sections that exist in the version 1 format.
879 To keep the code simple we treat each of these concatenated pieces as a
880 section itself (a virtual section?). */
881 struct dwarf2_section_info abbrev;
882 struct dwarf2_section_info info;
883 struct dwarf2_section_info line;
884 struct dwarf2_section_info loc;
885 struct dwarf2_section_info macinfo;
886 struct dwarf2_section_info macro;
887 struct dwarf2_section_info str_offsets;
888 struct dwarf2_section_info types;
80626a55
DE
889};
890
73869dc2
DE
891/* These sections are what may appear in a virtual DWO file in DWP version 1.
892 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 893
73869dc2 894struct virtual_v1_dwo_sections
80626a55
DE
895{
896 struct dwarf2_section_info abbrev;
897 struct dwarf2_section_info line;
898 struct dwarf2_section_info loc;
899 struct dwarf2_section_info macinfo;
900 struct dwarf2_section_info macro;
901 struct dwarf2_section_info str_offsets;
902 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 903 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
904 struct dwarf2_section_info info_or_types;
905};
906
73869dc2
DE
907/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
908 In version 2, the sections of the DWO files are concatenated together
909 and stored in one section of that name. Thus each ELF section contains
910 several "virtual" sections. */
911
912struct virtual_v2_dwo_sections
913{
914 bfd_size_type abbrev_offset;
915 bfd_size_type abbrev_size;
916
917 bfd_size_type line_offset;
918 bfd_size_type line_size;
919
920 bfd_size_type loc_offset;
921 bfd_size_type loc_size;
922
923 bfd_size_type macinfo_offset;
924 bfd_size_type macinfo_size;
925
926 bfd_size_type macro_offset;
927 bfd_size_type macro_size;
928
929 bfd_size_type str_offsets_offset;
930 bfd_size_type str_offsets_size;
931
932 /* Each DWP hash table entry records one CU or one TU.
933 That is recorded here, and copied to dwo_unit.section. */
934 bfd_size_type info_or_types_offset;
935 bfd_size_type info_or_types_size;
936};
937
80626a55
DE
938/* Contents of DWP hash tables. */
939
940struct dwp_hash_table
941{
73869dc2 942 uint32_t version, nr_columns;
80626a55 943 uint32_t nr_units, nr_slots;
73869dc2
DE
944 const gdb_byte *hash_table, *unit_table;
945 union
946 {
947 struct
948 {
949 const gdb_byte *indices;
950 } v1;
951 struct
952 {
953 /* This is indexed by column number and gives the id of the section
954 in that column. */
955#define MAX_NR_V2_DWO_SECTIONS \
956 (1 /* .debug_info or .debug_types */ \
957 + 1 /* .debug_abbrev */ \
958 + 1 /* .debug_line */ \
959 + 1 /* .debug_loc */ \
960 + 1 /* .debug_str_offsets */ \
961 + 1 /* .debug_macro or .debug_macinfo */)
962 int section_ids[MAX_NR_V2_DWO_SECTIONS];
963 const gdb_byte *offsets;
964 const gdb_byte *sizes;
965 } v2;
966 } section_pool;
80626a55
DE
967};
968
969/* Data for one DWP file. */
970
971struct dwp_file
972{
973 /* Name of the file. */
974 const char *name;
975
73869dc2
DE
976 /* File format version. */
977 int version;
978
93417882 979 /* The bfd. */
80626a55
DE
980 bfd *dbfd;
981
982 /* Section info for this file. */
983 struct dwp_sections sections;
984
57d63ce2 985 /* Table of CUs in the file. */
80626a55
DE
986 const struct dwp_hash_table *cus;
987
988 /* Table of TUs in the file. */
989 const struct dwp_hash_table *tus;
990
19ac8c2e
DE
991 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
992 htab_t loaded_cus;
993 htab_t loaded_tus;
80626a55 994
73869dc2
DE
995 /* Table to map ELF section numbers to their sections.
996 This is only needed for the DWP V1 file format. */
80626a55
DE
997 unsigned int num_sections;
998 asection **elf_sections;
999};
1000
36586728
TT
1001/* This represents a '.dwz' file. */
1002
1003struct dwz_file
1004{
1005 /* A dwz file can only contain a few sections. */
1006 struct dwarf2_section_info abbrev;
1007 struct dwarf2_section_info info;
1008 struct dwarf2_section_info str;
1009 struct dwarf2_section_info line;
1010 struct dwarf2_section_info macro;
2ec9a5e0 1011 struct dwarf2_section_info gdb_index;
36586728
TT
1012
1013 /* The dwz's BFD. */
1014 bfd *dwz_bfd;
1015};
1016
0963b4bd
MS
1017/* Struct used to pass misc. parameters to read_die_and_children, et
1018 al. which are used for both .debug_info and .debug_types dies.
1019 All parameters here are unchanging for the life of the call. This
dee91e82 1020 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
1021
1022struct die_reader_specs
1023{
a32a8923 1024 /* The bfd of die_section. */
93311388
DE
1025 bfd* abfd;
1026
1027 /* The CU of the DIE we are parsing. */
1028 struct dwarf2_cu *cu;
1029
80626a55 1030 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1031 struct dwo_file *dwo_file;
1032
dee91e82 1033 /* The section the die comes from.
3019eac3 1034 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1035 struct dwarf2_section_info *die_section;
1036
1037 /* die_section->buffer. */
d521ce57 1038 const gdb_byte *buffer;
f664829e
DE
1039
1040 /* The end of the buffer. */
1041 const gdb_byte *buffer_end;
a2ce51a0
DE
1042
1043 /* The value of the DW_AT_comp_dir attribute. */
1044 const char *comp_dir;
93311388
DE
1045};
1046
fd820528 1047/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1048typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1049 const gdb_byte *info_ptr,
dee91e82
DE
1050 struct die_info *comp_unit_die,
1051 int has_children,
1052 void *data);
1053
52059ffd
TT
1054struct file_entry
1055{
1056 const char *name;
1057 unsigned int dir_index;
1058 unsigned int mod_time;
1059 unsigned int length;
83769d0b
DE
1060 /* Non-zero if referenced by the Line Number Program. */
1061 int included_p;
1062 /* The associated symbol table, if any. */
1063 struct symtab *symtab;
52059ffd
TT
1064};
1065
debd256d
JB
1066/* The line number information for a compilation unit (found in the
1067 .debug_line section) begins with a "statement program header",
1068 which contains the following information. */
1069struct line_header
1070{
527f3840
JK
1071 /* Offset of line number information in .debug_line section. */
1072 sect_offset offset;
1073
1074 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1075 unsigned offset_in_dwz : 1;
1076
debd256d
JB
1077 unsigned int total_length;
1078 unsigned short version;
1079 unsigned int header_length;
1080 unsigned char minimum_instruction_length;
2dc7f7b3 1081 unsigned char maximum_ops_per_instruction;
debd256d
JB
1082 unsigned char default_is_stmt;
1083 int line_base;
1084 unsigned char line_range;
1085 unsigned char opcode_base;
1086
1087 /* standard_opcode_lengths[i] is the number of operands for the
1088 standard opcode whose value is i. This means that
1089 standard_opcode_lengths[0] is unused, and the last meaningful
1090 element is standard_opcode_lengths[opcode_base - 1]. */
1091 unsigned char *standard_opcode_lengths;
1092
1093 /* The include_directories table. NOTE! These strings are not
1094 allocated with xmalloc; instead, they are pointers into
1095 debug_line_buffer. If you try to free them, `free' will get
1096 indigestion. */
1097 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1098 const char **include_dirs;
debd256d
JB
1099
1100 /* The file_names table. NOTE! These strings are not allocated
1101 with xmalloc; instead, they are pointers into debug_line_buffer.
1102 Don't try to free them directly. */
1103 unsigned int num_file_names, file_names_size;
52059ffd 1104 struct file_entry *file_names;
debd256d
JB
1105
1106 /* The start and end of the statement program following this
6502dd73 1107 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1108 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1109};
c906108c
SS
1110
1111/* When we construct a partial symbol table entry we only
0963b4bd 1112 need this much information. */
c906108c
SS
1113struct partial_die_info
1114 {
72bf9492 1115 /* Offset of this DIE. */
b64f50a1 1116 sect_offset offset;
72bf9492
DJ
1117
1118 /* DWARF-2 tag for this DIE. */
1119 ENUM_BITFIELD(dwarf_tag) tag : 16;
1120
72bf9492
DJ
1121 /* Assorted flags describing the data found in this DIE. */
1122 unsigned int has_children : 1;
1123 unsigned int is_external : 1;
1124 unsigned int is_declaration : 1;
1125 unsigned int has_type : 1;
1126 unsigned int has_specification : 1;
1127 unsigned int has_pc_info : 1;
481860b3 1128 unsigned int may_be_inlined : 1;
72bf9492 1129
0c1b455e
TT
1130 /* This DIE has been marked DW_AT_main_subprogram. */
1131 unsigned int main_subprogram : 1;
1132
72bf9492
DJ
1133 /* Flag set if the SCOPE field of this structure has been
1134 computed. */
1135 unsigned int scope_set : 1;
1136
fa4028e9
JB
1137 /* Flag set if the DIE has a byte_size attribute. */
1138 unsigned int has_byte_size : 1;
1139
ff908ebf
AW
1140 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1141 unsigned int has_const_value : 1;
1142
98bfdba5
PA
1143 /* Flag set if any of the DIE's children are template arguments. */
1144 unsigned int has_template_arguments : 1;
1145
abc72ce4
DE
1146 /* Flag set if fixup_partial_die has been called on this die. */
1147 unsigned int fixup_called : 1;
1148
36586728
TT
1149 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1150 unsigned int is_dwz : 1;
1151
1152 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1153 unsigned int spec_is_dwz : 1;
1154
72bf9492 1155 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1156 sometimes a default name for unnamed DIEs. */
15d034d0 1157 const char *name;
72bf9492 1158
abc72ce4
DE
1159 /* The linkage name, if present. */
1160 const char *linkage_name;
1161
72bf9492
DJ
1162 /* The scope to prepend to our children. This is generally
1163 allocated on the comp_unit_obstack, so will disappear
1164 when this compilation unit leaves the cache. */
15d034d0 1165 const char *scope;
72bf9492 1166
95554aad
TT
1167 /* Some data associated with the partial DIE. The tag determines
1168 which field is live. */
1169 union
1170 {
1171 /* The location description associated with this DIE, if any. */
1172 struct dwarf_block *locdesc;
1173 /* The offset of an import, for DW_TAG_imported_unit. */
1174 sect_offset offset;
1175 } d;
72bf9492
DJ
1176
1177 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1178 CORE_ADDR lowpc;
1179 CORE_ADDR highpc;
72bf9492 1180
93311388 1181 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1182 DW_AT_sibling, if any. */
abc72ce4
DE
1183 /* NOTE: This member isn't strictly necessary, read_partial_die could
1184 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1185 const gdb_byte *sibling;
72bf9492
DJ
1186
1187 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1188 DW_AT_specification (or DW_AT_abstract_origin or
1189 DW_AT_extension). */
b64f50a1 1190 sect_offset spec_offset;
72bf9492
DJ
1191
1192 /* Pointers to this DIE's parent, first child, and next sibling,
1193 if any. */
1194 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1195 };
1196
0963b4bd 1197/* This data structure holds the information of an abbrev. */
c906108c
SS
1198struct abbrev_info
1199 {
1200 unsigned int number; /* number identifying abbrev */
1201 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1202 unsigned short has_children; /* boolean */
1203 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1204 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1205 struct abbrev_info *next; /* next in chain */
1206 };
1207
1208struct attr_abbrev
1209 {
9d25dd43
DE
1210 ENUM_BITFIELD(dwarf_attribute) name : 16;
1211 ENUM_BITFIELD(dwarf_form) form : 16;
43988095
JK
1212
1213 /* It is valid only if FORM is DW_FORM_implicit_const. */
1214 LONGEST implicit_const;
c906108c
SS
1215 };
1216
433df2d4
DE
1217/* Size of abbrev_table.abbrev_hash_table. */
1218#define ABBREV_HASH_SIZE 121
1219
1220/* Top level data structure to contain an abbreviation table. */
1221
1222struct abbrev_table
1223{
f4dc4d17
DE
1224 /* Where the abbrev table came from.
1225 This is used as a sanity check when the table is used. */
433df2d4
DE
1226 sect_offset offset;
1227
1228 /* Storage for the abbrev table. */
1229 struct obstack abbrev_obstack;
1230
1231 /* Hash table of abbrevs.
1232 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1233 It could be statically allocated, but the previous code didn't so we
1234 don't either. */
1235 struct abbrev_info **abbrevs;
1236};
1237
0963b4bd 1238/* Attributes have a name and a value. */
b60c80d6
DJ
1239struct attribute
1240 {
9d25dd43 1241 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1242 ENUM_BITFIELD(dwarf_form) form : 15;
1243
1244 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1245 field should be in u.str (existing only for DW_STRING) but it is kept
1246 here for better struct attribute alignment. */
1247 unsigned int string_is_canonical : 1;
1248
b60c80d6
DJ
1249 union
1250 {
15d034d0 1251 const char *str;
b60c80d6 1252 struct dwarf_block *blk;
43bbcdc2
PH
1253 ULONGEST unsnd;
1254 LONGEST snd;
b60c80d6 1255 CORE_ADDR addr;
ac9ec31b 1256 ULONGEST signature;
b60c80d6
DJ
1257 }
1258 u;
1259 };
1260
0963b4bd 1261/* This data structure holds a complete die structure. */
c906108c
SS
1262struct die_info
1263 {
76815b17
DE
1264 /* DWARF-2 tag for this DIE. */
1265 ENUM_BITFIELD(dwarf_tag) tag : 16;
1266
1267 /* Number of attributes */
98bfdba5
PA
1268 unsigned char num_attrs;
1269
1270 /* True if we're presently building the full type name for the
1271 type derived from this DIE. */
1272 unsigned char building_fullname : 1;
76815b17 1273
adde2bff
DE
1274 /* True if this die is in process. PR 16581. */
1275 unsigned char in_process : 1;
1276
76815b17
DE
1277 /* Abbrev number */
1278 unsigned int abbrev;
1279
93311388 1280 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1281 sect_offset offset;
78ba4af6
JB
1282
1283 /* The dies in a compilation unit form an n-ary tree. PARENT
1284 points to this die's parent; CHILD points to the first child of
1285 this node; and all the children of a given node are chained
4950bc1c 1286 together via their SIBLING fields. */
639d11d3
DC
1287 struct die_info *child; /* Its first child, if any. */
1288 struct die_info *sibling; /* Its next sibling, if any. */
1289 struct die_info *parent; /* Its parent, if any. */
c906108c 1290
b60c80d6
DJ
1291 /* An array of attributes, with NUM_ATTRS elements. There may be
1292 zero, but it's not common and zero-sized arrays are not
1293 sufficiently portable C. */
1294 struct attribute attrs[1];
c906108c
SS
1295 };
1296
0963b4bd 1297/* Get at parts of an attribute structure. */
c906108c
SS
1298
1299#define DW_STRING(attr) ((attr)->u.str)
8285870a 1300#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1301#define DW_UNSND(attr) ((attr)->u.unsnd)
1302#define DW_BLOCK(attr) ((attr)->u.blk)
1303#define DW_SND(attr) ((attr)->u.snd)
1304#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1305#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1306
0963b4bd 1307/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1308struct dwarf_block
1309 {
56eb65bd 1310 size_t size;
1d6edc3c
JK
1311
1312 /* Valid only if SIZE is not zero. */
d521ce57 1313 const gdb_byte *data;
c906108c
SS
1314 };
1315
c906108c
SS
1316#ifndef ATTR_ALLOC_CHUNK
1317#define ATTR_ALLOC_CHUNK 4
1318#endif
1319
c906108c
SS
1320/* Allocate fields for structs, unions and enums in this size. */
1321#ifndef DW_FIELD_ALLOC_CHUNK
1322#define DW_FIELD_ALLOC_CHUNK 4
1323#endif
1324
c906108c
SS
1325/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1326 but this would require a corresponding change in unpack_field_as_long
1327 and friends. */
1328static int bits_per_byte = 8;
1329
52059ffd
TT
1330struct nextfield
1331{
1332 struct nextfield *next;
1333 int accessibility;
1334 int virtuality;
1335 struct field field;
1336};
1337
1338struct nextfnfield
1339{
1340 struct nextfnfield *next;
1341 struct fn_field fnfield;
1342};
1343
1344struct fnfieldlist
1345{
1346 const char *name;
1347 int length;
1348 struct nextfnfield *head;
1349};
1350
1351struct typedef_field_list
1352{
1353 struct typedef_field field;
1354 struct typedef_field_list *next;
1355};
1356
c906108c
SS
1357/* The routines that read and process dies for a C struct or C++ class
1358 pass lists of data member fields and lists of member function fields
1359 in an instance of a field_info structure, as defined below. */
1360struct field_info
c5aa993b 1361 {
0963b4bd 1362 /* List of data member and baseclasses fields. */
52059ffd 1363 struct nextfield *fields, *baseclasses;
c906108c 1364
7d0ccb61 1365 /* Number of fields (including baseclasses). */
c5aa993b 1366 int nfields;
c906108c 1367
c5aa993b
JM
1368 /* Number of baseclasses. */
1369 int nbaseclasses;
c906108c 1370
c5aa993b
JM
1371 /* Set if the accesibility of one of the fields is not public. */
1372 int non_public_fields;
c906108c 1373
c5aa993b
JM
1374 /* Member function fields array, entries are allocated in the order they
1375 are encountered in the object file. */
52059ffd 1376 struct nextfnfield *fnfields;
c906108c 1377
c5aa993b
JM
1378 /* Member function fieldlist array, contains name of possibly overloaded
1379 member function, number of overloaded member functions and a pointer
1380 to the head of the member function field chain. */
52059ffd 1381 struct fnfieldlist *fnfieldlists;
c906108c 1382
c5aa993b
JM
1383 /* Number of entries in the fnfieldlists array. */
1384 int nfnfields;
98751a41
JK
1385
1386 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1387 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1388 struct typedef_field_list *typedef_field_list;
98751a41 1389 unsigned typedef_field_list_count;
c5aa993b 1390 };
c906108c 1391
10b3939b
DJ
1392/* One item on the queue of compilation units to read in full symbols
1393 for. */
1394struct dwarf2_queue_item
1395{
1396 struct dwarf2_per_cu_data *per_cu;
95554aad 1397 enum language pretend_language;
10b3939b
DJ
1398 struct dwarf2_queue_item *next;
1399};
1400
1401/* The current queue. */
1402static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1403
ae038cb0
DJ
1404/* Loaded secondary compilation units are kept in memory until they
1405 have not been referenced for the processing of this many
1406 compilation units. Set this to zero to disable caching. Cache
1407 sizes of up to at least twenty will improve startup time for
1408 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1409static int dwarf_max_cache_age = 5;
920d2a44 1410static void
b4f54984
DE
1411show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1412 struct cmd_list_element *c, const char *value)
920d2a44 1413{
3e43a32a 1414 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1415 "DWARF compilation units is %s.\n"),
920d2a44
AC
1416 value);
1417}
4390d890 1418\f
c906108c
SS
1419/* local function prototypes */
1420
a32a8923
DE
1421static const char *get_section_name (const struct dwarf2_section_info *);
1422
1423static const char *get_section_file_name (const struct dwarf2_section_info *);
1424
4efb68b1 1425static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1426
918dd910
JK
1427static void dwarf2_find_base_address (struct die_info *die,
1428 struct dwarf2_cu *cu);
1429
0018ea6f
DE
1430static struct partial_symtab *create_partial_symtab
1431 (struct dwarf2_per_cu_data *per_cu, const char *name);
1432
c67a9c90 1433static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1434
72bf9492
DJ
1435static void scan_partial_symbols (struct partial_die_info *,
1436 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1437 int, struct dwarf2_cu *);
c906108c 1438
72bf9492
DJ
1439static void add_partial_symbol (struct partial_die_info *,
1440 struct dwarf2_cu *);
63d06c5c 1441
72bf9492
DJ
1442static void add_partial_namespace (struct partial_die_info *pdi,
1443 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1444 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1445
5d7cb8df 1446static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1447 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1448 struct dwarf2_cu *cu);
1449
72bf9492
DJ
1450static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1451 struct dwarf2_cu *cu);
91c24f0a 1452
bc30ff58
JB
1453static void add_partial_subprogram (struct partial_die_info *pdi,
1454 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1455 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1456
257e7a09
YQ
1457static void dwarf2_read_symtab (struct partial_symtab *,
1458 struct objfile *);
c906108c 1459
a14ed312 1460static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1461
433df2d4
DE
1462static struct abbrev_info *abbrev_table_lookup_abbrev
1463 (const struct abbrev_table *, unsigned int);
1464
1465static struct abbrev_table *abbrev_table_read_table
1466 (struct dwarf2_section_info *, sect_offset);
1467
1468static void abbrev_table_free (struct abbrev_table *);
1469
f4dc4d17
DE
1470static void abbrev_table_free_cleanup (void *);
1471
dee91e82
DE
1472static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1473 struct dwarf2_section_info *);
c906108c 1474
f3dd6933 1475static void dwarf2_free_abbrev_table (void *);
c906108c 1476
d521ce57 1477static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1478
dee91e82 1479static struct partial_die_info *load_partial_dies
d521ce57 1480 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1481
d521ce57
TT
1482static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1483 struct partial_die_info *,
1484 struct abbrev_info *,
1485 unsigned int,
1486 const gdb_byte *);
c906108c 1487
36586728 1488static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1489 struct dwarf2_cu *);
72bf9492
DJ
1490
1491static void fixup_partial_die (struct partial_die_info *,
1492 struct dwarf2_cu *);
1493
d521ce57
TT
1494static const gdb_byte *read_attribute (const struct die_reader_specs *,
1495 struct attribute *, struct attr_abbrev *,
1496 const gdb_byte *);
a8329558 1497
a1855c1d 1498static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1499
a1855c1d 1500static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1501
a1855c1d 1502static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1503
a1855c1d 1504static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1505
a1855c1d 1506static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1507
d521ce57 1508static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1509 unsigned int *);
c906108c 1510
d521ce57 1511static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1512
1513static LONGEST read_checked_initial_length_and_offset
d521ce57 1514 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1515 unsigned int *, unsigned int *);
613e1657 1516
d521ce57
TT
1517static LONGEST read_offset (bfd *, const gdb_byte *,
1518 const struct comp_unit_head *,
c764a876
DE
1519 unsigned int *);
1520
d521ce57 1521static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1522
f4dc4d17
DE
1523static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1524 sect_offset);
1525
d521ce57 1526static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1527
d521ce57 1528static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1529
d521ce57
TT
1530static const char *read_indirect_string (bfd *, const gdb_byte *,
1531 const struct comp_unit_head *,
1532 unsigned int *);
4bdf3d34 1533
43988095
JK
1534static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1535 const struct comp_unit_head *,
1536 unsigned int *);
36586728 1537
43988095 1538static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
c906108c 1539
d521ce57 1540static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1541
d521ce57
TT
1542static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1543 const gdb_byte *,
3019eac3
DE
1544 unsigned int *);
1545
d521ce57 1546static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1547 ULONGEST str_index);
3019eac3 1548
e142c38c 1549static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1550
e142c38c
DJ
1551static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1552 struct dwarf2_cu *);
c906108c 1553
348e048f 1554static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1555 unsigned int);
348e048f 1556
7d45c7c3
KB
1557static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1558 struct dwarf2_cu *cu);
1559
05cf31d1
JB
1560static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1561 struct dwarf2_cu *cu);
1562
e142c38c 1563static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1564
e142c38c 1565static struct die_info *die_specification (struct die_info *die,
f2f0e013 1566 struct dwarf2_cu **);
63d06c5c 1567
debd256d
JB
1568static void free_line_header (struct line_header *lh);
1569
3019eac3
DE
1570static struct line_header *dwarf_decode_line_header (unsigned int offset,
1571 struct dwarf2_cu *cu);
debd256d 1572
f3f5162e 1573static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1574 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1575 CORE_ADDR, int decode_mapping);
c906108c 1576
4d663531 1577static void dwarf2_start_subfile (const char *, const char *);
c906108c 1578
43f3e411
DE
1579static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1580 const char *, const char *,
1581 CORE_ADDR);
f4dc4d17 1582
a14ed312 1583static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1584 struct dwarf2_cu *);
c906108c 1585
34eaf542
TT
1586static struct symbol *new_symbol_full (struct die_info *, struct type *,
1587 struct dwarf2_cu *, struct symbol *);
1588
ff39bb5e 1589static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1590 struct dwarf2_cu *);
c906108c 1591
ff39bb5e 1592static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1593 struct type *type,
1594 const char *name,
1595 struct obstack *obstack,
12df843f 1596 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1597 const gdb_byte **bytes,
98bfdba5 1598 struct dwarf2_locexpr_baton **baton);
2df3850c 1599
e7c27a73 1600static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1601
b4ba55a1
JB
1602static int need_gnat_info (struct dwarf2_cu *);
1603
3e43a32a
MS
1604static struct type *die_descriptive_type (struct die_info *,
1605 struct dwarf2_cu *);
b4ba55a1
JB
1606
1607static void set_descriptive_type (struct type *, struct die_info *,
1608 struct dwarf2_cu *);
1609
e7c27a73
DJ
1610static struct type *die_containing_type (struct die_info *,
1611 struct dwarf2_cu *);
c906108c 1612
ff39bb5e 1613static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1614 struct dwarf2_cu *);
c906108c 1615
f792889a 1616static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1617
673bfd45
DE
1618static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1619
0d5cff50 1620static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1621
6e70227d 1622static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1623 const char *suffix, int physname,
1624 struct dwarf2_cu *cu);
63d06c5c 1625
e7c27a73 1626static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1627
348e048f
DE
1628static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1629
e7c27a73 1630static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1631
e7c27a73 1632static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1633
96408a79
SA
1634static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1635
ff013f42
JK
1636static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1637 struct dwarf2_cu *, struct partial_symtab *);
1638
3a2b436a 1639/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
e385593e 1640 values. Keep the items ordered with increasing constraints compliance. */
3a2b436a
JK
1641enum pc_bounds_kind
1642{
e385593e 1643 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
3a2b436a
JK
1644 PC_BOUNDS_NOT_PRESENT,
1645
e385593e
JK
1646 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1647 were present but they do not form a valid range of PC addresses. */
1648 PC_BOUNDS_INVALID,
1649
3a2b436a
JK
1650 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1651 PC_BOUNDS_RANGES,
1652
1653 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1654 PC_BOUNDS_HIGH_LOW,
1655};
1656
1657static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1658 CORE_ADDR *, CORE_ADDR *,
1659 struct dwarf2_cu *,
1660 struct partial_symtab *);
c906108c 1661
fae299cd
DC
1662static void get_scope_pc_bounds (struct die_info *,
1663 CORE_ADDR *, CORE_ADDR *,
1664 struct dwarf2_cu *);
1665
801e3a5b
JB
1666static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1667 CORE_ADDR, struct dwarf2_cu *);
1668
a14ed312 1669static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1670 struct dwarf2_cu *);
c906108c 1671
a14ed312 1672static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1673 struct type *, struct dwarf2_cu *);
c906108c 1674
a14ed312 1675static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1676 struct die_info *, struct type *,
e7c27a73 1677 struct dwarf2_cu *);
c906108c 1678
a14ed312 1679static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1680 struct type *,
1681 struct dwarf2_cu *);
c906108c 1682
134d01f1 1683static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1684
e7c27a73 1685static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1686
e7c27a73 1687static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1688
5d7cb8df
JK
1689static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1690
22cee43f
PMR
1691static struct using_direct **using_directives (enum language);
1692
27aa8d6a
SW
1693static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1694
74921315
KS
1695static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1696
f55ee35c
JK
1697static struct type *read_module_type (struct die_info *die,
1698 struct dwarf2_cu *cu);
1699
38d518c9 1700static const char *namespace_name (struct die_info *die,
e142c38c 1701 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1702
134d01f1 1703static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1704
e7c27a73 1705static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1706
6e70227d 1707static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1708 struct dwarf2_cu *);
1709
bf6af496 1710static struct die_info *read_die_and_siblings_1
d521ce57 1711 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1712 struct die_info *);
639d11d3 1713
dee91e82 1714static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1715 const gdb_byte *info_ptr,
1716 const gdb_byte **new_info_ptr,
639d11d3
DC
1717 struct die_info *parent);
1718
d521ce57
TT
1719static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1720 struct die_info **, const gdb_byte *,
1721 int *, int);
3019eac3 1722
d521ce57
TT
1723static const gdb_byte *read_full_die (const struct die_reader_specs *,
1724 struct die_info **, const gdb_byte *,
1725 int *);
93311388 1726
e7c27a73 1727static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1728
15d034d0
TT
1729static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1730 struct obstack *);
71c25dea 1731
15d034d0 1732static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1733
15d034d0 1734static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1735 struct die_info *die,
1736 struct dwarf2_cu *cu);
1737
ca69b9e6
DE
1738static const char *dwarf2_physname (const char *name, struct die_info *die,
1739 struct dwarf2_cu *cu);
1740
e142c38c 1741static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1742 struct dwarf2_cu **);
9219021c 1743
f39c6ffd 1744static const char *dwarf_tag_name (unsigned int);
c906108c 1745
f39c6ffd 1746static const char *dwarf_attr_name (unsigned int);
c906108c 1747
f39c6ffd 1748static const char *dwarf_form_name (unsigned int);
c906108c 1749
a14ed312 1750static char *dwarf_bool_name (unsigned int);
c906108c 1751
f39c6ffd 1752static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1753
f9aca02d 1754static struct die_info *sibling_die (struct die_info *);
c906108c 1755
d97bc12b
DE
1756static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1757
1758static void dump_die_for_error (struct die_info *);
1759
1760static void dump_die_1 (struct ui_file *, int level, int max_level,
1761 struct die_info *);
c906108c 1762
d97bc12b 1763/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1764
51545339 1765static void store_in_ref_table (struct die_info *,
10b3939b 1766 struct dwarf2_cu *);
c906108c 1767
ff39bb5e 1768static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1769
ff39bb5e 1770static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1771
348e048f 1772static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1773 const struct attribute *,
348e048f
DE
1774 struct dwarf2_cu **);
1775
10b3939b 1776static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1777 const struct attribute *,
f2f0e013 1778 struct dwarf2_cu **);
c906108c 1779
348e048f 1780static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1781 const struct attribute *,
348e048f
DE
1782 struct dwarf2_cu **);
1783
ac9ec31b
DE
1784static struct type *get_signatured_type (struct die_info *, ULONGEST,
1785 struct dwarf2_cu *);
1786
1787static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1788 const struct attribute *,
ac9ec31b
DE
1789 struct dwarf2_cu *);
1790
e5fe5e75 1791static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1792
52dc124a 1793static void read_signatured_type (struct signatured_type *);
348e048f 1794
63e43d3a
PMR
1795static int attr_to_dynamic_prop (const struct attribute *attr,
1796 struct die_info *die, struct dwarf2_cu *cu,
1797 struct dynamic_prop *prop);
1798
c906108c
SS
1799/* memory allocation interface */
1800
7b5a2f43 1801static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1802
b60c80d6 1803static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1804
43f3e411 1805static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1806
6e5a29e1 1807static int attr_form_is_block (const struct attribute *);
8e19ed76 1808
6e5a29e1 1809static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1810
6e5a29e1 1811static int attr_form_is_constant (const struct attribute *);
3690dd37 1812
6e5a29e1 1813static int attr_form_is_ref (const struct attribute *);
7771576e 1814
8cf6f0b1
TT
1815static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1816 struct dwarf2_loclist_baton *baton,
ff39bb5e 1817 const struct attribute *attr);
8cf6f0b1 1818
ff39bb5e 1819static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1820 struct symbol *sym,
f1e6e072
TT
1821 struct dwarf2_cu *cu,
1822 int is_block);
4c2df51b 1823
d521ce57
TT
1824static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1825 const gdb_byte *info_ptr,
1826 struct abbrev_info *abbrev);
4bb7a0a7 1827
72bf9492
DJ
1828static void free_stack_comp_unit (void *);
1829
72bf9492
DJ
1830static hashval_t partial_die_hash (const void *item);
1831
1832static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1833
ae038cb0 1834static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1835 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1836
9816fde3 1837static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1838 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1839
1840static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1841 struct die_info *comp_unit_die,
1842 enum language pretend_language);
93311388 1843
68dc6402 1844static void free_heap_comp_unit (void *);
ae038cb0
DJ
1845
1846static void free_cached_comp_units (void *);
1847
1848static void age_cached_comp_units (void);
1849
dee91e82 1850static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1851
f792889a
DJ
1852static struct type *set_die_type (struct die_info *, struct type *,
1853 struct dwarf2_cu *);
1c379e20 1854
ae038cb0
DJ
1855static void create_all_comp_units (struct objfile *);
1856
0e50663e 1857static int create_all_type_units (struct objfile *);
1fd400ff 1858
95554aad
TT
1859static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1860 enum language);
10b3939b 1861
95554aad
TT
1862static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1863 enum language);
10b3939b 1864
f4dc4d17
DE
1865static void process_full_type_unit (struct dwarf2_per_cu_data *,
1866 enum language);
1867
10b3939b
DJ
1868static void dwarf2_add_dependence (struct dwarf2_cu *,
1869 struct dwarf2_per_cu_data *);
1870
ae038cb0
DJ
1871static void dwarf2_mark (struct dwarf2_cu *);
1872
1873static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1874
b64f50a1 1875static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1876 struct dwarf2_per_cu_data *);
673bfd45 1877
f792889a 1878static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1879
9291a0cd
TT
1880static void dwarf2_release_queue (void *dummy);
1881
95554aad
TT
1882static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1883 enum language pretend_language);
1884
a0f42c21 1885static void process_queue (void);
9291a0cd
TT
1886
1887static void find_file_and_directory (struct die_info *die,
1888 struct dwarf2_cu *cu,
15d034d0 1889 const char **name, const char **comp_dir);
9291a0cd
TT
1890
1891static char *file_full_name (int file, struct line_header *lh,
1892 const char *comp_dir);
1893
43988095
JK
1894/* Expected enum dwarf_unit_type for read_comp_unit_head. */
1895enum class rcuh_kind { COMPILE, TYPE };
1896
d521ce57 1897static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1898 (struct comp_unit_head *header,
1899 struct dwarf2_section_info *section,
d521ce57 1900 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
43988095 1901 rcuh_kind section_kind);
36586728 1902
fd820528 1903static void init_cutu_and_read_dies
f4dc4d17
DE
1904 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1905 int use_existing_cu, int keep,
3019eac3
DE
1906 die_reader_func_ftype *die_reader_func, void *data);
1907
dee91e82
DE
1908static void init_cutu_and_read_dies_simple
1909 (struct dwarf2_per_cu_data *this_cu,
1910 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1911
673bfd45 1912static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1913
3019eac3
DE
1914static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1915
57d63ce2
DE
1916static struct dwo_unit *lookup_dwo_unit_in_dwp
1917 (struct dwp_file *dwp_file, const char *comp_dir,
1918 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1919
1920static struct dwp_file *get_dwp_file (void);
1921
3019eac3 1922static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1923 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1924
1925static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1926 (struct signatured_type *, const char *, const char *);
3019eac3 1927
89e63ee4
DE
1928static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1929
3019eac3
DE
1930static void free_dwo_file_cleanup (void *);
1931
95554aad
TT
1932static void process_cu_includes (void);
1933
1b80a9fa 1934static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
1935
1936static void free_line_header_voidp (void *arg);
4390d890
DE
1937\f
1938/* Various complaints about symbol reading that don't abort the process. */
1939
1940static void
1941dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1942{
1943 complaint (&symfile_complaints,
1944 _("statement list doesn't fit in .debug_line section"));
1945}
1946
1947static void
1948dwarf2_debug_line_missing_file_complaint (void)
1949{
1950 complaint (&symfile_complaints,
1951 _(".debug_line section has line data without a file"));
1952}
1953
1954static void
1955dwarf2_debug_line_missing_end_sequence_complaint (void)
1956{
1957 complaint (&symfile_complaints,
1958 _(".debug_line section has line "
1959 "program sequence without an end"));
1960}
1961
1962static void
1963dwarf2_complex_location_expr_complaint (void)
1964{
1965 complaint (&symfile_complaints, _("location expression too complex"));
1966}
1967
1968static void
1969dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1970 int arg3)
1971{
1972 complaint (&symfile_complaints,
1973 _("const value length mismatch for '%s', got %d, expected %d"),
1974 arg1, arg2, arg3);
1975}
1976
1977static void
1978dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1979{
1980 complaint (&symfile_complaints,
1981 _("debug info runs off end of %s section"
1982 " [in module %s]"),
a32a8923
DE
1983 get_section_name (section),
1984 get_section_file_name (section));
4390d890 1985}
1b80a9fa 1986
4390d890
DE
1987static void
1988dwarf2_macro_malformed_definition_complaint (const char *arg1)
1989{
1990 complaint (&symfile_complaints,
1991 _("macro debug info contains a "
1992 "malformed macro definition:\n`%s'"),
1993 arg1);
1994}
1995
1996static void
1997dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1998{
1999 complaint (&symfile_complaints,
2000 _("invalid attribute class or form for '%s' in '%s'"),
2001 arg1, arg2);
2002}
527f3840
JK
2003
2004/* Hash function for line_header_hash. */
2005
2006static hashval_t
2007line_header_hash (const struct line_header *ofs)
2008{
2009 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
2010}
2011
2012/* Hash function for htab_create_alloc_ex for line_header_hash. */
2013
2014static hashval_t
2015line_header_hash_voidp (const void *item)
2016{
9a3c8263 2017 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
2018
2019 return line_header_hash (ofs);
2020}
2021
2022/* Equality function for line_header_hash. */
2023
2024static int
2025line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2026{
9a3c8263
SM
2027 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2028 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840
JK
2029
2030 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
2031 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2032}
2033
4390d890 2034\f
9291a0cd
TT
2035#if WORDS_BIGENDIAN
2036
2037/* Convert VALUE between big- and little-endian. */
2038static offset_type
2039byte_swap (offset_type value)
2040{
2041 offset_type result;
2042
2043 result = (value & 0xff) << 24;
2044 result |= (value & 0xff00) << 8;
2045 result |= (value & 0xff0000) >> 8;
2046 result |= (value & 0xff000000) >> 24;
2047 return result;
2048}
2049
2050#define MAYBE_SWAP(V) byte_swap (V)
2051
2052#else
2053#define MAYBE_SWAP(V) (V)
2054#endif /* WORDS_BIGENDIAN */
2055
31aa7e4e
JB
2056/* Read the given attribute value as an address, taking the attribute's
2057 form into account. */
2058
2059static CORE_ADDR
2060attr_value_as_address (struct attribute *attr)
2061{
2062 CORE_ADDR addr;
2063
2064 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2065 {
2066 /* Aside from a few clearly defined exceptions, attributes that
2067 contain an address must always be in DW_FORM_addr form.
2068 Unfortunately, some compilers happen to be violating this
2069 requirement by encoding addresses using other forms, such
2070 as DW_FORM_data4 for example. For those broken compilers,
2071 we try to do our best, without any guarantee of success,
2072 to interpret the address correctly. It would also be nice
2073 to generate a complaint, but that would require us to maintain
2074 a list of legitimate cases where a non-address form is allowed,
2075 as well as update callers to pass in at least the CU's DWARF
2076 version. This is more overhead than what we're willing to
2077 expand for a pretty rare case. */
2078 addr = DW_UNSND (attr);
2079 }
2080 else
2081 addr = DW_ADDR (attr);
2082
2083 return addr;
2084}
2085
9291a0cd
TT
2086/* The suffix for an index file. */
2087#define INDEX_SUFFIX ".gdb-index"
2088
c906108c 2089/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2090 information and return true if we have enough to do something.
2091 NAMES points to the dwarf2 section names, or is NULL if the standard
2092 ELF names are used. */
c906108c
SS
2093
2094int
251d32d9
TG
2095dwarf2_has_info (struct objfile *objfile,
2096 const struct dwarf2_debug_sections *names)
c906108c 2097{
9a3c8263
SM
2098 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2099 objfile_data (objfile, dwarf2_objfile_data_key));
be391dca
TT
2100 if (!dwarf2_per_objfile)
2101 {
2102 /* Initialize per-objfile state. */
2103 struct dwarf2_per_objfile *data
8d749320 2104 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
9a619af0 2105
be391dca
TT
2106 memset (data, 0, sizeof (*data));
2107 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2108 dwarf2_per_objfile = data;
6502dd73 2109
251d32d9
TG
2110 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2111 (void *) names);
be391dca
TT
2112 dwarf2_per_objfile->objfile = objfile;
2113 }
73869dc2 2114 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2115 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2116 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2117 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2118}
2119
2120/* Return the containing section of virtual section SECTION. */
2121
2122static struct dwarf2_section_info *
2123get_containing_section (const struct dwarf2_section_info *section)
2124{
2125 gdb_assert (section->is_virtual);
2126 return section->s.containing_section;
c906108c
SS
2127}
2128
a32a8923
DE
2129/* Return the bfd owner of SECTION. */
2130
2131static struct bfd *
2132get_section_bfd_owner (const struct dwarf2_section_info *section)
2133{
73869dc2
DE
2134 if (section->is_virtual)
2135 {
2136 section = get_containing_section (section);
2137 gdb_assert (!section->is_virtual);
2138 }
049412e3 2139 return section->s.section->owner;
a32a8923
DE
2140}
2141
2142/* Return the bfd section of SECTION.
2143 Returns NULL if the section is not present. */
2144
2145static asection *
2146get_section_bfd_section (const struct dwarf2_section_info *section)
2147{
73869dc2
DE
2148 if (section->is_virtual)
2149 {
2150 section = get_containing_section (section);
2151 gdb_assert (!section->is_virtual);
2152 }
049412e3 2153 return section->s.section;
a32a8923
DE
2154}
2155
2156/* Return the name of SECTION. */
2157
2158static const char *
2159get_section_name (const struct dwarf2_section_info *section)
2160{
2161 asection *sectp = get_section_bfd_section (section);
2162
2163 gdb_assert (sectp != NULL);
2164 return bfd_section_name (get_section_bfd_owner (section), sectp);
2165}
2166
2167/* Return the name of the file SECTION is in. */
2168
2169static const char *
2170get_section_file_name (const struct dwarf2_section_info *section)
2171{
2172 bfd *abfd = get_section_bfd_owner (section);
2173
2174 return bfd_get_filename (abfd);
2175}
2176
2177/* Return the id of SECTION.
2178 Returns 0 if SECTION doesn't exist. */
2179
2180static int
2181get_section_id (const struct dwarf2_section_info *section)
2182{
2183 asection *sectp = get_section_bfd_section (section);
2184
2185 if (sectp == NULL)
2186 return 0;
2187 return sectp->id;
2188}
2189
2190/* Return the flags of SECTION.
73869dc2 2191 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2192
2193static int
2194get_section_flags (const struct dwarf2_section_info *section)
2195{
2196 asection *sectp = get_section_bfd_section (section);
2197
2198 gdb_assert (sectp != NULL);
2199 return bfd_get_section_flags (sectp->owner, sectp);
2200}
2201
251d32d9
TG
2202/* When loading sections, we look either for uncompressed section or for
2203 compressed section names. */
233a11ab
CS
2204
2205static int
251d32d9
TG
2206section_is_p (const char *section_name,
2207 const struct dwarf2_section_names *names)
233a11ab 2208{
251d32d9
TG
2209 if (names->normal != NULL
2210 && strcmp (section_name, names->normal) == 0)
2211 return 1;
2212 if (names->compressed != NULL
2213 && strcmp (section_name, names->compressed) == 0)
2214 return 1;
2215 return 0;
233a11ab
CS
2216}
2217
c906108c
SS
2218/* This function is mapped across the sections and remembers the
2219 offset and size of each of the debugging sections we are interested
2220 in. */
2221
2222static void
251d32d9 2223dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2224{
251d32d9 2225 const struct dwarf2_debug_sections *names;
dc7650b8 2226 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2227
2228 if (vnames == NULL)
2229 names = &dwarf2_elf_names;
2230 else
2231 names = (const struct dwarf2_debug_sections *) vnames;
2232
dc7650b8
JK
2233 if ((aflag & SEC_HAS_CONTENTS) == 0)
2234 {
2235 }
2236 else if (section_is_p (sectp->name, &names->info))
c906108c 2237 {
049412e3 2238 dwarf2_per_objfile->info.s.section = sectp;
dce234bc 2239 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2240 }
251d32d9 2241 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2242 {
049412e3 2243 dwarf2_per_objfile->abbrev.s.section = sectp;
dce234bc 2244 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2245 }
251d32d9 2246 else if (section_is_p (sectp->name, &names->line))
c906108c 2247 {
049412e3 2248 dwarf2_per_objfile->line.s.section = sectp;
dce234bc 2249 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2250 }
251d32d9 2251 else if (section_is_p (sectp->name, &names->loc))
c906108c 2252 {
049412e3 2253 dwarf2_per_objfile->loc.s.section = sectp;
dce234bc 2254 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2255 }
43988095
JK
2256 else if (section_is_p (sectp->name, &names->loclists))
2257 {
2258 dwarf2_per_objfile->loclists.s.section = sectp;
2259 dwarf2_per_objfile->loclists.size = bfd_get_section_size (sectp);
2260 }
251d32d9 2261 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2262 {
049412e3 2263 dwarf2_per_objfile->macinfo.s.section = sectp;
dce234bc 2264 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2265 }
cf2c3c16
TT
2266 else if (section_is_p (sectp->name, &names->macro))
2267 {
049412e3 2268 dwarf2_per_objfile->macro.s.section = sectp;
cf2c3c16
TT
2269 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2270 }
251d32d9 2271 else if (section_is_p (sectp->name, &names->str))
c906108c 2272 {
049412e3 2273 dwarf2_per_objfile->str.s.section = sectp;
dce234bc 2274 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2275 }
43988095
JK
2276 else if (section_is_p (sectp->name, &names->line_str))
2277 {
2278 dwarf2_per_objfile->line_str.s.section = sectp;
2279 dwarf2_per_objfile->line_str.size = bfd_get_section_size (sectp);
2280 }
3019eac3
DE
2281 else if (section_is_p (sectp->name, &names->addr))
2282 {
049412e3 2283 dwarf2_per_objfile->addr.s.section = sectp;
3019eac3
DE
2284 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2285 }
251d32d9 2286 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2287 {
049412e3 2288 dwarf2_per_objfile->frame.s.section = sectp;
dce234bc 2289 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2290 }
251d32d9 2291 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2292 {
049412e3 2293 dwarf2_per_objfile->eh_frame.s.section = sectp;
dc7650b8 2294 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2295 }
251d32d9 2296 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2297 {
049412e3 2298 dwarf2_per_objfile->ranges.s.section = sectp;
dce234bc 2299 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2300 }
43988095
JK
2301 else if (section_is_p (sectp->name, &names->rnglists))
2302 {
2303 dwarf2_per_objfile->rnglists.s.section = sectp;
2304 dwarf2_per_objfile->rnglists.size = bfd_get_section_size (sectp);
2305 }
251d32d9 2306 else if (section_is_p (sectp->name, &names->types))
348e048f 2307 {
8b70b953
TT
2308 struct dwarf2_section_info type_section;
2309
2310 memset (&type_section, 0, sizeof (type_section));
049412e3 2311 type_section.s.section = sectp;
8b70b953
TT
2312 type_section.size = bfd_get_section_size (sectp);
2313
2314 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2315 &type_section);
348e048f 2316 }
251d32d9 2317 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2318 {
049412e3 2319 dwarf2_per_objfile->gdb_index.s.section = sectp;
9291a0cd
TT
2320 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2321 }
dce234bc 2322
b4e1fd61 2323 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5
FR
2324 && bfd_section_vma (abfd, sectp) == 0)
2325 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2326}
2327
fceca515
DE
2328/* A helper function that decides whether a section is empty,
2329 or not present. */
9e0ac564
TT
2330
2331static int
19ac8c2e 2332dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2333{
73869dc2
DE
2334 if (section->is_virtual)
2335 return section->size == 0;
049412e3 2336 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2337}
2338
3019eac3
DE
2339/* Read the contents of the section INFO.
2340 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2341 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2342 of the DWO file.
dce234bc 2343 If the section is compressed, uncompress it before returning. */
c906108c 2344
dce234bc
PP
2345static void
2346dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2347{
a32a8923 2348 asection *sectp;
3019eac3 2349 bfd *abfd;
dce234bc 2350 gdb_byte *buf, *retbuf;
c906108c 2351
be391dca
TT
2352 if (info->readin)
2353 return;
dce234bc 2354 info->buffer = NULL;
be391dca 2355 info->readin = 1;
188dd5d6 2356
9e0ac564 2357 if (dwarf2_section_empty_p (info))
dce234bc 2358 return;
c906108c 2359
a32a8923 2360 sectp = get_section_bfd_section (info);
3019eac3 2361
73869dc2
DE
2362 /* If this is a virtual section we need to read in the real one first. */
2363 if (info->is_virtual)
2364 {
2365 struct dwarf2_section_info *containing_section =
2366 get_containing_section (info);
2367
2368 gdb_assert (sectp != NULL);
2369 if ((sectp->flags & SEC_RELOC) != 0)
2370 {
2371 error (_("Dwarf Error: DWP format V2 with relocations is not"
2372 " supported in section %s [in module %s]"),
2373 get_section_name (info), get_section_file_name (info));
2374 }
2375 dwarf2_read_section (objfile, containing_section);
2376 /* Other code should have already caught virtual sections that don't
2377 fit. */
2378 gdb_assert (info->virtual_offset + info->size
2379 <= containing_section->size);
2380 /* If the real section is empty or there was a problem reading the
2381 section we shouldn't get here. */
2382 gdb_assert (containing_section->buffer != NULL);
2383 info->buffer = containing_section->buffer + info->virtual_offset;
2384 return;
2385 }
2386
4bf44c1c
TT
2387 /* If the section has relocations, we must read it ourselves.
2388 Otherwise we attach it to the BFD. */
2389 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2390 {
d521ce57 2391 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2392 return;
dce234bc 2393 }
dce234bc 2394
224c3ddb 2395 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2396 info->buffer = buf;
dce234bc
PP
2397
2398 /* When debugging .o files, we may need to apply relocations; see
2399 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2400 We never compress sections in .o files, so we only need to
2401 try this when the section is not compressed. */
ac8035ab 2402 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2403 if (retbuf != NULL)
2404 {
2405 info->buffer = retbuf;
2406 return;
2407 }
2408
a32a8923
DE
2409 abfd = get_section_bfd_owner (info);
2410 gdb_assert (abfd != NULL);
2411
dce234bc
PP
2412 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2413 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2414 {
2415 error (_("Dwarf Error: Can't read DWARF data"
2416 " in section %s [in module %s]"),
2417 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2418 }
dce234bc
PP
2419}
2420
9e0ac564
TT
2421/* A helper function that returns the size of a section in a safe way.
2422 If you are positive that the section has been read before using the
2423 size, then it is safe to refer to the dwarf2_section_info object's
2424 "size" field directly. In other cases, you must call this
2425 function, because for compressed sections the size field is not set
2426 correctly until the section has been read. */
2427
2428static bfd_size_type
2429dwarf2_section_size (struct objfile *objfile,
2430 struct dwarf2_section_info *info)
2431{
2432 if (!info->readin)
2433 dwarf2_read_section (objfile, info);
2434 return info->size;
2435}
2436
dce234bc 2437/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2438 SECTION_NAME. */
af34e669 2439
dce234bc 2440void
3017a003
TG
2441dwarf2_get_section_info (struct objfile *objfile,
2442 enum dwarf2_section_enum sect,
d521ce57 2443 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2444 bfd_size_type *sizep)
2445{
2446 struct dwarf2_per_objfile *data
9a3c8263
SM
2447 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2448 dwarf2_objfile_data_key);
dce234bc 2449 struct dwarf2_section_info *info;
a3b2a86b
TT
2450
2451 /* We may see an objfile without any DWARF, in which case we just
2452 return nothing. */
2453 if (data == NULL)
2454 {
2455 *sectp = NULL;
2456 *bufp = NULL;
2457 *sizep = 0;
2458 return;
2459 }
3017a003
TG
2460 switch (sect)
2461 {
2462 case DWARF2_DEBUG_FRAME:
2463 info = &data->frame;
2464 break;
2465 case DWARF2_EH_FRAME:
2466 info = &data->eh_frame;
2467 break;
2468 default:
2469 gdb_assert_not_reached ("unexpected section");
2470 }
dce234bc 2471
9e0ac564 2472 dwarf2_read_section (objfile, info);
dce234bc 2473
a32a8923 2474 *sectp = get_section_bfd_section (info);
dce234bc
PP
2475 *bufp = info->buffer;
2476 *sizep = info->size;
2477}
2478
36586728
TT
2479/* A helper function to find the sections for a .dwz file. */
2480
2481static void
2482locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2483{
9a3c8263 2484 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2485
2486 /* Note that we only support the standard ELF names, because .dwz
2487 is ELF-only (at the time of writing). */
2488 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2489 {
049412e3 2490 dwz_file->abbrev.s.section = sectp;
36586728
TT
2491 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2492 }
2493 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2494 {
049412e3 2495 dwz_file->info.s.section = sectp;
36586728
TT
2496 dwz_file->info.size = bfd_get_section_size (sectp);
2497 }
2498 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2499 {
049412e3 2500 dwz_file->str.s.section = sectp;
36586728
TT
2501 dwz_file->str.size = bfd_get_section_size (sectp);
2502 }
2503 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2504 {
049412e3 2505 dwz_file->line.s.section = sectp;
36586728
TT
2506 dwz_file->line.size = bfd_get_section_size (sectp);
2507 }
2508 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2509 {
049412e3 2510 dwz_file->macro.s.section = sectp;
36586728
TT
2511 dwz_file->macro.size = bfd_get_section_size (sectp);
2512 }
2ec9a5e0
TT
2513 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2514 {
049412e3 2515 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2516 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2517 }
36586728
TT
2518}
2519
4db1a1dc
TT
2520/* Open the separate '.dwz' debug file, if needed. Return NULL if
2521 there is no .gnu_debugaltlink section in the file. Error if there
2522 is such a section but the file cannot be found. */
36586728
TT
2523
2524static struct dwz_file *
2525dwarf2_get_dwz_file (void)
2526{
4db1a1dc 2527 char *data;
36586728
TT
2528 struct cleanup *cleanup;
2529 const char *filename;
2530 struct dwz_file *result;
acd13123 2531 bfd_size_type buildid_len_arg;
dc294be5
TT
2532 size_t buildid_len;
2533 bfd_byte *buildid;
36586728
TT
2534
2535 if (dwarf2_per_objfile->dwz_file != NULL)
2536 return dwarf2_per_objfile->dwz_file;
2537
4db1a1dc
TT
2538 bfd_set_error (bfd_error_no_error);
2539 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2540 &buildid_len_arg, &buildid);
4db1a1dc
TT
2541 if (data == NULL)
2542 {
2543 if (bfd_get_error () == bfd_error_no_error)
2544 return NULL;
2545 error (_("could not read '.gnu_debugaltlink' section: %s"),
2546 bfd_errmsg (bfd_get_error ()));
2547 }
36586728 2548 cleanup = make_cleanup (xfree, data);
dc294be5 2549 make_cleanup (xfree, buildid);
36586728 2550
acd13123
TT
2551 buildid_len = (size_t) buildid_len_arg;
2552
f9d83a0b 2553 filename = (const char *) data;
36586728
TT
2554 if (!IS_ABSOLUTE_PATH (filename))
2555 {
4262abfb 2556 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2557 char *rel;
2558
2559 make_cleanup (xfree, abs);
2560 abs = ldirname (abs);
2561 make_cleanup (xfree, abs);
2562
2563 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2564 make_cleanup (xfree, rel);
2565 filename = rel;
2566 }
2567
dc294be5
TT
2568 /* First try the file name given in the section. If that doesn't
2569 work, try to use the build-id instead. */
192b62ce 2570 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
dc294be5 2571 if (dwz_bfd != NULL)
36586728 2572 {
192b62ce
TT
2573 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2574 dwz_bfd.release ();
36586728
TT
2575 }
2576
dc294be5
TT
2577 if (dwz_bfd == NULL)
2578 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2579
2580 if (dwz_bfd == NULL)
2581 error (_("could not find '.gnu_debugaltlink' file for %s"),
2582 objfile_name (dwarf2_per_objfile->objfile));
2583
36586728
TT
2584 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2585 struct dwz_file);
192b62ce 2586 result->dwz_bfd = dwz_bfd.release ();
36586728 2587
192b62ce 2588 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
36586728
TT
2589
2590 do_cleanups (cleanup);
2591
192b62ce 2592 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
8d2cc612 2593 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2594 return result;
2595}
9291a0cd 2596\f
7b9f3c50
DE
2597/* DWARF quick_symbols_functions support. */
2598
2599/* TUs can share .debug_line entries, and there can be a lot more TUs than
2600 unique line tables, so we maintain a separate table of all .debug_line
2601 derived entries to support the sharing.
2602 All the quick functions need is the list of file names. We discard the
2603 line_header when we're done and don't need to record it here. */
2604struct quick_file_names
2605{
094b34ac
DE
2606 /* The data used to construct the hash key. */
2607 struct stmt_list_hash hash;
7b9f3c50
DE
2608
2609 /* The number of entries in file_names, real_names. */
2610 unsigned int num_file_names;
2611
2612 /* The file names from the line table, after being run through
2613 file_full_name. */
2614 const char **file_names;
2615
2616 /* The file names from the line table after being run through
2617 gdb_realpath. These are computed lazily. */
2618 const char **real_names;
2619};
2620
2621/* When using the index (and thus not using psymtabs), each CU has an
2622 object of this type. This is used to hold information needed by
2623 the various "quick" methods. */
2624struct dwarf2_per_cu_quick_data
2625{
2626 /* The file table. This can be NULL if there was no file table
2627 or it's currently not read in.
2628 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2629 struct quick_file_names *file_names;
2630
2631 /* The corresponding symbol table. This is NULL if symbols for this
2632 CU have not yet been read. */
43f3e411 2633 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2634
2635 /* A temporary mark bit used when iterating over all CUs in
2636 expand_symtabs_matching. */
2637 unsigned int mark : 1;
2638
2639 /* True if we've tried to read the file table and found there isn't one.
2640 There will be no point in trying to read it again next time. */
2641 unsigned int no_file_data : 1;
2642};
2643
094b34ac
DE
2644/* Utility hash function for a stmt_list_hash. */
2645
2646static hashval_t
2647hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2648{
2649 hashval_t v = 0;
2650
2651 if (stmt_list_hash->dwo_unit != NULL)
2652 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2653 v += stmt_list_hash->line_offset.sect_off;
2654 return v;
2655}
2656
2657/* Utility equality function for a stmt_list_hash. */
2658
2659static int
2660eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2661 const struct stmt_list_hash *rhs)
2662{
2663 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2664 return 0;
2665 if (lhs->dwo_unit != NULL
2666 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2667 return 0;
2668
2669 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2670}
2671
7b9f3c50
DE
2672/* Hash function for a quick_file_names. */
2673
2674static hashval_t
2675hash_file_name_entry (const void *e)
2676{
9a3c8263
SM
2677 const struct quick_file_names *file_data
2678 = (const struct quick_file_names *) e;
7b9f3c50 2679
094b34ac 2680 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2681}
2682
2683/* Equality function for a quick_file_names. */
2684
2685static int
2686eq_file_name_entry (const void *a, const void *b)
2687{
9a3c8263
SM
2688 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2689 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2690
094b34ac 2691 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2692}
2693
2694/* Delete function for a quick_file_names. */
2695
2696static void
2697delete_file_name_entry (void *e)
2698{
9a3c8263 2699 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2700 int i;
2701
2702 for (i = 0; i < file_data->num_file_names; ++i)
2703 {
2704 xfree ((void*) file_data->file_names[i]);
2705 if (file_data->real_names)
2706 xfree ((void*) file_data->real_names[i]);
2707 }
2708
2709 /* The space for the struct itself lives on objfile_obstack,
2710 so we don't free it here. */
2711}
2712
2713/* Create a quick_file_names hash table. */
2714
2715static htab_t
2716create_quick_file_names_table (unsigned int nr_initial_entries)
2717{
2718 return htab_create_alloc (nr_initial_entries,
2719 hash_file_name_entry, eq_file_name_entry,
2720 delete_file_name_entry, xcalloc, xfree);
2721}
9291a0cd 2722
918dd910
JK
2723/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2724 have to be created afterwards. You should call age_cached_comp_units after
2725 processing PER_CU->CU. dw2_setup must have been already called. */
2726
2727static void
2728load_cu (struct dwarf2_per_cu_data *per_cu)
2729{
3019eac3 2730 if (per_cu->is_debug_types)
e5fe5e75 2731 load_full_type_unit (per_cu);
918dd910 2732 else
95554aad 2733 load_full_comp_unit (per_cu, language_minimal);
918dd910 2734
cc12ce38
DE
2735 if (per_cu->cu == NULL)
2736 return; /* Dummy CU. */
2dc860c0
DE
2737
2738 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2739}
2740
a0f42c21 2741/* Read in the symbols for PER_CU. */
2fdf6df6 2742
9291a0cd 2743static void
a0f42c21 2744dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2745{
2746 struct cleanup *back_to;
2747
f4dc4d17
DE
2748 /* Skip type_unit_groups, reading the type units they contain
2749 is handled elsewhere. */
2750 if (IS_TYPE_UNIT_GROUP (per_cu))
2751 return;
2752
9291a0cd
TT
2753 back_to = make_cleanup (dwarf2_release_queue, NULL);
2754
95554aad 2755 if (dwarf2_per_objfile->using_index
43f3e411 2756 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2757 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2758 {
2759 queue_comp_unit (per_cu, language_minimal);
2760 load_cu (per_cu);
89e63ee4
DE
2761
2762 /* If we just loaded a CU from a DWO, and we're working with an index
2763 that may badly handle TUs, load all the TUs in that DWO as well.
2764 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2765 if (!per_cu->is_debug_types
cc12ce38 2766 && per_cu->cu != NULL
89e63ee4
DE
2767 && per_cu->cu->dwo_unit != NULL
2768 && dwarf2_per_objfile->index_table != NULL
2769 && dwarf2_per_objfile->index_table->version <= 7
2770 /* DWP files aren't supported yet. */
2771 && get_dwp_file () == NULL)
2772 queue_and_load_all_dwo_tus (per_cu);
95554aad 2773 }
9291a0cd 2774
a0f42c21 2775 process_queue ();
9291a0cd
TT
2776
2777 /* Age the cache, releasing compilation units that have not
2778 been used recently. */
2779 age_cached_comp_units ();
2780
2781 do_cleanups (back_to);
2782}
2783
2784/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2785 the objfile from which this CU came. Returns the resulting symbol
2786 table. */
2fdf6df6 2787
43f3e411 2788static struct compunit_symtab *
a0f42c21 2789dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2790{
95554aad 2791 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2792 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2793 {
2794 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2795 increment_reading_symtab ();
a0f42c21 2796 dw2_do_instantiate_symtab (per_cu);
95554aad 2797 process_cu_includes ();
9291a0cd
TT
2798 do_cleanups (back_to);
2799 }
f194fefb 2800
43f3e411 2801 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2802}
2803
8832e7e3 2804/* Return the CU/TU given its index.
f4dc4d17
DE
2805
2806 This is intended for loops like:
2807
2808 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2809 + dwarf2_per_objfile->n_type_units); ++i)
2810 {
8832e7e3 2811 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2812
2813 ...;
2814 }
2815*/
2fdf6df6 2816
1fd400ff 2817static struct dwarf2_per_cu_data *
8832e7e3 2818dw2_get_cutu (int index)
1fd400ff
TT
2819{
2820 if (index >= dwarf2_per_objfile->n_comp_units)
2821 {
f4dc4d17 2822 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2823 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2824 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2825 }
2826
2827 return dwarf2_per_objfile->all_comp_units[index];
2828}
2829
8832e7e3
DE
2830/* Return the CU given its index.
2831 This differs from dw2_get_cutu in that it's for when you know INDEX
2832 refers to a CU. */
f4dc4d17
DE
2833
2834static struct dwarf2_per_cu_data *
8832e7e3 2835dw2_get_cu (int index)
f4dc4d17 2836{
8832e7e3 2837 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2838
1fd400ff
TT
2839 return dwarf2_per_objfile->all_comp_units[index];
2840}
2841
2ec9a5e0
TT
2842/* A helper for create_cus_from_index that handles a given list of
2843 CUs. */
2fdf6df6 2844
74a0d9f6 2845static void
2ec9a5e0
TT
2846create_cus_from_index_list (struct objfile *objfile,
2847 const gdb_byte *cu_list, offset_type n_elements,
2848 struct dwarf2_section_info *section,
2849 int is_dwz,
2850 int base_offset)
9291a0cd
TT
2851{
2852 offset_type i;
9291a0cd 2853
2ec9a5e0 2854 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2855 {
2856 struct dwarf2_per_cu_data *the_cu;
2857 ULONGEST offset, length;
2858
74a0d9f6
JK
2859 gdb_static_assert (sizeof (ULONGEST) >= 8);
2860 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2861 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2862 cu_list += 2 * 8;
2863
2864 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2865 struct dwarf2_per_cu_data);
b64f50a1 2866 the_cu->offset.sect_off = offset;
9291a0cd
TT
2867 the_cu->length = length;
2868 the_cu->objfile = objfile;
8a0459fd 2869 the_cu->section = section;
9291a0cd
TT
2870 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2871 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2872 the_cu->is_dwz = is_dwz;
2873 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2874 }
9291a0cd
TT
2875}
2876
2ec9a5e0 2877/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2878 the CU objects for this objfile. */
2ec9a5e0 2879
74a0d9f6 2880static void
2ec9a5e0
TT
2881create_cus_from_index (struct objfile *objfile,
2882 const gdb_byte *cu_list, offset_type cu_list_elements,
2883 const gdb_byte *dwz_list, offset_type dwz_elements)
2884{
2885 struct dwz_file *dwz;
2886
2887 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
8d749320
SM
2888 dwarf2_per_objfile->all_comp_units =
2889 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2890 dwarf2_per_objfile->n_comp_units);
2ec9a5e0 2891
74a0d9f6
JK
2892 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2893 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2894
2895 if (dwz_elements == 0)
74a0d9f6 2896 return;
2ec9a5e0
TT
2897
2898 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2899 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2900 cu_list_elements / 2);
2ec9a5e0
TT
2901}
2902
1fd400ff 2903/* Create the signatured type hash table from the index. */
673bfd45 2904
74a0d9f6 2905static void
673bfd45 2906create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2907 struct dwarf2_section_info *section,
673bfd45
DE
2908 const gdb_byte *bytes,
2909 offset_type elements)
1fd400ff
TT
2910{
2911 offset_type i;
673bfd45 2912 htab_t sig_types_hash;
1fd400ff 2913
6aa5f3a6
DE
2914 dwarf2_per_objfile->n_type_units
2915 = dwarf2_per_objfile->n_allocated_type_units
2916 = elements / 3;
8d749320
SM
2917 dwarf2_per_objfile->all_type_units =
2918 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
1fd400ff 2919
673bfd45 2920 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2921
2922 for (i = 0; i < elements; i += 3)
2923 {
52dc124a
DE
2924 struct signatured_type *sig_type;
2925 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2926 void **slot;
2927
74a0d9f6
JK
2928 gdb_static_assert (sizeof (ULONGEST) >= 8);
2929 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2930 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2931 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2932 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2933 bytes += 3 * 8;
2934
52dc124a 2935 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2936 struct signatured_type);
52dc124a 2937 sig_type->signature = signature;
3019eac3
DE
2938 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2939 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2940 sig_type->per_cu.section = section;
52dc124a
DE
2941 sig_type->per_cu.offset.sect_off = offset;
2942 sig_type->per_cu.objfile = objfile;
2943 sig_type->per_cu.v.quick
1fd400ff
TT
2944 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2945 struct dwarf2_per_cu_quick_data);
2946
52dc124a
DE
2947 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2948 *slot = sig_type;
1fd400ff 2949
b4dd5633 2950 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2951 }
2952
673bfd45 2953 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2954}
2955
9291a0cd
TT
2956/* Read the address map data from the mapped index, and use it to
2957 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2958
9291a0cd
TT
2959static void
2960create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2961{
3e29f34a 2962 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd
TT
2963 const gdb_byte *iter, *end;
2964 struct obstack temp_obstack;
2965 struct addrmap *mutable_map;
2966 struct cleanup *cleanup;
2967 CORE_ADDR baseaddr;
2968
2969 obstack_init (&temp_obstack);
2970 cleanup = make_cleanup_obstack_free (&temp_obstack);
2971 mutable_map = addrmap_create_mutable (&temp_obstack);
2972
2973 iter = index->address_table;
2974 end = iter + index->address_table_size;
2975
2976 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2977
2978 while (iter < end)
2979 {
2980 ULONGEST hi, lo, cu_index;
2981 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2982 iter += 8;
2983 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2984 iter += 8;
2985 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2986 iter += 4;
f652bce2 2987
24a55014 2988 if (lo > hi)
f652bce2 2989 {
24a55014
DE
2990 complaint (&symfile_complaints,
2991 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2992 hex_string (lo), hex_string (hi));
24a55014 2993 continue;
f652bce2 2994 }
24a55014
DE
2995
2996 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2997 {
2998 complaint (&symfile_complaints,
2999 _(".gdb_index address table has invalid CU number %u"),
3000 (unsigned) cu_index);
24a55014 3001 continue;
f652bce2 3002 }
24a55014 3003
3e29f34a
MR
3004 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3005 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3006 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
3007 }
3008
3009 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3010 &objfile->objfile_obstack);
3011 do_cleanups (cleanup);
3012}
3013
59d7bcaf
JK
3014/* The hash function for strings in the mapped index. This is the same as
3015 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3016 implementation. This is necessary because the hash function is tied to the
3017 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
3018 SYMBOL_HASH_NEXT.
3019
3020 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 3021
9291a0cd 3022static hashval_t
559a7a62 3023mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
3024{
3025 const unsigned char *str = (const unsigned char *) p;
3026 hashval_t r = 0;
3027 unsigned char c;
3028
3029 while ((c = *str++) != 0)
559a7a62
JK
3030 {
3031 if (index_version >= 5)
3032 c = tolower (c);
3033 r = r * 67 + c - 113;
3034 }
9291a0cd
TT
3035
3036 return r;
3037}
3038
3039/* Find a slot in the mapped index INDEX for the object named NAME.
3040 If NAME is found, set *VEC_OUT to point to the CU vector in the
3041 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 3042
9291a0cd
TT
3043static int
3044find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3045 offset_type **vec_out)
3046{
0cf03b49
JK
3047 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3048 offset_type hash;
9291a0cd 3049 offset_type slot, step;
559a7a62 3050 int (*cmp) (const char *, const char *);
9291a0cd 3051
0cf03b49 3052 if (current_language->la_language == language_cplus
45280282
IB
3053 || current_language->la_language == language_fortran
3054 || current_language->la_language == language_d)
0cf03b49
JK
3055 {
3056 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3057 not contain any. */
a8719064 3058
72998fb3 3059 if (strchr (name, '(') != NULL)
0cf03b49 3060 {
72998fb3 3061 char *without_params = cp_remove_params (name);
0cf03b49 3062
72998fb3
DE
3063 if (without_params != NULL)
3064 {
3065 make_cleanup (xfree, without_params);
3066 name = without_params;
3067 }
0cf03b49
JK
3068 }
3069 }
3070
559a7a62 3071 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3072 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3073 simulate our NAME being searched is also lowercased. */
3074 hash = mapped_index_string_hash ((index->version == 4
3075 && case_sensitivity == case_sensitive_off
3076 ? 5 : index->version),
3077 name);
3078
3876f04e
DE
3079 slot = hash & (index->symbol_table_slots - 1);
3080 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3081 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3082
3083 for (;;)
3084 {
3085 /* Convert a slot number to an offset into the table. */
3086 offset_type i = 2 * slot;
3087 const char *str;
3876f04e 3088 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3089 {
3090 do_cleanups (back_to);
3091 return 0;
3092 }
9291a0cd 3093
3876f04e 3094 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3095 if (!cmp (name, str))
9291a0cd
TT
3096 {
3097 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3098 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3099 do_cleanups (back_to);
9291a0cd
TT
3100 return 1;
3101 }
3102
3876f04e 3103 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3104 }
3105}
3106
2ec9a5e0
TT
3107/* A helper function that reads the .gdb_index from SECTION and fills
3108 in MAP. FILENAME is the name of the file containing the section;
3109 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3110 ok to use deprecated sections.
3111
3112 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3113 out parameters that are filled in with information about the CU and
3114 TU lists in the section.
3115
3116 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3117
9291a0cd 3118static int
2ec9a5e0
TT
3119read_index_from_section (struct objfile *objfile,
3120 const char *filename,
3121 int deprecated_ok,
3122 struct dwarf2_section_info *section,
3123 struct mapped_index *map,
3124 const gdb_byte **cu_list,
3125 offset_type *cu_list_elements,
3126 const gdb_byte **types_list,
3127 offset_type *types_list_elements)
9291a0cd 3128{
948f8e3d 3129 const gdb_byte *addr;
2ec9a5e0 3130 offset_type version;
b3b272e1 3131 offset_type *metadata;
1fd400ff 3132 int i;
9291a0cd 3133
2ec9a5e0 3134 if (dwarf2_section_empty_p (section))
9291a0cd 3135 return 0;
82430852
JK
3136
3137 /* Older elfutils strip versions could keep the section in the main
3138 executable while splitting it for the separate debug info file. */
a32a8923 3139 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3140 return 0;
3141
2ec9a5e0 3142 dwarf2_read_section (objfile, section);
9291a0cd 3143
2ec9a5e0 3144 addr = section->buffer;
9291a0cd 3145 /* Version check. */
1fd400ff 3146 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3147 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3148 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3149 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3150 indices. */
831adc1f 3151 if (version < 4)
481860b3
GB
3152 {
3153 static int warning_printed = 0;
3154 if (!warning_printed)
3155 {
3156 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3157 filename);
481860b3
GB
3158 warning_printed = 1;
3159 }
3160 return 0;
3161 }
3162 /* Index version 4 uses a different hash function than index version
3163 5 and later.
3164
3165 Versions earlier than 6 did not emit psymbols for inlined
3166 functions. Using these files will cause GDB not to be able to
3167 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3168 indices unless the user has done
3169 "set use-deprecated-index-sections on". */
2ec9a5e0 3170 if (version < 6 && !deprecated_ok)
481860b3
GB
3171 {
3172 static int warning_printed = 0;
3173 if (!warning_printed)
3174 {
e615022a
DE
3175 warning (_("\
3176Skipping deprecated .gdb_index section in %s.\n\
3177Do \"set use-deprecated-index-sections on\" before the file is read\n\
3178to use the section anyway."),
2ec9a5e0 3179 filename);
481860b3
GB
3180 warning_printed = 1;
3181 }
3182 return 0;
3183 }
796a7ff8 3184 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3185 of the TU (for symbols coming from TUs),
3186 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3187 Plus gold-generated indices can have duplicate entries for global symbols,
3188 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3189 These are just performance bugs, and we can't distinguish gdb-generated
3190 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3191
481860b3 3192 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3193 longer backward compatible. */
796a7ff8 3194 if (version > 8)
594e8718 3195 return 0;
9291a0cd 3196
559a7a62 3197 map->version = version;
2ec9a5e0 3198 map->total_size = section->size;
9291a0cd
TT
3199
3200 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3201
3202 i = 0;
2ec9a5e0
TT
3203 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3204 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3205 / 8);
1fd400ff
TT
3206 ++i;
3207
2ec9a5e0
TT
3208 *types_list = addr + MAYBE_SWAP (metadata[i]);
3209 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3210 - MAYBE_SWAP (metadata[i]))
3211 / 8);
987d643c 3212 ++i;
1fd400ff
TT
3213
3214 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3215 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3216 - MAYBE_SWAP (metadata[i]));
3217 ++i;
3218
3876f04e
DE
3219 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3220 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3221 - MAYBE_SWAP (metadata[i]))
3222 / (2 * sizeof (offset_type)));
1fd400ff 3223 ++i;
9291a0cd 3224
f9d83a0b 3225 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3226
2ec9a5e0
TT
3227 return 1;
3228}
3229
3230
3231/* Read the index file. If everything went ok, initialize the "quick"
3232 elements of all the CUs and return 1. Otherwise, return 0. */
3233
3234static int
3235dwarf2_read_index (struct objfile *objfile)
3236{
3237 struct mapped_index local_map, *map;
3238 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3239 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3240 struct dwz_file *dwz;
2ec9a5e0 3241
4262abfb 3242 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3243 use_deprecated_index_sections,
3244 &dwarf2_per_objfile->gdb_index, &local_map,
3245 &cu_list, &cu_list_elements,
3246 &types_list, &types_list_elements))
3247 return 0;
3248
0fefef59 3249 /* Don't use the index if it's empty. */
2ec9a5e0 3250 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3251 return 0;
3252
2ec9a5e0
TT
3253 /* If there is a .dwz file, read it so we can get its CU list as
3254 well. */
4db1a1dc
TT
3255 dwz = dwarf2_get_dwz_file ();
3256 if (dwz != NULL)
2ec9a5e0 3257 {
2ec9a5e0
TT
3258 struct mapped_index dwz_map;
3259 const gdb_byte *dwz_types_ignore;
3260 offset_type dwz_types_elements_ignore;
3261
3262 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3263 1,
3264 &dwz->gdb_index, &dwz_map,
3265 &dwz_list, &dwz_list_elements,
3266 &dwz_types_ignore,
3267 &dwz_types_elements_ignore))
3268 {
3269 warning (_("could not read '.gdb_index' section from %s; skipping"),
3270 bfd_get_filename (dwz->dwz_bfd));
3271 return 0;
3272 }
3273 }
3274
74a0d9f6
JK
3275 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3276 dwz_list_elements);
1fd400ff 3277
8b70b953
TT
3278 if (types_list_elements)
3279 {
3280 struct dwarf2_section_info *section;
3281
3282 /* We can only handle a single .debug_types when we have an
3283 index. */
3284 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3285 return 0;
3286
3287 section = VEC_index (dwarf2_section_info_def,
3288 dwarf2_per_objfile->types, 0);
3289
74a0d9f6
JK
3290 create_signatured_type_table_from_index (objfile, section, types_list,
3291 types_list_elements);
8b70b953 3292 }
9291a0cd 3293
2ec9a5e0
TT
3294 create_addrmap_from_index (objfile, &local_map);
3295
8d749320 3296 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
2ec9a5e0 3297 *map = local_map;
9291a0cd
TT
3298
3299 dwarf2_per_objfile->index_table = map;
3300 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3301 dwarf2_per_objfile->quick_file_names_table =
3302 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3303
3304 return 1;
3305}
3306
3307/* A helper for the "quick" functions which sets the global
3308 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3309
9291a0cd
TT
3310static void
3311dw2_setup (struct objfile *objfile)
3312{
9a3c8263
SM
3313 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3314 objfile_data (objfile, dwarf2_objfile_data_key));
9291a0cd
TT
3315 gdb_assert (dwarf2_per_objfile);
3316}
3317
dee91e82 3318/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3319
dee91e82
DE
3320static void
3321dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3322 const gdb_byte *info_ptr,
dee91e82
DE
3323 struct die_info *comp_unit_die,
3324 int has_children,
3325 void *data)
9291a0cd 3326{
dee91e82
DE
3327 struct dwarf2_cu *cu = reader->cu;
3328 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3329 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3330 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3331 struct line_header *lh;
9291a0cd 3332 struct attribute *attr;
dee91e82 3333 int i;
15d034d0 3334 const char *name, *comp_dir;
7b9f3c50
DE
3335 void **slot;
3336 struct quick_file_names *qfn;
3337 unsigned int line_offset;
9291a0cd 3338
0186c6a7
DE
3339 gdb_assert (! this_cu->is_debug_types);
3340
07261596
TT
3341 /* Our callers never want to match partial units -- instead they
3342 will match the enclosing full CU. */
3343 if (comp_unit_die->tag == DW_TAG_partial_unit)
3344 {
3345 this_cu->v.quick->no_file_data = 1;
3346 return;
3347 }
3348
0186c6a7 3349 lh_cu = this_cu;
7b9f3c50
DE
3350 lh = NULL;
3351 slot = NULL;
3352 line_offset = 0;
dee91e82
DE
3353
3354 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3355 if (attr)
3356 {
7b9f3c50
DE
3357 struct quick_file_names find_entry;
3358
3359 line_offset = DW_UNSND (attr);
3360
3361 /* We may have already read in this line header (TU line header sharing).
3362 If we have we're done. */
094b34ac
DE
3363 find_entry.hash.dwo_unit = cu->dwo_unit;
3364 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3365 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3366 &find_entry, INSERT);
3367 if (*slot != NULL)
3368 {
9a3c8263 3369 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3370 return;
7b9f3c50
DE
3371 }
3372
3019eac3 3373 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3374 }
3375 if (lh == NULL)
3376 {
094b34ac 3377 lh_cu->v.quick->no_file_data = 1;
dee91e82 3378 return;
9291a0cd
TT
3379 }
3380
8d749320 3381 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac
DE
3382 qfn->hash.dwo_unit = cu->dwo_unit;
3383 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3384 gdb_assert (slot != NULL);
3385 *slot = qfn;
9291a0cd 3386
dee91e82 3387 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3388
7b9f3c50 3389 qfn->num_file_names = lh->num_file_names;
8d749320
SM
3390 qfn->file_names =
3391 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
9291a0cd 3392 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3393 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3394 qfn->real_names = NULL;
9291a0cd 3395
7b9f3c50 3396 free_line_header (lh);
7b9f3c50 3397
094b34ac 3398 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3399}
3400
3401/* A helper for the "quick" functions which attempts to read the line
3402 table for THIS_CU. */
3403
3404static struct quick_file_names *
e4a48d9d 3405dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3406{
0186c6a7
DE
3407 /* This should never be called for TUs. */
3408 gdb_assert (! this_cu->is_debug_types);
3409 /* Nor type unit groups. */
3410 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3411
dee91e82
DE
3412 if (this_cu->v.quick->file_names != NULL)
3413 return this_cu->v.quick->file_names;
3414 /* If we know there is no line data, no point in looking again. */
3415 if (this_cu->v.quick->no_file_data)
3416 return NULL;
3417
0186c6a7 3418 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3419
3420 if (this_cu->v.quick->no_file_data)
3421 return NULL;
3422 return this_cu->v.quick->file_names;
9291a0cd
TT
3423}
3424
3425/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3426 real path for a given file name from the line table. */
2fdf6df6 3427
9291a0cd 3428static const char *
7b9f3c50
DE
3429dw2_get_real_path (struct objfile *objfile,
3430 struct quick_file_names *qfn, int index)
9291a0cd 3431{
7b9f3c50
DE
3432 if (qfn->real_names == NULL)
3433 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3434 qfn->num_file_names, const char *);
9291a0cd 3435
7b9f3c50
DE
3436 if (qfn->real_names[index] == NULL)
3437 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3438
7b9f3c50 3439 return qfn->real_names[index];
9291a0cd
TT
3440}
3441
3442static struct symtab *
3443dw2_find_last_source_symtab (struct objfile *objfile)
3444{
43f3e411 3445 struct compunit_symtab *cust;
9291a0cd 3446 int index;
ae2de4f8 3447
9291a0cd
TT
3448 dw2_setup (objfile);
3449 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3450 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3451 if (cust == NULL)
3452 return NULL;
3453 return compunit_primary_filetab (cust);
9291a0cd
TT
3454}
3455
7b9f3c50
DE
3456/* Traversal function for dw2_forget_cached_source_info. */
3457
3458static int
3459dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3460{
7b9f3c50 3461 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3462
7b9f3c50 3463 if (file_data->real_names)
9291a0cd 3464 {
7b9f3c50 3465 int i;
9291a0cd 3466
7b9f3c50 3467 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3468 {
7b9f3c50
DE
3469 xfree ((void*) file_data->real_names[i]);
3470 file_data->real_names[i] = NULL;
9291a0cd
TT
3471 }
3472 }
7b9f3c50
DE
3473
3474 return 1;
3475}
3476
3477static void
3478dw2_forget_cached_source_info (struct objfile *objfile)
3479{
3480 dw2_setup (objfile);
3481
3482 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3483 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3484}
3485
f8eba3c6
TT
3486/* Helper function for dw2_map_symtabs_matching_filename that expands
3487 the symtabs and calls the iterator. */
3488
3489static int
3490dw2_map_expand_apply (struct objfile *objfile,
3491 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3492 const char *name, const char *real_path,
f8eba3c6
TT
3493 int (*callback) (struct symtab *, void *),
3494 void *data)
3495{
43f3e411 3496 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3497
3498 /* Don't visit already-expanded CUs. */
43f3e411 3499 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3500 return 0;
3501
3502 /* This may expand more than one symtab, and we want to iterate over
3503 all of them. */
a0f42c21 3504 dw2_instantiate_symtab (per_cu);
f8eba3c6 3505
f5b95b50 3506 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3507 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3508}
3509
3510/* Implementation of the map_symtabs_matching_filename method. */
3511
9291a0cd 3512static int
f8eba3c6 3513dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3514 const char *real_path,
f8eba3c6
TT
3515 int (*callback) (struct symtab *, void *),
3516 void *data)
9291a0cd
TT
3517{
3518 int i;
c011a4f4 3519 const char *name_basename = lbasename (name);
9291a0cd
TT
3520
3521 dw2_setup (objfile);
ae2de4f8 3522
848e3e78
DE
3523 /* The rule is CUs specify all the files, including those used by
3524 any TU, so there's no need to scan TUs here. */
f4dc4d17 3525
848e3e78 3526 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3527 {
3528 int j;
8832e7e3 3529 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3530 struct quick_file_names *file_data;
9291a0cd 3531
3d7bb9d9 3532 /* We only need to look at symtabs not already expanded. */
43f3e411 3533 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3534 continue;
3535
e4a48d9d 3536 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3537 if (file_data == NULL)
9291a0cd
TT
3538 continue;
3539
7b9f3c50 3540 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3541 {
7b9f3c50 3542 const char *this_name = file_data->file_names[j];
da235a7c 3543 const char *this_real_name;
9291a0cd 3544
af529f8f 3545 if (compare_filenames_for_search (this_name, name))
9291a0cd 3546 {
f5b95b50 3547 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3548 callback, data))
3549 return 1;
288e77a7 3550 continue;
4aac40c8 3551 }
9291a0cd 3552
c011a4f4
DE
3553 /* Before we invoke realpath, which can get expensive when many
3554 files are involved, do a quick comparison of the basenames. */
3555 if (! basenames_may_differ
3556 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3557 continue;
3558
da235a7c
JK
3559 this_real_name = dw2_get_real_path (objfile, file_data, j);
3560 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3561 {
da235a7c
JK
3562 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3563 callback, data))
3564 return 1;
288e77a7 3565 continue;
da235a7c 3566 }
9291a0cd 3567
da235a7c
JK
3568 if (real_path != NULL)
3569 {
af529f8f
JK
3570 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3571 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3572 if (this_real_name != NULL
af529f8f 3573 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3574 {
f5b95b50 3575 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3576 callback, data))
3577 return 1;
288e77a7 3578 continue;
9291a0cd
TT
3579 }
3580 }
3581 }
3582 }
3583
9291a0cd
TT
3584 return 0;
3585}
3586
da51c347
DE
3587/* Struct used to manage iterating over all CUs looking for a symbol. */
3588
3589struct dw2_symtab_iterator
9291a0cd 3590{
da51c347
DE
3591 /* The internalized form of .gdb_index. */
3592 struct mapped_index *index;
3593 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3594 int want_specific_block;
3595 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3596 Unused if !WANT_SPECIFIC_BLOCK. */
3597 int block_index;
3598 /* The kind of symbol we're looking for. */
3599 domain_enum domain;
3600 /* The list of CUs from the index entry of the symbol,
3601 or NULL if not found. */
3602 offset_type *vec;
3603 /* The next element in VEC to look at. */
3604 int next;
3605 /* The number of elements in VEC, or zero if there is no match. */
3606 int length;
8943b874
DE
3607 /* Have we seen a global version of the symbol?
3608 If so we can ignore all further global instances.
3609 This is to work around gold/15646, inefficient gold-generated
3610 indices. */
3611 int global_seen;
da51c347 3612};
9291a0cd 3613
da51c347
DE
3614/* Initialize the index symtab iterator ITER.
3615 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3616 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3617
9291a0cd 3618static void
da51c347
DE
3619dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3620 struct mapped_index *index,
3621 int want_specific_block,
3622 int block_index,
3623 domain_enum domain,
3624 const char *name)
3625{
3626 iter->index = index;
3627 iter->want_specific_block = want_specific_block;
3628 iter->block_index = block_index;
3629 iter->domain = domain;
3630 iter->next = 0;
8943b874 3631 iter->global_seen = 0;
da51c347
DE
3632
3633 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3634 iter->length = MAYBE_SWAP (*iter->vec);
3635 else
3636 {
3637 iter->vec = NULL;
3638 iter->length = 0;
3639 }
3640}
3641
3642/* Return the next matching CU or NULL if there are no more. */
3643
3644static struct dwarf2_per_cu_data *
3645dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3646{
3647 for ( ; iter->next < iter->length; ++iter->next)
3648 {
3649 offset_type cu_index_and_attrs =
3650 MAYBE_SWAP (iter->vec[iter->next + 1]);
3651 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3652 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3653 int want_static = iter->block_index != GLOBAL_BLOCK;
3654 /* This value is only valid for index versions >= 7. */
3655 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3656 gdb_index_symbol_kind symbol_kind =
3657 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3658 /* Only check the symbol attributes if they're present.
3659 Indices prior to version 7 don't record them,
3660 and indices >= 7 may elide them for certain symbols
3661 (gold does this). */
3662 int attrs_valid =
3663 (iter->index->version >= 7
3664 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3665
3190f0c6
DE
3666 /* Don't crash on bad data. */
3667 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3668 + dwarf2_per_objfile->n_type_units))
3669 {
3670 complaint (&symfile_complaints,
3671 _(".gdb_index entry has bad CU index"
4262abfb
JK
3672 " [in module %s]"),
3673 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3674 continue;
3675 }
3676
8832e7e3 3677 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3678
da51c347 3679 /* Skip if already read in. */
43f3e411 3680 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3681 continue;
3682
8943b874
DE
3683 /* Check static vs global. */
3684 if (attrs_valid)
3685 {
3686 if (iter->want_specific_block
3687 && want_static != is_static)
3688 continue;
3689 /* Work around gold/15646. */
3690 if (!is_static && iter->global_seen)
3691 continue;
3692 if (!is_static)
3693 iter->global_seen = 1;
3694 }
da51c347
DE
3695
3696 /* Only check the symbol's kind if it has one. */
3697 if (attrs_valid)
3698 {
3699 switch (iter->domain)
3700 {
3701 case VAR_DOMAIN:
3702 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3703 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3704 /* Some types are also in VAR_DOMAIN. */
3705 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3706 continue;
3707 break;
3708 case STRUCT_DOMAIN:
3709 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3710 continue;
3711 break;
3712 case LABEL_DOMAIN:
3713 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3714 continue;
3715 break;
3716 default:
3717 break;
3718 }
3719 }
3720
3721 ++iter->next;
3722 return per_cu;
3723 }
3724
3725 return NULL;
3726}
3727
43f3e411 3728static struct compunit_symtab *
da51c347
DE
3729dw2_lookup_symbol (struct objfile *objfile, int block_index,
3730 const char *name, domain_enum domain)
9291a0cd 3731{
43f3e411 3732 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3733 struct mapped_index *index;
3734
9291a0cd
TT
3735 dw2_setup (objfile);
3736
156942c7
DE
3737 index = dwarf2_per_objfile->index_table;
3738
da51c347 3739 /* index is NULL if OBJF_READNOW. */
156942c7 3740 if (index)
9291a0cd 3741 {
da51c347
DE
3742 struct dw2_symtab_iterator iter;
3743 struct dwarf2_per_cu_data *per_cu;
3744
3745 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3746
da51c347 3747 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3748 {
b2e2f908 3749 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3750 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3751 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3752 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3753
b2e2f908
DE
3754 sym = block_find_symbol (block, name, domain,
3755 block_find_non_opaque_type_preferred,
3756 &with_opaque);
3757
da51c347
DE
3758 /* Some caution must be observed with overloaded functions
3759 and methods, since the index will not contain any overload
3760 information (but NAME might contain it). */
da51c347 3761
b2e2f908
DE
3762 if (sym != NULL
3763 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3764 return stab;
3765 if (with_opaque != NULL
3766 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3767 stab_best = stab;
da51c347
DE
3768
3769 /* Keep looking through other CUs. */
9291a0cd
TT
3770 }
3771 }
9291a0cd 3772
da51c347 3773 return stab_best;
9291a0cd
TT
3774}
3775
3776static void
3777dw2_print_stats (struct objfile *objfile)
3778{
e4a48d9d 3779 int i, total, count;
9291a0cd
TT
3780
3781 dw2_setup (objfile);
e4a48d9d 3782 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3783 count = 0;
e4a48d9d 3784 for (i = 0; i < total; ++i)
9291a0cd 3785 {
8832e7e3 3786 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3787
43f3e411 3788 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3789 ++count;
3790 }
e4a48d9d 3791 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3792 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3793}
3794
779bd270
DE
3795/* This dumps minimal information about the index.
3796 It is called via "mt print objfiles".
3797 One use is to verify .gdb_index has been loaded by the
3798 gdb.dwarf2/gdb-index.exp testcase. */
3799
9291a0cd
TT
3800static void
3801dw2_dump (struct objfile *objfile)
3802{
779bd270
DE
3803 dw2_setup (objfile);
3804 gdb_assert (dwarf2_per_objfile->using_index);
3805 printf_filtered (".gdb_index:");
3806 if (dwarf2_per_objfile->index_table != NULL)
3807 {
3808 printf_filtered (" version %d\n",
3809 dwarf2_per_objfile->index_table->version);
3810 }
3811 else
3812 printf_filtered (" faked for \"readnow\"\n");
3813 printf_filtered ("\n");
9291a0cd
TT
3814}
3815
3816static void
3189cb12
DE
3817dw2_relocate (struct objfile *objfile,
3818 const struct section_offsets *new_offsets,
3819 const struct section_offsets *delta)
9291a0cd
TT
3820{
3821 /* There's nothing to relocate here. */
3822}
3823
3824static void
3825dw2_expand_symtabs_for_function (struct objfile *objfile,
3826 const char *func_name)
3827{
da51c347
DE
3828 struct mapped_index *index;
3829
3830 dw2_setup (objfile);
3831
3832 index = dwarf2_per_objfile->index_table;
3833
3834 /* index is NULL if OBJF_READNOW. */
3835 if (index)
3836 {
3837 struct dw2_symtab_iterator iter;
3838 struct dwarf2_per_cu_data *per_cu;
3839
3840 /* Note: It doesn't matter what we pass for block_index here. */
3841 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3842 func_name);
3843
3844 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3845 dw2_instantiate_symtab (per_cu);
3846 }
9291a0cd
TT
3847}
3848
3849static void
3850dw2_expand_all_symtabs (struct objfile *objfile)
3851{
3852 int i;
3853
3854 dw2_setup (objfile);
1fd400ff
TT
3855
3856 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3857 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3858 {
8832e7e3 3859 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3860
a0f42c21 3861 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3862 }
3863}
3864
3865static void
652a8996
JK
3866dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3867 const char *fullname)
9291a0cd
TT
3868{
3869 int i;
3870
3871 dw2_setup (objfile);
d4637a04
DE
3872
3873 /* We don't need to consider type units here.
3874 This is only called for examining code, e.g. expand_line_sal.
3875 There can be an order of magnitude (or more) more type units
3876 than comp units, and we avoid them if we can. */
3877
3878 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3879 {
3880 int j;
8832e7e3 3881 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3882 struct quick_file_names *file_data;
9291a0cd 3883
3d7bb9d9 3884 /* We only need to look at symtabs not already expanded. */
43f3e411 3885 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3886 continue;
3887
e4a48d9d 3888 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3889 if (file_data == NULL)
9291a0cd
TT
3890 continue;
3891
7b9f3c50 3892 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3893 {
652a8996
JK
3894 const char *this_fullname = file_data->file_names[j];
3895
3896 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3897 {
a0f42c21 3898 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3899 break;
3900 }
3901 }
3902 }
3903}
3904
9291a0cd 3905static void
ade7ed9e 3906dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 3907 const char * name, domain_enum domain,
ade7ed9e 3908 int global,
40658b94
PH
3909 int (*callback) (struct block *,
3910 struct symbol *, void *),
2edb89d3
JK
3911 void *data, symbol_compare_ftype *match,
3912 symbol_compare_ftype *ordered_compare)
9291a0cd 3913{
40658b94 3914 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3915 current language is Ada for a non-Ada objfile using GNU index. As Ada
3916 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3917}
3918
3919static void
f8eba3c6
TT
3920dw2_expand_symtabs_matching
3921 (struct objfile *objfile,
206f2a57
DE
3922 expand_symtabs_file_matcher_ftype *file_matcher,
3923 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3924 expand_symtabs_exp_notify_ftype *expansion_notify,
f8eba3c6
TT
3925 enum search_domain kind,
3926 void *data)
9291a0cd
TT
3927{
3928 int i;
3929 offset_type iter;
4b5246aa 3930 struct mapped_index *index;
9291a0cd
TT
3931
3932 dw2_setup (objfile);
ae2de4f8
DE
3933
3934 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3935 if (!dwarf2_per_objfile->index_table)
3936 return;
4b5246aa 3937 index = dwarf2_per_objfile->index_table;
9291a0cd 3938
7b08b9eb 3939 if (file_matcher != NULL)
24c79950 3940 {
fc4007c9
TT
3941 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
3942 htab_eq_pointer,
3943 NULL, xcalloc, xfree));
3944 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
3945 htab_eq_pointer,
3946 NULL, xcalloc, xfree));
24c79950 3947
848e3e78
DE
3948 /* The rule is CUs specify all the files, including those used by
3949 any TU, so there's no need to scan TUs here. */
3950
3951 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3952 {
3953 int j;
8832e7e3 3954 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3955 struct quick_file_names *file_data;
3956 void **slot;
7b08b9eb 3957
61d96d7e
DE
3958 QUIT;
3959
24c79950 3960 per_cu->v.quick->mark = 0;
3d7bb9d9 3961
24c79950 3962 /* We only need to look at symtabs not already expanded. */
43f3e411 3963 if (per_cu->v.quick->compunit_symtab)
24c79950 3964 continue;
7b08b9eb 3965
e4a48d9d 3966 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3967 if (file_data == NULL)
3968 continue;
7b08b9eb 3969
fc4007c9 3970 if (htab_find (visited_not_found.get (), file_data) != NULL)
24c79950 3971 continue;
fc4007c9 3972 else if (htab_find (visited_found.get (), file_data) != NULL)
24c79950
TT
3973 {
3974 per_cu->v.quick->mark = 1;
3975 continue;
3976 }
3977
3978 for (j = 0; j < file_data->num_file_names; ++j)
3979 {
da235a7c
JK
3980 const char *this_real_name;
3981
fbd9ab74 3982 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3983 {
3984 per_cu->v.quick->mark = 1;
3985 break;
3986 }
da235a7c
JK
3987
3988 /* Before we invoke realpath, which can get expensive when many
3989 files are involved, do a quick comparison of the basenames. */
3990 if (!basenames_may_differ
3991 && !file_matcher (lbasename (file_data->file_names[j]),
3992 data, 1))
3993 continue;
3994
3995 this_real_name = dw2_get_real_path (objfile, file_data, j);
3996 if (file_matcher (this_real_name, data, 0))
3997 {
3998 per_cu->v.quick->mark = 1;
3999 break;
4000 }
24c79950
TT
4001 }
4002
4003 slot = htab_find_slot (per_cu->v.quick->mark
fc4007c9
TT
4004 ? visited_found.get ()
4005 : visited_not_found.get (),
24c79950
TT
4006 file_data, INSERT);
4007 *slot = file_data;
4008 }
24c79950 4009 }
9291a0cd 4010
3876f04e 4011 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
4012 {
4013 offset_type idx = 2 * iter;
4014 const char *name;
4015 offset_type *vec, vec_len, vec_idx;
8943b874 4016 int global_seen = 0;
9291a0cd 4017
61d96d7e
DE
4018 QUIT;
4019
3876f04e 4020 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
4021 continue;
4022
3876f04e 4023 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 4024
206f2a57 4025 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
4026 continue;
4027
4028 /* The name was matched, now expand corresponding CUs that were
4029 marked. */
4b5246aa 4030 vec = (offset_type *) (index->constant_pool
3876f04e 4031 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
4032 vec_len = MAYBE_SWAP (vec[0]);
4033 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4034 {
e254ef6a 4035 struct dwarf2_per_cu_data *per_cu;
156942c7 4036 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
4037 /* This value is only valid for index versions >= 7. */
4038 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
4039 gdb_index_symbol_kind symbol_kind =
4040 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4041 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
4042 /* Only check the symbol attributes if they're present.
4043 Indices prior to version 7 don't record them,
4044 and indices >= 7 may elide them for certain symbols
4045 (gold does this). */
4046 int attrs_valid =
4047 (index->version >= 7
4048 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4049
8943b874
DE
4050 /* Work around gold/15646. */
4051 if (attrs_valid)
4052 {
4053 if (!is_static && global_seen)
4054 continue;
4055 if (!is_static)
4056 global_seen = 1;
4057 }
4058
3190f0c6
DE
4059 /* Only check the symbol's kind if it has one. */
4060 if (attrs_valid)
156942c7
DE
4061 {
4062 switch (kind)
4063 {
4064 case VARIABLES_DOMAIN:
4065 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4066 continue;
4067 break;
4068 case FUNCTIONS_DOMAIN:
4069 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4070 continue;
4071 break;
4072 case TYPES_DOMAIN:
4073 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4074 continue;
4075 break;
4076 default:
4077 break;
4078 }
4079 }
4080
3190f0c6
DE
4081 /* Don't crash on bad data. */
4082 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4083 + dwarf2_per_objfile->n_type_units))
4084 {
4085 complaint (&symfile_complaints,
4086 _(".gdb_index entry has bad CU index"
4262abfb 4087 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4088 continue;
4089 }
4090
8832e7e3 4091 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4092 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4093 {
4094 int symtab_was_null =
4095 (per_cu->v.quick->compunit_symtab == NULL);
4096
4097 dw2_instantiate_symtab (per_cu);
4098
4099 if (expansion_notify != NULL
4100 && symtab_was_null
4101 && per_cu->v.quick->compunit_symtab != NULL)
4102 {
4103 expansion_notify (per_cu->v.quick->compunit_symtab,
4104 data);
4105 }
4106 }
9291a0cd
TT
4107 }
4108 }
4109}
4110
43f3e411 4111/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4112 symtab. */
4113
43f3e411
DE
4114static struct compunit_symtab *
4115recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4116 CORE_ADDR pc)
9703b513
TT
4117{
4118 int i;
4119
43f3e411
DE
4120 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4121 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4122 return cust;
9703b513 4123
43f3e411 4124 if (cust->includes == NULL)
a3ec0bb1
DE
4125 return NULL;
4126
43f3e411 4127 for (i = 0; cust->includes[i]; ++i)
9703b513 4128 {
43f3e411 4129 struct compunit_symtab *s = cust->includes[i];
9703b513 4130
43f3e411 4131 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4132 if (s != NULL)
4133 return s;
4134 }
4135
4136 return NULL;
4137}
4138
43f3e411
DE
4139static struct compunit_symtab *
4140dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4141 struct bound_minimal_symbol msymbol,
4142 CORE_ADDR pc,
4143 struct obj_section *section,
4144 int warn_if_readin)
9291a0cd
TT
4145{
4146 struct dwarf2_per_cu_data *data;
43f3e411 4147 struct compunit_symtab *result;
9291a0cd
TT
4148
4149 dw2_setup (objfile);
4150
4151 if (!objfile->psymtabs_addrmap)
4152 return NULL;
4153
9a3c8263
SM
4154 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4155 pc);
9291a0cd
TT
4156 if (!data)
4157 return NULL;
4158
43f3e411 4159 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4160 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4161 paddress (get_objfile_arch (objfile), pc));
4162
43f3e411
DE
4163 result
4164 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4165 pc);
9703b513
TT
4166 gdb_assert (result != NULL);
4167 return result;
9291a0cd
TT
4168}
4169
9291a0cd 4170static void
44b13c5a 4171dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4172 void *data, int need_fullname)
9291a0cd
TT
4173{
4174 int i;
fc4007c9
TT
4175 htab_up visited (htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4176 NULL, xcalloc, xfree));
9291a0cd
TT
4177
4178 dw2_setup (objfile);
ae2de4f8 4179
848e3e78
DE
4180 /* The rule is CUs specify all the files, including those used by
4181 any TU, so there's no need to scan TUs here.
4182 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4183
848e3e78 4184 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4185 {
8832e7e3 4186 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4187
43f3e411 4188 if (per_cu->v.quick->compunit_symtab)
24c79950 4189 {
fc4007c9
TT
4190 void **slot = htab_find_slot (visited.get (),
4191 per_cu->v.quick->file_names,
24c79950
TT
4192 INSERT);
4193
4194 *slot = per_cu->v.quick->file_names;
4195 }
4196 }
4197
848e3e78 4198 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4199 {
4200 int j;
8832e7e3 4201 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4202 struct quick_file_names *file_data;
24c79950 4203 void **slot;
9291a0cd 4204
3d7bb9d9 4205 /* We only need to look at symtabs not already expanded. */
43f3e411 4206 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4207 continue;
4208
e4a48d9d 4209 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4210 if (file_data == NULL)
9291a0cd
TT
4211 continue;
4212
fc4007c9 4213 slot = htab_find_slot (visited.get (), file_data, INSERT);
24c79950
TT
4214 if (*slot)
4215 {
4216 /* Already visited. */
4217 continue;
4218 }
4219 *slot = file_data;
4220
7b9f3c50 4221 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4222 {
74e2f255
DE
4223 const char *this_real_name;
4224
4225 if (need_fullname)
4226 this_real_name = dw2_get_real_path (objfile, file_data, j);
4227 else
4228 this_real_name = NULL;
7b9f3c50 4229 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4230 }
4231 }
4232}
4233
4234static int
4235dw2_has_symbols (struct objfile *objfile)
4236{
4237 return 1;
4238}
4239
4240const struct quick_symbol_functions dwarf2_gdb_index_functions =
4241{
4242 dw2_has_symbols,
4243 dw2_find_last_source_symtab,
4244 dw2_forget_cached_source_info,
f8eba3c6 4245 dw2_map_symtabs_matching_filename,
9291a0cd 4246 dw2_lookup_symbol,
9291a0cd
TT
4247 dw2_print_stats,
4248 dw2_dump,
4249 dw2_relocate,
4250 dw2_expand_symtabs_for_function,
4251 dw2_expand_all_symtabs,
652a8996 4252 dw2_expand_symtabs_with_fullname,
40658b94 4253 dw2_map_matching_symbols,
9291a0cd 4254 dw2_expand_symtabs_matching,
43f3e411 4255 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4256 dw2_map_symbol_filenames
4257};
4258
4259/* Initialize for reading DWARF for this objfile. Return 0 if this
4260 file will use psymtabs, or 1 if using the GNU index. */
4261
4262int
4263dwarf2_initialize_objfile (struct objfile *objfile)
4264{
4265 /* If we're about to read full symbols, don't bother with the
4266 indices. In this case we also don't care if some other debug
4267 format is making psymtabs, because they are all about to be
4268 expanded anyway. */
4269 if ((objfile->flags & OBJF_READNOW))
4270 {
4271 int i;
4272
4273 dwarf2_per_objfile->using_index = 1;
4274 create_all_comp_units (objfile);
0e50663e 4275 create_all_type_units (objfile);
7b9f3c50
DE
4276 dwarf2_per_objfile->quick_file_names_table =
4277 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4278
1fd400ff 4279 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4280 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4281 {
8832e7e3 4282 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4283
e254ef6a
DE
4284 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4285 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4286 }
4287
4288 /* Return 1 so that gdb sees the "quick" functions. However,
4289 these functions will be no-ops because we will have expanded
4290 all symtabs. */
4291 return 1;
4292 }
4293
4294 if (dwarf2_read_index (objfile))
4295 return 1;
4296
9291a0cd
TT
4297 return 0;
4298}
4299
4300\f
4301
dce234bc
PP
4302/* Build a partial symbol table. */
4303
4304void
f29dff0a 4305dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4306{
c9bf0622 4307
f29dff0a 4308 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4309 {
4310 init_psymbol_list (objfile, 1024);
4311 }
4312
492d29ea 4313 TRY
c9bf0622
TT
4314 {
4315 /* This isn't really ideal: all the data we allocate on the
4316 objfile's obstack is still uselessly kept around. However,
4317 freeing it seems unsafe. */
906768f9 4318 psymtab_discarder psymtabs (objfile);
c9bf0622 4319 dwarf2_build_psymtabs_hard (objfile);
906768f9 4320 psymtabs.keep ();
c9bf0622 4321 }
492d29ea
PA
4322 CATCH (except, RETURN_MASK_ERROR)
4323 {
4324 exception_print (gdb_stderr, except);
4325 }
4326 END_CATCH
c906108c 4327}
c906108c 4328
1ce1cefd
DE
4329/* Return the total length of the CU described by HEADER. */
4330
4331static unsigned int
4332get_cu_length (const struct comp_unit_head *header)
4333{
4334 return header->initial_length_size + header->length;
4335}
4336
45452591
DE
4337/* Return TRUE if OFFSET is within CU_HEADER. */
4338
4339static inline int
b64f50a1 4340offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4341{
b64f50a1 4342 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4343 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4344
b64f50a1 4345 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4346}
4347
3b80fe9b
DE
4348/* Find the base address of the compilation unit for range lists and
4349 location lists. It will normally be specified by DW_AT_low_pc.
4350 In DWARF-3 draft 4, the base address could be overridden by
4351 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4352 compilation units with discontinuous ranges. */
4353
4354static void
4355dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4356{
4357 struct attribute *attr;
4358
4359 cu->base_known = 0;
4360 cu->base_address = 0;
4361
4362 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4363 if (attr)
4364 {
31aa7e4e 4365 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4366 cu->base_known = 1;
4367 }
4368 else
4369 {
4370 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4371 if (attr)
4372 {
31aa7e4e 4373 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4374 cu->base_known = 1;
4375 }
4376 }
4377}
4378
93311388 4379/* Read in the comp unit header information from the debug_info at info_ptr.
43988095 4380 Use rcuh_kind::COMPILE as the default type if not known by the caller.
93311388
DE
4381 NOTE: This leaves members offset, first_die_offset to be filled in
4382 by the caller. */
107d2387 4383
d521ce57 4384static const gdb_byte *
107d2387 4385read_comp_unit_head (struct comp_unit_head *cu_header,
43988095
JK
4386 const gdb_byte *info_ptr,
4387 struct dwarf2_section_info *section,
4388 rcuh_kind section_kind)
107d2387
AC
4389{
4390 int signed_addr;
891d2f0b 4391 unsigned int bytes_read;
43988095
JK
4392 const char *filename = get_section_file_name (section);
4393 bfd *abfd = get_section_bfd_owner (section);
c764a876
DE
4394
4395 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4396 cu_header->initial_length_size = bytes_read;
4397 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4398 info_ptr += bytes_read;
107d2387
AC
4399 cu_header->version = read_2_bytes (abfd, info_ptr);
4400 info_ptr += 2;
43988095
JK
4401 if (cu_header->version < 5)
4402 switch (section_kind)
4403 {
4404 case rcuh_kind::COMPILE:
4405 cu_header->unit_type = DW_UT_compile;
4406 break;
4407 case rcuh_kind::TYPE:
4408 cu_header->unit_type = DW_UT_type;
4409 break;
4410 default:
4411 internal_error (__FILE__, __LINE__,
4412 _("read_comp_unit_head: invalid section_kind"));
4413 }
4414 else
4415 {
4416 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4417 (read_1_byte (abfd, info_ptr));
4418 info_ptr += 1;
4419 switch (cu_header->unit_type)
4420 {
4421 case DW_UT_compile:
4422 if (section_kind != rcuh_kind::COMPILE)
4423 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4424 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4425 filename);
4426 break;
4427 case DW_UT_type:
4428 section_kind = rcuh_kind::TYPE;
4429 break;
4430 default:
4431 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4432 "(is %d, should be %d or %d) [in module %s]"),
4433 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4434 }
4435
4436 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4437 info_ptr += 1;
4438 }
b64f50a1
JK
4439 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4440 &bytes_read);
613e1657 4441 info_ptr += bytes_read;
43988095
JK
4442 if (cu_header->version < 5)
4443 {
4444 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4445 info_ptr += 1;
4446 }
107d2387
AC
4447 signed_addr = bfd_get_sign_extend_vma (abfd);
4448 if (signed_addr < 0)
8e65ff28 4449 internal_error (__FILE__, __LINE__,
e2e0b3e5 4450 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4451 cu_header->signed_addr_p = signed_addr;
c764a876 4452
43988095
JK
4453 if (section_kind == rcuh_kind::TYPE)
4454 {
4455 LONGEST type_offset;
4456
4457 cu_header->signature = read_8_bytes (abfd, info_ptr);
4458 info_ptr += 8;
4459
4460 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4461 info_ptr += bytes_read;
4462 cu_header->type_offset_in_tu.cu_off = type_offset;
4463 if (cu_header->type_offset_in_tu.cu_off != type_offset)
4464 error (_("Dwarf Error: Too big type_offset in compilation unit "
4465 "header (is %s) [in module %s]"), plongest (type_offset),
4466 filename);
4467 }
4468
107d2387
AC
4469 return info_ptr;
4470}
4471
36586728
TT
4472/* Helper function that returns the proper abbrev section for
4473 THIS_CU. */
4474
4475static struct dwarf2_section_info *
4476get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4477{
4478 struct dwarf2_section_info *abbrev;
4479
4480 if (this_cu->is_dwz)
4481 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4482 else
4483 abbrev = &dwarf2_per_objfile->abbrev;
4484
4485 return abbrev;
4486}
4487
9ff913ba
DE
4488/* Subroutine of read_and_check_comp_unit_head and
4489 read_and_check_type_unit_head to simplify them.
4490 Perform various error checking on the header. */
4491
4492static void
4493error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4494 struct dwarf2_section_info *section,
4495 struct dwarf2_section_info *abbrev_section)
9ff913ba 4496{
a32a8923 4497 const char *filename = get_section_file_name (section);
9ff913ba 4498
43988095 4499 if (header->version < 2 || header->version > 5)
9ff913ba 4500 error (_("Dwarf Error: wrong version in compilation unit header "
43988095 4501 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
9ff913ba
DE
4502 filename);
4503
b64f50a1 4504 if (header->abbrev_offset.sect_off
36586728 4505 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4506 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4507 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4508 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4509 filename);
4510
4511 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4512 avoid potential 32-bit overflow. */
1ce1cefd 4513 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4514 > section->size)
4515 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4516 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4517 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4518 filename);
4519}
4520
4521/* Read in a CU/TU header and perform some basic error checking.
4522 The contents of the header are stored in HEADER.
4523 The result is a pointer to the start of the first DIE. */
adabb602 4524
d521ce57 4525static const gdb_byte *
9ff913ba
DE
4526read_and_check_comp_unit_head (struct comp_unit_head *header,
4527 struct dwarf2_section_info *section,
4bdcc0c1 4528 struct dwarf2_section_info *abbrev_section,
d521ce57 4529 const gdb_byte *info_ptr,
43988095 4530 rcuh_kind section_kind)
72bf9492 4531{
d521ce57 4532 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4533 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4534
b64f50a1 4535 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4536
43988095 4537 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
9ff913ba 4538
b64f50a1 4539 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4540
4bdcc0c1 4541 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4542
4543 return info_ptr;
348e048f
DE
4544}
4545
f4dc4d17
DE
4546/* Fetch the abbreviation table offset from a comp or type unit header. */
4547
4548static sect_offset
4549read_abbrev_offset (struct dwarf2_section_info *section,
4550 sect_offset offset)
4551{
a32a8923 4552 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4553 const gdb_byte *info_ptr;
ac298888 4554 unsigned int initial_length_size, offset_size;
f4dc4d17 4555 sect_offset abbrev_offset;
43988095 4556 uint16_t version;
f4dc4d17
DE
4557
4558 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4559 info_ptr = section->buffer + offset.sect_off;
ac298888 4560 read_initial_length (abfd, info_ptr, &initial_length_size);
f4dc4d17 4561 offset_size = initial_length_size == 4 ? 4 : 8;
43988095
JK
4562 info_ptr += initial_length_size;
4563
4564 version = read_2_bytes (abfd, info_ptr);
4565 info_ptr += 2;
4566 if (version >= 5)
4567 {
4568 /* Skip unit type and address size. */
4569 info_ptr += 2;
4570 }
4571
f4dc4d17
DE
4572 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4573 return abbrev_offset;
4574}
4575
aaa75496
JB
4576/* Allocate a new partial symtab for file named NAME and mark this new
4577 partial symtab as being an include of PST. */
4578
4579static void
d521ce57 4580dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4581 struct objfile *objfile)
4582{
4583 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4584
fbd9ab74
JK
4585 if (!IS_ABSOLUTE_PATH (subpst->filename))
4586 {
4587 /* It shares objfile->objfile_obstack. */
4588 subpst->dirname = pst->dirname;
4589 }
4590
aaa75496
JB
4591 subpst->textlow = 0;
4592 subpst->texthigh = 0;
4593
8d749320
SM
4594 subpst->dependencies
4595 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
4596 subpst->dependencies[0] = pst;
4597 subpst->number_of_dependencies = 1;
4598
4599 subpst->globals_offset = 0;
4600 subpst->n_global_syms = 0;
4601 subpst->statics_offset = 0;
4602 subpst->n_static_syms = 0;
43f3e411 4603 subpst->compunit_symtab = NULL;
aaa75496
JB
4604 subpst->read_symtab = pst->read_symtab;
4605 subpst->readin = 0;
4606
4607 /* No private part is necessary for include psymtabs. This property
4608 can be used to differentiate between such include psymtabs and
10b3939b 4609 the regular ones. */
58a9656e 4610 subpst->read_symtab_private = NULL;
aaa75496
JB
4611}
4612
4613/* Read the Line Number Program data and extract the list of files
4614 included by the source file represented by PST. Build an include
d85a05f0 4615 partial symtab for each of these included files. */
aaa75496
JB
4616
4617static void
4618dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4619 struct die_info *die,
4620 struct partial_symtab *pst)
aaa75496 4621{
d85a05f0
DJ
4622 struct line_header *lh = NULL;
4623 struct attribute *attr;
aaa75496 4624
d85a05f0
DJ
4625 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4626 if (attr)
3019eac3 4627 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4628 if (lh == NULL)
4629 return; /* No linetable, so no includes. */
4630
c6da4cef 4631 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
527f3840 4632 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4633
4634 free_line_header (lh);
4635}
4636
348e048f 4637static hashval_t
52dc124a 4638hash_signatured_type (const void *item)
348e048f 4639{
9a3c8263
SM
4640 const struct signatured_type *sig_type
4641 = (const struct signatured_type *) item;
9a619af0 4642
348e048f 4643 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4644 return sig_type->signature;
348e048f
DE
4645}
4646
4647static int
52dc124a 4648eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 4649{
9a3c8263
SM
4650 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4651 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 4652
348e048f
DE
4653 return lhs->signature == rhs->signature;
4654}
4655
1fd400ff
TT
4656/* Allocate a hash table for signatured types. */
4657
4658static htab_t
673bfd45 4659allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4660{
4661 return htab_create_alloc_ex (41,
52dc124a
DE
4662 hash_signatured_type,
4663 eq_signatured_type,
1fd400ff
TT
4664 NULL,
4665 &objfile->objfile_obstack,
4666 hashtab_obstack_allocate,
4667 dummy_obstack_deallocate);
4668}
4669
d467dd73 4670/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4671
4672static int
d467dd73 4673add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 4674{
9a3c8263
SM
4675 struct signatured_type *sigt = (struct signatured_type *) *slot;
4676 struct signatured_type ***datap = (struct signatured_type ***) datum;
1fd400ff 4677
b4dd5633 4678 **datap = sigt;
1fd400ff
TT
4679 ++*datap;
4680
4681 return 1;
4682}
4683
78d4d2c5 4684/* A helper for create_debug_types_hash_table. Read types from SECTION
43988095
JK
4685 and fill them into TYPES_HTAB. It will process only type units,
4686 therefore DW_UT_type. */
c88ee1f0 4687
78d4d2c5
JK
4688static void
4689create_debug_type_hash_table (struct dwo_file *dwo_file,
43988095
JK
4690 dwarf2_section_info *section, htab_t &types_htab,
4691 rcuh_kind section_kind)
348e048f 4692{
3019eac3 4693 struct objfile *objfile = dwarf2_per_objfile->objfile;
4bdcc0c1 4694 struct dwarf2_section_info *abbrev_section;
78d4d2c5
JK
4695 bfd *abfd;
4696 const gdb_byte *info_ptr, *end_ptr;
348e048f 4697
4bdcc0c1
DE
4698 abbrev_section = (dwo_file != NULL
4699 ? &dwo_file->sections.abbrev
4700 : &dwarf2_per_objfile->abbrev);
4701
b4f54984 4702 if (dwarf_read_debug)
43988095
JK
4703 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4704 get_section_name (section),
a32a8923 4705 get_section_file_name (abbrev_section));
09406207 4706
78d4d2c5
JK
4707 dwarf2_read_section (objfile, section);
4708 info_ptr = section->buffer;
348e048f 4709
78d4d2c5
JK
4710 if (info_ptr == NULL)
4711 return;
348e048f 4712
78d4d2c5
JK
4713 /* We can't set abfd until now because the section may be empty or
4714 not present, in which case the bfd is unknown. */
4715 abfd = get_section_bfd_owner (section);
348e048f 4716
78d4d2c5
JK
4717 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4718 because we don't need to read any dies: the signature is in the
4719 header. */
3019eac3 4720
78d4d2c5
JK
4721 end_ptr = info_ptr + section->size;
4722 while (info_ptr < end_ptr)
4723 {
4724 sect_offset offset;
78d4d2c5
JK
4725 struct signatured_type *sig_type;
4726 struct dwo_unit *dwo_tu;
4727 void **slot;
4728 const gdb_byte *ptr = info_ptr;
4729 struct comp_unit_head header;
4730 unsigned int length;
8b70b953 4731
78d4d2c5 4732 offset.sect_off = ptr - section->buffer;
348e048f 4733
78d4d2c5
JK
4734 /* We need to read the type's signature in order to build the hash
4735 table, but we don't need anything else just yet. */
348e048f 4736
43988095
JK
4737 ptr = read_and_check_comp_unit_head (&header, section,
4738 abbrev_section, ptr, section_kind);
348e048f 4739
78d4d2c5 4740 length = get_cu_length (&header);
6caca83c 4741
78d4d2c5
JK
4742 /* Skip dummy type units. */
4743 if (ptr >= info_ptr + length
43988095
JK
4744 || peek_abbrev_code (abfd, ptr) == 0
4745 || header.unit_type != DW_UT_type)
78d4d2c5
JK
4746 {
4747 info_ptr += length;
4748 continue;
4749 }
dee91e82 4750
78d4d2c5
JK
4751 if (types_htab == NULL)
4752 {
4753 if (dwo_file)
4754 types_htab = allocate_dwo_unit_table (objfile);
4755 else
4756 types_htab = allocate_signatured_type_table (objfile);
4757 }
8b70b953 4758
78d4d2c5
JK
4759 if (dwo_file)
4760 {
4761 sig_type = NULL;
4762 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4763 struct dwo_unit);
4764 dwo_tu->dwo_file = dwo_file;
43988095
JK
4765 dwo_tu->signature = header.signature;
4766 dwo_tu->type_offset_in_tu = header.type_offset_in_tu;
78d4d2c5
JK
4767 dwo_tu->section = section;
4768 dwo_tu->offset = offset;
4769 dwo_tu->length = length;
4770 }
4771 else
4772 {
4773 /* N.B.: type_offset is not usable if this type uses a DWO file.
4774 The real type_offset is in the DWO file. */
4775 dwo_tu = NULL;
4776 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4777 struct signatured_type);
43988095
JK
4778 sig_type->signature = header.signature;
4779 sig_type->type_offset_in_tu = header.type_offset_in_tu;
78d4d2c5
JK
4780 sig_type->per_cu.objfile = objfile;
4781 sig_type->per_cu.is_debug_types = 1;
4782 sig_type->per_cu.section = section;
4783 sig_type->per_cu.offset = offset;
4784 sig_type->per_cu.length = length;
4785 }
4786
4787 slot = htab_find_slot (types_htab,
4788 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4789 INSERT);
4790 gdb_assert (slot != NULL);
4791 if (*slot != NULL)
4792 {
4793 sect_offset dup_offset;
0349ea22 4794
3019eac3
DE
4795 if (dwo_file)
4796 {
78d4d2c5
JK
4797 const struct dwo_unit *dup_tu
4798 = (const struct dwo_unit *) *slot;
4799
4800 dup_offset = dup_tu->offset;
3019eac3
DE
4801 }
4802 else
4803 {
78d4d2c5
JK
4804 const struct signatured_type *dup_tu
4805 = (const struct signatured_type *) *slot;
4806
4807 dup_offset = dup_tu->per_cu.offset;
3019eac3 4808 }
8b70b953 4809
78d4d2c5
JK
4810 complaint (&symfile_complaints,
4811 _("debug type entry at offset 0x%x is duplicate to"
4812 " the entry at offset 0x%x, signature %s"),
4813 offset.sect_off, dup_offset.sect_off,
43988095 4814 hex_string (header.signature));
78d4d2c5
JK
4815 }
4816 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
3019eac3 4817
78d4d2c5
JK
4818 if (dwarf_read_debug > 1)
4819 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4820 offset.sect_off,
43988095 4821 hex_string (header.signature));
3019eac3 4822
78d4d2c5
JK
4823 info_ptr += length;
4824 }
4825}
3019eac3 4826
78d4d2c5
JK
4827/* Create the hash table of all entries in the .debug_types
4828 (or .debug_types.dwo) section(s).
4829 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4830 otherwise it is NULL.
b3c8eb43 4831
78d4d2c5 4832 The result is a pointer to the hash table or NULL if there are no types.
348e048f 4833
78d4d2c5 4834 Note: This function processes DWO files only, not DWP files. */
348e048f 4835
78d4d2c5
JK
4836static void
4837create_debug_types_hash_table (struct dwo_file *dwo_file,
4838 VEC (dwarf2_section_info_def) *types,
4839 htab_t &types_htab)
4840{
4841 int ix;
4842 struct dwarf2_section_info *section;
4843
4844 if (VEC_empty (dwarf2_section_info_def, types))
4845 return;
348e048f 4846
78d4d2c5
JK
4847 for (ix = 0;
4848 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4849 ++ix)
43988095
JK
4850 create_debug_type_hash_table (dwo_file, section, types_htab,
4851 rcuh_kind::TYPE);
3019eac3
DE
4852}
4853
4854/* Create the hash table of all entries in the .debug_types section,
4855 and initialize all_type_units.
4856 The result is zero if there is an error (e.g. missing .debug_types section),
4857 otherwise non-zero. */
4858
4859static int
4860create_all_type_units (struct objfile *objfile)
4861{
78d4d2c5 4862 htab_t types_htab = NULL;
b4dd5633 4863 struct signatured_type **iter;
3019eac3 4864
43988095
JK
4865 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
4866 rcuh_kind::COMPILE);
78d4d2c5 4867 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
3019eac3
DE
4868 if (types_htab == NULL)
4869 {
4870 dwarf2_per_objfile->signatured_types = NULL;
4871 return 0;
4872 }
4873
348e048f
DE
4874 dwarf2_per_objfile->signatured_types = types_htab;
4875
6aa5f3a6
DE
4876 dwarf2_per_objfile->n_type_units
4877 = dwarf2_per_objfile->n_allocated_type_units
4878 = htab_elements (types_htab);
8d749320
SM
4879 dwarf2_per_objfile->all_type_units =
4880 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
d467dd73
DE
4881 iter = &dwarf2_per_objfile->all_type_units[0];
4882 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4883 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4884 == dwarf2_per_objfile->n_type_units);
1fd400ff 4885
348e048f
DE
4886 return 1;
4887}
4888
6aa5f3a6
DE
4889/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4890 If SLOT is non-NULL, it is the entry to use in the hash table.
4891 Otherwise we find one. */
4892
4893static struct signatured_type *
4894add_type_unit (ULONGEST sig, void **slot)
4895{
4896 struct objfile *objfile = dwarf2_per_objfile->objfile;
4897 int n_type_units = dwarf2_per_objfile->n_type_units;
4898 struct signatured_type *sig_type;
4899
4900 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4901 ++n_type_units;
4902 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4903 {
4904 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4905 dwarf2_per_objfile->n_allocated_type_units = 1;
4906 dwarf2_per_objfile->n_allocated_type_units *= 2;
4907 dwarf2_per_objfile->all_type_units
224c3ddb
SM
4908 = XRESIZEVEC (struct signatured_type *,
4909 dwarf2_per_objfile->all_type_units,
4910 dwarf2_per_objfile->n_allocated_type_units);
6aa5f3a6
DE
4911 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4912 }
4913 dwarf2_per_objfile->n_type_units = n_type_units;
4914
4915 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4916 struct signatured_type);
4917 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4918 sig_type->signature = sig;
4919 sig_type->per_cu.is_debug_types = 1;
4920 if (dwarf2_per_objfile->using_index)
4921 {
4922 sig_type->per_cu.v.quick =
4923 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4924 struct dwarf2_per_cu_quick_data);
4925 }
4926
4927 if (slot == NULL)
4928 {
4929 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4930 sig_type, INSERT);
4931 }
4932 gdb_assert (*slot == NULL);
4933 *slot = sig_type;
4934 /* The rest of sig_type must be filled in by the caller. */
4935 return sig_type;
4936}
4937
a2ce51a0
DE
4938/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4939 Fill in SIG_ENTRY with DWO_ENTRY. */
4940
4941static void
4942fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4943 struct signatured_type *sig_entry,
4944 struct dwo_unit *dwo_entry)
4945{
7ee85ab1 4946 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4947 gdb_assert (! sig_entry->per_cu.queued);
4948 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4949 if (dwarf2_per_objfile->using_index)
4950 {
4951 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4952 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4953 }
4954 else
4955 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4956 gdb_assert (sig_entry->signature == dwo_entry->signature);
4957 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4958 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4959 gdb_assert (sig_entry->dwo_unit == NULL);
4960
4961 sig_entry->per_cu.section = dwo_entry->section;
4962 sig_entry->per_cu.offset = dwo_entry->offset;
4963 sig_entry->per_cu.length = dwo_entry->length;
4964 sig_entry->per_cu.reading_dwo_directly = 1;
4965 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4966 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4967 sig_entry->dwo_unit = dwo_entry;
4968}
4969
4970/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4971 If we haven't read the TU yet, create the signatured_type data structure
4972 for a TU to be read in directly from a DWO file, bypassing the stub.
4973 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4974 using .gdb_index, then when reading a CU we want to stay in the DWO file
4975 containing that CU. Otherwise we could end up reading several other DWO
4976 files (due to comdat folding) to process the transitive closure of all the
4977 mentioned TUs, and that can be slow. The current DWO file will have every
4978 type signature that it needs.
a2ce51a0
DE
4979 We only do this for .gdb_index because in the psymtab case we already have
4980 to read all the DWOs to build the type unit groups. */
4981
4982static struct signatured_type *
4983lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4984{
4985 struct objfile *objfile = dwarf2_per_objfile->objfile;
4986 struct dwo_file *dwo_file;
4987 struct dwo_unit find_dwo_entry, *dwo_entry;
4988 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4989 void **slot;
a2ce51a0
DE
4990
4991 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4992
6aa5f3a6
DE
4993 /* If TU skeletons have been removed then we may not have read in any
4994 TUs yet. */
4995 if (dwarf2_per_objfile->signatured_types == NULL)
4996 {
4997 dwarf2_per_objfile->signatured_types
4998 = allocate_signatured_type_table (objfile);
4999 }
a2ce51a0
DE
5000
5001 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
5002 Use the global signatured_types array to do our own comdat-folding
5003 of types. If this is the first time we're reading this TU, and
5004 the TU has an entry in .gdb_index, replace the recorded data from
5005 .gdb_index with this TU. */
a2ce51a0 5006
a2ce51a0 5007 find_sig_entry.signature = sig;
6aa5f3a6
DE
5008 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5009 &find_sig_entry, INSERT);
9a3c8263 5010 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
5011
5012 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
5013 read. Don't reassign the global entry to point to this DWO if that's
5014 the case. Also note that if the TU is already being read, it may not
5015 have come from a DWO, the program may be a mix of Fission-compiled
5016 code and non-Fission-compiled code. */
5017
5018 /* Have we already tried to read this TU?
5019 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5020 needn't exist in the global table yet). */
5021 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
5022 return sig_entry;
5023
6aa5f3a6
DE
5024 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5025 dwo_unit of the TU itself. */
5026 dwo_file = cu->dwo_unit->dwo_file;
5027
a2ce51a0
DE
5028 /* Ok, this is the first time we're reading this TU. */
5029 if (dwo_file->tus == NULL)
5030 return NULL;
5031 find_dwo_entry.signature = sig;
9a3c8263 5032 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
5033 if (dwo_entry == NULL)
5034 return NULL;
5035
6aa5f3a6
DE
5036 /* If the global table doesn't have an entry for this TU, add one. */
5037 if (sig_entry == NULL)
5038 sig_entry = add_type_unit (sig, slot);
5039
a2ce51a0 5040 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 5041 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
5042 return sig_entry;
5043}
5044
a2ce51a0
DE
5045/* Subroutine of lookup_signatured_type.
5046 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
5047 then try the DWP file. If the TU stub (skeleton) has been removed then
5048 it won't be in .gdb_index. */
a2ce51a0
DE
5049
5050static struct signatured_type *
5051lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5052{
5053 struct objfile *objfile = dwarf2_per_objfile->objfile;
5054 struct dwp_file *dwp_file = get_dwp_file ();
5055 struct dwo_unit *dwo_entry;
5056 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 5057 void **slot;
a2ce51a0
DE
5058
5059 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5060 gdb_assert (dwp_file != NULL);
5061
6aa5f3a6
DE
5062 /* If TU skeletons have been removed then we may not have read in any
5063 TUs yet. */
5064 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 5065 {
6aa5f3a6
DE
5066 dwarf2_per_objfile->signatured_types
5067 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
5068 }
5069
6aa5f3a6
DE
5070 find_sig_entry.signature = sig;
5071 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5072 &find_sig_entry, INSERT);
9a3c8263 5073 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
5074
5075 /* Have we already tried to read this TU?
5076 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5077 needn't exist in the global table yet). */
5078 if (sig_entry != NULL)
5079 return sig_entry;
5080
a2ce51a0
DE
5081 if (dwp_file->tus == NULL)
5082 return NULL;
57d63ce2
DE
5083 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5084 sig, 1 /* is_debug_types */);
a2ce51a0
DE
5085 if (dwo_entry == NULL)
5086 return NULL;
5087
6aa5f3a6 5088 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
5089 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5090
a2ce51a0
DE
5091 return sig_entry;
5092}
5093
380bca97 5094/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
5095 Returns NULL if signature SIG is not present in the table.
5096 It is up to the caller to complain about this. */
348e048f
DE
5097
5098static struct signatured_type *
a2ce51a0 5099lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 5100{
a2ce51a0
DE
5101 if (cu->dwo_unit
5102 && dwarf2_per_objfile->using_index)
5103 {
5104 /* We're in a DWO/DWP file, and we're using .gdb_index.
5105 These cases require special processing. */
5106 if (get_dwp_file () == NULL)
5107 return lookup_dwo_signatured_type (cu, sig);
5108 else
5109 return lookup_dwp_signatured_type (cu, sig);
5110 }
5111 else
5112 {
5113 struct signatured_type find_entry, *entry;
348e048f 5114
a2ce51a0
DE
5115 if (dwarf2_per_objfile->signatured_types == NULL)
5116 return NULL;
5117 find_entry.signature = sig;
9a3c8263
SM
5118 entry = ((struct signatured_type *)
5119 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
5120 return entry;
5121 }
348e048f 5122}
42e7ad6c
DE
5123\f
5124/* Low level DIE reading support. */
348e048f 5125
d85a05f0
DJ
5126/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5127
5128static void
5129init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5130 struct dwarf2_cu *cu,
3019eac3
DE
5131 struct dwarf2_section_info *section,
5132 struct dwo_file *dwo_file)
d85a05f0 5133{
fceca515 5134 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5135 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5136 reader->cu = cu;
3019eac3 5137 reader->dwo_file = dwo_file;
dee91e82
DE
5138 reader->die_section = section;
5139 reader->buffer = section->buffer;
f664829e 5140 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5141 reader->comp_dir = NULL;
d85a05f0
DJ
5142}
5143
b0c7bfa9
DE
5144/* Subroutine of init_cutu_and_read_dies to simplify it.
5145 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5146 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5147 already.
5148
5149 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5150 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5151 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5152 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5153 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5154 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5155 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5156 are filled in with the info of the DIE from the DWO file.
5157 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5158 provided an abbrev table to use.
5159 The result is non-zero if a valid (non-dummy) DIE was found. */
5160
5161static int
5162read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5163 struct dwo_unit *dwo_unit,
5164 int abbrev_table_provided,
5165 struct die_info *stub_comp_unit_die,
a2ce51a0 5166 const char *stub_comp_dir,
b0c7bfa9 5167 struct die_reader_specs *result_reader,
d521ce57 5168 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5169 struct die_info **result_comp_unit_die,
5170 int *result_has_children)
5171{
5172 struct objfile *objfile = dwarf2_per_objfile->objfile;
5173 struct dwarf2_cu *cu = this_cu->cu;
5174 struct dwarf2_section_info *section;
5175 bfd *abfd;
d521ce57 5176 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5177 ULONGEST signature; /* Or dwo_id. */
5178 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5179 int i,num_extra_attrs;
5180 struct dwarf2_section_info *dwo_abbrev_section;
5181 struct attribute *attr;
5182 struct die_info *comp_unit_die;
5183
b0aeadb3
DE
5184 /* At most one of these may be provided. */
5185 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5186
b0c7bfa9
DE
5187 /* These attributes aren't processed until later:
5188 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5189 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5190 referenced later. However, these attributes are found in the stub
5191 which we won't have later. In order to not impose this complication
5192 on the rest of the code, we read them here and copy them to the
5193 DWO CU/TU die. */
b0c7bfa9
DE
5194
5195 stmt_list = NULL;
5196 low_pc = NULL;
5197 high_pc = NULL;
5198 ranges = NULL;
5199 comp_dir = NULL;
5200
5201 if (stub_comp_unit_die != NULL)
5202 {
5203 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5204 DWO file. */
5205 if (! this_cu->is_debug_types)
5206 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5207 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5208 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5209 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5210 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5211
5212 /* There should be a DW_AT_addr_base attribute here (if needed).
5213 We need the value before we can process DW_FORM_GNU_addr_index. */
5214 cu->addr_base = 0;
5215 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5216 if (attr)
5217 cu->addr_base = DW_UNSND (attr);
5218
5219 /* There should be a DW_AT_ranges_base attribute here (if needed).
5220 We need the value before we can process DW_AT_ranges. */
5221 cu->ranges_base = 0;
5222 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5223 if (attr)
5224 cu->ranges_base = DW_UNSND (attr);
5225 }
a2ce51a0
DE
5226 else if (stub_comp_dir != NULL)
5227 {
5228 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 5229 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
5230 comp_dir->name = DW_AT_comp_dir;
5231 comp_dir->form = DW_FORM_string;
5232 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5233 DW_STRING (comp_dir) = stub_comp_dir;
5234 }
b0c7bfa9
DE
5235
5236 /* Set up for reading the DWO CU/TU. */
5237 cu->dwo_unit = dwo_unit;
5238 section = dwo_unit->section;
5239 dwarf2_read_section (objfile, section);
a32a8923 5240 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5241 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5242 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5243 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5244
5245 if (this_cu->is_debug_types)
5246 {
b0c7bfa9
DE
5247 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5248
43988095 5249 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
b0c7bfa9 5250 dwo_abbrev_section,
43988095 5251 info_ptr, rcuh_kind::TYPE);
a2ce51a0 5252 /* This is not an assert because it can be caused by bad debug info. */
43988095 5253 if (sig_type->signature != cu->header.signature)
a2ce51a0
DE
5254 {
5255 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5256 " TU at offset 0x%x [in module %s]"),
5257 hex_string (sig_type->signature),
43988095 5258 hex_string (cu->header.signature),
a2ce51a0
DE
5259 dwo_unit->offset.sect_off,
5260 bfd_get_filename (abfd));
5261 }
b0c7bfa9
DE
5262 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5263 /* For DWOs coming from DWP files, we don't know the CU length
5264 nor the type's offset in the TU until now. */
5265 dwo_unit->length = get_cu_length (&cu->header);
43988095 5266 dwo_unit->type_offset_in_tu = cu->header.type_offset_in_tu;
b0c7bfa9
DE
5267
5268 /* Establish the type offset that can be used to lookup the type.
5269 For DWO files, we don't know it until now. */
5270 sig_type->type_offset_in_section.sect_off =
5271 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5272 }
5273 else
5274 {
5275 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5276 dwo_abbrev_section,
43988095 5277 info_ptr, rcuh_kind::COMPILE);
b0c7bfa9
DE
5278 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5279 /* For DWOs coming from DWP files, we don't know the CU length
5280 until now. */
5281 dwo_unit->length = get_cu_length (&cu->header);
5282 }
5283
02142a6c
DE
5284 /* Replace the CU's original abbrev table with the DWO's.
5285 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5286 if (abbrev_table_provided)
5287 {
5288 /* Don't free the provided abbrev table, the caller of
5289 init_cutu_and_read_dies owns it. */
5290 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5291 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5292 make_cleanup (dwarf2_free_abbrev_table, cu);
5293 }
5294 else
5295 {
5296 dwarf2_free_abbrev_table (cu);
5297 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5298 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5299 }
5300
5301 /* Read in the die, but leave space to copy over the attributes
5302 from the stub. This has the benefit of simplifying the rest of
5303 the code - all the work to maintain the illusion of a single
5304 DW_TAG_{compile,type}_unit DIE is done here. */
5305 num_extra_attrs = ((stmt_list != NULL)
5306 + (low_pc != NULL)
5307 + (high_pc != NULL)
5308 + (ranges != NULL)
5309 + (comp_dir != NULL));
5310 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5311 result_has_children, num_extra_attrs);
5312
5313 /* Copy over the attributes from the stub to the DIE we just read in. */
5314 comp_unit_die = *result_comp_unit_die;
5315 i = comp_unit_die->num_attrs;
5316 if (stmt_list != NULL)
5317 comp_unit_die->attrs[i++] = *stmt_list;
5318 if (low_pc != NULL)
5319 comp_unit_die->attrs[i++] = *low_pc;
5320 if (high_pc != NULL)
5321 comp_unit_die->attrs[i++] = *high_pc;
5322 if (ranges != NULL)
5323 comp_unit_die->attrs[i++] = *ranges;
5324 if (comp_dir != NULL)
5325 comp_unit_die->attrs[i++] = *comp_dir;
5326 comp_unit_die->num_attrs += num_extra_attrs;
5327
b4f54984 5328 if (dwarf_die_debug)
bf6af496
DE
5329 {
5330 fprintf_unfiltered (gdb_stdlog,
5331 "Read die from %s@0x%x of %s:\n",
a32a8923 5332 get_section_name (section),
bf6af496
DE
5333 (unsigned) (begin_info_ptr - section->buffer),
5334 bfd_get_filename (abfd));
b4f54984 5335 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5336 }
5337
a2ce51a0
DE
5338 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5339 TUs by skipping the stub and going directly to the entry in the DWO file.
5340 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5341 to get it via circuitous means. Blech. */
5342 if (comp_dir != NULL)
5343 result_reader->comp_dir = DW_STRING (comp_dir);
5344
b0c7bfa9
DE
5345 /* Skip dummy compilation units. */
5346 if (info_ptr >= begin_info_ptr + dwo_unit->length
5347 || peek_abbrev_code (abfd, info_ptr) == 0)
5348 return 0;
5349
5350 *result_info_ptr = info_ptr;
5351 return 1;
5352}
5353
5354/* Subroutine of init_cutu_and_read_dies to simplify it.
5355 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5356 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5357
5358static struct dwo_unit *
5359lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5360 struct die_info *comp_unit_die)
5361{
5362 struct dwarf2_cu *cu = this_cu->cu;
5363 struct attribute *attr;
5364 ULONGEST signature;
5365 struct dwo_unit *dwo_unit;
5366 const char *comp_dir, *dwo_name;
5367
a2ce51a0
DE
5368 gdb_assert (cu != NULL);
5369
b0c7bfa9 5370 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
5371 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5372 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
5373
5374 if (this_cu->is_debug_types)
5375 {
5376 struct signatured_type *sig_type;
5377
5378 /* Since this_cu is the first member of struct signatured_type,
5379 we can go from a pointer to one to a pointer to the other. */
5380 sig_type = (struct signatured_type *) this_cu;
5381 signature = sig_type->signature;
5382 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5383 }
5384 else
5385 {
5386 struct attribute *attr;
5387
5388 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5389 if (! attr)
5390 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5391 " [in module %s]"),
4262abfb 5392 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5393 signature = DW_UNSND (attr);
5394 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5395 signature);
5396 }
5397
b0c7bfa9
DE
5398 return dwo_unit;
5399}
5400
a2ce51a0 5401/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5402 See it for a description of the parameters.
5403 Read a TU directly from a DWO file, bypassing the stub.
5404
5405 Note: This function could be a little bit simpler if we shared cleanups
5406 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5407 to do, so we keep this function self-contained. Or we could move this
5408 into our caller, but it's complex enough already. */
a2ce51a0
DE
5409
5410static void
6aa5f3a6
DE
5411init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5412 int use_existing_cu, int keep,
a2ce51a0
DE
5413 die_reader_func_ftype *die_reader_func,
5414 void *data)
5415{
5416 struct dwarf2_cu *cu;
5417 struct signatured_type *sig_type;
6aa5f3a6 5418 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5419 struct die_reader_specs reader;
5420 const gdb_byte *info_ptr;
5421 struct die_info *comp_unit_die;
5422 int has_children;
5423
5424 /* Verify we can do the following downcast, and that we have the
5425 data we need. */
5426 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5427 sig_type = (struct signatured_type *) this_cu;
5428 gdb_assert (sig_type->dwo_unit != NULL);
5429
5430 cleanups = make_cleanup (null_cleanup, NULL);
5431
6aa5f3a6
DE
5432 if (use_existing_cu && this_cu->cu != NULL)
5433 {
5434 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5435 cu = this_cu->cu;
5436 /* There's no need to do the rereading_dwo_cu handling that
5437 init_cutu_and_read_dies does since we don't read the stub. */
5438 }
5439 else
5440 {
5441 /* If !use_existing_cu, this_cu->cu must be NULL. */
5442 gdb_assert (this_cu->cu == NULL);
8d749320 5443 cu = XNEW (struct dwarf2_cu);
6aa5f3a6
DE
5444 init_one_comp_unit (cu, this_cu);
5445 /* If an error occurs while loading, release our storage. */
5446 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5447 }
5448
5449 /* A future optimization, if needed, would be to use an existing
5450 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5451 could share abbrev tables. */
a2ce51a0
DE
5452
5453 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5454 0 /* abbrev_table_provided */,
5455 NULL /* stub_comp_unit_die */,
5456 sig_type->dwo_unit->dwo_file->comp_dir,
5457 &reader, &info_ptr,
5458 &comp_unit_die, &has_children) == 0)
5459 {
5460 /* Dummy die. */
5461 do_cleanups (cleanups);
5462 return;
5463 }
5464
5465 /* All the "real" work is done here. */
5466 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5467
6aa5f3a6 5468 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5469 but the alternative is making the latter more complex.
5470 This function is only for the special case of using DWO files directly:
5471 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5472 if (free_cu_cleanup != NULL)
a2ce51a0 5473 {
6aa5f3a6
DE
5474 if (keep)
5475 {
5476 /* We've successfully allocated this compilation unit. Let our
5477 caller clean it up when finished with it. */
5478 discard_cleanups (free_cu_cleanup);
a2ce51a0 5479
6aa5f3a6
DE
5480 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5481 So we have to manually free the abbrev table. */
5482 dwarf2_free_abbrev_table (cu);
a2ce51a0 5483
6aa5f3a6
DE
5484 /* Link this CU into read_in_chain. */
5485 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5486 dwarf2_per_objfile->read_in_chain = this_cu;
5487 }
5488 else
5489 do_cleanups (free_cu_cleanup);
a2ce51a0 5490 }
a2ce51a0
DE
5491
5492 do_cleanups (cleanups);
5493}
5494
fd820528 5495/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5496 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5497
f4dc4d17
DE
5498 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5499 Otherwise the table specified in the comp unit header is read in and used.
5500 This is an optimization for when we already have the abbrev table.
5501
dee91e82
DE
5502 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5503 Otherwise, a new CU is allocated with xmalloc.
5504
5505 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5506 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5507
5508 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5509 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5510
70221824 5511static void
fd820528 5512init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5513 struct abbrev_table *abbrev_table,
fd820528
DE
5514 int use_existing_cu, int keep,
5515 die_reader_func_ftype *die_reader_func,
5516 void *data)
c906108c 5517{
dee91e82 5518 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5519 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5520 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5521 struct dwarf2_cu *cu;
d521ce57 5522 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5523 struct die_reader_specs reader;
d85a05f0 5524 struct die_info *comp_unit_die;
dee91e82 5525 int has_children;
d85a05f0 5526 struct attribute *attr;
365156ad 5527 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5528 struct signatured_type *sig_type = NULL;
4bdcc0c1 5529 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5530 /* Non-zero if CU currently points to a DWO file and we need to
5531 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5532 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5533 int rereading_dwo_cu = 0;
c906108c 5534
b4f54984 5535 if (dwarf_die_debug)
09406207
DE
5536 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5537 this_cu->is_debug_types ? "type" : "comp",
5538 this_cu->offset.sect_off);
5539
dee91e82
DE
5540 if (use_existing_cu)
5541 gdb_assert (keep);
23745b47 5542
a2ce51a0
DE
5543 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5544 file (instead of going through the stub), short-circuit all of this. */
5545 if (this_cu->reading_dwo_directly)
5546 {
5547 /* Narrow down the scope of possibilities to have to understand. */
5548 gdb_assert (this_cu->is_debug_types);
5549 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5550 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5551 die_reader_func, data);
a2ce51a0
DE
5552 return;
5553 }
5554
dee91e82
DE
5555 cleanups = make_cleanup (null_cleanup, NULL);
5556
5557 /* This is cheap if the section is already read in. */
5558 dwarf2_read_section (objfile, section);
5559
5560 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5561
5562 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5563
5564 if (use_existing_cu && this_cu->cu != NULL)
5565 {
5566 cu = this_cu->cu;
42e7ad6c
DE
5567 /* If this CU is from a DWO file we need to start over, we need to
5568 refetch the attributes from the skeleton CU.
5569 This could be optimized by retrieving those attributes from when we
5570 were here the first time: the previous comp_unit_die was stored in
5571 comp_unit_obstack. But there's no data yet that we need this
5572 optimization. */
5573 if (cu->dwo_unit != NULL)
5574 rereading_dwo_cu = 1;
dee91e82
DE
5575 }
5576 else
5577 {
5578 /* If !use_existing_cu, this_cu->cu must be NULL. */
5579 gdb_assert (this_cu->cu == NULL);
8d749320 5580 cu = XNEW (struct dwarf2_cu);
dee91e82 5581 init_one_comp_unit (cu, this_cu);
dee91e82 5582 /* If an error occurs while loading, release our storage. */
365156ad 5583 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5584 }
dee91e82 5585
b0c7bfa9 5586 /* Get the header. */
42e7ad6c
DE
5587 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5588 {
5589 /* We already have the header, there's no need to read it in again. */
5590 info_ptr += cu->header.first_die_offset.cu_off;
5591 }
5592 else
5593 {
3019eac3 5594 if (this_cu->is_debug_types)
dee91e82 5595 {
43988095 5596 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4bdcc0c1 5597 abbrev_section, info_ptr,
43988095 5598 rcuh_kind::TYPE);
dee91e82 5599
42e7ad6c
DE
5600 /* Since per_cu is the first member of struct signatured_type,
5601 we can go from a pointer to one to a pointer to the other. */
5602 sig_type = (struct signatured_type *) this_cu;
43988095 5603 gdb_assert (sig_type->signature == cu->header.signature);
42e7ad6c 5604 gdb_assert (sig_type->type_offset_in_tu.cu_off
43988095 5605 == cu->header.type_offset_in_tu.cu_off);
dee91e82
DE
5606 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5607
42e7ad6c
DE
5608 /* LENGTH has not been set yet for type units if we're
5609 using .gdb_index. */
1ce1cefd 5610 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5611
5612 /* Establish the type offset that can be used to lookup the type. */
5613 sig_type->type_offset_in_section.sect_off =
5614 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
43988095
JK
5615
5616 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
5617 }
5618 else
5619 {
4bdcc0c1
DE
5620 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5621 abbrev_section,
43988095
JK
5622 info_ptr,
5623 rcuh_kind::COMPILE);
dee91e82
DE
5624
5625 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5626 gdb_assert (this_cu->length == get_cu_length (&cu->header));
43988095 5627 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
5628 }
5629 }
10b3939b 5630
6caca83c 5631 /* Skip dummy compilation units. */
dee91e82 5632 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5633 || peek_abbrev_code (abfd, info_ptr) == 0)
5634 {
dee91e82 5635 do_cleanups (cleanups);
21b2bd31 5636 return;
6caca83c
CC
5637 }
5638
433df2d4
DE
5639 /* If we don't have them yet, read the abbrevs for this compilation unit.
5640 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5641 done. Note that it's important that if the CU had an abbrev table
5642 on entry we don't free it when we're done: Somewhere up the call stack
5643 it may be in use. */
f4dc4d17
DE
5644 if (abbrev_table != NULL)
5645 {
5646 gdb_assert (cu->abbrev_table == NULL);
5647 gdb_assert (cu->header.abbrev_offset.sect_off
5648 == abbrev_table->offset.sect_off);
5649 cu->abbrev_table = abbrev_table;
5650 }
5651 else if (cu->abbrev_table == NULL)
dee91e82 5652 {
4bdcc0c1 5653 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5654 make_cleanup (dwarf2_free_abbrev_table, cu);
5655 }
42e7ad6c
DE
5656 else if (rereading_dwo_cu)
5657 {
5658 dwarf2_free_abbrev_table (cu);
5659 dwarf2_read_abbrevs (cu, abbrev_section);
5660 }
af703f96 5661
dee91e82 5662 /* Read the top level CU/TU die. */
3019eac3 5663 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5664 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5665
b0c7bfa9
DE
5666 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5667 from the DWO file.
5668 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5669 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5670 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5671 if (attr)
5672 {
3019eac3 5673 struct dwo_unit *dwo_unit;
b0c7bfa9 5674 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5675
5676 if (has_children)
6a506a2d
DE
5677 {
5678 complaint (&symfile_complaints,
5679 _("compilation unit with DW_AT_GNU_dwo_name"
5680 " has children (offset 0x%x) [in module %s]"),
5681 this_cu->offset.sect_off, bfd_get_filename (abfd));
5682 }
b0c7bfa9 5683 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5684 if (dwo_unit != NULL)
3019eac3 5685 {
6a506a2d
DE
5686 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5687 abbrev_table != NULL,
a2ce51a0 5688 comp_unit_die, NULL,
6a506a2d
DE
5689 &reader, &info_ptr,
5690 &dwo_comp_unit_die, &has_children) == 0)
5691 {
5692 /* Dummy die. */
5693 do_cleanups (cleanups);
5694 return;
5695 }
5696 comp_unit_die = dwo_comp_unit_die;
5697 }
5698 else
5699 {
5700 /* Yikes, we couldn't find the rest of the DIE, we only have
5701 the stub. A complaint has already been logged. There's
5702 not much more we can do except pass on the stub DIE to
5703 die_reader_func. We don't want to throw an error on bad
5704 debug info. */
3019eac3
DE
5705 }
5706 }
5707
b0c7bfa9 5708 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5709 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5710
b0c7bfa9 5711 /* Done, clean up. */
365156ad 5712 if (free_cu_cleanup != NULL)
348e048f 5713 {
365156ad
TT
5714 if (keep)
5715 {
5716 /* We've successfully allocated this compilation unit. Let our
5717 caller clean it up when finished with it. */
5718 discard_cleanups (free_cu_cleanup);
dee91e82 5719
365156ad
TT
5720 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5721 So we have to manually free the abbrev table. */
5722 dwarf2_free_abbrev_table (cu);
dee91e82 5723
365156ad
TT
5724 /* Link this CU into read_in_chain. */
5725 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5726 dwarf2_per_objfile->read_in_chain = this_cu;
5727 }
5728 else
5729 do_cleanups (free_cu_cleanup);
348e048f 5730 }
365156ad
TT
5731
5732 do_cleanups (cleanups);
dee91e82
DE
5733}
5734
33e80786
DE
5735/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5736 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5737 to have already done the lookup to find the DWO file).
dee91e82
DE
5738
5739 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5740 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5741
5742 We fill in THIS_CU->length.
5743
5744 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5745 linker) then DIE_READER_FUNC will not get called.
5746
5747 THIS_CU->cu is always freed when done.
3019eac3
DE
5748 This is done in order to not leave THIS_CU->cu in a state where we have
5749 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5750
5751static void
5752init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5753 struct dwo_file *dwo_file,
dee91e82
DE
5754 die_reader_func_ftype *die_reader_func,
5755 void *data)
5756{
5757 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5758 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5759 bfd *abfd = get_section_bfd_owner (section);
33e80786 5760 struct dwarf2_section_info *abbrev_section;
dee91e82 5761 struct dwarf2_cu cu;
d521ce57 5762 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5763 struct die_reader_specs reader;
5764 struct cleanup *cleanups;
5765 struct die_info *comp_unit_die;
5766 int has_children;
5767
b4f54984 5768 if (dwarf_die_debug)
09406207
DE
5769 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5770 this_cu->is_debug_types ? "type" : "comp",
5771 this_cu->offset.sect_off);
5772
dee91e82
DE
5773 gdb_assert (this_cu->cu == NULL);
5774
33e80786
DE
5775 abbrev_section = (dwo_file != NULL
5776 ? &dwo_file->sections.abbrev
5777 : get_abbrev_section_for_cu (this_cu));
5778
dee91e82
DE
5779 /* This is cheap if the section is already read in. */
5780 dwarf2_read_section (objfile, section);
5781
5782 init_one_comp_unit (&cu, this_cu);
5783
5784 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5785
5786 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5787 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5788 abbrev_section, info_ptr,
43988095
JK
5789 (this_cu->is_debug_types
5790 ? rcuh_kind::TYPE
5791 : rcuh_kind::COMPILE));
dee91e82 5792
1ce1cefd 5793 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5794
5795 /* Skip dummy compilation units. */
5796 if (info_ptr >= begin_info_ptr + this_cu->length
5797 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5798 {
dee91e82 5799 do_cleanups (cleanups);
21b2bd31 5800 return;
93311388 5801 }
72bf9492 5802
dee91e82
DE
5803 dwarf2_read_abbrevs (&cu, abbrev_section);
5804 make_cleanup (dwarf2_free_abbrev_table, &cu);
5805
3019eac3 5806 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5807 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5808
5809 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5810
5811 do_cleanups (cleanups);
5812}
5813
3019eac3
DE
5814/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5815 does not lookup the specified DWO file.
5816 This cannot be used to read DWO files.
dee91e82
DE
5817
5818 THIS_CU->cu is always freed when done.
3019eac3
DE
5819 This is done in order to not leave THIS_CU->cu in a state where we have
5820 to care whether it refers to the "main" CU or the DWO CU.
5821 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5822
5823static void
5824init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5825 die_reader_func_ftype *die_reader_func,
5826 void *data)
5827{
33e80786 5828 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5829}
0018ea6f
DE
5830\f
5831/* Type Unit Groups.
dee91e82 5832
0018ea6f
DE
5833 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5834 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5835 so that all types coming from the same compilation (.o file) are grouped
5836 together. A future step could be to put the types in the same symtab as
5837 the CU the types ultimately came from. */
ff013f42 5838
f4dc4d17
DE
5839static hashval_t
5840hash_type_unit_group (const void *item)
5841{
9a3c8263
SM
5842 const struct type_unit_group *tu_group
5843 = (const struct type_unit_group *) item;
f4dc4d17 5844
094b34ac 5845 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5846}
348e048f
DE
5847
5848static int
f4dc4d17 5849eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5850{
9a3c8263
SM
5851 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5852 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 5853
094b34ac 5854 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5855}
348e048f 5856
f4dc4d17
DE
5857/* Allocate a hash table for type unit groups. */
5858
5859static htab_t
5860allocate_type_unit_groups_table (void)
5861{
5862 return htab_create_alloc_ex (3,
5863 hash_type_unit_group,
5864 eq_type_unit_group,
5865 NULL,
5866 &dwarf2_per_objfile->objfile->objfile_obstack,
5867 hashtab_obstack_allocate,
5868 dummy_obstack_deallocate);
5869}
dee91e82 5870
f4dc4d17
DE
5871/* Type units that don't have DW_AT_stmt_list are grouped into their own
5872 partial symtabs. We combine several TUs per psymtab to not let the size
5873 of any one psymtab grow too big. */
5874#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5875#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5876
094b34ac 5877/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5878 Create the type_unit_group object used to hold one or more TUs. */
5879
5880static struct type_unit_group *
094b34ac 5881create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5882{
5883 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5884 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5885 struct type_unit_group *tu_group;
f4dc4d17
DE
5886
5887 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5888 struct type_unit_group);
094b34ac 5889 per_cu = &tu_group->per_cu;
f4dc4d17 5890 per_cu->objfile = objfile;
f4dc4d17 5891
094b34ac
DE
5892 if (dwarf2_per_objfile->using_index)
5893 {
5894 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5895 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5896 }
5897 else
5898 {
5899 unsigned int line_offset = line_offset_struct.sect_off;
5900 struct partial_symtab *pst;
5901 char *name;
5902
5903 /* Give the symtab a useful name for debug purposes. */
5904 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5905 name = xstrprintf ("<type_units_%d>",
5906 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5907 else
5908 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5909
5910 pst = create_partial_symtab (per_cu, name);
5911 pst->anonymous = 1;
f4dc4d17 5912
094b34ac
DE
5913 xfree (name);
5914 }
f4dc4d17 5915
094b34ac
DE
5916 tu_group->hash.dwo_unit = cu->dwo_unit;
5917 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5918
5919 return tu_group;
5920}
5921
094b34ac
DE
5922/* Look up the type_unit_group for type unit CU, and create it if necessary.
5923 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5924
5925static struct type_unit_group *
ff39bb5e 5926get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5927{
5928 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5929 struct type_unit_group *tu_group;
5930 void **slot;
5931 unsigned int line_offset;
5932 struct type_unit_group type_unit_group_for_lookup;
5933
5934 if (dwarf2_per_objfile->type_unit_groups == NULL)
5935 {
5936 dwarf2_per_objfile->type_unit_groups =
5937 allocate_type_unit_groups_table ();
5938 }
5939
5940 /* Do we need to create a new group, or can we use an existing one? */
5941
5942 if (stmt_list)
5943 {
5944 line_offset = DW_UNSND (stmt_list);
5945 ++tu_stats->nr_symtab_sharers;
5946 }
5947 else
5948 {
5949 /* Ugh, no stmt_list. Rare, but we have to handle it.
5950 We can do various things here like create one group per TU or
5951 spread them over multiple groups to split up the expansion work.
5952 To avoid worst case scenarios (too many groups or too large groups)
5953 we, umm, group them in bunches. */
5954 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5955 | (tu_stats->nr_stmt_less_type_units
5956 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5957 ++tu_stats->nr_stmt_less_type_units;
5958 }
5959
094b34ac
DE
5960 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5961 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5962 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5963 &type_unit_group_for_lookup, INSERT);
5964 if (*slot != NULL)
5965 {
9a3c8263 5966 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
5967 gdb_assert (tu_group != NULL);
5968 }
5969 else
5970 {
5971 sect_offset line_offset_struct;
5972
5973 line_offset_struct.sect_off = line_offset;
094b34ac 5974 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5975 *slot = tu_group;
5976 ++tu_stats->nr_symtabs;
5977 }
5978
5979 return tu_group;
5980}
0018ea6f
DE
5981\f
5982/* Partial symbol tables. */
5983
5984/* Create a psymtab named NAME and assign it to PER_CU.
5985
5986 The caller must fill in the following details:
5987 dirname, textlow, texthigh. */
5988
5989static struct partial_symtab *
5990create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5991{
5992 struct objfile *objfile = per_cu->objfile;
5993 struct partial_symtab *pst;
5994
18a94d75 5995 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
5996 objfile->global_psymbols.next,
5997 objfile->static_psymbols.next);
5998
5999 pst->psymtabs_addrmap_supported = 1;
6000
6001 /* This is the glue that links PST into GDB's symbol API. */
6002 pst->read_symtab_private = per_cu;
6003 pst->read_symtab = dwarf2_read_symtab;
6004 per_cu->v.psymtab = pst;
6005
6006 return pst;
6007}
6008
b93601f3
TT
6009/* The DATA object passed to process_psymtab_comp_unit_reader has this
6010 type. */
6011
6012struct process_psymtab_comp_unit_data
6013{
6014 /* True if we are reading a DW_TAG_partial_unit. */
6015
6016 int want_partial_unit;
6017
6018 /* The "pretend" language that is used if the CU doesn't declare a
6019 language. */
6020
6021 enum language pretend_language;
6022};
6023
0018ea6f
DE
6024/* die_reader_func for process_psymtab_comp_unit. */
6025
6026static void
6027process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6028 const gdb_byte *info_ptr,
0018ea6f
DE
6029 struct die_info *comp_unit_die,
6030 int has_children,
6031 void *data)
6032{
6033 struct dwarf2_cu *cu = reader->cu;
6034 struct objfile *objfile = cu->objfile;
3e29f34a 6035 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 6036 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
6037 CORE_ADDR baseaddr;
6038 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6039 struct partial_symtab *pst;
3a2b436a 6040 enum pc_bounds_kind cu_bounds_kind;
0018ea6f 6041 const char *filename;
9a3c8263
SM
6042 struct process_psymtab_comp_unit_data *info
6043 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 6044
b93601f3 6045 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
6046 return;
6047
6048 gdb_assert (! per_cu->is_debug_types);
6049
b93601f3 6050 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
6051
6052 cu->list_in_scope = &file_symbols;
6053
6054 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
6055 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6056 if (filename == NULL)
0018ea6f 6057 filename = "";
0018ea6f
DE
6058
6059 pst = create_partial_symtab (per_cu, filename);
6060
6061 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 6062 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
6063
6064 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6065
6066 dwarf2_find_base_address (comp_unit_die, cu);
6067
6068 /* Possibly set the default values of LOWPC and HIGHPC from
6069 `DW_AT_ranges'. */
3a2b436a
JK
6070 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6071 &best_highpc, cu, pst);
6072 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
0018ea6f
DE
6073 /* Store the contiguous range if it is not empty; it can be empty for
6074 CUs with no code. */
6075 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
6076 gdbarch_adjust_dwarf2_addr (gdbarch,
6077 best_lowpc + baseaddr),
6078 gdbarch_adjust_dwarf2_addr (gdbarch,
6079 best_highpc + baseaddr) - 1,
6080 pst);
0018ea6f
DE
6081
6082 /* Check if comp unit has_children.
6083 If so, read the rest of the partial symbols from this comp unit.
6084 If not, there's no more debug_info for this comp unit. */
6085 if (has_children)
6086 {
6087 struct partial_die_info *first_die;
6088 CORE_ADDR lowpc, highpc;
6089
6090 lowpc = ((CORE_ADDR) -1);
6091 highpc = ((CORE_ADDR) 0);
6092
6093 first_die = load_partial_dies (reader, info_ptr, 1);
6094
6095 scan_partial_symbols (first_die, &lowpc, &highpc,
e385593e 6096 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
0018ea6f
DE
6097
6098 /* If we didn't find a lowpc, set it to highpc to avoid
6099 complaints from `maint check'. */
6100 if (lowpc == ((CORE_ADDR) -1))
6101 lowpc = highpc;
6102
6103 /* If the compilation unit didn't have an explicit address range,
6104 then use the information extracted from its child dies. */
e385593e 6105 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
0018ea6f
DE
6106 {
6107 best_lowpc = lowpc;
6108 best_highpc = highpc;
6109 }
6110 }
3e29f34a
MR
6111 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6112 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6113
8763cede 6114 end_psymtab_common (objfile, pst);
0018ea6f
DE
6115
6116 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6117 {
6118 int i;
6119 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6120 struct dwarf2_per_cu_data *iter;
6121
6122 /* Fill in 'dependencies' here; we fill in 'users' in a
6123 post-pass. */
6124 pst->number_of_dependencies = len;
8d749320
SM
6125 pst->dependencies =
6126 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
6127 for (i = 0;
6128 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6129 i, iter);
6130 ++i)
6131 pst->dependencies[i] = iter->v.psymtab;
6132
6133 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6134 }
6135
6136 /* Get the list of files included in the current compilation unit,
6137 and build a psymtab for each of them. */
6138 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6139
b4f54984 6140 if (dwarf_read_debug)
0018ea6f
DE
6141 {
6142 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6143
6144 fprintf_unfiltered (gdb_stdlog,
6145 "Psymtab for %s unit @0x%x: %s - %s"
6146 ", %d global, %d static syms\n",
6147 per_cu->is_debug_types ? "type" : "comp",
6148 per_cu->offset.sect_off,
6149 paddress (gdbarch, pst->textlow),
6150 paddress (gdbarch, pst->texthigh),
6151 pst->n_global_syms, pst->n_static_syms);
6152 }
6153}
6154
6155/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6156 Process compilation unit THIS_CU for a psymtab. */
6157
6158static void
6159process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6160 int want_partial_unit,
6161 enum language pretend_language)
0018ea6f 6162{
b93601f3
TT
6163 struct process_psymtab_comp_unit_data info;
6164
0018ea6f
DE
6165 /* If this compilation unit was already read in, free the
6166 cached copy in order to read it in again. This is
6167 necessary because we skipped some symbols when we first
6168 read in the compilation unit (see load_partial_dies).
6169 This problem could be avoided, but the benefit is unclear. */
6170 if (this_cu->cu != NULL)
6171 free_one_cached_comp_unit (this_cu);
6172
6173 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6174 info.want_partial_unit = want_partial_unit;
6175 info.pretend_language = pretend_language;
0018ea6f
DE
6176 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6177 process_psymtab_comp_unit_reader,
b93601f3 6178 &info);
0018ea6f
DE
6179
6180 /* Age out any secondary CUs. */
6181 age_cached_comp_units ();
6182}
f4dc4d17
DE
6183
6184/* Reader function for build_type_psymtabs. */
6185
6186static void
6187build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6188 const gdb_byte *info_ptr,
f4dc4d17
DE
6189 struct die_info *type_unit_die,
6190 int has_children,
6191 void *data)
6192{
6193 struct objfile *objfile = dwarf2_per_objfile->objfile;
6194 struct dwarf2_cu *cu = reader->cu;
6195 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6196 struct signatured_type *sig_type;
f4dc4d17
DE
6197 struct type_unit_group *tu_group;
6198 struct attribute *attr;
6199 struct partial_die_info *first_die;
6200 CORE_ADDR lowpc, highpc;
6201 struct partial_symtab *pst;
6202
6203 gdb_assert (data == NULL);
0186c6a7
DE
6204 gdb_assert (per_cu->is_debug_types);
6205 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6206
6207 if (! has_children)
6208 return;
6209
6210 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6211 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6212
0186c6a7 6213 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6214
6215 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6216 cu->list_in_scope = &file_symbols;
6217 pst = create_partial_symtab (per_cu, "");
6218 pst->anonymous = 1;
6219
6220 first_die = load_partial_dies (reader, info_ptr, 1);
6221
6222 lowpc = (CORE_ADDR) -1;
6223 highpc = (CORE_ADDR) 0;
6224 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6225
8763cede 6226 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6227}
6228
73051182
DE
6229/* Struct used to sort TUs by their abbreviation table offset. */
6230
6231struct tu_abbrev_offset
6232{
6233 struct signatured_type *sig_type;
6234 sect_offset abbrev_offset;
6235};
6236
6237/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6238
6239static int
6240sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6241{
9a3c8263
SM
6242 const struct tu_abbrev_offset * const *a
6243 = (const struct tu_abbrev_offset * const*) ap;
6244 const struct tu_abbrev_offset * const *b
6245 = (const struct tu_abbrev_offset * const*) bp;
73051182
DE
6246 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6247 unsigned int boff = (*b)->abbrev_offset.sect_off;
6248
6249 return (aoff > boff) - (aoff < boff);
6250}
6251
6252/* Efficiently read all the type units.
6253 This does the bulk of the work for build_type_psymtabs.
6254
6255 The efficiency is because we sort TUs by the abbrev table they use and
6256 only read each abbrev table once. In one program there are 200K TUs
6257 sharing 8K abbrev tables.
6258
6259 The main purpose of this function is to support building the
6260 dwarf2_per_objfile->type_unit_groups table.
6261 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6262 can collapse the search space by grouping them by stmt_list.
6263 The savings can be significant, in the same program from above the 200K TUs
6264 share 8K stmt_list tables.
6265
6266 FUNC is expected to call get_type_unit_group, which will create the
6267 struct type_unit_group if necessary and add it to
6268 dwarf2_per_objfile->type_unit_groups. */
6269
6270static void
6271build_type_psymtabs_1 (void)
6272{
73051182
DE
6273 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6274 struct cleanup *cleanups;
6275 struct abbrev_table *abbrev_table;
6276 sect_offset abbrev_offset;
6277 struct tu_abbrev_offset *sorted_by_abbrev;
73051182
DE
6278 int i;
6279
6280 /* It's up to the caller to not call us multiple times. */
6281 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6282
6283 if (dwarf2_per_objfile->n_type_units == 0)
6284 return;
6285
6286 /* TUs typically share abbrev tables, and there can be way more TUs than
6287 abbrev tables. Sort by abbrev table to reduce the number of times we
6288 read each abbrev table in.
6289 Alternatives are to punt or to maintain a cache of abbrev tables.
6290 This is simpler and efficient enough for now.
6291
6292 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6293 symtab to use). Typically TUs with the same abbrev offset have the same
6294 stmt_list value too so in practice this should work well.
6295
6296 The basic algorithm here is:
6297
6298 sort TUs by abbrev table
6299 for each TU with same abbrev table:
6300 read abbrev table if first user
6301 read TU top level DIE
6302 [IWBN if DWO skeletons had DW_AT_stmt_list]
6303 call FUNC */
6304
b4f54984 6305 if (dwarf_read_debug)
73051182
DE
6306 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6307
6308 /* Sort in a separate table to maintain the order of all_type_units
6309 for .gdb_index: TU indices directly index all_type_units. */
6310 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6311 dwarf2_per_objfile->n_type_units);
6312 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6313 {
6314 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6315
6316 sorted_by_abbrev[i].sig_type = sig_type;
6317 sorted_by_abbrev[i].abbrev_offset =
6318 read_abbrev_offset (sig_type->per_cu.section,
6319 sig_type->per_cu.offset);
6320 }
6321 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6322 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6323 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6324
6325 abbrev_offset.sect_off = ~(unsigned) 0;
6326 abbrev_table = NULL;
6327 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6328
6329 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6330 {
6331 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6332
6333 /* Switch to the next abbrev table if necessary. */
6334 if (abbrev_table == NULL
6335 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6336 {
6337 if (abbrev_table != NULL)
6338 {
6339 abbrev_table_free (abbrev_table);
6340 /* Reset to NULL in case abbrev_table_read_table throws
6341 an error: abbrev_table_free_cleanup will get called. */
6342 abbrev_table = NULL;
6343 }
6344 abbrev_offset = tu->abbrev_offset;
6345 abbrev_table =
6346 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6347 abbrev_offset);
6348 ++tu_stats->nr_uniq_abbrev_tables;
6349 }
6350
6351 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6352 build_type_psymtabs_reader, NULL);
6353 }
6354
73051182 6355 do_cleanups (cleanups);
6aa5f3a6 6356}
73051182 6357
6aa5f3a6
DE
6358/* Print collected type unit statistics. */
6359
6360static void
6361print_tu_stats (void)
6362{
6363 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6364
6365 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6366 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6367 dwarf2_per_objfile->n_type_units);
6368 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6369 tu_stats->nr_uniq_abbrev_tables);
6370 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6371 tu_stats->nr_symtabs);
6372 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6373 tu_stats->nr_symtab_sharers);
6374 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6375 tu_stats->nr_stmt_less_type_units);
6376 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6377 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6378}
6379
f4dc4d17
DE
6380/* Traversal function for build_type_psymtabs. */
6381
6382static int
6383build_type_psymtab_dependencies (void **slot, void *info)
6384{
6385 struct objfile *objfile = dwarf2_per_objfile->objfile;
6386 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6387 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6388 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6389 int len = VEC_length (sig_type_ptr, tu_group->tus);
6390 struct signatured_type *iter;
f4dc4d17
DE
6391 int i;
6392
6393 gdb_assert (len > 0);
0186c6a7 6394 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6395
6396 pst->number_of_dependencies = len;
8d749320
SM
6397 pst->dependencies =
6398 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 6399 for (i = 0;
0186c6a7 6400 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6401 ++i)
6402 {
0186c6a7
DE
6403 gdb_assert (iter->per_cu.is_debug_types);
6404 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6405 iter->type_unit_group = tu_group;
f4dc4d17
DE
6406 }
6407
0186c6a7 6408 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6409
6410 return 1;
6411}
6412
6413/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6414 Build partial symbol tables for the .debug_types comp-units. */
6415
6416static void
6417build_type_psymtabs (struct objfile *objfile)
6418{
0e50663e 6419 if (! create_all_type_units (objfile))
348e048f
DE
6420 return;
6421
73051182 6422 build_type_psymtabs_1 ();
6aa5f3a6 6423}
f4dc4d17 6424
6aa5f3a6
DE
6425/* Traversal function for process_skeletonless_type_unit.
6426 Read a TU in a DWO file and build partial symbols for it. */
6427
6428static int
6429process_skeletonless_type_unit (void **slot, void *info)
6430{
6431 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9a3c8263 6432 struct objfile *objfile = (struct objfile *) info;
6aa5f3a6
DE
6433 struct signatured_type find_entry, *entry;
6434
6435 /* If this TU doesn't exist in the global table, add it and read it in. */
6436
6437 if (dwarf2_per_objfile->signatured_types == NULL)
6438 {
6439 dwarf2_per_objfile->signatured_types
6440 = allocate_signatured_type_table (objfile);
6441 }
6442
6443 find_entry.signature = dwo_unit->signature;
6444 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6445 INSERT);
6446 /* If we've already seen this type there's nothing to do. What's happening
6447 is we're doing our own version of comdat-folding here. */
6448 if (*slot != NULL)
6449 return 1;
6450
6451 /* This does the job that create_all_type_units would have done for
6452 this TU. */
6453 entry = add_type_unit (dwo_unit->signature, slot);
6454 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6455 *slot = entry;
6456
6457 /* This does the job that build_type_psymtabs_1 would have done. */
6458 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6459 build_type_psymtabs_reader, NULL);
6460
6461 return 1;
6462}
6463
6464/* Traversal function for process_skeletonless_type_units. */
6465
6466static int
6467process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6468{
6469 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6470
6471 if (dwo_file->tus != NULL)
6472 {
6473 htab_traverse_noresize (dwo_file->tus,
6474 process_skeletonless_type_unit, info);
6475 }
6476
6477 return 1;
6478}
6479
6480/* Scan all TUs of DWO files, verifying we've processed them.
6481 This is needed in case a TU was emitted without its skeleton.
6482 Note: This can't be done until we know what all the DWO files are. */
6483
6484static void
6485process_skeletonless_type_units (struct objfile *objfile)
6486{
6487 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6488 if (get_dwp_file () == NULL
6489 && dwarf2_per_objfile->dwo_files != NULL)
6490 {
6491 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6492 process_dwo_file_for_skeletonless_type_units,
6493 objfile);
6494 }
348e048f
DE
6495}
6496
60606b2c
TT
6497/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6498
6499static void
6500psymtabs_addrmap_cleanup (void *o)
6501{
9a3c8263 6502 struct objfile *objfile = (struct objfile *) o;
ec61707d 6503
60606b2c
TT
6504 objfile->psymtabs_addrmap = NULL;
6505}
6506
95554aad
TT
6507/* Compute the 'user' field for each psymtab in OBJFILE. */
6508
6509static void
6510set_partial_user (struct objfile *objfile)
6511{
6512 int i;
6513
6514 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6515 {
8832e7e3 6516 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6517 struct partial_symtab *pst = per_cu->v.psymtab;
6518 int j;
6519
36586728
TT
6520 if (pst == NULL)
6521 continue;
6522
95554aad
TT
6523 for (j = 0; j < pst->number_of_dependencies; ++j)
6524 {
6525 /* Set the 'user' field only if it is not already set. */
6526 if (pst->dependencies[j]->user == NULL)
6527 pst->dependencies[j]->user = pst;
6528 }
6529 }
6530}
6531
93311388
DE
6532/* Build the partial symbol table by doing a quick pass through the
6533 .debug_info and .debug_abbrev sections. */
72bf9492 6534
93311388 6535static void
c67a9c90 6536dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6537{
60606b2c
TT
6538 struct cleanup *back_to, *addrmap_cleanup;
6539 struct obstack temp_obstack;
21b2bd31 6540 int i;
93311388 6541
b4f54984 6542 if (dwarf_read_debug)
45cfd468
DE
6543 {
6544 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6545 objfile_name (objfile));
45cfd468
DE
6546 }
6547
98bfdba5
PA
6548 dwarf2_per_objfile->reading_partial_symbols = 1;
6549
be391dca 6550 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6551
93311388
DE
6552 /* Any cached compilation units will be linked by the per-objfile
6553 read_in_chain. Make sure to free them when we're done. */
6554 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6555
348e048f
DE
6556 build_type_psymtabs (objfile);
6557
93311388 6558 create_all_comp_units (objfile);
c906108c 6559
60606b2c
TT
6560 /* Create a temporary address map on a temporary obstack. We later
6561 copy this to the final obstack. */
6562 obstack_init (&temp_obstack);
6563 make_cleanup_obstack_free (&temp_obstack);
6564 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6565 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6566
21b2bd31 6567 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6568 {
8832e7e3 6569 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6570
b93601f3 6571 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6572 }
ff013f42 6573
6aa5f3a6
DE
6574 /* This has to wait until we read the CUs, we need the list of DWOs. */
6575 process_skeletonless_type_units (objfile);
6576
6577 /* Now that all TUs have been processed we can fill in the dependencies. */
6578 if (dwarf2_per_objfile->type_unit_groups != NULL)
6579 {
6580 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6581 build_type_psymtab_dependencies, NULL);
6582 }
6583
b4f54984 6584 if (dwarf_read_debug)
6aa5f3a6
DE
6585 print_tu_stats ();
6586
95554aad
TT
6587 set_partial_user (objfile);
6588
ff013f42
JK
6589 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6590 &objfile->objfile_obstack);
60606b2c 6591 discard_cleanups (addrmap_cleanup);
ff013f42 6592
ae038cb0 6593 do_cleanups (back_to);
45cfd468 6594
b4f54984 6595 if (dwarf_read_debug)
45cfd468 6596 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6597 objfile_name (objfile));
ae038cb0
DJ
6598}
6599
3019eac3 6600/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6601
6602static void
dee91e82 6603load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6604 const gdb_byte *info_ptr,
dee91e82
DE
6605 struct die_info *comp_unit_die,
6606 int has_children,
6607 void *data)
ae038cb0 6608{
dee91e82 6609 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6610
95554aad 6611 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6612
ae038cb0
DJ
6613 /* Check if comp unit has_children.
6614 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6615 If not, there's no more debug_info for this comp unit. */
d85a05f0 6616 if (has_children)
dee91e82
DE
6617 load_partial_dies (reader, info_ptr, 0);
6618}
98bfdba5 6619
dee91e82
DE
6620/* Load the partial DIEs for a secondary CU into memory.
6621 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6622
dee91e82
DE
6623static void
6624load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6625{
f4dc4d17
DE
6626 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6627 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6628}
6629
ae038cb0 6630static void
36586728
TT
6631read_comp_units_from_section (struct objfile *objfile,
6632 struct dwarf2_section_info *section,
6633 unsigned int is_dwz,
6634 int *n_allocated,
6635 int *n_comp_units,
6636 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6637{
d521ce57 6638 const gdb_byte *info_ptr;
a32a8923 6639 bfd *abfd = get_section_bfd_owner (section);
be391dca 6640
b4f54984 6641 if (dwarf_read_debug)
bf6af496 6642 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6643 get_section_name (section),
6644 get_section_file_name (section));
bf6af496 6645
36586728 6646 dwarf2_read_section (objfile, section);
ae038cb0 6647
36586728 6648 info_ptr = section->buffer;
6e70227d 6649
36586728 6650 while (info_ptr < section->buffer + section->size)
ae038cb0 6651 {
c764a876 6652 unsigned int length, initial_length_size;
ae038cb0 6653 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6654 sect_offset offset;
ae038cb0 6655
36586728 6656 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6657
6658 /* Read just enough information to find out where the next
6659 compilation unit is. */
36586728 6660 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6661
6662 /* Save the compilation unit for later lookup. */
8d749320 6663 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
ae038cb0
DJ
6664 memset (this_cu, 0, sizeof (*this_cu));
6665 this_cu->offset = offset;
c764a876 6666 this_cu->length = length + initial_length_size;
36586728 6667 this_cu->is_dwz = is_dwz;
9291a0cd 6668 this_cu->objfile = objfile;
8a0459fd 6669 this_cu->section = section;
ae038cb0 6670
36586728 6671 if (*n_comp_units == *n_allocated)
ae038cb0 6672 {
36586728 6673 *n_allocated *= 2;
224c3ddb
SM
6674 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6675 *all_comp_units, *n_allocated);
ae038cb0 6676 }
36586728
TT
6677 (*all_comp_units)[*n_comp_units] = this_cu;
6678 ++*n_comp_units;
ae038cb0
DJ
6679
6680 info_ptr = info_ptr + this_cu->length;
6681 }
36586728
TT
6682}
6683
6684/* Create a list of all compilation units in OBJFILE.
6685 This is only done for -readnow and building partial symtabs. */
6686
6687static void
6688create_all_comp_units (struct objfile *objfile)
6689{
6690 int n_allocated;
6691 int n_comp_units;
6692 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6693 struct dwz_file *dwz;
36586728
TT
6694
6695 n_comp_units = 0;
6696 n_allocated = 10;
8d749320 6697 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
36586728
TT
6698
6699 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6700 &n_allocated, &n_comp_units, &all_comp_units);
6701
4db1a1dc
TT
6702 dwz = dwarf2_get_dwz_file ();
6703 if (dwz != NULL)
6704 read_comp_units_from_section (objfile, &dwz->info, 1,
6705 &n_allocated, &n_comp_units,
6706 &all_comp_units);
ae038cb0 6707
8d749320
SM
6708 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6709 struct dwarf2_per_cu_data *,
6710 n_comp_units);
ae038cb0
DJ
6711 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6712 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6713 xfree (all_comp_units);
6714 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6715}
6716
5734ee8b 6717/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6718 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6719 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6720 DW_AT_ranges). See the comments of add_partial_subprogram on how
6721 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6722
72bf9492
DJ
6723static void
6724scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6725 CORE_ADDR *highpc, int set_addrmap,
6726 struct dwarf2_cu *cu)
c906108c 6727{
72bf9492 6728 struct partial_die_info *pdi;
c906108c 6729
91c24f0a
DC
6730 /* Now, march along the PDI's, descending into ones which have
6731 interesting children but skipping the children of the other ones,
6732 until we reach the end of the compilation unit. */
c906108c 6733
72bf9492 6734 pdi = first_die;
91c24f0a 6735
72bf9492
DJ
6736 while (pdi != NULL)
6737 {
6738 fixup_partial_die (pdi, cu);
c906108c 6739
f55ee35c 6740 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6741 children, so we need to look at them. Ditto for anonymous
6742 enums. */
933c6fe4 6743
72bf9492 6744 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6745 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6746 || pdi->tag == DW_TAG_imported_unit)
c906108c 6747 {
72bf9492 6748 switch (pdi->tag)
c906108c
SS
6749 {
6750 case DW_TAG_subprogram:
cdc07690 6751 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6752 break;
72929c62 6753 case DW_TAG_constant:
c906108c
SS
6754 case DW_TAG_variable:
6755 case DW_TAG_typedef:
91c24f0a 6756 case DW_TAG_union_type:
72bf9492 6757 if (!pdi->is_declaration)
63d06c5c 6758 {
72bf9492 6759 add_partial_symbol (pdi, cu);
63d06c5c
DC
6760 }
6761 break;
c906108c 6762 case DW_TAG_class_type:
680b30c7 6763 case DW_TAG_interface_type:
c906108c 6764 case DW_TAG_structure_type:
72bf9492 6765 if (!pdi->is_declaration)
c906108c 6766 {
72bf9492 6767 add_partial_symbol (pdi, cu);
c906108c 6768 }
e98c9e7c
TT
6769 if (cu->language == language_rust && pdi->has_children)
6770 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6771 set_addrmap, cu);
c906108c 6772 break;
91c24f0a 6773 case DW_TAG_enumeration_type:
72bf9492
DJ
6774 if (!pdi->is_declaration)
6775 add_partial_enumeration (pdi, cu);
c906108c
SS
6776 break;
6777 case DW_TAG_base_type:
a02abb62 6778 case DW_TAG_subrange_type:
c906108c 6779 /* File scope base type definitions are added to the partial
c5aa993b 6780 symbol table. */
72bf9492 6781 add_partial_symbol (pdi, cu);
c906108c 6782 break;
d9fa45fe 6783 case DW_TAG_namespace:
cdc07690 6784 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6785 break;
5d7cb8df 6786 case DW_TAG_module:
cdc07690 6787 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6788 break;
95554aad
TT
6789 case DW_TAG_imported_unit:
6790 {
6791 struct dwarf2_per_cu_data *per_cu;
6792
f4dc4d17
DE
6793 /* For now we don't handle imported units in type units. */
6794 if (cu->per_cu->is_debug_types)
6795 {
6796 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6797 " supported in type units [in module %s]"),
4262abfb 6798 objfile_name (cu->objfile));
f4dc4d17
DE
6799 }
6800
95554aad 6801 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6802 pdi->is_dwz,
95554aad
TT
6803 cu->objfile);
6804
6805 /* Go read the partial unit, if needed. */
6806 if (per_cu->v.psymtab == NULL)
b93601f3 6807 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6808
f4dc4d17 6809 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6810 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6811 }
6812 break;
74921315
KS
6813 case DW_TAG_imported_declaration:
6814 add_partial_symbol (pdi, cu);
6815 break;
c906108c
SS
6816 default:
6817 break;
6818 }
6819 }
6820
72bf9492
DJ
6821 /* If the die has a sibling, skip to the sibling. */
6822
6823 pdi = pdi->die_sibling;
6824 }
6825}
6826
6827/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6828
72bf9492 6829 Normally, this is simple. For C++, the parent DIE's fully scoped
9c37b5ae 6830 name is concatenated with "::" and the partial DIE's name.
72bf9492
DJ
6831 Enumerators are an exception; they use the scope of their parent
6832 enumeration type, i.e. the name of the enumeration type is not
6833 prepended to the enumerator.
91c24f0a 6834
72bf9492
DJ
6835 There are two complexities. One is DW_AT_specification; in this
6836 case "parent" means the parent of the target of the specification,
6837 instead of the direct parent of the DIE. The other is compilers
6838 which do not emit DW_TAG_namespace; in this case we try to guess
6839 the fully qualified name of structure types from their members'
6840 linkage names. This must be done using the DIE's children rather
6841 than the children of any DW_AT_specification target. We only need
6842 to do this for structures at the top level, i.e. if the target of
6843 any DW_AT_specification (if any; otherwise the DIE itself) does not
6844 have a parent. */
6845
6846/* Compute the scope prefix associated with PDI's parent, in
6847 compilation unit CU. The result will be allocated on CU's
6848 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6849 field. NULL is returned if no prefix is necessary. */
15d034d0 6850static const char *
72bf9492
DJ
6851partial_die_parent_scope (struct partial_die_info *pdi,
6852 struct dwarf2_cu *cu)
6853{
15d034d0 6854 const char *grandparent_scope;
72bf9492 6855 struct partial_die_info *parent, *real_pdi;
91c24f0a 6856
72bf9492
DJ
6857 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6858 then this means the parent of the specification DIE. */
6859
6860 real_pdi = pdi;
72bf9492 6861 while (real_pdi->has_specification)
36586728
TT
6862 real_pdi = find_partial_die (real_pdi->spec_offset,
6863 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6864
6865 parent = real_pdi->die_parent;
6866 if (parent == NULL)
6867 return NULL;
6868
6869 if (parent->scope_set)
6870 return parent->scope;
6871
6872 fixup_partial_die (parent, cu);
6873
10b3939b 6874 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6875
acebe513
UW
6876 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6877 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6878 Work around this problem here. */
6879 if (cu->language == language_cplus
6e70227d 6880 && parent->tag == DW_TAG_namespace
acebe513
UW
6881 && strcmp (parent->name, "::") == 0
6882 && grandparent_scope == NULL)
6883 {
6884 parent->scope = NULL;
6885 parent->scope_set = 1;
6886 return NULL;
6887 }
6888
9c6c53f7
SA
6889 if (pdi->tag == DW_TAG_enumerator)
6890 /* Enumerators should not get the name of the enumeration as a prefix. */
6891 parent->scope = grandparent_scope;
6892 else if (parent->tag == DW_TAG_namespace
f55ee35c 6893 || parent->tag == DW_TAG_module
72bf9492
DJ
6894 || parent->tag == DW_TAG_structure_type
6895 || parent->tag == DW_TAG_class_type
680b30c7 6896 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6897 || parent->tag == DW_TAG_union_type
6898 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6899 {
6900 if (grandparent_scope == NULL)
6901 parent->scope = parent->name;
6902 else
3e43a32a
MS
6903 parent->scope = typename_concat (&cu->comp_unit_obstack,
6904 grandparent_scope,
f55ee35c 6905 parent->name, 0, cu);
72bf9492 6906 }
72bf9492
DJ
6907 else
6908 {
6909 /* FIXME drow/2004-04-01: What should we be doing with
6910 function-local names? For partial symbols, we should probably be
6911 ignoring them. */
6912 complaint (&symfile_complaints,
e2e0b3e5 6913 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6914 parent->tag, pdi->offset.sect_off);
72bf9492 6915 parent->scope = grandparent_scope;
c906108c
SS
6916 }
6917
72bf9492
DJ
6918 parent->scope_set = 1;
6919 return parent->scope;
6920}
6921
6922/* Return the fully scoped name associated with PDI, from compilation unit
6923 CU. The result will be allocated with malloc. */
4568ecf9 6924
72bf9492
DJ
6925static char *
6926partial_die_full_name (struct partial_die_info *pdi,
6927 struct dwarf2_cu *cu)
6928{
15d034d0 6929 const char *parent_scope;
72bf9492 6930
98bfdba5
PA
6931 /* If this is a template instantiation, we can not work out the
6932 template arguments from partial DIEs. So, unfortunately, we have
6933 to go through the full DIEs. At least any work we do building
6934 types here will be reused if full symbols are loaded later. */
6935 if (pdi->has_template_arguments)
6936 {
6937 fixup_partial_die (pdi, cu);
6938
6939 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6940 {
6941 struct die_info *die;
6942 struct attribute attr;
6943 struct dwarf2_cu *ref_cu = cu;
6944
b64f50a1 6945 /* DW_FORM_ref_addr is using section offset. */
b4069958 6946 attr.name = (enum dwarf_attribute) 0;
98bfdba5 6947 attr.form = DW_FORM_ref_addr;
4568ecf9 6948 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6949 die = follow_die_ref (NULL, &attr, &ref_cu);
6950
6951 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6952 }
6953 }
6954
72bf9492
DJ
6955 parent_scope = partial_die_parent_scope (pdi, cu);
6956 if (parent_scope == NULL)
6957 return NULL;
6958 else
f55ee35c 6959 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6960}
6961
6962static void
72bf9492 6963add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6964{
e7c27a73 6965 struct objfile *objfile = cu->objfile;
3e29f34a 6966 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 6967 CORE_ADDR addr = 0;
15d034d0 6968 const char *actual_name = NULL;
e142c38c 6969 CORE_ADDR baseaddr;
15d034d0 6970 char *built_actual_name;
e142c38c
DJ
6971
6972 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6973
15d034d0
TT
6974 built_actual_name = partial_die_full_name (pdi, cu);
6975 if (built_actual_name != NULL)
6976 actual_name = built_actual_name;
63d06c5c 6977
72bf9492
DJ
6978 if (actual_name == NULL)
6979 actual_name = pdi->name;
6980
c906108c
SS
6981 switch (pdi->tag)
6982 {
6983 case DW_TAG_subprogram:
3e29f34a 6984 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 6985 if (pdi->is_external || cu->language == language_ada)
c906108c 6986 {
2cfa0c8d
JB
6987 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6988 of the global scope. But in Ada, we want to be able to access
6989 nested procedures globally. So all Ada subprograms are stored
6990 in the global scope. */
f47fb265 6991 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6992 built_actual_name != NULL,
f47fb265
MS
6993 VAR_DOMAIN, LOC_BLOCK,
6994 &objfile->global_psymbols,
1762568f 6995 addr, cu->language, objfile);
c906108c
SS
6996 }
6997 else
6998 {
f47fb265 6999 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7000 built_actual_name != NULL,
f47fb265
MS
7001 VAR_DOMAIN, LOC_BLOCK,
7002 &objfile->static_psymbols,
1762568f 7003 addr, cu->language, objfile);
c906108c 7004 }
0c1b455e
TT
7005
7006 if (pdi->main_subprogram && actual_name != NULL)
7007 set_objfile_main_name (objfile, actual_name, cu->language);
c906108c 7008 break;
72929c62
JB
7009 case DW_TAG_constant:
7010 {
7011 struct psymbol_allocation_list *list;
7012
7013 if (pdi->is_external)
7014 list = &objfile->global_psymbols;
7015 else
7016 list = &objfile->static_psymbols;
f47fb265 7017 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7018 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 7019 list, 0, cu->language, objfile);
72929c62
JB
7020 }
7021 break;
c906108c 7022 case DW_TAG_variable:
95554aad
TT
7023 if (pdi->d.locdesc)
7024 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 7025
95554aad 7026 if (pdi->d.locdesc
caac4577
JG
7027 && addr == 0
7028 && !dwarf2_per_objfile->has_section_at_zero)
7029 {
7030 /* A global or static variable may also have been stripped
7031 out by the linker if unused, in which case its address
7032 will be nullified; do not add such variables into partial
7033 symbol table then. */
7034 }
7035 else if (pdi->is_external)
c906108c
SS
7036 {
7037 /* Global Variable.
7038 Don't enter into the minimal symbol tables as there is
7039 a minimal symbol table entry from the ELF symbols already.
7040 Enter into partial symbol table if it has a location
7041 descriptor or a type.
7042 If the location descriptor is missing, new_symbol will create
7043 a LOC_UNRESOLVED symbol, the address of the variable will then
7044 be determined from the minimal symbol table whenever the variable
7045 is referenced.
7046 The address for the partial symbol table entry is not
7047 used by GDB, but it comes in handy for debugging partial symbol
7048 table building. */
7049
95554aad 7050 if (pdi->d.locdesc || pdi->has_type)
f47fb265 7051 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7052 built_actual_name != NULL,
f47fb265
MS
7053 VAR_DOMAIN, LOC_STATIC,
7054 &objfile->global_psymbols,
1762568f 7055 addr + baseaddr,
f47fb265 7056 cu->language, objfile);
c906108c
SS
7057 }
7058 else
7059 {
ff908ebf
AW
7060 int has_loc = pdi->d.locdesc != NULL;
7061
7062 /* Static Variable. Skip symbols whose value we cannot know (those
7063 without location descriptors or constant values). */
7064 if (!has_loc && !pdi->has_const_value)
decbce07 7065 {
15d034d0 7066 xfree (built_actual_name);
decbce07
MS
7067 return;
7068 }
ff908ebf 7069
f47fb265 7070 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7071 built_actual_name != NULL,
f47fb265
MS
7072 VAR_DOMAIN, LOC_STATIC,
7073 &objfile->static_psymbols,
ff908ebf 7074 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 7075 cu->language, objfile);
c906108c
SS
7076 }
7077 break;
7078 case DW_TAG_typedef:
7079 case DW_TAG_base_type:
a02abb62 7080 case DW_TAG_subrange_type:
38d518c9 7081 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7082 built_actual_name != NULL,
176620f1 7083 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 7084 &objfile->static_psymbols,
1762568f 7085 0, cu->language, objfile);
c906108c 7086 break;
74921315 7087 case DW_TAG_imported_declaration:
72bf9492
DJ
7088 case DW_TAG_namespace:
7089 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7090 built_actual_name != NULL,
72bf9492
DJ
7091 VAR_DOMAIN, LOC_TYPEDEF,
7092 &objfile->global_psymbols,
1762568f 7093 0, cu->language, objfile);
72bf9492 7094 break;
530e8392
KB
7095 case DW_TAG_module:
7096 add_psymbol_to_list (actual_name, strlen (actual_name),
7097 built_actual_name != NULL,
7098 MODULE_DOMAIN, LOC_TYPEDEF,
7099 &objfile->global_psymbols,
1762568f 7100 0, cu->language, objfile);
530e8392 7101 break;
c906108c 7102 case DW_TAG_class_type:
680b30c7 7103 case DW_TAG_interface_type:
c906108c
SS
7104 case DW_TAG_structure_type:
7105 case DW_TAG_union_type:
7106 case DW_TAG_enumeration_type:
fa4028e9
JB
7107 /* Skip external references. The DWARF standard says in the section
7108 about "Structure, Union, and Class Type Entries": "An incomplete
7109 structure, union or class type is represented by a structure,
7110 union or class entry that does not have a byte size attribute
7111 and that has a DW_AT_declaration attribute." */
7112 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7113 {
15d034d0 7114 xfree (built_actual_name);
decbce07
MS
7115 return;
7116 }
fa4028e9 7117
63d06c5c
DC
7118 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7119 static vs. global. */
38d518c9 7120 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7121 built_actual_name != NULL,
176620f1 7122 STRUCT_DOMAIN, LOC_TYPEDEF,
9c37b5ae 7123 cu->language == language_cplus
63d06c5c
DC
7124 ? &objfile->global_psymbols
7125 : &objfile->static_psymbols,
1762568f 7126 0, cu->language, objfile);
c906108c 7127
c906108c
SS
7128 break;
7129 case DW_TAG_enumerator:
38d518c9 7130 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7131 built_actual_name != NULL,
176620f1 7132 VAR_DOMAIN, LOC_CONST,
9c37b5ae 7133 cu->language == language_cplus
f6fe98ef
DJ
7134 ? &objfile->global_psymbols
7135 : &objfile->static_psymbols,
1762568f 7136 0, cu->language, objfile);
c906108c
SS
7137 break;
7138 default:
7139 break;
7140 }
5c4e30ca 7141
15d034d0 7142 xfree (built_actual_name);
c906108c
SS
7143}
7144
5c4e30ca
DC
7145/* Read a partial die corresponding to a namespace; also, add a symbol
7146 corresponding to that namespace to the symbol table. NAMESPACE is
7147 the name of the enclosing namespace. */
91c24f0a 7148
72bf9492
DJ
7149static void
7150add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7151 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7152 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7153{
72bf9492 7154 /* Add a symbol for the namespace. */
e7c27a73 7155
72bf9492 7156 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7157
7158 /* Now scan partial symbols in that namespace. */
7159
91c24f0a 7160 if (pdi->has_children)
cdc07690 7161 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7162}
7163
5d7cb8df
JK
7164/* Read a partial die corresponding to a Fortran module. */
7165
7166static void
7167add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7168 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7169{
530e8392
KB
7170 /* Add a symbol for the namespace. */
7171
7172 add_partial_symbol (pdi, cu);
7173
f55ee35c 7174 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7175
7176 if (pdi->has_children)
cdc07690 7177 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7178}
7179
bc30ff58
JB
7180/* Read a partial die corresponding to a subprogram and create a partial
7181 symbol for that subprogram. When the CU language allows it, this
7182 routine also defines a partial symbol for each nested subprogram
cdc07690 7183 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7184 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7185 and highest PC values found in PDI.
6e70227d 7186
cdc07690
YQ
7187 PDI may also be a lexical block, in which case we simply search
7188 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7189 Again, this is only performed when the CU language allows this
7190 type of definitions. */
7191
7192static void
7193add_partial_subprogram (struct partial_die_info *pdi,
7194 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7195 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7196{
7197 if (pdi->tag == DW_TAG_subprogram)
7198 {
7199 if (pdi->has_pc_info)
7200 {
7201 if (pdi->lowpc < *lowpc)
7202 *lowpc = pdi->lowpc;
7203 if (pdi->highpc > *highpc)
7204 *highpc = pdi->highpc;
cdc07690 7205 if (set_addrmap)
5734ee8b 7206 {
5734ee8b 7207 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7208 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7209 CORE_ADDR baseaddr;
7210 CORE_ADDR highpc;
7211 CORE_ADDR lowpc;
5734ee8b
DJ
7212
7213 baseaddr = ANOFFSET (objfile->section_offsets,
7214 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7215 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7216 pdi->lowpc + baseaddr);
7217 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7218 pdi->highpc + baseaddr);
7219 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7220 cu->per_cu->v.psymtab);
5734ee8b 7221 }
481860b3
GB
7222 }
7223
7224 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7225 {
bc30ff58 7226 if (!pdi->is_declaration)
e8d05480
JB
7227 /* Ignore subprogram DIEs that do not have a name, they are
7228 illegal. Do not emit a complaint at this point, we will
7229 do so when we convert this psymtab into a symtab. */
7230 if (pdi->name)
7231 add_partial_symbol (pdi, cu);
bc30ff58
JB
7232 }
7233 }
6e70227d 7234
bc30ff58
JB
7235 if (! pdi->has_children)
7236 return;
7237
7238 if (cu->language == language_ada)
7239 {
7240 pdi = pdi->die_child;
7241 while (pdi != NULL)
7242 {
7243 fixup_partial_die (pdi, cu);
7244 if (pdi->tag == DW_TAG_subprogram
7245 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7246 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7247 pdi = pdi->die_sibling;
7248 }
7249 }
7250}
7251
91c24f0a
DC
7252/* Read a partial die corresponding to an enumeration type. */
7253
72bf9492
DJ
7254static void
7255add_partial_enumeration (struct partial_die_info *enum_pdi,
7256 struct dwarf2_cu *cu)
91c24f0a 7257{
72bf9492 7258 struct partial_die_info *pdi;
91c24f0a
DC
7259
7260 if (enum_pdi->name != NULL)
72bf9492
DJ
7261 add_partial_symbol (enum_pdi, cu);
7262
7263 pdi = enum_pdi->die_child;
7264 while (pdi)
91c24f0a 7265 {
72bf9492 7266 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7267 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7268 else
72bf9492
DJ
7269 add_partial_symbol (pdi, cu);
7270 pdi = pdi->die_sibling;
91c24f0a 7271 }
91c24f0a
DC
7272}
7273
6caca83c
CC
7274/* Return the initial uleb128 in the die at INFO_PTR. */
7275
7276static unsigned int
d521ce57 7277peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7278{
7279 unsigned int bytes_read;
7280
7281 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7282}
7283
4bb7a0a7
DJ
7284/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7285 Return the corresponding abbrev, or NULL if the number is zero (indicating
7286 an empty DIE). In either case *BYTES_READ will be set to the length of
7287 the initial number. */
7288
7289static struct abbrev_info *
d521ce57 7290peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7291 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7292{
7293 bfd *abfd = cu->objfile->obfd;
7294 unsigned int abbrev_number;
7295 struct abbrev_info *abbrev;
7296
7297 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7298
7299 if (abbrev_number == 0)
7300 return NULL;
7301
433df2d4 7302 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7303 if (!abbrev)
7304 {
422b9917
DE
7305 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7306 " at offset 0x%x [in module %s]"),
7307 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7308 cu->header.offset.sect_off, bfd_get_filename (abfd));
4bb7a0a7
DJ
7309 }
7310
7311 return abbrev;
7312}
7313
93311388
DE
7314/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7315 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7316 DIE. Any children of the skipped DIEs will also be skipped. */
7317
d521ce57
TT
7318static const gdb_byte *
7319skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7320{
dee91e82 7321 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7322 struct abbrev_info *abbrev;
7323 unsigned int bytes_read;
7324
7325 while (1)
7326 {
7327 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7328 if (abbrev == NULL)
7329 return info_ptr + bytes_read;
7330 else
dee91e82 7331 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7332 }
7333}
7334
93311388
DE
7335/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7336 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7337 abbrev corresponding to that skipped uleb128 should be passed in
7338 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7339 children. */
7340
d521ce57
TT
7341static const gdb_byte *
7342skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7343 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7344{
7345 unsigned int bytes_read;
7346 struct attribute attr;
dee91e82
DE
7347 bfd *abfd = reader->abfd;
7348 struct dwarf2_cu *cu = reader->cu;
d521ce57 7349 const gdb_byte *buffer = reader->buffer;
f664829e 7350 const gdb_byte *buffer_end = reader->buffer_end;
4bb7a0a7
DJ
7351 unsigned int form, i;
7352
7353 for (i = 0; i < abbrev->num_attrs; i++)
7354 {
7355 /* The only abbrev we care about is DW_AT_sibling. */
7356 if (abbrev->attrs[i].name == DW_AT_sibling)
7357 {
dee91e82 7358 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7359 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7360 complaint (&symfile_complaints,
7361 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7362 else
b9502d3f
WN
7363 {
7364 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7365 const gdb_byte *sibling_ptr = buffer + off;
7366
7367 if (sibling_ptr < info_ptr)
7368 complaint (&symfile_complaints,
7369 _("DW_AT_sibling points backwards"));
22869d73
KS
7370 else if (sibling_ptr > reader->buffer_end)
7371 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7372 else
7373 return sibling_ptr;
7374 }
4bb7a0a7
DJ
7375 }
7376
7377 /* If it isn't DW_AT_sibling, skip this attribute. */
7378 form = abbrev->attrs[i].form;
7379 skip_attribute:
7380 switch (form)
7381 {
4bb7a0a7 7382 case DW_FORM_ref_addr:
ae411497
TT
7383 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7384 and later it is offset sized. */
7385 if (cu->header.version == 2)
7386 info_ptr += cu->header.addr_size;
7387 else
7388 info_ptr += cu->header.offset_size;
7389 break;
36586728
TT
7390 case DW_FORM_GNU_ref_alt:
7391 info_ptr += cu->header.offset_size;
7392 break;
ae411497 7393 case DW_FORM_addr:
4bb7a0a7
DJ
7394 info_ptr += cu->header.addr_size;
7395 break;
7396 case DW_FORM_data1:
7397 case DW_FORM_ref1:
7398 case DW_FORM_flag:
7399 info_ptr += 1;
7400 break;
2dc7f7b3 7401 case DW_FORM_flag_present:
43988095 7402 case DW_FORM_implicit_const:
2dc7f7b3 7403 break;
4bb7a0a7
DJ
7404 case DW_FORM_data2:
7405 case DW_FORM_ref2:
7406 info_ptr += 2;
7407 break;
7408 case DW_FORM_data4:
7409 case DW_FORM_ref4:
7410 info_ptr += 4;
7411 break;
7412 case DW_FORM_data8:
7413 case DW_FORM_ref8:
55f1336d 7414 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7415 info_ptr += 8;
7416 break;
0224619f
JK
7417 case DW_FORM_data16:
7418 info_ptr += 16;
7419 break;
4bb7a0a7 7420 case DW_FORM_string:
9b1c24c8 7421 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7422 info_ptr += bytes_read;
7423 break;
2dc7f7b3 7424 case DW_FORM_sec_offset:
4bb7a0a7 7425 case DW_FORM_strp:
36586728 7426 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7427 info_ptr += cu->header.offset_size;
7428 break;
2dc7f7b3 7429 case DW_FORM_exprloc:
4bb7a0a7
DJ
7430 case DW_FORM_block:
7431 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7432 info_ptr += bytes_read;
7433 break;
7434 case DW_FORM_block1:
7435 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7436 break;
7437 case DW_FORM_block2:
7438 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7439 break;
7440 case DW_FORM_block4:
7441 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7442 break;
7443 case DW_FORM_sdata:
7444 case DW_FORM_udata:
7445 case DW_FORM_ref_udata:
3019eac3
DE
7446 case DW_FORM_GNU_addr_index:
7447 case DW_FORM_GNU_str_index:
d521ce57 7448 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7449 break;
7450 case DW_FORM_indirect:
7451 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7452 info_ptr += bytes_read;
7453 /* We need to continue parsing from here, so just go back to
7454 the top. */
7455 goto skip_attribute;
7456
7457 default:
3e43a32a
MS
7458 error (_("Dwarf Error: Cannot handle %s "
7459 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7460 dwarf_form_name (form),
7461 bfd_get_filename (abfd));
7462 }
7463 }
7464
7465 if (abbrev->has_children)
dee91e82 7466 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7467 else
7468 return info_ptr;
7469}
7470
93311388 7471/* Locate ORIG_PDI's sibling.
dee91e82 7472 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7473
d521ce57 7474static const gdb_byte *
dee91e82
DE
7475locate_pdi_sibling (const struct die_reader_specs *reader,
7476 struct partial_die_info *orig_pdi,
d521ce57 7477 const gdb_byte *info_ptr)
91c24f0a
DC
7478{
7479 /* Do we know the sibling already? */
72bf9492 7480
91c24f0a
DC
7481 if (orig_pdi->sibling)
7482 return orig_pdi->sibling;
7483
7484 /* Are there any children to deal with? */
7485
7486 if (!orig_pdi->has_children)
7487 return info_ptr;
7488
4bb7a0a7 7489 /* Skip the children the long way. */
91c24f0a 7490
dee91e82 7491 return skip_children (reader, info_ptr);
91c24f0a
DC
7492}
7493
257e7a09 7494/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7495 not NULL. */
c906108c
SS
7496
7497static void
257e7a09
YQ
7498dwarf2_read_symtab (struct partial_symtab *self,
7499 struct objfile *objfile)
c906108c 7500{
257e7a09 7501 if (self->readin)
c906108c 7502 {
442e4d9c 7503 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7504 self->filename);
442e4d9c
YQ
7505 }
7506 else
7507 {
7508 if (info_verbose)
c906108c 7509 {
442e4d9c 7510 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7511 self->filename);
442e4d9c 7512 gdb_flush (gdb_stdout);
c906108c 7513 }
c906108c 7514
442e4d9c 7515 /* Restore our global data. */
9a3c8263
SM
7516 dwarf2_per_objfile
7517 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7518 dwarf2_objfile_data_key);
10b3939b 7519
442e4d9c
YQ
7520 /* If this psymtab is constructed from a debug-only objfile, the
7521 has_section_at_zero flag will not necessarily be correct. We
7522 can get the correct value for this flag by looking at the data
7523 associated with the (presumably stripped) associated objfile. */
7524 if (objfile->separate_debug_objfile_backlink)
7525 {
7526 struct dwarf2_per_objfile *dpo_backlink
9a3c8263
SM
7527 = ((struct dwarf2_per_objfile *)
7528 objfile_data (objfile->separate_debug_objfile_backlink,
7529 dwarf2_objfile_data_key));
9a619af0 7530
442e4d9c
YQ
7531 dwarf2_per_objfile->has_section_at_zero
7532 = dpo_backlink->has_section_at_zero;
7533 }
b2ab525c 7534
442e4d9c 7535 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7536
257e7a09 7537 psymtab_to_symtab_1 (self);
c906108c 7538
442e4d9c
YQ
7539 /* Finish up the debug error message. */
7540 if (info_verbose)
7541 printf_filtered (_("done.\n"));
c906108c 7542 }
95554aad
TT
7543
7544 process_cu_includes ();
c906108c 7545}
9cdd5dbd
DE
7546\f
7547/* Reading in full CUs. */
c906108c 7548
10b3939b
DJ
7549/* Add PER_CU to the queue. */
7550
7551static void
95554aad
TT
7552queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7553 enum language pretend_language)
10b3939b
DJ
7554{
7555 struct dwarf2_queue_item *item;
7556
7557 per_cu->queued = 1;
8d749320 7558 item = XNEW (struct dwarf2_queue_item);
10b3939b 7559 item->per_cu = per_cu;
95554aad 7560 item->pretend_language = pretend_language;
10b3939b
DJ
7561 item->next = NULL;
7562
7563 if (dwarf2_queue == NULL)
7564 dwarf2_queue = item;
7565 else
7566 dwarf2_queue_tail->next = item;
7567
7568 dwarf2_queue_tail = item;
7569}
7570
89e63ee4
DE
7571/* If PER_CU is not yet queued, add it to the queue.
7572 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7573 dependency.
0907af0c 7574 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7575 meaning either PER_CU is already queued or it is already loaded.
7576
7577 N.B. There is an invariant here that if a CU is queued then it is loaded.
7578 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7579
7580static int
89e63ee4 7581maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7582 struct dwarf2_per_cu_data *per_cu,
7583 enum language pretend_language)
7584{
7585 /* We may arrive here during partial symbol reading, if we need full
7586 DIEs to process an unusual case (e.g. template arguments). Do
7587 not queue PER_CU, just tell our caller to load its DIEs. */
7588 if (dwarf2_per_objfile->reading_partial_symbols)
7589 {
7590 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7591 return 1;
7592 return 0;
7593 }
7594
7595 /* Mark the dependence relation so that we don't flush PER_CU
7596 too early. */
89e63ee4
DE
7597 if (dependent_cu != NULL)
7598 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7599
7600 /* If it's already on the queue, we have nothing to do. */
7601 if (per_cu->queued)
7602 return 0;
7603
7604 /* If the compilation unit is already loaded, just mark it as
7605 used. */
7606 if (per_cu->cu != NULL)
7607 {
7608 per_cu->cu->last_used = 0;
7609 return 0;
7610 }
7611
7612 /* Add it to the queue. */
7613 queue_comp_unit (per_cu, pretend_language);
7614
7615 return 1;
7616}
7617
10b3939b
DJ
7618/* Process the queue. */
7619
7620static void
a0f42c21 7621process_queue (void)
10b3939b
DJ
7622{
7623 struct dwarf2_queue_item *item, *next_item;
7624
b4f54984 7625 if (dwarf_read_debug)
45cfd468
DE
7626 {
7627 fprintf_unfiltered (gdb_stdlog,
7628 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7629 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7630 }
7631
03dd20cc
DJ
7632 /* The queue starts out with one item, but following a DIE reference
7633 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7634 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7635 {
cc12ce38
DE
7636 if ((dwarf2_per_objfile->using_index
7637 ? !item->per_cu->v.quick->compunit_symtab
7638 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7639 /* Skip dummy CUs. */
7640 && item->per_cu->cu != NULL)
f4dc4d17
DE
7641 {
7642 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7643 unsigned int debug_print_threshold;
247f5c4f 7644 char buf[100];
f4dc4d17 7645
247f5c4f 7646 if (per_cu->is_debug_types)
f4dc4d17 7647 {
247f5c4f
DE
7648 struct signatured_type *sig_type =
7649 (struct signatured_type *) per_cu;
7650
7651 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7652 hex_string (sig_type->signature),
7653 per_cu->offset.sect_off);
7654 /* There can be 100s of TUs.
7655 Only print them in verbose mode. */
7656 debug_print_threshold = 2;
f4dc4d17 7657 }
247f5c4f 7658 else
73be47f5
DE
7659 {
7660 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7661 debug_print_threshold = 1;
7662 }
247f5c4f 7663
b4f54984 7664 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7665 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7666
7667 if (per_cu->is_debug_types)
7668 process_full_type_unit (per_cu, item->pretend_language);
7669 else
7670 process_full_comp_unit (per_cu, item->pretend_language);
7671
b4f54984 7672 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7673 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7674 }
10b3939b
DJ
7675
7676 item->per_cu->queued = 0;
7677 next_item = item->next;
7678 xfree (item);
7679 }
7680
7681 dwarf2_queue_tail = NULL;
45cfd468 7682
b4f54984 7683 if (dwarf_read_debug)
45cfd468
DE
7684 {
7685 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7686 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7687 }
10b3939b
DJ
7688}
7689
7690/* Free all allocated queue entries. This function only releases anything if
7691 an error was thrown; if the queue was processed then it would have been
7692 freed as we went along. */
7693
7694static void
7695dwarf2_release_queue (void *dummy)
7696{
7697 struct dwarf2_queue_item *item, *last;
7698
7699 item = dwarf2_queue;
7700 while (item)
7701 {
7702 /* Anything still marked queued is likely to be in an
7703 inconsistent state, so discard it. */
7704 if (item->per_cu->queued)
7705 {
7706 if (item->per_cu->cu != NULL)
dee91e82 7707 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7708 item->per_cu->queued = 0;
7709 }
7710
7711 last = item;
7712 item = item->next;
7713 xfree (last);
7714 }
7715
7716 dwarf2_queue = dwarf2_queue_tail = NULL;
7717}
7718
7719/* Read in full symbols for PST, and anything it depends on. */
7720
c906108c 7721static void
fba45db2 7722psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7723{
10b3939b 7724 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7725 int i;
7726
95554aad
TT
7727 if (pst->readin)
7728 return;
7729
aaa75496 7730 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7731 if (!pst->dependencies[i]->readin
7732 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7733 {
7734 /* Inform about additional files that need to be read in. */
7735 if (info_verbose)
7736 {
a3f17187 7737 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7738 fputs_filtered (" ", gdb_stdout);
7739 wrap_here ("");
7740 fputs_filtered ("and ", gdb_stdout);
7741 wrap_here ("");
7742 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7743 wrap_here (""); /* Flush output. */
aaa75496
JB
7744 gdb_flush (gdb_stdout);
7745 }
7746 psymtab_to_symtab_1 (pst->dependencies[i]);
7747 }
7748
9a3c8263 7749 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
7750
7751 if (per_cu == NULL)
aaa75496
JB
7752 {
7753 /* It's an include file, no symbols to read for it.
7754 Everything is in the parent symtab. */
7755 pst->readin = 1;
7756 return;
7757 }
c906108c 7758
a0f42c21 7759 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7760}
7761
dee91e82
DE
7762/* Trivial hash function for die_info: the hash value of a DIE
7763 is its offset in .debug_info for this objfile. */
10b3939b 7764
dee91e82
DE
7765static hashval_t
7766die_hash (const void *item)
10b3939b 7767{
9a3c8263 7768 const struct die_info *die = (const struct die_info *) item;
6502dd73 7769
dee91e82
DE
7770 return die->offset.sect_off;
7771}
63d06c5c 7772
dee91e82
DE
7773/* Trivial comparison function for die_info structures: two DIEs
7774 are equal if they have the same offset. */
98bfdba5 7775
dee91e82
DE
7776static int
7777die_eq (const void *item_lhs, const void *item_rhs)
7778{
9a3c8263
SM
7779 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7780 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 7781
dee91e82
DE
7782 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7783}
c906108c 7784
dee91e82
DE
7785/* die_reader_func for load_full_comp_unit.
7786 This is identical to read_signatured_type_reader,
7787 but is kept separate for now. */
c906108c 7788
dee91e82
DE
7789static void
7790load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7791 const gdb_byte *info_ptr,
dee91e82
DE
7792 struct die_info *comp_unit_die,
7793 int has_children,
7794 void *data)
7795{
7796 struct dwarf2_cu *cu = reader->cu;
9a3c8263 7797 enum language *language_ptr = (enum language *) data;
6caca83c 7798
dee91e82
DE
7799 gdb_assert (cu->die_hash == NULL);
7800 cu->die_hash =
7801 htab_create_alloc_ex (cu->header.length / 12,
7802 die_hash,
7803 die_eq,
7804 NULL,
7805 &cu->comp_unit_obstack,
7806 hashtab_obstack_allocate,
7807 dummy_obstack_deallocate);
e142c38c 7808
dee91e82
DE
7809 if (has_children)
7810 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7811 &info_ptr, comp_unit_die);
7812 cu->dies = comp_unit_die;
7813 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7814
7815 /* We try not to read any attributes in this function, because not
9cdd5dbd 7816 all CUs needed for references have been loaded yet, and symbol
10b3939b 7817 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7818 or we won't be able to build types correctly.
7819 Similarly, if we do not read the producer, we can not apply
7820 producer-specific interpretation. */
95554aad 7821 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7822}
10b3939b 7823
dee91e82 7824/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7825
dee91e82 7826static void
95554aad
TT
7827load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7828 enum language pretend_language)
dee91e82 7829{
3019eac3 7830 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7831
f4dc4d17
DE
7832 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7833 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7834}
7835
3da10d80
KS
7836/* Add a DIE to the delayed physname list. */
7837
7838static void
7839add_to_method_list (struct type *type, int fnfield_index, int index,
7840 const char *name, struct die_info *die,
7841 struct dwarf2_cu *cu)
7842{
7843 struct delayed_method_info mi;
7844 mi.type = type;
7845 mi.fnfield_index = fnfield_index;
7846 mi.index = index;
7847 mi.name = name;
7848 mi.die = die;
7849 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7850}
7851
7852/* A cleanup for freeing the delayed method list. */
7853
7854static void
7855free_delayed_list (void *ptr)
7856{
7857 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7858 if (cu->method_list != NULL)
7859 {
7860 VEC_free (delayed_method_info, cu->method_list);
7861 cu->method_list = NULL;
7862 }
7863}
7864
7865/* Compute the physnames of any methods on the CU's method list.
7866
7867 The computation of method physnames is delayed in order to avoid the
7868 (bad) condition that one of the method's formal parameters is of an as yet
7869 incomplete type. */
7870
7871static void
7872compute_delayed_physnames (struct dwarf2_cu *cu)
7873{
7874 int i;
7875 struct delayed_method_info *mi;
7876 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7877 {
1d06ead6 7878 const char *physname;
3da10d80
KS
7879 struct fn_fieldlist *fn_flp
7880 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7881 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
7882 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7883 = physname ? physname : "";
3da10d80
KS
7884 }
7885}
7886
a766d390
DE
7887/* Go objects should be embedded in a DW_TAG_module DIE,
7888 and it's not clear if/how imported objects will appear.
7889 To keep Go support simple until that's worked out,
7890 go back through what we've read and create something usable.
7891 We could do this while processing each DIE, and feels kinda cleaner,
7892 but that way is more invasive.
7893 This is to, for example, allow the user to type "p var" or "b main"
7894 without having to specify the package name, and allow lookups
7895 of module.object to work in contexts that use the expression
7896 parser. */
7897
7898static void
7899fixup_go_packaging (struct dwarf2_cu *cu)
7900{
7901 char *package_name = NULL;
7902 struct pending *list;
7903 int i;
7904
7905 for (list = global_symbols; list != NULL; list = list->next)
7906 {
7907 for (i = 0; i < list->nsyms; ++i)
7908 {
7909 struct symbol *sym = list->symbol[i];
7910
7911 if (SYMBOL_LANGUAGE (sym) == language_go
7912 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7913 {
7914 char *this_package_name = go_symbol_package_name (sym);
7915
7916 if (this_package_name == NULL)
7917 continue;
7918 if (package_name == NULL)
7919 package_name = this_package_name;
7920 else
7921 {
7922 if (strcmp (package_name, this_package_name) != 0)
7923 complaint (&symfile_complaints,
7924 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
7925 (symbol_symtab (sym) != NULL
7926 ? symtab_to_filename_for_display
7927 (symbol_symtab (sym))
4262abfb 7928 : objfile_name (cu->objfile)),
a766d390
DE
7929 this_package_name, package_name);
7930 xfree (this_package_name);
7931 }
7932 }
7933 }
7934 }
7935
7936 if (package_name != NULL)
7937 {
7938 struct objfile *objfile = cu->objfile;
34a68019 7939 const char *saved_package_name
224c3ddb
SM
7940 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7941 package_name,
7942 strlen (package_name));
19f392bc
UW
7943 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
7944 saved_package_name);
a766d390
DE
7945 struct symbol *sym;
7946
7947 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7948
e623cf5d 7949 sym = allocate_symbol (objfile);
f85f34ed 7950 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7951 SYMBOL_SET_NAMES (sym, saved_package_name,
7952 strlen (saved_package_name), 0, objfile);
a766d390
DE
7953 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7954 e.g., "main" finds the "main" module and not C's main(). */
7955 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7956 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7957 SYMBOL_TYPE (sym) = type;
7958
7959 add_symbol_to_list (sym, &global_symbols);
7960
7961 xfree (package_name);
7962 }
7963}
7964
95554aad
TT
7965/* Return the symtab for PER_CU. This works properly regardless of
7966 whether we're using the index or psymtabs. */
7967
43f3e411
DE
7968static struct compunit_symtab *
7969get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7970{
7971 return (dwarf2_per_objfile->using_index
43f3e411
DE
7972 ? per_cu->v.quick->compunit_symtab
7973 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7974}
7975
7976/* A helper function for computing the list of all symbol tables
7977 included by PER_CU. */
7978
7979static void
43f3e411 7980recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7981 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7982 struct dwarf2_per_cu_data *per_cu,
43f3e411 7983 struct compunit_symtab *immediate_parent)
95554aad
TT
7984{
7985 void **slot;
7986 int ix;
43f3e411 7987 struct compunit_symtab *cust;
95554aad
TT
7988 struct dwarf2_per_cu_data *iter;
7989
7990 slot = htab_find_slot (all_children, per_cu, INSERT);
7991 if (*slot != NULL)
7992 {
7993 /* This inclusion and its children have been processed. */
7994 return;
7995 }
7996
7997 *slot = per_cu;
7998 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7999 cust = get_compunit_symtab (per_cu);
8000 if (cust != NULL)
ec94af83
DE
8001 {
8002 /* If this is a type unit only add its symbol table if we haven't
8003 seen it yet (type unit per_cu's can share symtabs). */
8004 if (per_cu->is_debug_types)
8005 {
43f3e411 8006 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
8007 if (*slot == NULL)
8008 {
43f3e411
DE
8009 *slot = cust;
8010 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8011 if (cust->user == NULL)
8012 cust->user = immediate_parent;
ec94af83
DE
8013 }
8014 }
8015 else
f9125b6c 8016 {
43f3e411
DE
8017 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8018 if (cust->user == NULL)
8019 cust->user = immediate_parent;
f9125b6c 8020 }
ec94af83 8021 }
95554aad
TT
8022
8023 for (ix = 0;
796a7ff8 8024 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 8025 ++ix)
ec94af83
DE
8026 {
8027 recursively_compute_inclusions (result, all_children,
43f3e411 8028 all_type_symtabs, iter, cust);
ec94af83 8029 }
95554aad
TT
8030}
8031
43f3e411 8032/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
8033 PER_CU. */
8034
8035static void
43f3e411 8036compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 8037{
f4dc4d17
DE
8038 gdb_assert (! per_cu->is_debug_types);
8039
796a7ff8 8040 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
8041 {
8042 int ix, len;
ec94af83 8043 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
8044 struct compunit_symtab *compunit_symtab_iter;
8045 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 8046 htab_t all_children, all_type_symtabs;
43f3e411 8047 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
8048
8049 /* If we don't have a symtab, we can just skip this case. */
43f3e411 8050 if (cust == NULL)
95554aad
TT
8051 return;
8052
8053 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8054 NULL, xcalloc, xfree);
ec94af83
DE
8055 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8056 NULL, xcalloc, xfree);
95554aad
TT
8057
8058 for (ix = 0;
796a7ff8 8059 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 8060 ix, per_cu_iter);
95554aad 8061 ++ix)
ec94af83
DE
8062 {
8063 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 8064 all_type_symtabs, per_cu_iter,
43f3e411 8065 cust);
ec94af83 8066 }
95554aad 8067
ec94af83 8068 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
8069 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8070 cust->includes
8d749320
SM
8071 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8072 struct compunit_symtab *, len + 1);
95554aad 8073 for (ix = 0;
43f3e411
DE
8074 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8075 compunit_symtab_iter);
95554aad 8076 ++ix)
43f3e411
DE
8077 cust->includes[ix] = compunit_symtab_iter;
8078 cust->includes[len] = NULL;
95554aad 8079
43f3e411 8080 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 8081 htab_delete (all_children);
ec94af83 8082 htab_delete (all_type_symtabs);
95554aad
TT
8083 }
8084}
8085
8086/* Compute the 'includes' field for the symtabs of all the CUs we just
8087 read. */
8088
8089static void
8090process_cu_includes (void)
8091{
8092 int ix;
8093 struct dwarf2_per_cu_data *iter;
8094
8095 for (ix = 0;
8096 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8097 ix, iter);
8098 ++ix)
f4dc4d17
DE
8099 {
8100 if (! iter->is_debug_types)
43f3e411 8101 compute_compunit_symtab_includes (iter);
f4dc4d17 8102 }
95554aad
TT
8103
8104 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8105}
8106
9cdd5dbd 8107/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8108 already been loaded into memory. */
8109
8110static void
95554aad
TT
8111process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8112 enum language pretend_language)
10b3939b 8113{
10b3939b 8114 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8115 struct objfile *objfile = per_cu->objfile;
3e29f34a 8116 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8117 CORE_ADDR lowpc, highpc;
43f3e411 8118 struct compunit_symtab *cust;
3da10d80 8119 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8120 CORE_ADDR baseaddr;
4359dff1 8121 struct block *static_block;
3e29f34a 8122 CORE_ADDR addr;
10b3939b
DJ
8123
8124 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8125
10b3939b
DJ
8126 buildsym_init ();
8127 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8128 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8129
8130 cu->list_in_scope = &file_symbols;
c906108c 8131
95554aad
TT
8132 cu->language = pretend_language;
8133 cu->language_defn = language_def (cu->language);
8134
c906108c 8135 /* Do line number decoding in read_file_scope () */
10b3939b 8136 process_die (cu->dies, cu);
c906108c 8137
a766d390
DE
8138 /* For now fudge the Go package. */
8139 if (cu->language == language_go)
8140 fixup_go_packaging (cu);
8141
3da10d80
KS
8142 /* Now that we have processed all the DIEs in the CU, all the types
8143 should be complete, and it should now be safe to compute all of the
8144 physnames. */
8145 compute_delayed_physnames (cu);
8146 do_cleanups (delayed_list_cleanup);
8147
fae299cd
DC
8148 /* Some compilers don't define a DW_AT_high_pc attribute for the
8149 compilation unit. If the DW_AT_high_pc is missing, synthesize
8150 it, by scanning the DIE's below the compilation unit. */
10b3939b 8151 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8152
3e29f34a
MR
8153 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8154 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8155
8156 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8157 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8158 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8159 addrmap to help ensure it has an accurate map of pc values belonging to
8160 this comp unit. */
8161 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8162
43f3e411
DE
8163 cust = end_symtab_from_static_block (static_block,
8164 SECT_OFF_TEXT (objfile), 0);
c906108c 8165
43f3e411 8166 if (cust != NULL)
c906108c 8167 {
df15bd07 8168 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8169
8be455d7
JK
8170 /* Set symtab language to language from DW_AT_language. If the
8171 compilation is from a C file generated by language preprocessors, do
8172 not set the language if it was already deduced by start_subfile. */
43f3e411 8173 if (!(cu->language == language_c
40e3ad0e 8174 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 8175 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8176
8177 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8178 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8179 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8180 there were bugs in prologue debug info, fixed later in GCC-4.5
8181 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8182
8183 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8184 needed, it would be wrong due to missing DW_AT_producer there.
8185
8186 Still one can confuse GDB by using non-standard GCC compilation
8187 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8188 */
ab260dad 8189 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8190 cust->locations_valid = 1;
e0d00bc7
JK
8191
8192 if (gcc_4_minor >= 5)
43f3e411 8193 cust->epilogue_unwind_valid = 1;
96408a79 8194
43f3e411 8195 cust->call_site_htab = cu->call_site_htab;
c906108c 8196 }
9291a0cd
TT
8197
8198 if (dwarf2_per_objfile->using_index)
43f3e411 8199 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8200 else
8201 {
8202 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8203 pst->compunit_symtab = cust;
9291a0cd
TT
8204 pst->readin = 1;
8205 }
c906108c 8206
95554aad
TT
8207 /* Push it for inclusion processing later. */
8208 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8209
c906108c 8210 do_cleanups (back_to);
f4dc4d17 8211}
45cfd468 8212
f4dc4d17
DE
8213/* Generate full symbol information for type unit PER_CU, whose DIEs have
8214 already been loaded into memory. */
8215
8216static void
8217process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8218 enum language pretend_language)
8219{
8220 struct dwarf2_cu *cu = per_cu->cu;
8221 struct objfile *objfile = per_cu->objfile;
43f3e411 8222 struct compunit_symtab *cust;
f4dc4d17 8223 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8224 struct signatured_type *sig_type;
8225
8226 gdb_assert (per_cu->is_debug_types);
8227 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8228
8229 buildsym_init ();
8230 back_to = make_cleanup (really_free_pendings, NULL);
8231 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8232
8233 cu->list_in_scope = &file_symbols;
8234
8235 cu->language = pretend_language;
8236 cu->language_defn = language_def (cu->language);
8237
8238 /* The symbol tables are set up in read_type_unit_scope. */
8239 process_die (cu->dies, cu);
8240
8241 /* For now fudge the Go package. */
8242 if (cu->language == language_go)
8243 fixup_go_packaging (cu);
8244
8245 /* Now that we have processed all the DIEs in the CU, all the types
8246 should be complete, and it should now be safe to compute all of the
8247 physnames. */
8248 compute_delayed_physnames (cu);
8249 do_cleanups (delayed_list_cleanup);
8250
8251 /* TUs share symbol tables.
8252 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8253 of it with end_expandable_symtab. Otherwise, complete the addition of
8254 this TU's symbols to the existing symtab. */
43f3e411 8255 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8256 {
43f3e411
DE
8257 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8258 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8259
43f3e411 8260 if (cust != NULL)
f4dc4d17
DE
8261 {
8262 /* Set symtab language to language from DW_AT_language. If the
8263 compilation is from a C file generated by language preprocessors,
8264 do not set the language if it was already deduced by
8265 start_subfile. */
43f3e411
DE
8266 if (!(cu->language == language_c
8267 && COMPUNIT_FILETABS (cust)->language != language_c))
8268 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8269 }
8270 }
8271 else
8272 {
0ab9ce85 8273 augment_type_symtab ();
43f3e411 8274 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8275 }
8276
8277 if (dwarf2_per_objfile->using_index)
43f3e411 8278 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8279 else
8280 {
8281 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8282 pst->compunit_symtab = cust;
f4dc4d17 8283 pst->readin = 1;
45cfd468 8284 }
f4dc4d17
DE
8285
8286 do_cleanups (back_to);
c906108c
SS
8287}
8288
95554aad
TT
8289/* Process an imported unit DIE. */
8290
8291static void
8292process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8293{
8294 struct attribute *attr;
8295
f4dc4d17
DE
8296 /* For now we don't handle imported units in type units. */
8297 if (cu->per_cu->is_debug_types)
8298 {
8299 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8300 " supported in type units [in module %s]"),
4262abfb 8301 objfile_name (cu->objfile));
f4dc4d17
DE
8302 }
8303
95554aad
TT
8304 attr = dwarf2_attr (die, DW_AT_import, cu);
8305 if (attr != NULL)
8306 {
8307 struct dwarf2_per_cu_data *per_cu;
95554aad 8308 sect_offset offset;
36586728 8309 int is_dwz;
95554aad
TT
8310
8311 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8312 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8313 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8314
69d751e3 8315 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8316 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8317 load_full_comp_unit (per_cu, cu->language);
8318
796a7ff8 8319 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8320 per_cu);
8321 }
8322}
8323
adde2bff
DE
8324/* Reset the in_process bit of a die. */
8325
8326static void
8327reset_die_in_process (void *arg)
8328{
9a3c8263 8329 struct die_info *die = (struct die_info *) arg;
8c3cb9fa 8330
adde2bff
DE
8331 die->in_process = 0;
8332}
8333
c906108c
SS
8334/* Process a die and its children. */
8335
8336static void
e7c27a73 8337process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8338{
adde2bff
DE
8339 struct cleanup *in_process;
8340
8341 /* We should only be processing those not already in process. */
8342 gdb_assert (!die->in_process);
8343
8344 die->in_process = 1;
8345 in_process = make_cleanup (reset_die_in_process,die);
8346
c906108c
SS
8347 switch (die->tag)
8348 {
8349 case DW_TAG_padding:
8350 break;
8351 case DW_TAG_compile_unit:
95554aad 8352 case DW_TAG_partial_unit:
e7c27a73 8353 read_file_scope (die, cu);
c906108c 8354 break;
348e048f
DE
8355 case DW_TAG_type_unit:
8356 read_type_unit_scope (die, cu);
8357 break;
c906108c 8358 case DW_TAG_subprogram:
c906108c 8359 case DW_TAG_inlined_subroutine:
edb3359d 8360 read_func_scope (die, cu);
c906108c
SS
8361 break;
8362 case DW_TAG_lexical_block:
14898363
L
8363 case DW_TAG_try_block:
8364 case DW_TAG_catch_block:
e7c27a73 8365 read_lexical_block_scope (die, cu);
c906108c 8366 break;
216f72a1 8367 case DW_TAG_call_site:
96408a79
SA
8368 case DW_TAG_GNU_call_site:
8369 read_call_site_scope (die, cu);
8370 break;
c906108c 8371 case DW_TAG_class_type:
680b30c7 8372 case DW_TAG_interface_type:
c906108c
SS
8373 case DW_TAG_structure_type:
8374 case DW_TAG_union_type:
134d01f1 8375 process_structure_scope (die, cu);
c906108c
SS
8376 break;
8377 case DW_TAG_enumeration_type:
134d01f1 8378 process_enumeration_scope (die, cu);
c906108c 8379 break;
134d01f1 8380
f792889a
DJ
8381 /* These dies have a type, but processing them does not create
8382 a symbol or recurse to process the children. Therefore we can
8383 read them on-demand through read_type_die. */
c906108c 8384 case DW_TAG_subroutine_type:
72019c9c 8385 case DW_TAG_set_type:
c906108c 8386 case DW_TAG_array_type:
c906108c 8387 case DW_TAG_pointer_type:
c906108c 8388 case DW_TAG_ptr_to_member_type:
c906108c 8389 case DW_TAG_reference_type:
c906108c 8390 case DW_TAG_string_type:
c906108c 8391 break;
134d01f1 8392
c906108c 8393 case DW_TAG_base_type:
a02abb62 8394 case DW_TAG_subrange_type:
cb249c71 8395 case DW_TAG_typedef:
134d01f1
DJ
8396 /* Add a typedef symbol for the type definition, if it has a
8397 DW_AT_name. */
f792889a 8398 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8399 break;
c906108c 8400 case DW_TAG_common_block:
e7c27a73 8401 read_common_block (die, cu);
c906108c
SS
8402 break;
8403 case DW_TAG_common_inclusion:
8404 break;
d9fa45fe 8405 case DW_TAG_namespace:
4d4ec4e5 8406 cu->processing_has_namespace_info = 1;
e7c27a73 8407 read_namespace (die, cu);
d9fa45fe 8408 break;
5d7cb8df 8409 case DW_TAG_module:
4d4ec4e5 8410 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8411 read_module (die, cu);
8412 break;
d9fa45fe 8413 case DW_TAG_imported_declaration:
74921315
KS
8414 cu->processing_has_namespace_info = 1;
8415 if (read_namespace_alias (die, cu))
8416 break;
8417 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8418 case DW_TAG_imported_module:
4d4ec4e5 8419 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8420 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8421 || cu->language != language_fortran))
8422 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8423 dwarf_tag_name (die->tag));
8424 read_import_statement (die, cu);
d9fa45fe 8425 break;
95554aad
TT
8426
8427 case DW_TAG_imported_unit:
8428 process_imported_unit_die (die, cu);
8429 break;
8430
c906108c 8431 default:
e7c27a73 8432 new_symbol (die, NULL, cu);
c906108c
SS
8433 break;
8434 }
adde2bff
DE
8435
8436 do_cleanups (in_process);
c906108c 8437}
ca69b9e6
DE
8438\f
8439/* DWARF name computation. */
c906108c 8440
94af9270
KS
8441/* A helper function for dwarf2_compute_name which determines whether DIE
8442 needs to have the name of the scope prepended to the name listed in the
8443 die. */
8444
8445static int
8446die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8447{
1c809c68
TT
8448 struct attribute *attr;
8449
94af9270
KS
8450 switch (die->tag)
8451 {
8452 case DW_TAG_namespace:
8453 case DW_TAG_typedef:
8454 case DW_TAG_class_type:
8455 case DW_TAG_interface_type:
8456 case DW_TAG_structure_type:
8457 case DW_TAG_union_type:
8458 case DW_TAG_enumeration_type:
8459 case DW_TAG_enumerator:
8460 case DW_TAG_subprogram:
08a76f8a 8461 case DW_TAG_inlined_subroutine:
94af9270 8462 case DW_TAG_member:
74921315 8463 case DW_TAG_imported_declaration:
94af9270
KS
8464 return 1;
8465
8466 case DW_TAG_variable:
c2b0a229 8467 case DW_TAG_constant:
94af9270
KS
8468 /* We only need to prefix "globally" visible variables. These include
8469 any variable marked with DW_AT_external or any variable that
8470 lives in a namespace. [Variables in anonymous namespaces
8471 require prefixing, but they are not DW_AT_external.] */
8472
8473 if (dwarf2_attr (die, DW_AT_specification, cu))
8474 {
8475 struct dwarf2_cu *spec_cu = cu;
9a619af0 8476
94af9270
KS
8477 return die_needs_namespace (die_specification (die, &spec_cu),
8478 spec_cu);
8479 }
8480
1c809c68 8481 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8482 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8483 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8484 return 0;
8485 /* A variable in a lexical block of some kind does not need a
8486 namespace, even though in C++ such variables may be external
8487 and have a mangled name. */
8488 if (die->parent->tag == DW_TAG_lexical_block
8489 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8490 || die->parent->tag == DW_TAG_catch_block
8491 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8492 return 0;
8493 return 1;
94af9270
KS
8494
8495 default:
8496 return 0;
8497 }
8498}
8499
8500/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390 8501 compute the physname for the object, which include a method's:
9c37b5ae 8502 - formal parameters (C++),
a766d390 8503 - receiver type (Go),
a766d390
DE
8504
8505 The term "physname" is a bit confusing.
8506 For C++, for example, it is the demangled name.
8507 For Go, for example, it's the mangled name.
94af9270 8508
af6b7be1
JB
8509 For Ada, return the DIE's linkage name rather than the fully qualified
8510 name. PHYSNAME is ignored..
8511
94af9270
KS
8512 The result is allocated on the objfile_obstack and canonicalized. */
8513
8514static const char *
15d034d0
TT
8515dwarf2_compute_name (const char *name,
8516 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8517 int physname)
8518{
bb5ed363
DE
8519 struct objfile *objfile = cu->objfile;
8520
94af9270
KS
8521 if (name == NULL)
8522 name = dwarf2_name (die, cu);
8523
2ee7123e
DE
8524 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8525 but otherwise compute it by typename_concat inside GDB.
8526 FIXME: Actually this is not really true, or at least not always true.
8527 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8528 Fortran names because there is no mangling standard. So new_symbol_full
8529 will set the demangled name to the result of dwarf2_full_name, and it is
8530 the demangled name that GDB uses if it exists. */
f55ee35c
JK
8531 if (cu->language == language_ada
8532 || (cu->language == language_fortran && physname))
8533 {
8534 /* For Ada unit, we prefer the linkage name over the name, as
8535 the former contains the exported name, which the user expects
8536 to be able to reference. Ideally, we want the user to be able
8537 to reference this entity using either natural or linkage name,
8538 but we haven't started looking at this enhancement yet. */
2ee7123e 8539 const char *linkage_name;
f55ee35c 8540
2ee7123e
DE
8541 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8542 if (linkage_name == NULL)
8543 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8544 if (linkage_name != NULL)
8545 return linkage_name;
f55ee35c
JK
8546 }
8547
94af9270
KS
8548 /* These are the only languages we know how to qualify names in. */
8549 if (name != NULL
9c37b5ae 8550 && (cu->language == language_cplus
c44af4eb
TT
8551 || cu->language == language_fortran || cu->language == language_d
8552 || cu->language == language_rust))
94af9270
KS
8553 {
8554 if (die_needs_namespace (die, cu))
8555 {
8556 long length;
0d5cff50 8557 const char *prefix;
34a68019 8558 const char *canonical_name = NULL;
94af9270 8559
d7e74731
PA
8560 string_file buf;
8561
94af9270 8562 prefix = determine_prefix (die, cu);
94af9270
KS
8563 if (*prefix != '\0')
8564 {
f55ee35c
JK
8565 char *prefixed_name = typename_concat (NULL, prefix, name,
8566 physname, cu);
9a619af0 8567
d7e74731 8568 buf.puts (prefixed_name);
94af9270
KS
8569 xfree (prefixed_name);
8570 }
8571 else
d7e74731 8572 buf.puts (name);
94af9270 8573
98bfdba5
PA
8574 /* Template parameters may be specified in the DIE's DW_AT_name, or
8575 as children with DW_TAG_template_type_param or
8576 DW_TAG_value_type_param. If the latter, add them to the name
8577 here. If the name already has template parameters, then
8578 skip this step; some versions of GCC emit both, and
8579 it is more efficient to use the pre-computed name.
8580
8581 Something to keep in mind about this process: it is very
8582 unlikely, or in some cases downright impossible, to produce
8583 something that will match the mangled name of a function.
8584 If the definition of the function has the same debug info,
8585 we should be able to match up with it anyway. But fallbacks
8586 using the minimal symbol, for instance to find a method
8587 implemented in a stripped copy of libstdc++, will not work.
8588 If we do not have debug info for the definition, we will have to
8589 match them up some other way.
8590
8591 When we do name matching there is a related problem with function
8592 templates; two instantiated function templates are allowed to
8593 differ only by their return types, which we do not add here. */
8594
8595 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8596 {
8597 struct attribute *attr;
8598 struct die_info *child;
8599 int first = 1;
8600
8601 die->building_fullname = 1;
8602
8603 for (child = die->child; child != NULL; child = child->sibling)
8604 {
8605 struct type *type;
12df843f 8606 LONGEST value;
d521ce57 8607 const gdb_byte *bytes;
98bfdba5
PA
8608 struct dwarf2_locexpr_baton *baton;
8609 struct value *v;
8610
8611 if (child->tag != DW_TAG_template_type_param
8612 && child->tag != DW_TAG_template_value_param)
8613 continue;
8614
8615 if (first)
8616 {
d7e74731 8617 buf.puts ("<");
98bfdba5
PA
8618 first = 0;
8619 }
8620 else
d7e74731 8621 buf.puts (", ");
98bfdba5
PA
8622
8623 attr = dwarf2_attr (child, DW_AT_type, cu);
8624 if (attr == NULL)
8625 {
8626 complaint (&symfile_complaints,
8627 _("template parameter missing DW_AT_type"));
d7e74731 8628 buf.puts ("UNKNOWN_TYPE");
98bfdba5
PA
8629 continue;
8630 }
8631 type = die_type (child, cu);
8632
8633 if (child->tag == DW_TAG_template_type_param)
8634 {
d7e74731 8635 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8636 continue;
8637 }
8638
8639 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8640 if (attr == NULL)
8641 {
8642 complaint (&symfile_complaints,
3e43a32a
MS
8643 _("template parameter missing "
8644 "DW_AT_const_value"));
d7e74731 8645 buf.puts ("UNKNOWN_VALUE");
98bfdba5
PA
8646 continue;
8647 }
8648
8649 dwarf2_const_value_attr (attr, type, name,
8650 &cu->comp_unit_obstack, cu,
8651 &value, &bytes, &baton);
8652
8653 if (TYPE_NOSIGN (type))
8654 /* GDB prints characters as NUMBER 'CHAR'. If that's
8655 changed, this can use value_print instead. */
d7e74731 8656 c_printchar (value, type, &buf);
98bfdba5
PA
8657 else
8658 {
8659 struct value_print_options opts;
8660
8661 if (baton != NULL)
8662 v = dwarf2_evaluate_loc_desc (type, NULL,
8663 baton->data,
8664 baton->size,
8665 baton->per_cu);
8666 else if (bytes != NULL)
8667 {
8668 v = allocate_value (type);
8669 memcpy (value_contents_writeable (v), bytes,
8670 TYPE_LENGTH (type));
8671 }
8672 else
8673 v = value_from_longest (type, value);
8674
3e43a32a
MS
8675 /* Specify decimal so that we do not depend on
8676 the radix. */
98bfdba5
PA
8677 get_formatted_print_options (&opts, 'd');
8678 opts.raw = 1;
d7e74731 8679 value_print (v, &buf, &opts);
98bfdba5
PA
8680 release_value (v);
8681 value_free (v);
8682 }
8683 }
8684
8685 die->building_fullname = 0;
8686
8687 if (!first)
8688 {
8689 /* Close the argument list, with a space if necessary
8690 (nested templates). */
d7e74731
PA
8691 if (!buf.empty () && buf.string ().back () == '>')
8692 buf.puts (" >");
98bfdba5 8693 else
d7e74731 8694 buf.puts (">");
98bfdba5
PA
8695 }
8696 }
8697
9c37b5ae 8698 /* For C++ methods, append formal parameter type
94af9270 8699 information, if PHYSNAME. */
6e70227d 8700
94af9270 8701 if (physname && die->tag == DW_TAG_subprogram
9c37b5ae 8702 && cu->language == language_cplus)
94af9270
KS
8703 {
8704 struct type *type = read_type_die (die, cu);
8705
d7e74731 8706 c_type_print_args (type, &buf, 1, cu->language,
79d43c61 8707 &type_print_raw_options);
94af9270 8708
9c37b5ae 8709 if (cu->language == language_cplus)
94af9270 8710 {
60430eff
DJ
8711 /* Assume that an artificial first parameter is
8712 "this", but do not crash if it is not. RealView
8713 marks unnamed (and thus unused) parameters as
8714 artificial; there is no way to differentiate
8715 the two cases. */
94af9270
KS
8716 if (TYPE_NFIELDS (type) > 0
8717 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8718 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8719 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8720 0))))
d7e74731 8721 buf.puts (" const");
94af9270
KS
8722 }
8723 }
8724
d7e74731 8725 const std::string &intermediate_name = buf.string ();
94af9270
KS
8726
8727 if (cu->language == language_cplus)
34a68019 8728 canonical_name
322a8516 8729 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
34a68019
TT
8730 &objfile->per_bfd->storage_obstack);
8731
8732 /* If we only computed INTERMEDIATE_NAME, or if
8733 INTERMEDIATE_NAME is already canonical, then we need to
8734 copy it to the appropriate obstack. */
322a8516 8735 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
224c3ddb
SM
8736 name = ((const char *)
8737 obstack_copy0 (&objfile->per_bfd->storage_obstack,
322a8516
PA
8738 intermediate_name.c_str (),
8739 intermediate_name.length ()));
34a68019
TT
8740 else
8741 name = canonical_name;
94af9270
KS
8742 }
8743 }
8744
8745 return name;
8746}
8747
0114d602
DJ
8748/* Return the fully qualified name of DIE, based on its DW_AT_name.
8749 If scope qualifiers are appropriate they will be added. The result
34a68019 8750 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8751 not have a name. NAME may either be from a previous call to
8752 dwarf2_name or NULL.
8753
9c37b5ae 8754 The output string will be canonicalized (if C++). */
0114d602
DJ
8755
8756static const char *
15d034d0 8757dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8758{
94af9270
KS
8759 return dwarf2_compute_name (name, die, cu, 0);
8760}
0114d602 8761
94af9270
KS
8762/* Construct a physname for the given DIE in CU. NAME may either be
8763 from a previous call to dwarf2_name or NULL. The result will be
8764 allocated on the objfile_objstack or NULL if the DIE does not have a
8765 name.
0114d602 8766
9c37b5ae 8767 The output string will be canonicalized (if C++). */
0114d602 8768
94af9270 8769static const char *
15d034d0 8770dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8771{
bb5ed363 8772 struct objfile *objfile = cu->objfile;
900e11f9
JK
8773 const char *retval, *mangled = NULL, *canon = NULL;
8774 struct cleanup *back_to;
8775 int need_copy = 1;
8776
8777 /* In this case dwarf2_compute_name is just a shortcut not building anything
8778 on its own. */
8779 if (!die_needs_namespace (die, cu))
8780 return dwarf2_compute_name (name, die, cu, 1);
8781
8782 back_to = make_cleanup (null_cleanup, NULL);
8783
7d45c7c3
KB
8784 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8785 if (mangled == NULL)
8786 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
900e11f9 8787
e98c9e7c
TT
8788 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8789 See https://github.com/rust-lang/rust/issues/32925. */
8790 if (cu->language == language_rust && mangled != NULL
8791 && strchr (mangled, '{') != NULL)
8792 mangled = NULL;
8793
900e11f9
JK
8794 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8795 has computed. */
7d45c7c3 8796 if (mangled != NULL)
900e11f9
JK
8797 {
8798 char *demangled;
8799
900e11f9
JK
8800 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8801 type. It is easier for GDB users to search for such functions as
8802 `name(params)' than `long name(params)'. In such case the minimal
8803 symbol names do not match the full symbol names but for template
8804 functions there is never a need to look up their definition from their
8805 declaration so the only disadvantage remains the minimal symbol
8806 variant `long name(params)' does not have the proper inferior type.
8807 */
8808
a766d390
DE
8809 if (cu->language == language_go)
8810 {
8811 /* This is a lie, but we already lie to the caller new_symbol_full.
8812 new_symbol_full assumes we return the mangled name.
8813 This just undoes that lie until things are cleaned up. */
8814 demangled = NULL;
8815 }
8816 else
8817 {
8de20a37 8818 demangled = gdb_demangle (mangled,
9c37b5ae 8819 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
a766d390 8820 }
900e11f9
JK
8821 if (demangled)
8822 {
8823 make_cleanup (xfree, demangled);
8824 canon = demangled;
8825 }
8826 else
8827 {
8828 canon = mangled;
8829 need_copy = 0;
8830 }
8831 }
8832
8833 if (canon == NULL || check_physname)
8834 {
8835 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8836
8837 if (canon != NULL && strcmp (physname, canon) != 0)
8838 {
8839 /* It may not mean a bug in GDB. The compiler could also
8840 compute DW_AT_linkage_name incorrectly. But in such case
8841 GDB would need to be bug-to-bug compatible. */
8842
8843 complaint (&symfile_complaints,
8844 _("Computed physname <%s> does not match demangled <%s> "
8845 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8846 physname, canon, mangled, die->offset.sect_off,
8847 objfile_name (objfile));
900e11f9
JK
8848
8849 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8850 is available here - over computed PHYSNAME. It is safer
8851 against both buggy GDB and buggy compilers. */
8852
8853 retval = canon;
8854 }
8855 else
8856 {
8857 retval = physname;
8858 need_copy = 0;
8859 }
8860 }
8861 else
8862 retval = canon;
8863
8864 if (need_copy)
224c3ddb
SM
8865 retval = ((const char *)
8866 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8867 retval, strlen (retval)));
900e11f9
JK
8868
8869 do_cleanups (back_to);
8870 return retval;
0114d602
DJ
8871}
8872
74921315
KS
8873/* Inspect DIE in CU for a namespace alias. If one exists, record
8874 a new symbol for it.
8875
8876 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8877
8878static int
8879read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8880{
8881 struct attribute *attr;
8882
8883 /* If the die does not have a name, this is not a namespace
8884 alias. */
8885 attr = dwarf2_attr (die, DW_AT_name, cu);
8886 if (attr != NULL)
8887 {
8888 int num;
8889 struct die_info *d = die;
8890 struct dwarf2_cu *imported_cu = cu;
8891
8892 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8893 keep inspecting DIEs until we hit the underlying import. */
8894#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8895 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8896 {
8897 attr = dwarf2_attr (d, DW_AT_import, cu);
8898 if (attr == NULL)
8899 break;
8900
8901 d = follow_die_ref (d, attr, &imported_cu);
8902 if (d->tag != DW_TAG_imported_declaration)
8903 break;
8904 }
8905
8906 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8907 {
8908 complaint (&symfile_complaints,
8909 _("DIE at 0x%x has too many recursively imported "
8910 "declarations"), d->offset.sect_off);
8911 return 0;
8912 }
8913
8914 if (attr != NULL)
8915 {
8916 struct type *type;
8917 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8918
8919 type = get_die_type_at_offset (offset, cu->per_cu);
8920 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8921 {
8922 /* This declaration is a global namespace alias. Add
8923 a symbol for it whose type is the aliased namespace. */
8924 new_symbol (die, type, cu);
8925 return 1;
8926 }
8927 }
8928 }
8929
8930 return 0;
8931}
8932
22cee43f
PMR
8933/* Return the using directives repository (global or local?) to use in the
8934 current context for LANGUAGE.
8935
8936 For Ada, imported declarations can materialize renamings, which *may* be
8937 global. However it is impossible (for now?) in DWARF to distinguish
8938 "external" imported declarations and "static" ones. As all imported
8939 declarations seem to be static in all other languages, make them all CU-wide
8940 global only in Ada. */
8941
8942static struct using_direct **
8943using_directives (enum language language)
8944{
8945 if (language == language_ada && context_stack_depth == 0)
8946 return &global_using_directives;
8947 else
8948 return &local_using_directives;
8949}
8950
27aa8d6a
SW
8951/* Read the import statement specified by the given die and record it. */
8952
8953static void
8954read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8955{
bb5ed363 8956 struct objfile *objfile = cu->objfile;
27aa8d6a 8957 struct attribute *import_attr;
32019081 8958 struct die_info *imported_die, *child_die;
de4affc9 8959 struct dwarf2_cu *imported_cu;
27aa8d6a 8960 const char *imported_name;
794684b6 8961 const char *imported_name_prefix;
13387711
SW
8962 const char *canonical_name;
8963 const char *import_alias;
8964 const char *imported_declaration = NULL;
794684b6 8965 const char *import_prefix;
32019081
JK
8966 VEC (const_char_ptr) *excludes = NULL;
8967 struct cleanup *cleanups;
13387711 8968
27aa8d6a
SW
8969 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8970 if (import_attr == NULL)
8971 {
8972 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8973 dwarf_tag_name (die->tag));
8974 return;
8975 }
8976
de4affc9
CC
8977 imported_cu = cu;
8978 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8979 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8980 if (imported_name == NULL)
8981 {
8982 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8983
8984 The import in the following code:
8985 namespace A
8986 {
8987 typedef int B;
8988 }
8989
8990 int main ()
8991 {
8992 using A::B;
8993 B b;
8994 return b;
8995 }
8996
8997 ...
8998 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8999 <52> DW_AT_decl_file : 1
9000 <53> DW_AT_decl_line : 6
9001 <54> DW_AT_import : <0x75>
9002 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9003 <59> DW_AT_name : B
9004 <5b> DW_AT_decl_file : 1
9005 <5c> DW_AT_decl_line : 2
9006 <5d> DW_AT_type : <0x6e>
9007 ...
9008 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9009 <76> DW_AT_byte_size : 4
9010 <77> DW_AT_encoding : 5 (signed)
9011
9012 imports the wrong die ( 0x75 instead of 0x58 ).
9013 This case will be ignored until the gcc bug is fixed. */
9014 return;
9015 }
9016
82856980
SW
9017 /* Figure out the local name after import. */
9018 import_alias = dwarf2_name (die, cu);
27aa8d6a 9019
794684b6
SW
9020 /* Figure out where the statement is being imported to. */
9021 import_prefix = determine_prefix (die, cu);
9022
9023 /* Figure out what the scope of the imported die is and prepend it
9024 to the name of the imported die. */
de4affc9 9025 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 9026
f55ee35c
JK
9027 if (imported_die->tag != DW_TAG_namespace
9028 && imported_die->tag != DW_TAG_module)
794684b6 9029 {
13387711
SW
9030 imported_declaration = imported_name;
9031 canonical_name = imported_name_prefix;
794684b6 9032 }
13387711 9033 else if (strlen (imported_name_prefix) > 0)
12aaed36 9034 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
9035 imported_name_prefix,
9036 (cu->language == language_d ? "." : "::"),
9037 imported_name, (char *) NULL);
13387711
SW
9038 else
9039 canonical_name = imported_name;
794684b6 9040
32019081
JK
9041 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
9042
9043 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9044 for (child_die = die->child; child_die && child_die->tag;
9045 child_die = sibling_die (child_die))
9046 {
9047 /* DWARF-4: A Fortran use statement with a “rename list” may be
9048 represented by an imported module entry with an import attribute
9049 referring to the module and owned entries corresponding to those
9050 entities that are renamed as part of being imported. */
9051
9052 if (child_die->tag != DW_TAG_imported_declaration)
9053 {
9054 complaint (&symfile_complaints,
9055 _("child DW_TAG_imported_declaration expected "
9056 "- DIE at 0x%x [in module %s]"),
4262abfb 9057 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
9058 continue;
9059 }
9060
9061 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9062 if (import_attr == NULL)
9063 {
9064 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9065 dwarf_tag_name (child_die->tag));
9066 continue;
9067 }
9068
9069 imported_cu = cu;
9070 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9071 &imported_cu);
9072 imported_name = dwarf2_name (imported_die, imported_cu);
9073 if (imported_name == NULL)
9074 {
9075 complaint (&symfile_complaints,
9076 _("child DW_TAG_imported_declaration has unknown "
9077 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 9078 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
9079 continue;
9080 }
9081
9082 VEC_safe_push (const_char_ptr, excludes, imported_name);
9083
9084 process_die (child_die, cu);
9085 }
9086
22cee43f
PMR
9087 add_using_directive (using_directives (cu->language),
9088 import_prefix,
9089 canonical_name,
9090 import_alias,
9091 imported_declaration,
9092 excludes,
9093 0,
9094 &objfile->objfile_obstack);
32019081
JK
9095
9096 do_cleanups (cleanups);
27aa8d6a
SW
9097}
9098
f4dc4d17 9099/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 9100
cb1df416
DJ
9101static void
9102free_cu_line_header (void *arg)
9103{
9a3c8263 9104 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
cb1df416
DJ
9105
9106 free_line_header (cu->line_header);
9107 cu->line_header = NULL;
9108}
9109
1b80a9fa
JK
9110/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9111 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9112 this, it was first present in GCC release 4.3.0. */
9113
9114static int
9115producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9116{
9117 if (!cu->checked_producer)
9118 check_producer (cu);
9119
9120 return cu->producer_is_gcc_lt_4_3;
9121}
9122
9291a0cd
TT
9123static void
9124find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 9125 const char **name, const char **comp_dir)
9291a0cd 9126{
9291a0cd
TT
9127 /* Find the filename. Do not use dwarf2_name here, since the filename
9128 is not a source language identifier. */
7d45c7c3
KB
9129 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9130 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 9131
7d45c7c3
KB
9132 if (*comp_dir == NULL
9133 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9134 && IS_ABSOLUTE_PATH (*name))
9291a0cd 9135 {
15d034d0
TT
9136 char *d = ldirname (*name);
9137
9138 *comp_dir = d;
9139 if (d != NULL)
9140 make_cleanup (xfree, d);
9291a0cd
TT
9141 }
9142 if (*comp_dir != NULL)
9143 {
9144 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9145 directory, get rid of it. */
e6a959d6 9146 const char *cp = strchr (*comp_dir, ':');
9291a0cd
TT
9147
9148 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9149 *comp_dir = cp + 1;
9150 }
9151
9152 if (*name == NULL)
9153 *name = "<unknown>";
9154}
9155
f4dc4d17
DE
9156/* Handle DW_AT_stmt_list for a compilation unit.
9157 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9158 COMP_DIR is the compilation directory. LOWPC is passed to
9159 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9160
9161static void
9162handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9163 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9164{
527f3840 9165 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9166 struct attribute *attr;
527f3840
JK
9167 unsigned int line_offset;
9168 struct line_header line_header_local;
9169 hashval_t line_header_local_hash;
9170 unsigned u;
9171 void **slot;
9172 int decode_mapping;
2ab95328 9173
f4dc4d17
DE
9174 gdb_assert (! cu->per_cu->is_debug_types);
9175
2ab95328 9176 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9177 if (attr == NULL)
9178 return;
9179
9180 line_offset = DW_UNSND (attr);
9181
9182 /* The line header hash table is only created if needed (it exists to
9183 prevent redundant reading of the line table for partial_units).
9184 If we're given a partial_unit, we'll need it. If we're given a
9185 compile_unit, then use the line header hash table if it's already
9186 created, but don't create one just yet. */
9187
9188 if (dwarf2_per_objfile->line_header_hash == NULL
9189 && die->tag == DW_TAG_partial_unit)
2ab95328 9190 {
527f3840
JK
9191 dwarf2_per_objfile->line_header_hash
9192 = htab_create_alloc_ex (127, line_header_hash_voidp,
9193 line_header_eq_voidp,
9194 free_line_header_voidp,
9195 &objfile->objfile_obstack,
9196 hashtab_obstack_allocate,
9197 dummy_obstack_deallocate);
9198 }
2ab95328 9199
527f3840
JK
9200 line_header_local.offset.sect_off = line_offset;
9201 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9202 line_header_local_hash = line_header_hash (&line_header_local);
9203 if (dwarf2_per_objfile->line_header_hash != NULL)
9204 {
9205 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9206 &line_header_local,
9207 line_header_local_hash, NO_INSERT);
9208
9209 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9210 is not present in *SLOT (since if there is something in *SLOT then
9211 it will be for a partial_unit). */
9212 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9213 {
527f3840 9214 gdb_assert (*slot != NULL);
9a3c8263 9215 cu->line_header = (struct line_header *) *slot;
527f3840 9216 return;
dee91e82 9217 }
2ab95328 9218 }
527f3840
JK
9219
9220 /* dwarf_decode_line_header does not yet provide sufficient information.
9221 We always have to call also dwarf_decode_lines for it. */
9222 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9223 if (cu->line_header == NULL)
9224 return;
9225
9226 if (dwarf2_per_objfile->line_header_hash == NULL)
9227 slot = NULL;
9228 else
9229 {
9230 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9231 &line_header_local,
9232 line_header_local_hash, INSERT);
9233 gdb_assert (slot != NULL);
9234 }
9235 if (slot != NULL && *slot == NULL)
9236 {
9237 /* This newly decoded line number information unit will be owned
9238 by line_header_hash hash table. */
9239 *slot = cu->line_header;
9240 }
9241 else
9242 {
9243 /* We cannot free any current entry in (*slot) as that struct line_header
9244 may be already used by multiple CUs. Create only temporary decoded
9245 line_header for this CU - it may happen at most once for each line
9246 number information unit. And if we're not using line_header_hash
9247 then this is what we want as well. */
9248 gdb_assert (die->tag != DW_TAG_partial_unit);
9249 make_cleanup (free_cu_line_header, cu);
9250 }
9251 decode_mapping = (die->tag != DW_TAG_partial_unit);
9252 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9253 decode_mapping);
2ab95328
TT
9254}
9255
95554aad 9256/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9257
c906108c 9258static void
e7c27a73 9259read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9260{
dee91e82 9261 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9262 struct gdbarch *gdbarch = get_objfile_arch (objfile);
debd256d 9263 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9264 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9265 CORE_ADDR highpc = ((CORE_ADDR) 0);
9266 struct attribute *attr;
15d034d0
TT
9267 const char *name = NULL;
9268 const char *comp_dir = NULL;
c906108c 9269 struct die_info *child_die;
e142c38c 9270 CORE_ADDR baseaddr;
6e70227d 9271
e142c38c 9272 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9273
fae299cd 9274 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9275
9276 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9277 from finish_block. */
2acceee2 9278 if (lowpc == ((CORE_ADDR) -1))
c906108c 9279 lowpc = highpc;
3e29f34a 9280 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9281
9291a0cd 9282 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9283
95554aad 9284 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9285
f4b8a18d
KW
9286 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9287 standardised yet. As a workaround for the language detection we fall
9288 back to the DW_AT_producer string. */
9289 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9290 cu->language = language_opencl;
9291
3019eac3
DE
9292 /* Similar hack for Go. */
9293 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9294 set_cu_language (DW_LANG_Go, cu);
9295
f4dc4d17 9296 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9297
9298 /* Decode line number information if present. We do this before
9299 processing child DIEs, so that the line header table is available
9300 for DW_AT_decl_file. */
c3b7b696 9301 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9302
9303 /* Process all dies in compilation unit. */
9304 if (die->child != NULL)
9305 {
9306 child_die = die->child;
9307 while (child_die && child_die->tag)
9308 {
9309 process_die (child_die, cu);
9310 child_die = sibling_die (child_die);
9311 }
9312 }
9313
9314 /* Decode macro information, if present. Dwarf 2 macro information
9315 refers to information in the line number info statement program
9316 header, so we can only read it if we've read the header
9317 successfully. */
0af92d60
JK
9318 attr = dwarf2_attr (die, DW_AT_macros, cu);
9319 if (attr == NULL)
9320 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
3019eac3
DE
9321 if (attr && cu->line_header)
9322 {
9323 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9324 complaint (&symfile_complaints,
0af92d60 9325 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
3019eac3 9326
43f3e411 9327 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9328 }
9329 else
9330 {
9331 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9332 if (attr && cu->line_header)
9333 {
9334 unsigned int macro_offset = DW_UNSND (attr);
9335
43f3e411 9336 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9337 }
9338 }
9339
9340 do_cleanups (back_to);
9341}
9342
f4dc4d17
DE
9343/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9344 Create the set of symtabs used by this TU, or if this TU is sharing
9345 symtabs with another TU and the symtabs have already been created
9346 then restore those symtabs in the line header.
9347 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9348
9349static void
f4dc4d17 9350setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9351{
f4dc4d17
DE
9352 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9353 struct type_unit_group *tu_group;
9354 int first_time;
9355 struct line_header *lh;
3019eac3 9356 struct attribute *attr;
f4dc4d17 9357 unsigned int i, line_offset;
0186c6a7 9358 struct signatured_type *sig_type;
3019eac3 9359
f4dc4d17 9360 gdb_assert (per_cu->is_debug_types);
0186c6a7 9361 sig_type = (struct signatured_type *) per_cu;
3019eac3 9362
f4dc4d17 9363 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9364
f4dc4d17 9365 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9366 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9367 if (sig_type->type_unit_group == NULL)
9368 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9369 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9370
9371 /* If we've already processed this stmt_list there's no real need to
9372 do it again, we could fake it and just recreate the part we need
9373 (file name,index -> symtab mapping). If data shows this optimization
9374 is useful we can do it then. */
43f3e411 9375 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9376
9377 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9378 debug info. */
9379 lh = NULL;
9380 if (attr != NULL)
3019eac3 9381 {
f4dc4d17
DE
9382 line_offset = DW_UNSND (attr);
9383 lh = dwarf_decode_line_header (line_offset, cu);
9384 }
9385 if (lh == NULL)
9386 {
9387 if (first_time)
9388 dwarf2_start_symtab (cu, "", NULL, 0);
9389 else
9390 {
9391 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9392 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9393 }
f4dc4d17 9394 return;
3019eac3
DE
9395 }
9396
f4dc4d17
DE
9397 cu->line_header = lh;
9398 make_cleanup (free_cu_line_header, cu);
3019eac3 9399
f4dc4d17
DE
9400 if (first_time)
9401 {
43f3e411 9402 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9403
1fd60fc0
DE
9404 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9405 still initializing it, and our caller (a few levels up)
9406 process_full_type_unit still needs to know if this is the first
9407 time. */
9408
f4dc4d17
DE
9409 tu_group->num_symtabs = lh->num_file_names;
9410 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9411
f4dc4d17
DE
9412 for (i = 0; i < lh->num_file_names; ++i)
9413 {
d521ce57 9414 const char *dir = NULL;
f4dc4d17 9415 struct file_entry *fe = &lh->file_names[i];
3019eac3 9416
afa6c9ab 9417 if (fe->dir_index && lh->include_dirs != NULL)
f4dc4d17 9418 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9419 dwarf2_start_subfile (fe->name, dir);
3019eac3 9420
f4dc4d17
DE
9421 if (current_subfile->symtab == NULL)
9422 {
9423 /* NOTE: start_subfile will recognize when it's been passed
9424 a file it has already seen. So we can't assume there's a
43f3e411 9425 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9426 lh->file_names may contain dups. */
43f3e411
DE
9427 current_subfile->symtab
9428 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9429 }
9430
9431 fe->symtab = current_subfile->symtab;
9432 tu_group->symtabs[i] = fe->symtab;
9433 }
9434 }
9435 else
3019eac3 9436 {
0ab9ce85 9437 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17
DE
9438
9439 for (i = 0; i < lh->num_file_names; ++i)
9440 {
9441 struct file_entry *fe = &lh->file_names[i];
9442
9443 fe->symtab = tu_group->symtabs[i];
9444 }
3019eac3
DE
9445 }
9446
f4dc4d17
DE
9447 /* The main symtab is allocated last. Type units don't have DW_AT_name
9448 so they don't have a "real" (so to speak) symtab anyway.
9449 There is later code that will assign the main symtab to all symbols
9450 that don't have one. We need to handle the case of a symbol with a
9451 missing symtab (DW_AT_decl_file) anyway. */
9452}
3019eac3 9453
f4dc4d17
DE
9454/* Process DW_TAG_type_unit.
9455 For TUs we want to skip the first top level sibling if it's not the
9456 actual type being defined by this TU. In this case the first top
9457 level sibling is there to provide context only. */
3019eac3 9458
f4dc4d17
DE
9459static void
9460read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9461{
9462 struct die_info *child_die;
3019eac3 9463
f4dc4d17
DE
9464 prepare_one_comp_unit (cu, die, language_minimal);
9465
9466 /* Initialize (or reinitialize) the machinery for building symtabs.
9467 We do this before processing child DIEs, so that the line header table
9468 is available for DW_AT_decl_file. */
9469 setup_type_unit_groups (die, cu);
9470
9471 if (die->child != NULL)
9472 {
9473 child_die = die->child;
9474 while (child_die && child_die->tag)
9475 {
9476 process_die (child_die, cu);
9477 child_die = sibling_die (child_die);
9478 }
9479 }
3019eac3
DE
9480}
9481\f
80626a55
DE
9482/* DWO/DWP files.
9483
9484 http://gcc.gnu.org/wiki/DebugFission
9485 http://gcc.gnu.org/wiki/DebugFissionDWP
9486
9487 To simplify handling of both DWO files ("object" files with the DWARF info)
9488 and DWP files (a file with the DWOs packaged up into one file), we treat
9489 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9490
9491static hashval_t
9492hash_dwo_file (const void *item)
9493{
9a3c8263 9494 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 9495 hashval_t hash;
3019eac3 9496
a2ce51a0
DE
9497 hash = htab_hash_string (dwo_file->dwo_name);
9498 if (dwo_file->comp_dir != NULL)
9499 hash += htab_hash_string (dwo_file->comp_dir);
9500 return hash;
3019eac3
DE
9501}
9502
9503static int
9504eq_dwo_file (const void *item_lhs, const void *item_rhs)
9505{
9a3c8263
SM
9506 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9507 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 9508
a2ce51a0
DE
9509 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9510 return 0;
9511 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9512 return lhs->comp_dir == rhs->comp_dir;
9513 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9514}
9515
9516/* Allocate a hash table for DWO files. */
9517
9518static htab_t
9519allocate_dwo_file_hash_table (void)
9520{
9521 struct objfile *objfile = dwarf2_per_objfile->objfile;
9522
9523 return htab_create_alloc_ex (41,
9524 hash_dwo_file,
9525 eq_dwo_file,
9526 NULL,
9527 &objfile->objfile_obstack,
9528 hashtab_obstack_allocate,
9529 dummy_obstack_deallocate);
9530}
9531
80626a55
DE
9532/* Lookup DWO file DWO_NAME. */
9533
9534static void **
0ac5b59e 9535lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9536{
9537 struct dwo_file find_entry;
9538 void **slot;
9539
9540 if (dwarf2_per_objfile->dwo_files == NULL)
9541 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9542
9543 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9544 find_entry.dwo_name = dwo_name;
9545 find_entry.comp_dir = comp_dir;
80626a55
DE
9546 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9547
9548 return slot;
9549}
9550
3019eac3
DE
9551static hashval_t
9552hash_dwo_unit (const void *item)
9553{
9a3c8263 9554 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
9555
9556 /* This drops the top 32 bits of the id, but is ok for a hash. */
9557 return dwo_unit->signature;
9558}
9559
9560static int
9561eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9562{
9a3c8263
SM
9563 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9564 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
9565
9566 /* The signature is assumed to be unique within the DWO file.
9567 So while object file CU dwo_id's always have the value zero,
9568 that's OK, assuming each object file DWO file has only one CU,
9569 and that's the rule for now. */
9570 return lhs->signature == rhs->signature;
9571}
9572
9573/* Allocate a hash table for DWO CUs,TUs.
9574 There is one of these tables for each of CUs,TUs for each DWO file. */
9575
9576static htab_t
9577allocate_dwo_unit_table (struct objfile *objfile)
9578{
9579 /* Start out with a pretty small number.
9580 Generally DWO files contain only one CU and maybe some TUs. */
9581 return htab_create_alloc_ex (3,
9582 hash_dwo_unit,
9583 eq_dwo_unit,
9584 NULL,
9585 &objfile->objfile_obstack,
9586 hashtab_obstack_allocate,
9587 dummy_obstack_deallocate);
9588}
9589
80626a55 9590/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9591
19c3d4c9 9592struct create_dwo_cu_data
3019eac3
DE
9593{
9594 struct dwo_file *dwo_file;
19c3d4c9 9595 struct dwo_unit dwo_unit;
3019eac3
DE
9596};
9597
19c3d4c9 9598/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9599
9600static void
19c3d4c9
DE
9601create_dwo_cu_reader (const struct die_reader_specs *reader,
9602 const gdb_byte *info_ptr,
9603 struct die_info *comp_unit_die,
9604 int has_children,
9605 void *datap)
3019eac3
DE
9606{
9607 struct dwarf2_cu *cu = reader->cu;
3019eac3 9608 sect_offset offset = cu->per_cu->offset;
8a0459fd 9609 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 9610 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 9611 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9612 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9613 struct attribute *attr;
3019eac3
DE
9614
9615 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9616 if (attr == NULL)
9617 {
19c3d4c9
DE
9618 complaint (&symfile_complaints,
9619 _("Dwarf Error: debug entry at offset 0x%x is missing"
9620 " its dwo_id [in module %s]"),
9621 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9622 return;
9623 }
9624
3019eac3
DE
9625 dwo_unit->dwo_file = dwo_file;
9626 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9627 dwo_unit->section = section;
3019eac3
DE
9628 dwo_unit->offset = offset;
9629 dwo_unit->length = cu->per_cu->length;
9630
b4f54984 9631 if (dwarf_read_debug)
4031ecc5
DE
9632 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9633 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9634}
9635
19c3d4c9
DE
9636/* Create the dwo_unit for the lone CU in DWO_FILE.
9637 Note: This function processes DWO files only, not DWP files. */
3019eac3 9638
19c3d4c9
DE
9639static struct dwo_unit *
9640create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9641{
9642 struct objfile *objfile = dwarf2_per_objfile->objfile;
9643 struct dwarf2_section_info *section = &dwo_file->sections.info;
d521ce57 9644 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9645 struct create_dwo_cu_data create_dwo_cu_data;
9646 struct dwo_unit *dwo_unit;
3019eac3
DE
9647
9648 dwarf2_read_section (objfile, section);
9649 info_ptr = section->buffer;
9650
9651 if (info_ptr == NULL)
9652 return NULL;
9653
b4f54984 9654 if (dwarf_read_debug)
19c3d4c9
DE
9655 {
9656 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9657 get_section_name (section),
9658 get_section_file_name (section));
19c3d4c9 9659 }
3019eac3 9660
19c3d4c9
DE
9661 create_dwo_cu_data.dwo_file = dwo_file;
9662 dwo_unit = NULL;
3019eac3
DE
9663
9664 end_ptr = info_ptr + section->size;
9665 while (info_ptr < end_ptr)
9666 {
9667 struct dwarf2_per_cu_data per_cu;
9668
19c3d4c9
DE
9669 memset (&create_dwo_cu_data.dwo_unit, 0,
9670 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9671 memset (&per_cu, 0, sizeof (per_cu));
9672 per_cu.objfile = objfile;
9673 per_cu.is_debug_types = 0;
9674 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9675 per_cu.section = section;
3019eac3 9676
33e80786 9677 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9678 create_dwo_cu_reader,
9679 &create_dwo_cu_data);
9680
9681 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9682 {
9683 /* If we've already found one, complain. We only support one
9684 because having more than one requires hacking the dwo_name of
9685 each to match, which is highly unlikely to happen. */
9686 if (dwo_unit != NULL)
9687 {
9688 complaint (&symfile_complaints,
9689 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9690 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9691 break;
9692 }
9693
9694 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9695 *dwo_unit = create_dwo_cu_data.dwo_unit;
9696 }
3019eac3
DE
9697
9698 info_ptr += per_cu.length;
9699 }
9700
19c3d4c9 9701 return dwo_unit;
3019eac3
DE
9702}
9703
80626a55
DE
9704/* DWP file .debug_{cu,tu}_index section format:
9705 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9706
d2415c6c
DE
9707 DWP Version 1:
9708
80626a55
DE
9709 Both index sections have the same format, and serve to map a 64-bit
9710 signature to a set of section numbers. Each section begins with a header,
9711 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9712 indexes, and a pool of 32-bit section numbers. The index sections will be
9713 aligned at 8-byte boundaries in the file.
9714
d2415c6c
DE
9715 The index section header consists of:
9716
9717 V, 32 bit version number
9718 -, 32 bits unused
9719 N, 32 bit number of compilation units or type units in the index
9720 M, 32 bit number of slots in the hash table
80626a55 9721
d2415c6c 9722 Numbers are recorded using the byte order of the application binary.
80626a55 9723
d2415c6c
DE
9724 The hash table begins at offset 16 in the section, and consists of an array
9725 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9726 order of the application binary). Unused slots in the hash table are 0.
9727 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9728
d2415c6c
DE
9729 The parallel table begins immediately after the hash table
9730 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9731 array of 32-bit indexes (using the byte order of the application binary),
9732 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9733 table contains a 32-bit index into the pool of section numbers. For unused
9734 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9735
73869dc2
DE
9736 The pool of section numbers begins immediately following the hash table
9737 (at offset 16 + 12 * M from the beginning of the section). The pool of
9738 section numbers consists of an array of 32-bit words (using the byte order
9739 of the application binary). Each item in the array is indexed starting
9740 from 0. The hash table entry provides the index of the first section
9741 number in the set. Additional section numbers in the set follow, and the
9742 set is terminated by a 0 entry (section number 0 is not used in ELF).
9743
9744 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9745 section must be the first entry in the set, and the .debug_abbrev.dwo must
9746 be the second entry. Other members of the set may follow in any order.
9747
9748 ---
9749
9750 DWP Version 2:
9751
9752 DWP Version 2 combines all the .debug_info, etc. sections into one,
9753 and the entries in the index tables are now offsets into these sections.
9754 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9755 section.
9756
9757 Index Section Contents:
9758 Header
9759 Hash Table of Signatures dwp_hash_table.hash_table
9760 Parallel Table of Indices dwp_hash_table.unit_table
9761 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9762 Table of Section Sizes dwp_hash_table.v2.sizes
9763
9764 The index section header consists of:
9765
9766 V, 32 bit version number
9767 L, 32 bit number of columns in the table of section offsets
9768 N, 32 bit number of compilation units or type units in the index
9769 M, 32 bit number of slots in the hash table
9770
9771 Numbers are recorded using the byte order of the application binary.
9772
9773 The hash table has the same format as version 1.
9774 The parallel table of indices has the same format as version 1,
9775 except that the entries are origin-1 indices into the table of sections
9776 offsets and the table of section sizes.
9777
9778 The table of offsets begins immediately following the parallel table
9779 (at offset 16 + 12 * M from the beginning of the section). The table is
9780 a two-dimensional array of 32-bit words (using the byte order of the
9781 application binary), with L columns and N+1 rows, in row-major order.
9782 Each row in the array is indexed starting from 0. The first row provides
9783 a key to the remaining rows: each column in this row provides an identifier
9784 for a debug section, and the offsets in the same column of subsequent rows
9785 refer to that section. The section identifiers are:
9786
9787 DW_SECT_INFO 1 .debug_info.dwo
9788 DW_SECT_TYPES 2 .debug_types.dwo
9789 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9790 DW_SECT_LINE 4 .debug_line.dwo
9791 DW_SECT_LOC 5 .debug_loc.dwo
9792 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9793 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9794 DW_SECT_MACRO 8 .debug_macro.dwo
9795
9796 The offsets provided by the CU and TU index sections are the base offsets
9797 for the contributions made by each CU or TU to the corresponding section
9798 in the package file. Each CU and TU header contains an abbrev_offset
9799 field, used to find the abbreviations table for that CU or TU within the
9800 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9801 be interpreted as relative to the base offset given in the index section.
9802 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9803 should be interpreted as relative to the base offset for .debug_line.dwo,
9804 and offsets into other debug sections obtained from DWARF attributes should
9805 also be interpreted as relative to the corresponding base offset.
9806
9807 The table of sizes begins immediately following the table of offsets.
9808 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9809 with L columns and N rows, in row-major order. Each row in the array is
9810 indexed starting from 1 (row 0 is shared by the two tables).
9811
9812 ---
9813
9814 Hash table lookup is handled the same in version 1 and 2:
9815
9816 We assume that N and M will not exceed 2^32 - 1.
9817 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9818
d2415c6c
DE
9819 Given a 64-bit compilation unit signature or a type signature S, an entry
9820 in the hash table is located as follows:
80626a55 9821
d2415c6c
DE
9822 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9823 the low-order k bits all set to 1.
80626a55 9824
d2415c6c 9825 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9826
d2415c6c
DE
9827 3) If the hash table entry at index H matches the signature, use that
9828 entry. If the hash table entry at index H is unused (all zeroes),
9829 terminate the search: the signature is not present in the table.
80626a55 9830
d2415c6c 9831 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9832
d2415c6c 9833 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9834 to stop at an unused slot or find the match. */
80626a55
DE
9835
9836/* Create a hash table to map DWO IDs to their CU/TU entry in
9837 .debug_{info,types}.dwo in DWP_FILE.
9838 Returns NULL if there isn't one.
9839 Note: This function processes DWP files only, not DWO files. */
9840
9841static struct dwp_hash_table *
9842create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9843{
9844 struct objfile *objfile = dwarf2_per_objfile->objfile;
9845 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9846 const gdb_byte *index_ptr, *index_end;
80626a55 9847 struct dwarf2_section_info *index;
73869dc2 9848 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9849 struct dwp_hash_table *htab;
9850
9851 if (is_debug_types)
9852 index = &dwp_file->sections.tu_index;
9853 else
9854 index = &dwp_file->sections.cu_index;
9855
9856 if (dwarf2_section_empty_p (index))
9857 return NULL;
9858 dwarf2_read_section (objfile, index);
9859
9860 index_ptr = index->buffer;
9861 index_end = index_ptr + index->size;
9862
9863 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9864 index_ptr += 4;
9865 if (version == 2)
9866 nr_columns = read_4_bytes (dbfd, index_ptr);
9867 else
9868 nr_columns = 0;
9869 index_ptr += 4;
80626a55
DE
9870 nr_units = read_4_bytes (dbfd, index_ptr);
9871 index_ptr += 4;
9872 nr_slots = read_4_bytes (dbfd, index_ptr);
9873 index_ptr += 4;
9874
73869dc2 9875 if (version != 1 && version != 2)
80626a55 9876 {
21aa081e 9877 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9878 " [in module %s]"),
21aa081e 9879 pulongest (version), dwp_file->name);
80626a55
DE
9880 }
9881 if (nr_slots != (nr_slots & -nr_slots))
9882 {
21aa081e 9883 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9884 " is not power of 2 [in module %s]"),
21aa081e 9885 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9886 }
9887
9888 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9889 htab->version = version;
9890 htab->nr_columns = nr_columns;
80626a55
DE
9891 htab->nr_units = nr_units;
9892 htab->nr_slots = nr_slots;
9893 htab->hash_table = index_ptr;
9894 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9895
9896 /* Exit early if the table is empty. */
9897 if (nr_slots == 0 || nr_units == 0
9898 || (version == 2 && nr_columns == 0))
9899 {
9900 /* All must be zero. */
9901 if (nr_slots != 0 || nr_units != 0
9902 || (version == 2 && nr_columns != 0))
9903 {
9904 complaint (&symfile_complaints,
9905 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9906 " all zero [in modules %s]"),
9907 dwp_file->name);
9908 }
9909 return htab;
9910 }
9911
9912 if (version == 1)
9913 {
9914 htab->section_pool.v1.indices =
9915 htab->unit_table + sizeof (uint32_t) * nr_slots;
9916 /* It's harder to decide whether the section is too small in v1.
9917 V1 is deprecated anyway so we punt. */
9918 }
9919 else
9920 {
9921 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9922 int *ids = htab->section_pool.v2.section_ids;
9923 /* Reverse map for error checking. */
9924 int ids_seen[DW_SECT_MAX + 1];
9925 int i;
9926
9927 if (nr_columns < 2)
9928 {
9929 error (_("Dwarf Error: bad DWP hash table, too few columns"
9930 " in section table [in module %s]"),
9931 dwp_file->name);
9932 }
9933 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9934 {
9935 error (_("Dwarf Error: bad DWP hash table, too many columns"
9936 " in section table [in module %s]"),
9937 dwp_file->name);
9938 }
9939 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9940 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9941 for (i = 0; i < nr_columns; ++i)
9942 {
9943 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9944
9945 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9946 {
9947 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9948 " in section table [in module %s]"),
9949 id, dwp_file->name);
9950 }
9951 if (ids_seen[id] != -1)
9952 {
9953 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9954 " id %d in section table [in module %s]"),
9955 id, dwp_file->name);
9956 }
9957 ids_seen[id] = i;
9958 ids[i] = id;
9959 }
9960 /* Must have exactly one info or types section. */
9961 if (((ids_seen[DW_SECT_INFO] != -1)
9962 + (ids_seen[DW_SECT_TYPES] != -1))
9963 != 1)
9964 {
9965 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9966 " DWO info/types section [in module %s]"),
9967 dwp_file->name);
9968 }
9969 /* Must have an abbrev section. */
9970 if (ids_seen[DW_SECT_ABBREV] == -1)
9971 {
9972 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9973 " section [in module %s]"),
9974 dwp_file->name);
9975 }
9976 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9977 htab->section_pool.v2.sizes =
9978 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9979 * nr_units * nr_columns);
9980 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9981 * nr_units * nr_columns))
9982 > index_end)
9983 {
9984 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9985 " [in module %s]"),
9986 dwp_file->name);
9987 }
9988 }
80626a55
DE
9989
9990 return htab;
9991}
9992
9993/* Update SECTIONS with the data from SECTP.
9994
9995 This function is like the other "locate" section routines that are
9996 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9997 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9998
9999 The result is non-zero for success, or zero if an error was found. */
10000
10001static int
73869dc2
DE
10002locate_v1_virtual_dwo_sections (asection *sectp,
10003 struct virtual_v1_dwo_sections *sections)
80626a55
DE
10004{
10005 const struct dwop_section_names *names = &dwop_section_names;
10006
10007 if (section_is_p (sectp->name, &names->abbrev_dwo))
10008 {
10009 /* There can be only one. */
049412e3 10010 if (sections->abbrev.s.section != NULL)
80626a55 10011 return 0;
049412e3 10012 sections->abbrev.s.section = sectp;
80626a55
DE
10013 sections->abbrev.size = bfd_get_section_size (sectp);
10014 }
10015 else if (section_is_p (sectp->name, &names->info_dwo)
10016 || section_is_p (sectp->name, &names->types_dwo))
10017 {
10018 /* There can be only one. */
049412e3 10019 if (sections->info_or_types.s.section != NULL)
80626a55 10020 return 0;
049412e3 10021 sections->info_or_types.s.section = sectp;
80626a55
DE
10022 sections->info_or_types.size = bfd_get_section_size (sectp);
10023 }
10024 else if (section_is_p (sectp->name, &names->line_dwo))
10025 {
10026 /* There can be only one. */
049412e3 10027 if (sections->line.s.section != NULL)
80626a55 10028 return 0;
049412e3 10029 sections->line.s.section = sectp;
80626a55
DE
10030 sections->line.size = bfd_get_section_size (sectp);
10031 }
10032 else if (section_is_p (sectp->name, &names->loc_dwo))
10033 {
10034 /* There can be only one. */
049412e3 10035 if (sections->loc.s.section != NULL)
80626a55 10036 return 0;
049412e3 10037 sections->loc.s.section = sectp;
80626a55
DE
10038 sections->loc.size = bfd_get_section_size (sectp);
10039 }
10040 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10041 {
10042 /* There can be only one. */
049412e3 10043 if (sections->macinfo.s.section != NULL)
80626a55 10044 return 0;
049412e3 10045 sections->macinfo.s.section = sectp;
80626a55
DE
10046 sections->macinfo.size = bfd_get_section_size (sectp);
10047 }
10048 else if (section_is_p (sectp->name, &names->macro_dwo))
10049 {
10050 /* There can be only one. */
049412e3 10051 if (sections->macro.s.section != NULL)
80626a55 10052 return 0;
049412e3 10053 sections->macro.s.section = sectp;
80626a55
DE
10054 sections->macro.size = bfd_get_section_size (sectp);
10055 }
10056 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10057 {
10058 /* There can be only one. */
049412e3 10059 if (sections->str_offsets.s.section != NULL)
80626a55 10060 return 0;
049412e3 10061 sections->str_offsets.s.section = sectp;
80626a55
DE
10062 sections->str_offsets.size = bfd_get_section_size (sectp);
10063 }
10064 else
10065 {
10066 /* No other kind of section is valid. */
10067 return 0;
10068 }
10069
10070 return 1;
10071}
10072
73869dc2
DE
10073/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10074 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10075 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10076 This is for DWP version 1 files. */
80626a55
DE
10077
10078static struct dwo_unit *
73869dc2
DE
10079create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10080 uint32_t unit_index,
10081 const char *comp_dir,
10082 ULONGEST signature, int is_debug_types)
80626a55
DE
10083{
10084 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10085 const struct dwp_hash_table *dwp_htab =
10086 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10087 bfd *dbfd = dwp_file->dbfd;
10088 const char *kind = is_debug_types ? "TU" : "CU";
10089 struct dwo_file *dwo_file;
10090 struct dwo_unit *dwo_unit;
73869dc2 10091 struct virtual_v1_dwo_sections sections;
80626a55
DE
10092 void **dwo_file_slot;
10093 char *virtual_dwo_name;
80626a55
DE
10094 struct cleanup *cleanups;
10095 int i;
10096
73869dc2
DE
10097 gdb_assert (dwp_file->version == 1);
10098
b4f54984 10099 if (dwarf_read_debug)
80626a55 10100 {
73869dc2 10101 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10102 kind,
73869dc2 10103 pulongest (unit_index), hex_string (signature),
80626a55
DE
10104 dwp_file->name);
10105 }
10106
19ac8c2e 10107 /* Fetch the sections of this DWO unit.
80626a55
DE
10108 Put a limit on the number of sections we look for so that bad data
10109 doesn't cause us to loop forever. */
10110
73869dc2 10111#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10112 (1 /* .debug_info or .debug_types */ \
10113 + 1 /* .debug_abbrev */ \
10114 + 1 /* .debug_line */ \
10115 + 1 /* .debug_loc */ \
10116 + 1 /* .debug_str_offsets */ \
19ac8c2e 10117 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10118 + 1 /* trailing zero */)
10119
10120 memset (&sections, 0, sizeof (sections));
10121 cleanups = make_cleanup (null_cleanup, 0);
10122
73869dc2 10123 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10124 {
10125 asection *sectp;
10126 uint32_t section_nr =
10127 read_4_bytes (dbfd,
73869dc2
DE
10128 dwp_htab->section_pool.v1.indices
10129 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10130
10131 if (section_nr == 0)
10132 break;
10133 if (section_nr >= dwp_file->num_sections)
10134 {
10135 error (_("Dwarf Error: bad DWP hash table, section number too large"
10136 " [in module %s]"),
10137 dwp_file->name);
10138 }
10139
10140 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10141 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10142 {
10143 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10144 " [in module %s]"),
10145 dwp_file->name);
10146 }
10147 }
10148
10149 if (i < 2
a32a8923
DE
10150 || dwarf2_section_empty_p (&sections.info_or_types)
10151 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10152 {
10153 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10154 " [in module %s]"),
10155 dwp_file->name);
10156 }
73869dc2 10157 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10158 {
10159 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10160 " [in module %s]"),
10161 dwp_file->name);
10162 }
10163
10164 /* It's easier for the rest of the code if we fake a struct dwo_file and
10165 have dwo_unit "live" in that. At least for now.
10166
10167 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10168 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10169 file, we can combine them back into a virtual DWO file to save space
10170 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10171 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10172
2792b94d
PM
10173 virtual_dwo_name =
10174 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10175 get_section_id (&sections.abbrev),
10176 get_section_id (&sections.line),
10177 get_section_id (&sections.loc),
10178 get_section_id (&sections.str_offsets));
80626a55
DE
10179 make_cleanup (xfree, virtual_dwo_name);
10180 /* Can we use an existing virtual DWO file? */
0ac5b59e 10181 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10182 /* Create one if necessary. */
10183 if (*dwo_file_slot == NULL)
10184 {
b4f54984 10185 if (dwarf_read_debug)
80626a55
DE
10186 {
10187 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10188 virtual_dwo_name);
10189 }
10190 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10191 dwo_file->dwo_name
10192 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10193 virtual_dwo_name,
10194 strlen (virtual_dwo_name));
0ac5b59e 10195 dwo_file->comp_dir = comp_dir;
80626a55
DE
10196 dwo_file->sections.abbrev = sections.abbrev;
10197 dwo_file->sections.line = sections.line;
10198 dwo_file->sections.loc = sections.loc;
10199 dwo_file->sections.macinfo = sections.macinfo;
10200 dwo_file->sections.macro = sections.macro;
10201 dwo_file->sections.str_offsets = sections.str_offsets;
10202 /* The "str" section is global to the entire DWP file. */
10203 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10204 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10205 there's no need to record it in dwo_file.
10206 Also, we can't simply record type sections in dwo_file because
10207 we record a pointer into the vector in dwo_unit. As we collect more
10208 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10209 for it, invalidating all copies of pointers into the previous
10210 contents. */
80626a55
DE
10211 *dwo_file_slot = dwo_file;
10212 }
10213 else
10214 {
b4f54984 10215 if (dwarf_read_debug)
80626a55
DE
10216 {
10217 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10218 virtual_dwo_name);
10219 }
9a3c8263 10220 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55
DE
10221 }
10222 do_cleanups (cleanups);
10223
10224 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10225 dwo_unit->dwo_file = dwo_file;
10226 dwo_unit->signature = signature;
8d749320
SM
10227 dwo_unit->section =
10228 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 10229 *dwo_unit->section = sections.info_or_types;
57d63ce2 10230 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10231
10232 return dwo_unit;
10233}
10234
73869dc2
DE
10235/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10236 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10237 piece within that section used by a TU/CU, return a virtual section
10238 of just that piece. */
10239
10240static struct dwarf2_section_info
10241create_dwp_v2_section (struct dwarf2_section_info *section,
10242 bfd_size_type offset, bfd_size_type size)
10243{
10244 struct dwarf2_section_info result;
10245 asection *sectp;
10246
10247 gdb_assert (section != NULL);
10248 gdb_assert (!section->is_virtual);
10249
10250 memset (&result, 0, sizeof (result));
10251 result.s.containing_section = section;
10252 result.is_virtual = 1;
10253
10254 if (size == 0)
10255 return result;
10256
10257 sectp = get_section_bfd_section (section);
10258
10259 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10260 bounds of the real section. This is a pretty-rare event, so just
10261 flag an error (easier) instead of a warning and trying to cope. */
10262 if (sectp == NULL
10263 || offset + size > bfd_get_section_size (sectp))
10264 {
10265 bfd *abfd = sectp->owner;
10266
10267 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10268 " in section %s [in module %s]"),
10269 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10270 objfile_name (dwarf2_per_objfile->objfile));
10271 }
10272
10273 result.virtual_offset = offset;
10274 result.size = size;
10275 return result;
10276}
10277
10278/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10279 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10280 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10281 This is for DWP version 2 files. */
10282
10283static struct dwo_unit *
10284create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10285 uint32_t unit_index,
10286 const char *comp_dir,
10287 ULONGEST signature, int is_debug_types)
10288{
10289 struct objfile *objfile = dwarf2_per_objfile->objfile;
10290 const struct dwp_hash_table *dwp_htab =
10291 is_debug_types ? dwp_file->tus : dwp_file->cus;
10292 bfd *dbfd = dwp_file->dbfd;
10293 const char *kind = is_debug_types ? "TU" : "CU";
10294 struct dwo_file *dwo_file;
10295 struct dwo_unit *dwo_unit;
10296 struct virtual_v2_dwo_sections sections;
10297 void **dwo_file_slot;
10298 char *virtual_dwo_name;
73869dc2
DE
10299 struct cleanup *cleanups;
10300 int i;
10301
10302 gdb_assert (dwp_file->version == 2);
10303
b4f54984 10304 if (dwarf_read_debug)
73869dc2
DE
10305 {
10306 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10307 kind,
10308 pulongest (unit_index), hex_string (signature),
10309 dwp_file->name);
10310 }
10311
10312 /* Fetch the section offsets of this DWO unit. */
10313
10314 memset (&sections, 0, sizeof (sections));
10315 cleanups = make_cleanup (null_cleanup, 0);
10316
10317 for (i = 0; i < dwp_htab->nr_columns; ++i)
10318 {
10319 uint32_t offset = read_4_bytes (dbfd,
10320 dwp_htab->section_pool.v2.offsets
10321 + (((unit_index - 1) * dwp_htab->nr_columns
10322 + i)
10323 * sizeof (uint32_t)));
10324 uint32_t size = read_4_bytes (dbfd,
10325 dwp_htab->section_pool.v2.sizes
10326 + (((unit_index - 1) * dwp_htab->nr_columns
10327 + i)
10328 * sizeof (uint32_t)));
10329
10330 switch (dwp_htab->section_pool.v2.section_ids[i])
10331 {
10332 case DW_SECT_INFO:
10333 case DW_SECT_TYPES:
10334 sections.info_or_types_offset = offset;
10335 sections.info_or_types_size = size;
10336 break;
10337 case DW_SECT_ABBREV:
10338 sections.abbrev_offset = offset;
10339 sections.abbrev_size = size;
10340 break;
10341 case DW_SECT_LINE:
10342 sections.line_offset = offset;
10343 sections.line_size = size;
10344 break;
10345 case DW_SECT_LOC:
10346 sections.loc_offset = offset;
10347 sections.loc_size = size;
10348 break;
10349 case DW_SECT_STR_OFFSETS:
10350 sections.str_offsets_offset = offset;
10351 sections.str_offsets_size = size;
10352 break;
10353 case DW_SECT_MACINFO:
10354 sections.macinfo_offset = offset;
10355 sections.macinfo_size = size;
10356 break;
10357 case DW_SECT_MACRO:
10358 sections.macro_offset = offset;
10359 sections.macro_size = size;
10360 break;
10361 }
10362 }
10363
10364 /* It's easier for the rest of the code if we fake a struct dwo_file and
10365 have dwo_unit "live" in that. At least for now.
10366
10367 The DWP file can be made up of a random collection of CUs and TUs.
10368 However, for each CU + set of TUs that came from the same original DWO
10369 file, we can combine them back into a virtual DWO file to save space
10370 (fewer struct dwo_file objects to allocate). Remember that for really
10371 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10372
10373 virtual_dwo_name =
10374 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10375 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10376 (long) (sections.line_size ? sections.line_offset : 0),
10377 (long) (sections.loc_size ? sections.loc_offset : 0),
10378 (long) (sections.str_offsets_size
10379 ? sections.str_offsets_offset : 0));
10380 make_cleanup (xfree, virtual_dwo_name);
10381 /* Can we use an existing virtual DWO file? */
10382 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10383 /* Create one if necessary. */
10384 if (*dwo_file_slot == NULL)
10385 {
b4f54984 10386 if (dwarf_read_debug)
73869dc2
DE
10387 {
10388 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10389 virtual_dwo_name);
10390 }
10391 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10392 dwo_file->dwo_name
10393 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10394 virtual_dwo_name,
10395 strlen (virtual_dwo_name));
73869dc2
DE
10396 dwo_file->comp_dir = comp_dir;
10397 dwo_file->sections.abbrev =
10398 create_dwp_v2_section (&dwp_file->sections.abbrev,
10399 sections.abbrev_offset, sections.abbrev_size);
10400 dwo_file->sections.line =
10401 create_dwp_v2_section (&dwp_file->sections.line,
10402 sections.line_offset, sections.line_size);
10403 dwo_file->sections.loc =
10404 create_dwp_v2_section (&dwp_file->sections.loc,
10405 sections.loc_offset, sections.loc_size);
10406 dwo_file->sections.macinfo =
10407 create_dwp_v2_section (&dwp_file->sections.macinfo,
10408 sections.macinfo_offset, sections.macinfo_size);
10409 dwo_file->sections.macro =
10410 create_dwp_v2_section (&dwp_file->sections.macro,
10411 sections.macro_offset, sections.macro_size);
10412 dwo_file->sections.str_offsets =
10413 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10414 sections.str_offsets_offset,
10415 sections.str_offsets_size);
10416 /* The "str" section is global to the entire DWP file. */
10417 dwo_file->sections.str = dwp_file->sections.str;
10418 /* The info or types section is assigned below to dwo_unit,
10419 there's no need to record it in dwo_file.
10420 Also, we can't simply record type sections in dwo_file because
10421 we record a pointer into the vector in dwo_unit. As we collect more
10422 types we'll grow the vector and eventually have to reallocate space
10423 for it, invalidating all copies of pointers into the previous
10424 contents. */
10425 *dwo_file_slot = dwo_file;
10426 }
10427 else
10428 {
b4f54984 10429 if (dwarf_read_debug)
73869dc2
DE
10430 {
10431 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10432 virtual_dwo_name);
10433 }
9a3c8263 10434 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2
DE
10435 }
10436 do_cleanups (cleanups);
10437
10438 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10439 dwo_unit->dwo_file = dwo_file;
10440 dwo_unit->signature = signature;
8d749320
SM
10441 dwo_unit->section =
10442 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
73869dc2
DE
10443 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10444 ? &dwp_file->sections.types
10445 : &dwp_file->sections.info,
10446 sections.info_or_types_offset,
10447 sections.info_or_types_size);
10448 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10449
10450 return dwo_unit;
10451}
10452
57d63ce2
DE
10453/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10454 Returns NULL if the signature isn't found. */
80626a55
DE
10455
10456static struct dwo_unit *
57d63ce2
DE
10457lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10458 ULONGEST signature, int is_debug_types)
80626a55 10459{
57d63ce2
DE
10460 const struct dwp_hash_table *dwp_htab =
10461 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10462 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10463 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10464 uint32_t hash = signature & mask;
10465 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10466 unsigned int i;
10467 void **slot;
870f88f7 10468 struct dwo_unit find_dwo_cu;
80626a55
DE
10469
10470 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10471 find_dwo_cu.signature = signature;
19ac8c2e
DE
10472 slot = htab_find_slot (is_debug_types
10473 ? dwp_file->loaded_tus
10474 : dwp_file->loaded_cus,
10475 &find_dwo_cu, INSERT);
80626a55
DE
10476
10477 if (*slot != NULL)
9a3c8263 10478 return (struct dwo_unit *) *slot;
80626a55
DE
10479
10480 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10481 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10482 {
10483 ULONGEST signature_in_table;
10484
10485 signature_in_table =
57d63ce2 10486 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10487 if (signature_in_table == signature)
10488 {
57d63ce2
DE
10489 uint32_t unit_index =
10490 read_4_bytes (dbfd,
10491 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10492
73869dc2
DE
10493 if (dwp_file->version == 1)
10494 {
10495 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10496 comp_dir, signature,
10497 is_debug_types);
10498 }
10499 else
10500 {
10501 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10502 comp_dir, signature,
10503 is_debug_types);
10504 }
9a3c8263 10505 return (struct dwo_unit *) *slot;
80626a55
DE
10506 }
10507 if (signature_in_table == 0)
10508 return NULL;
10509 hash = (hash + hash2) & mask;
10510 }
10511
10512 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10513 " [in module %s]"),
10514 dwp_file->name);
10515}
10516
ab5088bf 10517/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10518 Open the file specified by FILE_NAME and hand it off to BFD for
10519 preliminary analysis. Return a newly initialized bfd *, which
10520 includes a canonicalized copy of FILE_NAME.
80626a55 10521 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10522 SEARCH_CWD is true if the current directory is to be searched.
10523 It will be searched before debug-file-directory.
13aaf454
DE
10524 If successful, the file is added to the bfd include table of the
10525 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10526 If unable to find/open the file, return NULL.
3019eac3
DE
10527 NOTE: This function is derived from symfile_bfd_open. */
10528
192b62ce 10529static gdb_bfd_ref_ptr
6ac97d4c 10530try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3 10531{
80626a55 10532 int desc, flags;
3019eac3 10533 char *absolute_name;
9c02c129
DE
10534 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10535 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10536 to debug_file_directory. */
10537 char *search_path;
10538 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10539
6ac97d4c
DE
10540 if (search_cwd)
10541 {
10542 if (*debug_file_directory != '\0')
10543 search_path = concat (".", dirname_separator_string,
b36cec19 10544 debug_file_directory, (char *) NULL);
6ac97d4c
DE
10545 else
10546 search_path = xstrdup (".");
10547 }
9c02c129 10548 else
6ac97d4c 10549 search_path = xstrdup (debug_file_directory);
3019eac3 10550
492c0ab7 10551 flags = OPF_RETURN_REALPATH;
80626a55
DE
10552 if (is_dwp)
10553 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10554 desc = openp (search_path, flags, file_name,
3019eac3 10555 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10556 xfree (search_path);
3019eac3
DE
10557 if (desc < 0)
10558 return NULL;
10559
192b62ce 10560 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
a4453b7e 10561 xfree (absolute_name);
9c02c129
DE
10562 if (sym_bfd == NULL)
10563 return NULL;
192b62ce 10564 bfd_set_cacheable (sym_bfd.get (), 1);
3019eac3 10565
192b62ce
TT
10566 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10567 return NULL;
3019eac3 10568
13aaf454
DE
10569 /* Success. Record the bfd as having been included by the objfile's bfd.
10570 This is important because things like demangled_names_hash lives in the
10571 objfile's per_bfd space and may have references to things like symbol
10572 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
192b62ce 10573 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
13aaf454 10574
3019eac3
DE
10575 return sym_bfd;
10576}
10577
ab5088bf 10578/* Try to open DWO file FILE_NAME.
3019eac3
DE
10579 COMP_DIR is the DW_AT_comp_dir attribute.
10580 The result is the bfd handle of the file.
10581 If there is a problem finding or opening the file, return NULL.
10582 Upon success, the canonicalized path of the file is stored in the bfd,
10583 same as symfile_bfd_open. */
10584
192b62ce 10585static gdb_bfd_ref_ptr
ab5088bf 10586open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3 10587{
80626a55 10588 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10589 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10590
10591 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10592
10593 if (comp_dir != NULL)
10594 {
b36cec19
PA
10595 char *path_to_try = concat (comp_dir, SLASH_STRING,
10596 file_name, (char *) NULL);
3019eac3
DE
10597
10598 /* NOTE: If comp_dir is a relative path, this will also try the
10599 search path, which seems useful. */
192b62ce
TT
10600 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10601 1 /*search_cwd*/));
3019eac3
DE
10602 xfree (path_to_try);
10603 if (abfd != NULL)
10604 return abfd;
10605 }
10606
10607 /* That didn't work, try debug-file-directory, which, despite its name,
10608 is a list of paths. */
10609
10610 if (*debug_file_directory == '\0')
10611 return NULL;
10612
6ac97d4c 10613 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10614}
10615
80626a55
DE
10616/* This function is mapped across the sections and remembers the offset and
10617 size of each of the DWO debugging sections we are interested in. */
10618
10619static void
10620dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10621{
9a3c8263 10622 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
10623 const struct dwop_section_names *names = &dwop_section_names;
10624
10625 if (section_is_p (sectp->name, &names->abbrev_dwo))
10626 {
049412e3 10627 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
10628 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10629 }
10630 else if (section_is_p (sectp->name, &names->info_dwo))
10631 {
049412e3 10632 dwo_sections->info.s.section = sectp;
80626a55
DE
10633 dwo_sections->info.size = bfd_get_section_size (sectp);
10634 }
10635 else if (section_is_p (sectp->name, &names->line_dwo))
10636 {
049412e3 10637 dwo_sections->line.s.section = sectp;
80626a55
DE
10638 dwo_sections->line.size = bfd_get_section_size (sectp);
10639 }
10640 else if (section_is_p (sectp->name, &names->loc_dwo))
10641 {
049412e3 10642 dwo_sections->loc.s.section = sectp;
80626a55
DE
10643 dwo_sections->loc.size = bfd_get_section_size (sectp);
10644 }
10645 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10646 {
049412e3 10647 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
10648 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10649 }
10650 else if (section_is_p (sectp->name, &names->macro_dwo))
10651 {
049412e3 10652 dwo_sections->macro.s.section = sectp;
80626a55
DE
10653 dwo_sections->macro.size = bfd_get_section_size (sectp);
10654 }
10655 else if (section_is_p (sectp->name, &names->str_dwo))
10656 {
049412e3 10657 dwo_sections->str.s.section = sectp;
80626a55
DE
10658 dwo_sections->str.size = bfd_get_section_size (sectp);
10659 }
10660 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10661 {
049412e3 10662 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
10663 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10664 }
10665 else if (section_is_p (sectp->name, &names->types_dwo))
10666 {
10667 struct dwarf2_section_info type_section;
10668
10669 memset (&type_section, 0, sizeof (type_section));
049412e3 10670 type_section.s.section = sectp;
80626a55
DE
10671 type_section.size = bfd_get_section_size (sectp);
10672 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10673 &type_section);
10674 }
10675}
10676
ab5088bf 10677/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10678 by PER_CU. This is for the non-DWP case.
80626a55 10679 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10680
10681static struct dwo_file *
0ac5b59e
DE
10682open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10683 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10684{
10685 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55 10686 struct dwo_file *dwo_file;
3019eac3
DE
10687 struct cleanup *cleanups;
10688
192b62ce 10689 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
80626a55
DE
10690 if (dbfd == NULL)
10691 {
b4f54984 10692 if (dwarf_read_debug)
80626a55
DE
10693 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10694 return NULL;
10695 }
10696 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10697 dwo_file->dwo_name = dwo_name;
10698 dwo_file->comp_dir = comp_dir;
192b62ce 10699 dwo_file->dbfd = dbfd.release ();
3019eac3
DE
10700
10701 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10702
192b62ce
TT
10703 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10704 &dwo_file->sections);
3019eac3 10705
19c3d4c9 10706 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3 10707
78d4d2c5
JK
10708 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10709 dwo_file->tus);
3019eac3
DE
10710
10711 discard_cleanups (cleanups);
10712
b4f54984 10713 if (dwarf_read_debug)
80626a55
DE
10714 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10715
3019eac3
DE
10716 return dwo_file;
10717}
10718
80626a55 10719/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10720 size of each of the DWP debugging sections common to version 1 and 2 that
10721 we are interested in. */
3019eac3 10722
80626a55 10723static void
73869dc2
DE
10724dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10725 void *dwp_file_ptr)
3019eac3 10726{
9a3c8263 10727 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
10728 const struct dwop_section_names *names = &dwop_section_names;
10729 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10730
80626a55 10731 /* Record the ELF section number for later lookup: this is what the
73869dc2 10732 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10733 gdb_assert (elf_section_nr < dwp_file->num_sections);
10734 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10735
80626a55
DE
10736 /* Look for specific sections that we need. */
10737 if (section_is_p (sectp->name, &names->str_dwo))
10738 {
049412e3 10739 dwp_file->sections.str.s.section = sectp;
80626a55
DE
10740 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10741 }
10742 else if (section_is_p (sectp->name, &names->cu_index))
10743 {
049412e3 10744 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
10745 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10746 }
10747 else if (section_is_p (sectp->name, &names->tu_index))
10748 {
049412e3 10749 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
10750 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10751 }
10752}
3019eac3 10753
73869dc2
DE
10754/* This function is mapped across the sections and remembers the offset and
10755 size of each of the DWP version 2 debugging sections that we are interested
10756 in. This is split into a separate function because we don't know if we
10757 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10758
10759static void
10760dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10761{
9a3c8263 10762 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
10763 const struct dwop_section_names *names = &dwop_section_names;
10764 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10765
10766 /* Record the ELF section number for later lookup: this is what the
10767 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10768 gdb_assert (elf_section_nr < dwp_file->num_sections);
10769 dwp_file->elf_sections[elf_section_nr] = sectp;
10770
10771 /* Look for specific sections that we need. */
10772 if (section_is_p (sectp->name, &names->abbrev_dwo))
10773 {
049412e3 10774 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
10775 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10776 }
10777 else if (section_is_p (sectp->name, &names->info_dwo))
10778 {
049412e3 10779 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
10780 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10781 }
10782 else if (section_is_p (sectp->name, &names->line_dwo))
10783 {
049412e3 10784 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
10785 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10786 }
10787 else if (section_is_p (sectp->name, &names->loc_dwo))
10788 {
049412e3 10789 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
10790 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10791 }
10792 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10793 {
049412e3 10794 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
10795 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10796 }
10797 else if (section_is_p (sectp->name, &names->macro_dwo))
10798 {
049412e3 10799 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
10800 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10801 }
10802 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10803 {
049412e3 10804 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
10805 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10806 }
10807 else if (section_is_p (sectp->name, &names->types_dwo))
10808 {
049412e3 10809 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
10810 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10811 }
10812}
10813
80626a55 10814/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10815
80626a55
DE
10816static hashval_t
10817hash_dwp_loaded_cutus (const void *item)
10818{
9a3c8263 10819 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 10820
80626a55
DE
10821 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10822 return dwo_unit->signature;
3019eac3
DE
10823}
10824
80626a55 10825/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10826
80626a55
DE
10827static int
10828eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10829{
9a3c8263
SM
10830 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10831 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 10832
80626a55
DE
10833 return dua->signature == dub->signature;
10834}
3019eac3 10835
80626a55 10836/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10837
80626a55
DE
10838static htab_t
10839allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10840{
10841 return htab_create_alloc_ex (3,
10842 hash_dwp_loaded_cutus,
10843 eq_dwp_loaded_cutus,
10844 NULL,
10845 &objfile->objfile_obstack,
10846 hashtab_obstack_allocate,
10847 dummy_obstack_deallocate);
10848}
3019eac3 10849
ab5088bf
DE
10850/* Try to open DWP file FILE_NAME.
10851 The result is the bfd handle of the file.
10852 If there is a problem finding or opening the file, return NULL.
10853 Upon success, the canonicalized path of the file is stored in the bfd,
10854 same as symfile_bfd_open. */
10855
192b62ce 10856static gdb_bfd_ref_ptr
ab5088bf
DE
10857open_dwp_file (const char *file_name)
10858{
192b62ce
TT
10859 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
10860 1 /*search_cwd*/));
6ac97d4c
DE
10861 if (abfd != NULL)
10862 return abfd;
10863
10864 /* Work around upstream bug 15652.
10865 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10866 [Whether that's a "bug" is debatable, but it is getting in our way.]
10867 We have no real idea where the dwp file is, because gdb's realpath-ing
10868 of the executable's path may have discarded the needed info.
10869 [IWBN if the dwp file name was recorded in the executable, akin to
10870 .gnu_debuglink, but that doesn't exist yet.]
10871 Strip the directory from FILE_NAME and search again. */
10872 if (*debug_file_directory != '\0')
10873 {
10874 /* Don't implicitly search the current directory here.
10875 If the user wants to search "." to handle this case,
10876 it must be added to debug-file-directory. */
10877 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10878 0 /*search_cwd*/);
10879 }
10880
10881 return NULL;
ab5088bf
DE
10882}
10883
80626a55
DE
10884/* Initialize the use of the DWP file for the current objfile.
10885 By convention the name of the DWP file is ${objfile}.dwp.
10886 The result is NULL if it can't be found. */
a766d390 10887
80626a55 10888static struct dwp_file *
ab5088bf 10889open_and_init_dwp_file (void)
80626a55
DE
10890{
10891 struct objfile *objfile = dwarf2_per_objfile->objfile;
10892 struct dwp_file *dwp_file;
10893 char *dwp_name;
6c447423 10894 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
80626a55 10895
82bf32bc
JK
10896 /* Try to find first .dwp for the binary file before any symbolic links
10897 resolving. */
6c447423
DE
10898
10899 /* If the objfile is a debug file, find the name of the real binary
10900 file and get the name of dwp file from there. */
10901 if (objfile->separate_debug_objfile_backlink != NULL)
10902 {
10903 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10904 const char *backlink_basename = lbasename (backlink->original_name);
10905 char *debug_dirname = ldirname (objfile->original_name);
10906
10907 make_cleanup (xfree, debug_dirname);
10908 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10909 SLASH_STRING, backlink_basename);
10910 }
10911 else
10912 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10913 make_cleanup (xfree, dwp_name);
80626a55 10914
192b62ce 10915 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name));
82bf32bc
JK
10916 if (dbfd == NULL
10917 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10918 {
10919 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10920 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10921 make_cleanup (xfree, dwp_name);
10922 dbfd = open_dwp_file (dwp_name);
10923 }
10924
80626a55
DE
10925 if (dbfd == NULL)
10926 {
b4f54984 10927 if (dwarf_read_debug)
80626a55
DE
10928 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10929 do_cleanups (cleanups);
10930 return NULL;
3019eac3 10931 }
80626a55 10932 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
192b62ce
TT
10933 dwp_file->name = bfd_get_filename (dbfd.get ());
10934 dwp_file->dbfd = dbfd.release ();
80626a55 10935 do_cleanups (cleanups);
c906108c 10936
80626a55 10937 /* +1: section 0 is unused */
192b62ce 10938 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
80626a55
DE
10939 dwp_file->elf_sections =
10940 OBSTACK_CALLOC (&objfile->objfile_obstack,
10941 dwp_file->num_sections, asection *);
10942
192b62ce
TT
10943 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
10944 dwp_file);
80626a55
DE
10945
10946 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10947
10948 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10949
73869dc2
DE
10950 /* The DWP file version is stored in the hash table. Oh well. */
10951 if (dwp_file->cus->version != dwp_file->tus->version)
10952 {
10953 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10954 pretty bizarre. We use pulongest here because that's the established
4d65956b 10955 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10956 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10957 " TU version %s [in DWP file %s]"),
10958 pulongest (dwp_file->cus->version),
10959 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10960 }
10961 dwp_file->version = dwp_file->cus->version;
10962
10963 if (dwp_file->version == 2)
192b62ce
TT
10964 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
10965 dwp_file);
73869dc2 10966
19ac8c2e
DE
10967 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10968 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10969
b4f54984 10970 if (dwarf_read_debug)
80626a55
DE
10971 {
10972 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10973 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10974 " %s CUs, %s TUs\n",
10975 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10976 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10977 }
10978
10979 return dwp_file;
3019eac3 10980}
c906108c 10981
ab5088bf
DE
10982/* Wrapper around open_and_init_dwp_file, only open it once. */
10983
10984static struct dwp_file *
10985get_dwp_file (void)
10986{
10987 if (! dwarf2_per_objfile->dwp_checked)
10988 {
10989 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10990 dwarf2_per_objfile->dwp_checked = 1;
10991 }
10992 return dwarf2_per_objfile->dwp_file;
10993}
10994
80626a55
DE
10995/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10996 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10997 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10998 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10999 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11000
11001 This is called, for example, when wanting to read a variable with a
11002 complex location. Therefore we don't want to do file i/o for every call.
11003 Therefore we don't want to look for a DWO file on every call.
11004 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11005 then we check if we've already seen DWO_NAME, and only THEN do we check
11006 for a DWO file.
11007
1c658ad5 11008 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 11009 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 11010
3019eac3 11011static struct dwo_unit *
80626a55
DE
11012lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11013 const char *dwo_name, const char *comp_dir,
11014 ULONGEST signature, int is_debug_types)
3019eac3
DE
11015{
11016 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
11017 const char *kind = is_debug_types ? "TU" : "CU";
11018 void **dwo_file_slot;
3019eac3 11019 struct dwo_file *dwo_file;
80626a55 11020 struct dwp_file *dwp_file;
cb1df416 11021
6a506a2d
DE
11022 /* First see if there's a DWP file.
11023 If we have a DWP file but didn't find the DWO inside it, don't
11024 look for the original DWO file. It makes gdb behave differently
11025 depending on whether one is debugging in the build tree. */
cf2c3c16 11026
ab5088bf 11027 dwp_file = get_dwp_file ();
80626a55 11028 if (dwp_file != NULL)
cf2c3c16 11029 {
80626a55
DE
11030 const struct dwp_hash_table *dwp_htab =
11031 is_debug_types ? dwp_file->tus : dwp_file->cus;
11032
11033 if (dwp_htab != NULL)
11034 {
11035 struct dwo_unit *dwo_cutu =
57d63ce2
DE
11036 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11037 signature, is_debug_types);
80626a55
DE
11038
11039 if (dwo_cutu != NULL)
11040 {
b4f54984 11041 if (dwarf_read_debug)
80626a55
DE
11042 {
11043 fprintf_unfiltered (gdb_stdlog,
11044 "Virtual DWO %s %s found: @%s\n",
11045 kind, hex_string (signature),
11046 host_address_to_string (dwo_cutu));
11047 }
11048 return dwo_cutu;
11049 }
11050 }
11051 }
6a506a2d 11052 else
80626a55 11053 {
6a506a2d 11054 /* No DWP file, look for the DWO file. */
80626a55 11055
6a506a2d
DE
11056 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11057 if (*dwo_file_slot == NULL)
80626a55 11058 {
6a506a2d
DE
11059 /* Read in the file and build a table of the CUs/TUs it contains. */
11060 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 11061 }
6a506a2d 11062 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 11063 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 11064
6a506a2d 11065 if (dwo_file != NULL)
19c3d4c9 11066 {
6a506a2d
DE
11067 struct dwo_unit *dwo_cutu = NULL;
11068
11069 if (is_debug_types && dwo_file->tus)
11070 {
11071 struct dwo_unit find_dwo_cutu;
11072
11073 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11074 find_dwo_cutu.signature = signature;
9a3c8263
SM
11075 dwo_cutu
11076 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d
DE
11077 }
11078 else if (!is_debug_types && dwo_file->cu)
80626a55 11079 {
6a506a2d
DE
11080 if (signature == dwo_file->cu->signature)
11081 dwo_cutu = dwo_file->cu;
11082 }
11083
11084 if (dwo_cutu != NULL)
11085 {
b4f54984 11086 if (dwarf_read_debug)
6a506a2d
DE
11087 {
11088 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11089 kind, dwo_name, hex_string (signature),
11090 host_address_to_string (dwo_cutu));
11091 }
11092 return dwo_cutu;
80626a55
DE
11093 }
11094 }
2e276125 11095 }
9cdd5dbd 11096
80626a55
DE
11097 /* We didn't find it. This could mean a dwo_id mismatch, or
11098 someone deleted the DWO/DWP file, or the search path isn't set up
11099 correctly to find the file. */
11100
b4f54984 11101 if (dwarf_read_debug)
80626a55
DE
11102 {
11103 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11104 kind, dwo_name, hex_string (signature));
11105 }
3019eac3 11106
6656a72d
DE
11107 /* This is a warning and not a complaint because it can be caused by
11108 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11109 {
11110 /* Print the name of the DWP file if we looked there, helps the user
11111 better diagnose the problem. */
11112 char *dwp_text = NULL;
11113 struct cleanup *cleanups;
11114
11115 if (dwp_file != NULL)
11116 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11117 cleanups = make_cleanup (xfree, dwp_text);
11118
11119 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11120 " [in module %s]"),
11121 kind, dwo_name, hex_string (signature),
11122 dwp_text != NULL ? dwp_text : "",
11123 this_unit->is_debug_types ? "TU" : "CU",
11124 this_unit->offset.sect_off, objfile_name (objfile));
11125
11126 do_cleanups (cleanups);
11127 }
3019eac3 11128 return NULL;
5fb290d7
DJ
11129}
11130
80626a55
DE
11131/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11132 See lookup_dwo_cutu_unit for details. */
11133
11134static struct dwo_unit *
11135lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11136 const char *dwo_name, const char *comp_dir,
11137 ULONGEST signature)
11138{
11139 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11140}
11141
11142/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11143 See lookup_dwo_cutu_unit for details. */
11144
11145static struct dwo_unit *
11146lookup_dwo_type_unit (struct signatured_type *this_tu,
11147 const char *dwo_name, const char *comp_dir)
11148{
11149 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11150}
11151
89e63ee4
DE
11152/* Traversal function for queue_and_load_all_dwo_tus. */
11153
11154static int
11155queue_and_load_dwo_tu (void **slot, void *info)
11156{
11157 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11158 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11159 ULONGEST signature = dwo_unit->signature;
11160 struct signatured_type *sig_type =
11161 lookup_dwo_signatured_type (per_cu->cu, signature);
11162
11163 if (sig_type != NULL)
11164 {
11165 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11166
11167 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11168 a real dependency of PER_CU on SIG_TYPE. That is detected later
11169 while processing PER_CU. */
11170 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11171 load_full_type_unit (sig_cu);
11172 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11173 }
11174
11175 return 1;
11176}
11177
11178/* Queue all TUs contained in the DWO of PER_CU to be read in.
11179 The DWO may have the only definition of the type, though it may not be
11180 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11181 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11182
11183static void
11184queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11185{
11186 struct dwo_unit *dwo_unit;
11187 struct dwo_file *dwo_file;
11188
11189 gdb_assert (!per_cu->is_debug_types);
11190 gdb_assert (get_dwp_file () == NULL);
11191 gdb_assert (per_cu->cu != NULL);
11192
11193 dwo_unit = per_cu->cu->dwo_unit;
11194 gdb_assert (dwo_unit != NULL);
11195
11196 dwo_file = dwo_unit->dwo_file;
11197 if (dwo_file->tus != NULL)
11198 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11199}
11200
3019eac3
DE
11201/* Free all resources associated with DWO_FILE.
11202 Close the DWO file and munmap the sections.
11203 All memory should be on the objfile obstack. */
348e048f
DE
11204
11205static void
3019eac3 11206free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11207{
348e048f 11208
5c6fa7ab 11209 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11210 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11211
3019eac3
DE
11212 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11213}
348e048f 11214
3019eac3 11215/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11216
3019eac3
DE
11217static void
11218free_dwo_file_cleanup (void *arg)
11219{
11220 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11221 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11222
3019eac3
DE
11223 free_dwo_file (dwo_file, objfile);
11224}
348e048f 11225
3019eac3 11226/* Traversal function for free_dwo_files. */
2ab95328 11227
3019eac3
DE
11228static int
11229free_dwo_file_from_slot (void **slot, void *info)
11230{
11231 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11232 struct objfile *objfile = (struct objfile *) info;
348e048f 11233
3019eac3 11234 free_dwo_file (dwo_file, objfile);
348e048f 11235
3019eac3
DE
11236 return 1;
11237}
348e048f 11238
3019eac3 11239/* Free all resources associated with DWO_FILES. */
348e048f 11240
3019eac3
DE
11241static void
11242free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11243{
11244 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11245}
3019eac3
DE
11246\f
11247/* Read in various DIEs. */
348e048f 11248
d389af10
JK
11249/* qsort helper for inherit_abstract_dies. */
11250
11251static int
11252unsigned_int_compar (const void *ap, const void *bp)
11253{
11254 unsigned int a = *(unsigned int *) ap;
11255 unsigned int b = *(unsigned int *) bp;
11256
11257 return (a > b) - (b > a);
11258}
11259
11260/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11261 Inherit only the children of the DW_AT_abstract_origin DIE not being
11262 already referenced by DW_AT_abstract_origin from the children of the
11263 current DIE. */
d389af10
JK
11264
11265static void
11266inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11267{
11268 struct die_info *child_die;
11269 unsigned die_children_count;
11270 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11271 sect_offset *offsets;
11272 sect_offset *offsets_end, *offsetp;
d389af10
JK
11273 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11274 struct die_info *origin_die;
11275 /* Iterator of the ORIGIN_DIE children. */
11276 struct die_info *origin_child_die;
11277 struct cleanup *cleanups;
11278 struct attribute *attr;
cd02d79d
PA
11279 struct dwarf2_cu *origin_cu;
11280 struct pending **origin_previous_list_in_scope;
d389af10
JK
11281
11282 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11283 if (!attr)
11284 return;
11285
cd02d79d
PA
11286 /* Note that following die references may follow to a die in a
11287 different cu. */
11288
11289 origin_cu = cu;
11290 origin_die = follow_die_ref (die, attr, &origin_cu);
11291
11292 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11293 symbols in. */
11294 origin_previous_list_in_scope = origin_cu->list_in_scope;
11295 origin_cu->list_in_scope = cu->list_in_scope;
11296
edb3359d
DJ
11297 if (die->tag != origin_die->tag
11298 && !(die->tag == DW_TAG_inlined_subroutine
11299 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11300 complaint (&symfile_complaints,
11301 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11302 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11303
11304 child_die = die->child;
11305 die_children_count = 0;
11306 while (child_die && child_die->tag)
11307 {
11308 child_die = sibling_die (child_die);
11309 die_children_count++;
11310 }
8d749320 11311 offsets = XNEWVEC (sect_offset, die_children_count);
d389af10
JK
11312 cleanups = make_cleanup (xfree, offsets);
11313
11314 offsets_end = offsets;
3ea89b92
PMR
11315 for (child_die = die->child;
11316 child_die && child_die->tag;
11317 child_die = sibling_die (child_die))
11318 {
11319 struct die_info *child_origin_die;
11320 struct dwarf2_cu *child_origin_cu;
11321
11322 /* We are trying to process concrete instance entries:
216f72a1 11323 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
3ea89b92
PMR
11324 it's not relevant to our analysis here. i.e. detecting DIEs that are
11325 present in the abstract instance but not referenced in the concrete
11326 one. */
216f72a1
JK
11327 if (child_die->tag == DW_TAG_call_site
11328 || child_die->tag == DW_TAG_GNU_call_site)
3ea89b92
PMR
11329 continue;
11330
c38f313d
DJ
11331 /* For each CHILD_DIE, find the corresponding child of
11332 ORIGIN_DIE. If there is more than one layer of
11333 DW_AT_abstract_origin, follow them all; there shouldn't be,
11334 but GCC versions at least through 4.4 generate this (GCC PR
11335 40573). */
3ea89b92
PMR
11336 child_origin_die = child_die;
11337 child_origin_cu = cu;
c38f313d
DJ
11338 while (1)
11339 {
cd02d79d
PA
11340 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11341 child_origin_cu);
c38f313d
DJ
11342 if (attr == NULL)
11343 break;
cd02d79d
PA
11344 child_origin_die = follow_die_ref (child_origin_die, attr,
11345 &child_origin_cu);
c38f313d
DJ
11346 }
11347
d389af10
JK
11348 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11349 counterpart may exist. */
c38f313d 11350 if (child_origin_die != child_die)
d389af10 11351 {
edb3359d
DJ
11352 if (child_die->tag != child_origin_die->tag
11353 && !(child_die->tag == DW_TAG_inlined_subroutine
11354 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11355 complaint (&symfile_complaints,
11356 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11357 "different tags"), child_die->offset.sect_off,
11358 child_origin_die->offset.sect_off);
c38f313d
DJ
11359 if (child_origin_die->parent != origin_die)
11360 complaint (&symfile_complaints,
11361 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11362 "different parents"), child_die->offset.sect_off,
11363 child_origin_die->offset.sect_off);
c38f313d
DJ
11364 else
11365 *offsets_end++ = child_origin_die->offset;
d389af10 11366 }
d389af10
JK
11367 }
11368 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11369 unsigned_int_compar);
11370 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11371 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11372 complaint (&symfile_complaints,
11373 _("Multiple children of DIE 0x%x refer "
11374 "to DIE 0x%x as their abstract origin"),
b64f50a1 11375 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11376
11377 offsetp = offsets;
11378 origin_child_die = origin_die->child;
11379 while (origin_child_die && origin_child_die->tag)
11380 {
11381 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11382 while (offsetp < offsets_end
11383 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11384 offsetp++;
b64f50a1
JK
11385 if (offsetp >= offsets_end
11386 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11387 {
adde2bff
DE
11388 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11389 Check whether we're already processing ORIGIN_CHILD_DIE.
11390 This can happen with mutually referenced abstract_origins.
11391 PR 16581. */
11392 if (!origin_child_die->in_process)
11393 process_die (origin_child_die, origin_cu);
d389af10
JK
11394 }
11395 origin_child_die = sibling_die (origin_child_die);
11396 }
cd02d79d 11397 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11398
11399 do_cleanups (cleanups);
11400}
11401
c906108c 11402static void
e7c27a73 11403read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11404{
e7c27a73 11405 struct objfile *objfile = cu->objfile;
3e29f34a 11406 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11407 struct context_stack *newobj;
c906108c
SS
11408 CORE_ADDR lowpc;
11409 CORE_ADDR highpc;
11410 struct die_info *child_die;
edb3359d 11411 struct attribute *attr, *call_line, *call_file;
15d034d0 11412 const char *name;
e142c38c 11413 CORE_ADDR baseaddr;
801e3a5b 11414 struct block *block;
edb3359d 11415 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11416 VEC (symbolp) *template_args = NULL;
11417 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11418
11419 if (inlined_func)
11420 {
11421 /* If we do not have call site information, we can't show the
11422 caller of this inlined function. That's too confusing, so
11423 only use the scope for local variables. */
11424 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11425 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11426 if (call_line == NULL || call_file == NULL)
11427 {
11428 read_lexical_block_scope (die, cu);
11429 return;
11430 }
11431 }
c906108c 11432
e142c38c
DJ
11433 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11434
94af9270 11435 name = dwarf2_name (die, cu);
c906108c 11436
e8d05480
JB
11437 /* Ignore functions with missing or empty names. These are actually
11438 illegal according to the DWARF standard. */
11439 if (name == NULL)
11440 {
11441 complaint (&symfile_complaints,
b64f50a1
JK
11442 _("missing name for subprogram DIE at %d"),
11443 die->offset.sect_off);
e8d05480
JB
11444 return;
11445 }
11446
11447 /* Ignore functions with missing or invalid low and high pc attributes. */
3a2b436a 11448 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
e385593e 11449 <= PC_BOUNDS_INVALID)
e8d05480 11450 {
ae4d0c03
PM
11451 attr = dwarf2_attr (die, DW_AT_external, cu);
11452 if (!attr || !DW_UNSND (attr))
11453 complaint (&symfile_complaints,
3e43a32a
MS
11454 _("cannot get low and high bounds "
11455 "for subprogram DIE at %d"),
b64f50a1 11456 die->offset.sect_off);
e8d05480
JB
11457 return;
11458 }
c906108c 11459
3e29f34a
MR
11460 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11461 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11462
34eaf542
TT
11463 /* If we have any template arguments, then we must allocate a
11464 different sort of symbol. */
11465 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11466 {
11467 if (child_die->tag == DW_TAG_template_type_param
11468 || child_die->tag == DW_TAG_template_value_param)
11469 {
e623cf5d 11470 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11471 templ_func->base.is_cplus_template_function = 1;
11472 break;
11473 }
11474 }
11475
fe978cb0
PA
11476 newobj = push_context (0, lowpc);
11477 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11478 (struct symbol *) templ_func);
4c2df51b 11479
4cecd739
DJ
11480 /* If there is a location expression for DW_AT_frame_base, record
11481 it. */
e142c38c 11482 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11483 if (attr)
fe978cb0 11484 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11485
63e43d3a
PMR
11486 /* If there is a location for the static link, record it. */
11487 newobj->static_link = NULL;
11488 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11489 if (attr)
11490 {
224c3ddb
SM
11491 newobj->static_link
11492 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
11493 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11494 }
11495
e142c38c 11496 cu->list_in_scope = &local_symbols;
c906108c 11497
639d11d3 11498 if (die->child != NULL)
c906108c 11499 {
639d11d3 11500 child_die = die->child;
c906108c
SS
11501 while (child_die && child_die->tag)
11502 {
34eaf542
TT
11503 if (child_die->tag == DW_TAG_template_type_param
11504 || child_die->tag == DW_TAG_template_value_param)
11505 {
11506 struct symbol *arg = new_symbol (child_die, NULL, cu);
11507
f1078f66
DJ
11508 if (arg != NULL)
11509 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11510 }
11511 else
11512 process_die (child_die, cu);
c906108c
SS
11513 child_die = sibling_die (child_die);
11514 }
11515 }
11516
d389af10
JK
11517 inherit_abstract_dies (die, cu);
11518
4a811a97
UW
11519 /* If we have a DW_AT_specification, we might need to import using
11520 directives from the context of the specification DIE. See the
11521 comment in determine_prefix. */
11522 if (cu->language == language_cplus
11523 && dwarf2_attr (die, DW_AT_specification, cu))
11524 {
11525 struct dwarf2_cu *spec_cu = cu;
11526 struct die_info *spec_die = die_specification (die, &spec_cu);
11527
11528 while (spec_die)
11529 {
11530 child_die = spec_die->child;
11531 while (child_die && child_die->tag)
11532 {
11533 if (child_die->tag == DW_TAG_imported_module)
11534 process_die (child_die, spec_cu);
11535 child_die = sibling_die (child_die);
11536 }
11537
11538 /* In some cases, GCC generates specification DIEs that
11539 themselves contain DW_AT_specification attributes. */
11540 spec_die = die_specification (spec_die, &spec_cu);
11541 }
11542 }
11543
fe978cb0 11544 newobj = pop_context ();
c906108c 11545 /* Make a block for the local symbols within. */
fe978cb0 11546 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 11547 newobj->static_link, lowpc, highpc);
801e3a5b 11548
df8a16a1 11549 /* For C++, set the block's scope. */
45280282
IB
11550 if ((cu->language == language_cplus
11551 || cu->language == language_fortran
c44af4eb
TT
11552 || cu->language == language_d
11553 || cu->language == language_rust)
4d4ec4e5 11554 && cu->processing_has_namespace_info)
195a3f6c
TT
11555 block_set_scope (block, determine_prefix (die, cu),
11556 &objfile->objfile_obstack);
df8a16a1 11557
801e3a5b
JB
11558 /* If we have address ranges, record them. */
11559 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11560
fe978cb0 11561 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11562
34eaf542
TT
11563 /* Attach template arguments to function. */
11564 if (! VEC_empty (symbolp, template_args))
11565 {
11566 gdb_assert (templ_func != NULL);
11567
11568 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11569 templ_func->template_arguments
8d749320
SM
11570 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11571 templ_func->n_template_arguments);
34eaf542
TT
11572 memcpy (templ_func->template_arguments,
11573 VEC_address (symbolp, template_args),
11574 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11575 VEC_free (symbolp, template_args);
11576 }
11577
208d8187
JB
11578 /* In C++, we can have functions nested inside functions (e.g., when
11579 a function declares a class that has methods). This means that
11580 when we finish processing a function scope, we may need to go
11581 back to building a containing block's symbol lists. */
fe978cb0 11582 local_symbols = newobj->locals;
22cee43f 11583 local_using_directives = newobj->local_using_directives;
208d8187 11584
921e78cf
JB
11585 /* If we've finished processing a top-level function, subsequent
11586 symbols go in the file symbol list. */
11587 if (outermost_context_p ())
e142c38c 11588 cu->list_in_scope = &file_symbols;
c906108c
SS
11589}
11590
11591/* Process all the DIES contained within a lexical block scope. Start
11592 a new scope, process the dies, and then close the scope. */
11593
11594static void
e7c27a73 11595read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11596{
e7c27a73 11597 struct objfile *objfile = cu->objfile;
3e29f34a 11598 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11599 struct context_stack *newobj;
c906108c
SS
11600 CORE_ADDR lowpc, highpc;
11601 struct die_info *child_die;
e142c38c
DJ
11602 CORE_ADDR baseaddr;
11603
11604 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11605
11606 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11607 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11608 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11609 be nasty. Might be easier to properly extend generic blocks to
af34e669 11610 describe ranges. */
e385593e
JK
11611 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11612 {
11613 case PC_BOUNDS_NOT_PRESENT:
11614 /* DW_TAG_lexical_block has no attributes, process its children as if
11615 there was no wrapping by that DW_TAG_lexical_block.
11616 GCC does no longer produces such DWARF since GCC r224161. */
11617 for (child_die = die->child;
11618 child_die != NULL && child_die->tag;
11619 child_die = sibling_die (child_die))
11620 process_die (child_die, cu);
11621 return;
11622 case PC_BOUNDS_INVALID:
11623 return;
11624 }
3e29f34a
MR
11625 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11626 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11627
11628 push_context (0, lowpc);
639d11d3 11629 if (die->child != NULL)
c906108c 11630 {
639d11d3 11631 child_die = die->child;
c906108c
SS
11632 while (child_die && child_die->tag)
11633 {
e7c27a73 11634 process_die (child_die, cu);
c906108c
SS
11635 child_die = sibling_die (child_die);
11636 }
11637 }
3ea89b92 11638 inherit_abstract_dies (die, cu);
fe978cb0 11639 newobj = pop_context ();
c906108c 11640
22cee43f 11641 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11642 {
801e3a5b 11643 struct block *block
63e43d3a 11644 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 11645 newobj->start_addr, highpc);
801e3a5b
JB
11646
11647 /* Note that recording ranges after traversing children, as we
11648 do here, means that recording a parent's ranges entails
11649 walking across all its children's ranges as they appear in
11650 the address map, which is quadratic behavior.
11651
11652 It would be nicer to record the parent's ranges before
11653 traversing its children, simply overriding whatever you find
11654 there. But since we don't even decide whether to create a
11655 block until after we've traversed its children, that's hard
11656 to do. */
11657 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11658 }
fe978cb0 11659 local_symbols = newobj->locals;
22cee43f 11660 local_using_directives = newobj->local_using_directives;
c906108c
SS
11661}
11662
216f72a1 11663/* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
96408a79
SA
11664
11665static void
11666read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11667{
11668 struct objfile *objfile = cu->objfile;
11669 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11670 CORE_ADDR pc, baseaddr;
11671 struct attribute *attr;
11672 struct call_site *call_site, call_site_local;
11673 void **slot;
11674 int nparams;
11675 struct die_info *child_die;
11676
11677 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11678
216f72a1
JK
11679 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11680 if (attr == NULL)
11681 {
11682 /* This was a pre-DWARF-5 GNU extension alias
11683 for DW_AT_call_return_pc. */
11684 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11685 }
96408a79
SA
11686 if (!attr)
11687 {
11688 complaint (&symfile_complaints,
216f72a1 11689 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
96408a79 11690 "DIE 0x%x [in module %s]"),
4262abfb 11691 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11692 return;
11693 }
31aa7e4e 11694 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11695 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11696
11697 if (cu->call_site_htab == NULL)
11698 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11699 NULL, &objfile->objfile_obstack,
11700 hashtab_obstack_allocate, NULL);
11701 call_site_local.pc = pc;
11702 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11703 if (*slot != NULL)
11704 {
11705 complaint (&symfile_complaints,
216f72a1 11706 _("Duplicate PC %s for DW_TAG_call_site "
96408a79 11707 "DIE 0x%x [in module %s]"),
4262abfb
JK
11708 paddress (gdbarch, pc), die->offset.sect_off,
11709 objfile_name (objfile));
96408a79
SA
11710 return;
11711 }
11712
11713 /* Count parameters at the caller. */
11714
11715 nparams = 0;
11716 for (child_die = die->child; child_die && child_die->tag;
11717 child_die = sibling_die (child_die))
11718 {
216f72a1
JK
11719 if (child_die->tag != DW_TAG_call_site_parameter
11720 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79
SA
11721 {
11722 complaint (&symfile_complaints,
216f72a1
JK
11723 _("Tag %d is not DW_TAG_call_site_parameter in "
11724 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11725 child_die->tag, child_die->offset.sect_off,
11726 objfile_name (objfile));
96408a79
SA
11727 continue;
11728 }
11729
11730 nparams++;
11731 }
11732
224c3ddb
SM
11733 call_site
11734 = ((struct call_site *)
11735 obstack_alloc (&objfile->objfile_obstack,
11736 sizeof (*call_site)
11737 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
11738 *slot = call_site;
11739 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11740 call_site->pc = pc;
11741
216f72a1
JK
11742 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
11743 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
96408a79
SA
11744 {
11745 struct die_info *func_die;
11746
11747 /* Skip also over DW_TAG_inlined_subroutine. */
11748 for (func_die = die->parent;
11749 func_die && func_die->tag != DW_TAG_subprogram
11750 && func_die->tag != DW_TAG_subroutine_type;
11751 func_die = func_die->parent);
11752
216f72a1
JK
11753 /* DW_AT_call_all_calls is a superset
11754 of DW_AT_call_all_tail_calls. */
96408a79 11755 if (func_die
216f72a1 11756 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
96408a79 11757 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
216f72a1 11758 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
96408a79
SA
11759 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11760 {
11761 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11762 not complete. But keep CALL_SITE for look ups via call_site_htab,
11763 both the initial caller containing the real return address PC and
11764 the final callee containing the current PC of a chain of tail
11765 calls do not need to have the tail call list complete. But any
11766 function candidate for a virtual tail call frame searched via
11767 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11768 determined unambiguously. */
11769 }
11770 else
11771 {
11772 struct type *func_type = NULL;
11773
11774 if (func_die)
11775 func_type = get_die_type (func_die, cu);
11776 if (func_type != NULL)
11777 {
11778 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11779
11780 /* Enlist this call site to the function. */
11781 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11782 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11783 }
11784 else
11785 complaint (&symfile_complaints,
216f72a1 11786 _("Cannot find function owning DW_TAG_call_site "
96408a79 11787 "DIE 0x%x [in module %s]"),
4262abfb 11788 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11789 }
11790 }
11791
216f72a1
JK
11792 attr = dwarf2_attr (die, DW_AT_call_target, cu);
11793 if (attr == NULL)
11794 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11795 if (attr == NULL)
11796 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
96408a79 11797 if (attr == NULL)
216f72a1
JK
11798 {
11799 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
11800 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11801 }
96408a79
SA
11802 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11803 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11804 /* Keep NULL DWARF_BLOCK. */;
11805 else if (attr_form_is_block (attr))
11806 {
11807 struct dwarf2_locexpr_baton *dlbaton;
11808
8d749320 11809 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
11810 dlbaton->data = DW_BLOCK (attr)->data;
11811 dlbaton->size = DW_BLOCK (attr)->size;
11812 dlbaton->per_cu = cu->per_cu;
11813
11814 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11815 }
7771576e 11816 else if (attr_form_is_ref (attr))
96408a79 11817 {
96408a79
SA
11818 struct dwarf2_cu *target_cu = cu;
11819 struct die_info *target_die;
11820
ac9ec31b 11821 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11822 gdb_assert (target_cu->objfile == objfile);
11823 if (die_is_declaration (target_die, target_cu))
11824 {
7d45c7c3 11825 const char *target_physname;
9112db09
JK
11826
11827 /* Prefer the mangled name; otherwise compute the demangled one. */
7d45c7c3
KB
11828 target_physname = dwarf2_string_attr (target_die,
11829 DW_AT_linkage_name,
11830 target_cu);
11831 if (target_physname == NULL)
11832 target_physname = dwarf2_string_attr (target_die,
11833 DW_AT_MIPS_linkage_name,
11834 target_cu);
11835 if (target_physname == NULL)
9112db09 11836 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11837 if (target_physname == NULL)
11838 complaint (&symfile_complaints,
216f72a1 11839 _("DW_AT_call_target target DIE has invalid "
96408a79 11840 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11841 die->offset.sect_off, objfile_name (objfile));
96408a79 11842 else
7d455152 11843 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11844 }
11845 else
11846 {
11847 CORE_ADDR lowpc;
11848
11849 /* DW_AT_entry_pc should be preferred. */
3a2b436a 11850 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
e385593e 11851 <= PC_BOUNDS_INVALID)
96408a79 11852 complaint (&symfile_complaints,
216f72a1 11853 _("DW_AT_call_target target DIE has invalid "
96408a79 11854 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11855 die->offset.sect_off, objfile_name (objfile));
96408a79 11856 else
3e29f34a
MR
11857 {
11858 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11859 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11860 }
96408a79
SA
11861 }
11862 }
11863 else
11864 complaint (&symfile_complaints,
216f72a1 11865 _("DW_TAG_call_site DW_AT_call_target is neither "
96408a79 11866 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11867 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11868
11869 call_site->per_cu = cu->per_cu;
11870
11871 for (child_die = die->child;
11872 child_die && child_die->tag;
11873 child_die = sibling_die (child_die))
11874 {
96408a79 11875 struct call_site_parameter *parameter;
1788b2d3 11876 struct attribute *loc, *origin;
96408a79 11877
216f72a1
JK
11878 if (child_die->tag != DW_TAG_call_site_parameter
11879 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79
SA
11880 {
11881 /* Already printed the complaint above. */
11882 continue;
11883 }
11884
11885 gdb_assert (call_site->parameter_count < nparams);
11886 parameter = &call_site->parameter[call_site->parameter_count];
11887
1788b2d3
JK
11888 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11889 specifies DW_TAG_formal_parameter. Value of the data assumed for the
216f72a1 11890 register is contained in DW_AT_call_value. */
96408a79 11891
24c5c679 11892 loc = dwarf2_attr (child_die, DW_AT_location, cu);
216f72a1
JK
11893 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
11894 if (origin == NULL)
11895 {
11896 /* This was a pre-DWARF-5 GNU extension alias
11897 for DW_AT_call_parameter. */
11898 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11899 }
7771576e 11900 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11901 {
11902 sect_offset offset;
11903
11904 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11905 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11906 if (!offset_in_cu_p (&cu->header, offset))
11907 {
11908 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11909 binding can be done only inside one CU. Such referenced DIE
11910 therefore cannot be even moved to DW_TAG_partial_unit. */
11911 complaint (&symfile_complaints,
216f72a1
JK
11912 _("DW_AT_call_parameter offset is not in CU for "
11913 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
4262abfb 11914 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11915 continue;
11916 }
1788b2d3
JK
11917 parameter->u.param_offset.cu_off = (offset.sect_off
11918 - cu->header.offset.sect_off);
11919 }
11920 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11921 {
11922 complaint (&symfile_complaints,
11923 _("No DW_FORM_block* DW_AT_location for "
216f72a1 11924 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
4262abfb 11925 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11926 continue;
11927 }
24c5c679 11928 else
96408a79 11929 {
24c5c679
JK
11930 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11931 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11932 if (parameter->u.dwarf_reg != -1)
11933 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11934 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11935 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11936 &parameter->u.fb_offset))
11937 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11938 else
11939 {
11940 complaint (&symfile_complaints,
11941 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11942 "for DW_FORM_block* DW_AT_location is supported for "
216f72a1 11943 "DW_TAG_call_site child DIE 0x%x "
24c5c679 11944 "[in module %s]"),
4262abfb 11945 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11946 continue;
11947 }
96408a79
SA
11948 }
11949
216f72a1
JK
11950 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
11951 if (attr == NULL)
11952 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
96408a79
SA
11953 if (!attr_form_is_block (attr))
11954 {
11955 complaint (&symfile_complaints,
216f72a1
JK
11956 _("No DW_FORM_block* DW_AT_call_value for "
11957 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
4262abfb 11958 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11959 continue;
11960 }
11961 parameter->value = DW_BLOCK (attr)->data;
11962 parameter->value_size = DW_BLOCK (attr)->size;
11963
11964 /* Parameters are not pre-cleared by memset above. */
11965 parameter->data_value = NULL;
11966 parameter->data_value_size = 0;
11967 call_site->parameter_count++;
11968
216f72a1
JK
11969 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
11970 if (attr == NULL)
11971 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
96408a79
SA
11972 if (attr)
11973 {
11974 if (!attr_form_is_block (attr))
11975 complaint (&symfile_complaints,
216f72a1
JK
11976 _("No DW_FORM_block* DW_AT_call_data_value for "
11977 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
4262abfb 11978 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11979 else
11980 {
11981 parameter->data_value = DW_BLOCK (attr)->data;
11982 parameter->data_value_size = DW_BLOCK (attr)->size;
11983 }
11984 }
11985 }
11986}
11987
43988095
JK
11988/* Call CALLBACK from DW_AT_ranges attribute value OFFSET
11989 reading .debug_rnglists.
11990 Callback's type should be:
11991 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
11992 Return true if the attributes are present and valid, otherwise,
11993 return false. */
11994
11995template <typename Callback>
11996static bool
11997dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
11998 Callback &&callback)
11999{
12000 struct objfile *objfile = cu->objfile;
12001 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12002 struct comp_unit_head *cu_header = &cu->header;
12003 bfd *obfd = objfile->obfd;
12004 unsigned int addr_size = cu_header->addr_size;
12005 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12006 /* Base address selection entry. */
12007 CORE_ADDR base;
12008 int found_base;
12009 unsigned int dummy;
12010 const gdb_byte *buffer;
12011 CORE_ADDR low = 0;
12012 CORE_ADDR high = 0;
12013 CORE_ADDR baseaddr;
12014 bool overflow = false;
12015
12016 found_base = cu->base_known;
12017 base = cu->base_address;
12018
12019 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12020 if (offset >= dwarf2_per_objfile->rnglists.size)
12021 {
12022 complaint (&symfile_complaints,
12023 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12024 offset);
12025 return false;
12026 }
12027 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12028
12029 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12030
12031 while (1)
12032 {
7814882a
JK
12033 /* Initialize it due to a false compiler warning. */
12034 CORE_ADDR range_beginning = 0, range_end = 0;
43988095
JK
12035 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12036 + dwarf2_per_objfile->rnglists.size);
12037 unsigned int bytes_read;
12038
12039 if (buffer == buf_end)
12040 {
12041 overflow = true;
12042 break;
12043 }
12044 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12045 switch (rlet)
12046 {
12047 case DW_RLE_end_of_list:
12048 break;
12049 case DW_RLE_base_address:
12050 if (buffer + cu->header.addr_size > buf_end)
12051 {
12052 overflow = true;
12053 break;
12054 }
12055 base = read_address (obfd, buffer, cu, &bytes_read);
12056 found_base = 1;
12057 buffer += bytes_read;
12058 break;
12059 case DW_RLE_start_length:
12060 if (buffer + cu->header.addr_size > buf_end)
12061 {
12062 overflow = true;
12063 break;
12064 }
12065 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12066 buffer += bytes_read;
12067 range_end = (range_beginning
12068 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12069 buffer += bytes_read;
12070 if (buffer > buf_end)
12071 {
12072 overflow = true;
12073 break;
12074 }
12075 break;
12076 case DW_RLE_offset_pair:
12077 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12078 buffer += bytes_read;
12079 if (buffer > buf_end)
12080 {
12081 overflow = true;
12082 break;
12083 }
12084 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12085 buffer += bytes_read;
12086 if (buffer > buf_end)
12087 {
12088 overflow = true;
12089 break;
12090 }
12091 break;
12092 case DW_RLE_start_end:
12093 if (buffer + 2 * cu->header.addr_size > buf_end)
12094 {
12095 overflow = true;
12096 break;
12097 }
12098 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12099 buffer += bytes_read;
12100 range_end = read_address (obfd, buffer, cu, &bytes_read);
12101 buffer += bytes_read;
12102 break;
12103 default:
12104 complaint (&symfile_complaints,
12105 _("Invalid .debug_rnglists data (no base address)"));
12106 return false;
12107 }
12108 if (rlet == DW_RLE_end_of_list || overflow)
12109 break;
12110 if (rlet == DW_RLE_base_address)
12111 continue;
12112
12113 if (!found_base)
12114 {
12115 /* We have no valid base address for the ranges
12116 data. */
12117 complaint (&symfile_complaints,
12118 _("Invalid .debug_rnglists data (no base address)"));
12119 return false;
12120 }
12121
12122 if (range_beginning > range_end)
12123 {
12124 /* Inverted range entries are invalid. */
12125 complaint (&symfile_complaints,
12126 _("Invalid .debug_rnglists data (inverted range)"));
12127 return false;
12128 }
12129
12130 /* Empty range entries have no effect. */
12131 if (range_beginning == range_end)
12132 continue;
12133
12134 range_beginning += base;
12135 range_end += base;
12136
12137 /* A not-uncommon case of bad debug info.
12138 Don't pollute the addrmap with bad data. */
12139 if (range_beginning + baseaddr == 0
12140 && !dwarf2_per_objfile->has_section_at_zero)
12141 {
12142 complaint (&symfile_complaints,
12143 _(".debug_rnglists entry has start address of zero"
12144 " [in module %s]"), objfile_name (objfile));
12145 continue;
12146 }
12147
12148 callback (range_beginning, range_end);
12149 }
12150
12151 if (overflow)
12152 {
12153 complaint (&symfile_complaints,
12154 _("Offset %d is not terminated "
12155 "for DW_AT_ranges attribute"),
12156 offset);
12157 return false;
12158 }
12159
12160 return true;
12161}
12162
12163/* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12164 Callback's type should be:
12165 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
5f46c5a5 12166 Return 1 if the attributes are present and valid, otherwise, return 0. */
43039443 12167
43988095 12168template <typename Callback>
43039443 12169static int
5f46c5a5 12170dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
43988095 12171 Callback &&callback)
43039443
JK
12172{
12173 struct objfile *objfile = cu->objfile;
3e29f34a 12174 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
12175 struct comp_unit_head *cu_header = &cu->header;
12176 bfd *obfd = objfile->obfd;
12177 unsigned int addr_size = cu_header->addr_size;
12178 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12179 /* Base address selection entry. */
12180 CORE_ADDR base;
12181 int found_base;
12182 unsigned int dummy;
d521ce57 12183 const gdb_byte *buffer;
ff013f42 12184 CORE_ADDR baseaddr;
43039443 12185
43988095
JK
12186 if (cu_header->version >= 5)
12187 return dwarf2_rnglists_process (offset, cu, callback);
12188
d00adf39
DE
12189 found_base = cu->base_known;
12190 base = cu->base_address;
43039443 12191
be391dca 12192 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12193 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
12194 {
12195 complaint (&symfile_complaints,
12196 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12197 offset);
12198 return 0;
12199 }
dce234bc 12200 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 12201
e7030f15 12202 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 12203
43039443
JK
12204 while (1)
12205 {
12206 CORE_ADDR range_beginning, range_end;
12207
12208 range_beginning = read_address (obfd, buffer, cu, &dummy);
12209 buffer += addr_size;
12210 range_end = read_address (obfd, buffer, cu, &dummy);
12211 buffer += addr_size;
12212 offset += 2 * addr_size;
12213
12214 /* An end of list marker is a pair of zero addresses. */
12215 if (range_beginning == 0 && range_end == 0)
12216 /* Found the end of list entry. */
12217 break;
12218
12219 /* Each base address selection entry is a pair of 2 values.
12220 The first is the largest possible address, the second is
12221 the base address. Check for a base address here. */
12222 if ((range_beginning & mask) == mask)
12223 {
28d2bfb9
AB
12224 /* If we found the largest possible address, then we already
12225 have the base address in range_end. */
12226 base = range_end;
43039443
JK
12227 found_base = 1;
12228 continue;
12229 }
12230
12231 if (!found_base)
12232 {
12233 /* We have no valid base address for the ranges
12234 data. */
12235 complaint (&symfile_complaints,
12236 _("Invalid .debug_ranges data (no base address)"));
12237 return 0;
12238 }
12239
9277c30c
UW
12240 if (range_beginning > range_end)
12241 {
12242 /* Inverted range entries are invalid. */
12243 complaint (&symfile_complaints,
12244 _("Invalid .debug_ranges data (inverted range)"));
12245 return 0;
12246 }
12247
12248 /* Empty range entries have no effect. */
12249 if (range_beginning == range_end)
12250 continue;
12251
43039443
JK
12252 range_beginning += base;
12253 range_end += base;
12254
01093045
DE
12255 /* A not-uncommon case of bad debug info.
12256 Don't pollute the addrmap with bad data. */
12257 if (range_beginning + baseaddr == 0
12258 && !dwarf2_per_objfile->has_section_at_zero)
12259 {
12260 complaint (&symfile_complaints,
12261 _(".debug_ranges entry has start address of zero"
4262abfb 12262 " [in module %s]"), objfile_name (objfile));
01093045
DE
12263 continue;
12264 }
12265
5f46c5a5
JK
12266 callback (range_beginning, range_end);
12267 }
12268
12269 return 1;
12270}
12271
12272/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12273 Return 1 if the attributes are present and valid, otherwise, return 0.
12274 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12275
12276static int
12277dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12278 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12279 struct partial_symtab *ranges_pst)
12280{
12281 struct objfile *objfile = cu->objfile;
12282 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12283 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12284 SECT_OFF_TEXT (objfile));
12285 int low_set = 0;
12286 CORE_ADDR low = 0;
12287 CORE_ADDR high = 0;
12288 int retval;
12289
12290 retval = dwarf2_ranges_process (offset, cu,
12291 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12292 {
9277c30c 12293 if (ranges_pst != NULL)
3e29f34a
MR
12294 {
12295 CORE_ADDR lowpc;
12296 CORE_ADDR highpc;
12297
12298 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12299 range_beginning + baseaddr);
12300 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12301 range_end + baseaddr);
12302 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12303 ranges_pst);
12304 }
ff013f42 12305
43039443
JK
12306 /* FIXME: This is recording everything as a low-high
12307 segment of consecutive addresses. We should have a
12308 data structure for discontiguous block ranges
12309 instead. */
12310 if (! low_set)
12311 {
12312 low = range_beginning;
12313 high = range_end;
12314 low_set = 1;
12315 }
12316 else
12317 {
12318 if (range_beginning < low)
12319 low = range_beginning;
12320 if (range_end > high)
12321 high = range_end;
12322 }
5f46c5a5
JK
12323 });
12324 if (!retval)
12325 return 0;
43039443
JK
12326
12327 if (! low_set)
12328 /* If the first entry is an end-of-list marker, the range
12329 describes an empty scope, i.e. no instructions. */
12330 return 0;
12331
12332 if (low_return)
12333 *low_return = low;
12334 if (high_return)
12335 *high_return = high;
12336 return 1;
12337}
12338
3a2b436a
JK
12339/* Get low and high pc attributes from a die. See enum pc_bounds_kind
12340 definition for the return value. *LOWPC and *HIGHPC are set iff
e385593e 12341 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
380bca97 12342
3a2b436a 12343static enum pc_bounds_kind
af34e669 12344dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12345 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12346 struct partial_symtab *pst)
c906108c
SS
12347{
12348 struct attribute *attr;
91da1414 12349 struct attribute *attr_high;
af34e669
DJ
12350 CORE_ADDR low = 0;
12351 CORE_ADDR high = 0;
e385593e 12352 enum pc_bounds_kind ret;
c906108c 12353
91da1414
MW
12354 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12355 if (attr_high)
af34e669 12356 {
e142c38c 12357 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12358 if (attr)
91da1414 12359 {
31aa7e4e
JB
12360 low = attr_value_as_address (attr);
12361 high = attr_value_as_address (attr_high);
12362 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12363 high += low;
91da1414 12364 }
af34e669
DJ
12365 else
12366 /* Found high w/o low attribute. */
e385593e 12367 return PC_BOUNDS_INVALID;
af34e669
DJ
12368
12369 /* Found consecutive range of addresses. */
3a2b436a 12370 ret = PC_BOUNDS_HIGH_LOW;
af34e669 12371 }
c906108c 12372 else
af34e669 12373 {
e142c38c 12374 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12375 if (attr != NULL)
12376 {
ab435259
DE
12377 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12378 We take advantage of the fact that DW_AT_ranges does not appear
12379 in DW_TAG_compile_unit of DWO files. */
12380 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12381 unsigned int ranges_offset = (DW_UNSND (attr)
12382 + (need_ranges_base
12383 ? cu->ranges_base
12384 : 0));
2e3cf129 12385
af34e669 12386 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12387 .debug_ranges section. */
2e3cf129 12388 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
e385593e 12389 return PC_BOUNDS_INVALID;
43039443 12390 /* Found discontinuous range of addresses. */
3a2b436a 12391 ret = PC_BOUNDS_RANGES;
af34e669 12392 }
e385593e
JK
12393 else
12394 return PC_BOUNDS_NOT_PRESENT;
af34e669 12395 }
c906108c 12396
9373cf26
JK
12397 /* read_partial_die has also the strict LOW < HIGH requirement. */
12398 if (high <= low)
e385593e 12399 return PC_BOUNDS_INVALID;
c906108c
SS
12400
12401 /* When using the GNU linker, .gnu.linkonce. sections are used to
12402 eliminate duplicate copies of functions and vtables and such.
12403 The linker will arbitrarily choose one and discard the others.
12404 The AT_*_pc values for such functions refer to local labels in
12405 these sections. If the section from that file was discarded, the
12406 labels are not in the output, so the relocs get a value of 0.
12407 If this is a discarded function, mark the pc bounds as invalid,
12408 so that GDB will ignore it. */
72dca2f5 12409 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
e385593e 12410 return PC_BOUNDS_INVALID;
c906108c
SS
12411
12412 *lowpc = low;
96408a79
SA
12413 if (highpc)
12414 *highpc = high;
af34e669 12415 return ret;
c906108c
SS
12416}
12417
b084d499
JB
12418/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12419 its low and high PC addresses. Do nothing if these addresses could not
12420 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12421 and HIGHPC to the high address if greater than HIGHPC. */
12422
12423static void
12424dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12425 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12426 struct dwarf2_cu *cu)
12427{
12428 CORE_ADDR low, high;
12429 struct die_info *child = die->child;
12430
e385593e 12431 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
b084d499 12432 {
325fac50
PA
12433 *lowpc = std::min (*lowpc, low);
12434 *highpc = std::max (*highpc, high);
b084d499
JB
12435 }
12436
12437 /* If the language does not allow nested subprograms (either inside
12438 subprograms or lexical blocks), we're done. */
12439 if (cu->language != language_ada)
12440 return;
6e70227d 12441
b084d499
JB
12442 /* Check all the children of the given DIE. If it contains nested
12443 subprograms, then check their pc bounds. Likewise, we need to
12444 check lexical blocks as well, as they may also contain subprogram
12445 definitions. */
12446 while (child && child->tag)
12447 {
12448 if (child->tag == DW_TAG_subprogram
12449 || child->tag == DW_TAG_lexical_block)
12450 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12451 child = sibling_die (child);
12452 }
12453}
12454
fae299cd
DC
12455/* Get the low and high pc's represented by the scope DIE, and store
12456 them in *LOWPC and *HIGHPC. If the correct values can't be
12457 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12458
12459static void
12460get_scope_pc_bounds (struct die_info *die,
12461 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12462 struct dwarf2_cu *cu)
12463{
12464 CORE_ADDR best_low = (CORE_ADDR) -1;
12465 CORE_ADDR best_high = (CORE_ADDR) 0;
12466 CORE_ADDR current_low, current_high;
12467
3a2b436a 12468 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
e385593e 12469 >= PC_BOUNDS_RANGES)
fae299cd
DC
12470 {
12471 best_low = current_low;
12472 best_high = current_high;
12473 }
12474 else
12475 {
12476 struct die_info *child = die->child;
12477
12478 while (child && child->tag)
12479 {
12480 switch (child->tag) {
12481 case DW_TAG_subprogram:
b084d499 12482 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12483 break;
12484 case DW_TAG_namespace:
f55ee35c 12485 case DW_TAG_module:
fae299cd
DC
12486 /* FIXME: carlton/2004-01-16: Should we do this for
12487 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12488 that current GCC's always emit the DIEs corresponding
12489 to definitions of methods of classes as children of a
12490 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12491 the DIEs giving the declarations, which could be
12492 anywhere). But I don't see any reason why the
12493 standards says that they have to be there. */
12494 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12495
12496 if (current_low != ((CORE_ADDR) -1))
12497 {
325fac50
PA
12498 best_low = std::min (best_low, current_low);
12499 best_high = std::max (best_high, current_high);
fae299cd
DC
12500 }
12501 break;
12502 default:
0963b4bd 12503 /* Ignore. */
fae299cd
DC
12504 break;
12505 }
12506
12507 child = sibling_die (child);
12508 }
12509 }
12510
12511 *lowpc = best_low;
12512 *highpc = best_high;
12513}
12514
801e3a5b
JB
12515/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12516 in DIE. */
380bca97 12517
801e3a5b
JB
12518static void
12519dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12520 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12521{
bb5ed363 12522 struct objfile *objfile = cu->objfile;
3e29f34a 12523 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12524 struct attribute *attr;
91da1414 12525 struct attribute *attr_high;
801e3a5b 12526
91da1414
MW
12527 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12528 if (attr_high)
801e3a5b 12529 {
801e3a5b
JB
12530 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12531 if (attr)
12532 {
31aa7e4e
JB
12533 CORE_ADDR low = attr_value_as_address (attr);
12534 CORE_ADDR high = attr_value_as_address (attr_high);
12535
12536 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12537 high += low;
9a619af0 12538
3e29f34a
MR
12539 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12540 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12541 record_block_range (block, low, high - 1);
801e3a5b
JB
12542 }
12543 }
12544
12545 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12546 if (attr)
12547 {
bb5ed363 12548 bfd *obfd = objfile->obfd;
ab435259
DE
12549 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12550 We take advantage of the fact that DW_AT_ranges does not appear
12551 in DW_TAG_compile_unit of DWO files. */
12552 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12553
12554 /* The value of the DW_AT_ranges attribute is the offset of the
12555 address range list in the .debug_ranges section. */
ab435259
DE
12556 unsigned long offset = (DW_UNSND (attr)
12557 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12558 const gdb_byte *buffer;
801e3a5b
JB
12559
12560 /* For some target architectures, but not others, the
12561 read_address function sign-extends the addresses it returns.
12562 To recognize base address selection entries, we need a
12563 mask. */
12564 unsigned int addr_size = cu->header.addr_size;
12565 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12566
12567 /* The base address, to which the next pair is relative. Note
12568 that this 'base' is a DWARF concept: most entries in a range
12569 list are relative, to reduce the number of relocs against the
12570 debugging information. This is separate from this function's
12571 'baseaddr' argument, which GDB uses to relocate debugging
12572 information from a shared library based on the address at
12573 which the library was loaded. */
d00adf39
DE
12574 CORE_ADDR base = cu->base_address;
12575 int base_known = cu->base_known;
801e3a5b 12576
5f46c5a5
JK
12577 dwarf2_ranges_process (offset, cu,
12578 [&] (CORE_ADDR start, CORE_ADDR end)
12579 {
12580 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12581 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12582 record_block_range (block, start, end - 1);
12583 });
801e3a5b
JB
12584 }
12585}
12586
685b1105
JK
12587/* Check whether the producer field indicates either of GCC < 4.6, or the
12588 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12589
685b1105
JK
12590static void
12591check_producer (struct dwarf2_cu *cu)
60d5a603 12592{
38360086 12593 int major, minor;
60d5a603
JK
12594
12595 if (cu->producer == NULL)
12596 {
12597 /* For unknown compilers expect their behavior is DWARF version
12598 compliant.
12599
12600 GCC started to support .debug_types sections by -gdwarf-4 since
12601 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12602 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12603 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12604 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12605 }
b1ffba5a 12606 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12607 {
38360086
MW
12608 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12609 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12610 }
61012eef 12611 else if (startswith (cu->producer, "Intel(R) C"))
685b1105
JK
12612 cu->producer_is_icc = 1;
12613 else
12614 {
12615 /* For other non-GCC compilers, expect their behavior is DWARF version
12616 compliant. */
60d5a603
JK
12617 }
12618
ba919b58 12619 cu->checked_producer = 1;
685b1105 12620}
ba919b58 12621
685b1105
JK
12622/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12623 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12624 during 4.6.0 experimental. */
12625
12626static int
12627producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12628{
12629 if (!cu->checked_producer)
12630 check_producer (cu);
12631
12632 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12633}
12634
12635/* Return the default accessibility type if it is not overriden by
12636 DW_AT_accessibility. */
12637
12638static enum dwarf_access_attribute
12639dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12640{
12641 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12642 {
12643 /* The default DWARF 2 accessibility for members is public, the default
12644 accessibility for inheritance is private. */
12645
12646 if (die->tag != DW_TAG_inheritance)
12647 return DW_ACCESS_public;
12648 else
12649 return DW_ACCESS_private;
12650 }
12651 else
12652 {
12653 /* DWARF 3+ defines the default accessibility a different way. The same
12654 rules apply now for DW_TAG_inheritance as for the members and it only
12655 depends on the container kind. */
12656
12657 if (die->parent->tag == DW_TAG_class_type)
12658 return DW_ACCESS_private;
12659 else
12660 return DW_ACCESS_public;
12661 }
12662}
12663
74ac6d43
TT
12664/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12665 offset. If the attribute was not found return 0, otherwise return
12666 1. If it was found but could not properly be handled, set *OFFSET
12667 to 0. */
12668
12669static int
12670handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12671 LONGEST *offset)
12672{
12673 struct attribute *attr;
12674
12675 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12676 if (attr != NULL)
12677 {
12678 *offset = 0;
12679
12680 /* Note that we do not check for a section offset first here.
12681 This is because DW_AT_data_member_location is new in DWARF 4,
12682 so if we see it, we can assume that a constant form is really
12683 a constant and not a section offset. */
12684 if (attr_form_is_constant (attr))
12685 *offset = dwarf2_get_attr_constant_value (attr, 0);
12686 else if (attr_form_is_section_offset (attr))
12687 dwarf2_complex_location_expr_complaint ();
12688 else if (attr_form_is_block (attr))
12689 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12690 else
12691 dwarf2_complex_location_expr_complaint ();
12692
12693 return 1;
12694 }
12695
12696 return 0;
12697}
12698
c906108c
SS
12699/* Add an aggregate field to the field list. */
12700
12701static void
107d2387 12702dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12703 struct dwarf2_cu *cu)
6e70227d 12704{
e7c27a73 12705 struct objfile *objfile = cu->objfile;
5e2b427d 12706 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12707 struct nextfield *new_field;
12708 struct attribute *attr;
12709 struct field *fp;
15d034d0 12710 const char *fieldname = "";
c906108c
SS
12711
12712 /* Allocate a new field list entry and link it in. */
8d749320 12713 new_field = XNEW (struct nextfield);
b8c9b27d 12714 make_cleanup (xfree, new_field);
c906108c 12715 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12716
12717 if (die->tag == DW_TAG_inheritance)
12718 {
12719 new_field->next = fip->baseclasses;
12720 fip->baseclasses = new_field;
12721 }
12722 else
12723 {
12724 new_field->next = fip->fields;
12725 fip->fields = new_field;
12726 }
c906108c
SS
12727 fip->nfields++;
12728
e142c38c 12729 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12730 if (attr)
12731 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12732 else
12733 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12734 if (new_field->accessibility != DW_ACCESS_public)
12735 fip->non_public_fields = 1;
60d5a603 12736
e142c38c 12737 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12738 if (attr)
12739 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12740 else
12741 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12742
12743 fp = &new_field->field;
a9a9bd0f 12744
e142c38c 12745 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12746 {
74ac6d43
TT
12747 LONGEST offset;
12748
a9a9bd0f 12749 /* Data member other than a C++ static data member. */
6e70227d 12750
c906108c 12751 /* Get type of field. */
e7c27a73 12752 fp->type = die_type (die, cu);
c906108c 12753
d6a843b5 12754 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12755
c906108c 12756 /* Get bit size of field (zero if none). */
e142c38c 12757 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12758 if (attr)
12759 {
12760 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12761 }
12762 else
12763 {
12764 FIELD_BITSIZE (*fp) = 0;
12765 }
12766
12767 /* Get bit offset of field. */
74ac6d43
TT
12768 if (handle_data_member_location (die, cu, &offset))
12769 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12770 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12771 if (attr)
12772 {
5e2b427d 12773 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12774 {
12775 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12776 additional bit offset from the MSB of the containing
12777 anonymous object to the MSB of the field. We don't
12778 have to do anything special since we don't need to
12779 know the size of the anonymous object. */
f41f5e61 12780 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12781 }
12782 else
12783 {
12784 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12785 MSB of the anonymous object, subtract off the number of
12786 bits from the MSB of the field to the MSB of the
12787 object, and then subtract off the number of bits of
12788 the field itself. The result is the bit offset of
12789 the LSB of the field. */
c906108c
SS
12790 int anonymous_size;
12791 int bit_offset = DW_UNSND (attr);
12792
e142c38c 12793 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12794 if (attr)
12795 {
12796 /* The size of the anonymous object containing
12797 the bit field is explicit, so use the
12798 indicated size (in bytes). */
12799 anonymous_size = DW_UNSND (attr);
12800 }
12801 else
12802 {
12803 /* The size of the anonymous object containing
12804 the bit field must be inferred from the type
12805 attribute of the data member containing the
12806 bit field. */
12807 anonymous_size = TYPE_LENGTH (fp->type);
12808 }
f41f5e61
PA
12809 SET_FIELD_BITPOS (*fp,
12810 (FIELD_BITPOS (*fp)
12811 + anonymous_size * bits_per_byte
12812 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12813 }
12814 }
da5b30da
AA
12815 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
12816 if (attr != NULL)
12817 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
12818 + dwarf2_get_attr_constant_value (attr, 0)));
c906108c
SS
12819
12820 /* Get name of field. */
39cbfefa
DJ
12821 fieldname = dwarf2_name (die, cu);
12822 if (fieldname == NULL)
12823 fieldname = "";
d8151005
DJ
12824
12825 /* The name is already allocated along with this objfile, so we don't
12826 need to duplicate it for the type. */
12827 fp->name = fieldname;
c906108c
SS
12828
12829 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12830 pointer or virtual base class pointer) to private. */
e142c38c 12831 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12832 {
d48cc9dd 12833 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12834 new_field->accessibility = DW_ACCESS_private;
12835 fip->non_public_fields = 1;
12836 }
12837 }
a9a9bd0f 12838 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12839 {
a9a9bd0f
DC
12840 /* C++ static member. */
12841
12842 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12843 is a declaration, but all versions of G++ as of this writing
12844 (so through at least 3.2.1) incorrectly generate
12845 DW_TAG_variable tags. */
6e70227d 12846
ff355380 12847 const char *physname;
c906108c 12848
a9a9bd0f 12849 /* Get name of field. */
39cbfefa
DJ
12850 fieldname = dwarf2_name (die, cu);
12851 if (fieldname == NULL)
c906108c
SS
12852 return;
12853
254e6b9e 12854 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12855 if (attr
12856 /* Only create a symbol if this is an external value.
12857 new_symbol checks this and puts the value in the global symbol
12858 table, which we want. If it is not external, new_symbol
12859 will try to put the value in cu->list_in_scope which is wrong. */
12860 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12861 {
12862 /* A static const member, not much different than an enum as far as
12863 we're concerned, except that we can support more types. */
12864 new_symbol (die, NULL, cu);
12865 }
12866
2df3850c 12867 /* Get physical name. */
ff355380 12868 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12869
d8151005
DJ
12870 /* The name is already allocated along with this objfile, so we don't
12871 need to duplicate it for the type. */
12872 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12873 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12874 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12875 }
12876 else if (die->tag == DW_TAG_inheritance)
12877 {
74ac6d43 12878 LONGEST offset;
d4b96c9a 12879
74ac6d43
TT
12880 /* C++ base class field. */
12881 if (handle_data_member_location (die, cu, &offset))
12882 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12883 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12884 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12885 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12886 fip->nbaseclasses++;
12887 }
12888}
12889
98751a41
JK
12890/* Add a typedef defined in the scope of the FIP's class. */
12891
12892static void
12893dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12894 struct dwarf2_cu *cu)
6e70227d 12895{
98751a41 12896 struct typedef_field_list *new_field;
98751a41 12897 struct typedef_field *fp;
98751a41
JK
12898
12899 /* Allocate a new field list entry and link it in. */
8d749320 12900 new_field = XCNEW (struct typedef_field_list);
98751a41
JK
12901 make_cleanup (xfree, new_field);
12902
12903 gdb_assert (die->tag == DW_TAG_typedef);
12904
12905 fp = &new_field->field;
12906
12907 /* Get name of field. */
12908 fp->name = dwarf2_name (die, cu);
12909 if (fp->name == NULL)
12910 return;
12911
12912 fp->type = read_type_die (die, cu);
12913
12914 new_field->next = fip->typedef_field_list;
12915 fip->typedef_field_list = new_field;
12916 fip->typedef_field_list_count++;
12917}
12918
c906108c
SS
12919/* Create the vector of fields, and attach it to the type. */
12920
12921static void
fba45db2 12922dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12923 struct dwarf2_cu *cu)
c906108c
SS
12924{
12925 int nfields = fip->nfields;
12926
12927 /* Record the field count, allocate space for the array of fields,
12928 and create blank accessibility bitfields if necessary. */
12929 TYPE_NFIELDS (type) = nfields;
12930 TYPE_FIELDS (type) = (struct field *)
12931 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12932 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12933
b4ba55a1 12934 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12935 {
12936 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12937
12938 TYPE_FIELD_PRIVATE_BITS (type) =
12939 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12940 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12941
12942 TYPE_FIELD_PROTECTED_BITS (type) =
12943 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12944 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12945
774b6a14
TT
12946 TYPE_FIELD_IGNORE_BITS (type) =
12947 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12948 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12949 }
12950
12951 /* If the type has baseclasses, allocate and clear a bit vector for
12952 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12953 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12954 {
12955 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12956 unsigned char *pointer;
c906108c
SS
12957
12958 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 12959 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 12960 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12961 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12962 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12963 }
12964
3e43a32a
MS
12965 /* Copy the saved-up fields into the field vector. Start from the head of
12966 the list, adding to the tail of the field array, so that they end up in
12967 the same order in the array in which they were added to the list. */
c906108c
SS
12968 while (nfields-- > 0)
12969 {
7d0ccb61
DJ
12970 struct nextfield *fieldp;
12971
12972 if (fip->fields)
12973 {
12974 fieldp = fip->fields;
12975 fip->fields = fieldp->next;
12976 }
12977 else
12978 {
12979 fieldp = fip->baseclasses;
12980 fip->baseclasses = fieldp->next;
12981 }
12982
12983 TYPE_FIELD (type, nfields) = fieldp->field;
12984 switch (fieldp->accessibility)
c906108c 12985 {
c5aa993b 12986 case DW_ACCESS_private:
b4ba55a1
JB
12987 if (cu->language != language_ada)
12988 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12989 break;
c906108c 12990
c5aa993b 12991 case DW_ACCESS_protected:
b4ba55a1
JB
12992 if (cu->language != language_ada)
12993 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12994 break;
c906108c 12995
c5aa993b
JM
12996 case DW_ACCESS_public:
12997 break;
c906108c 12998
c5aa993b
JM
12999 default:
13000 /* Unknown accessibility. Complain and treat it as public. */
13001 {
e2e0b3e5 13002 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 13003 fieldp->accessibility);
c5aa993b
JM
13004 }
13005 break;
c906108c
SS
13006 }
13007 if (nfields < fip->nbaseclasses)
13008 {
7d0ccb61 13009 switch (fieldp->virtuality)
c906108c 13010 {
c5aa993b
JM
13011 case DW_VIRTUALITY_virtual:
13012 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 13013 if (cu->language == language_ada)
a73c6dcd 13014 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
13015 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13016 break;
c906108c
SS
13017 }
13018 }
c906108c
SS
13019 }
13020}
13021
7d27a96d
TT
13022/* Return true if this member function is a constructor, false
13023 otherwise. */
13024
13025static int
13026dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13027{
13028 const char *fieldname;
fe978cb0 13029 const char *type_name;
7d27a96d
TT
13030 int len;
13031
13032 if (die->parent == NULL)
13033 return 0;
13034
13035 if (die->parent->tag != DW_TAG_structure_type
13036 && die->parent->tag != DW_TAG_union_type
13037 && die->parent->tag != DW_TAG_class_type)
13038 return 0;
13039
13040 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
13041 type_name = dwarf2_name (die->parent, cu);
13042 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
13043 return 0;
13044
13045 len = strlen (fieldname);
fe978cb0
PA
13046 return (strncmp (fieldname, type_name, len) == 0
13047 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
13048}
13049
c906108c
SS
13050/* Add a member function to the proper fieldlist. */
13051
13052static void
107d2387 13053dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 13054 struct type *type, struct dwarf2_cu *cu)
c906108c 13055{
e7c27a73 13056 struct objfile *objfile = cu->objfile;
c906108c
SS
13057 struct attribute *attr;
13058 struct fnfieldlist *flp;
13059 int i;
13060 struct fn_field *fnp;
15d034d0 13061 const char *fieldname;
c906108c 13062 struct nextfnfield *new_fnfield;
f792889a 13063 struct type *this_type;
60d5a603 13064 enum dwarf_access_attribute accessibility;
c906108c 13065
b4ba55a1 13066 if (cu->language == language_ada)
a73c6dcd 13067 error (_("unexpected member function in Ada type"));
b4ba55a1 13068
2df3850c 13069 /* Get name of member function. */
39cbfefa
DJ
13070 fieldname = dwarf2_name (die, cu);
13071 if (fieldname == NULL)
2df3850c 13072 return;
c906108c 13073
c906108c
SS
13074 /* Look up member function name in fieldlist. */
13075 for (i = 0; i < fip->nfnfields; i++)
13076 {
27bfe10e 13077 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
13078 break;
13079 }
13080
13081 /* Create new list element if necessary. */
13082 if (i < fip->nfnfields)
13083 flp = &fip->fnfieldlists[i];
13084 else
13085 {
13086 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13087 {
13088 fip->fnfieldlists = (struct fnfieldlist *)
13089 xrealloc (fip->fnfieldlists,
13090 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13091 * sizeof (struct fnfieldlist));
c906108c 13092 if (fip->nfnfields == 0)
c13c43fd 13093 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
13094 }
13095 flp = &fip->fnfieldlists[fip->nfnfields];
13096 flp->name = fieldname;
13097 flp->length = 0;
13098 flp->head = NULL;
3da10d80 13099 i = fip->nfnfields++;
c906108c
SS
13100 }
13101
13102 /* Create a new member function field and chain it to the field list
0963b4bd 13103 entry. */
8d749320 13104 new_fnfield = XNEW (struct nextfnfield);
b8c9b27d 13105 make_cleanup (xfree, new_fnfield);
c906108c
SS
13106 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13107 new_fnfield->next = flp->head;
13108 flp->head = new_fnfield;
13109 flp->length++;
13110
13111 /* Fill in the member function field info. */
13112 fnp = &new_fnfield->fnfield;
3da10d80
KS
13113
13114 /* Delay processing of the physname until later. */
9c37b5ae 13115 if (cu->language == language_cplus)
3da10d80
KS
13116 {
13117 add_to_method_list (type, i, flp->length - 1, fieldname,
13118 die, cu);
13119 }
13120 else
13121 {
1d06ead6 13122 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
13123 fnp->physname = physname ? physname : "";
13124 }
13125
c906108c 13126 fnp->type = alloc_type (objfile);
f792889a
DJ
13127 this_type = read_type_die (die, cu);
13128 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 13129 {
f792889a 13130 int nparams = TYPE_NFIELDS (this_type);
c906108c 13131
f792889a 13132 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
13133 of the method itself (TYPE_CODE_METHOD). */
13134 smash_to_method_type (fnp->type, type,
f792889a
DJ
13135 TYPE_TARGET_TYPE (this_type),
13136 TYPE_FIELDS (this_type),
13137 TYPE_NFIELDS (this_type),
13138 TYPE_VARARGS (this_type));
c906108c
SS
13139
13140 /* Handle static member functions.
c5aa993b 13141 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
13142 member functions. G++ helps GDB by marking the first
13143 parameter for non-static member functions (which is the this
13144 pointer) as artificial. We obtain this information from
13145 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 13146 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
13147 fnp->voffset = VOFFSET_STATIC;
13148 }
13149 else
e2e0b3e5 13150 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 13151 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
13152
13153 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 13154 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 13155 fnp->fcontext = die_containing_type (die, cu);
c906108c 13156
3e43a32a
MS
13157 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13158 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
13159
13160 /* Get accessibility. */
e142c38c 13161 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 13162 if (attr)
aead7601 13163 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
13164 else
13165 accessibility = dwarf2_default_access_attribute (die, cu);
13166 switch (accessibility)
c906108c 13167 {
60d5a603
JK
13168 case DW_ACCESS_private:
13169 fnp->is_private = 1;
13170 break;
13171 case DW_ACCESS_protected:
13172 fnp->is_protected = 1;
13173 break;
c906108c
SS
13174 }
13175
b02dede2 13176 /* Check for artificial methods. */
e142c38c 13177 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
13178 if (attr && DW_UNSND (attr) != 0)
13179 fnp->is_artificial = 1;
13180
7d27a96d
TT
13181 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13182
0d564a31 13183 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
13184 function. For older versions of GCC, this is an offset in the
13185 appropriate virtual table, as specified by DW_AT_containing_type.
13186 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
13187 to the object address. */
13188
e142c38c 13189 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 13190 if (attr)
8e19ed76 13191 {
aec5aa8b 13192 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 13193 {
aec5aa8b
TT
13194 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13195 {
13196 /* Old-style GCC. */
13197 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13198 }
13199 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13200 || (DW_BLOCK (attr)->size > 1
13201 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13202 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13203 {
aec5aa8b
TT
13204 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13205 if ((fnp->voffset % cu->header.addr_size) != 0)
13206 dwarf2_complex_location_expr_complaint ();
13207 else
13208 fnp->voffset /= cu->header.addr_size;
13209 fnp->voffset += 2;
13210 }
13211 else
13212 dwarf2_complex_location_expr_complaint ();
13213
13214 if (!fnp->fcontext)
7e993ebf
KS
13215 {
13216 /* If there is no `this' field and no DW_AT_containing_type,
13217 we cannot actually find a base class context for the
13218 vtable! */
13219 if (TYPE_NFIELDS (this_type) == 0
13220 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13221 {
13222 complaint (&symfile_complaints,
13223 _("cannot determine context for virtual member "
13224 "function \"%s\" (offset %d)"),
13225 fieldname, die->offset.sect_off);
13226 }
13227 else
13228 {
13229 fnp->fcontext
13230 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13231 }
13232 }
aec5aa8b 13233 }
3690dd37 13234 else if (attr_form_is_section_offset (attr))
8e19ed76 13235 {
4d3c2250 13236 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
13237 }
13238 else
13239 {
4d3c2250
KB
13240 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13241 fieldname);
8e19ed76 13242 }
0d564a31 13243 }
d48cc9dd
DJ
13244 else
13245 {
13246 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13247 if (attr && DW_UNSND (attr))
13248 {
13249 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13250 complaint (&symfile_complaints,
3e43a32a
MS
13251 _("Member function \"%s\" (offset %d) is virtual "
13252 "but the vtable offset is not specified"),
b64f50a1 13253 fieldname, die->offset.sect_off);
9655fd1a 13254 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
13255 TYPE_CPLUS_DYNAMIC (type) = 1;
13256 }
13257 }
c906108c
SS
13258}
13259
13260/* Create the vector of member function fields, and attach it to the type. */
13261
13262static void
fba45db2 13263dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13264 struct dwarf2_cu *cu)
c906108c
SS
13265{
13266 struct fnfieldlist *flp;
c906108c
SS
13267 int i;
13268
b4ba55a1 13269 if (cu->language == language_ada)
a73c6dcd 13270 error (_("unexpected member functions in Ada type"));
b4ba55a1 13271
c906108c
SS
13272 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13273 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13274 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13275
13276 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13277 {
13278 struct nextfnfield *nfp = flp->head;
13279 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13280 int k;
13281
13282 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13283 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13284 fn_flp->fn_fields = (struct fn_field *)
13285 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13286 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13287 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13288 }
13289
13290 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13291}
13292
1168df01
JB
13293/* Returns non-zero if NAME is the name of a vtable member in CU's
13294 language, zero otherwise. */
13295static int
13296is_vtable_name (const char *name, struct dwarf2_cu *cu)
13297{
13298 static const char vptr[] = "_vptr";
987504bb 13299 static const char vtable[] = "vtable";
1168df01 13300
9c37b5ae
TT
13301 /* Look for the C++ form of the vtable. */
13302 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
1168df01
JB
13303 return 1;
13304
13305 return 0;
13306}
13307
c0dd20ea 13308/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13309 functions, with the ABI-specified layout. If TYPE describes
13310 such a structure, smash it into a member function type.
61049d3b
DJ
13311
13312 GCC shouldn't do this; it should just output pointer to member DIEs.
13313 This is GCC PR debug/28767. */
c0dd20ea 13314
0b92b5bb
TT
13315static void
13316quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13317{
09e2d7c7 13318 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13319
13320 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13321 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13322 return;
c0dd20ea
DJ
13323
13324 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13325 if (TYPE_FIELD_NAME (type, 0) == NULL
13326 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13327 || TYPE_FIELD_NAME (type, 1) == NULL
13328 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13329 return;
c0dd20ea
DJ
13330
13331 /* Find the type of the method. */
0b92b5bb 13332 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13333 if (pfn_type == NULL
13334 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13335 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13336 return;
c0dd20ea
DJ
13337
13338 /* Look for the "this" argument. */
13339 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13340 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13341 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13342 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13343 return;
c0dd20ea 13344
09e2d7c7 13345 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13346 new_type = alloc_type (objfile);
09e2d7c7 13347 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13348 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13349 TYPE_VARARGS (pfn_type));
0b92b5bb 13350 smash_to_methodptr_type (type, new_type);
c0dd20ea 13351}
1168df01 13352
685b1105
JK
13353/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13354 (icc). */
13355
13356static int
13357producer_is_icc (struct dwarf2_cu *cu)
13358{
13359 if (!cu->checked_producer)
13360 check_producer (cu);
13361
13362 return cu->producer_is_icc;
13363}
13364
c906108c 13365/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13366 (definition) to create a type for the structure or union. Fill in
13367 the type's name and general properties; the members will not be
83655187
DE
13368 processed until process_structure_scope. A symbol table entry for
13369 the type will also not be done until process_structure_scope (assuming
13370 the type has a name).
c906108c 13371
c767944b
DJ
13372 NOTE: we need to call these functions regardless of whether or not the
13373 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13374 structure or union. This gets the type entered into our set of
83655187 13375 user defined types. */
c906108c 13376
f792889a 13377static struct type *
134d01f1 13378read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13379{
e7c27a73 13380 struct objfile *objfile = cu->objfile;
c906108c
SS
13381 struct type *type;
13382 struct attribute *attr;
15d034d0 13383 const char *name;
c906108c 13384
348e048f
DE
13385 /* If the definition of this type lives in .debug_types, read that type.
13386 Don't follow DW_AT_specification though, that will take us back up
13387 the chain and we want to go down. */
45e58e77 13388 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13389 if (attr)
13390 {
ac9ec31b 13391 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13392
ac9ec31b 13393 /* The type's CU may not be the same as CU.
02142a6c 13394 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13395 return set_die_type (die, type, cu);
13396 }
13397
c0dd20ea 13398 type = alloc_type (objfile);
c906108c 13399 INIT_CPLUS_SPECIFIC (type);
93311388 13400
39cbfefa
DJ
13401 name = dwarf2_name (die, cu);
13402 if (name != NULL)
c906108c 13403 {
987504bb 13404 if (cu->language == language_cplus
c44af4eb
TT
13405 || cu->language == language_d
13406 || cu->language == language_rust)
63d06c5c 13407 {
15d034d0 13408 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13409
13410 /* dwarf2_full_name might have already finished building the DIE's
13411 type. If so, there is no need to continue. */
13412 if (get_die_type (die, cu) != NULL)
13413 return get_die_type (die, cu);
13414
13415 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13416 if (die->tag == DW_TAG_structure_type
13417 || die->tag == DW_TAG_class_type)
13418 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13419 }
13420 else
13421 {
d8151005
DJ
13422 /* The name is already allocated along with this objfile, so
13423 we don't need to duplicate it for the type. */
7d455152 13424 TYPE_TAG_NAME (type) = name;
94af9270
KS
13425 if (die->tag == DW_TAG_class_type)
13426 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13427 }
c906108c
SS
13428 }
13429
13430 if (die->tag == DW_TAG_structure_type)
13431 {
13432 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13433 }
13434 else if (die->tag == DW_TAG_union_type)
13435 {
13436 TYPE_CODE (type) = TYPE_CODE_UNION;
13437 }
13438 else
13439 {
4753d33b 13440 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13441 }
13442
0cc2414c
TT
13443 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13444 TYPE_DECLARED_CLASS (type) = 1;
13445
e142c38c 13446 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13447 if (attr)
13448 {
155bfbd3
JB
13449 if (attr_form_is_constant (attr))
13450 TYPE_LENGTH (type) = DW_UNSND (attr);
13451 else
13452 {
13453 /* For the moment, dynamic type sizes are not supported
13454 by GDB's struct type. The actual size is determined
13455 on-demand when resolving the type of a given object,
13456 so set the type's length to zero for now. Otherwise,
13457 we record an expression as the length, and that expression
13458 could lead to a very large value, which could eventually
13459 lead to us trying to allocate that much memory when creating
13460 a value of that type. */
13461 TYPE_LENGTH (type) = 0;
13462 }
c906108c
SS
13463 }
13464 else
13465 {
13466 TYPE_LENGTH (type) = 0;
13467 }
13468
422b1cb0 13469 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13470 {
13471 /* ICC does not output the required DW_AT_declaration
13472 on incomplete types, but gives them a size of zero. */
422b1cb0 13473 TYPE_STUB (type) = 1;
685b1105
JK
13474 }
13475 else
13476 TYPE_STUB_SUPPORTED (type) = 1;
13477
dc718098 13478 if (die_is_declaration (die, cu))
876cecd0 13479 TYPE_STUB (type) = 1;
a6c727b2
DJ
13480 else if (attr == NULL && die->child == NULL
13481 && producer_is_realview (cu->producer))
13482 /* RealView does not output the required DW_AT_declaration
13483 on incomplete types. */
13484 TYPE_STUB (type) = 1;
dc718098 13485
c906108c
SS
13486 /* We need to add the type field to the die immediately so we don't
13487 infinitely recurse when dealing with pointers to the structure
0963b4bd 13488 type within the structure itself. */
1c379e20 13489 set_die_type (die, type, cu);
c906108c 13490
7e314c57
JK
13491 /* set_die_type should be already done. */
13492 set_descriptive_type (type, die, cu);
13493
c767944b
DJ
13494 return type;
13495}
13496
13497/* Finish creating a structure or union type, including filling in
13498 its members and creating a symbol for it. */
13499
13500static void
13501process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13502{
13503 struct objfile *objfile = cu->objfile;
ca040673 13504 struct die_info *child_die;
c767944b
DJ
13505 struct type *type;
13506
13507 type = get_die_type (die, cu);
13508 if (type == NULL)
13509 type = read_structure_type (die, cu);
13510
e142c38c 13511 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13512 {
13513 struct field_info fi;
34eaf542 13514 VEC (symbolp) *template_args = NULL;
c767944b 13515 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13516
13517 memset (&fi, 0, sizeof (struct field_info));
13518
639d11d3 13519 child_die = die->child;
c906108c
SS
13520
13521 while (child_die && child_die->tag)
13522 {
a9a9bd0f
DC
13523 if (child_die->tag == DW_TAG_member
13524 || child_die->tag == DW_TAG_variable)
c906108c 13525 {
a9a9bd0f
DC
13526 /* NOTE: carlton/2002-11-05: A C++ static data member
13527 should be a DW_TAG_member that is a declaration, but
13528 all versions of G++ as of this writing (so through at
13529 least 3.2.1) incorrectly generate DW_TAG_variable
13530 tags for them instead. */
e7c27a73 13531 dwarf2_add_field (&fi, child_die, cu);
c906108c 13532 }
8713b1b1 13533 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13534 {
e98c9e7c
TT
13535 /* Rust doesn't have member functions in the C++ sense.
13536 However, it does emit ordinary functions as children
13537 of a struct DIE. */
13538 if (cu->language == language_rust)
13539 read_func_scope (child_die, cu);
13540 else
13541 {
13542 /* C++ member function. */
13543 dwarf2_add_member_fn (&fi, child_die, type, cu);
13544 }
c906108c
SS
13545 }
13546 else if (child_die->tag == DW_TAG_inheritance)
13547 {
13548 /* C++ base class field. */
e7c27a73 13549 dwarf2_add_field (&fi, child_die, cu);
c906108c 13550 }
98751a41
JK
13551 else if (child_die->tag == DW_TAG_typedef)
13552 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13553 else if (child_die->tag == DW_TAG_template_type_param
13554 || child_die->tag == DW_TAG_template_value_param)
13555 {
13556 struct symbol *arg = new_symbol (child_die, NULL, cu);
13557
f1078f66
DJ
13558 if (arg != NULL)
13559 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13560 }
13561
c906108c
SS
13562 child_die = sibling_die (child_die);
13563 }
13564
34eaf542
TT
13565 /* Attach template arguments to type. */
13566 if (! VEC_empty (symbolp, template_args))
13567 {
13568 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13569 TYPE_N_TEMPLATE_ARGUMENTS (type)
13570 = VEC_length (symbolp, template_args);
13571 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
13572 = XOBNEWVEC (&objfile->objfile_obstack,
13573 struct symbol *,
13574 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542
TT
13575 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13576 VEC_address (symbolp, template_args),
13577 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13578 * sizeof (struct symbol *)));
13579 VEC_free (symbolp, template_args);
13580 }
13581
c906108c
SS
13582 /* Attach fields and member functions to the type. */
13583 if (fi.nfields)
e7c27a73 13584 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13585 if (fi.nfnfields)
13586 {
e7c27a73 13587 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13588
c5aa993b 13589 /* Get the type which refers to the base class (possibly this
c906108c 13590 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13591 class from the DW_AT_containing_type attribute. This use of
13592 DW_AT_containing_type is a GNU extension. */
c906108c 13593
e142c38c 13594 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13595 {
e7c27a73 13596 struct type *t = die_containing_type (die, cu);
c906108c 13597
ae6ae975 13598 set_type_vptr_basetype (type, t);
c906108c
SS
13599 if (type == t)
13600 {
c906108c
SS
13601 int i;
13602
13603 /* Our own class provides vtbl ptr. */
13604 for (i = TYPE_NFIELDS (t) - 1;
13605 i >= TYPE_N_BASECLASSES (t);
13606 --i)
13607 {
0d5cff50 13608 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13609
1168df01 13610 if (is_vtable_name (fieldname, cu))
c906108c 13611 {
ae6ae975 13612 set_type_vptr_fieldno (type, i);
c906108c
SS
13613 break;
13614 }
13615 }
13616
13617 /* Complain if virtual function table field not found. */
13618 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13619 complaint (&symfile_complaints,
3e43a32a
MS
13620 _("virtual function table pointer "
13621 "not found when defining class '%s'"),
4d3c2250
KB
13622 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13623 "");
c906108c
SS
13624 }
13625 else
13626 {
ae6ae975 13627 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13628 }
13629 }
f6235d4c 13630 else if (cu->producer
61012eef 13631 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13632 {
13633 /* The IBM XLC compiler does not provide direct indication
13634 of the containing type, but the vtable pointer is
13635 always named __vfp. */
13636
13637 int i;
13638
13639 for (i = TYPE_NFIELDS (type) - 1;
13640 i >= TYPE_N_BASECLASSES (type);
13641 --i)
13642 {
13643 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13644 {
ae6ae975
DE
13645 set_type_vptr_fieldno (type, i);
13646 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13647 break;
13648 }
13649 }
13650 }
c906108c 13651 }
98751a41
JK
13652
13653 /* Copy fi.typedef_field_list linked list elements content into the
13654 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13655 if (fi.typedef_field_list)
13656 {
13657 int i = fi.typedef_field_list_count;
13658
a0d7a4ff 13659 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 13660 TYPE_TYPEDEF_FIELD_ARRAY (type)
224c3ddb
SM
13661 = ((struct typedef_field *)
13662 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
98751a41
JK
13663 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13664
13665 /* Reverse the list order to keep the debug info elements order. */
13666 while (--i >= 0)
13667 {
13668 struct typedef_field *dest, *src;
6e70227d 13669
98751a41
JK
13670 dest = &TYPE_TYPEDEF_FIELD (type, i);
13671 src = &fi.typedef_field_list->field;
13672 fi.typedef_field_list = fi.typedef_field_list->next;
13673 *dest = *src;
13674 }
13675 }
c767944b
DJ
13676
13677 do_cleanups (back_to);
c906108c 13678 }
63d06c5c 13679
bb5ed363 13680 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13681
90aeadfc
DC
13682 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13683 snapshots) has been known to create a die giving a declaration
13684 for a class that has, as a child, a die giving a definition for a
13685 nested class. So we have to process our children even if the
13686 current die is a declaration. Normally, of course, a declaration
13687 won't have any children at all. */
134d01f1 13688
ca040673
DE
13689 child_die = die->child;
13690
90aeadfc
DC
13691 while (child_die != NULL && child_die->tag)
13692 {
13693 if (child_die->tag == DW_TAG_member
13694 || child_die->tag == DW_TAG_variable
34eaf542
TT
13695 || child_die->tag == DW_TAG_inheritance
13696 || child_die->tag == DW_TAG_template_value_param
13697 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13698 {
90aeadfc 13699 /* Do nothing. */
134d01f1 13700 }
90aeadfc
DC
13701 else
13702 process_die (child_die, cu);
134d01f1 13703
90aeadfc 13704 child_die = sibling_die (child_die);
134d01f1
DJ
13705 }
13706
fa4028e9
JB
13707 /* Do not consider external references. According to the DWARF standard,
13708 these DIEs are identified by the fact that they have no byte_size
13709 attribute, and a declaration attribute. */
13710 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13711 || !die_is_declaration (die, cu))
c767944b 13712 new_symbol (die, type, cu);
134d01f1
DJ
13713}
13714
55426c9d
JB
13715/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13716 update TYPE using some information only available in DIE's children. */
13717
13718static void
13719update_enumeration_type_from_children (struct die_info *die,
13720 struct type *type,
13721 struct dwarf2_cu *cu)
13722{
13723 struct obstack obstack;
60f7655a 13724 struct die_info *child_die;
55426c9d
JB
13725 int unsigned_enum = 1;
13726 int flag_enum = 1;
13727 ULONGEST mask = 0;
13728 struct cleanup *old_chain;
13729
13730 obstack_init (&obstack);
13731 old_chain = make_cleanup_obstack_free (&obstack);
13732
60f7655a
DE
13733 for (child_die = die->child;
13734 child_die != NULL && child_die->tag;
13735 child_die = sibling_die (child_die))
55426c9d
JB
13736 {
13737 struct attribute *attr;
13738 LONGEST value;
13739 const gdb_byte *bytes;
13740 struct dwarf2_locexpr_baton *baton;
13741 const char *name;
60f7655a 13742
55426c9d
JB
13743 if (child_die->tag != DW_TAG_enumerator)
13744 continue;
13745
13746 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13747 if (attr == NULL)
13748 continue;
13749
13750 name = dwarf2_name (child_die, cu);
13751 if (name == NULL)
13752 name = "<anonymous enumerator>";
13753
13754 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13755 &value, &bytes, &baton);
13756 if (value < 0)
13757 {
13758 unsigned_enum = 0;
13759 flag_enum = 0;
13760 }
13761 else if ((mask & value) != 0)
13762 flag_enum = 0;
13763 else
13764 mask |= value;
13765
13766 /* If we already know that the enum type is neither unsigned, nor
13767 a flag type, no need to look at the rest of the enumerates. */
13768 if (!unsigned_enum && !flag_enum)
13769 break;
55426c9d
JB
13770 }
13771
13772 if (unsigned_enum)
13773 TYPE_UNSIGNED (type) = 1;
13774 if (flag_enum)
13775 TYPE_FLAG_ENUM (type) = 1;
13776
13777 do_cleanups (old_chain);
13778}
13779
134d01f1
DJ
13780/* Given a DW_AT_enumeration_type die, set its type. We do not
13781 complete the type's fields yet, or create any symbols. */
c906108c 13782
f792889a 13783static struct type *
134d01f1 13784read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13785{
e7c27a73 13786 struct objfile *objfile = cu->objfile;
c906108c 13787 struct type *type;
c906108c 13788 struct attribute *attr;
0114d602 13789 const char *name;
134d01f1 13790
348e048f
DE
13791 /* If the definition of this type lives in .debug_types, read that type.
13792 Don't follow DW_AT_specification though, that will take us back up
13793 the chain and we want to go down. */
45e58e77 13794 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13795 if (attr)
13796 {
ac9ec31b 13797 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13798
ac9ec31b 13799 /* The type's CU may not be the same as CU.
02142a6c 13800 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13801 return set_die_type (die, type, cu);
13802 }
13803
c906108c
SS
13804 type = alloc_type (objfile);
13805
13806 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13807 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13808 if (name != NULL)
7d455152 13809 TYPE_TAG_NAME (type) = name;
c906108c 13810
0626fc76
TT
13811 attr = dwarf2_attr (die, DW_AT_type, cu);
13812 if (attr != NULL)
13813 {
13814 struct type *underlying_type = die_type (die, cu);
13815
13816 TYPE_TARGET_TYPE (type) = underlying_type;
13817 }
13818
e142c38c 13819 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13820 if (attr)
13821 {
13822 TYPE_LENGTH (type) = DW_UNSND (attr);
13823 }
13824 else
13825 {
13826 TYPE_LENGTH (type) = 0;
13827 }
13828
137033e9
JB
13829 /* The enumeration DIE can be incomplete. In Ada, any type can be
13830 declared as private in the package spec, and then defined only
13831 inside the package body. Such types are known as Taft Amendment
13832 Types. When another package uses such a type, an incomplete DIE
13833 may be generated by the compiler. */
02eb380e 13834 if (die_is_declaration (die, cu))
876cecd0 13835 TYPE_STUB (type) = 1;
02eb380e 13836
0626fc76
TT
13837 /* Finish the creation of this type by using the enum's children.
13838 We must call this even when the underlying type has been provided
13839 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13840 update_enumeration_type_from_children (die, type, cu);
13841
0626fc76
TT
13842 /* If this type has an underlying type that is not a stub, then we
13843 may use its attributes. We always use the "unsigned" attribute
13844 in this situation, because ordinarily we guess whether the type
13845 is unsigned -- but the guess can be wrong and the underlying type
13846 can tell us the reality. However, we defer to a local size
13847 attribute if one exists, because this lets the compiler override
13848 the underlying type if needed. */
13849 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13850 {
13851 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13852 if (TYPE_LENGTH (type) == 0)
13853 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13854 }
13855
3d567982
TT
13856 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13857
f792889a 13858 return set_die_type (die, type, cu);
134d01f1
DJ
13859}
13860
13861/* Given a pointer to a die which begins an enumeration, process all
13862 the dies that define the members of the enumeration, and create the
13863 symbol for the enumeration type.
13864
13865 NOTE: We reverse the order of the element list. */
13866
13867static void
13868process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13869{
f792889a 13870 struct type *this_type;
134d01f1 13871
f792889a
DJ
13872 this_type = get_die_type (die, cu);
13873 if (this_type == NULL)
13874 this_type = read_enumeration_type (die, cu);
9dc481d3 13875
639d11d3 13876 if (die->child != NULL)
c906108c 13877 {
9dc481d3
DE
13878 struct die_info *child_die;
13879 struct symbol *sym;
13880 struct field *fields = NULL;
13881 int num_fields = 0;
15d034d0 13882 const char *name;
9dc481d3 13883
639d11d3 13884 child_die = die->child;
c906108c
SS
13885 while (child_die && child_die->tag)
13886 {
13887 if (child_die->tag != DW_TAG_enumerator)
13888 {
e7c27a73 13889 process_die (child_die, cu);
c906108c
SS
13890 }
13891 else
13892 {
39cbfefa
DJ
13893 name = dwarf2_name (child_die, cu);
13894 if (name)
c906108c 13895 {
f792889a 13896 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13897
13898 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13899 {
13900 fields = (struct field *)
13901 xrealloc (fields,
13902 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13903 * sizeof (struct field));
c906108c
SS
13904 }
13905
3567439c 13906 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13907 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13908 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13909 FIELD_BITSIZE (fields[num_fields]) = 0;
13910
13911 num_fields++;
13912 }
13913 }
13914
13915 child_die = sibling_die (child_die);
13916 }
13917
13918 if (num_fields)
13919 {
f792889a
DJ
13920 TYPE_NFIELDS (this_type) = num_fields;
13921 TYPE_FIELDS (this_type) = (struct field *)
13922 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13923 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13924 sizeof (struct field) * num_fields);
b8c9b27d 13925 xfree (fields);
c906108c 13926 }
c906108c 13927 }
134d01f1 13928
6c83ed52
TT
13929 /* If we are reading an enum from a .debug_types unit, and the enum
13930 is a declaration, and the enum is not the signatured type in the
13931 unit, then we do not want to add a symbol for it. Adding a
13932 symbol would in some cases obscure the true definition of the
13933 enum, giving users an incomplete type when the definition is
13934 actually available. Note that we do not want to do this for all
13935 enums which are just declarations, because C++0x allows forward
13936 enum declarations. */
3019eac3 13937 if (cu->per_cu->is_debug_types
6c83ed52
TT
13938 && die_is_declaration (die, cu))
13939 {
52dc124a 13940 struct signatured_type *sig_type;
6c83ed52 13941
c0f78cd4 13942 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13943 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13944 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13945 return;
13946 }
13947
f792889a 13948 new_symbol (die, this_type, cu);
c906108c
SS
13949}
13950
13951/* Extract all information from a DW_TAG_array_type DIE and put it in
13952 the DIE's type field. For now, this only handles one dimensional
13953 arrays. */
13954
f792889a 13955static struct type *
e7c27a73 13956read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13957{
e7c27a73 13958 struct objfile *objfile = cu->objfile;
c906108c 13959 struct die_info *child_die;
7e314c57 13960 struct type *type;
c906108c
SS
13961 struct type *element_type, *range_type, *index_type;
13962 struct type **range_types = NULL;
13963 struct attribute *attr;
13964 int ndim = 0;
13965 struct cleanup *back_to;
15d034d0 13966 const char *name;
dc53a7ad 13967 unsigned int bit_stride = 0;
c906108c 13968
e7c27a73 13969 element_type = die_type (die, cu);
c906108c 13970
7e314c57
JK
13971 /* The die_type call above may have already set the type for this DIE. */
13972 type = get_die_type (die, cu);
13973 if (type)
13974 return type;
13975
dc53a7ad
JB
13976 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13977 if (attr != NULL)
13978 bit_stride = DW_UNSND (attr) * 8;
13979
13980 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13981 if (attr != NULL)
13982 bit_stride = DW_UNSND (attr);
13983
c906108c
SS
13984 /* Irix 6.2 native cc creates array types without children for
13985 arrays with unspecified length. */
639d11d3 13986 if (die->child == NULL)
c906108c 13987 {
46bf5051 13988 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13989 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13990 type = create_array_type_with_stride (NULL, element_type, range_type,
13991 bit_stride);
f792889a 13992 return set_die_type (die, type, cu);
c906108c
SS
13993 }
13994
13995 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13996 child_die = die->child;
c906108c
SS
13997 while (child_die && child_die->tag)
13998 {
13999 if (child_die->tag == DW_TAG_subrange_type)
14000 {
f792889a 14001 struct type *child_type = read_type_die (child_die, cu);
9a619af0 14002
f792889a 14003 if (child_type != NULL)
a02abb62 14004 {
0963b4bd
MS
14005 /* The range type was succesfully read. Save it for the
14006 array type creation. */
a02abb62
JB
14007 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
14008 {
14009 range_types = (struct type **)
14010 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
14011 * sizeof (struct type *));
14012 if (ndim == 0)
14013 make_cleanup (free_current_contents, &range_types);
14014 }
f792889a 14015 range_types[ndim++] = child_type;
a02abb62 14016 }
c906108c
SS
14017 }
14018 child_die = sibling_die (child_die);
14019 }
14020
14021 /* Dwarf2 dimensions are output from left to right, create the
14022 necessary array types in backwards order. */
7ca2d3a3 14023
c906108c 14024 type = element_type;
7ca2d3a3
DL
14025
14026 if (read_array_order (die, cu) == DW_ORD_col_major)
14027 {
14028 int i = 0;
9a619af0 14029
7ca2d3a3 14030 while (i < ndim)
dc53a7ad
JB
14031 type = create_array_type_with_stride (NULL, type, range_types[i++],
14032 bit_stride);
7ca2d3a3
DL
14033 }
14034 else
14035 {
14036 while (ndim-- > 0)
dc53a7ad
JB
14037 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14038 bit_stride);
7ca2d3a3 14039 }
c906108c 14040
f5f8a009
EZ
14041 /* Understand Dwarf2 support for vector types (like they occur on
14042 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14043 array type. This is not part of the Dwarf2/3 standard yet, but a
14044 custom vendor extension. The main difference between a regular
14045 array and the vector variant is that vectors are passed by value
14046 to functions. */
e142c38c 14047 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 14048 if (attr)
ea37ba09 14049 make_vector_type (type);
f5f8a009 14050
dbc98a8b
KW
14051 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14052 implementation may choose to implement triple vectors using this
14053 attribute. */
14054 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14055 if (attr)
14056 {
14057 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14058 TYPE_LENGTH (type) = DW_UNSND (attr);
14059 else
3e43a32a
MS
14060 complaint (&symfile_complaints,
14061 _("DW_AT_byte_size for array type smaller "
14062 "than the total size of elements"));
dbc98a8b
KW
14063 }
14064
39cbfefa
DJ
14065 name = dwarf2_name (die, cu);
14066 if (name)
14067 TYPE_NAME (type) = name;
6e70227d 14068
0963b4bd 14069 /* Install the type in the die. */
7e314c57
JK
14070 set_die_type (die, type, cu);
14071
14072 /* set_die_type should be already done. */
b4ba55a1
JB
14073 set_descriptive_type (type, die, cu);
14074
c906108c
SS
14075 do_cleanups (back_to);
14076
7e314c57 14077 return type;
c906108c
SS
14078}
14079
7ca2d3a3 14080static enum dwarf_array_dim_ordering
6e70227d 14081read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
14082{
14083 struct attribute *attr;
14084
14085 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14086
aead7601
SM
14087 if (attr)
14088 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 14089
0963b4bd
MS
14090 /* GNU F77 is a special case, as at 08/2004 array type info is the
14091 opposite order to the dwarf2 specification, but data is still
14092 laid out as per normal fortran.
7ca2d3a3 14093
0963b4bd
MS
14094 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14095 version checking. */
7ca2d3a3 14096
905e0470
PM
14097 if (cu->language == language_fortran
14098 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
14099 {
14100 return DW_ORD_row_major;
14101 }
14102
6e70227d 14103 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
14104 {
14105 case array_column_major:
14106 return DW_ORD_col_major;
14107 case array_row_major:
14108 default:
14109 return DW_ORD_row_major;
14110 };
14111}
14112
72019c9c 14113/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 14114 the DIE's type field. */
72019c9c 14115
f792889a 14116static struct type *
72019c9c
GM
14117read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14118{
7e314c57
JK
14119 struct type *domain_type, *set_type;
14120 struct attribute *attr;
f792889a 14121
7e314c57
JK
14122 domain_type = die_type (die, cu);
14123
14124 /* The die_type call above may have already set the type for this DIE. */
14125 set_type = get_die_type (die, cu);
14126 if (set_type)
14127 return set_type;
14128
14129 set_type = create_set_type (NULL, domain_type);
14130
14131 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
14132 if (attr)
14133 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 14134
f792889a 14135 return set_die_type (die, set_type, cu);
72019c9c 14136}
7ca2d3a3 14137
0971de02
TT
14138/* A helper for read_common_block that creates a locexpr baton.
14139 SYM is the symbol which we are marking as computed.
14140 COMMON_DIE is the DIE for the common block.
14141 COMMON_LOC is the location expression attribute for the common
14142 block itself.
14143 MEMBER_LOC is the location expression attribute for the particular
14144 member of the common block that we are processing.
14145 CU is the CU from which the above come. */
14146
14147static void
14148mark_common_block_symbol_computed (struct symbol *sym,
14149 struct die_info *common_die,
14150 struct attribute *common_loc,
14151 struct attribute *member_loc,
14152 struct dwarf2_cu *cu)
14153{
14154 struct objfile *objfile = dwarf2_per_objfile->objfile;
14155 struct dwarf2_locexpr_baton *baton;
14156 gdb_byte *ptr;
14157 unsigned int cu_off;
14158 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14159 LONGEST offset = 0;
14160
14161 gdb_assert (common_loc && member_loc);
14162 gdb_assert (attr_form_is_block (common_loc));
14163 gdb_assert (attr_form_is_block (member_loc)
14164 || attr_form_is_constant (member_loc));
14165
8d749320 14166 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
14167 baton->per_cu = cu->per_cu;
14168 gdb_assert (baton->per_cu);
14169
14170 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14171
14172 if (attr_form_is_constant (member_loc))
14173 {
14174 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14175 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14176 }
14177 else
14178 baton->size += DW_BLOCK (member_loc)->size;
14179
224c3ddb 14180 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
14181 baton->data = ptr;
14182
14183 *ptr++ = DW_OP_call4;
14184 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
14185 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14186 ptr += 4;
14187
14188 if (attr_form_is_constant (member_loc))
14189 {
14190 *ptr++ = DW_OP_addr;
14191 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14192 ptr += cu->header.addr_size;
14193 }
14194 else
14195 {
14196 /* We have to copy the data here, because DW_OP_call4 will only
14197 use a DW_AT_location attribute. */
14198 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14199 ptr += DW_BLOCK (member_loc)->size;
14200 }
14201
14202 *ptr++ = DW_OP_plus;
14203 gdb_assert (ptr - baton->data == baton->size);
14204
0971de02 14205 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 14206 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
14207}
14208
4357ac6c
TT
14209/* Create appropriate locally-scoped variables for all the
14210 DW_TAG_common_block entries. Also create a struct common_block
14211 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14212 is used to sepate the common blocks name namespace from regular
14213 variable names. */
c906108c
SS
14214
14215static void
e7c27a73 14216read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14217{
0971de02
TT
14218 struct attribute *attr;
14219
14220 attr = dwarf2_attr (die, DW_AT_location, cu);
14221 if (attr)
14222 {
14223 /* Support the .debug_loc offsets. */
14224 if (attr_form_is_block (attr))
14225 {
14226 /* Ok. */
14227 }
14228 else if (attr_form_is_section_offset (attr))
14229 {
14230 dwarf2_complex_location_expr_complaint ();
14231 attr = NULL;
14232 }
14233 else
14234 {
14235 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14236 "common block member");
14237 attr = NULL;
14238 }
14239 }
14240
639d11d3 14241 if (die->child != NULL)
c906108c 14242 {
4357ac6c
TT
14243 struct objfile *objfile = cu->objfile;
14244 struct die_info *child_die;
14245 size_t n_entries = 0, size;
14246 struct common_block *common_block;
14247 struct symbol *sym;
74ac6d43 14248
4357ac6c
TT
14249 for (child_die = die->child;
14250 child_die && child_die->tag;
14251 child_die = sibling_die (child_die))
14252 ++n_entries;
14253
14254 size = (sizeof (struct common_block)
14255 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
14256 common_block
14257 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14258 size);
4357ac6c
TT
14259 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14260 common_block->n_entries = 0;
14261
14262 for (child_die = die->child;
14263 child_die && child_die->tag;
14264 child_die = sibling_die (child_die))
14265 {
14266 /* Create the symbol in the DW_TAG_common_block block in the current
14267 symbol scope. */
e7c27a73 14268 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
14269 if (sym != NULL)
14270 {
14271 struct attribute *member_loc;
14272
14273 common_block->contents[common_block->n_entries++] = sym;
14274
14275 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14276 cu);
14277 if (member_loc)
14278 {
14279 /* GDB has handled this for a long time, but it is
14280 not specified by DWARF. It seems to have been
14281 emitted by gfortran at least as recently as:
14282 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14283 complaint (&symfile_complaints,
14284 _("Variable in common block has "
14285 "DW_AT_data_member_location "
14286 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
14287 child_die->offset.sect_off,
14288 objfile_name (cu->objfile));
0971de02
TT
14289
14290 if (attr_form_is_section_offset (member_loc))
14291 dwarf2_complex_location_expr_complaint ();
14292 else if (attr_form_is_constant (member_loc)
14293 || attr_form_is_block (member_loc))
14294 {
14295 if (attr)
14296 mark_common_block_symbol_computed (sym, die, attr,
14297 member_loc, cu);
14298 }
14299 else
14300 dwarf2_complex_location_expr_complaint ();
14301 }
14302 }
c906108c 14303 }
4357ac6c
TT
14304
14305 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14306 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14307 }
14308}
14309
0114d602 14310/* Create a type for a C++ namespace. */
d9fa45fe 14311
0114d602
DJ
14312static struct type *
14313read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14314{
e7c27a73 14315 struct objfile *objfile = cu->objfile;
0114d602 14316 const char *previous_prefix, *name;
9219021c 14317 int is_anonymous;
0114d602
DJ
14318 struct type *type;
14319
14320 /* For extensions, reuse the type of the original namespace. */
14321 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14322 {
14323 struct die_info *ext_die;
14324 struct dwarf2_cu *ext_cu = cu;
9a619af0 14325
0114d602
DJ
14326 ext_die = dwarf2_extension (die, &ext_cu);
14327 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14328
14329 /* EXT_CU may not be the same as CU.
02142a6c 14330 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14331 return set_die_type (die, type, cu);
14332 }
9219021c 14333
e142c38c 14334 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14335
14336 /* Now build the name of the current namespace. */
14337
0114d602
DJ
14338 previous_prefix = determine_prefix (die, cu);
14339 if (previous_prefix[0] != '\0')
14340 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14341 previous_prefix, name, 0, cu);
0114d602
DJ
14342
14343 /* Create the type. */
19f392bc 14344 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
0114d602
DJ
14345 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14346
60531b24 14347 return set_die_type (die, type, cu);
0114d602
DJ
14348}
14349
22cee43f 14350/* Read a namespace scope. */
0114d602
DJ
14351
14352static void
14353read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14354{
14355 struct objfile *objfile = cu->objfile;
0114d602 14356 int is_anonymous;
9219021c 14357
5c4e30ca
DC
14358 /* Add a symbol associated to this if we haven't seen the namespace
14359 before. Also, add a using directive if it's an anonymous
14360 namespace. */
9219021c 14361
f2f0e013 14362 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14363 {
14364 struct type *type;
14365
0114d602 14366 type = read_type_die (die, cu);
e7c27a73 14367 new_symbol (die, type, cu);
5c4e30ca 14368
e8e80198 14369 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14370 if (is_anonymous)
0114d602
DJ
14371 {
14372 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14373
22cee43f
PMR
14374 add_using_directive (using_directives (cu->language),
14375 previous_prefix, TYPE_NAME (type), NULL,
14376 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14377 }
5c4e30ca 14378 }
9219021c 14379
639d11d3 14380 if (die->child != NULL)
d9fa45fe 14381 {
639d11d3 14382 struct die_info *child_die = die->child;
6e70227d 14383
d9fa45fe
DC
14384 while (child_die && child_die->tag)
14385 {
e7c27a73 14386 process_die (child_die, cu);
d9fa45fe
DC
14387 child_die = sibling_die (child_die);
14388 }
14389 }
38d518c9
EZ
14390}
14391
f55ee35c
JK
14392/* Read a Fortran module as type. This DIE can be only a declaration used for
14393 imported module. Still we need that type as local Fortran "use ... only"
14394 declaration imports depend on the created type in determine_prefix. */
14395
14396static struct type *
14397read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14398{
14399 struct objfile *objfile = cu->objfile;
15d034d0 14400 const char *module_name;
f55ee35c
JK
14401 struct type *type;
14402
14403 module_name = dwarf2_name (die, cu);
14404 if (!module_name)
3e43a32a
MS
14405 complaint (&symfile_complaints,
14406 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 14407 die->offset.sect_off);
19f392bc 14408 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
f55ee35c
JK
14409
14410 /* determine_prefix uses TYPE_TAG_NAME. */
14411 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14412
14413 return set_die_type (die, type, cu);
14414}
14415
5d7cb8df
JK
14416/* Read a Fortran module. */
14417
14418static void
14419read_module (struct die_info *die, struct dwarf2_cu *cu)
14420{
14421 struct die_info *child_die = die->child;
530e8392
KB
14422 struct type *type;
14423
14424 type = read_type_die (die, cu);
14425 new_symbol (die, type, cu);
5d7cb8df 14426
5d7cb8df
JK
14427 while (child_die && child_die->tag)
14428 {
14429 process_die (child_die, cu);
14430 child_die = sibling_die (child_die);
14431 }
14432}
14433
38d518c9
EZ
14434/* Return the name of the namespace represented by DIE. Set
14435 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14436 namespace. */
14437
14438static const char *
e142c38c 14439namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14440{
14441 struct die_info *current_die;
14442 const char *name = NULL;
14443
14444 /* Loop through the extensions until we find a name. */
14445
14446 for (current_die = die;
14447 current_die != NULL;
f2f0e013 14448 current_die = dwarf2_extension (die, &cu))
38d518c9 14449 {
96553a0c
DE
14450 /* We don't use dwarf2_name here so that we can detect the absence
14451 of a name -> anonymous namespace. */
7d45c7c3 14452 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 14453
38d518c9
EZ
14454 if (name != NULL)
14455 break;
14456 }
14457
14458 /* Is it an anonymous namespace? */
14459
14460 *is_anonymous = (name == NULL);
14461 if (*is_anonymous)
2b1dbab0 14462 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14463
14464 return name;
d9fa45fe
DC
14465}
14466
c906108c
SS
14467/* Extract all information from a DW_TAG_pointer_type DIE and add to
14468 the user defined type vector. */
14469
f792889a 14470static struct type *
e7c27a73 14471read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14472{
5e2b427d 14473 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14474 struct comp_unit_head *cu_header = &cu->header;
c906108c 14475 struct type *type;
8b2dbe47
KB
14476 struct attribute *attr_byte_size;
14477 struct attribute *attr_address_class;
14478 int byte_size, addr_class;
7e314c57
JK
14479 struct type *target_type;
14480
14481 target_type = die_type (die, cu);
c906108c 14482
7e314c57
JK
14483 /* The die_type call above may have already set the type for this DIE. */
14484 type = get_die_type (die, cu);
14485 if (type)
14486 return type;
14487
14488 type = lookup_pointer_type (target_type);
8b2dbe47 14489
e142c38c 14490 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14491 if (attr_byte_size)
14492 byte_size = DW_UNSND (attr_byte_size);
c906108c 14493 else
8b2dbe47
KB
14494 byte_size = cu_header->addr_size;
14495
e142c38c 14496 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14497 if (attr_address_class)
14498 addr_class = DW_UNSND (attr_address_class);
14499 else
14500 addr_class = DW_ADDR_none;
14501
14502 /* If the pointer size or address class is different than the
14503 default, create a type variant marked as such and set the
14504 length accordingly. */
14505 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14506 {
5e2b427d 14507 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14508 {
14509 int type_flags;
14510
849957d9 14511 type_flags = gdbarch_address_class_type_flags
5e2b427d 14512 (gdbarch, byte_size, addr_class);
876cecd0
TT
14513 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14514 == 0);
8b2dbe47
KB
14515 type = make_type_with_address_space (type, type_flags);
14516 }
14517 else if (TYPE_LENGTH (type) != byte_size)
14518 {
3e43a32a
MS
14519 complaint (&symfile_complaints,
14520 _("invalid pointer size %d"), byte_size);
8b2dbe47 14521 }
6e70227d 14522 else
9a619af0
MS
14523 {
14524 /* Should we also complain about unhandled address classes? */
14525 }
c906108c 14526 }
8b2dbe47
KB
14527
14528 TYPE_LENGTH (type) = byte_size;
f792889a 14529 return set_die_type (die, type, cu);
c906108c
SS
14530}
14531
14532/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14533 the user defined type vector. */
14534
f792889a 14535static struct type *
e7c27a73 14536read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14537{
14538 struct type *type;
14539 struct type *to_type;
14540 struct type *domain;
14541
e7c27a73
DJ
14542 to_type = die_type (die, cu);
14543 domain = die_containing_type (die, cu);
0d5de010 14544
7e314c57
JK
14545 /* The calls above may have already set the type for this DIE. */
14546 type = get_die_type (die, cu);
14547 if (type)
14548 return type;
14549
0d5de010
DJ
14550 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14551 type = lookup_methodptr_type (to_type);
7078baeb
TT
14552 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14553 {
14554 struct type *new_type = alloc_type (cu->objfile);
14555
14556 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14557 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14558 TYPE_VARARGS (to_type));
14559 type = lookup_methodptr_type (new_type);
14560 }
0d5de010
DJ
14561 else
14562 type = lookup_memberptr_type (to_type, domain);
c906108c 14563
f792889a 14564 return set_die_type (die, type, cu);
c906108c
SS
14565}
14566
14567/* Extract all information from a DW_TAG_reference_type DIE and add to
14568 the user defined type vector. */
14569
f792889a 14570static struct type *
e7c27a73 14571read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14572{
e7c27a73 14573 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14574 struct type *type, *target_type;
c906108c
SS
14575 struct attribute *attr;
14576
7e314c57
JK
14577 target_type = die_type (die, cu);
14578
14579 /* The die_type call above may have already set the type for this DIE. */
14580 type = get_die_type (die, cu);
14581 if (type)
14582 return type;
14583
14584 type = lookup_reference_type (target_type);
e142c38c 14585 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14586 if (attr)
14587 {
14588 TYPE_LENGTH (type) = DW_UNSND (attr);
14589 }
14590 else
14591 {
107d2387 14592 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14593 }
f792889a 14594 return set_die_type (die, type, cu);
c906108c
SS
14595}
14596
cf363f18
MW
14597/* Add the given cv-qualifiers to the element type of the array. GCC
14598 outputs DWARF type qualifiers that apply to an array, not the
14599 element type. But GDB relies on the array element type to carry
14600 the cv-qualifiers. This mimics section 6.7.3 of the C99
14601 specification. */
14602
14603static struct type *
14604add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14605 struct type *base_type, int cnst, int voltl)
14606{
14607 struct type *el_type, *inner_array;
14608
14609 base_type = copy_type (base_type);
14610 inner_array = base_type;
14611
14612 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14613 {
14614 TYPE_TARGET_TYPE (inner_array) =
14615 copy_type (TYPE_TARGET_TYPE (inner_array));
14616 inner_array = TYPE_TARGET_TYPE (inner_array);
14617 }
14618
14619 el_type = TYPE_TARGET_TYPE (inner_array);
14620 cnst |= TYPE_CONST (el_type);
14621 voltl |= TYPE_VOLATILE (el_type);
14622 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14623
14624 return set_die_type (die, base_type, cu);
14625}
14626
f792889a 14627static struct type *
e7c27a73 14628read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14629{
f792889a 14630 struct type *base_type, *cv_type;
c906108c 14631
e7c27a73 14632 base_type = die_type (die, cu);
7e314c57
JK
14633
14634 /* The die_type call above may have already set the type for this DIE. */
14635 cv_type = get_die_type (die, cu);
14636 if (cv_type)
14637 return cv_type;
14638
2f608a3a
KW
14639 /* In case the const qualifier is applied to an array type, the element type
14640 is so qualified, not the array type (section 6.7.3 of C99). */
14641 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14642 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14643
f792889a
DJ
14644 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14645 return set_die_type (die, cv_type, cu);
c906108c
SS
14646}
14647
f792889a 14648static struct type *
e7c27a73 14649read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14650{
f792889a 14651 struct type *base_type, *cv_type;
c906108c 14652
e7c27a73 14653 base_type = die_type (die, cu);
7e314c57
JK
14654
14655 /* The die_type call above may have already set the type for this DIE. */
14656 cv_type = get_die_type (die, cu);
14657 if (cv_type)
14658 return cv_type;
14659
cf363f18
MW
14660 /* In case the volatile qualifier is applied to an array type, the
14661 element type is so qualified, not the array type (section 6.7.3
14662 of C99). */
14663 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14664 return add_array_cv_type (die, cu, base_type, 0, 1);
14665
f792889a
DJ
14666 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14667 return set_die_type (die, cv_type, cu);
c906108c
SS
14668}
14669
06d66ee9
TT
14670/* Handle DW_TAG_restrict_type. */
14671
14672static struct type *
14673read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14674{
14675 struct type *base_type, *cv_type;
14676
14677 base_type = die_type (die, cu);
14678
14679 /* The die_type call above may have already set the type for this DIE. */
14680 cv_type = get_die_type (die, cu);
14681 if (cv_type)
14682 return cv_type;
14683
14684 cv_type = make_restrict_type (base_type);
14685 return set_die_type (die, cv_type, cu);
14686}
14687
a2c2acaf
MW
14688/* Handle DW_TAG_atomic_type. */
14689
14690static struct type *
14691read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14692{
14693 struct type *base_type, *cv_type;
14694
14695 base_type = die_type (die, cu);
14696
14697 /* The die_type call above may have already set the type for this DIE. */
14698 cv_type = get_die_type (die, cu);
14699 if (cv_type)
14700 return cv_type;
14701
14702 cv_type = make_atomic_type (base_type);
14703 return set_die_type (die, cv_type, cu);
14704}
14705
c906108c
SS
14706/* Extract all information from a DW_TAG_string_type DIE and add to
14707 the user defined type vector. It isn't really a user defined type,
14708 but it behaves like one, with other DIE's using an AT_user_def_type
14709 attribute to reference it. */
14710
f792889a 14711static struct type *
e7c27a73 14712read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14713{
e7c27a73 14714 struct objfile *objfile = cu->objfile;
3b7538c0 14715 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14716 struct type *type, *range_type, *index_type, *char_type;
14717 struct attribute *attr;
14718 unsigned int length;
14719
e142c38c 14720 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14721 if (attr)
14722 {
14723 length = DW_UNSND (attr);
14724 }
14725 else
14726 {
0963b4bd 14727 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14728 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14729 if (attr)
14730 {
14731 length = DW_UNSND (attr);
14732 }
14733 else
14734 {
14735 length = 1;
14736 }
c906108c 14737 }
6ccb9162 14738
46bf5051 14739 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14740 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14741 char_type = language_string_char_type (cu->language_defn, gdbarch);
14742 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14743
f792889a 14744 return set_die_type (die, type, cu);
c906108c
SS
14745}
14746
4d804846
JB
14747/* Assuming that DIE corresponds to a function, returns nonzero
14748 if the function is prototyped. */
14749
14750static int
14751prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14752{
14753 struct attribute *attr;
14754
14755 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14756 if (attr && (DW_UNSND (attr) != 0))
14757 return 1;
14758
14759 /* The DWARF standard implies that the DW_AT_prototyped attribute
14760 is only meaninful for C, but the concept also extends to other
14761 languages that allow unprototyped functions (Eg: Objective C).
14762 For all other languages, assume that functions are always
14763 prototyped. */
14764 if (cu->language != language_c
14765 && cu->language != language_objc
14766 && cu->language != language_opencl)
14767 return 1;
14768
14769 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14770 prototyped and unprototyped functions; default to prototyped,
14771 since that is more common in modern code (and RealView warns
14772 about unprototyped functions). */
14773 if (producer_is_realview (cu->producer))
14774 return 1;
14775
14776 return 0;
14777}
14778
c906108c
SS
14779/* Handle DIES due to C code like:
14780
14781 struct foo
c5aa993b
JM
14782 {
14783 int (*funcp)(int a, long l);
14784 int b;
14785 };
c906108c 14786
0963b4bd 14787 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14788
f792889a 14789static struct type *
e7c27a73 14790read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14791{
bb5ed363 14792 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14793 struct type *type; /* Type that this function returns. */
14794 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14795 struct attribute *attr;
14796
e7c27a73 14797 type = die_type (die, cu);
7e314c57
JK
14798
14799 /* The die_type call above may have already set the type for this DIE. */
14800 ftype = get_die_type (die, cu);
14801 if (ftype)
14802 return ftype;
14803
0c8b41f1 14804 ftype = lookup_function_type (type);
c906108c 14805
4d804846 14806 if (prototyped_function_p (die, cu))
a6c727b2 14807 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14808
c055b101
CV
14809 /* Store the calling convention in the type if it's available in
14810 the subroutine die. Otherwise set the calling convention to
14811 the default value DW_CC_normal. */
14812 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14813 if (attr)
14814 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14815 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14816 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14817 else
14818 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14819
743649fd
MW
14820 /* Record whether the function returns normally to its caller or not
14821 if the DWARF producer set that information. */
14822 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14823 if (attr && (DW_UNSND (attr) != 0))
14824 TYPE_NO_RETURN (ftype) = 1;
14825
76c10ea2
GM
14826 /* We need to add the subroutine type to the die immediately so
14827 we don't infinitely recurse when dealing with parameters
0963b4bd 14828 declared as the same subroutine type. */
76c10ea2 14829 set_die_type (die, ftype, cu);
6e70227d 14830
639d11d3 14831 if (die->child != NULL)
c906108c 14832 {
bb5ed363 14833 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14834 struct die_info *child_die;
8072405b 14835 int nparams, iparams;
c906108c
SS
14836
14837 /* Count the number of parameters.
14838 FIXME: GDB currently ignores vararg functions, but knows about
14839 vararg member functions. */
8072405b 14840 nparams = 0;
639d11d3 14841 child_die = die->child;
c906108c
SS
14842 while (child_die && child_die->tag)
14843 {
14844 if (child_die->tag == DW_TAG_formal_parameter)
14845 nparams++;
14846 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14847 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14848 child_die = sibling_die (child_die);
14849 }
14850
14851 /* Allocate storage for parameters and fill them in. */
14852 TYPE_NFIELDS (ftype) = nparams;
14853 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14854 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14855
8072405b
JK
14856 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14857 even if we error out during the parameters reading below. */
14858 for (iparams = 0; iparams < nparams; iparams++)
14859 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14860
14861 iparams = 0;
639d11d3 14862 child_die = die->child;
c906108c
SS
14863 while (child_die && child_die->tag)
14864 {
14865 if (child_die->tag == DW_TAG_formal_parameter)
14866 {
3ce3b1ba
PA
14867 struct type *arg_type;
14868
14869 /* DWARF version 2 has no clean way to discern C++
14870 static and non-static member functions. G++ helps
14871 GDB by marking the first parameter for non-static
14872 member functions (which is the this pointer) as
14873 artificial. We pass this information to
14874 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14875
14876 DWARF version 3 added DW_AT_object_pointer, which GCC
14877 4.5 does not yet generate. */
e142c38c 14878 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14879 if (attr)
14880 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14881 else
9c37b5ae 14882 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
3ce3b1ba
PA
14883 arg_type = die_type (child_die, cu);
14884
14885 /* RealView does not mark THIS as const, which the testsuite
14886 expects. GCC marks THIS as const in method definitions,
14887 but not in the class specifications (GCC PR 43053). */
14888 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14889 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14890 {
14891 int is_this = 0;
14892 struct dwarf2_cu *arg_cu = cu;
14893 const char *name = dwarf2_name (child_die, cu);
14894
14895 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14896 if (attr)
14897 {
14898 /* If the compiler emits this, use it. */
14899 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14900 is_this = 1;
14901 }
14902 else if (name && strcmp (name, "this") == 0)
14903 /* Function definitions will have the argument names. */
14904 is_this = 1;
14905 else if (name == NULL && iparams == 0)
14906 /* Declarations may not have the names, so like
14907 elsewhere in GDB, assume an artificial first
14908 argument is "this". */
14909 is_this = 1;
14910
14911 if (is_this)
14912 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14913 arg_type, 0);
14914 }
14915
14916 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14917 iparams++;
14918 }
14919 child_die = sibling_die (child_die);
14920 }
14921 }
14922
76c10ea2 14923 return ftype;
c906108c
SS
14924}
14925
f792889a 14926static struct type *
e7c27a73 14927read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14928{
e7c27a73 14929 struct objfile *objfile = cu->objfile;
0114d602 14930 const char *name = NULL;
3c8e0968 14931 struct type *this_type, *target_type;
c906108c 14932
94af9270 14933 name = dwarf2_full_name (NULL, die, cu);
19f392bc
UW
14934 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
14935 TYPE_TARGET_STUB (this_type) = 1;
f792889a 14936 set_die_type (die, this_type, cu);
3c8e0968
DE
14937 target_type = die_type (die, cu);
14938 if (target_type != this_type)
14939 TYPE_TARGET_TYPE (this_type) = target_type;
14940 else
14941 {
14942 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14943 spec and cause infinite loops in GDB. */
14944 complaint (&symfile_complaints,
14945 _("Self-referential DW_TAG_typedef "
14946 "- DIE at 0x%x [in module %s]"),
4262abfb 14947 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14948 TYPE_TARGET_TYPE (this_type) = NULL;
14949 }
f792889a 14950 return this_type;
c906108c
SS
14951}
14952
9b790ce7
UW
14953/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
14954 (which may be different from NAME) to the architecture back-end to allow
14955 it to guess the correct format if necessary. */
14956
14957static struct type *
14958dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
14959 const char *name_hint)
14960{
14961 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14962 const struct floatformat **format;
14963 struct type *type;
14964
14965 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
14966 if (format)
14967 type = init_float_type (objfile, bits, name, format);
14968 else
14969 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
14970
14971 return type;
14972}
14973
c906108c
SS
14974/* Find a representation of a given base type and install
14975 it in the TYPE field of the die. */
14976
f792889a 14977static struct type *
e7c27a73 14978read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14979{
e7c27a73 14980 struct objfile *objfile = cu->objfile;
c906108c
SS
14981 struct type *type;
14982 struct attribute *attr;
19f392bc 14983 int encoding = 0, bits = 0;
15d034d0 14984 const char *name;
c906108c 14985
e142c38c 14986 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14987 if (attr)
14988 {
14989 encoding = DW_UNSND (attr);
14990 }
e142c38c 14991 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14992 if (attr)
14993 {
19f392bc 14994 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
c906108c 14995 }
39cbfefa 14996 name = dwarf2_name (die, cu);
6ccb9162 14997 if (!name)
c906108c 14998 {
6ccb9162
UW
14999 complaint (&symfile_complaints,
15000 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 15001 }
6ccb9162
UW
15002
15003 switch (encoding)
c906108c 15004 {
6ccb9162
UW
15005 case DW_ATE_address:
15006 /* Turn DW_ATE_address into a void * pointer. */
19f392bc
UW
15007 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
15008 type = init_pointer_type (objfile, bits, name, type);
6ccb9162
UW
15009 break;
15010 case DW_ATE_boolean:
19f392bc 15011 type = init_boolean_type (objfile, bits, 1, name);
6ccb9162
UW
15012 break;
15013 case DW_ATE_complex_float:
9b790ce7 15014 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
19f392bc 15015 type = init_complex_type (objfile, name, type);
6ccb9162
UW
15016 break;
15017 case DW_ATE_decimal_float:
19f392bc 15018 type = init_decfloat_type (objfile, bits, name);
6ccb9162
UW
15019 break;
15020 case DW_ATE_float:
9b790ce7 15021 type = dwarf2_init_float_type (objfile, bits, name, name);
6ccb9162
UW
15022 break;
15023 case DW_ATE_signed:
19f392bc 15024 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
15025 break;
15026 case DW_ATE_unsigned:
3b2b8fea
TT
15027 if (cu->language == language_fortran
15028 && name
61012eef 15029 && startswith (name, "character("))
19f392bc
UW
15030 type = init_character_type (objfile, bits, 1, name);
15031 else
15032 type = init_integer_type (objfile, bits, 1, name);
6ccb9162
UW
15033 break;
15034 case DW_ATE_signed_char:
6e70227d 15035 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
15036 || cu->language == language_pascal
15037 || cu->language == language_fortran)
19f392bc
UW
15038 type = init_character_type (objfile, bits, 0, name);
15039 else
15040 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
15041 break;
15042 case DW_ATE_unsigned_char:
868a0084 15043 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea 15044 || cu->language == language_pascal
c44af4eb
TT
15045 || cu->language == language_fortran
15046 || cu->language == language_rust)
19f392bc
UW
15047 type = init_character_type (objfile, bits, 1, name);
15048 else
15049 type = init_integer_type (objfile, bits, 1, name);
6ccb9162 15050 break;
75079b2b
TT
15051 case DW_ATE_UTF:
15052 /* We just treat this as an integer and then recognize the
15053 type by name elsewhere. */
19f392bc 15054 type = init_integer_type (objfile, bits, 0, name);
75079b2b
TT
15055 break;
15056
6ccb9162
UW
15057 default:
15058 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15059 dwarf_type_encoding_name (encoding));
19f392bc
UW
15060 type = init_type (objfile, TYPE_CODE_ERROR,
15061 bits / TARGET_CHAR_BIT, name);
6ccb9162 15062 break;
c906108c 15063 }
6ccb9162 15064
0114d602 15065 if (name && strcmp (name, "char") == 0)
876cecd0 15066 TYPE_NOSIGN (type) = 1;
0114d602 15067
f792889a 15068 return set_die_type (die, type, cu);
c906108c
SS
15069}
15070
80180f79
SA
15071/* Parse dwarf attribute if it's a block, reference or constant and put the
15072 resulting value of the attribute into struct bound_prop.
15073 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15074
15075static int
15076attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15077 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15078{
15079 struct dwarf2_property_baton *baton;
15080 struct obstack *obstack = &cu->objfile->objfile_obstack;
15081
15082 if (attr == NULL || prop == NULL)
15083 return 0;
15084
15085 if (attr_form_is_block (attr))
15086 {
8d749320 15087 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
15088 baton->referenced_type = NULL;
15089 baton->locexpr.per_cu = cu->per_cu;
15090 baton->locexpr.size = DW_BLOCK (attr)->size;
15091 baton->locexpr.data = DW_BLOCK (attr)->data;
15092 prop->data.baton = baton;
15093 prop->kind = PROP_LOCEXPR;
15094 gdb_assert (prop->data.baton != NULL);
15095 }
15096 else if (attr_form_is_ref (attr))
15097 {
15098 struct dwarf2_cu *target_cu = cu;
15099 struct die_info *target_die;
15100 struct attribute *target_attr;
15101
15102 target_die = follow_die_ref (die, attr, &target_cu);
15103 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
15104 if (target_attr == NULL)
15105 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15106 target_cu);
80180f79
SA
15107 if (target_attr == NULL)
15108 return 0;
15109
df25ebbd 15110 switch (target_attr->name)
80180f79 15111 {
df25ebbd
JB
15112 case DW_AT_location:
15113 if (attr_form_is_section_offset (target_attr))
15114 {
8d749320 15115 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
15116 baton->referenced_type = die_type (target_die, target_cu);
15117 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15118 prop->data.baton = baton;
15119 prop->kind = PROP_LOCLIST;
15120 gdb_assert (prop->data.baton != NULL);
15121 }
15122 else if (attr_form_is_block (target_attr))
15123 {
8d749320 15124 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
15125 baton->referenced_type = die_type (target_die, target_cu);
15126 baton->locexpr.per_cu = cu->per_cu;
15127 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15128 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15129 prop->data.baton = baton;
15130 prop->kind = PROP_LOCEXPR;
15131 gdb_assert (prop->data.baton != NULL);
15132 }
15133 else
15134 {
15135 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15136 "dynamic property");
15137 return 0;
15138 }
15139 break;
15140 case DW_AT_data_member_location:
15141 {
15142 LONGEST offset;
15143
15144 if (!handle_data_member_location (target_die, target_cu,
15145 &offset))
15146 return 0;
15147
8d749320 15148 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
15149 baton->referenced_type = read_type_die (target_die->parent,
15150 target_cu);
df25ebbd
JB
15151 baton->offset_info.offset = offset;
15152 baton->offset_info.type = die_type (target_die, target_cu);
15153 prop->data.baton = baton;
15154 prop->kind = PROP_ADDR_OFFSET;
15155 break;
15156 }
80180f79
SA
15157 }
15158 }
15159 else if (attr_form_is_constant (attr))
15160 {
15161 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15162 prop->kind = PROP_CONST;
15163 }
15164 else
15165 {
15166 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15167 dwarf2_name (die, cu));
15168 return 0;
15169 }
15170
15171 return 1;
15172}
15173
a02abb62
JB
15174/* Read the given DW_AT_subrange DIE. */
15175
f792889a 15176static struct type *
a02abb62
JB
15177read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15178{
4c9ad8c2 15179 struct type *base_type, *orig_base_type;
a02abb62
JB
15180 struct type *range_type;
15181 struct attribute *attr;
729efb13 15182 struct dynamic_prop low, high;
4fae6e18 15183 int low_default_is_valid;
c451ebe5 15184 int high_bound_is_count = 0;
15d034d0 15185 const char *name;
43bbcdc2 15186 LONGEST negative_mask;
e77813c8 15187
4c9ad8c2
TT
15188 orig_base_type = die_type (die, cu);
15189 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15190 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15191 creating the range type, but we use the result of check_typedef
15192 when examining properties of the type. */
15193 base_type = check_typedef (orig_base_type);
a02abb62 15194
7e314c57
JK
15195 /* The die_type call above may have already set the type for this DIE. */
15196 range_type = get_die_type (die, cu);
15197 if (range_type)
15198 return range_type;
15199
729efb13
SA
15200 low.kind = PROP_CONST;
15201 high.kind = PROP_CONST;
15202 high.data.const_val = 0;
15203
4fae6e18
JK
15204 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15205 omitting DW_AT_lower_bound. */
15206 switch (cu->language)
6e70227d 15207 {
4fae6e18
JK
15208 case language_c:
15209 case language_cplus:
729efb13 15210 low.data.const_val = 0;
4fae6e18
JK
15211 low_default_is_valid = 1;
15212 break;
15213 case language_fortran:
729efb13 15214 low.data.const_val = 1;
4fae6e18
JK
15215 low_default_is_valid = 1;
15216 break;
15217 case language_d:
4fae6e18 15218 case language_objc:
c44af4eb 15219 case language_rust:
729efb13 15220 low.data.const_val = 0;
4fae6e18
JK
15221 low_default_is_valid = (cu->header.version >= 4);
15222 break;
15223 case language_ada:
15224 case language_m2:
15225 case language_pascal:
729efb13 15226 low.data.const_val = 1;
4fae6e18
JK
15227 low_default_is_valid = (cu->header.version >= 4);
15228 break;
15229 default:
729efb13 15230 low.data.const_val = 0;
4fae6e18
JK
15231 low_default_is_valid = 0;
15232 break;
a02abb62
JB
15233 }
15234
e142c38c 15235 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 15236 if (attr)
11c1ba78 15237 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
15238 else if (!low_default_is_valid)
15239 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15240 "- DIE at 0x%x [in module %s]"),
4262abfb 15241 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 15242
e142c38c 15243 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 15244 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
15245 {
15246 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 15247 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 15248 {
c451ebe5
SA
15249 /* If bounds are constant do the final calculation here. */
15250 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15251 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15252 else
15253 high_bound_is_count = 1;
c2ff108b 15254 }
e77813c8
PM
15255 }
15256
15257 /* Dwarf-2 specifications explicitly allows to create subrange types
15258 without specifying a base type.
15259 In that case, the base type must be set to the type of
15260 the lower bound, upper bound or count, in that order, if any of these
15261 three attributes references an object that has a type.
15262 If no base type is found, the Dwarf-2 specifications say that
15263 a signed integer type of size equal to the size of an address should
15264 be used.
15265 For the following C code: `extern char gdb_int [];'
15266 GCC produces an empty range DIE.
15267 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 15268 high bound or count are not yet handled by this code. */
e77813c8
PM
15269 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15270 {
15271 struct objfile *objfile = cu->objfile;
15272 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15273 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15274 struct type *int_type = objfile_type (objfile)->builtin_int;
15275
15276 /* Test "int", "long int", and "long long int" objfile types,
15277 and select the first one having a size above or equal to the
15278 architecture address size. */
15279 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15280 base_type = int_type;
15281 else
15282 {
15283 int_type = objfile_type (objfile)->builtin_long;
15284 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15285 base_type = int_type;
15286 else
15287 {
15288 int_type = objfile_type (objfile)->builtin_long_long;
15289 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15290 base_type = int_type;
15291 }
15292 }
15293 }
a02abb62 15294
dbb9c2b1
JB
15295 /* Normally, the DWARF producers are expected to use a signed
15296 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15297 But this is unfortunately not always the case, as witnessed
15298 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15299 is used instead. To work around that ambiguity, we treat
15300 the bounds as signed, and thus sign-extend their values, when
15301 the base type is signed. */
6e70227d 15302 negative_mask =
66c6502d 15303 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
15304 if (low.kind == PROP_CONST
15305 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15306 low.data.const_val |= negative_mask;
15307 if (high.kind == PROP_CONST
15308 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15309 high.data.const_val |= negative_mask;
43bbcdc2 15310
729efb13 15311 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15312
c451ebe5
SA
15313 if (high_bound_is_count)
15314 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15315
c2ff108b
JK
15316 /* Ada expects an empty array on no boundary attributes. */
15317 if (attr == NULL && cu->language != language_ada)
729efb13 15318 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15319
39cbfefa
DJ
15320 name = dwarf2_name (die, cu);
15321 if (name)
15322 TYPE_NAME (range_type) = name;
6e70227d 15323
e142c38c 15324 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15325 if (attr)
15326 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15327
7e314c57
JK
15328 set_die_type (die, range_type, cu);
15329
15330 /* set_die_type should be already done. */
b4ba55a1
JB
15331 set_descriptive_type (range_type, die, cu);
15332
7e314c57 15333 return range_type;
a02abb62 15334}
6e70227d 15335
f792889a 15336static struct type *
81a17f79
JB
15337read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15338{
15339 struct type *type;
81a17f79 15340
81a17f79
JB
15341 /* For now, we only support the C meaning of an unspecified type: void. */
15342
19f392bc 15343 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
0114d602 15344 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15345
f792889a 15346 return set_die_type (die, type, cu);
81a17f79 15347}
a02abb62 15348
639d11d3
DC
15349/* Read a single die and all its descendents. Set the die's sibling
15350 field to NULL; set other fields in the die correctly, and set all
15351 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15352 location of the info_ptr after reading all of those dies. PARENT
15353 is the parent of the die in question. */
15354
15355static struct die_info *
dee91e82 15356read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15357 const gdb_byte *info_ptr,
15358 const gdb_byte **new_info_ptr,
dee91e82 15359 struct die_info *parent)
639d11d3
DC
15360{
15361 struct die_info *die;
d521ce57 15362 const gdb_byte *cur_ptr;
639d11d3
DC
15363 int has_children;
15364
bf6af496 15365 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15366 if (die == NULL)
15367 {
15368 *new_info_ptr = cur_ptr;
15369 return NULL;
15370 }
93311388 15371 store_in_ref_table (die, reader->cu);
639d11d3
DC
15372
15373 if (has_children)
bf6af496 15374 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15375 else
15376 {
15377 die->child = NULL;
15378 *new_info_ptr = cur_ptr;
15379 }
15380
15381 die->sibling = NULL;
15382 die->parent = parent;
15383 return die;
15384}
15385
15386/* Read a die, all of its descendents, and all of its siblings; set
15387 all of the fields of all of the dies correctly. Arguments are as
15388 in read_die_and_children. */
15389
15390static struct die_info *
bf6af496 15391read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15392 const gdb_byte *info_ptr,
15393 const gdb_byte **new_info_ptr,
bf6af496 15394 struct die_info *parent)
639d11d3
DC
15395{
15396 struct die_info *first_die, *last_sibling;
d521ce57 15397 const gdb_byte *cur_ptr;
639d11d3 15398
c906108c 15399 cur_ptr = info_ptr;
639d11d3
DC
15400 first_die = last_sibling = NULL;
15401
15402 while (1)
c906108c 15403 {
639d11d3 15404 struct die_info *die
dee91e82 15405 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15406
1d325ec1 15407 if (die == NULL)
c906108c 15408 {
639d11d3
DC
15409 *new_info_ptr = cur_ptr;
15410 return first_die;
c906108c 15411 }
1d325ec1
DJ
15412
15413 if (!first_die)
15414 first_die = die;
c906108c 15415 else
1d325ec1
DJ
15416 last_sibling->sibling = die;
15417
15418 last_sibling = die;
c906108c 15419 }
c906108c
SS
15420}
15421
bf6af496
DE
15422/* Read a die, all of its descendents, and all of its siblings; set
15423 all of the fields of all of the dies correctly. Arguments are as
15424 in read_die_and_children.
15425 This the main entry point for reading a DIE and all its children. */
15426
15427static struct die_info *
15428read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15429 const gdb_byte *info_ptr,
15430 const gdb_byte **new_info_ptr,
bf6af496
DE
15431 struct die_info *parent)
15432{
15433 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15434 new_info_ptr, parent);
15435
b4f54984 15436 if (dwarf_die_debug)
bf6af496
DE
15437 {
15438 fprintf_unfiltered (gdb_stdlog,
15439 "Read die from %s@0x%x of %s:\n",
a32a8923 15440 get_section_name (reader->die_section),
bf6af496
DE
15441 (unsigned) (info_ptr - reader->die_section->buffer),
15442 bfd_get_filename (reader->abfd));
b4f54984 15443 dump_die (die, dwarf_die_debug);
bf6af496
DE
15444 }
15445
15446 return die;
15447}
15448
3019eac3
DE
15449/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15450 attributes.
15451 The caller is responsible for filling in the extra attributes
15452 and updating (*DIEP)->num_attrs.
15453 Set DIEP to point to a newly allocated die with its information,
15454 except for its child, sibling, and parent fields.
15455 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15456
d521ce57 15457static const gdb_byte *
3019eac3 15458read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15459 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15460 int *has_children, int num_extra_attrs)
93311388 15461{
b64f50a1
JK
15462 unsigned int abbrev_number, bytes_read, i;
15463 sect_offset offset;
93311388
DE
15464 struct abbrev_info *abbrev;
15465 struct die_info *die;
15466 struct dwarf2_cu *cu = reader->cu;
15467 bfd *abfd = reader->abfd;
15468
b64f50a1 15469 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
15470 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15471 info_ptr += bytes_read;
15472 if (!abbrev_number)
15473 {
15474 *diep = NULL;
15475 *has_children = 0;
15476 return info_ptr;
15477 }
15478
433df2d4 15479 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15480 if (!abbrev)
348e048f
DE
15481 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15482 abbrev_number,
15483 bfd_get_filename (abfd));
15484
3019eac3 15485 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
15486 die->offset = offset;
15487 die->tag = abbrev->tag;
15488 die->abbrev = abbrev_number;
15489
3019eac3
DE
15490 /* Make the result usable.
15491 The caller needs to update num_attrs after adding the extra
15492 attributes. */
93311388
DE
15493 die->num_attrs = abbrev->num_attrs;
15494
15495 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15496 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15497 info_ptr);
93311388
DE
15498
15499 *diep = die;
15500 *has_children = abbrev->has_children;
15501 return info_ptr;
15502}
15503
3019eac3
DE
15504/* Read a die and all its attributes.
15505 Set DIEP to point to a newly allocated die with its information,
15506 except for its child, sibling, and parent fields.
15507 Set HAS_CHILDREN to tell whether the die has children or not. */
15508
d521ce57 15509static const gdb_byte *
3019eac3 15510read_full_die (const struct die_reader_specs *reader,
d521ce57 15511 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15512 int *has_children)
15513{
d521ce57 15514 const gdb_byte *result;
bf6af496
DE
15515
15516 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15517
b4f54984 15518 if (dwarf_die_debug)
bf6af496
DE
15519 {
15520 fprintf_unfiltered (gdb_stdlog,
15521 "Read die from %s@0x%x of %s:\n",
a32a8923 15522 get_section_name (reader->die_section),
bf6af496
DE
15523 (unsigned) (info_ptr - reader->die_section->buffer),
15524 bfd_get_filename (reader->abfd));
b4f54984 15525 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15526 }
15527
15528 return result;
3019eac3 15529}
433df2d4
DE
15530\f
15531/* Abbreviation tables.
3019eac3 15532
433df2d4 15533 In DWARF version 2, the description of the debugging information is
c906108c
SS
15534 stored in a separate .debug_abbrev section. Before we read any
15535 dies from a section we read in all abbreviations and install them
433df2d4
DE
15536 in a hash table. */
15537
15538/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15539
15540static struct abbrev_info *
15541abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15542{
15543 struct abbrev_info *abbrev;
15544
8d749320 15545 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
433df2d4 15546 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 15547
433df2d4
DE
15548 return abbrev;
15549}
15550
15551/* Add an abbreviation to the table. */
c906108c
SS
15552
15553static void
433df2d4
DE
15554abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15555 unsigned int abbrev_number,
15556 struct abbrev_info *abbrev)
15557{
15558 unsigned int hash_number;
15559
15560 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15561 abbrev->next = abbrev_table->abbrevs[hash_number];
15562 abbrev_table->abbrevs[hash_number] = abbrev;
15563}
dee91e82 15564
433df2d4
DE
15565/* Look up an abbrev in the table.
15566 Returns NULL if the abbrev is not found. */
15567
15568static struct abbrev_info *
15569abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15570 unsigned int abbrev_number)
c906108c 15571{
433df2d4
DE
15572 unsigned int hash_number;
15573 struct abbrev_info *abbrev;
15574
15575 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15576 abbrev = abbrev_table->abbrevs[hash_number];
15577
15578 while (abbrev)
15579 {
15580 if (abbrev->number == abbrev_number)
15581 return abbrev;
15582 abbrev = abbrev->next;
15583 }
15584 return NULL;
15585}
15586
15587/* Read in an abbrev table. */
15588
15589static struct abbrev_table *
15590abbrev_table_read_table (struct dwarf2_section_info *section,
15591 sect_offset offset)
15592{
15593 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15594 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15595 struct abbrev_table *abbrev_table;
d521ce57 15596 const gdb_byte *abbrev_ptr;
c906108c
SS
15597 struct abbrev_info *cur_abbrev;
15598 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15599 unsigned int abbrev_form;
f3dd6933
DJ
15600 struct attr_abbrev *cur_attrs;
15601 unsigned int allocated_attrs;
c906108c 15602
70ba0933 15603 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15604 abbrev_table->offset = offset;
433df2d4 15605 obstack_init (&abbrev_table->abbrev_obstack);
8d749320
SM
15606 abbrev_table->abbrevs =
15607 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15608 ABBREV_HASH_SIZE);
433df2d4
DE
15609 memset (abbrev_table->abbrevs, 0,
15610 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15611
433df2d4
DE
15612 dwarf2_read_section (objfile, section);
15613 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15614 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15615 abbrev_ptr += bytes_read;
15616
f3dd6933 15617 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 15618 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 15619
0963b4bd 15620 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15621 while (abbrev_number)
15622 {
433df2d4 15623 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15624
15625 /* read in abbrev header */
15626 cur_abbrev->number = abbrev_number;
aead7601
SM
15627 cur_abbrev->tag
15628 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15629 abbrev_ptr += bytes_read;
15630 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15631 abbrev_ptr += 1;
15632
15633 /* now read in declarations */
22d2f3ab 15634 for (;;)
c906108c 15635 {
43988095
JK
15636 LONGEST implicit_const;
15637
22d2f3ab
JK
15638 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15639 abbrev_ptr += bytes_read;
15640 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15641 abbrev_ptr += bytes_read;
43988095
JK
15642 if (abbrev_form == DW_FORM_implicit_const)
15643 {
15644 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15645 &bytes_read);
15646 abbrev_ptr += bytes_read;
15647 }
15648 else
15649 {
15650 /* Initialize it due to a false compiler warning. */
15651 implicit_const = -1;
15652 }
22d2f3ab
JK
15653
15654 if (abbrev_name == 0)
15655 break;
15656
f3dd6933 15657 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15658 {
f3dd6933
DJ
15659 allocated_attrs += ATTR_ALLOC_CHUNK;
15660 cur_attrs
224c3ddb 15661 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 15662 }
ae038cb0 15663
aead7601
SM
15664 cur_attrs[cur_abbrev->num_attrs].name
15665 = (enum dwarf_attribute) abbrev_name;
22d2f3ab 15666 cur_attrs[cur_abbrev->num_attrs].form
aead7601 15667 = (enum dwarf_form) abbrev_form;
43988095 15668 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
22d2f3ab 15669 ++cur_abbrev->num_attrs;
c906108c
SS
15670 }
15671
8d749320
SM
15672 cur_abbrev->attrs =
15673 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15674 cur_abbrev->num_attrs);
f3dd6933
DJ
15675 memcpy (cur_abbrev->attrs, cur_attrs,
15676 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15677
433df2d4 15678 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15679
15680 /* Get next abbreviation.
15681 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15682 always properly terminated with an abbrev number of 0.
15683 Exit loop if we encounter an abbreviation which we have
15684 already read (which means we are about to read the abbreviations
15685 for the next compile unit) or if the end of the abbreviation
15686 table is reached. */
433df2d4 15687 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15688 break;
15689 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15690 abbrev_ptr += bytes_read;
433df2d4 15691 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15692 break;
15693 }
f3dd6933
DJ
15694
15695 xfree (cur_attrs);
433df2d4 15696 return abbrev_table;
c906108c
SS
15697}
15698
433df2d4 15699/* Free the resources held by ABBREV_TABLE. */
c906108c 15700
c906108c 15701static void
433df2d4 15702abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15703{
433df2d4
DE
15704 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15705 xfree (abbrev_table);
c906108c
SS
15706}
15707
f4dc4d17
DE
15708/* Same as abbrev_table_free but as a cleanup.
15709 We pass in a pointer to the pointer to the table so that we can
15710 set the pointer to NULL when we're done. It also simplifies
73051182 15711 build_type_psymtabs_1. */
f4dc4d17
DE
15712
15713static void
15714abbrev_table_free_cleanup (void *table_ptr)
15715{
9a3c8263 15716 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
f4dc4d17
DE
15717
15718 if (*abbrev_table_ptr != NULL)
15719 abbrev_table_free (*abbrev_table_ptr);
15720 *abbrev_table_ptr = NULL;
15721}
15722
433df2d4
DE
15723/* Read the abbrev table for CU from ABBREV_SECTION. */
15724
15725static void
15726dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15727 struct dwarf2_section_info *abbrev_section)
c906108c 15728{
433df2d4
DE
15729 cu->abbrev_table =
15730 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15731}
c906108c 15732
433df2d4 15733/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15734
433df2d4
DE
15735static void
15736dwarf2_free_abbrev_table (void *ptr_to_cu)
15737{
9a3c8263 15738 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
c906108c 15739
a2ce51a0
DE
15740 if (cu->abbrev_table != NULL)
15741 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15742 /* Set this to NULL so that we SEGV if we try to read it later,
15743 and also because free_comp_unit verifies this is NULL. */
15744 cu->abbrev_table = NULL;
15745}
15746\f
72bf9492
DJ
15747/* Returns nonzero if TAG represents a type that we might generate a partial
15748 symbol for. */
15749
15750static int
15751is_type_tag_for_partial (int tag)
15752{
15753 switch (tag)
15754 {
15755#if 0
15756 /* Some types that would be reasonable to generate partial symbols for,
15757 that we don't at present. */
15758 case DW_TAG_array_type:
15759 case DW_TAG_file_type:
15760 case DW_TAG_ptr_to_member_type:
15761 case DW_TAG_set_type:
15762 case DW_TAG_string_type:
15763 case DW_TAG_subroutine_type:
15764#endif
15765 case DW_TAG_base_type:
15766 case DW_TAG_class_type:
680b30c7 15767 case DW_TAG_interface_type:
72bf9492
DJ
15768 case DW_TAG_enumeration_type:
15769 case DW_TAG_structure_type:
15770 case DW_TAG_subrange_type:
15771 case DW_TAG_typedef:
15772 case DW_TAG_union_type:
15773 return 1;
15774 default:
15775 return 0;
15776 }
15777}
15778
15779/* Load all DIEs that are interesting for partial symbols into memory. */
15780
15781static struct partial_die_info *
dee91e82 15782load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15783 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15784{
dee91e82 15785 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15786 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15787 struct partial_die_info *part_die;
15788 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15789 struct abbrev_info *abbrev;
15790 unsigned int bytes_read;
5afb4e99 15791 unsigned int load_all = 0;
72bf9492
DJ
15792 int nesting_level = 1;
15793
15794 parent_die = NULL;
15795 last_die = NULL;
15796
7adf1e79
DE
15797 gdb_assert (cu->per_cu != NULL);
15798 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15799 load_all = 1;
15800
72bf9492
DJ
15801 cu->partial_dies
15802 = htab_create_alloc_ex (cu->header.length / 12,
15803 partial_die_hash,
15804 partial_die_eq,
15805 NULL,
15806 &cu->comp_unit_obstack,
15807 hashtab_obstack_allocate,
15808 dummy_obstack_deallocate);
15809
8d749320 15810 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15811
15812 while (1)
15813 {
15814 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15815
15816 /* A NULL abbrev means the end of a series of children. */
15817 if (abbrev == NULL)
15818 {
15819 if (--nesting_level == 0)
15820 {
15821 /* PART_DIE was probably the last thing allocated on the
15822 comp_unit_obstack, so we could call obstack_free
15823 here. We don't do that because the waste is small,
15824 and will be cleaned up when we're done with this
15825 compilation unit. This way, we're also more robust
15826 against other users of the comp_unit_obstack. */
15827 return first_die;
15828 }
15829 info_ptr += bytes_read;
15830 last_die = parent_die;
15831 parent_die = parent_die->die_parent;
15832 continue;
15833 }
15834
98bfdba5
PA
15835 /* Check for template arguments. We never save these; if
15836 they're seen, we just mark the parent, and go on our way. */
15837 if (parent_die != NULL
15838 && cu->language == language_cplus
15839 && (abbrev->tag == DW_TAG_template_type_param
15840 || abbrev->tag == DW_TAG_template_value_param))
15841 {
15842 parent_die->has_template_arguments = 1;
15843
15844 if (!load_all)
15845 {
15846 /* We don't need a partial DIE for the template argument. */
dee91e82 15847 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15848 continue;
15849 }
15850 }
15851
0d99eb77 15852 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15853 Skip their other children. */
15854 if (!load_all
15855 && cu->language == language_cplus
15856 && parent_die != NULL
15857 && parent_die->tag == DW_TAG_subprogram)
15858 {
dee91e82 15859 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15860 continue;
15861 }
15862
5afb4e99
DJ
15863 /* Check whether this DIE is interesting enough to save. Normally
15864 we would not be interested in members here, but there may be
15865 later variables referencing them via DW_AT_specification (for
15866 static members). */
15867 if (!load_all
15868 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15869 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15870 && abbrev->tag != DW_TAG_enumerator
15871 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15872 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15873 && abbrev->tag != DW_TAG_variable
5afb4e99 15874 && abbrev->tag != DW_TAG_namespace
f55ee35c 15875 && abbrev->tag != DW_TAG_module
95554aad 15876 && abbrev->tag != DW_TAG_member
74921315
KS
15877 && abbrev->tag != DW_TAG_imported_unit
15878 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15879 {
15880 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15881 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15882 continue;
15883 }
15884
dee91e82
DE
15885 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15886 info_ptr);
72bf9492
DJ
15887
15888 /* This two-pass algorithm for processing partial symbols has a
15889 high cost in cache pressure. Thus, handle some simple cases
15890 here which cover the majority of C partial symbols. DIEs
15891 which neither have specification tags in them, nor could have
15892 specification tags elsewhere pointing at them, can simply be
15893 processed and discarded.
15894
15895 This segment is also optional; scan_partial_symbols and
15896 add_partial_symbol will handle these DIEs if we chain
15897 them in normally. When compilers which do not emit large
15898 quantities of duplicate debug information are more common,
15899 this code can probably be removed. */
15900
15901 /* Any complete simple types at the top level (pretty much all
15902 of them, for a language without namespaces), can be processed
15903 directly. */
15904 if (parent_die == NULL
15905 && part_die->has_specification == 0
15906 && part_die->is_declaration == 0
d8228535 15907 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15908 || part_die->tag == DW_TAG_base_type
15909 || part_die->tag == DW_TAG_subrange_type))
15910 {
15911 if (building_psymtab && part_die->name != NULL)
04a679b8 15912 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15913 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 15914 &objfile->static_psymbols,
1762568f 15915 0, cu->language, objfile);
dee91e82 15916 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15917 continue;
15918 }
15919
d8228535
JK
15920 /* The exception for DW_TAG_typedef with has_children above is
15921 a workaround of GCC PR debug/47510. In the case of this complaint
15922 type_name_no_tag_or_error will error on such types later.
15923
15924 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15925 it could not find the child DIEs referenced later, this is checked
15926 above. In correct DWARF DW_TAG_typedef should have no children. */
15927
15928 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15929 complaint (&symfile_complaints,
15930 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15931 "- DIE at 0x%x [in module %s]"),
4262abfb 15932 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15933
72bf9492
DJ
15934 /* If we're at the second level, and we're an enumerator, and
15935 our parent has no specification (meaning possibly lives in a
15936 namespace elsewhere), then we can add the partial symbol now
15937 instead of queueing it. */
15938 if (part_die->tag == DW_TAG_enumerator
15939 && parent_die != NULL
15940 && parent_die->die_parent == NULL
15941 && parent_die->tag == DW_TAG_enumeration_type
15942 && parent_die->has_specification == 0)
15943 {
15944 if (part_die->name == NULL)
3e43a32a
MS
15945 complaint (&symfile_complaints,
15946 _("malformed enumerator DIE ignored"));
72bf9492 15947 else if (building_psymtab)
04a679b8 15948 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15949 VAR_DOMAIN, LOC_CONST,
9c37b5ae 15950 cu->language == language_cplus
bb5ed363
DE
15951 ? &objfile->global_psymbols
15952 : &objfile->static_psymbols,
1762568f 15953 0, cu->language, objfile);
72bf9492 15954
dee91e82 15955 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15956 continue;
15957 }
15958
15959 /* We'll save this DIE so link it in. */
15960 part_die->die_parent = parent_die;
15961 part_die->die_sibling = NULL;
15962 part_die->die_child = NULL;
15963
15964 if (last_die && last_die == parent_die)
15965 last_die->die_child = part_die;
15966 else if (last_die)
15967 last_die->die_sibling = part_die;
15968
15969 last_die = part_die;
15970
15971 if (first_die == NULL)
15972 first_die = part_die;
15973
15974 /* Maybe add the DIE to the hash table. Not all DIEs that we
15975 find interesting need to be in the hash table, because we
15976 also have the parent/sibling/child chains; only those that we
15977 might refer to by offset later during partial symbol reading.
15978
15979 For now this means things that might have be the target of a
15980 DW_AT_specification, DW_AT_abstract_origin, or
15981 DW_AT_extension. DW_AT_extension will refer only to
15982 namespaces; DW_AT_abstract_origin refers to functions (and
15983 many things under the function DIE, but we do not recurse
15984 into function DIEs during partial symbol reading) and
15985 possibly variables as well; DW_AT_specification refers to
15986 declarations. Declarations ought to have the DW_AT_declaration
15987 flag. It happens that GCC forgets to put it in sometimes, but
15988 only for functions, not for types.
15989
15990 Adding more things than necessary to the hash table is harmless
15991 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15992 wasted time in find_partial_die, when we reread the compilation
15993 unit with load_all_dies set. */
72bf9492 15994
5afb4e99 15995 if (load_all
72929c62 15996 || abbrev->tag == DW_TAG_constant
5afb4e99 15997 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15998 || abbrev->tag == DW_TAG_variable
15999 || abbrev->tag == DW_TAG_namespace
16000 || part_die->is_declaration)
16001 {
16002 void **slot;
16003
16004 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 16005 part_die->offset.sect_off, INSERT);
72bf9492
DJ
16006 *slot = part_die;
16007 }
16008
8d749320 16009 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
16010
16011 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 16012 we have no reason to follow the children of structures; for other
98bfdba5
PA
16013 languages we have to, so that we can get at method physnames
16014 to infer fully qualified class names, for DW_AT_specification,
16015 and for C++ template arguments. For C++, we also look one level
16016 inside functions to find template arguments (if the name of the
16017 function does not already contain the template arguments).
bc30ff58
JB
16018
16019 For Ada, we need to scan the children of subprograms and lexical
16020 blocks as well because Ada allows the definition of nested
16021 entities that could be interesting for the debugger, such as
16022 nested subprograms for instance. */
72bf9492 16023 if (last_die->has_children
5afb4e99
DJ
16024 && (load_all
16025 || last_die->tag == DW_TAG_namespace
f55ee35c 16026 || last_die->tag == DW_TAG_module
72bf9492 16027 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
16028 || (cu->language == language_cplus
16029 && last_die->tag == DW_TAG_subprogram
16030 && (last_die->name == NULL
16031 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
16032 || (cu->language != language_c
16033 && (last_die->tag == DW_TAG_class_type
680b30c7 16034 || last_die->tag == DW_TAG_interface_type
72bf9492 16035 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
16036 || last_die->tag == DW_TAG_union_type))
16037 || (cu->language == language_ada
16038 && (last_die->tag == DW_TAG_subprogram
16039 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
16040 {
16041 nesting_level++;
16042 parent_die = last_die;
16043 continue;
16044 }
16045
16046 /* Otherwise we skip to the next sibling, if any. */
dee91e82 16047 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
16048
16049 /* Back to the top, do it again. */
16050 }
16051}
16052
c906108c
SS
16053/* Read a minimal amount of information into the minimal die structure. */
16054
d521ce57 16055static const gdb_byte *
dee91e82
DE
16056read_partial_die (const struct die_reader_specs *reader,
16057 struct partial_die_info *part_die,
16058 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 16059 const gdb_byte *info_ptr)
c906108c 16060{
dee91e82 16061 struct dwarf2_cu *cu = reader->cu;
bb5ed363 16062 struct objfile *objfile = cu->objfile;
d521ce57 16063 const gdb_byte *buffer = reader->buffer;
fa238c03 16064 unsigned int i;
c906108c 16065 struct attribute attr;
c5aa993b 16066 int has_low_pc_attr = 0;
c906108c 16067 int has_high_pc_attr = 0;
91da1414 16068 int high_pc_relative = 0;
c906108c 16069
72bf9492 16070 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 16071
b64f50a1 16072 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
16073
16074 info_ptr += abbrev_len;
16075
16076 if (abbrev == NULL)
16077 return info_ptr;
16078
c906108c
SS
16079 part_die->tag = abbrev->tag;
16080 part_die->has_children = abbrev->has_children;
c906108c
SS
16081
16082 for (i = 0; i < abbrev->num_attrs; ++i)
16083 {
dee91e82 16084 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
16085
16086 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 16087 partial symbol table. */
c906108c
SS
16088 switch (attr.name)
16089 {
16090 case DW_AT_name:
71c25dea
TT
16091 switch (part_die->tag)
16092 {
16093 case DW_TAG_compile_unit:
95554aad 16094 case DW_TAG_partial_unit:
348e048f 16095 case DW_TAG_type_unit:
71c25dea
TT
16096 /* Compilation units have a DW_AT_name that is a filename, not
16097 a source language identifier. */
16098 case DW_TAG_enumeration_type:
16099 case DW_TAG_enumerator:
16100 /* These tags always have simple identifiers already; no need
16101 to canonicalize them. */
16102 part_die->name = DW_STRING (&attr);
16103 break;
16104 default:
16105 part_die->name
16106 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 16107 &objfile->per_bfd->storage_obstack);
71c25dea
TT
16108 break;
16109 }
c906108c 16110 break;
31ef98ae 16111 case DW_AT_linkage_name:
c906108c 16112 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
16113 /* Note that both forms of linkage name might appear. We
16114 assume they will be the same, and we only store the last
16115 one we see. */
94af9270
KS
16116 if (cu->language == language_ada)
16117 part_die->name = DW_STRING (&attr);
abc72ce4 16118 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
16119 break;
16120 case DW_AT_low_pc:
16121 has_low_pc_attr = 1;
31aa7e4e 16122 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
16123 break;
16124 case DW_AT_high_pc:
16125 has_high_pc_attr = 1;
31aa7e4e
JB
16126 part_die->highpc = attr_value_as_address (&attr);
16127 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16128 high_pc_relative = 1;
c906108c
SS
16129 break;
16130 case DW_AT_location:
0963b4bd 16131 /* Support the .debug_loc offsets. */
8e19ed76
PS
16132 if (attr_form_is_block (&attr))
16133 {
95554aad 16134 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 16135 }
3690dd37 16136 else if (attr_form_is_section_offset (&attr))
8e19ed76 16137 {
4d3c2250 16138 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
16139 }
16140 else
16141 {
4d3c2250
KB
16142 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16143 "partial symbol information");
8e19ed76 16144 }
c906108c 16145 break;
c906108c
SS
16146 case DW_AT_external:
16147 part_die->is_external = DW_UNSND (&attr);
16148 break;
16149 case DW_AT_declaration:
16150 part_die->is_declaration = DW_UNSND (&attr);
16151 break;
16152 case DW_AT_type:
16153 part_die->has_type = 1;
16154 break;
16155 case DW_AT_abstract_origin:
16156 case DW_AT_specification:
72bf9492
DJ
16157 case DW_AT_extension:
16158 part_die->has_specification = 1;
c764a876 16159 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
16160 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16161 || cu->per_cu->is_dwz);
c906108c
SS
16162 break;
16163 case DW_AT_sibling:
16164 /* Ignore absolute siblings, they might point outside of
16165 the current compile unit. */
16166 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
16167 complaint (&symfile_complaints,
16168 _("ignoring absolute DW_AT_sibling"));
c906108c 16169 else
b9502d3f
WN
16170 {
16171 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
16172 const gdb_byte *sibling_ptr = buffer + off;
16173
16174 if (sibling_ptr < info_ptr)
16175 complaint (&symfile_complaints,
16176 _("DW_AT_sibling points backwards"));
22869d73
KS
16177 else if (sibling_ptr > reader->buffer_end)
16178 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
16179 else
16180 part_die->sibling = sibling_ptr;
16181 }
c906108c 16182 break;
fa4028e9
JB
16183 case DW_AT_byte_size:
16184 part_die->has_byte_size = 1;
16185 break;
ff908ebf
AW
16186 case DW_AT_const_value:
16187 part_die->has_const_value = 1;
16188 break;
68511cec
CES
16189 case DW_AT_calling_convention:
16190 /* DWARF doesn't provide a way to identify a program's source-level
16191 entry point. DW_AT_calling_convention attributes are only meant
16192 to describe functions' calling conventions.
16193
16194 However, because it's a necessary piece of information in
0c1b455e
TT
16195 Fortran, and before DWARF 4 DW_CC_program was the only
16196 piece of debugging information whose definition refers to
16197 a 'main program' at all, several compilers marked Fortran
16198 main programs with DW_CC_program --- even when those
16199 functions use the standard calling conventions.
16200
16201 Although DWARF now specifies a way to provide this
16202 information, we support this practice for backward
16203 compatibility. */
68511cec 16204 if (DW_UNSND (&attr) == DW_CC_program
0c1b455e
TT
16205 && cu->language == language_fortran)
16206 part_die->main_subprogram = 1;
68511cec 16207 break;
481860b3
GB
16208 case DW_AT_inline:
16209 if (DW_UNSND (&attr) == DW_INL_inlined
16210 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16211 part_die->may_be_inlined = 1;
16212 break;
95554aad
TT
16213
16214 case DW_AT_import:
16215 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
16216 {
16217 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
16218 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16219 || cu->per_cu->is_dwz);
16220 }
95554aad
TT
16221 break;
16222
0c1b455e
TT
16223 case DW_AT_main_subprogram:
16224 part_die->main_subprogram = DW_UNSND (&attr);
16225 break;
16226
c906108c
SS
16227 default:
16228 break;
16229 }
16230 }
16231
91da1414
MW
16232 if (high_pc_relative)
16233 part_die->highpc += part_die->lowpc;
16234
9373cf26
JK
16235 if (has_low_pc_attr && has_high_pc_attr)
16236 {
16237 /* When using the GNU linker, .gnu.linkonce. sections are used to
16238 eliminate duplicate copies of functions and vtables and such.
16239 The linker will arbitrarily choose one and discard the others.
16240 The AT_*_pc values for such functions refer to local labels in
16241 these sections. If the section from that file was discarded, the
16242 labels are not in the output, so the relocs get a value of 0.
16243 If this is a discarded function, mark the pc bounds as invalid,
16244 so that GDB will ignore it. */
16245 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16246 {
bb5ed363 16247 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16248
16249 complaint (&symfile_complaints,
16250 _("DW_AT_low_pc %s is zero "
16251 "for DIE at 0x%x [in module %s]"),
16252 paddress (gdbarch, part_die->lowpc),
4262abfb 16253 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
16254 }
16255 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16256 else if (part_die->lowpc >= part_die->highpc)
16257 {
bb5ed363 16258 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16259
16260 complaint (&symfile_complaints,
16261 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16262 "for DIE at 0x%x [in module %s]"),
16263 paddress (gdbarch, part_die->lowpc),
16264 paddress (gdbarch, part_die->highpc),
4262abfb 16265 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
16266 }
16267 else
16268 part_die->has_pc_info = 1;
16269 }
85cbf3d3 16270
c906108c
SS
16271 return info_ptr;
16272}
16273
72bf9492
DJ
16274/* Find a cached partial DIE at OFFSET in CU. */
16275
16276static struct partial_die_info *
b64f50a1 16277find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
16278{
16279 struct partial_die_info *lookup_die = NULL;
16280 struct partial_die_info part_die;
16281
16282 part_die.offset = offset;
9a3c8263
SM
16283 lookup_die = ((struct partial_die_info *)
16284 htab_find_with_hash (cu->partial_dies, &part_die,
16285 offset.sect_off));
72bf9492 16286
72bf9492
DJ
16287 return lookup_die;
16288}
16289
348e048f
DE
16290/* Find a partial DIE at OFFSET, which may or may not be in CU,
16291 except in the case of .debug_types DIEs which do not reference
16292 outside their CU (they do however referencing other types via
55f1336d 16293 DW_FORM_ref_sig8). */
72bf9492
DJ
16294
16295static struct partial_die_info *
36586728 16296find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 16297{
bb5ed363 16298 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16299 struct dwarf2_per_cu_data *per_cu = NULL;
16300 struct partial_die_info *pd = NULL;
72bf9492 16301
36586728
TT
16302 if (offset_in_dwz == cu->per_cu->is_dwz
16303 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
16304 {
16305 pd = find_partial_die_in_comp_unit (offset, cu);
16306 if (pd != NULL)
16307 return pd;
0d99eb77
DE
16308 /* We missed recording what we needed.
16309 Load all dies and try again. */
16310 per_cu = cu->per_cu;
5afb4e99 16311 }
0d99eb77
DE
16312 else
16313 {
16314 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16315 if (cu->per_cu->is_debug_types)
0d99eb77
DE
16316 {
16317 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16318 " external reference to offset 0x%lx [in module %s].\n"),
16319 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16320 bfd_get_filename (objfile->obfd));
16321 }
36586728
TT
16322 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16323 objfile);
72bf9492 16324
0d99eb77
DE
16325 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16326 load_partial_comp_unit (per_cu);
ae038cb0 16327
0d99eb77
DE
16328 per_cu->cu->last_used = 0;
16329 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16330 }
5afb4e99 16331
dee91e82
DE
16332 /* If we didn't find it, and not all dies have been loaded,
16333 load them all and try again. */
16334
5afb4e99
DJ
16335 if (pd == NULL && per_cu->load_all_dies == 0)
16336 {
5afb4e99 16337 per_cu->load_all_dies = 1;
fd820528
DE
16338
16339 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16340 THIS_CU->cu may already be in use. So we can't just free it and
16341 replace its DIEs with the ones we read in. Instead, we leave those
16342 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16343 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16344 set. */
dee91e82 16345 load_partial_comp_unit (per_cu);
5afb4e99
DJ
16346
16347 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16348 }
16349
16350 if (pd == NULL)
16351 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16352 _("could not find partial DIE 0x%x "
16353 "in cache [from module %s]\n"),
b64f50a1 16354 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 16355 return pd;
72bf9492
DJ
16356}
16357
abc72ce4
DE
16358/* See if we can figure out if the class lives in a namespace. We do
16359 this by looking for a member function; its demangled name will
16360 contain namespace info, if there is any. */
16361
16362static void
16363guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16364 struct dwarf2_cu *cu)
16365{
16366 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16367 what template types look like, because the demangler
16368 frequently doesn't give the same name as the debug info. We
16369 could fix this by only using the demangled name to get the
16370 prefix (but see comment in read_structure_type). */
16371
16372 struct partial_die_info *real_pdi;
16373 struct partial_die_info *child_pdi;
16374
16375 /* If this DIE (this DIE's specification, if any) has a parent, then
16376 we should not do this. We'll prepend the parent's fully qualified
16377 name when we create the partial symbol. */
16378
16379 real_pdi = struct_pdi;
16380 while (real_pdi->has_specification)
36586728
TT
16381 real_pdi = find_partial_die (real_pdi->spec_offset,
16382 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16383
16384 if (real_pdi->die_parent != NULL)
16385 return;
16386
16387 for (child_pdi = struct_pdi->die_child;
16388 child_pdi != NULL;
16389 child_pdi = child_pdi->die_sibling)
16390 {
16391 if (child_pdi->tag == DW_TAG_subprogram
16392 && child_pdi->linkage_name != NULL)
16393 {
16394 char *actual_class_name
16395 = language_class_name_from_physname (cu->language_defn,
16396 child_pdi->linkage_name);
16397 if (actual_class_name != NULL)
16398 {
16399 struct_pdi->name
224c3ddb
SM
16400 = ((const char *)
16401 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16402 actual_class_name,
16403 strlen (actual_class_name)));
abc72ce4
DE
16404 xfree (actual_class_name);
16405 }
16406 break;
16407 }
16408 }
16409}
16410
72bf9492
DJ
16411/* Adjust PART_DIE before generating a symbol for it. This function
16412 may set the is_external flag or change the DIE's name. */
16413
16414static void
16415fixup_partial_die (struct partial_die_info *part_die,
16416 struct dwarf2_cu *cu)
16417{
abc72ce4
DE
16418 /* Once we've fixed up a die, there's no point in doing so again.
16419 This also avoids a memory leak if we were to call
16420 guess_partial_die_structure_name multiple times. */
16421 if (part_die->fixup_called)
16422 return;
16423
72bf9492
DJ
16424 /* If we found a reference attribute and the DIE has no name, try
16425 to find a name in the referred to DIE. */
16426
16427 if (part_die->name == NULL && part_die->has_specification)
16428 {
16429 struct partial_die_info *spec_die;
72bf9492 16430
36586728
TT
16431 spec_die = find_partial_die (part_die->spec_offset,
16432 part_die->spec_is_dwz, cu);
72bf9492 16433
10b3939b 16434 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16435
16436 if (spec_die->name)
16437 {
16438 part_die->name = spec_die->name;
16439
16440 /* Copy DW_AT_external attribute if it is set. */
16441 if (spec_die->is_external)
16442 part_die->is_external = spec_die->is_external;
16443 }
16444 }
16445
16446 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16447
16448 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16449 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16450
abc72ce4
DE
16451 /* If there is no parent die to provide a namespace, and there are
16452 children, see if we can determine the namespace from their linkage
122d1940 16453 name. */
abc72ce4 16454 if (cu->language == language_cplus
8b70b953 16455 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16456 && part_die->die_parent == NULL
16457 && part_die->has_children
16458 && (part_die->tag == DW_TAG_class_type
16459 || part_die->tag == DW_TAG_structure_type
16460 || part_die->tag == DW_TAG_union_type))
16461 guess_partial_die_structure_name (part_die, cu);
16462
53832f31
TT
16463 /* GCC might emit a nameless struct or union that has a linkage
16464 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16465 if (part_die->name == NULL
96408a79
SA
16466 && (part_die->tag == DW_TAG_class_type
16467 || part_die->tag == DW_TAG_interface_type
16468 || part_die->tag == DW_TAG_structure_type
16469 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16470 && part_die->linkage_name != NULL)
16471 {
16472 char *demangled;
16473
8de20a37 16474 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16475 if (demangled)
16476 {
96408a79
SA
16477 const char *base;
16478
16479 /* Strip any leading namespaces/classes, keep only the base name.
16480 DW_AT_name for named DIEs does not contain the prefixes. */
16481 base = strrchr (demangled, ':');
16482 if (base && base > demangled && base[-1] == ':')
16483 base++;
16484 else
16485 base = demangled;
16486
34a68019 16487 part_die->name
224c3ddb
SM
16488 = ((const char *)
16489 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16490 base, strlen (base)));
53832f31
TT
16491 xfree (demangled);
16492 }
16493 }
16494
abc72ce4 16495 part_die->fixup_called = 1;
72bf9492
DJ
16496}
16497
a8329558 16498/* Read an attribute value described by an attribute form. */
c906108c 16499
d521ce57 16500static const gdb_byte *
dee91e82
DE
16501read_attribute_value (const struct die_reader_specs *reader,
16502 struct attribute *attr, unsigned form,
43988095 16503 LONGEST implicit_const, const gdb_byte *info_ptr)
c906108c 16504{
dee91e82 16505 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16506 struct objfile *objfile = cu->objfile;
16507 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16508 bfd *abfd = reader->abfd;
e7c27a73 16509 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16510 unsigned int bytes_read;
16511 struct dwarf_block *blk;
16512
aead7601 16513 attr->form = (enum dwarf_form) form;
a8329558 16514 switch (form)
c906108c 16515 {
c906108c 16516 case DW_FORM_ref_addr:
ae411497 16517 if (cu->header.version == 2)
4568ecf9 16518 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16519 else
4568ecf9
DE
16520 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16521 &cu->header, &bytes_read);
ae411497
TT
16522 info_ptr += bytes_read;
16523 break;
36586728
TT
16524 case DW_FORM_GNU_ref_alt:
16525 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16526 info_ptr += bytes_read;
16527 break;
ae411497 16528 case DW_FORM_addr:
e7c27a73 16529 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16530 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16531 info_ptr += bytes_read;
c906108c
SS
16532 break;
16533 case DW_FORM_block2:
7b5a2f43 16534 blk = dwarf_alloc_block (cu);
c906108c
SS
16535 blk->size = read_2_bytes (abfd, info_ptr);
16536 info_ptr += 2;
16537 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16538 info_ptr += blk->size;
16539 DW_BLOCK (attr) = blk;
16540 break;
16541 case DW_FORM_block4:
7b5a2f43 16542 blk = dwarf_alloc_block (cu);
c906108c
SS
16543 blk->size = read_4_bytes (abfd, info_ptr);
16544 info_ptr += 4;
16545 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16546 info_ptr += blk->size;
16547 DW_BLOCK (attr) = blk;
16548 break;
16549 case DW_FORM_data2:
16550 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16551 info_ptr += 2;
16552 break;
16553 case DW_FORM_data4:
16554 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16555 info_ptr += 4;
16556 break;
16557 case DW_FORM_data8:
16558 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16559 info_ptr += 8;
16560 break;
0224619f
JK
16561 case DW_FORM_data16:
16562 blk = dwarf_alloc_block (cu);
16563 blk->size = 16;
16564 blk->data = read_n_bytes (abfd, info_ptr, 16);
16565 info_ptr += 16;
16566 DW_BLOCK (attr) = blk;
16567 break;
2dc7f7b3
TT
16568 case DW_FORM_sec_offset:
16569 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16570 info_ptr += bytes_read;
16571 break;
c906108c 16572 case DW_FORM_string:
9b1c24c8 16573 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16574 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16575 info_ptr += bytes_read;
16576 break;
4bdf3d34 16577 case DW_FORM_strp:
36586728
TT
16578 if (!cu->per_cu->is_dwz)
16579 {
16580 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16581 &bytes_read);
16582 DW_STRING_IS_CANONICAL (attr) = 0;
16583 info_ptr += bytes_read;
16584 break;
16585 }
16586 /* FALLTHROUGH */
43988095
JK
16587 case DW_FORM_line_strp:
16588 if (!cu->per_cu->is_dwz)
16589 {
16590 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16591 cu_header, &bytes_read);
16592 DW_STRING_IS_CANONICAL (attr) = 0;
16593 info_ptr += bytes_read;
16594 break;
16595 }
16596 /* FALLTHROUGH */
36586728
TT
16597 case DW_FORM_GNU_strp_alt:
16598 {
16599 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16600 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16601 &bytes_read);
16602
16603 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16604 DW_STRING_IS_CANONICAL (attr) = 0;
16605 info_ptr += bytes_read;
16606 }
4bdf3d34 16607 break;
2dc7f7b3 16608 case DW_FORM_exprloc:
c906108c 16609 case DW_FORM_block:
7b5a2f43 16610 blk = dwarf_alloc_block (cu);
c906108c
SS
16611 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16612 info_ptr += bytes_read;
16613 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16614 info_ptr += blk->size;
16615 DW_BLOCK (attr) = blk;
16616 break;
16617 case DW_FORM_block1:
7b5a2f43 16618 blk = dwarf_alloc_block (cu);
c906108c
SS
16619 blk->size = read_1_byte (abfd, info_ptr);
16620 info_ptr += 1;
16621 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16622 info_ptr += blk->size;
16623 DW_BLOCK (attr) = blk;
16624 break;
16625 case DW_FORM_data1:
16626 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16627 info_ptr += 1;
16628 break;
16629 case DW_FORM_flag:
16630 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16631 info_ptr += 1;
16632 break;
2dc7f7b3
TT
16633 case DW_FORM_flag_present:
16634 DW_UNSND (attr) = 1;
16635 break;
c906108c
SS
16636 case DW_FORM_sdata:
16637 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16638 info_ptr += bytes_read;
16639 break;
16640 case DW_FORM_udata:
16641 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16642 info_ptr += bytes_read;
16643 break;
16644 case DW_FORM_ref1:
4568ecf9
DE
16645 DW_UNSND (attr) = (cu->header.offset.sect_off
16646 + read_1_byte (abfd, info_ptr));
c906108c
SS
16647 info_ptr += 1;
16648 break;
16649 case DW_FORM_ref2:
4568ecf9
DE
16650 DW_UNSND (attr) = (cu->header.offset.sect_off
16651 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16652 info_ptr += 2;
16653 break;
16654 case DW_FORM_ref4:
4568ecf9
DE
16655 DW_UNSND (attr) = (cu->header.offset.sect_off
16656 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16657 info_ptr += 4;
16658 break;
613e1657 16659 case DW_FORM_ref8:
4568ecf9
DE
16660 DW_UNSND (attr) = (cu->header.offset.sect_off
16661 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16662 info_ptr += 8;
16663 break;
55f1336d 16664 case DW_FORM_ref_sig8:
ac9ec31b 16665 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16666 info_ptr += 8;
16667 break;
c906108c 16668 case DW_FORM_ref_udata:
4568ecf9
DE
16669 DW_UNSND (attr) = (cu->header.offset.sect_off
16670 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16671 info_ptr += bytes_read;
16672 break;
c906108c 16673 case DW_FORM_indirect:
a8329558
KW
16674 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16675 info_ptr += bytes_read;
43988095
JK
16676 if (form == DW_FORM_implicit_const)
16677 {
16678 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16679 info_ptr += bytes_read;
16680 }
16681 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16682 info_ptr);
16683 break;
16684 case DW_FORM_implicit_const:
16685 DW_SND (attr) = implicit_const;
a8329558 16686 break;
3019eac3
DE
16687 case DW_FORM_GNU_addr_index:
16688 if (reader->dwo_file == NULL)
16689 {
16690 /* For now flag a hard error.
16691 Later we can turn this into a complaint. */
16692 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16693 dwarf_form_name (form),
16694 bfd_get_filename (abfd));
16695 }
16696 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16697 info_ptr += bytes_read;
16698 break;
16699 case DW_FORM_GNU_str_index:
16700 if (reader->dwo_file == NULL)
16701 {
16702 /* For now flag a hard error.
16703 Later we can turn this into a complaint if warranted. */
16704 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16705 dwarf_form_name (form),
16706 bfd_get_filename (abfd));
16707 }
16708 {
16709 ULONGEST str_index =
16710 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16711
342587c4 16712 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16713 DW_STRING_IS_CANONICAL (attr) = 0;
16714 info_ptr += bytes_read;
16715 }
16716 break;
c906108c 16717 default:
8a3fe4f8 16718 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16719 dwarf_form_name (form),
16720 bfd_get_filename (abfd));
c906108c 16721 }
28e94949 16722
36586728 16723 /* Super hack. */
7771576e 16724 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16725 attr->form = DW_FORM_GNU_ref_alt;
16726
28e94949
JB
16727 /* We have seen instances where the compiler tried to emit a byte
16728 size attribute of -1 which ended up being encoded as an unsigned
16729 0xffffffff. Although 0xffffffff is technically a valid size value,
16730 an object of this size seems pretty unlikely so we can relatively
16731 safely treat these cases as if the size attribute was invalid and
16732 treat them as zero by default. */
16733 if (attr->name == DW_AT_byte_size
16734 && form == DW_FORM_data4
16735 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16736 {
16737 complaint
16738 (&symfile_complaints,
43bbcdc2
PH
16739 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16740 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16741 DW_UNSND (attr) = 0;
16742 }
28e94949 16743
c906108c
SS
16744 return info_ptr;
16745}
16746
a8329558
KW
16747/* Read an attribute described by an abbreviated attribute. */
16748
d521ce57 16749static const gdb_byte *
dee91e82
DE
16750read_attribute (const struct die_reader_specs *reader,
16751 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16752 const gdb_byte *info_ptr)
a8329558
KW
16753{
16754 attr->name = abbrev->name;
43988095
JK
16755 return read_attribute_value (reader, attr, abbrev->form,
16756 abbrev->implicit_const, info_ptr);
a8329558
KW
16757}
16758
0963b4bd 16759/* Read dwarf information from a buffer. */
c906108c
SS
16760
16761static unsigned int
a1855c1d 16762read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16763{
fe1b8b76 16764 return bfd_get_8 (abfd, buf);
c906108c
SS
16765}
16766
16767static int
a1855c1d 16768read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16769{
fe1b8b76 16770 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16771}
16772
16773static unsigned int
a1855c1d 16774read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16775{
fe1b8b76 16776 return bfd_get_16 (abfd, buf);
c906108c
SS
16777}
16778
21ae7a4d 16779static int
a1855c1d 16780read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16781{
16782 return bfd_get_signed_16 (abfd, buf);
16783}
16784
c906108c 16785static unsigned int
a1855c1d 16786read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16787{
fe1b8b76 16788 return bfd_get_32 (abfd, buf);
c906108c
SS
16789}
16790
21ae7a4d 16791static int
a1855c1d 16792read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16793{
16794 return bfd_get_signed_32 (abfd, buf);
16795}
16796
93311388 16797static ULONGEST
a1855c1d 16798read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16799{
fe1b8b76 16800 return bfd_get_64 (abfd, buf);
c906108c
SS
16801}
16802
16803static CORE_ADDR
d521ce57 16804read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16805 unsigned int *bytes_read)
c906108c 16806{
e7c27a73 16807 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16808 CORE_ADDR retval = 0;
16809
107d2387 16810 if (cu_header->signed_addr_p)
c906108c 16811 {
107d2387
AC
16812 switch (cu_header->addr_size)
16813 {
16814 case 2:
fe1b8b76 16815 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16816 break;
16817 case 4:
fe1b8b76 16818 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16819 break;
16820 case 8:
fe1b8b76 16821 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16822 break;
16823 default:
8e65ff28 16824 internal_error (__FILE__, __LINE__,
e2e0b3e5 16825 _("read_address: bad switch, signed [in module %s]"),
659b0389 16826 bfd_get_filename (abfd));
107d2387
AC
16827 }
16828 }
16829 else
16830 {
16831 switch (cu_header->addr_size)
16832 {
16833 case 2:
fe1b8b76 16834 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16835 break;
16836 case 4:
fe1b8b76 16837 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16838 break;
16839 case 8:
fe1b8b76 16840 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16841 break;
16842 default:
8e65ff28 16843 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16844 _("read_address: bad switch, "
16845 "unsigned [in module %s]"),
659b0389 16846 bfd_get_filename (abfd));
107d2387 16847 }
c906108c 16848 }
64367e0a 16849
107d2387
AC
16850 *bytes_read = cu_header->addr_size;
16851 return retval;
c906108c
SS
16852}
16853
f7ef9339 16854/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16855 specification allows the initial length to take up either 4 bytes
16856 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16857 bytes describe the length and all offsets will be 8 bytes in length
16858 instead of 4.
16859
f7ef9339
KB
16860 An older, non-standard 64-bit format is also handled by this
16861 function. The older format in question stores the initial length
16862 as an 8-byte quantity without an escape value. Lengths greater
16863 than 2^32 aren't very common which means that the initial 4 bytes
16864 is almost always zero. Since a length value of zero doesn't make
16865 sense for the 32-bit format, this initial zero can be considered to
16866 be an escape value which indicates the presence of the older 64-bit
16867 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16868 greater than 4GB. If it becomes necessary to handle lengths
16869 somewhat larger than 4GB, we could allow other small values (such
16870 as the non-sensical values of 1, 2, and 3) to also be used as
16871 escape values indicating the presence of the old format.
f7ef9339 16872
917c78fc
MK
16873 The value returned via bytes_read should be used to increment the
16874 relevant pointer after calling read_initial_length().
c764a876 16875
613e1657
KB
16876 [ Note: read_initial_length() and read_offset() are based on the
16877 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16878 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16879 from:
16880
f7ef9339 16881 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16882
613e1657
KB
16883 This document is only a draft and is subject to change. (So beware.)
16884
f7ef9339 16885 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16886 determined empirically by examining 64-bit ELF files produced by
16887 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16888
16889 - Kevin, July 16, 2002
613e1657
KB
16890 ] */
16891
16892static LONGEST
d521ce57 16893read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16894{
fe1b8b76 16895 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16896
dd373385 16897 if (length == 0xffffffff)
613e1657 16898 {
fe1b8b76 16899 length = bfd_get_64 (abfd, buf + 4);
613e1657 16900 *bytes_read = 12;
613e1657 16901 }
dd373385 16902 else if (length == 0)
f7ef9339 16903 {
dd373385 16904 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16905 length = bfd_get_64 (abfd, buf);
f7ef9339 16906 *bytes_read = 8;
f7ef9339 16907 }
613e1657
KB
16908 else
16909 {
16910 *bytes_read = 4;
613e1657
KB
16911 }
16912
c764a876
DE
16913 return length;
16914}
dd373385 16915
c764a876
DE
16916/* Cover function for read_initial_length.
16917 Returns the length of the object at BUF, and stores the size of the
16918 initial length in *BYTES_READ and stores the size that offsets will be in
16919 *OFFSET_SIZE.
16920 If the initial length size is not equivalent to that specified in
16921 CU_HEADER then issue a complaint.
16922 This is useful when reading non-comp-unit headers. */
dd373385 16923
c764a876 16924static LONGEST
d521ce57 16925read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16926 const struct comp_unit_head *cu_header,
16927 unsigned int *bytes_read,
16928 unsigned int *offset_size)
16929{
16930 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16931
16932 gdb_assert (cu_header->initial_length_size == 4
16933 || cu_header->initial_length_size == 8
16934 || cu_header->initial_length_size == 12);
16935
16936 if (cu_header->initial_length_size != *bytes_read)
16937 complaint (&symfile_complaints,
16938 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16939
c764a876 16940 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16941 return length;
613e1657
KB
16942}
16943
16944/* Read an offset from the data stream. The size of the offset is
917c78fc 16945 given by cu_header->offset_size. */
613e1657
KB
16946
16947static LONGEST
d521ce57
TT
16948read_offset (bfd *abfd, const gdb_byte *buf,
16949 const struct comp_unit_head *cu_header,
891d2f0b 16950 unsigned int *bytes_read)
c764a876
DE
16951{
16952 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16953
c764a876
DE
16954 *bytes_read = cu_header->offset_size;
16955 return offset;
16956}
16957
16958/* Read an offset from the data stream. */
16959
16960static LONGEST
d521ce57 16961read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16962{
16963 LONGEST retval = 0;
16964
c764a876 16965 switch (offset_size)
613e1657
KB
16966 {
16967 case 4:
fe1b8b76 16968 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16969 break;
16970 case 8:
fe1b8b76 16971 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16972 break;
16973 default:
8e65ff28 16974 internal_error (__FILE__, __LINE__,
c764a876 16975 _("read_offset_1: bad switch [in module %s]"),
659b0389 16976 bfd_get_filename (abfd));
613e1657
KB
16977 }
16978
917c78fc 16979 return retval;
613e1657
KB
16980}
16981
d521ce57
TT
16982static const gdb_byte *
16983read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16984{
16985 /* If the size of a host char is 8 bits, we can return a pointer
16986 to the buffer, otherwise we have to copy the data to a buffer
16987 allocated on the temporary obstack. */
4bdf3d34 16988 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16989 return buf;
c906108c
SS
16990}
16991
d521ce57
TT
16992static const char *
16993read_direct_string (bfd *abfd, const gdb_byte *buf,
16994 unsigned int *bytes_read_ptr)
c906108c
SS
16995{
16996 /* If the size of a host char is 8 bits, we can return a pointer
16997 to the string, otherwise we have to copy the string to a buffer
16998 allocated on the temporary obstack. */
4bdf3d34 16999 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
17000 if (*buf == '\0')
17001 {
17002 *bytes_read_ptr = 1;
17003 return NULL;
17004 }
d521ce57
TT
17005 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17006 return (const char *) buf;
4bdf3d34
JJ
17007}
17008
43988095
JK
17009/* Return pointer to string at section SECT offset STR_OFFSET with error
17010 reporting strings FORM_NAME and SECT_NAME. */
17011
d521ce57 17012static const char *
43988095
JK
17013read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17014 struct dwarf2_section_info *sect,
17015 const char *form_name,
17016 const char *sect_name)
17017{
17018 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17019 if (sect->buffer == NULL)
17020 error (_("%s used without %s section [in module %s]"),
17021 form_name, sect_name, bfd_get_filename (abfd));
17022 if (str_offset >= sect->size)
17023 error (_("%s pointing outside of %s section [in module %s]"),
17024 form_name, sect_name, bfd_get_filename (abfd));
4bdf3d34 17025 gdb_assert (HOST_CHAR_BIT == 8);
43988095 17026 if (sect->buffer[str_offset] == '\0')
4bdf3d34 17027 return NULL;
43988095
JK
17028 return (const char *) (sect->buffer + str_offset);
17029}
17030
17031/* Return pointer to string at .debug_str offset STR_OFFSET. */
17032
17033static const char *
17034read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17035{
17036 return read_indirect_string_at_offset_from (abfd, str_offset,
17037 &dwarf2_per_objfile->str,
17038 "DW_FORM_strp", ".debug_str");
17039}
17040
17041/* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17042
17043static const char *
17044read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17045{
17046 return read_indirect_string_at_offset_from (abfd, str_offset,
17047 &dwarf2_per_objfile->line_str,
17048 "DW_FORM_line_strp",
17049 ".debug_line_str");
c906108c
SS
17050}
17051
36586728
TT
17052/* Read a string at offset STR_OFFSET in the .debug_str section from
17053 the .dwz file DWZ. Throw an error if the offset is too large. If
17054 the string consists of a single NUL byte, return NULL; otherwise
17055 return a pointer to the string. */
17056
d521ce57 17057static const char *
36586728
TT
17058read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17059{
17060 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17061
17062 if (dwz->str.buffer == NULL)
17063 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17064 "section [in module %s]"),
17065 bfd_get_filename (dwz->dwz_bfd));
17066 if (str_offset >= dwz->str.size)
17067 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17068 ".debug_str section [in module %s]"),
17069 bfd_get_filename (dwz->dwz_bfd));
17070 gdb_assert (HOST_CHAR_BIT == 8);
17071 if (dwz->str.buffer[str_offset] == '\0')
17072 return NULL;
d521ce57 17073 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
17074}
17075
43988095
JK
17076/* Return pointer to string at .debug_str offset as read from BUF.
17077 BUF is assumed to be in a compilation unit described by CU_HEADER.
17078 Return *BYTES_READ_PTR count of bytes read from BUF. */
17079
d521ce57
TT
17080static const char *
17081read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
17082 const struct comp_unit_head *cu_header,
17083 unsigned int *bytes_read_ptr)
17084{
17085 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17086
17087 return read_indirect_string_at_offset (abfd, str_offset);
17088}
17089
43988095
JK
17090/* Return pointer to string at .debug_line_str offset as read from BUF.
17091 BUF is assumed to be in a compilation unit described by CU_HEADER.
17092 Return *BYTES_READ_PTR count of bytes read from BUF. */
17093
17094static const char *
17095read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17096 const struct comp_unit_head *cu_header,
17097 unsigned int *bytes_read_ptr)
17098{
17099 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17100
17101 return read_indirect_line_string_at_offset (abfd, str_offset);
17102}
17103
17104ULONGEST
d521ce57 17105read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
43988095 17106 unsigned int *bytes_read_ptr)
c906108c 17107{
12df843f 17108 ULONGEST result;
ce5d95e1 17109 unsigned int num_read;
870f88f7 17110 int shift;
c906108c
SS
17111 unsigned char byte;
17112
17113 result = 0;
17114 shift = 0;
17115 num_read = 0;
c906108c
SS
17116 while (1)
17117 {
fe1b8b76 17118 byte = bfd_get_8 (abfd, buf);
c906108c
SS
17119 buf++;
17120 num_read++;
12df843f 17121 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
17122 if ((byte & 128) == 0)
17123 {
17124 break;
17125 }
17126 shift += 7;
17127 }
17128 *bytes_read_ptr = num_read;
17129 return result;
17130}
17131
12df843f 17132static LONGEST
d521ce57
TT
17133read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17134 unsigned int *bytes_read_ptr)
c906108c 17135{
12df843f 17136 LONGEST result;
870f88f7 17137 int shift, num_read;
c906108c
SS
17138 unsigned char byte;
17139
17140 result = 0;
17141 shift = 0;
c906108c 17142 num_read = 0;
c906108c
SS
17143 while (1)
17144 {
fe1b8b76 17145 byte = bfd_get_8 (abfd, buf);
c906108c
SS
17146 buf++;
17147 num_read++;
12df843f 17148 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
17149 shift += 7;
17150 if ((byte & 128) == 0)
17151 {
17152 break;
17153 }
17154 }
77e0b926 17155 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 17156 result |= -(((LONGEST) 1) << shift);
c906108c
SS
17157 *bytes_read_ptr = num_read;
17158 return result;
17159}
17160
3019eac3
DE
17161/* Given index ADDR_INDEX in .debug_addr, fetch the value.
17162 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17163 ADDR_SIZE is the size of addresses from the CU header. */
17164
17165static CORE_ADDR
17166read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17167{
17168 struct objfile *objfile = dwarf2_per_objfile->objfile;
17169 bfd *abfd = objfile->obfd;
17170 const gdb_byte *info_ptr;
17171
17172 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17173 if (dwarf2_per_objfile->addr.buffer == NULL)
17174 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 17175 objfile_name (objfile));
3019eac3
DE
17176 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17177 error (_("DW_FORM_addr_index pointing outside of "
17178 ".debug_addr section [in module %s]"),
4262abfb 17179 objfile_name (objfile));
3019eac3
DE
17180 info_ptr = (dwarf2_per_objfile->addr.buffer
17181 + addr_base + addr_index * addr_size);
17182 if (addr_size == 4)
17183 return bfd_get_32 (abfd, info_ptr);
17184 else
17185 return bfd_get_64 (abfd, info_ptr);
17186}
17187
17188/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17189
17190static CORE_ADDR
17191read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17192{
17193 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17194}
17195
17196/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17197
17198static CORE_ADDR
d521ce57 17199read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
17200 unsigned int *bytes_read)
17201{
17202 bfd *abfd = cu->objfile->obfd;
17203 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17204
17205 return read_addr_index (cu, addr_index);
17206}
17207
17208/* Data structure to pass results from dwarf2_read_addr_index_reader
17209 back to dwarf2_read_addr_index. */
17210
17211struct dwarf2_read_addr_index_data
17212{
17213 ULONGEST addr_base;
17214 int addr_size;
17215};
17216
17217/* die_reader_func for dwarf2_read_addr_index. */
17218
17219static void
17220dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 17221 const gdb_byte *info_ptr,
3019eac3
DE
17222 struct die_info *comp_unit_die,
17223 int has_children,
17224 void *data)
17225{
17226 struct dwarf2_cu *cu = reader->cu;
17227 struct dwarf2_read_addr_index_data *aidata =
17228 (struct dwarf2_read_addr_index_data *) data;
17229
17230 aidata->addr_base = cu->addr_base;
17231 aidata->addr_size = cu->header.addr_size;
17232}
17233
17234/* Given an index in .debug_addr, fetch the value.
17235 NOTE: This can be called during dwarf expression evaluation,
17236 long after the debug information has been read, and thus per_cu->cu
17237 may no longer exist. */
17238
17239CORE_ADDR
17240dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17241 unsigned int addr_index)
17242{
17243 struct objfile *objfile = per_cu->objfile;
17244 struct dwarf2_cu *cu = per_cu->cu;
17245 ULONGEST addr_base;
17246 int addr_size;
17247
17248 /* This is intended to be called from outside this file. */
17249 dw2_setup (objfile);
17250
17251 /* We need addr_base and addr_size.
17252 If we don't have PER_CU->cu, we have to get it.
17253 Nasty, but the alternative is storing the needed info in PER_CU,
17254 which at this point doesn't seem justified: it's not clear how frequently
17255 it would get used and it would increase the size of every PER_CU.
17256 Entry points like dwarf2_per_cu_addr_size do a similar thing
17257 so we're not in uncharted territory here.
17258 Alas we need to be a bit more complicated as addr_base is contained
17259 in the DIE.
17260
17261 We don't need to read the entire CU(/TU).
17262 We just need the header and top level die.
a1b64ce1 17263
3019eac3 17264 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 17265 For now we skip this optimization. */
3019eac3
DE
17266
17267 if (cu != NULL)
17268 {
17269 addr_base = cu->addr_base;
17270 addr_size = cu->header.addr_size;
17271 }
17272 else
17273 {
17274 struct dwarf2_read_addr_index_data aidata;
17275
a1b64ce1
DE
17276 /* Note: We can't use init_cutu_and_read_dies_simple here,
17277 we need addr_base. */
17278 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17279 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
17280 addr_base = aidata.addr_base;
17281 addr_size = aidata.addr_size;
17282 }
17283
17284 return read_addr_index_1 (addr_index, addr_base, addr_size);
17285}
17286
57d63ce2
DE
17287/* Given a DW_FORM_GNU_str_index, fetch the string.
17288 This is only used by the Fission support. */
3019eac3 17289
d521ce57 17290static const char *
342587c4 17291read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
17292{
17293 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 17294 const char *objf_name = objfile_name (objfile);
3019eac3 17295 bfd *abfd = objfile->obfd;
342587c4 17296 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
17297 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17298 struct dwarf2_section_info *str_offsets_section =
17299 &reader->dwo_file->sections.str_offsets;
d521ce57 17300 const gdb_byte *info_ptr;
3019eac3 17301 ULONGEST str_offset;
57d63ce2 17302 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 17303
73869dc2
DE
17304 dwarf2_read_section (objfile, str_section);
17305 dwarf2_read_section (objfile, str_offsets_section);
17306 if (str_section->buffer == NULL)
57d63ce2 17307 error (_("%s used without .debug_str.dwo section"
3019eac3 17308 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 17309 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17310 if (str_offsets_section->buffer == NULL)
57d63ce2 17311 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 17312 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 17313 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17314 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 17315 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 17316 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 17317 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17318 info_ptr = (str_offsets_section->buffer
3019eac3
DE
17319 + str_index * cu->header.offset_size);
17320 if (cu->header.offset_size == 4)
17321 str_offset = bfd_get_32 (abfd, info_ptr);
17322 else
17323 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 17324 if (str_offset >= str_section->size)
57d63ce2 17325 error (_("Offset from %s pointing outside of"
3019eac3 17326 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 17327 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17328 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
17329}
17330
3019eac3
DE
17331/* Return the length of an LEB128 number in BUF. */
17332
17333static int
17334leb128_size (const gdb_byte *buf)
17335{
17336 const gdb_byte *begin = buf;
17337 gdb_byte byte;
17338
17339 while (1)
17340 {
17341 byte = *buf++;
17342 if ((byte & 128) == 0)
17343 return buf - begin;
17344 }
17345}
17346
c906108c 17347static void
e142c38c 17348set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
17349{
17350 switch (lang)
17351 {
17352 case DW_LANG_C89:
76bee0cc 17353 case DW_LANG_C99:
0cfd832f 17354 case DW_LANG_C11:
c906108c 17355 case DW_LANG_C:
d1be3247 17356 case DW_LANG_UPC:
e142c38c 17357 cu->language = language_c;
c906108c 17358 break;
9c37b5ae 17359 case DW_LANG_Java:
c906108c 17360 case DW_LANG_C_plus_plus:
0cfd832f
MW
17361 case DW_LANG_C_plus_plus_11:
17362 case DW_LANG_C_plus_plus_14:
e142c38c 17363 cu->language = language_cplus;
c906108c 17364 break;
6aecb9c2
JB
17365 case DW_LANG_D:
17366 cu->language = language_d;
17367 break;
c906108c
SS
17368 case DW_LANG_Fortran77:
17369 case DW_LANG_Fortran90:
b21b22e0 17370 case DW_LANG_Fortran95:
f7de9aab
MW
17371 case DW_LANG_Fortran03:
17372 case DW_LANG_Fortran08:
e142c38c 17373 cu->language = language_fortran;
c906108c 17374 break;
a766d390
DE
17375 case DW_LANG_Go:
17376 cu->language = language_go;
17377 break;
c906108c 17378 case DW_LANG_Mips_Assembler:
e142c38c 17379 cu->language = language_asm;
c906108c
SS
17380 break;
17381 case DW_LANG_Ada83:
8aaf0b47 17382 case DW_LANG_Ada95:
bc5f45f8
JB
17383 cu->language = language_ada;
17384 break;
72019c9c
GM
17385 case DW_LANG_Modula2:
17386 cu->language = language_m2;
17387 break;
fe8e67fd
PM
17388 case DW_LANG_Pascal83:
17389 cu->language = language_pascal;
17390 break;
22566fbd
DJ
17391 case DW_LANG_ObjC:
17392 cu->language = language_objc;
17393 break;
c44af4eb
TT
17394 case DW_LANG_Rust:
17395 case DW_LANG_Rust_old:
17396 cu->language = language_rust;
17397 break;
c906108c
SS
17398 case DW_LANG_Cobol74:
17399 case DW_LANG_Cobol85:
c906108c 17400 default:
e142c38c 17401 cu->language = language_minimal;
c906108c
SS
17402 break;
17403 }
e142c38c 17404 cu->language_defn = language_def (cu->language);
c906108c
SS
17405}
17406
17407/* Return the named attribute or NULL if not there. */
17408
17409static struct attribute *
e142c38c 17410dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17411{
a48e046c 17412 for (;;)
c906108c 17413 {
a48e046c
TT
17414 unsigned int i;
17415 struct attribute *spec = NULL;
17416
17417 for (i = 0; i < die->num_attrs; ++i)
17418 {
17419 if (die->attrs[i].name == name)
17420 return &die->attrs[i];
17421 if (die->attrs[i].name == DW_AT_specification
17422 || die->attrs[i].name == DW_AT_abstract_origin)
17423 spec = &die->attrs[i];
17424 }
17425
17426 if (!spec)
17427 break;
c906108c 17428
f2f0e013 17429 die = follow_die_ref (die, spec, &cu);
f2f0e013 17430 }
c5aa993b 17431
c906108c
SS
17432 return NULL;
17433}
17434
348e048f
DE
17435/* Return the named attribute or NULL if not there,
17436 but do not follow DW_AT_specification, etc.
17437 This is for use in contexts where we're reading .debug_types dies.
17438 Following DW_AT_specification, DW_AT_abstract_origin will take us
17439 back up the chain, and we want to go down. */
17440
17441static struct attribute *
45e58e77 17442dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17443{
17444 unsigned int i;
17445
17446 for (i = 0; i < die->num_attrs; ++i)
17447 if (die->attrs[i].name == name)
17448 return &die->attrs[i];
17449
17450 return NULL;
17451}
17452
7d45c7c3
KB
17453/* Return the string associated with a string-typed attribute, or NULL if it
17454 is either not found or is of an incorrect type. */
17455
17456static const char *
17457dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17458{
17459 struct attribute *attr;
17460 const char *str = NULL;
17461
17462 attr = dwarf2_attr (die, name, cu);
17463
17464 if (attr != NULL)
17465 {
43988095
JK
17466 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
17467 || attr->form == DW_FORM_string || attr->form == DW_FORM_GNU_strp_alt)
7d45c7c3
KB
17468 str = DW_STRING (attr);
17469 else
17470 complaint (&symfile_complaints,
17471 _("string type expected for attribute %s for "
17472 "DIE at 0x%x in module %s"),
17473 dwarf_attr_name (name), die->offset.sect_off,
17474 objfile_name (cu->objfile));
17475 }
17476
17477 return str;
17478}
17479
05cf31d1
JB
17480/* Return non-zero iff the attribute NAME is defined for the given DIE,
17481 and holds a non-zero value. This function should only be used for
2dc7f7b3 17482 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17483
17484static int
17485dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17486{
17487 struct attribute *attr = dwarf2_attr (die, name, cu);
17488
17489 return (attr && DW_UNSND (attr));
17490}
17491
3ca72b44 17492static int
e142c38c 17493die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17494{
05cf31d1
JB
17495 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17496 which value is non-zero. However, we have to be careful with
17497 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17498 (via dwarf2_flag_true_p) follows this attribute. So we may
17499 end up accidently finding a declaration attribute that belongs
17500 to a different DIE referenced by the specification attribute,
17501 even though the given DIE does not have a declaration attribute. */
17502 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17503 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17504}
17505
63d06c5c 17506/* Return the die giving the specification for DIE, if there is
f2f0e013 17507 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17508 containing the return value on output. If there is no
17509 specification, but there is an abstract origin, that is
17510 returned. */
63d06c5c
DC
17511
17512static struct die_info *
f2f0e013 17513die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17514{
f2f0e013
DJ
17515 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17516 *spec_cu);
63d06c5c 17517
edb3359d
DJ
17518 if (spec_attr == NULL)
17519 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17520
63d06c5c
DC
17521 if (spec_attr == NULL)
17522 return NULL;
17523 else
f2f0e013 17524 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17525}
c906108c 17526
debd256d 17527/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
17528 refers to.
17529 NOTE: This is also used as a "cleanup" function. */
17530
debd256d
JB
17531static void
17532free_line_header (struct line_header *lh)
17533{
17534 if (lh->standard_opcode_lengths)
a8bc7b56 17535 xfree (lh->standard_opcode_lengths);
debd256d
JB
17536
17537 /* Remember that all the lh->file_names[i].name pointers are
17538 pointers into debug_line_buffer, and don't need to be freed. */
17539 if (lh->file_names)
a8bc7b56 17540 xfree (lh->file_names);
debd256d
JB
17541
17542 /* Similarly for the include directory names. */
17543 if (lh->include_dirs)
a8bc7b56 17544 xfree (lh->include_dirs);
debd256d 17545
a8bc7b56 17546 xfree (lh);
debd256d
JB
17547}
17548
527f3840
JK
17549/* Stub for free_line_header to match void * callback types. */
17550
17551static void
17552free_line_header_voidp (void *arg)
17553{
9a3c8263 17554 struct line_header *lh = (struct line_header *) arg;
527f3840
JK
17555
17556 free_line_header (lh);
17557}
17558
debd256d 17559/* Add an entry to LH's include directory table. */
ae2de4f8 17560
debd256d 17561static void
d521ce57 17562add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 17563{
27e0867f
DE
17564 if (dwarf_line_debug >= 2)
17565 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17566 lh->num_include_dirs + 1, include_dir);
17567
debd256d
JB
17568 /* Grow the array if necessary. */
17569 if (lh->include_dirs_size == 0)
c5aa993b 17570 {
debd256d 17571 lh->include_dirs_size = 1; /* for testing */
8d749320 17572 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
debd256d
JB
17573 }
17574 else if (lh->num_include_dirs >= lh->include_dirs_size)
17575 {
17576 lh->include_dirs_size *= 2;
8d749320
SM
17577 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17578 lh->include_dirs_size);
c5aa993b 17579 }
c906108c 17580
debd256d
JB
17581 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17582}
6e70227d 17583
debd256d 17584/* Add an entry to LH's file name table. */
ae2de4f8 17585
debd256d
JB
17586static void
17587add_file_name (struct line_header *lh,
d521ce57 17588 const char *name,
debd256d
JB
17589 unsigned int dir_index,
17590 unsigned int mod_time,
17591 unsigned int length)
17592{
17593 struct file_entry *fe;
17594
27e0867f
DE
17595 if (dwarf_line_debug >= 2)
17596 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17597 lh->num_file_names + 1, name);
17598
debd256d
JB
17599 /* Grow the array if necessary. */
17600 if (lh->file_names_size == 0)
17601 {
17602 lh->file_names_size = 1; /* for testing */
8d749320 17603 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
debd256d
JB
17604 }
17605 else if (lh->num_file_names >= lh->file_names_size)
17606 {
17607 lh->file_names_size *= 2;
224c3ddb
SM
17608 lh->file_names
17609 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
debd256d
JB
17610 }
17611
17612 fe = &lh->file_names[lh->num_file_names++];
17613 fe->name = name;
17614 fe->dir_index = dir_index;
17615 fe->mod_time = mod_time;
17616 fe->length = length;
aaa75496 17617 fe->included_p = 0;
cb1df416 17618 fe->symtab = NULL;
debd256d 17619}
6e70227d 17620
83769d0b 17621/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17622
17623static struct dwarf2_section_info *
17624get_debug_line_section (struct dwarf2_cu *cu)
17625{
17626 struct dwarf2_section_info *section;
17627
17628 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17629 DWO file. */
17630 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17631 section = &cu->dwo_unit->dwo_file->sections.line;
17632 else if (cu->per_cu->is_dwz)
17633 {
17634 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17635
17636 section = &dwz->line;
17637 }
17638 else
17639 section = &dwarf2_per_objfile->line;
17640
17641 return section;
17642}
17643
43988095
JK
17644/* Forwarding function for read_formatted_entries. */
17645
17646static void
17647add_include_dir_stub (struct line_header *lh, const char *name,
17648 unsigned int dir_index, unsigned int mod_time,
17649 unsigned int length)
17650{
17651 add_include_dir (lh, name);
17652}
17653
17654/* Read directory or file name entry format, starting with byte of
17655 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17656 entries count and the entries themselves in the described entry
17657 format. */
17658
17659static void
17660read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17661 struct line_header *lh,
17662 const struct comp_unit_head *cu_header,
17663 void (*callback) (struct line_header *lh,
17664 const char *name,
17665 unsigned int dir_index,
17666 unsigned int mod_time,
17667 unsigned int length))
17668{
17669 gdb_byte format_count, formati;
17670 ULONGEST data_count, datai;
17671 const gdb_byte *buf = *bufp;
17672 const gdb_byte *format_header_data;
17673 int i;
17674 unsigned int bytes_read;
17675
17676 format_count = read_1_byte (abfd, buf);
17677 buf += 1;
17678 format_header_data = buf;
17679 for (formati = 0; formati < format_count; formati++)
17680 {
17681 read_unsigned_leb128 (abfd, buf, &bytes_read);
17682 buf += bytes_read;
17683 read_unsigned_leb128 (abfd, buf, &bytes_read);
17684 buf += bytes_read;
17685 }
17686
17687 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17688 buf += bytes_read;
17689 for (datai = 0; datai < data_count; datai++)
17690 {
17691 const gdb_byte *format = format_header_data;
17692 struct file_entry fe;
17693
17694 memset (&fe, 0, sizeof (fe));
17695
17696 for (formati = 0; formati < format_count; formati++)
17697 {
17698 ULONGEST content_type, form;
17699 const char *string_trash;
17700 const char **stringp = &string_trash;
17701 unsigned int uint_trash, *uintp = &uint_trash;
17702
17703 content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
17704 format += bytes_read;
17705 switch (content_type)
17706 {
17707 case DW_LNCT_path:
17708 stringp = &fe.name;
17709 break;
17710 case DW_LNCT_directory_index:
17711 uintp = &fe.dir_index;
17712 break;
17713 case DW_LNCT_timestamp:
17714 uintp = &fe.mod_time;
17715 break;
17716 case DW_LNCT_size:
17717 uintp = &fe.length;
17718 break;
17719 case DW_LNCT_MD5:
17720 break;
17721 default:
17722 complaint (&symfile_complaints,
17723 _("Unknown format content type %s"),
17724 pulongest (content_type));
17725 }
17726
17727 form = read_unsigned_leb128 (abfd, format, &bytes_read);
17728 format += bytes_read;
17729 switch (form)
17730 {
17731 case DW_FORM_string:
17732 *stringp = read_direct_string (abfd, buf, &bytes_read);
17733 buf += bytes_read;
17734 break;
17735
17736 case DW_FORM_line_strp:
17737 *stringp = read_indirect_line_string (abfd, buf, cu_header, &bytes_read);
17738 buf += bytes_read;
17739 break;
17740
17741 case DW_FORM_data1:
17742 *uintp = read_1_byte (abfd, buf);
17743 buf += 1;
17744 break;
17745
17746 case DW_FORM_data2:
17747 *uintp = read_2_bytes (abfd, buf);
17748 buf += 2;
17749 break;
17750
17751 case DW_FORM_data4:
17752 *uintp = read_4_bytes (abfd, buf);
17753 buf += 4;
17754 break;
17755
17756 case DW_FORM_data8:
17757 *uintp = read_8_bytes (abfd, buf);
17758 buf += 8;
17759 break;
17760
17761 case DW_FORM_udata:
17762 *uintp = read_unsigned_leb128 (abfd, buf, &bytes_read);
17763 buf += bytes_read;
17764 break;
17765
17766 case DW_FORM_block:
17767 /* It is valid only for DW_LNCT_timestamp which is ignored by
17768 current GDB. */
17769 break;
17770 }
17771 }
17772
17773 callback (lh, fe.name, fe.dir_index, fe.mod_time, fe.length);
17774 }
17775
17776 *bufp = buf;
17777}
17778
debd256d 17779/* Read the statement program header starting at OFFSET in
3019eac3 17780 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17781 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17782 Returns NULL if there is a problem reading the header, e.g., if it
17783 has a version we don't understand.
debd256d
JB
17784
17785 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17786 the returned object point into the dwarf line section buffer,
17787 and must not be freed. */
ae2de4f8 17788
debd256d 17789static struct line_header *
3019eac3 17790dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
17791{
17792 struct cleanup *back_to;
17793 struct line_header *lh;
d521ce57 17794 const gdb_byte *line_ptr;
c764a876 17795 unsigned int bytes_read, offset_size;
debd256d 17796 int i;
d521ce57 17797 const char *cur_dir, *cur_file;
3019eac3
DE
17798 struct dwarf2_section_info *section;
17799 bfd *abfd;
17800
36586728 17801 section = get_debug_line_section (cu);
3019eac3
DE
17802 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17803 if (section->buffer == NULL)
debd256d 17804 {
3019eac3
DE
17805 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17806 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17807 else
17808 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17809 return 0;
17810 }
17811
fceca515
DE
17812 /* We can't do this until we know the section is non-empty.
17813 Only then do we know we have such a section. */
a32a8923 17814 abfd = get_section_bfd_owner (section);
fceca515 17815
a738430d
MK
17816 /* Make sure that at least there's room for the total_length field.
17817 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 17818 if (offset + 4 >= section->size)
debd256d 17819 {
4d3c2250 17820 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17821 return 0;
17822 }
17823
8d749320 17824 lh = XNEW (struct line_header);
debd256d
JB
17825 memset (lh, 0, sizeof (*lh));
17826 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17827 (void *) lh);
17828
527f3840
JK
17829 lh->offset.sect_off = offset;
17830 lh->offset_in_dwz = cu->per_cu->is_dwz;
17831
3019eac3 17832 line_ptr = section->buffer + offset;
debd256d 17833
a738430d 17834 /* Read in the header. */
6e70227d 17835 lh->total_length =
c764a876
DE
17836 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17837 &bytes_read, &offset_size);
debd256d 17838 line_ptr += bytes_read;
3019eac3 17839 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17840 {
4d3c2250 17841 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17842 do_cleanups (back_to);
debd256d
JB
17843 return 0;
17844 }
17845 lh->statement_program_end = line_ptr + lh->total_length;
17846 lh->version = read_2_bytes (abfd, line_ptr);
17847 line_ptr += 2;
43988095 17848 if (lh->version > 5)
cd366ee8
DE
17849 {
17850 /* This is a version we don't understand. The format could have
17851 changed in ways we don't handle properly so just punt. */
17852 complaint (&symfile_complaints,
17853 _("unsupported version in .debug_line section"));
17854 return NULL;
17855 }
43988095
JK
17856 if (lh->version >= 5)
17857 {
17858 gdb_byte segment_selector_size;
17859
17860 /* Skip address size. */
17861 read_1_byte (abfd, line_ptr);
17862 line_ptr += 1;
17863
17864 segment_selector_size = read_1_byte (abfd, line_ptr);
17865 line_ptr += 1;
17866 if (segment_selector_size != 0)
17867 {
17868 complaint (&symfile_complaints,
17869 _("unsupported segment selector size %u "
17870 "in .debug_line section"),
17871 segment_selector_size);
17872 return NULL;
17873 }
17874 }
c764a876
DE
17875 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17876 line_ptr += offset_size;
debd256d
JB
17877 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17878 line_ptr += 1;
2dc7f7b3
TT
17879 if (lh->version >= 4)
17880 {
17881 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17882 line_ptr += 1;
17883 }
17884 else
17885 lh->maximum_ops_per_instruction = 1;
17886
17887 if (lh->maximum_ops_per_instruction == 0)
17888 {
17889 lh->maximum_ops_per_instruction = 1;
17890 complaint (&symfile_complaints,
3e43a32a
MS
17891 _("invalid maximum_ops_per_instruction "
17892 "in `.debug_line' section"));
2dc7f7b3
TT
17893 }
17894
debd256d
JB
17895 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17896 line_ptr += 1;
17897 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17898 line_ptr += 1;
17899 lh->line_range = read_1_byte (abfd, line_ptr);
17900 line_ptr += 1;
17901 lh->opcode_base = read_1_byte (abfd, line_ptr);
17902 line_ptr += 1;
8d749320 17903 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
debd256d
JB
17904
17905 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17906 for (i = 1; i < lh->opcode_base; ++i)
17907 {
17908 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17909 line_ptr += 1;
17910 }
17911
43988095 17912 if (lh->version >= 5)
debd256d 17913 {
43988095
JK
17914 /* Read directory table. */
17915 read_formatted_entries (abfd, &line_ptr, lh, &cu->header,
17916 add_include_dir_stub);
debd256d 17917
43988095
JK
17918 /* Read file name table. */
17919 read_formatted_entries (abfd, &line_ptr, lh, &cu->header, add_file_name);
17920 }
17921 else
debd256d 17922 {
43988095
JK
17923 /* Read directory table. */
17924 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17925 {
17926 line_ptr += bytes_read;
17927 add_include_dir (lh, cur_dir);
17928 }
debd256d
JB
17929 line_ptr += bytes_read;
17930
43988095
JK
17931 /* Read file name table. */
17932 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17933 {
17934 unsigned int dir_index, mod_time, length;
17935
17936 line_ptr += bytes_read;
17937 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17938 line_ptr += bytes_read;
17939 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17940 line_ptr += bytes_read;
17941 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17942 line_ptr += bytes_read;
17943
17944 add_file_name (lh, cur_file, dir_index, mod_time, length);
17945 }
17946 line_ptr += bytes_read;
debd256d 17947 }
6e70227d 17948 lh->statement_program_start = line_ptr;
debd256d 17949
3019eac3 17950 if (line_ptr > (section->buffer + section->size))
4d3c2250 17951 complaint (&symfile_complaints,
3e43a32a
MS
17952 _("line number info header doesn't "
17953 "fit in `.debug_line' section"));
debd256d
JB
17954
17955 discard_cleanups (back_to);
17956 return lh;
17957}
c906108c 17958
c6da4cef
DE
17959/* Subroutine of dwarf_decode_lines to simplify it.
17960 Return the file name of the psymtab for included file FILE_INDEX
17961 in line header LH of PST.
17962 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17963 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17964 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17965
17966 The function creates dangling cleanup registration. */
c6da4cef 17967
d521ce57 17968static const char *
c6da4cef
DE
17969psymtab_include_file_name (const struct line_header *lh, int file_index,
17970 const struct partial_symtab *pst,
17971 const char *comp_dir)
17972{
17973 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17974 const char *include_name = fe.name;
17975 const char *include_name_to_compare = include_name;
17976 const char *dir_name = NULL;
72b9f47f
TT
17977 const char *pst_filename;
17978 char *copied_name = NULL;
c6da4cef
DE
17979 int file_is_pst;
17980
afa6c9ab 17981 if (fe.dir_index && lh->include_dirs != NULL)
c6da4cef
DE
17982 dir_name = lh->include_dirs[fe.dir_index - 1];
17983
17984 if (!IS_ABSOLUTE_PATH (include_name)
17985 && (dir_name != NULL || comp_dir != NULL))
17986 {
17987 /* Avoid creating a duplicate psymtab for PST.
17988 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17989 Before we do the comparison, however, we need to account
17990 for DIR_NAME and COMP_DIR.
17991 First prepend dir_name (if non-NULL). If we still don't
17992 have an absolute path prepend comp_dir (if non-NULL).
17993 However, the directory we record in the include-file's
17994 psymtab does not contain COMP_DIR (to match the
17995 corresponding symtab(s)).
17996
17997 Example:
17998
17999 bash$ cd /tmp
18000 bash$ gcc -g ./hello.c
18001 include_name = "hello.c"
18002 dir_name = "."
18003 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
18004 DW_AT_name = "./hello.c"
18005
18006 */
c6da4cef
DE
18007
18008 if (dir_name != NULL)
18009 {
d521ce57
TT
18010 char *tem = concat (dir_name, SLASH_STRING,
18011 include_name, (char *)NULL);
18012
18013 make_cleanup (xfree, tem);
18014 include_name = tem;
c6da4cef 18015 include_name_to_compare = include_name;
c6da4cef
DE
18016 }
18017 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18018 {
d521ce57
TT
18019 char *tem = concat (comp_dir, SLASH_STRING,
18020 include_name, (char *)NULL);
18021
18022 make_cleanup (xfree, tem);
18023 include_name_to_compare = tem;
c6da4cef
DE
18024 }
18025 }
18026
18027 pst_filename = pst->filename;
18028 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18029 {
72b9f47f
TT
18030 copied_name = concat (pst->dirname, SLASH_STRING,
18031 pst_filename, (char *)NULL);
18032 pst_filename = copied_name;
c6da4cef
DE
18033 }
18034
1e3fad37 18035 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 18036
72b9f47f
TT
18037 if (copied_name != NULL)
18038 xfree (copied_name);
c6da4cef
DE
18039
18040 if (file_is_pst)
18041 return NULL;
18042 return include_name;
18043}
18044
d9b3de22
DE
18045/* State machine to track the state of the line number program. */
18046
18047typedef struct
18048{
18049 /* These are part of the standard DWARF line number state machine. */
18050
18051 unsigned char op_index;
18052 unsigned int file;
18053 unsigned int line;
18054 CORE_ADDR address;
18055 int is_stmt;
18056 unsigned int discriminator;
18057
18058 /* Additional bits of state we need to track. */
18059
18060 /* The last file that we called dwarf2_start_subfile for.
18061 This is only used for TLLs. */
18062 unsigned int last_file;
18063 /* The last file a line number was recorded for. */
18064 struct subfile *last_subfile;
18065
18066 /* The function to call to record a line. */
18067 record_line_ftype *record_line;
18068
18069 /* The last line number that was recorded, used to coalesce
18070 consecutive entries for the same line. This can happen, for
18071 example, when discriminators are present. PR 17276. */
18072 unsigned int last_line;
18073 int line_has_non_zero_discriminator;
18074} lnp_state_machine;
18075
18076/* There's a lot of static state to pass to dwarf_record_line.
18077 This keeps it all together. */
18078
18079typedef struct
18080{
18081 /* The gdbarch. */
18082 struct gdbarch *gdbarch;
18083
18084 /* The line number header. */
18085 struct line_header *line_header;
18086
18087 /* Non-zero if we're recording lines.
18088 Otherwise we're building partial symtabs and are just interested in
18089 finding include files mentioned by the line number program. */
18090 int record_lines_p;
18091} lnp_reader_state;
18092
c91513d8
PP
18093/* Ignore this record_line request. */
18094
18095static void
18096noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18097{
18098 return;
18099}
18100
a05a36a5
DE
18101/* Return non-zero if we should add LINE to the line number table.
18102 LINE is the line to add, LAST_LINE is the last line that was added,
18103 LAST_SUBFILE is the subfile for LAST_LINE.
18104 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18105 had a non-zero discriminator.
18106
18107 We have to be careful in the presence of discriminators.
18108 E.g., for this line:
18109
18110 for (i = 0; i < 100000; i++);
18111
18112 clang can emit four line number entries for that one line,
18113 each with a different discriminator.
18114 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18115
18116 However, we want gdb to coalesce all four entries into one.
18117 Otherwise the user could stepi into the middle of the line and
18118 gdb would get confused about whether the pc really was in the
18119 middle of the line.
18120
18121 Things are further complicated by the fact that two consecutive
18122 line number entries for the same line is a heuristic used by gcc
18123 to denote the end of the prologue. So we can't just discard duplicate
18124 entries, we have to be selective about it. The heuristic we use is
18125 that we only collapse consecutive entries for the same line if at least
18126 one of those entries has a non-zero discriminator. PR 17276.
18127
18128 Note: Addresses in the line number state machine can never go backwards
18129 within one sequence, thus this coalescing is ok. */
18130
18131static int
18132dwarf_record_line_p (unsigned int line, unsigned int last_line,
18133 int line_has_non_zero_discriminator,
18134 struct subfile *last_subfile)
18135{
18136 if (current_subfile != last_subfile)
18137 return 1;
18138 if (line != last_line)
18139 return 1;
18140 /* Same line for the same file that we've seen already.
18141 As a last check, for pr 17276, only record the line if the line
18142 has never had a non-zero discriminator. */
18143 if (!line_has_non_zero_discriminator)
18144 return 1;
18145 return 0;
18146}
18147
252a6764
DE
18148/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18149 in the line table of subfile SUBFILE. */
18150
18151static void
d9b3de22
DE
18152dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18153 unsigned int line, CORE_ADDR address,
18154 record_line_ftype p_record_line)
252a6764
DE
18155{
18156 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18157
27e0867f
DE
18158 if (dwarf_line_debug)
18159 {
18160 fprintf_unfiltered (gdb_stdlog,
18161 "Recording line %u, file %s, address %s\n",
18162 line, lbasename (subfile->name),
18163 paddress (gdbarch, address));
18164 }
18165
d5962de5 18166 (*p_record_line) (subfile, line, addr);
252a6764
DE
18167}
18168
18169/* Subroutine of dwarf_decode_lines_1 to simplify it.
18170 Mark the end of a set of line number records.
d9b3de22 18171 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
18172 If SUBFILE is NULL the request is ignored. */
18173
18174static void
18175dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18176 CORE_ADDR address, record_line_ftype p_record_line)
18177{
27e0867f
DE
18178 if (subfile == NULL)
18179 return;
18180
18181 if (dwarf_line_debug)
18182 {
18183 fprintf_unfiltered (gdb_stdlog,
18184 "Finishing current line, file %s, address %s\n",
18185 lbasename (subfile->name),
18186 paddress (gdbarch, address));
18187 }
18188
d9b3de22
DE
18189 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18190}
18191
18192/* Record the line in STATE.
18193 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
18194
18195static void
18196dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
18197 int end_sequence)
18198{
18199 const struct line_header *lh = reader->line_header;
18200 unsigned int file, line, discriminator;
18201 int is_stmt;
18202
18203 file = state->file;
18204 line = state->line;
18205 is_stmt = state->is_stmt;
18206 discriminator = state->discriminator;
18207
18208 if (dwarf_line_debug)
18209 {
18210 fprintf_unfiltered (gdb_stdlog,
18211 "Processing actual line %u: file %u,"
18212 " address %s, is_stmt %u, discrim %u\n",
18213 line, file,
18214 paddress (reader->gdbarch, state->address),
18215 is_stmt, discriminator);
18216 }
18217
18218 if (file == 0 || file - 1 >= lh->num_file_names)
18219 dwarf2_debug_line_missing_file_complaint ();
18220 /* For now we ignore lines not starting on an instruction boundary.
18221 But not when processing end_sequence for compatibility with the
18222 previous version of the code. */
18223 else if (state->op_index == 0 || end_sequence)
18224 {
18225 lh->file_names[file - 1].included_p = 1;
18226 if (reader->record_lines_p && is_stmt)
18227 {
e815d2d2 18228 if (state->last_subfile != current_subfile || end_sequence)
d9b3de22
DE
18229 {
18230 dwarf_finish_line (reader->gdbarch, state->last_subfile,
18231 state->address, state->record_line);
18232 }
18233
18234 if (!end_sequence)
18235 {
18236 if (dwarf_record_line_p (line, state->last_line,
18237 state->line_has_non_zero_discriminator,
18238 state->last_subfile))
18239 {
18240 dwarf_record_line_1 (reader->gdbarch, current_subfile,
18241 line, state->address,
18242 state->record_line);
18243 }
18244 state->last_subfile = current_subfile;
18245 state->last_line = line;
18246 }
18247 }
18248 }
18249}
18250
18251/* Initialize STATE for the start of a line number program. */
18252
18253static void
18254init_lnp_state_machine (lnp_state_machine *state,
18255 const lnp_reader_state *reader)
18256{
18257 memset (state, 0, sizeof (*state));
18258
18259 /* Just starting, there is no "last file". */
18260 state->last_file = 0;
18261 state->last_subfile = NULL;
18262
18263 state->record_line = record_line;
18264
18265 state->last_line = 0;
18266 state->line_has_non_zero_discriminator = 0;
18267
18268 /* Initialize these according to the DWARF spec. */
18269 state->op_index = 0;
18270 state->file = 1;
18271 state->line = 1;
18272 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18273 was a line entry for it so that the backend has a chance to adjust it
18274 and also record it in case it needs it. This is currently used by MIPS
18275 code, cf. `mips_adjust_dwarf2_line'. */
18276 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
18277 state->is_stmt = reader->line_header->default_is_stmt;
18278 state->discriminator = 0;
252a6764
DE
18279}
18280
924c2928
DE
18281/* Check address and if invalid nop-out the rest of the lines in this
18282 sequence. */
18283
18284static void
d9b3de22 18285check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
924c2928
DE
18286 const gdb_byte *line_ptr,
18287 CORE_ADDR lowpc, CORE_ADDR address)
18288{
18289 /* If address < lowpc then it's not a usable value, it's outside the
18290 pc range of the CU. However, we restrict the test to only address
18291 values of zero to preserve GDB's previous behaviour which is to
18292 handle the specific case of a function being GC'd by the linker. */
18293
18294 if (address == 0 && address < lowpc)
18295 {
18296 /* This line table is for a function which has been
18297 GCd by the linker. Ignore it. PR gdb/12528 */
18298
18299 struct objfile *objfile = cu->objfile;
18300 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18301
18302 complaint (&symfile_complaints,
18303 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18304 line_offset, objfile_name (objfile));
d9b3de22
DE
18305 state->record_line = noop_record_line;
18306 /* Note: sm.record_line is left as noop_record_line
924c2928
DE
18307 until we see DW_LNE_end_sequence. */
18308 }
18309}
18310
f3f5162e 18311/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
18312 Process the line number information in LH.
18313 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18314 program in order to set included_p for every referenced header. */
debd256d 18315
c906108c 18316static void
43f3e411
DE
18317dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18318 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 18319{
d521ce57
TT
18320 const gdb_byte *line_ptr, *extended_end;
18321 const gdb_byte *line_end;
a8c50c1f 18322 unsigned int bytes_read, extended_len;
699ca60a 18323 unsigned char op_code, extended_op;
e142c38c
DJ
18324 CORE_ADDR baseaddr;
18325 struct objfile *objfile = cu->objfile;
f3f5162e 18326 bfd *abfd = objfile->obfd;
fbf65064 18327 struct gdbarch *gdbarch = get_objfile_arch (objfile);
d9b3de22
DE
18328 /* Non-zero if we're recording line info (as opposed to building partial
18329 symtabs). */
18330 int record_lines_p = !decode_for_pst_p;
18331 /* A collection of things we need to pass to dwarf_record_line. */
18332 lnp_reader_state reader_state;
e142c38c
DJ
18333
18334 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18335
debd256d
JB
18336 line_ptr = lh->statement_program_start;
18337 line_end = lh->statement_program_end;
c906108c 18338
d9b3de22
DE
18339 reader_state.gdbarch = gdbarch;
18340 reader_state.line_header = lh;
18341 reader_state.record_lines_p = record_lines_p;
18342
c906108c
SS
18343 /* Read the statement sequences until there's nothing left. */
18344 while (line_ptr < line_end)
18345 {
d9b3de22
DE
18346 /* The DWARF line number program state machine. */
18347 lnp_state_machine state_machine;
c906108c 18348 int end_sequence = 0;
d9b3de22
DE
18349
18350 /* Reset the state machine at the start of each sequence. */
18351 init_lnp_state_machine (&state_machine, &reader_state);
18352
18353 if (record_lines_p && lh->num_file_names >= state_machine.file)
c906108c 18354 {
aaa75496 18355 /* Start a subfile for the current file of the state machine. */
debd256d
JB
18356 /* lh->include_dirs and lh->file_names are 0-based, but the
18357 directory and file name numbers in the statement program
18358 are 1-based. */
d9b3de22 18359 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
d521ce57 18360 const char *dir = NULL;
a738430d 18361
afa6c9ab 18362 if (fe->dir_index && lh->include_dirs != NULL)
debd256d 18363 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 18364
4d663531 18365 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
18366 }
18367
a738430d 18368 /* Decode the table. */
d9b3de22 18369 while (line_ptr < line_end && !end_sequence)
c906108c
SS
18370 {
18371 op_code = read_1_byte (abfd, line_ptr);
18372 line_ptr += 1;
9aa1fe7e 18373
debd256d 18374 if (op_code >= lh->opcode_base)
6e70227d 18375 {
8e07a239 18376 /* Special opcode. */
699ca60a 18377 unsigned char adj_opcode;
3e29f34a 18378 CORE_ADDR addr_adj;
a05a36a5 18379 int line_delta;
8e07a239 18380
debd256d 18381 adj_opcode = op_code - lh->opcode_base;
d9b3de22
DE
18382 addr_adj = (((state_machine.op_index
18383 + (adj_opcode / lh->line_range))
2dc7f7b3
TT
18384 / lh->maximum_ops_per_instruction)
18385 * lh->minimum_instruction_length);
d9b3de22
DE
18386 state_machine.address
18387 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18388 state_machine.op_index = ((state_machine.op_index
18389 + (adj_opcode / lh->line_range))
18390 % lh->maximum_ops_per_instruction);
a05a36a5 18391 line_delta = lh->line_base + (adj_opcode % lh->line_range);
d9b3de22 18392 state_machine.line += line_delta;
a05a36a5 18393 if (line_delta != 0)
d9b3de22
DE
18394 state_machine.line_has_non_zero_discriminator
18395 = state_machine.discriminator != 0;
18396
18397 dwarf_record_line (&reader_state, &state_machine, 0);
18398 state_machine.discriminator = 0;
9aa1fe7e
GK
18399 }
18400 else switch (op_code)
c906108c
SS
18401 {
18402 case DW_LNS_extended_op:
3e43a32a
MS
18403 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18404 &bytes_read);
473b7be6 18405 line_ptr += bytes_read;
a8c50c1f 18406 extended_end = line_ptr + extended_len;
c906108c
SS
18407 extended_op = read_1_byte (abfd, line_ptr);
18408 line_ptr += 1;
18409 switch (extended_op)
18410 {
18411 case DW_LNE_end_sequence:
d9b3de22 18412 state_machine.record_line = record_line;
c906108c 18413 end_sequence = 1;
c906108c
SS
18414 break;
18415 case DW_LNE_set_address:
d9b3de22
DE
18416 {
18417 CORE_ADDR address
18418 = read_address (abfd, line_ptr, cu, &bytes_read);
18419
18420 line_ptr += bytes_read;
18421 check_line_address (cu, &state_machine, line_ptr,
18422 lowpc, address);
18423 state_machine.op_index = 0;
18424 address += baseaddr;
18425 state_machine.address
18426 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
18427 }
c906108c
SS
18428 break;
18429 case DW_LNE_define_file:
debd256d 18430 {
d521ce57 18431 const char *cur_file;
debd256d 18432 unsigned int dir_index, mod_time, length;
6e70227d 18433
3e43a32a
MS
18434 cur_file = read_direct_string (abfd, line_ptr,
18435 &bytes_read);
debd256d
JB
18436 line_ptr += bytes_read;
18437 dir_index =
18438 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18439 line_ptr += bytes_read;
18440 mod_time =
18441 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18442 line_ptr += bytes_read;
18443 length =
18444 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18445 line_ptr += bytes_read;
18446 add_file_name (lh, cur_file, dir_index, mod_time, length);
18447 }
c906108c 18448 break;
d0c6ba3d
CC
18449 case DW_LNE_set_discriminator:
18450 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
18451 just ignore it. We still need to check its value though:
18452 if there are consecutive entries for the same
18453 (non-prologue) line we want to coalesce them.
18454 PR 17276. */
d9b3de22
DE
18455 state_machine.discriminator
18456 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18457 state_machine.line_has_non_zero_discriminator
18458 |= state_machine.discriminator != 0;
a05a36a5 18459 line_ptr += bytes_read;
d0c6ba3d 18460 break;
c906108c 18461 default:
4d3c2250 18462 complaint (&symfile_complaints,
e2e0b3e5 18463 _("mangled .debug_line section"));
debd256d 18464 return;
c906108c 18465 }
a8c50c1f
DJ
18466 /* Make sure that we parsed the extended op correctly. If e.g.
18467 we expected a different address size than the producer used,
18468 we may have read the wrong number of bytes. */
18469 if (line_ptr != extended_end)
18470 {
18471 complaint (&symfile_complaints,
18472 _("mangled .debug_line section"));
18473 return;
18474 }
c906108c
SS
18475 break;
18476 case DW_LNS_copy:
d9b3de22
DE
18477 dwarf_record_line (&reader_state, &state_machine, 0);
18478 state_machine.discriminator = 0;
c906108c
SS
18479 break;
18480 case DW_LNS_advance_pc:
2dc7f7b3
TT
18481 {
18482 CORE_ADDR adjust
18483 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
3e29f34a 18484 CORE_ADDR addr_adj;
2dc7f7b3 18485
d9b3de22 18486 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18487 / lh->maximum_ops_per_instruction)
18488 * lh->minimum_instruction_length);
d9b3de22
DE
18489 state_machine.address
18490 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18491 state_machine.op_index = ((state_machine.op_index + adjust)
18492 % lh->maximum_ops_per_instruction);
2dc7f7b3
TT
18493 line_ptr += bytes_read;
18494 }
c906108c
SS
18495 break;
18496 case DW_LNS_advance_line:
a05a36a5
DE
18497 {
18498 int line_delta
18499 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18500
d9b3de22 18501 state_machine.line += line_delta;
a05a36a5 18502 if (line_delta != 0)
d9b3de22
DE
18503 state_machine.line_has_non_zero_discriminator
18504 = state_machine.discriminator != 0;
a05a36a5
DE
18505 line_ptr += bytes_read;
18506 }
c906108c
SS
18507 break;
18508 case DW_LNS_set_file:
d9b3de22
DE
18509 {
18510 /* The arrays lh->include_dirs and lh->file_names are
18511 0-based, but the directory and file name numbers in
18512 the statement program are 1-based. */
18513 struct file_entry *fe;
18514 const char *dir = NULL;
18515
18516 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18517 &bytes_read);
18518 line_ptr += bytes_read;
18519 if (state_machine.file == 0
18520 || state_machine.file - 1 >= lh->num_file_names)
18521 dwarf2_debug_line_missing_file_complaint ();
18522 else
18523 {
18524 fe = &lh->file_names[state_machine.file - 1];
18525 if (fe->dir_index && lh->include_dirs != NULL)
18526 dir = lh->include_dirs[fe->dir_index - 1];
18527 if (record_lines_p)
18528 {
18529 state_machine.last_subfile = current_subfile;
18530 state_machine.line_has_non_zero_discriminator
18531 = state_machine.discriminator != 0;
18532 dwarf2_start_subfile (fe->name, dir);
18533 }
18534 }
18535 }
c906108c
SS
18536 break;
18537 case DW_LNS_set_column:
0ad93d4f 18538 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
18539 line_ptr += bytes_read;
18540 break;
18541 case DW_LNS_negate_stmt:
d9b3de22 18542 state_machine.is_stmt = (!state_machine.is_stmt);
c906108c
SS
18543 break;
18544 case DW_LNS_set_basic_block:
c906108c 18545 break;
c2c6d25f
JM
18546 /* Add to the address register of the state machine the
18547 address increment value corresponding to special opcode
a738430d
MK
18548 255. I.e., this value is scaled by the minimum
18549 instruction length since special opcode 255 would have
b021a221 18550 scaled the increment. */
c906108c 18551 case DW_LNS_const_add_pc:
2dc7f7b3
TT
18552 {
18553 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
3e29f34a 18554 CORE_ADDR addr_adj;
2dc7f7b3 18555
d9b3de22 18556 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18557 / lh->maximum_ops_per_instruction)
18558 * lh->minimum_instruction_length);
d9b3de22
DE
18559 state_machine.address
18560 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18561 state_machine.op_index = ((state_machine.op_index + adjust)
18562 % lh->maximum_ops_per_instruction);
2dc7f7b3 18563 }
c906108c
SS
18564 break;
18565 case DW_LNS_fixed_advance_pc:
3e29f34a
MR
18566 {
18567 CORE_ADDR addr_adj;
18568
18569 addr_adj = read_2_bytes (abfd, line_ptr);
d9b3de22
DE
18570 state_machine.address
18571 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18572 state_machine.op_index = 0;
3e29f34a
MR
18573 line_ptr += 2;
18574 }
c906108c 18575 break;
9aa1fe7e 18576 default:
a738430d
MK
18577 {
18578 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18579 int i;
a738430d 18580
debd256d 18581 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18582 {
18583 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18584 line_ptr += bytes_read;
18585 }
18586 }
c906108c
SS
18587 }
18588 }
d9b3de22
DE
18589
18590 if (!end_sequence)
18591 dwarf2_debug_line_missing_end_sequence_complaint ();
18592
18593 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18594 in which case we still finish recording the last line). */
18595 dwarf_record_line (&reader_state, &state_machine, 1);
c906108c 18596 }
f3f5162e
DE
18597}
18598
18599/* Decode the Line Number Program (LNP) for the given line_header
18600 structure and CU. The actual information extracted and the type
18601 of structures created from the LNP depends on the value of PST.
18602
18603 1. If PST is NULL, then this procedure uses the data from the program
18604 to create all necessary symbol tables, and their linetables.
18605
18606 2. If PST is not NULL, this procedure reads the program to determine
18607 the list of files included by the unit represented by PST, and
18608 builds all the associated partial symbol tables.
18609
18610 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18611 It is used for relative paths in the line table.
18612 NOTE: When processing partial symtabs (pst != NULL),
18613 comp_dir == pst->dirname.
18614
18615 NOTE: It is important that psymtabs have the same file name (via strcmp)
18616 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18617 symtab we don't use it in the name of the psymtabs we create.
18618 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18619 A good testcase for this is mb-inline.exp.
18620
527f3840
JK
18621 LOWPC is the lowest address in CU (or 0 if not known).
18622
18623 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18624 for its PC<->lines mapping information. Otherwise only the filename
18625 table is read in. */
f3f5162e
DE
18626
18627static void
18628dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18629 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18630 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18631{
18632 struct objfile *objfile = cu->objfile;
18633 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18634
527f3840
JK
18635 if (decode_mapping)
18636 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18637
18638 if (decode_for_pst_p)
18639 {
18640 int file_index;
18641
18642 /* Now that we're done scanning the Line Header Program, we can
18643 create the psymtab of each included file. */
18644 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18645 if (lh->file_names[file_index].included_p == 1)
18646 {
d521ce57 18647 const char *include_name =
c6da4cef
DE
18648 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18649 if (include_name != NULL)
aaa75496
JB
18650 dwarf2_create_include_psymtab (include_name, pst, objfile);
18651 }
18652 }
cb1df416
DJ
18653 else
18654 {
18655 /* Make sure a symtab is created for every file, even files
18656 which contain only variables (i.e. no code with associated
18657 line numbers). */
43f3e411 18658 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18659 int i;
cb1df416
DJ
18660
18661 for (i = 0; i < lh->num_file_names; i++)
18662 {
d521ce57 18663 const char *dir = NULL;
f3f5162e 18664 struct file_entry *fe;
9a619af0 18665
cb1df416 18666 fe = &lh->file_names[i];
afa6c9ab 18667 if (fe->dir_index && lh->include_dirs != NULL)
cb1df416 18668 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 18669 dwarf2_start_subfile (fe->name, dir);
cb1df416 18670
cb1df416 18671 if (current_subfile->symtab == NULL)
43f3e411
DE
18672 {
18673 current_subfile->symtab
18674 = allocate_symtab (cust, current_subfile->name);
18675 }
cb1df416
DJ
18676 fe->symtab = current_subfile->symtab;
18677 }
18678 }
c906108c
SS
18679}
18680
18681/* Start a subfile for DWARF. FILENAME is the name of the file and
18682 DIRNAME the name of the source directory which contains FILENAME
4d663531 18683 or NULL if not known.
c906108c
SS
18684 This routine tries to keep line numbers from identical absolute and
18685 relative file names in a common subfile.
18686
18687 Using the `list' example from the GDB testsuite, which resides in
18688 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18689 of /srcdir/list0.c yields the following debugging information for list0.c:
18690
c5aa993b 18691 DW_AT_name: /srcdir/list0.c
4d663531 18692 DW_AT_comp_dir: /compdir
357e46e7 18693 files.files[0].name: list0.h
c5aa993b 18694 files.files[0].dir: /srcdir
357e46e7 18695 files.files[1].name: list0.c
c5aa993b 18696 files.files[1].dir: /srcdir
c906108c
SS
18697
18698 The line number information for list0.c has to end up in a single
4f1520fb
FR
18699 subfile, so that `break /srcdir/list0.c:1' works as expected.
18700 start_subfile will ensure that this happens provided that we pass the
18701 concatenation of files.files[1].dir and files.files[1].name as the
18702 subfile's name. */
c906108c
SS
18703
18704static void
4d663531 18705dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18706{
d521ce57 18707 char *copy = NULL;
4f1520fb 18708
4d663531 18709 /* In order not to lose the line information directory,
4f1520fb
FR
18710 we concatenate it to the filename when it makes sense.
18711 Note that the Dwarf3 standard says (speaking of filenames in line
18712 information): ``The directory index is ignored for file names
18713 that represent full path names''. Thus ignoring dirname in the
18714 `else' branch below isn't an issue. */
c906108c 18715
d5166ae1 18716 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18717 {
18718 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18719 filename = copy;
18720 }
c906108c 18721
4d663531 18722 start_subfile (filename);
4f1520fb 18723
d521ce57
TT
18724 if (copy != NULL)
18725 xfree (copy);
c906108c
SS
18726}
18727
f4dc4d17
DE
18728/* Start a symtab for DWARF.
18729 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18730
43f3e411 18731static struct compunit_symtab *
f4dc4d17 18732dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18733 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18734{
43f3e411
DE
18735 struct compunit_symtab *cust
18736 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18737
f4dc4d17
DE
18738 record_debugformat ("DWARF 2");
18739 record_producer (cu->producer);
18740
18741 /* We assume that we're processing GCC output. */
18742 processing_gcc_compilation = 2;
18743
4d4ec4e5 18744 cu->processing_has_namespace_info = 0;
43f3e411
DE
18745
18746 return cust;
f4dc4d17
DE
18747}
18748
4c2df51b
DJ
18749static void
18750var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18751 struct dwarf2_cu *cu)
4c2df51b 18752{
e7c27a73
DJ
18753 struct objfile *objfile = cu->objfile;
18754 struct comp_unit_head *cu_header = &cu->header;
18755
4c2df51b
DJ
18756 /* NOTE drow/2003-01-30: There used to be a comment and some special
18757 code here to turn a symbol with DW_AT_external and a
18758 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18759 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18760 with some versions of binutils) where shared libraries could have
18761 relocations against symbols in their debug information - the
18762 minimal symbol would have the right address, but the debug info
18763 would not. It's no longer necessary, because we will explicitly
18764 apply relocations when we read in the debug information now. */
18765
18766 /* A DW_AT_location attribute with no contents indicates that a
18767 variable has been optimized away. */
18768 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18769 {
f1e6e072 18770 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18771 return;
18772 }
18773
18774 /* Handle one degenerate form of location expression specially, to
18775 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18776 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18777 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18778
18779 if (attr_form_is_block (attr)
3019eac3
DE
18780 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18781 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18782 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18783 && (DW_BLOCK (attr)->size
18784 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18785 {
891d2f0b 18786 unsigned int dummy;
4c2df51b 18787
3019eac3
DE
18788 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18789 SYMBOL_VALUE_ADDRESS (sym) =
18790 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18791 else
18792 SYMBOL_VALUE_ADDRESS (sym) =
18793 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18794 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18795 fixup_symbol_section (sym, objfile);
18796 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18797 SYMBOL_SECTION (sym));
4c2df51b
DJ
18798 return;
18799 }
18800
18801 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18802 expression evaluator, and use LOC_COMPUTED only when necessary
18803 (i.e. when the value of a register or memory location is
18804 referenced, or a thread-local block, etc.). Then again, it might
18805 not be worthwhile. I'm assuming that it isn't unless performance
18806 or memory numbers show me otherwise. */
18807
f1e6e072 18808 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18809
f1e6e072 18810 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18811 cu->has_loclist = 1;
4c2df51b
DJ
18812}
18813
c906108c
SS
18814/* Given a pointer to a DWARF information entry, figure out if we need
18815 to make a symbol table entry for it, and if so, create a new entry
18816 and return a pointer to it.
18817 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18818 used the passed type.
18819 If SPACE is not NULL, use it to hold the new symbol. If it is
18820 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18821
18822static struct symbol *
34eaf542
TT
18823new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18824 struct symbol *space)
c906108c 18825{
e7c27a73 18826 struct objfile *objfile = cu->objfile;
3e29f34a 18827 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 18828 struct symbol *sym = NULL;
15d034d0 18829 const char *name;
c906108c
SS
18830 struct attribute *attr = NULL;
18831 struct attribute *attr2 = NULL;
e142c38c 18832 CORE_ADDR baseaddr;
e37fd15a
SW
18833 struct pending **list_to_add = NULL;
18834
edb3359d 18835 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
18836
18837 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18838
94af9270 18839 name = dwarf2_name (die, cu);
c906108c
SS
18840 if (name)
18841 {
94af9270 18842 const char *linkagename;
34eaf542 18843 int suppress_add = 0;
94af9270 18844
34eaf542
TT
18845 if (space)
18846 sym = space;
18847 else
e623cf5d 18848 sym = allocate_symbol (objfile);
c906108c 18849 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
18850
18851 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 18852 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
18853 linkagename = dwarf2_physname (name, die, cu);
18854 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 18855
f55ee35c
JK
18856 /* Fortran does not have mangling standard and the mangling does differ
18857 between gfortran, iFort etc. */
18858 if (cu->language == language_fortran
b250c185 18859 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 18860 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 18861 dwarf2_full_name (name, die, cu),
29df156d 18862 NULL);
f55ee35c 18863
c906108c 18864 /* Default assumptions.
c5aa993b 18865 Use the passed type or decode it from the die. */
176620f1 18866 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 18867 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
18868 if (type != NULL)
18869 SYMBOL_TYPE (sym) = type;
18870 else
e7c27a73 18871 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
18872 attr = dwarf2_attr (die,
18873 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18874 cu);
c906108c
SS
18875 if (attr)
18876 {
18877 SYMBOL_LINE (sym) = DW_UNSND (attr);
18878 }
cb1df416 18879
edb3359d
DJ
18880 attr = dwarf2_attr (die,
18881 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18882 cu);
cb1df416
DJ
18883 if (attr)
18884 {
18885 int file_index = DW_UNSND (attr);
9a619af0 18886
cb1df416
DJ
18887 if (cu->line_header == NULL
18888 || file_index > cu->line_header->num_file_names)
18889 complaint (&symfile_complaints,
18890 _("file index out of range"));
1c3d648d 18891 else if (file_index > 0)
cb1df416
DJ
18892 {
18893 struct file_entry *fe;
9a619af0 18894
cb1df416 18895 fe = &cu->line_header->file_names[file_index - 1];
08be3fe3 18896 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
18897 }
18898 }
18899
c906108c
SS
18900 switch (die->tag)
18901 {
18902 case DW_TAG_label:
e142c38c 18903 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 18904 if (attr)
3e29f34a
MR
18905 {
18906 CORE_ADDR addr;
18907
18908 addr = attr_value_as_address (attr);
18909 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18910 SYMBOL_VALUE_ADDRESS (sym) = addr;
18911 }
0f5238ed
TT
18912 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18913 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 18914 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 18915 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
18916 break;
18917 case DW_TAG_subprogram:
18918 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18919 finish_block. */
f1e6e072 18920 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 18921 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
18922 if ((attr2 && (DW_UNSND (attr2) != 0))
18923 || cu->language == language_ada)
c906108c 18924 {
2cfa0c8d
JB
18925 /* Subprograms marked external are stored as a global symbol.
18926 Ada subprograms, whether marked external or not, are always
18927 stored as a global symbol, because we want to be able to
18928 access them globally. For instance, we want to be able
18929 to break on a nested subprogram without having to
18930 specify the context. */
e37fd15a 18931 list_to_add = &global_symbols;
c906108c
SS
18932 }
18933 else
18934 {
e37fd15a 18935 list_to_add = cu->list_in_scope;
c906108c
SS
18936 }
18937 break;
edb3359d
DJ
18938 case DW_TAG_inlined_subroutine:
18939 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18940 finish_block. */
f1e6e072 18941 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 18942 SYMBOL_INLINED (sym) = 1;
481860b3 18943 list_to_add = cu->list_in_scope;
edb3359d 18944 break;
34eaf542
TT
18945 case DW_TAG_template_value_param:
18946 suppress_add = 1;
18947 /* Fall through. */
72929c62 18948 case DW_TAG_constant:
c906108c 18949 case DW_TAG_variable:
254e6b9e 18950 case DW_TAG_member:
0963b4bd
MS
18951 /* Compilation with minimal debug info may result in
18952 variables with missing type entries. Change the
18953 misleading `void' type to something sensible. */
c906108c 18954 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 18955 SYMBOL_TYPE (sym)
46bf5051 18956 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 18957
e142c38c 18958 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
18959 /* In the case of DW_TAG_member, we should only be called for
18960 static const members. */
18961 if (die->tag == DW_TAG_member)
18962 {
3863f96c
DE
18963 /* dwarf2_add_field uses die_is_declaration,
18964 so we do the same. */
254e6b9e
DE
18965 gdb_assert (die_is_declaration (die, cu));
18966 gdb_assert (attr);
18967 }
c906108c
SS
18968 if (attr)
18969 {
e7c27a73 18970 dwarf2_const_value (attr, sym, cu);
e142c38c 18971 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 18972 if (!suppress_add)
34eaf542
TT
18973 {
18974 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 18975 list_to_add = &global_symbols;
34eaf542 18976 else
e37fd15a 18977 list_to_add = cu->list_in_scope;
34eaf542 18978 }
c906108c
SS
18979 break;
18980 }
e142c38c 18981 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18982 if (attr)
18983 {
e7c27a73 18984 var_decode_location (attr, sym, cu);
e142c38c 18985 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
18986
18987 /* Fortran explicitly imports any global symbols to the local
18988 scope by DW_TAG_common_block. */
18989 if (cu->language == language_fortran && die->parent
18990 && die->parent->tag == DW_TAG_common_block)
18991 attr2 = NULL;
18992
caac4577
JG
18993 if (SYMBOL_CLASS (sym) == LOC_STATIC
18994 && SYMBOL_VALUE_ADDRESS (sym) == 0
18995 && !dwarf2_per_objfile->has_section_at_zero)
18996 {
18997 /* When a static variable is eliminated by the linker,
18998 the corresponding debug information is not stripped
18999 out, but the variable address is set to null;
19000 do not add such variables into symbol table. */
19001 }
19002 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 19003 {
f55ee35c
JK
19004 /* Workaround gfortran PR debug/40040 - it uses
19005 DW_AT_location for variables in -fPIC libraries which may
19006 get overriden by other libraries/executable and get
19007 a different address. Resolve it by the minimal symbol
19008 which may come from inferior's executable using copy
19009 relocation. Make this workaround only for gfortran as for
19010 other compilers GDB cannot guess the minimal symbol
19011 Fortran mangling kind. */
19012 if (cu->language == language_fortran && die->parent
19013 && die->parent->tag == DW_TAG_module
19014 && cu->producer
28586665 19015 && startswith (cu->producer, "GNU Fortran"))
f1e6e072 19016 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 19017
1c809c68
TT
19018 /* A variable with DW_AT_external is never static,
19019 but it may be block-scoped. */
19020 list_to_add = (cu->list_in_scope == &file_symbols
19021 ? &global_symbols : cu->list_in_scope);
1c809c68 19022 }
c906108c 19023 else
e37fd15a 19024 list_to_add = cu->list_in_scope;
c906108c
SS
19025 }
19026 else
19027 {
19028 /* We do not know the address of this symbol.
c5aa993b
JM
19029 If it is an external symbol and we have type information
19030 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19031 The address of the variable will then be determined from
19032 the minimal symbol table whenever the variable is
19033 referenced. */
e142c38c 19034 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
19035
19036 /* Fortran explicitly imports any global symbols to the local
19037 scope by DW_TAG_common_block. */
19038 if (cu->language == language_fortran && die->parent
19039 && die->parent->tag == DW_TAG_common_block)
19040 {
19041 /* SYMBOL_CLASS doesn't matter here because
19042 read_common_block is going to reset it. */
19043 if (!suppress_add)
19044 list_to_add = cu->list_in_scope;
19045 }
19046 else if (attr2 && (DW_UNSND (attr2) != 0)
19047 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 19048 {
0fe7935b
DJ
19049 /* A variable with DW_AT_external is never static, but it
19050 may be block-scoped. */
19051 list_to_add = (cu->list_in_scope == &file_symbols
19052 ? &global_symbols : cu->list_in_scope);
19053
f1e6e072 19054 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 19055 }
442ddf59
JK
19056 else if (!die_is_declaration (die, cu))
19057 {
19058 /* Use the default LOC_OPTIMIZED_OUT class. */
19059 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
19060 if (!suppress_add)
19061 list_to_add = cu->list_in_scope;
442ddf59 19062 }
c906108c
SS
19063 }
19064 break;
19065 case DW_TAG_formal_parameter:
edb3359d
DJ
19066 /* If we are inside a function, mark this as an argument. If
19067 not, we might be looking at an argument to an inlined function
19068 when we do not have enough information to show inlined frames;
19069 pretend it's a local variable in that case so that the user can
19070 still see it. */
19071 if (context_stack_depth > 0
19072 && context_stack[context_stack_depth - 1].name != NULL)
19073 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 19074 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
19075 if (attr)
19076 {
e7c27a73 19077 var_decode_location (attr, sym, cu);
c906108c 19078 }
e142c38c 19079 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
19080 if (attr)
19081 {
e7c27a73 19082 dwarf2_const_value (attr, sym, cu);
c906108c 19083 }
f346a30d 19084
e37fd15a 19085 list_to_add = cu->list_in_scope;
c906108c
SS
19086 break;
19087 case DW_TAG_unspecified_parameters:
19088 /* From varargs functions; gdb doesn't seem to have any
19089 interest in this information, so just ignore it for now.
19090 (FIXME?) */
19091 break;
34eaf542
TT
19092 case DW_TAG_template_type_param:
19093 suppress_add = 1;
19094 /* Fall through. */
c906108c 19095 case DW_TAG_class_type:
680b30c7 19096 case DW_TAG_interface_type:
c906108c
SS
19097 case DW_TAG_structure_type:
19098 case DW_TAG_union_type:
72019c9c 19099 case DW_TAG_set_type:
c906108c 19100 case DW_TAG_enumeration_type:
f1e6e072 19101 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 19102 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 19103
63d06c5c 19104 {
9c37b5ae 19105 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
63d06c5c
DC
19106 really ever be static objects: otherwise, if you try
19107 to, say, break of a class's method and you're in a file
19108 which doesn't mention that class, it won't work unless
19109 the check for all static symbols in lookup_symbol_aux
19110 saves you. See the OtherFileClass tests in
19111 gdb.c++/namespace.exp. */
19112
e37fd15a 19113 if (!suppress_add)
34eaf542 19114 {
34eaf542 19115 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 19116 && cu->language == language_cplus
34eaf542 19117 ? &global_symbols : cu->list_in_scope);
63d06c5c 19118
64382290 19119 /* The semantics of C++ state that "struct foo {
9c37b5ae 19120 ... }" also defines a typedef for "foo". */
64382290 19121 if (cu->language == language_cplus
45280282 19122 || cu->language == language_ada
c44af4eb
TT
19123 || cu->language == language_d
19124 || cu->language == language_rust)
64382290
TT
19125 {
19126 /* The symbol's name is already allocated along
19127 with this objfile, so we don't need to
19128 duplicate it for the type. */
19129 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19130 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19131 }
63d06c5c
DC
19132 }
19133 }
c906108c
SS
19134 break;
19135 case DW_TAG_typedef:
f1e6e072 19136 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 19137 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 19138 list_to_add = cu->list_in_scope;
63d06c5c 19139 break;
c906108c 19140 case DW_TAG_base_type:
a02abb62 19141 case DW_TAG_subrange_type:
f1e6e072 19142 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 19143 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 19144 list_to_add = cu->list_in_scope;
c906108c
SS
19145 break;
19146 case DW_TAG_enumerator:
e142c38c 19147 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
19148 if (attr)
19149 {
e7c27a73 19150 dwarf2_const_value (attr, sym, cu);
c906108c 19151 }
63d06c5c
DC
19152 {
19153 /* NOTE: carlton/2003-11-10: See comment above in the
19154 DW_TAG_class_type, etc. block. */
19155
e142c38c 19156 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 19157 && cu->language == language_cplus
e142c38c 19158 ? &global_symbols : cu->list_in_scope);
63d06c5c 19159 }
c906108c 19160 break;
74921315 19161 case DW_TAG_imported_declaration:
5c4e30ca 19162 case DW_TAG_namespace:
f1e6e072 19163 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 19164 list_to_add = &global_symbols;
5c4e30ca 19165 break;
530e8392
KB
19166 case DW_TAG_module:
19167 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19168 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19169 list_to_add = &global_symbols;
19170 break;
4357ac6c 19171 case DW_TAG_common_block:
f1e6e072 19172 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
19173 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19174 add_symbol_to_list (sym, cu->list_in_scope);
19175 break;
c906108c
SS
19176 default:
19177 /* Not a tag we recognize. Hopefully we aren't processing
19178 trash data, but since we must specifically ignore things
19179 we don't recognize, there is nothing else we should do at
0963b4bd 19180 this point. */
e2e0b3e5 19181 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 19182 dwarf_tag_name (die->tag));
c906108c
SS
19183 break;
19184 }
df8a16a1 19185
e37fd15a
SW
19186 if (suppress_add)
19187 {
19188 sym->hash_next = objfile->template_symbols;
19189 objfile->template_symbols = sym;
19190 list_to_add = NULL;
19191 }
19192
19193 if (list_to_add != NULL)
19194 add_symbol_to_list (sym, list_to_add);
19195
df8a16a1
DJ
19196 /* For the benefit of old versions of GCC, check for anonymous
19197 namespaces based on the demangled name. */
4d4ec4e5 19198 if (!cu->processing_has_namespace_info
94af9270 19199 && cu->language == language_cplus)
a10964d1 19200 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
19201 }
19202 return (sym);
19203}
19204
34eaf542
TT
19205/* A wrapper for new_symbol_full that always allocates a new symbol. */
19206
19207static struct symbol *
19208new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19209{
19210 return new_symbol_full (die, type, cu, NULL);
19211}
19212
98bfdba5
PA
19213/* Given an attr with a DW_FORM_dataN value in host byte order,
19214 zero-extend it as appropriate for the symbol's type. The DWARF
19215 standard (v4) is not entirely clear about the meaning of using
19216 DW_FORM_dataN for a constant with a signed type, where the type is
19217 wider than the data. The conclusion of a discussion on the DWARF
19218 list was that this is unspecified. We choose to always zero-extend
19219 because that is the interpretation long in use by GCC. */
c906108c 19220
98bfdba5 19221static gdb_byte *
ff39bb5e 19222dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 19223 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 19224{
e7c27a73 19225 struct objfile *objfile = cu->objfile;
e17a4113
UW
19226 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19227 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
19228 LONGEST l = DW_UNSND (attr);
19229
19230 if (bits < sizeof (*value) * 8)
19231 {
19232 l &= ((LONGEST) 1 << bits) - 1;
19233 *value = l;
19234 }
19235 else if (bits == sizeof (*value) * 8)
19236 *value = l;
19237 else
19238 {
224c3ddb 19239 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
19240 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19241 return bytes;
19242 }
19243
19244 return NULL;
19245}
19246
19247/* Read a constant value from an attribute. Either set *VALUE, or if
19248 the value does not fit in *VALUE, set *BYTES - either already
19249 allocated on the objfile obstack, or newly allocated on OBSTACK,
19250 or, set *BATON, if we translated the constant to a location
19251 expression. */
19252
19253static void
ff39bb5e 19254dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
19255 const char *name, struct obstack *obstack,
19256 struct dwarf2_cu *cu,
d521ce57 19257 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
19258 struct dwarf2_locexpr_baton **baton)
19259{
19260 struct objfile *objfile = cu->objfile;
19261 struct comp_unit_head *cu_header = &cu->header;
c906108c 19262 struct dwarf_block *blk;
98bfdba5
PA
19263 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19264 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19265
19266 *value = 0;
19267 *bytes = NULL;
19268 *baton = NULL;
c906108c
SS
19269
19270 switch (attr->form)
19271 {
19272 case DW_FORM_addr:
3019eac3 19273 case DW_FORM_GNU_addr_index:
ac56253d 19274 {
ac56253d
TT
19275 gdb_byte *data;
19276
98bfdba5
PA
19277 if (TYPE_LENGTH (type) != cu_header->addr_size)
19278 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 19279 cu_header->addr_size,
98bfdba5 19280 TYPE_LENGTH (type));
ac56253d
TT
19281 /* Symbols of this form are reasonably rare, so we just
19282 piggyback on the existing location code rather than writing
19283 a new implementation of symbol_computed_ops. */
8d749320 19284 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
19285 (*baton)->per_cu = cu->per_cu;
19286 gdb_assert ((*baton)->per_cu);
ac56253d 19287
98bfdba5 19288 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 19289 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 19290 (*baton)->data = data;
ac56253d
TT
19291
19292 data[0] = DW_OP_addr;
19293 store_unsigned_integer (&data[1], cu_header->addr_size,
19294 byte_order, DW_ADDR (attr));
19295 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 19296 }
c906108c 19297 break;
4ac36638 19298 case DW_FORM_string:
93b5768b 19299 case DW_FORM_strp:
3019eac3 19300 case DW_FORM_GNU_str_index:
36586728 19301 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
19302 /* DW_STRING is already allocated on the objfile obstack, point
19303 directly to it. */
d521ce57 19304 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 19305 break;
c906108c
SS
19306 case DW_FORM_block1:
19307 case DW_FORM_block2:
19308 case DW_FORM_block4:
19309 case DW_FORM_block:
2dc7f7b3 19310 case DW_FORM_exprloc:
0224619f 19311 case DW_FORM_data16:
c906108c 19312 blk = DW_BLOCK (attr);
98bfdba5
PA
19313 if (TYPE_LENGTH (type) != blk->size)
19314 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19315 TYPE_LENGTH (type));
19316 *bytes = blk->data;
c906108c 19317 break;
2df3850c
JM
19318
19319 /* The DW_AT_const_value attributes are supposed to carry the
19320 symbol's value "represented as it would be on the target
19321 architecture." By the time we get here, it's already been
19322 converted to host endianness, so we just need to sign- or
19323 zero-extend it as appropriate. */
19324 case DW_FORM_data1:
3aef2284 19325 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 19326 break;
c906108c 19327 case DW_FORM_data2:
3aef2284 19328 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 19329 break;
c906108c 19330 case DW_FORM_data4:
3aef2284 19331 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 19332 break;
c906108c 19333 case DW_FORM_data8:
3aef2284 19334 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
19335 break;
19336
c906108c 19337 case DW_FORM_sdata:
98bfdba5 19338 *value = DW_SND (attr);
2df3850c
JM
19339 break;
19340
c906108c 19341 case DW_FORM_udata:
98bfdba5 19342 *value = DW_UNSND (attr);
c906108c 19343 break;
2df3850c 19344
c906108c 19345 default:
4d3c2250 19346 complaint (&symfile_complaints,
e2e0b3e5 19347 _("unsupported const value attribute form: '%s'"),
4d3c2250 19348 dwarf_form_name (attr->form));
98bfdba5 19349 *value = 0;
c906108c
SS
19350 break;
19351 }
19352}
19353
2df3850c 19354
98bfdba5
PA
19355/* Copy constant value from an attribute to a symbol. */
19356
2df3850c 19357static void
ff39bb5e 19358dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 19359 struct dwarf2_cu *cu)
2df3850c 19360{
98bfdba5 19361 struct objfile *objfile = cu->objfile;
12df843f 19362 LONGEST value;
d521ce57 19363 const gdb_byte *bytes;
98bfdba5 19364 struct dwarf2_locexpr_baton *baton;
2df3850c 19365
98bfdba5
PA
19366 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19367 SYMBOL_PRINT_NAME (sym),
19368 &objfile->objfile_obstack, cu,
19369 &value, &bytes, &baton);
2df3850c 19370
98bfdba5
PA
19371 if (baton != NULL)
19372 {
98bfdba5 19373 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 19374 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
19375 }
19376 else if (bytes != NULL)
19377 {
19378 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 19379 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
19380 }
19381 else
19382 {
19383 SYMBOL_VALUE (sym) = value;
f1e6e072 19384 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 19385 }
2df3850c
JM
19386}
19387
c906108c
SS
19388/* Return the type of the die in question using its DW_AT_type attribute. */
19389
19390static struct type *
e7c27a73 19391die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19392{
c906108c 19393 struct attribute *type_attr;
c906108c 19394
e142c38c 19395 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
19396 if (!type_attr)
19397 {
19398 /* A missing DW_AT_type represents a void type. */
46bf5051 19399 return objfile_type (cu->objfile)->builtin_void;
c906108c 19400 }
348e048f 19401
673bfd45 19402 return lookup_die_type (die, type_attr, cu);
c906108c
SS
19403}
19404
b4ba55a1
JB
19405/* True iff CU's producer generates GNAT Ada auxiliary information
19406 that allows to find parallel types through that information instead
19407 of having to do expensive parallel lookups by type name. */
19408
19409static int
19410need_gnat_info (struct dwarf2_cu *cu)
19411{
19412 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19413 of GNAT produces this auxiliary information, without any indication
19414 that it is produced. Part of enhancing the FSF version of GNAT
19415 to produce that information will be to put in place an indicator
19416 that we can use in order to determine whether the descriptive type
19417 info is available or not. One suggestion that has been made is
19418 to use a new attribute, attached to the CU die. For now, assume
19419 that the descriptive type info is not available. */
19420 return 0;
19421}
19422
b4ba55a1
JB
19423/* Return the auxiliary type of the die in question using its
19424 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19425 attribute is not present. */
19426
19427static struct type *
19428die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19429{
b4ba55a1 19430 struct attribute *type_attr;
b4ba55a1
JB
19431
19432 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19433 if (!type_attr)
19434 return NULL;
19435
673bfd45 19436 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
19437}
19438
19439/* If DIE has a descriptive_type attribute, then set the TYPE's
19440 descriptive type accordingly. */
19441
19442static void
19443set_descriptive_type (struct type *type, struct die_info *die,
19444 struct dwarf2_cu *cu)
19445{
19446 struct type *descriptive_type = die_descriptive_type (die, cu);
19447
19448 if (descriptive_type)
19449 {
19450 ALLOCATE_GNAT_AUX_TYPE (type);
19451 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19452 }
19453}
19454
c906108c
SS
19455/* Return the containing type of the die in question using its
19456 DW_AT_containing_type attribute. */
19457
19458static struct type *
e7c27a73 19459die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19460{
c906108c 19461 struct attribute *type_attr;
c906108c 19462
e142c38c 19463 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
19464 if (!type_attr)
19465 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 19466 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 19467
673bfd45 19468 return lookup_die_type (die, type_attr, cu);
c906108c
SS
19469}
19470
ac9ec31b
DE
19471/* Return an error marker type to use for the ill formed type in DIE/CU. */
19472
19473static struct type *
19474build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19475{
19476 struct objfile *objfile = dwarf2_per_objfile->objfile;
19477 char *message, *saved;
19478
19479 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 19480 objfile_name (objfile),
ac9ec31b
DE
19481 cu->header.offset.sect_off,
19482 die->offset.sect_off);
224c3ddb
SM
19483 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19484 message, strlen (message));
ac9ec31b
DE
19485 xfree (message);
19486
19f392bc 19487 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
ac9ec31b
DE
19488}
19489
673bfd45 19490/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
19491 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19492 DW_AT_containing_type.
673bfd45
DE
19493 If there is no type substitute an error marker. */
19494
c906108c 19495static struct type *
ff39bb5e 19496lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 19497 struct dwarf2_cu *cu)
c906108c 19498{
bb5ed363 19499 struct objfile *objfile = cu->objfile;
f792889a
DJ
19500 struct type *this_type;
19501
ac9ec31b
DE
19502 gdb_assert (attr->name == DW_AT_type
19503 || attr->name == DW_AT_GNAT_descriptive_type
19504 || attr->name == DW_AT_containing_type);
19505
673bfd45
DE
19506 /* First see if we have it cached. */
19507
36586728
TT
19508 if (attr->form == DW_FORM_GNU_ref_alt)
19509 {
19510 struct dwarf2_per_cu_data *per_cu;
19511 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19512
19513 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19514 this_type = get_die_type_at_offset (offset, per_cu);
19515 }
7771576e 19516 else if (attr_form_is_ref (attr))
673bfd45 19517 {
b64f50a1 19518 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
19519
19520 this_type = get_die_type_at_offset (offset, cu->per_cu);
19521 }
55f1336d 19522 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 19523 {
ac9ec31b 19524 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 19525
ac9ec31b 19526 return get_signatured_type (die, signature, cu);
673bfd45
DE
19527 }
19528 else
19529 {
ac9ec31b
DE
19530 complaint (&symfile_complaints,
19531 _("Dwarf Error: Bad type attribute %s in DIE"
19532 " at 0x%x [in module %s]"),
19533 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 19534 objfile_name (objfile));
ac9ec31b 19535 return build_error_marker_type (cu, die);
673bfd45
DE
19536 }
19537
19538 /* If not cached we need to read it in. */
19539
19540 if (this_type == NULL)
19541 {
ac9ec31b 19542 struct die_info *type_die = NULL;
673bfd45
DE
19543 struct dwarf2_cu *type_cu = cu;
19544
7771576e 19545 if (attr_form_is_ref (attr))
ac9ec31b
DE
19546 type_die = follow_die_ref (die, attr, &type_cu);
19547 if (type_die == NULL)
19548 return build_error_marker_type (cu, die);
19549 /* If we find the type now, it's probably because the type came
3019eac3
DE
19550 from an inter-CU reference and the type's CU got expanded before
19551 ours. */
ac9ec31b 19552 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19553 }
19554
19555 /* If we still don't have a type use an error marker. */
19556
19557 if (this_type == NULL)
ac9ec31b 19558 return build_error_marker_type (cu, die);
673bfd45 19559
f792889a 19560 return this_type;
c906108c
SS
19561}
19562
673bfd45
DE
19563/* Return the type in DIE, CU.
19564 Returns NULL for invalid types.
19565
02142a6c 19566 This first does a lookup in die_type_hash,
673bfd45
DE
19567 and only reads the die in if necessary.
19568
19569 NOTE: This can be called when reading in partial or full symbols. */
19570
f792889a 19571static struct type *
e7c27a73 19572read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19573{
f792889a
DJ
19574 struct type *this_type;
19575
19576 this_type = get_die_type (die, cu);
19577 if (this_type)
19578 return this_type;
19579
673bfd45
DE
19580 return read_type_die_1 (die, cu);
19581}
19582
19583/* Read the type in DIE, CU.
19584 Returns NULL for invalid types. */
19585
19586static struct type *
19587read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19588{
19589 struct type *this_type = NULL;
19590
c906108c
SS
19591 switch (die->tag)
19592 {
19593 case DW_TAG_class_type:
680b30c7 19594 case DW_TAG_interface_type:
c906108c
SS
19595 case DW_TAG_structure_type:
19596 case DW_TAG_union_type:
f792889a 19597 this_type = read_structure_type (die, cu);
c906108c
SS
19598 break;
19599 case DW_TAG_enumeration_type:
f792889a 19600 this_type = read_enumeration_type (die, cu);
c906108c
SS
19601 break;
19602 case DW_TAG_subprogram:
19603 case DW_TAG_subroutine_type:
edb3359d 19604 case DW_TAG_inlined_subroutine:
f792889a 19605 this_type = read_subroutine_type (die, cu);
c906108c
SS
19606 break;
19607 case DW_TAG_array_type:
f792889a 19608 this_type = read_array_type (die, cu);
c906108c 19609 break;
72019c9c 19610 case DW_TAG_set_type:
f792889a 19611 this_type = read_set_type (die, cu);
72019c9c 19612 break;
c906108c 19613 case DW_TAG_pointer_type:
f792889a 19614 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19615 break;
19616 case DW_TAG_ptr_to_member_type:
f792889a 19617 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19618 break;
19619 case DW_TAG_reference_type:
f792889a 19620 this_type = read_tag_reference_type (die, cu);
c906108c
SS
19621 break;
19622 case DW_TAG_const_type:
f792889a 19623 this_type = read_tag_const_type (die, cu);
c906108c
SS
19624 break;
19625 case DW_TAG_volatile_type:
f792889a 19626 this_type = read_tag_volatile_type (die, cu);
c906108c 19627 break;
06d66ee9
TT
19628 case DW_TAG_restrict_type:
19629 this_type = read_tag_restrict_type (die, cu);
19630 break;
c906108c 19631 case DW_TAG_string_type:
f792889a 19632 this_type = read_tag_string_type (die, cu);
c906108c
SS
19633 break;
19634 case DW_TAG_typedef:
f792889a 19635 this_type = read_typedef (die, cu);
c906108c 19636 break;
a02abb62 19637 case DW_TAG_subrange_type:
f792889a 19638 this_type = read_subrange_type (die, cu);
a02abb62 19639 break;
c906108c 19640 case DW_TAG_base_type:
f792889a 19641 this_type = read_base_type (die, cu);
c906108c 19642 break;
81a17f79 19643 case DW_TAG_unspecified_type:
f792889a 19644 this_type = read_unspecified_type (die, cu);
81a17f79 19645 break;
0114d602
DJ
19646 case DW_TAG_namespace:
19647 this_type = read_namespace_type (die, cu);
19648 break;
f55ee35c
JK
19649 case DW_TAG_module:
19650 this_type = read_module_type (die, cu);
19651 break;
a2c2acaf
MW
19652 case DW_TAG_atomic_type:
19653 this_type = read_tag_atomic_type (die, cu);
19654 break;
c906108c 19655 default:
3e43a32a
MS
19656 complaint (&symfile_complaints,
19657 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19658 dwarf_tag_name (die->tag));
c906108c
SS
19659 break;
19660 }
63d06c5c 19661
f792889a 19662 return this_type;
63d06c5c
DC
19663}
19664
abc72ce4
DE
19665/* See if we can figure out if the class lives in a namespace. We do
19666 this by looking for a member function; its demangled name will
19667 contain namespace info, if there is any.
19668 Return the computed name or NULL.
19669 Space for the result is allocated on the objfile's obstack.
19670 This is the full-die version of guess_partial_die_structure_name.
19671 In this case we know DIE has no useful parent. */
19672
19673static char *
19674guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19675{
19676 struct die_info *spec_die;
19677 struct dwarf2_cu *spec_cu;
19678 struct die_info *child;
19679
19680 spec_cu = cu;
19681 spec_die = die_specification (die, &spec_cu);
19682 if (spec_die != NULL)
19683 {
19684 die = spec_die;
19685 cu = spec_cu;
19686 }
19687
19688 for (child = die->child;
19689 child != NULL;
19690 child = child->sibling)
19691 {
19692 if (child->tag == DW_TAG_subprogram)
19693 {
7d45c7c3 19694 const char *linkage_name;
abc72ce4 19695
7d45c7c3
KB
19696 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19697 if (linkage_name == NULL)
19698 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19699 cu);
19700 if (linkage_name != NULL)
abc72ce4
DE
19701 {
19702 char *actual_name
19703 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 19704 linkage_name);
abc72ce4
DE
19705 char *name = NULL;
19706
19707 if (actual_name != NULL)
19708 {
15d034d0 19709 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19710
19711 if (die_name != NULL
19712 && strcmp (die_name, actual_name) != 0)
19713 {
19714 /* Strip off the class name from the full name.
19715 We want the prefix. */
19716 int die_name_len = strlen (die_name);
19717 int actual_name_len = strlen (actual_name);
19718
19719 /* Test for '::' as a sanity check. */
19720 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19721 && actual_name[actual_name_len
19722 - die_name_len - 1] == ':')
224c3ddb
SM
19723 name = (char *) obstack_copy0 (
19724 &cu->objfile->per_bfd->storage_obstack,
19725 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
19726 }
19727 }
19728 xfree (actual_name);
19729 return name;
19730 }
19731 }
19732 }
19733
19734 return NULL;
19735}
19736
96408a79
SA
19737/* GCC might emit a nameless typedef that has a linkage name. Determine the
19738 prefix part in such case. See
19739 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19740
19741static char *
19742anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19743{
19744 struct attribute *attr;
e6a959d6 19745 const char *base;
96408a79
SA
19746
19747 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19748 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19749 return NULL;
19750
7d45c7c3 19751 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
19752 return NULL;
19753
19754 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19755 if (attr == NULL)
19756 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19757 if (attr == NULL || DW_STRING (attr) == NULL)
19758 return NULL;
19759
19760 /* dwarf2_name had to be already called. */
19761 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19762
19763 /* Strip the base name, keep any leading namespaces/classes. */
19764 base = strrchr (DW_STRING (attr), ':');
19765 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19766 return "";
19767
224c3ddb
SM
19768 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19769 DW_STRING (attr),
19770 &base[-1] - DW_STRING (attr));
96408a79
SA
19771}
19772
fdde2d81 19773/* Return the name of the namespace/class that DIE is defined within,
0114d602 19774 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19775
0114d602
DJ
19776 For example, if we're within the method foo() in the following
19777 code:
19778
19779 namespace N {
19780 class C {
19781 void foo () {
19782 }
19783 };
19784 }
19785
19786 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19787
0d5cff50 19788static const char *
e142c38c 19789determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19790{
0114d602
DJ
19791 struct die_info *parent, *spec_die;
19792 struct dwarf2_cu *spec_cu;
19793 struct type *parent_type;
96408a79 19794 char *retval;
63d06c5c 19795
9c37b5ae 19796 if (cu->language != language_cplus
c44af4eb
TT
19797 && cu->language != language_fortran && cu->language != language_d
19798 && cu->language != language_rust)
0114d602
DJ
19799 return "";
19800
96408a79
SA
19801 retval = anonymous_struct_prefix (die, cu);
19802 if (retval)
19803 return retval;
19804
0114d602
DJ
19805 /* We have to be careful in the presence of DW_AT_specification.
19806 For example, with GCC 3.4, given the code
19807
19808 namespace N {
19809 void foo() {
19810 // Definition of N::foo.
19811 }
19812 }
19813
19814 then we'll have a tree of DIEs like this:
19815
19816 1: DW_TAG_compile_unit
19817 2: DW_TAG_namespace // N
19818 3: DW_TAG_subprogram // declaration of N::foo
19819 4: DW_TAG_subprogram // definition of N::foo
19820 DW_AT_specification // refers to die #3
19821
19822 Thus, when processing die #4, we have to pretend that we're in
19823 the context of its DW_AT_specification, namely the contex of die
19824 #3. */
19825 spec_cu = cu;
19826 spec_die = die_specification (die, &spec_cu);
19827 if (spec_die == NULL)
19828 parent = die->parent;
19829 else
63d06c5c 19830 {
0114d602
DJ
19831 parent = spec_die->parent;
19832 cu = spec_cu;
63d06c5c 19833 }
0114d602
DJ
19834
19835 if (parent == NULL)
19836 return "";
98bfdba5
PA
19837 else if (parent->building_fullname)
19838 {
19839 const char *name;
19840 const char *parent_name;
19841
19842 /* It has been seen on RealView 2.2 built binaries,
19843 DW_TAG_template_type_param types actually _defined_ as
19844 children of the parent class:
19845
19846 enum E {};
19847 template class <class Enum> Class{};
19848 Class<enum E> class_e;
19849
19850 1: DW_TAG_class_type (Class)
19851 2: DW_TAG_enumeration_type (E)
19852 3: DW_TAG_enumerator (enum1:0)
19853 3: DW_TAG_enumerator (enum2:1)
19854 ...
19855 2: DW_TAG_template_type_param
19856 DW_AT_type DW_FORM_ref_udata (E)
19857
19858 Besides being broken debug info, it can put GDB into an
19859 infinite loop. Consider:
19860
19861 When we're building the full name for Class<E>, we'll start
19862 at Class, and go look over its template type parameters,
19863 finding E. We'll then try to build the full name of E, and
19864 reach here. We're now trying to build the full name of E,
19865 and look over the parent DIE for containing scope. In the
19866 broken case, if we followed the parent DIE of E, we'd again
19867 find Class, and once again go look at its template type
19868 arguments, etc., etc. Simply don't consider such parent die
19869 as source-level parent of this die (it can't be, the language
19870 doesn't allow it), and break the loop here. */
19871 name = dwarf2_name (die, cu);
19872 parent_name = dwarf2_name (parent, cu);
19873 complaint (&symfile_complaints,
19874 _("template param type '%s' defined within parent '%s'"),
19875 name ? name : "<unknown>",
19876 parent_name ? parent_name : "<unknown>");
19877 return "";
19878 }
63d06c5c 19879 else
0114d602
DJ
19880 switch (parent->tag)
19881 {
63d06c5c 19882 case DW_TAG_namespace:
0114d602 19883 parent_type = read_type_die (parent, cu);
acebe513
UW
19884 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19885 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19886 Work around this problem here. */
19887 if (cu->language == language_cplus
19888 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19889 return "";
0114d602
DJ
19890 /* We give a name to even anonymous namespaces. */
19891 return TYPE_TAG_NAME (parent_type);
63d06c5c 19892 case DW_TAG_class_type:
680b30c7 19893 case DW_TAG_interface_type:
63d06c5c 19894 case DW_TAG_structure_type:
0114d602 19895 case DW_TAG_union_type:
f55ee35c 19896 case DW_TAG_module:
0114d602
DJ
19897 parent_type = read_type_die (parent, cu);
19898 if (TYPE_TAG_NAME (parent_type) != NULL)
19899 return TYPE_TAG_NAME (parent_type);
19900 else
19901 /* An anonymous structure is only allowed non-static data
19902 members; no typedefs, no member functions, et cetera.
19903 So it does not need a prefix. */
19904 return "";
abc72ce4 19905 case DW_TAG_compile_unit:
95554aad 19906 case DW_TAG_partial_unit:
abc72ce4
DE
19907 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19908 if (cu->language == language_cplus
8b70b953 19909 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
19910 && die->child != NULL
19911 && (die->tag == DW_TAG_class_type
19912 || die->tag == DW_TAG_structure_type
19913 || die->tag == DW_TAG_union_type))
19914 {
19915 char *name = guess_full_die_structure_name (die, cu);
19916 if (name != NULL)
19917 return name;
19918 }
19919 return "";
3d567982
TT
19920 case DW_TAG_enumeration_type:
19921 parent_type = read_type_die (parent, cu);
19922 if (TYPE_DECLARED_CLASS (parent_type))
19923 {
19924 if (TYPE_TAG_NAME (parent_type) != NULL)
19925 return TYPE_TAG_NAME (parent_type);
19926 return "";
19927 }
19928 /* Fall through. */
63d06c5c 19929 default:
8176b9b8 19930 return determine_prefix (parent, cu);
63d06c5c 19931 }
63d06c5c
DC
19932}
19933
3e43a32a
MS
19934/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19935 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19936 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19937 an obconcat, otherwise allocate storage for the result. The CU argument is
19938 used to determine the language and hence, the appropriate separator. */
987504bb 19939
f55ee35c 19940#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
19941
19942static char *
f55ee35c
JK
19943typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19944 int physname, struct dwarf2_cu *cu)
63d06c5c 19945{
f55ee35c 19946 const char *lead = "";
5c315b68 19947 const char *sep;
63d06c5c 19948
3e43a32a
MS
19949 if (suffix == NULL || suffix[0] == '\0'
19950 || prefix == NULL || prefix[0] == '\0')
987504bb 19951 sep = "";
45280282
IB
19952 else if (cu->language == language_d)
19953 {
19954 /* For D, the 'main' function could be defined in any module, but it
19955 should never be prefixed. */
19956 if (strcmp (suffix, "D main") == 0)
19957 {
19958 prefix = "";
19959 sep = "";
19960 }
19961 else
19962 sep = ".";
19963 }
f55ee35c
JK
19964 else if (cu->language == language_fortran && physname)
19965 {
19966 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19967 DW_AT_MIPS_linkage_name is preferred and used instead. */
19968
19969 lead = "__";
19970 sep = "_MOD_";
19971 }
987504bb
JJ
19972 else
19973 sep = "::";
63d06c5c 19974
6dd47d34
DE
19975 if (prefix == NULL)
19976 prefix = "";
19977 if (suffix == NULL)
19978 suffix = "";
19979
987504bb
JJ
19980 if (obs == NULL)
19981 {
3e43a32a 19982 char *retval
224c3ddb
SM
19983 = ((char *)
19984 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 19985
f55ee35c
JK
19986 strcpy (retval, lead);
19987 strcat (retval, prefix);
6dd47d34
DE
19988 strcat (retval, sep);
19989 strcat (retval, suffix);
63d06c5c
DC
19990 return retval;
19991 }
987504bb
JJ
19992 else
19993 {
19994 /* We have an obstack. */
f55ee35c 19995 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 19996 }
63d06c5c
DC
19997}
19998
c906108c
SS
19999/* Return sibling of die, NULL if no sibling. */
20000
f9aca02d 20001static struct die_info *
fba45db2 20002sibling_die (struct die_info *die)
c906108c 20003{
639d11d3 20004 return die->sibling;
c906108c
SS
20005}
20006
71c25dea
TT
20007/* Get name of a die, return NULL if not found. */
20008
15d034d0
TT
20009static const char *
20010dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
20011 struct obstack *obstack)
20012{
20013 if (name && cu->language == language_cplus)
20014 {
2f408ecb 20015 std::string canon_name = cp_canonicalize_string (name);
71c25dea 20016
2f408ecb 20017 if (!canon_name.empty ())
71c25dea 20018 {
2f408ecb
PA
20019 if (canon_name != name)
20020 name = (const char *) obstack_copy0 (obstack,
20021 canon_name.c_str (),
20022 canon_name.length ());
71c25dea
TT
20023 }
20024 }
20025
20026 return name;
c906108c
SS
20027}
20028
96553a0c
DE
20029/* Get name of a die, return NULL if not found.
20030 Anonymous namespaces are converted to their magic string. */
9219021c 20031
15d034d0 20032static const char *
e142c38c 20033dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
20034{
20035 struct attribute *attr;
20036
e142c38c 20037 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 20038 if ((!attr || !DW_STRING (attr))
96553a0c 20039 && die->tag != DW_TAG_namespace
53832f31
TT
20040 && die->tag != DW_TAG_class_type
20041 && die->tag != DW_TAG_interface_type
20042 && die->tag != DW_TAG_structure_type
20043 && die->tag != DW_TAG_union_type)
71c25dea
TT
20044 return NULL;
20045
20046 switch (die->tag)
20047 {
20048 case DW_TAG_compile_unit:
95554aad 20049 case DW_TAG_partial_unit:
71c25dea
TT
20050 /* Compilation units have a DW_AT_name that is a filename, not
20051 a source language identifier. */
20052 case DW_TAG_enumeration_type:
20053 case DW_TAG_enumerator:
20054 /* These tags always have simple identifiers already; no need
20055 to canonicalize them. */
20056 return DW_STRING (attr);
907af001 20057
96553a0c
DE
20058 case DW_TAG_namespace:
20059 if (attr != NULL && DW_STRING (attr) != NULL)
20060 return DW_STRING (attr);
20061 return CP_ANONYMOUS_NAMESPACE_STR;
20062
907af001
UW
20063 case DW_TAG_class_type:
20064 case DW_TAG_interface_type:
20065 case DW_TAG_structure_type:
20066 case DW_TAG_union_type:
20067 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20068 structures or unions. These were of the form "._%d" in GCC 4.1,
20069 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20070 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 20071 if (attr && DW_STRING (attr)
61012eef
GB
20072 && (startswith (DW_STRING (attr), "._")
20073 || startswith (DW_STRING (attr), "<anonymous")))
907af001 20074 return NULL;
53832f31
TT
20075
20076 /* GCC might emit a nameless typedef that has a linkage name. See
20077 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20078 if (!attr || DW_STRING (attr) == NULL)
20079 {
df5c6c50 20080 char *demangled = NULL;
53832f31
TT
20081
20082 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
20083 if (attr == NULL)
20084 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
20085
20086 if (attr == NULL || DW_STRING (attr) == NULL)
20087 return NULL;
20088
df5c6c50
JK
20089 /* Avoid demangling DW_STRING (attr) the second time on a second
20090 call for the same DIE. */
20091 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 20092 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
20093
20094 if (demangled)
20095 {
e6a959d6 20096 const char *base;
96408a79 20097
53832f31 20098 /* FIXME: we already did this for the partial symbol... */
34a68019 20099 DW_STRING (attr)
224c3ddb
SM
20100 = ((const char *)
20101 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20102 demangled, strlen (demangled)));
53832f31
TT
20103 DW_STRING_IS_CANONICAL (attr) = 1;
20104 xfree (demangled);
96408a79
SA
20105
20106 /* Strip any leading namespaces/classes, keep only the base name.
20107 DW_AT_name for named DIEs does not contain the prefixes. */
20108 base = strrchr (DW_STRING (attr), ':');
20109 if (base && base > DW_STRING (attr) && base[-1] == ':')
20110 return &base[1];
20111 else
20112 return DW_STRING (attr);
53832f31
TT
20113 }
20114 }
907af001
UW
20115 break;
20116
71c25dea 20117 default:
907af001
UW
20118 break;
20119 }
20120
20121 if (!DW_STRING_IS_CANONICAL (attr))
20122 {
20123 DW_STRING (attr)
20124 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 20125 &cu->objfile->per_bfd->storage_obstack);
907af001 20126 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 20127 }
907af001 20128 return DW_STRING (attr);
9219021c
DC
20129}
20130
20131/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
20132 is none. *EXT_CU is the CU containing DIE on input, and the CU
20133 containing the return value on output. */
9219021c
DC
20134
20135static struct die_info *
f2f0e013 20136dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
20137{
20138 struct attribute *attr;
9219021c 20139
f2f0e013 20140 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
20141 if (attr == NULL)
20142 return NULL;
20143
f2f0e013 20144 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
20145}
20146
c906108c
SS
20147/* Convert a DIE tag into its string name. */
20148
f39c6ffd 20149static const char *
aa1ee363 20150dwarf_tag_name (unsigned tag)
c906108c 20151{
f39c6ffd
TT
20152 const char *name = get_DW_TAG_name (tag);
20153
20154 if (name == NULL)
20155 return "DW_TAG_<unknown>";
20156
20157 return name;
c906108c
SS
20158}
20159
20160/* Convert a DWARF attribute code into its string name. */
20161
f39c6ffd 20162static const char *
aa1ee363 20163dwarf_attr_name (unsigned attr)
c906108c 20164{
f39c6ffd
TT
20165 const char *name;
20166
c764a876 20167#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
20168 if (attr == DW_AT_MIPS_fde)
20169 return "DW_AT_MIPS_fde";
20170#else
20171 if (attr == DW_AT_HP_block_index)
20172 return "DW_AT_HP_block_index";
c764a876 20173#endif
f39c6ffd
TT
20174
20175 name = get_DW_AT_name (attr);
20176
20177 if (name == NULL)
20178 return "DW_AT_<unknown>";
20179
20180 return name;
c906108c
SS
20181}
20182
20183/* Convert a DWARF value form code into its string name. */
20184
f39c6ffd 20185static const char *
aa1ee363 20186dwarf_form_name (unsigned form)
c906108c 20187{
f39c6ffd
TT
20188 const char *name = get_DW_FORM_name (form);
20189
20190 if (name == NULL)
20191 return "DW_FORM_<unknown>";
20192
20193 return name;
c906108c
SS
20194}
20195
20196static char *
fba45db2 20197dwarf_bool_name (unsigned mybool)
c906108c
SS
20198{
20199 if (mybool)
20200 return "TRUE";
20201 else
20202 return "FALSE";
20203}
20204
20205/* Convert a DWARF type code into its string name. */
20206
f39c6ffd 20207static const char *
aa1ee363 20208dwarf_type_encoding_name (unsigned enc)
c906108c 20209{
f39c6ffd 20210 const char *name = get_DW_ATE_name (enc);
c906108c 20211
f39c6ffd
TT
20212 if (name == NULL)
20213 return "DW_ATE_<unknown>";
c906108c 20214
f39c6ffd 20215 return name;
c906108c 20216}
c906108c 20217
f9aca02d 20218static void
d97bc12b 20219dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
20220{
20221 unsigned int i;
20222
d97bc12b
DE
20223 print_spaces (indent, f);
20224 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 20225 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
20226
20227 if (die->parent != NULL)
20228 {
20229 print_spaces (indent, f);
20230 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 20231 die->parent->offset.sect_off);
d97bc12b
DE
20232 }
20233
20234 print_spaces (indent, f);
20235 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 20236 dwarf_bool_name (die->child != NULL));
c906108c 20237
d97bc12b
DE
20238 print_spaces (indent, f);
20239 fprintf_unfiltered (f, " attributes:\n");
20240
c906108c
SS
20241 for (i = 0; i < die->num_attrs; ++i)
20242 {
d97bc12b
DE
20243 print_spaces (indent, f);
20244 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
20245 dwarf_attr_name (die->attrs[i].name),
20246 dwarf_form_name (die->attrs[i].form));
d97bc12b 20247
c906108c
SS
20248 switch (die->attrs[i].form)
20249 {
c906108c 20250 case DW_FORM_addr:
3019eac3 20251 case DW_FORM_GNU_addr_index:
d97bc12b 20252 fprintf_unfiltered (f, "address: ");
5af949e3 20253 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
20254 break;
20255 case DW_FORM_block2:
20256 case DW_FORM_block4:
20257 case DW_FORM_block:
20258 case DW_FORM_block1:
56eb65bd
SP
20259 fprintf_unfiltered (f, "block: size %s",
20260 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 20261 break;
2dc7f7b3 20262 case DW_FORM_exprloc:
56eb65bd
SP
20263 fprintf_unfiltered (f, "expression: size %s",
20264 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 20265 break;
0224619f
JK
20266 case DW_FORM_data16:
20267 fprintf_unfiltered (f, "constant of 16 bytes");
20268 break;
4568ecf9
DE
20269 case DW_FORM_ref_addr:
20270 fprintf_unfiltered (f, "ref address: ");
20271 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20272 break;
36586728
TT
20273 case DW_FORM_GNU_ref_alt:
20274 fprintf_unfiltered (f, "alt ref address: ");
20275 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20276 break;
10b3939b
DJ
20277 case DW_FORM_ref1:
20278 case DW_FORM_ref2:
20279 case DW_FORM_ref4:
4568ecf9
DE
20280 case DW_FORM_ref8:
20281 case DW_FORM_ref_udata:
d97bc12b 20282 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 20283 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 20284 break;
c906108c
SS
20285 case DW_FORM_data1:
20286 case DW_FORM_data2:
20287 case DW_FORM_data4:
ce5d95e1 20288 case DW_FORM_data8:
c906108c
SS
20289 case DW_FORM_udata:
20290 case DW_FORM_sdata:
43bbcdc2
PH
20291 fprintf_unfiltered (f, "constant: %s",
20292 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 20293 break;
2dc7f7b3
TT
20294 case DW_FORM_sec_offset:
20295 fprintf_unfiltered (f, "section offset: %s",
20296 pulongest (DW_UNSND (&die->attrs[i])));
20297 break;
55f1336d 20298 case DW_FORM_ref_sig8:
ac9ec31b
DE
20299 fprintf_unfiltered (f, "signature: %s",
20300 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 20301 break;
c906108c 20302 case DW_FORM_string:
4bdf3d34 20303 case DW_FORM_strp:
43988095 20304 case DW_FORM_line_strp:
3019eac3 20305 case DW_FORM_GNU_str_index:
36586728 20306 case DW_FORM_GNU_strp_alt:
8285870a 20307 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 20308 DW_STRING (&die->attrs[i])
8285870a
JK
20309 ? DW_STRING (&die->attrs[i]) : "",
20310 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
20311 break;
20312 case DW_FORM_flag:
20313 if (DW_UNSND (&die->attrs[i]))
d97bc12b 20314 fprintf_unfiltered (f, "flag: TRUE");
c906108c 20315 else
d97bc12b 20316 fprintf_unfiltered (f, "flag: FALSE");
c906108c 20317 break;
2dc7f7b3
TT
20318 case DW_FORM_flag_present:
20319 fprintf_unfiltered (f, "flag: TRUE");
20320 break;
a8329558 20321 case DW_FORM_indirect:
0963b4bd
MS
20322 /* The reader will have reduced the indirect form to
20323 the "base form" so this form should not occur. */
3e43a32a
MS
20324 fprintf_unfiltered (f,
20325 "unexpected attribute form: DW_FORM_indirect");
a8329558 20326 break;
c906108c 20327 default:
d97bc12b 20328 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 20329 die->attrs[i].form);
d97bc12b 20330 break;
c906108c 20331 }
d97bc12b 20332 fprintf_unfiltered (f, "\n");
c906108c
SS
20333 }
20334}
20335
f9aca02d 20336static void
d97bc12b 20337dump_die_for_error (struct die_info *die)
c906108c 20338{
d97bc12b
DE
20339 dump_die_shallow (gdb_stderr, 0, die);
20340}
20341
20342static void
20343dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20344{
20345 int indent = level * 4;
20346
20347 gdb_assert (die != NULL);
20348
20349 if (level >= max_level)
20350 return;
20351
20352 dump_die_shallow (f, indent, die);
20353
20354 if (die->child != NULL)
c906108c 20355 {
d97bc12b
DE
20356 print_spaces (indent, f);
20357 fprintf_unfiltered (f, " Children:");
20358 if (level + 1 < max_level)
20359 {
20360 fprintf_unfiltered (f, "\n");
20361 dump_die_1 (f, level + 1, max_level, die->child);
20362 }
20363 else
20364 {
3e43a32a
MS
20365 fprintf_unfiltered (f,
20366 " [not printed, max nesting level reached]\n");
d97bc12b
DE
20367 }
20368 }
20369
20370 if (die->sibling != NULL && level > 0)
20371 {
20372 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
20373 }
20374}
20375
d97bc12b
DE
20376/* This is called from the pdie macro in gdbinit.in.
20377 It's not static so gcc will keep a copy callable from gdb. */
20378
20379void
20380dump_die (struct die_info *die, int max_level)
20381{
20382 dump_die_1 (gdb_stdlog, 0, max_level, die);
20383}
20384
f9aca02d 20385static void
51545339 20386store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 20387{
51545339 20388 void **slot;
c906108c 20389
b64f50a1
JK
20390 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
20391 INSERT);
51545339
DJ
20392
20393 *slot = die;
c906108c
SS
20394}
20395
b64f50a1
JK
20396/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20397 required kind. */
20398
20399static sect_offset
ff39bb5e 20400dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 20401{
4568ecf9 20402 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 20403
7771576e 20404 if (attr_form_is_ref (attr))
b64f50a1 20405 return retval;
93311388 20406
b64f50a1 20407 retval.sect_off = 0;
93311388
DE
20408 complaint (&symfile_complaints,
20409 _("unsupported die ref attribute form: '%s'"),
20410 dwarf_form_name (attr->form));
b64f50a1 20411 return retval;
c906108c
SS
20412}
20413
43bbcdc2
PH
20414/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20415 * the value held by the attribute is not constant. */
a02abb62 20416
43bbcdc2 20417static LONGEST
ff39bb5e 20418dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
20419{
20420 if (attr->form == DW_FORM_sdata)
20421 return DW_SND (attr);
20422 else if (attr->form == DW_FORM_udata
20423 || attr->form == DW_FORM_data1
20424 || attr->form == DW_FORM_data2
20425 || attr->form == DW_FORM_data4
20426 || attr->form == DW_FORM_data8)
20427 return DW_UNSND (attr);
20428 else
20429 {
0224619f 20430 /* For DW_FORM_data16 see attr_form_is_constant. */
3e43a32a
MS
20431 complaint (&symfile_complaints,
20432 _("Attribute value is not a constant (%s)"),
a02abb62
JB
20433 dwarf_form_name (attr->form));
20434 return default_value;
20435 }
20436}
20437
348e048f
DE
20438/* Follow reference or signature attribute ATTR of SRC_DIE.
20439 On entry *REF_CU is the CU of SRC_DIE.
20440 On exit *REF_CU is the CU of the result. */
20441
20442static struct die_info *
ff39bb5e 20443follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
20444 struct dwarf2_cu **ref_cu)
20445{
20446 struct die_info *die;
20447
7771576e 20448 if (attr_form_is_ref (attr))
348e048f 20449 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 20450 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
20451 die = follow_die_sig (src_die, attr, ref_cu);
20452 else
20453 {
20454 dump_die_for_error (src_die);
20455 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 20456 objfile_name ((*ref_cu)->objfile));
348e048f
DE
20457 }
20458
20459 return die;
03dd20cc
DJ
20460}
20461
5c631832 20462/* Follow reference OFFSET.
673bfd45
DE
20463 On entry *REF_CU is the CU of the source die referencing OFFSET.
20464 On exit *REF_CU is the CU of the result.
20465 Returns NULL if OFFSET is invalid. */
f504f079 20466
f9aca02d 20467static struct die_info *
36586728
TT
20468follow_die_offset (sect_offset offset, int offset_in_dwz,
20469 struct dwarf2_cu **ref_cu)
c906108c 20470{
10b3939b 20471 struct die_info temp_die;
f2f0e013 20472 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 20473
348e048f
DE
20474 gdb_assert (cu->per_cu != NULL);
20475
98bfdba5
PA
20476 target_cu = cu;
20477
3019eac3 20478 if (cu->per_cu->is_debug_types)
348e048f
DE
20479 {
20480 /* .debug_types CUs cannot reference anything outside their CU.
20481 If they need to, they have to reference a signatured type via
55f1336d 20482 DW_FORM_ref_sig8. */
348e048f 20483 if (! offset_in_cu_p (&cu->header, offset))
5c631832 20484 return NULL;
348e048f 20485 }
36586728
TT
20486 else if (offset_in_dwz != cu->per_cu->is_dwz
20487 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
20488 {
20489 struct dwarf2_per_cu_data *per_cu;
9a619af0 20490
36586728
TT
20491 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20492 cu->objfile);
03dd20cc
DJ
20493
20494 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
20495 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20496 load_full_comp_unit (per_cu, cu->language);
03dd20cc 20497
10b3939b
DJ
20498 target_cu = per_cu->cu;
20499 }
98bfdba5
PA
20500 else if (cu->dies == NULL)
20501 {
20502 /* We're loading full DIEs during partial symbol reading. */
20503 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 20504 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 20505 }
c906108c 20506
f2f0e013 20507 *ref_cu = target_cu;
51545339 20508 temp_die.offset = offset;
9a3c8263
SM
20509 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20510 &temp_die, offset.sect_off);
5c631832 20511}
10b3939b 20512
5c631832
JK
20513/* Follow reference attribute ATTR of SRC_DIE.
20514 On entry *REF_CU is the CU of SRC_DIE.
20515 On exit *REF_CU is the CU of the result. */
20516
20517static struct die_info *
ff39bb5e 20518follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20519 struct dwarf2_cu **ref_cu)
20520{
b64f50a1 20521 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20522 struct dwarf2_cu *cu = *ref_cu;
20523 struct die_info *die;
20524
36586728
TT
20525 die = follow_die_offset (offset,
20526 (attr->form == DW_FORM_GNU_ref_alt
20527 || cu->per_cu->is_dwz),
20528 ref_cu);
5c631832
JK
20529 if (!die)
20530 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20531 "at 0x%x [in module %s]"),
4262abfb
JK
20532 offset.sect_off, src_die->offset.sect_off,
20533 objfile_name (cu->objfile));
348e048f 20534
5c631832
JK
20535 return die;
20536}
20537
d83e736b
JK
20538/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20539 Returned value is intended for DW_OP_call*. Returned
20540 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20541
20542struct dwarf2_locexpr_baton
8b9737bf
TT
20543dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20544 struct dwarf2_per_cu_data *per_cu,
20545 CORE_ADDR (*get_frame_pc) (void *baton),
20546 void *baton)
5c631832 20547{
918dd910 20548 struct dwarf2_cu *cu;
5c631832
JK
20549 struct die_info *die;
20550 struct attribute *attr;
20551 struct dwarf2_locexpr_baton retval;
20552
8cf6f0b1
TT
20553 dw2_setup (per_cu->objfile);
20554
918dd910
JK
20555 if (per_cu->cu == NULL)
20556 load_cu (per_cu);
20557 cu = per_cu->cu;
cc12ce38
DE
20558 if (cu == NULL)
20559 {
20560 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20561 Instead just throw an error, not much else we can do. */
20562 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20563 offset.sect_off, objfile_name (per_cu->objfile));
20564 }
918dd910 20565
36586728 20566 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
20567 if (!die)
20568 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20569 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20570
20571 attr = dwarf2_attr (die, DW_AT_location, cu);
20572 if (!attr)
20573 {
e103e986
JK
20574 /* DWARF: "If there is no such attribute, then there is no effect.".
20575 DATA is ignored if SIZE is 0. */
5c631832 20576
e103e986 20577 retval.data = NULL;
5c631832
JK
20578 retval.size = 0;
20579 }
8cf6f0b1
TT
20580 else if (attr_form_is_section_offset (attr))
20581 {
20582 struct dwarf2_loclist_baton loclist_baton;
20583 CORE_ADDR pc = (*get_frame_pc) (baton);
20584 size_t size;
20585
20586 fill_in_loclist_baton (cu, &loclist_baton, attr);
20587
20588 retval.data = dwarf2_find_location_expression (&loclist_baton,
20589 &size, pc);
20590 retval.size = size;
20591 }
5c631832
JK
20592 else
20593 {
20594 if (!attr_form_is_block (attr))
20595 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20596 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 20597 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20598
20599 retval.data = DW_BLOCK (attr)->data;
20600 retval.size = DW_BLOCK (attr)->size;
20601 }
20602 retval.per_cu = cu->per_cu;
918dd910 20603
918dd910
JK
20604 age_cached_comp_units ();
20605
5c631832 20606 return retval;
348e048f
DE
20607}
20608
8b9737bf
TT
20609/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20610 offset. */
20611
20612struct dwarf2_locexpr_baton
20613dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20614 struct dwarf2_per_cu_data *per_cu,
20615 CORE_ADDR (*get_frame_pc) (void *baton),
20616 void *baton)
20617{
20618 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20619
20620 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20621}
20622
b6807d98
TT
20623/* Write a constant of a given type as target-ordered bytes into
20624 OBSTACK. */
20625
20626static const gdb_byte *
20627write_constant_as_bytes (struct obstack *obstack,
20628 enum bfd_endian byte_order,
20629 struct type *type,
20630 ULONGEST value,
20631 LONGEST *len)
20632{
20633 gdb_byte *result;
20634
20635 *len = TYPE_LENGTH (type);
224c3ddb 20636 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20637 store_unsigned_integer (result, *len, byte_order, value);
20638
20639 return result;
20640}
20641
20642/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20643 pointer to the constant bytes and set LEN to the length of the
20644 data. If memory is needed, allocate it on OBSTACK. If the DIE
20645 does not have a DW_AT_const_value, return NULL. */
20646
20647const gdb_byte *
20648dwarf2_fetch_constant_bytes (sect_offset offset,
20649 struct dwarf2_per_cu_data *per_cu,
20650 struct obstack *obstack,
20651 LONGEST *len)
20652{
20653 struct dwarf2_cu *cu;
20654 struct die_info *die;
20655 struct attribute *attr;
20656 const gdb_byte *result = NULL;
20657 struct type *type;
20658 LONGEST value;
20659 enum bfd_endian byte_order;
20660
20661 dw2_setup (per_cu->objfile);
20662
20663 if (per_cu->cu == NULL)
20664 load_cu (per_cu);
20665 cu = per_cu->cu;
cc12ce38
DE
20666 if (cu == NULL)
20667 {
20668 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20669 Instead just throw an error, not much else we can do. */
20670 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20671 offset.sect_off, objfile_name (per_cu->objfile));
20672 }
b6807d98
TT
20673
20674 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20675 if (!die)
20676 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20677 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
20678
20679
20680 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20681 if (attr == NULL)
20682 return NULL;
20683
20684 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20685 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20686
20687 switch (attr->form)
20688 {
20689 case DW_FORM_addr:
20690 case DW_FORM_GNU_addr_index:
20691 {
20692 gdb_byte *tem;
20693
20694 *len = cu->header.addr_size;
224c3ddb 20695 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20696 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20697 result = tem;
20698 }
20699 break;
20700 case DW_FORM_string:
20701 case DW_FORM_strp:
20702 case DW_FORM_GNU_str_index:
20703 case DW_FORM_GNU_strp_alt:
20704 /* DW_STRING is already allocated on the objfile obstack, point
20705 directly to it. */
20706 result = (const gdb_byte *) DW_STRING (attr);
20707 *len = strlen (DW_STRING (attr));
20708 break;
20709 case DW_FORM_block1:
20710 case DW_FORM_block2:
20711 case DW_FORM_block4:
20712 case DW_FORM_block:
20713 case DW_FORM_exprloc:
0224619f 20714 case DW_FORM_data16:
b6807d98
TT
20715 result = DW_BLOCK (attr)->data;
20716 *len = DW_BLOCK (attr)->size;
20717 break;
20718
20719 /* The DW_AT_const_value attributes are supposed to carry the
20720 symbol's value "represented as it would be on the target
20721 architecture." By the time we get here, it's already been
20722 converted to host endianness, so we just need to sign- or
20723 zero-extend it as appropriate. */
20724 case DW_FORM_data1:
20725 type = die_type (die, cu);
20726 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20727 if (result == NULL)
20728 result = write_constant_as_bytes (obstack, byte_order,
20729 type, value, len);
20730 break;
20731 case DW_FORM_data2:
20732 type = die_type (die, cu);
20733 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20734 if (result == NULL)
20735 result = write_constant_as_bytes (obstack, byte_order,
20736 type, value, len);
20737 break;
20738 case DW_FORM_data4:
20739 type = die_type (die, cu);
20740 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20741 if (result == NULL)
20742 result = write_constant_as_bytes (obstack, byte_order,
20743 type, value, len);
20744 break;
20745 case DW_FORM_data8:
20746 type = die_type (die, cu);
20747 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20748 if (result == NULL)
20749 result = write_constant_as_bytes (obstack, byte_order,
20750 type, value, len);
20751 break;
20752
20753 case DW_FORM_sdata:
20754 type = die_type (die, cu);
20755 result = write_constant_as_bytes (obstack, byte_order,
20756 type, DW_SND (attr), len);
20757 break;
20758
20759 case DW_FORM_udata:
20760 type = die_type (die, cu);
20761 result = write_constant_as_bytes (obstack, byte_order,
20762 type, DW_UNSND (attr), len);
20763 break;
20764
20765 default:
20766 complaint (&symfile_complaints,
20767 _("unsupported const value attribute form: '%s'"),
20768 dwarf_form_name (attr->form));
20769 break;
20770 }
20771
20772 return result;
20773}
20774
8a9b8146
TT
20775/* Return the type of the DIE at DIE_OFFSET in the CU named by
20776 PER_CU. */
20777
20778struct type *
b64f50a1 20779dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20780 struct dwarf2_per_cu_data *per_cu)
20781{
b64f50a1
JK
20782 sect_offset die_offset_sect;
20783
8a9b8146 20784 dw2_setup (per_cu->objfile);
b64f50a1
JK
20785
20786 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20787 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
20788}
20789
ac9ec31b 20790/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 20791 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
20792 On exit *REF_CU is the CU of the result.
20793 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
20794
20795static struct die_info *
ac9ec31b
DE
20796follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20797 struct dwarf2_cu **ref_cu)
348e048f 20798{
348e048f 20799 struct die_info temp_die;
348e048f
DE
20800 struct dwarf2_cu *sig_cu;
20801 struct die_info *die;
20802
ac9ec31b
DE
20803 /* While it might be nice to assert sig_type->type == NULL here,
20804 we can get here for DW_AT_imported_declaration where we need
20805 the DIE not the type. */
348e048f
DE
20806
20807 /* If necessary, add it to the queue and load its DIEs. */
20808
95554aad 20809 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 20810 read_signatured_type (sig_type);
348e048f 20811
348e048f 20812 sig_cu = sig_type->per_cu.cu;
69d751e3 20813 gdb_assert (sig_cu != NULL);
3019eac3
DE
20814 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20815 temp_die.offset = sig_type->type_offset_in_section;
9a3c8263
SM
20816 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20817 temp_die.offset.sect_off);
348e048f
DE
20818 if (die)
20819 {
796a7ff8
DE
20820 /* For .gdb_index version 7 keep track of included TUs.
20821 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20822 if (dwarf2_per_objfile->index_table != NULL
20823 && dwarf2_per_objfile->index_table->version <= 7)
20824 {
20825 VEC_safe_push (dwarf2_per_cu_ptr,
20826 (*ref_cu)->per_cu->imported_symtabs,
20827 sig_cu->per_cu);
20828 }
20829
348e048f
DE
20830 *ref_cu = sig_cu;
20831 return die;
20832 }
20833
ac9ec31b
DE
20834 return NULL;
20835}
20836
20837/* Follow signatured type referenced by ATTR in SRC_DIE.
20838 On entry *REF_CU is the CU of SRC_DIE.
20839 On exit *REF_CU is the CU of the result.
20840 The result is the DIE of the type.
20841 If the referenced type cannot be found an error is thrown. */
20842
20843static struct die_info *
ff39bb5e 20844follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
20845 struct dwarf2_cu **ref_cu)
20846{
20847 ULONGEST signature = DW_SIGNATURE (attr);
20848 struct signatured_type *sig_type;
20849 struct die_info *die;
20850
20851 gdb_assert (attr->form == DW_FORM_ref_sig8);
20852
a2ce51a0 20853 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
20854 /* sig_type will be NULL if the signatured type is missing from
20855 the debug info. */
20856 if (sig_type == NULL)
20857 {
20858 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20859 " from DIE at 0x%x [in module %s]"),
20860 hex_string (signature), src_die->offset.sect_off,
4262abfb 20861 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20862 }
20863
20864 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20865 if (die == NULL)
20866 {
20867 dump_die_for_error (src_die);
20868 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20869 " from DIE at 0x%x [in module %s]"),
20870 hex_string (signature), src_die->offset.sect_off,
4262abfb 20871 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20872 }
20873
20874 return die;
20875}
20876
20877/* Get the type specified by SIGNATURE referenced in DIE/CU,
20878 reading in and processing the type unit if necessary. */
20879
20880static struct type *
20881get_signatured_type (struct die_info *die, ULONGEST signature,
20882 struct dwarf2_cu *cu)
20883{
20884 struct signatured_type *sig_type;
20885 struct dwarf2_cu *type_cu;
20886 struct die_info *type_die;
20887 struct type *type;
20888
a2ce51a0 20889 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
20890 /* sig_type will be NULL if the signatured type is missing from
20891 the debug info. */
20892 if (sig_type == NULL)
20893 {
20894 complaint (&symfile_complaints,
20895 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20896 " from DIE at 0x%x [in module %s]"),
20897 hex_string (signature), die->offset.sect_off,
4262abfb 20898 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20899 return build_error_marker_type (cu, die);
20900 }
20901
20902 /* If we already know the type we're done. */
20903 if (sig_type->type != NULL)
20904 return sig_type->type;
20905
20906 type_cu = cu;
20907 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20908 if (type_die != NULL)
20909 {
20910 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20911 is created. This is important, for example, because for c++ classes
20912 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20913 type = read_type_die (type_die, type_cu);
20914 if (type == NULL)
20915 {
20916 complaint (&symfile_complaints,
20917 _("Dwarf Error: Cannot build signatured type %s"
20918 " referenced from DIE at 0x%x [in module %s]"),
20919 hex_string (signature), die->offset.sect_off,
4262abfb 20920 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20921 type = build_error_marker_type (cu, die);
20922 }
20923 }
20924 else
20925 {
20926 complaint (&symfile_complaints,
20927 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20928 " from DIE at 0x%x [in module %s]"),
20929 hex_string (signature), die->offset.sect_off,
4262abfb 20930 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20931 type = build_error_marker_type (cu, die);
20932 }
20933 sig_type->type = type;
20934
20935 return type;
20936}
20937
20938/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20939 reading in and processing the type unit if necessary. */
20940
20941static struct type *
ff39bb5e 20942get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 20943 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
20944{
20945 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 20946 if (attr_form_is_ref (attr))
ac9ec31b
DE
20947 {
20948 struct dwarf2_cu *type_cu = cu;
20949 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20950
20951 return read_type_die (type_die, type_cu);
20952 }
20953 else if (attr->form == DW_FORM_ref_sig8)
20954 {
20955 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20956 }
20957 else
20958 {
20959 complaint (&symfile_complaints,
20960 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20961 " at 0x%x [in module %s]"),
20962 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 20963 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20964 return build_error_marker_type (cu, die);
20965 }
348e048f
DE
20966}
20967
e5fe5e75 20968/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
20969
20970static void
e5fe5e75 20971load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 20972{
52dc124a 20973 struct signatured_type *sig_type;
348e048f 20974
f4dc4d17
DE
20975 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20976 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20977
6721b2ec
DE
20978 /* We have the per_cu, but we need the signatured_type.
20979 Fortunately this is an easy translation. */
20980 gdb_assert (per_cu->is_debug_types);
20981 sig_type = (struct signatured_type *) per_cu;
348e048f 20982
6721b2ec 20983 gdb_assert (per_cu->cu == NULL);
348e048f 20984
52dc124a 20985 read_signatured_type (sig_type);
348e048f 20986
6721b2ec 20987 gdb_assert (per_cu->cu != NULL);
348e048f
DE
20988}
20989
dee91e82
DE
20990/* die_reader_func for read_signatured_type.
20991 This is identical to load_full_comp_unit_reader,
20992 but is kept separate for now. */
348e048f
DE
20993
20994static void
dee91e82 20995read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 20996 const gdb_byte *info_ptr,
dee91e82
DE
20997 struct die_info *comp_unit_die,
20998 int has_children,
20999 void *data)
348e048f 21000{
dee91e82 21001 struct dwarf2_cu *cu = reader->cu;
348e048f 21002
dee91e82
DE
21003 gdb_assert (cu->die_hash == NULL);
21004 cu->die_hash =
21005 htab_create_alloc_ex (cu->header.length / 12,
21006 die_hash,
21007 die_eq,
21008 NULL,
21009 &cu->comp_unit_obstack,
21010 hashtab_obstack_allocate,
21011 dummy_obstack_deallocate);
348e048f 21012
dee91e82
DE
21013 if (has_children)
21014 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21015 &info_ptr, comp_unit_die);
21016 cu->dies = comp_unit_die;
21017 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
21018
21019 /* We try not to read any attributes in this function, because not
9cdd5dbd 21020 all CUs needed for references have been loaded yet, and symbol
348e048f 21021 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
21022 or we won't be able to build types correctly.
21023 Similarly, if we do not read the producer, we can not apply
21024 producer-specific interpretation. */
95554aad 21025 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 21026}
348e048f 21027
3019eac3
DE
21028/* Read in a signatured type and build its CU and DIEs.
21029 If the type is a stub for the real type in a DWO file,
21030 read in the real type from the DWO file as well. */
dee91e82
DE
21031
21032static void
21033read_signatured_type (struct signatured_type *sig_type)
21034{
21035 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 21036
3019eac3 21037 gdb_assert (per_cu->is_debug_types);
dee91e82 21038 gdb_assert (per_cu->cu == NULL);
348e048f 21039
f4dc4d17
DE
21040 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21041 read_signatured_type_reader, NULL);
7ee85ab1 21042 sig_type->per_cu.tu_read = 1;
c906108c
SS
21043}
21044
c906108c
SS
21045/* Decode simple location descriptions.
21046 Given a pointer to a dwarf block that defines a location, compute
21047 the location and return the value.
21048
4cecd739
DJ
21049 NOTE drow/2003-11-18: This function is called in two situations
21050 now: for the address of static or global variables (partial symbols
21051 only) and for offsets into structures which are expected to be
21052 (more or less) constant. The partial symbol case should go away,
21053 and only the constant case should remain. That will let this
21054 function complain more accurately. A few special modes are allowed
21055 without complaint for global variables (for instance, global
21056 register values and thread-local values).
c906108c
SS
21057
21058 A location description containing no operations indicates that the
4cecd739 21059 object is optimized out. The return value is 0 for that case.
6b992462
DJ
21060 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21061 callers will only want a very basic result and this can become a
21ae7a4d
JK
21062 complaint.
21063
21064 Note that stack[0] is unused except as a default error return. */
c906108c
SS
21065
21066static CORE_ADDR
e7c27a73 21067decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 21068{
e7c27a73 21069 struct objfile *objfile = cu->objfile;
56eb65bd
SP
21070 size_t i;
21071 size_t size = blk->size;
d521ce57 21072 const gdb_byte *data = blk->data;
21ae7a4d
JK
21073 CORE_ADDR stack[64];
21074 int stacki;
21075 unsigned int bytes_read, unsnd;
21076 gdb_byte op;
c906108c 21077
21ae7a4d
JK
21078 i = 0;
21079 stacki = 0;
21080 stack[stacki] = 0;
21081 stack[++stacki] = 0;
21082
21083 while (i < size)
21084 {
21085 op = data[i++];
21086 switch (op)
21087 {
21088 case DW_OP_lit0:
21089 case DW_OP_lit1:
21090 case DW_OP_lit2:
21091 case DW_OP_lit3:
21092 case DW_OP_lit4:
21093 case DW_OP_lit5:
21094 case DW_OP_lit6:
21095 case DW_OP_lit7:
21096 case DW_OP_lit8:
21097 case DW_OP_lit9:
21098 case DW_OP_lit10:
21099 case DW_OP_lit11:
21100 case DW_OP_lit12:
21101 case DW_OP_lit13:
21102 case DW_OP_lit14:
21103 case DW_OP_lit15:
21104 case DW_OP_lit16:
21105 case DW_OP_lit17:
21106 case DW_OP_lit18:
21107 case DW_OP_lit19:
21108 case DW_OP_lit20:
21109 case DW_OP_lit21:
21110 case DW_OP_lit22:
21111 case DW_OP_lit23:
21112 case DW_OP_lit24:
21113 case DW_OP_lit25:
21114 case DW_OP_lit26:
21115 case DW_OP_lit27:
21116 case DW_OP_lit28:
21117 case DW_OP_lit29:
21118 case DW_OP_lit30:
21119 case DW_OP_lit31:
21120 stack[++stacki] = op - DW_OP_lit0;
21121 break;
f1bea926 21122
21ae7a4d
JK
21123 case DW_OP_reg0:
21124 case DW_OP_reg1:
21125 case DW_OP_reg2:
21126 case DW_OP_reg3:
21127 case DW_OP_reg4:
21128 case DW_OP_reg5:
21129 case DW_OP_reg6:
21130 case DW_OP_reg7:
21131 case DW_OP_reg8:
21132 case DW_OP_reg9:
21133 case DW_OP_reg10:
21134 case DW_OP_reg11:
21135 case DW_OP_reg12:
21136 case DW_OP_reg13:
21137 case DW_OP_reg14:
21138 case DW_OP_reg15:
21139 case DW_OP_reg16:
21140 case DW_OP_reg17:
21141 case DW_OP_reg18:
21142 case DW_OP_reg19:
21143 case DW_OP_reg20:
21144 case DW_OP_reg21:
21145 case DW_OP_reg22:
21146 case DW_OP_reg23:
21147 case DW_OP_reg24:
21148 case DW_OP_reg25:
21149 case DW_OP_reg26:
21150 case DW_OP_reg27:
21151 case DW_OP_reg28:
21152 case DW_OP_reg29:
21153 case DW_OP_reg30:
21154 case DW_OP_reg31:
21155 stack[++stacki] = op - DW_OP_reg0;
21156 if (i < size)
21157 dwarf2_complex_location_expr_complaint ();
21158 break;
c906108c 21159
21ae7a4d
JK
21160 case DW_OP_regx:
21161 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21162 i += bytes_read;
21163 stack[++stacki] = unsnd;
21164 if (i < size)
21165 dwarf2_complex_location_expr_complaint ();
21166 break;
c906108c 21167
21ae7a4d
JK
21168 case DW_OP_addr:
21169 stack[++stacki] = read_address (objfile->obfd, &data[i],
21170 cu, &bytes_read);
21171 i += bytes_read;
21172 break;
d53d4ac5 21173
21ae7a4d
JK
21174 case DW_OP_const1u:
21175 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21176 i += 1;
21177 break;
21178
21179 case DW_OP_const1s:
21180 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21181 i += 1;
21182 break;
21183
21184 case DW_OP_const2u:
21185 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21186 i += 2;
21187 break;
21188
21189 case DW_OP_const2s:
21190 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21191 i += 2;
21192 break;
d53d4ac5 21193
21ae7a4d
JK
21194 case DW_OP_const4u:
21195 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21196 i += 4;
21197 break;
21198
21199 case DW_OP_const4s:
21200 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21201 i += 4;
21202 break;
21203
585861ea
JK
21204 case DW_OP_const8u:
21205 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21206 i += 8;
21207 break;
21208
21ae7a4d
JK
21209 case DW_OP_constu:
21210 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21211 &bytes_read);
21212 i += bytes_read;
21213 break;
21214
21215 case DW_OP_consts:
21216 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21217 i += bytes_read;
21218 break;
21219
21220 case DW_OP_dup:
21221 stack[stacki + 1] = stack[stacki];
21222 stacki++;
21223 break;
21224
21225 case DW_OP_plus:
21226 stack[stacki - 1] += stack[stacki];
21227 stacki--;
21228 break;
21229
21230 case DW_OP_plus_uconst:
21231 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21232 &bytes_read);
21233 i += bytes_read;
21234 break;
21235
21236 case DW_OP_minus:
21237 stack[stacki - 1] -= stack[stacki];
21238 stacki--;
21239 break;
21240
21241 case DW_OP_deref:
21242 /* If we're not the last op, then we definitely can't encode
21243 this using GDB's address_class enum. This is valid for partial
21244 global symbols, although the variable's address will be bogus
21245 in the psymtab. */
21246 if (i < size)
21247 dwarf2_complex_location_expr_complaint ();
21248 break;
21249
21250 case DW_OP_GNU_push_tls_address:
4aa4e28b 21251 case DW_OP_form_tls_address:
21ae7a4d
JK
21252 /* The top of the stack has the offset from the beginning
21253 of the thread control block at which the variable is located. */
21254 /* Nothing should follow this operator, so the top of stack would
21255 be returned. */
21256 /* This is valid for partial global symbols, but the variable's
585861ea
JK
21257 address will be bogus in the psymtab. Make it always at least
21258 non-zero to not look as a variable garbage collected by linker
21259 which have DW_OP_addr 0. */
21ae7a4d
JK
21260 if (i < size)
21261 dwarf2_complex_location_expr_complaint ();
585861ea 21262 stack[stacki]++;
21ae7a4d
JK
21263 break;
21264
21265 case DW_OP_GNU_uninit:
21266 break;
21267
3019eac3 21268 case DW_OP_GNU_addr_index:
49f6c839 21269 case DW_OP_GNU_const_index:
3019eac3
DE
21270 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21271 &bytes_read);
21272 i += bytes_read;
21273 break;
21274
21ae7a4d
JK
21275 default:
21276 {
f39c6ffd 21277 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
21278
21279 if (name)
21280 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21281 name);
21282 else
21283 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21284 op);
21285 }
21286
21287 return (stack[stacki]);
d53d4ac5 21288 }
3c6e0cb3 21289
21ae7a4d
JK
21290 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21291 outside of the allocated space. Also enforce minimum>0. */
21292 if (stacki >= ARRAY_SIZE (stack) - 1)
21293 {
21294 complaint (&symfile_complaints,
21295 _("location description stack overflow"));
21296 return 0;
21297 }
21298
21299 if (stacki <= 0)
21300 {
21301 complaint (&symfile_complaints,
21302 _("location description stack underflow"));
21303 return 0;
21304 }
21305 }
21306 return (stack[stacki]);
c906108c
SS
21307}
21308
21309/* memory allocation interface */
21310
c906108c 21311static struct dwarf_block *
7b5a2f43 21312dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 21313{
8d749320 21314 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
21315}
21316
c906108c 21317static struct die_info *
b60c80d6 21318dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
21319{
21320 struct die_info *die;
b60c80d6
DJ
21321 size_t size = sizeof (struct die_info);
21322
21323 if (num_attrs > 1)
21324 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 21325
b60c80d6 21326 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
21327 memset (die, 0, sizeof (struct die_info));
21328 return (die);
21329}
2e276125
JB
21330
21331\f
21332/* Macro support. */
21333
233d95b5
JK
21334/* Return file name relative to the compilation directory of file number I in
21335 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 21336 responsible for freeing it. */
233d95b5 21337
2e276125 21338static char *
233d95b5 21339file_file_name (int file, struct line_header *lh)
2e276125 21340{
6a83a1e6
EZ
21341 /* Is the file number a valid index into the line header's file name
21342 table? Remember that file numbers start with one, not zero. */
21343 if (1 <= file && file <= lh->num_file_names)
21344 {
21345 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 21346
afa6c9ab
SL
21347 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
21348 || lh->include_dirs == NULL)
6a83a1e6 21349 return xstrdup (fe->name);
233d95b5 21350 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
b36cec19 21351 fe->name, (char *) NULL);
6a83a1e6 21352 }
2e276125
JB
21353 else
21354 {
6a83a1e6
EZ
21355 /* The compiler produced a bogus file number. We can at least
21356 record the macro definitions made in the file, even if we
21357 won't be able to find the file by name. */
21358 char fake_name[80];
9a619af0 21359
8c042590
PM
21360 xsnprintf (fake_name, sizeof (fake_name),
21361 "<bad macro file number %d>", file);
2e276125 21362
6e70227d 21363 complaint (&symfile_complaints,
6a83a1e6
EZ
21364 _("bad file number in macro information (%d)"),
21365 file);
2e276125 21366
6a83a1e6 21367 return xstrdup (fake_name);
2e276125
JB
21368 }
21369}
21370
233d95b5
JK
21371/* Return the full name of file number I in *LH's file name table.
21372 Use COMP_DIR as the name of the current directory of the
21373 compilation. The result is allocated using xmalloc; the caller is
21374 responsible for freeing it. */
21375static char *
21376file_full_name (int file, struct line_header *lh, const char *comp_dir)
21377{
21378 /* Is the file number a valid index into the line header's file name
21379 table? Remember that file numbers start with one, not zero. */
21380 if (1 <= file && file <= lh->num_file_names)
21381 {
21382 char *relative = file_file_name (file, lh);
21383
21384 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21385 return relative;
b36cec19
PA
21386 return reconcat (relative, comp_dir, SLASH_STRING,
21387 relative, (char *) NULL);
233d95b5
JK
21388 }
21389 else
21390 return file_file_name (file, lh);
21391}
21392
2e276125
JB
21393
21394static struct macro_source_file *
21395macro_start_file (int file, int line,
21396 struct macro_source_file *current_file,
43f3e411 21397 struct line_header *lh)
2e276125 21398{
233d95b5
JK
21399 /* File name relative to the compilation directory of this source file. */
21400 char *file_name = file_file_name (file, lh);
2e276125 21401
2e276125 21402 if (! current_file)
abc9d0dc 21403 {
fc474241
DE
21404 /* Note: We don't create a macro table for this compilation unit
21405 at all until we actually get a filename. */
43f3e411 21406 struct macro_table *macro_table = get_macro_table ();
fc474241 21407
abc9d0dc
TT
21408 /* If we have no current file, then this must be the start_file
21409 directive for the compilation unit's main source file. */
fc474241
DE
21410 current_file = macro_set_main (macro_table, file_name);
21411 macro_define_special (macro_table);
abc9d0dc 21412 }
2e276125 21413 else
233d95b5 21414 current_file = macro_include (current_file, line, file_name);
2e276125 21415
233d95b5 21416 xfree (file_name);
6e70227d 21417
2e276125
JB
21418 return current_file;
21419}
21420
21421
21422/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
21423 followed by a null byte. */
21424static char *
21425copy_string (const char *buf, int len)
21426{
224c3ddb 21427 char *s = (char *) xmalloc (len + 1);
9a619af0 21428
2e276125
JB
21429 memcpy (s, buf, len);
21430 s[len] = '\0';
2e276125
JB
21431 return s;
21432}
21433
21434
21435static const char *
21436consume_improper_spaces (const char *p, const char *body)
21437{
21438 if (*p == ' ')
21439 {
4d3c2250 21440 complaint (&symfile_complaints,
3e43a32a
MS
21441 _("macro definition contains spaces "
21442 "in formal argument list:\n`%s'"),
4d3c2250 21443 body);
2e276125
JB
21444
21445 while (*p == ' ')
21446 p++;
21447 }
21448
21449 return p;
21450}
21451
21452
21453static void
21454parse_macro_definition (struct macro_source_file *file, int line,
21455 const char *body)
21456{
21457 const char *p;
21458
21459 /* The body string takes one of two forms. For object-like macro
21460 definitions, it should be:
21461
21462 <macro name> " " <definition>
21463
21464 For function-like macro definitions, it should be:
21465
21466 <macro name> "() " <definition>
21467 or
21468 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21469
21470 Spaces may appear only where explicitly indicated, and in the
21471 <definition>.
21472
21473 The Dwarf 2 spec says that an object-like macro's name is always
21474 followed by a space, but versions of GCC around March 2002 omit
6e70227d 21475 the space when the macro's definition is the empty string.
2e276125
JB
21476
21477 The Dwarf 2 spec says that there should be no spaces between the
21478 formal arguments in a function-like macro's formal argument list,
21479 but versions of GCC around March 2002 include spaces after the
21480 commas. */
21481
21482
21483 /* Find the extent of the macro name. The macro name is terminated
21484 by either a space or null character (for an object-like macro) or
21485 an opening paren (for a function-like macro). */
21486 for (p = body; *p; p++)
21487 if (*p == ' ' || *p == '(')
21488 break;
21489
21490 if (*p == ' ' || *p == '\0')
21491 {
21492 /* It's an object-like macro. */
21493 int name_len = p - body;
21494 char *name = copy_string (body, name_len);
21495 const char *replacement;
21496
21497 if (*p == ' ')
21498 replacement = body + name_len + 1;
21499 else
21500 {
4d3c2250 21501 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21502 replacement = body + name_len;
21503 }
6e70227d 21504
2e276125
JB
21505 macro_define_object (file, line, name, replacement);
21506
21507 xfree (name);
21508 }
21509 else if (*p == '(')
21510 {
21511 /* It's a function-like macro. */
21512 char *name = copy_string (body, p - body);
21513 int argc = 0;
21514 int argv_size = 1;
8d749320 21515 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
21516
21517 p++;
21518
21519 p = consume_improper_spaces (p, body);
21520
21521 /* Parse the formal argument list. */
21522 while (*p && *p != ')')
21523 {
21524 /* Find the extent of the current argument name. */
21525 const char *arg_start = p;
21526
21527 while (*p && *p != ',' && *p != ')' && *p != ' ')
21528 p++;
21529
21530 if (! *p || p == arg_start)
4d3c2250 21531 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21532 else
21533 {
21534 /* Make sure argv has room for the new argument. */
21535 if (argc >= argv_size)
21536 {
21537 argv_size *= 2;
224c3ddb 21538 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
21539 }
21540
21541 argv[argc++] = copy_string (arg_start, p - arg_start);
21542 }
21543
21544 p = consume_improper_spaces (p, body);
21545
21546 /* Consume the comma, if present. */
21547 if (*p == ',')
21548 {
21549 p++;
21550
21551 p = consume_improper_spaces (p, body);
21552 }
21553 }
21554
21555 if (*p == ')')
21556 {
21557 p++;
21558
21559 if (*p == ' ')
21560 /* Perfectly formed definition, no complaints. */
21561 macro_define_function (file, line, name,
6e70227d 21562 argc, (const char **) argv,
2e276125
JB
21563 p + 1);
21564 else if (*p == '\0')
21565 {
21566 /* Complain, but do define it. */
4d3c2250 21567 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21568 macro_define_function (file, line, name,
6e70227d 21569 argc, (const char **) argv,
2e276125
JB
21570 p);
21571 }
21572 else
21573 /* Just complain. */
4d3c2250 21574 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21575 }
21576 else
21577 /* Just complain. */
4d3c2250 21578 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21579
21580 xfree (name);
21581 {
21582 int i;
21583
21584 for (i = 0; i < argc; i++)
21585 xfree (argv[i]);
21586 }
21587 xfree (argv);
21588 }
21589 else
4d3c2250 21590 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21591}
21592
cf2c3c16
TT
21593/* Skip some bytes from BYTES according to the form given in FORM.
21594 Returns the new pointer. */
2e276125 21595
d521ce57
TT
21596static const gdb_byte *
21597skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21598 enum dwarf_form form,
21599 unsigned int offset_size,
21600 struct dwarf2_section_info *section)
2e276125 21601{
cf2c3c16 21602 unsigned int bytes_read;
2e276125 21603
cf2c3c16 21604 switch (form)
2e276125 21605 {
cf2c3c16
TT
21606 case DW_FORM_data1:
21607 case DW_FORM_flag:
21608 ++bytes;
21609 break;
21610
21611 case DW_FORM_data2:
21612 bytes += 2;
21613 break;
21614
21615 case DW_FORM_data4:
21616 bytes += 4;
21617 break;
21618
21619 case DW_FORM_data8:
21620 bytes += 8;
21621 break;
21622
0224619f
JK
21623 case DW_FORM_data16:
21624 bytes += 16;
21625 break;
21626
cf2c3c16
TT
21627 case DW_FORM_string:
21628 read_direct_string (abfd, bytes, &bytes_read);
21629 bytes += bytes_read;
21630 break;
21631
21632 case DW_FORM_sec_offset:
21633 case DW_FORM_strp:
36586728 21634 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21635 bytes += offset_size;
21636 break;
21637
21638 case DW_FORM_block:
21639 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21640 bytes += bytes_read;
21641 break;
21642
21643 case DW_FORM_block1:
21644 bytes += 1 + read_1_byte (abfd, bytes);
21645 break;
21646 case DW_FORM_block2:
21647 bytes += 2 + read_2_bytes (abfd, bytes);
21648 break;
21649 case DW_FORM_block4:
21650 bytes += 4 + read_4_bytes (abfd, bytes);
21651 break;
21652
21653 case DW_FORM_sdata:
21654 case DW_FORM_udata:
3019eac3
DE
21655 case DW_FORM_GNU_addr_index:
21656 case DW_FORM_GNU_str_index:
d521ce57 21657 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21658 if (bytes == NULL)
21659 {
21660 dwarf2_section_buffer_overflow_complaint (section);
21661 return NULL;
21662 }
cf2c3c16
TT
21663 break;
21664
21665 default:
21666 {
21667 complain:
21668 complaint (&symfile_complaints,
21669 _("invalid form 0x%x in `%s'"),
a32a8923 21670 form, get_section_name (section));
cf2c3c16
TT
21671 return NULL;
21672 }
2e276125
JB
21673 }
21674
cf2c3c16
TT
21675 return bytes;
21676}
757a13d0 21677
cf2c3c16
TT
21678/* A helper for dwarf_decode_macros that handles skipping an unknown
21679 opcode. Returns an updated pointer to the macro data buffer; or,
21680 on error, issues a complaint and returns NULL. */
757a13d0 21681
d521ce57 21682static const gdb_byte *
cf2c3c16 21683skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21684 const gdb_byte **opcode_definitions,
21685 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21686 bfd *abfd,
21687 unsigned int offset_size,
21688 struct dwarf2_section_info *section)
21689{
21690 unsigned int bytes_read, i;
21691 unsigned long arg;
d521ce57 21692 const gdb_byte *defn;
2e276125 21693
cf2c3c16 21694 if (opcode_definitions[opcode] == NULL)
2e276125 21695 {
cf2c3c16
TT
21696 complaint (&symfile_complaints,
21697 _("unrecognized DW_MACFINO opcode 0x%x"),
21698 opcode);
21699 return NULL;
21700 }
2e276125 21701
cf2c3c16
TT
21702 defn = opcode_definitions[opcode];
21703 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21704 defn += bytes_read;
2e276125 21705
cf2c3c16
TT
21706 for (i = 0; i < arg; ++i)
21707 {
aead7601
SM
21708 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21709 (enum dwarf_form) defn[i], offset_size,
f664829e 21710 section);
cf2c3c16
TT
21711 if (mac_ptr == NULL)
21712 {
21713 /* skip_form_bytes already issued the complaint. */
21714 return NULL;
21715 }
21716 }
757a13d0 21717
cf2c3c16
TT
21718 return mac_ptr;
21719}
757a13d0 21720
cf2c3c16
TT
21721/* A helper function which parses the header of a macro section.
21722 If the macro section is the extended (for now called "GNU") type,
21723 then this updates *OFFSET_SIZE. Returns a pointer to just after
21724 the header, or issues a complaint and returns NULL on error. */
757a13d0 21725
d521ce57
TT
21726static const gdb_byte *
21727dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21728 bfd *abfd,
d521ce57 21729 const gdb_byte *mac_ptr,
cf2c3c16
TT
21730 unsigned int *offset_size,
21731 int section_is_gnu)
21732{
21733 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21734
cf2c3c16
TT
21735 if (section_is_gnu)
21736 {
21737 unsigned int version, flags;
757a13d0 21738
cf2c3c16 21739 version = read_2_bytes (abfd, mac_ptr);
0af92d60 21740 if (version != 4 && version != 5)
cf2c3c16
TT
21741 {
21742 complaint (&symfile_complaints,
21743 _("unrecognized version `%d' in .debug_macro section"),
21744 version);
21745 return NULL;
21746 }
21747 mac_ptr += 2;
757a13d0 21748
cf2c3c16
TT
21749 flags = read_1_byte (abfd, mac_ptr);
21750 ++mac_ptr;
21751 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21752
cf2c3c16
TT
21753 if ((flags & 2) != 0)
21754 /* We don't need the line table offset. */
21755 mac_ptr += *offset_size;
757a13d0 21756
cf2c3c16
TT
21757 /* Vendor opcode descriptions. */
21758 if ((flags & 4) != 0)
21759 {
21760 unsigned int i, count;
757a13d0 21761
cf2c3c16
TT
21762 count = read_1_byte (abfd, mac_ptr);
21763 ++mac_ptr;
21764 for (i = 0; i < count; ++i)
21765 {
21766 unsigned int opcode, bytes_read;
21767 unsigned long arg;
21768
21769 opcode = read_1_byte (abfd, mac_ptr);
21770 ++mac_ptr;
21771 opcode_definitions[opcode] = mac_ptr;
21772 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21773 mac_ptr += bytes_read;
21774 mac_ptr += arg;
21775 }
757a13d0 21776 }
cf2c3c16 21777 }
757a13d0 21778
cf2c3c16
TT
21779 return mac_ptr;
21780}
757a13d0 21781
cf2c3c16 21782/* A helper for dwarf_decode_macros that handles the GNU extensions,
0af92d60 21783 including DW_MACRO_import. */
cf2c3c16
TT
21784
21785static void
d521ce57
TT
21786dwarf_decode_macro_bytes (bfd *abfd,
21787 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21788 struct macro_source_file *current_file,
43f3e411 21789 struct line_header *lh,
cf2c3c16 21790 struct dwarf2_section_info *section,
36586728 21791 int section_is_gnu, int section_is_dwz,
cf2c3c16 21792 unsigned int offset_size,
8fc3fc34 21793 htab_t include_hash)
cf2c3c16 21794{
4d663531 21795 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
21796 enum dwarf_macro_record_type macinfo_type;
21797 int at_commandline;
d521ce57 21798 const gdb_byte *opcode_definitions[256];
757a13d0 21799
cf2c3c16
TT
21800 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21801 &offset_size, section_is_gnu);
21802 if (mac_ptr == NULL)
21803 {
21804 /* We already issued a complaint. */
21805 return;
21806 }
757a13d0
JK
21807
21808 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21809 GDB is still reading the definitions from command line. First
21810 DW_MACINFO_start_file will need to be ignored as it was already executed
21811 to create CURRENT_FILE for the main source holding also the command line
21812 definitions. On first met DW_MACINFO_start_file this flag is reset to
21813 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21814
21815 at_commandline = 1;
21816
21817 do
21818 {
21819 /* Do we at least have room for a macinfo type byte? */
21820 if (mac_ptr >= mac_end)
21821 {
f664829e 21822 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
21823 break;
21824 }
21825
aead7601 21826 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
21827 mac_ptr++;
21828
cf2c3c16
TT
21829 /* Note that we rely on the fact that the corresponding GNU and
21830 DWARF constants are the same. */
757a13d0
JK
21831 switch (macinfo_type)
21832 {
21833 /* A zero macinfo type indicates the end of the macro
21834 information. */
21835 case 0:
21836 break;
2e276125 21837
0af92d60
JK
21838 case DW_MACRO_define:
21839 case DW_MACRO_undef:
21840 case DW_MACRO_define_strp:
21841 case DW_MACRO_undef_strp:
21842 case DW_MACRO_define_sup:
21843 case DW_MACRO_undef_sup:
2e276125 21844 {
891d2f0b 21845 unsigned int bytes_read;
2e276125 21846 int line;
d521ce57 21847 const char *body;
cf2c3c16 21848 int is_define;
2e276125 21849
cf2c3c16
TT
21850 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21851 mac_ptr += bytes_read;
21852
0af92d60
JK
21853 if (macinfo_type == DW_MACRO_define
21854 || macinfo_type == DW_MACRO_undef)
cf2c3c16
TT
21855 {
21856 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21857 mac_ptr += bytes_read;
21858 }
21859 else
21860 {
21861 LONGEST str_offset;
21862
21863 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21864 mac_ptr += offset_size;
2e276125 21865
0af92d60
JK
21866 if (macinfo_type == DW_MACRO_define_sup
21867 || macinfo_type == DW_MACRO_undef_sup
f7a35f02 21868 || section_is_dwz)
36586728
TT
21869 {
21870 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21871
21872 body = read_indirect_string_from_dwz (dwz, str_offset);
21873 }
21874 else
21875 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
21876 }
21877
0af92d60
JK
21878 is_define = (macinfo_type == DW_MACRO_define
21879 || macinfo_type == DW_MACRO_define_strp
21880 || macinfo_type == DW_MACRO_define_sup);
2e276125 21881 if (! current_file)
757a13d0
JK
21882 {
21883 /* DWARF violation as no main source is present. */
21884 complaint (&symfile_complaints,
21885 _("debug info with no main source gives macro %s "
21886 "on line %d: %s"),
cf2c3c16
TT
21887 is_define ? _("definition") : _("undefinition"),
21888 line, body);
757a13d0
JK
21889 break;
21890 }
3e43a32a
MS
21891 if ((line == 0 && !at_commandline)
21892 || (line != 0 && at_commandline))
4d3c2250 21893 complaint (&symfile_complaints,
757a13d0
JK
21894 _("debug info gives %s macro %s with %s line %d: %s"),
21895 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 21896 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
21897 line == 0 ? _("zero") : _("non-zero"), line, body);
21898
cf2c3c16 21899 if (is_define)
757a13d0 21900 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
21901 else
21902 {
0af92d60
JK
21903 gdb_assert (macinfo_type == DW_MACRO_undef
21904 || macinfo_type == DW_MACRO_undef_strp
21905 || macinfo_type == DW_MACRO_undef_sup);
cf2c3c16
TT
21906 macro_undef (current_file, line, body);
21907 }
2e276125
JB
21908 }
21909 break;
21910
0af92d60 21911 case DW_MACRO_start_file:
2e276125 21912 {
891d2f0b 21913 unsigned int bytes_read;
2e276125
JB
21914 int line, file;
21915
21916 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21917 mac_ptr += bytes_read;
21918 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21919 mac_ptr += bytes_read;
21920
3e43a32a
MS
21921 if ((line == 0 && !at_commandline)
21922 || (line != 0 && at_commandline))
757a13d0
JK
21923 complaint (&symfile_complaints,
21924 _("debug info gives source %d included "
21925 "from %s at %s line %d"),
21926 file, at_commandline ? _("command-line") : _("file"),
21927 line == 0 ? _("zero") : _("non-zero"), line);
21928
21929 if (at_commandline)
21930 {
0af92d60 21931 /* This DW_MACRO_start_file was executed in the
cf2c3c16 21932 pass one. */
757a13d0
JK
21933 at_commandline = 0;
21934 }
21935 else
43f3e411 21936 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
21937 }
21938 break;
21939
0af92d60 21940 case DW_MACRO_end_file:
2e276125 21941 if (! current_file)
4d3c2250 21942 complaint (&symfile_complaints,
3e43a32a
MS
21943 _("macro debug info has an unmatched "
21944 "`close_file' directive"));
2e276125
JB
21945 else
21946 {
21947 current_file = current_file->included_by;
21948 if (! current_file)
21949 {
cf2c3c16 21950 enum dwarf_macro_record_type next_type;
2e276125
JB
21951
21952 /* GCC circa March 2002 doesn't produce the zero
21953 type byte marking the end of the compilation
21954 unit. Complain if it's not there, but exit no
21955 matter what. */
21956
21957 /* Do we at least have room for a macinfo type byte? */
21958 if (mac_ptr >= mac_end)
21959 {
f664829e 21960 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
21961 return;
21962 }
21963
21964 /* We don't increment mac_ptr here, so this is just
21965 a look-ahead. */
aead7601
SM
21966 next_type
21967 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21968 mac_ptr);
2e276125 21969 if (next_type != 0)
4d3c2250 21970 complaint (&symfile_complaints,
3e43a32a
MS
21971 _("no terminating 0-type entry for "
21972 "macros in `.debug_macinfo' section"));
2e276125
JB
21973
21974 return;
21975 }
21976 }
21977 break;
21978
0af92d60
JK
21979 case DW_MACRO_import:
21980 case DW_MACRO_import_sup:
cf2c3c16
TT
21981 {
21982 LONGEST offset;
8fc3fc34 21983 void **slot;
a036ba48
TT
21984 bfd *include_bfd = abfd;
21985 struct dwarf2_section_info *include_section = section;
d521ce57 21986 const gdb_byte *include_mac_end = mac_end;
a036ba48 21987 int is_dwz = section_is_dwz;
d521ce57 21988 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
21989
21990 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21991 mac_ptr += offset_size;
21992
0af92d60 21993 if (macinfo_type == DW_MACRO_import_sup)
a036ba48
TT
21994 {
21995 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21996
4d663531 21997 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 21998
a036ba48 21999 include_section = &dwz->macro;
a32a8923 22000 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
22001 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22002 is_dwz = 1;
22003 }
22004
22005 new_mac_ptr = include_section->buffer + offset;
22006 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22007
8fc3fc34
TT
22008 if (*slot != NULL)
22009 {
22010 /* This has actually happened; see
22011 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22012 complaint (&symfile_complaints,
0af92d60 22013 _("recursive DW_MACRO_import in "
8fc3fc34
TT
22014 ".debug_macro section"));
22015 }
22016 else
22017 {
d521ce57 22018 *slot = (void *) new_mac_ptr;
36586728 22019
a036ba48 22020 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 22021 include_mac_end, current_file, lh,
36586728 22022 section, section_is_gnu, is_dwz,
4d663531 22023 offset_size, include_hash);
8fc3fc34 22024
d521ce57 22025 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 22026 }
cf2c3c16
TT
22027 }
22028 break;
22029
2e276125 22030 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
22031 if (!section_is_gnu)
22032 {
22033 unsigned int bytes_read;
2e276125 22034
ac298888
TT
22035 /* This reads the constant, but since we don't recognize
22036 any vendor extensions, we ignore it. */
22037 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
cf2c3c16
TT
22038 mac_ptr += bytes_read;
22039 read_direct_string (abfd, mac_ptr, &bytes_read);
22040 mac_ptr += bytes_read;
2e276125 22041
cf2c3c16
TT
22042 /* We don't recognize any vendor extensions. */
22043 break;
22044 }
22045 /* FALLTHROUGH */
22046
22047 default:
22048 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 22049 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
22050 section);
22051 if (mac_ptr == NULL)
22052 return;
22053 break;
2e276125 22054 }
757a13d0 22055 } while (macinfo_type != 0);
2e276125 22056}
8e19ed76 22057
cf2c3c16 22058static void
09262596 22059dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 22060 int section_is_gnu)
cf2c3c16 22061{
bb5ed363 22062 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
22063 struct line_header *lh = cu->line_header;
22064 bfd *abfd;
d521ce57 22065 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
22066 struct macro_source_file *current_file = 0;
22067 enum dwarf_macro_record_type macinfo_type;
22068 unsigned int offset_size = cu->header.offset_size;
d521ce57 22069 const gdb_byte *opcode_definitions[256];
8fc3fc34 22070 struct cleanup *cleanup;
8fc3fc34 22071 void **slot;
09262596
DE
22072 struct dwarf2_section_info *section;
22073 const char *section_name;
22074
22075 if (cu->dwo_unit != NULL)
22076 {
22077 if (section_is_gnu)
22078 {
22079 section = &cu->dwo_unit->dwo_file->sections.macro;
22080 section_name = ".debug_macro.dwo";
22081 }
22082 else
22083 {
22084 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22085 section_name = ".debug_macinfo.dwo";
22086 }
22087 }
22088 else
22089 {
22090 if (section_is_gnu)
22091 {
22092 section = &dwarf2_per_objfile->macro;
22093 section_name = ".debug_macro";
22094 }
22095 else
22096 {
22097 section = &dwarf2_per_objfile->macinfo;
22098 section_name = ".debug_macinfo";
22099 }
22100 }
cf2c3c16 22101
bb5ed363 22102 dwarf2_read_section (objfile, section);
cf2c3c16
TT
22103 if (section->buffer == NULL)
22104 {
fceca515 22105 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
22106 return;
22107 }
a32a8923 22108 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
22109
22110 /* First pass: Find the name of the base filename.
22111 This filename is needed in order to process all macros whose definition
22112 (or undefinition) comes from the command line. These macros are defined
22113 before the first DW_MACINFO_start_file entry, and yet still need to be
22114 associated to the base file.
22115
22116 To determine the base file name, we scan the macro definitions until we
22117 reach the first DW_MACINFO_start_file entry. We then initialize
22118 CURRENT_FILE accordingly so that any macro definition found before the
22119 first DW_MACINFO_start_file can still be associated to the base file. */
22120
22121 mac_ptr = section->buffer + offset;
22122 mac_end = section->buffer + section->size;
22123
22124 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22125 &offset_size, section_is_gnu);
22126 if (mac_ptr == NULL)
22127 {
22128 /* We already issued a complaint. */
22129 return;
22130 }
22131
22132 do
22133 {
22134 /* Do we at least have room for a macinfo type byte? */
22135 if (mac_ptr >= mac_end)
22136 {
22137 /* Complaint is printed during the second pass as GDB will probably
22138 stop the first pass earlier upon finding
22139 DW_MACINFO_start_file. */
22140 break;
22141 }
22142
aead7601 22143 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
22144 mac_ptr++;
22145
22146 /* Note that we rely on the fact that the corresponding GNU and
22147 DWARF constants are the same. */
22148 switch (macinfo_type)
22149 {
22150 /* A zero macinfo type indicates the end of the macro
22151 information. */
22152 case 0:
22153 break;
22154
0af92d60
JK
22155 case DW_MACRO_define:
22156 case DW_MACRO_undef:
cf2c3c16
TT
22157 /* Only skip the data by MAC_PTR. */
22158 {
22159 unsigned int bytes_read;
22160
22161 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22162 mac_ptr += bytes_read;
22163 read_direct_string (abfd, mac_ptr, &bytes_read);
22164 mac_ptr += bytes_read;
22165 }
22166 break;
22167
0af92d60 22168 case DW_MACRO_start_file:
cf2c3c16
TT
22169 {
22170 unsigned int bytes_read;
22171 int line, file;
22172
22173 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22174 mac_ptr += bytes_read;
22175 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22176 mac_ptr += bytes_read;
22177
43f3e411 22178 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
22179 }
22180 break;
22181
0af92d60 22182 case DW_MACRO_end_file:
cf2c3c16
TT
22183 /* No data to skip by MAC_PTR. */
22184 break;
22185
0af92d60
JK
22186 case DW_MACRO_define_strp:
22187 case DW_MACRO_undef_strp:
22188 case DW_MACRO_define_sup:
22189 case DW_MACRO_undef_sup:
cf2c3c16
TT
22190 {
22191 unsigned int bytes_read;
22192
22193 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22194 mac_ptr += bytes_read;
22195 mac_ptr += offset_size;
22196 }
22197 break;
22198
0af92d60
JK
22199 case DW_MACRO_import:
22200 case DW_MACRO_import_sup:
cf2c3c16 22201 /* Note that, according to the spec, a transparent include
0af92d60 22202 chain cannot call DW_MACRO_start_file. So, we can just
cf2c3c16
TT
22203 skip this opcode. */
22204 mac_ptr += offset_size;
22205 break;
22206
22207 case DW_MACINFO_vendor_ext:
22208 /* Only skip the data by MAC_PTR. */
22209 if (!section_is_gnu)
22210 {
22211 unsigned int bytes_read;
22212
22213 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22214 mac_ptr += bytes_read;
22215 read_direct_string (abfd, mac_ptr, &bytes_read);
22216 mac_ptr += bytes_read;
22217 }
22218 /* FALLTHROUGH */
22219
22220 default:
22221 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 22222 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
22223 section);
22224 if (mac_ptr == NULL)
22225 return;
22226 break;
22227 }
22228 } while (macinfo_type != 0 && current_file == NULL);
22229
22230 /* Second pass: Process all entries.
22231
22232 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22233 command-line macro definitions/undefinitions. This flag is unset when we
22234 reach the first DW_MACINFO_start_file entry. */
22235
fc4007c9
TT
22236 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22237 htab_eq_pointer,
22238 NULL, xcalloc, xfree));
8fc3fc34 22239 mac_ptr = section->buffer + offset;
fc4007c9 22240 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
d521ce57 22241 *slot = (void *) mac_ptr;
8fc3fc34 22242 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 22243 current_file, lh, section,
fc4007c9
TT
22244 section_is_gnu, 0, offset_size,
22245 include_hash.get ());
cf2c3c16
TT
22246}
22247
8e19ed76 22248/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 22249 if so return true else false. */
380bca97 22250
8e19ed76 22251static int
6e5a29e1 22252attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
22253{
22254 return (attr == NULL ? 0 :
22255 attr->form == DW_FORM_block1
22256 || attr->form == DW_FORM_block2
22257 || attr->form == DW_FORM_block4
2dc7f7b3
TT
22258 || attr->form == DW_FORM_block
22259 || attr->form == DW_FORM_exprloc);
8e19ed76 22260}
4c2df51b 22261
c6a0999f
JB
22262/* Return non-zero if ATTR's value is a section offset --- classes
22263 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22264 You may use DW_UNSND (attr) to retrieve such offsets.
22265
22266 Section 7.5.4, "Attribute Encodings", explains that no attribute
22267 may have a value that belongs to more than one of these classes; it
22268 would be ambiguous if we did, because we use the same forms for all
22269 of them. */
380bca97 22270
3690dd37 22271static int
6e5a29e1 22272attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
22273{
22274 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
22275 || attr->form == DW_FORM_data8
22276 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
22277}
22278
3690dd37
JB
22279/* Return non-zero if ATTR's value falls in the 'constant' class, or
22280 zero otherwise. When this function returns true, you can apply
22281 dwarf2_get_attr_constant_value to it.
22282
22283 However, note that for some attributes you must check
22284 attr_form_is_section_offset before using this test. DW_FORM_data4
22285 and DW_FORM_data8 are members of both the constant class, and of
22286 the classes that contain offsets into other debug sections
22287 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22288 that, if an attribute's can be either a constant or one of the
22289 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
0224619f
JK
22290 taken as section offsets, not constants.
22291
22292 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22293 cannot handle that. */
380bca97 22294
3690dd37 22295static int
6e5a29e1 22296attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
22297{
22298 switch (attr->form)
22299 {
22300 case DW_FORM_sdata:
22301 case DW_FORM_udata:
22302 case DW_FORM_data1:
22303 case DW_FORM_data2:
22304 case DW_FORM_data4:
22305 case DW_FORM_data8:
22306 return 1;
22307 default:
22308 return 0;
22309 }
22310}
22311
7771576e
SA
22312
22313/* DW_ADDR is always stored already as sect_offset; despite for the forms
22314 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22315
22316static int
6e5a29e1 22317attr_form_is_ref (const struct attribute *attr)
7771576e
SA
22318{
22319 switch (attr->form)
22320 {
22321 case DW_FORM_ref_addr:
22322 case DW_FORM_ref1:
22323 case DW_FORM_ref2:
22324 case DW_FORM_ref4:
22325 case DW_FORM_ref8:
22326 case DW_FORM_ref_udata:
22327 case DW_FORM_GNU_ref_alt:
22328 return 1;
22329 default:
22330 return 0;
22331 }
22332}
22333
3019eac3
DE
22334/* Return the .debug_loc section to use for CU.
22335 For DWO files use .debug_loc.dwo. */
22336
22337static struct dwarf2_section_info *
22338cu_debug_loc_section (struct dwarf2_cu *cu)
22339{
22340 if (cu->dwo_unit)
43988095
JK
22341 {
22342 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22343
22344 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22345 }
22346 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22347 : &dwarf2_per_objfile->loc);
3019eac3
DE
22348}
22349
8cf6f0b1
TT
22350/* A helper function that fills in a dwarf2_loclist_baton. */
22351
22352static void
22353fill_in_loclist_baton (struct dwarf2_cu *cu,
22354 struct dwarf2_loclist_baton *baton,
ff39bb5e 22355 const struct attribute *attr)
8cf6f0b1 22356{
3019eac3
DE
22357 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22358
22359 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
22360
22361 baton->per_cu = cu->per_cu;
22362 gdb_assert (baton->per_cu);
22363 /* We don't know how long the location list is, but make sure we
22364 don't run off the edge of the section. */
3019eac3
DE
22365 baton->size = section->size - DW_UNSND (attr);
22366 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 22367 baton->base_address = cu->base_address;
f664829e 22368 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
22369}
22370
4c2df51b 22371static void
ff39bb5e 22372dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 22373 struct dwarf2_cu *cu, int is_block)
4c2df51b 22374{
bb5ed363 22375 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 22376 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 22377
3690dd37 22378 if (attr_form_is_section_offset (attr)
3019eac3 22379 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
22380 the section. If so, fall through to the complaint in the
22381 other branch. */
3019eac3 22382 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 22383 {
0d53c4c4 22384 struct dwarf2_loclist_baton *baton;
4c2df51b 22385
8d749320 22386 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 22387
8cf6f0b1 22388 fill_in_loclist_baton (cu, baton, attr);
be391dca 22389
d00adf39 22390 if (cu->base_known == 0)
0d53c4c4 22391 complaint (&symfile_complaints,
3e43a32a
MS
22392 _("Location list used without "
22393 "specifying the CU base address."));
4c2df51b 22394
f1e6e072
TT
22395 SYMBOL_ACLASS_INDEX (sym) = (is_block
22396 ? dwarf2_loclist_block_index
22397 : dwarf2_loclist_index);
0d53c4c4
DJ
22398 SYMBOL_LOCATION_BATON (sym) = baton;
22399 }
22400 else
22401 {
22402 struct dwarf2_locexpr_baton *baton;
22403
8d749320 22404 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
22405 baton->per_cu = cu->per_cu;
22406 gdb_assert (baton->per_cu);
0d53c4c4
DJ
22407
22408 if (attr_form_is_block (attr))
22409 {
22410 /* Note that we're just copying the block's data pointer
22411 here, not the actual data. We're still pointing into the
6502dd73
DJ
22412 info_buffer for SYM's objfile; right now we never release
22413 that buffer, but when we do clean up properly this may
22414 need to change. */
0d53c4c4
DJ
22415 baton->size = DW_BLOCK (attr)->size;
22416 baton->data = DW_BLOCK (attr)->data;
22417 }
22418 else
22419 {
22420 dwarf2_invalid_attrib_class_complaint ("location description",
22421 SYMBOL_NATURAL_NAME (sym));
22422 baton->size = 0;
0d53c4c4 22423 }
6e70227d 22424
f1e6e072
TT
22425 SYMBOL_ACLASS_INDEX (sym) = (is_block
22426 ? dwarf2_locexpr_block_index
22427 : dwarf2_locexpr_index);
0d53c4c4
DJ
22428 SYMBOL_LOCATION_BATON (sym) = baton;
22429 }
4c2df51b 22430}
6502dd73 22431
9aa1f1e3
TT
22432/* Return the OBJFILE associated with the compilation unit CU. If CU
22433 came from a separate debuginfo file, then the master objfile is
22434 returned. */
ae0d2f24
UW
22435
22436struct objfile *
22437dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22438{
9291a0cd 22439 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
22440
22441 /* Return the master objfile, so that we can report and look up the
22442 correct file containing this variable. */
22443 if (objfile->separate_debug_objfile_backlink)
22444 objfile = objfile->separate_debug_objfile_backlink;
22445
22446 return objfile;
22447}
22448
96408a79
SA
22449/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22450 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22451 CU_HEADERP first. */
22452
22453static const struct comp_unit_head *
22454per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22455 struct dwarf2_per_cu_data *per_cu)
22456{
d521ce57 22457 const gdb_byte *info_ptr;
96408a79
SA
22458
22459 if (per_cu->cu)
22460 return &per_cu->cu->header;
22461
8a0459fd 22462 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
22463
22464 memset (cu_headerp, 0, sizeof (*cu_headerp));
43988095
JK
22465 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22466 rcuh_kind::COMPILE);
96408a79
SA
22467
22468 return cu_headerp;
22469}
22470
ae0d2f24
UW
22471/* Return the address size given in the compilation unit header for CU. */
22472
98714339 22473int
ae0d2f24
UW
22474dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22475{
96408a79
SA
22476 struct comp_unit_head cu_header_local;
22477 const struct comp_unit_head *cu_headerp;
c471e790 22478
96408a79
SA
22479 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22480
22481 return cu_headerp->addr_size;
ae0d2f24
UW
22482}
22483
9eae7c52
TT
22484/* Return the offset size given in the compilation unit header for CU. */
22485
22486int
22487dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22488{
96408a79
SA
22489 struct comp_unit_head cu_header_local;
22490 const struct comp_unit_head *cu_headerp;
9c6c53f7 22491
96408a79
SA
22492 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22493
22494 return cu_headerp->offset_size;
22495}
22496
22497/* See its dwarf2loc.h declaration. */
22498
22499int
22500dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22501{
22502 struct comp_unit_head cu_header_local;
22503 const struct comp_unit_head *cu_headerp;
22504
22505 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22506
22507 if (cu_headerp->version == 2)
22508 return cu_headerp->addr_size;
22509 else
22510 return cu_headerp->offset_size;
181cebd4
JK
22511}
22512
9aa1f1e3
TT
22513/* Return the text offset of the CU. The returned offset comes from
22514 this CU's objfile. If this objfile came from a separate debuginfo
22515 file, then the offset may be different from the corresponding
22516 offset in the parent objfile. */
22517
22518CORE_ADDR
22519dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22520{
bb3fa9d0 22521 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
22522
22523 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22524}
22525
43988095
JK
22526/* Return DWARF version number of PER_CU. */
22527
22528short
22529dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22530{
22531 return per_cu->dwarf_version;
22532}
22533
348e048f
DE
22534/* Locate the .debug_info compilation unit from CU's objfile which contains
22535 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22536
22537static struct dwarf2_per_cu_data *
b64f50a1 22538dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 22539 unsigned int offset_in_dwz,
ae038cb0
DJ
22540 struct objfile *objfile)
22541{
22542 struct dwarf2_per_cu_data *this_cu;
22543 int low, high;
36586728 22544 const sect_offset *cu_off;
ae038cb0 22545
ae038cb0
DJ
22546 low = 0;
22547 high = dwarf2_per_objfile->n_comp_units - 1;
22548 while (high > low)
22549 {
36586728 22550 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22551 int mid = low + (high - low) / 2;
9a619af0 22552
36586728
TT
22553 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22554 cu_off = &mid_cu->offset;
22555 if (mid_cu->is_dwz > offset_in_dwz
22556 || (mid_cu->is_dwz == offset_in_dwz
22557 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
22558 high = mid;
22559 else
22560 low = mid + 1;
22561 }
22562 gdb_assert (low == high);
36586728
TT
22563 this_cu = dwarf2_per_objfile->all_comp_units[low];
22564 cu_off = &this_cu->offset;
22565 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 22566 {
36586728 22567 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
22568 error (_("Dwarf Error: could not find partial DIE containing "
22569 "offset 0x%lx [in module %s]"),
b64f50a1 22570 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 22571
b64f50a1
JK
22572 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22573 <= offset.sect_off);
ae038cb0
DJ
22574 return dwarf2_per_objfile->all_comp_units[low-1];
22575 }
22576 else
22577 {
22578 this_cu = dwarf2_per_objfile->all_comp_units[low];
22579 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
22580 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22581 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22582 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
22583 return this_cu;
22584 }
22585}
22586
23745b47 22587/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22588
9816fde3 22589static void
23745b47 22590init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22591{
9816fde3 22592 memset (cu, 0, sizeof (*cu));
23745b47
DE
22593 per_cu->cu = cu;
22594 cu->per_cu = per_cu;
22595 cu->objfile = per_cu->objfile;
93311388 22596 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22597}
22598
22599/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22600
22601static void
95554aad
TT
22602prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22603 enum language pretend_language)
9816fde3
JK
22604{
22605 struct attribute *attr;
22606
22607 /* Set the language we're debugging. */
22608 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22609 if (attr)
22610 set_cu_language (DW_UNSND (attr), cu);
22611 else
9cded63f 22612 {
95554aad 22613 cu->language = pretend_language;
9cded63f
TT
22614 cu->language_defn = language_def (cu->language);
22615 }
dee91e82 22616
7d45c7c3 22617 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
22618}
22619
ae038cb0
DJ
22620/* Release one cached compilation unit, CU. We unlink it from the tree
22621 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22622 the caller is responsible for that.
22623 NOTE: DATA is a void * because this function is also used as a
22624 cleanup routine. */
ae038cb0
DJ
22625
22626static void
68dc6402 22627free_heap_comp_unit (void *data)
ae038cb0 22628{
9a3c8263 22629 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
ae038cb0 22630
23745b47
DE
22631 gdb_assert (cu->per_cu != NULL);
22632 cu->per_cu->cu = NULL;
ae038cb0
DJ
22633 cu->per_cu = NULL;
22634
22635 obstack_free (&cu->comp_unit_obstack, NULL);
22636
22637 xfree (cu);
22638}
22639
72bf9492 22640/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22641 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22642 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22643
22644static void
22645free_stack_comp_unit (void *data)
22646{
9a3c8263 22647 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
72bf9492 22648
23745b47
DE
22649 gdb_assert (cu->per_cu != NULL);
22650 cu->per_cu->cu = NULL;
22651 cu->per_cu = NULL;
22652
72bf9492
DJ
22653 obstack_free (&cu->comp_unit_obstack, NULL);
22654 cu->partial_dies = NULL;
ae038cb0
DJ
22655}
22656
22657/* Free all cached compilation units. */
22658
22659static void
22660free_cached_comp_units (void *data)
22661{
22662 struct dwarf2_per_cu_data *per_cu, **last_chain;
22663
22664 per_cu = dwarf2_per_objfile->read_in_chain;
22665 last_chain = &dwarf2_per_objfile->read_in_chain;
22666 while (per_cu != NULL)
22667 {
22668 struct dwarf2_per_cu_data *next_cu;
22669
22670 next_cu = per_cu->cu->read_in_chain;
22671
68dc6402 22672 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22673 *last_chain = next_cu;
22674
22675 per_cu = next_cu;
22676 }
22677}
22678
22679/* Increase the age counter on each cached compilation unit, and free
22680 any that are too old. */
22681
22682static void
22683age_cached_comp_units (void)
22684{
22685 struct dwarf2_per_cu_data *per_cu, **last_chain;
22686
22687 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22688 per_cu = dwarf2_per_objfile->read_in_chain;
22689 while (per_cu != NULL)
22690 {
22691 per_cu->cu->last_used ++;
b4f54984 22692 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22693 dwarf2_mark (per_cu->cu);
22694 per_cu = per_cu->cu->read_in_chain;
22695 }
22696
22697 per_cu = dwarf2_per_objfile->read_in_chain;
22698 last_chain = &dwarf2_per_objfile->read_in_chain;
22699 while (per_cu != NULL)
22700 {
22701 struct dwarf2_per_cu_data *next_cu;
22702
22703 next_cu = per_cu->cu->read_in_chain;
22704
22705 if (!per_cu->cu->mark)
22706 {
68dc6402 22707 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22708 *last_chain = next_cu;
22709 }
22710 else
22711 last_chain = &per_cu->cu->read_in_chain;
22712
22713 per_cu = next_cu;
22714 }
22715}
22716
22717/* Remove a single compilation unit from the cache. */
22718
22719static void
dee91e82 22720free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22721{
22722 struct dwarf2_per_cu_data *per_cu, **last_chain;
22723
22724 per_cu = dwarf2_per_objfile->read_in_chain;
22725 last_chain = &dwarf2_per_objfile->read_in_chain;
22726 while (per_cu != NULL)
22727 {
22728 struct dwarf2_per_cu_data *next_cu;
22729
22730 next_cu = per_cu->cu->read_in_chain;
22731
dee91e82 22732 if (per_cu == target_per_cu)
ae038cb0 22733 {
68dc6402 22734 free_heap_comp_unit (per_cu->cu);
dee91e82 22735 per_cu->cu = NULL;
ae038cb0
DJ
22736 *last_chain = next_cu;
22737 break;
22738 }
22739 else
22740 last_chain = &per_cu->cu->read_in_chain;
22741
22742 per_cu = next_cu;
22743 }
22744}
22745
fe3e1990
DJ
22746/* Release all extra memory associated with OBJFILE. */
22747
22748void
22749dwarf2_free_objfile (struct objfile *objfile)
22750{
9a3c8263
SM
22751 dwarf2_per_objfile
22752 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22753 dwarf2_objfile_data_key);
fe3e1990
DJ
22754
22755 if (dwarf2_per_objfile == NULL)
22756 return;
22757
22758 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22759 free_cached_comp_units (NULL);
22760
7b9f3c50
DE
22761 if (dwarf2_per_objfile->quick_file_names_table)
22762 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 22763
527f3840
JK
22764 if (dwarf2_per_objfile->line_header_hash)
22765 htab_delete (dwarf2_per_objfile->line_header_hash);
22766
fe3e1990
DJ
22767 /* Everything else should be on the objfile obstack. */
22768}
22769
dee91e82
DE
22770/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22771 We store these in a hash table separate from the DIEs, and preserve them
22772 when the DIEs are flushed out of cache.
22773
22774 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22775 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22776 or the type may come from a DWO file. Furthermore, while it's more logical
22777 to use per_cu->section+offset, with Fission the section with the data is in
22778 the DWO file but we don't know that section at the point we need it.
22779 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22780 because we can enter the lookup routine, get_die_type_at_offset, from
22781 outside this file, and thus won't necessarily have PER_CU->cu.
22782 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22783
dee91e82 22784struct dwarf2_per_cu_offset_and_type
1c379e20 22785{
dee91e82 22786 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 22787 sect_offset offset;
1c379e20
DJ
22788 struct type *type;
22789};
22790
dee91e82 22791/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22792
22793static hashval_t
dee91e82 22794per_cu_offset_and_type_hash (const void *item)
1c379e20 22795{
9a3c8263
SM
22796 const struct dwarf2_per_cu_offset_and_type *ofs
22797 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 22798
dee91e82 22799 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
22800}
22801
dee91e82 22802/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22803
22804static int
dee91e82 22805per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22806{
9a3c8263
SM
22807 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22808 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22809 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22810 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 22811
dee91e82
DE
22812 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22813 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
22814}
22815
22816/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22817 table if necessary. For convenience, return TYPE.
22818
22819 The DIEs reading must have careful ordering to:
22820 * Not cause infite loops trying to read in DIEs as a prerequisite for
22821 reading current DIE.
22822 * Not trying to dereference contents of still incompletely read in types
22823 while reading in other DIEs.
22824 * Enable referencing still incompletely read in types just by a pointer to
22825 the type without accessing its fields.
22826
22827 Therefore caller should follow these rules:
22828 * Try to fetch any prerequisite types we may need to build this DIE type
22829 before building the type and calling set_die_type.
e71ec853 22830 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22831 possible before fetching more types to complete the current type.
22832 * Make the type as complete as possible before fetching more types. */
1c379e20 22833
f792889a 22834static struct type *
1c379e20
DJ
22835set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22836{
dee91e82 22837 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 22838 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
22839 struct attribute *attr;
22840 struct dynamic_prop prop;
1c379e20 22841
b4ba55a1
JB
22842 /* For Ada types, make sure that the gnat-specific data is always
22843 initialized (if not already set). There are a few types where
22844 we should not be doing so, because the type-specific area is
22845 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22846 where the type-specific area is used to store the floatformat).
22847 But this is not a problem, because the gnat-specific information
22848 is actually not needed for these types. */
22849 if (need_gnat_info (cu)
22850 && TYPE_CODE (type) != TYPE_CODE_FUNC
22851 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
22852 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22853 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22854 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
22855 && !HAVE_GNAT_AUX_INFO (type))
22856 INIT_GNAT_SPECIFIC (type);
22857
3f2f83dd
KB
22858 /* Read DW_AT_allocated and set in type. */
22859 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22860 if (attr_form_is_block (attr))
22861 {
22862 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22863 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22864 }
22865 else if (attr != NULL)
22866 {
22867 complaint (&symfile_complaints,
22868 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22869 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22870 die->offset.sect_off);
22871 }
22872
22873 /* Read DW_AT_associated and set in type. */
22874 attr = dwarf2_attr (die, DW_AT_associated, cu);
22875 if (attr_form_is_block (attr))
22876 {
22877 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22878 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22879 }
22880 else if (attr != NULL)
22881 {
22882 complaint (&symfile_complaints,
22883 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22884 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22885 die->offset.sect_off);
22886 }
22887
3cdcd0ce
JB
22888 /* Read DW_AT_data_location and set in type. */
22889 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22890 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 22891 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 22892
dee91e82 22893 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22894 {
dee91e82
DE
22895 dwarf2_per_objfile->die_type_hash =
22896 htab_create_alloc_ex (127,
22897 per_cu_offset_and_type_hash,
22898 per_cu_offset_and_type_eq,
22899 NULL,
22900 &objfile->objfile_obstack,
22901 hashtab_obstack_allocate,
22902 dummy_obstack_deallocate);
f792889a 22903 }
1c379e20 22904
dee91e82 22905 ofs.per_cu = cu->per_cu;
1c379e20
DJ
22906 ofs.offset = die->offset;
22907 ofs.type = type;
dee91e82
DE
22908 slot = (struct dwarf2_per_cu_offset_and_type **)
22909 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
22910 if (*slot)
22911 complaint (&symfile_complaints,
22912 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 22913 die->offset.sect_off);
8d749320
SM
22914 *slot = XOBNEW (&objfile->objfile_obstack,
22915 struct dwarf2_per_cu_offset_and_type);
1c379e20 22916 **slot = ofs;
f792889a 22917 return type;
1c379e20
DJ
22918}
22919
02142a6c
DE
22920/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22921 or return NULL if the die does not have a saved type. */
1c379e20
DJ
22922
22923static struct type *
b64f50a1 22924get_die_type_at_offset (sect_offset offset,
673bfd45 22925 struct dwarf2_per_cu_data *per_cu)
1c379e20 22926{
dee91e82 22927 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 22928
dee91e82 22929 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22930 return NULL;
1c379e20 22931
dee91e82 22932 ofs.per_cu = per_cu;
673bfd45 22933 ofs.offset = offset;
9a3c8263
SM
22934 slot = ((struct dwarf2_per_cu_offset_and_type *)
22935 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
22936 if (slot)
22937 return slot->type;
22938 else
22939 return NULL;
22940}
22941
02142a6c 22942/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
22943 or return NULL if DIE does not have a saved type. */
22944
22945static struct type *
22946get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22947{
22948 return get_die_type_at_offset (die->offset, cu->per_cu);
22949}
22950
10b3939b
DJ
22951/* Add a dependence relationship from CU to REF_PER_CU. */
22952
22953static void
22954dwarf2_add_dependence (struct dwarf2_cu *cu,
22955 struct dwarf2_per_cu_data *ref_per_cu)
22956{
22957 void **slot;
22958
22959 if (cu->dependencies == NULL)
22960 cu->dependencies
22961 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22962 NULL, &cu->comp_unit_obstack,
22963 hashtab_obstack_allocate,
22964 dummy_obstack_deallocate);
22965
22966 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22967 if (*slot == NULL)
22968 *slot = ref_per_cu;
22969}
1c379e20 22970
f504f079
DE
22971/* Subroutine of dwarf2_mark to pass to htab_traverse.
22972 Set the mark field in every compilation unit in the
ae038cb0
DJ
22973 cache that we must keep because we are keeping CU. */
22974
10b3939b
DJ
22975static int
22976dwarf2_mark_helper (void **slot, void *data)
22977{
22978 struct dwarf2_per_cu_data *per_cu;
22979
22980 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
22981
22982 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22983 reading of the chain. As such dependencies remain valid it is not much
22984 useful to track and undo them during QUIT cleanups. */
22985 if (per_cu->cu == NULL)
22986 return 1;
22987
10b3939b
DJ
22988 if (per_cu->cu->mark)
22989 return 1;
22990 per_cu->cu->mark = 1;
22991
22992 if (per_cu->cu->dependencies != NULL)
22993 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22994
22995 return 1;
22996}
22997
f504f079
DE
22998/* Set the mark field in CU and in every other compilation unit in the
22999 cache that we must keep because we are keeping CU. */
23000
ae038cb0
DJ
23001static void
23002dwarf2_mark (struct dwarf2_cu *cu)
23003{
23004 if (cu->mark)
23005 return;
23006 cu->mark = 1;
10b3939b
DJ
23007 if (cu->dependencies != NULL)
23008 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
23009}
23010
23011static void
23012dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23013{
23014 while (per_cu)
23015 {
23016 per_cu->cu->mark = 0;
23017 per_cu = per_cu->cu->read_in_chain;
23018 }
72bf9492
DJ
23019}
23020
72bf9492
DJ
23021/* Trivial hash function for partial_die_info: the hash value of a DIE
23022 is its offset in .debug_info for this objfile. */
23023
23024static hashval_t
23025partial_die_hash (const void *item)
23026{
9a3c8263
SM
23027 const struct partial_die_info *part_die
23028 = (const struct partial_die_info *) item;
9a619af0 23029
b64f50a1 23030 return part_die->offset.sect_off;
72bf9492
DJ
23031}
23032
23033/* Trivial comparison function for partial_die_info structures: two DIEs
23034 are equal if they have the same offset. */
23035
23036static int
23037partial_die_eq (const void *item_lhs, const void *item_rhs)
23038{
9a3c8263
SM
23039 const struct partial_die_info *part_die_lhs
23040 = (const struct partial_die_info *) item_lhs;
23041 const struct partial_die_info *part_die_rhs
23042 = (const struct partial_die_info *) item_rhs;
9a619af0 23043
b64f50a1 23044 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
23045}
23046
b4f54984
DE
23047static struct cmd_list_element *set_dwarf_cmdlist;
23048static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
23049
23050static void
b4f54984 23051set_dwarf_cmd (char *args, int from_tty)
ae038cb0 23052{
b4f54984 23053 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 23054 gdb_stdout);
ae038cb0
DJ
23055}
23056
23057static void
b4f54984 23058show_dwarf_cmd (char *args, int from_tty)
6e70227d 23059{
b4f54984 23060 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
23061}
23062
4bf44c1c 23063/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
23064
23065static void
c1bd65d0 23066dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc 23067{
9a3c8263 23068 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
8b70b953 23069 int ix;
8b70b953 23070
626f2d1c
TT
23071 /* Make sure we don't accidentally use dwarf2_per_objfile while
23072 cleaning up. */
23073 dwarf2_per_objfile = NULL;
23074
59b0c7c1
JB
23075 for (ix = 0; ix < data->n_comp_units; ++ix)
23076 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 23077
59b0c7c1 23078 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 23079 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
23080 data->all_type_units[ix]->per_cu.imported_symtabs);
23081 xfree (data->all_type_units);
95554aad 23082
8b70b953 23083 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
23084
23085 if (data->dwo_files)
23086 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
23087 if (data->dwp_file)
23088 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
23089
23090 if (data->dwz_file && data->dwz_file->dwz_bfd)
23091 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
23092}
23093
23094\f
ae2de4f8 23095/* The "save gdb-index" command. */
9291a0cd
TT
23096
23097/* The contents of the hash table we create when building the string
23098 table. */
23099struct strtab_entry
23100{
23101 offset_type offset;
23102 const char *str;
23103};
23104
559a7a62
JK
23105/* Hash function for a strtab_entry.
23106
23107 Function is used only during write_hash_table so no index format backward
23108 compatibility is needed. */
b89be57b 23109
9291a0cd
TT
23110static hashval_t
23111hash_strtab_entry (const void *e)
23112{
9a3c8263 23113 const struct strtab_entry *entry = (const struct strtab_entry *) e;
559a7a62 23114 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
23115}
23116
23117/* Equality function for a strtab_entry. */
b89be57b 23118
9291a0cd
TT
23119static int
23120eq_strtab_entry (const void *a, const void *b)
23121{
9a3c8263
SM
23122 const struct strtab_entry *ea = (const struct strtab_entry *) a;
23123 const struct strtab_entry *eb = (const struct strtab_entry *) b;
9291a0cd
TT
23124 return !strcmp (ea->str, eb->str);
23125}
23126
23127/* Create a strtab_entry hash table. */
b89be57b 23128
9291a0cd
TT
23129static htab_t
23130create_strtab (void)
23131{
23132 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
23133 xfree, xcalloc, xfree);
23134}
23135
23136/* Add a string to the constant pool. Return the string's offset in
23137 host order. */
b89be57b 23138
9291a0cd
TT
23139static offset_type
23140add_string (htab_t table, struct obstack *cpool, const char *str)
23141{
23142 void **slot;
23143 struct strtab_entry entry;
23144 struct strtab_entry *result;
23145
23146 entry.str = str;
23147 slot = htab_find_slot (table, &entry, INSERT);
23148 if (*slot)
9a3c8263 23149 result = (struct strtab_entry *) *slot;
9291a0cd
TT
23150 else
23151 {
23152 result = XNEW (struct strtab_entry);
23153 result->offset = obstack_object_size (cpool);
23154 result->str = str;
23155 obstack_grow_str0 (cpool, str);
23156 *slot = result;
23157 }
23158 return result->offset;
23159}
23160
23161/* An entry in the symbol table. */
23162struct symtab_index_entry
23163{
23164 /* The name of the symbol. */
23165 const char *name;
23166 /* The offset of the name in the constant pool. */
23167 offset_type index_offset;
23168 /* A sorted vector of the indices of all the CUs that hold an object
23169 of this name. */
23170 VEC (offset_type) *cu_indices;
23171};
23172
23173/* The symbol table. This is a power-of-2-sized hash table. */
23174struct mapped_symtab
23175{
23176 offset_type n_elements;
23177 offset_type size;
23178 struct symtab_index_entry **data;
23179};
23180
23181/* Hash function for a symtab_index_entry. */
b89be57b 23182
9291a0cd
TT
23183static hashval_t
23184hash_symtab_entry (const void *e)
23185{
9a3c8263
SM
23186 const struct symtab_index_entry *entry
23187 = (const struct symtab_index_entry *) e;
9291a0cd
TT
23188 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
23189 sizeof (offset_type) * VEC_length (offset_type,
23190 entry->cu_indices),
23191 0);
23192}
23193
23194/* Equality function for a symtab_index_entry. */
b89be57b 23195
9291a0cd
TT
23196static int
23197eq_symtab_entry (const void *a, const void *b)
23198{
9a3c8263
SM
23199 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
23200 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
9291a0cd
TT
23201 int len = VEC_length (offset_type, ea->cu_indices);
23202 if (len != VEC_length (offset_type, eb->cu_indices))
23203 return 0;
23204 return !memcmp (VEC_address (offset_type, ea->cu_indices),
23205 VEC_address (offset_type, eb->cu_indices),
23206 sizeof (offset_type) * len);
23207}
23208
23209/* Destroy a symtab_index_entry. */
b89be57b 23210
9291a0cd
TT
23211static void
23212delete_symtab_entry (void *p)
23213{
9a3c8263 23214 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
9291a0cd
TT
23215 VEC_free (offset_type, entry->cu_indices);
23216 xfree (entry);
23217}
23218
23219/* Create a hash table holding symtab_index_entry objects. */
b89be57b 23220
9291a0cd 23221static htab_t
3876f04e 23222create_symbol_hash_table (void)
9291a0cd
TT
23223{
23224 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
23225 delete_symtab_entry, xcalloc, xfree);
23226}
23227
23228/* Create a new mapped symtab object. */
b89be57b 23229
9291a0cd
TT
23230static struct mapped_symtab *
23231create_mapped_symtab (void)
23232{
23233 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
23234 symtab->n_elements = 0;
23235 symtab->size = 1024;
23236 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
23237 return symtab;
23238}
23239
23240/* Destroy a mapped_symtab. */
b89be57b 23241
9291a0cd
TT
23242static void
23243cleanup_mapped_symtab (void *p)
23244{
9a3c8263 23245 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
9291a0cd
TT
23246 /* The contents of the array are freed when the other hash table is
23247 destroyed. */
23248 xfree (symtab->data);
23249 xfree (symtab);
23250}
23251
23252/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
23253 the slot.
23254
23255 Function is used only during write_hash_table so no index format backward
23256 compatibility is needed. */
b89be57b 23257
9291a0cd
TT
23258static struct symtab_index_entry **
23259find_slot (struct mapped_symtab *symtab, const char *name)
23260{
559a7a62 23261 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
23262
23263 index = hash & (symtab->size - 1);
23264 step = ((hash * 17) & (symtab->size - 1)) | 1;
23265
23266 for (;;)
23267 {
23268 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
23269 return &symtab->data[index];
23270 index = (index + step) & (symtab->size - 1);
23271 }
23272}
23273
23274/* Expand SYMTAB's hash table. */
b89be57b 23275
9291a0cd
TT
23276static void
23277hash_expand (struct mapped_symtab *symtab)
23278{
23279 offset_type old_size = symtab->size;
23280 offset_type i;
23281 struct symtab_index_entry **old_entries = symtab->data;
23282
23283 symtab->size *= 2;
23284 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
23285
23286 for (i = 0; i < old_size; ++i)
23287 {
23288 if (old_entries[i])
23289 {
23290 struct symtab_index_entry **slot = find_slot (symtab,
23291 old_entries[i]->name);
23292 *slot = old_entries[i];
23293 }
23294 }
23295
23296 xfree (old_entries);
23297}
23298
156942c7
DE
23299/* Add an entry to SYMTAB. NAME is the name of the symbol.
23300 CU_INDEX is the index of the CU in which the symbol appears.
23301 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 23302
9291a0cd
TT
23303static void
23304add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 23305 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
23306 offset_type cu_index)
23307{
23308 struct symtab_index_entry **slot;
156942c7 23309 offset_type cu_index_and_attrs;
9291a0cd
TT
23310
23311 ++symtab->n_elements;
23312 if (4 * symtab->n_elements / 3 >= symtab->size)
23313 hash_expand (symtab);
23314
23315 slot = find_slot (symtab, name);
23316 if (!*slot)
23317 {
23318 *slot = XNEW (struct symtab_index_entry);
23319 (*slot)->name = name;
156942c7 23320 /* index_offset is set later. */
9291a0cd
TT
23321 (*slot)->cu_indices = NULL;
23322 }
156942c7
DE
23323
23324 cu_index_and_attrs = 0;
23325 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23326 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23327 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23328
23329 /* We don't want to record an index value twice as we want to avoid the
23330 duplication.
23331 We process all global symbols and then all static symbols
23332 (which would allow us to avoid the duplication by only having to check
23333 the last entry pushed), but a symbol could have multiple kinds in one CU.
23334 To keep things simple we don't worry about the duplication here and
23335 sort and uniqufy the list after we've processed all symbols. */
23336 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
23337}
23338
23339/* qsort helper routine for uniquify_cu_indices. */
23340
23341static int
23342offset_type_compare (const void *ap, const void *bp)
23343{
23344 offset_type a = *(offset_type *) ap;
23345 offset_type b = *(offset_type *) bp;
23346
23347 return (a > b) - (b > a);
23348}
23349
23350/* Sort and remove duplicates of all symbols' cu_indices lists. */
23351
23352static void
23353uniquify_cu_indices (struct mapped_symtab *symtab)
23354{
23355 int i;
23356
23357 for (i = 0; i < symtab->size; ++i)
23358 {
23359 struct symtab_index_entry *entry = symtab->data[i];
23360
23361 if (entry
23362 && entry->cu_indices != NULL)
23363 {
23364 unsigned int next_to_insert, next_to_check;
23365 offset_type last_value;
23366
23367 qsort (VEC_address (offset_type, entry->cu_indices),
23368 VEC_length (offset_type, entry->cu_indices),
23369 sizeof (offset_type), offset_type_compare);
23370
23371 last_value = VEC_index (offset_type, entry->cu_indices, 0);
23372 next_to_insert = 1;
23373 for (next_to_check = 1;
23374 next_to_check < VEC_length (offset_type, entry->cu_indices);
23375 ++next_to_check)
23376 {
23377 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
23378 != last_value)
23379 {
23380 last_value = VEC_index (offset_type, entry->cu_indices,
23381 next_to_check);
23382 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
23383 last_value);
23384 ++next_to_insert;
23385 }
23386 }
23387 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
23388 }
23389 }
9291a0cd
TT
23390}
23391
23392/* Add a vector of indices to the constant pool. */
b89be57b 23393
9291a0cd 23394static offset_type
3876f04e 23395add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
23396 struct symtab_index_entry *entry)
23397{
23398 void **slot;
23399
3876f04e 23400 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
23401 if (!*slot)
23402 {
23403 offset_type len = VEC_length (offset_type, entry->cu_indices);
23404 offset_type val = MAYBE_SWAP (len);
23405 offset_type iter;
23406 int i;
23407
23408 *slot = entry;
23409 entry->index_offset = obstack_object_size (cpool);
23410
23411 obstack_grow (cpool, &val, sizeof (val));
23412 for (i = 0;
23413 VEC_iterate (offset_type, entry->cu_indices, i, iter);
23414 ++i)
23415 {
23416 val = MAYBE_SWAP (iter);
23417 obstack_grow (cpool, &val, sizeof (val));
23418 }
23419 }
23420 else
23421 {
9a3c8263
SM
23422 struct symtab_index_entry *old_entry
23423 = (struct symtab_index_entry *) *slot;
9291a0cd
TT
23424 entry->index_offset = old_entry->index_offset;
23425 entry = old_entry;
23426 }
23427 return entry->index_offset;
23428}
23429
23430/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
23431 constant pool entries going into the obstack CPOOL. */
b89be57b 23432
9291a0cd
TT
23433static void
23434write_hash_table (struct mapped_symtab *symtab,
23435 struct obstack *output, struct obstack *cpool)
23436{
23437 offset_type i;
3876f04e 23438 htab_t symbol_hash_table;
9291a0cd
TT
23439 htab_t str_table;
23440
3876f04e 23441 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 23442 str_table = create_strtab ();
3876f04e 23443
9291a0cd
TT
23444 /* We add all the index vectors to the constant pool first, to
23445 ensure alignment is ok. */
23446 for (i = 0; i < symtab->size; ++i)
23447 {
23448 if (symtab->data[i])
3876f04e 23449 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
23450 }
23451
23452 /* Now write out the hash table. */
23453 for (i = 0; i < symtab->size; ++i)
23454 {
23455 offset_type str_off, vec_off;
23456
23457 if (symtab->data[i])
23458 {
23459 str_off = add_string (str_table, cpool, symtab->data[i]->name);
23460 vec_off = symtab->data[i]->index_offset;
23461 }
23462 else
23463 {
23464 /* While 0 is a valid constant pool index, it is not valid
23465 to have 0 for both offsets. */
23466 str_off = 0;
23467 vec_off = 0;
23468 }
23469
23470 str_off = MAYBE_SWAP (str_off);
23471 vec_off = MAYBE_SWAP (vec_off);
23472
23473 obstack_grow (output, &str_off, sizeof (str_off));
23474 obstack_grow (output, &vec_off, sizeof (vec_off));
23475 }
23476
23477 htab_delete (str_table);
3876f04e 23478 htab_delete (symbol_hash_table);
9291a0cd
TT
23479}
23480
0a5429f6
DE
23481/* Struct to map psymtab to CU index in the index file. */
23482struct psymtab_cu_index_map
23483{
23484 struct partial_symtab *psymtab;
23485 unsigned int cu_index;
23486};
23487
23488static hashval_t
23489hash_psymtab_cu_index (const void *item)
23490{
9a3c8263
SM
23491 const struct psymtab_cu_index_map *map
23492 = (const struct psymtab_cu_index_map *) item;
0a5429f6
DE
23493
23494 return htab_hash_pointer (map->psymtab);
23495}
23496
23497static int
23498eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
23499{
9a3c8263
SM
23500 const struct psymtab_cu_index_map *lhs
23501 = (const struct psymtab_cu_index_map *) item_lhs;
23502 const struct psymtab_cu_index_map *rhs
23503 = (const struct psymtab_cu_index_map *) item_rhs;
0a5429f6
DE
23504
23505 return lhs->psymtab == rhs->psymtab;
23506}
23507
23508/* Helper struct for building the address table. */
23509struct addrmap_index_data
23510{
23511 struct objfile *objfile;
23512 struct obstack *addr_obstack;
23513 htab_t cu_index_htab;
23514
23515 /* Non-zero if the previous_* fields are valid.
23516 We can't write an entry until we see the next entry (since it is only then
23517 that we know the end of the entry). */
23518 int previous_valid;
23519 /* Index of the CU in the table of all CUs in the index file. */
23520 unsigned int previous_cu_index;
0963b4bd 23521 /* Start address of the CU. */
0a5429f6
DE
23522 CORE_ADDR previous_cu_start;
23523};
23524
23525/* Write an address entry to OBSTACK. */
b89be57b 23526
9291a0cd 23527static void
0a5429f6
DE
23528add_address_entry (struct objfile *objfile, struct obstack *obstack,
23529 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 23530{
0a5429f6 23531 offset_type cu_index_to_write;
948f8e3d 23532 gdb_byte addr[8];
9291a0cd
TT
23533 CORE_ADDR baseaddr;
23534
23535 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23536
0a5429f6
DE
23537 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23538 obstack_grow (obstack, addr, 8);
23539 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23540 obstack_grow (obstack, addr, 8);
23541 cu_index_to_write = MAYBE_SWAP (cu_index);
23542 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23543}
23544
23545/* Worker function for traversing an addrmap to build the address table. */
23546
23547static int
23548add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23549{
9a3c8263
SM
23550 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23551 struct partial_symtab *pst = (struct partial_symtab *) obj;
0a5429f6
DE
23552
23553 if (data->previous_valid)
23554 add_address_entry (data->objfile, data->addr_obstack,
23555 data->previous_cu_start, start_addr,
23556 data->previous_cu_index);
23557
23558 data->previous_cu_start = start_addr;
23559 if (pst != NULL)
23560 {
23561 struct psymtab_cu_index_map find_map, *map;
23562 find_map.psymtab = pst;
9a3c8263
SM
23563 map = ((struct psymtab_cu_index_map *)
23564 htab_find (data->cu_index_htab, &find_map));
0a5429f6
DE
23565 gdb_assert (map != NULL);
23566 data->previous_cu_index = map->cu_index;
23567 data->previous_valid = 1;
23568 }
23569 else
23570 data->previous_valid = 0;
23571
23572 return 0;
23573}
23574
23575/* Write OBJFILE's address map to OBSTACK.
23576 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23577 in the index file. */
23578
23579static void
23580write_address_map (struct objfile *objfile, struct obstack *obstack,
23581 htab_t cu_index_htab)
23582{
23583 struct addrmap_index_data addrmap_index_data;
23584
23585 /* When writing the address table, we have to cope with the fact that
23586 the addrmap iterator only provides the start of a region; we have to
23587 wait until the next invocation to get the start of the next region. */
23588
23589 addrmap_index_data.objfile = objfile;
23590 addrmap_index_data.addr_obstack = obstack;
23591 addrmap_index_data.cu_index_htab = cu_index_htab;
23592 addrmap_index_data.previous_valid = 0;
23593
23594 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23595 &addrmap_index_data);
23596
23597 /* It's highly unlikely the last entry (end address = 0xff...ff)
23598 is valid, but we should still handle it.
23599 The end address is recorded as the start of the next region, but that
23600 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23601 anyway. */
23602 if (addrmap_index_data.previous_valid)
23603 add_address_entry (objfile, obstack,
23604 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23605 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23606}
23607
156942c7
DE
23608/* Return the symbol kind of PSYM. */
23609
23610static gdb_index_symbol_kind
23611symbol_kind (struct partial_symbol *psym)
23612{
23613 domain_enum domain = PSYMBOL_DOMAIN (psym);
23614 enum address_class aclass = PSYMBOL_CLASS (psym);
23615
23616 switch (domain)
23617 {
23618 case VAR_DOMAIN:
23619 switch (aclass)
23620 {
23621 case LOC_BLOCK:
23622 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23623 case LOC_TYPEDEF:
23624 return GDB_INDEX_SYMBOL_KIND_TYPE;
23625 case LOC_COMPUTED:
23626 case LOC_CONST_BYTES:
23627 case LOC_OPTIMIZED_OUT:
23628 case LOC_STATIC:
23629 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23630 case LOC_CONST:
23631 /* Note: It's currently impossible to recognize psyms as enum values
23632 short of reading the type info. For now punt. */
23633 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23634 default:
23635 /* There are other LOC_FOO values that one might want to classify
23636 as variables, but dwarf2read.c doesn't currently use them. */
23637 return GDB_INDEX_SYMBOL_KIND_OTHER;
23638 }
23639 case STRUCT_DOMAIN:
23640 return GDB_INDEX_SYMBOL_KIND_TYPE;
23641 default:
23642 return GDB_INDEX_SYMBOL_KIND_OTHER;
23643 }
23644}
23645
9291a0cd 23646/* Add a list of partial symbols to SYMTAB. */
b89be57b 23647
9291a0cd
TT
23648static void
23649write_psymbols (struct mapped_symtab *symtab,
987d643c 23650 htab_t psyms_seen,
9291a0cd
TT
23651 struct partial_symbol **psymp,
23652 int count,
987d643c
TT
23653 offset_type cu_index,
23654 int is_static)
9291a0cd
TT
23655{
23656 for (; count-- > 0; ++psymp)
23657 {
156942c7
DE
23658 struct partial_symbol *psym = *psymp;
23659 void **slot;
987d643c 23660
156942c7 23661 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23662 error (_("Ada is not currently supported by the index"));
987d643c 23663
987d643c 23664 /* Only add a given psymbol once. */
156942c7 23665 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
23666 if (!*slot)
23667 {
156942c7
DE
23668 gdb_index_symbol_kind kind = symbol_kind (psym);
23669
23670 *slot = psym;
23671 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23672 is_static, kind, cu_index);
987d643c 23673 }
9291a0cd
TT
23674 }
23675}
23676
23677/* Write the contents of an ("unfinished") obstack to FILE. Throw an
23678 exception if there is an error. */
b89be57b 23679
9291a0cd
TT
23680static void
23681write_obstack (FILE *file, struct obstack *obstack)
23682{
23683 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23684 file)
23685 != obstack_object_size (obstack))
23686 error (_("couldn't data write to file"));
23687}
23688
1fd400ff
TT
23689/* A helper struct used when iterating over debug_types. */
23690struct signatured_type_index_data
23691{
23692 struct objfile *objfile;
23693 struct mapped_symtab *symtab;
23694 struct obstack *types_list;
987d643c 23695 htab_t psyms_seen;
1fd400ff
TT
23696 int cu_index;
23697};
23698
23699/* A helper function that writes a single signatured_type to an
23700 obstack. */
b89be57b 23701
1fd400ff
TT
23702static int
23703write_one_signatured_type (void **slot, void *d)
23704{
9a3c8263
SM
23705 struct signatured_type_index_data *info
23706 = (struct signatured_type_index_data *) d;
1fd400ff 23707 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23708 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23709 gdb_byte val[8];
23710
23711 write_psymbols (info->symtab,
987d643c 23712 info->psyms_seen,
3e43a32a
MS
23713 info->objfile->global_psymbols.list
23714 + psymtab->globals_offset,
987d643c
TT
23715 psymtab->n_global_syms, info->cu_index,
23716 0);
1fd400ff 23717 write_psymbols (info->symtab,
987d643c 23718 info->psyms_seen,
3e43a32a
MS
23719 info->objfile->static_psymbols.list
23720 + psymtab->statics_offset,
987d643c
TT
23721 psymtab->n_static_syms, info->cu_index,
23722 1);
1fd400ff 23723
b64f50a1
JK
23724 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23725 entry->per_cu.offset.sect_off);
1fd400ff 23726 obstack_grow (info->types_list, val, 8);
3019eac3
DE
23727 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23728 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
23729 obstack_grow (info->types_list, val, 8);
23730 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23731 obstack_grow (info->types_list, val, 8);
23732
23733 ++info->cu_index;
23734
23735 return 1;
23736}
23737
95554aad
TT
23738/* Recurse into all "included" dependencies and write their symbols as
23739 if they appeared in this psymtab. */
23740
23741static void
23742recursively_write_psymbols (struct objfile *objfile,
23743 struct partial_symtab *psymtab,
23744 struct mapped_symtab *symtab,
23745 htab_t psyms_seen,
23746 offset_type cu_index)
23747{
23748 int i;
23749
23750 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23751 if (psymtab->dependencies[i]->user != NULL)
23752 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23753 symtab, psyms_seen, cu_index);
23754
23755 write_psymbols (symtab,
23756 psyms_seen,
23757 objfile->global_psymbols.list + psymtab->globals_offset,
23758 psymtab->n_global_syms, cu_index,
23759 0);
23760 write_psymbols (symtab,
23761 psyms_seen,
23762 objfile->static_psymbols.list + psymtab->statics_offset,
23763 psymtab->n_static_syms, cu_index,
23764 1);
23765}
23766
9291a0cd 23767/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23768
9291a0cd
TT
23769static void
23770write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23771{
23772 struct cleanup *cleanup;
bef155c3 23773 char *filename;
1fd400ff
TT
23774 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23775 struct obstack cu_list, types_cu_list;
9291a0cd
TT
23776 int i;
23777 FILE *out_file;
23778 struct mapped_symtab *symtab;
23779 offset_type val, size_of_contents, total_len;
23780 struct stat st;
0a5429f6 23781 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 23782
9291a0cd
TT
23783 if (dwarf2_per_objfile->using_index)
23784 error (_("Cannot use an index to create the index"));
23785
8b70b953
TT
23786 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23787 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23788
260b681b
DE
23789 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23790 return;
23791
4262abfb
JK
23792 if (stat (objfile_name (objfile), &st) < 0)
23793 perror_with_name (objfile_name (objfile));
9291a0cd 23794
4262abfb 23795 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
23796 INDEX_SUFFIX, (char *) NULL);
23797 cleanup = make_cleanup (xfree, filename);
23798
614c279d 23799 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
23800 if (!out_file)
23801 error (_("Can't open `%s' for writing"), filename);
23802
bef155c3 23803 gdb::unlinker unlink_file (filename);
9291a0cd
TT
23804
23805 symtab = create_mapped_symtab ();
23806 make_cleanup (cleanup_mapped_symtab, symtab);
23807
23808 obstack_init (&addr_obstack);
23809 make_cleanup_obstack_free (&addr_obstack);
23810
23811 obstack_init (&cu_list);
23812 make_cleanup_obstack_free (&cu_list);
23813
1fd400ff
TT
23814 obstack_init (&types_cu_list);
23815 make_cleanup_obstack_free (&types_cu_list);
23816
fc4007c9
TT
23817 htab_up psyms_seen (htab_create_alloc (100, htab_hash_pointer,
23818 htab_eq_pointer,
23819 NULL, xcalloc, xfree));
987d643c 23820
0a5429f6
DE
23821 /* While we're scanning CU's create a table that maps a psymtab pointer
23822 (which is what addrmap records) to its index (which is what is recorded
23823 in the index file). This will later be needed to write the address
23824 table. */
fc4007c9
TT
23825 htab_up cu_index_htab (htab_create_alloc (100,
23826 hash_psymtab_cu_index,
23827 eq_psymtab_cu_index,
23828 NULL, xcalloc, xfree));
8d749320
SM
23829 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23830 dwarf2_per_objfile->n_comp_units);
0a5429f6
DE
23831 make_cleanup (xfree, psymtab_cu_index_map);
23832
23833 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23834 work here. Also, the debug_types entries do not appear in
23835 all_comp_units, but only in their own hash table. */
9291a0cd
TT
23836 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23837 {
3e43a32a
MS
23838 struct dwarf2_per_cu_data *per_cu
23839 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23840 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23841 gdb_byte val[8];
0a5429f6
DE
23842 struct psymtab_cu_index_map *map;
23843 void **slot;
9291a0cd 23844
92fac807
JK
23845 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23846 It may be referenced from a local scope but in such case it does not
23847 need to be present in .gdb_index. */
23848 if (psymtab == NULL)
23849 continue;
23850
95554aad 23851 if (psymtab->user == NULL)
fc4007c9
TT
23852 recursively_write_psymbols (objfile, psymtab, symtab,
23853 psyms_seen.get (), i);
9291a0cd 23854
0a5429f6
DE
23855 map = &psymtab_cu_index_map[i];
23856 map->psymtab = psymtab;
23857 map->cu_index = i;
fc4007c9 23858 slot = htab_find_slot (cu_index_htab.get (), map, INSERT);
0a5429f6
DE
23859 gdb_assert (slot != NULL);
23860 gdb_assert (*slot == NULL);
23861 *slot = map;
9291a0cd 23862
b64f50a1
JK
23863 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23864 per_cu->offset.sect_off);
9291a0cd 23865 obstack_grow (&cu_list, val, 8);
e254ef6a 23866 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23867 obstack_grow (&cu_list, val, 8);
23868 }
23869
0a5429f6 23870 /* Dump the address map. */
fc4007c9 23871 write_address_map (objfile, &addr_obstack, cu_index_htab.get ());
0a5429f6 23872
1fd400ff
TT
23873 /* Write out the .debug_type entries, if any. */
23874 if (dwarf2_per_objfile->signatured_types)
23875 {
23876 struct signatured_type_index_data sig_data;
23877
23878 sig_data.objfile = objfile;
23879 sig_data.symtab = symtab;
23880 sig_data.types_list = &types_cu_list;
fc4007c9 23881 sig_data.psyms_seen = psyms_seen.get ();
1fd400ff
TT
23882 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23883 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23884 write_one_signatured_type, &sig_data);
23885 }
23886
156942c7
DE
23887 /* Now that we've processed all symbols we can shrink their cu_indices
23888 lists. */
23889 uniquify_cu_indices (symtab);
23890
9291a0cd
TT
23891 obstack_init (&constant_pool);
23892 make_cleanup_obstack_free (&constant_pool);
23893 obstack_init (&symtab_obstack);
23894 make_cleanup_obstack_free (&symtab_obstack);
23895 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23896
23897 obstack_init (&contents);
23898 make_cleanup_obstack_free (&contents);
1fd400ff 23899 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
23900 total_len = size_of_contents;
23901
23902 /* The version number. */
796a7ff8 23903 val = MAYBE_SWAP (8);
9291a0cd
TT
23904 obstack_grow (&contents, &val, sizeof (val));
23905
23906 /* The offset of the CU list from the start of the file. */
23907 val = MAYBE_SWAP (total_len);
23908 obstack_grow (&contents, &val, sizeof (val));
23909 total_len += obstack_object_size (&cu_list);
23910
1fd400ff
TT
23911 /* The offset of the types CU list from the start of the file. */
23912 val = MAYBE_SWAP (total_len);
23913 obstack_grow (&contents, &val, sizeof (val));
23914 total_len += obstack_object_size (&types_cu_list);
23915
9291a0cd
TT
23916 /* The offset of the address table from the start of the file. */
23917 val = MAYBE_SWAP (total_len);
23918 obstack_grow (&contents, &val, sizeof (val));
23919 total_len += obstack_object_size (&addr_obstack);
23920
23921 /* The offset of the symbol table from the start of the file. */
23922 val = MAYBE_SWAP (total_len);
23923 obstack_grow (&contents, &val, sizeof (val));
23924 total_len += obstack_object_size (&symtab_obstack);
23925
23926 /* The offset of the constant pool from the start of the file. */
23927 val = MAYBE_SWAP (total_len);
23928 obstack_grow (&contents, &val, sizeof (val));
23929 total_len += obstack_object_size (&constant_pool);
23930
23931 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23932
23933 write_obstack (out_file, &contents);
23934 write_obstack (out_file, &cu_list);
1fd400ff 23935 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
23936 write_obstack (out_file, &addr_obstack);
23937 write_obstack (out_file, &symtab_obstack);
23938 write_obstack (out_file, &constant_pool);
23939
23940 fclose (out_file);
23941
bef155c3
TT
23942 /* We want to keep the file. */
23943 unlink_file.keep ();
9291a0cd
TT
23944
23945 do_cleanups (cleanup);
23946}
23947
90476074
TT
23948/* Implementation of the `save gdb-index' command.
23949
23950 Note that the file format used by this command is documented in the
23951 GDB manual. Any changes here must be documented there. */
11570e71 23952
9291a0cd
TT
23953static void
23954save_gdb_index_command (char *arg, int from_tty)
23955{
23956 struct objfile *objfile;
23957
23958 if (!arg || !*arg)
96d19272 23959 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23960
23961 ALL_OBJFILES (objfile)
23962 {
23963 struct stat st;
23964
23965 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23966 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23967 continue;
23968
9a3c8263
SM
23969 dwarf2_per_objfile
23970 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23971 dwarf2_objfile_data_key);
9291a0cd
TT
23972 if (dwarf2_per_objfile)
23973 {
9291a0cd 23974
492d29ea 23975 TRY
9291a0cd
TT
23976 {
23977 write_psymtabs_to_index (objfile, arg);
23978 }
492d29ea
PA
23979 CATCH (except, RETURN_MASK_ERROR)
23980 {
23981 exception_fprintf (gdb_stderr, except,
23982 _("Error while writing index for `%s': "),
23983 objfile_name (objfile));
23984 }
23985 END_CATCH
9291a0cd
TT
23986 }
23987 }
dce234bc
PP
23988}
23989
9291a0cd
TT
23990\f
23991
b4f54984 23992int dwarf_always_disassemble;
9eae7c52
TT
23993
23994static void
b4f54984
DE
23995show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23996 struct cmd_list_element *c, const char *value)
9eae7c52 23997{
3e43a32a
MS
23998 fprintf_filtered (file,
23999 _("Whether to always disassemble "
24000 "DWARF expressions is %s.\n"),
9eae7c52
TT
24001 value);
24002}
24003
900e11f9
JK
24004static void
24005show_check_physname (struct ui_file *file, int from_tty,
24006 struct cmd_list_element *c, const char *value)
24007{
24008 fprintf_filtered (file,
24009 _("Whether to check \"physname\" is %s.\n"),
24010 value);
24011}
24012
6502dd73
DJ
24013void _initialize_dwarf2_read (void);
24014
24015void
24016_initialize_dwarf2_read (void)
24017{
96d19272
JK
24018 struct cmd_list_element *c;
24019
dce234bc 24020 dwarf2_objfile_data_key
c1bd65d0 24021 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 24022
b4f54984
DE
24023 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24024Set DWARF specific variables.\n\
24025Configure DWARF variables such as the cache size"),
24026 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
24027 0/*allow-unknown*/, &maintenance_set_cmdlist);
24028
b4f54984
DE
24029 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24030Show DWARF specific variables\n\
24031Show DWARF variables such as the cache size"),
24032 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
24033 0/*allow-unknown*/, &maintenance_show_cmdlist);
24034
24035 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
24036 &dwarf_max_cache_age, _("\
24037Set the upper bound on the age of cached DWARF compilation units."), _("\
24038Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
24039A higher limit means that cached compilation units will be stored\n\
24040in memory longer, and more total memory will be used. Zero disables\n\
24041caching, which can slow down startup."),
2c5b56ce 24042 NULL,
b4f54984
DE
24043 show_dwarf_max_cache_age,
24044 &set_dwarf_cmdlist,
24045 &show_dwarf_cmdlist);
d97bc12b 24046
9eae7c52 24047 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 24048 &dwarf_always_disassemble, _("\
9eae7c52
TT
24049Set whether `info address' always disassembles DWARF expressions."), _("\
24050Show whether `info address' always disassembles DWARF expressions."), _("\
24051When enabled, DWARF expressions are always printed in an assembly-like\n\
24052syntax. When disabled, expressions will be printed in a more\n\
24053conversational style, when possible."),
24054 NULL,
b4f54984
DE
24055 show_dwarf_always_disassemble,
24056 &set_dwarf_cmdlist,
24057 &show_dwarf_cmdlist);
24058
24059 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24060Set debugging of the DWARF reader."), _("\
24061Show debugging of the DWARF reader."), _("\
24062When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
24063reading and symtab expansion. A value of 1 (one) provides basic\n\
24064information. A value greater than 1 provides more verbose information."),
45cfd468
DE
24065 NULL,
24066 NULL,
24067 &setdebuglist, &showdebuglist);
24068
b4f54984
DE
24069 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24070Set debugging of the DWARF DIE reader."), _("\
24071Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
24072When enabled (non-zero), DIEs are dumped after they are read in.\n\
24073The value is the maximum depth to print."),
ccce17b0
YQ
24074 NULL,
24075 NULL,
24076 &setdebuglist, &showdebuglist);
9291a0cd 24077
27e0867f
DE
24078 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24079Set debugging of the dwarf line reader."), _("\
24080Show debugging of the dwarf line reader."), _("\
24081When enabled (non-zero), line number entries are dumped as they are read in.\n\
24082A value of 1 (one) provides basic information.\n\
24083A value greater than 1 provides more verbose information."),
24084 NULL,
24085 NULL,
24086 &setdebuglist, &showdebuglist);
24087
900e11f9
JK
24088 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24089Set cross-checking of \"physname\" code against demangler."), _("\
24090Show cross-checking of \"physname\" code against demangler."), _("\
24091When enabled, GDB's internal \"physname\" code is checked against\n\
24092the demangler."),
24093 NULL, show_check_physname,
24094 &setdebuglist, &showdebuglist);
24095
e615022a
DE
24096 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24097 no_class, &use_deprecated_index_sections, _("\
24098Set whether to use deprecated gdb_index sections."), _("\
24099Show whether to use deprecated gdb_index sections."), _("\
24100When enabled, deprecated .gdb_index sections are used anyway.\n\
24101Normally they are ignored either because of a missing feature or\n\
24102performance issue.\n\
24103Warning: This option must be enabled before gdb reads the file."),
24104 NULL,
24105 NULL,
24106 &setlist, &showlist);
24107
96d19272 24108 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 24109 _("\
fc1a9d6e 24110Save a gdb-index file.\n\
11570e71 24111Usage: save gdb-index DIRECTORY"),
96d19272
JK
24112 &save_cmdlist);
24113 set_cmd_completer (c, filename_completer);
f1e6e072
TT
24114
24115 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24116 &dwarf2_locexpr_funcs);
24117 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24118 &dwarf2_loclist_funcs);
24119
24120 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24121 &dwarf2_block_frame_base_locexpr_funcs);
24122 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24123 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 24124}
This page took 4.168975 seconds and 4 git commands to generate.