* p-valprint.c (pascal_val_print): Handle set type if range limits
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
6aba47ca 3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4c38e0a4 4 2004, 2005, 2006, 2007, 2008, 2009, 2010
0fb0cc75 5 Free Software Foundation, Inc.
c906108c
SS
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 12 support.
c906108c 13
c5aa993b 14 This file is part of GDB.
c906108c 15
c5aa993b
JM
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
a9762ec7
JB
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
c906108c 20
a9762ec7
JB
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
c906108c 25
c5aa993b 26 You should have received a copy of the GNU General Public License
a9762ec7 27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
28
29#include "defs.h"
30#include "bfd.h"
c906108c
SS
31#include "symtab.h"
32#include "gdbtypes.h"
c906108c 33#include "objfiles.h"
fa8f86ff 34#include "dwarf2.h"
c906108c
SS
35#include "buildsym.h"
36#include "demangle.h"
37#include "expression.h"
d5166ae1 38#include "filenames.h" /* for DOSish file names */
2e276125 39#include "macrotab.h"
c906108c
SS
40#include "language.h"
41#include "complaints.h"
357e46e7 42#include "bcache.h"
4c2df51b
DJ
43#include "dwarf2expr.h"
44#include "dwarf2loc.h"
9219021c 45#include "cp-support.h"
72bf9492 46#include "hashtab.h"
ae038cb0
DJ
47#include "command.h"
48#include "gdbcmd.h"
edb3359d 49#include "block.h"
ff013f42 50#include "addrmap.h"
94af9270
KS
51#include "typeprint.h"
52#include "jv-lang.h"
ccefe4c4 53#include "psympriv.h"
4c2df51b 54
c906108c
SS
55#include <fcntl.h>
56#include "gdb_string.h"
4bdf3d34 57#include "gdb_assert.h"
c906108c 58#include <sys/types.h>
233a11ab
CS
59#ifdef HAVE_ZLIB_H
60#include <zlib.h>
61#endif
dce234bc
PP
62#ifdef HAVE_MMAP
63#include <sys/mman.h>
85d9bd0e
TT
64#ifndef MAP_FAILED
65#define MAP_FAILED ((void *) -1)
66#endif
dce234bc 67#endif
d8151005 68
107d2387 69#if 0
357e46e7 70/* .debug_info header for a compilation unit
c906108c
SS
71 Because of alignment constraints, this structure has padding and cannot
72 be mapped directly onto the beginning of the .debug_info section. */
73typedef struct comp_unit_header
74 {
75 unsigned int length; /* length of the .debug_info
76 contribution */
77 unsigned short version; /* version number -- 2 for DWARF
78 version 2 */
79 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
80 unsigned char addr_size; /* byte size of an address -- 4 */
81 }
82_COMP_UNIT_HEADER;
83#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 84#endif
c906108c 85
c906108c
SS
86/* .debug_line statement program prologue
87 Because of alignment constraints, this structure has padding and cannot
88 be mapped directly onto the beginning of the .debug_info section. */
89typedef struct statement_prologue
90 {
91 unsigned int total_length; /* byte length of the statement
92 information */
93 unsigned short version; /* version number -- 2 for DWARF
94 version 2 */
95 unsigned int prologue_length; /* # bytes between prologue &
96 stmt program */
97 unsigned char minimum_instruction_length; /* byte size of
98 smallest instr */
99 unsigned char default_is_stmt; /* initial value of is_stmt
100 register */
101 char line_base;
102 unsigned char line_range;
103 unsigned char opcode_base; /* number assigned to first special
104 opcode */
105 unsigned char *standard_opcode_lengths;
106 }
107_STATEMENT_PROLOGUE;
108
d97bc12b
DE
109/* When non-zero, dump DIEs after they are read in. */
110static int dwarf2_die_debug = 0;
111
dce234bc
PP
112static int pagesize;
113
df8a16a1
DJ
114/* When set, the file that we're processing is known to have debugging
115 info for C++ namespaces. GCC 3.3.x did not produce this information,
116 but later versions do. */
117
118static int processing_has_namespace_info;
119
6502dd73
DJ
120static const struct objfile_data *dwarf2_objfile_data_key;
121
dce234bc
PP
122struct dwarf2_section_info
123{
124 asection *asection;
125 gdb_byte *buffer;
126 bfd_size_type size;
127 int was_mmapped;
be391dca
TT
128 /* True if we have tried to read this section. */
129 int readin;
dce234bc
PP
130};
131
6502dd73
DJ
132struct dwarf2_per_objfile
133{
dce234bc
PP
134 struct dwarf2_section_info info;
135 struct dwarf2_section_info abbrev;
136 struct dwarf2_section_info line;
dce234bc
PP
137 struct dwarf2_section_info loc;
138 struct dwarf2_section_info macinfo;
139 struct dwarf2_section_info str;
140 struct dwarf2_section_info ranges;
348e048f 141 struct dwarf2_section_info types;
dce234bc
PP
142 struct dwarf2_section_info frame;
143 struct dwarf2_section_info eh_frame;
ae038cb0 144
be391dca
TT
145 /* Back link. */
146 struct objfile *objfile;
147
10b3939b
DJ
148 /* A list of all the compilation units. This is used to locate
149 the target compilation unit of a particular reference. */
ae038cb0
DJ
150 struct dwarf2_per_cu_data **all_comp_units;
151
152 /* The number of compilation units in ALL_COMP_UNITS. */
153 int n_comp_units;
154
155 /* A chain of compilation units that are currently read in, so that
156 they can be freed later. */
157 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5 158
348e048f
DE
159 /* A table mapping .debug_types signatures to its signatured_type entry.
160 This is NULL if the .debug_types section hasn't been read in yet. */
161 htab_t signatured_types;
162
72dca2f5
FR
163 /* A flag indicating wether this objfile has a section loaded at a
164 VMA of 0. */
165 int has_section_at_zero;
6502dd73
DJ
166};
167
168static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c
SS
169
170/* names of the debugging sections */
171
233a11ab
CS
172/* Note that if the debugging section has been compressed, it might
173 have a name like .zdebug_info. */
174
175#define INFO_SECTION "debug_info"
176#define ABBREV_SECTION "debug_abbrev"
177#define LINE_SECTION "debug_line"
233a11ab
CS
178#define LOC_SECTION "debug_loc"
179#define MACINFO_SECTION "debug_macinfo"
180#define STR_SECTION "debug_str"
181#define RANGES_SECTION "debug_ranges"
348e048f 182#define TYPES_SECTION "debug_types"
233a11ab
CS
183#define FRAME_SECTION "debug_frame"
184#define EH_FRAME_SECTION "eh_frame"
c906108c
SS
185
186/* local data types */
187
57349743
JB
188/* We hold several abbreviation tables in memory at the same time. */
189#ifndef ABBREV_HASH_SIZE
190#define ABBREV_HASH_SIZE 121
191#endif
192
107d2387
AC
193/* The data in a compilation unit header, after target2host
194 translation, looks like this. */
c906108c 195struct comp_unit_head
a738430d 196{
c764a876 197 unsigned int length;
a738430d 198 short version;
a738430d
MK
199 unsigned char addr_size;
200 unsigned char signed_addr_p;
9cbfa09e 201 unsigned int abbrev_offset;
57349743 202
a738430d
MK
203 /* Size of file offsets; either 4 or 8. */
204 unsigned int offset_size;
57349743 205
a738430d
MK
206 /* Size of the length field; either 4 or 12. */
207 unsigned int initial_length_size;
57349743 208
a738430d
MK
209 /* Offset to the first byte of this compilation unit header in the
210 .debug_info section, for resolving relative reference dies. */
211 unsigned int offset;
57349743 212
d00adf39
DE
213 /* Offset to first die in this cu from the start of the cu.
214 This will be the first byte following the compilation unit header. */
215 unsigned int first_die_offset;
a738430d 216};
c906108c 217
e7c27a73
DJ
218/* Internal state when decoding a particular compilation unit. */
219struct dwarf2_cu
220{
221 /* The objfile containing this compilation unit. */
222 struct objfile *objfile;
223
d00adf39 224 /* The header of the compilation unit. */
e7c27a73 225 struct comp_unit_head header;
e142c38c 226
d00adf39
DE
227 /* Base address of this compilation unit. */
228 CORE_ADDR base_address;
229
230 /* Non-zero if base_address has been set. */
231 int base_known;
232
e142c38c
DJ
233 struct function_range *first_fn, *last_fn, *cached_fn;
234
235 /* The language we are debugging. */
236 enum language language;
237 const struct language_defn *language_defn;
238
b0f35d58
DL
239 const char *producer;
240
e142c38c
DJ
241 /* The generic symbol table building routines have separate lists for
242 file scope symbols and all all other scopes (local scopes). So
243 we need to select the right one to pass to add_symbol_to_list().
244 We do it by keeping a pointer to the correct list in list_in_scope.
245
246 FIXME: The original dwarf code just treated the file scope as the
247 first local scope, and all other local scopes as nested local
248 scopes, and worked fine. Check to see if we really need to
249 distinguish these in buildsym.c. */
250 struct pending **list_in_scope;
251
f3dd6933
DJ
252 /* DWARF abbreviation table associated with this compilation unit. */
253 struct abbrev_info **dwarf2_abbrevs;
254
255 /* Storage for the abbrev table. */
256 struct obstack abbrev_obstack;
72bf9492
DJ
257
258 /* Hash table holding all the loaded partial DIEs. */
259 htab_t partial_dies;
260
261 /* Storage for things with the same lifetime as this read-in compilation
262 unit, including partial DIEs. */
263 struct obstack comp_unit_obstack;
264
ae038cb0
DJ
265 /* When multiple dwarf2_cu structures are living in memory, this field
266 chains them all together, so that they can be released efficiently.
267 We will probably also want a generation counter so that most-recently-used
268 compilation units are cached... */
269 struct dwarf2_per_cu_data *read_in_chain;
270
271 /* Backchain to our per_cu entry if the tree has been built. */
272 struct dwarf2_per_cu_data *per_cu;
273
f792889a
DJ
274 /* Pointer to the die -> type map. Although it is stored
275 permanently in per_cu, we copy it here to avoid double
276 indirection. */
277 htab_t type_hash;
278
ae038cb0
DJ
279 /* How many compilation units ago was this CU last referenced? */
280 int last_used;
281
10b3939b 282 /* A hash table of die offsets for following references. */
51545339 283 htab_t die_hash;
10b3939b
DJ
284
285 /* Full DIEs if read in. */
286 struct die_info *dies;
287
288 /* A set of pointers to dwarf2_per_cu_data objects for compilation
289 units referenced by this one. Only set during full symbol processing;
290 partial symbol tables do not have dependencies. */
291 htab_t dependencies;
292
cb1df416
DJ
293 /* Header data from the line table, during full symbol processing. */
294 struct line_header *line_header;
295
ae038cb0
DJ
296 /* Mark used when releasing cached dies. */
297 unsigned int mark : 1;
298
299 /* This flag will be set if this compilation unit might include
300 inter-compilation-unit references. */
301 unsigned int has_form_ref_addr : 1;
302
72bf9492
DJ
303 /* This flag will be set if this compilation unit includes any
304 DW_TAG_namespace DIEs. If we know that there are explicit
305 DIEs for namespaces, we don't need to try to infer them
306 from mangled names. */
307 unsigned int has_namespace_info : 1;
e7c27a73
DJ
308};
309
10b3939b
DJ
310/* Persistent data held for a compilation unit, even when not
311 processing it. We put a pointer to this structure in the
312 read_symtab_private field of the psymtab. If we encounter
313 inter-compilation-unit references, we also maintain a sorted
314 list of all compilation units. */
315
ae038cb0
DJ
316struct dwarf2_per_cu_data
317{
348e048f 318 /* The start offset and length of this compilation unit. 2**29-1
ae038cb0 319 bytes should suffice to store the length of any compilation unit
45452591
DE
320 - if it doesn't, GDB will fall over anyway.
321 NOTE: Unlike comp_unit_head.length, this length includes
322 initial_length_size. */
c764a876 323 unsigned int offset;
348e048f 324 unsigned int length : 29;
ae038cb0
DJ
325
326 /* Flag indicating this compilation unit will be read in before
327 any of the current compilation units are processed. */
c764a876 328 unsigned int queued : 1;
ae038cb0 329
5afb4e99
DJ
330 /* This flag will be set if we need to load absolutely all DIEs
331 for this compilation unit, instead of just the ones we think
332 are interesting. It gets set if we look for a DIE in the
333 hash table and don't find it. */
334 unsigned int load_all_dies : 1;
335
348e048f
DE
336 /* Non-zero if this CU is from .debug_types.
337 Otherwise it's from .debug_info. */
338 unsigned int from_debug_types : 1;
339
ae038cb0
DJ
340 /* Set iff currently read in. */
341 struct dwarf2_cu *cu;
1c379e20
DJ
342
343 /* If full symbols for this CU have been read in, then this field
344 holds a map of DIE offsets to types. It isn't always possible
345 to reconstruct this information later, so we have to preserve
346 it. */
1c379e20 347 htab_t type_hash;
10b3939b 348
31ffec48
DJ
349 /* The partial symbol table associated with this compilation unit,
350 or NULL for partial units (which do not have an associated
351 symtab). */
10b3939b 352 struct partial_symtab *psymtab;
ae038cb0
DJ
353};
354
348e048f
DE
355/* Entry in the signatured_types hash table. */
356
357struct signatured_type
358{
359 ULONGEST signature;
360
361 /* Offset in .debug_types of the TU (type_unit) for this type. */
362 unsigned int offset;
363
364 /* Offset in .debug_types of the type defined by this TU. */
365 unsigned int type_offset;
366
367 /* The CU(/TU) of this type. */
368 struct dwarf2_per_cu_data per_cu;
369};
370
93311388
DE
371/* Struct used to pass misc. parameters to read_die_and_children, et. al.
372 which are used for both .debug_info and .debug_types dies.
373 All parameters here are unchanging for the life of the call.
374 This struct exists to abstract away the constant parameters of
375 die reading. */
376
377struct die_reader_specs
378{
379 /* The bfd of this objfile. */
380 bfd* abfd;
381
382 /* The CU of the DIE we are parsing. */
383 struct dwarf2_cu *cu;
384
385 /* Pointer to start of section buffer.
386 This is either the start of .debug_info or .debug_types. */
387 const gdb_byte *buffer;
388};
389
debd256d
JB
390/* The line number information for a compilation unit (found in the
391 .debug_line section) begins with a "statement program header",
392 which contains the following information. */
393struct line_header
394{
395 unsigned int total_length;
396 unsigned short version;
397 unsigned int header_length;
398 unsigned char minimum_instruction_length;
2dc7f7b3 399 unsigned char maximum_ops_per_instruction;
debd256d
JB
400 unsigned char default_is_stmt;
401 int line_base;
402 unsigned char line_range;
403 unsigned char opcode_base;
404
405 /* standard_opcode_lengths[i] is the number of operands for the
406 standard opcode whose value is i. This means that
407 standard_opcode_lengths[0] is unused, and the last meaningful
408 element is standard_opcode_lengths[opcode_base - 1]. */
409 unsigned char *standard_opcode_lengths;
410
411 /* The include_directories table. NOTE! These strings are not
412 allocated with xmalloc; instead, they are pointers into
413 debug_line_buffer. If you try to free them, `free' will get
414 indigestion. */
415 unsigned int num_include_dirs, include_dirs_size;
416 char **include_dirs;
417
418 /* The file_names table. NOTE! These strings are not allocated
419 with xmalloc; instead, they are pointers into debug_line_buffer.
420 Don't try to free them directly. */
421 unsigned int num_file_names, file_names_size;
422 struct file_entry
c906108c 423 {
debd256d
JB
424 char *name;
425 unsigned int dir_index;
426 unsigned int mod_time;
427 unsigned int length;
aaa75496 428 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 429 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
430 } *file_names;
431
432 /* The start and end of the statement program following this
6502dd73 433 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 434 gdb_byte *statement_program_start, *statement_program_end;
debd256d 435};
c906108c
SS
436
437/* When we construct a partial symbol table entry we only
438 need this much information. */
439struct partial_die_info
440 {
72bf9492 441 /* Offset of this DIE. */
c906108c 442 unsigned int offset;
72bf9492
DJ
443
444 /* DWARF-2 tag for this DIE. */
445 ENUM_BITFIELD(dwarf_tag) tag : 16;
446
72bf9492
DJ
447 /* Assorted flags describing the data found in this DIE. */
448 unsigned int has_children : 1;
449 unsigned int is_external : 1;
450 unsigned int is_declaration : 1;
451 unsigned int has_type : 1;
452 unsigned int has_specification : 1;
453 unsigned int has_pc_info : 1;
454
455 /* Flag set if the SCOPE field of this structure has been
456 computed. */
457 unsigned int scope_set : 1;
458
fa4028e9
JB
459 /* Flag set if the DIE has a byte_size attribute. */
460 unsigned int has_byte_size : 1;
461
72bf9492 462 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 463 sometimes a default name for unnamed DIEs. */
c906108c 464 char *name;
72bf9492
DJ
465
466 /* The scope to prepend to our children. This is generally
467 allocated on the comp_unit_obstack, so will disappear
468 when this compilation unit leaves the cache. */
469 char *scope;
470
471 /* The location description associated with this DIE, if any. */
472 struct dwarf_block *locdesc;
473
474 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
475 CORE_ADDR lowpc;
476 CORE_ADDR highpc;
72bf9492 477
93311388 478 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 479 DW_AT_sibling, if any. */
fe1b8b76 480 gdb_byte *sibling;
72bf9492
DJ
481
482 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
483 DW_AT_specification (or DW_AT_abstract_origin or
484 DW_AT_extension). */
485 unsigned int spec_offset;
486
487 /* Pointers to this DIE's parent, first child, and next sibling,
488 if any. */
489 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
490 };
491
492/* This data structure holds the information of an abbrev. */
493struct abbrev_info
494 {
495 unsigned int number; /* number identifying abbrev */
496 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
497 unsigned short has_children; /* boolean */
498 unsigned short num_attrs; /* number of attributes */
c906108c
SS
499 struct attr_abbrev *attrs; /* an array of attribute descriptions */
500 struct abbrev_info *next; /* next in chain */
501 };
502
503struct attr_abbrev
504 {
9d25dd43
DE
505 ENUM_BITFIELD(dwarf_attribute) name : 16;
506 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
507 };
508
b60c80d6
DJ
509/* Attributes have a name and a value */
510struct attribute
511 {
9d25dd43 512 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
513 ENUM_BITFIELD(dwarf_form) form : 15;
514
515 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
516 field should be in u.str (existing only for DW_STRING) but it is kept
517 here for better struct attribute alignment. */
518 unsigned int string_is_canonical : 1;
519
b60c80d6
DJ
520 union
521 {
522 char *str;
523 struct dwarf_block *blk;
43bbcdc2
PH
524 ULONGEST unsnd;
525 LONGEST snd;
b60c80d6 526 CORE_ADDR addr;
348e048f 527 struct signatured_type *signatured_type;
b60c80d6
DJ
528 }
529 u;
530 };
531
c906108c
SS
532/* This data structure holds a complete die structure. */
533struct die_info
534 {
76815b17
DE
535 /* DWARF-2 tag for this DIE. */
536 ENUM_BITFIELD(dwarf_tag) tag : 16;
537
538 /* Number of attributes */
539 unsigned short num_attrs;
540
541 /* Abbrev number */
542 unsigned int abbrev;
543
93311388 544 /* Offset in .debug_info or .debug_types section. */
76815b17 545 unsigned int offset;
78ba4af6
JB
546
547 /* The dies in a compilation unit form an n-ary tree. PARENT
548 points to this die's parent; CHILD points to the first child of
549 this node; and all the children of a given node are chained
550 together via their SIBLING fields, terminated by a die whose
551 tag is zero. */
639d11d3
DC
552 struct die_info *child; /* Its first child, if any. */
553 struct die_info *sibling; /* Its next sibling, if any. */
554 struct die_info *parent; /* Its parent, if any. */
c906108c 555
b60c80d6
DJ
556 /* An array of attributes, with NUM_ATTRS elements. There may be
557 zero, but it's not common and zero-sized arrays are not
558 sufficiently portable C. */
559 struct attribute attrs[1];
c906108c
SS
560 };
561
5fb290d7
DJ
562struct function_range
563{
564 const char *name;
565 CORE_ADDR lowpc, highpc;
566 int seen_line;
567 struct function_range *next;
568};
569
c906108c
SS
570/* Get at parts of an attribute structure */
571
572#define DW_STRING(attr) ((attr)->u.str)
8285870a 573#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
574#define DW_UNSND(attr) ((attr)->u.unsnd)
575#define DW_BLOCK(attr) ((attr)->u.blk)
576#define DW_SND(attr) ((attr)->u.snd)
577#define DW_ADDR(attr) ((attr)->u.addr)
348e048f 578#define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
c906108c
SS
579
580/* Blocks are a bunch of untyped bytes. */
581struct dwarf_block
582 {
583 unsigned int size;
fe1b8b76 584 gdb_byte *data;
c906108c
SS
585 };
586
c906108c
SS
587#ifndef ATTR_ALLOC_CHUNK
588#define ATTR_ALLOC_CHUNK 4
589#endif
590
c906108c
SS
591/* Allocate fields for structs, unions and enums in this size. */
592#ifndef DW_FIELD_ALLOC_CHUNK
593#define DW_FIELD_ALLOC_CHUNK 4
594#endif
595
c906108c
SS
596/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
597 but this would require a corresponding change in unpack_field_as_long
598 and friends. */
599static int bits_per_byte = 8;
600
601/* The routines that read and process dies for a C struct or C++ class
602 pass lists of data member fields and lists of member function fields
603 in an instance of a field_info structure, as defined below. */
604struct field_info
c5aa993b
JM
605 {
606 /* List of data member and baseclasses fields. */
607 struct nextfield
608 {
609 struct nextfield *next;
610 int accessibility;
611 int virtuality;
612 struct field field;
613 }
7d0ccb61 614 *fields, *baseclasses;
c906108c 615
7d0ccb61 616 /* Number of fields (including baseclasses). */
c5aa993b 617 int nfields;
c906108c 618
c5aa993b
JM
619 /* Number of baseclasses. */
620 int nbaseclasses;
c906108c 621
c5aa993b
JM
622 /* Set if the accesibility of one of the fields is not public. */
623 int non_public_fields;
c906108c 624
c5aa993b
JM
625 /* Member function fields array, entries are allocated in the order they
626 are encountered in the object file. */
627 struct nextfnfield
628 {
629 struct nextfnfield *next;
630 struct fn_field fnfield;
631 }
632 *fnfields;
c906108c 633
c5aa993b
JM
634 /* Member function fieldlist array, contains name of possibly overloaded
635 member function, number of overloaded member functions and a pointer
636 to the head of the member function field chain. */
637 struct fnfieldlist
638 {
639 char *name;
640 int length;
641 struct nextfnfield *head;
642 }
643 *fnfieldlists;
c906108c 644
c5aa993b
JM
645 /* Number of entries in the fnfieldlists array. */
646 int nfnfields;
647 };
c906108c 648
10b3939b
DJ
649/* One item on the queue of compilation units to read in full symbols
650 for. */
651struct dwarf2_queue_item
652{
653 struct dwarf2_per_cu_data *per_cu;
654 struct dwarf2_queue_item *next;
655};
656
657/* The current queue. */
658static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
659
ae038cb0
DJ
660/* Loaded secondary compilation units are kept in memory until they
661 have not been referenced for the processing of this many
662 compilation units. Set this to zero to disable caching. Cache
663 sizes of up to at least twenty will improve startup time for
664 typical inter-CU-reference binaries, at an obvious memory cost. */
665static int dwarf2_max_cache_age = 5;
920d2a44
AC
666static void
667show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
668 struct cmd_list_element *c, const char *value)
669{
670 fprintf_filtered (file, _("\
671The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
672 value);
673}
674
ae038cb0 675
c906108c
SS
676/* Various complaints about symbol reading that don't abort the process */
677
4d3c2250
KB
678static void
679dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 680{
4d3c2250 681 complaint (&symfile_complaints,
e2e0b3e5 682 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
683}
684
25e43795
DJ
685static void
686dwarf2_debug_line_missing_file_complaint (void)
687{
688 complaint (&symfile_complaints,
689 _(".debug_line section has line data without a file"));
690}
691
59205f5a
JB
692static void
693dwarf2_debug_line_missing_end_sequence_complaint (void)
694{
695 complaint (&symfile_complaints,
696 _(".debug_line section has line program sequence without an end"));
697}
698
4d3c2250
KB
699static void
700dwarf2_complex_location_expr_complaint (void)
2e276125 701{
e2e0b3e5 702 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
703}
704
4d3c2250
KB
705static void
706dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
707 int arg3)
2e276125 708{
4d3c2250 709 complaint (&symfile_complaints,
e2e0b3e5 710 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
4d3c2250
KB
711 arg2, arg3);
712}
713
714static void
715dwarf2_macros_too_long_complaint (void)
2e276125 716{
4d3c2250 717 complaint (&symfile_complaints,
e2e0b3e5 718 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
719}
720
721static void
722dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 723{
4d3c2250 724 complaint (&symfile_complaints,
e2e0b3e5 725 _("macro debug info contains a malformed macro definition:\n`%s'"),
4d3c2250
KB
726 arg1);
727}
728
729static void
730dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 731{
4d3c2250 732 complaint (&symfile_complaints,
e2e0b3e5 733 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
4d3c2250 734}
c906108c 735
c906108c
SS
736/* local function prototypes */
737
4efb68b1 738static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 739
aaa75496
JB
740static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
741 struct objfile *);
742
743static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
d85a05f0 744 struct die_info *,
aaa75496
JB
745 struct partial_symtab *);
746
c67a9c90 747static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 748
72bf9492
DJ
749static void scan_partial_symbols (struct partial_die_info *,
750 CORE_ADDR *, CORE_ADDR *,
5734ee8b 751 int, struct dwarf2_cu *);
c906108c 752
72bf9492
DJ
753static void add_partial_symbol (struct partial_die_info *,
754 struct dwarf2_cu *);
63d06c5c 755
72bf9492
DJ
756static void add_partial_namespace (struct partial_die_info *pdi,
757 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 758 int need_pc, struct dwarf2_cu *cu);
63d06c5c 759
5d7cb8df
JK
760static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
761 CORE_ADDR *highpc, int need_pc,
762 struct dwarf2_cu *cu);
763
72bf9492
DJ
764static void add_partial_enumeration (struct partial_die_info *enum_pdi,
765 struct dwarf2_cu *cu);
91c24f0a 766
bc30ff58
JB
767static void add_partial_subprogram (struct partial_die_info *pdi,
768 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 769 int need_pc, struct dwarf2_cu *cu);
bc30ff58 770
fe1b8b76 771static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
93311388
DE
772 gdb_byte *buffer, gdb_byte *info_ptr,
773 bfd *abfd, struct dwarf2_cu *cu);
91c24f0a 774
a14ed312 775static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 776
a14ed312 777static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 778
e7c27a73 779static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 780
f3dd6933 781static void dwarf2_free_abbrev_table (void *);
c906108c 782
fe1b8b76 783static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 784 struct dwarf2_cu *);
72bf9492 785
57349743 786static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 787 struct dwarf2_cu *);
c906108c 788
93311388
DE
789static struct partial_die_info *load_partial_dies (bfd *,
790 gdb_byte *, gdb_byte *,
791 int, struct dwarf2_cu *);
72bf9492 792
fe1b8b76 793static gdb_byte *read_partial_die (struct partial_die_info *,
93311388
DE
794 struct abbrev_info *abbrev,
795 unsigned int, bfd *,
796 gdb_byte *, gdb_byte *,
797 struct dwarf2_cu *);
c906108c 798
c764a876 799static struct partial_die_info *find_partial_die (unsigned int,
10b3939b 800 struct dwarf2_cu *);
72bf9492
DJ
801
802static void fixup_partial_die (struct partial_die_info *,
803 struct dwarf2_cu *);
804
fe1b8b76
JB
805static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
806 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 807
fe1b8b76
JB
808static gdb_byte *read_attribute_value (struct attribute *, unsigned,
809 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 810
fe1b8b76 811static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 812
fe1b8b76 813static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 814
fe1b8b76 815static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 816
fe1b8b76 817static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 818
93311388 819static ULONGEST read_8_bytes (bfd *, gdb_byte *);
c906108c 820
fe1b8b76 821static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 822 unsigned int *);
c906108c 823
c764a876
DE
824static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
825
826static LONGEST read_checked_initial_length_and_offset
827 (bfd *, gdb_byte *, const struct comp_unit_head *,
828 unsigned int *, unsigned int *);
613e1657 829
fe1b8b76 830static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
c764a876
DE
831 unsigned int *);
832
833static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
613e1657 834
fe1b8b76 835static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 836
fe1b8b76 837static char *read_string (bfd *, gdb_byte *, unsigned int *);
c906108c 838
fe1b8b76
JB
839static char *read_indirect_string (bfd *, gdb_byte *,
840 const struct comp_unit_head *,
841 unsigned int *);
4bdf3d34 842
fe1b8b76 843static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 844
fe1b8b76 845static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 846
fe1b8b76 847static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 848
e142c38c 849static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 850
e142c38c
DJ
851static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
852 struct dwarf2_cu *);
c906108c 853
348e048f
DE
854static struct attribute *dwarf2_attr_no_follow (struct die_info *,
855 unsigned int,
856 struct dwarf2_cu *);
857
05cf31d1
JB
858static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
859 struct dwarf2_cu *cu);
860
e142c38c 861static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 862
e142c38c 863static struct die_info *die_specification (struct die_info *die,
f2f0e013 864 struct dwarf2_cu **);
63d06c5c 865
debd256d
JB
866static void free_line_header (struct line_header *lh);
867
aaa75496
JB
868static void add_file_name (struct line_header *, char *, unsigned int,
869 unsigned int, unsigned int);
870
debd256d
JB
871static struct line_header *(dwarf_decode_line_header
872 (unsigned int offset,
e7c27a73 873 bfd *abfd, struct dwarf2_cu *cu));
debd256d
JB
874
875static void dwarf_decode_lines (struct line_header *, char *, bfd *,
aaa75496 876 struct dwarf2_cu *, struct partial_symtab *);
c906108c 877
4f1520fb 878static void dwarf2_start_subfile (char *, char *, char *);
c906108c 879
a14ed312 880static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 881 struct dwarf2_cu *);
c906108c 882
a14ed312 883static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 884 struct dwarf2_cu *);
c906108c 885
2df3850c
JM
886static void dwarf2_const_value_data (struct attribute *attr,
887 struct symbol *sym,
888 int bits);
889
e7c27a73 890static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 891
b4ba55a1
JB
892static int need_gnat_info (struct dwarf2_cu *);
893
894static struct type *die_descriptive_type (struct die_info *, struct dwarf2_cu *);
895
896static void set_descriptive_type (struct type *, struct die_info *,
897 struct dwarf2_cu *);
898
e7c27a73
DJ
899static struct type *die_containing_type (struct die_info *,
900 struct dwarf2_cu *);
c906108c 901
e7c27a73 902static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
c906108c 903
f792889a 904static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 905
086ed43d 906static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 907
fe1b8b76
JB
908static char *typename_concat (struct obstack *,
909 const char *prefix,
910 const char *suffix,
987504bb 911 struct dwarf2_cu *);
63d06c5c 912
e7c27a73 913static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 914
348e048f
DE
915static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
916
e7c27a73 917static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 918
e7c27a73 919static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 920
ff013f42
JK
921static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
922 struct dwarf2_cu *, struct partial_symtab *);
923
a14ed312 924static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
925 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
926 struct partial_symtab *);
c906108c 927
fae299cd
DC
928static void get_scope_pc_bounds (struct die_info *,
929 CORE_ADDR *, CORE_ADDR *,
930 struct dwarf2_cu *);
931
801e3a5b
JB
932static void dwarf2_record_block_ranges (struct die_info *, struct block *,
933 CORE_ADDR, struct dwarf2_cu *);
934
a14ed312 935static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 936 struct dwarf2_cu *);
c906108c 937
a14ed312 938static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 939 struct type *, struct dwarf2_cu *);
c906108c 940
a14ed312 941static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 942 struct die_info *, struct type *,
e7c27a73 943 struct dwarf2_cu *);
c906108c 944
a14ed312 945static void dwarf2_attach_fn_fields_to_type (struct field_info *,
e7c27a73 946 struct type *, struct dwarf2_cu *);
c906108c 947
134d01f1 948static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 949
e7c27a73 950static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 951
e7c27a73 952static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 953
5d7cb8df
JK
954static void read_module (struct die_info *die, struct dwarf2_cu *cu);
955
27aa8d6a
SW
956static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
957
38d518c9 958static const char *namespace_name (struct die_info *die,
e142c38c 959 int *is_anonymous, struct dwarf2_cu *);
38d518c9 960
134d01f1 961static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 962
e7c27a73 963static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 964
7ca2d3a3
DL
965static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
966 struct dwarf2_cu *);
967
93311388 968static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
c906108c 969
93311388
DE
970static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
971 gdb_byte *info_ptr,
d97bc12b
DE
972 gdb_byte **new_info_ptr,
973 struct die_info *parent);
974
93311388
DE
975static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
976 gdb_byte *info_ptr,
fe1b8b76 977 gdb_byte **new_info_ptr,
639d11d3
DC
978 struct die_info *parent);
979
93311388
DE
980static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
981 gdb_byte *info_ptr,
fe1b8b76 982 gdb_byte **new_info_ptr,
639d11d3
DC
983 struct die_info *parent);
984
93311388
DE
985static gdb_byte *read_full_die (const struct die_reader_specs *reader,
986 struct die_info **, gdb_byte *,
987 int *);
988
e7c27a73 989static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 990
71c25dea
TT
991static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
992 struct obstack *);
993
e142c38c 994static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 995
e142c38c 996static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 997 struct dwarf2_cu **);
9219021c 998
a14ed312 999static char *dwarf_tag_name (unsigned int);
c906108c 1000
a14ed312 1001static char *dwarf_attr_name (unsigned int);
c906108c 1002
a14ed312 1003static char *dwarf_form_name (unsigned int);
c906108c 1004
a14ed312 1005static char *dwarf_stack_op_name (unsigned int);
c906108c 1006
a14ed312 1007static char *dwarf_bool_name (unsigned int);
c906108c 1008
a14ed312 1009static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
1010
1011#if 0
a14ed312 1012static char *dwarf_cfi_name (unsigned int);
c906108c
SS
1013#endif
1014
f9aca02d 1015static struct die_info *sibling_die (struct die_info *);
c906108c 1016
d97bc12b
DE
1017static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1018
1019static void dump_die_for_error (struct die_info *);
1020
1021static void dump_die_1 (struct ui_file *, int level, int max_level,
1022 struct die_info *);
c906108c 1023
d97bc12b 1024/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1025
51545339 1026static void store_in_ref_table (struct die_info *,
10b3939b 1027 struct dwarf2_cu *);
c906108c 1028
93311388
DE
1029static int is_ref_attr (struct attribute *);
1030
c764a876 1031static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
c906108c 1032
43bbcdc2 1033static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
a02abb62 1034
348e048f
DE
1035static struct die_info *follow_die_ref_or_sig (struct die_info *,
1036 struct attribute *,
1037 struct dwarf2_cu **);
1038
10b3939b
DJ
1039static struct die_info *follow_die_ref (struct die_info *,
1040 struct attribute *,
f2f0e013 1041 struct dwarf2_cu **);
c906108c 1042
348e048f
DE
1043static struct die_info *follow_die_sig (struct die_info *,
1044 struct attribute *,
1045 struct dwarf2_cu **);
1046
1047static void read_signatured_type_at_offset (struct objfile *objfile,
1048 unsigned int offset);
1049
1050static void read_signatured_type (struct objfile *,
1051 struct signatured_type *type_sig);
1052
c906108c
SS
1053/* memory allocation interface */
1054
7b5a2f43 1055static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1056
f3dd6933 1057static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1058
b60c80d6 1059static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1060
e142c38c 1061static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1062
e142c38c
DJ
1063static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1064 struct dwarf2_cu *);
5fb290d7 1065
2e276125 1066static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1067 char *, bfd *, struct dwarf2_cu *);
2e276125 1068
8e19ed76
PS
1069static int attr_form_is_block (struct attribute *);
1070
3690dd37
JB
1071static int attr_form_is_section_offset (struct attribute *);
1072
1073static int attr_form_is_constant (struct attribute *);
1074
93e7bd98
DJ
1075static void dwarf2_symbol_mark_computed (struct attribute *attr,
1076 struct symbol *sym,
1077 struct dwarf2_cu *cu);
4c2df51b 1078
93311388
DE
1079static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1080 struct abbrev_info *abbrev,
1081 struct dwarf2_cu *cu);
4bb7a0a7 1082
72bf9492
DJ
1083static void free_stack_comp_unit (void *);
1084
72bf9492
DJ
1085static hashval_t partial_die_hash (const void *item);
1086
1087static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1088
ae038cb0 1089static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
c764a876 1090 (unsigned int offset, struct objfile *objfile);
ae038cb0
DJ
1091
1092static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
c764a876 1093 (unsigned int offset, struct objfile *objfile);
ae038cb0 1094
93311388
DE
1095static struct dwarf2_cu *alloc_one_comp_unit (struct objfile *objfile);
1096
ae038cb0
DJ
1097static void free_one_comp_unit (void *);
1098
1099static void free_cached_comp_units (void *);
1100
1101static void age_cached_comp_units (void);
1102
1103static void free_one_cached_comp_unit (void *);
1104
f792889a
DJ
1105static struct type *set_die_type (struct die_info *, struct type *,
1106 struct dwarf2_cu *);
1c379e20 1107
ae038cb0
DJ
1108static void create_all_comp_units (struct objfile *);
1109
93311388
DE
1110static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1111 struct objfile *);
10b3939b
DJ
1112
1113static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1114
1115static void dwarf2_add_dependence (struct dwarf2_cu *,
1116 struct dwarf2_per_cu_data *);
1117
ae038cb0
DJ
1118static void dwarf2_mark (struct dwarf2_cu *);
1119
1120static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1121
f792889a 1122static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1123
c906108c
SS
1124/* Try to locate the sections we need for DWARF 2 debugging
1125 information and return true if we have enough to do something. */
1126
1127int
6502dd73 1128dwarf2_has_info (struct objfile *objfile)
c906108c 1129{
be391dca
TT
1130 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1131 if (!dwarf2_per_objfile)
1132 {
1133 /* Initialize per-objfile state. */
1134 struct dwarf2_per_objfile *data
1135 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1136
be391dca
TT
1137 memset (data, 0, sizeof (*data));
1138 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1139 dwarf2_per_objfile = data;
6502dd73 1140
be391dca
TT
1141 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1142 dwarf2_per_objfile->objfile = objfile;
1143 }
1144 return (dwarf2_per_objfile->info.asection != NULL
1145 && dwarf2_per_objfile->abbrev.asection != NULL);
c906108c
SS
1146}
1147
233a11ab
CS
1148/* When loading sections, we can either look for ".<name>", or for
1149 * ".z<name>", which indicates a compressed section. */
1150
1151static int
dce234bc 1152section_is_p (const char *section_name, const char *name)
233a11ab 1153{
dce234bc
PP
1154 return (section_name[0] == '.'
1155 && (strcmp (section_name + 1, name) == 0
1156 || (section_name[1] == 'z'
1157 && strcmp (section_name + 2, name) == 0)));
233a11ab
CS
1158}
1159
c906108c
SS
1160/* This function is mapped across the sections and remembers the
1161 offset and size of each of the debugging sections we are interested
1162 in. */
1163
1164static void
72dca2f5 1165dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
c906108c 1166{
dce234bc 1167 if (section_is_p (sectp->name, INFO_SECTION))
c906108c 1168 {
dce234bc
PP
1169 dwarf2_per_objfile->info.asection = sectp;
1170 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 1171 }
dce234bc 1172 else if (section_is_p (sectp->name, ABBREV_SECTION))
c906108c 1173 {
dce234bc
PP
1174 dwarf2_per_objfile->abbrev.asection = sectp;
1175 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 1176 }
dce234bc 1177 else if (section_is_p (sectp->name, LINE_SECTION))
c906108c 1178 {
dce234bc
PP
1179 dwarf2_per_objfile->line.asection = sectp;
1180 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 1181 }
dce234bc 1182 else if (section_is_p (sectp->name, LOC_SECTION))
c906108c 1183 {
dce234bc
PP
1184 dwarf2_per_objfile->loc.asection = sectp;
1185 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 1186 }
dce234bc 1187 else if (section_is_p (sectp->name, MACINFO_SECTION))
c906108c 1188 {
dce234bc
PP
1189 dwarf2_per_objfile->macinfo.asection = sectp;
1190 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 1191 }
dce234bc 1192 else if (section_is_p (sectp->name, STR_SECTION))
c906108c 1193 {
dce234bc
PP
1194 dwarf2_per_objfile->str.asection = sectp;
1195 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 1196 }
dce234bc 1197 else if (section_is_p (sectp->name, FRAME_SECTION))
b6af0555 1198 {
dce234bc
PP
1199 dwarf2_per_objfile->frame.asection = sectp;
1200 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 1201 }
dce234bc 1202 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
b6af0555 1203 {
3799ccc6 1204 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
9a619af0 1205
3799ccc6
EZ
1206 if (aflag & SEC_HAS_CONTENTS)
1207 {
dce234bc
PP
1208 dwarf2_per_objfile->eh_frame.asection = sectp;
1209 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
3799ccc6 1210 }
b6af0555 1211 }
dce234bc 1212 else if (section_is_p (sectp->name, RANGES_SECTION))
af34e669 1213 {
dce234bc
PP
1214 dwarf2_per_objfile->ranges.asection = sectp;
1215 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 1216 }
348e048f
DE
1217 else if (section_is_p (sectp->name, TYPES_SECTION))
1218 {
1219 dwarf2_per_objfile->types.asection = sectp;
1220 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1221 }
dce234bc 1222
72dca2f5
FR
1223 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1224 && bfd_section_vma (abfd, sectp) == 0)
1225 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1226}
1227
dce234bc
PP
1228/* Decompress a section that was compressed using zlib. Store the
1229 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
233a11ab
CS
1230
1231static void
dce234bc
PP
1232zlib_decompress_section (struct objfile *objfile, asection *sectp,
1233 gdb_byte **outbuf, bfd_size_type *outsize)
1234{
1235 bfd *abfd = objfile->obfd;
1236#ifndef HAVE_ZLIB_H
1237 error (_("Support for zlib-compressed DWARF data (from '%s') "
1238 "is disabled in this copy of GDB"),
1239 bfd_get_filename (abfd));
1240#else
1241 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1242 gdb_byte *compressed_buffer = xmalloc (compressed_size);
affddf13 1243 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
dce234bc
PP
1244 bfd_size_type uncompressed_size;
1245 gdb_byte *uncompressed_buffer;
1246 z_stream strm;
1247 int rc;
1248 int header_size = 12;
1249
1250 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1251 || bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size)
1252 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1253 bfd_get_filename (abfd));
1254
1255 /* Read the zlib header. In this case, it should be "ZLIB" followed
1256 by the uncompressed section size, 8 bytes in big-endian order. */
1257 if (compressed_size < header_size
1258 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1259 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1260 bfd_get_filename (abfd));
1261 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1262 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1263 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1264 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1265 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1266 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1267 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1268 uncompressed_size += compressed_buffer[11];
1269
1270 /* It is possible the section consists of several compressed
1271 buffers concatenated together, so we uncompress in a loop. */
1272 strm.zalloc = NULL;
1273 strm.zfree = NULL;
1274 strm.opaque = NULL;
1275 strm.avail_in = compressed_size - header_size;
1276 strm.next_in = (Bytef*) compressed_buffer + header_size;
1277 strm.avail_out = uncompressed_size;
1278 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1279 uncompressed_size);
1280 rc = inflateInit (&strm);
1281 while (strm.avail_in > 0)
1282 {
1283 if (rc != Z_OK)
1284 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1285 bfd_get_filename (abfd), rc);
1286 strm.next_out = ((Bytef*) uncompressed_buffer
1287 + (uncompressed_size - strm.avail_out));
1288 rc = inflate (&strm, Z_FINISH);
1289 if (rc != Z_STREAM_END)
1290 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1291 bfd_get_filename (abfd), rc);
1292 rc = inflateReset (&strm);
1293 }
1294 rc = inflateEnd (&strm);
1295 if (rc != Z_OK
1296 || strm.avail_out != 0)
1297 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1298 bfd_get_filename (abfd), rc);
1299
affddf13 1300 do_cleanups (cleanup);
dce234bc
PP
1301 *outbuf = uncompressed_buffer;
1302 *outsize = uncompressed_size;
1303#endif
233a11ab
CS
1304}
1305
dce234bc
PP
1306/* Read the contents of the section SECTP from object file specified by
1307 OBJFILE, store info about the section into INFO.
1308 If the section is compressed, uncompress it before returning. */
c906108c 1309
dce234bc
PP
1310static void
1311dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 1312{
dce234bc
PP
1313 bfd *abfd = objfile->obfd;
1314 asection *sectp = info->asection;
1315 gdb_byte *buf, *retbuf;
1316 unsigned char header[4];
c906108c 1317
be391dca
TT
1318 if (info->readin)
1319 return;
dce234bc
PP
1320 info->buffer = NULL;
1321 info->was_mmapped = 0;
be391dca 1322 info->readin = 1;
188dd5d6 1323
dce234bc
PP
1324 if (info->asection == NULL || info->size == 0)
1325 return;
c906108c 1326
dce234bc
PP
1327 /* Check if the file has a 4-byte header indicating compression. */
1328 if (info->size > sizeof (header)
1329 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1330 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1331 {
1332 /* Upon decompression, update the buffer and its size. */
1333 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1334 {
1335 zlib_decompress_section (objfile, sectp, &info->buffer,
1336 &info->size);
1337 return;
1338 }
1339 }
4bdf3d34 1340
dce234bc
PP
1341#ifdef HAVE_MMAP
1342 if (pagesize == 0)
1343 pagesize = getpagesize ();
2e276125 1344
dce234bc
PP
1345 /* Only try to mmap sections which are large enough: we don't want to
1346 waste space due to fragmentation. Also, only try mmap for sections
1347 without relocations. */
1348
1349 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1350 {
1351 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1352 size_t map_length = info->size + sectp->filepos - pg_offset;
1353 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1354 MAP_PRIVATE, pg_offset);
1355
1356 if (retbuf != MAP_FAILED)
1357 {
1358 info->was_mmapped = 1;
1359 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
be391dca
TT
1360#if HAVE_POSIX_MADVISE
1361 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1362#endif
dce234bc
PP
1363 return;
1364 }
1365 }
1366#endif
1367
1368 /* If we get here, we are a normal, not-compressed section. */
1369 info->buffer = buf
1370 = obstack_alloc (&objfile->objfile_obstack, info->size);
1371
1372 /* When debugging .o files, we may need to apply relocations; see
1373 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1374 We never compress sections in .o files, so we only need to
1375 try this when the section is not compressed. */
ac8035ab 1376 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
1377 if (retbuf != NULL)
1378 {
1379 info->buffer = retbuf;
1380 return;
1381 }
1382
1383 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1384 || bfd_bread (buf, info->size, abfd) != info->size)
1385 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1386 bfd_get_filename (abfd));
1387}
1388
1389/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1390 SECTION_NAME. */
af34e669 1391
dce234bc
PP
1392void
1393dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1394 asection **sectp, gdb_byte **bufp,
1395 bfd_size_type *sizep)
1396{
1397 struct dwarf2_per_objfile *data
1398 = objfile_data (objfile, dwarf2_objfile_data_key);
1399 struct dwarf2_section_info *info;
a3b2a86b
TT
1400
1401 /* We may see an objfile without any DWARF, in which case we just
1402 return nothing. */
1403 if (data == NULL)
1404 {
1405 *sectp = NULL;
1406 *bufp = NULL;
1407 *sizep = 0;
1408 return;
1409 }
dce234bc
PP
1410 if (section_is_p (section_name, EH_FRAME_SECTION))
1411 info = &data->eh_frame;
1412 else if (section_is_p (section_name, FRAME_SECTION))
1413 info = &data->frame;
0d53c4c4 1414 else
dce234bc
PP
1415 gdb_assert (0);
1416
1417 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1418 /* We haven't read this section in yet. Do it now. */
1419 dwarf2_read_section (objfile, info);
1420
1421 *sectp = info->asection;
1422 *bufp = info->buffer;
1423 *sizep = info->size;
1424}
1425
1426/* Build a partial symbol table. */
1427
1428void
f29dff0a 1429dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 1430{
f29dff0a 1431 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
1432 {
1433 init_psymbol_list (objfile, 1024);
1434 }
1435
d146bf1e 1436 dwarf2_build_psymtabs_hard (objfile);
c906108c 1437}
c906108c 1438
45452591
DE
1439/* Return TRUE if OFFSET is within CU_HEADER. */
1440
1441static inline int
1442offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
1443{
1444 unsigned int bottom = cu_header->offset;
1445 unsigned int top = (cu_header->offset
1446 + cu_header->length
1447 + cu_header->initial_length_size);
9a619af0 1448
45452591
DE
1449 return (offset >= bottom && offset < top);
1450}
1451
93311388
DE
1452/* Read in the comp unit header information from the debug_info at info_ptr.
1453 NOTE: This leaves members offset, first_die_offset to be filled in
1454 by the caller. */
107d2387 1455
fe1b8b76 1456static gdb_byte *
107d2387 1457read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 1458 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
1459{
1460 int signed_addr;
891d2f0b 1461 unsigned int bytes_read;
c764a876
DE
1462
1463 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
1464 cu_header->initial_length_size = bytes_read;
1465 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 1466 info_ptr += bytes_read;
107d2387
AC
1467 cu_header->version = read_2_bytes (abfd, info_ptr);
1468 info_ptr += 2;
613e1657 1469 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
c764a876 1470 &bytes_read);
613e1657 1471 info_ptr += bytes_read;
107d2387
AC
1472 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1473 info_ptr += 1;
1474 signed_addr = bfd_get_sign_extend_vma (abfd);
1475 if (signed_addr < 0)
8e65ff28 1476 internal_error (__FILE__, __LINE__,
e2e0b3e5 1477 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 1478 cu_header->signed_addr_p = signed_addr;
c764a876 1479
107d2387
AC
1480 return info_ptr;
1481}
1482
fe1b8b76
JB
1483static gdb_byte *
1484partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
93311388 1485 gdb_byte *buffer, unsigned int buffer_size,
72bf9492
DJ
1486 bfd *abfd)
1487{
fe1b8b76 1488 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
1489
1490 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1491
2dc7f7b3 1492 if (header->version != 2 && header->version != 3 && header->version != 4)
8a3fe4f8 1493 error (_("Dwarf Error: wrong version in compilation unit header "
2dc7f7b3
TT
1494 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
1495 bfd_get_filename (abfd));
72bf9492 1496
dce234bc 1497 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
8a3fe4f8
AC
1498 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1499 "(offset 0x%lx + 6) [in module %s]"),
72bf9492 1500 (long) header->abbrev_offset,
93311388 1501 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
1502 bfd_get_filename (abfd));
1503
1504 if (beg_of_comp_unit + header->length + header->initial_length_size
93311388 1505 > buffer + buffer_size)
8a3fe4f8
AC
1506 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1507 "(offset 0x%lx + 0) [in module %s]"),
72bf9492 1508 (long) header->length,
93311388 1509 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
1510 bfd_get_filename (abfd));
1511
1512 return info_ptr;
1513}
1514
348e048f
DE
1515/* Read in the types comp unit header information from .debug_types entry at
1516 types_ptr. The result is a pointer to one past the end of the header. */
1517
1518static gdb_byte *
1519read_type_comp_unit_head (struct comp_unit_head *cu_header,
1520 ULONGEST *signature,
1521 gdb_byte *types_ptr, bfd *abfd)
1522{
348e048f
DE
1523 gdb_byte *initial_types_ptr = types_ptr;
1524
fa238c03
MS
1525 dwarf2_read_section (dwarf2_per_objfile->objfile,
1526 &dwarf2_per_objfile->types);
348e048f
DE
1527 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
1528
1529 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
1530
1531 *signature = read_8_bytes (abfd, types_ptr);
1532 types_ptr += 8;
1533 types_ptr += cu_header->offset_size;
1534 cu_header->first_die_offset = types_ptr - initial_types_ptr;
1535
1536 return types_ptr;
1537}
1538
aaa75496
JB
1539/* Allocate a new partial symtab for file named NAME and mark this new
1540 partial symtab as being an include of PST. */
1541
1542static void
1543dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1544 struct objfile *objfile)
1545{
1546 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1547
1548 subpst->section_offsets = pst->section_offsets;
1549 subpst->textlow = 0;
1550 subpst->texthigh = 0;
1551
1552 subpst->dependencies = (struct partial_symtab **)
1553 obstack_alloc (&objfile->objfile_obstack,
1554 sizeof (struct partial_symtab *));
1555 subpst->dependencies[0] = pst;
1556 subpst->number_of_dependencies = 1;
1557
1558 subpst->globals_offset = 0;
1559 subpst->n_global_syms = 0;
1560 subpst->statics_offset = 0;
1561 subpst->n_static_syms = 0;
1562 subpst->symtab = NULL;
1563 subpst->read_symtab = pst->read_symtab;
1564 subpst->readin = 0;
1565
1566 /* No private part is necessary for include psymtabs. This property
1567 can be used to differentiate between such include psymtabs and
10b3939b 1568 the regular ones. */
58a9656e 1569 subpst->read_symtab_private = NULL;
aaa75496
JB
1570}
1571
1572/* Read the Line Number Program data and extract the list of files
1573 included by the source file represented by PST. Build an include
d85a05f0 1574 partial symtab for each of these included files. */
aaa75496
JB
1575
1576static void
1577dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
d85a05f0 1578 struct die_info *die,
aaa75496
JB
1579 struct partial_symtab *pst)
1580{
1581 struct objfile *objfile = cu->objfile;
1582 bfd *abfd = objfile->obfd;
d85a05f0
DJ
1583 struct line_header *lh = NULL;
1584 struct attribute *attr;
aaa75496 1585
d85a05f0
DJ
1586 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
1587 if (attr)
1588 {
1589 unsigned int line_offset = DW_UNSND (attr);
9a619af0 1590
d85a05f0
DJ
1591 lh = dwarf_decode_line_header (line_offset, abfd, cu);
1592 }
aaa75496
JB
1593 if (lh == NULL)
1594 return; /* No linetable, so no includes. */
1595
1596 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1597
1598 free_line_header (lh);
1599}
1600
348e048f
DE
1601static hashval_t
1602hash_type_signature (const void *item)
1603{
1604 const struct signatured_type *type_sig = item;
9a619af0 1605
348e048f
DE
1606 /* This drops the top 32 bits of the signature, but is ok for a hash. */
1607 return type_sig->signature;
1608}
1609
1610static int
1611eq_type_signature (const void *item_lhs, const void *item_rhs)
1612{
1613 const struct signatured_type *lhs = item_lhs;
1614 const struct signatured_type *rhs = item_rhs;
9a619af0 1615
348e048f
DE
1616 return lhs->signature == rhs->signature;
1617}
1618
1619/* Create the hash table of all entries in the .debug_types section.
1620 The result is zero if there is an error (e.g. missing .debug_types section),
1621 otherwise non-zero. */
1622
1623static int
1624create_debug_types_hash_table (struct objfile *objfile)
1625{
be391dca 1626 gdb_byte *info_ptr;
348e048f
DE
1627 htab_t types_htab;
1628
be391dca
TT
1629 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
1630 info_ptr = dwarf2_per_objfile->types.buffer;
1631
348e048f
DE
1632 if (info_ptr == NULL)
1633 {
1634 dwarf2_per_objfile->signatured_types = NULL;
1635 return 0;
1636 }
1637
1638 types_htab = htab_create_alloc_ex (41,
1639 hash_type_signature,
1640 eq_type_signature,
1641 NULL,
1642 &objfile->objfile_obstack,
1643 hashtab_obstack_allocate,
1644 dummy_obstack_deallocate);
1645
1646 if (dwarf2_die_debug)
1647 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
1648
1649 while (info_ptr < dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
1650 {
1651 unsigned int offset;
1652 unsigned int offset_size;
1653 unsigned int type_offset;
1654 unsigned int length, initial_length_size;
1655 unsigned short version;
1656 ULONGEST signature;
1657 struct signatured_type *type_sig;
1658 void **slot;
1659 gdb_byte *ptr = info_ptr;
1660
1661 offset = ptr - dwarf2_per_objfile->types.buffer;
1662
1663 /* We need to read the type's signature in order to build the hash
1664 table, but we don't need to read anything else just yet. */
1665
1666 /* Sanity check to ensure entire cu is present. */
1667 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
1668 if (ptr + length + initial_length_size
1669 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
1670 {
1671 complaint (&symfile_complaints,
1672 _("debug type entry runs off end of `.debug_types' section, ignored"));
1673 break;
1674 }
1675
1676 offset_size = initial_length_size == 4 ? 4 : 8;
1677 ptr += initial_length_size;
1678 version = bfd_get_16 (objfile->obfd, ptr);
1679 ptr += 2;
1680 ptr += offset_size; /* abbrev offset */
1681 ptr += 1; /* address size */
1682 signature = bfd_get_64 (objfile->obfd, ptr);
1683 ptr += 8;
1684 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
1685
1686 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
1687 memset (type_sig, 0, sizeof (*type_sig));
1688 type_sig->signature = signature;
1689 type_sig->offset = offset;
1690 type_sig->type_offset = type_offset;
1691
1692 slot = htab_find_slot (types_htab, type_sig, INSERT);
1693 gdb_assert (slot != NULL);
1694 *slot = type_sig;
1695
1696 if (dwarf2_die_debug)
1697 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
1698 offset, phex (signature, sizeof (signature)));
1699
1700 info_ptr = info_ptr + initial_length_size + length;
1701 }
1702
1703 dwarf2_per_objfile->signatured_types = types_htab;
1704
1705 return 1;
1706}
1707
1708/* Lookup a signature based type.
1709 Returns NULL if SIG is not present in the table. */
1710
1711static struct signatured_type *
1712lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
1713{
1714 struct signatured_type find_entry, *entry;
1715
1716 if (dwarf2_per_objfile->signatured_types == NULL)
1717 {
1718 complaint (&symfile_complaints,
1719 _("missing `.debug_types' section for DW_FORM_sig8 die"));
1720 return 0;
1721 }
1722
1723 find_entry.signature = sig;
1724 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
1725 return entry;
1726}
1727
d85a05f0
DJ
1728/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
1729
1730static void
1731init_cu_die_reader (struct die_reader_specs *reader,
1732 struct dwarf2_cu *cu)
1733{
1734 reader->abfd = cu->objfile->obfd;
1735 reader->cu = cu;
1736 if (cu->per_cu->from_debug_types)
be391dca
TT
1737 {
1738 gdb_assert (dwarf2_per_objfile->types.readin);
1739 reader->buffer = dwarf2_per_objfile->types.buffer;
1740 }
d85a05f0 1741 else
be391dca
TT
1742 {
1743 gdb_assert (dwarf2_per_objfile->info.readin);
1744 reader->buffer = dwarf2_per_objfile->info.buffer;
1745 }
d85a05f0
DJ
1746}
1747
1748/* Find the base address of the compilation unit for range lists and
1749 location lists. It will normally be specified by DW_AT_low_pc.
1750 In DWARF-3 draft 4, the base address could be overridden by
1751 DW_AT_entry_pc. It's been removed, but GCC still uses this for
1752 compilation units with discontinuous ranges. */
1753
1754static void
1755dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
1756{
1757 struct attribute *attr;
1758
1759 cu->base_known = 0;
1760 cu->base_address = 0;
1761
1762 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
1763 if (attr)
1764 {
1765 cu->base_address = DW_ADDR (attr);
1766 cu->base_known = 1;
1767 }
1768 else
1769 {
1770 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
1771 if (attr)
1772 {
1773 cu->base_address = DW_ADDR (attr);
1774 cu->base_known = 1;
1775 }
1776 }
1777}
1778
348e048f
DE
1779/* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
1780 to combine the common parts.
93311388 1781 Process a compilation unit for a psymtab.
348e048f
DE
1782 BUFFER is a pointer to the beginning of the dwarf section buffer,
1783 either .debug_info or debug_types.
93311388
DE
1784 INFO_PTR is a pointer to the start of the CU.
1785 Returns a pointer to the next CU. */
aaa75496 1786
93311388
DE
1787static gdb_byte *
1788process_psymtab_comp_unit (struct objfile *objfile,
1789 struct dwarf2_per_cu_data *this_cu,
1790 gdb_byte *buffer, gdb_byte *info_ptr,
1791 unsigned int buffer_size)
c906108c 1792{
c906108c 1793 bfd *abfd = objfile->obfd;
93311388 1794 gdb_byte *beg_of_comp_unit = info_ptr;
d85a05f0 1795 struct die_info *comp_unit_die;
c906108c 1796 struct partial_symtab *pst;
5734ee8b 1797 CORE_ADDR baseaddr;
93311388
DE
1798 struct cleanup *back_to_inner;
1799 struct dwarf2_cu cu;
d85a05f0
DJ
1800 int has_children, has_pc_info;
1801 struct attribute *attr;
d85a05f0
DJ
1802 CORE_ADDR best_lowpc = 0, best_highpc = 0;
1803 struct die_reader_specs reader_specs;
c906108c 1804
93311388
DE
1805 memset (&cu, 0, sizeof (cu));
1806 cu.objfile = objfile;
1807 obstack_init (&cu.comp_unit_obstack);
c906108c 1808
93311388 1809 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
ae038cb0 1810
93311388
DE
1811 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
1812 buffer, buffer_size,
1813 abfd);
10b3939b 1814
93311388
DE
1815 /* Complete the cu_header. */
1816 cu.header.offset = beg_of_comp_unit - buffer;
1817 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
ff013f42 1818
93311388 1819 cu.list_in_scope = &file_symbols;
af703f96 1820
328c9494
DJ
1821 /* If this compilation unit was already read in, free the
1822 cached copy in order to read it in again. This is
1823 necessary because we skipped some symbols when we first
1824 read in the compilation unit (see load_partial_dies).
1825 This problem could be avoided, but the benefit is
1826 unclear. */
1827 if (this_cu->cu != NULL)
1828 free_one_cached_comp_unit (this_cu->cu);
1829
1830 /* Note that this is a pointer to our stack frame, being
1831 added to a global data structure. It will be cleaned up
1832 in free_stack_comp_unit when we finish with this
1833 compilation unit. */
1834 this_cu->cu = &cu;
d85a05f0
DJ
1835 cu.per_cu = this_cu;
1836
93311388
DE
1837 /* Read the abbrevs for this compilation unit into a table. */
1838 dwarf2_read_abbrevs (abfd, &cu);
1839 make_cleanup (dwarf2_free_abbrev_table, &cu);
af703f96 1840
93311388 1841 /* Read the compilation unit die. */
348e048f
DE
1842 if (this_cu->from_debug_types)
1843 info_ptr += 8 /*signature*/ + cu.header.offset_size;
d85a05f0
DJ
1844 init_cu_die_reader (&reader_specs, &cu);
1845 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
1846 &has_children);
93311388 1847
348e048f
DE
1848 if (this_cu->from_debug_types)
1849 {
1850 /* offset,length haven't been set yet for type units. */
1851 this_cu->offset = cu.header.offset;
1852 this_cu->length = cu.header.length + cu.header.initial_length_size;
1853 }
d85a05f0 1854 else if (comp_unit_die->tag == DW_TAG_partial_unit)
c906108c 1855 {
93311388
DE
1856 info_ptr = (beg_of_comp_unit + cu.header.length
1857 + cu.header.initial_length_size);
1858 do_cleanups (back_to_inner);
1859 return info_ptr;
1860 }
72bf9492 1861
93311388 1862 /* Set the language we're debugging. */
d85a05f0
DJ
1863 attr = dwarf2_attr (comp_unit_die, DW_AT_language, &cu);
1864 if (attr)
1865 set_cu_language (DW_UNSND (attr), &cu);
1866 else
1867 set_cu_language (language_minimal, &cu);
c906108c 1868
93311388 1869 /* Allocate a new partial symbol table structure. */
d85a05f0 1870 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
93311388 1871 pst = start_psymtab_common (objfile, objfile->section_offsets,
d85a05f0 1872 (attr != NULL) ? DW_STRING (attr) : "",
93311388
DE
1873 /* TEXTLOW and TEXTHIGH are set below. */
1874 0,
1875 objfile->global_psymbols.next,
1876 objfile->static_psymbols.next);
72bf9492 1877
d85a05f0
DJ
1878 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
1879 if (attr != NULL)
1880 pst->dirname = DW_STRING (attr);
72bf9492 1881
e38df1d0 1882 pst->read_symtab_private = this_cu;
72bf9492 1883
93311388 1884 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
e7c27a73 1885
93311388
DE
1886 /* Store the function that reads in the rest of the symbol table */
1887 pst->read_symtab = dwarf2_psymtab_to_symtab;
57349743 1888
93311388 1889 this_cu->psymtab = pst;
c906108c 1890
d85a05f0
DJ
1891 dwarf2_find_base_address (comp_unit_die, &cu);
1892
93311388
DE
1893 /* Possibly set the default values of LOWPC and HIGHPC from
1894 `DW_AT_ranges'. */
d85a05f0
DJ
1895 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
1896 &best_highpc, &cu, pst);
1897 if (has_pc_info == 1 && best_lowpc < best_highpc)
93311388
DE
1898 /* Store the contiguous range if it is not empty; it can be empty for
1899 CUs with no code. */
1900 addrmap_set_empty (objfile->psymtabs_addrmap,
d85a05f0
DJ
1901 best_lowpc + baseaddr,
1902 best_highpc + baseaddr - 1, pst);
93311388
DE
1903
1904 /* Check if comp unit has_children.
1905 If so, read the rest of the partial symbols from this comp unit.
1906 If not, there's no more debug_info for this comp unit. */
d85a05f0 1907 if (has_children)
93311388
DE
1908 {
1909 struct partial_die_info *first_die;
1910 CORE_ADDR lowpc, highpc;
31ffec48 1911
93311388
DE
1912 lowpc = ((CORE_ADDR) -1);
1913 highpc = ((CORE_ADDR) 0);
c906108c 1914
93311388 1915 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
c906108c 1916
93311388 1917 scan_partial_symbols (first_die, &lowpc, &highpc,
d85a05f0 1918 ! has_pc_info, &cu);
57c22c6c 1919
93311388
DE
1920 /* If we didn't find a lowpc, set it to highpc to avoid
1921 complaints from `maint check'. */
1922 if (lowpc == ((CORE_ADDR) -1))
1923 lowpc = highpc;
10b3939b 1924
93311388
DE
1925 /* If the compilation unit didn't have an explicit address range,
1926 then use the information extracted from its child dies. */
d85a05f0 1927 if (! has_pc_info)
93311388 1928 {
d85a05f0
DJ
1929 best_lowpc = lowpc;
1930 best_highpc = highpc;
93311388
DE
1931 }
1932 }
d85a05f0
DJ
1933 pst->textlow = best_lowpc + baseaddr;
1934 pst->texthigh = best_highpc + baseaddr;
c906108c 1935
93311388
DE
1936 pst->n_global_syms = objfile->global_psymbols.next -
1937 (objfile->global_psymbols.list + pst->globals_offset);
1938 pst->n_static_syms = objfile->static_psymbols.next -
1939 (objfile->static_psymbols.list + pst->statics_offset);
1940 sort_pst_symbols (pst);
c906108c 1941
93311388
DE
1942 info_ptr = (beg_of_comp_unit + cu.header.length
1943 + cu.header.initial_length_size);
ae038cb0 1944
348e048f
DE
1945 if (this_cu->from_debug_types)
1946 {
1947 /* It's not clear we want to do anything with stmt lists here.
1948 Waiting to see what gcc ultimately does. */
1949 }
d85a05f0 1950 else
93311388
DE
1951 {
1952 /* Get the list of files included in the current compilation unit,
1953 and build a psymtab for each of them. */
d85a05f0 1954 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
93311388 1955 }
ae038cb0 1956
93311388 1957 do_cleanups (back_to_inner);
ae038cb0 1958
93311388
DE
1959 return info_ptr;
1960}
ff013f42 1961
348e048f
DE
1962/* Traversal function for htab_traverse_noresize.
1963 Process one .debug_types comp-unit. */
1964
1965static int
1966process_type_comp_unit (void **slot, void *info)
1967{
1968 struct signatured_type *entry = (struct signatured_type *) *slot;
1969 struct objfile *objfile = (struct objfile *) info;
1970 struct dwarf2_per_cu_data *this_cu;
1971
1972 this_cu = &entry->per_cu;
1973 this_cu->from_debug_types = 1;
1974
be391dca 1975 gdb_assert (dwarf2_per_objfile->types.readin);
348e048f
DE
1976 process_psymtab_comp_unit (objfile, this_cu,
1977 dwarf2_per_objfile->types.buffer,
1978 dwarf2_per_objfile->types.buffer + entry->offset,
1979 dwarf2_per_objfile->types.size);
1980
1981 return 1;
1982}
1983
1984/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
1985 Build partial symbol tables for the .debug_types comp-units. */
1986
1987static void
1988build_type_psymtabs (struct objfile *objfile)
1989{
1990 if (! create_debug_types_hash_table (objfile))
1991 return;
1992
1993 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
1994 process_type_comp_unit, objfile);
1995}
1996
93311388
DE
1997/* Build the partial symbol table by doing a quick pass through the
1998 .debug_info and .debug_abbrev sections. */
72bf9492 1999
93311388 2000static void
c67a9c90 2001dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 2002{
93311388
DE
2003 gdb_byte *info_ptr;
2004 struct cleanup *back_to;
2005
be391dca 2006 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
93311388 2007 info_ptr = dwarf2_per_objfile->info.buffer;
91c24f0a 2008
93311388
DE
2009 /* Any cached compilation units will be linked by the per-objfile
2010 read_in_chain. Make sure to free them when we're done. */
2011 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 2012
348e048f
DE
2013 build_type_psymtabs (objfile);
2014
93311388 2015 create_all_comp_units (objfile);
c906108c 2016
93311388
DE
2017 objfile->psymtabs_addrmap =
2018 addrmap_create_mutable (&objfile->objfile_obstack);
72bf9492 2019
93311388
DE
2020 /* Since the objects we're extracting from .debug_info vary in
2021 length, only the individual functions to extract them (like
2022 read_comp_unit_head and load_partial_die) can really know whether
2023 the buffer is large enough to hold another complete object.
c906108c 2024
93311388
DE
2025 At the moment, they don't actually check that. If .debug_info
2026 holds just one extra byte after the last compilation unit's dies,
2027 then read_comp_unit_head will happily read off the end of the
2028 buffer. read_partial_die is similarly casual. Those functions
2029 should be fixed.
c906108c 2030
93311388
DE
2031 For this loop condition, simply checking whether there's any data
2032 left at all should be sufficient. */
c906108c 2033
93311388
DE
2034 while (info_ptr < (dwarf2_per_objfile->info.buffer
2035 + dwarf2_per_objfile->info.size))
2036 {
2037 struct dwarf2_per_cu_data *this_cu;
dd373385 2038
93311388
DE
2039 this_cu = dwarf2_find_comp_unit (info_ptr - dwarf2_per_objfile->info.buffer,
2040 objfile);
aaa75496 2041
93311388
DE
2042 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
2043 dwarf2_per_objfile->info.buffer,
2044 info_ptr,
2045 dwarf2_per_objfile->info.size);
c906108c 2046 }
ff013f42
JK
2047
2048 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
2049 &objfile->objfile_obstack);
2050
ae038cb0
DJ
2051 do_cleanups (back_to);
2052}
2053
93311388 2054/* Load the partial DIEs for a secondary CU into memory. */
ae038cb0
DJ
2055
2056static void
93311388
DE
2057load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
2058 struct objfile *objfile)
ae038cb0
DJ
2059{
2060 bfd *abfd = objfile->obfd;
fe1b8b76 2061 gdb_byte *info_ptr, *beg_of_comp_unit;
d85a05f0 2062 struct die_info *comp_unit_die;
ae038cb0 2063 struct dwarf2_cu *cu;
ae038cb0 2064 struct cleanup *back_to;
d85a05f0
DJ
2065 struct attribute *attr;
2066 int has_children;
2067 struct die_reader_specs reader_specs;
ae038cb0 2068
348e048f
DE
2069 gdb_assert (! this_cu->from_debug_types);
2070
be391dca 2071 gdb_assert (dwarf2_per_objfile->info.readin);
dce234bc 2072 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
ae038cb0
DJ
2073 beg_of_comp_unit = info_ptr;
2074
93311388 2075 cu = alloc_one_comp_unit (objfile);
ae038cb0 2076
93311388 2077 /* ??? Missing cleanup for CU? */
ae038cb0 2078
328c9494
DJ
2079 /* Link this compilation unit into the compilation unit tree. */
2080 this_cu->cu = cu;
2081 cu->per_cu = this_cu;
2082 cu->type_hash = this_cu->type_hash;
2083
93311388
DE
2084 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
2085 dwarf2_per_objfile->info.buffer,
2086 dwarf2_per_objfile->info.size,
2087 abfd);
ae038cb0
DJ
2088
2089 /* Complete the cu_header. */
93311388 2090 cu->header.offset = this_cu->offset;
d00adf39 2091 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
ae038cb0
DJ
2092
2093 /* Read the abbrevs for this compilation unit into a table. */
2094 dwarf2_read_abbrevs (abfd, cu);
2095 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2096
2097 /* Read the compilation unit die. */
d85a05f0
DJ
2098 init_cu_die_reader (&reader_specs, cu);
2099 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2100 &has_children);
ae038cb0
DJ
2101
2102 /* Set the language we're debugging. */
d85a05f0
DJ
2103 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
2104 if (attr)
2105 set_cu_language (DW_UNSND (attr), cu);
2106 else
2107 set_cu_language (language_minimal, cu);
ae038cb0 2108
ae038cb0
DJ
2109 /* Check if comp unit has_children.
2110 If so, read the rest of the partial symbols from this comp unit.
2111 If not, there's no more debug_info for this comp unit. */
d85a05f0 2112 if (has_children)
93311388 2113 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
ae038cb0
DJ
2114
2115 do_cleanups (back_to);
2116}
2117
2118/* Create a list of all compilation units in OBJFILE. We do this only
2119 if an inter-comp-unit reference is found; presumably if there is one,
2120 there will be many, and one will occur early in the .debug_info section.
2121 So there's no point in building this list incrementally. */
2122
2123static void
2124create_all_comp_units (struct objfile *objfile)
2125{
2126 int n_allocated;
2127 int n_comp_units;
2128 struct dwarf2_per_cu_data **all_comp_units;
be391dca
TT
2129 gdb_byte *info_ptr;
2130
2131 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
2132 info_ptr = dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
2133
2134 n_comp_units = 0;
2135 n_allocated = 10;
2136 all_comp_units = xmalloc (n_allocated
2137 * sizeof (struct dwarf2_per_cu_data *));
2138
dce234bc 2139 while (info_ptr < dwarf2_per_objfile->info.buffer + dwarf2_per_objfile->info.size)
ae038cb0 2140 {
c764a876 2141 unsigned int length, initial_length_size;
ae038cb0 2142 struct dwarf2_per_cu_data *this_cu;
c764a876 2143 unsigned int offset;
ae038cb0 2144
dce234bc 2145 offset = info_ptr - dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
2146
2147 /* Read just enough information to find out where the next
2148 compilation unit is. */
c764a876
DE
2149 length = read_initial_length (objfile->obfd, info_ptr,
2150 &initial_length_size);
ae038cb0
DJ
2151
2152 /* Save the compilation unit for later lookup. */
2153 this_cu = obstack_alloc (&objfile->objfile_obstack,
2154 sizeof (struct dwarf2_per_cu_data));
2155 memset (this_cu, 0, sizeof (*this_cu));
2156 this_cu->offset = offset;
c764a876 2157 this_cu->length = length + initial_length_size;
ae038cb0
DJ
2158
2159 if (n_comp_units == n_allocated)
2160 {
2161 n_allocated *= 2;
2162 all_comp_units = xrealloc (all_comp_units,
2163 n_allocated
2164 * sizeof (struct dwarf2_per_cu_data *));
2165 }
2166 all_comp_units[n_comp_units++] = this_cu;
2167
2168 info_ptr = info_ptr + this_cu->length;
2169 }
2170
2171 dwarf2_per_objfile->all_comp_units
2172 = obstack_alloc (&objfile->objfile_obstack,
2173 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
2174 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
2175 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
2176 xfree (all_comp_units);
2177 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
2178}
2179
5734ee8b
DJ
2180/* Process all loaded DIEs for compilation unit CU, starting at
2181 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
2182 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
2183 DW_AT_ranges). If NEED_PC is set, then this function will set
2184 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
2185 and record the covered ranges in the addrmap. */
c906108c 2186
72bf9492
DJ
2187static void
2188scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 2189 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 2190{
72bf9492 2191 struct partial_die_info *pdi;
c906108c 2192
91c24f0a
DC
2193 /* Now, march along the PDI's, descending into ones which have
2194 interesting children but skipping the children of the other ones,
2195 until we reach the end of the compilation unit. */
c906108c 2196
72bf9492 2197 pdi = first_die;
91c24f0a 2198
72bf9492
DJ
2199 while (pdi != NULL)
2200 {
2201 fixup_partial_die (pdi, cu);
c906108c 2202
91c24f0a
DC
2203 /* Anonymous namespaces have no name but have interesting
2204 children, so we need to look at them. Ditto for anonymous
2205 enums. */
933c6fe4 2206
72bf9492
DJ
2207 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
2208 || pdi->tag == DW_TAG_enumeration_type)
c906108c 2209 {
72bf9492 2210 switch (pdi->tag)
c906108c
SS
2211 {
2212 case DW_TAG_subprogram:
5734ee8b 2213 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c
SS
2214 break;
2215 case DW_TAG_variable:
2216 case DW_TAG_typedef:
91c24f0a 2217 case DW_TAG_union_type:
72bf9492 2218 if (!pdi->is_declaration)
63d06c5c 2219 {
72bf9492 2220 add_partial_symbol (pdi, cu);
63d06c5c
DC
2221 }
2222 break;
c906108c 2223 case DW_TAG_class_type:
680b30c7 2224 case DW_TAG_interface_type:
c906108c 2225 case DW_TAG_structure_type:
72bf9492 2226 if (!pdi->is_declaration)
c906108c 2227 {
72bf9492 2228 add_partial_symbol (pdi, cu);
c906108c
SS
2229 }
2230 break;
91c24f0a 2231 case DW_TAG_enumeration_type:
72bf9492
DJ
2232 if (!pdi->is_declaration)
2233 add_partial_enumeration (pdi, cu);
c906108c
SS
2234 break;
2235 case DW_TAG_base_type:
a02abb62 2236 case DW_TAG_subrange_type:
c906108c 2237 /* File scope base type definitions are added to the partial
c5aa993b 2238 symbol table. */
72bf9492 2239 add_partial_symbol (pdi, cu);
c906108c 2240 break;
d9fa45fe 2241 case DW_TAG_namespace:
5734ee8b 2242 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 2243 break;
5d7cb8df
JK
2244 case DW_TAG_module:
2245 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
2246 break;
c906108c
SS
2247 default:
2248 break;
2249 }
2250 }
2251
72bf9492
DJ
2252 /* If the die has a sibling, skip to the sibling. */
2253
2254 pdi = pdi->die_sibling;
2255 }
2256}
2257
2258/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 2259
72bf9492 2260 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
2261 name is concatenated with "::" and the partial DIE's name. For
2262 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
2263 Enumerators are an exception; they use the scope of their parent
2264 enumeration type, i.e. the name of the enumeration type is not
2265 prepended to the enumerator.
91c24f0a 2266
72bf9492
DJ
2267 There are two complexities. One is DW_AT_specification; in this
2268 case "parent" means the parent of the target of the specification,
2269 instead of the direct parent of the DIE. The other is compilers
2270 which do not emit DW_TAG_namespace; in this case we try to guess
2271 the fully qualified name of structure types from their members'
2272 linkage names. This must be done using the DIE's children rather
2273 than the children of any DW_AT_specification target. We only need
2274 to do this for structures at the top level, i.e. if the target of
2275 any DW_AT_specification (if any; otherwise the DIE itself) does not
2276 have a parent. */
2277
2278/* Compute the scope prefix associated with PDI's parent, in
2279 compilation unit CU. The result will be allocated on CU's
2280 comp_unit_obstack, or a copy of the already allocated PDI->NAME
2281 field. NULL is returned if no prefix is necessary. */
2282static char *
2283partial_die_parent_scope (struct partial_die_info *pdi,
2284 struct dwarf2_cu *cu)
2285{
2286 char *grandparent_scope;
2287 struct partial_die_info *parent, *real_pdi;
91c24f0a 2288
72bf9492
DJ
2289 /* We need to look at our parent DIE; if we have a DW_AT_specification,
2290 then this means the parent of the specification DIE. */
2291
2292 real_pdi = pdi;
72bf9492 2293 while (real_pdi->has_specification)
10b3939b 2294 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
2295
2296 parent = real_pdi->die_parent;
2297 if (parent == NULL)
2298 return NULL;
2299
2300 if (parent->scope_set)
2301 return parent->scope;
2302
2303 fixup_partial_die (parent, cu);
2304
10b3939b 2305 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 2306
acebe513
UW
2307 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
2308 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
2309 Work around this problem here. */
2310 if (cu->language == language_cplus
2311 && parent->tag == DW_TAG_namespace
2312 && strcmp (parent->name, "::") == 0
2313 && grandparent_scope == NULL)
2314 {
2315 parent->scope = NULL;
2316 parent->scope_set = 1;
2317 return NULL;
2318 }
2319
72bf9492
DJ
2320 if (parent->tag == DW_TAG_namespace
2321 || parent->tag == DW_TAG_structure_type
2322 || parent->tag == DW_TAG_class_type
680b30c7 2323 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
2324 || parent->tag == DW_TAG_union_type
2325 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
2326 {
2327 if (grandparent_scope == NULL)
2328 parent->scope = parent->name;
2329 else
987504bb
JJ
2330 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
2331 parent->name, cu);
72bf9492 2332 }
ceeb3d5a 2333 else if (parent->tag == DW_TAG_enumerator)
72bf9492
DJ
2334 /* Enumerators should not get the name of the enumeration as a prefix. */
2335 parent->scope = grandparent_scope;
2336 else
2337 {
2338 /* FIXME drow/2004-04-01: What should we be doing with
2339 function-local names? For partial symbols, we should probably be
2340 ignoring them. */
2341 complaint (&symfile_complaints,
e2e0b3e5 2342 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
2343 parent->tag, pdi->offset);
2344 parent->scope = grandparent_scope;
c906108c
SS
2345 }
2346
72bf9492
DJ
2347 parent->scope_set = 1;
2348 return parent->scope;
2349}
2350
2351/* Return the fully scoped name associated with PDI, from compilation unit
2352 CU. The result will be allocated with malloc. */
2353static char *
2354partial_die_full_name (struct partial_die_info *pdi,
2355 struct dwarf2_cu *cu)
2356{
2357 char *parent_scope;
2358
2359 parent_scope = partial_die_parent_scope (pdi, cu);
2360 if (parent_scope == NULL)
2361 return NULL;
2362 else
987504bb 2363 return typename_concat (NULL, parent_scope, pdi->name, cu);
c906108c
SS
2364}
2365
2366static void
72bf9492 2367add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 2368{
e7c27a73 2369 struct objfile *objfile = cu->objfile;
c906108c 2370 CORE_ADDR addr = 0;
decbce07 2371 char *actual_name = NULL;
5c4e30ca 2372 const struct partial_symbol *psym = NULL;
e142c38c 2373 CORE_ADDR baseaddr;
72bf9492 2374 int built_actual_name = 0;
e142c38c
DJ
2375
2376 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 2377
94af9270
KS
2378 actual_name = partial_die_full_name (pdi, cu);
2379 if (actual_name)
2380 built_actual_name = 1;
63d06c5c 2381
72bf9492
DJ
2382 if (actual_name == NULL)
2383 actual_name = pdi->name;
2384
c906108c
SS
2385 switch (pdi->tag)
2386 {
2387 case DW_TAG_subprogram:
2cfa0c8d 2388 if (pdi->is_external || cu->language == language_ada)
c906108c 2389 {
2cfa0c8d
JB
2390 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
2391 of the global scope. But in Ada, we want to be able to access
2392 nested procedures globally. So all Ada subprograms are stored
2393 in the global scope. */
38d518c9 2394 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 2395 mst_text, objfile); */
38d518c9 2396 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2397 built_actual_name,
5c4e30ca
DC
2398 VAR_DOMAIN, LOC_BLOCK,
2399 &objfile->global_psymbols,
2400 0, pdi->lowpc + baseaddr,
e142c38c 2401 cu->language, objfile);
c906108c
SS
2402 }
2403 else
2404 {
38d518c9 2405 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 2406 mst_file_text, objfile); */
38d518c9 2407 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2408 built_actual_name,
5c4e30ca
DC
2409 VAR_DOMAIN, LOC_BLOCK,
2410 &objfile->static_psymbols,
2411 0, pdi->lowpc + baseaddr,
e142c38c 2412 cu->language, objfile);
c906108c
SS
2413 }
2414 break;
2415 case DW_TAG_variable:
2416 if (pdi->is_external)
2417 {
2418 /* Global Variable.
2419 Don't enter into the minimal symbol tables as there is
2420 a minimal symbol table entry from the ELF symbols already.
2421 Enter into partial symbol table if it has a location
2422 descriptor or a type.
2423 If the location descriptor is missing, new_symbol will create
2424 a LOC_UNRESOLVED symbol, the address of the variable will then
2425 be determined from the minimal symbol table whenever the variable
2426 is referenced.
2427 The address for the partial symbol table entry is not
2428 used by GDB, but it comes in handy for debugging partial symbol
2429 table building. */
2430
2431 if (pdi->locdesc)
e7c27a73 2432 addr = decode_locdesc (pdi->locdesc, cu);
c906108c 2433 if (pdi->locdesc || pdi->has_type)
38d518c9 2434 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2435 built_actual_name,
5c4e30ca
DC
2436 VAR_DOMAIN, LOC_STATIC,
2437 &objfile->global_psymbols,
2438 0, addr + baseaddr,
e142c38c 2439 cu->language, objfile);
c906108c
SS
2440 }
2441 else
2442 {
2443 /* Static Variable. Skip symbols without location descriptors. */
2444 if (pdi->locdesc == NULL)
decbce07
MS
2445 {
2446 if (built_actual_name)
2447 xfree (actual_name);
2448 return;
2449 }
e7c27a73 2450 addr = decode_locdesc (pdi->locdesc, cu);
38d518c9 2451 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 2452 mst_file_data, objfile); */
38d518c9 2453 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2454 built_actual_name,
5c4e30ca
DC
2455 VAR_DOMAIN, LOC_STATIC,
2456 &objfile->static_psymbols,
2457 0, addr + baseaddr,
e142c38c 2458 cu->language, objfile);
c906108c
SS
2459 }
2460 break;
2461 case DW_TAG_typedef:
2462 case DW_TAG_base_type:
a02abb62 2463 case DW_TAG_subrange_type:
38d518c9 2464 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2465 built_actual_name,
176620f1 2466 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 2467 &objfile->static_psymbols,
e142c38c 2468 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 2469 break;
72bf9492
DJ
2470 case DW_TAG_namespace:
2471 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2472 built_actual_name,
72bf9492
DJ
2473 VAR_DOMAIN, LOC_TYPEDEF,
2474 &objfile->global_psymbols,
2475 0, (CORE_ADDR) 0, cu->language, objfile);
2476 break;
c906108c 2477 case DW_TAG_class_type:
680b30c7 2478 case DW_TAG_interface_type:
c906108c
SS
2479 case DW_TAG_structure_type:
2480 case DW_TAG_union_type:
2481 case DW_TAG_enumeration_type:
fa4028e9
JB
2482 /* Skip external references. The DWARF standard says in the section
2483 about "Structure, Union, and Class Type Entries": "An incomplete
2484 structure, union or class type is represented by a structure,
2485 union or class entry that does not have a byte size attribute
2486 and that has a DW_AT_declaration attribute." */
2487 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
2488 {
2489 if (built_actual_name)
2490 xfree (actual_name);
2491 return;
2492 }
fa4028e9 2493
63d06c5c
DC
2494 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2495 static vs. global. */
38d518c9 2496 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2497 built_actual_name,
176620f1 2498 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
2499 (cu->language == language_cplus
2500 || cu->language == language_java)
63d06c5c
DC
2501 ? &objfile->global_psymbols
2502 : &objfile->static_psymbols,
e142c38c 2503 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 2504
c906108c
SS
2505 break;
2506 case DW_TAG_enumerator:
38d518c9 2507 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2508 built_actual_name,
176620f1 2509 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
2510 (cu->language == language_cplus
2511 || cu->language == language_java)
f6fe98ef
DJ
2512 ? &objfile->global_psymbols
2513 : &objfile->static_psymbols,
e142c38c 2514 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
2515 break;
2516 default:
2517 break;
2518 }
5c4e30ca 2519
72bf9492
DJ
2520 if (built_actual_name)
2521 xfree (actual_name);
c906108c
SS
2522}
2523
5c4e30ca
DC
2524/* Read a partial die corresponding to a namespace; also, add a symbol
2525 corresponding to that namespace to the symbol table. NAMESPACE is
2526 the name of the enclosing namespace. */
91c24f0a 2527
72bf9492
DJ
2528static void
2529add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 2530 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 2531 int need_pc, struct dwarf2_cu *cu)
91c24f0a 2532{
72bf9492 2533 /* Add a symbol for the namespace. */
e7c27a73 2534
72bf9492 2535 add_partial_symbol (pdi, cu);
5c4e30ca
DC
2536
2537 /* Now scan partial symbols in that namespace. */
2538
91c24f0a 2539 if (pdi->has_children)
5734ee8b 2540 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
2541}
2542
5d7cb8df
JK
2543/* Read a partial die corresponding to a Fortran module. */
2544
2545static void
2546add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
2547 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
2548{
2549 /* Now scan partial symbols in that module.
2550
2551 FIXME: Support the separate Fortran module namespaces. */
2552
2553 if (pdi->has_children)
2554 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
2555}
2556
bc30ff58
JB
2557/* Read a partial die corresponding to a subprogram and create a partial
2558 symbol for that subprogram. When the CU language allows it, this
2559 routine also defines a partial symbol for each nested subprogram
2560 that this subprogram contains.
2561
2562 DIE my also be a lexical block, in which case we simply search
2563 recursively for suprograms defined inside that lexical block.
2564 Again, this is only performed when the CU language allows this
2565 type of definitions. */
2566
2567static void
2568add_partial_subprogram (struct partial_die_info *pdi,
2569 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 2570 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
2571{
2572 if (pdi->tag == DW_TAG_subprogram)
2573 {
2574 if (pdi->has_pc_info)
2575 {
2576 if (pdi->lowpc < *lowpc)
2577 *lowpc = pdi->lowpc;
2578 if (pdi->highpc > *highpc)
2579 *highpc = pdi->highpc;
5734ee8b
DJ
2580 if (need_pc)
2581 {
2582 CORE_ADDR baseaddr;
2583 struct objfile *objfile = cu->objfile;
2584
2585 baseaddr = ANOFFSET (objfile->section_offsets,
2586 SECT_OFF_TEXT (objfile));
2587 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
2588 pdi->lowpc + baseaddr,
2589 pdi->highpc - 1 + baseaddr,
5734ee8b
DJ
2590 cu->per_cu->psymtab);
2591 }
bc30ff58 2592 if (!pdi->is_declaration)
e8d05480
JB
2593 /* Ignore subprogram DIEs that do not have a name, they are
2594 illegal. Do not emit a complaint at this point, we will
2595 do so when we convert this psymtab into a symtab. */
2596 if (pdi->name)
2597 add_partial_symbol (pdi, cu);
bc30ff58
JB
2598 }
2599 }
2600
2601 if (! pdi->has_children)
2602 return;
2603
2604 if (cu->language == language_ada)
2605 {
2606 pdi = pdi->die_child;
2607 while (pdi != NULL)
2608 {
2609 fixup_partial_die (pdi, cu);
2610 if (pdi->tag == DW_TAG_subprogram
2611 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 2612 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
2613 pdi = pdi->die_sibling;
2614 }
2615 }
2616}
2617
72bf9492
DJ
2618/* See if we can figure out if the class lives in a namespace. We do
2619 this by looking for a member function; its demangled name will
2620 contain namespace info, if there is any. */
63d06c5c 2621
72bf9492
DJ
2622static void
2623guess_structure_name (struct partial_die_info *struct_pdi,
2624 struct dwarf2_cu *cu)
63d06c5c 2625{
987504bb
JJ
2626 if ((cu->language == language_cplus
2627 || cu->language == language_java)
72bf9492 2628 && cu->has_namespace_info == 0
63d06c5c
DC
2629 && struct_pdi->has_children)
2630 {
63d06c5c
DC
2631 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2632 what template types look like, because the demangler
2633 frequently doesn't give the same name as the debug info. We
2634 could fix this by only using the demangled name to get the
134d01f1 2635 prefix (but see comment in read_structure_type). */
63d06c5c 2636
72bf9492 2637 struct partial_die_info *real_pdi;
5d51ca54 2638
72bf9492
DJ
2639 /* If this DIE (this DIE's specification, if any) has a parent, then
2640 we should not do this. We'll prepend the parent's fully qualified
2641 name when we create the partial symbol. */
5d51ca54 2642
72bf9492 2643 real_pdi = struct_pdi;
72bf9492 2644 while (real_pdi->has_specification)
10b3939b 2645 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
63d06c5c 2646
72bf9492
DJ
2647 if (real_pdi->die_parent != NULL)
2648 return;
63d06c5c 2649 }
63d06c5c
DC
2650}
2651
91c24f0a
DC
2652/* Read a partial die corresponding to an enumeration type. */
2653
72bf9492
DJ
2654static void
2655add_partial_enumeration (struct partial_die_info *enum_pdi,
2656 struct dwarf2_cu *cu)
91c24f0a 2657{
72bf9492 2658 struct partial_die_info *pdi;
91c24f0a
DC
2659
2660 if (enum_pdi->name != NULL)
72bf9492
DJ
2661 add_partial_symbol (enum_pdi, cu);
2662
2663 pdi = enum_pdi->die_child;
2664 while (pdi)
91c24f0a 2665 {
72bf9492 2666 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 2667 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 2668 else
72bf9492
DJ
2669 add_partial_symbol (pdi, cu);
2670 pdi = pdi->die_sibling;
91c24f0a 2671 }
91c24f0a
DC
2672}
2673
4bb7a0a7
DJ
2674/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2675 Return the corresponding abbrev, or NULL if the number is zero (indicating
2676 an empty DIE). In either case *BYTES_READ will be set to the length of
2677 the initial number. */
2678
2679static struct abbrev_info *
fe1b8b76 2680peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 2681 struct dwarf2_cu *cu)
4bb7a0a7
DJ
2682{
2683 bfd *abfd = cu->objfile->obfd;
2684 unsigned int abbrev_number;
2685 struct abbrev_info *abbrev;
2686
2687 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2688
2689 if (abbrev_number == 0)
2690 return NULL;
2691
2692 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2693 if (!abbrev)
2694 {
8a3fe4f8 2695 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
4bb7a0a7
DJ
2696 bfd_get_filename (abfd));
2697 }
2698
2699 return abbrev;
2700}
2701
93311388
DE
2702/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
2703 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
2704 DIE. Any children of the skipped DIEs will also be skipped. */
2705
fe1b8b76 2706static gdb_byte *
93311388 2707skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
2708{
2709 struct abbrev_info *abbrev;
2710 unsigned int bytes_read;
2711
2712 while (1)
2713 {
2714 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2715 if (abbrev == NULL)
2716 return info_ptr + bytes_read;
2717 else
93311388 2718 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4bb7a0a7
DJ
2719 }
2720}
2721
93311388
DE
2722/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
2723 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
2724 abbrev corresponding to that skipped uleb128 should be passed in
2725 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2726 children. */
2727
fe1b8b76 2728static gdb_byte *
93311388
DE
2729skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
2730 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4bb7a0a7
DJ
2731{
2732 unsigned int bytes_read;
2733 struct attribute attr;
2734 bfd *abfd = cu->objfile->obfd;
2735 unsigned int form, i;
2736
2737 for (i = 0; i < abbrev->num_attrs; i++)
2738 {
2739 /* The only abbrev we care about is DW_AT_sibling. */
2740 if (abbrev->attrs[i].name == DW_AT_sibling)
2741 {
2742 read_attribute (&attr, &abbrev->attrs[i],
2743 abfd, info_ptr, cu);
2744 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 2745 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 2746 else
93311388 2747 return buffer + dwarf2_get_ref_die_offset (&attr);
4bb7a0a7
DJ
2748 }
2749
2750 /* If it isn't DW_AT_sibling, skip this attribute. */
2751 form = abbrev->attrs[i].form;
2752 skip_attribute:
2753 switch (form)
2754 {
4bb7a0a7 2755 case DW_FORM_ref_addr:
ae411497
TT
2756 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
2757 and later it is offset sized. */
2758 if (cu->header.version == 2)
2759 info_ptr += cu->header.addr_size;
2760 else
2761 info_ptr += cu->header.offset_size;
2762 break;
2763 case DW_FORM_addr:
4bb7a0a7
DJ
2764 info_ptr += cu->header.addr_size;
2765 break;
2766 case DW_FORM_data1:
2767 case DW_FORM_ref1:
2768 case DW_FORM_flag:
2769 info_ptr += 1;
2770 break;
2dc7f7b3
TT
2771 case DW_FORM_flag_present:
2772 break;
4bb7a0a7
DJ
2773 case DW_FORM_data2:
2774 case DW_FORM_ref2:
2775 info_ptr += 2;
2776 break;
2777 case DW_FORM_data4:
2778 case DW_FORM_ref4:
2779 info_ptr += 4;
2780 break;
2781 case DW_FORM_data8:
2782 case DW_FORM_ref8:
348e048f 2783 case DW_FORM_sig8:
4bb7a0a7
DJ
2784 info_ptr += 8;
2785 break;
2786 case DW_FORM_string:
2787 read_string (abfd, info_ptr, &bytes_read);
2788 info_ptr += bytes_read;
2789 break;
2dc7f7b3 2790 case DW_FORM_sec_offset:
4bb7a0a7
DJ
2791 case DW_FORM_strp:
2792 info_ptr += cu->header.offset_size;
2793 break;
2dc7f7b3 2794 case DW_FORM_exprloc:
4bb7a0a7
DJ
2795 case DW_FORM_block:
2796 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2797 info_ptr += bytes_read;
2798 break;
2799 case DW_FORM_block1:
2800 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2801 break;
2802 case DW_FORM_block2:
2803 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2804 break;
2805 case DW_FORM_block4:
2806 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2807 break;
2808 case DW_FORM_sdata:
2809 case DW_FORM_udata:
2810 case DW_FORM_ref_udata:
2811 info_ptr = skip_leb128 (abfd, info_ptr);
2812 break;
2813 case DW_FORM_indirect:
2814 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2815 info_ptr += bytes_read;
2816 /* We need to continue parsing from here, so just go back to
2817 the top. */
2818 goto skip_attribute;
2819
2820 default:
8a3fe4f8 2821 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4bb7a0a7
DJ
2822 dwarf_form_name (form),
2823 bfd_get_filename (abfd));
2824 }
2825 }
2826
2827 if (abbrev->has_children)
93311388 2828 return skip_children (buffer, info_ptr, cu);
4bb7a0a7
DJ
2829 else
2830 return info_ptr;
2831}
2832
93311388
DE
2833/* Locate ORIG_PDI's sibling.
2834 INFO_PTR should point to the start of the next DIE after ORIG_PDI
2835 in BUFFER. */
91c24f0a 2836
fe1b8b76 2837static gdb_byte *
93311388
DE
2838locate_pdi_sibling (struct partial_die_info *orig_pdi,
2839 gdb_byte *buffer, gdb_byte *info_ptr,
e7c27a73 2840 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
2841{
2842 /* Do we know the sibling already? */
72bf9492 2843
91c24f0a
DC
2844 if (orig_pdi->sibling)
2845 return orig_pdi->sibling;
2846
2847 /* Are there any children to deal with? */
2848
2849 if (!orig_pdi->has_children)
2850 return info_ptr;
2851
4bb7a0a7 2852 /* Skip the children the long way. */
91c24f0a 2853
93311388 2854 return skip_children (buffer, info_ptr, cu);
91c24f0a
DC
2855}
2856
c906108c
SS
2857/* Expand this partial symbol table into a full symbol table. */
2858
2859static void
fba45db2 2860dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2861{
2862 /* FIXME: This is barely more than a stub. */
2863 if (pst != NULL)
2864 {
2865 if (pst->readin)
2866 {
8a3fe4f8 2867 warning (_("bug: psymtab for %s is already read in."), pst->filename);
c906108c
SS
2868 }
2869 else
2870 {
2871 if (info_verbose)
2872 {
a3f17187 2873 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
c906108c
SS
2874 gdb_flush (gdb_stdout);
2875 }
2876
10b3939b
DJ
2877 /* Restore our global data. */
2878 dwarf2_per_objfile = objfile_data (pst->objfile,
2879 dwarf2_objfile_data_key);
2880
b2ab525c
KB
2881 /* If this psymtab is constructed from a debug-only objfile, the
2882 has_section_at_zero flag will not necessarily be correct. We
2883 can get the correct value for this flag by looking at the data
2884 associated with the (presumably stripped) associated objfile. */
2885 if (pst->objfile->separate_debug_objfile_backlink)
2886 {
2887 struct dwarf2_per_objfile *dpo_backlink
2888 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
2889 dwarf2_objfile_data_key);
9a619af0 2890
b2ab525c
KB
2891 dwarf2_per_objfile->has_section_at_zero
2892 = dpo_backlink->has_section_at_zero;
2893 }
2894
c906108c
SS
2895 psymtab_to_symtab_1 (pst);
2896
2897 /* Finish up the debug error message. */
2898 if (info_verbose)
a3f17187 2899 printf_filtered (_("done.\n"));
c906108c
SS
2900 }
2901 }
2902}
2903
10b3939b
DJ
2904/* Add PER_CU to the queue. */
2905
2906static void
03dd20cc 2907queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b
DJ
2908{
2909 struct dwarf2_queue_item *item;
2910
2911 per_cu->queued = 1;
2912 item = xmalloc (sizeof (*item));
2913 item->per_cu = per_cu;
2914 item->next = NULL;
2915
2916 if (dwarf2_queue == NULL)
2917 dwarf2_queue = item;
2918 else
2919 dwarf2_queue_tail->next = item;
2920
2921 dwarf2_queue_tail = item;
2922}
2923
2924/* Process the queue. */
2925
2926static void
2927process_queue (struct objfile *objfile)
2928{
2929 struct dwarf2_queue_item *item, *next_item;
2930
03dd20cc
DJ
2931 /* The queue starts out with one item, but following a DIE reference
2932 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
2933 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2934 {
31ffec48 2935 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
10b3939b
DJ
2936 process_full_comp_unit (item->per_cu);
2937
2938 item->per_cu->queued = 0;
2939 next_item = item->next;
2940 xfree (item);
2941 }
2942
2943 dwarf2_queue_tail = NULL;
2944}
2945
2946/* Free all allocated queue entries. This function only releases anything if
2947 an error was thrown; if the queue was processed then it would have been
2948 freed as we went along. */
2949
2950static void
2951dwarf2_release_queue (void *dummy)
2952{
2953 struct dwarf2_queue_item *item, *last;
2954
2955 item = dwarf2_queue;
2956 while (item)
2957 {
2958 /* Anything still marked queued is likely to be in an
2959 inconsistent state, so discard it. */
2960 if (item->per_cu->queued)
2961 {
2962 if (item->per_cu->cu != NULL)
2963 free_one_cached_comp_unit (item->per_cu->cu);
2964 item->per_cu->queued = 0;
2965 }
2966
2967 last = item;
2968 item = item->next;
2969 xfree (last);
2970 }
2971
2972 dwarf2_queue = dwarf2_queue_tail = NULL;
2973}
2974
2975/* Read in full symbols for PST, and anything it depends on. */
2976
c906108c 2977static void
fba45db2 2978psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2979{
10b3939b 2980 struct dwarf2_per_cu_data *per_cu;
c906108c 2981 struct cleanup *back_to;
aaa75496
JB
2982 int i;
2983
2984 for (i = 0; i < pst->number_of_dependencies; i++)
2985 if (!pst->dependencies[i]->readin)
2986 {
2987 /* Inform about additional files that need to be read in. */
2988 if (info_verbose)
2989 {
a3f17187 2990 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
2991 fputs_filtered (" ", gdb_stdout);
2992 wrap_here ("");
2993 fputs_filtered ("and ", gdb_stdout);
2994 wrap_here ("");
2995 printf_filtered ("%s...", pst->dependencies[i]->filename);
2996 wrap_here (""); /* Flush output */
2997 gdb_flush (gdb_stdout);
2998 }
2999 psymtab_to_symtab_1 (pst->dependencies[i]);
3000 }
3001
e38df1d0 3002 per_cu = pst->read_symtab_private;
10b3939b
DJ
3003
3004 if (per_cu == NULL)
aaa75496
JB
3005 {
3006 /* It's an include file, no symbols to read for it.
3007 Everything is in the parent symtab. */
3008 pst->readin = 1;
3009 return;
3010 }
c906108c 3011
10b3939b
DJ
3012 back_to = make_cleanup (dwarf2_release_queue, NULL);
3013
03dd20cc 3014 queue_comp_unit (per_cu, pst->objfile);
10b3939b 3015
348e048f
DE
3016 if (per_cu->from_debug_types)
3017 read_signatured_type_at_offset (pst->objfile, per_cu->offset);
3018 else
3019 load_full_comp_unit (per_cu, pst->objfile);
3020
10b3939b
DJ
3021 process_queue (pst->objfile);
3022
3023 /* Age the cache, releasing compilation units that have not
3024 been used recently. */
3025 age_cached_comp_units ();
3026
3027 do_cleanups (back_to);
3028}
3029
93311388 3030/* Load the DIEs associated with PER_CU into memory. */
10b3939b 3031
93311388 3032static void
31ffec48 3033load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b 3034{
31ffec48 3035 bfd *abfd = objfile->obfd;
10b3939b 3036 struct dwarf2_cu *cu;
c764a876 3037 unsigned int offset;
93311388 3038 gdb_byte *info_ptr, *beg_of_comp_unit;
10b3939b
DJ
3039 struct cleanup *back_to, *free_cu_cleanup;
3040 struct attribute *attr;
6502dd73 3041
348e048f
DE
3042 gdb_assert (! per_cu->from_debug_types);
3043
c906108c 3044 /* Set local variables from the partial symbol table info. */
10b3939b 3045 offset = per_cu->offset;
6502dd73 3046
be391dca 3047 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
dce234bc 3048 info_ptr = dwarf2_per_objfile->info.buffer + offset;
93311388 3049 beg_of_comp_unit = info_ptr;
63d06c5c 3050
93311388 3051 cu = alloc_one_comp_unit (objfile);
c906108c 3052
10b3939b
DJ
3053 /* If an error occurs while loading, release our storage. */
3054 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 3055
93311388 3056 /* Read in the comp_unit header. */
10b3939b 3057 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c 3058
93311388
DE
3059 /* Complete the cu_header. */
3060 cu->header.offset = offset;
3061 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3062
3063 /* Read the abbrevs for this compilation unit. */
10b3939b
DJ
3064 dwarf2_read_abbrevs (abfd, cu);
3065 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
3066
93311388 3067 /* Link this compilation unit into the compilation unit tree. */
10b3939b 3068 per_cu->cu = cu;
93311388 3069 cu->per_cu = per_cu;
f792889a 3070 cu->type_hash = per_cu->type_hash;
e142c38c 3071
93311388 3072 cu->dies = read_comp_unit (info_ptr, cu);
10b3939b
DJ
3073
3074 /* We try not to read any attributes in this function, because not
3075 all objfiles needed for references have been loaded yet, and symbol
3076 table processing isn't initialized. But we have to set the CU language,
3077 or we won't be able to build types correctly. */
3078 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
3079 if (attr)
3080 set_cu_language (DW_UNSND (attr), cu);
3081 else
3082 set_cu_language (language_minimal, cu);
3083
a6c727b2
DJ
3084 /* Similarly, if we do not read the producer, we can not apply
3085 producer-specific interpretation. */
3086 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
3087 if (attr)
3088 cu->producer = DW_STRING (attr);
3089
348e048f
DE
3090 /* Link this CU into read_in_chain. */
3091 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3092 dwarf2_per_objfile->read_in_chain = per_cu;
3093
10b3939b 3094 do_cleanups (back_to);
e142c38c 3095
10b3939b
DJ
3096 /* We've successfully allocated this compilation unit. Let our caller
3097 clean it up when finished with it. */
3098 discard_cleanups (free_cu_cleanup);
10b3939b
DJ
3099}
3100
3101/* Generate full symbol information for PST and CU, whose DIEs have
3102 already been loaded into memory. */
3103
3104static void
3105process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
3106{
3107 struct partial_symtab *pst = per_cu->psymtab;
3108 struct dwarf2_cu *cu = per_cu->cu;
3109 struct objfile *objfile = pst->objfile;
10b3939b
DJ
3110 CORE_ADDR lowpc, highpc;
3111 struct symtab *symtab;
3112 struct cleanup *back_to;
10b3939b
DJ
3113 CORE_ADDR baseaddr;
3114
3115 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3116
10b3939b
DJ
3117 buildsym_init ();
3118 back_to = make_cleanup (really_free_pendings, NULL);
3119
3120 cu->list_in_scope = &file_symbols;
c906108c 3121
d85a05f0 3122 dwarf2_find_base_address (cu->dies, cu);
0d53c4c4 3123
c906108c 3124 /* Do line number decoding in read_file_scope () */
10b3939b 3125 process_die (cu->dies, cu);
c906108c 3126
fae299cd
DC
3127 /* Some compilers don't define a DW_AT_high_pc attribute for the
3128 compilation unit. If the DW_AT_high_pc is missing, synthesize
3129 it, by scanning the DIE's below the compilation unit. */
10b3939b 3130 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 3131
613e1657 3132 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
3133
3134 /* Set symtab language to language from DW_AT_language.
3135 If the compilation is from a C file generated by language preprocessors,
3136 do not set the language if it was already deduced by start_subfile. */
3137 if (symtab != NULL
10b3939b 3138 && !(cu->language == language_c && symtab->language != language_c))
c906108c 3139 {
10b3939b 3140 symtab->language = cu->language;
c906108c
SS
3141 }
3142 pst->symtab = symtab;
3143 pst->readin = 1;
c906108c
SS
3144
3145 do_cleanups (back_to);
3146}
3147
3148/* Process a die and its children. */
3149
3150static void
e7c27a73 3151process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
3152{
3153 switch (die->tag)
3154 {
3155 case DW_TAG_padding:
3156 break;
3157 case DW_TAG_compile_unit:
e7c27a73 3158 read_file_scope (die, cu);
c906108c 3159 break;
348e048f
DE
3160 case DW_TAG_type_unit:
3161 read_type_unit_scope (die, cu);
3162 break;
c906108c 3163 case DW_TAG_subprogram:
c906108c 3164 case DW_TAG_inlined_subroutine:
edb3359d 3165 read_func_scope (die, cu);
c906108c
SS
3166 break;
3167 case DW_TAG_lexical_block:
14898363
L
3168 case DW_TAG_try_block:
3169 case DW_TAG_catch_block:
e7c27a73 3170 read_lexical_block_scope (die, cu);
c906108c
SS
3171 break;
3172 case DW_TAG_class_type:
680b30c7 3173 case DW_TAG_interface_type:
c906108c
SS
3174 case DW_TAG_structure_type:
3175 case DW_TAG_union_type:
134d01f1 3176 process_structure_scope (die, cu);
c906108c
SS
3177 break;
3178 case DW_TAG_enumeration_type:
134d01f1 3179 process_enumeration_scope (die, cu);
c906108c 3180 break;
134d01f1 3181
f792889a
DJ
3182 /* These dies have a type, but processing them does not create
3183 a symbol or recurse to process the children. Therefore we can
3184 read them on-demand through read_type_die. */
c906108c 3185 case DW_TAG_subroutine_type:
72019c9c 3186 case DW_TAG_set_type:
c906108c 3187 case DW_TAG_array_type:
c906108c 3188 case DW_TAG_pointer_type:
c906108c 3189 case DW_TAG_ptr_to_member_type:
c906108c 3190 case DW_TAG_reference_type:
c906108c 3191 case DW_TAG_string_type:
c906108c 3192 break;
134d01f1 3193
c906108c 3194 case DW_TAG_base_type:
a02abb62 3195 case DW_TAG_subrange_type:
cb249c71 3196 case DW_TAG_typedef:
134d01f1
DJ
3197 /* Add a typedef symbol for the type definition, if it has a
3198 DW_AT_name. */
f792889a 3199 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 3200 break;
c906108c 3201 case DW_TAG_common_block:
e7c27a73 3202 read_common_block (die, cu);
c906108c
SS
3203 break;
3204 case DW_TAG_common_inclusion:
3205 break;
d9fa45fe 3206 case DW_TAG_namespace:
63d06c5c 3207 processing_has_namespace_info = 1;
e7c27a73 3208 read_namespace (die, cu);
d9fa45fe 3209 break;
5d7cb8df
JK
3210 case DW_TAG_module:
3211 read_module (die, cu);
3212 break;
d9fa45fe
DC
3213 case DW_TAG_imported_declaration:
3214 case DW_TAG_imported_module:
63d06c5c 3215 processing_has_namespace_info = 1;
27aa8d6a
SW
3216 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
3217 || cu->language != language_fortran))
3218 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
3219 dwarf_tag_name (die->tag));
3220 read_import_statement (die, cu);
d9fa45fe 3221 break;
c906108c 3222 default:
e7c27a73 3223 new_symbol (die, NULL, cu);
c906108c
SS
3224 break;
3225 }
3226}
3227
94af9270
KS
3228/* A helper function for dwarf2_compute_name which determines whether DIE
3229 needs to have the name of the scope prepended to the name listed in the
3230 die. */
3231
3232static int
3233die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
3234{
1c809c68
TT
3235 struct attribute *attr;
3236
94af9270
KS
3237 switch (die->tag)
3238 {
3239 case DW_TAG_namespace:
3240 case DW_TAG_typedef:
3241 case DW_TAG_class_type:
3242 case DW_TAG_interface_type:
3243 case DW_TAG_structure_type:
3244 case DW_TAG_union_type:
3245 case DW_TAG_enumeration_type:
3246 case DW_TAG_enumerator:
3247 case DW_TAG_subprogram:
3248 case DW_TAG_member:
3249 return 1;
3250
3251 case DW_TAG_variable:
3252 /* We only need to prefix "globally" visible variables. These include
3253 any variable marked with DW_AT_external or any variable that
3254 lives in a namespace. [Variables in anonymous namespaces
3255 require prefixing, but they are not DW_AT_external.] */
3256
3257 if (dwarf2_attr (die, DW_AT_specification, cu))
3258 {
3259 struct dwarf2_cu *spec_cu = cu;
9a619af0 3260
94af9270
KS
3261 return die_needs_namespace (die_specification (die, &spec_cu),
3262 spec_cu);
3263 }
3264
1c809c68
TT
3265 attr = dwarf2_attr (die, DW_AT_external, cu);
3266 if (attr == NULL && die->parent->tag != DW_TAG_namespace)
3267 return 0;
3268 /* A variable in a lexical block of some kind does not need a
3269 namespace, even though in C++ such variables may be external
3270 and have a mangled name. */
3271 if (die->parent->tag == DW_TAG_lexical_block
3272 || die->parent->tag == DW_TAG_try_block
1054b214
TT
3273 || die->parent->tag == DW_TAG_catch_block
3274 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
3275 return 0;
3276 return 1;
94af9270
KS
3277
3278 default:
3279 return 0;
3280 }
3281}
3282
3283/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
3284 compute the physname for the object, which include a method's
3285 formal parameters (C++/Java) and return type (Java).
3286
af6b7be1
JB
3287 For Ada, return the DIE's linkage name rather than the fully qualified
3288 name. PHYSNAME is ignored..
3289
94af9270
KS
3290 The result is allocated on the objfile_obstack and canonicalized. */
3291
3292static const char *
3293dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
3294 int physname)
3295{
3296 if (name == NULL)
3297 name = dwarf2_name (die, cu);
3298
3299 /* These are the only languages we know how to qualify names in. */
3300 if (name != NULL
3301 && (cu->language == language_cplus || cu->language == language_java))
3302 {
3303 if (die_needs_namespace (die, cu))
3304 {
3305 long length;
3306 char *prefix;
3307 struct ui_file *buf;
3308
3309 prefix = determine_prefix (die, cu);
3310 buf = mem_fileopen ();
3311 if (*prefix != '\0')
3312 {
3313 char *prefixed_name = typename_concat (NULL, prefix, name, cu);
9a619af0 3314
94af9270
KS
3315 fputs_unfiltered (prefixed_name, buf);
3316 xfree (prefixed_name);
3317 }
3318 else
3319 fputs_unfiltered (name ? name : "", buf);
3320
3321 /* For Java and C++ methods, append formal parameter type
3322 information, if PHYSNAME. */
3323
3324 if (physname && die->tag == DW_TAG_subprogram
3325 && (cu->language == language_cplus
3326 || cu->language == language_java))
3327 {
3328 struct type *type = read_type_die (die, cu);
3329
3330 c_type_print_args (type, buf, 0, cu->language);
3331
3332 if (cu->language == language_java)
3333 {
3334 /* For java, we must append the return type to method
3335 names. */
3336 if (die->tag == DW_TAG_subprogram)
3337 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
3338 0, 0);
3339 }
3340 else if (cu->language == language_cplus)
3341 {
3342 if (TYPE_NFIELDS (type) > 0
3343 && TYPE_FIELD_ARTIFICIAL (type, 0)
3344 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0))))
3345 fputs_unfiltered (" const", buf);
3346 }
3347 }
3348
3349 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
3350 &length);
3351 ui_file_delete (buf);
3352
3353 if (cu->language == language_cplus)
3354 {
3355 char *cname
3356 = dwarf2_canonicalize_name (name, cu,
3357 &cu->objfile->objfile_obstack);
9a619af0 3358
94af9270
KS
3359 if (cname != NULL)
3360 name = cname;
3361 }
3362 }
3363 }
af6b7be1
JB
3364 else if (cu->language == language_ada)
3365 {
3366 /* For Ada unit, we prefer the linkage name over the name, as
3367 the former contains the exported name, which the user expects
3368 to be able to reference. Ideally, we want the user to be able
3369 to reference this entity using either natural or linkage name,
3370 but we haven't started looking at this enhancement yet. */
3371 struct attribute *attr;
3372
31ef98ae
TT
3373 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
3374 if (attr == NULL)
3375 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
af6b7be1
JB
3376 if (attr && DW_STRING (attr))
3377 name = DW_STRING (attr);
3378 }
94af9270
KS
3379
3380 return name;
3381}
3382
0114d602
DJ
3383/* Return the fully qualified name of DIE, based on its DW_AT_name.
3384 If scope qualifiers are appropriate they will be added. The result
3385 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
3386 not have a name. NAME may either be from a previous call to
3387 dwarf2_name or NULL.
3388
3389 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
3390
3391static const char *
94af9270 3392dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 3393{
94af9270
KS
3394 return dwarf2_compute_name (name, die, cu, 0);
3395}
0114d602 3396
94af9270
KS
3397/* Construct a physname for the given DIE in CU. NAME may either be
3398 from a previous call to dwarf2_name or NULL. The result will be
3399 allocated on the objfile_objstack or NULL if the DIE does not have a
3400 name.
0114d602 3401
94af9270 3402 The output string will be canonicalized (if C++/Java). */
0114d602 3403
94af9270
KS
3404static const char *
3405dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
3406{
3407 return dwarf2_compute_name (name, die, cu, 1);
0114d602
DJ
3408}
3409
27aa8d6a
SW
3410/* Read the import statement specified by the given die and record it. */
3411
3412static void
3413read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
3414{
3415 struct attribute *import_attr;
3416 struct die_info *imported_die;
de4affc9 3417 struct dwarf2_cu *imported_cu;
27aa8d6a 3418 const char *imported_name;
794684b6 3419 const char *imported_name_prefix;
13387711
SW
3420 const char *canonical_name;
3421 const char *import_alias;
3422 const char *imported_declaration = NULL;
794684b6 3423 const char *import_prefix;
13387711
SW
3424
3425 char *temp;
27aa8d6a
SW
3426
3427 import_attr = dwarf2_attr (die, DW_AT_import, cu);
3428 if (import_attr == NULL)
3429 {
3430 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
3431 dwarf_tag_name (die->tag));
3432 return;
3433 }
3434
de4affc9
CC
3435 imported_cu = cu;
3436 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
3437 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
3438 if (imported_name == NULL)
3439 {
3440 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
3441
3442 The import in the following code:
3443 namespace A
3444 {
3445 typedef int B;
3446 }
3447
3448 int main ()
3449 {
3450 using A::B;
3451 B b;
3452 return b;
3453 }
3454
3455 ...
3456 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
3457 <52> DW_AT_decl_file : 1
3458 <53> DW_AT_decl_line : 6
3459 <54> DW_AT_import : <0x75>
3460 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
3461 <59> DW_AT_name : B
3462 <5b> DW_AT_decl_file : 1
3463 <5c> DW_AT_decl_line : 2
3464 <5d> DW_AT_type : <0x6e>
3465 ...
3466 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
3467 <76> DW_AT_byte_size : 4
3468 <77> DW_AT_encoding : 5 (signed)
3469
3470 imports the wrong die ( 0x75 instead of 0x58 ).
3471 This case will be ignored until the gcc bug is fixed. */
3472 return;
3473 }
3474
82856980
SW
3475 /* Figure out the local name after import. */
3476 import_alias = dwarf2_name (die, cu);
27aa8d6a 3477
794684b6
SW
3478 /* Figure out where the statement is being imported to. */
3479 import_prefix = determine_prefix (die, cu);
3480
3481 /* Figure out what the scope of the imported die is and prepend it
3482 to the name of the imported die. */
de4affc9 3483 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 3484
13387711 3485 if (imported_die->tag != DW_TAG_namespace)
794684b6 3486 {
13387711
SW
3487 imported_declaration = imported_name;
3488 canonical_name = imported_name_prefix;
794684b6 3489 }
13387711 3490 else if (strlen (imported_name_prefix) > 0)
794684b6 3491 {
13387711
SW
3492 temp = alloca (strlen (imported_name_prefix)
3493 + 2 + strlen (imported_name) + 1);
3494 strcpy (temp, imported_name_prefix);
3495 strcat (temp, "::");
3496 strcat (temp, imported_name);
3497 canonical_name = temp;
794684b6 3498 }
13387711
SW
3499 else
3500 canonical_name = imported_name;
794684b6 3501
c0cc3a76
SW
3502 cp_add_using_directive (import_prefix,
3503 canonical_name,
3504 import_alias,
13387711 3505 imported_declaration,
c0cc3a76 3506 &cu->objfile->objfile_obstack);
27aa8d6a
SW
3507}
3508
5fb290d7 3509static void
e142c38c 3510initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 3511{
e142c38c 3512 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
3513}
3514
cb1df416
DJ
3515static void
3516free_cu_line_header (void *arg)
3517{
3518 struct dwarf2_cu *cu = arg;
3519
3520 free_line_header (cu->line_header);
3521 cu->line_header = NULL;
3522}
3523
c906108c 3524static void
e7c27a73 3525read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3526{
e7c27a73 3527 struct objfile *objfile = cu->objfile;
debd256d 3528 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 3529 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
3530 CORE_ADDR highpc = ((CORE_ADDR) 0);
3531 struct attribute *attr;
e1024ff1 3532 char *name = NULL;
c906108c
SS
3533 char *comp_dir = NULL;
3534 struct die_info *child_die;
3535 bfd *abfd = objfile->obfd;
debd256d 3536 struct line_header *line_header = 0;
e142c38c
DJ
3537 CORE_ADDR baseaddr;
3538
3539 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 3540
fae299cd 3541 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
3542
3543 /* If we didn't find a lowpc, set it to highpc to avoid complaints
3544 from finish_block. */
2acceee2 3545 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
3546 lowpc = highpc;
3547 lowpc += baseaddr;
3548 highpc += baseaddr;
3549
39cbfefa
DJ
3550 /* Find the filename. Do not use dwarf2_name here, since the filename
3551 is not a source language identifier. */
e142c38c 3552 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
3553 if (attr)
3554 {
3555 name = DW_STRING (attr);
3556 }
e1024ff1 3557
e142c38c 3558 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
c906108c 3559 if (attr)
e1024ff1
DJ
3560 comp_dir = DW_STRING (attr);
3561 else if (name != NULL && IS_ABSOLUTE_PATH (name))
c906108c 3562 {
e1024ff1
DJ
3563 comp_dir = ldirname (name);
3564 if (comp_dir != NULL)
3565 make_cleanup (xfree, comp_dir);
3566 }
3567 if (comp_dir != NULL)
3568 {
3569 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3570 directory, get rid of it. */
3571 char *cp = strchr (comp_dir, ':');
c906108c 3572
e1024ff1
DJ
3573 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3574 comp_dir = cp + 1;
c906108c
SS
3575 }
3576
e1024ff1
DJ
3577 if (name == NULL)
3578 name = "<unknown>";
3579
e142c38c 3580 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
3581 if (attr)
3582 {
e142c38c 3583 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
3584 }
3585
b0f35d58
DL
3586 attr = dwarf2_attr (die, DW_AT_producer, cu);
3587 if (attr)
3588 cu->producer = DW_STRING (attr);
303b6f5d 3589
c906108c
SS
3590 /* We assume that we're processing GCC output. */
3591 processing_gcc_compilation = 2;
c906108c 3592
df8a16a1
DJ
3593 processing_has_namespace_info = 0;
3594
c906108c
SS
3595 start_symtab (name, comp_dir, lowpc);
3596 record_debugformat ("DWARF 2");
303b6f5d 3597 record_producer (cu->producer);
c906108c 3598
e142c38c 3599 initialize_cu_func_list (cu);
c906108c 3600
cb1df416
DJ
3601 /* Decode line number information if present. We do this before
3602 processing child DIEs, so that the line header table is available
3603 for DW_AT_decl_file. */
e142c38c 3604 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
3605 if (attr)
3606 {
debd256d 3607 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 3608 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
3609 if (line_header)
3610 {
cb1df416
DJ
3611 cu->line_header = line_header;
3612 make_cleanup (free_cu_line_header, cu);
aaa75496 3613 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 3614 }
5fb290d7 3615 }
debd256d 3616
cb1df416
DJ
3617 /* Process all dies in compilation unit. */
3618 if (die->child != NULL)
3619 {
3620 child_die = die->child;
3621 while (child_die && child_die->tag)
3622 {
3623 process_die (child_die, cu);
3624 child_die = sibling_die (child_die);
3625 }
3626 }
3627
2e276125
JB
3628 /* Decode macro information, if present. Dwarf 2 macro information
3629 refers to information in the line number info statement program
3630 header, so we can only read it if we've read the header
3631 successfully. */
e142c38c 3632 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 3633 if (attr && line_header)
2e276125
JB
3634 {
3635 unsigned int macro_offset = DW_UNSND (attr);
9a619af0 3636
2e276125 3637 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 3638 comp_dir, abfd, cu);
2e276125 3639 }
debd256d 3640 do_cleanups (back_to);
5fb290d7
DJ
3641}
3642
348e048f
DE
3643/* For TUs we want to skip the first top level sibling if it's not the
3644 actual type being defined by this TU. In this case the first top
3645 level sibling is there to provide context only. */
3646
3647static void
3648read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
3649{
3650 struct objfile *objfile = cu->objfile;
3651 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3652 CORE_ADDR lowpc;
3653 struct attribute *attr;
3654 char *name = NULL;
3655 char *comp_dir = NULL;
3656 struct die_info *child_die;
3657 bfd *abfd = objfile->obfd;
348e048f
DE
3658
3659 /* start_symtab needs a low pc, but we don't really have one.
3660 Do what read_file_scope would do in the absence of such info. */
3661 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3662
3663 /* Find the filename. Do not use dwarf2_name here, since the filename
3664 is not a source language identifier. */
3665 attr = dwarf2_attr (die, DW_AT_name, cu);
3666 if (attr)
3667 name = DW_STRING (attr);
3668
3669 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
3670 if (attr)
3671 comp_dir = DW_STRING (attr);
3672 else if (name != NULL && IS_ABSOLUTE_PATH (name))
3673 {
3674 comp_dir = ldirname (name);
3675 if (comp_dir != NULL)
3676 make_cleanup (xfree, comp_dir);
3677 }
3678
3679 if (name == NULL)
3680 name = "<unknown>";
3681
3682 attr = dwarf2_attr (die, DW_AT_language, cu);
3683 if (attr)
3684 set_cu_language (DW_UNSND (attr), cu);
3685
3686 /* This isn't technically needed today. It is done for symmetry
3687 with read_file_scope. */
3688 attr = dwarf2_attr (die, DW_AT_producer, cu);
3689 if (attr)
3690 cu->producer = DW_STRING (attr);
3691
3692 /* We assume that we're processing GCC output. */
3693 processing_gcc_compilation = 2;
3694
3695 processing_has_namespace_info = 0;
3696
3697 start_symtab (name, comp_dir, lowpc);
3698 record_debugformat ("DWARF 2");
3699 record_producer (cu->producer);
3700
3701 /* Process the dies in the type unit. */
3702 if (die->child == NULL)
3703 {
3704 dump_die_for_error (die);
3705 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
3706 bfd_get_filename (abfd));
3707 }
3708
3709 child_die = die->child;
3710
3711 while (child_die && child_die->tag)
3712 {
3713 process_die (child_die, cu);
3714
3715 child_die = sibling_die (child_die);
3716 }
3717
3718 do_cleanups (back_to);
3719}
3720
5fb290d7 3721static void
e142c38c
DJ
3722add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
3723 struct dwarf2_cu *cu)
5fb290d7
DJ
3724{
3725 struct function_range *thisfn;
3726
3727 thisfn = (struct function_range *)
7b5a2f43 3728 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
3729 thisfn->name = name;
3730 thisfn->lowpc = lowpc;
3731 thisfn->highpc = highpc;
3732 thisfn->seen_line = 0;
3733 thisfn->next = NULL;
3734
e142c38c
DJ
3735 if (cu->last_fn == NULL)
3736 cu->first_fn = thisfn;
5fb290d7 3737 else
e142c38c 3738 cu->last_fn->next = thisfn;
5fb290d7 3739
e142c38c 3740 cu->last_fn = thisfn;
c906108c
SS
3741}
3742
d389af10
JK
3743/* qsort helper for inherit_abstract_dies. */
3744
3745static int
3746unsigned_int_compar (const void *ap, const void *bp)
3747{
3748 unsigned int a = *(unsigned int *) ap;
3749 unsigned int b = *(unsigned int *) bp;
3750
3751 return (a > b) - (b > a);
3752}
3753
3754/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3755 Inherit only the children of the DW_AT_abstract_origin DIE not being already
3756 referenced by DW_AT_abstract_origin from the children of the current DIE. */
3757
3758static void
3759inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
3760{
3761 struct die_info *child_die;
3762 unsigned die_children_count;
3763 /* CU offsets which were referenced by children of the current DIE. */
3764 unsigned *offsets;
3765 unsigned *offsets_end, *offsetp;
3766 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
3767 struct die_info *origin_die;
3768 /* Iterator of the ORIGIN_DIE children. */
3769 struct die_info *origin_child_die;
3770 struct cleanup *cleanups;
3771 struct attribute *attr;
3772
3773 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
3774 if (!attr)
3775 return;
3776
3777 origin_die = follow_die_ref (die, attr, &cu);
edb3359d
DJ
3778 if (die->tag != origin_die->tag
3779 && !(die->tag == DW_TAG_inlined_subroutine
3780 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
3781 complaint (&symfile_complaints,
3782 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
3783 die->offset, origin_die->offset);
3784
3785 child_die = die->child;
3786 die_children_count = 0;
3787 while (child_die && child_die->tag)
3788 {
3789 child_die = sibling_die (child_die);
3790 die_children_count++;
3791 }
3792 offsets = xmalloc (sizeof (*offsets) * die_children_count);
3793 cleanups = make_cleanup (xfree, offsets);
3794
3795 offsets_end = offsets;
3796 child_die = die->child;
3797 while (child_die && child_die->tag)
3798 {
c38f313d
DJ
3799 /* For each CHILD_DIE, find the corresponding child of
3800 ORIGIN_DIE. If there is more than one layer of
3801 DW_AT_abstract_origin, follow them all; there shouldn't be,
3802 but GCC versions at least through 4.4 generate this (GCC PR
3803 40573). */
3804 struct die_info *child_origin_die = child_die;
9a619af0 3805
c38f313d
DJ
3806 while (1)
3807 {
3808 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin, cu);
3809 if (attr == NULL)
3810 break;
3811 child_origin_die = follow_die_ref (child_origin_die, attr, &cu);
3812 }
3813
d389af10
JK
3814 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
3815 counterpart may exist. */
c38f313d 3816 if (child_origin_die != child_die)
d389af10 3817 {
edb3359d
DJ
3818 if (child_die->tag != child_origin_die->tag
3819 && !(child_die->tag == DW_TAG_inlined_subroutine
3820 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
3821 complaint (&symfile_complaints,
3822 _("Child DIE 0x%x and its abstract origin 0x%x have "
3823 "different tags"), child_die->offset,
3824 child_origin_die->offset);
c38f313d
DJ
3825 if (child_origin_die->parent != origin_die)
3826 complaint (&symfile_complaints,
3827 _("Child DIE 0x%x and its abstract origin 0x%x have "
3828 "different parents"), child_die->offset,
3829 child_origin_die->offset);
3830 else
3831 *offsets_end++ = child_origin_die->offset;
d389af10
JK
3832 }
3833 child_die = sibling_die (child_die);
3834 }
3835 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
3836 unsigned_int_compar);
3837 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
3838 if (offsetp[-1] == *offsetp)
3839 complaint (&symfile_complaints, _("Multiple children of DIE 0x%x refer "
3840 "to DIE 0x%x as their abstract origin"),
3841 die->offset, *offsetp);
3842
3843 offsetp = offsets;
3844 origin_child_die = origin_die->child;
3845 while (origin_child_die && origin_child_die->tag)
3846 {
3847 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
3848 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
3849 offsetp++;
3850 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
3851 {
3852 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
3853 process_die (origin_child_die, cu);
3854 }
3855 origin_child_die = sibling_die (origin_child_die);
3856 }
3857
3858 do_cleanups (cleanups);
3859}
3860
c906108c 3861static void
e7c27a73 3862read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3863{
e7c27a73 3864 struct objfile *objfile = cu->objfile;
52f0bd74 3865 struct context_stack *new;
c906108c
SS
3866 CORE_ADDR lowpc;
3867 CORE_ADDR highpc;
3868 struct die_info *child_die;
edb3359d 3869 struct attribute *attr, *call_line, *call_file;
c906108c 3870 char *name;
e142c38c 3871 CORE_ADDR baseaddr;
801e3a5b 3872 struct block *block;
edb3359d
DJ
3873 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
3874
3875 if (inlined_func)
3876 {
3877 /* If we do not have call site information, we can't show the
3878 caller of this inlined function. That's too confusing, so
3879 only use the scope for local variables. */
3880 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
3881 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
3882 if (call_line == NULL || call_file == NULL)
3883 {
3884 read_lexical_block_scope (die, cu);
3885 return;
3886 }
3887 }
c906108c 3888
e142c38c
DJ
3889 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3890
94af9270 3891 name = dwarf2_name (die, cu);
c906108c 3892
e8d05480
JB
3893 /* Ignore functions with missing or empty names. These are actually
3894 illegal according to the DWARF standard. */
3895 if (name == NULL)
3896 {
3897 complaint (&symfile_complaints,
3898 _("missing name for subprogram DIE at %d"), die->offset);
3899 return;
3900 }
3901
3902 /* Ignore functions with missing or invalid low and high pc attributes. */
3903 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
3904 {
3905 complaint (&symfile_complaints,
3906 _("cannot get low and high bounds for subprogram DIE at %d"),
3907 die->offset);
3908 return;
3909 }
c906108c
SS
3910
3911 lowpc += baseaddr;
3912 highpc += baseaddr;
3913
5fb290d7 3914 /* Record the function range for dwarf_decode_lines. */
e142c38c 3915 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 3916
c906108c 3917 new = push_context (0, lowpc);
f792889a 3918 new->name = new_symbol (die, read_type_die (die, cu), cu);
4c2df51b 3919
4cecd739
DJ
3920 /* If there is a location expression for DW_AT_frame_base, record
3921 it. */
e142c38c 3922 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 3923 if (attr)
c034e007
AC
3924 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
3925 expression is being recorded directly in the function's symbol
3926 and not in a separate frame-base object. I guess this hack is
3927 to avoid adding some sort of frame-base adjunct/annex to the
3928 function's symbol :-(. The problem with doing this is that it
3929 results in a function symbol with a location expression that
3930 has nothing to do with the location of the function, ouch! The
3931 relationship should be: a function's symbol has-a frame base; a
3932 frame-base has-a location expression. */
e7c27a73 3933 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 3934
e142c38c 3935 cu->list_in_scope = &local_symbols;
c906108c 3936
639d11d3 3937 if (die->child != NULL)
c906108c 3938 {
639d11d3 3939 child_die = die->child;
c906108c
SS
3940 while (child_die && child_die->tag)
3941 {
e7c27a73 3942 process_die (child_die, cu);
c906108c
SS
3943 child_die = sibling_die (child_die);
3944 }
3945 }
3946
d389af10
JK
3947 inherit_abstract_dies (die, cu);
3948
4a811a97
UW
3949 /* If we have a DW_AT_specification, we might need to import using
3950 directives from the context of the specification DIE. See the
3951 comment in determine_prefix. */
3952 if (cu->language == language_cplus
3953 && dwarf2_attr (die, DW_AT_specification, cu))
3954 {
3955 struct dwarf2_cu *spec_cu = cu;
3956 struct die_info *spec_die = die_specification (die, &spec_cu);
3957
3958 while (spec_die)
3959 {
3960 child_die = spec_die->child;
3961 while (child_die && child_die->tag)
3962 {
3963 if (child_die->tag == DW_TAG_imported_module)
3964 process_die (child_die, spec_cu);
3965 child_die = sibling_die (child_die);
3966 }
3967
3968 /* In some cases, GCC generates specification DIEs that
3969 themselves contain DW_AT_specification attributes. */
3970 spec_die = die_specification (spec_die, &spec_cu);
3971 }
3972 }
3973
c906108c
SS
3974 new = pop_context ();
3975 /* Make a block for the local symbols within. */
801e3a5b
JB
3976 block = finish_block (new->name, &local_symbols, new->old_blocks,
3977 lowpc, highpc, objfile);
3978
df8a16a1
DJ
3979 /* For C++, set the block's scope. */
3980 if (cu->language == language_cplus)
3981 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
0114d602 3982 determine_prefix (die, cu),
df8a16a1
DJ
3983 processing_has_namespace_info);
3984
801e3a5b
JB
3985 /* If we have address ranges, record them. */
3986 dwarf2_record_block_ranges (die, block, baseaddr, cu);
208d8187
JB
3987
3988 /* In C++, we can have functions nested inside functions (e.g., when
3989 a function declares a class that has methods). This means that
3990 when we finish processing a function scope, we may need to go
3991 back to building a containing block's symbol lists. */
3992 local_symbols = new->locals;
3993 param_symbols = new->params;
27aa8d6a 3994 using_directives = new->using_directives;
208d8187 3995
921e78cf
JB
3996 /* If we've finished processing a top-level function, subsequent
3997 symbols go in the file symbol list. */
3998 if (outermost_context_p ())
e142c38c 3999 cu->list_in_scope = &file_symbols;
c906108c
SS
4000}
4001
4002/* Process all the DIES contained within a lexical block scope. Start
4003 a new scope, process the dies, and then close the scope. */
4004
4005static void
e7c27a73 4006read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4007{
e7c27a73 4008 struct objfile *objfile = cu->objfile;
52f0bd74 4009 struct context_stack *new;
c906108c
SS
4010 CORE_ADDR lowpc, highpc;
4011 struct die_info *child_die;
e142c38c
DJ
4012 CORE_ADDR baseaddr;
4013
4014 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
4015
4016 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
4017 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
4018 as multiple lexical blocks? Handling children in a sane way would
4019 be nasty. Might be easier to properly extend generic blocks to
4020 describe ranges. */
d85a05f0 4021 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
4022 return;
4023 lowpc += baseaddr;
4024 highpc += baseaddr;
4025
4026 push_context (0, lowpc);
639d11d3 4027 if (die->child != NULL)
c906108c 4028 {
639d11d3 4029 child_die = die->child;
c906108c
SS
4030 while (child_die && child_die->tag)
4031 {
e7c27a73 4032 process_die (child_die, cu);
c906108c
SS
4033 child_die = sibling_die (child_die);
4034 }
4035 }
4036 new = pop_context ();
4037
8540c487 4038 if (local_symbols != NULL || using_directives != NULL)
c906108c 4039 {
801e3a5b
JB
4040 struct block *block
4041 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
4042 highpc, objfile);
4043
4044 /* Note that recording ranges after traversing children, as we
4045 do here, means that recording a parent's ranges entails
4046 walking across all its children's ranges as they appear in
4047 the address map, which is quadratic behavior.
4048
4049 It would be nicer to record the parent's ranges before
4050 traversing its children, simply overriding whatever you find
4051 there. But since we don't even decide whether to create a
4052 block until after we've traversed its children, that's hard
4053 to do. */
4054 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
4055 }
4056 local_symbols = new->locals;
27aa8d6a 4057 using_directives = new->using_directives;
c906108c
SS
4058}
4059
43039443 4060/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
4061 Return 1 if the attributes are present and valid, otherwise, return 0.
4062 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
4063
4064static int
4065dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
4066 CORE_ADDR *high_return, struct dwarf2_cu *cu,
4067 struct partial_symtab *ranges_pst)
43039443
JK
4068{
4069 struct objfile *objfile = cu->objfile;
4070 struct comp_unit_head *cu_header = &cu->header;
4071 bfd *obfd = objfile->obfd;
4072 unsigned int addr_size = cu_header->addr_size;
4073 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
4074 /* Base address selection entry. */
4075 CORE_ADDR base;
4076 int found_base;
4077 unsigned int dummy;
4078 gdb_byte *buffer;
4079 CORE_ADDR marker;
4080 int low_set;
4081 CORE_ADDR low = 0;
4082 CORE_ADDR high = 0;
ff013f42 4083 CORE_ADDR baseaddr;
43039443 4084
d00adf39
DE
4085 found_base = cu->base_known;
4086 base = cu->base_address;
43039443 4087
be391dca 4088 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 4089 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
4090 {
4091 complaint (&symfile_complaints,
4092 _("Offset %d out of bounds for DW_AT_ranges attribute"),
4093 offset);
4094 return 0;
4095 }
dce234bc 4096 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
4097
4098 /* Read in the largest possible address. */
4099 marker = read_address (obfd, buffer, cu, &dummy);
4100 if ((marker & mask) == mask)
4101 {
4102 /* If we found the largest possible address, then
4103 read the base address. */
4104 base = read_address (obfd, buffer + addr_size, cu, &dummy);
4105 buffer += 2 * addr_size;
4106 offset += 2 * addr_size;
4107 found_base = 1;
4108 }
4109
4110 low_set = 0;
4111
e7030f15 4112 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 4113
43039443
JK
4114 while (1)
4115 {
4116 CORE_ADDR range_beginning, range_end;
4117
4118 range_beginning = read_address (obfd, buffer, cu, &dummy);
4119 buffer += addr_size;
4120 range_end = read_address (obfd, buffer, cu, &dummy);
4121 buffer += addr_size;
4122 offset += 2 * addr_size;
4123
4124 /* An end of list marker is a pair of zero addresses. */
4125 if (range_beginning == 0 && range_end == 0)
4126 /* Found the end of list entry. */
4127 break;
4128
4129 /* Each base address selection entry is a pair of 2 values.
4130 The first is the largest possible address, the second is
4131 the base address. Check for a base address here. */
4132 if ((range_beginning & mask) == mask)
4133 {
4134 /* If we found the largest possible address, then
4135 read the base address. */
4136 base = read_address (obfd, buffer + addr_size, cu, &dummy);
4137 found_base = 1;
4138 continue;
4139 }
4140
4141 if (!found_base)
4142 {
4143 /* We have no valid base address for the ranges
4144 data. */
4145 complaint (&symfile_complaints,
4146 _("Invalid .debug_ranges data (no base address)"));
4147 return 0;
4148 }
4149
4150 range_beginning += base;
4151 range_end += base;
4152
ff013f42
JK
4153 if (ranges_pst != NULL && range_beginning < range_end)
4154 addrmap_set_empty (objfile->psymtabs_addrmap,
4155 range_beginning + baseaddr, range_end - 1 + baseaddr,
4156 ranges_pst);
4157
43039443
JK
4158 /* FIXME: This is recording everything as a low-high
4159 segment of consecutive addresses. We should have a
4160 data structure for discontiguous block ranges
4161 instead. */
4162 if (! low_set)
4163 {
4164 low = range_beginning;
4165 high = range_end;
4166 low_set = 1;
4167 }
4168 else
4169 {
4170 if (range_beginning < low)
4171 low = range_beginning;
4172 if (range_end > high)
4173 high = range_end;
4174 }
4175 }
4176
4177 if (! low_set)
4178 /* If the first entry is an end-of-list marker, the range
4179 describes an empty scope, i.e. no instructions. */
4180 return 0;
4181
4182 if (low_return)
4183 *low_return = low;
4184 if (high_return)
4185 *high_return = high;
4186 return 1;
4187}
4188
af34e669
DJ
4189/* Get low and high pc attributes from a die. Return 1 if the attributes
4190 are present and valid, otherwise, return 0. Return -1 if the range is
4191 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 4192static int
af34e669 4193dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
4194 CORE_ADDR *highpc, struct dwarf2_cu *cu,
4195 struct partial_symtab *pst)
c906108c
SS
4196{
4197 struct attribute *attr;
af34e669
DJ
4198 CORE_ADDR low = 0;
4199 CORE_ADDR high = 0;
4200 int ret = 0;
c906108c 4201
e142c38c 4202 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 4203 if (attr)
af34e669
DJ
4204 {
4205 high = DW_ADDR (attr);
e142c38c 4206 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
4207 if (attr)
4208 low = DW_ADDR (attr);
4209 else
4210 /* Found high w/o low attribute. */
4211 return 0;
4212
4213 /* Found consecutive range of addresses. */
4214 ret = 1;
4215 }
c906108c 4216 else
af34e669 4217 {
e142c38c 4218 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
4219 if (attr != NULL)
4220 {
af34e669 4221 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 4222 .debug_ranges section. */
d85a05f0 4223 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
af34e669 4224 return 0;
43039443 4225 /* Found discontinuous range of addresses. */
af34e669
DJ
4226 ret = -1;
4227 }
4228 }
c906108c
SS
4229
4230 if (high < low)
4231 return 0;
4232
4233 /* When using the GNU linker, .gnu.linkonce. sections are used to
4234 eliminate duplicate copies of functions and vtables and such.
4235 The linker will arbitrarily choose one and discard the others.
4236 The AT_*_pc values for such functions refer to local labels in
4237 these sections. If the section from that file was discarded, the
4238 labels are not in the output, so the relocs get a value of 0.
4239 If this is a discarded function, mark the pc bounds as invalid,
4240 so that GDB will ignore it. */
72dca2f5 4241 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
4242 return 0;
4243
4244 *lowpc = low;
4245 *highpc = high;
af34e669 4246 return ret;
c906108c
SS
4247}
4248
b084d499
JB
4249/* Assuming that DIE represents a subprogram DIE or a lexical block, get
4250 its low and high PC addresses. Do nothing if these addresses could not
4251 be determined. Otherwise, set LOWPC to the low address if it is smaller,
4252 and HIGHPC to the high address if greater than HIGHPC. */
4253
4254static void
4255dwarf2_get_subprogram_pc_bounds (struct die_info *die,
4256 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4257 struct dwarf2_cu *cu)
4258{
4259 CORE_ADDR low, high;
4260 struct die_info *child = die->child;
4261
d85a05f0 4262 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
4263 {
4264 *lowpc = min (*lowpc, low);
4265 *highpc = max (*highpc, high);
4266 }
4267
4268 /* If the language does not allow nested subprograms (either inside
4269 subprograms or lexical blocks), we're done. */
4270 if (cu->language != language_ada)
4271 return;
4272
4273 /* Check all the children of the given DIE. If it contains nested
4274 subprograms, then check their pc bounds. Likewise, we need to
4275 check lexical blocks as well, as they may also contain subprogram
4276 definitions. */
4277 while (child && child->tag)
4278 {
4279 if (child->tag == DW_TAG_subprogram
4280 || child->tag == DW_TAG_lexical_block)
4281 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
4282 child = sibling_die (child);
4283 }
4284}
4285
fae299cd
DC
4286/* Get the low and high pc's represented by the scope DIE, and store
4287 them in *LOWPC and *HIGHPC. If the correct values can't be
4288 determined, set *LOWPC to -1 and *HIGHPC to 0. */
4289
4290static void
4291get_scope_pc_bounds (struct die_info *die,
4292 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4293 struct dwarf2_cu *cu)
4294{
4295 CORE_ADDR best_low = (CORE_ADDR) -1;
4296 CORE_ADDR best_high = (CORE_ADDR) 0;
4297 CORE_ADDR current_low, current_high;
4298
d85a05f0 4299 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
4300 {
4301 best_low = current_low;
4302 best_high = current_high;
4303 }
4304 else
4305 {
4306 struct die_info *child = die->child;
4307
4308 while (child && child->tag)
4309 {
4310 switch (child->tag) {
4311 case DW_TAG_subprogram:
b084d499 4312 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
4313 break;
4314 case DW_TAG_namespace:
4315 /* FIXME: carlton/2004-01-16: Should we do this for
4316 DW_TAG_class_type/DW_TAG_structure_type, too? I think
4317 that current GCC's always emit the DIEs corresponding
4318 to definitions of methods of classes as children of a
4319 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
4320 the DIEs giving the declarations, which could be
4321 anywhere). But I don't see any reason why the
4322 standards says that they have to be there. */
4323 get_scope_pc_bounds (child, &current_low, &current_high, cu);
4324
4325 if (current_low != ((CORE_ADDR) -1))
4326 {
4327 best_low = min (best_low, current_low);
4328 best_high = max (best_high, current_high);
4329 }
4330 break;
4331 default:
4332 /* Ignore. */
4333 break;
4334 }
4335
4336 child = sibling_die (child);
4337 }
4338 }
4339
4340 *lowpc = best_low;
4341 *highpc = best_high;
4342}
4343
801e3a5b
JB
4344/* Record the address ranges for BLOCK, offset by BASEADDR, as given
4345 in DIE. */
4346static void
4347dwarf2_record_block_ranges (struct die_info *die, struct block *block,
4348 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
4349{
4350 struct attribute *attr;
4351
4352 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
4353 if (attr)
4354 {
4355 CORE_ADDR high = DW_ADDR (attr);
9a619af0 4356
801e3a5b
JB
4357 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4358 if (attr)
4359 {
4360 CORE_ADDR low = DW_ADDR (attr);
9a619af0 4361
801e3a5b
JB
4362 record_block_range (block, baseaddr + low, baseaddr + high - 1);
4363 }
4364 }
4365
4366 attr = dwarf2_attr (die, DW_AT_ranges, cu);
4367 if (attr)
4368 {
4369 bfd *obfd = cu->objfile->obfd;
4370
4371 /* The value of the DW_AT_ranges attribute is the offset of the
4372 address range list in the .debug_ranges section. */
4373 unsigned long offset = DW_UNSND (attr);
dce234bc 4374 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
4375
4376 /* For some target architectures, but not others, the
4377 read_address function sign-extends the addresses it returns.
4378 To recognize base address selection entries, we need a
4379 mask. */
4380 unsigned int addr_size = cu->header.addr_size;
4381 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
4382
4383 /* The base address, to which the next pair is relative. Note
4384 that this 'base' is a DWARF concept: most entries in a range
4385 list are relative, to reduce the number of relocs against the
4386 debugging information. This is separate from this function's
4387 'baseaddr' argument, which GDB uses to relocate debugging
4388 information from a shared library based on the address at
4389 which the library was loaded. */
d00adf39
DE
4390 CORE_ADDR base = cu->base_address;
4391 int base_known = cu->base_known;
801e3a5b 4392
be391dca 4393 gdb_assert (dwarf2_per_objfile->ranges.readin);
dce234bc 4394 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
4395 {
4396 complaint (&symfile_complaints,
4397 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
4398 offset);
4399 return;
4400 }
4401
4402 for (;;)
4403 {
4404 unsigned int bytes_read;
4405 CORE_ADDR start, end;
4406
4407 start = read_address (obfd, buffer, cu, &bytes_read);
4408 buffer += bytes_read;
4409 end = read_address (obfd, buffer, cu, &bytes_read);
4410 buffer += bytes_read;
4411
4412 /* Did we find the end of the range list? */
4413 if (start == 0 && end == 0)
4414 break;
4415
4416 /* Did we find a base address selection entry? */
4417 else if ((start & base_select_mask) == base_select_mask)
4418 {
4419 base = end;
4420 base_known = 1;
4421 }
4422
4423 /* We found an ordinary address range. */
4424 else
4425 {
4426 if (!base_known)
4427 {
4428 complaint (&symfile_complaints,
4429 _("Invalid .debug_ranges data (no base address)"));
4430 return;
4431 }
4432
4433 record_block_range (block,
4434 baseaddr + base + start,
4435 baseaddr + base + end - 1);
4436 }
4437 }
4438 }
4439}
4440
c906108c
SS
4441/* Add an aggregate field to the field list. */
4442
4443static void
107d2387 4444dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73
DJ
4445 struct dwarf2_cu *cu)
4446{
4447 struct objfile *objfile = cu->objfile;
5e2b427d 4448 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
4449 struct nextfield *new_field;
4450 struct attribute *attr;
4451 struct field *fp;
4452 char *fieldname = "";
4453
4454 /* Allocate a new field list entry and link it in. */
4455 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 4456 make_cleanup (xfree, new_field);
c906108c 4457 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
4458
4459 if (die->tag == DW_TAG_inheritance)
4460 {
4461 new_field->next = fip->baseclasses;
4462 fip->baseclasses = new_field;
4463 }
4464 else
4465 {
4466 new_field->next = fip->fields;
4467 fip->fields = new_field;
4468 }
c906108c
SS
4469 fip->nfields++;
4470
4471 /* Handle accessibility and virtuality of field.
4472 The default accessibility for members is public, the default
4473 accessibility for inheritance is private. */
4474 if (die->tag != DW_TAG_inheritance)
4475 new_field->accessibility = DW_ACCESS_public;
4476 else
4477 new_field->accessibility = DW_ACCESS_private;
4478 new_field->virtuality = DW_VIRTUALITY_none;
4479
e142c38c 4480 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
4481 if (attr)
4482 new_field->accessibility = DW_UNSND (attr);
4483 if (new_field->accessibility != DW_ACCESS_public)
4484 fip->non_public_fields = 1;
e142c38c 4485 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
4486 if (attr)
4487 new_field->virtuality = DW_UNSND (attr);
4488
4489 fp = &new_field->field;
a9a9bd0f 4490
e142c38c 4491 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 4492 {
a9a9bd0f
DC
4493 /* Data member other than a C++ static data member. */
4494
c906108c 4495 /* Get type of field. */
e7c27a73 4496 fp->type = die_type (die, cu);
c906108c 4497
d6a843b5 4498 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 4499
c906108c 4500 /* Get bit size of field (zero if none). */
e142c38c 4501 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
4502 if (attr)
4503 {
4504 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
4505 }
4506 else
4507 {
4508 FIELD_BITSIZE (*fp) = 0;
4509 }
4510
4511 /* Get bit offset of field. */
e142c38c 4512 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
4513 if (attr)
4514 {
d4b96c9a 4515 int byte_offset = 0;
c6a0999f 4516
3690dd37 4517 if (attr_form_is_section_offset (attr))
d4b96c9a 4518 dwarf2_complex_location_expr_complaint ();
3690dd37 4519 else if (attr_form_is_constant (attr))
c6a0999f 4520 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
d4b96c9a 4521 else if (attr_form_is_block (attr))
c6a0999f 4522 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
d4b96c9a
JK
4523 else
4524 dwarf2_complex_location_expr_complaint ();
c6a0999f 4525
d6a843b5 4526 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
c906108c 4527 }
e142c38c 4528 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
4529 if (attr)
4530 {
5e2b427d 4531 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
4532 {
4533 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
4534 additional bit offset from the MSB of the containing
4535 anonymous object to the MSB of the field. We don't
4536 have to do anything special since we don't need to
4537 know the size of the anonymous object. */
c906108c
SS
4538 FIELD_BITPOS (*fp) += DW_UNSND (attr);
4539 }
4540 else
4541 {
4542 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
4543 MSB of the anonymous object, subtract off the number of
4544 bits from the MSB of the field to the MSB of the
4545 object, and then subtract off the number of bits of
4546 the field itself. The result is the bit offset of
4547 the LSB of the field. */
c906108c
SS
4548 int anonymous_size;
4549 int bit_offset = DW_UNSND (attr);
4550
e142c38c 4551 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4552 if (attr)
4553 {
4554 /* The size of the anonymous object containing
4555 the bit field is explicit, so use the
4556 indicated size (in bytes). */
4557 anonymous_size = DW_UNSND (attr);
4558 }
4559 else
4560 {
4561 /* The size of the anonymous object containing
4562 the bit field must be inferred from the type
4563 attribute of the data member containing the
4564 bit field. */
4565 anonymous_size = TYPE_LENGTH (fp->type);
4566 }
4567 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
4568 - bit_offset - FIELD_BITSIZE (*fp);
4569 }
4570 }
4571
4572 /* Get name of field. */
39cbfefa
DJ
4573 fieldname = dwarf2_name (die, cu);
4574 if (fieldname == NULL)
4575 fieldname = "";
d8151005
DJ
4576
4577 /* The name is already allocated along with this objfile, so we don't
4578 need to duplicate it for the type. */
4579 fp->name = fieldname;
c906108c
SS
4580
4581 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 4582 pointer or virtual base class pointer) to private. */
e142c38c 4583 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 4584 {
d48cc9dd 4585 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
4586 new_field->accessibility = DW_ACCESS_private;
4587 fip->non_public_fields = 1;
4588 }
4589 }
a9a9bd0f 4590 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 4591 {
a9a9bd0f
DC
4592 /* C++ static member. */
4593
4594 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
4595 is a declaration, but all versions of G++ as of this writing
4596 (so through at least 3.2.1) incorrectly generate
4597 DW_TAG_variable tags. */
4598
c906108c 4599 char *physname;
c906108c 4600
a9a9bd0f 4601 /* Get name of field. */
39cbfefa
DJ
4602 fieldname = dwarf2_name (die, cu);
4603 if (fieldname == NULL)
c906108c
SS
4604 return;
4605
2df3850c 4606 /* Get physical name. */
94af9270 4607 physname = (char *) dwarf2_physname (fieldname, die, cu);
c906108c 4608
d8151005
DJ
4609 /* The name is already allocated along with this objfile, so we don't
4610 need to duplicate it for the type. */
4611 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 4612 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 4613 FIELD_NAME (*fp) = fieldname;
c906108c
SS
4614 }
4615 else if (die->tag == DW_TAG_inheritance)
4616 {
4617 /* C++ base class field. */
e142c38c 4618 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 4619 if (attr)
d4b96c9a
JK
4620 {
4621 int byte_offset = 0;
4622
4623 if (attr_form_is_section_offset (attr))
4624 dwarf2_complex_location_expr_complaint ();
4625 else if (attr_form_is_constant (attr))
4626 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
4627 else if (attr_form_is_block (attr))
4628 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
4629 else
4630 dwarf2_complex_location_expr_complaint ();
4631
4632 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
4633 }
c906108c 4634 FIELD_BITSIZE (*fp) = 0;
e7c27a73 4635 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
4636 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
4637 fip->nbaseclasses++;
4638 }
4639}
4640
4641/* Create the vector of fields, and attach it to the type. */
4642
4643static void
fba45db2 4644dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 4645 struct dwarf2_cu *cu)
c906108c
SS
4646{
4647 int nfields = fip->nfields;
4648
4649 /* Record the field count, allocate space for the array of fields,
4650 and create blank accessibility bitfields if necessary. */
4651 TYPE_NFIELDS (type) = nfields;
4652 TYPE_FIELDS (type) = (struct field *)
4653 TYPE_ALLOC (type, sizeof (struct field) * nfields);
4654 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
4655
b4ba55a1 4656 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
4657 {
4658 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4659
4660 TYPE_FIELD_PRIVATE_BITS (type) =
4661 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4662 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4663
4664 TYPE_FIELD_PROTECTED_BITS (type) =
4665 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4666 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4667
4668 TYPE_FIELD_IGNORE_BITS (type) =
4669 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4670 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
4671 }
4672
4673 /* If the type has baseclasses, allocate and clear a bit vector for
4674 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 4675 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
4676 {
4677 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 4678 unsigned char *pointer;
c906108c
SS
4679
4680 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
4681 pointer = TYPE_ALLOC (type, num_bytes);
4682 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
4683 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
4684 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
4685 }
4686
4687 /* Copy the saved-up fields into the field vector. Start from the head
4688 of the list, adding to the tail of the field array, so that they end
4689 up in the same order in the array in which they were added to the list. */
4690 while (nfields-- > 0)
4691 {
7d0ccb61
DJ
4692 struct nextfield *fieldp;
4693
4694 if (fip->fields)
4695 {
4696 fieldp = fip->fields;
4697 fip->fields = fieldp->next;
4698 }
4699 else
4700 {
4701 fieldp = fip->baseclasses;
4702 fip->baseclasses = fieldp->next;
4703 }
4704
4705 TYPE_FIELD (type, nfields) = fieldp->field;
4706 switch (fieldp->accessibility)
c906108c 4707 {
c5aa993b 4708 case DW_ACCESS_private:
b4ba55a1
JB
4709 if (cu->language != language_ada)
4710 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 4711 break;
c906108c 4712
c5aa993b 4713 case DW_ACCESS_protected:
b4ba55a1
JB
4714 if (cu->language != language_ada)
4715 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 4716 break;
c906108c 4717
c5aa993b
JM
4718 case DW_ACCESS_public:
4719 break;
c906108c 4720
c5aa993b
JM
4721 default:
4722 /* Unknown accessibility. Complain and treat it as public. */
4723 {
e2e0b3e5 4724 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 4725 fieldp->accessibility);
c5aa993b
JM
4726 }
4727 break;
c906108c
SS
4728 }
4729 if (nfields < fip->nbaseclasses)
4730 {
7d0ccb61 4731 switch (fieldp->virtuality)
c906108c 4732 {
c5aa993b
JM
4733 case DW_VIRTUALITY_virtual:
4734 case DW_VIRTUALITY_pure_virtual:
b4ba55a1
JB
4735 if (cu->language == language_ada)
4736 error ("unexpected virtuality in component of Ada type");
c5aa993b
JM
4737 SET_TYPE_FIELD_VIRTUAL (type, nfields);
4738 break;
c906108c
SS
4739 }
4740 }
c906108c
SS
4741 }
4742}
4743
c906108c
SS
4744/* Add a member function to the proper fieldlist. */
4745
4746static void
107d2387 4747dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 4748 struct type *type, struct dwarf2_cu *cu)
c906108c 4749{
e7c27a73 4750 struct objfile *objfile = cu->objfile;
c906108c
SS
4751 struct attribute *attr;
4752 struct fnfieldlist *flp;
4753 int i;
4754 struct fn_field *fnp;
4755 char *fieldname;
4756 char *physname;
4757 struct nextfnfield *new_fnfield;
f792889a 4758 struct type *this_type;
c906108c 4759
b4ba55a1
JB
4760 if (cu->language == language_ada)
4761 error ("unexpected member function in Ada type");
4762
2df3850c 4763 /* Get name of member function. */
39cbfefa
DJ
4764 fieldname = dwarf2_name (die, cu);
4765 if (fieldname == NULL)
2df3850c 4766 return;
c906108c 4767
2df3850c 4768 /* Get the mangled name. */
94af9270 4769 physname = (char *) dwarf2_physname (fieldname, die, cu);
c906108c
SS
4770
4771 /* Look up member function name in fieldlist. */
4772 for (i = 0; i < fip->nfnfields; i++)
4773 {
27bfe10e 4774 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
4775 break;
4776 }
4777
4778 /* Create new list element if necessary. */
4779 if (i < fip->nfnfields)
4780 flp = &fip->fnfieldlists[i];
4781 else
4782 {
4783 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
4784 {
4785 fip->fnfieldlists = (struct fnfieldlist *)
4786 xrealloc (fip->fnfieldlists,
4787 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 4788 * sizeof (struct fnfieldlist));
c906108c 4789 if (fip->nfnfields == 0)
c13c43fd 4790 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
4791 }
4792 flp = &fip->fnfieldlists[fip->nfnfields];
4793 flp->name = fieldname;
4794 flp->length = 0;
4795 flp->head = NULL;
4796 fip->nfnfields++;
4797 }
4798
4799 /* Create a new member function field and chain it to the field list
4800 entry. */
4801 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 4802 make_cleanup (xfree, new_fnfield);
c906108c
SS
4803 memset (new_fnfield, 0, sizeof (struct nextfnfield));
4804 new_fnfield->next = flp->head;
4805 flp->head = new_fnfield;
4806 flp->length++;
4807
4808 /* Fill in the member function field info. */
4809 fnp = &new_fnfield->fnfield;
d8151005
DJ
4810 /* The name is already allocated along with this objfile, so we don't
4811 need to duplicate it for the type. */
4812 fnp->physname = physname ? physname : "";
c906108c 4813 fnp->type = alloc_type (objfile);
f792889a
DJ
4814 this_type = read_type_die (die, cu);
4815 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 4816 {
f792889a 4817 int nparams = TYPE_NFIELDS (this_type);
c906108c 4818
f792889a 4819 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
4820 of the method itself (TYPE_CODE_METHOD). */
4821 smash_to_method_type (fnp->type, type,
f792889a
DJ
4822 TYPE_TARGET_TYPE (this_type),
4823 TYPE_FIELDS (this_type),
4824 TYPE_NFIELDS (this_type),
4825 TYPE_VARARGS (this_type));
c906108c
SS
4826
4827 /* Handle static member functions.
c5aa993b
JM
4828 Dwarf2 has no clean way to discern C++ static and non-static
4829 member functions. G++ helps GDB by marking the first
4830 parameter for non-static member functions (which is the
4831 this pointer) as artificial. We obtain this information
4832 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 4833 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
4834 fnp->voffset = VOFFSET_STATIC;
4835 }
4836 else
e2e0b3e5 4837 complaint (&symfile_complaints, _("member function type missing for '%s'"),
4d3c2250 4838 physname);
c906108c
SS
4839
4840 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 4841 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 4842 fnp->fcontext = die_containing_type (die, cu);
c906108c
SS
4843
4844 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
4845 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
4846
4847 /* Get accessibility. */
e142c38c 4848 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
4849 if (attr)
4850 {
4851 switch (DW_UNSND (attr))
4852 {
c5aa993b
JM
4853 case DW_ACCESS_private:
4854 fnp->is_private = 1;
4855 break;
4856 case DW_ACCESS_protected:
4857 fnp->is_protected = 1;
4858 break;
c906108c
SS
4859 }
4860 }
4861
b02dede2 4862 /* Check for artificial methods. */
e142c38c 4863 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
4864 if (attr && DW_UNSND (attr) != 0)
4865 fnp->is_artificial = 1;
4866
0d564a31
DJ
4867 /* Get index in virtual function table if it is a virtual member
4868 function. For GCC, this is an offset in the appropriate
4869 virtual table, as specified by DW_AT_containing_type. For
4870 everyone else, it is an expression to be evaluated relative
4871 to the object address. */
4872
e142c38c 4873 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
0d564a31 4874 if (attr && fnp->fcontext)
8e19ed76
PS
4875 {
4876 /* Support the .debug_loc offsets */
4877 if (attr_form_is_block (attr))
4878 {
e7c27a73 4879 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
8e19ed76 4880 }
3690dd37 4881 else if (attr_form_is_section_offset (attr))
8e19ed76 4882 {
4d3c2250 4883 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
4884 }
4885 else
4886 {
4d3c2250
KB
4887 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
4888 fieldname);
8e19ed76 4889 }
0d564a31
DJ
4890 }
4891 else if (attr)
4892 {
4893 /* We only support trivial expressions here. This hack will work
ba950e4d 4894 for v3 classes, which always start with the vtable pointer. */
0d564a31
DJ
4895 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0
4896 && DW_BLOCK (attr)->data[0] == DW_OP_deref)
4897 {
4898 struct dwarf_block blk;
9a619af0 4899
0d564a31
DJ
4900 blk.size = DW_BLOCK (attr)->size - 1;
4901 blk.data = DW_BLOCK (attr)->data + 1;
ba950e4d
DJ
4902 fnp->voffset = decode_locdesc (&blk, cu);
4903 if ((fnp->voffset % cu->header.addr_size) != 0)
4904 dwarf2_complex_location_expr_complaint ();
4905 else
4906 fnp->voffset /= cu->header.addr_size;
0d564a31
DJ
4907 fnp->voffset += 2;
4908 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
4909 }
4910 else
4911 dwarf2_complex_location_expr_complaint ();
4912 }
d48cc9dd
DJ
4913 else
4914 {
4915 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
4916 if (attr && DW_UNSND (attr))
4917 {
4918 /* GCC does this, as of 2008-08-25; PR debug/37237. */
4919 complaint (&symfile_complaints,
4920 _("Member function \"%s\" (offset %d) is virtual but the vtable offset is not specified"),
4921 fieldname, die->offset);
4922 TYPE_CPLUS_DYNAMIC (type) = 1;
4923 }
4924 }
c906108c
SS
4925}
4926
4927/* Create the vector of member function fields, and attach it to the type. */
4928
4929static void
fba45db2 4930dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 4931 struct dwarf2_cu *cu)
c906108c
SS
4932{
4933 struct fnfieldlist *flp;
4934 int total_length = 0;
4935 int i;
4936
b4ba55a1
JB
4937 if (cu->language == language_ada)
4938 error ("unexpected member functions in Ada type");
4939
c906108c
SS
4940 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4941 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
4942 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
4943
4944 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
4945 {
4946 struct nextfnfield *nfp = flp->head;
4947 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
4948 int k;
4949
4950 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
4951 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
4952 fn_flp->fn_fields = (struct fn_field *)
4953 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
4954 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 4955 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
4956
4957 total_length += flp->length;
4958 }
4959
4960 TYPE_NFN_FIELDS (type) = fip->nfnfields;
4961 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
4962}
4963
1168df01
JB
4964/* Returns non-zero if NAME is the name of a vtable member in CU's
4965 language, zero otherwise. */
4966static int
4967is_vtable_name (const char *name, struct dwarf2_cu *cu)
4968{
4969 static const char vptr[] = "_vptr";
987504bb 4970 static const char vtable[] = "vtable";
1168df01 4971
987504bb
JJ
4972 /* Look for the C++ and Java forms of the vtable. */
4973 if ((cu->language == language_java
4974 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
4975 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
4976 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
4977 return 1;
4978
4979 return 0;
4980}
4981
c0dd20ea 4982/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
4983 functions, with the ABI-specified layout. If TYPE describes
4984 such a structure, smash it into a member function type.
61049d3b
DJ
4985
4986 GCC shouldn't do this; it should just output pointer to member DIEs.
4987 This is GCC PR debug/28767. */
c0dd20ea 4988
0b92b5bb
TT
4989static void
4990quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 4991{
0b92b5bb 4992 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
4993
4994 /* Check for a structure with no name and two children. */
0b92b5bb
TT
4995 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
4996 return;
c0dd20ea
DJ
4997
4998 /* Check for __pfn and __delta members. */
0b92b5bb
TT
4999 if (TYPE_FIELD_NAME (type, 0) == NULL
5000 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
5001 || TYPE_FIELD_NAME (type, 1) == NULL
5002 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
5003 return;
c0dd20ea
DJ
5004
5005 /* Find the type of the method. */
0b92b5bb 5006 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
5007 if (pfn_type == NULL
5008 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
5009 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 5010 return;
c0dd20ea
DJ
5011
5012 /* Look for the "this" argument. */
5013 pfn_type = TYPE_TARGET_TYPE (pfn_type);
5014 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 5015 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 5016 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 5017 return;
c0dd20ea
DJ
5018
5019 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
5020 new_type = alloc_type (objfile);
5021 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
5022 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
5023 TYPE_VARARGS (pfn_type));
0b92b5bb 5024 smash_to_methodptr_type (type, new_type);
c0dd20ea 5025}
1168df01 5026
c906108c
SS
5027/* Called when we find the DIE that starts a structure or union scope
5028 (definition) to process all dies that define the members of the
5029 structure or union.
5030
5031 NOTE: we need to call struct_type regardless of whether or not the
5032 DIE has an at_name attribute, since it might be an anonymous
5033 structure or union. This gets the type entered into our set of
5034 user defined types.
5035
5036 However, if the structure is incomplete (an opaque struct/union)
5037 then suppress creating a symbol table entry for it since gdb only
5038 wants to find the one with the complete definition. Note that if
5039 it is complete, we just call new_symbol, which does it's own
5040 checking about whether the struct/union is anonymous or not (and
5041 suppresses creating a symbol table entry itself). */
5042
f792889a 5043static struct type *
134d01f1 5044read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5045{
e7c27a73 5046 struct objfile *objfile = cu->objfile;
c906108c
SS
5047 struct type *type;
5048 struct attribute *attr;
39cbfefa 5049 char *name;
0114d602 5050 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 5051
348e048f
DE
5052 /* If the definition of this type lives in .debug_types, read that type.
5053 Don't follow DW_AT_specification though, that will take us back up
5054 the chain and we want to go down. */
5055 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
5056 if (attr)
5057 {
5058 struct dwarf2_cu *type_cu = cu;
5059 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 5060
348e048f
DE
5061 /* We could just recurse on read_structure_type, but we need to call
5062 get_die_type to ensure only one type for this DIE is created.
5063 This is important, for example, because for c++ classes we need
5064 TYPE_NAME set which is only done by new_symbol. Blech. */
5065 type = read_type_die (type_die, type_cu);
5066 return set_die_type (die, type, cu);
5067 }
5068
c0dd20ea 5069 type = alloc_type (objfile);
c906108c 5070 INIT_CPLUS_SPECIFIC (type);
93311388 5071
39cbfefa
DJ
5072 name = dwarf2_name (die, cu);
5073 if (name != NULL)
c906108c 5074 {
987504bb
JJ
5075 if (cu->language == language_cplus
5076 || cu->language == language_java)
63d06c5c 5077 {
94af9270
KS
5078 TYPE_TAG_NAME (type) = (char *) dwarf2_full_name (name, die, cu);
5079 if (die->tag == DW_TAG_structure_type
5080 || die->tag == DW_TAG_class_type)
5081 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
5082 }
5083 else
5084 {
d8151005
DJ
5085 /* The name is already allocated along with this objfile, so
5086 we don't need to duplicate it for the type. */
94af9270
KS
5087 TYPE_TAG_NAME (type) = (char *) name;
5088 if (die->tag == DW_TAG_class_type)
5089 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 5090 }
c906108c
SS
5091 }
5092
5093 if (die->tag == DW_TAG_structure_type)
5094 {
5095 TYPE_CODE (type) = TYPE_CODE_STRUCT;
5096 }
5097 else if (die->tag == DW_TAG_union_type)
5098 {
5099 TYPE_CODE (type) = TYPE_CODE_UNION;
5100 }
5101 else
5102 {
c906108c
SS
5103 TYPE_CODE (type) = TYPE_CODE_CLASS;
5104 }
5105
0cc2414c
TT
5106 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
5107 TYPE_DECLARED_CLASS (type) = 1;
5108
e142c38c 5109 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
5110 if (attr)
5111 {
5112 TYPE_LENGTH (type) = DW_UNSND (attr);
5113 }
5114 else
5115 {
5116 TYPE_LENGTH (type) = 0;
5117 }
5118
876cecd0 5119 TYPE_STUB_SUPPORTED (type) = 1;
dc718098 5120 if (die_is_declaration (die, cu))
876cecd0 5121 TYPE_STUB (type) = 1;
a6c727b2
DJ
5122 else if (attr == NULL && die->child == NULL
5123 && producer_is_realview (cu->producer))
5124 /* RealView does not output the required DW_AT_declaration
5125 on incomplete types. */
5126 TYPE_STUB (type) = 1;
dc718098 5127
b4ba55a1
JB
5128 set_descriptive_type (type, die, cu);
5129
c906108c
SS
5130 /* We need to add the type field to the die immediately so we don't
5131 infinitely recurse when dealing with pointers to the structure
5132 type within the structure itself. */
1c379e20 5133 set_die_type (die, type, cu);
c906108c 5134
e142c38c 5135 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
5136 {
5137 struct field_info fi;
5138 struct die_info *child_die;
c906108c
SS
5139
5140 memset (&fi, 0, sizeof (struct field_info));
5141
639d11d3 5142 child_die = die->child;
c906108c
SS
5143
5144 while (child_die && child_die->tag)
5145 {
a9a9bd0f
DC
5146 if (child_die->tag == DW_TAG_member
5147 || child_die->tag == DW_TAG_variable)
c906108c 5148 {
a9a9bd0f
DC
5149 /* NOTE: carlton/2002-11-05: A C++ static data member
5150 should be a DW_TAG_member that is a declaration, but
5151 all versions of G++ as of this writing (so through at
5152 least 3.2.1) incorrectly generate DW_TAG_variable
5153 tags for them instead. */
e7c27a73 5154 dwarf2_add_field (&fi, child_die, cu);
c906108c 5155 }
8713b1b1 5156 else if (child_die->tag == DW_TAG_subprogram)
c906108c
SS
5157 {
5158 /* C++ member function. */
e7c27a73 5159 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
5160 }
5161 else if (child_die->tag == DW_TAG_inheritance)
5162 {
5163 /* C++ base class field. */
e7c27a73 5164 dwarf2_add_field (&fi, child_die, cu);
c906108c 5165 }
c906108c
SS
5166 child_die = sibling_die (child_die);
5167 }
5168
5169 /* Attach fields and member functions to the type. */
5170 if (fi.nfields)
e7c27a73 5171 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
5172 if (fi.nfnfields)
5173 {
e7c27a73 5174 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 5175
c5aa993b 5176 /* Get the type which refers to the base class (possibly this
c906108c 5177 class itself) which contains the vtable pointer for the current
0d564a31
DJ
5178 class from the DW_AT_containing_type attribute. This use of
5179 DW_AT_containing_type is a GNU extension. */
c906108c 5180
e142c38c 5181 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 5182 {
e7c27a73 5183 struct type *t = die_containing_type (die, cu);
c906108c
SS
5184
5185 TYPE_VPTR_BASETYPE (type) = t;
5186 if (type == t)
5187 {
c906108c
SS
5188 int i;
5189
5190 /* Our own class provides vtbl ptr. */
5191 for (i = TYPE_NFIELDS (t) - 1;
5192 i >= TYPE_N_BASECLASSES (t);
5193 --i)
5194 {
5195 char *fieldname = TYPE_FIELD_NAME (t, i);
5196
1168df01 5197 if (is_vtable_name (fieldname, cu))
c906108c
SS
5198 {
5199 TYPE_VPTR_FIELDNO (type) = i;
5200 break;
5201 }
5202 }
5203
5204 /* Complain if virtual function table field not found. */
5205 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 5206 complaint (&symfile_complaints,
e2e0b3e5 5207 _("virtual function table pointer not found when defining class '%s'"),
4d3c2250
KB
5208 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
5209 "");
c906108c
SS
5210 }
5211 else
5212 {
5213 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
5214 }
5215 }
f6235d4c
EZ
5216 else if (cu->producer
5217 && strncmp (cu->producer,
5218 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
5219 {
5220 /* The IBM XLC compiler does not provide direct indication
5221 of the containing type, but the vtable pointer is
5222 always named __vfp. */
5223
5224 int i;
5225
5226 for (i = TYPE_NFIELDS (type) - 1;
5227 i >= TYPE_N_BASECLASSES (type);
5228 --i)
5229 {
5230 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
5231 {
5232 TYPE_VPTR_FIELDNO (type) = i;
5233 TYPE_VPTR_BASETYPE (type) = type;
5234 break;
5235 }
5236 }
5237 }
c906108c 5238 }
c906108c 5239 }
63d06c5c 5240
0b92b5bb
TT
5241 quirk_gcc_member_function_pointer (type, cu->objfile);
5242
0114d602 5243 do_cleanups (back_to);
f792889a 5244 return type;
c906108c
SS
5245}
5246
134d01f1
DJ
5247static void
5248process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
5249{
90aeadfc 5250 struct die_info *child_die = die->child;
f792889a 5251 struct type *this_type;
c906108c 5252
f792889a
DJ
5253 this_type = get_die_type (die, cu);
5254 if (this_type == NULL)
5255 this_type = read_structure_type (die, cu);
c906108c 5256
90aeadfc
DC
5257 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
5258 snapshots) has been known to create a die giving a declaration
5259 for a class that has, as a child, a die giving a definition for a
5260 nested class. So we have to process our children even if the
5261 current die is a declaration. Normally, of course, a declaration
5262 won't have any children at all. */
134d01f1 5263
90aeadfc
DC
5264 while (child_die != NULL && child_die->tag)
5265 {
5266 if (child_die->tag == DW_TAG_member
5267 || child_die->tag == DW_TAG_variable
5268 || child_die->tag == DW_TAG_inheritance)
134d01f1 5269 {
90aeadfc 5270 /* Do nothing. */
134d01f1 5271 }
90aeadfc
DC
5272 else
5273 process_die (child_die, cu);
134d01f1 5274
90aeadfc 5275 child_die = sibling_die (child_die);
134d01f1
DJ
5276 }
5277
fa4028e9
JB
5278 /* Do not consider external references. According to the DWARF standard,
5279 these DIEs are identified by the fact that they have no byte_size
5280 attribute, and a declaration attribute. */
5281 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
5282 || !die_is_declaration (die, cu))
f792889a 5283 new_symbol (die, this_type, cu);
134d01f1
DJ
5284}
5285
5286/* Given a DW_AT_enumeration_type die, set its type. We do not
5287 complete the type's fields yet, or create any symbols. */
c906108c 5288
f792889a 5289static struct type *
134d01f1 5290read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5291{
e7c27a73 5292 struct objfile *objfile = cu->objfile;
c906108c 5293 struct type *type;
c906108c 5294 struct attribute *attr;
0114d602 5295 const char *name;
134d01f1 5296
348e048f
DE
5297 /* If the definition of this type lives in .debug_types, read that type.
5298 Don't follow DW_AT_specification though, that will take us back up
5299 the chain and we want to go down. */
5300 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
5301 if (attr)
5302 {
5303 struct dwarf2_cu *type_cu = cu;
5304 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 5305
348e048f
DE
5306 type = read_type_die (type_die, type_cu);
5307 return set_die_type (die, type, cu);
5308 }
5309
c906108c
SS
5310 type = alloc_type (objfile);
5311
5312 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 5313 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 5314 if (name != NULL)
0114d602 5315 TYPE_TAG_NAME (type) = (char *) name;
c906108c 5316
e142c38c 5317 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
5318 if (attr)
5319 {
5320 TYPE_LENGTH (type) = DW_UNSND (attr);
5321 }
5322 else
5323 {
5324 TYPE_LENGTH (type) = 0;
5325 }
5326
137033e9
JB
5327 /* The enumeration DIE can be incomplete. In Ada, any type can be
5328 declared as private in the package spec, and then defined only
5329 inside the package body. Such types are known as Taft Amendment
5330 Types. When another package uses such a type, an incomplete DIE
5331 may be generated by the compiler. */
02eb380e 5332 if (die_is_declaration (die, cu))
876cecd0 5333 TYPE_STUB (type) = 1;
02eb380e 5334
f792889a 5335 return set_die_type (die, type, cu);
134d01f1
DJ
5336}
5337
5338/* Given a pointer to a die which begins an enumeration, process all
5339 the dies that define the members of the enumeration, and create the
5340 symbol for the enumeration type.
5341
5342 NOTE: We reverse the order of the element list. */
5343
5344static void
5345process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
5346{
134d01f1
DJ
5347 struct die_info *child_die;
5348 struct field *fields;
134d01f1
DJ
5349 struct symbol *sym;
5350 int num_fields;
5351 int unsigned_enum = 1;
39cbfefa 5352 char *name;
f792889a 5353 struct type *this_type;
134d01f1 5354
c906108c
SS
5355 num_fields = 0;
5356 fields = NULL;
f792889a
DJ
5357 this_type = get_die_type (die, cu);
5358 if (this_type == NULL)
5359 this_type = read_enumeration_type (die, cu);
639d11d3 5360 if (die->child != NULL)
c906108c 5361 {
639d11d3 5362 child_die = die->child;
c906108c
SS
5363 while (child_die && child_die->tag)
5364 {
5365 if (child_die->tag != DW_TAG_enumerator)
5366 {
e7c27a73 5367 process_die (child_die, cu);
c906108c
SS
5368 }
5369 else
5370 {
39cbfefa
DJ
5371 name = dwarf2_name (child_die, cu);
5372 if (name)
c906108c 5373 {
f792889a 5374 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
5375 if (SYMBOL_VALUE (sym) < 0)
5376 unsigned_enum = 0;
5377
5378 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
5379 {
5380 fields = (struct field *)
5381 xrealloc (fields,
5382 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 5383 * sizeof (struct field));
c906108c
SS
5384 }
5385
3567439c 5386 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 5387 FIELD_TYPE (fields[num_fields]) = NULL;
d6a843b5 5388 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
5389 FIELD_BITSIZE (fields[num_fields]) = 0;
5390
5391 num_fields++;
5392 }
5393 }
5394
5395 child_die = sibling_die (child_die);
5396 }
5397
5398 if (num_fields)
5399 {
f792889a
DJ
5400 TYPE_NFIELDS (this_type) = num_fields;
5401 TYPE_FIELDS (this_type) = (struct field *)
5402 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
5403 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 5404 sizeof (struct field) * num_fields);
b8c9b27d 5405 xfree (fields);
c906108c
SS
5406 }
5407 if (unsigned_enum)
876cecd0 5408 TYPE_UNSIGNED (this_type) = 1;
c906108c 5409 }
134d01f1 5410
f792889a 5411 new_symbol (die, this_type, cu);
c906108c
SS
5412}
5413
5414/* Extract all information from a DW_TAG_array_type DIE and put it in
5415 the DIE's type field. For now, this only handles one dimensional
5416 arrays. */
5417
f792889a 5418static struct type *
e7c27a73 5419read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5420{
e7c27a73 5421 struct objfile *objfile = cu->objfile;
c906108c
SS
5422 struct die_info *child_die;
5423 struct type *type = NULL;
5424 struct type *element_type, *range_type, *index_type;
5425 struct type **range_types = NULL;
5426 struct attribute *attr;
5427 int ndim = 0;
5428 struct cleanup *back_to;
39cbfefa 5429 char *name;
c906108c 5430
e7c27a73 5431 element_type = die_type (die, cu);
c906108c
SS
5432
5433 /* Irix 6.2 native cc creates array types without children for
5434 arrays with unspecified length. */
639d11d3 5435 if (die->child == NULL)
c906108c 5436 {
46bf5051 5437 index_type = objfile_type (objfile)->builtin_int;
c906108c 5438 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
5439 type = create_array_type (NULL, element_type, range_type);
5440 return set_die_type (die, type, cu);
c906108c
SS
5441 }
5442
5443 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 5444 child_die = die->child;
c906108c
SS
5445 while (child_die && child_die->tag)
5446 {
5447 if (child_die->tag == DW_TAG_subrange_type)
5448 {
f792889a 5449 struct type *child_type = read_type_die (child_die, cu);
9a619af0 5450
f792889a 5451 if (child_type != NULL)
a02abb62
JB
5452 {
5453 /* The range type was succesfully read. Save it for
5454 the array type creation. */
5455 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
5456 {
5457 range_types = (struct type **)
5458 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
5459 * sizeof (struct type *));
5460 if (ndim == 0)
5461 make_cleanup (free_current_contents, &range_types);
5462 }
f792889a 5463 range_types[ndim++] = child_type;
a02abb62 5464 }
c906108c
SS
5465 }
5466 child_die = sibling_die (child_die);
5467 }
5468
5469 /* Dwarf2 dimensions are output from left to right, create the
5470 necessary array types in backwards order. */
7ca2d3a3 5471
c906108c 5472 type = element_type;
7ca2d3a3
DL
5473
5474 if (read_array_order (die, cu) == DW_ORD_col_major)
5475 {
5476 int i = 0;
9a619af0 5477
7ca2d3a3
DL
5478 while (i < ndim)
5479 type = create_array_type (NULL, type, range_types[i++]);
5480 }
5481 else
5482 {
5483 while (ndim-- > 0)
5484 type = create_array_type (NULL, type, range_types[ndim]);
5485 }
c906108c 5486
f5f8a009
EZ
5487 /* Understand Dwarf2 support for vector types (like they occur on
5488 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
5489 array type. This is not part of the Dwarf2/3 standard yet, but a
5490 custom vendor extension. The main difference between a regular
5491 array and the vector variant is that vectors are passed by value
5492 to functions. */
e142c38c 5493 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 5494 if (attr)
ea37ba09 5495 make_vector_type (type);
f5f8a009 5496
39cbfefa
DJ
5497 name = dwarf2_name (die, cu);
5498 if (name)
5499 TYPE_NAME (type) = name;
714e295e 5500
b4ba55a1
JB
5501 set_descriptive_type (type, die, cu);
5502
c906108c
SS
5503 do_cleanups (back_to);
5504
5505 /* Install the type in the die. */
f792889a 5506 return set_die_type (die, type, cu);
c906108c
SS
5507}
5508
7ca2d3a3
DL
5509static enum dwarf_array_dim_ordering
5510read_array_order (struct die_info *die, struct dwarf2_cu *cu)
5511{
5512 struct attribute *attr;
5513
5514 attr = dwarf2_attr (die, DW_AT_ordering, cu);
5515
5516 if (attr) return DW_SND (attr);
5517
5518 /*
5519 GNU F77 is a special case, as at 08/2004 array type info is the
5520 opposite order to the dwarf2 specification, but data is still
5521 laid out as per normal fortran.
5522
5523 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
5524 version checking.
5525 */
5526
905e0470
PM
5527 if (cu->language == language_fortran
5528 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
5529 {
5530 return DW_ORD_row_major;
5531 }
5532
5533 switch (cu->language_defn->la_array_ordering)
5534 {
5535 case array_column_major:
5536 return DW_ORD_col_major;
5537 case array_row_major:
5538 default:
5539 return DW_ORD_row_major;
5540 };
5541}
5542
72019c9c
GM
5543/* Extract all information from a DW_TAG_set_type DIE and put it in
5544 the DIE's type field. */
5545
f792889a 5546static struct type *
72019c9c
GM
5547read_set_type (struct die_info *die, struct dwarf2_cu *cu)
5548{
f792889a
DJ
5549 struct type *set_type = create_set_type (NULL, die_type (die, cu));
5550
5551 return set_die_type (die, set_type, cu);
72019c9c 5552}
7ca2d3a3 5553
c906108c
SS
5554/* First cut: install each common block member as a global variable. */
5555
5556static void
e7c27a73 5557read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
5558{
5559 struct die_info *child_die;
5560 struct attribute *attr;
5561 struct symbol *sym;
5562 CORE_ADDR base = (CORE_ADDR) 0;
5563
e142c38c 5564 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
5565 if (attr)
5566 {
8e19ed76
PS
5567 /* Support the .debug_loc offsets */
5568 if (attr_form_is_block (attr))
5569 {
e7c27a73 5570 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76 5571 }
3690dd37 5572 else if (attr_form_is_section_offset (attr))
8e19ed76 5573 {
4d3c2250 5574 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
5575 }
5576 else
5577 {
4d3c2250
KB
5578 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5579 "common block member");
8e19ed76 5580 }
c906108c 5581 }
639d11d3 5582 if (die->child != NULL)
c906108c 5583 {
639d11d3 5584 child_die = die->child;
c906108c
SS
5585 while (child_die && child_die->tag)
5586 {
e7c27a73 5587 sym = new_symbol (child_die, NULL, cu);
e142c38c 5588 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
c906108c
SS
5589 if (attr)
5590 {
d4b96c9a
JK
5591 CORE_ADDR byte_offset = 0;
5592
5593 if (attr_form_is_section_offset (attr))
5594 dwarf2_complex_location_expr_complaint ();
5595 else if (attr_form_is_constant (attr))
5596 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
5597 else if (attr_form_is_block (attr))
5598 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
5599 else
5600 dwarf2_complex_location_expr_complaint ();
5601
5602 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
c906108c
SS
5603 add_symbol_to_list (sym, &global_symbols);
5604 }
5605 child_die = sibling_die (child_die);
5606 }
5607 }
5608}
5609
0114d602 5610/* Create a type for a C++ namespace. */
d9fa45fe 5611
0114d602
DJ
5612static struct type *
5613read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 5614{
e7c27a73 5615 struct objfile *objfile = cu->objfile;
0114d602 5616 const char *previous_prefix, *name;
9219021c 5617 int is_anonymous;
0114d602
DJ
5618 struct type *type;
5619
5620 /* For extensions, reuse the type of the original namespace. */
5621 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
5622 {
5623 struct die_info *ext_die;
5624 struct dwarf2_cu *ext_cu = cu;
9a619af0 5625
0114d602
DJ
5626 ext_die = dwarf2_extension (die, &ext_cu);
5627 type = read_type_die (ext_die, ext_cu);
5628 return set_die_type (die, type, cu);
5629 }
9219021c 5630
e142c38c 5631 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
5632
5633 /* Now build the name of the current namespace. */
5634
0114d602
DJ
5635 previous_prefix = determine_prefix (die, cu);
5636 if (previous_prefix[0] != '\0')
5637 name = typename_concat (&objfile->objfile_obstack,
5638 previous_prefix, name, cu);
5639
5640 /* Create the type. */
5641 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
5642 objfile);
5643 TYPE_NAME (type) = (char *) name;
5644 TYPE_TAG_NAME (type) = TYPE_NAME (type);
5645
60531b24 5646 return set_die_type (die, type, cu);
0114d602
DJ
5647}
5648
5649/* Read a C++ namespace. */
5650
5651static void
5652read_namespace (struct die_info *die, struct dwarf2_cu *cu)
5653{
5654 struct objfile *objfile = cu->objfile;
5655 const char *name;
5656 int is_anonymous;
9219021c 5657
5c4e30ca
DC
5658 /* Add a symbol associated to this if we haven't seen the namespace
5659 before. Also, add a using directive if it's an anonymous
5660 namespace. */
9219021c 5661
f2f0e013 5662 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
5663 {
5664 struct type *type;
5665
0114d602 5666 type = read_type_die (die, cu);
e7c27a73 5667 new_symbol (die, type, cu);
5c4e30ca 5668
0114d602 5669 name = namespace_name (die, &is_anonymous, cu);
5c4e30ca 5670 if (is_anonymous)
0114d602
DJ
5671 {
5672 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 5673
c0cc3a76 5674 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13387711 5675 NULL, &objfile->objfile_obstack);
0114d602 5676 }
5c4e30ca 5677 }
9219021c 5678
639d11d3 5679 if (die->child != NULL)
d9fa45fe 5680 {
639d11d3 5681 struct die_info *child_die = die->child;
d9fa45fe
DC
5682
5683 while (child_die && child_die->tag)
5684 {
e7c27a73 5685 process_die (child_die, cu);
d9fa45fe
DC
5686 child_die = sibling_die (child_die);
5687 }
5688 }
38d518c9
EZ
5689}
5690
5d7cb8df
JK
5691/* Read a Fortran module. */
5692
5693static void
5694read_module (struct die_info *die, struct dwarf2_cu *cu)
5695{
5696 struct die_info *child_die = die->child;
5697
5698 /* FIXME: Support the separate Fortran module namespaces. */
5699
5700 while (child_die && child_die->tag)
5701 {
5702 process_die (child_die, cu);
5703 child_die = sibling_die (child_die);
5704 }
5705}
5706
38d518c9
EZ
5707/* Return the name of the namespace represented by DIE. Set
5708 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
5709 namespace. */
5710
5711static const char *
e142c38c 5712namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
5713{
5714 struct die_info *current_die;
5715 const char *name = NULL;
5716
5717 /* Loop through the extensions until we find a name. */
5718
5719 for (current_die = die;
5720 current_die != NULL;
f2f0e013 5721 current_die = dwarf2_extension (die, &cu))
38d518c9 5722 {
e142c38c 5723 name = dwarf2_name (current_die, cu);
38d518c9
EZ
5724 if (name != NULL)
5725 break;
5726 }
5727
5728 /* Is it an anonymous namespace? */
5729
5730 *is_anonymous = (name == NULL);
5731 if (*is_anonymous)
5732 name = "(anonymous namespace)";
5733
5734 return name;
d9fa45fe
DC
5735}
5736
c906108c
SS
5737/* Extract all information from a DW_TAG_pointer_type DIE and add to
5738 the user defined type vector. */
5739
f792889a 5740static struct type *
e7c27a73 5741read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5742{
5e2b427d 5743 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 5744 struct comp_unit_head *cu_header = &cu->header;
c906108c 5745 struct type *type;
8b2dbe47
KB
5746 struct attribute *attr_byte_size;
5747 struct attribute *attr_address_class;
5748 int byte_size, addr_class;
c906108c 5749
e7c27a73 5750 type = lookup_pointer_type (die_type (die, cu));
8b2dbe47 5751
e142c38c 5752 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
5753 if (attr_byte_size)
5754 byte_size = DW_UNSND (attr_byte_size);
c906108c 5755 else
8b2dbe47
KB
5756 byte_size = cu_header->addr_size;
5757
e142c38c 5758 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
5759 if (attr_address_class)
5760 addr_class = DW_UNSND (attr_address_class);
5761 else
5762 addr_class = DW_ADDR_none;
5763
5764 /* If the pointer size or address class is different than the
5765 default, create a type variant marked as such and set the
5766 length accordingly. */
5767 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 5768 {
5e2b427d 5769 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
5770 {
5771 int type_flags;
5772
849957d9 5773 type_flags = gdbarch_address_class_type_flags
5e2b427d 5774 (gdbarch, byte_size, addr_class);
876cecd0
TT
5775 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5776 == 0);
8b2dbe47
KB
5777 type = make_type_with_address_space (type, type_flags);
5778 }
5779 else if (TYPE_LENGTH (type) != byte_size)
5780 {
e2e0b3e5 5781 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
8b2dbe47 5782 }
9a619af0
MS
5783 else
5784 {
5785 /* Should we also complain about unhandled address classes? */
5786 }
c906108c 5787 }
8b2dbe47
KB
5788
5789 TYPE_LENGTH (type) = byte_size;
f792889a 5790 return set_die_type (die, type, cu);
c906108c
SS
5791}
5792
5793/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
5794 the user defined type vector. */
5795
f792889a 5796static struct type *
e7c27a73 5797read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
5798{
5799 struct type *type;
5800 struct type *to_type;
5801 struct type *domain;
5802
e7c27a73
DJ
5803 to_type = die_type (die, cu);
5804 domain = die_containing_type (die, cu);
0d5de010
DJ
5805
5806 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
5807 type = lookup_methodptr_type (to_type);
5808 else
5809 type = lookup_memberptr_type (to_type, domain);
c906108c 5810
f792889a 5811 return set_die_type (die, type, cu);
c906108c
SS
5812}
5813
5814/* Extract all information from a DW_TAG_reference_type DIE and add to
5815 the user defined type vector. */
5816
f792889a 5817static struct type *
e7c27a73 5818read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5819{
e7c27a73 5820 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
5821 struct type *type;
5822 struct attribute *attr;
5823
e7c27a73 5824 type = lookup_reference_type (die_type (die, cu));
e142c38c 5825 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
5826 if (attr)
5827 {
5828 TYPE_LENGTH (type) = DW_UNSND (attr);
5829 }
5830 else
5831 {
107d2387 5832 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 5833 }
f792889a 5834 return set_die_type (die, type, cu);
c906108c
SS
5835}
5836
f792889a 5837static struct type *
e7c27a73 5838read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5839{
f792889a 5840 struct type *base_type, *cv_type;
c906108c 5841
e7c27a73 5842 base_type = die_type (die, cu);
f792889a
DJ
5843 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
5844 return set_die_type (die, cv_type, cu);
c906108c
SS
5845}
5846
f792889a 5847static struct type *
e7c27a73 5848read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5849{
f792889a 5850 struct type *base_type, *cv_type;
c906108c 5851
e7c27a73 5852 base_type = die_type (die, cu);
f792889a
DJ
5853 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
5854 return set_die_type (die, cv_type, cu);
c906108c
SS
5855}
5856
5857/* Extract all information from a DW_TAG_string_type DIE and add to
5858 the user defined type vector. It isn't really a user defined type,
5859 but it behaves like one, with other DIE's using an AT_user_def_type
5860 attribute to reference it. */
5861
f792889a 5862static struct type *
e7c27a73 5863read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5864{
e7c27a73 5865 struct objfile *objfile = cu->objfile;
3b7538c0 5866 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
5867 struct type *type, *range_type, *index_type, *char_type;
5868 struct attribute *attr;
5869 unsigned int length;
5870
e142c38c 5871 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
5872 if (attr)
5873 {
5874 length = DW_UNSND (attr);
5875 }
5876 else
5877 {
b21b22e0 5878 /* check for the DW_AT_byte_size attribute */
e142c38c 5879 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
5880 if (attr)
5881 {
5882 length = DW_UNSND (attr);
5883 }
5884 else
5885 {
5886 length = 1;
5887 }
c906108c 5888 }
6ccb9162 5889
46bf5051 5890 index_type = objfile_type (objfile)->builtin_int;
c906108c 5891 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
5892 char_type = language_string_char_type (cu->language_defn, gdbarch);
5893 type = create_string_type (NULL, char_type, range_type);
6ccb9162 5894
f792889a 5895 return set_die_type (die, type, cu);
c906108c
SS
5896}
5897
5898/* Handle DIES due to C code like:
5899
5900 struct foo
c5aa993b
JM
5901 {
5902 int (*funcp)(int a, long l);
5903 int b;
5904 };
c906108c
SS
5905
5906 ('funcp' generates a DW_TAG_subroutine_type DIE)
c5aa993b 5907 */
c906108c 5908
f792889a 5909static struct type *
e7c27a73 5910read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
5911{
5912 struct type *type; /* Type that this function returns */
5913 struct type *ftype; /* Function that returns above type */
5914 struct attribute *attr;
5915
e7c27a73 5916 type = die_type (die, cu);
0c8b41f1 5917 ftype = lookup_function_type (type);
c906108c 5918
5b8101ae 5919 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 5920 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 5921 if ((attr && (DW_UNSND (attr) != 0))
987504bb 5922 || cu->language == language_cplus
5b8101ae
PM
5923 || cu->language == language_java
5924 || cu->language == language_pascal)
876cecd0 5925 TYPE_PROTOTYPED (ftype) = 1;
a6c727b2
DJ
5926 else if (producer_is_realview (cu->producer))
5927 /* RealView does not emit DW_AT_prototyped. We can not
5928 distinguish prototyped and unprototyped functions; default to
5929 prototyped, since that is more common in modern code (and
5930 RealView warns about unprototyped functions). */
5931 TYPE_PROTOTYPED (ftype) = 1;
c906108c 5932
c055b101
CV
5933 /* Store the calling convention in the type if it's available in
5934 the subroutine die. Otherwise set the calling convention to
5935 the default value DW_CC_normal. */
5936 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
5937 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
76c10ea2
GM
5938
5939 /* We need to add the subroutine type to the die immediately so
5940 we don't infinitely recurse when dealing with parameters
5941 declared as the same subroutine type. */
5942 set_die_type (die, ftype, cu);
c055b101 5943
639d11d3 5944 if (die->child != NULL)
c906108c 5945 {
8072405b 5946 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
c906108c 5947 struct die_info *child_die;
8072405b 5948 int nparams, iparams;
c906108c
SS
5949
5950 /* Count the number of parameters.
5951 FIXME: GDB currently ignores vararg functions, but knows about
5952 vararg member functions. */
8072405b 5953 nparams = 0;
639d11d3 5954 child_die = die->child;
c906108c
SS
5955 while (child_die && child_die->tag)
5956 {
5957 if (child_die->tag == DW_TAG_formal_parameter)
5958 nparams++;
5959 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 5960 TYPE_VARARGS (ftype) = 1;
c906108c
SS
5961 child_die = sibling_die (child_die);
5962 }
5963
5964 /* Allocate storage for parameters and fill them in. */
5965 TYPE_NFIELDS (ftype) = nparams;
5966 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 5967 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 5968
8072405b
JK
5969 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
5970 even if we error out during the parameters reading below. */
5971 for (iparams = 0; iparams < nparams; iparams++)
5972 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
5973
5974 iparams = 0;
639d11d3 5975 child_die = die->child;
c906108c
SS
5976 while (child_die && child_die->tag)
5977 {
5978 if (child_die->tag == DW_TAG_formal_parameter)
5979 {
5980 /* Dwarf2 has no clean way to discern C++ static and non-static
c5aa993b
JM
5981 member functions. G++ helps GDB by marking the first
5982 parameter for non-static member functions (which is the
5983 this pointer) as artificial. We pass this information
5984 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
e142c38c 5985 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
5986 if (attr)
5987 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
5988 else
418835cc
KS
5989 {
5990 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
5991
5992 /* GCC/43521: In java, the formal parameter
5993 "this" is sometimes not marked with DW_AT_artificial. */
5994 if (cu->language == language_java)
5995 {
5996 const char *name = dwarf2_name (child_die, cu);
9a619af0 5997
418835cc
KS
5998 if (name && !strcmp (name, "this"))
5999 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
6000 }
6001 }
e7c27a73 6002 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
c906108c
SS
6003 iparams++;
6004 }
6005 child_die = sibling_die (child_die);
6006 }
6007 }
6008
76c10ea2 6009 return ftype;
c906108c
SS
6010}
6011
f792889a 6012static struct type *
e7c27a73 6013read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6014{
e7c27a73 6015 struct objfile *objfile = cu->objfile;
0114d602 6016 const char *name = NULL;
f792889a 6017 struct type *this_type;
c906108c 6018
94af9270 6019 name = dwarf2_full_name (NULL, die, cu);
f792889a 6020 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602
DJ
6021 TYPE_FLAG_TARGET_STUB, NULL, objfile);
6022 TYPE_NAME (this_type) = (char *) name;
f792889a
DJ
6023 set_die_type (die, this_type, cu);
6024 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
6025 return this_type;
c906108c
SS
6026}
6027
6028/* Find a representation of a given base type and install
6029 it in the TYPE field of the die. */
6030
f792889a 6031static struct type *
e7c27a73 6032read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6033{
e7c27a73 6034 struct objfile *objfile = cu->objfile;
c906108c
SS
6035 struct type *type;
6036 struct attribute *attr;
6037 int encoding = 0, size = 0;
39cbfefa 6038 char *name;
6ccb9162
UW
6039 enum type_code code = TYPE_CODE_INT;
6040 int type_flags = 0;
6041 struct type *target_type = NULL;
c906108c 6042
e142c38c 6043 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
6044 if (attr)
6045 {
6046 encoding = DW_UNSND (attr);
6047 }
e142c38c 6048 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
6049 if (attr)
6050 {
6051 size = DW_UNSND (attr);
6052 }
39cbfefa 6053 name = dwarf2_name (die, cu);
6ccb9162 6054 if (!name)
c906108c 6055 {
6ccb9162
UW
6056 complaint (&symfile_complaints,
6057 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 6058 }
6ccb9162
UW
6059
6060 switch (encoding)
c906108c 6061 {
6ccb9162
UW
6062 case DW_ATE_address:
6063 /* Turn DW_ATE_address into a void * pointer. */
6064 code = TYPE_CODE_PTR;
6065 type_flags |= TYPE_FLAG_UNSIGNED;
6066 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
6067 break;
6068 case DW_ATE_boolean:
6069 code = TYPE_CODE_BOOL;
6070 type_flags |= TYPE_FLAG_UNSIGNED;
6071 break;
6072 case DW_ATE_complex_float:
6073 code = TYPE_CODE_COMPLEX;
6074 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
6075 break;
6076 case DW_ATE_decimal_float:
6077 code = TYPE_CODE_DECFLOAT;
6078 break;
6079 case DW_ATE_float:
6080 code = TYPE_CODE_FLT;
6081 break;
6082 case DW_ATE_signed:
6083 break;
6084 case DW_ATE_unsigned:
6085 type_flags |= TYPE_FLAG_UNSIGNED;
6086 break;
6087 case DW_ATE_signed_char:
868a0084
PM
6088 if (cu->language == language_ada || cu->language == language_m2
6089 || cu->language == language_pascal)
6ccb9162
UW
6090 code = TYPE_CODE_CHAR;
6091 break;
6092 case DW_ATE_unsigned_char:
868a0084
PM
6093 if (cu->language == language_ada || cu->language == language_m2
6094 || cu->language == language_pascal)
6ccb9162
UW
6095 code = TYPE_CODE_CHAR;
6096 type_flags |= TYPE_FLAG_UNSIGNED;
6097 break;
6098 default:
6099 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
6100 dwarf_type_encoding_name (encoding));
6101 break;
c906108c 6102 }
6ccb9162 6103
0114d602
DJ
6104 type = init_type (code, size, type_flags, NULL, objfile);
6105 TYPE_NAME (type) = name;
6ccb9162
UW
6106 TYPE_TARGET_TYPE (type) = target_type;
6107
0114d602 6108 if (name && strcmp (name, "char") == 0)
876cecd0 6109 TYPE_NOSIGN (type) = 1;
0114d602 6110
f792889a 6111 return set_die_type (die, type, cu);
c906108c
SS
6112}
6113
a02abb62
JB
6114/* Read the given DW_AT_subrange DIE. */
6115
f792889a 6116static struct type *
a02abb62
JB
6117read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
6118{
5e2b427d 6119 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
a02abb62
JB
6120 struct type *base_type;
6121 struct type *range_type;
6122 struct attribute *attr;
43bbcdc2
PH
6123 LONGEST low = 0;
6124 LONGEST high = -1;
39cbfefa 6125 char *name;
43bbcdc2 6126 LONGEST negative_mask;
a02abb62 6127
a02abb62 6128 base_type = die_type (die, cu);
3d1f72c2 6129 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
a02abb62
JB
6130 {
6131 complaint (&symfile_complaints,
e2e0b3e5 6132 _("DW_AT_type missing from DW_TAG_subrange_type"));
17a912b6 6133 base_type
5e2b427d 6134 = init_type (TYPE_CODE_INT, gdbarch_addr_bit (gdbarch) / 8,
6ccb9162 6135 0, NULL, cu->objfile);
a02abb62
JB
6136 }
6137
e142c38c 6138 if (cu->language == language_fortran)
a02abb62
JB
6139 {
6140 /* FORTRAN implies a lower bound of 1, if not given. */
6141 low = 1;
6142 }
6143
dd5e6932
DJ
6144 /* FIXME: For variable sized arrays either of these could be
6145 a variable rather than a constant value. We'll allow it,
6146 but we don't know how to handle it. */
e142c38c 6147 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
6148 if (attr)
6149 low = dwarf2_get_attr_constant_value (attr, 0);
6150
e142c38c 6151 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62
JB
6152 if (attr)
6153 {
6154 if (attr->form == DW_FORM_block1)
6155 {
6156 /* GCC encodes arrays with unspecified or dynamic length
6157 with a DW_FORM_block1 attribute.
6158 FIXME: GDB does not yet know how to handle dynamic
6159 arrays properly, treat them as arrays with unspecified
6160 length for now.
6161
6162 FIXME: jimb/2003-09-22: GDB does not really know
6163 how to handle arrays of unspecified length
6164 either; we just represent them as zero-length
6165 arrays. Choose an appropriate upper bound given
6166 the lower bound we've computed above. */
6167 high = low - 1;
6168 }
6169 else
6170 high = dwarf2_get_attr_constant_value (attr, 1);
6171 }
6172
43bbcdc2
PH
6173 negative_mask =
6174 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
6175 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
6176 low |= negative_mask;
6177 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
6178 high |= negative_mask;
6179
a02abb62
JB
6180 range_type = create_range_type (NULL, base_type, low, high);
6181
bbb0eef6
JK
6182 /* Mark arrays with dynamic length at least as an array of unspecified
6183 length. GDB could check the boundary but before it gets implemented at
6184 least allow accessing the array elements. */
6185 if (attr && attr->form == DW_FORM_block1)
6186 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
6187
39cbfefa
DJ
6188 name = dwarf2_name (die, cu);
6189 if (name)
6190 TYPE_NAME (range_type) = name;
a02abb62 6191
e142c38c 6192 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
6193 if (attr)
6194 TYPE_LENGTH (range_type) = DW_UNSND (attr);
6195
b4ba55a1
JB
6196 set_descriptive_type (range_type, die, cu);
6197
f792889a 6198 return set_die_type (die, range_type, cu);
a02abb62
JB
6199}
6200
f792889a 6201static struct type *
81a17f79
JB
6202read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
6203{
6204 struct type *type;
81a17f79 6205
81a17f79
JB
6206 /* For now, we only support the C meaning of an unspecified type: void. */
6207
0114d602
DJ
6208 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
6209 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 6210
f792889a 6211 return set_die_type (die, type, cu);
81a17f79 6212}
a02abb62 6213
51545339
DJ
6214/* Trivial hash function for die_info: the hash value of a DIE
6215 is its offset in .debug_info for this objfile. */
6216
6217static hashval_t
6218die_hash (const void *item)
6219{
6220 const struct die_info *die = item;
9a619af0 6221
51545339
DJ
6222 return die->offset;
6223}
6224
6225/* Trivial comparison function for die_info structures: two DIEs
6226 are equal if they have the same offset. */
6227
6228static int
6229die_eq (const void *item_lhs, const void *item_rhs)
6230{
6231 const struct die_info *die_lhs = item_lhs;
6232 const struct die_info *die_rhs = item_rhs;
9a619af0 6233
51545339
DJ
6234 return die_lhs->offset == die_rhs->offset;
6235}
6236
c906108c
SS
6237/* Read a whole compilation unit into a linked list of dies. */
6238
f9aca02d 6239static struct die_info *
93311388 6240read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 6241{
93311388
DE
6242 struct die_reader_specs reader_specs;
6243
348e048f 6244 gdb_assert (cu->die_hash == NULL);
51545339
DJ
6245 cu->die_hash
6246 = htab_create_alloc_ex (cu->header.length / 12,
6247 die_hash,
6248 die_eq,
6249 NULL,
6250 &cu->comp_unit_obstack,
6251 hashtab_obstack_allocate,
6252 dummy_obstack_deallocate);
6253
93311388
DE
6254 init_cu_die_reader (&reader_specs, cu);
6255
6256 return read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
639d11d3
DC
6257}
6258
d97bc12b
DE
6259/* Main entry point for reading a DIE and all children.
6260 Read the DIE and dump it if requested. */
6261
6262static struct die_info *
93311388
DE
6263read_die_and_children (const struct die_reader_specs *reader,
6264 gdb_byte *info_ptr,
d97bc12b
DE
6265 gdb_byte **new_info_ptr,
6266 struct die_info *parent)
6267{
93311388 6268 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
d97bc12b
DE
6269 new_info_ptr, parent);
6270
6271 if (dwarf2_die_debug)
6272 {
348e048f
DE
6273 fprintf_unfiltered (gdb_stdlog,
6274 "\nRead die from %s of %s:\n",
6275 reader->buffer == dwarf2_per_objfile->info.buffer
6276 ? ".debug_info"
6277 : reader->buffer == dwarf2_per_objfile->types.buffer
6278 ? ".debug_types"
6279 : "unknown section",
6280 reader->abfd->filename);
d97bc12b
DE
6281 dump_die (result, dwarf2_die_debug);
6282 }
6283
6284 return result;
6285}
6286
639d11d3
DC
6287/* Read a single die and all its descendents. Set the die's sibling
6288 field to NULL; set other fields in the die correctly, and set all
6289 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
6290 location of the info_ptr after reading all of those dies. PARENT
6291 is the parent of the die in question. */
6292
6293static struct die_info *
93311388
DE
6294read_die_and_children_1 (const struct die_reader_specs *reader,
6295 gdb_byte *info_ptr,
d97bc12b
DE
6296 gdb_byte **new_info_ptr,
6297 struct die_info *parent)
639d11d3
DC
6298{
6299 struct die_info *die;
fe1b8b76 6300 gdb_byte *cur_ptr;
639d11d3
DC
6301 int has_children;
6302
93311388 6303 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
1d325ec1
DJ
6304 if (die == NULL)
6305 {
6306 *new_info_ptr = cur_ptr;
6307 return NULL;
6308 }
93311388 6309 store_in_ref_table (die, reader->cu);
639d11d3
DC
6310
6311 if (has_children)
348e048f 6312 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
6313 else
6314 {
6315 die->child = NULL;
6316 *new_info_ptr = cur_ptr;
6317 }
6318
6319 die->sibling = NULL;
6320 die->parent = parent;
6321 return die;
6322}
6323
6324/* Read a die, all of its descendents, and all of its siblings; set
6325 all of the fields of all of the dies correctly. Arguments are as
6326 in read_die_and_children. */
6327
6328static struct die_info *
93311388
DE
6329read_die_and_siblings (const struct die_reader_specs *reader,
6330 gdb_byte *info_ptr,
fe1b8b76 6331 gdb_byte **new_info_ptr,
639d11d3
DC
6332 struct die_info *parent)
6333{
6334 struct die_info *first_die, *last_sibling;
fe1b8b76 6335 gdb_byte *cur_ptr;
639d11d3 6336
c906108c 6337 cur_ptr = info_ptr;
639d11d3
DC
6338 first_die = last_sibling = NULL;
6339
6340 while (1)
c906108c 6341 {
639d11d3 6342 struct die_info *die
93311388 6343 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
639d11d3 6344
1d325ec1 6345 if (die == NULL)
c906108c 6346 {
639d11d3
DC
6347 *new_info_ptr = cur_ptr;
6348 return first_die;
c906108c 6349 }
1d325ec1
DJ
6350
6351 if (!first_die)
6352 first_die = die;
c906108c 6353 else
1d325ec1
DJ
6354 last_sibling->sibling = die;
6355
6356 last_sibling = die;
c906108c 6357 }
c906108c
SS
6358}
6359
93311388
DE
6360/* Read the die from the .debug_info section buffer. Set DIEP to
6361 point to a newly allocated die with its information, except for its
6362 child, sibling, and parent fields. Set HAS_CHILDREN to tell
6363 whether the die has children or not. */
6364
6365static gdb_byte *
6366read_full_die (const struct die_reader_specs *reader,
6367 struct die_info **diep, gdb_byte *info_ptr,
6368 int *has_children)
6369{
6370 unsigned int abbrev_number, bytes_read, i, offset;
6371 struct abbrev_info *abbrev;
6372 struct die_info *die;
6373 struct dwarf2_cu *cu = reader->cu;
6374 bfd *abfd = reader->abfd;
6375
6376 offset = info_ptr - reader->buffer;
6377 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6378 info_ptr += bytes_read;
6379 if (!abbrev_number)
6380 {
6381 *diep = NULL;
6382 *has_children = 0;
6383 return info_ptr;
6384 }
6385
6386 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
6387 if (!abbrev)
348e048f
DE
6388 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
6389 abbrev_number,
6390 bfd_get_filename (abfd));
6391
93311388
DE
6392 die = dwarf_alloc_die (cu, abbrev->num_attrs);
6393 die->offset = offset;
6394 die->tag = abbrev->tag;
6395 die->abbrev = abbrev_number;
6396
6397 die->num_attrs = abbrev->num_attrs;
6398
6399 for (i = 0; i < abbrev->num_attrs; ++i)
6400 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
6401 abfd, info_ptr, cu);
6402
6403 *diep = die;
6404 *has_children = abbrev->has_children;
6405 return info_ptr;
6406}
6407
c906108c
SS
6408/* In DWARF version 2, the description of the debugging information is
6409 stored in a separate .debug_abbrev section. Before we read any
6410 dies from a section we read in all abbreviations and install them
72bf9492
DJ
6411 in a hash table. This function also sets flags in CU describing
6412 the data found in the abbrev table. */
c906108c
SS
6413
6414static void
e7c27a73 6415dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 6416{
e7c27a73 6417 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 6418 gdb_byte *abbrev_ptr;
c906108c
SS
6419 struct abbrev_info *cur_abbrev;
6420 unsigned int abbrev_number, bytes_read, abbrev_name;
6421 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
6422 struct attr_abbrev *cur_attrs;
6423 unsigned int allocated_attrs;
c906108c 6424
57349743 6425 /* Initialize dwarf2 abbrevs */
f3dd6933
DJ
6426 obstack_init (&cu->abbrev_obstack);
6427 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
6428 (ABBREV_HASH_SIZE
6429 * sizeof (struct abbrev_info *)));
6430 memset (cu->dwarf2_abbrevs, 0,
6431 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 6432
be391dca
TT
6433 dwarf2_read_section (dwarf2_per_objfile->objfile,
6434 &dwarf2_per_objfile->abbrev);
dce234bc 6435 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
c906108c
SS
6436 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6437 abbrev_ptr += bytes_read;
6438
f3dd6933
DJ
6439 allocated_attrs = ATTR_ALLOC_CHUNK;
6440 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6441
c906108c
SS
6442 /* loop until we reach an abbrev number of 0 */
6443 while (abbrev_number)
6444 {
f3dd6933 6445 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
6446
6447 /* read in abbrev header */
6448 cur_abbrev->number = abbrev_number;
6449 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6450 abbrev_ptr += bytes_read;
6451 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
6452 abbrev_ptr += 1;
6453
72bf9492
DJ
6454 if (cur_abbrev->tag == DW_TAG_namespace)
6455 cu->has_namespace_info = 1;
6456
c906108c
SS
6457 /* now read in declarations */
6458 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6459 abbrev_ptr += bytes_read;
6460 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6461 abbrev_ptr += bytes_read;
6462 while (abbrev_name)
6463 {
f3dd6933 6464 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 6465 {
f3dd6933
DJ
6466 allocated_attrs += ATTR_ALLOC_CHUNK;
6467 cur_attrs
6468 = xrealloc (cur_attrs, (allocated_attrs
6469 * sizeof (struct attr_abbrev)));
c906108c 6470 }
ae038cb0
DJ
6471
6472 /* Record whether this compilation unit might have
6473 inter-compilation-unit references. If we don't know what form
6474 this attribute will have, then it might potentially be a
6475 DW_FORM_ref_addr, so we conservatively expect inter-CU
6476 references. */
6477
6478 if (abbrev_form == DW_FORM_ref_addr
6479 || abbrev_form == DW_FORM_indirect)
6480 cu->has_form_ref_addr = 1;
6481
f3dd6933
DJ
6482 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
6483 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
6484 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6485 abbrev_ptr += bytes_read;
6486 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6487 abbrev_ptr += bytes_read;
6488 }
6489
f3dd6933
DJ
6490 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
6491 (cur_abbrev->num_attrs
6492 * sizeof (struct attr_abbrev)));
6493 memcpy (cur_abbrev->attrs, cur_attrs,
6494 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
6495
c906108c 6496 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
6497 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
6498 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
6499
6500 /* Get next abbreviation.
6501 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
6502 always properly terminated with an abbrev number of 0.
6503 Exit loop if we encounter an abbreviation which we have
6504 already read (which means we are about to read the abbreviations
6505 for the next compile unit) or if the end of the abbreviation
6506 table is reached. */
dce234bc
PP
6507 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
6508 >= dwarf2_per_objfile->abbrev.size)
c906108c
SS
6509 break;
6510 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6511 abbrev_ptr += bytes_read;
e7c27a73 6512 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
6513 break;
6514 }
f3dd6933
DJ
6515
6516 xfree (cur_attrs);
c906108c
SS
6517}
6518
f3dd6933 6519/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 6520
c906108c 6521static void
f3dd6933 6522dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 6523{
f3dd6933 6524 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 6525
f3dd6933
DJ
6526 obstack_free (&cu->abbrev_obstack, NULL);
6527 cu->dwarf2_abbrevs = NULL;
c906108c
SS
6528}
6529
6530/* Lookup an abbrev_info structure in the abbrev hash table. */
6531
6532static struct abbrev_info *
e7c27a73 6533dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
6534{
6535 unsigned int hash_number;
6536 struct abbrev_info *abbrev;
6537
6538 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 6539 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
6540
6541 while (abbrev)
6542 {
6543 if (abbrev->number == number)
6544 return abbrev;
6545 else
6546 abbrev = abbrev->next;
6547 }
6548 return NULL;
6549}
6550
72bf9492
DJ
6551/* Returns nonzero if TAG represents a type that we might generate a partial
6552 symbol for. */
6553
6554static int
6555is_type_tag_for_partial (int tag)
6556{
6557 switch (tag)
6558 {
6559#if 0
6560 /* Some types that would be reasonable to generate partial symbols for,
6561 that we don't at present. */
6562 case DW_TAG_array_type:
6563 case DW_TAG_file_type:
6564 case DW_TAG_ptr_to_member_type:
6565 case DW_TAG_set_type:
6566 case DW_TAG_string_type:
6567 case DW_TAG_subroutine_type:
6568#endif
6569 case DW_TAG_base_type:
6570 case DW_TAG_class_type:
680b30c7 6571 case DW_TAG_interface_type:
72bf9492
DJ
6572 case DW_TAG_enumeration_type:
6573 case DW_TAG_structure_type:
6574 case DW_TAG_subrange_type:
6575 case DW_TAG_typedef:
6576 case DW_TAG_union_type:
6577 return 1;
6578 default:
6579 return 0;
6580 }
6581}
6582
6583/* Load all DIEs that are interesting for partial symbols into memory. */
6584
6585static struct partial_die_info *
93311388
DE
6586load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
6587 int building_psymtab, struct dwarf2_cu *cu)
72bf9492
DJ
6588{
6589 struct partial_die_info *part_die;
6590 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
6591 struct abbrev_info *abbrev;
6592 unsigned int bytes_read;
5afb4e99 6593 unsigned int load_all = 0;
72bf9492
DJ
6594
6595 int nesting_level = 1;
6596
6597 parent_die = NULL;
6598 last_die = NULL;
6599
5afb4e99
DJ
6600 if (cu->per_cu && cu->per_cu->load_all_dies)
6601 load_all = 1;
6602
72bf9492
DJ
6603 cu->partial_dies
6604 = htab_create_alloc_ex (cu->header.length / 12,
6605 partial_die_hash,
6606 partial_die_eq,
6607 NULL,
6608 &cu->comp_unit_obstack,
6609 hashtab_obstack_allocate,
6610 dummy_obstack_deallocate);
6611
6612 part_die = obstack_alloc (&cu->comp_unit_obstack,
6613 sizeof (struct partial_die_info));
6614
6615 while (1)
6616 {
6617 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6618
6619 /* A NULL abbrev means the end of a series of children. */
6620 if (abbrev == NULL)
6621 {
6622 if (--nesting_level == 0)
6623 {
6624 /* PART_DIE was probably the last thing allocated on the
6625 comp_unit_obstack, so we could call obstack_free
6626 here. We don't do that because the waste is small,
6627 and will be cleaned up when we're done with this
6628 compilation unit. This way, we're also more robust
6629 against other users of the comp_unit_obstack. */
6630 return first_die;
6631 }
6632 info_ptr += bytes_read;
6633 last_die = parent_die;
6634 parent_die = parent_die->die_parent;
6635 continue;
6636 }
6637
5afb4e99
DJ
6638 /* Check whether this DIE is interesting enough to save. Normally
6639 we would not be interested in members here, but there may be
6640 later variables referencing them via DW_AT_specification (for
6641 static members). */
6642 if (!load_all
6643 && !is_type_tag_for_partial (abbrev->tag)
72bf9492
DJ
6644 && abbrev->tag != DW_TAG_enumerator
6645 && abbrev->tag != DW_TAG_subprogram
bc30ff58 6646 && abbrev->tag != DW_TAG_lexical_block
72bf9492 6647 && abbrev->tag != DW_TAG_variable
5afb4e99
DJ
6648 && abbrev->tag != DW_TAG_namespace
6649 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
6650 {
6651 /* Otherwise we skip to the next sibling, if any. */
93311388 6652 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
72bf9492
DJ
6653 continue;
6654 }
6655
93311388
DE
6656 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
6657 buffer, info_ptr, cu);
72bf9492
DJ
6658
6659 /* This two-pass algorithm for processing partial symbols has a
6660 high cost in cache pressure. Thus, handle some simple cases
6661 here which cover the majority of C partial symbols. DIEs
6662 which neither have specification tags in them, nor could have
6663 specification tags elsewhere pointing at them, can simply be
6664 processed and discarded.
6665
6666 This segment is also optional; scan_partial_symbols and
6667 add_partial_symbol will handle these DIEs if we chain
6668 them in normally. When compilers which do not emit large
6669 quantities of duplicate debug information are more common,
6670 this code can probably be removed. */
6671
6672 /* Any complete simple types at the top level (pretty much all
6673 of them, for a language without namespaces), can be processed
6674 directly. */
6675 if (parent_die == NULL
6676 && part_die->has_specification == 0
6677 && part_die->is_declaration == 0
6678 && (part_die->tag == DW_TAG_typedef
6679 || part_die->tag == DW_TAG_base_type
6680 || part_die->tag == DW_TAG_subrange_type))
6681 {
6682 if (building_psymtab && part_die->name != NULL)
04a679b8 6683 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492
DJ
6684 VAR_DOMAIN, LOC_TYPEDEF,
6685 &cu->objfile->static_psymbols,
6686 0, (CORE_ADDR) 0, cu->language, cu->objfile);
93311388 6687 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
6688 continue;
6689 }
6690
6691 /* If we're at the second level, and we're an enumerator, and
6692 our parent has no specification (meaning possibly lives in a
6693 namespace elsewhere), then we can add the partial symbol now
6694 instead of queueing it. */
6695 if (part_die->tag == DW_TAG_enumerator
6696 && parent_die != NULL
6697 && parent_die->die_parent == NULL
6698 && parent_die->tag == DW_TAG_enumeration_type
6699 && parent_die->has_specification == 0)
6700 {
6701 if (part_die->name == NULL)
e2e0b3e5 6702 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
72bf9492 6703 else if (building_psymtab)
04a679b8 6704 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 6705 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6706 (cu->language == language_cplus
6707 || cu->language == language_java)
72bf9492
DJ
6708 ? &cu->objfile->global_psymbols
6709 : &cu->objfile->static_psymbols,
6710 0, (CORE_ADDR) 0, cu->language, cu->objfile);
6711
93311388 6712 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
6713 continue;
6714 }
6715
6716 /* We'll save this DIE so link it in. */
6717 part_die->die_parent = parent_die;
6718 part_die->die_sibling = NULL;
6719 part_die->die_child = NULL;
6720
6721 if (last_die && last_die == parent_die)
6722 last_die->die_child = part_die;
6723 else if (last_die)
6724 last_die->die_sibling = part_die;
6725
6726 last_die = part_die;
6727
6728 if (first_die == NULL)
6729 first_die = part_die;
6730
6731 /* Maybe add the DIE to the hash table. Not all DIEs that we
6732 find interesting need to be in the hash table, because we
6733 also have the parent/sibling/child chains; only those that we
6734 might refer to by offset later during partial symbol reading.
6735
6736 For now this means things that might have be the target of a
6737 DW_AT_specification, DW_AT_abstract_origin, or
6738 DW_AT_extension. DW_AT_extension will refer only to
6739 namespaces; DW_AT_abstract_origin refers to functions (and
6740 many things under the function DIE, but we do not recurse
6741 into function DIEs during partial symbol reading) and
6742 possibly variables as well; DW_AT_specification refers to
6743 declarations. Declarations ought to have the DW_AT_declaration
6744 flag. It happens that GCC forgets to put it in sometimes, but
6745 only for functions, not for types.
6746
6747 Adding more things than necessary to the hash table is harmless
6748 except for the performance cost. Adding too few will result in
5afb4e99
DJ
6749 wasted time in find_partial_die, when we reread the compilation
6750 unit with load_all_dies set. */
72bf9492 6751
5afb4e99
DJ
6752 if (load_all
6753 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
6754 || abbrev->tag == DW_TAG_variable
6755 || abbrev->tag == DW_TAG_namespace
6756 || part_die->is_declaration)
6757 {
6758 void **slot;
6759
6760 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
6761 part_die->offset, INSERT);
6762 *slot = part_die;
6763 }
6764
6765 part_die = obstack_alloc (&cu->comp_unit_obstack,
6766 sizeof (struct partial_die_info));
6767
6768 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 6769 we have no reason to follow the children of structures; for other
72bf9492 6770 languages we have to, both so that we can get at method physnames
bc30ff58
JB
6771 to infer fully qualified class names, and for DW_AT_specification.
6772
6773 For Ada, we need to scan the children of subprograms and lexical
6774 blocks as well because Ada allows the definition of nested
6775 entities that could be interesting for the debugger, such as
6776 nested subprograms for instance. */
72bf9492 6777 if (last_die->has_children
5afb4e99
DJ
6778 && (load_all
6779 || last_die->tag == DW_TAG_namespace
72bf9492
DJ
6780 || last_die->tag == DW_TAG_enumeration_type
6781 || (cu->language != language_c
6782 && (last_die->tag == DW_TAG_class_type
680b30c7 6783 || last_die->tag == DW_TAG_interface_type
72bf9492 6784 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
6785 || last_die->tag == DW_TAG_union_type))
6786 || (cu->language == language_ada
6787 && (last_die->tag == DW_TAG_subprogram
6788 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
6789 {
6790 nesting_level++;
6791 parent_die = last_die;
6792 continue;
6793 }
6794
6795 /* Otherwise we skip to the next sibling, if any. */
93311388 6796 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
6797
6798 /* Back to the top, do it again. */
6799 }
6800}
6801
c906108c
SS
6802/* Read a minimal amount of information into the minimal die structure. */
6803
fe1b8b76 6804static gdb_byte *
72bf9492
DJ
6805read_partial_die (struct partial_die_info *part_die,
6806 struct abbrev_info *abbrev,
6807 unsigned int abbrev_len, bfd *abfd,
93311388
DE
6808 gdb_byte *buffer, gdb_byte *info_ptr,
6809 struct dwarf2_cu *cu)
c906108c 6810{
fa238c03 6811 unsigned int i;
c906108c 6812 struct attribute attr;
c5aa993b 6813 int has_low_pc_attr = 0;
c906108c
SS
6814 int has_high_pc_attr = 0;
6815
72bf9492 6816 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 6817
93311388 6818 part_die->offset = info_ptr - buffer;
72bf9492
DJ
6819
6820 info_ptr += abbrev_len;
6821
6822 if (abbrev == NULL)
6823 return info_ptr;
6824
c906108c
SS
6825 part_die->tag = abbrev->tag;
6826 part_die->has_children = abbrev->has_children;
c906108c
SS
6827
6828 for (i = 0; i < abbrev->num_attrs; ++i)
6829 {
e7c27a73 6830 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
6831
6832 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 6833 partial symbol table. */
c906108c
SS
6834 switch (attr.name)
6835 {
6836 case DW_AT_name:
71c25dea
TT
6837 switch (part_die->tag)
6838 {
6839 case DW_TAG_compile_unit:
348e048f 6840 case DW_TAG_type_unit:
71c25dea
TT
6841 /* Compilation units have a DW_AT_name that is a filename, not
6842 a source language identifier. */
6843 case DW_TAG_enumeration_type:
6844 case DW_TAG_enumerator:
6845 /* These tags always have simple identifiers already; no need
6846 to canonicalize them. */
6847 part_die->name = DW_STRING (&attr);
6848 break;
6849 default:
6850 part_die->name
6851 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
95519e0e 6852 &cu->objfile->objfile_obstack);
71c25dea
TT
6853 break;
6854 }
c906108c 6855 break;
31ef98ae 6856 case DW_AT_linkage_name:
c906108c 6857 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
6858 /* Note that both forms of linkage name might appear. We
6859 assume they will be the same, and we only store the last
6860 one we see. */
94af9270
KS
6861 if (cu->language == language_ada)
6862 part_die->name = DW_STRING (&attr);
c906108c
SS
6863 break;
6864 case DW_AT_low_pc:
6865 has_low_pc_attr = 1;
6866 part_die->lowpc = DW_ADDR (&attr);
6867 break;
6868 case DW_AT_high_pc:
6869 has_high_pc_attr = 1;
6870 part_die->highpc = DW_ADDR (&attr);
6871 break;
6872 case DW_AT_location:
8e19ed76
PS
6873 /* Support the .debug_loc offsets */
6874 if (attr_form_is_block (&attr))
6875 {
6876 part_die->locdesc = DW_BLOCK (&attr);
6877 }
3690dd37 6878 else if (attr_form_is_section_offset (&attr))
8e19ed76 6879 {
4d3c2250 6880 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
6881 }
6882 else
6883 {
4d3c2250
KB
6884 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
6885 "partial symbol information");
8e19ed76 6886 }
c906108c 6887 break;
c906108c
SS
6888 case DW_AT_external:
6889 part_die->is_external = DW_UNSND (&attr);
6890 break;
6891 case DW_AT_declaration:
6892 part_die->is_declaration = DW_UNSND (&attr);
6893 break;
6894 case DW_AT_type:
6895 part_die->has_type = 1;
6896 break;
6897 case DW_AT_abstract_origin:
6898 case DW_AT_specification:
72bf9492
DJ
6899 case DW_AT_extension:
6900 part_die->has_specification = 1;
c764a876 6901 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
c906108c
SS
6902 break;
6903 case DW_AT_sibling:
6904 /* Ignore absolute siblings, they might point outside of
6905 the current compile unit. */
6906 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 6907 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
c906108c 6908 else
93311388 6909 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
c906108c 6910 break;
fa4028e9
JB
6911 case DW_AT_byte_size:
6912 part_die->has_byte_size = 1;
6913 break;
68511cec
CES
6914 case DW_AT_calling_convention:
6915 /* DWARF doesn't provide a way to identify a program's source-level
6916 entry point. DW_AT_calling_convention attributes are only meant
6917 to describe functions' calling conventions.
6918
6919 However, because it's a necessary piece of information in
6920 Fortran, and because DW_CC_program is the only piece of debugging
6921 information whose definition refers to a 'main program' at all,
6922 several compilers have begun marking Fortran main programs with
6923 DW_CC_program --- even when those functions use the standard
6924 calling conventions.
6925
6926 So until DWARF specifies a way to provide this information and
6927 compilers pick up the new representation, we'll support this
6928 practice. */
6929 if (DW_UNSND (&attr) == DW_CC_program
6930 && cu->language == language_fortran)
6931 set_main_name (part_die->name);
6932 break;
c906108c
SS
6933 default:
6934 break;
6935 }
6936 }
6937
c906108c
SS
6938 /* When using the GNU linker, .gnu.linkonce. sections are used to
6939 eliminate duplicate copies of functions and vtables and such.
6940 The linker will arbitrarily choose one and discard the others.
6941 The AT_*_pc values for such functions refer to local labels in
6942 these sections. If the section from that file was discarded, the
6943 labels are not in the output, so the relocs get a value of 0.
6944 If this is a discarded function, mark the pc bounds as invalid,
6945 so that GDB will ignore it. */
6946 if (has_low_pc_attr && has_high_pc_attr
6947 && part_die->lowpc < part_die->highpc
6948 && (part_die->lowpc != 0
72dca2f5 6949 || dwarf2_per_objfile->has_section_at_zero))
0b010bcc 6950 part_die->has_pc_info = 1;
85cbf3d3 6951
c906108c
SS
6952 return info_ptr;
6953}
6954
72bf9492
DJ
6955/* Find a cached partial DIE at OFFSET in CU. */
6956
6957static struct partial_die_info *
c764a876 6958find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
72bf9492
DJ
6959{
6960 struct partial_die_info *lookup_die = NULL;
6961 struct partial_die_info part_die;
6962
6963 part_die.offset = offset;
6964 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
6965
72bf9492
DJ
6966 return lookup_die;
6967}
6968
348e048f
DE
6969/* Find a partial DIE at OFFSET, which may or may not be in CU,
6970 except in the case of .debug_types DIEs which do not reference
6971 outside their CU (they do however referencing other types via
6972 DW_FORM_sig8). */
72bf9492
DJ
6973
6974static struct partial_die_info *
c764a876 6975find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
72bf9492 6976{
5afb4e99
DJ
6977 struct dwarf2_per_cu_data *per_cu = NULL;
6978 struct partial_die_info *pd = NULL;
72bf9492 6979
348e048f
DE
6980 if (cu->per_cu->from_debug_types)
6981 {
6982 pd = find_partial_die_in_comp_unit (offset, cu);
6983 if (pd != NULL)
6984 return pd;
6985 goto not_found;
6986 }
6987
45452591 6988 if (offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
6989 {
6990 pd = find_partial_die_in_comp_unit (offset, cu);
6991 if (pd != NULL)
6992 return pd;
6993 }
72bf9492 6994
ae038cb0
DJ
6995 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
6996
ae038cb0
DJ
6997 if (per_cu->cu == NULL)
6998 {
93311388 6999 load_partial_comp_unit (per_cu, cu->objfile);
ae038cb0
DJ
7000 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7001 dwarf2_per_objfile->read_in_chain = per_cu;
7002 }
7003
7004 per_cu->cu->last_used = 0;
5afb4e99
DJ
7005 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
7006
7007 if (pd == NULL && per_cu->load_all_dies == 0)
7008 {
7009 struct cleanup *back_to;
7010 struct partial_die_info comp_unit_die;
7011 struct abbrev_info *abbrev;
7012 unsigned int bytes_read;
7013 char *info_ptr;
7014
7015 per_cu->load_all_dies = 1;
7016
7017 /* Re-read the DIEs. */
7018 back_to = make_cleanup (null_cleanup, 0);
7019 if (per_cu->cu->dwarf2_abbrevs == NULL)
7020 {
7021 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
53d72f98 7022 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5afb4e99 7023 }
dce234bc 7024 info_ptr = (dwarf2_per_objfile->info.buffer
d00adf39
DE
7025 + per_cu->cu->header.offset
7026 + per_cu->cu->header.first_die_offset);
5afb4e99
DJ
7027 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
7028 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
93311388
DE
7029 per_cu->cu->objfile->obfd,
7030 dwarf2_per_objfile->info.buffer, info_ptr,
5afb4e99
DJ
7031 per_cu->cu);
7032 if (comp_unit_die.has_children)
93311388
DE
7033 load_partial_dies (per_cu->cu->objfile->obfd,
7034 dwarf2_per_objfile->info.buffer, info_ptr,
7035 0, per_cu->cu);
5afb4e99
DJ
7036 do_cleanups (back_to);
7037
7038 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
7039 }
7040
348e048f
DE
7041 not_found:
7042
5afb4e99
DJ
7043 if (pd == NULL)
7044 internal_error (__FILE__, __LINE__,
c764a876 7045 _("could not find partial DIE 0x%x in cache [from module %s]\n"),
5afb4e99
DJ
7046 offset, bfd_get_filename (cu->objfile->obfd));
7047 return pd;
72bf9492
DJ
7048}
7049
7050/* Adjust PART_DIE before generating a symbol for it. This function
7051 may set the is_external flag or change the DIE's name. */
7052
7053static void
7054fixup_partial_die (struct partial_die_info *part_die,
7055 struct dwarf2_cu *cu)
7056{
7057 /* If we found a reference attribute and the DIE has no name, try
7058 to find a name in the referred to DIE. */
7059
7060 if (part_die->name == NULL && part_die->has_specification)
7061 {
7062 struct partial_die_info *spec_die;
72bf9492 7063
10b3939b 7064 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 7065
10b3939b 7066 fixup_partial_die (spec_die, cu);
72bf9492
DJ
7067
7068 if (spec_die->name)
7069 {
7070 part_die->name = spec_die->name;
7071
7072 /* Copy DW_AT_external attribute if it is set. */
7073 if (spec_die->is_external)
7074 part_die->is_external = spec_die->is_external;
7075 }
7076 }
7077
7078 /* Set default names for some unnamed DIEs. */
7079 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
7080 || part_die->tag == DW_TAG_class_type))
7081 part_die->name = "(anonymous class)";
7082
7083 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
7084 part_die->name = "(anonymous namespace)";
7085
7086 if (part_die->tag == DW_TAG_structure_type
7087 || part_die->tag == DW_TAG_class_type
7088 || part_die->tag == DW_TAG_union_type)
7089 guess_structure_name (part_die, cu);
7090}
7091
a8329558 7092/* Read an attribute value described by an attribute form. */
c906108c 7093
fe1b8b76 7094static gdb_byte *
a8329558 7095read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 7096 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 7097 struct dwarf2_cu *cu)
c906108c 7098{
e7c27a73 7099 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
7100 unsigned int bytes_read;
7101 struct dwarf_block *blk;
7102
a8329558
KW
7103 attr->form = form;
7104 switch (form)
c906108c 7105 {
c906108c 7106 case DW_FORM_ref_addr:
ae411497
TT
7107 if (cu->header.version == 2)
7108 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
7109 else
7110 DW_ADDR (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
7111 info_ptr += bytes_read;
7112 break;
7113 case DW_FORM_addr:
e7c27a73 7114 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 7115 info_ptr += bytes_read;
c906108c
SS
7116 break;
7117 case DW_FORM_block2:
7b5a2f43 7118 blk = dwarf_alloc_block (cu);
c906108c
SS
7119 blk->size = read_2_bytes (abfd, info_ptr);
7120 info_ptr += 2;
7121 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7122 info_ptr += blk->size;
7123 DW_BLOCK (attr) = blk;
7124 break;
7125 case DW_FORM_block4:
7b5a2f43 7126 blk = dwarf_alloc_block (cu);
c906108c
SS
7127 blk->size = read_4_bytes (abfd, info_ptr);
7128 info_ptr += 4;
7129 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7130 info_ptr += blk->size;
7131 DW_BLOCK (attr) = blk;
7132 break;
7133 case DW_FORM_data2:
7134 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
7135 info_ptr += 2;
7136 break;
7137 case DW_FORM_data4:
7138 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
7139 info_ptr += 4;
7140 break;
7141 case DW_FORM_data8:
7142 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
7143 info_ptr += 8;
7144 break;
2dc7f7b3
TT
7145 case DW_FORM_sec_offset:
7146 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
7147 info_ptr += bytes_read;
7148 break;
c906108c
SS
7149 case DW_FORM_string:
7150 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
8285870a 7151 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
7152 info_ptr += bytes_read;
7153 break;
4bdf3d34
JJ
7154 case DW_FORM_strp:
7155 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
7156 &bytes_read);
8285870a 7157 DW_STRING_IS_CANONICAL (attr) = 0;
4bdf3d34
JJ
7158 info_ptr += bytes_read;
7159 break;
2dc7f7b3 7160 case DW_FORM_exprloc:
c906108c 7161 case DW_FORM_block:
7b5a2f43 7162 blk = dwarf_alloc_block (cu);
c906108c
SS
7163 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7164 info_ptr += bytes_read;
7165 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7166 info_ptr += blk->size;
7167 DW_BLOCK (attr) = blk;
7168 break;
7169 case DW_FORM_block1:
7b5a2f43 7170 blk = dwarf_alloc_block (cu);
c906108c
SS
7171 blk->size = read_1_byte (abfd, info_ptr);
7172 info_ptr += 1;
7173 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7174 info_ptr += blk->size;
7175 DW_BLOCK (attr) = blk;
7176 break;
7177 case DW_FORM_data1:
7178 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
7179 info_ptr += 1;
7180 break;
7181 case DW_FORM_flag:
7182 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
7183 info_ptr += 1;
7184 break;
2dc7f7b3
TT
7185 case DW_FORM_flag_present:
7186 DW_UNSND (attr) = 1;
7187 break;
c906108c
SS
7188 case DW_FORM_sdata:
7189 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
7190 info_ptr += bytes_read;
7191 break;
7192 case DW_FORM_udata:
7193 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7194 info_ptr += bytes_read;
7195 break;
7196 case DW_FORM_ref1:
10b3939b 7197 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
7198 info_ptr += 1;
7199 break;
7200 case DW_FORM_ref2:
10b3939b 7201 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
7202 info_ptr += 2;
7203 break;
7204 case DW_FORM_ref4:
10b3939b 7205 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
7206 info_ptr += 4;
7207 break;
613e1657 7208 case DW_FORM_ref8:
10b3939b 7209 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
7210 info_ptr += 8;
7211 break;
348e048f
DE
7212 case DW_FORM_sig8:
7213 /* Convert the signature to something we can record in DW_UNSND
7214 for later lookup.
7215 NOTE: This is NULL if the type wasn't found. */
7216 DW_SIGNATURED_TYPE (attr) =
7217 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
7218 info_ptr += 8;
7219 break;
c906108c 7220 case DW_FORM_ref_udata:
10b3939b
DJ
7221 DW_ADDR (attr) = (cu->header.offset
7222 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
7223 info_ptr += bytes_read;
7224 break;
c906108c 7225 case DW_FORM_indirect:
a8329558
KW
7226 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7227 info_ptr += bytes_read;
e7c27a73 7228 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 7229 break;
c906108c 7230 default:
8a3fe4f8 7231 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
7232 dwarf_form_name (form),
7233 bfd_get_filename (abfd));
c906108c 7234 }
28e94949
JB
7235
7236 /* We have seen instances where the compiler tried to emit a byte
7237 size attribute of -1 which ended up being encoded as an unsigned
7238 0xffffffff. Although 0xffffffff is technically a valid size value,
7239 an object of this size seems pretty unlikely so we can relatively
7240 safely treat these cases as if the size attribute was invalid and
7241 treat them as zero by default. */
7242 if (attr->name == DW_AT_byte_size
7243 && form == DW_FORM_data4
7244 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
7245 {
7246 complaint
7247 (&symfile_complaints,
43bbcdc2
PH
7248 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
7249 hex_string (DW_UNSND (attr)));
01c66ae6
JB
7250 DW_UNSND (attr) = 0;
7251 }
28e94949 7252
c906108c
SS
7253 return info_ptr;
7254}
7255
a8329558
KW
7256/* Read an attribute described by an abbreviated attribute. */
7257
fe1b8b76 7258static gdb_byte *
a8329558 7259read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 7260 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
7261{
7262 attr->name = abbrev->name;
e7c27a73 7263 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
7264}
7265
c906108c
SS
7266/* read dwarf information from a buffer */
7267
7268static unsigned int
fe1b8b76 7269read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 7270{
fe1b8b76 7271 return bfd_get_8 (abfd, buf);
c906108c
SS
7272}
7273
7274static int
fe1b8b76 7275read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 7276{
fe1b8b76 7277 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
7278}
7279
7280static unsigned int
fe1b8b76 7281read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7282{
fe1b8b76 7283 return bfd_get_16 (abfd, buf);
c906108c
SS
7284}
7285
7286static int
fe1b8b76 7287read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7288{
fe1b8b76 7289 return bfd_get_signed_16 (abfd, buf);
c906108c
SS
7290}
7291
7292static unsigned int
fe1b8b76 7293read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7294{
fe1b8b76 7295 return bfd_get_32 (abfd, buf);
c906108c
SS
7296}
7297
7298static int
fe1b8b76 7299read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7300{
fe1b8b76 7301 return bfd_get_signed_32 (abfd, buf);
c906108c
SS
7302}
7303
93311388 7304static ULONGEST
fe1b8b76 7305read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7306{
fe1b8b76 7307 return bfd_get_64 (abfd, buf);
c906108c
SS
7308}
7309
7310static CORE_ADDR
fe1b8b76 7311read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 7312 unsigned int *bytes_read)
c906108c 7313{
e7c27a73 7314 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
7315 CORE_ADDR retval = 0;
7316
107d2387 7317 if (cu_header->signed_addr_p)
c906108c 7318 {
107d2387
AC
7319 switch (cu_header->addr_size)
7320 {
7321 case 2:
fe1b8b76 7322 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
7323 break;
7324 case 4:
fe1b8b76 7325 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
7326 break;
7327 case 8:
fe1b8b76 7328 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
7329 break;
7330 default:
8e65ff28 7331 internal_error (__FILE__, __LINE__,
e2e0b3e5 7332 _("read_address: bad switch, signed [in module %s]"),
659b0389 7333 bfd_get_filename (abfd));
107d2387
AC
7334 }
7335 }
7336 else
7337 {
7338 switch (cu_header->addr_size)
7339 {
7340 case 2:
fe1b8b76 7341 retval = bfd_get_16 (abfd, buf);
107d2387
AC
7342 break;
7343 case 4:
fe1b8b76 7344 retval = bfd_get_32 (abfd, buf);
107d2387
AC
7345 break;
7346 case 8:
fe1b8b76 7347 retval = bfd_get_64 (abfd, buf);
107d2387
AC
7348 break;
7349 default:
8e65ff28 7350 internal_error (__FILE__, __LINE__,
e2e0b3e5 7351 _("read_address: bad switch, unsigned [in module %s]"),
659b0389 7352 bfd_get_filename (abfd));
107d2387 7353 }
c906108c 7354 }
64367e0a 7355
107d2387
AC
7356 *bytes_read = cu_header->addr_size;
7357 return retval;
c906108c
SS
7358}
7359
f7ef9339 7360/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
7361 specification allows the initial length to take up either 4 bytes
7362 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
7363 bytes describe the length and all offsets will be 8 bytes in length
7364 instead of 4.
7365
f7ef9339
KB
7366 An older, non-standard 64-bit format is also handled by this
7367 function. The older format in question stores the initial length
7368 as an 8-byte quantity without an escape value. Lengths greater
7369 than 2^32 aren't very common which means that the initial 4 bytes
7370 is almost always zero. Since a length value of zero doesn't make
7371 sense for the 32-bit format, this initial zero can be considered to
7372 be an escape value which indicates the presence of the older 64-bit
7373 format. As written, the code can't detect (old format) lengths
917c78fc
MK
7374 greater than 4GB. If it becomes necessary to handle lengths
7375 somewhat larger than 4GB, we could allow other small values (such
7376 as the non-sensical values of 1, 2, and 3) to also be used as
7377 escape values indicating the presence of the old format.
f7ef9339 7378
917c78fc
MK
7379 The value returned via bytes_read should be used to increment the
7380 relevant pointer after calling read_initial_length().
c764a876 7381
613e1657
KB
7382 [ Note: read_initial_length() and read_offset() are based on the
7383 document entitled "DWARF Debugging Information Format", revision
f7ef9339 7384 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
7385 from:
7386
f7ef9339 7387 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
613e1657
KB
7388
7389 This document is only a draft and is subject to change. (So beware.)
7390
f7ef9339 7391 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
7392 determined empirically by examining 64-bit ELF files produced by
7393 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
7394
7395 - Kevin, July 16, 2002
613e1657
KB
7396 ] */
7397
7398static LONGEST
c764a876 7399read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
613e1657 7400{
fe1b8b76 7401 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 7402
dd373385 7403 if (length == 0xffffffff)
613e1657 7404 {
fe1b8b76 7405 length = bfd_get_64 (abfd, buf + 4);
613e1657 7406 *bytes_read = 12;
613e1657 7407 }
dd373385 7408 else if (length == 0)
f7ef9339 7409 {
dd373385 7410 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 7411 length = bfd_get_64 (abfd, buf);
f7ef9339 7412 *bytes_read = 8;
f7ef9339 7413 }
613e1657
KB
7414 else
7415 {
7416 *bytes_read = 4;
613e1657
KB
7417 }
7418
c764a876
DE
7419 return length;
7420}
dd373385 7421
c764a876
DE
7422/* Cover function for read_initial_length.
7423 Returns the length of the object at BUF, and stores the size of the
7424 initial length in *BYTES_READ and stores the size that offsets will be in
7425 *OFFSET_SIZE.
7426 If the initial length size is not equivalent to that specified in
7427 CU_HEADER then issue a complaint.
7428 This is useful when reading non-comp-unit headers. */
dd373385 7429
c764a876
DE
7430static LONGEST
7431read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
7432 const struct comp_unit_head *cu_header,
7433 unsigned int *bytes_read,
7434 unsigned int *offset_size)
7435{
7436 LONGEST length = read_initial_length (abfd, buf, bytes_read);
7437
7438 gdb_assert (cu_header->initial_length_size == 4
7439 || cu_header->initial_length_size == 8
7440 || cu_header->initial_length_size == 12);
7441
7442 if (cu_header->initial_length_size != *bytes_read)
7443 complaint (&symfile_complaints,
7444 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 7445
c764a876 7446 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 7447 return length;
613e1657
KB
7448}
7449
7450/* Read an offset from the data stream. The size of the offset is
917c78fc 7451 given by cu_header->offset_size. */
613e1657
KB
7452
7453static LONGEST
fe1b8b76 7454read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 7455 unsigned int *bytes_read)
c764a876
DE
7456{
7457 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 7458
c764a876
DE
7459 *bytes_read = cu_header->offset_size;
7460 return offset;
7461}
7462
7463/* Read an offset from the data stream. */
7464
7465static LONGEST
7466read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
613e1657
KB
7467{
7468 LONGEST retval = 0;
7469
c764a876 7470 switch (offset_size)
613e1657
KB
7471 {
7472 case 4:
fe1b8b76 7473 retval = bfd_get_32 (abfd, buf);
613e1657
KB
7474 break;
7475 case 8:
fe1b8b76 7476 retval = bfd_get_64 (abfd, buf);
613e1657
KB
7477 break;
7478 default:
8e65ff28 7479 internal_error (__FILE__, __LINE__,
c764a876 7480 _("read_offset_1: bad switch [in module %s]"),
659b0389 7481 bfd_get_filename (abfd));
613e1657
KB
7482 }
7483
917c78fc 7484 return retval;
613e1657
KB
7485}
7486
fe1b8b76
JB
7487static gdb_byte *
7488read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
7489{
7490 /* If the size of a host char is 8 bits, we can return a pointer
7491 to the buffer, otherwise we have to copy the data to a buffer
7492 allocated on the temporary obstack. */
4bdf3d34 7493 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 7494 return buf;
c906108c
SS
7495}
7496
7497static char *
fe1b8b76 7498read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
7499{
7500 /* If the size of a host char is 8 bits, we can return a pointer
7501 to the string, otherwise we have to copy the string to a buffer
7502 allocated on the temporary obstack. */
4bdf3d34 7503 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
7504 if (*buf == '\0')
7505 {
7506 *bytes_read_ptr = 1;
7507 return NULL;
7508 }
fe1b8b76
JB
7509 *bytes_read_ptr = strlen ((char *) buf) + 1;
7510 return (char *) buf;
4bdf3d34
JJ
7511}
7512
7513static char *
fe1b8b76 7514read_indirect_string (bfd *abfd, gdb_byte *buf,
4bdf3d34
JJ
7515 const struct comp_unit_head *cu_header,
7516 unsigned int *bytes_read_ptr)
7517{
c764a876 7518 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
c906108c 7519
be391dca 7520 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 7521 if (dwarf2_per_objfile->str.buffer == NULL)
c906108c 7522 {
8a3fe4f8 7523 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 7524 bfd_get_filename (abfd));
4bdf3d34 7525 return NULL;
c906108c 7526 }
dce234bc 7527 if (str_offset >= dwarf2_per_objfile->str.size)
c906108c 7528 {
8a3fe4f8 7529 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
659b0389 7530 bfd_get_filename (abfd));
c906108c
SS
7531 return NULL;
7532 }
4bdf3d34 7533 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 7534 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 7535 return NULL;
dce234bc 7536 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
7537}
7538
ce5d95e1 7539static unsigned long
fe1b8b76 7540read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 7541{
ce5d95e1
JB
7542 unsigned long result;
7543 unsigned int num_read;
c906108c
SS
7544 int i, shift;
7545 unsigned char byte;
7546
7547 result = 0;
7548 shift = 0;
7549 num_read = 0;
7550 i = 0;
7551 while (1)
7552 {
fe1b8b76 7553 byte = bfd_get_8 (abfd, buf);
c906108c
SS
7554 buf++;
7555 num_read++;
ce5d95e1 7556 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
7557 if ((byte & 128) == 0)
7558 {
7559 break;
7560 }
7561 shift += 7;
7562 }
7563 *bytes_read_ptr = num_read;
7564 return result;
7565}
7566
ce5d95e1 7567static long
fe1b8b76 7568read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 7569{
ce5d95e1 7570 long result;
77e0b926 7571 int i, shift, num_read;
c906108c
SS
7572 unsigned char byte;
7573
7574 result = 0;
7575 shift = 0;
c906108c
SS
7576 num_read = 0;
7577 i = 0;
7578 while (1)
7579 {
fe1b8b76 7580 byte = bfd_get_8 (abfd, buf);
c906108c
SS
7581 buf++;
7582 num_read++;
ce5d95e1 7583 result |= ((long)(byte & 127) << shift);
c906108c
SS
7584 shift += 7;
7585 if ((byte & 128) == 0)
7586 {
7587 break;
7588 }
7589 }
77e0b926
DJ
7590 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
7591 result |= -(((long)1) << shift);
c906108c
SS
7592 *bytes_read_ptr = num_read;
7593 return result;
7594}
7595
4bb7a0a7
DJ
7596/* Return a pointer to just past the end of an LEB128 number in BUF. */
7597
fe1b8b76
JB
7598static gdb_byte *
7599skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
7600{
7601 int byte;
7602
7603 while (1)
7604 {
fe1b8b76 7605 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
7606 buf++;
7607 if ((byte & 128) == 0)
7608 return buf;
7609 }
7610}
7611
c906108c 7612static void
e142c38c 7613set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
7614{
7615 switch (lang)
7616 {
7617 case DW_LANG_C89:
76bee0cc 7618 case DW_LANG_C99:
c906108c 7619 case DW_LANG_C:
e142c38c 7620 cu->language = language_c;
c906108c
SS
7621 break;
7622 case DW_LANG_C_plus_plus:
e142c38c 7623 cu->language = language_cplus;
c906108c 7624 break;
6aecb9c2
JB
7625 case DW_LANG_D:
7626 cu->language = language_d;
7627 break;
c906108c
SS
7628 case DW_LANG_Fortran77:
7629 case DW_LANG_Fortran90:
b21b22e0 7630 case DW_LANG_Fortran95:
e142c38c 7631 cu->language = language_fortran;
c906108c
SS
7632 break;
7633 case DW_LANG_Mips_Assembler:
e142c38c 7634 cu->language = language_asm;
c906108c 7635 break;
bebd888e 7636 case DW_LANG_Java:
e142c38c 7637 cu->language = language_java;
bebd888e 7638 break;
c906108c 7639 case DW_LANG_Ada83:
8aaf0b47 7640 case DW_LANG_Ada95:
bc5f45f8
JB
7641 cu->language = language_ada;
7642 break;
72019c9c
GM
7643 case DW_LANG_Modula2:
7644 cu->language = language_m2;
7645 break;
fe8e67fd
PM
7646 case DW_LANG_Pascal83:
7647 cu->language = language_pascal;
7648 break;
22566fbd
DJ
7649 case DW_LANG_ObjC:
7650 cu->language = language_objc;
7651 break;
c906108c
SS
7652 case DW_LANG_Cobol74:
7653 case DW_LANG_Cobol85:
c906108c 7654 default:
e142c38c 7655 cu->language = language_minimal;
c906108c
SS
7656 break;
7657 }
e142c38c 7658 cu->language_defn = language_def (cu->language);
c906108c
SS
7659}
7660
7661/* Return the named attribute or NULL if not there. */
7662
7663static struct attribute *
e142c38c 7664dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
7665{
7666 unsigned int i;
7667 struct attribute *spec = NULL;
7668
7669 for (i = 0; i < die->num_attrs; ++i)
7670 {
7671 if (die->attrs[i].name == name)
10b3939b 7672 return &die->attrs[i];
c906108c
SS
7673 if (die->attrs[i].name == DW_AT_specification
7674 || die->attrs[i].name == DW_AT_abstract_origin)
7675 spec = &die->attrs[i];
7676 }
c906108c 7677
10b3939b 7678 if (spec)
f2f0e013
DJ
7679 {
7680 die = follow_die_ref (die, spec, &cu);
7681 return dwarf2_attr (die, name, cu);
7682 }
c5aa993b 7683
c906108c
SS
7684 return NULL;
7685}
7686
348e048f
DE
7687/* Return the named attribute or NULL if not there,
7688 but do not follow DW_AT_specification, etc.
7689 This is for use in contexts where we're reading .debug_types dies.
7690 Following DW_AT_specification, DW_AT_abstract_origin will take us
7691 back up the chain, and we want to go down. */
7692
7693static struct attribute *
7694dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
7695 struct dwarf2_cu *cu)
7696{
7697 unsigned int i;
7698
7699 for (i = 0; i < die->num_attrs; ++i)
7700 if (die->attrs[i].name == name)
7701 return &die->attrs[i];
7702
7703 return NULL;
7704}
7705
05cf31d1
JB
7706/* Return non-zero iff the attribute NAME is defined for the given DIE,
7707 and holds a non-zero value. This function should only be used for
2dc7f7b3 7708 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
7709
7710static int
7711dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
7712{
7713 struct attribute *attr = dwarf2_attr (die, name, cu);
7714
7715 return (attr && DW_UNSND (attr));
7716}
7717
3ca72b44 7718static int
e142c38c 7719die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 7720{
05cf31d1
JB
7721 /* A DIE is a declaration if it has a DW_AT_declaration attribute
7722 which value is non-zero. However, we have to be careful with
7723 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
7724 (via dwarf2_flag_true_p) follows this attribute. So we may
7725 end up accidently finding a declaration attribute that belongs
7726 to a different DIE referenced by the specification attribute,
7727 even though the given DIE does not have a declaration attribute. */
7728 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
7729 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
7730}
7731
63d06c5c 7732/* Return the die giving the specification for DIE, if there is
f2f0e013 7733 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
7734 containing the return value on output. If there is no
7735 specification, but there is an abstract origin, that is
7736 returned. */
63d06c5c
DC
7737
7738static struct die_info *
f2f0e013 7739die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 7740{
f2f0e013
DJ
7741 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
7742 *spec_cu);
63d06c5c 7743
edb3359d
DJ
7744 if (spec_attr == NULL)
7745 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
7746
63d06c5c
DC
7747 if (spec_attr == NULL)
7748 return NULL;
7749 else
f2f0e013 7750 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 7751}
c906108c 7752
debd256d
JB
7753/* Free the line_header structure *LH, and any arrays and strings it
7754 refers to. */
7755static void
7756free_line_header (struct line_header *lh)
7757{
7758 if (lh->standard_opcode_lengths)
a8bc7b56 7759 xfree (lh->standard_opcode_lengths);
debd256d
JB
7760
7761 /* Remember that all the lh->file_names[i].name pointers are
7762 pointers into debug_line_buffer, and don't need to be freed. */
7763 if (lh->file_names)
a8bc7b56 7764 xfree (lh->file_names);
debd256d
JB
7765
7766 /* Similarly for the include directory names. */
7767 if (lh->include_dirs)
a8bc7b56 7768 xfree (lh->include_dirs);
debd256d 7769
a8bc7b56 7770 xfree (lh);
debd256d
JB
7771}
7772
7773
7774/* Add an entry to LH's include directory table. */
7775static void
7776add_include_dir (struct line_header *lh, char *include_dir)
c906108c 7777{
debd256d
JB
7778 /* Grow the array if necessary. */
7779 if (lh->include_dirs_size == 0)
c5aa993b 7780 {
debd256d
JB
7781 lh->include_dirs_size = 1; /* for testing */
7782 lh->include_dirs = xmalloc (lh->include_dirs_size
7783 * sizeof (*lh->include_dirs));
7784 }
7785 else if (lh->num_include_dirs >= lh->include_dirs_size)
7786 {
7787 lh->include_dirs_size *= 2;
7788 lh->include_dirs = xrealloc (lh->include_dirs,
7789 (lh->include_dirs_size
7790 * sizeof (*lh->include_dirs)));
c5aa993b 7791 }
c906108c 7792
debd256d
JB
7793 lh->include_dirs[lh->num_include_dirs++] = include_dir;
7794}
7795
7796
7797/* Add an entry to LH's file name table. */
7798static void
7799add_file_name (struct line_header *lh,
7800 char *name,
7801 unsigned int dir_index,
7802 unsigned int mod_time,
7803 unsigned int length)
7804{
7805 struct file_entry *fe;
7806
7807 /* Grow the array if necessary. */
7808 if (lh->file_names_size == 0)
7809 {
7810 lh->file_names_size = 1; /* for testing */
7811 lh->file_names = xmalloc (lh->file_names_size
7812 * sizeof (*lh->file_names));
7813 }
7814 else if (lh->num_file_names >= lh->file_names_size)
7815 {
7816 lh->file_names_size *= 2;
7817 lh->file_names = xrealloc (lh->file_names,
7818 (lh->file_names_size
7819 * sizeof (*lh->file_names)));
7820 }
7821
7822 fe = &lh->file_names[lh->num_file_names++];
7823 fe->name = name;
7824 fe->dir_index = dir_index;
7825 fe->mod_time = mod_time;
7826 fe->length = length;
aaa75496 7827 fe->included_p = 0;
cb1df416 7828 fe->symtab = NULL;
debd256d
JB
7829}
7830
7831
7832/* Read the statement program header starting at OFFSET in
6502dd73
DJ
7833 .debug_line, according to the endianness of ABFD. Return a pointer
7834 to a struct line_header, allocated using xmalloc.
debd256d
JB
7835
7836 NOTE: the strings in the include directory and file name tables of
7837 the returned object point into debug_line_buffer, and must not be
7838 freed. */
7839static struct line_header *
7840dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 7841 struct dwarf2_cu *cu)
debd256d
JB
7842{
7843 struct cleanup *back_to;
7844 struct line_header *lh;
fe1b8b76 7845 gdb_byte *line_ptr;
c764a876 7846 unsigned int bytes_read, offset_size;
debd256d
JB
7847 int i;
7848 char *cur_dir, *cur_file;
7849
be391dca 7850 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
dce234bc 7851 if (dwarf2_per_objfile->line.buffer == NULL)
debd256d 7852 {
e2e0b3e5 7853 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
7854 return 0;
7855 }
7856
a738430d
MK
7857 /* Make sure that at least there's room for the total_length field.
7858 That could be 12 bytes long, but we're just going to fudge that. */
dce234bc 7859 if (offset + 4 >= dwarf2_per_objfile->line.size)
debd256d 7860 {
4d3c2250 7861 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
7862 return 0;
7863 }
7864
7865 lh = xmalloc (sizeof (*lh));
7866 memset (lh, 0, sizeof (*lh));
7867 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
7868 (void *) lh);
7869
dce234bc 7870 line_ptr = dwarf2_per_objfile->line.buffer + offset;
debd256d 7871
a738430d 7872 /* Read in the header. */
dd373385 7873 lh->total_length =
c764a876
DE
7874 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
7875 &bytes_read, &offset_size);
debd256d 7876 line_ptr += bytes_read;
dce234bc
PP
7877 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
7878 + dwarf2_per_objfile->line.size))
debd256d 7879 {
4d3c2250 7880 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
7881 return 0;
7882 }
7883 lh->statement_program_end = line_ptr + lh->total_length;
7884 lh->version = read_2_bytes (abfd, line_ptr);
7885 line_ptr += 2;
c764a876
DE
7886 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
7887 line_ptr += offset_size;
debd256d
JB
7888 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
7889 line_ptr += 1;
2dc7f7b3
TT
7890 if (lh->version >= 4)
7891 {
7892 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
7893 line_ptr += 1;
7894 }
7895 else
7896 lh->maximum_ops_per_instruction = 1;
7897
7898 if (lh->maximum_ops_per_instruction == 0)
7899 {
7900 lh->maximum_ops_per_instruction = 1;
7901 complaint (&symfile_complaints,
7902 _("invalid maximum_ops_per_instruction in `.debug_line' section"));
7903 }
7904
debd256d
JB
7905 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
7906 line_ptr += 1;
7907 lh->line_base = read_1_signed_byte (abfd, line_ptr);
7908 line_ptr += 1;
7909 lh->line_range = read_1_byte (abfd, line_ptr);
7910 line_ptr += 1;
7911 lh->opcode_base = read_1_byte (abfd, line_ptr);
7912 line_ptr += 1;
7913 lh->standard_opcode_lengths
fe1b8b76 7914 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
7915
7916 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
7917 for (i = 1; i < lh->opcode_base; ++i)
7918 {
7919 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
7920 line_ptr += 1;
7921 }
7922
a738430d 7923 /* Read directory table. */
debd256d
JB
7924 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
7925 {
7926 line_ptr += bytes_read;
7927 add_include_dir (lh, cur_dir);
7928 }
7929 line_ptr += bytes_read;
7930
a738430d 7931 /* Read file name table. */
debd256d
JB
7932 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
7933 {
7934 unsigned int dir_index, mod_time, length;
7935
7936 line_ptr += bytes_read;
7937 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7938 line_ptr += bytes_read;
7939 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7940 line_ptr += bytes_read;
7941 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7942 line_ptr += bytes_read;
7943
7944 add_file_name (lh, cur_file, dir_index, mod_time, length);
7945 }
7946 line_ptr += bytes_read;
7947 lh->statement_program_start = line_ptr;
7948
dce234bc
PP
7949 if (line_ptr > (dwarf2_per_objfile->line.buffer
7950 + dwarf2_per_objfile->line.size))
4d3c2250 7951 complaint (&symfile_complaints,
e2e0b3e5 7952 _("line number info header doesn't fit in `.debug_line' section"));
debd256d
JB
7953
7954 discard_cleanups (back_to);
7955 return lh;
7956}
c906108c 7957
5fb290d7
DJ
7958/* This function exists to work around a bug in certain compilers
7959 (particularly GCC 2.95), in which the first line number marker of a
7960 function does not show up until after the prologue, right before
7961 the second line number marker. This function shifts ADDRESS down
7962 to the beginning of the function if necessary, and is called on
7963 addresses passed to record_line. */
7964
7965static CORE_ADDR
e142c38c 7966check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
7967{
7968 struct function_range *fn;
7969
7970 /* Find the function_range containing address. */
e142c38c 7971 if (!cu->first_fn)
5fb290d7
DJ
7972 return address;
7973
e142c38c
DJ
7974 if (!cu->cached_fn)
7975 cu->cached_fn = cu->first_fn;
5fb290d7 7976
e142c38c 7977 fn = cu->cached_fn;
5fb290d7
DJ
7978 while (fn)
7979 if (fn->lowpc <= address && fn->highpc > address)
7980 goto found;
7981 else
7982 fn = fn->next;
7983
e142c38c
DJ
7984 fn = cu->first_fn;
7985 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
7986 if (fn->lowpc <= address && fn->highpc > address)
7987 goto found;
7988 else
7989 fn = fn->next;
7990
7991 return address;
7992
7993 found:
7994 if (fn->seen_line)
7995 return address;
7996 if (address != fn->lowpc)
4d3c2250 7997 complaint (&symfile_complaints,
e2e0b3e5 7998 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 7999 (unsigned long) address, fn->name);
5fb290d7
DJ
8000 fn->seen_line = 1;
8001 return fn->lowpc;
8002}
8003
aaa75496
JB
8004/* Decode the Line Number Program (LNP) for the given line_header
8005 structure and CU. The actual information extracted and the type
8006 of structures created from the LNP depends on the value of PST.
8007
8008 1. If PST is NULL, then this procedure uses the data from the program
8009 to create all necessary symbol tables, and their linetables.
8010 The compilation directory of the file is passed in COMP_DIR,
8011 and must not be NULL.
8012
8013 2. If PST is not NULL, this procedure reads the program to determine
8014 the list of files included by the unit represented by PST, and
8015 builds all the associated partial symbol tables. In this case,
8016 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
8017 is not used to compute the full name of the symtab, and therefore
8018 omitting it when building the partial symtab does not introduce
8019 the potential for inconsistency - a partial symtab and its associated
8020 symbtab having a different fullname -). */
debd256d 8021
c906108c 8022static void
debd256d 8023dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
aaa75496 8024 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 8025{
a8c50c1f 8026 gdb_byte *line_ptr, *extended_end;
fe1b8b76 8027 gdb_byte *line_end;
a8c50c1f 8028 unsigned int bytes_read, extended_len;
c906108c 8029 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
8030 CORE_ADDR baseaddr;
8031 struct objfile *objfile = cu->objfile;
fbf65064 8032 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 8033 const int decode_for_pst_p = (pst != NULL);
cb1df416 8034 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
e142c38c
DJ
8035
8036 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8037
debd256d
JB
8038 line_ptr = lh->statement_program_start;
8039 line_end = lh->statement_program_end;
c906108c
SS
8040
8041 /* Read the statement sequences until there's nothing left. */
8042 while (line_ptr < line_end)
8043 {
8044 /* state machine registers */
8045 CORE_ADDR address = 0;
8046 unsigned int file = 1;
8047 unsigned int line = 1;
8048 unsigned int column = 0;
debd256d 8049 int is_stmt = lh->default_is_stmt;
c906108c
SS
8050 int basic_block = 0;
8051 int end_sequence = 0;
fbf65064 8052 CORE_ADDR addr;
2dc7f7b3 8053 unsigned char op_index = 0;
c906108c 8054
aaa75496 8055 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 8056 {
aaa75496 8057 /* Start a subfile for the current file of the state machine. */
debd256d
JB
8058 /* lh->include_dirs and lh->file_names are 0-based, but the
8059 directory and file name numbers in the statement program
8060 are 1-based. */
8061 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 8062 char *dir = NULL;
a738430d 8063
debd256d
JB
8064 if (fe->dir_index)
8065 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
8066
8067 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
8068 }
8069
a738430d 8070 /* Decode the table. */
c5aa993b 8071 while (!end_sequence)
c906108c
SS
8072 {
8073 op_code = read_1_byte (abfd, line_ptr);
8074 line_ptr += 1;
59205f5a
JB
8075 if (line_ptr > line_end)
8076 {
8077 dwarf2_debug_line_missing_end_sequence_complaint ();
8078 break;
8079 }
9aa1fe7e 8080
debd256d 8081 if (op_code >= lh->opcode_base)
a738430d
MK
8082 {
8083 /* Special operand. */
debd256d 8084 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
8085 address += (((op_index + (adj_opcode / lh->line_range))
8086 / lh->maximum_ops_per_instruction)
8087 * lh->minimum_instruction_length);
8088 op_index = ((op_index + (adj_opcode / lh->line_range))
8089 % lh->maximum_ops_per_instruction);
debd256d 8090 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 8091 if (lh->num_file_names < file || file == 0)
25e43795 8092 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
8093 /* For now we ignore lines not starting on an
8094 instruction boundary. */
8095 else if (op_index == 0)
25e43795
DJ
8096 {
8097 lh->file_names[file - 1].included_p = 1;
ca5f395d 8098 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
8099 {
8100 if (last_subfile != current_subfile)
8101 {
8102 addr = gdbarch_addr_bits_remove (gdbarch, address);
8103 if (last_subfile)
8104 record_line (last_subfile, 0, addr);
8105 last_subfile = current_subfile;
8106 }
25e43795 8107 /* Append row to matrix using current values. */
fbf65064
UW
8108 addr = check_cu_functions (address, cu);
8109 addr = gdbarch_addr_bits_remove (gdbarch, addr);
8110 record_line (current_subfile, line, addr);
366da635 8111 }
25e43795 8112 }
ca5f395d 8113 basic_block = 0;
9aa1fe7e
GK
8114 }
8115 else switch (op_code)
c906108c
SS
8116 {
8117 case DW_LNS_extended_op:
a8c50c1f 8118 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
473b7be6 8119 line_ptr += bytes_read;
a8c50c1f 8120 extended_end = line_ptr + extended_len;
c906108c
SS
8121 extended_op = read_1_byte (abfd, line_ptr);
8122 line_ptr += 1;
8123 switch (extended_op)
8124 {
8125 case DW_LNE_end_sequence:
8126 end_sequence = 1;
c906108c
SS
8127 break;
8128 case DW_LNE_set_address:
e7c27a73 8129 address = read_address (abfd, line_ptr, cu, &bytes_read);
2dc7f7b3 8130 op_index = 0;
107d2387
AC
8131 line_ptr += bytes_read;
8132 address += baseaddr;
c906108c
SS
8133 break;
8134 case DW_LNE_define_file:
debd256d
JB
8135 {
8136 char *cur_file;
8137 unsigned int dir_index, mod_time, length;
8138
8139 cur_file = read_string (abfd, line_ptr, &bytes_read);
8140 line_ptr += bytes_read;
8141 dir_index =
8142 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8143 line_ptr += bytes_read;
8144 mod_time =
8145 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8146 line_ptr += bytes_read;
8147 length =
8148 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8149 line_ptr += bytes_read;
8150 add_file_name (lh, cur_file, dir_index, mod_time, length);
8151 }
c906108c 8152 break;
d0c6ba3d
CC
8153 case DW_LNE_set_discriminator:
8154 /* The discriminator is not interesting to the debugger;
8155 just ignore it. */
8156 line_ptr = extended_end;
8157 break;
c906108c 8158 default:
4d3c2250 8159 complaint (&symfile_complaints,
e2e0b3e5 8160 _("mangled .debug_line section"));
debd256d 8161 return;
c906108c 8162 }
a8c50c1f
DJ
8163 /* Make sure that we parsed the extended op correctly. If e.g.
8164 we expected a different address size than the producer used,
8165 we may have read the wrong number of bytes. */
8166 if (line_ptr != extended_end)
8167 {
8168 complaint (&symfile_complaints,
8169 _("mangled .debug_line section"));
8170 return;
8171 }
c906108c
SS
8172 break;
8173 case DW_LNS_copy:
59205f5a 8174 if (lh->num_file_names < file || file == 0)
25e43795
DJ
8175 dwarf2_debug_line_missing_file_complaint ();
8176 else
366da635 8177 {
25e43795 8178 lh->file_names[file - 1].included_p = 1;
ca5f395d 8179 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
8180 {
8181 if (last_subfile != current_subfile)
8182 {
8183 addr = gdbarch_addr_bits_remove (gdbarch, address);
8184 if (last_subfile)
8185 record_line (last_subfile, 0, addr);
8186 last_subfile = current_subfile;
8187 }
8188 addr = check_cu_functions (address, cu);
8189 addr = gdbarch_addr_bits_remove (gdbarch, addr);
8190 record_line (current_subfile, line, addr);
8191 }
366da635 8192 }
c906108c
SS
8193 basic_block = 0;
8194 break;
8195 case DW_LNS_advance_pc:
2dc7f7b3
TT
8196 {
8197 CORE_ADDR adjust
8198 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8199
8200 address += (((op_index + adjust)
8201 / lh->maximum_ops_per_instruction)
8202 * lh->minimum_instruction_length);
8203 op_index = ((op_index + adjust)
8204 % lh->maximum_ops_per_instruction);
8205 line_ptr += bytes_read;
8206 }
c906108c
SS
8207 break;
8208 case DW_LNS_advance_line:
8209 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
8210 line_ptr += bytes_read;
8211 break;
8212 case DW_LNS_set_file:
debd256d 8213 {
a738430d
MK
8214 /* The arrays lh->include_dirs and lh->file_names are
8215 0-based, but the directory and file name numbers in
8216 the statement program are 1-based. */
debd256d 8217 struct file_entry *fe;
4f1520fb 8218 char *dir = NULL;
a738430d 8219
debd256d
JB
8220 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8221 line_ptr += bytes_read;
59205f5a 8222 if (lh->num_file_names < file || file == 0)
25e43795
DJ
8223 dwarf2_debug_line_missing_file_complaint ();
8224 else
8225 {
8226 fe = &lh->file_names[file - 1];
8227 if (fe->dir_index)
8228 dir = lh->include_dirs[fe->dir_index - 1];
8229 if (!decode_for_pst_p)
8230 {
8231 last_subfile = current_subfile;
8232 dwarf2_start_subfile (fe->name, dir, comp_dir);
8233 }
8234 }
debd256d 8235 }
c906108c
SS
8236 break;
8237 case DW_LNS_set_column:
8238 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8239 line_ptr += bytes_read;
8240 break;
8241 case DW_LNS_negate_stmt:
8242 is_stmt = (!is_stmt);
8243 break;
8244 case DW_LNS_set_basic_block:
8245 basic_block = 1;
8246 break;
c2c6d25f
JM
8247 /* Add to the address register of the state machine the
8248 address increment value corresponding to special opcode
a738430d
MK
8249 255. I.e., this value is scaled by the minimum
8250 instruction length since special opcode 255 would have
8251 scaled the the increment. */
c906108c 8252 case DW_LNS_const_add_pc:
2dc7f7b3
TT
8253 {
8254 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
8255
8256 address += (((op_index + adjust)
8257 / lh->maximum_ops_per_instruction)
8258 * lh->minimum_instruction_length);
8259 op_index = ((op_index + adjust)
8260 % lh->maximum_ops_per_instruction);
8261 }
c906108c
SS
8262 break;
8263 case DW_LNS_fixed_advance_pc:
8264 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 8265 op_index = 0;
c906108c
SS
8266 line_ptr += 2;
8267 break;
9aa1fe7e 8268 default:
a738430d
MK
8269 {
8270 /* Unknown standard opcode, ignore it. */
9aa1fe7e 8271 int i;
a738430d 8272
debd256d 8273 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
8274 {
8275 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8276 line_ptr += bytes_read;
8277 }
8278 }
c906108c
SS
8279 }
8280 }
59205f5a
JB
8281 if (lh->num_file_names < file || file == 0)
8282 dwarf2_debug_line_missing_file_complaint ();
8283 else
8284 {
8285 lh->file_names[file - 1].included_p = 1;
8286 if (!decode_for_pst_p)
fbf65064
UW
8287 {
8288 addr = gdbarch_addr_bits_remove (gdbarch, address);
8289 record_line (current_subfile, 0, addr);
8290 }
59205f5a 8291 }
c906108c 8292 }
aaa75496
JB
8293
8294 if (decode_for_pst_p)
8295 {
8296 int file_index;
8297
8298 /* Now that we're done scanning the Line Header Program, we can
8299 create the psymtab of each included file. */
8300 for (file_index = 0; file_index < lh->num_file_names; file_index++)
8301 if (lh->file_names[file_index].included_p == 1)
8302 {
5b5464ad
JB
8303 const struct file_entry fe = lh->file_names [file_index];
8304 char *include_name = fe.name;
8305 char *dir_name = NULL;
8306 char *pst_filename = pst->filename;
8307
8308 if (fe.dir_index)
8309 dir_name = lh->include_dirs[fe.dir_index - 1];
8310
8311 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
8312 {
1754f103
MK
8313 include_name = concat (dir_name, SLASH_STRING,
8314 include_name, (char *)NULL);
5b5464ad
JB
8315 make_cleanup (xfree, include_name);
8316 }
8317
8318 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
8319 {
1754f103
MK
8320 pst_filename = concat (pst->dirname, SLASH_STRING,
8321 pst_filename, (char *)NULL);
5b5464ad
JB
8322 make_cleanup (xfree, pst_filename);
8323 }
8324
8325 if (strcmp (include_name, pst_filename) != 0)
aaa75496
JB
8326 dwarf2_create_include_psymtab (include_name, pst, objfile);
8327 }
8328 }
cb1df416
DJ
8329 else
8330 {
8331 /* Make sure a symtab is created for every file, even files
8332 which contain only variables (i.e. no code with associated
8333 line numbers). */
8334
8335 int i;
8336 struct file_entry *fe;
8337
8338 for (i = 0; i < lh->num_file_names; i++)
8339 {
8340 char *dir = NULL;
9a619af0 8341
cb1df416
DJ
8342 fe = &lh->file_names[i];
8343 if (fe->dir_index)
8344 dir = lh->include_dirs[fe->dir_index - 1];
8345 dwarf2_start_subfile (fe->name, dir, comp_dir);
8346
8347 /* Skip the main file; we don't need it, and it must be
8348 allocated last, so that it will show up before the
8349 non-primary symtabs in the objfile's symtab list. */
8350 if (current_subfile == first_subfile)
8351 continue;
8352
8353 if (current_subfile->symtab == NULL)
8354 current_subfile->symtab = allocate_symtab (current_subfile->name,
8355 cu->objfile);
8356 fe->symtab = current_subfile->symtab;
8357 }
8358 }
c906108c
SS
8359}
8360
8361/* Start a subfile for DWARF. FILENAME is the name of the file and
8362 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
8363 or NULL if not known. COMP_DIR is the compilation directory for the
8364 linetable's compilation unit or NULL if not known.
c906108c
SS
8365 This routine tries to keep line numbers from identical absolute and
8366 relative file names in a common subfile.
8367
8368 Using the `list' example from the GDB testsuite, which resides in
8369 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
8370 of /srcdir/list0.c yields the following debugging information for list0.c:
8371
c5aa993b
JM
8372 DW_AT_name: /srcdir/list0.c
8373 DW_AT_comp_dir: /compdir
357e46e7 8374 files.files[0].name: list0.h
c5aa993b 8375 files.files[0].dir: /srcdir
357e46e7 8376 files.files[1].name: list0.c
c5aa993b 8377 files.files[1].dir: /srcdir
c906108c
SS
8378
8379 The line number information for list0.c has to end up in a single
4f1520fb
FR
8380 subfile, so that `break /srcdir/list0.c:1' works as expected.
8381 start_subfile will ensure that this happens provided that we pass the
8382 concatenation of files.files[1].dir and files.files[1].name as the
8383 subfile's name. */
c906108c
SS
8384
8385static void
4f1520fb 8386dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
c906108c 8387{
4f1520fb
FR
8388 char *fullname;
8389
8390 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
8391 `start_symtab' will always pass the contents of DW_AT_comp_dir as
8392 second argument to start_subfile. To be consistent, we do the
8393 same here. In order not to lose the line information directory,
8394 we concatenate it to the filename when it makes sense.
8395 Note that the Dwarf3 standard says (speaking of filenames in line
8396 information): ``The directory index is ignored for file names
8397 that represent full path names''. Thus ignoring dirname in the
8398 `else' branch below isn't an issue. */
c906108c 8399
d5166ae1 8400 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
8401 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
8402 else
8403 fullname = filename;
c906108c 8404
4f1520fb
FR
8405 start_subfile (fullname, comp_dir);
8406
8407 if (fullname != filename)
8408 xfree (fullname);
c906108c
SS
8409}
8410
4c2df51b
DJ
8411static void
8412var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 8413 struct dwarf2_cu *cu)
4c2df51b 8414{
e7c27a73
DJ
8415 struct objfile *objfile = cu->objfile;
8416 struct comp_unit_head *cu_header = &cu->header;
8417
4c2df51b
DJ
8418 /* NOTE drow/2003-01-30: There used to be a comment and some special
8419 code here to turn a symbol with DW_AT_external and a
8420 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
8421 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
8422 with some versions of binutils) where shared libraries could have
8423 relocations against symbols in their debug information - the
8424 minimal symbol would have the right address, but the debug info
8425 would not. It's no longer necessary, because we will explicitly
8426 apply relocations when we read in the debug information now. */
8427
8428 /* A DW_AT_location attribute with no contents indicates that a
8429 variable has been optimized away. */
8430 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
8431 {
8432 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
8433 return;
8434 }
8435
8436 /* Handle one degenerate form of location expression specially, to
8437 preserve GDB's previous behavior when section offsets are
8438 specified. If this is just a DW_OP_addr then mark this symbol
8439 as LOC_STATIC. */
8440
8441 if (attr_form_is_block (attr)
8442 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
8443 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
8444 {
891d2f0b 8445 unsigned int dummy;
4c2df51b
DJ
8446
8447 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 8448 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
907fc202 8449 SYMBOL_CLASS (sym) = LOC_STATIC;
4c2df51b
DJ
8450 fixup_symbol_section (sym, objfile);
8451 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
8452 SYMBOL_SECTION (sym));
4c2df51b
DJ
8453 return;
8454 }
8455
8456 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
8457 expression evaluator, and use LOC_COMPUTED only when necessary
8458 (i.e. when the value of a register or memory location is
8459 referenced, or a thread-local block, etc.). Then again, it might
8460 not be worthwhile. I'm assuming that it isn't unless performance
8461 or memory numbers show me otherwise. */
8462
e7c27a73 8463 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
8464 SYMBOL_CLASS (sym) = LOC_COMPUTED;
8465}
8466
c906108c
SS
8467/* Given a pointer to a DWARF information entry, figure out if we need
8468 to make a symbol table entry for it, and if so, create a new entry
8469 and return a pointer to it.
8470 If TYPE is NULL, determine symbol type from the die, otherwise
2df3850c 8471 used the passed type. */
c906108c
SS
8472
8473static struct symbol *
e7c27a73 8474new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
c906108c 8475{
e7c27a73 8476 struct objfile *objfile = cu->objfile;
c906108c
SS
8477 struct symbol *sym = NULL;
8478 char *name;
8479 struct attribute *attr = NULL;
8480 struct attribute *attr2 = NULL;
e142c38c 8481 CORE_ADDR baseaddr;
edb3359d 8482 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
8483
8484 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8485
94af9270 8486 name = dwarf2_name (die, cu);
c906108c
SS
8487 if (name)
8488 {
94af9270
KS
8489 const char *linkagename;
8490
4a146b47 8491 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
8492 sizeof (struct symbol));
8493 OBJSTAT (objfile, n_syms++);
8494 memset (sym, 0, sizeof (struct symbol));
2de7ced7
DJ
8495
8496 /* Cache this symbol's name and the name's demangled form (if any). */
e142c38c 8497 SYMBOL_LANGUAGE (sym) = cu->language;
94af9270
KS
8498 linkagename = dwarf2_physname (name, die, cu);
8499 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c
SS
8500
8501 /* Default assumptions.
c5aa993b 8502 Use the passed type or decode it from the die. */
176620f1 8503 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 8504 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
8505 if (type != NULL)
8506 SYMBOL_TYPE (sym) = type;
8507 else
e7c27a73 8508 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
8509 attr = dwarf2_attr (die,
8510 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
8511 cu);
c906108c
SS
8512 if (attr)
8513 {
8514 SYMBOL_LINE (sym) = DW_UNSND (attr);
8515 }
cb1df416 8516
edb3359d
DJ
8517 attr = dwarf2_attr (die,
8518 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
8519 cu);
cb1df416
DJ
8520 if (attr)
8521 {
8522 int file_index = DW_UNSND (attr);
9a619af0 8523
cb1df416
DJ
8524 if (cu->line_header == NULL
8525 || file_index > cu->line_header->num_file_names)
8526 complaint (&symfile_complaints,
8527 _("file index out of range"));
1c3d648d 8528 else if (file_index > 0)
cb1df416
DJ
8529 {
8530 struct file_entry *fe;
9a619af0 8531
cb1df416
DJ
8532 fe = &cu->line_header->file_names[file_index - 1];
8533 SYMBOL_SYMTAB (sym) = fe->symtab;
8534 }
8535 }
8536
c906108c
SS
8537 switch (die->tag)
8538 {
8539 case DW_TAG_label:
e142c38c 8540 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
8541 if (attr)
8542 {
8543 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
8544 }
8545 SYMBOL_CLASS (sym) = LOC_LABEL;
8546 break;
8547 case DW_TAG_subprogram:
8548 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
8549 finish_block. */
8550 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 8551 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
8552 if ((attr2 && (DW_UNSND (attr2) != 0))
8553 || cu->language == language_ada)
c906108c 8554 {
2cfa0c8d
JB
8555 /* Subprograms marked external are stored as a global symbol.
8556 Ada subprograms, whether marked external or not, are always
8557 stored as a global symbol, because we want to be able to
8558 access them globally. For instance, we want to be able
8559 to break on a nested subprogram without having to
8560 specify the context. */
c906108c
SS
8561 add_symbol_to_list (sym, &global_symbols);
8562 }
8563 else
8564 {
e142c38c 8565 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8566 }
8567 break;
edb3359d
DJ
8568 case DW_TAG_inlined_subroutine:
8569 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
8570 finish_block. */
8571 SYMBOL_CLASS (sym) = LOC_BLOCK;
8572 SYMBOL_INLINED (sym) = 1;
8573 /* Do not add the symbol to any lists. It will be found via
8574 BLOCK_FUNCTION from the blockvector. */
8575 break;
c906108c
SS
8576 case DW_TAG_variable:
8577 /* Compilation with minimal debug info may result in variables
8578 with missing type entries. Change the misleading `void' type
8579 to something sensible. */
8580 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 8581 SYMBOL_TYPE (sym)
46bf5051 8582 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 8583
e142c38c 8584 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
8585 if (attr)
8586 {
e7c27a73 8587 dwarf2_const_value (attr, sym, cu);
e142c38c 8588 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
8589 if (attr2 && (DW_UNSND (attr2) != 0))
8590 add_symbol_to_list (sym, &global_symbols);
8591 else
e142c38c 8592 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8593 break;
8594 }
e142c38c 8595 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
8596 if (attr)
8597 {
e7c27a73 8598 var_decode_location (attr, sym, cu);
e142c38c 8599 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 8600 if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68
TT
8601 {
8602 struct pending **list_to_add;
8603
8604 /* A variable with DW_AT_external is never static,
8605 but it may be block-scoped. */
8606 list_to_add = (cu->list_in_scope == &file_symbols
8607 ? &global_symbols : cu->list_in_scope);
8608 add_symbol_to_list (sym, list_to_add);
8609 }
c906108c 8610 else
e142c38c 8611 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8612 }
8613 else
8614 {
8615 /* We do not know the address of this symbol.
c5aa993b
JM
8616 If it is an external symbol and we have type information
8617 for it, enter the symbol as a LOC_UNRESOLVED symbol.
8618 The address of the variable will then be determined from
8619 the minimal symbol table whenever the variable is
8620 referenced. */
e142c38c 8621 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 8622 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 8623 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 8624 {
0fe7935b
DJ
8625 struct pending **list_to_add;
8626
8627 /* A variable with DW_AT_external is never static, but it
8628 may be block-scoped. */
8629 list_to_add = (cu->list_in_scope == &file_symbols
8630 ? &global_symbols : cu->list_in_scope);
8631
c906108c 8632 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
0fe7935b 8633 add_symbol_to_list (sym, list_to_add);
c906108c 8634 }
442ddf59
JK
8635 else if (!die_is_declaration (die, cu))
8636 {
8637 /* Use the default LOC_OPTIMIZED_OUT class. */
8638 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
8639 add_symbol_to_list (sym, cu->list_in_scope);
8640 }
c906108c
SS
8641 }
8642 break;
8643 case DW_TAG_formal_parameter:
edb3359d
DJ
8644 /* If we are inside a function, mark this as an argument. If
8645 not, we might be looking at an argument to an inlined function
8646 when we do not have enough information to show inlined frames;
8647 pretend it's a local variable in that case so that the user can
8648 still see it. */
8649 if (context_stack_depth > 0
8650 && context_stack[context_stack_depth - 1].name != NULL)
8651 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 8652 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
8653 if (attr)
8654 {
e7c27a73 8655 var_decode_location (attr, sym, cu);
c906108c 8656 }
e142c38c 8657 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
8658 if (attr)
8659 {
e7c27a73 8660 dwarf2_const_value (attr, sym, cu);
c906108c 8661 }
e142c38c 8662 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8663 break;
8664 case DW_TAG_unspecified_parameters:
8665 /* From varargs functions; gdb doesn't seem to have any
8666 interest in this information, so just ignore it for now.
8667 (FIXME?) */
8668 break;
8669 case DW_TAG_class_type:
680b30c7 8670 case DW_TAG_interface_type:
c906108c
SS
8671 case DW_TAG_structure_type:
8672 case DW_TAG_union_type:
72019c9c 8673 case DW_TAG_set_type:
c906108c
SS
8674 case DW_TAG_enumeration_type:
8675 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 8676 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 8677
63d06c5c
DC
8678 /* Make sure that the symbol includes appropriate enclosing
8679 classes/namespaces in its name. These are calculated in
134d01f1 8680 read_structure_type, and the correct name is saved in
63d06c5c
DC
8681 the type. */
8682
987504bb
JJ
8683 if (cu->language == language_cplus
8684 || cu->language == language_java)
c906108c 8685 {
63d06c5c
DC
8686 struct type *type = SYMBOL_TYPE (sym);
8687
8688 if (TYPE_TAG_NAME (type) != NULL)
8689 {
8690 /* FIXME: carlton/2003-11-10: Should this use
8691 SYMBOL_SET_NAMES instead? (The same problem also
d8151005
DJ
8692 arises further down in this function.) */
8693 /* The type's name is already allocated along with
8694 this objfile, so we don't need to duplicate it
8695 for the symbol. */
8696 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
63d06c5c 8697 }
c906108c 8698 }
63d06c5c
DC
8699
8700 {
987504bb 8701 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
8702 really ever be static objects: otherwise, if you try
8703 to, say, break of a class's method and you're in a file
8704 which doesn't mention that class, it won't work unless
8705 the check for all static symbols in lookup_symbol_aux
8706 saves you. See the OtherFileClass tests in
8707 gdb.c++/namespace.exp. */
8708
8709 struct pending **list_to_add;
8710
e142c38c 8711 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
8712 && (cu->language == language_cplus
8713 || cu->language == language_java)
e142c38c 8714 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
8715
8716 add_symbol_to_list (sym, list_to_add);
8717
8718 /* The semantics of C++ state that "struct foo { ... }" also
987504bb 8719 defines a typedef for "foo". A Java class declaration also
5eeb2539 8720 defines a typedef for the class. */
987504bb 8721 if (cu->language == language_cplus
8c6860bb
JB
8722 || cu->language == language_java
8723 || cu->language == language_ada)
63d06c5c 8724 {
d8151005
DJ
8725 /* The symbol's name is already allocated along with
8726 this objfile, so we don't need to duplicate it for
8727 the type. */
63d06c5c 8728 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
77ef991d 8729 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
63d06c5c
DC
8730 }
8731 }
c906108c
SS
8732 break;
8733 case DW_TAG_typedef:
94af9270
KS
8734 SYMBOL_LINKAGE_NAME (sym)
8735 = (char *) dwarf2_full_name (name, die, cu);
63d06c5c
DC
8736 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8737 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 8738 add_symbol_to_list (sym, cu->list_in_scope);
63d06c5c 8739 break;
c906108c 8740 case DW_TAG_base_type:
a02abb62 8741 case DW_TAG_subrange_type:
c906108c 8742 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 8743 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 8744 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8745 break;
8746 case DW_TAG_enumerator:
94af9270
KS
8747 SYMBOL_LINKAGE_NAME (sym)
8748 = (char *) dwarf2_full_name (name, die, cu);
e142c38c 8749 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
8750 if (attr)
8751 {
e7c27a73 8752 dwarf2_const_value (attr, sym, cu);
c906108c 8753 }
63d06c5c
DC
8754 {
8755 /* NOTE: carlton/2003-11-10: See comment above in the
8756 DW_TAG_class_type, etc. block. */
8757
8758 struct pending **list_to_add;
8759
e142c38c 8760 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
8761 && (cu->language == language_cplus
8762 || cu->language == language_java)
e142c38c 8763 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
8764
8765 add_symbol_to_list (sym, list_to_add);
8766 }
c906108c 8767 break;
5c4e30ca
DC
8768 case DW_TAG_namespace:
8769 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8770 add_symbol_to_list (sym, &global_symbols);
8771 break;
c906108c
SS
8772 default:
8773 /* Not a tag we recognize. Hopefully we aren't processing
8774 trash data, but since we must specifically ignore things
8775 we don't recognize, there is nothing else we should do at
8776 this point. */
e2e0b3e5 8777 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 8778 dwarf_tag_name (die->tag));
c906108c
SS
8779 break;
8780 }
df8a16a1
DJ
8781
8782 /* For the benefit of old versions of GCC, check for anonymous
8783 namespaces based on the demangled name. */
8784 if (!processing_has_namespace_info
94af9270 8785 && cu->language == language_cplus)
df8a16a1 8786 cp_scan_for_anonymous_namespaces (sym);
c906108c
SS
8787 }
8788 return (sym);
8789}
8790
8791/* Copy constant value from an attribute to a symbol. */
8792
8793static void
107d2387 8794dwarf2_const_value (struct attribute *attr, struct symbol *sym,
e7c27a73 8795 struct dwarf2_cu *cu)
c906108c 8796{
e7c27a73
DJ
8797 struct objfile *objfile = cu->objfile;
8798 struct comp_unit_head *cu_header = &cu->header;
e17a4113
UW
8799 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
8800 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
c906108c
SS
8801 struct dwarf_block *blk;
8802
8803 switch (attr->form)
8804 {
8805 case DW_FORM_addr:
107d2387 8806 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
3567439c 8807 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
4d3c2250
KB
8808 cu_header->addr_size,
8809 TYPE_LENGTH (SYMBOL_TYPE
8810 (sym)));
4e38b386 8811 SYMBOL_VALUE_BYTES (sym) =
4a146b47 8812 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
fbd9dcd3
AC
8813 /* NOTE: cagney/2003-05-09: In-lined store_address call with
8814 it's body - store_unsigned_integer. */
8815 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
72f2769e 8816 byte_order, DW_ADDR (attr));
c906108c
SS
8817 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8818 break;
4ac36638 8819 case DW_FORM_string:
93b5768b
PA
8820 case DW_FORM_strp:
8821 /* DW_STRING is already allocated on the obstack, point directly
8822 to it. */
8823 SYMBOL_VALUE_BYTES (sym) = (gdb_byte *) DW_STRING (attr);
8824 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8825 break;
c906108c
SS
8826 case DW_FORM_block1:
8827 case DW_FORM_block2:
8828 case DW_FORM_block4:
8829 case DW_FORM_block:
2dc7f7b3 8830 case DW_FORM_exprloc:
c906108c
SS
8831 blk = DW_BLOCK (attr);
8832 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
3567439c 8833 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
4d3c2250
KB
8834 blk->size,
8835 TYPE_LENGTH (SYMBOL_TYPE
8836 (sym)));
4e38b386 8837 SYMBOL_VALUE_BYTES (sym) =
4a146b47 8838 obstack_alloc (&objfile->objfile_obstack, blk->size);
c906108c
SS
8839 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
8840 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8841 break;
2df3850c
JM
8842
8843 /* The DW_AT_const_value attributes are supposed to carry the
8844 symbol's value "represented as it would be on the target
8845 architecture." By the time we get here, it's already been
8846 converted to host endianness, so we just need to sign- or
8847 zero-extend it as appropriate. */
8848 case DW_FORM_data1:
8849 dwarf2_const_value_data (attr, sym, 8);
8850 break;
c906108c 8851 case DW_FORM_data2:
2df3850c
JM
8852 dwarf2_const_value_data (attr, sym, 16);
8853 break;
c906108c 8854 case DW_FORM_data4:
2df3850c
JM
8855 dwarf2_const_value_data (attr, sym, 32);
8856 break;
c906108c 8857 case DW_FORM_data8:
2df3850c
JM
8858 dwarf2_const_value_data (attr, sym, 64);
8859 break;
8860
c906108c 8861 case DW_FORM_sdata:
2df3850c
JM
8862 SYMBOL_VALUE (sym) = DW_SND (attr);
8863 SYMBOL_CLASS (sym) = LOC_CONST;
8864 break;
8865
c906108c
SS
8866 case DW_FORM_udata:
8867 SYMBOL_VALUE (sym) = DW_UNSND (attr);
8868 SYMBOL_CLASS (sym) = LOC_CONST;
8869 break;
2df3850c 8870
c906108c 8871 default:
4d3c2250 8872 complaint (&symfile_complaints,
e2e0b3e5 8873 _("unsupported const value attribute form: '%s'"),
4d3c2250 8874 dwarf_form_name (attr->form));
c906108c
SS
8875 SYMBOL_VALUE (sym) = 0;
8876 SYMBOL_CLASS (sym) = LOC_CONST;
8877 break;
8878 }
8879}
8880
2df3850c
JM
8881
8882/* Given an attr with a DW_FORM_dataN value in host byte order, sign-
8883 or zero-extend it as appropriate for the symbol's type. */
8884static void
8885dwarf2_const_value_data (struct attribute *attr,
8886 struct symbol *sym,
8887 int bits)
8888{
8889 LONGEST l = DW_UNSND (attr);
8890
8891 if (bits < sizeof (l) * 8)
8892 {
8893 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
8894 l &= ((LONGEST) 1 << bits) - 1;
8895 else
bf9198f1 8896 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
2df3850c
JM
8897 }
8898
8899 SYMBOL_VALUE (sym) = l;
8900 SYMBOL_CLASS (sym) = LOC_CONST;
8901}
8902
8903
c906108c
SS
8904/* Return the type of the die in question using its DW_AT_type attribute. */
8905
8906static struct type *
e7c27a73 8907die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8908{
c906108c
SS
8909 struct attribute *type_attr;
8910 struct die_info *type_die;
c906108c 8911
e142c38c 8912 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
8913 if (!type_attr)
8914 {
8915 /* A missing DW_AT_type represents a void type. */
46bf5051 8916 return objfile_type (cu->objfile)->builtin_void;
c906108c 8917 }
348e048f
DE
8918
8919 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
10b3939b 8920
33ac96f0 8921 return tag_type_to_type (type_die, cu);
c906108c
SS
8922}
8923
b4ba55a1
JB
8924/* True iff CU's producer generates GNAT Ada auxiliary information
8925 that allows to find parallel types through that information instead
8926 of having to do expensive parallel lookups by type name. */
8927
8928static int
8929need_gnat_info (struct dwarf2_cu *cu)
8930{
8931 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
8932 of GNAT produces this auxiliary information, without any indication
8933 that it is produced. Part of enhancing the FSF version of GNAT
8934 to produce that information will be to put in place an indicator
8935 that we can use in order to determine whether the descriptive type
8936 info is available or not. One suggestion that has been made is
8937 to use a new attribute, attached to the CU die. For now, assume
8938 that the descriptive type info is not available. */
8939 return 0;
8940}
8941
8942
8943/* Return the auxiliary type of the die in question using its
8944 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
8945 attribute is not present. */
8946
8947static struct type *
8948die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
8949{
b4ba55a1
JB
8950 struct attribute *type_attr;
8951 struct die_info *type_die;
8952
8953 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
8954 if (!type_attr)
8955 return NULL;
8956
8957 type_die = follow_die_ref (die, type_attr, &cu);
33ac96f0 8958 return tag_type_to_type (type_die, cu);
b4ba55a1
JB
8959}
8960
8961/* If DIE has a descriptive_type attribute, then set the TYPE's
8962 descriptive type accordingly. */
8963
8964static void
8965set_descriptive_type (struct type *type, struct die_info *die,
8966 struct dwarf2_cu *cu)
8967{
8968 struct type *descriptive_type = die_descriptive_type (die, cu);
8969
8970 if (descriptive_type)
8971 {
8972 ALLOCATE_GNAT_AUX_TYPE (type);
8973 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
8974 }
8975}
8976
c906108c
SS
8977/* Return the containing type of the die in question using its
8978 DW_AT_containing_type attribute. */
8979
8980static struct type *
e7c27a73 8981die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8982{
c906108c 8983 struct attribute *type_attr;
33ac96f0 8984 struct die_info *type_die;
c906108c 8985
e142c38c 8986 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
8987 if (!type_attr)
8988 error (_("Dwarf Error: Problem turning containing type into gdb type "
8989 "[in module %s]"), cu->objfile->name);
8990
8991 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
8992 return tag_type_to_type (type_die, cu);
c906108c
SS
8993}
8994
c906108c 8995static struct type *
e7c27a73 8996tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8997{
f792889a
DJ
8998 struct type *this_type;
8999
9000 this_type = read_type_die (die, cu);
9001 if (!this_type)
c906108c 9002 {
d97bc12b 9003 dump_die_for_error (die);
f792889a
DJ
9004 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
9005 cu->objfile->name);
c906108c 9006 }
f792889a 9007 return this_type;
c906108c
SS
9008}
9009
f792889a 9010static struct type *
e7c27a73 9011read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9012{
f792889a
DJ
9013 struct type *this_type;
9014
9015 this_type = get_die_type (die, cu);
9016 if (this_type)
9017 return this_type;
9018
c906108c
SS
9019 switch (die->tag)
9020 {
9021 case DW_TAG_class_type:
680b30c7 9022 case DW_TAG_interface_type:
c906108c
SS
9023 case DW_TAG_structure_type:
9024 case DW_TAG_union_type:
f792889a 9025 this_type = read_structure_type (die, cu);
c906108c
SS
9026 break;
9027 case DW_TAG_enumeration_type:
f792889a 9028 this_type = read_enumeration_type (die, cu);
c906108c
SS
9029 break;
9030 case DW_TAG_subprogram:
9031 case DW_TAG_subroutine_type:
edb3359d 9032 case DW_TAG_inlined_subroutine:
f792889a 9033 this_type = read_subroutine_type (die, cu);
c906108c
SS
9034 break;
9035 case DW_TAG_array_type:
f792889a 9036 this_type = read_array_type (die, cu);
c906108c 9037 break;
72019c9c 9038 case DW_TAG_set_type:
f792889a 9039 this_type = read_set_type (die, cu);
72019c9c 9040 break;
c906108c 9041 case DW_TAG_pointer_type:
f792889a 9042 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
9043 break;
9044 case DW_TAG_ptr_to_member_type:
f792889a 9045 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
9046 break;
9047 case DW_TAG_reference_type:
f792889a 9048 this_type = read_tag_reference_type (die, cu);
c906108c
SS
9049 break;
9050 case DW_TAG_const_type:
f792889a 9051 this_type = read_tag_const_type (die, cu);
c906108c
SS
9052 break;
9053 case DW_TAG_volatile_type:
f792889a 9054 this_type = read_tag_volatile_type (die, cu);
c906108c
SS
9055 break;
9056 case DW_TAG_string_type:
f792889a 9057 this_type = read_tag_string_type (die, cu);
c906108c
SS
9058 break;
9059 case DW_TAG_typedef:
f792889a 9060 this_type = read_typedef (die, cu);
c906108c 9061 break;
a02abb62 9062 case DW_TAG_subrange_type:
f792889a 9063 this_type = read_subrange_type (die, cu);
a02abb62 9064 break;
c906108c 9065 case DW_TAG_base_type:
f792889a 9066 this_type = read_base_type (die, cu);
c906108c 9067 break;
81a17f79 9068 case DW_TAG_unspecified_type:
f792889a 9069 this_type = read_unspecified_type (die, cu);
81a17f79 9070 break;
0114d602
DJ
9071 case DW_TAG_namespace:
9072 this_type = read_namespace_type (die, cu);
9073 break;
c906108c 9074 default:
a1f5b845 9075 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
4d3c2250 9076 dwarf_tag_name (die->tag));
c906108c
SS
9077 break;
9078 }
63d06c5c 9079
f792889a 9080 return this_type;
63d06c5c
DC
9081}
9082
fdde2d81 9083/* Return the name of the namespace/class that DIE is defined within,
0114d602 9084 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 9085
0114d602
DJ
9086 For example, if we're within the method foo() in the following
9087 code:
9088
9089 namespace N {
9090 class C {
9091 void foo () {
9092 }
9093 };
9094 }
9095
9096 then determine_prefix on foo's die will return "N::C". */
fdde2d81
DC
9097
9098static char *
e142c38c 9099determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 9100{
0114d602
DJ
9101 struct die_info *parent, *spec_die;
9102 struct dwarf2_cu *spec_cu;
9103 struct type *parent_type;
63d06c5c 9104
987504bb
JJ
9105 if (cu->language != language_cplus
9106 && cu->language != language_java)
0114d602
DJ
9107 return "";
9108
9109 /* We have to be careful in the presence of DW_AT_specification.
9110 For example, with GCC 3.4, given the code
9111
9112 namespace N {
9113 void foo() {
9114 // Definition of N::foo.
9115 }
9116 }
9117
9118 then we'll have a tree of DIEs like this:
9119
9120 1: DW_TAG_compile_unit
9121 2: DW_TAG_namespace // N
9122 3: DW_TAG_subprogram // declaration of N::foo
9123 4: DW_TAG_subprogram // definition of N::foo
9124 DW_AT_specification // refers to die #3
9125
9126 Thus, when processing die #4, we have to pretend that we're in
9127 the context of its DW_AT_specification, namely the contex of die
9128 #3. */
9129 spec_cu = cu;
9130 spec_die = die_specification (die, &spec_cu);
9131 if (spec_die == NULL)
9132 parent = die->parent;
9133 else
63d06c5c 9134 {
0114d602
DJ
9135 parent = spec_die->parent;
9136 cu = spec_cu;
63d06c5c 9137 }
0114d602
DJ
9138
9139 if (parent == NULL)
9140 return "";
63d06c5c 9141 else
0114d602
DJ
9142 switch (parent->tag)
9143 {
63d06c5c 9144 case DW_TAG_namespace:
0114d602 9145 parent_type = read_type_die (parent, cu);
acebe513
UW
9146 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
9147 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
9148 Work around this problem here. */
9149 if (cu->language == language_cplus
9150 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
9151 return "";
0114d602
DJ
9152 /* We give a name to even anonymous namespaces. */
9153 return TYPE_TAG_NAME (parent_type);
63d06c5c 9154 case DW_TAG_class_type:
680b30c7 9155 case DW_TAG_interface_type:
63d06c5c 9156 case DW_TAG_structure_type:
0114d602
DJ
9157 case DW_TAG_union_type:
9158 parent_type = read_type_die (parent, cu);
9159 if (TYPE_TAG_NAME (parent_type) != NULL)
9160 return TYPE_TAG_NAME (parent_type);
9161 else
9162 /* An anonymous structure is only allowed non-static data
9163 members; no typedefs, no member functions, et cetera.
9164 So it does not need a prefix. */
9165 return "";
63d06c5c 9166 default:
8176b9b8 9167 return determine_prefix (parent, cu);
63d06c5c 9168 }
63d06c5c
DC
9169}
9170
987504bb
JJ
9171/* Return a newly-allocated string formed by concatenating PREFIX and
9172 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
9173 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
9174 perform an obconcat, otherwise allocate storage for the result. The CU argument
9175 is used to determine the language and hence, the appropriate separator. */
9176
9177#define MAX_SEP_LEN 2 /* sizeof ("::") */
63d06c5c
DC
9178
9179static char *
987504bb
JJ
9180typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
9181 struct dwarf2_cu *cu)
63d06c5c 9182{
987504bb 9183 char *sep;
63d06c5c 9184
987504bb
JJ
9185 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
9186 sep = "";
9187 else if (cu->language == language_java)
9188 sep = ".";
9189 else
9190 sep = "::";
63d06c5c 9191
6dd47d34
DE
9192 if (prefix == NULL)
9193 prefix = "";
9194 if (suffix == NULL)
9195 suffix = "";
9196
987504bb
JJ
9197 if (obs == NULL)
9198 {
9199 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 9200
6dd47d34
DE
9201 strcpy (retval, prefix);
9202 strcat (retval, sep);
9203 strcat (retval, suffix);
63d06c5c
DC
9204 return retval;
9205 }
987504bb
JJ
9206 else
9207 {
9208 /* We have an obstack. */
48cb83fd 9209 return obconcat (obs, prefix, sep, suffix, (char *) NULL);
987504bb 9210 }
63d06c5c
DC
9211}
9212
c906108c
SS
9213/* Return sibling of die, NULL if no sibling. */
9214
f9aca02d 9215static struct die_info *
fba45db2 9216sibling_die (struct die_info *die)
c906108c 9217{
639d11d3 9218 return die->sibling;
c906108c
SS
9219}
9220
71c25dea
TT
9221/* Get name of a die, return NULL if not found. */
9222
9223static char *
9224dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
9225 struct obstack *obstack)
9226{
9227 if (name && cu->language == language_cplus)
9228 {
9229 char *canon_name = cp_canonicalize_string (name);
9230
9231 if (canon_name != NULL)
9232 {
9233 if (strcmp (canon_name, name) != 0)
9234 name = obsavestring (canon_name, strlen (canon_name),
9235 obstack);
9236 xfree (canon_name);
9237 }
9238 }
9239
9240 return name;
c906108c
SS
9241}
9242
9219021c
DC
9243/* Get name of a die, return NULL if not found. */
9244
9245static char *
e142c38c 9246dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
9247{
9248 struct attribute *attr;
9249
e142c38c 9250 attr = dwarf2_attr (die, DW_AT_name, cu);
71c25dea
TT
9251 if (!attr || !DW_STRING (attr))
9252 return NULL;
9253
9254 switch (die->tag)
9255 {
9256 case DW_TAG_compile_unit:
9257 /* Compilation units have a DW_AT_name that is a filename, not
9258 a source language identifier. */
9259 case DW_TAG_enumeration_type:
9260 case DW_TAG_enumerator:
9261 /* These tags always have simple identifiers already; no need
9262 to canonicalize them. */
9263 return DW_STRING (attr);
907af001 9264
418835cc
KS
9265 case DW_TAG_subprogram:
9266 /* Java constructors will all be named "<init>", so return
9267 the class name when we see this special case. */
9268 if (cu->language == language_java
9269 && DW_STRING (attr) != NULL
9270 && strcmp (DW_STRING (attr), "<init>") == 0)
9271 {
9272 struct dwarf2_cu *spec_cu = cu;
9273 struct die_info *spec_die;
9274
9275 /* GCJ will output '<init>' for Java constructor names.
9276 For this special case, return the name of the parent class. */
9277
9278 /* GCJ may output suprogram DIEs with AT_specification set.
9279 If so, use the name of the specified DIE. */
9280 spec_die = die_specification (die, &spec_cu);
9281 if (spec_die != NULL)
9282 return dwarf2_name (spec_die, spec_cu);
9283
9284 do
9285 {
9286 die = die->parent;
9287 if (die->tag == DW_TAG_class_type)
9288 return dwarf2_name (die, cu);
9289 }
9290 while (die->tag != DW_TAG_compile_unit);
9291 }
907af001
UW
9292 break;
9293
9294 case DW_TAG_class_type:
9295 case DW_TAG_interface_type:
9296 case DW_TAG_structure_type:
9297 case DW_TAG_union_type:
9298 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
9299 structures or unions. These were of the form "._%d" in GCC 4.1,
9300 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
9301 and GCC 4.4. We work around this problem by ignoring these. */
9302 if (strncmp (DW_STRING (attr), "._", 2) == 0
9303 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
9304 return NULL;
9305 break;
9306
71c25dea 9307 default:
907af001
UW
9308 break;
9309 }
9310
9311 if (!DW_STRING_IS_CANONICAL (attr))
9312 {
9313 DW_STRING (attr)
9314 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
9315 &cu->objfile->objfile_obstack);
9316 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 9317 }
907af001 9318 return DW_STRING (attr);
9219021c
DC
9319}
9320
9321/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
9322 is none. *EXT_CU is the CU containing DIE on input, and the CU
9323 containing the return value on output. */
9219021c
DC
9324
9325static struct die_info *
f2f0e013 9326dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
9327{
9328 struct attribute *attr;
9219021c 9329
f2f0e013 9330 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
9331 if (attr == NULL)
9332 return NULL;
9333
f2f0e013 9334 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
9335}
9336
c906108c
SS
9337/* Convert a DIE tag into its string name. */
9338
9339static char *
aa1ee363 9340dwarf_tag_name (unsigned tag)
c906108c
SS
9341{
9342 switch (tag)
9343 {
9344 case DW_TAG_padding:
9345 return "DW_TAG_padding";
9346 case DW_TAG_array_type:
9347 return "DW_TAG_array_type";
9348 case DW_TAG_class_type:
9349 return "DW_TAG_class_type";
9350 case DW_TAG_entry_point:
9351 return "DW_TAG_entry_point";
9352 case DW_TAG_enumeration_type:
9353 return "DW_TAG_enumeration_type";
9354 case DW_TAG_formal_parameter:
9355 return "DW_TAG_formal_parameter";
9356 case DW_TAG_imported_declaration:
9357 return "DW_TAG_imported_declaration";
9358 case DW_TAG_label:
9359 return "DW_TAG_label";
9360 case DW_TAG_lexical_block:
9361 return "DW_TAG_lexical_block";
9362 case DW_TAG_member:
9363 return "DW_TAG_member";
9364 case DW_TAG_pointer_type:
9365 return "DW_TAG_pointer_type";
9366 case DW_TAG_reference_type:
9367 return "DW_TAG_reference_type";
9368 case DW_TAG_compile_unit:
9369 return "DW_TAG_compile_unit";
9370 case DW_TAG_string_type:
9371 return "DW_TAG_string_type";
9372 case DW_TAG_structure_type:
9373 return "DW_TAG_structure_type";
9374 case DW_TAG_subroutine_type:
9375 return "DW_TAG_subroutine_type";
9376 case DW_TAG_typedef:
9377 return "DW_TAG_typedef";
9378 case DW_TAG_union_type:
9379 return "DW_TAG_union_type";
9380 case DW_TAG_unspecified_parameters:
9381 return "DW_TAG_unspecified_parameters";
9382 case DW_TAG_variant:
9383 return "DW_TAG_variant";
9384 case DW_TAG_common_block:
9385 return "DW_TAG_common_block";
9386 case DW_TAG_common_inclusion:
9387 return "DW_TAG_common_inclusion";
9388 case DW_TAG_inheritance:
9389 return "DW_TAG_inheritance";
9390 case DW_TAG_inlined_subroutine:
9391 return "DW_TAG_inlined_subroutine";
9392 case DW_TAG_module:
9393 return "DW_TAG_module";
9394 case DW_TAG_ptr_to_member_type:
9395 return "DW_TAG_ptr_to_member_type";
9396 case DW_TAG_set_type:
9397 return "DW_TAG_set_type";
9398 case DW_TAG_subrange_type:
9399 return "DW_TAG_subrange_type";
9400 case DW_TAG_with_stmt:
9401 return "DW_TAG_with_stmt";
9402 case DW_TAG_access_declaration:
9403 return "DW_TAG_access_declaration";
9404 case DW_TAG_base_type:
9405 return "DW_TAG_base_type";
9406 case DW_TAG_catch_block:
9407 return "DW_TAG_catch_block";
9408 case DW_TAG_const_type:
9409 return "DW_TAG_const_type";
9410 case DW_TAG_constant:
9411 return "DW_TAG_constant";
9412 case DW_TAG_enumerator:
9413 return "DW_TAG_enumerator";
9414 case DW_TAG_file_type:
9415 return "DW_TAG_file_type";
9416 case DW_TAG_friend:
9417 return "DW_TAG_friend";
9418 case DW_TAG_namelist:
9419 return "DW_TAG_namelist";
9420 case DW_TAG_namelist_item:
9421 return "DW_TAG_namelist_item";
9422 case DW_TAG_packed_type:
9423 return "DW_TAG_packed_type";
9424 case DW_TAG_subprogram:
9425 return "DW_TAG_subprogram";
9426 case DW_TAG_template_type_param:
9427 return "DW_TAG_template_type_param";
9428 case DW_TAG_template_value_param:
9429 return "DW_TAG_template_value_param";
9430 case DW_TAG_thrown_type:
9431 return "DW_TAG_thrown_type";
9432 case DW_TAG_try_block:
9433 return "DW_TAG_try_block";
9434 case DW_TAG_variant_part:
9435 return "DW_TAG_variant_part";
9436 case DW_TAG_variable:
9437 return "DW_TAG_variable";
9438 case DW_TAG_volatile_type:
9439 return "DW_TAG_volatile_type";
d9fa45fe
DC
9440 case DW_TAG_dwarf_procedure:
9441 return "DW_TAG_dwarf_procedure";
9442 case DW_TAG_restrict_type:
9443 return "DW_TAG_restrict_type";
9444 case DW_TAG_interface_type:
9445 return "DW_TAG_interface_type";
9446 case DW_TAG_namespace:
9447 return "DW_TAG_namespace";
9448 case DW_TAG_imported_module:
9449 return "DW_TAG_imported_module";
9450 case DW_TAG_unspecified_type:
9451 return "DW_TAG_unspecified_type";
9452 case DW_TAG_partial_unit:
9453 return "DW_TAG_partial_unit";
9454 case DW_TAG_imported_unit:
9455 return "DW_TAG_imported_unit";
b7619582
GF
9456 case DW_TAG_condition:
9457 return "DW_TAG_condition";
9458 case DW_TAG_shared_type:
9459 return "DW_TAG_shared_type";
348e048f
DE
9460 case DW_TAG_type_unit:
9461 return "DW_TAG_type_unit";
c906108c
SS
9462 case DW_TAG_MIPS_loop:
9463 return "DW_TAG_MIPS_loop";
b7619582
GF
9464 case DW_TAG_HP_array_descriptor:
9465 return "DW_TAG_HP_array_descriptor";
c906108c
SS
9466 case DW_TAG_format_label:
9467 return "DW_TAG_format_label";
9468 case DW_TAG_function_template:
9469 return "DW_TAG_function_template";
9470 case DW_TAG_class_template:
9471 return "DW_TAG_class_template";
b7619582
GF
9472 case DW_TAG_GNU_BINCL:
9473 return "DW_TAG_GNU_BINCL";
9474 case DW_TAG_GNU_EINCL:
9475 return "DW_TAG_GNU_EINCL";
9476 case DW_TAG_upc_shared_type:
9477 return "DW_TAG_upc_shared_type";
9478 case DW_TAG_upc_strict_type:
9479 return "DW_TAG_upc_strict_type";
9480 case DW_TAG_upc_relaxed_type:
9481 return "DW_TAG_upc_relaxed_type";
9482 case DW_TAG_PGI_kanji_type:
9483 return "DW_TAG_PGI_kanji_type";
9484 case DW_TAG_PGI_interface_block:
9485 return "DW_TAG_PGI_interface_block";
c906108c
SS
9486 default:
9487 return "DW_TAG_<unknown>";
9488 }
9489}
9490
9491/* Convert a DWARF attribute code into its string name. */
9492
9493static char *
aa1ee363 9494dwarf_attr_name (unsigned attr)
c906108c
SS
9495{
9496 switch (attr)
9497 {
9498 case DW_AT_sibling:
9499 return "DW_AT_sibling";
9500 case DW_AT_location:
9501 return "DW_AT_location";
9502 case DW_AT_name:
9503 return "DW_AT_name";
9504 case DW_AT_ordering:
9505 return "DW_AT_ordering";
9506 case DW_AT_subscr_data:
9507 return "DW_AT_subscr_data";
9508 case DW_AT_byte_size:
9509 return "DW_AT_byte_size";
9510 case DW_AT_bit_offset:
9511 return "DW_AT_bit_offset";
9512 case DW_AT_bit_size:
9513 return "DW_AT_bit_size";
9514 case DW_AT_element_list:
9515 return "DW_AT_element_list";
9516 case DW_AT_stmt_list:
9517 return "DW_AT_stmt_list";
9518 case DW_AT_low_pc:
9519 return "DW_AT_low_pc";
9520 case DW_AT_high_pc:
9521 return "DW_AT_high_pc";
9522 case DW_AT_language:
9523 return "DW_AT_language";
9524 case DW_AT_member:
9525 return "DW_AT_member";
9526 case DW_AT_discr:
9527 return "DW_AT_discr";
9528 case DW_AT_discr_value:
9529 return "DW_AT_discr_value";
9530 case DW_AT_visibility:
9531 return "DW_AT_visibility";
9532 case DW_AT_import:
9533 return "DW_AT_import";
9534 case DW_AT_string_length:
9535 return "DW_AT_string_length";
9536 case DW_AT_common_reference:
9537 return "DW_AT_common_reference";
9538 case DW_AT_comp_dir:
9539 return "DW_AT_comp_dir";
9540 case DW_AT_const_value:
9541 return "DW_AT_const_value";
9542 case DW_AT_containing_type:
9543 return "DW_AT_containing_type";
9544 case DW_AT_default_value:
9545 return "DW_AT_default_value";
9546 case DW_AT_inline:
9547 return "DW_AT_inline";
9548 case DW_AT_is_optional:
9549 return "DW_AT_is_optional";
9550 case DW_AT_lower_bound:
9551 return "DW_AT_lower_bound";
9552 case DW_AT_producer:
9553 return "DW_AT_producer";
9554 case DW_AT_prototyped:
9555 return "DW_AT_prototyped";
9556 case DW_AT_return_addr:
9557 return "DW_AT_return_addr";
9558 case DW_AT_start_scope:
9559 return "DW_AT_start_scope";
09fa0d7c
JK
9560 case DW_AT_bit_stride:
9561 return "DW_AT_bit_stride";
c906108c
SS
9562 case DW_AT_upper_bound:
9563 return "DW_AT_upper_bound";
9564 case DW_AT_abstract_origin:
9565 return "DW_AT_abstract_origin";
9566 case DW_AT_accessibility:
9567 return "DW_AT_accessibility";
9568 case DW_AT_address_class:
9569 return "DW_AT_address_class";
9570 case DW_AT_artificial:
9571 return "DW_AT_artificial";
9572 case DW_AT_base_types:
9573 return "DW_AT_base_types";
9574 case DW_AT_calling_convention:
9575 return "DW_AT_calling_convention";
9576 case DW_AT_count:
9577 return "DW_AT_count";
9578 case DW_AT_data_member_location:
9579 return "DW_AT_data_member_location";
9580 case DW_AT_decl_column:
9581 return "DW_AT_decl_column";
9582 case DW_AT_decl_file:
9583 return "DW_AT_decl_file";
9584 case DW_AT_decl_line:
9585 return "DW_AT_decl_line";
9586 case DW_AT_declaration:
9587 return "DW_AT_declaration";
9588 case DW_AT_discr_list:
9589 return "DW_AT_discr_list";
9590 case DW_AT_encoding:
9591 return "DW_AT_encoding";
9592 case DW_AT_external:
9593 return "DW_AT_external";
9594 case DW_AT_frame_base:
9595 return "DW_AT_frame_base";
9596 case DW_AT_friend:
9597 return "DW_AT_friend";
9598 case DW_AT_identifier_case:
9599 return "DW_AT_identifier_case";
9600 case DW_AT_macro_info:
9601 return "DW_AT_macro_info";
9602 case DW_AT_namelist_items:
9603 return "DW_AT_namelist_items";
9604 case DW_AT_priority:
9605 return "DW_AT_priority";
9606 case DW_AT_segment:
9607 return "DW_AT_segment";
9608 case DW_AT_specification:
9609 return "DW_AT_specification";
9610 case DW_AT_static_link:
9611 return "DW_AT_static_link";
9612 case DW_AT_type:
9613 return "DW_AT_type";
9614 case DW_AT_use_location:
9615 return "DW_AT_use_location";
9616 case DW_AT_variable_parameter:
9617 return "DW_AT_variable_parameter";
9618 case DW_AT_virtuality:
9619 return "DW_AT_virtuality";
9620 case DW_AT_vtable_elem_location:
9621 return "DW_AT_vtable_elem_location";
b7619582 9622 /* DWARF 3 values. */
d9fa45fe
DC
9623 case DW_AT_allocated:
9624 return "DW_AT_allocated";
9625 case DW_AT_associated:
9626 return "DW_AT_associated";
9627 case DW_AT_data_location:
9628 return "DW_AT_data_location";
09fa0d7c
JK
9629 case DW_AT_byte_stride:
9630 return "DW_AT_byte_stride";
d9fa45fe
DC
9631 case DW_AT_entry_pc:
9632 return "DW_AT_entry_pc";
9633 case DW_AT_use_UTF8:
9634 return "DW_AT_use_UTF8";
9635 case DW_AT_extension:
9636 return "DW_AT_extension";
9637 case DW_AT_ranges:
9638 return "DW_AT_ranges";
9639 case DW_AT_trampoline:
9640 return "DW_AT_trampoline";
9641 case DW_AT_call_column:
9642 return "DW_AT_call_column";
9643 case DW_AT_call_file:
9644 return "DW_AT_call_file";
9645 case DW_AT_call_line:
9646 return "DW_AT_call_line";
b7619582
GF
9647 case DW_AT_description:
9648 return "DW_AT_description";
9649 case DW_AT_binary_scale:
9650 return "DW_AT_binary_scale";
9651 case DW_AT_decimal_scale:
9652 return "DW_AT_decimal_scale";
9653 case DW_AT_small:
9654 return "DW_AT_small";
9655 case DW_AT_decimal_sign:
9656 return "DW_AT_decimal_sign";
9657 case DW_AT_digit_count:
9658 return "DW_AT_digit_count";
9659 case DW_AT_picture_string:
9660 return "DW_AT_picture_string";
9661 case DW_AT_mutable:
9662 return "DW_AT_mutable";
9663 case DW_AT_threads_scaled:
9664 return "DW_AT_threads_scaled";
9665 case DW_AT_explicit:
9666 return "DW_AT_explicit";
9667 case DW_AT_object_pointer:
9668 return "DW_AT_object_pointer";
9669 case DW_AT_endianity:
9670 return "DW_AT_endianity";
9671 case DW_AT_elemental:
9672 return "DW_AT_elemental";
9673 case DW_AT_pure:
9674 return "DW_AT_pure";
9675 case DW_AT_recursive:
9676 return "DW_AT_recursive";
348e048f
DE
9677 /* DWARF 4 values. */
9678 case DW_AT_signature:
9679 return "DW_AT_signature";
31ef98ae
TT
9680 case DW_AT_linkage_name:
9681 return "DW_AT_linkage_name";
b7619582 9682 /* SGI/MIPS extensions. */
c764a876 9683#ifdef MIPS /* collides with DW_AT_HP_block_index */
c906108c
SS
9684 case DW_AT_MIPS_fde:
9685 return "DW_AT_MIPS_fde";
c764a876 9686#endif
c906108c
SS
9687 case DW_AT_MIPS_loop_begin:
9688 return "DW_AT_MIPS_loop_begin";
9689 case DW_AT_MIPS_tail_loop_begin:
9690 return "DW_AT_MIPS_tail_loop_begin";
9691 case DW_AT_MIPS_epilog_begin:
9692 return "DW_AT_MIPS_epilog_begin";
9693 case DW_AT_MIPS_loop_unroll_factor:
9694 return "DW_AT_MIPS_loop_unroll_factor";
9695 case DW_AT_MIPS_software_pipeline_depth:
9696 return "DW_AT_MIPS_software_pipeline_depth";
9697 case DW_AT_MIPS_linkage_name:
9698 return "DW_AT_MIPS_linkage_name";
b7619582
GF
9699 case DW_AT_MIPS_stride:
9700 return "DW_AT_MIPS_stride";
9701 case DW_AT_MIPS_abstract_name:
9702 return "DW_AT_MIPS_abstract_name";
9703 case DW_AT_MIPS_clone_origin:
9704 return "DW_AT_MIPS_clone_origin";
9705 case DW_AT_MIPS_has_inlines:
9706 return "DW_AT_MIPS_has_inlines";
b7619582 9707 /* HP extensions. */
c764a876 9708#ifndef MIPS /* collides with DW_AT_MIPS_fde */
b7619582
GF
9709 case DW_AT_HP_block_index:
9710 return "DW_AT_HP_block_index";
c764a876 9711#endif
b7619582
GF
9712 case DW_AT_HP_unmodifiable:
9713 return "DW_AT_HP_unmodifiable";
9714 case DW_AT_HP_actuals_stmt_list:
9715 return "DW_AT_HP_actuals_stmt_list";
9716 case DW_AT_HP_proc_per_section:
9717 return "DW_AT_HP_proc_per_section";
9718 case DW_AT_HP_raw_data_ptr:
9719 return "DW_AT_HP_raw_data_ptr";
9720 case DW_AT_HP_pass_by_reference:
9721 return "DW_AT_HP_pass_by_reference";
9722 case DW_AT_HP_opt_level:
9723 return "DW_AT_HP_opt_level";
9724 case DW_AT_HP_prof_version_id:
9725 return "DW_AT_HP_prof_version_id";
9726 case DW_AT_HP_opt_flags:
9727 return "DW_AT_HP_opt_flags";
9728 case DW_AT_HP_cold_region_low_pc:
9729 return "DW_AT_HP_cold_region_low_pc";
9730 case DW_AT_HP_cold_region_high_pc:
9731 return "DW_AT_HP_cold_region_high_pc";
9732 case DW_AT_HP_all_variables_modifiable:
9733 return "DW_AT_HP_all_variables_modifiable";
9734 case DW_AT_HP_linkage_name:
9735 return "DW_AT_HP_linkage_name";
9736 case DW_AT_HP_prof_flags:
9737 return "DW_AT_HP_prof_flags";
9738 /* GNU extensions. */
c906108c
SS
9739 case DW_AT_sf_names:
9740 return "DW_AT_sf_names";
9741 case DW_AT_src_info:
9742 return "DW_AT_src_info";
9743 case DW_AT_mac_info:
9744 return "DW_AT_mac_info";
9745 case DW_AT_src_coords:
9746 return "DW_AT_src_coords";
9747 case DW_AT_body_begin:
9748 return "DW_AT_body_begin";
9749 case DW_AT_body_end:
9750 return "DW_AT_body_end";
f5f8a009
EZ
9751 case DW_AT_GNU_vector:
9752 return "DW_AT_GNU_vector";
b7619582
GF
9753 /* VMS extensions. */
9754 case DW_AT_VMS_rtnbeg_pd_address:
9755 return "DW_AT_VMS_rtnbeg_pd_address";
9756 /* UPC extension. */
9757 case DW_AT_upc_threads_scaled:
9758 return "DW_AT_upc_threads_scaled";
9759 /* PGI (STMicroelectronics) extensions. */
9760 case DW_AT_PGI_lbase:
9761 return "DW_AT_PGI_lbase";
9762 case DW_AT_PGI_soffset:
9763 return "DW_AT_PGI_soffset";
9764 case DW_AT_PGI_lstride:
9765 return "DW_AT_PGI_lstride";
c906108c
SS
9766 default:
9767 return "DW_AT_<unknown>";
9768 }
9769}
9770
9771/* Convert a DWARF value form code into its string name. */
9772
9773static char *
aa1ee363 9774dwarf_form_name (unsigned form)
c906108c
SS
9775{
9776 switch (form)
9777 {
9778 case DW_FORM_addr:
9779 return "DW_FORM_addr";
9780 case DW_FORM_block2:
9781 return "DW_FORM_block2";
9782 case DW_FORM_block4:
9783 return "DW_FORM_block4";
9784 case DW_FORM_data2:
9785 return "DW_FORM_data2";
9786 case DW_FORM_data4:
9787 return "DW_FORM_data4";
9788 case DW_FORM_data8:
9789 return "DW_FORM_data8";
9790 case DW_FORM_string:
9791 return "DW_FORM_string";
9792 case DW_FORM_block:
9793 return "DW_FORM_block";
9794 case DW_FORM_block1:
9795 return "DW_FORM_block1";
9796 case DW_FORM_data1:
9797 return "DW_FORM_data1";
9798 case DW_FORM_flag:
9799 return "DW_FORM_flag";
9800 case DW_FORM_sdata:
9801 return "DW_FORM_sdata";
9802 case DW_FORM_strp:
9803 return "DW_FORM_strp";
9804 case DW_FORM_udata:
9805 return "DW_FORM_udata";
9806 case DW_FORM_ref_addr:
9807 return "DW_FORM_ref_addr";
9808 case DW_FORM_ref1:
9809 return "DW_FORM_ref1";
9810 case DW_FORM_ref2:
9811 return "DW_FORM_ref2";
9812 case DW_FORM_ref4:
9813 return "DW_FORM_ref4";
9814 case DW_FORM_ref8:
9815 return "DW_FORM_ref8";
9816 case DW_FORM_ref_udata:
9817 return "DW_FORM_ref_udata";
9818 case DW_FORM_indirect:
9819 return "DW_FORM_indirect";
348e048f
DE
9820 case DW_FORM_sec_offset:
9821 return "DW_FORM_sec_offset";
9822 case DW_FORM_exprloc:
9823 return "DW_FORM_exprloc";
9824 case DW_FORM_flag_present:
9825 return "DW_FORM_flag_present";
9826 case DW_FORM_sig8:
9827 return "DW_FORM_sig8";
c906108c
SS
9828 default:
9829 return "DW_FORM_<unknown>";
9830 }
9831}
9832
9833/* Convert a DWARF stack opcode into its string name. */
9834
9835static char *
aa1ee363 9836dwarf_stack_op_name (unsigned op)
c906108c
SS
9837{
9838 switch (op)
9839 {
9840 case DW_OP_addr:
9841 return "DW_OP_addr";
9842 case DW_OP_deref:
9843 return "DW_OP_deref";
9844 case DW_OP_const1u:
9845 return "DW_OP_const1u";
9846 case DW_OP_const1s:
9847 return "DW_OP_const1s";
9848 case DW_OP_const2u:
9849 return "DW_OP_const2u";
9850 case DW_OP_const2s:
9851 return "DW_OP_const2s";
9852 case DW_OP_const4u:
9853 return "DW_OP_const4u";
9854 case DW_OP_const4s:
9855 return "DW_OP_const4s";
9856 case DW_OP_const8u:
9857 return "DW_OP_const8u";
9858 case DW_OP_const8s:
9859 return "DW_OP_const8s";
9860 case DW_OP_constu:
9861 return "DW_OP_constu";
9862 case DW_OP_consts:
9863 return "DW_OP_consts";
9864 case DW_OP_dup:
9865 return "DW_OP_dup";
9866 case DW_OP_drop:
9867 return "DW_OP_drop";
9868 case DW_OP_over:
9869 return "DW_OP_over";
9870 case DW_OP_pick:
9871 return "DW_OP_pick";
9872 case DW_OP_swap:
9873 return "DW_OP_swap";
9874 case DW_OP_rot:
9875 return "DW_OP_rot";
9876 case DW_OP_xderef:
9877 return "DW_OP_xderef";
9878 case DW_OP_abs:
9879 return "DW_OP_abs";
9880 case DW_OP_and:
9881 return "DW_OP_and";
9882 case DW_OP_div:
9883 return "DW_OP_div";
9884 case DW_OP_minus:
9885 return "DW_OP_minus";
9886 case DW_OP_mod:
9887 return "DW_OP_mod";
9888 case DW_OP_mul:
9889 return "DW_OP_mul";
9890 case DW_OP_neg:
9891 return "DW_OP_neg";
9892 case DW_OP_not:
9893 return "DW_OP_not";
9894 case DW_OP_or:
9895 return "DW_OP_or";
9896 case DW_OP_plus:
9897 return "DW_OP_plus";
9898 case DW_OP_plus_uconst:
9899 return "DW_OP_plus_uconst";
9900 case DW_OP_shl:
9901 return "DW_OP_shl";
9902 case DW_OP_shr:
9903 return "DW_OP_shr";
9904 case DW_OP_shra:
9905 return "DW_OP_shra";
9906 case DW_OP_xor:
9907 return "DW_OP_xor";
9908 case DW_OP_bra:
9909 return "DW_OP_bra";
9910 case DW_OP_eq:
9911 return "DW_OP_eq";
9912 case DW_OP_ge:
9913 return "DW_OP_ge";
9914 case DW_OP_gt:
9915 return "DW_OP_gt";
9916 case DW_OP_le:
9917 return "DW_OP_le";
9918 case DW_OP_lt:
9919 return "DW_OP_lt";
9920 case DW_OP_ne:
9921 return "DW_OP_ne";
9922 case DW_OP_skip:
9923 return "DW_OP_skip";
9924 case DW_OP_lit0:
9925 return "DW_OP_lit0";
9926 case DW_OP_lit1:
9927 return "DW_OP_lit1";
9928 case DW_OP_lit2:
9929 return "DW_OP_lit2";
9930 case DW_OP_lit3:
9931 return "DW_OP_lit3";
9932 case DW_OP_lit4:
9933 return "DW_OP_lit4";
9934 case DW_OP_lit5:
9935 return "DW_OP_lit5";
9936 case DW_OP_lit6:
9937 return "DW_OP_lit6";
9938 case DW_OP_lit7:
9939 return "DW_OP_lit7";
9940 case DW_OP_lit8:
9941 return "DW_OP_lit8";
9942 case DW_OP_lit9:
9943 return "DW_OP_lit9";
9944 case DW_OP_lit10:
9945 return "DW_OP_lit10";
9946 case DW_OP_lit11:
9947 return "DW_OP_lit11";
9948 case DW_OP_lit12:
9949 return "DW_OP_lit12";
9950 case DW_OP_lit13:
9951 return "DW_OP_lit13";
9952 case DW_OP_lit14:
9953 return "DW_OP_lit14";
9954 case DW_OP_lit15:
9955 return "DW_OP_lit15";
9956 case DW_OP_lit16:
9957 return "DW_OP_lit16";
9958 case DW_OP_lit17:
9959 return "DW_OP_lit17";
9960 case DW_OP_lit18:
9961 return "DW_OP_lit18";
9962 case DW_OP_lit19:
9963 return "DW_OP_lit19";
9964 case DW_OP_lit20:
9965 return "DW_OP_lit20";
9966 case DW_OP_lit21:
9967 return "DW_OP_lit21";
9968 case DW_OP_lit22:
9969 return "DW_OP_lit22";
9970 case DW_OP_lit23:
9971 return "DW_OP_lit23";
9972 case DW_OP_lit24:
9973 return "DW_OP_lit24";
9974 case DW_OP_lit25:
9975 return "DW_OP_lit25";
9976 case DW_OP_lit26:
9977 return "DW_OP_lit26";
9978 case DW_OP_lit27:
9979 return "DW_OP_lit27";
9980 case DW_OP_lit28:
9981 return "DW_OP_lit28";
9982 case DW_OP_lit29:
9983 return "DW_OP_lit29";
9984 case DW_OP_lit30:
9985 return "DW_OP_lit30";
9986 case DW_OP_lit31:
9987 return "DW_OP_lit31";
9988 case DW_OP_reg0:
9989 return "DW_OP_reg0";
9990 case DW_OP_reg1:
9991 return "DW_OP_reg1";
9992 case DW_OP_reg2:
9993 return "DW_OP_reg2";
9994 case DW_OP_reg3:
9995 return "DW_OP_reg3";
9996 case DW_OP_reg4:
9997 return "DW_OP_reg4";
9998 case DW_OP_reg5:
9999 return "DW_OP_reg5";
10000 case DW_OP_reg6:
10001 return "DW_OP_reg6";
10002 case DW_OP_reg7:
10003 return "DW_OP_reg7";
10004 case DW_OP_reg8:
10005 return "DW_OP_reg8";
10006 case DW_OP_reg9:
10007 return "DW_OP_reg9";
10008 case DW_OP_reg10:
10009 return "DW_OP_reg10";
10010 case DW_OP_reg11:
10011 return "DW_OP_reg11";
10012 case DW_OP_reg12:
10013 return "DW_OP_reg12";
10014 case DW_OP_reg13:
10015 return "DW_OP_reg13";
10016 case DW_OP_reg14:
10017 return "DW_OP_reg14";
10018 case DW_OP_reg15:
10019 return "DW_OP_reg15";
10020 case DW_OP_reg16:
10021 return "DW_OP_reg16";
10022 case DW_OP_reg17:
10023 return "DW_OP_reg17";
10024 case DW_OP_reg18:
10025 return "DW_OP_reg18";
10026 case DW_OP_reg19:
10027 return "DW_OP_reg19";
10028 case DW_OP_reg20:
10029 return "DW_OP_reg20";
10030 case DW_OP_reg21:
10031 return "DW_OP_reg21";
10032 case DW_OP_reg22:
10033 return "DW_OP_reg22";
10034 case DW_OP_reg23:
10035 return "DW_OP_reg23";
10036 case DW_OP_reg24:
10037 return "DW_OP_reg24";
10038 case DW_OP_reg25:
10039 return "DW_OP_reg25";
10040 case DW_OP_reg26:
10041 return "DW_OP_reg26";
10042 case DW_OP_reg27:
10043 return "DW_OP_reg27";
10044 case DW_OP_reg28:
10045 return "DW_OP_reg28";
10046 case DW_OP_reg29:
10047 return "DW_OP_reg29";
10048 case DW_OP_reg30:
10049 return "DW_OP_reg30";
10050 case DW_OP_reg31:
10051 return "DW_OP_reg31";
10052 case DW_OP_breg0:
10053 return "DW_OP_breg0";
10054 case DW_OP_breg1:
10055 return "DW_OP_breg1";
10056 case DW_OP_breg2:
10057 return "DW_OP_breg2";
10058 case DW_OP_breg3:
10059 return "DW_OP_breg3";
10060 case DW_OP_breg4:
10061 return "DW_OP_breg4";
10062 case DW_OP_breg5:
10063 return "DW_OP_breg5";
10064 case DW_OP_breg6:
10065 return "DW_OP_breg6";
10066 case DW_OP_breg7:
10067 return "DW_OP_breg7";
10068 case DW_OP_breg8:
10069 return "DW_OP_breg8";
10070 case DW_OP_breg9:
10071 return "DW_OP_breg9";
10072 case DW_OP_breg10:
10073 return "DW_OP_breg10";
10074 case DW_OP_breg11:
10075 return "DW_OP_breg11";
10076 case DW_OP_breg12:
10077 return "DW_OP_breg12";
10078 case DW_OP_breg13:
10079 return "DW_OP_breg13";
10080 case DW_OP_breg14:
10081 return "DW_OP_breg14";
10082 case DW_OP_breg15:
10083 return "DW_OP_breg15";
10084 case DW_OP_breg16:
10085 return "DW_OP_breg16";
10086 case DW_OP_breg17:
10087 return "DW_OP_breg17";
10088 case DW_OP_breg18:
10089 return "DW_OP_breg18";
10090 case DW_OP_breg19:
10091 return "DW_OP_breg19";
10092 case DW_OP_breg20:
10093 return "DW_OP_breg20";
10094 case DW_OP_breg21:
10095 return "DW_OP_breg21";
10096 case DW_OP_breg22:
10097 return "DW_OP_breg22";
10098 case DW_OP_breg23:
10099 return "DW_OP_breg23";
10100 case DW_OP_breg24:
10101 return "DW_OP_breg24";
10102 case DW_OP_breg25:
10103 return "DW_OP_breg25";
10104 case DW_OP_breg26:
10105 return "DW_OP_breg26";
10106 case DW_OP_breg27:
10107 return "DW_OP_breg27";
10108 case DW_OP_breg28:
10109 return "DW_OP_breg28";
10110 case DW_OP_breg29:
10111 return "DW_OP_breg29";
10112 case DW_OP_breg30:
10113 return "DW_OP_breg30";
10114 case DW_OP_breg31:
10115 return "DW_OP_breg31";
10116 case DW_OP_regx:
10117 return "DW_OP_regx";
10118 case DW_OP_fbreg:
10119 return "DW_OP_fbreg";
10120 case DW_OP_bregx:
10121 return "DW_OP_bregx";
10122 case DW_OP_piece:
10123 return "DW_OP_piece";
10124 case DW_OP_deref_size:
10125 return "DW_OP_deref_size";
10126 case DW_OP_xderef_size:
10127 return "DW_OP_xderef_size";
10128 case DW_OP_nop:
10129 return "DW_OP_nop";
b7619582 10130 /* DWARF 3 extensions. */
ed348acc
EZ
10131 case DW_OP_push_object_address:
10132 return "DW_OP_push_object_address";
10133 case DW_OP_call2:
10134 return "DW_OP_call2";
10135 case DW_OP_call4:
10136 return "DW_OP_call4";
10137 case DW_OP_call_ref:
10138 return "DW_OP_call_ref";
b7619582
GF
10139 /* GNU extensions. */
10140 case DW_OP_form_tls_address:
10141 return "DW_OP_form_tls_address";
10142 case DW_OP_call_frame_cfa:
10143 return "DW_OP_call_frame_cfa";
10144 case DW_OP_bit_piece:
10145 return "DW_OP_bit_piece";
ed348acc
EZ
10146 case DW_OP_GNU_push_tls_address:
10147 return "DW_OP_GNU_push_tls_address";
42be36b3
CT
10148 case DW_OP_GNU_uninit:
10149 return "DW_OP_GNU_uninit";
b7619582
GF
10150 /* HP extensions. */
10151 case DW_OP_HP_is_value:
10152 return "DW_OP_HP_is_value";
10153 case DW_OP_HP_fltconst4:
10154 return "DW_OP_HP_fltconst4";
10155 case DW_OP_HP_fltconst8:
10156 return "DW_OP_HP_fltconst8";
10157 case DW_OP_HP_mod_range:
10158 return "DW_OP_HP_mod_range";
10159 case DW_OP_HP_unmod_range:
10160 return "DW_OP_HP_unmod_range";
10161 case DW_OP_HP_tls:
10162 return "DW_OP_HP_tls";
c906108c
SS
10163 default:
10164 return "OP_<unknown>";
10165 }
10166}
10167
10168static char *
fba45db2 10169dwarf_bool_name (unsigned mybool)
c906108c
SS
10170{
10171 if (mybool)
10172 return "TRUE";
10173 else
10174 return "FALSE";
10175}
10176
10177/* Convert a DWARF type code into its string name. */
10178
10179static char *
aa1ee363 10180dwarf_type_encoding_name (unsigned enc)
c906108c
SS
10181{
10182 switch (enc)
10183 {
b7619582
GF
10184 case DW_ATE_void:
10185 return "DW_ATE_void";
c906108c
SS
10186 case DW_ATE_address:
10187 return "DW_ATE_address";
10188 case DW_ATE_boolean:
10189 return "DW_ATE_boolean";
10190 case DW_ATE_complex_float:
10191 return "DW_ATE_complex_float";
10192 case DW_ATE_float:
10193 return "DW_ATE_float";
10194 case DW_ATE_signed:
10195 return "DW_ATE_signed";
10196 case DW_ATE_signed_char:
10197 return "DW_ATE_signed_char";
10198 case DW_ATE_unsigned:
10199 return "DW_ATE_unsigned";
10200 case DW_ATE_unsigned_char:
10201 return "DW_ATE_unsigned_char";
b7619582 10202 /* DWARF 3. */
d9fa45fe
DC
10203 case DW_ATE_imaginary_float:
10204 return "DW_ATE_imaginary_float";
b7619582
GF
10205 case DW_ATE_packed_decimal:
10206 return "DW_ATE_packed_decimal";
10207 case DW_ATE_numeric_string:
10208 return "DW_ATE_numeric_string";
10209 case DW_ATE_edited:
10210 return "DW_ATE_edited";
10211 case DW_ATE_signed_fixed:
10212 return "DW_ATE_signed_fixed";
10213 case DW_ATE_unsigned_fixed:
10214 return "DW_ATE_unsigned_fixed";
10215 case DW_ATE_decimal_float:
10216 return "DW_ATE_decimal_float";
10217 /* HP extensions. */
10218 case DW_ATE_HP_float80:
10219 return "DW_ATE_HP_float80";
10220 case DW_ATE_HP_complex_float80:
10221 return "DW_ATE_HP_complex_float80";
10222 case DW_ATE_HP_float128:
10223 return "DW_ATE_HP_float128";
10224 case DW_ATE_HP_complex_float128:
10225 return "DW_ATE_HP_complex_float128";
10226 case DW_ATE_HP_floathpintel:
10227 return "DW_ATE_HP_floathpintel";
10228 case DW_ATE_HP_imaginary_float80:
10229 return "DW_ATE_HP_imaginary_float80";
10230 case DW_ATE_HP_imaginary_float128:
10231 return "DW_ATE_HP_imaginary_float128";
c906108c
SS
10232 default:
10233 return "DW_ATE_<unknown>";
10234 }
10235}
10236
10237/* Convert a DWARF call frame info operation to its string name. */
10238
10239#if 0
10240static char *
aa1ee363 10241dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
10242{
10243 switch (cfi_opc)
10244 {
10245 case DW_CFA_advance_loc:
10246 return "DW_CFA_advance_loc";
10247 case DW_CFA_offset:
10248 return "DW_CFA_offset";
10249 case DW_CFA_restore:
10250 return "DW_CFA_restore";
10251 case DW_CFA_nop:
10252 return "DW_CFA_nop";
10253 case DW_CFA_set_loc:
10254 return "DW_CFA_set_loc";
10255 case DW_CFA_advance_loc1:
10256 return "DW_CFA_advance_loc1";
10257 case DW_CFA_advance_loc2:
10258 return "DW_CFA_advance_loc2";
10259 case DW_CFA_advance_loc4:
10260 return "DW_CFA_advance_loc4";
10261 case DW_CFA_offset_extended:
10262 return "DW_CFA_offset_extended";
10263 case DW_CFA_restore_extended:
10264 return "DW_CFA_restore_extended";
10265 case DW_CFA_undefined:
10266 return "DW_CFA_undefined";
10267 case DW_CFA_same_value:
10268 return "DW_CFA_same_value";
10269 case DW_CFA_register:
10270 return "DW_CFA_register";
10271 case DW_CFA_remember_state:
10272 return "DW_CFA_remember_state";
10273 case DW_CFA_restore_state:
10274 return "DW_CFA_restore_state";
10275 case DW_CFA_def_cfa:
10276 return "DW_CFA_def_cfa";
10277 case DW_CFA_def_cfa_register:
10278 return "DW_CFA_def_cfa_register";
10279 case DW_CFA_def_cfa_offset:
10280 return "DW_CFA_def_cfa_offset";
b7619582 10281 /* DWARF 3. */
985cb1a3
JM
10282 case DW_CFA_def_cfa_expression:
10283 return "DW_CFA_def_cfa_expression";
10284 case DW_CFA_expression:
10285 return "DW_CFA_expression";
10286 case DW_CFA_offset_extended_sf:
10287 return "DW_CFA_offset_extended_sf";
10288 case DW_CFA_def_cfa_sf:
10289 return "DW_CFA_def_cfa_sf";
10290 case DW_CFA_def_cfa_offset_sf:
10291 return "DW_CFA_def_cfa_offset_sf";
b7619582
GF
10292 case DW_CFA_val_offset:
10293 return "DW_CFA_val_offset";
10294 case DW_CFA_val_offset_sf:
10295 return "DW_CFA_val_offset_sf";
10296 case DW_CFA_val_expression:
10297 return "DW_CFA_val_expression";
10298 /* SGI/MIPS specific. */
c906108c
SS
10299 case DW_CFA_MIPS_advance_loc8:
10300 return "DW_CFA_MIPS_advance_loc8";
b7619582 10301 /* GNU extensions. */
985cb1a3
JM
10302 case DW_CFA_GNU_window_save:
10303 return "DW_CFA_GNU_window_save";
10304 case DW_CFA_GNU_args_size:
10305 return "DW_CFA_GNU_args_size";
10306 case DW_CFA_GNU_negative_offset_extended:
10307 return "DW_CFA_GNU_negative_offset_extended";
c906108c
SS
10308 default:
10309 return "DW_CFA_<unknown>";
10310 }
10311}
10312#endif
10313
f9aca02d 10314static void
d97bc12b 10315dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
10316{
10317 unsigned int i;
10318
d97bc12b
DE
10319 print_spaces (indent, f);
10320 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
c906108c 10321 dwarf_tag_name (die->tag), die->abbrev, die->offset);
d97bc12b
DE
10322
10323 if (die->parent != NULL)
10324 {
10325 print_spaces (indent, f);
10326 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
10327 die->parent->offset);
10328 }
10329
10330 print_spaces (indent, f);
10331 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 10332 dwarf_bool_name (die->child != NULL));
c906108c 10333
d97bc12b
DE
10334 print_spaces (indent, f);
10335 fprintf_unfiltered (f, " attributes:\n");
10336
c906108c
SS
10337 for (i = 0; i < die->num_attrs; ++i)
10338 {
d97bc12b
DE
10339 print_spaces (indent, f);
10340 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
10341 dwarf_attr_name (die->attrs[i].name),
10342 dwarf_form_name (die->attrs[i].form));
d97bc12b 10343
c906108c
SS
10344 switch (die->attrs[i].form)
10345 {
10346 case DW_FORM_ref_addr:
10347 case DW_FORM_addr:
d97bc12b 10348 fprintf_unfiltered (f, "address: ");
5af949e3 10349 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
10350 break;
10351 case DW_FORM_block2:
10352 case DW_FORM_block4:
10353 case DW_FORM_block:
10354 case DW_FORM_block1:
d97bc12b 10355 fprintf_unfiltered (f, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
c906108c 10356 break;
2dc7f7b3
TT
10357 case DW_FORM_exprloc:
10358 fprintf_unfiltered (f, "expression: size %u",
10359 DW_BLOCK (&die->attrs[i])->size);
10360 break;
10b3939b
DJ
10361 case DW_FORM_ref1:
10362 case DW_FORM_ref2:
10363 case DW_FORM_ref4:
d97bc12b 10364 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
10b3939b
DJ
10365 (long) (DW_ADDR (&die->attrs[i])));
10366 break;
c906108c
SS
10367 case DW_FORM_data1:
10368 case DW_FORM_data2:
10369 case DW_FORM_data4:
ce5d95e1 10370 case DW_FORM_data8:
c906108c
SS
10371 case DW_FORM_udata:
10372 case DW_FORM_sdata:
43bbcdc2
PH
10373 fprintf_unfiltered (f, "constant: %s",
10374 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 10375 break;
2dc7f7b3
TT
10376 case DW_FORM_sec_offset:
10377 fprintf_unfiltered (f, "section offset: %s",
10378 pulongest (DW_UNSND (&die->attrs[i])));
10379 break;
348e048f
DE
10380 case DW_FORM_sig8:
10381 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
10382 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
10383 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
10384 else
10385 fprintf_unfiltered (f, "signatured type, offset: unknown");
10386 break;
c906108c 10387 case DW_FORM_string:
4bdf3d34 10388 case DW_FORM_strp:
8285870a 10389 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 10390 DW_STRING (&die->attrs[i])
8285870a
JK
10391 ? DW_STRING (&die->attrs[i]) : "",
10392 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
10393 break;
10394 case DW_FORM_flag:
10395 if (DW_UNSND (&die->attrs[i]))
d97bc12b 10396 fprintf_unfiltered (f, "flag: TRUE");
c906108c 10397 else
d97bc12b 10398 fprintf_unfiltered (f, "flag: FALSE");
c906108c 10399 break;
2dc7f7b3
TT
10400 case DW_FORM_flag_present:
10401 fprintf_unfiltered (f, "flag: TRUE");
10402 break;
a8329558
KW
10403 case DW_FORM_indirect:
10404 /* the reader will have reduced the indirect form to
10405 the "base form" so this form should not occur */
d97bc12b 10406 fprintf_unfiltered (f, "unexpected attribute form: DW_FORM_indirect");
a8329558 10407 break;
c906108c 10408 default:
d97bc12b 10409 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 10410 die->attrs[i].form);
d97bc12b 10411 break;
c906108c 10412 }
d97bc12b 10413 fprintf_unfiltered (f, "\n");
c906108c
SS
10414 }
10415}
10416
f9aca02d 10417static void
d97bc12b 10418dump_die_for_error (struct die_info *die)
c906108c 10419{
d97bc12b
DE
10420 dump_die_shallow (gdb_stderr, 0, die);
10421}
10422
10423static void
10424dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
10425{
10426 int indent = level * 4;
10427
10428 gdb_assert (die != NULL);
10429
10430 if (level >= max_level)
10431 return;
10432
10433 dump_die_shallow (f, indent, die);
10434
10435 if (die->child != NULL)
c906108c 10436 {
d97bc12b
DE
10437 print_spaces (indent, f);
10438 fprintf_unfiltered (f, " Children:");
10439 if (level + 1 < max_level)
10440 {
10441 fprintf_unfiltered (f, "\n");
10442 dump_die_1 (f, level + 1, max_level, die->child);
10443 }
10444 else
10445 {
10446 fprintf_unfiltered (f, " [not printed, max nesting level reached]\n");
10447 }
10448 }
10449
10450 if (die->sibling != NULL && level > 0)
10451 {
10452 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
10453 }
10454}
10455
d97bc12b
DE
10456/* This is called from the pdie macro in gdbinit.in.
10457 It's not static so gcc will keep a copy callable from gdb. */
10458
10459void
10460dump_die (struct die_info *die, int max_level)
10461{
10462 dump_die_1 (gdb_stdlog, 0, max_level, die);
10463}
10464
f9aca02d 10465static void
51545339 10466store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10467{
51545339 10468 void **slot;
c906108c 10469
51545339
DJ
10470 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
10471
10472 *slot = die;
c906108c
SS
10473}
10474
93311388
DE
10475static int
10476is_ref_attr (struct attribute *attr)
c906108c 10477{
c906108c
SS
10478 switch (attr->form)
10479 {
10480 case DW_FORM_ref_addr:
c906108c
SS
10481 case DW_FORM_ref1:
10482 case DW_FORM_ref2:
10483 case DW_FORM_ref4:
613e1657 10484 case DW_FORM_ref8:
c906108c 10485 case DW_FORM_ref_udata:
93311388 10486 return 1;
c906108c 10487 default:
93311388 10488 return 0;
c906108c 10489 }
93311388
DE
10490}
10491
10492static unsigned int
10493dwarf2_get_ref_die_offset (struct attribute *attr)
10494{
10495 if (is_ref_attr (attr))
10496 return DW_ADDR (attr);
10497
10498 complaint (&symfile_complaints,
10499 _("unsupported die ref attribute form: '%s'"),
10500 dwarf_form_name (attr->form));
10501 return 0;
c906108c
SS
10502}
10503
43bbcdc2
PH
10504/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
10505 * the value held by the attribute is not constant. */
a02abb62 10506
43bbcdc2 10507static LONGEST
a02abb62
JB
10508dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
10509{
10510 if (attr->form == DW_FORM_sdata)
10511 return DW_SND (attr);
10512 else if (attr->form == DW_FORM_udata
10513 || attr->form == DW_FORM_data1
10514 || attr->form == DW_FORM_data2
10515 || attr->form == DW_FORM_data4
10516 || attr->form == DW_FORM_data8)
10517 return DW_UNSND (attr);
10518 else
10519 {
e2e0b3e5 10520 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
a02abb62
JB
10521 dwarf_form_name (attr->form));
10522 return default_value;
10523 }
10524}
10525
03dd20cc 10526/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
348e048f
DE
10527 unit and add it to our queue.
10528 The result is non-zero if PER_CU was queued, otherwise the result is zero
10529 meaning either PER_CU is already queued or it is already loaded. */
03dd20cc 10530
348e048f 10531static int
03dd20cc
DJ
10532maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
10533 struct dwarf2_per_cu_data *per_cu)
10534{
10535 /* Mark the dependence relation so that we don't flush PER_CU
10536 too early. */
10537 dwarf2_add_dependence (this_cu, per_cu);
10538
10539 /* If it's already on the queue, we have nothing to do. */
10540 if (per_cu->queued)
348e048f 10541 return 0;
03dd20cc
DJ
10542
10543 /* If the compilation unit is already loaded, just mark it as
10544 used. */
10545 if (per_cu->cu != NULL)
10546 {
10547 per_cu->cu->last_used = 0;
348e048f 10548 return 0;
03dd20cc
DJ
10549 }
10550
10551 /* Add it to the queue. */
10552 queue_comp_unit (per_cu, this_cu->objfile);
348e048f
DE
10553
10554 return 1;
10555}
10556
10557/* Follow reference or signature attribute ATTR of SRC_DIE.
10558 On entry *REF_CU is the CU of SRC_DIE.
10559 On exit *REF_CU is the CU of the result. */
10560
10561static struct die_info *
10562follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
10563 struct dwarf2_cu **ref_cu)
10564{
10565 struct die_info *die;
10566
10567 if (is_ref_attr (attr))
10568 die = follow_die_ref (src_die, attr, ref_cu);
10569 else if (attr->form == DW_FORM_sig8)
10570 die = follow_die_sig (src_die, attr, ref_cu);
10571 else
10572 {
10573 dump_die_for_error (src_die);
10574 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
10575 (*ref_cu)->objfile->name);
10576 }
10577
10578 return die;
03dd20cc
DJ
10579}
10580
f504f079
DE
10581/* Follow reference attribute ATTR of SRC_DIE.
10582 On entry *REF_CU is the CU of SRC_DIE.
10583 On exit *REF_CU is the CU of the result. */
10584
f9aca02d 10585static struct die_info *
10b3939b 10586follow_die_ref (struct die_info *src_die, struct attribute *attr,
f2f0e013 10587 struct dwarf2_cu **ref_cu)
c906108c
SS
10588{
10589 struct die_info *die;
10b3939b 10590 unsigned int offset;
10b3939b 10591 struct die_info temp_die;
f2f0e013 10592 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 10593
348e048f
DE
10594 gdb_assert (cu->per_cu != NULL);
10595
c764a876 10596 offset = dwarf2_get_ref_die_offset (attr);
10b3939b 10597
348e048f
DE
10598 if (cu->per_cu->from_debug_types)
10599 {
10600 /* .debug_types CUs cannot reference anything outside their CU.
10601 If they need to, they have to reference a signatured type via
10602 DW_FORM_sig8. */
10603 if (! offset_in_cu_p (&cu->header, offset))
10604 goto not_found;
10605 target_cu = cu;
10606 }
10607 else if (! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
10608 {
10609 struct dwarf2_per_cu_data *per_cu;
9a619af0 10610
45452591 10611 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
03dd20cc
DJ
10612
10613 /* If necessary, add it to the queue and load its DIEs. */
348e048f
DE
10614 if (maybe_queue_comp_unit (cu, per_cu))
10615 load_full_comp_unit (per_cu, cu->objfile);
03dd20cc 10616
10b3939b
DJ
10617 target_cu = per_cu->cu;
10618 }
10619 else
10620 target_cu = cu;
c906108c 10621
f2f0e013 10622 *ref_cu = target_cu;
51545339
DJ
10623 temp_die.offset = offset;
10624 die = htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
10625 if (die)
10626 return die;
10b3939b 10627
348e048f
DE
10628 not_found:
10629
10630 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
10631 "at 0x%x [in module %s]"),
10632 offset, src_die->offset, cu->objfile->name);
10633}
10634
10635/* Follow the signature attribute ATTR in SRC_DIE.
10636 On entry *REF_CU is the CU of SRC_DIE.
10637 On exit *REF_CU is the CU of the result. */
10638
10639static struct die_info *
10640follow_die_sig (struct die_info *src_die, struct attribute *attr,
10641 struct dwarf2_cu **ref_cu)
10642{
10643 struct objfile *objfile = (*ref_cu)->objfile;
10644 struct die_info temp_die;
10645 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
10646 struct dwarf2_cu *sig_cu;
10647 struct die_info *die;
10648
10649 /* sig_type will be NULL if the signatured type is missing from
10650 the debug info. */
10651 if (sig_type == NULL)
10652 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
10653 "at 0x%x [in module %s]"),
10654 src_die->offset, objfile->name);
10655
10656 /* If necessary, add it to the queue and load its DIEs. */
10657
10658 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
10659 read_signatured_type (objfile, sig_type);
10660
10661 gdb_assert (sig_type->per_cu.cu != NULL);
10662
10663 sig_cu = sig_type->per_cu.cu;
10664 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
10665 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
10666 if (die)
10667 {
10668 *ref_cu = sig_cu;
10669 return die;
10670 }
10671
10672 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced from DIE "
10673 "at 0x%x [in module %s]"),
10674 sig_type->type_offset, src_die->offset, objfile->name);
10675}
10676
10677/* Given an offset of a signatured type, return its signatured_type. */
10678
10679static struct signatured_type *
10680lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
10681{
10682 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
10683 unsigned int length, initial_length_size;
10684 unsigned int sig_offset;
10685 struct signatured_type find_entry, *type_sig;
10686
10687 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
10688 sig_offset = (initial_length_size
10689 + 2 /*version*/
10690 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
10691 + 1 /*address_size*/);
10692 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
10693 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
10694
10695 /* This is only used to lookup previously recorded types.
10696 If we didn't find it, it's our bug. */
10697 gdb_assert (type_sig != NULL);
10698 gdb_assert (offset == type_sig->offset);
10699
10700 return type_sig;
10701}
10702
10703/* Read in signatured type at OFFSET and build its CU and die(s). */
10704
10705static void
10706read_signatured_type_at_offset (struct objfile *objfile,
10707 unsigned int offset)
10708{
10709 struct signatured_type *type_sig;
10710
be391dca
TT
10711 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
10712
348e048f
DE
10713 /* We have the section offset, but we need the signature to do the
10714 hash table lookup. */
10715 type_sig = lookup_signatured_type_at_offset (objfile, offset);
10716
10717 gdb_assert (type_sig->per_cu.cu == NULL);
10718
10719 read_signatured_type (objfile, type_sig);
10720
10721 gdb_assert (type_sig->per_cu.cu != NULL);
10722}
10723
10724/* Read in a signatured type and build its CU and DIEs. */
10725
10726static void
10727read_signatured_type (struct objfile *objfile,
10728 struct signatured_type *type_sig)
10729{
10730 gdb_byte *types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
10731 struct die_reader_specs reader_specs;
10732 struct dwarf2_cu *cu;
10733 ULONGEST signature;
10734 struct cleanup *back_to, *free_cu_cleanup;
10735 struct attribute *attr;
10736
10737 gdb_assert (type_sig->per_cu.cu == NULL);
10738
10739 cu = xmalloc (sizeof (struct dwarf2_cu));
10740 memset (cu, 0, sizeof (struct dwarf2_cu));
10741 obstack_init (&cu->comp_unit_obstack);
10742 cu->objfile = objfile;
10743 type_sig->per_cu.cu = cu;
10744 cu->per_cu = &type_sig->per_cu;
10745
10746 /* If an error occurs while loading, release our storage. */
10747 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
10748
10749 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
10750 types_ptr, objfile->obfd);
10751 gdb_assert (signature == type_sig->signature);
10752
10753 cu->die_hash
10754 = htab_create_alloc_ex (cu->header.length / 12,
10755 die_hash,
10756 die_eq,
10757 NULL,
10758 &cu->comp_unit_obstack,
10759 hashtab_obstack_allocate,
10760 dummy_obstack_deallocate);
10761
10762 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
10763 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
10764
10765 init_cu_die_reader (&reader_specs, cu);
10766
10767 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
10768 NULL /*parent*/);
10769
10770 /* We try not to read any attributes in this function, because not
10771 all objfiles needed for references have been loaded yet, and symbol
10772 table processing isn't initialized. But we have to set the CU language,
10773 or we won't be able to build types correctly. */
10774 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
10775 if (attr)
10776 set_cu_language (DW_UNSND (attr), cu);
10777 else
10778 set_cu_language (language_minimal, cu);
10779
10780 do_cleanups (back_to);
10781
10782 /* We've successfully allocated this compilation unit. Let our caller
10783 clean it up when finished with it. */
10784 discard_cleanups (free_cu_cleanup);
10785
10786 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
10787 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
c906108c
SS
10788}
10789
c906108c
SS
10790/* Decode simple location descriptions.
10791 Given a pointer to a dwarf block that defines a location, compute
10792 the location and return the value.
10793
4cecd739
DJ
10794 NOTE drow/2003-11-18: This function is called in two situations
10795 now: for the address of static or global variables (partial symbols
10796 only) and for offsets into structures which are expected to be
10797 (more or less) constant. The partial symbol case should go away,
10798 and only the constant case should remain. That will let this
10799 function complain more accurately. A few special modes are allowed
10800 without complaint for global variables (for instance, global
10801 register values and thread-local values).
c906108c
SS
10802
10803 A location description containing no operations indicates that the
4cecd739 10804 object is optimized out. The return value is 0 for that case.
6b992462
DJ
10805 FIXME drow/2003-11-16: No callers check for this case any more; soon all
10806 callers will only want a very basic result and this can become a
10807 complaint.
c906108c 10808
c906108c
SS
10809 Note that stack[0] is unused except as a default error return.
10810 Note that stack overflow is not yet handled. */
10811
10812static CORE_ADDR
e7c27a73 10813decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 10814{
e7c27a73 10815 struct objfile *objfile = cu->objfile;
c906108c
SS
10816 int i;
10817 int size = blk->size;
fe1b8b76 10818 gdb_byte *data = blk->data;
c906108c
SS
10819 CORE_ADDR stack[64];
10820 int stacki;
10821 unsigned int bytes_read, unsnd;
fe1b8b76 10822 gdb_byte op;
c906108c
SS
10823
10824 i = 0;
10825 stacki = 0;
10826 stack[stacki] = 0;
c906108c
SS
10827
10828 while (i < size)
10829 {
c906108c
SS
10830 op = data[i++];
10831 switch (op)
10832 {
f1bea926
JM
10833 case DW_OP_lit0:
10834 case DW_OP_lit1:
10835 case DW_OP_lit2:
10836 case DW_OP_lit3:
10837 case DW_OP_lit4:
10838 case DW_OP_lit5:
10839 case DW_OP_lit6:
10840 case DW_OP_lit7:
10841 case DW_OP_lit8:
10842 case DW_OP_lit9:
10843 case DW_OP_lit10:
10844 case DW_OP_lit11:
10845 case DW_OP_lit12:
10846 case DW_OP_lit13:
10847 case DW_OP_lit14:
10848 case DW_OP_lit15:
10849 case DW_OP_lit16:
10850 case DW_OP_lit17:
10851 case DW_OP_lit18:
10852 case DW_OP_lit19:
10853 case DW_OP_lit20:
10854 case DW_OP_lit21:
10855 case DW_OP_lit22:
10856 case DW_OP_lit23:
10857 case DW_OP_lit24:
10858 case DW_OP_lit25:
10859 case DW_OP_lit26:
10860 case DW_OP_lit27:
10861 case DW_OP_lit28:
10862 case DW_OP_lit29:
10863 case DW_OP_lit30:
10864 case DW_OP_lit31:
10865 stack[++stacki] = op - DW_OP_lit0;
10866 break;
10867
c906108c
SS
10868 case DW_OP_reg0:
10869 case DW_OP_reg1:
10870 case DW_OP_reg2:
10871 case DW_OP_reg3:
10872 case DW_OP_reg4:
10873 case DW_OP_reg5:
10874 case DW_OP_reg6:
10875 case DW_OP_reg7:
10876 case DW_OP_reg8:
10877 case DW_OP_reg9:
10878 case DW_OP_reg10:
10879 case DW_OP_reg11:
10880 case DW_OP_reg12:
10881 case DW_OP_reg13:
10882 case DW_OP_reg14:
10883 case DW_OP_reg15:
10884 case DW_OP_reg16:
10885 case DW_OP_reg17:
10886 case DW_OP_reg18:
10887 case DW_OP_reg19:
10888 case DW_OP_reg20:
10889 case DW_OP_reg21:
10890 case DW_OP_reg22:
10891 case DW_OP_reg23:
10892 case DW_OP_reg24:
10893 case DW_OP_reg25:
10894 case DW_OP_reg26:
10895 case DW_OP_reg27:
10896 case DW_OP_reg28:
10897 case DW_OP_reg29:
10898 case DW_OP_reg30:
10899 case DW_OP_reg31:
c906108c 10900 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
10901 if (i < size)
10902 dwarf2_complex_location_expr_complaint ();
c906108c
SS
10903 break;
10904
10905 case DW_OP_regx:
c906108c
SS
10906 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
10907 i += bytes_read;
c906108c 10908 stack[++stacki] = unsnd;
4cecd739
DJ
10909 if (i < size)
10910 dwarf2_complex_location_expr_complaint ();
c906108c
SS
10911 break;
10912
10913 case DW_OP_addr:
107d2387 10914 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 10915 cu, &bytes_read);
107d2387 10916 i += bytes_read;
c906108c
SS
10917 break;
10918
10919 case DW_OP_const1u:
10920 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
10921 i += 1;
10922 break;
10923
10924 case DW_OP_const1s:
10925 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
10926 i += 1;
10927 break;
10928
10929 case DW_OP_const2u:
10930 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
10931 i += 2;
10932 break;
10933
10934 case DW_OP_const2s:
10935 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
10936 i += 2;
10937 break;
10938
10939 case DW_OP_const4u:
10940 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
10941 i += 4;
10942 break;
10943
10944 case DW_OP_const4s:
10945 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
10946 i += 4;
10947 break;
10948
10949 case DW_OP_constu:
10950 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 10951 &bytes_read);
c906108c
SS
10952 i += bytes_read;
10953 break;
10954
10955 case DW_OP_consts:
10956 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
10957 i += bytes_read;
10958 break;
10959
f1bea926
JM
10960 case DW_OP_dup:
10961 stack[stacki + 1] = stack[stacki];
10962 stacki++;
10963 break;
10964
c906108c
SS
10965 case DW_OP_plus:
10966 stack[stacki - 1] += stack[stacki];
10967 stacki--;
10968 break;
10969
10970 case DW_OP_plus_uconst:
10971 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
10972 i += bytes_read;
10973 break;
10974
10975 case DW_OP_minus:
f1bea926 10976 stack[stacki - 1] -= stack[stacki];
c906108c
SS
10977 stacki--;
10978 break;
10979
7a292a7a 10980 case DW_OP_deref:
7a292a7a 10981 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
10982 this using GDB's address_class enum. This is valid for partial
10983 global symbols, although the variable's address will be bogus
10984 in the psymtab. */
7a292a7a 10985 if (i < size)
4d3c2250 10986 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
10987 break;
10988
9d774e44 10989 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
10990 /* The top of the stack has the offset from the beginning
10991 of the thread control block at which the variable is located. */
10992 /* Nothing should follow this operator, so the top of stack would
10993 be returned. */
4cecd739
DJ
10994 /* This is valid for partial global symbols, but the variable's
10995 address will be bogus in the psymtab. */
9d774e44 10996 if (i < size)
4d3c2250 10997 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
10998 break;
10999
42be36b3
CT
11000 case DW_OP_GNU_uninit:
11001 break;
11002
c906108c 11003 default:
e2e0b3e5 11004 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
4d3c2250 11005 dwarf_stack_op_name (op));
c906108c
SS
11006 return (stack[stacki]);
11007 }
11008 }
11009 return (stack[stacki]);
11010}
11011
11012/* memory allocation interface */
11013
c906108c 11014static struct dwarf_block *
7b5a2f43 11015dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
11016{
11017 struct dwarf_block *blk;
11018
11019 blk = (struct dwarf_block *)
7b5a2f43 11020 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
11021 return (blk);
11022}
11023
11024static struct abbrev_info *
f3dd6933 11025dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
11026{
11027 struct abbrev_info *abbrev;
11028
f3dd6933
DJ
11029 abbrev = (struct abbrev_info *)
11030 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
11031 memset (abbrev, 0, sizeof (struct abbrev_info));
11032 return (abbrev);
11033}
11034
11035static struct die_info *
b60c80d6 11036dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
11037{
11038 struct die_info *die;
b60c80d6
DJ
11039 size_t size = sizeof (struct die_info);
11040
11041 if (num_attrs > 1)
11042 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 11043
b60c80d6 11044 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
11045 memset (die, 0, sizeof (struct die_info));
11046 return (die);
11047}
2e276125
JB
11048
11049\f
11050/* Macro support. */
11051
11052
11053/* Return the full name of file number I in *LH's file name table.
11054 Use COMP_DIR as the name of the current directory of the
11055 compilation. The result is allocated using xmalloc; the caller is
11056 responsible for freeing it. */
11057static char *
11058file_full_name (int file, struct line_header *lh, const char *comp_dir)
11059{
6a83a1e6
EZ
11060 /* Is the file number a valid index into the line header's file name
11061 table? Remember that file numbers start with one, not zero. */
11062 if (1 <= file && file <= lh->num_file_names)
11063 {
11064 struct file_entry *fe = &lh->file_names[file - 1];
2e276125 11065
6a83a1e6
EZ
11066 if (IS_ABSOLUTE_PATH (fe->name))
11067 return xstrdup (fe->name);
11068 else
11069 {
11070 const char *dir;
11071 int dir_len;
11072 char *full_name;
11073
11074 if (fe->dir_index)
11075 dir = lh->include_dirs[fe->dir_index - 1];
11076 else
11077 dir = comp_dir;
11078
11079 if (dir)
11080 {
11081 dir_len = strlen (dir);
11082 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
11083 strcpy (full_name, dir);
11084 full_name[dir_len] = '/';
11085 strcpy (full_name + dir_len + 1, fe->name);
11086 return full_name;
11087 }
11088 else
11089 return xstrdup (fe->name);
11090 }
11091 }
2e276125
JB
11092 else
11093 {
6a83a1e6
EZ
11094 /* The compiler produced a bogus file number. We can at least
11095 record the macro definitions made in the file, even if we
11096 won't be able to find the file by name. */
11097 char fake_name[80];
9a619af0 11098
6a83a1e6 11099 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 11100
6a83a1e6
EZ
11101 complaint (&symfile_complaints,
11102 _("bad file number in macro information (%d)"),
11103 file);
2e276125 11104
6a83a1e6 11105 return xstrdup (fake_name);
2e276125
JB
11106 }
11107}
11108
11109
11110static struct macro_source_file *
11111macro_start_file (int file, int line,
11112 struct macro_source_file *current_file,
11113 const char *comp_dir,
11114 struct line_header *lh, struct objfile *objfile)
11115{
11116 /* The full name of this source file. */
11117 char *full_name = file_full_name (file, lh, comp_dir);
11118
11119 /* We don't create a macro table for this compilation unit
11120 at all until we actually get a filename. */
11121 if (! pending_macros)
4a146b47 11122 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 11123 objfile->macro_cache);
2e276125
JB
11124
11125 if (! current_file)
11126 /* If we have no current file, then this must be the start_file
11127 directive for the compilation unit's main source file. */
11128 current_file = macro_set_main (pending_macros, full_name);
11129 else
11130 current_file = macro_include (current_file, line, full_name);
11131
11132 xfree (full_name);
11133
11134 return current_file;
11135}
11136
11137
11138/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
11139 followed by a null byte. */
11140static char *
11141copy_string (const char *buf, int len)
11142{
11143 char *s = xmalloc (len + 1);
9a619af0 11144
2e276125
JB
11145 memcpy (s, buf, len);
11146 s[len] = '\0';
2e276125
JB
11147 return s;
11148}
11149
11150
11151static const char *
11152consume_improper_spaces (const char *p, const char *body)
11153{
11154 if (*p == ' ')
11155 {
4d3c2250 11156 complaint (&symfile_complaints,
e2e0b3e5 11157 _("macro definition contains spaces in formal argument list:\n`%s'"),
4d3c2250 11158 body);
2e276125
JB
11159
11160 while (*p == ' ')
11161 p++;
11162 }
11163
11164 return p;
11165}
11166
11167
11168static void
11169parse_macro_definition (struct macro_source_file *file, int line,
11170 const char *body)
11171{
11172 const char *p;
11173
11174 /* The body string takes one of two forms. For object-like macro
11175 definitions, it should be:
11176
11177 <macro name> " " <definition>
11178
11179 For function-like macro definitions, it should be:
11180
11181 <macro name> "() " <definition>
11182 or
11183 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
11184
11185 Spaces may appear only where explicitly indicated, and in the
11186 <definition>.
11187
11188 The Dwarf 2 spec says that an object-like macro's name is always
11189 followed by a space, but versions of GCC around March 2002 omit
11190 the space when the macro's definition is the empty string.
11191
11192 The Dwarf 2 spec says that there should be no spaces between the
11193 formal arguments in a function-like macro's formal argument list,
11194 but versions of GCC around March 2002 include spaces after the
11195 commas. */
11196
11197
11198 /* Find the extent of the macro name. The macro name is terminated
11199 by either a space or null character (for an object-like macro) or
11200 an opening paren (for a function-like macro). */
11201 for (p = body; *p; p++)
11202 if (*p == ' ' || *p == '(')
11203 break;
11204
11205 if (*p == ' ' || *p == '\0')
11206 {
11207 /* It's an object-like macro. */
11208 int name_len = p - body;
11209 char *name = copy_string (body, name_len);
11210 const char *replacement;
11211
11212 if (*p == ' ')
11213 replacement = body + name_len + 1;
11214 else
11215 {
4d3c2250 11216 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11217 replacement = body + name_len;
11218 }
11219
11220 macro_define_object (file, line, name, replacement);
11221
11222 xfree (name);
11223 }
11224 else if (*p == '(')
11225 {
11226 /* It's a function-like macro. */
11227 char *name = copy_string (body, p - body);
11228 int argc = 0;
11229 int argv_size = 1;
11230 char **argv = xmalloc (argv_size * sizeof (*argv));
11231
11232 p++;
11233
11234 p = consume_improper_spaces (p, body);
11235
11236 /* Parse the formal argument list. */
11237 while (*p && *p != ')')
11238 {
11239 /* Find the extent of the current argument name. */
11240 const char *arg_start = p;
11241
11242 while (*p && *p != ',' && *p != ')' && *p != ' ')
11243 p++;
11244
11245 if (! *p || p == arg_start)
4d3c2250 11246 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11247 else
11248 {
11249 /* Make sure argv has room for the new argument. */
11250 if (argc >= argv_size)
11251 {
11252 argv_size *= 2;
11253 argv = xrealloc (argv, argv_size * sizeof (*argv));
11254 }
11255
11256 argv[argc++] = copy_string (arg_start, p - arg_start);
11257 }
11258
11259 p = consume_improper_spaces (p, body);
11260
11261 /* Consume the comma, if present. */
11262 if (*p == ',')
11263 {
11264 p++;
11265
11266 p = consume_improper_spaces (p, body);
11267 }
11268 }
11269
11270 if (*p == ')')
11271 {
11272 p++;
11273
11274 if (*p == ' ')
11275 /* Perfectly formed definition, no complaints. */
11276 macro_define_function (file, line, name,
11277 argc, (const char **) argv,
11278 p + 1);
11279 else if (*p == '\0')
11280 {
11281 /* Complain, but do define it. */
4d3c2250 11282 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11283 macro_define_function (file, line, name,
11284 argc, (const char **) argv,
11285 p);
11286 }
11287 else
11288 /* Just complain. */
4d3c2250 11289 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11290 }
11291 else
11292 /* Just complain. */
4d3c2250 11293 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11294
11295 xfree (name);
11296 {
11297 int i;
11298
11299 for (i = 0; i < argc; i++)
11300 xfree (argv[i]);
11301 }
11302 xfree (argv);
11303 }
11304 else
4d3c2250 11305 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11306}
11307
11308
11309static void
11310dwarf_decode_macros (struct line_header *lh, unsigned int offset,
11311 char *comp_dir, bfd *abfd,
e7c27a73 11312 struct dwarf2_cu *cu)
2e276125 11313{
fe1b8b76 11314 gdb_byte *mac_ptr, *mac_end;
2e276125 11315 struct macro_source_file *current_file = 0;
757a13d0
JK
11316 enum dwarf_macinfo_record_type macinfo_type;
11317 int at_commandline;
2e276125 11318
be391dca
TT
11319 dwarf2_read_section (dwarf2_per_objfile->objfile,
11320 &dwarf2_per_objfile->macinfo);
dce234bc 11321 if (dwarf2_per_objfile->macinfo.buffer == NULL)
2e276125 11322 {
e2e0b3e5 11323 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
11324 return;
11325 }
11326
757a13d0
JK
11327 /* First pass: Find the name of the base filename.
11328 This filename is needed in order to process all macros whose definition
11329 (or undefinition) comes from the command line. These macros are defined
11330 before the first DW_MACINFO_start_file entry, and yet still need to be
11331 associated to the base file.
11332
11333 To determine the base file name, we scan the macro definitions until we
11334 reach the first DW_MACINFO_start_file entry. We then initialize
11335 CURRENT_FILE accordingly so that any macro definition found before the
11336 first DW_MACINFO_start_file can still be associated to the base file. */
11337
dce234bc
PP
11338 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
11339 mac_end = dwarf2_per_objfile->macinfo.buffer
11340 + dwarf2_per_objfile->macinfo.size;
2e276125 11341
757a13d0 11342 do
2e276125 11343 {
2e276125
JB
11344 /* Do we at least have room for a macinfo type byte? */
11345 if (mac_ptr >= mac_end)
11346 {
757a13d0
JK
11347 /* Complaint is printed during the second pass as GDB will probably
11348 stop the first pass earlier upon finding DW_MACINFO_start_file. */
11349 break;
2e276125
JB
11350 }
11351
11352 macinfo_type = read_1_byte (abfd, mac_ptr);
11353 mac_ptr++;
11354
11355 switch (macinfo_type)
11356 {
11357 /* A zero macinfo type indicates the end of the macro
11358 information. */
11359 case 0:
757a13d0
JK
11360 break;
11361
11362 case DW_MACINFO_define:
11363 case DW_MACINFO_undef:
11364 /* Only skip the data by MAC_PTR. */
11365 {
11366 unsigned int bytes_read;
11367
11368 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11369 mac_ptr += bytes_read;
11370 read_string (abfd, mac_ptr, &bytes_read);
11371 mac_ptr += bytes_read;
11372 }
11373 break;
11374
11375 case DW_MACINFO_start_file:
11376 {
11377 unsigned int bytes_read;
11378 int line, file;
11379
11380 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11381 mac_ptr += bytes_read;
11382 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11383 mac_ptr += bytes_read;
11384
11385 current_file = macro_start_file (file, line, current_file, comp_dir,
11386 lh, cu->objfile);
11387 }
11388 break;
11389
11390 case DW_MACINFO_end_file:
11391 /* No data to skip by MAC_PTR. */
11392 break;
11393
11394 case DW_MACINFO_vendor_ext:
11395 /* Only skip the data by MAC_PTR. */
11396 {
11397 unsigned int bytes_read;
11398
11399 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11400 mac_ptr += bytes_read;
11401 read_string (abfd, mac_ptr, &bytes_read);
11402 mac_ptr += bytes_read;
11403 }
11404 break;
11405
11406 default:
11407 break;
11408 }
11409 } while (macinfo_type != 0 && current_file == NULL);
11410
11411 /* Second pass: Process all entries.
11412
11413 Use the AT_COMMAND_LINE flag to determine whether we are still processing
11414 command-line macro definitions/undefinitions. This flag is unset when we
11415 reach the first DW_MACINFO_start_file entry. */
11416
dce234bc 11417 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
757a13d0
JK
11418
11419 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
11420 GDB is still reading the definitions from command line. First
11421 DW_MACINFO_start_file will need to be ignored as it was already executed
11422 to create CURRENT_FILE for the main source holding also the command line
11423 definitions. On first met DW_MACINFO_start_file this flag is reset to
11424 normally execute all the remaining DW_MACINFO_start_file macinfos. */
11425
11426 at_commandline = 1;
11427
11428 do
11429 {
11430 /* Do we at least have room for a macinfo type byte? */
11431 if (mac_ptr >= mac_end)
11432 {
11433 dwarf2_macros_too_long_complaint ();
11434 break;
11435 }
11436
11437 macinfo_type = read_1_byte (abfd, mac_ptr);
11438 mac_ptr++;
11439
11440 switch (macinfo_type)
11441 {
11442 /* A zero macinfo type indicates the end of the macro
11443 information. */
11444 case 0:
11445 break;
2e276125
JB
11446
11447 case DW_MACINFO_define:
11448 case DW_MACINFO_undef:
11449 {
891d2f0b 11450 unsigned int bytes_read;
2e276125
JB
11451 int line;
11452 char *body;
11453
11454 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11455 mac_ptr += bytes_read;
11456 body = read_string (abfd, mac_ptr, &bytes_read);
11457 mac_ptr += bytes_read;
11458
11459 if (! current_file)
757a13d0
JK
11460 {
11461 /* DWARF violation as no main source is present. */
11462 complaint (&symfile_complaints,
11463 _("debug info with no main source gives macro %s "
11464 "on line %d: %s"),
905e0470
PM
11465 macinfo_type == DW_MACINFO_define ?
11466 _("definition") :
11467 macinfo_type == DW_MACINFO_undef ?
11468 _("undefinition") :
11469 _("something-or-other"), line, body);
757a13d0
JK
11470 break;
11471 }
11472 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
4d3c2250 11473 complaint (&symfile_complaints,
757a13d0
JK
11474 _("debug info gives %s macro %s with %s line %d: %s"),
11475 at_commandline ? _("command-line") : _("in-file"),
905e0470
PM
11476 macinfo_type == DW_MACINFO_define ?
11477 _("definition") :
11478 macinfo_type == DW_MACINFO_undef ?
11479 _("undefinition") :
11480 _("something-or-other"),
757a13d0
JK
11481 line == 0 ? _("zero") : _("non-zero"), line, body);
11482
11483 if (macinfo_type == DW_MACINFO_define)
11484 parse_macro_definition (current_file, line, body);
11485 else if (macinfo_type == DW_MACINFO_undef)
11486 macro_undef (current_file, line, body);
2e276125
JB
11487 }
11488 break;
11489
11490 case DW_MACINFO_start_file:
11491 {
891d2f0b 11492 unsigned int bytes_read;
2e276125
JB
11493 int line, file;
11494
11495 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11496 mac_ptr += bytes_read;
11497 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11498 mac_ptr += bytes_read;
11499
757a13d0
JK
11500 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
11501 complaint (&symfile_complaints,
11502 _("debug info gives source %d included "
11503 "from %s at %s line %d"),
11504 file, at_commandline ? _("command-line") : _("file"),
11505 line == 0 ? _("zero") : _("non-zero"), line);
11506
11507 if (at_commandline)
11508 {
11509 /* This DW_MACINFO_start_file was executed in the pass one. */
11510 at_commandline = 0;
11511 }
11512 else
11513 current_file = macro_start_file (file, line,
11514 current_file, comp_dir,
11515 lh, cu->objfile);
2e276125
JB
11516 }
11517 break;
11518
11519 case DW_MACINFO_end_file:
11520 if (! current_file)
4d3c2250 11521 complaint (&symfile_complaints,
e2e0b3e5 11522 _("macro debug info has an unmatched `close_file' directive"));
2e276125
JB
11523 else
11524 {
11525 current_file = current_file->included_by;
11526 if (! current_file)
11527 {
11528 enum dwarf_macinfo_record_type next_type;
11529
11530 /* GCC circa March 2002 doesn't produce the zero
11531 type byte marking the end of the compilation
11532 unit. Complain if it's not there, but exit no
11533 matter what. */
11534
11535 /* Do we at least have room for a macinfo type byte? */
11536 if (mac_ptr >= mac_end)
11537 {
4d3c2250 11538 dwarf2_macros_too_long_complaint ();
2e276125
JB
11539 return;
11540 }
11541
11542 /* We don't increment mac_ptr here, so this is just
11543 a look-ahead. */
11544 next_type = read_1_byte (abfd, mac_ptr);
11545 if (next_type != 0)
4d3c2250 11546 complaint (&symfile_complaints,
e2e0b3e5 11547 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
2e276125
JB
11548
11549 return;
11550 }
11551 }
11552 break;
11553
11554 case DW_MACINFO_vendor_ext:
11555 {
891d2f0b 11556 unsigned int bytes_read;
2e276125
JB
11557 int constant;
11558 char *string;
11559
11560 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11561 mac_ptr += bytes_read;
11562 string = read_string (abfd, mac_ptr, &bytes_read);
11563 mac_ptr += bytes_read;
11564
11565 /* We don't recognize any vendor extensions. */
11566 }
11567 break;
11568 }
757a13d0 11569 } while (macinfo_type != 0);
2e276125 11570}
8e19ed76
PS
11571
11572/* Check if the attribute's form is a DW_FORM_block*
11573 if so return true else false. */
11574static int
11575attr_form_is_block (struct attribute *attr)
11576{
11577 return (attr == NULL ? 0 :
11578 attr->form == DW_FORM_block1
11579 || attr->form == DW_FORM_block2
11580 || attr->form == DW_FORM_block4
2dc7f7b3
TT
11581 || attr->form == DW_FORM_block
11582 || attr->form == DW_FORM_exprloc);
8e19ed76 11583}
4c2df51b 11584
c6a0999f
JB
11585/* Return non-zero if ATTR's value is a section offset --- classes
11586 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
11587 You may use DW_UNSND (attr) to retrieve such offsets.
11588
11589 Section 7.5.4, "Attribute Encodings", explains that no attribute
11590 may have a value that belongs to more than one of these classes; it
11591 would be ambiguous if we did, because we use the same forms for all
11592 of them. */
3690dd37
JB
11593static int
11594attr_form_is_section_offset (struct attribute *attr)
11595{
11596 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
11597 || attr->form == DW_FORM_data8
11598 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
11599}
11600
11601
11602/* Return non-zero if ATTR's value falls in the 'constant' class, or
11603 zero otherwise. When this function returns true, you can apply
11604 dwarf2_get_attr_constant_value to it.
11605
11606 However, note that for some attributes you must check
11607 attr_form_is_section_offset before using this test. DW_FORM_data4
11608 and DW_FORM_data8 are members of both the constant class, and of
11609 the classes that contain offsets into other debug sections
11610 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
11611 that, if an attribute's can be either a constant or one of the
11612 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
11613 taken as section offsets, not constants. */
11614static int
11615attr_form_is_constant (struct attribute *attr)
11616{
11617 switch (attr->form)
11618 {
11619 case DW_FORM_sdata:
11620 case DW_FORM_udata:
11621 case DW_FORM_data1:
11622 case DW_FORM_data2:
11623 case DW_FORM_data4:
11624 case DW_FORM_data8:
11625 return 1;
11626 default:
11627 return 0;
11628 }
11629}
11630
4c2df51b
DJ
11631static void
11632dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 11633 struct dwarf2_cu *cu)
4c2df51b 11634{
3690dd37 11635 if (attr_form_is_section_offset (attr)
99bcc461
DJ
11636 /* ".debug_loc" may not exist at all, or the offset may be outside
11637 the section. If so, fall through to the complaint in the
11638 other branch. */
dce234bc 11639 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
4c2df51b 11640 {
0d53c4c4 11641 struct dwarf2_loclist_baton *baton;
4c2df51b 11642
4a146b47 11643 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 11644 sizeof (struct dwarf2_loclist_baton));
ae0d2f24
UW
11645 baton->per_cu = cu->per_cu;
11646 gdb_assert (baton->per_cu);
4c2df51b 11647
be391dca
TT
11648 dwarf2_read_section (dwarf2_per_objfile->objfile,
11649 &dwarf2_per_objfile->loc);
11650
0d53c4c4
DJ
11651 /* We don't know how long the location list is, but make sure we
11652 don't run off the edge of the section. */
dce234bc
PP
11653 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
11654 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
d00adf39
DE
11655 baton->base_address = cu->base_address;
11656 if (cu->base_known == 0)
0d53c4c4 11657 complaint (&symfile_complaints,
e2e0b3e5 11658 _("Location list used without specifying the CU base address."));
4c2df51b 11659
768a979c 11660 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
11661 SYMBOL_LOCATION_BATON (sym) = baton;
11662 }
11663 else
11664 {
11665 struct dwarf2_locexpr_baton *baton;
11666
4a146b47 11667 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 11668 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
11669 baton->per_cu = cu->per_cu;
11670 gdb_assert (baton->per_cu);
0d53c4c4
DJ
11671
11672 if (attr_form_is_block (attr))
11673 {
11674 /* Note that we're just copying the block's data pointer
11675 here, not the actual data. We're still pointing into the
6502dd73
DJ
11676 info_buffer for SYM's objfile; right now we never release
11677 that buffer, but when we do clean up properly this may
11678 need to change. */
0d53c4c4
DJ
11679 baton->size = DW_BLOCK (attr)->size;
11680 baton->data = DW_BLOCK (attr)->data;
11681 }
11682 else
11683 {
11684 dwarf2_invalid_attrib_class_complaint ("location description",
11685 SYMBOL_NATURAL_NAME (sym));
11686 baton->size = 0;
11687 baton->data = NULL;
11688 }
11689
768a979c 11690 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
11691 SYMBOL_LOCATION_BATON (sym) = baton;
11692 }
4c2df51b 11693}
6502dd73 11694
ae0d2f24
UW
11695/* Return the OBJFILE associated with the compilation unit CU. */
11696
11697struct objfile *
11698dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
11699{
11700 struct objfile *objfile = per_cu->psymtab->objfile;
11701
11702 /* Return the master objfile, so that we can report and look up the
11703 correct file containing this variable. */
11704 if (objfile->separate_debug_objfile_backlink)
11705 objfile = objfile->separate_debug_objfile_backlink;
11706
11707 return objfile;
11708}
11709
11710/* Return the address size given in the compilation unit header for CU. */
11711
11712CORE_ADDR
11713dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
11714{
11715 if (per_cu->cu)
11716 return per_cu->cu->header.addr_size;
11717 else
11718 {
11719 /* If the CU is not currently read in, we re-read its header. */
11720 struct objfile *objfile = per_cu->psymtab->objfile;
11721 struct dwarf2_per_objfile *per_objfile
11722 = objfile_data (objfile, dwarf2_objfile_data_key);
dce234bc 11723 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
ae0d2f24 11724 struct comp_unit_head cu_header;
9a619af0 11725
ae0d2f24
UW
11726 memset (&cu_header, 0, sizeof cu_header);
11727 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
11728 return cu_header.addr_size;
11729 }
11730}
11731
348e048f
DE
11732/* Locate the .debug_info compilation unit from CU's objfile which contains
11733 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
11734
11735static struct dwarf2_per_cu_data *
c764a876 11736dwarf2_find_containing_comp_unit (unsigned int offset,
ae038cb0
DJ
11737 struct objfile *objfile)
11738{
11739 struct dwarf2_per_cu_data *this_cu;
11740 int low, high;
11741
ae038cb0
DJ
11742 low = 0;
11743 high = dwarf2_per_objfile->n_comp_units - 1;
11744 while (high > low)
11745 {
11746 int mid = low + (high - low) / 2;
9a619af0 11747
ae038cb0
DJ
11748 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
11749 high = mid;
11750 else
11751 low = mid + 1;
11752 }
11753 gdb_assert (low == high);
11754 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
11755 {
10b3939b 11756 if (low == 0)
8a3fe4f8
AC
11757 error (_("Dwarf Error: could not find partial DIE containing "
11758 "offset 0x%lx [in module %s]"),
10b3939b
DJ
11759 (long) offset, bfd_get_filename (objfile->obfd));
11760
ae038cb0
DJ
11761 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
11762 return dwarf2_per_objfile->all_comp_units[low-1];
11763 }
11764 else
11765 {
11766 this_cu = dwarf2_per_objfile->all_comp_units[low];
11767 if (low == dwarf2_per_objfile->n_comp_units - 1
11768 && offset >= this_cu->offset + this_cu->length)
c764a876 11769 error (_("invalid dwarf2 offset %u"), offset);
ae038cb0
DJ
11770 gdb_assert (offset < this_cu->offset + this_cu->length);
11771 return this_cu;
11772 }
11773}
11774
10b3939b
DJ
11775/* Locate the compilation unit from OBJFILE which is located at exactly
11776 OFFSET. Raises an error on failure. */
11777
ae038cb0 11778static struct dwarf2_per_cu_data *
c764a876 11779dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
ae038cb0
DJ
11780{
11781 struct dwarf2_per_cu_data *this_cu;
9a619af0 11782
ae038cb0
DJ
11783 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
11784 if (this_cu->offset != offset)
c764a876 11785 error (_("no compilation unit with offset %u."), offset);
ae038cb0
DJ
11786 return this_cu;
11787}
11788
93311388
DE
11789/* Malloc space for a dwarf2_cu for OBJFILE and initialize it. */
11790
11791static struct dwarf2_cu *
11792alloc_one_comp_unit (struct objfile *objfile)
11793{
11794 struct dwarf2_cu *cu = xcalloc (1, sizeof (struct dwarf2_cu));
11795 cu->objfile = objfile;
11796 obstack_init (&cu->comp_unit_obstack);
11797 return cu;
11798}
11799
ae038cb0
DJ
11800/* Release one cached compilation unit, CU. We unlink it from the tree
11801 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
11802 the caller is responsible for that.
11803 NOTE: DATA is a void * because this function is also used as a
11804 cleanup routine. */
ae038cb0
DJ
11805
11806static void
11807free_one_comp_unit (void *data)
11808{
11809 struct dwarf2_cu *cu = data;
11810
11811 if (cu->per_cu != NULL)
11812 cu->per_cu->cu = NULL;
11813 cu->per_cu = NULL;
11814
11815 obstack_free (&cu->comp_unit_obstack, NULL);
11816
11817 xfree (cu);
11818}
11819
72bf9492 11820/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
11821 when we're finished with it. We can't free the pointer itself, but be
11822 sure to unlink it from the cache. Also release any associated storage
11823 and perform cache maintenance.
72bf9492
DJ
11824
11825 Only used during partial symbol parsing. */
11826
11827static void
11828free_stack_comp_unit (void *data)
11829{
11830 struct dwarf2_cu *cu = data;
11831
11832 obstack_free (&cu->comp_unit_obstack, NULL);
11833 cu->partial_dies = NULL;
ae038cb0
DJ
11834
11835 if (cu->per_cu != NULL)
11836 {
11837 /* This compilation unit is on the stack in our caller, so we
11838 should not xfree it. Just unlink it. */
11839 cu->per_cu->cu = NULL;
11840 cu->per_cu = NULL;
11841
11842 /* If we had a per-cu pointer, then we may have other compilation
11843 units loaded, so age them now. */
11844 age_cached_comp_units ();
11845 }
11846}
11847
11848/* Free all cached compilation units. */
11849
11850static void
11851free_cached_comp_units (void *data)
11852{
11853 struct dwarf2_per_cu_data *per_cu, **last_chain;
11854
11855 per_cu = dwarf2_per_objfile->read_in_chain;
11856 last_chain = &dwarf2_per_objfile->read_in_chain;
11857 while (per_cu != NULL)
11858 {
11859 struct dwarf2_per_cu_data *next_cu;
11860
11861 next_cu = per_cu->cu->read_in_chain;
11862
11863 free_one_comp_unit (per_cu->cu);
11864 *last_chain = next_cu;
11865
11866 per_cu = next_cu;
11867 }
11868}
11869
11870/* Increase the age counter on each cached compilation unit, and free
11871 any that are too old. */
11872
11873static void
11874age_cached_comp_units (void)
11875{
11876 struct dwarf2_per_cu_data *per_cu, **last_chain;
11877
11878 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
11879 per_cu = dwarf2_per_objfile->read_in_chain;
11880 while (per_cu != NULL)
11881 {
11882 per_cu->cu->last_used ++;
11883 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
11884 dwarf2_mark (per_cu->cu);
11885 per_cu = per_cu->cu->read_in_chain;
11886 }
11887
11888 per_cu = dwarf2_per_objfile->read_in_chain;
11889 last_chain = &dwarf2_per_objfile->read_in_chain;
11890 while (per_cu != NULL)
11891 {
11892 struct dwarf2_per_cu_data *next_cu;
11893
11894 next_cu = per_cu->cu->read_in_chain;
11895
11896 if (!per_cu->cu->mark)
11897 {
11898 free_one_comp_unit (per_cu->cu);
11899 *last_chain = next_cu;
11900 }
11901 else
11902 last_chain = &per_cu->cu->read_in_chain;
11903
11904 per_cu = next_cu;
11905 }
11906}
11907
11908/* Remove a single compilation unit from the cache. */
11909
11910static void
11911free_one_cached_comp_unit (void *target_cu)
11912{
11913 struct dwarf2_per_cu_data *per_cu, **last_chain;
11914
11915 per_cu = dwarf2_per_objfile->read_in_chain;
11916 last_chain = &dwarf2_per_objfile->read_in_chain;
11917 while (per_cu != NULL)
11918 {
11919 struct dwarf2_per_cu_data *next_cu;
11920
11921 next_cu = per_cu->cu->read_in_chain;
11922
11923 if (per_cu->cu == target_cu)
11924 {
11925 free_one_comp_unit (per_cu->cu);
11926 *last_chain = next_cu;
11927 break;
11928 }
11929 else
11930 last_chain = &per_cu->cu->read_in_chain;
11931
11932 per_cu = next_cu;
11933 }
11934}
11935
fe3e1990
DJ
11936/* Release all extra memory associated with OBJFILE. */
11937
11938void
11939dwarf2_free_objfile (struct objfile *objfile)
11940{
11941 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
11942
11943 if (dwarf2_per_objfile == NULL)
11944 return;
11945
11946 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
11947 free_cached_comp_units (NULL);
11948
11949 /* Everything else should be on the objfile obstack. */
11950}
11951
1c379e20
DJ
11952/* A pair of DIE offset and GDB type pointer. We store these
11953 in a hash table separate from the DIEs, and preserve them
11954 when the DIEs are flushed out of cache. */
11955
11956struct dwarf2_offset_and_type
11957{
11958 unsigned int offset;
11959 struct type *type;
11960};
11961
11962/* Hash function for a dwarf2_offset_and_type. */
11963
11964static hashval_t
11965offset_and_type_hash (const void *item)
11966{
11967 const struct dwarf2_offset_and_type *ofs = item;
9a619af0 11968
1c379e20
DJ
11969 return ofs->offset;
11970}
11971
11972/* Equality function for a dwarf2_offset_and_type. */
11973
11974static int
11975offset_and_type_eq (const void *item_lhs, const void *item_rhs)
11976{
11977 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
11978 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9a619af0 11979
1c379e20
DJ
11980 return ofs_lhs->offset == ofs_rhs->offset;
11981}
11982
11983/* Set the type associated with DIE to TYPE. Save it in CU's hash
f792889a 11984 table if necessary. For convenience, return TYPE. */
1c379e20 11985
f792889a 11986static struct type *
1c379e20
DJ
11987set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11988{
11989 struct dwarf2_offset_and_type **slot, ofs;
11990
b4ba55a1
JB
11991 /* For Ada types, make sure that the gnat-specific data is always
11992 initialized (if not already set). There are a few types where
11993 we should not be doing so, because the type-specific area is
11994 already used to hold some other piece of info (eg: TYPE_CODE_FLT
11995 where the type-specific area is used to store the floatformat).
11996 But this is not a problem, because the gnat-specific information
11997 is actually not needed for these types. */
11998 if (need_gnat_info (cu)
11999 && TYPE_CODE (type) != TYPE_CODE_FUNC
12000 && TYPE_CODE (type) != TYPE_CODE_FLT
12001 && !HAVE_GNAT_AUX_INFO (type))
12002 INIT_GNAT_SPECIFIC (type);
12003
f792889a
DJ
12004 if (cu->type_hash == NULL)
12005 {
12006 gdb_assert (cu->per_cu != NULL);
12007 cu->per_cu->type_hash
12008 = htab_create_alloc_ex (cu->header.length / 24,
12009 offset_and_type_hash,
12010 offset_and_type_eq,
12011 NULL,
12012 &cu->objfile->objfile_obstack,
12013 hashtab_obstack_allocate,
12014 dummy_obstack_deallocate);
12015 cu->type_hash = cu->per_cu->type_hash;
12016 }
1c379e20
DJ
12017
12018 ofs.offset = die->offset;
12019 ofs.type = type;
12020 slot = (struct dwarf2_offset_and_type **)
f792889a 12021 htab_find_slot_with_hash (cu->type_hash, &ofs, ofs.offset, INSERT);
1c379e20
DJ
12022 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
12023 **slot = ofs;
f792889a 12024 return type;
1c379e20
DJ
12025}
12026
f792889a
DJ
12027/* Find the type for DIE in CU's type_hash, or return NULL if DIE does
12028 not have a saved type. */
1c379e20
DJ
12029
12030static struct type *
f792889a 12031get_die_type (struct die_info *die, struct dwarf2_cu *cu)
1c379e20
DJ
12032{
12033 struct dwarf2_offset_and_type *slot, ofs;
f792889a
DJ
12034 htab_t type_hash = cu->type_hash;
12035
12036 if (type_hash == NULL)
12037 return NULL;
1c379e20
DJ
12038
12039 ofs.offset = die->offset;
12040 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
12041 if (slot)
12042 return slot->type;
12043 else
12044 return NULL;
12045}
12046
10b3939b
DJ
12047/* Add a dependence relationship from CU to REF_PER_CU. */
12048
12049static void
12050dwarf2_add_dependence (struct dwarf2_cu *cu,
12051 struct dwarf2_per_cu_data *ref_per_cu)
12052{
12053 void **slot;
12054
12055 if (cu->dependencies == NULL)
12056 cu->dependencies
12057 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
12058 NULL, &cu->comp_unit_obstack,
12059 hashtab_obstack_allocate,
12060 dummy_obstack_deallocate);
12061
12062 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
12063 if (*slot == NULL)
12064 *slot = ref_per_cu;
12065}
1c379e20 12066
f504f079
DE
12067/* Subroutine of dwarf2_mark to pass to htab_traverse.
12068 Set the mark field in every compilation unit in the
ae038cb0
DJ
12069 cache that we must keep because we are keeping CU. */
12070
10b3939b
DJ
12071static int
12072dwarf2_mark_helper (void **slot, void *data)
12073{
12074 struct dwarf2_per_cu_data *per_cu;
12075
12076 per_cu = (struct dwarf2_per_cu_data *) *slot;
12077 if (per_cu->cu->mark)
12078 return 1;
12079 per_cu->cu->mark = 1;
12080
12081 if (per_cu->cu->dependencies != NULL)
12082 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
12083
12084 return 1;
12085}
12086
f504f079
DE
12087/* Set the mark field in CU and in every other compilation unit in the
12088 cache that we must keep because we are keeping CU. */
12089
ae038cb0
DJ
12090static void
12091dwarf2_mark (struct dwarf2_cu *cu)
12092{
12093 if (cu->mark)
12094 return;
12095 cu->mark = 1;
10b3939b
DJ
12096 if (cu->dependencies != NULL)
12097 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
12098}
12099
12100static void
12101dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
12102{
12103 while (per_cu)
12104 {
12105 per_cu->cu->mark = 0;
12106 per_cu = per_cu->cu->read_in_chain;
12107 }
72bf9492
DJ
12108}
12109
72bf9492
DJ
12110/* Trivial hash function for partial_die_info: the hash value of a DIE
12111 is its offset in .debug_info for this objfile. */
12112
12113static hashval_t
12114partial_die_hash (const void *item)
12115{
12116 const struct partial_die_info *part_die = item;
9a619af0 12117
72bf9492
DJ
12118 return part_die->offset;
12119}
12120
12121/* Trivial comparison function for partial_die_info structures: two DIEs
12122 are equal if they have the same offset. */
12123
12124static int
12125partial_die_eq (const void *item_lhs, const void *item_rhs)
12126{
12127 const struct partial_die_info *part_die_lhs = item_lhs;
12128 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 12129
72bf9492
DJ
12130 return part_die_lhs->offset == part_die_rhs->offset;
12131}
12132
ae038cb0
DJ
12133static struct cmd_list_element *set_dwarf2_cmdlist;
12134static struct cmd_list_element *show_dwarf2_cmdlist;
12135
12136static void
12137set_dwarf2_cmd (char *args, int from_tty)
12138{
12139 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
12140}
12141
12142static void
12143show_dwarf2_cmd (char *args, int from_tty)
12144{
12145 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
12146}
12147
dce234bc
PP
12148/* If section described by INFO was mmapped, munmap it now. */
12149
12150static void
12151munmap_section_buffer (struct dwarf2_section_info *info)
12152{
12153 if (info->was_mmapped)
12154 {
12155#ifdef HAVE_MMAP
12156 intptr_t begin = (intptr_t) info->buffer;
12157 intptr_t map_begin = begin & ~(pagesize - 1);
12158 size_t map_length = info->size + begin - map_begin;
9a619af0 12159
dce234bc
PP
12160 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
12161#else
12162 /* Without HAVE_MMAP, we should never be here to begin with. */
12163 gdb_assert (0);
12164#endif
12165 }
12166}
12167
12168/* munmap debug sections for OBJFILE, if necessary. */
12169
12170static void
c1bd65d0 12171dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
12172{
12173 struct dwarf2_per_objfile *data = d;
9a619af0 12174
dce234bc
PP
12175 munmap_section_buffer (&data->info);
12176 munmap_section_buffer (&data->abbrev);
12177 munmap_section_buffer (&data->line);
12178 munmap_section_buffer (&data->str);
12179 munmap_section_buffer (&data->macinfo);
12180 munmap_section_buffer (&data->ranges);
12181 munmap_section_buffer (&data->loc);
12182 munmap_section_buffer (&data->frame);
12183 munmap_section_buffer (&data->eh_frame);
12184}
12185
6502dd73
DJ
12186void _initialize_dwarf2_read (void);
12187
12188void
12189_initialize_dwarf2_read (void)
12190{
dce234bc 12191 dwarf2_objfile_data_key
c1bd65d0 12192 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 12193
1bedd215
AC
12194 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
12195Set DWARF 2 specific variables.\n\
12196Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
12197 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
12198 0/*allow-unknown*/, &maintenance_set_cmdlist);
12199
1bedd215
AC
12200 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
12201Show DWARF 2 specific variables\n\
12202Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
12203 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
12204 0/*allow-unknown*/, &maintenance_show_cmdlist);
12205
12206 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
12207 &dwarf2_max_cache_age, _("\
12208Set the upper bound on the age of cached dwarf2 compilation units."), _("\
12209Show the upper bound on the age of cached dwarf2 compilation units."), _("\
12210A higher limit means that cached compilation units will be stored\n\
12211in memory longer, and more total memory will be used. Zero disables\n\
12212caching, which can slow down startup."),
2c5b56ce 12213 NULL,
920d2a44 12214 show_dwarf2_max_cache_age,
2c5b56ce 12215 &set_dwarf2_cmdlist,
ae038cb0 12216 &show_dwarf2_cmdlist);
d97bc12b
DE
12217
12218 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
12219Set debugging of the dwarf2 DIE reader."), _("\
12220Show debugging of the dwarf2 DIE reader."), _("\
12221When enabled (non-zero), DIEs are dumped after they are read in.\n\
12222The value is the maximum depth to print."),
12223 NULL,
12224 NULL,
12225 &setdebuglist, &showdebuglist);
6502dd73 12226}
This page took 2.225516 seconds and 4 git commands to generate.