gdb/
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
6aba47ca 3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4c38e0a4 4 2004, 2005, 2006, 2007, 2008, 2009, 2010
0fb0cc75 5 Free Software Foundation, Inc.
c906108c
SS
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 12 support.
c906108c 13
c5aa993b 14 This file is part of GDB.
c906108c 15
c5aa993b
JM
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
a9762ec7
JB
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
c906108c 20
a9762ec7
JB
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
c906108c 25
c5aa993b 26 You should have received a copy of the GNU General Public License
a9762ec7 27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
28
29#include "defs.h"
30#include "bfd.h"
c906108c
SS
31#include "symtab.h"
32#include "gdbtypes.h"
c906108c 33#include "objfiles.h"
fa8f86ff 34#include "dwarf2.h"
c906108c
SS
35#include "buildsym.h"
36#include "demangle.h"
37#include "expression.h"
d5166ae1 38#include "filenames.h" /* for DOSish file names */
2e276125 39#include "macrotab.h"
c906108c
SS
40#include "language.h"
41#include "complaints.h"
357e46e7 42#include "bcache.h"
4c2df51b
DJ
43#include "dwarf2expr.h"
44#include "dwarf2loc.h"
9219021c 45#include "cp-support.h"
72bf9492 46#include "hashtab.h"
ae038cb0
DJ
47#include "command.h"
48#include "gdbcmd.h"
edb3359d 49#include "block.h"
ff013f42 50#include "addrmap.h"
94af9270
KS
51#include "typeprint.h"
52#include "jv-lang.h"
ccefe4c4 53#include "psympriv.h"
9291a0cd
TT
54#include "exceptions.h"
55#include "gdb_stat.h"
96d19272 56#include "completer.h"
34eaf542 57#include "vec.h"
98bfdba5
PA
58#include "c-lang.h"
59#include "valprint.h"
4c2df51b 60
c906108c
SS
61#include <fcntl.h>
62#include "gdb_string.h"
4bdf3d34 63#include "gdb_assert.h"
c906108c 64#include <sys/types.h>
233a11ab
CS
65#ifdef HAVE_ZLIB_H
66#include <zlib.h>
67#endif
dce234bc
PP
68#ifdef HAVE_MMAP
69#include <sys/mman.h>
85d9bd0e
TT
70#ifndef MAP_FAILED
71#define MAP_FAILED ((void *) -1)
72#endif
dce234bc 73#endif
d8151005 74
34eaf542
TT
75typedef struct symbol *symbolp;
76DEF_VEC_P (symbolp);
77
107d2387 78#if 0
357e46e7 79/* .debug_info header for a compilation unit
c906108c
SS
80 Because of alignment constraints, this structure has padding and cannot
81 be mapped directly onto the beginning of the .debug_info section. */
82typedef struct comp_unit_header
83 {
84 unsigned int length; /* length of the .debug_info
85 contribution */
86 unsigned short version; /* version number -- 2 for DWARF
87 version 2 */
88 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
89 unsigned char addr_size; /* byte size of an address -- 4 */
90 }
91_COMP_UNIT_HEADER;
92#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 93#endif
c906108c 94
c906108c
SS
95/* .debug_line statement program prologue
96 Because of alignment constraints, this structure has padding and cannot
97 be mapped directly onto the beginning of the .debug_info section. */
98typedef struct statement_prologue
99 {
100 unsigned int total_length; /* byte length of the statement
101 information */
102 unsigned short version; /* version number -- 2 for DWARF
103 version 2 */
104 unsigned int prologue_length; /* # bytes between prologue &
105 stmt program */
106 unsigned char minimum_instruction_length; /* byte size of
107 smallest instr */
108 unsigned char default_is_stmt; /* initial value of is_stmt
109 register */
110 char line_base;
111 unsigned char line_range;
112 unsigned char opcode_base; /* number assigned to first special
113 opcode */
114 unsigned char *standard_opcode_lengths;
115 }
116_STATEMENT_PROLOGUE;
117
d97bc12b
DE
118/* When non-zero, dump DIEs after they are read in. */
119static int dwarf2_die_debug = 0;
120
dce234bc
PP
121static int pagesize;
122
df8a16a1
DJ
123/* When set, the file that we're processing is known to have debugging
124 info for C++ namespaces. GCC 3.3.x did not produce this information,
125 but later versions do. */
126
127static int processing_has_namespace_info;
128
6502dd73
DJ
129static const struct objfile_data *dwarf2_objfile_data_key;
130
dce234bc
PP
131struct dwarf2_section_info
132{
133 asection *asection;
134 gdb_byte *buffer;
135 bfd_size_type size;
136 int was_mmapped;
be391dca
TT
137 /* True if we have tried to read this section. */
138 int readin;
dce234bc
PP
139};
140
9291a0cd
TT
141/* All offsets in the index are of this type. It must be
142 architecture-independent. */
143typedef uint32_t offset_type;
144
145DEF_VEC_I (offset_type);
146
147/* A description of the mapped index. The file format is described in
148 a comment by the code that writes the index. */
149struct mapped_index
150{
151 /* The total length of the buffer. */
152 off_t total_size;
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
3876f04e
DE
157 /* The symbol table, implemented as a hash table. */
158 const offset_type *symbol_table;
9291a0cd 159 /* Size in slots, each slot is 2 offset_types. */
3876f04e 160 offset_type symbol_table_slots;
9291a0cd
TT
161 /* A pointer to the constant pool. */
162 const char *constant_pool;
163};
164
6502dd73
DJ
165struct dwarf2_per_objfile
166{
dce234bc
PP
167 struct dwarf2_section_info info;
168 struct dwarf2_section_info abbrev;
169 struct dwarf2_section_info line;
dce234bc
PP
170 struct dwarf2_section_info loc;
171 struct dwarf2_section_info macinfo;
172 struct dwarf2_section_info str;
173 struct dwarf2_section_info ranges;
348e048f 174 struct dwarf2_section_info types;
dce234bc
PP
175 struct dwarf2_section_info frame;
176 struct dwarf2_section_info eh_frame;
9291a0cd 177 struct dwarf2_section_info gdb_index;
ae038cb0 178
be391dca
TT
179 /* Back link. */
180 struct objfile *objfile;
181
10b3939b
DJ
182 /* A list of all the compilation units. This is used to locate
183 the target compilation unit of a particular reference. */
ae038cb0
DJ
184 struct dwarf2_per_cu_data **all_comp_units;
185
186 /* The number of compilation units in ALL_COMP_UNITS. */
187 int n_comp_units;
188
1fd400ff
TT
189 /* The number of .debug_types-related CUs. */
190 int n_type_comp_units;
191
192 /* The .debug_types-related CUs. */
193 struct dwarf2_per_cu_data **type_comp_units;
194
ae038cb0
DJ
195 /* A chain of compilation units that are currently read in, so that
196 they can be freed later. */
197 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5 198
348e048f
DE
199 /* A table mapping .debug_types signatures to its signatured_type entry.
200 This is NULL if the .debug_types section hasn't been read in yet. */
201 htab_t signatured_types;
202
72dca2f5
FR
203 /* A flag indicating wether this objfile has a section loaded at a
204 VMA of 0. */
205 int has_section_at_zero;
9291a0cd
TT
206
207 /* True if we are using the mapped index. */
208 unsigned char using_index;
209
210 /* The mapped index. */
211 struct mapped_index *index_table;
98bfdba5
PA
212
213 /* Set during partial symbol reading, to prevent queueing of full
214 symbols. */
215 int reading_partial_symbols;
673bfd45
DE
216
217 /* Table mapping type .debug_info DIE offsets to types.
218 This is NULL if not allocated yet.
219 It (currently) makes sense to allocate debug_types_type_hash lazily.
220 To keep things simple we allocate both lazily. */
221 htab_t debug_info_type_hash;
222
223 /* Table mapping type .debug_types DIE offsets to types.
224 This is NULL if not allocated yet. */
225 htab_t debug_types_type_hash;
6502dd73
DJ
226};
227
228static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c
SS
229
230/* names of the debugging sections */
231
233a11ab
CS
232/* Note that if the debugging section has been compressed, it might
233 have a name like .zdebug_info. */
234
235#define INFO_SECTION "debug_info"
236#define ABBREV_SECTION "debug_abbrev"
237#define LINE_SECTION "debug_line"
233a11ab
CS
238#define LOC_SECTION "debug_loc"
239#define MACINFO_SECTION "debug_macinfo"
240#define STR_SECTION "debug_str"
241#define RANGES_SECTION "debug_ranges"
348e048f 242#define TYPES_SECTION "debug_types"
233a11ab
CS
243#define FRAME_SECTION "debug_frame"
244#define EH_FRAME_SECTION "eh_frame"
9291a0cd 245#define GDB_INDEX_SECTION "gdb_index"
c906108c
SS
246
247/* local data types */
248
57349743
JB
249/* We hold several abbreviation tables in memory at the same time. */
250#ifndef ABBREV_HASH_SIZE
251#define ABBREV_HASH_SIZE 121
252#endif
253
107d2387
AC
254/* The data in a compilation unit header, after target2host
255 translation, looks like this. */
c906108c 256struct comp_unit_head
a738430d 257{
c764a876 258 unsigned int length;
a738430d 259 short version;
a738430d
MK
260 unsigned char addr_size;
261 unsigned char signed_addr_p;
9cbfa09e 262 unsigned int abbrev_offset;
57349743 263
a738430d
MK
264 /* Size of file offsets; either 4 or 8. */
265 unsigned int offset_size;
57349743 266
a738430d
MK
267 /* Size of the length field; either 4 or 12. */
268 unsigned int initial_length_size;
57349743 269
a738430d
MK
270 /* Offset to the first byte of this compilation unit header in the
271 .debug_info section, for resolving relative reference dies. */
272 unsigned int offset;
57349743 273
d00adf39
DE
274 /* Offset to first die in this cu from the start of the cu.
275 This will be the first byte following the compilation unit header. */
276 unsigned int first_die_offset;
a738430d 277};
c906108c 278
3da10d80
KS
279/* Type used for delaying computation of method physnames.
280 See comments for compute_delayed_physnames. */
281struct delayed_method_info
282{
283 /* The type to which the method is attached, i.e., its parent class. */
284 struct type *type;
285
286 /* The index of the method in the type's function fieldlists. */
287 int fnfield_index;
288
289 /* The index of the method in the fieldlist. */
290 int index;
291
292 /* The name of the DIE. */
293 const char *name;
294
295 /* The DIE associated with this method. */
296 struct die_info *die;
297};
298
299typedef struct delayed_method_info delayed_method_info;
300DEF_VEC_O (delayed_method_info);
301
e7c27a73
DJ
302/* Internal state when decoding a particular compilation unit. */
303struct dwarf2_cu
304{
305 /* The objfile containing this compilation unit. */
306 struct objfile *objfile;
307
d00adf39 308 /* The header of the compilation unit. */
e7c27a73 309 struct comp_unit_head header;
e142c38c 310
d00adf39
DE
311 /* Base address of this compilation unit. */
312 CORE_ADDR base_address;
313
314 /* Non-zero if base_address has been set. */
315 int base_known;
316
e142c38c
DJ
317 struct function_range *first_fn, *last_fn, *cached_fn;
318
319 /* The language we are debugging. */
320 enum language language;
321 const struct language_defn *language_defn;
322
b0f35d58
DL
323 const char *producer;
324
e142c38c
DJ
325 /* The generic symbol table building routines have separate lists for
326 file scope symbols and all all other scopes (local scopes). So
327 we need to select the right one to pass to add_symbol_to_list().
328 We do it by keeping a pointer to the correct list in list_in_scope.
329
330 FIXME: The original dwarf code just treated the file scope as the
331 first local scope, and all other local scopes as nested local
332 scopes, and worked fine. Check to see if we really need to
333 distinguish these in buildsym.c. */
334 struct pending **list_in_scope;
335
f3dd6933
DJ
336 /* DWARF abbreviation table associated with this compilation unit. */
337 struct abbrev_info **dwarf2_abbrevs;
338
339 /* Storage for the abbrev table. */
340 struct obstack abbrev_obstack;
72bf9492
DJ
341
342 /* Hash table holding all the loaded partial DIEs. */
343 htab_t partial_dies;
344
345 /* Storage for things with the same lifetime as this read-in compilation
346 unit, including partial DIEs. */
347 struct obstack comp_unit_obstack;
348
ae038cb0
DJ
349 /* When multiple dwarf2_cu structures are living in memory, this field
350 chains them all together, so that they can be released efficiently.
351 We will probably also want a generation counter so that most-recently-used
352 compilation units are cached... */
353 struct dwarf2_per_cu_data *read_in_chain;
354
355 /* Backchain to our per_cu entry if the tree has been built. */
356 struct dwarf2_per_cu_data *per_cu;
357
358 /* How many compilation units ago was this CU last referenced? */
359 int last_used;
360
10b3939b 361 /* A hash table of die offsets for following references. */
51545339 362 htab_t die_hash;
10b3939b
DJ
363
364 /* Full DIEs if read in. */
365 struct die_info *dies;
366
367 /* A set of pointers to dwarf2_per_cu_data objects for compilation
368 units referenced by this one. Only set during full symbol processing;
369 partial symbol tables do not have dependencies. */
370 htab_t dependencies;
371
cb1df416
DJ
372 /* Header data from the line table, during full symbol processing. */
373 struct line_header *line_header;
374
3da10d80
KS
375 /* A list of methods which need to have physnames computed
376 after all type information has been read. */
377 VEC (delayed_method_info) *method_list;
378
ae038cb0
DJ
379 /* Mark used when releasing cached dies. */
380 unsigned int mark : 1;
381
382 /* This flag will be set if this compilation unit might include
383 inter-compilation-unit references. */
384 unsigned int has_form_ref_addr : 1;
385
72bf9492
DJ
386 /* This flag will be set if this compilation unit includes any
387 DW_TAG_namespace DIEs. If we know that there are explicit
388 DIEs for namespaces, we don't need to try to infer them
389 from mangled names. */
390 unsigned int has_namespace_info : 1;
e7c27a73
DJ
391};
392
9291a0cd
TT
393/* When using the index (and thus not using psymtabs), each CU has an
394 object of this type. This is used to hold information needed by
395 the various "quick" methods. */
396struct dwarf2_per_cu_quick_data
397{
398 /* The line table. This can be NULL if there was no line table. */
399 struct line_header *lines;
400
401 /* The file names from the line table. */
402 const char **file_names;
403 /* The file names from the line table after being run through
404 gdb_realpath. */
405 const char **full_names;
406
407 /* The corresponding symbol table. This is NULL if symbols for this
408 CU have not yet been read. */
409 struct symtab *symtab;
410
411 /* A temporary mark bit used when iterating over all CUs in
412 expand_symtabs_matching. */
413 unsigned int mark : 1;
414
415 /* True if we've tried to read the line table. */
416 unsigned int read_lines : 1;
417};
418
10b3939b
DJ
419/* Persistent data held for a compilation unit, even when not
420 processing it. We put a pointer to this structure in the
421 read_symtab_private field of the psymtab. If we encounter
422 inter-compilation-unit references, we also maintain a sorted
423 list of all compilation units. */
424
ae038cb0
DJ
425struct dwarf2_per_cu_data
426{
348e048f 427 /* The start offset and length of this compilation unit. 2**29-1
ae038cb0 428 bytes should suffice to store the length of any compilation unit
45452591
DE
429 - if it doesn't, GDB will fall over anyway.
430 NOTE: Unlike comp_unit_head.length, this length includes
431 initial_length_size. */
c764a876 432 unsigned int offset;
348e048f 433 unsigned int length : 29;
ae038cb0
DJ
434
435 /* Flag indicating this compilation unit will be read in before
436 any of the current compilation units are processed. */
c764a876 437 unsigned int queued : 1;
ae038cb0 438
5afb4e99
DJ
439 /* This flag will be set if we need to load absolutely all DIEs
440 for this compilation unit, instead of just the ones we think
441 are interesting. It gets set if we look for a DIE in the
442 hash table and don't find it. */
443 unsigned int load_all_dies : 1;
444
348e048f
DE
445 /* Non-zero if this CU is from .debug_types.
446 Otherwise it's from .debug_info. */
447 unsigned int from_debug_types : 1;
448
17ea53c3
JK
449 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
450 of the CU cache it gets reset to NULL again. */
ae038cb0 451 struct dwarf2_cu *cu;
1c379e20 452
9291a0cd
TT
453 /* The corresponding objfile. */
454 struct objfile *objfile;
455
456 /* When using partial symbol tables, the 'psymtab' field is active.
457 Otherwise the 'quick' field is active. */
458 union
459 {
460 /* The partial symbol table associated with this compilation unit,
461 or NULL for partial units (which do not have an associated
462 symtab). */
463 struct partial_symtab *psymtab;
464
465 /* Data needed by the "quick" functions. */
466 struct dwarf2_per_cu_quick_data *quick;
467 } v;
ae038cb0
DJ
468};
469
348e048f
DE
470/* Entry in the signatured_types hash table. */
471
472struct signatured_type
473{
474 ULONGEST signature;
475
476 /* Offset in .debug_types of the TU (type_unit) for this type. */
477 unsigned int offset;
478
479 /* Offset in .debug_types of the type defined by this TU. */
480 unsigned int type_offset;
481
482 /* The CU(/TU) of this type. */
483 struct dwarf2_per_cu_data per_cu;
484};
485
93311388
DE
486/* Struct used to pass misc. parameters to read_die_and_children, et. al.
487 which are used for both .debug_info and .debug_types dies.
488 All parameters here are unchanging for the life of the call.
489 This struct exists to abstract away the constant parameters of
490 die reading. */
491
492struct die_reader_specs
493{
494 /* The bfd of this objfile. */
495 bfd* abfd;
496
497 /* The CU of the DIE we are parsing. */
498 struct dwarf2_cu *cu;
499
500 /* Pointer to start of section buffer.
501 This is either the start of .debug_info or .debug_types. */
502 const gdb_byte *buffer;
503};
504
debd256d
JB
505/* The line number information for a compilation unit (found in the
506 .debug_line section) begins with a "statement program header",
507 which contains the following information. */
508struct line_header
509{
510 unsigned int total_length;
511 unsigned short version;
512 unsigned int header_length;
513 unsigned char minimum_instruction_length;
2dc7f7b3 514 unsigned char maximum_ops_per_instruction;
debd256d
JB
515 unsigned char default_is_stmt;
516 int line_base;
517 unsigned char line_range;
518 unsigned char opcode_base;
519
520 /* standard_opcode_lengths[i] is the number of operands for the
521 standard opcode whose value is i. This means that
522 standard_opcode_lengths[0] is unused, and the last meaningful
523 element is standard_opcode_lengths[opcode_base - 1]. */
524 unsigned char *standard_opcode_lengths;
525
526 /* The include_directories table. NOTE! These strings are not
527 allocated with xmalloc; instead, they are pointers into
528 debug_line_buffer. If you try to free them, `free' will get
529 indigestion. */
530 unsigned int num_include_dirs, include_dirs_size;
531 char **include_dirs;
532
533 /* The file_names table. NOTE! These strings are not allocated
534 with xmalloc; instead, they are pointers into debug_line_buffer.
535 Don't try to free them directly. */
536 unsigned int num_file_names, file_names_size;
537 struct file_entry
c906108c 538 {
debd256d
JB
539 char *name;
540 unsigned int dir_index;
541 unsigned int mod_time;
542 unsigned int length;
aaa75496 543 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 544 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
545 } *file_names;
546
547 /* The start and end of the statement program following this
6502dd73 548 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 549 gdb_byte *statement_program_start, *statement_program_end;
debd256d 550};
c906108c
SS
551
552/* When we construct a partial symbol table entry we only
553 need this much information. */
554struct partial_die_info
555 {
72bf9492 556 /* Offset of this DIE. */
c906108c 557 unsigned int offset;
72bf9492
DJ
558
559 /* DWARF-2 tag for this DIE. */
560 ENUM_BITFIELD(dwarf_tag) tag : 16;
561
72bf9492
DJ
562 /* Assorted flags describing the data found in this DIE. */
563 unsigned int has_children : 1;
564 unsigned int is_external : 1;
565 unsigned int is_declaration : 1;
566 unsigned int has_type : 1;
567 unsigned int has_specification : 1;
568 unsigned int has_pc_info : 1;
569
570 /* Flag set if the SCOPE field of this structure has been
571 computed. */
572 unsigned int scope_set : 1;
573
fa4028e9
JB
574 /* Flag set if the DIE has a byte_size attribute. */
575 unsigned int has_byte_size : 1;
576
98bfdba5
PA
577 /* Flag set if any of the DIE's children are template arguments. */
578 unsigned int has_template_arguments : 1;
579
abc72ce4
DE
580 /* Flag set if fixup_partial_die has been called on this die. */
581 unsigned int fixup_called : 1;
582
72bf9492 583 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 584 sometimes a default name for unnamed DIEs. */
c906108c 585 char *name;
72bf9492 586
abc72ce4
DE
587 /* The linkage name, if present. */
588 const char *linkage_name;
589
72bf9492
DJ
590 /* The scope to prepend to our children. This is generally
591 allocated on the comp_unit_obstack, so will disappear
592 when this compilation unit leaves the cache. */
593 char *scope;
594
595 /* The location description associated with this DIE, if any. */
596 struct dwarf_block *locdesc;
597
598 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
599 CORE_ADDR lowpc;
600 CORE_ADDR highpc;
72bf9492 601
93311388 602 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 603 DW_AT_sibling, if any. */
abc72ce4
DE
604 /* NOTE: This member isn't strictly necessary, read_partial_die could
605 return DW_AT_sibling values to its caller load_partial_dies. */
fe1b8b76 606 gdb_byte *sibling;
72bf9492
DJ
607
608 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
609 DW_AT_specification (or DW_AT_abstract_origin or
610 DW_AT_extension). */
611 unsigned int spec_offset;
612
613 /* Pointers to this DIE's parent, first child, and next sibling,
614 if any. */
615 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
616 };
617
618/* This data structure holds the information of an abbrev. */
619struct abbrev_info
620 {
621 unsigned int number; /* number identifying abbrev */
622 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
623 unsigned short has_children; /* boolean */
624 unsigned short num_attrs; /* number of attributes */
c906108c
SS
625 struct attr_abbrev *attrs; /* an array of attribute descriptions */
626 struct abbrev_info *next; /* next in chain */
627 };
628
629struct attr_abbrev
630 {
9d25dd43
DE
631 ENUM_BITFIELD(dwarf_attribute) name : 16;
632 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
633 };
634
b60c80d6
DJ
635/* Attributes have a name and a value */
636struct attribute
637 {
9d25dd43 638 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
639 ENUM_BITFIELD(dwarf_form) form : 15;
640
641 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
642 field should be in u.str (existing only for DW_STRING) but it is kept
643 here for better struct attribute alignment. */
644 unsigned int string_is_canonical : 1;
645
b60c80d6
DJ
646 union
647 {
648 char *str;
649 struct dwarf_block *blk;
43bbcdc2
PH
650 ULONGEST unsnd;
651 LONGEST snd;
b60c80d6 652 CORE_ADDR addr;
348e048f 653 struct signatured_type *signatured_type;
b60c80d6
DJ
654 }
655 u;
656 };
657
c906108c
SS
658/* This data structure holds a complete die structure. */
659struct die_info
660 {
76815b17
DE
661 /* DWARF-2 tag for this DIE. */
662 ENUM_BITFIELD(dwarf_tag) tag : 16;
663
664 /* Number of attributes */
98bfdba5
PA
665 unsigned char num_attrs;
666
667 /* True if we're presently building the full type name for the
668 type derived from this DIE. */
669 unsigned char building_fullname : 1;
76815b17
DE
670
671 /* Abbrev number */
672 unsigned int abbrev;
673
93311388 674 /* Offset in .debug_info or .debug_types section. */
76815b17 675 unsigned int offset;
78ba4af6
JB
676
677 /* The dies in a compilation unit form an n-ary tree. PARENT
678 points to this die's parent; CHILD points to the first child of
679 this node; and all the children of a given node are chained
4950bc1c 680 together via their SIBLING fields. */
639d11d3
DC
681 struct die_info *child; /* Its first child, if any. */
682 struct die_info *sibling; /* Its next sibling, if any. */
683 struct die_info *parent; /* Its parent, if any. */
c906108c 684
b60c80d6
DJ
685 /* An array of attributes, with NUM_ATTRS elements. There may be
686 zero, but it's not common and zero-sized arrays are not
687 sufficiently portable C. */
688 struct attribute attrs[1];
c906108c
SS
689 };
690
5fb290d7
DJ
691struct function_range
692{
693 const char *name;
694 CORE_ADDR lowpc, highpc;
695 int seen_line;
696 struct function_range *next;
697};
698
c906108c
SS
699/* Get at parts of an attribute structure */
700
701#define DW_STRING(attr) ((attr)->u.str)
8285870a 702#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
703#define DW_UNSND(attr) ((attr)->u.unsnd)
704#define DW_BLOCK(attr) ((attr)->u.blk)
705#define DW_SND(attr) ((attr)->u.snd)
706#define DW_ADDR(attr) ((attr)->u.addr)
348e048f 707#define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
c906108c
SS
708
709/* Blocks are a bunch of untyped bytes. */
710struct dwarf_block
711 {
712 unsigned int size;
fe1b8b76 713 gdb_byte *data;
c906108c
SS
714 };
715
c906108c
SS
716#ifndef ATTR_ALLOC_CHUNK
717#define ATTR_ALLOC_CHUNK 4
718#endif
719
c906108c
SS
720/* Allocate fields for structs, unions and enums in this size. */
721#ifndef DW_FIELD_ALLOC_CHUNK
722#define DW_FIELD_ALLOC_CHUNK 4
723#endif
724
c906108c
SS
725/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
726 but this would require a corresponding change in unpack_field_as_long
727 and friends. */
728static int bits_per_byte = 8;
729
730/* The routines that read and process dies for a C struct or C++ class
731 pass lists of data member fields and lists of member function fields
732 in an instance of a field_info structure, as defined below. */
733struct field_info
c5aa993b
JM
734 {
735 /* List of data member and baseclasses fields. */
736 struct nextfield
737 {
738 struct nextfield *next;
739 int accessibility;
740 int virtuality;
741 struct field field;
742 }
7d0ccb61 743 *fields, *baseclasses;
c906108c 744
7d0ccb61 745 /* Number of fields (including baseclasses). */
c5aa993b 746 int nfields;
c906108c 747
c5aa993b
JM
748 /* Number of baseclasses. */
749 int nbaseclasses;
c906108c 750
c5aa993b
JM
751 /* Set if the accesibility of one of the fields is not public. */
752 int non_public_fields;
c906108c 753
c5aa993b
JM
754 /* Member function fields array, entries are allocated in the order they
755 are encountered in the object file. */
756 struct nextfnfield
757 {
758 struct nextfnfield *next;
759 struct fn_field fnfield;
760 }
761 *fnfields;
c906108c 762
c5aa993b
JM
763 /* Member function fieldlist array, contains name of possibly overloaded
764 member function, number of overloaded member functions and a pointer
765 to the head of the member function field chain. */
766 struct fnfieldlist
767 {
768 char *name;
769 int length;
770 struct nextfnfield *head;
771 }
772 *fnfieldlists;
c906108c 773
c5aa993b
JM
774 /* Number of entries in the fnfieldlists array. */
775 int nfnfields;
98751a41
JK
776
777 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
778 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
779 struct typedef_field_list
780 {
781 struct typedef_field field;
782 struct typedef_field_list *next;
783 }
784 *typedef_field_list;
785 unsigned typedef_field_list_count;
c5aa993b 786 };
c906108c 787
10b3939b
DJ
788/* One item on the queue of compilation units to read in full symbols
789 for. */
790struct dwarf2_queue_item
791{
792 struct dwarf2_per_cu_data *per_cu;
793 struct dwarf2_queue_item *next;
794};
795
796/* The current queue. */
797static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
798
ae038cb0
DJ
799/* Loaded secondary compilation units are kept in memory until they
800 have not been referenced for the processing of this many
801 compilation units. Set this to zero to disable caching. Cache
802 sizes of up to at least twenty will improve startup time for
803 typical inter-CU-reference binaries, at an obvious memory cost. */
804static int dwarf2_max_cache_age = 5;
920d2a44
AC
805static void
806show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
807 struct cmd_list_element *c, const char *value)
808{
809 fprintf_filtered (file, _("\
810The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
811 value);
812}
813
ae038cb0 814
c906108c
SS
815/* Various complaints about symbol reading that don't abort the process */
816
4d3c2250
KB
817static void
818dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 819{
4d3c2250 820 complaint (&symfile_complaints,
e2e0b3e5 821 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
822}
823
25e43795
DJ
824static void
825dwarf2_debug_line_missing_file_complaint (void)
826{
827 complaint (&symfile_complaints,
828 _(".debug_line section has line data without a file"));
829}
830
59205f5a
JB
831static void
832dwarf2_debug_line_missing_end_sequence_complaint (void)
833{
834 complaint (&symfile_complaints,
835 _(".debug_line section has line program sequence without an end"));
836}
837
4d3c2250
KB
838static void
839dwarf2_complex_location_expr_complaint (void)
2e276125 840{
e2e0b3e5 841 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
842}
843
4d3c2250
KB
844static void
845dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
846 int arg3)
2e276125 847{
4d3c2250 848 complaint (&symfile_complaints,
e2e0b3e5 849 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
4d3c2250
KB
850 arg2, arg3);
851}
852
853static void
854dwarf2_macros_too_long_complaint (void)
2e276125 855{
4d3c2250 856 complaint (&symfile_complaints,
e2e0b3e5 857 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
858}
859
860static void
861dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 862{
4d3c2250 863 complaint (&symfile_complaints,
e2e0b3e5 864 _("macro debug info contains a malformed macro definition:\n`%s'"),
4d3c2250
KB
865 arg1);
866}
867
868static void
869dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 870{
4d3c2250 871 complaint (&symfile_complaints,
e2e0b3e5 872 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
4d3c2250 873}
c906108c 874
c906108c
SS
875/* local function prototypes */
876
4efb68b1 877static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 878
aaa75496
JB
879static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
880 struct objfile *);
881
c67a9c90 882static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 883
72bf9492
DJ
884static void scan_partial_symbols (struct partial_die_info *,
885 CORE_ADDR *, CORE_ADDR *,
5734ee8b 886 int, struct dwarf2_cu *);
c906108c 887
72bf9492
DJ
888static void add_partial_symbol (struct partial_die_info *,
889 struct dwarf2_cu *);
63d06c5c 890
72bf9492
DJ
891static void add_partial_namespace (struct partial_die_info *pdi,
892 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 893 int need_pc, struct dwarf2_cu *cu);
63d06c5c 894
5d7cb8df
JK
895static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
896 CORE_ADDR *highpc, int need_pc,
897 struct dwarf2_cu *cu);
898
72bf9492
DJ
899static void add_partial_enumeration (struct partial_die_info *enum_pdi,
900 struct dwarf2_cu *cu);
91c24f0a 901
bc30ff58
JB
902static void add_partial_subprogram (struct partial_die_info *pdi,
903 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 904 int need_pc, struct dwarf2_cu *cu);
bc30ff58 905
fe1b8b76 906static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
93311388
DE
907 gdb_byte *buffer, gdb_byte *info_ptr,
908 bfd *abfd, struct dwarf2_cu *cu);
91c24f0a 909
a14ed312 910static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 911
a14ed312 912static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 913
e7c27a73 914static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 915
f3dd6933 916static void dwarf2_free_abbrev_table (void *);
c906108c 917
fe1b8b76 918static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 919 struct dwarf2_cu *);
72bf9492 920
57349743 921static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 922 struct dwarf2_cu *);
c906108c 923
93311388
DE
924static struct partial_die_info *load_partial_dies (bfd *,
925 gdb_byte *, gdb_byte *,
926 int, struct dwarf2_cu *);
72bf9492 927
fe1b8b76 928static gdb_byte *read_partial_die (struct partial_die_info *,
93311388
DE
929 struct abbrev_info *abbrev,
930 unsigned int, bfd *,
931 gdb_byte *, gdb_byte *,
932 struct dwarf2_cu *);
c906108c 933
c764a876 934static struct partial_die_info *find_partial_die (unsigned int,
10b3939b 935 struct dwarf2_cu *);
72bf9492
DJ
936
937static void fixup_partial_die (struct partial_die_info *,
938 struct dwarf2_cu *);
939
fe1b8b76
JB
940static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
941 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 942
fe1b8b76
JB
943static gdb_byte *read_attribute_value (struct attribute *, unsigned,
944 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 945
fe1b8b76 946static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 947
fe1b8b76 948static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 949
fe1b8b76 950static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 951
fe1b8b76 952static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 953
93311388 954static ULONGEST read_8_bytes (bfd *, gdb_byte *);
c906108c 955
fe1b8b76 956static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 957 unsigned int *);
c906108c 958
c764a876
DE
959static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
960
961static LONGEST read_checked_initial_length_and_offset
962 (bfd *, gdb_byte *, const struct comp_unit_head *,
963 unsigned int *, unsigned int *);
613e1657 964
fe1b8b76 965static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
c764a876
DE
966 unsigned int *);
967
968static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
613e1657 969
fe1b8b76 970static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 971
9b1c24c8 972static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
c906108c 973
fe1b8b76
JB
974static char *read_indirect_string (bfd *, gdb_byte *,
975 const struct comp_unit_head *,
976 unsigned int *);
4bdf3d34 977
fe1b8b76 978static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 979
fe1b8b76 980static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 981
fe1b8b76 982static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 983
e142c38c 984static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 985
e142c38c
DJ
986static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
987 struct dwarf2_cu *);
c906108c 988
348e048f
DE
989static struct attribute *dwarf2_attr_no_follow (struct die_info *,
990 unsigned int,
991 struct dwarf2_cu *);
992
05cf31d1
JB
993static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
994 struct dwarf2_cu *cu);
995
e142c38c 996static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 997
e142c38c 998static struct die_info *die_specification (struct die_info *die,
f2f0e013 999 struct dwarf2_cu **);
63d06c5c 1000
debd256d
JB
1001static void free_line_header (struct line_header *lh);
1002
aaa75496
JB
1003static void add_file_name (struct line_header *, char *, unsigned int,
1004 unsigned int, unsigned int);
1005
debd256d
JB
1006static struct line_header *(dwarf_decode_line_header
1007 (unsigned int offset,
e7c27a73 1008 bfd *abfd, struct dwarf2_cu *cu));
debd256d 1009
72b9f47f 1010static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
aaa75496 1011 struct dwarf2_cu *, struct partial_symtab *);
c906108c 1012
72b9f47f 1013static void dwarf2_start_subfile (char *, const char *, const char *);
c906108c 1014
a14ed312 1015static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1016 struct dwarf2_cu *);
c906108c 1017
34eaf542
TT
1018static struct symbol *new_symbol_full (struct die_info *, struct type *,
1019 struct dwarf2_cu *, struct symbol *);
1020
a14ed312 1021static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 1022 struct dwarf2_cu *);
c906108c 1023
98bfdba5
PA
1024static void dwarf2_const_value_attr (struct attribute *attr,
1025 struct type *type,
1026 const char *name,
1027 struct obstack *obstack,
1028 struct dwarf2_cu *cu, long *value,
1029 gdb_byte **bytes,
1030 struct dwarf2_locexpr_baton **baton);
2df3850c 1031
e7c27a73 1032static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1033
b4ba55a1
JB
1034static int need_gnat_info (struct dwarf2_cu *);
1035
1036static struct type *die_descriptive_type (struct die_info *, struct dwarf2_cu *);
1037
1038static void set_descriptive_type (struct type *, struct die_info *,
1039 struct dwarf2_cu *);
1040
e7c27a73
DJ
1041static struct type *die_containing_type (struct die_info *,
1042 struct dwarf2_cu *);
c906108c 1043
673bfd45
DE
1044static struct type *lookup_die_type (struct die_info *, struct attribute *,
1045 struct dwarf2_cu *);
c906108c 1046
f792889a 1047static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1048
673bfd45
DE
1049static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1050
086ed43d 1051static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1052
6e70227d 1053static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1054 const char *suffix, int physname,
1055 struct dwarf2_cu *cu);
63d06c5c 1056
e7c27a73 1057static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1058
348e048f
DE
1059static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1060
e7c27a73 1061static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1062
e7c27a73 1063static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1064
ff013f42
JK
1065static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1066 struct dwarf2_cu *, struct partial_symtab *);
1067
a14ed312 1068static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1069 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1070 struct partial_symtab *);
c906108c 1071
fae299cd
DC
1072static void get_scope_pc_bounds (struct die_info *,
1073 CORE_ADDR *, CORE_ADDR *,
1074 struct dwarf2_cu *);
1075
801e3a5b
JB
1076static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1077 CORE_ADDR, struct dwarf2_cu *);
1078
a14ed312 1079static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1080 struct dwarf2_cu *);
c906108c 1081
a14ed312 1082static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1083 struct type *, struct dwarf2_cu *);
c906108c 1084
a14ed312 1085static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1086 struct die_info *, struct type *,
e7c27a73 1087 struct dwarf2_cu *);
c906108c 1088
a14ed312 1089static void dwarf2_attach_fn_fields_to_type (struct field_info *,
e7c27a73 1090 struct type *, struct dwarf2_cu *);
c906108c 1091
134d01f1 1092static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1093
e7c27a73 1094static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1095
e7c27a73 1096static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1097
5d7cb8df
JK
1098static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1099
27aa8d6a
SW
1100static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1101
f55ee35c
JK
1102static struct type *read_module_type (struct die_info *die,
1103 struct dwarf2_cu *cu);
1104
38d518c9 1105static const char *namespace_name (struct die_info *die,
e142c38c 1106 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1107
134d01f1 1108static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1109
e7c27a73 1110static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1111
6e70227d 1112static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1113 struct dwarf2_cu *);
1114
93311388 1115static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
c906108c 1116
93311388
DE
1117static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1118 gdb_byte *info_ptr,
d97bc12b
DE
1119 gdb_byte **new_info_ptr,
1120 struct die_info *parent);
1121
93311388
DE
1122static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1123 gdb_byte *info_ptr,
fe1b8b76 1124 gdb_byte **new_info_ptr,
639d11d3
DC
1125 struct die_info *parent);
1126
93311388
DE
1127static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1128 gdb_byte *info_ptr,
fe1b8b76 1129 gdb_byte **new_info_ptr,
639d11d3
DC
1130 struct die_info *parent);
1131
93311388
DE
1132static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1133 struct die_info **, gdb_byte *,
1134 int *);
1135
e7c27a73 1136static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1137
71c25dea
TT
1138static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1139 struct obstack *);
1140
e142c38c 1141static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1142
98bfdba5
PA
1143static const char *dwarf2_full_name (char *name,
1144 struct die_info *die,
1145 struct dwarf2_cu *cu);
1146
e142c38c 1147static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1148 struct dwarf2_cu **);
9219021c 1149
a14ed312 1150static char *dwarf_tag_name (unsigned int);
c906108c 1151
a14ed312 1152static char *dwarf_attr_name (unsigned int);
c906108c 1153
a14ed312 1154static char *dwarf_form_name (unsigned int);
c906108c 1155
a14ed312 1156static char *dwarf_bool_name (unsigned int);
c906108c 1157
a14ed312 1158static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
1159
1160#if 0
a14ed312 1161static char *dwarf_cfi_name (unsigned int);
c906108c
SS
1162#endif
1163
f9aca02d 1164static struct die_info *sibling_die (struct die_info *);
c906108c 1165
d97bc12b
DE
1166static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1167
1168static void dump_die_for_error (struct die_info *);
1169
1170static void dump_die_1 (struct ui_file *, int level, int max_level,
1171 struct die_info *);
c906108c 1172
d97bc12b 1173/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1174
51545339 1175static void store_in_ref_table (struct die_info *,
10b3939b 1176 struct dwarf2_cu *);
c906108c 1177
93311388
DE
1178static int is_ref_attr (struct attribute *);
1179
c764a876 1180static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
c906108c 1181
43bbcdc2 1182static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
a02abb62 1183
348e048f
DE
1184static struct die_info *follow_die_ref_or_sig (struct die_info *,
1185 struct attribute *,
1186 struct dwarf2_cu **);
1187
10b3939b
DJ
1188static struct die_info *follow_die_ref (struct die_info *,
1189 struct attribute *,
f2f0e013 1190 struct dwarf2_cu **);
c906108c 1191
348e048f
DE
1192static struct die_info *follow_die_sig (struct die_info *,
1193 struct attribute *,
1194 struct dwarf2_cu **);
1195
1196static void read_signatured_type_at_offset (struct objfile *objfile,
1197 unsigned int offset);
1198
1199static void read_signatured_type (struct objfile *,
1200 struct signatured_type *type_sig);
1201
c906108c
SS
1202/* memory allocation interface */
1203
7b5a2f43 1204static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1205
f3dd6933 1206static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1207
b60c80d6 1208static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1209
e142c38c 1210static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1211
e142c38c
DJ
1212static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1213 struct dwarf2_cu *);
5fb290d7 1214
2e276125 1215static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1216 char *, bfd *, struct dwarf2_cu *);
2e276125 1217
8e19ed76
PS
1218static int attr_form_is_block (struct attribute *);
1219
3690dd37
JB
1220static int attr_form_is_section_offset (struct attribute *);
1221
1222static int attr_form_is_constant (struct attribute *);
1223
93e7bd98
DJ
1224static void dwarf2_symbol_mark_computed (struct attribute *attr,
1225 struct symbol *sym,
1226 struct dwarf2_cu *cu);
4c2df51b 1227
93311388
DE
1228static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1229 struct abbrev_info *abbrev,
1230 struct dwarf2_cu *cu);
4bb7a0a7 1231
72bf9492
DJ
1232static void free_stack_comp_unit (void *);
1233
72bf9492
DJ
1234static hashval_t partial_die_hash (const void *item);
1235
1236static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1237
ae038cb0 1238static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
c764a876 1239 (unsigned int offset, struct objfile *objfile);
ae038cb0
DJ
1240
1241static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
c764a876 1242 (unsigned int offset, struct objfile *objfile);
ae038cb0 1243
93311388
DE
1244static struct dwarf2_cu *alloc_one_comp_unit (struct objfile *objfile);
1245
ae038cb0
DJ
1246static void free_one_comp_unit (void *);
1247
1248static void free_cached_comp_units (void *);
1249
1250static void age_cached_comp_units (void);
1251
1252static void free_one_cached_comp_unit (void *);
1253
f792889a
DJ
1254static struct type *set_die_type (struct die_info *, struct type *,
1255 struct dwarf2_cu *);
1c379e20 1256
ae038cb0
DJ
1257static void create_all_comp_units (struct objfile *);
1258
1fd400ff
TT
1259static int create_debug_types_hash_table (struct objfile *objfile);
1260
93311388
DE
1261static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1262 struct objfile *);
10b3939b
DJ
1263
1264static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1265
1266static void dwarf2_add_dependence (struct dwarf2_cu *,
1267 struct dwarf2_per_cu_data *);
1268
ae038cb0
DJ
1269static void dwarf2_mark (struct dwarf2_cu *);
1270
1271static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1272
673bfd45
DE
1273static struct type *get_die_type_at_offset (unsigned int,
1274 struct dwarf2_per_cu_data *per_cu);
1275
f792889a 1276static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1277
9291a0cd
TT
1278static void dwarf2_release_queue (void *dummy);
1279
1280static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1281 struct objfile *objfile);
1282
1283static void process_queue (struct objfile *objfile);
1284
1285static void find_file_and_directory (struct die_info *die,
1286 struct dwarf2_cu *cu,
1287 char **name, char **comp_dir);
1288
1289static char *file_full_name (int file, struct line_header *lh,
1290 const char *comp_dir);
1291
1292static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1293 gdb_byte *info_ptr,
1294 gdb_byte *buffer,
1295 unsigned int buffer_size,
1296 bfd *abfd);
1297
1298static void init_cu_die_reader (struct die_reader_specs *reader,
1299 struct dwarf2_cu *cu);
1300
673bfd45 1301static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1302
9291a0cd
TT
1303#if WORDS_BIGENDIAN
1304
1305/* Convert VALUE between big- and little-endian. */
1306static offset_type
1307byte_swap (offset_type value)
1308{
1309 offset_type result;
1310
1311 result = (value & 0xff) << 24;
1312 result |= (value & 0xff00) << 8;
1313 result |= (value & 0xff0000) >> 8;
1314 result |= (value & 0xff000000) >> 24;
1315 return result;
1316}
1317
1318#define MAYBE_SWAP(V) byte_swap (V)
1319
1320#else
1321#define MAYBE_SWAP(V) (V)
1322#endif /* WORDS_BIGENDIAN */
1323
1324/* The suffix for an index file. */
1325#define INDEX_SUFFIX ".gdb-index"
1326
3da10d80
KS
1327static const char *dwarf2_physname (char *name, struct die_info *die,
1328 struct dwarf2_cu *cu);
1329
c906108c
SS
1330/* Try to locate the sections we need for DWARF 2 debugging
1331 information and return true if we have enough to do something. */
1332
1333int
6502dd73 1334dwarf2_has_info (struct objfile *objfile)
c906108c 1335{
be391dca
TT
1336 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1337 if (!dwarf2_per_objfile)
1338 {
1339 /* Initialize per-objfile state. */
1340 struct dwarf2_per_objfile *data
1341 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1342
be391dca
TT
1343 memset (data, 0, sizeof (*data));
1344 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1345 dwarf2_per_objfile = data;
6502dd73 1346
be391dca
TT
1347 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1348 dwarf2_per_objfile->objfile = objfile;
1349 }
1350 return (dwarf2_per_objfile->info.asection != NULL
1351 && dwarf2_per_objfile->abbrev.asection != NULL);
c906108c
SS
1352}
1353
233a11ab
CS
1354/* When loading sections, we can either look for ".<name>", or for
1355 * ".z<name>", which indicates a compressed section. */
1356
1357static int
dce234bc 1358section_is_p (const char *section_name, const char *name)
233a11ab 1359{
dce234bc
PP
1360 return (section_name[0] == '.'
1361 && (strcmp (section_name + 1, name) == 0
1362 || (section_name[1] == 'z'
1363 && strcmp (section_name + 2, name) == 0)));
233a11ab
CS
1364}
1365
c906108c
SS
1366/* This function is mapped across the sections and remembers the
1367 offset and size of each of the debugging sections we are interested
1368 in. */
1369
1370static void
72dca2f5 1371dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
c906108c 1372{
dce234bc 1373 if (section_is_p (sectp->name, INFO_SECTION))
c906108c 1374 {
dce234bc
PP
1375 dwarf2_per_objfile->info.asection = sectp;
1376 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 1377 }
dce234bc 1378 else if (section_is_p (sectp->name, ABBREV_SECTION))
c906108c 1379 {
dce234bc
PP
1380 dwarf2_per_objfile->abbrev.asection = sectp;
1381 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 1382 }
dce234bc 1383 else if (section_is_p (sectp->name, LINE_SECTION))
c906108c 1384 {
dce234bc
PP
1385 dwarf2_per_objfile->line.asection = sectp;
1386 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 1387 }
dce234bc 1388 else if (section_is_p (sectp->name, LOC_SECTION))
c906108c 1389 {
dce234bc
PP
1390 dwarf2_per_objfile->loc.asection = sectp;
1391 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 1392 }
dce234bc 1393 else if (section_is_p (sectp->name, MACINFO_SECTION))
c906108c 1394 {
dce234bc
PP
1395 dwarf2_per_objfile->macinfo.asection = sectp;
1396 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 1397 }
dce234bc 1398 else if (section_is_p (sectp->name, STR_SECTION))
c906108c 1399 {
dce234bc
PP
1400 dwarf2_per_objfile->str.asection = sectp;
1401 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 1402 }
dce234bc 1403 else if (section_is_p (sectp->name, FRAME_SECTION))
b6af0555 1404 {
dce234bc
PP
1405 dwarf2_per_objfile->frame.asection = sectp;
1406 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 1407 }
dce234bc 1408 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
b6af0555 1409 {
3799ccc6 1410 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
9a619af0 1411
3799ccc6
EZ
1412 if (aflag & SEC_HAS_CONTENTS)
1413 {
dce234bc
PP
1414 dwarf2_per_objfile->eh_frame.asection = sectp;
1415 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
3799ccc6 1416 }
b6af0555 1417 }
dce234bc 1418 else if (section_is_p (sectp->name, RANGES_SECTION))
af34e669 1419 {
dce234bc
PP
1420 dwarf2_per_objfile->ranges.asection = sectp;
1421 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 1422 }
348e048f
DE
1423 else if (section_is_p (sectp->name, TYPES_SECTION))
1424 {
1425 dwarf2_per_objfile->types.asection = sectp;
1426 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1427 }
9291a0cd
TT
1428 else if (section_is_p (sectp->name, GDB_INDEX_SECTION))
1429 {
1430 dwarf2_per_objfile->gdb_index.asection = sectp;
1431 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1432 }
dce234bc 1433
72dca2f5
FR
1434 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1435 && bfd_section_vma (abfd, sectp) == 0)
1436 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1437}
1438
dce234bc
PP
1439/* Decompress a section that was compressed using zlib. Store the
1440 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
233a11ab
CS
1441
1442static void
dce234bc
PP
1443zlib_decompress_section (struct objfile *objfile, asection *sectp,
1444 gdb_byte **outbuf, bfd_size_type *outsize)
1445{
1446 bfd *abfd = objfile->obfd;
1447#ifndef HAVE_ZLIB_H
1448 error (_("Support for zlib-compressed DWARF data (from '%s') "
1449 "is disabled in this copy of GDB"),
1450 bfd_get_filename (abfd));
1451#else
1452 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1453 gdb_byte *compressed_buffer = xmalloc (compressed_size);
affddf13 1454 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
dce234bc
PP
1455 bfd_size_type uncompressed_size;
1456 gdb_byte *uncompressed_buffer;
1457 z_stream strm;
1458 int rc;
1459 int header_size = 12;
1460
1461 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1462 || bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size)
1463 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1464 bfd_get_filename (abfd));
1465
1466 /* Read the zlib header. In this case, it should be "ZLIB" followed
1467 by the uncompressed section size, 8 bytes in big-endian order. */
1468 if (compressed_size < header_size
1469 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1470 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1471 bfd_get_filename (abfd));
1472 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1473 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1474 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1475 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1476 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1477 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1478 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1479 uncompressed_size += compressed_buffer[11];
1480
1481 /* It is possible the section consists of several compressed
1482 buffers concatenated together, so we uncompress in a loop. */
1483 strm.zalloc = NULL;
1484 strm.zfree = NULL;
1485 strm.opaque = NULL;
1486 strm.avail_in = compressed_size - header_size;
1487 strm.next_in = (Bytef*) compressed_buffer + header_size;
1488 strm.avail_out = uncompressed_size;
1489 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1490 uncompressed_size);
1491 rc = inflateInit (&strm);
1492 while (strm.avail_in > 0)
1493 {
1494 if (rc != Z_OK)
1495 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1496 bfd_get_filename (abfd), rc);
1497 strm.next_out = ((Bytef*) uncompressed_buffer
1498 + (uncompressed_size - strm.avail_out));
1499 rc = inflate (&strm, Z_FINISH);
1500 if (rc != Z_STREAM_END)
1501 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1502 bfd_get_filename (abfd), rc);
1503 rc = inflateReset (&strm);
1504 }
1505 rc = inflateEnd (&strm);
1506 if (rc != Z_OK
1507 || strm.avail_out != 0)
1508 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1509 bfd_get_filename (abfd), rc);
1510
affddf13 1511 do_cleanups (cleanup);
dce234bc
PP
1512 *outbuf = uncompressed_buffer;
1513 *outsize = uncompressed_size;
1514#endif
233a11ab
CS
1515}
1516
dce234bc
PP
1517/* Read the contents of the section SECTP from object file specified by
1518 OBJFILE, store info about the section into INFO.
1519 If the section is compressed, uncompress it before returning. */
c906108c 1520
dce234bc
PP
1521static void
1522dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 1523{
dce234bc
PP
1524 bfd *abfd = objfile->obfd;
1525 asection *sectp = info->asection;
1526 gdb_byte *buf, *retbuf;
1527 unsigned char header[4];
c906108c 1528
be391dca
TT
1529 if (info->readin)
1530 return;
dce234bc
PP
1531 info->buffer = NULL;
1532 info->was_mmapped = 0;
be391dca 1533 info->readin = 1;
188dd5d6 1534
dce234bc
PP
1535 if (info->asection == NULL || info->size == 0)
1536 return;
c906108c 1537
dce234bc
PP
1538 /* Check if the file has a 4-byte header indicating compression. */
1539 if (info->size > sizeof (header)
1540 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1541 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1542 {
1543 /* Upon decompression, update the buffer and its size. */
1544 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1545 {
1546 zlib_decompress_section (objfile, sectp, &info->buffer,
1547 &info->size);
1548 return;
1549 }
1550 }
4bdf3d34 1551
dce234bc
PP
1552#ifdef HAVE_MMAP
1553 if (pagesize == 0)
1554 pagesize = getpagesize ();
2e276125 1555
dce234bc
PP
1556 /* Only try to mmap sections which are large enough: we don't want to
1557 waste space due to fragmentation. Also, only try mmap for sections
1558 without relocations. */
1559
1560 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1561 {
1562 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1563 size_t map_length = info->size + sectp->filepos - pg_offset;
1564 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1565 MAP_PRIVATE, pg_offset);
1566
1567 if (retbuf != MAP_FAILED)
1568 {
1569 info->was_mmapped = 1;
1570 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
be391dca
TT
1571#if HAVE_POSIX_MADVISE
1572 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1573#endif
dce234bc
PP
1574 return;
1575 }
1576 }
1577#endif
1578
1579 /* If we get here, we are a normal, not-compressed section. */
1580 info->buffer = buf
1581 = obstack_alloc (&objfile->objfile_obstack, info->size);
1582
1583 /* When debugging .o files, we may need to apply relocations; see
1584 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1585 We never compress sections in .o files, so we only need to
1586 try this when the section is not compressed. */
ac8035ab 1587 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
1588 if (retbuf != NULL)
1589 {
1590 info->buffer = retbuf;
1591 return;
1592 }
1593
1594 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1595 || bfd_bread (buf, info->size, abfd) != info->size)
1596 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1597 bfd_get_filename (abfd));
1598}
1599
1600/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1601 SECTION_NAME. */
af34e669 1602
dce234bc
PP
1603void
1604dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1605 asection **sectp, gdb_byte **bufp,
1606 bfd_size_type *sizep)
1607{
1608 struct dwarf2_per_objfile *data
1609 = objfile_data (objfile, dwarf2_objfile_data_key);
1610 struct dwarf2_section_info *info;
a3b2a86b
TT
1611
1612 /* We may see an objfile without any DWARF, in which case we just
1613 return nothing. */
1614 if (data == NULL)
1615 {
1616 *sectp = NULL;
1617 *bufp = NULL;
1618 *sizep = 0;
1619 return;
1620 }
dce234bc
PP
1621 if (section_is_p (section_name, EH_FRAME_SECTION))
1622 info = &data->eh_frame;
1623 else if (section_is_p (section_name, FRAME_SECTION))
1624 info = &data->frame;
0d53c4c4 1625 else
f3574227 1626 gdb_assert_not_reached ("unexpected section");
dce234bc
PP
1627
1628 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1629 /* We haven't read this section in yet. Do it now. */
1630 dwarf2_read_section (objfile, info);
1631
1632 *sectp = info->asection;
1633 *bufp = info->buffer;
1634 *sizep = info->size;
1635}
1636
9291a0cd
TT
1637\f
1638
1639/* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1640 this CU came. */
2fdf6df6 1641
9291a0cd
TT
1642static void
1643dw2_do_instantiate_symtab (struct objfile *objfile,
1644 struct dwarf2_per_cu_data *per_cu)
1645{
1646 struct cleanup *back_to;
1647
1648 back_to = make_cleanup (dwarf2_release_queue, NULL);
1649
1650 queue_comp_unit (per_cu, objfile);
1651
1652 if (per_cu->from_debug_types)
1653 read_signatured_type_at_offset (objfile, per_cu->offset);
1654 else
1655 load_full_comp_unit (per_cu, objfile);
1656
1657 process_queue (objfile);
1658
1659 /* Age the cache, releasing compilation units that have not
1660 been used recently. */
1661 age_cached_comp_units ();
1662
1663 do_cleanups (back_to);
1664}
1665
1666/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1667 the objfile from which this CU came. Returns the resulting symbol
1668 table. */
2fdf6df6 1669
9291a0cd
TT
1670static struct symtab *
1671dw2_instantiate_symtab (struct objfile *objfile,
1672 struct dwarf2_per_cu_data *per_cu)
1673{
1674 if (!per_cu->v.quick->symtab)
1675 {
1676 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1677 increment_reading_symtab ();
1678 dw2_do_instantiate_symtab (objfile, per_cu);
1679 do_cleanups (back_to);
1680 }
1681 return per_cu->v.quick->symtab;
1682}
1683
1fd400ff 1684/* Return the CU given its index. */
2fdf6df6 1685
1fd400ff
TT
1686static struct dwarf2_per_cu_data *
1687dw2_get_cu (int index)
1688{
1689 if (index >= dwarf2_per_objfile->n_comp_units)
1690 {
1691 index -= dwarf2_per_objfile->n_comp_units;
1692 return dwarf2_per_objfile->type_comp_units[index];
1693 }
1694 return dwarf2_per_objfile->all_comp_units[index];
1695}
1696
9291a0cd
TT
1697/* A helper function that knows how to read a 64-bit value in a way
1698 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1699 otherwise. */
2fdf6df6 1700
9291a0cd
TT
1701static int
1702extract_cu_value (const char *bytes, ULONGEST *result)
1703{
1704 if (sizeof (ULONGEST) < 8)
1705 {
1706 int i;
1707
1708 /* Ignore the upper 4 bytes if they are all zero. */
1709 for (i = 0; i < 4; ++i)
1710 if (bytes[i + 4] != 0)
1711 return 0;
1712
1713 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1714 }
1715 else
1716 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1717 return 1;
1718}
1719
1720/* Read the CU list from the mapped index, and use it to create all
1721 the CU objects for this objfile. Return 0 if something went wrong,
1722 1 if everything went ok. */
2fdf6df6 1723
9291a0cd 1724static int
1fd400ff
TT
1725create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1726 offset_type cu_list_elements)
9291a0cd
TT
1727{
1728 offset_type i;
9291a0cd
TT
1729
1730 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1731 dwarf2_per_objfile->all_comp_units
1732 = obstack_alloc (&objfile->objfile_obstack,
1733 dwarf2_per_objfile->n_comp_units
1734 * sizeof (struct dwarf2_per_cu_data *));
1735
1736 for (i = 0; i < cu_list_elements; i += 2)
1737 {
1738 struct dwarf2_per_cu_data *the_cu;
1739 ULONGEST offset, length;
1740
1741 if (!extract_cu_value (cu_list, &offset)
1742 || !extract_cu_value (cu_list + 8, &length))
1743 return 0;
1744 cu_list += 2 * 8;
1745
1746 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1747 struct dwarf2_per_cu_data);
1748 the_cu->offset = offset;
1749 the_cu->length = length;
1750 the_cu->objfile = objfile;
1751 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1752 struct dwarf2_per_cu_quick_data);
1753 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1754 }
1755
1756 return 1;
1757}
1758
1fd400ff 1759/* Create the signatured type hash table from the index. */
673bfd45 1760
1fd400ff 1761static int
673bfd45
DE
1762create_signatured_type_table_from_index (struct objfile *objfile,
1763 const gdb_byte *bytes,
1764 offset_type elements)
1fd400ff
TT
1765{
1766 offset_type i;
673bfd45 1767 htab_t sig_types_hash;
1fd400ff
TT
1768
1769 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1770 dwarf2_per_objfile->type_comp_units
1771 = obstack_alloc (&objfile->objfile_obstack,
1772 dwarf2_per_objfile->n_type_comp_units
1773 * sizeof (struct dwarf2_per_cu_data *));
1774
673bfd45 1775 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
1776
1777 for (i = 0; i < elements; i += 3)
1778 {
1779 struct signatured_type *type_sig;
1780 ULONGEST offset, type_offset, signature;
1781 void **slot;
1782
1783 if (!extract_cu_value (bytes, &offset)
1784 || !extract_cu_value (bytes + 8, &type_offset))
1785 return 0;
1786 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1787 bytes += 3 * 8;
1788
1789 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1790 struct signatured_type);
1791 type_sig->signature = signature;
1792 type_sig->offset = offset;
1793 type_sig->type_offset = type_offset;
1794 type_sig->per_cu.from_debug_types = 1;
1795 type_sig->per_cu.offset = offset;
1796 type_sig->per_cu.objfile = objfile;
1797 type_sig->per_cu.v.quick
1798 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1799 struct dwarf2_per_cu_quick_data);
1800
673bfd45 1801 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1fd400ff
TT
1802 *slot = type_sig;
1803
1804 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
1805 }
1806
673bfd45 1807 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
1808
1809 return 1;
1810}
1811
9291a0cd
TT
1812/* Read the address map data from the mapped index, and use it to
1813 populate the objfile's psymtabs_addrmap. */
2fdf6df6 1814
9291a0cd
TT
1815static void
1816create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1817{
1818 const gdb_byte *iter, *end;
1819 struct obstack temp_obstack;
1820 struct addrmap *mutable_map;
1821 struct cleanup *cleanup;
1822 CORE_ADDR baseaddr;
1823
1824 obstack_init (&temp_obstack);
1825 cleanup = make_cleanup_obstack_free (&temp_obstack);
1826 mutable_map = addrmap_create_mutable (&temp_obstack);
1827
1828 iter = index->address_table;
1829 end = iter + index->address_table_size;
1830
1831 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1832
1833 while (iter < end)
1834 {
1835 ULONGEST hi, lo, cu_index;
1836 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1837 iter += 8;
1838 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1839 iter += 8;
1840 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1841 iter += 4;
1842
1843 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1fd400ff 1844 dw2_get_cu (cu_index));
9291a0cd
TT
1845 }
1846
1847 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1848 &objfile->objfile_obstack);
1849 do_cleanups (cleanup);
1850}
1851
1852/* The hash function for strings in the mapped index. This is the
1853 same as the hashtab.c hash function, but we keep a separate copy to
1854 maintain control over the implementation. This is necessary
1855 because the hash function is tied to the format of the mapped index
1856 file. */
2fdf6df6 1857
9291a0cd
TT
1858static hashval_t
1859mapped_index_string_hash (const void *p)
1860{
1861 const unsigned char *str = (const unsigned char *) p;
1862 hashval_t r = 0;
1863 unsigned char c;
1864
1865 while ((c = *str++) != 0)
1866 r = r * 67 + c - 113;
1867
1868 return r;
1869}
1870
1871/* Find a slot in the mapped index INDEX for the object named NAME.
1872 If NAME is found, set *VEC_OUT to point to the CU vector in the
1873 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 1874
9291a0cd
TT
1875static int
1876find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
1877 offset_type **vec_out)
1878{
1879 offset_type hash = mapped_index_string_hash (name);
1880 offset_type slot, step;
1881
3876f04e
DE
1882 slot = hash & (index->symbol_table_slots - 1);
1883 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
9291a0cd
TT
1884
1885 for (;;)
1886 {
1887 /* Convert a slot number to an offset into the table. */
1888 offset_type i = 2 * slot;
1889 const char *str;
3876f04e 1890 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
9291a0cd
TT
1891 return 0;
1892
3876f04e 1893 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
9291a0cd
TT
1894 if (!strcmp (name, str))
1895 {
1896 *vec_out = (offset_type *) (index->constant_pool
3876f04e 1897 + MAYBE_SWAP (index->symbol_table[i + 1]));
9291a0cd
TT
1898 return 1;
1899 }
1900
3876f04e 1901 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
1902 }
1903}
1904
1905/* Read the index file. If everything went ok, initialize the "quick"
1906 elements of all the CUs and return 1. Otherwise, return 0. */
2fdf6df6 1907
9291a0cd
TT
1908static int
1909dwarf2_read_index (struct objfile *objfile)
1910{
9291a0cd
TT
1911 char *addr;
1912 struct mapped_index *map;
b3b272e1 1913 offset_type *metadata;
ac0b195c
KW
1914 const gdb_byte *cu_list;
1915 const gdb_byte *types_list = NULL;
1916 offset_type version, cu_list_elements;
1917 offset_type types_list_elements = 0;
1fd400ff 1918 int i;
9291a0cd
TT
1919
1920 if (dwarf2_per_objfile->gdb_index.asection == NULL
1921 || dwarf2_per_objfile->gdb_index.size == 0)
1922 return 0;
82430852
JK
1923
1924 /* Older elfutils strip versions could keep the section in the main
1925 executable while splitting it for the separate debug info file. */
1926 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
1927 & SEC_HAS_CONTENTS) == 0)
1928 return 0;
1929
9291a0cd
TT
1930 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
1931
1932 addr = dwarf2_per_objfile->gdb_index.buffer;
1933 /* Version check. */
1fd400ff 1934 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c
TT
1935 /* Versions earlier than 3 emitted every copy of a psymbol. This
1936 causes the index to behave very poorly for certain requests. So,
1937 it seems better to just ignore such indices. */
1938 if (version < 3)
9291a0cd
TT
1939 return 0;
1940
1941 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
b3b272e1 1942 map->total_size = dwarf2_per_objfile->gdb_index.size;
9291a0cd
TT
1943
1944 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
1945
1946 i = 0;
1947 cu_list = addr + MAYBE_SWAP (metadata[i]);
1948 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
9291a0cd 1949 / 8);
1fd400ff
TT
1950 ++i;
1951
987d643c
TT
1952 types_list = addr + MAYBE_SWAP (metadata[i]);
1953 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
1954 - MAYBE_SWAP (metadata[i]))
1955 / 8);
1956 ++i;
1fd400ff
TT
1957
1958 map->address_table = addr + MAYBE_SWAP (metadata[i]);
1959 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
1960 - MAYBE_SWAP (metadata[i]));
1961 ++i;
1962
3876f04e
DE
1963 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
1964 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
1965 - MAYBE_SWAP (metadata[i]))
1966 / (2 * sizeof (offset_type)));
1fd400ff 1967 ++i;
9291a0cd 1968
1fd400ff
TT
1969 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
1970
1971 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
1972 return 0;
1973
987d643c 1974 if (types_list_elements
673bfd45
DE
1975 && !create_signatured_type_table_from_index (objfile, types_list,
1976 types_list_elements))
9291a0cd
TT
1977 return 0;
1978
1979 create_addrmap_from_index (objfile, map);
1980
1981 dwarf2_per_objfile->index_table = map;
1982 dwarf2_per_objfile->using_index = 1;
1983
1984 return 1;
1985}
1986
1987/* A helper for the "quick" functions which sets the global
1988 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 1989
9291a0cd
TT
1990static void
1991dw2_setup (struct objfile *objfile)
1992{
1993 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1994 gdb_assert (dwarf2_per_objfile);
1995}
1996
1997/* A helper for the "quick" functions which attempts to read the line
1998 table for THIS_CU. */
2fdf6df6 1999
9291a0cd
TT
2000static void
2001dw2_require_line_header (struct objfile *objfile,
2002 struct dwarf2_per_cu_data *this_cu)
2003{
2004 bfd *abfd = objfile->obfd;
2005 struct line_header *lh = NULL;
2006 struct attribute *attr;
2007 struct cleanup *cleanups;
2008 struct die_info *comp_unit_die;
36374493 2009 struct dwarf2_section_info* sec;
9291a0cd
TT
2010 gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
2011 int has_children, i;
2012 struct dwarf2_cu cu;
2013 unsigned int bytes_read, buffer_size;
2014 struct die_reader_specs reader_specs;
2015 char *name, *comp_dir;
2016
2017 if (this_cu->v.quick->read_lines)
2018 return;
2019 this_cu->v.quick->read_lines = 1;
2020
2021 memset (&cu, 0, sizeof (cu));
2022 cu.objfile = objfile;
2023 obstack_init (&cu.comp_unit_obstack);
2024
2025 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2026
36374493
DE
2027 if (this_cu->from_debug_types)
2028 sec = &dwarf2_per_objfile->types;
2029 else
2030 sec = &dwarf2_per_objfile->info;
2031 dwarf2_read_section (objfile, sec);
2032 buffer_size = sec->size;
2033 buffer = sec->buffer;
9291a0cd
TT
2034 info_ptr = buffer + this_cu->offset;
2035 beg_of_comp_unit = info_ptr;
2036
2037 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2038 buffer, buffer_size,
2039 abfd);
2040
2041 /* Complete the cu_header. */
2042 cu.header.offset = beg_of_comp_unit - buffer;
2043 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
2044
2045 this_cu->cu = &cu;
2046 cu.per_cu = this_cu;
2047
2048 dwarf2_read_abbrevs (abfd, &cu);
2049 make_cleanup (dwarf2_free_abbrev_table, &cu);
2050
2051 if (this_cu->from_debug_types)
2052 info_ptr += 8 /*signature*/ + cu.header.offset_size;
2053 init_cu_die_reader (&reader_specs, &cu);
2054 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2055 &has_children);
2056
2057 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2058 if (attr)
2059 {
2060 unsigned int line_offset = DW_UNSND (attr);
2061 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2062 }
2063 if (lh == NULL)
2064 {
2065 do_cleanups (cleanups);
2066 return;
2067 }
2068
2069 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2070
2071 this_cu->v.quick->lines = lh;
2072
2073 this_cu->v.quick->file_names
2074 = obstack_alloc (&objfile->objfile_obstack,
2075 lh->num_file_names * sizeof (char *));
2076 for (i = 0; i < lh->num_file_names; ++i)
2077 this_cu->v.quick->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2078
2079 do_cleanups (cleanups);
2080}
2081
2082/* A helper for the "quick" functions which computes and caches the
2083 real path for a given file name from the line table.
2084 dw2_require_line_header must have been called before this is
2085 invoked. */
2fdf6df6 2086
9291a0cd
TT
2087static const char *
2088dw2_require_full_path (struct objfile *objfile,
e254ef6a 2089 struct dwarf2_per_cu_data *per_cu,
9291a0cd
TT
2090 int index)
2091{
e254ef6a
DE
2092 if (!per_cu->v.quick->full_names)
2093 per_cu->v.quick->full_names
9291a0cd 2094 = OBSTACK_CALLOC (&objfile->objfile_obstack,
e254ef6a 2095 per_cu->v.quick->lines->num_file_names,
9291a0cd
TT
2096 sizeof (char *));
2097
e254ef6a
DE
2098 if (!per_cu->v.quick->full_names[index])
2099 per_cu->v.quick->full_names[index]
2100 = gdb_realpath (per_cu->v.quick->file_names[index]);
9291a0cd 2101
e254ef6a 2102 return per_cu->v.quick->full_names[index];
9291a0cd
TT
2103}
2104
2105static struct symtab *
2106dw2_find_last_source_symtab (struct objfile *objfile)
2107{
2108 int index;
2109 dw2_setup (objfile);
2110 index = dwarf2_per_objfile->n_comp_units - 1;
1fd400ff 2111 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
9291a0cd
TT
2112}
2113
2114static void
2115dw2_forget_cached_source_info (struct objfile *objfile)
2116{
2117 int i;
2118
2119 dw2_setup (objfile);
1fd400ff
TT
2120 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2121 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd 2122 {
e254ef6a 2123 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2124
e254ef6a 2125 if (per_cu->v.quick->full_names)
9291a0cd
TT
2126 {
2127 int j;
2128
e254ef6a
DE
2129 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2130 xfree ((void *) per_cu->v.quick->full_names[j]);
9291a0cd
TT
2131 }
2132 }
2133}
2134
2135static int
2136dw2_lookup_symtab (struct objfile *objfile, const char *name,
2137 const char *full_path, const char *real_path,
2138 struct symtab **result)
2139{
2140 int i;
2141 int check_basename = lbasename (name) == name;
2142 struct dwarf2_per_cu_data *base_cu = NULL;
2143
2144 dw2_setup (objfile);
1fd400ff
TT
2145 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2146 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd
TT
2147 {
2148 int j;
e254ef6a 2149 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2150
e254ef6a 2151 if (per_cu->v.quick->symtab)
9291a0cd
TT
2152 continue;
2153
e254ef6a
DE
2154 dw2_require_line_header (objfile, per_cu);
2155 if (!per_cu->v.quick->lines)
9291a0cd
TT
2156 continue;
2157
e254ef6a 2158 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
9291a0cd 2159 {
e254ef6a 2160 const char *this_name = per_cu->v.quick->file_names[j];
9291a0cd
TT
2161
2162 if (FILENAME_CMP (name, this_name) == 0)
2163 {
e254ef6a 2164 *result = dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2165 return 1;
2166 }
2167
2168 if (check_basename && ! base_cu
2169 && FILENAME_CMP (lbasename (this_name), name) == 0)
e254ef6a 2170 base_cu = per_cu;
9291a0cd
TT
2171
2172 if (full_path != NULL)
2173 {
2174 const char *this_full_name = dw2_require_full_path (objfile,
e254ef6a 2175 per_cu, j);
9291a0cd
TT
2176
2177 if (this_full_name
2178 && FILENAME_CMP (full_path, this_full_name) == 0)
2179 {
e254ef6a 2180 *result = dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2181 return 1;
2182 }
2183 }
2184
2185 if (real_path != NULL)
2186 {
2187 const char *this_full_name = dw2_require_full_path (objfile,
e254ef6a 2188 per_cu, j);
9291a0cd
TT
2189
2190 if (this_full_name != NULL)
2191 {
2192 char *rp = gdb_realpath (this_full_name);
2193 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
2194 {
2195 xfree (rp);
e254ef6a 2196 *result = dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2197 return 1;
2198 }
2199 xfree (rp);
2200 }
2201 }
2202 }
2203 }
2204
2205 if (base_cu)
2206 {
2207 *result = dw2_instantiate_symtab (objfile, base_cu);
2208 return 1;
2209 }
2210
2211 return 0;
2212}
2213
2214static struct symtab *
2215dw2_lookup_symbol (struct objfile *objfile, int block_index,
2216 const char *name, domain_enum domain)
2217{
774b6a14 2218 /* We do all the work in the pre_expand_symtabs_matching hook
9291a0cd
TT
2219 instead. */
2220 return NULL;
2221}
2222
2223/* A helper function that expands all symtabs that hold an object
2224 named NAME. */
2fdf6df6 2225
9291a0cd
TT
2226static void
2227dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2228{
2229 dw2_setup (objfile);
2230
2231 if (dwarf2_per_objfile->index_table)
2232 {
2233 offset_type *vec;
2234
2235 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2236 name, &vec))
2237 {
2238 offset_type i, len = MAYBE_SWAP (*vec);
2239 for (i = 0; i < len; ++i)
2240 {
2241 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
e254ef6a 2242 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
1fd400ff 2243
e254ef6a 2244 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2245 }
2246 }
2247 }
2248}
2249
774b6a14
TT
2250static void
2251dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2252 int kind, const char *name,
2253 domain_enum domain)
9291a0cd 2254{
774b6a14 2255 dw2_do_expand_symtabs_matching (objfile, name);
9291a0cd
TT
2256}
2257
2258static void
2259dw2_print_stats (struct objfile *objfile)
2260{
2261 int i, count;
2262
2263 dw2_setup (objfile);
2264 count = 0;
1fd400ff
TT
2265 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2266 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd 2267 {
e254ef6a 2268 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2269
e254ef6a 2270 if (!per_cu->v.quick->symtab)
9291a0cd
TT
2271 ++count;
2272 }
2273 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2274}
2275
2276static void
2277dw2_dump (struct objfile *objfile)
2278{
2279 /* Nothing worth printing. */
2280}
2281
2282static void
2283dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2284 struct section_offsets *delta)
2285{
2286 /* There's nothing to relocate here. */
2287}
2288
2289static void
2290dw2_expand_symtabs_for_function (struct objfile *objfile,
2291 const char *func_name)
2292{
2293 dw2_do_expand_symtabs_matching (objfile, func_name);
2294}
2295
2296static void
2297dw2_expand_all_symtabs (struct objfile *objfile)
2298{
2299 int i;
2300
2301 dw2_setup (objfile);
1fd400ff
TT
2302
2303 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2304 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd 2305 {
e254ef6a 2306 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2307
e254ef6a 2308 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2309 }
2310}
2311
2312static void
2313dw2_expand_symtabs_with_filename (struct objfile *objfile,
2314 const char *filename)
2315{
2316 int i;
2317
2318 dw2_setup (objfile);
1fd400ff
TT
2319 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2320 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd
TT
2321 {
2322 int j;
e254ef6a 2323 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2324
e254ef6a 2325 if (per_cu->v.quick->symtab)
9291a0cd
TT
2326 continue;
2327
e254ef6a
DE
2328 dw2_require_line_header (objfile, per_cu);
2329 if (!per_cu->v.quick->lines)
9291a0cd
TT
2330 continue;
2331
e254ef6a 2332 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
9291a0cd 2333 {
e254ef6a 2334 const char *this_name = per_cu->v.quick->file_names[j];
9291a0cd
TT
2335 if (strcmp (this_name, filename) == 0)
2336 {
e254ef6a 2337 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2338 break;
2339 }
2340 }
2341 }
2342}
2343
dd786858 2344static const char *
9291a0cd
TT
2345dw2_find_symbol_file (struct objfile *objfile, const char *name)
2346{
e254ef6a 2347 struct dwarf2_per_cu_data *per_cu;
9291a0cd
TT
2348 offset_type *vec;
2349
2350 dw2_setup (objfile);
2351
2352 if (!dwarf2_per_objfile->index_table)
2353 return NULL;
2354
2355 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2356 name, &vec))
2357 return NULL;
2358
2359 /* Note that this just looks at the very first one named NAME -- but
2360 actually we are looking for a function. find_main_filename
2361 should be rewritten so that it doesn't require a custom hook. It
2362 could just use the ordinary symbol tables. */
2363 /* vec[0] is the length, which must always be >0. */
e254ef6a 2364 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
9291a0cd 2365
e254ef6a
DE
2366 dw2_require_line_header (objfile, per_cu);
2367 if (!per_cu->v.quick->lines)
9291a0cd
TT
2368 return NULL;
2369
e254ef6a 2370 return per_cu->v.quick->file_names[per_cu->v.quick->lines->num_file_names - 1];
9291a0cd
TT
2371}
2372
2373static void
40658b94
PH
2374dw2_map_matching_symbols (const char * name, domain_enum namespace,
2375 struct objfile *objfile, int global,
2376 int (*callback) (struct block *,
2377 struct symbol *, void *),
2378 void *data,
2379 int (*match) (const char *, const char *),
2380 int (*ordered_compare) (const char *,
2381 const char *))
9291a0cd 2382{
40658b94 2383 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
2384 current language is Ada for a non-Ada objfile using GNU index. As Ada
2385 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
2386}
2387
2388static void
2389dw2_expand_symtabs_matching (struct objfile *objfile,
2390 int (*file_matcher) (const char *, void *),
2391 int (*name_matcher) (const char *, void *),
2392 domain_enum kind,
2393 void *data)
2394{
2395 int i;
2396 offset_type iter;
4b5246aa 2397 struct mapped_index *index;
9291a0cd
TT
2398
2399 dw2_setup (objfile);
2400 if (!dwarf2_per_objfile->index_table)
2401 return;
4b5246aa 2402 index = dwarf2_per_objfile->index_table;
9291a0cd 2403
1fd400ff
TT
2404 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2405 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd
TT
2406 {
2407 int j;
e254ef6a 2408 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2409
e254ef6a
DE
2410 per_cu->v.quick->mark = 0;
2411 if (per_cu->v.quick->symtab)
9291a0cd
TT
2412 continue;
2413
e254ef6a
DE
2414 dw2_require_line_header (objfile, per_cu);
2415 if (!per_cu->v.quick->lines)
9291a0cd
TT
2416 continue;
2417
e254ef6a 2418 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
9291a0cd 2419 {
e254ef6a 2420 if (file_matcher (per_cu->v.quick->file_names[j], data))
9291a0cd 2421 {
e254ef6a 2422 per_cu->v.quick->mark = 1;
9291a0cd
TT
2423 break;
2424 }
2425 }
2426 }
2427
3876f04e 2428 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
2429 {
2430 offset_type idx = 2 * iter;
2431 const char *name;
2432 offset_type *vec, vec_len, vec_idx;
2433
3876f04e 2434 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
2435 continue;
2436
3876f04e 2437 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd
TT
2438
2439 if (! (*name_matcher) (name, data))
2440 continue;
2441
2442 /* The name was matched, now expand corresponding CUs that were
2443 marked. */
4b5246aa 2444 vec = (offset_type *) (index->constant_pool
3876f04e 2445 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
2446 vec_len = MAYBE_SWAP (vec[0]);
2447 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2448 {
e254ef6a 2449 struct dwarf2_per_cu_data *per_cu;
1fd400ff 2450
e254ef6a
DE
2451 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2452 if (per_cu->v.quick->mark)
2453 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2454 }
2455 }
2456}
2457
2458static struct symtab *
2459dw2_find_pc_sect_symtab (struct objfile *objfile,
2460 struct minimal_symbol *msymbol,
2461 CORE_ADDR pc,
2462 struct obj_section *section,
2463 int warn_if_readin)
2464{
2465 struct dwarf2_per_cu_data *data;
2466
2467 dw2_setup (objfile);
2468
2469 if (!objfile->psymtabs_addrmap)
2470 return NULL;
2471
2472 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2473 if (!data)
2474 return NULL;
2475
2476 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 2477 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
2478 paddress (get_objfile_arch (objfile), pc));
2479
2480 return dw2_instantiate_symtab (objfile, data);
2481}
2482
2483static void
2484dw2_map_symbol_names (struct objfile *objfile,
2485 void (*fun) (const char *, void *),
2486 void *data)
2487{
2488 offset_type iter;
4b5246aa
TT
2489 struct mapped_index *index;
2490
9291a0cd
TT
2491 dw2_setup (objfile);
2492
2493 if (!dwarf2_per_objfile->index_table)
2494 return;
4b5246aa 2495 index = dwarf2_per_objfile->index_table;
9291a0cd 2496
3876f04e 2497 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
2498 {
2499 offset_type idx = 2 * iter;
2500 const char *name;
2501 offset_type *vec, vec_len, vec_idx;
2502
3876f04e 2503 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
2504 continue;
2505
3876f04e 2506 name = (index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]));
9291a0cd
TT
2507
2508 (*fun) (name, data);
2509 }
2510}
2511
2512static void
2513dw2_map_symbol_filenames (struct objfile *objfile,
2514 void (*fun) (const char *, const char *, void *),
2515 void *data)
2516{
2517 int i;
2518
2519 dw2_setup (objfile);
1fd400ff
TT
2520 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2521 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd
TT
2522 {
2523 int j;
e254ef6a 2524 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2525
e254ef6a 2526 if (per_cu->v.quick->symtab)
9291a0cd
TT
2527 continue;
2528
e254ef6a
DE
2529 dw2_require_line_header (objfile, per_cu);
2530 if (!per_cu->v.quick->lines)
9291a0cd
TT
2531 continue;
2532
e254ef6a 2533 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
9291a0cd 2534 {
e254ef6a
DE
2535 const char *this_full_name = dw2_require_full_path (objfile, per_cu,
2536 j);
2537 (*fun) (per_cu->v.quick->file_names[j], this_full_name, data);
9291a0cd
TT
2538 }
2539 }
2540}
2541
2542static int
2543dw2_has_symbols (struct objfile *objfile)
2544{
2545 return 1;
2546}
2547
2548const struct quick_symbol_functions dwarf2_gdb_index_functions =
2549{
2550 dw2_has_symbols,
2551 dw2_find_last_source_symtab,
2552 dw2_forget_cached_source_info,
2553 dw2_lookup_symtab,
2554 dw2_lookup_symbol,
774b6a14 2555 dw2_pre_expand_symtabs_matching,
9291a0cd
TT
2556 dw2_print_stats,
2557 dw2_dump,
2558 dw2_relocate,
2559 dw2_expand_symtabs_for_function,
2560 dw2_expand_all_symtabs,
2561 dw2_expand_symtabs_with_filename,
2562 dw2_find_symbol_file,
40658b94 2563 dw2_map_matching_symbols,
9291a0cd
TT
2564 dw2_expand_symtabs_matching,
2565 dw2_find_pc_sect_symtab,
2566 dw2_map_symbol_names,
2567 dw2_map_symbol_filenames
2568};
2569
2570/* Initialize for reading DWARF for this objfile. Return 0 if this
2571 file will use psymtabs, or 1 if using the GNU index. */
2572
2573int
2574dwarf2_initialize_objfile (struct objfile *objfile)
2575{
2576 /* If we're about to read full symbols, don't bother with the
2577 indices. In this case we also don't care if some other debug
2578 format is making psymtabs, because they are all about to be
2579 expanded anyway. */
2580 if ((objfile->flags & OBJF_READNOW))
2581 {
2582 int i;
2583
2584 dwarf2_per_objfile->using_index = 1;
2585 create_all_comp_units (objfile);
1fd400ff 2586 create_debug_types_hash_table (objfile);
9291a0cd 2587
1fd400ff
TT
2588 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2589 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd 2590 {
e254ef6a 2591 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2592
e254ef6a
DE
2593 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2594 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
2595 }
2596
2597 /* Return 1 so that gdb sees the "quick" functions. However,
2598 these functions will be no-ops because we will have expanded
2599 all symtabs. */
2600 return 1;
2601 }
2602
2603 if (dwarf2_read_index (objfile))
2604 return 1;
2605
2606 dwarf2_build_psymtabs (objfile);
2607 return 0;
2608}
2609
2610\f
2611
dce234bc
PP
2612/* Build a partial symbol table. */
2613
2614void
f29dff0a 2615dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 2616{
f29dff0a 2617 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
2618 {
2619 init_psymbol_list (objfile, 1024);
2620 }
2621
d146bf1e 2622 dwarf2_build_psymtabs_hard (objfile);
c906108c 2623}
c906108c 2624
45452591
DE
2625/* Return TRUE if OFFSET is within CU_HEADER. */
2626
2627static inline int
2628offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2629{
2630 unsigned int bottom = cu_header->offset;
2631 unsigned int top = (cu_header->offset
2632 + cu_header->length
2633 + cu_header->initial_length_size);
9a619af0 2634
45452591
DE
2635 return (offset >= bottom && offset < top);
2636}
2637
93311388
DE
2638/* Read in the comp unit header information from the debug_info at info_ptr.
2639 NOTE: This leaves members offset, first_die_offset to be filled in
2640 by the caller. */
107d2387 2641
fe1b8b76 2642static gdb_byte *
107d2387 2643read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 2644 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
2645{
2646 int signed_addr;
891d2f0b 2647 unsigned int bytes_read;
c764a876
DE
2648
2649 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2650 cu_header->initial_length_size = bytes_read;
2651 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 2652 info_ptr += bytes_read;
107d2387
AC
2653 cu_header->version = read_2_bytes (abfd, info_ptr);
2654 info_ptr += 2;
613e1657 2655 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
c764a876 2656 &bytes_read);
613e1657 2657 info_ptr += bytes_read;
107d2387
AC
2658 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2659 info_ptr += 1;
2660 signed_addr = bfd_get_sign_extend_vma (abfd);
2661 if (signed_addr < 0)
8e65ff28 2662 internal_error (__FILE__, __LINE__,
e2e0b3e5 2663 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 2664 cu_header->signed_addr_p = signed_addr;
c764a876 2665
107d2387
AC
2666 return info_ptr;
2667}
2668
fe1b8b76
JB
2669static gdb_byte *
2670partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
93311388 2671 gdb_byte *buffer, unsigned int buffer_size,
72bf9492
DJ
2672 bfd *abfd)
2673{
fe1b8b76 2674 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
2675
2676 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2677
2dc7f7b3 2678 if (header->version != 2 && header->version != 3 && header->version != 4)
8a3fe4f8 2679 error (_("Dwarf Error: wrong version in compilation unit header "
2dc7f7b3
TT
2680 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2681 bfd_get_filename (abfd));
72bf9492 2682
dce234bc 2683 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
8a3fe4f8
AC
2684 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2685 "(offset 0x%lx + 6) [in module %s]"),
72bf9492 2686 (long) header->abbrev_offset,
93311388 2687 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
2688 bfd_get_filename (abfd));
2689
2690 if (beg_of_comp_unit + header->length + header->initial_length_size
93311388 2691 > buffer + buffer_size)
8a3fe4f8
AC
2692 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2693 "(offset 0x%lx + 0) [in module %s]"),
72bf9492 2694 (long) header->length,
93311388 2695 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
2696 bfd_get_filename (abfd));
2697
2698 return info_ptr;
2699}
2700
348e048f
DE
2701/* Read in the types comp unit header information from .debug_types entry at
2702 types_ptr. The result is a pointer to one past the end of the header. */
2703
2704static gdb_byte *
2705read_type_comp_unit_head (struct comp_unit_head *cu_header,
2706 ULONGEST *signature,
2707 gdb_byte *types_ptr, bfd *abfd)
2708{
348e048f
DE
2709 gdb_byte *initial_types_ptr = types_ptr;
2710
6e70227d 2711 dwarf2_read_section (dwarf2_per_objfile->objfile,
fa238c03 2712 &dwarf2_per_objfile->types);
348e048f
DE
2713 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
2714
2715 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
2716
2717 *signature = read_8_bytes (abfd, types_ptr);
2718 types_ptr += 8;
2719 types_ptr += cu_header->offset_size;
2720 cu_header->first_die_offset = types_ptr - initial_types_ptr;
2721
2722 return types_ptr;
2723}
2724
aaa75496
JB
2725/* Allocate a new partial symtab for file named NAME and mark this new
2726 partial symtab as being an include of PST. */
2727
2728static void
2729dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
2730 struct objfile *objfile)
2731{
2732 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
2733
2734 subpst->section_offsets = pst->section_offsets;
2735 subpst->textlow = 0;
2736 subpst->texthigh = 0;
2737
2738 subpst->dependencies = (struct partial_symtab **)
2739 obstack_alloc (&objfile->objfile_obstack,
2740 sizeof (struct partial_symtab *));
2741 subpst->dependencies[0] = pst;
2742 subpst->number_of_dependencies = 1;
2743
2744 subpst->globals_offset = 0;
2745 subpst->n_global_syms = 0;
2746 subpst->statics_offset = 0;
2747 subpst->n_static_syms = 0;
2748 subpst->symtab = NULL;
2749 subpst->read_symtab = pst->read_symtab;
2750 subpst->readin = 0;
2751
2752 /* No private part is necessary for include psymtabs. This property
2753 can be used to differentiate between such include psymtabs and
10b3939b 2754 the regular ones. */
58a9656e 2755 subpst->read_symtab_private = NULL;
aaa75496
JB
2756}
2757
2758/* Read the Line Number Program data and extract the list of files
2759 included by the source file represented by PST. Build an include
d85a05f0 2760 partial symtab for each of these included files. */
aaa75496
JB
2761
2762static void
2763dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
d85a05f0 2764 struct die_info *die,
aaa75496
JB
2765 struct partial_symtab *pst)
2766{
2767 struct objfile *objfile = cu->objfile;
2768 bfd *abfd = objfile->obfd;
d85a05f0
DJ
2769 struct line_header *lh = NULL;
2770 struct attribute *attr;
aaa75496 2771
d85a05f0
DJ
2772 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2773 if (attr)
2774 {
2775 unsigned int line_offset = DW_UNSND (attr);
9a619af0 2776
d85a05f0
DJ
2777 lh = dwarf_decode_line_header (line_offset, abfd, cu);
2778 }
aaa75496
JB
2779 if (lh == NULL)
2780 return; /* No linetable, so no includes. */
2781
c6da4cef
DE
2782 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
2783 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
aaa75496
JB
2784
2785 free_line_header (lh);
2786}
2787
348e048f
DE
2788static hashval_t
2789hash_type_signature (const void *item)
2790{
2791 const struct signatured_type *type_sig = item;
9a619af0 2792
348e048f
DE
2793 /* This drops the top 32 bits of the signature, but is ok for a hash. */
2794 return type_sig->signature;
2795}
2796
2797static int
2798eq_type_signature (const void *item_lhs, const void *item_rhs)
2799{
2800 const struct signatured_type *lhs = item_lhs;
2801 const struct signatured_type *rhs = item_rhs;
9a619af0 2802
348e048f
DE
2803 return lhs->signature == rhs->signature;
2804}
2805
1fd400ff
TT
2806/* Allocate a hash table for signatured types. */
2807
2808static htab_t
673bfd45 2809allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
2810{
2811 return htab_create_alloc_ex (41,
2812 hash_type_signature,
2813 eq_type_signature,
2814 NULL,
2815 &objfile->objfile_obstack,
2816 hashtab_obstack_allocate,
2817 dummy_obstack_deallocate);
2818}
2819
2820/* A helper function to add a signatured type CU to a list. */
2821
2822static int
2823add_signatured_type_cu_to_list (void **slot, void *datum)
2824{
2825 struct signatured_type *sigt = *slot;
2826 struct dwarf2_per_cu_data ***datap = datum;
2827
2828 **datap = &sigt->per_cu;
2829 ++*datap;
2830
2831 return 1;
2832}
2833
348e048f
DE
2834/* Create the hash table of all entries in the .debug_types section.
2835 The result is zero if there is an error (e.g. missing .debug_types section),
2836 otherwise non-zero. */
2837
2838static int
2839create_debug_types_hash_table (struct objfile *objfile)
2840{
be391dca 2841 gdb_byte *info_ptr;
348e048f 2842 htab_t types_htab;
1fd400ff 2843 struct dwarf2_per_cu_data **iter;
348e048f 2844
be391dca
TT
2845 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
2846 info_ptr = dwarf2_per_objfile->types.buffer;
2847
348e048f
DE
2848 if (info_ptr == NULL)
2849 {
2850 dwarf2_per_objfile->signatured_types = NULL;
2851 return 0;
2852 }
2853
673bfd45 2854 types_htab = allocate_signatured_type_table (objfile);
348e048f
DE
2855
2856 if (dwarf2_die_debug)
2857 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
2858
2859 while (info_ptr < dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
2860 {
2861 unsigned int offset;
2862 unsigned int offset_size;
2863 unsigned int type_offset;
2864 unsigned int length, initial_length_size;
2865 unsigned short version;
2866 ULONGEST signature;
2867 struct signatured_type *type_sig;
2868 void **slot;
2869 gdb_byte *ptr = info_ptr;
2870
2871 offset = ptr - dwarf2_per_objfile->types.buffer;
2872
2873 /* We need to read the type's signature in order to build the hash
2874 table, but we don't need to read anything else just yet. */
2875
2876 /* Sanity check to ensure entire cu is present. */
2877 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
2878 if (ptr + length + initial_length_size
2879 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
2880 {
2881 complaint (&symfile_complaints,
2882 _("debug type entry runs off end of `.debug_types' section, ignored"));
2883 break;
2884 }
2885
2886 offset_size = initial_length_size == 4 ? 4 : 8;
2887 ptr += initial_length_size;
2888 version = bfd_get_16 (objfile->obfd, ptr);
2889 ptr += 2;
2890 ptr += offset_size; /* abbrev offset */
2891 ptr += 1; /* address size */
2892 signature = bfd_get_64 (objfile->obfd, ptr);
2893 ptr += 8;
2894 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
2895
2896 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
2897 memset (type_sig, 0, sizeof (*type_sig));
2898 type_sig->signature = signature;
2899 type_sig->offset = offset;
2900 type_sig->type_offset = type_offset;
ca1f3406 2901 type_sig->per_cu.objfile = objfile;
1fd400ff 2902 type_sig->per_cu.from_debug_types = 1;
348e048f
DE
2903
2904 slot = htab_find_slot (types_htab, type_sig, INSERT);
2905 gdb_assert (slot != NULL);
2906 *slot = type_sig;
2907
2908 if (dwarf2_die_debug)
2909 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
2910 offset, phex (signature, sizeof (signature)));
2911
2912 info_ptr = info_ptr + initial_length_size + length;
2913 }
2914
2915 dwarf2_per_objfile->signatured_types = types_htab;
2916
1fd400ff
TT
2917 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
2918 dwarf2_per_objfile->type_comp_units
2919 = obstack_alloc (&objfile->objfile_obstack,
2920 dwarf2_per_objfile->n_type_comp_units
2921 * sizeof (struct dwarf2_per_cu_data *));
2922 iter = &dwarf2_per_objfile->type_comp_units[0];
2923 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
2924 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
2925 == dwarf2_per_objfile->n_type_comp_units);
2926
348e048f
DE
2927 return 1;
2928}
2929
2930/* Lookup a signature based type.
2931 Returns NULL if SIG is not present in the table. */
2932
2933static struct signatured_type *
2934lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
2935{
2936 struct signatured_type find_entry, *entry;
2937
2938 if (dwarf2_per_objfile->signatured_types == NULL)
2939 {
2940 complaint (&symfile_complaints,
2941 _("missing `.debug_types' section for DW_FORM_sig8 die"));
2942 return 0;
2943 }
2944
2945 find_entry.signature = sig;
2946 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
2947 return entry;
2948}
2949
d85a05f0
DJ
2950/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
2951
2952static void
2953init_cu_die_reader (struct die_reader_specs *reader,
2954 struct dwarf2_cu *cu)
2955{
2956 reader->abfd = cu->objfile->obfd;
2957 reader->cu = cu;
2958 if (cu->per_cu->from_debug_types)
be391dca
TT
2959 {
2960 gdb_assert (dwarf2_per_objfile->types.readin);
2961 reader->buffer = dwarf2_per_objfile->types.buffer;
2962 }
d85a05f0 2963 else
be391dca
TT
2964 {
2965 gdb_assert (dwarf2_per_objfile->info.readin);
2966 reader->buffer = dwarf2_per_objfile->info.buffer;
2967 }
d85a05f0
DJ
2968}
2969
2970/* Find the base address of the compilation unit for range lists and
2971 location lists. It will normally be specified by DW_AT_low_pc.
2972 In DWARF-3 draft 4, the base address could be overridden by
2973 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2974 compilation units with discontinuous ranges. */
2975
2976static void
2977dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
2978{
2979 struct attribute *attr;
2980
2981 cu->base_known = 0;
2982 cu->base_address = 0;
2983
2984 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
2985 if (attr)
2986 {
2987 cu->base_address = DW_ADDR (attr);
2988 cu->base_known = 1;
2989 }
2990 else
2991 {
2992 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
2993 if (attr)
2994 {
2995 cu->base_address = DW_ADDR (attr);
2996 cu->base_known = 1;
2997 }
2998 }
2999}
3000
348e048f
DE
3001/* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3002 to combine the common parts.
93311388 3003 Process a compilation unit for a psymtab.
348e048f
DE
3004 BUFFER is a pointer to the beginning of the dwarf section buffer,
3005 either .debug_info or debug_types.
93311388
DE
3006 INFO_PTR is a pointer to the start of the CU.
3007 Returns a pointer to the next CU. */
aaa75496 3008
93311388
DE
3009static gdb_byte *
3010process_psymtab_comp_unit (struct objfile *objfile,
3011 struct dwarf2_per_cu_data *this_cu,
3012 gdb_byte *buffer, gdb_byte *info_ptr,
3013 unsigned int buffer_size)
c906108c 3014{
c906108c 3015 bfd *abfd = objfile->obfd;
93311388 3016 gdb_byte *beg_of_comp_unit = info_ptr;
d85a05f0 3017 struct die_info *comp_unit_die;
c906108c 3018 struct partial_symtab *pst;
5734ee8b 3019 CORE_ADDR baseaddr;
93311388
DE
3020 struct cleanup *back_to_inner;
3021 struct dwarf2_cu cu;
d85a05f0
DJ
3022 int has_children, has_pc_info;
3023 struct attribute *attr;
d85a05f0
DJ
3024 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3025 struct die_reader_specs reader_specs;
c906108c 3026
93311388
DE
3027 memset (&cu, 0, sizeof (cu));
3028 cu.objfile = objfile;
3029 obstack_init (&cu.comp_unit_obstack);
c906108c 3030
93311388 3031 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
ae038cb0 3032
93311388
DE
3033 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3034 buffer, buffer_size,
3035 abfd);
10b3939b 3036
93311388
DE
3037 /* Complete the cu_header. */
3038 cu.header.offset = beg_of_comp_unit - buffer;
3039 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
ff013f42 3040
93311388 3041 cu.list_in_scope = &file_symbols;
af703f96 3042
328c9494
DJ
3043 /* If this compilation unit was already read in, free the
3044 cached copy in order to read it in again. This is
3045 necessary because we skipped some symbols when we first
3046 read in the compilation unit (see load_partial_dies).
3047 This problem could be avoided, but the benefit is
3048 unclear. */
3049 if (this_cu->cu != NULL)
3050 free_one_cached_comp_unit (this_cu->cu);
3051
3052 /* Note that this is a pointer to our stack frame, being
3053 added to a global data structure. It will be cleaned up
3054 in free_stack_comp_unit when we finish with this
3055 compilation unit. */
3056 this_cu->cu = &cu;
d85a05f0
DJ
3057 cu.per_cu = this_cu;
3058
93311388
DE
3059 /* Read the abbrevs for this compilation unit into a table. */
3060 dwarf2_read_abbrevs (abfd, &cu);
3061 make_cleanup (dwarf2_free_abbrev_table, &cu);
af703f96 3062
93311388 3063 /* Read the compilation unit die. */
348e048f
DE
3064 if (this_cu->from_debug_types)
3065 info_ptr += 8 /*signature*/ + cu.header.offset_size;
d85a05f0
DJ
3066 init_cu_die_reader (&reader_specs, &cu);
3067 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3068 &has_children);
93311388 3069
348e048f
DE
3070 if (this_cu->from_debug_types)
3071 {
3072 /* offset,length haven't been set yet for type units. */
3073 this_cu->offset = cu.header.offset;
3074 this_cu->length = cu.header.length + cu.header.initial_length_size;
3075 }
d85a05f0 3076 else if (comp_unit_die->tag == DW_TAG_partial_unit)
c906108c 3077 {
93311388
DE
3078 info_ptr = (beg_of_comp_unit + cu.header.length
3079 + cu.header.initial_length_size);
3080 do_cleanups (back_to_inner);
3081 return info_ptr;
3082 }
72bf9492 3083
93311388 3084 /* Set the language we're debugging. */
d85a05f0
DJ
3085 attr = dwarf2_attr (comp_unit_die, DW_AT_language, &cu);
3086 if (attr)
3087 set_cu_language (DW_UNSND (attr), &cu);
3088 else
3089 set_cu_language (language_minimal, &cu);
c906108c 3090
93311388 3091 /* Allocate a new partial symbol table structure. */
d85a05f0 3092 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
93311388 3093 pst = start_psymtab_common (objfile, objfile->section_offsets,
d85a05f0 3094 (attr != NULL) ? DW_STRING (attr) : "",
93311388
DE
3095 /* TEXTLOW and TEXTHIGH are set below. */
3096 0,
3097 objfile->global_psymbols.next,
3098 objfile->static_psymbols.next);
72bf9492 3099
d85a05f0
DJ
3100 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3101 if (attr != NULL)
3102 pst->dirname = DW_STRING (attr);
72bf9492 3103
e38df1d0 3104 pst->read_symtab_private = this_cu;
72bf9492 3105
93311388 3106 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
e7c27a73 3107
93311388
DE
3108 /* Store the function that reads in the rest of the symbol table */
3109 pst->read_symtab = dwarf2_psymtab_to_symtab;
57349743 3110
9291a0cd 3111 this_cu->v.psymtab = pst;
c906108c 3112
d85a05f0
DJ
3113 dwarf2_find_base_address (comp_unit_die, &cu);
3114
93311388
DE
3115 /* Possibly set the default values of LOWPC and HIGHPC from
3116 `DW_AT_ranges'. */
d85a05f0
DJ
3117 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3118 &best_highpc, &cu, pst);
3119 if (has_pc_info == 1 && best_lowpc < best_highpc)
93311388
DE
3120 /* Store the contiguous range if it is not empty; it can be empty for
3121 CUs with no code. */
3122 addrmap_set_empty (objfile->psymtabs_addrmap,
d85a05f0
DJ
3123 best_lowpc + baseaddr,
3124 best_highpc + baseaddr - 1, pst);
93311388
DE
3125
3126 /* Check if comp unit has_children.
3127 If so, read the rest of the partial symbols from this comp unit.
3128 If not, there's no more debug_info for this comp unit. */
d85a05f0 3129 if (has_children)
93311388
DE
3130 {
3131 struct partial_die_info *first_die;
3132 CORE_ADDR lowpc, highpc;
31ffec48 3133
93311388
DE
3134 lowpc = ((CORE_ADDR) -1);
3135 highpc = ((CORE_ADDR) 0);
c906108c 3136
93311388 3137 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
c906108c 3138
93311388 3139 scan_partial_symbols (first_die, &lowpc, &highpc,
d85a05f0 3140 ! has_pc_info, &cu);
57c22c6c 3141
93311388
DE
3142 /* If we didn't find a lowpc, set it to highpc to avoid
3143 complaints from `maint check'. */
3144 if (lowpc == ((CORE_ADDR) -1))
3145 lowpc = highpc;
10b3939b 3146
93311388
DE
3147 /* If the compilation unit didn't have an explicit address range,
3148 then use the information extracted from its child dies. */
d85a05f0 3149 if (! has_pc_info)
93311388 3150 {
d85a05f0
DJ
3151 best_lowpc = lowpc;
3152 best_highpc = highpc;
93311388
DE
3153 }
3154 }
d85a05f0
DJ
3155 pst->textlow = best_lowpc + baseaddr;
3156 pst->texthigh = best_highpc + baseaddr;
c906108c 3157
93311388
DE
3158 pst->n_global_syms = objfile->global_psymbols.next -
3159 (objfile->global_psymbols.list + pst->globals_offset);
3160 pst->n_static_syms = objfile->static_psymbols.next -
3161 (objfile->static_psymbols.list + pst->statics_offset);
3162 sort_pst_symbols (pst);
c906108c 3163
93311388
DE
3164 info_ptr = (beg_of_comp_unit + cu.header.length
3165 + cu.header.initial_length_size);
ae038cb0 3166
348e048f
DE
3167 if (this_cu->from_debug_types)
3168 {
3169 /* It's not clear we want to do anything with stmt lists here.
3170 Waiting to see what gcc ultimately does. */
3171 }
d85a05f0 3172 else
93311388
DE
3173 {
3174 /* Get the list of files included in the current compilation unit,
3175 and build a psymtab for each of them. */
d85a05f0 3176 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
93311388 3177 }
ae038cb0 3178
93311388 3179 do_cleanups (back_to_inner);
ae038cb0 3180
93311388
DE
3181 return info_ptr;
3182}
ff013f42 3183
348e048f
DE
3184/* Traversal function for htab_traverse_noresize.
3185 Process one .debug_types comp-unit. */
3186
3187static int
3188process_type_comp_unit (void **slot, void *info)
3189{
3190 struct signatured_type *entry = (struct signatured_type *) *slot;
3191 struct objfile *objfile = (struct objfile *) info;
3192 struct dwarf2_per_cu_data *this_cu;
3193
3194 this_cu = &entry->per_cu;
348e048f 3195
be391dca 3196 gdb_assert (dwarf2_per_objfile->types.readin);
348e048f
DE
3197 process_psymtab_comp_unit (objfile, this_cu,
3198 dwarf2_per_objfile->types.buffer,
3199 dwarf2_per_objfile->types.buffer + entry->offset,
3200 dwarf2_per_objfile->types.size);
3201
3202 return 1;
3203}
3204
3205/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3206 Build partial symbol tables for the .debug_types comp-units. */
3207
3208static void
3209build_type_psymtabs (struct objfile *objfile)
3210{
3211 if (! create_debug_types_hash_table (objfile))
3212 return;
3213
3214 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3215 process_type_comp_unit, objfile);
3216}
3217
60606b2c
TT
3218/* A cleanup function that clears objfile's psymtabs_addrmap field. */
3219
3220static void
3221psymtabs_addrmap_cleanup (void *o)
3222{
3223 struct objfile *objfile = o;
ec61707d 3224
60606b2c
TT
3225 objfile->psymtabs_addrmap = NULL;
3226}
3227
93311388
DE
3228/* Build the partial symbol table by doing a quick pass through the
3229 .debug_info and .debug_abbrev sections. */
72bf9492 3230
93311388 3231static void
c67a9c90 3232dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 3233{
93311388 3234 gdb_byte *info_ptr;
60606b2c
TT
3235 struct cleanup *back_to, *addrmap_cleanup;
3236 struct obstack temp_obstack;
93311388 3237
98bfdba5
PA
3238 dwarf2_per_objfile->reading_partial_symbols = 1;
3239
be391dca 3240 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
93311388 3241 info_ptr = dwarf2_per_objfile->info.buffer;
91c24f0a 3242
93311388
DE
3243 /* Any cached compilation units will be linked by the per-objfile
3244 read_in_chain. Make sure to free them when we're done. */
3245 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 3246
348e048f
DE
3247 build_type_psymtabs (objfile);
3248
93311388 3249 create_all_comp_units (objfile);
c906108c 3250
60606b2c
TT
3251 /* Create a temporary address map on a temporary obstack. We later
3252 copy this to the final obstack. */
3253 obstack_init (&temp_obstack);
3254 make_cleanup_obstack_free (&temp_obstack);
3255 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3256 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 3257
93311388
DE
3258 /* Since the objects we're extracting from .debug_info vary in
3259 length, only the individual functions to extract them (like
3260 read_comp_unit_head and load_partial_die) can really know whether
3261 the buffer is large enough to hold another complete object.
c906108c 3262
93311388
DE
3263 At the moment, they don't actually check that. If .debug_info
3264 holds just one extra byte after the last compilation unit's dies,
3265 then read_comp_unit_head will happily read off the end of the
3266 buffer. read_partial_die is similarly casual. Those functions
3267 should be fixed.
c906108c 3268
93311388
DE
3269 For this loop condition, simply checking whether there's any data
3270 left at all should be sufficient. */
c906108c 3271
93311388
DE
3272 while (info_ptr < (dwarf2_per_objfile->info.buffer
3273 + dwarf2_per_objfile->info.size))
3274 {
3275 struct dwarf2_per_cu_data *this_cu;
dd373385 3276
93311388
DE
3277 this_cu = dwarf2_find_comp_unit (info_ptr - dwarf2_per_objfile->info.buffer,
3278 objfile);
aaa75496 3279
93311388
DE
3280 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3281 dwarf2_per_objfile->info.buffer,
3282 info_ptr,
3283 dwarf2_per_objfile->info.size);
c906108c 3284 }
ff013f42
JK
3285
3286 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3287 &objfile->objfile_obstack);
60606b2c 3288 discard_cleanups (addrmap_cleanup);
ff013f42 3289
ae038cb0
DJ
3290 do_cleanups (back_to);
3291}
3292
93311388 3293/* Load the partial DIEs for a secondary CU into memory. */
ae038cb0
DJ
3294
3295static void
93311388
DE
3296load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3297 struct objfile *objfile)
ae038cb0
DJ
3298{
3299 bfd *abfd = objfile->obfd;
fe1b8b76 3300 gdb_byte *info_ptr, *beg_of_comp_unit;
d85a05f0 3301 struct die_info *comp_unit_die;
ae038cb0 3302 struct dwarf2_cu *cu;
1d9ec526 3303 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
d85a05f0
DJ
3304 struct attribute *attr;
3305 int has_children;
3306 struct die_reader_specs reader_specs;
98bfdba5 3307 int read_cu = 0;
ae038cb0 3308
348e048f
DE
3309 gdb_assert (! this_cu->from_debug_types);
3310
be391dca 3311 gdb_assert (dwarf2_per_objfile->info.readin);
dce234bc 3312 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
ae038cb0
DJ
3313 beg_of_comp_unit = info_ptr;
3314
98bfdba5
PA
3315 if (this_cu->cu == NULL)
3316 {
3317 cu = alloc_one_comp_unit (objfile);
ae038cb0 3318
98bfdba5 3319 read_cu = 1;
ae038cb0 3320
98bfdba5
PA
3321 /* If an error occurs while loading, release our storage. */
3322 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
328c9494 3323
98bfdba5
PA
3324 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3325 dwarf2_per_objfile->info.buffer,
3326 dwarf2_per_objfile->info.size,
3327 abfd);
ae038cb0 3328
98bfdba5
PA
3329 /* Complete the cu_header. */
3330 cu->header.offset = this_cu->offset;
3331 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3332
3333 /* Link this compilation unit into the compilation unit tree. */
3334 this_cu->cu = cu;
3335 cu->per_cu = this_cu;
98bfdba5
PA
3336
3337 /* Link this CU into read_in_chain. */
3338 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3339 dwarf2_per_objfile->read_in_chain = this_cu;
3340 }
3341 else
3342 {
3343 cu = this_cu->cu;
3344 info_ptr += cu->header.first_die_offset;
3345 }
ae038cb0
DJ
3346
3347 /* Read the abbrevs for this compilation unit into a table. */
98bfdba5 3348 gdb_assert (cu->dwarf2_abbrevs == NULL);
ae038cb0 3349 dwarf2_read_abbrevs (abfd, cu);
98bfdba5 3350 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
ae038cb0
DJ
3351
3352 /* Read the compilation unit die. */
d85a05f0
DJ
3353 init_cu_die_reader (&reader_specs, cu);
3354 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3355 &has_children);
ae038cb0
DJ
3356
3357 /* Set the language we're debugging. */
d85a05f0
DJ
3358 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
3359 if (attr)
3360 set_cu_language (DW_UNSND (attr), cu);
3361 else
3362 set_cu_language (language_minimal, cu);
ae038cb0 3363
ae038cb0
DJ
3364 /* Check if comp unit has_children.
3365 If so, read the rest of the partial symbols from this comp unit.
3366 If not, there's no more debug_info for this comp unit. */
d85a05f0 3367 if (has_children)
93311388 3368 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
ae038cb0 3369
98bfdba5
PA
3370 do_cleanups (free_abbrevs_cleanup);
3371
3372 if (read_cu)
3373 {
3374 /* We've successfully allocated this compilation unit. Let our
3375 caller clean it up when finished with it. */
3376 discard_cleanups (free_cu_cleanup);
3377 }
ae038cb0
DJ
3378}
3379
3380/* Create a list of all compilation units in OBJFILE. We do this only
3381 if an inter-comp-unit reference is found; presumably if there is one,
3382 there will be many, and one will occur early in the .debug_info section.
3383 So there's no point in building this list incrementally. */
3384
3385static void
3386create_all_comp_units (struct objfile *objfile)
3387{
3388 int n_allocated;
3389 int n_comp_units;
3390 struct dwarf2_per_cu_data **all_comp_units;
be391dca
TT
3391 gdb_byte *info_ptr;
3392
3393 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3394 info_ptr = dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
3395
3396 n_comp_units = 0;
3397 n_allocated = 10;
3398 all_comp_units = xmalloc (n_allocated
3399 * sizeof (struct dwarf2_per_cu_data *));
6e70227d 3400
dce234bc 3401 while (info_ptr < dwarf2_per_objfile->info.buffer + dwarf2_per_objfile->info.size)
ae038cb0 3402 {
c764a876 3403 unsigned int length, initial_length_size;
ae038cb0 3404 struct dwarf2_per_cu_data *this_cu;
c764a876 3405 unsigned int offset;
ae038cb0 3406
dce234bc 3407 offset = info_ptr - dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
3408
3409 /* Read just enough information to find out where the next
3410 compilation unit is. */
c764a876
DE
3411 length = read_initial_length (objfile->obfd, info_ptr,
3412 &initial_length_size);
ae038cb0
DJ
3413
3414 /* Save the compilation unit for later lookup. */
3415 this_cu = obstack_alloc (&objfile->objfile_obstack,
3416 sizeof (struct dwarf2_per_cu_data));
3417 memset (this_cu, 0, sizeof (*this_cu));
3418 this_cu->offset = offset;
c764a876 3419 this_cu->length = length + initial_length_size;
9291a0cd 3420 this_cu->objfile = objfile;
ae038cb0
DJ
3421
3422 if (n_comp_units == n_allocated)
3423 {
3424 n_allocated *= 2;
3425 all_comp_units = xrealloc (all_comp_units,
3426 n_allocated
3427 * sizeof (struct dwarf2_per_cu_data *));
3428 }
3429 all_comp_units[n_comp_units++] = this_cu;
3430
3431 info_ptr = info_ptr + this_cu->length;
3432 }
3433
3434 dwarf2_per_objfile->all_comp_units
3435 = obstack_alloc (&objfile->objfile_obstack,
3436 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3437 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3438 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3439 xfree (all_comp_units);
3440 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
3441}
3442
5734ee8b
DJ
3443/* Process all loaded DIEs for compilation unit CU, starting at
3444 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3445 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3446 DW_AT_ranges). If NEED_PC is set, then this function will set
3447 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3448 and record the covered ranges in the addrmap. */
c906108c 3449
72bf9492
DJ
3450static void
3451scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 3452 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 3453{
72bf9492 3454 struct partial_die_info *pdi;
c906108c 3455
91c24f0a
DC
3456 /* Now, march along the PDI's, descending into ones which have
3457 interesting children but skipping the children of the other ones,
3458 until we reach the end of the compilation unit. */
c906108c 3459
72bf9492 3460 pdi = first_die;
91c24f0a 3461
72bf9492
DJ
3462 while (pdi != NULL)
3463 {
3464 fixup_partial_die (pdi, cu);
c906108c 3465
f55ee35c 3466 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
3467 children, so we need to look at them. Ditto for anonymous
3468 enums. */
933c6fe4 3469
72bf9492 3470 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
f55ee35c 3471 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
c906108c 3472 {
72bf9492 3473 switch (pdi->tag)
c906108c
SS
3474 {
3475 case DW_TAG_subprogram:
5734ee8b 3476 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 3477 break;
72929c62 3478 case DW_TAG_constant:
c906108c
SS
3479 case DW_TAG_variable:
3480 case DW_TAG_typedef:
91c24f0a 3481 case DW_TAG_union_type:
72bf9492 3482 if (!pdi->is_declaration)
63d06c5c 3483 {
72bf9492 3484 add_partial_symbol (pdi, cu);
63d06c5c
DC
3485 }
3486 break;
c906108c 3487 case DW_TAG_class_type:
680b30c7 3488 case DW_TAG_interface_type:
c906108c 3489 case DW_TAG_structure_type:
72bf9492 3490 if (!pdi->is_declaration)
c906108c 3491 {
72bf9492 3492 add_partial_symbol (pdi, cu);
c906108c
SS
3493 }
3494 break;
91c24f0a 3495 case DW_TAG_enumeration_type:
72bf9492
DJ
3496 if (!pdi->is_declaration)
3497 add_partial_enumeration (pdi, cu);
c906108c
SS
3498 break;
3499 case DW_TAG_base_type:
a02abb62 3500 case DW_TAG_subrange_type:
c906108c 3501 /* File scope base type definitions are added to the partial
c5aa993b 3502 symbol table. */
72bf9492 3503 add_partial_symbol (pdi, cu);
c906108c 3504 break;
d9fa45fe 3505 case DW_TAG_namespace:
5734ee8b 3506 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 3507 break;
5d7cb8df
JK
3508 case DW_TAG_module:
3509 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3510 break;
c906108c
SS
3511 default:
3512 break;
3513 }
3514 }
3515
72bf9492
DJ
3516 /* If the die has a sibling, skip to the sibling. */
3517
3518 pdi = pdi->die_sibling;
3519 }
3520}
3521
3522/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 3523
72bf9492 3524 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
3525 name is concatenated with "::" and the partial DIE's name. For
3526 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
3527 Enumerators are an exception; they use the scope of their parent
3528 enumeration type, i.e. the name of the enumeration type is not
3529 prepended to the enumerator.
91c24f0a 3530
72bf9492
DJ
3531 There are two complexities. One is DW_AT_specification; in this
3532 case "parent" means the parent of the target of the specification,
3533 instead of the direct parent of the DIE. The other is compilers
3534 which do not emit DW_TAG_namespace; in this case we try to guess
3535 the fully qualified name of structure types from their members'
3536 linkage names. This must be done using the DIE's children rather
3537 than the children of any DW_AT_specification target. We only need
3538 to do this for structures at the top level, i.e. if the target of
3539 any DW_AT_specification (if any; otherwise the DIE itself) does not
3540 have a parent. */
3541
3542/* Compute the scope prefix associated with PDI's parent, in
3543 compilation unit CU. The result will be allocated on CU's
3544 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3545 field. NULL is returned if no prefix is necessary. */
3546static char *
3547partial_die_parent_scope (struct partial_die_info *pdi,
3548 struct dwarf2_cu *cu)
3549{
3550 char *grandparent_scope;
3551 struct partial_die_info *parent, *real_pdi;
91c24f0a 3552
72bf9492
DJ
3553 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3554 then this means the parent of the specification DIE. */
3555
3556 real_pdi = pdi;
72bf9492 3557 while (real_pdi->has_specification)
10b3939b 3558 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
3559
3560 parent = real_pdi->die_parent;
3561 if (parent == NULL)
3562 return NULL;
3563
3564 if (parent->scope_set)
3565 return parent->scope;
3566
3567 fixup_partial_die (parent, cu);
3568
10b3939b 3569 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 3570
acebe513
UW
3571 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3572 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3573 Work around this problem here. */
3574 if (cu->language == language_cplus
6e70227d 3575 && parent->tag == DW_TAG_namespace
acebe513
UW
3576 && strcmp (parent->name, "::") == 0
3577 && grandparent_scope == NULL)
3578 {
3579 parent->scope = NULL;
3580 parent->scope_set = 1;
3581 return NULL;
3582 }
3583
72bf9492 3584 if (parent->tag == DW_TAG_namespace
f55ee35c 3585 || parent->tag == DW_TAG_module
72bf9492
DJ
3586 || parent->tag == DW_TAG_structure_type
3587 || parent->tag == DW_TAG_class_type
680b30c7 3588 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
3589 || parent->tag == DW_TAG_union_type
3590 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
3591 {
3592 if (grandparent_scope == NULL)
3593 parent->scope = parent->name;
3594 else
987504bb 3595 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
f55ee35c 3596 parent->name, 0, cu);
72bf9492 3597 }
ceeb3d5a 3598 else if (parent->tag == DW_TAG_enumerator)
72bf9492
DJ
3599 /* Enumerators should not get the name of the enumeration as a prefix. */
3600 parent->scope = grandparent_scope;
3601 else
3602 {
3603 /* FIXME drow/2004-04-01: What should we be doing with
3604 function-local names? For partial symbols, we should probably be
3605 ignoring them. */
3606 complaint (&symfile_complaints,
e2e0b3e5 3607 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
3608 parent->tag, pdi->offset);
3609 parent->scope = grandparent_scope;
c906108c
SS
3610 }
3611
72bf9492
DJ
3612 parent->scope_set = 1;
3613 return parent->scope;
3614}
3615
3616/* Return the fully scoped name associated with PDI, from compilation unit
3617 CU. The result will be allocated with malloc. */
3618static char *
3619partial_die_full_name (struct partial_die_info *pdi,
3620 struct dwarf2_cu *cu)
3621{
3622 char *parent_scope;
3623
98bfdba5
PA
3624 /* If this is a template instantiation, we can not work out the
3625 template arguments from partial DIEs. So, unfortunately, we have
3626 to go through the full DIEs. At least any work we do building
3627 types here will be reused if full symbols are loaded later. */
3628 if (pdi->has_template_arguments)
3629 {
3630 fixup_partial_die (pdi, cu);
3631
3632 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3633 {
3634 struct die_info *die;
3635 struct attribute attr;
3636 struct dwarf2_cu *ref_cu = cu;
3637
3638 attr.name = 0;
3639 attr.form = DW_FORM_ref_addr;
3640 attr.u.addr = pdi->offset;
3641 die = follow_die_ref (NULL, &attr, &ref_cu);
3642
3643 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3644 }
3645 }
3646
72bf9492
DJ
3647 parent_scope = partial_die_parent_scope (pdi, cu);
3648 if (parent_scope == NULL)
3649 return NULL;
3650 else
f55ee35c 3651 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
3652}
3653
3654static void
72bf9492 3655add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 3656{
e7c27a73 3657 struct objfile *objfile = cu->objfile;
c906108c 3658 CORE_ADDR addr = 0;
decbce07 3659 char *actual_name = NULL;
5c4e30ca 3660 const struct partial_symbol *psym = NULL;
e142c38c 3661 CORE_ADDR baseaddr;
72bf9492 3662 int built_actual_name = 0;
e142c38c
DJ
3663
3664 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 3665
94af9270
KS
3666 actual_name = partial_die_full_name (pdi, cu);
3667 if (actual_name)
3668 built_actual_name = 1;
63d06c5c 3669
72bf9492
DJ
3670 if (actual_name == NULL)
3671 actual_name = pdi->name;
3672
c906108c
SS
3673 switch (pdi->tag)
3674 {
3675 case DW_TAG_subprogram:
2cfa0c8d 3676 if (pdi->is_external || cu->language == language_ada)
c906108c 3677 {
2cfa0c8d
JB
3678 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3679 of the global scope. But in Ada, we want to be able to access
3680 nested procedures globally. So all Ada subprograms are stored
3681 in the global scope. */
38d518c9 3682 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 3683 mst_text, objfile); */
38d518c9 3684 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3685 built_actual_name,
5c4e30ca
DC
3686 VAR_DOMAIN, LOC_BLOCK,
3687 &objfile->global_psymbols,
3688 0, pdi->lowpc + baseaddr,
e142c38c 3689 cu->language, objfile);
c906108c
SS
3690 }
3691 else
3692 {
38d518c9 3693 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 3694 mst_file_text, objfile); */
38d518c9 3695 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3696 built_actual_name,
5c4e30ca
DC
3697 VAR_DOMAIN, LOC_BLOCK,
3698 &objfile->static_psymbols,
3699 0, pdi->lowpc + baseaddr,
e142c38c 3700 cu->language, objfile);
c906108c
SS
3701 }
3702 break;
72929c62
JB
3703 case DW_TAG_constant:
3704 {
3705 struct psymbol_allocation_list *list;
3706
3707 if (pdi->is_external)
3708 list = &objfile->global_psymbols;
3709 else
3710 list = &objfile->static_psymbols;
3711 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3712 built_actual_name, VAR_DOMAIN, LOC_STATIC,
3713 list, 0, 0, cu->language, objfile);
3714
3715 }
3716 break;
c906108c 3717 case DW_TAG_variable:
caac4577
JG
3718 if (pdi->locdesc)
3719 addr = decode_locdesc (pdi->locdesc, cu);
3720
3721 if (pdi->locdesc
3722 && addr == 0
3723 && !dwarf2_per_objfile->has_section_at_zero)
3724 {
3725 /* A global or static variable may also have been stripped
3726 out by the linker if unused, in which case its address
3727 will be nullified; do not add such variables into partial
3728 symbol table then. */
3729 }
3730 else if (pdi->is_external)
c906108c
SS
3731 {
3732 /* Global Variable.
3733 Don't enter into the minimal symbol tables as there is
3734 a minimal symbol table entry from the ELF symbols already.
3735 Enter into partial symbol table if it has a location
3736 descriptor or a type.
3737 If the location descriptor is missing, new_symbol will create
3738 a LOC_UNRESOLVED symbol, the address of the variable will then
3739 be determined from the minimal symbol table whenever the variable
3740 is referenced.
3741 The address for the partial symbol table entry is not
3742 used by GDB, but it comes in handy for debugging partial symbol
3743 table building. */
3744
c906108c 3745 if (pdi->locdesc || pdi->has_type)
38d518c9 3746 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3747 built_actual_name,
5c4e30ca
DC
3748 VAR_DOMAIN, LOC_STATIC,
3749 &objfile->global_psymbols,
3750 0, addr + baseaddr,
e142c38c 3751 cu->language, objfile);
c906108c
SS
3752 }
3753 else
3754 {
3755 /* Static Variable. Skip symbols without location descriptors. */
3756 if (pdi->locdesc == NULL)
decbce07
MS
3757 {
3758 if (built_actual_name)
3759 xfree (actual_name);
3760 return;
3761 }
38d518c9 3762 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 3763 mst_file_data, objfile); */
38d518c9 3764 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3765 built_actual_name,
5c4e30ca
DC
3766 VAR_DOMAIN, LOC_STATIC,
3767 &objfile->static_psymbols,
3768 0, addr + baseaddr,
e142c38c 3769 cu->language, objfile);
c906108c
SS
3770 }
3771 break;
3772 case DW_TAG_typedef:
3773 case DW_TAG_base_type:
a02abb62 3774 case DW_TAG_subrange_type:
38d518c9 3775 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3776 built_actual_name,
176620f1 3777 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 3778 &objfile->static_psymbols,
e142c38c 3779 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 3780 break;
72bf9492
DJ
3781 case DW_TAG_namespace:
3782 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3783 built_actual_name,
72bf9492
DJ
3784 VAR_DOMAIN, LOC_TYPEDEF,
3785 &objfile->global_psymbols,
3786 0, (CORE_ADDR) 0, cu->language, objfile);
3787 break;
c906108c 3788 case DW_TAG_class_type:
680b30c7 3789 case DW_TAG_interface_type:
c906108c
SS
3790 case DW_TAG_structure_type:
3791 case DW_TAG_union_type:
3792 case DW_TAG_enumeration_type:
fa4028e9
JB
3793 /* Skip external references. The DWARF standard says in the section
3794 about "Structure, Union, and Class Type Entries": "An incomplete
3795 structure, union or class type is represented by a structure,
3796 union or class entry that does not have a byte size attribute
3797 and that has a DW_AT_declaration attribute." */
3798 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
3799 {
3800 if (built_actual_name)
3801 xfree (actual_name);
3802 return;
3803 }
fa4028e9 3804
63d06c5c
DC
3805 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
3806 static vs. global. */
38d518c9 3807 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3808 built_actual_name,
176620f1 3809 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
3810 (cu->language == language_cplus
3811 || cu->language == language_java)
63d06c5c
DC
3812 ? &objfile->global_psymbols
3813 : &objfile->static_psymbols,
e142c38c 3814 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 3815
c906108c
SS
3816 break;
3817 case DW_TAG_enumerator:
38d518c9 3818 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3819 built_actual_name,
176620f1 3820 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
3821 (cu->language == language_cplus
3822 || cu->language == language_java)
f6fe98ef
DJ
3823 ? &objfile->global_psymbols
3824 : &objfile->static_psymbols,
e142c38c 3825 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
3826 break;
3827 default:
3828 break;
3829 }
5c4e30ca 3830
72bf9492
DJ
3831 if (built_actual_name)
3832 xfree (actual_name);
c906108c
SS
3833}
3834
5c4e30ca
DC
3835/* Read a partial die corresponding to a namespace; also, add a symbol
3836 corresponding to that namespace to the symbol table. NAMESPACE is
3837 the name of the enclosing namespace. */
91c24f0a 3838
72bf9492
DJ
3839static void
3840add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 3841 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 3842 int need_pc, struct dwarf2_cu *cu)
91c24f0a 3843{
72bf9492 3844 /* Add a symbol for the namespace. */
e7c27a73 3845
72bf9492 3846 add_partial_symbol (pdi, cu);
5c4e30ca
DC
3847
3848 /* Now scan partial symbols in that namespace. */
3849
91c24f0a 3850 if (pdi->has_children)
5734ee8b 3851 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
3852}
3853
5d7cb8df
JK
3854/* Read a partial die corresponding to a Fortran module. */
3855
3856static void
3857add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
3858 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3859{
f55ee35c 3860 /* Now scan partial symbols in that module. */
5d7cb8df
JK
3861
3862 if (pdi->has_children)
3863 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3864}
3865
bc30ff58
JB
3866/* Read a partial die corresponding to a subprogram and create a partial
3867 symbol for that subprogram. When the CU language allows it, this
3868 routine also defines a partial symbol for each nested subprogram
3869 that this subprogram contains.
6e70227d 3870
bc30ff58
JB
3871 DIE my also be a lexical block, in which case we simply search
3872 recursively for suprograms defined inside that lexical block.
3873 Again, this is only performed when the CU language allows this
3874 type of definitions. */
3875
3876static void
3877add_partial_subprogram (struct partial_die_info *pdi,
3878 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 3879 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
3880{
3881 if (pdi->tag == DW_TAG_subprogram)
3882 {
3883 if (pdi->has_pc_info)
3884 {
3885 if (pdi->lowpc < *lowpc)
3886 *lowpc = pdi->lowpc;
3887 if (pdi->highpc > *highpc)
3888 *highpc = pdi->highpc;
5734ee8b
DJ
3889 if (need_pc)
3890 {
3891 CORE_ADDR baseaddr;
3892 struct objfile *objfile = cu->objfile;
3893
3894 baseaddr = ANOFFSET (objfile->section_offsets,
3895 SECT_OFF_TEXT (objfile));
3896 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
3897 pdi->lowpc + baseaddr,
3898 pdi->highpc - 1 + baseaddr,
9291a0cd 3899 cu->per_cu->v.psymtab);
5734ee8b 3900 }
bc30ff58 3901 if (!pdi->is_declaration)
e8d05480
JB
3902 /* Ignore subprogram DIEs that do not have a name, they are
3903 illegal. Do not emit a complaint at this point, we will
3904 do so when we convert this psymtab into a symtab. */
3905 if (pdi->name)
3906 add_partial_symbol (pdi, cu);
bc30ff58
JB
3907 }
3908 }
6e70227d 3909
bc30ff58
JB
3910 if (! pdi->has_children)
3911 return;
3912
3913 if (cu->language == language_ada)
3914 {
3915 pdi = pdi->die_child;
3916 while (pdi != NULL)
3917 {
3918 fixup_partial_die (pdi, cu);
3919 if (pdi->tag == DW_TAG_subprogram
3920 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 3921 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
3922 pdi = pdi->die_sibling;
3923 }
3924 }
3925}
3926
91c24f0a
DC
3927/* Read a partial die corresponding to an enumeration type. */
3928
72bf9492
DJ
3929static void
3930add_partial_enumeration (struct partial_die_info *enum_pdi,
3931 struct dwarf2_cu *cu)
91c24f0a 3932{
72bf9492 3933 struct partial_die_info *pdi;
91c24f0a
DC
3934
3935 if (enum_pdi->name != NULL)
72bf9492
DJ
3936 add_partial_symbol (enum_pdi, cu);
3937
3938 pdi = enum_pdi->die_child;
3939 while (pdi)
91c24f0a 3940 {
72bf9492 3941 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 3942 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 3943 else
72bf9492
DJ
3944 add_partial_symbol (pdi, cu);
3945 pdi = pdi->die_sibling;
91c24f0a 3946 }
91c24f0a
DC
3947}
3948
4bb7a0a7
DJ
3949/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
3950 Return the corresponding abbrev, or NULL if the number is zero (indicating
3951 an empty DIE). In either case *BYTES_READ will be set to the length of
3952 the initial number. */
3953
3954static struct abbrev_info *
fe1b8b76 3955peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 3956 struct dwarf2_cu *cu)
4bb7a0a7
DJ
3957{
3958 bfd *abfd = cu->objfile->obfd;
3959 unsigned int abbrev_number;
3960 struct abbrev_info *abbrev;
3961
3962 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
3963
3964 if (abbrev_number == 0)
3965 return NULL;
3966
3967 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
3968 if (!abbrev)
3969 {
8a3fe4f8 3970 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
4bb7a0a7
DJ
3971 bfd_get_filename (abfd));
3972 }
3973
3974 return abbrev;
3975}
3976
93311388
DE
3977/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
3978 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
3979 DIE. Any children of the skipped DIEs will also be skipped. */
3980
fe1b8b76 3981static gdb_byte *
93311388 3982skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
3983{
3984 struct abbrev_info *abbrev;
3985 unsigned int bytes_read;
3986
3987 while (1)
3988 {
3989 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
3990 if (abbrev == NULL)
3991 return info_ptr + bytes_read;
3992 else
93311388 3993 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4bb7a0a7
DJ
3994 }
3995}
3996
93311388
DE
3997/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
3998 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
3999 abbrev corresponding to that skipped uleb128 should be passed in
4000 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4001 children. */
4002
fe1b8b76 4003static gdb_byte *
93311388
DE
4004skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4005 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4bb7a0a7
DJ
4006{
4007 unsigned int bytes_read;
4008 struct attribute attr;
4009 bfd *abfd = cu->objfile->obfd;
4010 unsigned int form, i;
4011
4012 for (i = 0; i < abbrev->num_attrs; i++)
4013 {
4014 /* The only abbrev we care about is DW_AT_sibling. */
4015 if (abbrev->attrs[i].name == DW_AT_sibling)
4016 {
4017 read_attribute (&attr, &abbrev->attrs[i],
4018 abfd, info_ptr, cu);
4019 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 4020 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 4021 else
93311388 4022 return buffer + dwarf2_get_ref_die_offset (&attr);
4bb7a0a7
DJ
4023 }
4024
4025 /* If it isn't DW_AT_sibling, skip this attribute. */
4026 form = abbrev->attrs[i].form;
4027 skip_attribute:
4028 switch (form)
4029 {
4bb7a0a7 4030 case DW_FORM_ref_addr:
ae411497
TT
4031 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4032 and later it is offset sized. */
4033 if (cu->header.version == 2)
4034 info_ptr += cu->header.addr_size;
4035 else
4036 info_ptr += cu->header.offset_size;
4037 break;
4038 case DW_FORM_addr:
4bb7a0a7
DJ
4039 info_ptr += cu->header.addr_size;
4040 break;
4041 case DW_FORM_data1:
4042 case DW_FORM_ref1:
4043 case DW_FORM_flag:
4044 info_ptr += 1;
4045 break;
2dc7f7b3
TT
4046 case DW_FORM_flag_present:
4047 break;
4bb7a0a7
DJ
4048 case DW_FORM_data2:
4049 case DW_FORM_ref2:
4050 info_ptr += 2;
4051 break;
4052 case DW_FORM_data4:
4053 case DW_FORM_ref4:
4054 info_ptr += 4;
4055 break;
4056 case DW_FORM_data8:
4057 case DW_FORM_ref8:
348e048f 4058 case DW_FORM_sig8:
4bb7a0a7
DJ
4059 info_ptr += 8;
4060 break;
4061 case DW_FORM_string:
9b1c24c8 4062 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
4063 info_ptr += bytes_read;
4064 break;
2dc7f7b3 4065 case DW_FORM_sec_offset:
4bb7a0a7
DJ
4066 case DW_FORM_strp:
4067 info_ptr += cu->header.offset_size;
4068 break;
2dc7f7b3 4069 case DW_FORM_exprloc:
4bb7a0a7
DJ
4070 case DW_FORM_block:
4071 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4072 info_ptr += bytes_read;
4073 break;
4074 case DW_FORM_block1:
4075 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4076 break;
4077 case DW_FORM_block2:
4078 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4079 break;
4080 case DW_FORM_block4:
4081 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4082 break;
4083 case DW_FORM_sdata:
4084 case DW_FORM_udata:
4085 case DW_FORM_ref_udata:
4086 info_ptr = skip_leb128 (abfd, info_ptr);
4087 break;
4088 case DW_FORM_indirect:
4089 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4090 info_ptr += bytes_read;
4091 /* We need to continue parsing from here, so just go back to
4092 the top. */
4093 goto skip_attribute;
4094
4095 default:
8a3fe4f8 4096 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4bb7a0a7
DJ
4097 dwarf_form_name (form),
4098 bfd_get_filename (abfd));
4099 }
4100 }
4101
4102 if (abbrev->has_children)
93311388 4103 return skip_children (buffer, info_ptr, cu);
4bb7a0a7
DJ
4104 else
4105 return info_ptr;
4106}
4107
93311388
DE
4108/* Locate ORIG_PDI's sibling.
4109 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4110 in BUFFER. */
91c24f0a 4111
fe1b8b76 4112static gdb_byte *
93311388
DE
4113locate_pdi_sibling (struct partial_die_info *orig_pdi,
4114 gdb_byte *buffer, gdb_byte *info_ptr,
e7c27a73 4115 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
4116{
4117 /* Do we know the sibling already? */
72bf9492 4118
91c24f0a
DC
4119 if (orig_pdi->sibling)
4120 return orig_pdi->sibling;
4121
4122 /* Are there any children to deal with? */
4123
4124 if (!orig_pdi->has_children)
4125 return info_ptr;
4126
4bb7a0a7 4127 /* Skip the children the long way. */
91c24f0a 4128
93311388 4129 return skip_children (buffer, info_ptr, cu);
91c24f0a
DC
4130}
4131
c906108c
SS
4132/* Expand this partial symbol table into a full symbol table. */
4133
4134static void
fba45db2 4135dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 4136{
c906108c
SS
4137 if (pst != NULL)
4138 {
4139 if (pst->readin)
4140 {
8a3fe4f8 4141 warning (_("bug: psymtab for %s is already read in."), pst->filename);
c906108c
SS
4142 }
4143 else
4144 {
4145 if (info_verbose)
4146 {
a3f17187 4147 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
c906108c
SS
4148 gdb_flush (gdb_stdout);
4149 }
4150
10b3939b
DJ
4151 /* Restore our global data. */
4152 dwarf2_per_objfile = objfile_data (pst->objfile,
4153 dwarf2_objfile_data_key);
4154
b2ab525c
KB
4155 /* If this psymtab is constructed from a debug-only objfile, the
4156 has_section_at_zero flag will not necessarily be correct. We
4157 can get the correct value for this flag by looking at the data
4158 associated with the (presumably stripped) associated objfile. */
4159 if (pst->objfile->separate_debug_objfile_backlink)
4160 {
4161 struct dwarf2_per_objfile *dpo_backlink
4162 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4163 dwarf2_objfile_data_key);
9a619af0 4164
b2ab525c
KB
4165 dwarf2_per_objfile->has_section_at_zero
4166 = dpo_backlink->has_section_at_zero;
4167 }
4168
98bfdba5
PA
4169 dwarf2_per_objfile->reading_partial_symbols = 0;
4170
c906108c
SS
4171 psymtab_to_symtab_1 (pst);
4172
4173 /* Finish up the debug error message. */
4174 if (info_verbose)
a3f17187 4175 printf_filtered (_("done.\n"));
c906108c
SS
4176 }
4177 }
4178}
4179
10b3939b
DJ
4180/* Add PER_CU to the queue. */
4181
4182static void
03dd20cc 4183queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b
DJ
4184{
4185 struct dwarf2_queue_item *item;
4186
4187 per_cu->queued = 1;
4188 item = xmalloc (sizeof (*item));
4189 item->per_cu = per_cu;
4190 item->next = NULL;
4191
4192 if (dwarf2_queue == NULL)
4193 dwarf2_queue = item;
4194 else
4195 dwarf2_queue_tail->next = item;
4196
4197 dwarf2_queue_tail = item;
4198}
4199
4200/* Process the queue. */
4201
4202static void
4203process_queue (struct objfile *objfile)
4204{
4205 struct dwarf2_queue_item *item, *next_item;
4206
03dd20cc
DJ
4207 /* The queue starts out with one item, but following a DIE reference
4208 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
4209 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4210 {
9291a0cd
TT
4211 if (dwarf2_per_objfile->using_index
4212 ? !item->per_cu->v.quick->symtab
4213 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
10b3939b
DJ
4214 process_full_comp_unit (item->per_cu);
4215
4216 item->per_cu->queued = 0;
4217 next_item = item->next;
4218 xfree (item);
4219 }
4220
4221 dwarf2_queue_tail = NULL;
4222}
4223
4224/* Free all allocated queue entries. This function only releases anything if
4225 an error was thrown; if the queue was processed then it would have been
4226 freed as we went along. */
4227
4228static void
4229dwarf2_release_queue (void *dummy)
4230{
4231 struct dwarf2_queue_item *item, *last;
4232
4233 item = dwarf2_queue;
4234 while (item)
4235 {
4236 /* Anything still marked queued is likely to be in an
4237 inconsistent state, so discard it. */
4238 if (item->per_cu->queued)
4239 {
4240 if (item->per_cu->cu != NULL)
4241 free_one_cached_comp_unit (item->per_cu->cu);
4242 item->per_cu->queued = 0;
4243 }
4244
4245 last = item;
4246 item = item->next;
4247 xfree (last);
4248 }
4249
4250 dwarf2_queue = dwarf2_queue_tail = NULL;
4251}
4252
4253/* Read in full symbols for PST, and anything it depends on. */
4254
c906108c 4255static void
fba45db2 4256psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 4257{
10b3939b 4258 struct dwarf2_per_cu_data *per_cu;
c906108c 4259 struct cleanup *back_to;
aaa75496
JB
4260 int i;
4261
4262 for (i = 0; i < pst->number_of_dependencies; i++)
4263 if (!pst->dependencies[i]->readin)
4264 {
4265 /* Inform about additional files that need to be read in. */
4266 if (info_verbose)
4267 {
a3f17187 4268 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
4269 fputs_filtered (" ", gdb_stdout);
4270 wrap_here ("");
4271 fputs_filtered ("and ", gdb_stdout);
4272 wrap_here ("");
4273 printf_filtered ("%s...", pst->dependencies[i]->filename);
4274 wrap_here (""); /* Flush output */
4275 gdb_flush (gdb_stdout);
4276 }
4277 psymtab_to_symtab_1 (pst->dependencies[i]);
4278 }
4279
e38df1d0 4280 per_cu = pst->read_symtab_private;
10b3939b
DJ
4281
4282 if (per_cu == NULL)
aaa75496
JB
4283 {
4284 /* It's an include file, no symbols to read for it.
4285 Everything is in the parent symtab. */
4286 pst->readin = 1;
4287 return;
4288 }
c906108c 4289
9291a0cd 4290 dw2_do_instantiate_symtab (pst->objfile, per_cu);
10b3939b
DJ
4291}
4292
93311388 4293/* Load the DIEs associated with PER_CU into memory. */
10b3939b 4294
93311388 4295static void
31ffec48 4296load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b 4297{
31ffec48 4298 bfd *abfd = objfile->obfd;
10b3939b 4299 struct dwarf2_cu *cu;
c764a876 4300 unsigned int offset;
93311388 4301 gdb_byte *info_ptr, *beg_of_comp_unit;
98bfdba5 4302 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
10b3939b 4303 struct attribute *attr;
98bfdba5 4304 int read_cu = 0;
6502dd73 4305
348e048f
DE
4306 gdb_assert (! per_cu->from_debug_types);
4307
c906108c 4308 /* Set local variables from the partial symbol table info. */
10b3939b 4309 offset = per_cu->offset;
6502dd73 4310
be391dca 4311 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
dce234bc 4312 info_ptr = dwarf2_per_objfile->info.buffer + offset;
93311388 4313 beg_of_comp_unit = info_ptr;
63d06c5c 4314
98bfdba5
PA
4315 if (per_cu->cu == NULL)
4316 {
4317 cu = alloc_one_comp_unit (objfile);
4318
4319 read_cu = 1;
c906108c 4320
98bfdba5
PA
4321 /* If an error occurs while loading, release our storage. */
4322 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 4323
98bfdba5
PA
4324 /* Read in the comp_unit header. */
4325 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c 4326
98bfdba5
PA
4327 /* Complete the cu_header. */
4328 cu->header.offset = offset;
4329 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
93311388 4330
98bfdba5
PA
4331 /* Read the abbrevs for this compilation unit. */
4332 dwarf2_read_abbrevs (abfd, cu);
4333 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
10b3939b 4334
98bfdba5
PA
4335 /* Link this compilation unit into the compilation unit tree. */
4336 per_cu->cu = cu;
4337 cu->per_cu = per_cu;
98bfdba5
PA
4338
4339 /* Link this CU into read_in_chain. */
4340 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4341 dwarf2_per_objfile->read_in_chain = per_cu;
4342 }
4343 else
4344 {
4345 cu = per_cu->cu;
4346 info_ptr += cu->header.first_die_offset;
4347 }
e142c38c 4348
93311388 4349 cu->dies = read_comp_unit (info_ptr, cu);
10b3939b
DJ
4350
4351 /* We try not to read any attributes in this function, because not
4352 all objfiles needed for references have been loaded yet, and symbol
4353 table processing isn't initialized. But we have to set the CU language,
4354 or we won't be able to build types correctly. */
4355 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
4356 if (attr)
4357 set_cu_language (DW_UNSND (attr), cu);
4358 else
4359 set_cu_language (language_minimal, cu);
4360
a6c727b2
DJ
4361 /* Similarly, if we do not read the producer, we can not apply
4362 producer-specific interpretation. */
4363 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4364 if (attr)
4365 cu->producer = DW_STRING (attr);
4366
98bfdba5
PA
4367 if (read_cu)
4368 {
4369 do_cleanups (free_abbrevs_cleanup);
e142c38c 4370
98bfdba5
PA
4371 /* We've successfully allocated this compilation unit. Let our
4372 caller clean it up when finished with it. */
4373 discard_cleanups (free_cu_cleanup);
4374 }
10b3939b
DJ
4375}
4376
3da10d80
KS
4377/* Add a DIE to the delayed physname list. */
4378
4379static void
4380add_to_method_list (struct type *type, int fnfield_index, int index,
4381 const char *name, struct die_info *die,
4382 struct dwarf2_cu *cu)
4383{
4384 struct delayed_method_info mi;
4385 mi.type = type;
4386 mi.fnfield_index = fnfield_index;
4387 mi.index = index;
4388 mi.name = name;
4389 mi.die = die;
4390 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4391}
4392
4393/* A cleanup for freeing the delayed method list. */
4394
4395static void
4396free_delayed_list (void *ptr)
4397{
4398 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4399 if (cu->method_list != NULL)
4400 {
4401 VEC_free (delayed_method_info, cu->method_list);
4402 cu->method_list = NULL;
4403 }
4404}
4405
4406/* Compute the physnames of any methods on the CU's method list.
4407
4408 The computation of method physnames is delayed in order to avoid the
4409 (bad) condition that one of the method's formal parameters is of an as yet
4410 incomplete type. */
4411
4412static void
4413compute_delayed_physnames (struct dwarf2_cu *cu)
4414{
4415 int i;
4416 struct delayed_method_info *mi;
4417 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4418 {
4419 char *physname;
4420 struct fn_fieldlist *fn_flp
4421 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4422 physname = (char *) dwarf2_physname ((char *) mi->name, mi->die, cu);
4423 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4424 }
4425}
4426
10b3939b
DJ
4427/* Generate full symbol information for PST and CU, whose DIEs have
4428 already been loaded into memory. */
4429
4430static void
4431process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4432{
10b3939b 4433 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 4434 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
4435 CORE_ADDR lowpc, highpc;
4436 struct symtab *symtab;
3da10d80 4437 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b
DJ
4438 CORE_ADDR baseaddr;
4439
4440 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4441
10b3939b
DJ
4442 buildsym_init ();
4443 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 4444 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
4445
4446 cu->list_in_scope = &file_symbols;
c906108c 4447
d85a05f0 4448 dwarf2_find_base_address (cu->dies, cu);
0d53c4c4 4449
c906108c 4450 /* Do line number decoding in read_file_scope () */
10b3939b 4451 process_die (cu->dies, cu);
c906108c 4452
3da10d80
KS
4453 /* Now that we have processed all the DIEs in the CU, all the types
4454 should be complete, and it should now be safe to compute all of the
4455 physnames. */
4456 compute_delayed_physnames (cu);
4457 do_cleanups (delayed_list_cleanup);
4458
fae299cd
DC
4459 /* Some compilers don't define a DW_AT_high_pc attribute for the
4460 compilation unit. If the DW_AT_high_pc is missing, synthesize
4461 it, by scanning the DIE's below the compilation unit. */
10b3939b 4462 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 4463
613e1657 4464 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
4465
4466 /* Set symtab language to language from DW_AT_language.
4467 If the compilation is from a C file generated by language preprocessors,
4468 do not set the language if it was already deduced by start_subfile. */
4469 if (symtab != NULL
10b3939b 4470 && !(cu->language == language_c && symtab->language != language_c))
c906108c 4471 {
10b3939b 4472 symtab->language = cu->language;
c906108c 4473 }
9291a0cd
TT
4474
4475 if (dwarf2_per_objfile->using_index)
4476 per_cu->v.quick->symtab = symtab;
4477 else
4478 {
4479 struct partial_symtab *pst = per_cu->v.psymtab;
4480 pst->symtab = symtab;
4481 pst->readin = 1;
4482 }
c906108c
SS
4483
4484 do_cleanups (back_to);
4485}
4486
4487/* Process a die and its children. */
4488
4489static void
e7c27a73 4490process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4491{
4492 switch (die->tag)
4493 {
4494 case DW_TAG_padding:
4495 break;
4496 case DW_TAG_compile_unit:
e7c27a73 4497 read_file_scope (die, cu);
c906108c 4498 break;
348e048f
DE
4499 case DW_TAG_type_unit:
4500 read_type_unit_scope (die, cu);
4501 break;
c906108c 4502 case DW_TAG_subprogram:
c906108c 4503 case DW_TAG_inlined_subroutine:
edb3359d 4504 read_func_scope (die, cu);
c906108c
SS
4505 break;
4506 case DW_TAG_lexical_block:
14898363
L
4507 case DW_TAG_try_block:
4508 case DW_TAG_catch_block:
e7c27a73 4509 read_lexical_block_scope (die, cu);
c906108c
SS
4510 break;
4511 case DW_TAG_class_type:
680b30c7 4512 case DW_TAG_interface_type:
c906108c
SS
4513 case DW_TAG_structure_type:
4514 case DW_TAG_union_type:
134d01f1 4515 process_structure_scope (die, cu);
c906108c
SS
4516 break;
4517 case DW_TAG_enumeration_type:
134d01f1 4518 process_enumeration_scope (die, cu);
c906108c 4519 break;
134d01f1 4520
f792889a
DJ
4521 /* These dies have a type, but processing them does not create
4522 a symbol or recurse to process the children. Therefore we can
4523 read them on-demand through read_type_die. */
c906108c 4524 case DW_TAG_subroutine_type:
72019c9c 4525 case DW_TAG_set_type:
c906108c 4526 case DW_TAG_array_type:
c906108c 4527 case DW_TAG_pointer_type:
c906108c 4528 case DW_TAG_ptr_to_member_type:
c906108c 4529 case DW_TAG_reference_type:
c906108c 4530 case DW_TAG_string_type:
c906108c 4531 break;
134d01f1 4532
c906108c 4533 case DW_TAG_base_type:
a02abb62 4534 case DW_TAG_subrange_type:
cb249c71 4535 case DW_TAG_typedef:
134d01f1
DJ
4536 /* Add a typedef symbol for the type definition, if it has a
4537 DW_AT_name. */
f792889a 4538 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 4539 break;
c906108c 4540 case DW_TAG_common_block:
e7c27a73 4541 read_common_block (die, cu);
c906108c
SS
4542 break;
4543 case DW_TAG_common_inclusion:
4544 break;
d9fa45fe 4545 case DW_TAG_namespace:
63d06c5c 4546 processing_has_namespace_info = 1;
e7c27a73 4547 read_namespace (die, cu);
d9fa45fe 4548 break;
5d7cb8df 4549 case DW_TAG_module:
f55ee35c 4550 processing_has_namespace_info = 1;
5d7cb8df
JK
4551 read_module (die, cu);
4552 break;
d9fa45fe
DC
4553 case DW_TAG_imported_declaration:
4554 case DW_TAG_imported_module:
63d06c5c 4555 processing_has_namespace_info = 1;
27aa8d6a
SW
4556 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4557 || cu->language != language_fortran))
4558 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4559 dwarf_tag_name (die->tag));
4560 read_import_statement (die, cu);
d9fa45fe 4561 break;
c906108c 4562 default:
e7c27a73 4563 new_symbol (die, NULL, cu);
c906108c
SS
4564 break;
4565 }
4566}
4567
94af9270
KS
4568/* A helper function for dwarf2_compute_name which determines whether DIE
4569 needs to have the name of the scope prepended to the name listed in the
4570 die. */
4571
4572static int
4573die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4574{
1c809c68
TT
4575 struct attribute *attr;
4576
94af9270
KS
4577 switch (die->tag)
4578 {
4579 case DW_TAG_namespace:
4580 case DW_TAG_typedef:
4581 case DW_TAG_class_type:
4582 case DW_TAG_interface_type:
4583 case DW_TAG_structure_type:
4584 case DW_TAG_union_type:
4585 case DW_TAG_enumeration_type:
4586 case DW_TAG_enumerator:
4587 case DW_TAG_subprogram:
4588 case DW_TAG_member:
4589 return 1;
4590
4591 case DW_TAG_variable:
c2b0a229 4592 case DW_TAG_constant:
94af9270
KS
4593 /* We only need to prefix "globally" visible variables. These include
4594 any variable marked with DW_AT_external or any variable that
4595 lives in a namespace. [Variables in anonymous namespaces
4596 require prefixing, but they are not DW_AT_external.] */
4597
4598 if (dwarf2_attr (die, DW_AT_specification, cu))
4599 {
4600 struct dwarf2_cu *spec_cu = cu;
9a619af0 4601
94af9270
KS
4602 return die_needs_namespace (die_specification (die, &spec_cu),
4603 spec_cu);
4604 }
4605
1c809c68 4606 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
4607 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4608 && die->parent->tag != DW_TAG_module)
1c809c68
TT
4609 return 0;
4610 /* A variable in a lexical block of some kind does not need a
4611 namespace, even though in C++ such variables may be external
4612 and have a mangled name. */
4613 if (die->parent->tag == DW_TAG_lexical_block
4614 || die->parent->tag == DW_TAG_try_block
1054b214
TT
4615 || die->parent->tag == DW_TAG_catch_block
4616 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
4617 return 0;
4618 return 1;
94af9270
KS
4619
4620 default:
4621 return 0;
4622 }
4623}
4624
98bfdba5
PA
4625/* Retrieve the last character from a mem_file. */
4626
4627static void
4628do_ui_file_peek_last (void *object, const char *buffer, long length)
4629{
4630 char *last_char_p = (char *) object;
4631
4632 if (length > 0)
4633 *last_char_p = buffer[length - 1];
4634}
4635
94af9270
KS
4636/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4637 compute the physname for the object, which include a method's
4638 formal parameters (C++/Java) and return type (Java).
4639
af6b7be1
JB
4640 For Ada, return the DIE's linkage name rather than the fully qualified
4641 name. PHYSNAME is ignored..
4642
94af9270
KS
4643 The result is allocated on the objfile_obstack and canonicalized. */
4644
4645static const char *
4646dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4647 int physname)
4648{
4649 if (name == NULL)
4650 name = dwarf2_name (die, cu);
4651
f55ee35c
JK
4652 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4653 compute it by typename_concat inside GDB. */
4654 if (cu->language == language_ada
4655 || (cu->language == language_fortran && physname))
4656 {
4657 /* For Ada unit, we prefer the linkage name over the name, as
4658 the former contains the exported name, which the user expects
4659 to be able to reference. Ideally, we want the user to be able
4660 to reference this entity using either natural or linkage name,
4661 but we haven't started looking at this enhancement yet. */
4662 struct attribute *attr;
4663
4664 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4665 if (attr == NULL)
4666 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4667 if (attr && DW_STRING (attr))
4668 return DW_STRING (attr);
4669 }
4670
94af9270
KS
4671 /* These are the only languages we know how to qualify names in. */
4672 if (name != NULL
f55ee35c
JK
4673 && (cu->language == language_cplus || cu->language == language_java
4674 || cu->language == language_fortran))
94af9270
KS
4675 {
4676 if (die_needs_namespace (die, cu))
4677 {
4678 long length;
4679 char *prefix;
4680 struct ui_file *buf;
4681
4682 prefix = determine_prefix (die, cu);
4683 buf = mem_fileopen ();
4684 if (*prefix != '\0')
4685 {
f55ee35c
JK
4686 char *prefixed_name = typename_concat (NULL, prefix, name,
4687 physname, cu);
9a619af0 4688
94af9270
KS
4689 fputs_unfiltered (prefixed_name, buf);
4690 xfree (prefixed_name);
4691 }
4692 else
4693 fputs_unfiltered (name ? name : "", buf);
4694
98bfdba5
PA
4695 /* Template parameters may be specified in the DIE's DW_AT_name, or
4696 as children with DW_TAG_template_type_param or
4697 DW_TAG_value_type_param. If the latter, add them to the name
4698 here. If the name already has template parameters, then
4699 skip this step; some versions of GCC emit both, and
4700 it is more efficient to use the pre-computed name.
4701
4702 Something to keep in mind about this process: it is very
4703 unlikely, or in some cases downright impossible, to produce
4704 something that will match the mangled name of a function.
4705 If the definition of the function has the same debug info,
4706 we should be able to match up with it anyway. But fallbacks
4707 using the minimal symbol, for instance to find a method
4708 implemented in a stripped copy of libstdc++, will not work.
4709 If we do not have debug info for the definition, we will have to
4710 match them up some other way.
4711
4712 When we do name matching there is a related problem with function
4713 templates; two instantiated function templates are allowed to
4714 differ only by their return types, which we do not add here. */
4715
4716 if (cu->language == language_cplus && strchr (name, '<') == NULL)
4717 {
4718 struct attribute *attr;
4719 struct die_info *child;
4720 int first = 1;
4721
4722 die->building_fullname = 1;
4723
4724 for (child = die->child; child != NULL; child = child->sibling)
4725 {
4726 struct type *type;
4727 long value;
4728 gdb_byte *bytes;
4729 struct dwarf2_locexpr_baton *baton;
4730 struct value *v;
4731
4732 if (child->tag != DW_TAG_template_type_param
4733 && child->tag != DW_TAG_template_value_param)
4734 continue;
4735
4736 if (first)
4737 {
4738 fputs_unfiltered ("<", buf);
4739 first = 0;
4740 }
4741 else
4742 fputs_unfiltered (", ", buf);
4743
4744 attr = dwarf2_attr (child, DW_AT_type, cu);
4745 if (attr == NULL)
4746 {
4747 complaint (&symfile_complaints,
4748 _("template parameter missing DW_AT_type"));
4749 fputs_unfiltered ("UNKNOWN_TYPE", buf);
4750 continue;
4751 }
4752 type = die_type (child, cu);
4753
4754 if (child->tag == DW_TAG_template_type_param)
4755 {
4756 c_print_type (type, "", buf, -1, 0);
4757 continue;
4758 }
4759
4760 attr = dwarf2_attr (child, DW_AT_const_value, cu);
4761 if (attr == NULL)
4762 {
4763 complaint (&symfile_complaints,
4764 _("template parameter missing DW_AT_const_value"));
4765 fputs_unfiltered ("UNKNOWN_VALUE", buf);
4766 continue;
4767 }
4768
4769 dwarf2_const_value_attr (attr, type, name,
4770 &cu->comp_unit_obstack, cu,
4771 &value, &bytes, &baton);
4772
4773 if (TYPE_NOSIGN (type))
4774 /* GDB prints characters as NUMBER 'CHAR'. If that's
4775 changed, this can use value_print instead. */
4776 c_printchar (value, type, buf);
4777 else
4778 {
4779 struct value_print_options opts;
4780
4781 if (baton != NULL)
4782 v = dwarf2_evaluate_loc_desc (type, NULL,
4783 baton->data,
4784 baton->size,
4785 baton->per_cu);
4786 else if (bytes != NULL)
4787 {
4788 v = allocate_value (type);
4789 memcpy (value_contents_writeable (v), bytes,
4790 TYPE_LENGTH (type));
4791 }
4792 else
4793 v = value_from_longest (type, value);
4794
4795 /* Specify decimal so that we do not depend on the radix. */
4796 get_formatted_print_options (&opts, 'd');
4797 opts.raw = 1;
4798 value_print (v, buf, &opts);
4799 release_value (v);
4800 value_free (v);
4801 }
4802 }
4803
4804 die->building_fullname = 0;
4805
4806 if (!first)
4807 {
4808 /* Close the argument list, with a space if necessary
4809 (nested templates). */
4810 char last_char = '\0';
4811 ui_file_put (buf, do_ui_file_peek_last, &last_char);
4812 if (last_char == '>')
4813 fputs_unfiltered (" >", buf);
4814 else
4815 fputs_unfiltered (">", buf);
4816 }
4817 }
4818
94af9270
KS
4819 /* For Java and C++ methods, append formal parameter type
4820 information, if PHYSNAME. */
6e70227d 4821
94af9270
KS
4822 if (physname && die->tag == DW_TAG_subprogram
4823 && (cu->language == language_cplus
4824 || cu->language == language_java))
4825 {
4826 struct type *type = read_type_die (die, cu);
4827
4828 c_type_print_args (type, buf, 0, cu->language);
4829
4830 if (cu->language == language_java)
4831 {
4832 /* For java, we must append the return type to method
4833 names. */
4834 if (die->tag == DW_TAG_subprogram)
4835 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
4836 0, 0);
4837 }
4838 else if (cu->language == language_cplus)
4839 {
60430eff
DJ
4840 /* Assume that an artificial first parameter is
4841 "this", but do not crash if it is not. RealView
4842 marks unnamed (and thus unused) parameters as
4843 artificial; there is no way to differentiate
4844 the two cases. */
94af9270
KS
4845 if (TYPE_NFIELDS (type) > 0
4846 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 4847 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
94af9270
KS
4848 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0))))
4849 fputs_unfiltered (" const", buf);
4850 }
4851 }
4852
4853 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
4854 &length);
4855 ui_file_delete (buf);
4856
4857 if (cu->language == language_cplus)
4858 {
4859 char *cname
4860 = dwarf2_canonicalize_name (name, cu,
4861 &cu->objfile->objfile_obstack);
9a619af0 4862
94af9270
KS
4863 if (cname != NULL)
4864 name = cname;
4865 }
4866 }
4867 }
4868
4869 return name;
4870}
4871
0114d602
DJ
4872/* Return the fully qualified name of DIE, based on its DW_AT_name.
4873 If scope qualifiers are appropriate they will be added. The result
4874 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
4875 not have a name. NAME may either be from a previous call to
4876 dwarf2_name or NULL.
4877
4878 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
4879
4880static const char *
94af9270 4881dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 4882{
94af9270
KS
4883 return dwarf2_compute_name (name, die, cu, 0);
4884}
0114d602 4885
94af9270
KS
4886/* Construct a physname for the given DIE in CU. NAME may either be
4887 from a previous call to dwarf2_name or NULL. The result will be
4888 allocated on the objfile_objstack or NULL if the DIE does not have a
4889 name.
0114d602 4890
94af9270 4891 The output string will be canonicalized (if C++/Java). */
0114d602 4892
94af9270
KS
4893static const char *
4894dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
4895{
4896 return dwarf2_compute_name (name, die, cu, 1);
0114d602
DJ
4897}
4898
27aa8d6a
SW
4899/* Read the import statement specified by the given die and record it. */
4900
4901static void
4902read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
4903{
4904 struct attribute *import_attr;
4905 struct die_info *imported_die;
de4affc9 4906 struct dwarf2_cu *imported_cu;
27aa8d6a 4907 const char *imported_name;
794684b6 4908 const char *imported_name_prefix;
13387711
SW
4909 const char *canonical_name;
4910 const char *import_alias;
4911 const char *imported_declaration = NULL;
794684b6 4912 const char *import_prefix;
13387711
SW
4913
4914 char *temp;
27aa8d6a
SW
4915
4916 import_attr = dwarf2_attr (die, DW_AT_import, cu);
4917 if (import_attr == NULL)
4918 {
4919 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
4920 dwarf_tag_name (die->tag));
4921 return;
4922 }
4923
de4affc9
CC
4924 imported_cu = cu;
4925 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
4926 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
4927 if (imported_name == NULL)
4928 {
4929 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
4930
4931 The import in the following code:
4932 namespace A
4933 {
4934 typedef int B;
4935 }
4936
4937 int main ()
4938 {
4939 using A::B;
4940 B b;
4941 return b;
4942 }
4943
4944 ...
4945 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
4946 <52> DW_AT_decl_file : 1
4947 <53> DW_AT_decl_line : 6
4948 <54> DW_AT_import : <0x75>
4949 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
4950 <59> DW_AT_name : B
4951 <5b> DW_AT_decl_file : 1
4952 <5c> DW_AT_decl_line : 2
4953 <5d> DW_AT_type : <0x6e>
4954 ...
4955 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
4956 <76> DW_AT_byte_size : 4
4957 <77> DW_AT_encoding : 5 (signed)
4958
4959 imports the wrong die ( 0x75 instead of 0x58 ).
4960 This case will be ignored until the gcc bug is fixed. */
4961 return;
4962 }
4963
82856980
SW
4964 /* Figure out the local name after import. */
4965 import_alias = dwarf2_name (die, cu);
27aa8d6a 4966
794684b6
SW
4967 /* Figure out where the statement is being imported to. */
4968 import_prefix = determine_prefix (die, cu);
4969
4970 /* Figure out what the scope of the imported die is and prepend it
4971 to the name of the imported die. */
de4affc9 4972 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 4973
f55ee35c
JK
4974 if (imported_die->tag != DW_TAG_namespace
4975 && imported_die->tag != DW_TAG_module)
794684b6 4976 {
13387711
SW
4977 imported_declaration = imported_name;
4978 canonical_name = imported_name_prefix;
794684b6 4979 }
13387711 4980 else if (strlen (imported_name_prefix) > 0)
794684b6 4981 {
13387711
SW
4982 temp = alloca (strlen (imported_name_prefix)
4983 + 2 + strlen (imported_name) + 1);
4984 strcpy (temp, imported_name_prefix);
4985 strcat (temp, "::");
4986 strcat (temp, imported_name);
4987 canonical_name = temp;
794684b6 4988 }
13387711
SW
4989 else
4990 canonical_name = imported_name;
794684b6 4991
c0cc3a76
SW
4992 cp_add_using_directive (import_prefix,
4993 canonical_name,
4994 import_alias,
13387711 4995 imported_declaration,
c0cc3a76 4996 &cu->objfile->objfile_obstack);
27aa8d6a
SW
4997}
4998
5fb290d7 4999static void
e142c38c 5000initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 5001{
e142c38c 5002 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
5003}
5004
cb1df416
DJ
5005static void
5006free_cu_line_header (void *arg)
5007{
5008 struct dwarf2_cu *cu = arg;
5009
5010 free_line_header (cu->line_header);
5011 cu->line_header = NULL;
5012}
5013
9291a0cd
TT
5014static void
5015find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5016 char **name, char **comp_dir)
5017{
5018 struct attribute *attr;
5019
5020 *name = NULL;
5021 *comp_dir = NULL;
5022
5023 /* Find the filename. Do not use dwarf2_name here, since the filename
5024 is not a source language identifier. */
5025 attr = dwarf2_attr (die, DW_AT_name, cu);
5026 if (attr)
5027 {
5028 *name = DW_STRING (attr);
5029 }
5030
5031 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5032 if (attr)
5033 *comp_dir = DW_STRING (attr);
5034 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5035 {
5036 *comp_dir = ldirname (*name);
5037 if (*comp_dir != NULL)
5038 make_cleanup (xfree, *comp_dir);
5039 }
5040 if (*comp_dir != NULL)
5041 {
5042 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5043 directory, get rid of it. */
5044 char *cp = strchr (*comp_dir, ':');
5045
5046 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5047 *comp_dir = cp + 1;
5048 }
5049
5050 if (*name == NULL)
5051 *name = "<unknown>";
5052}
5053
c906108c 5054static void
e7c27a73 5055read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5056{
e7c27a73 5057 struct objfile *objfile = cu->objfile;
debd256d 5058 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 5059 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
5060 CORE_ADDR highpc = ((CORE_ADDR) 0);
5061 struct attribute *attr;
e1024ff1 5062 char *name = NULL;
c906108c
SS
5063 char *comp_dir = NULL;
5064 struct die_info *child_die;
5065 bfd *abfd = objfile->obfd;
debd256d 5066 struct line_header *line_header = 0;
e142c38c 5067 CORE_ADDR baseaddr;
6e70227d 5068
e142c38c 5069 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 5070
fae299cd 5071 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
5072
5073 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5074 from finish_block. */
2acceee2 5075 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
5076 lowpc = highpc;
5077 lowpc += baseaddr;
5078 highpc += baseaddr;
5079
9291a0cd 5080 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 5081
e142c38c 5082 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
5083 if (attr)
5084 {
e142c38c 5085 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
5086 }
5087
b0f35d58 5088 attr = dwarf2_attr (die, DW_AT_producer, cu);
6e70227d 5089 if (attr)
b0f35d58 5090 cu->producer = DW_STRING (attr);
303b6f5d 5091
c906108c
SS
5092 /* We assume that we're processing GCC output. */
5093 processing_gcc_compilation = 2;
c906108c 5094
df8a16a1
DJ
5095 processing_has_namespace_info = 0;
5096
c906108c
SS
5097 start_symtab (name, comp_dir, lowpc);
5098 record_debugformat ("DWARF 2");
303b6f5d 5099 record_producer (cu->producer);
c906108c 5100
e142c38c 5101 initialize_cu_func_list (cu);
c906108c 5102
cb1df416
DJ
5103 /* Decode line number information if present. We do this before
5104 processing child DIEs, so that the line header table is available
5105 for DW_AT_decl_file. */
e142c38c 5106 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
5107 if (attr)
5108 {
debd256d 5109 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 5110 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
5111 if (line_header)
5112 {
cb1df416
DJ
5113 cu->line_header = line_header;
5114 make_cleanup (free_cu_line_header, cu);
aaa75496 5115 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 5116 }
5fb290d7 5117 }
debd256d 5118
cb1df416
DJ
5119 /* Process all dies in compilation unit. */
5120 if (die->child != NULL)
5121 {
5122 child_die = die->child;
5123 while (child_die && child_die->tag)
5124 {
5125 process_die (child_die, cu);
5126 child_die = sibling_die (child_die);
5127 }
5128 }
5129
2e276125
JB
5130 /* Decode macro information, if present. Dwarf 2 macro information
5131 refers to information in the line number info statement program
5132 header, so we can only read it if we've read the header
5133 successfully. */
e142c38c 5134 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 5135 if (attr && line_header)
2e276125
JB
5136 {
5137 unsigned int macro_offset = DW_UNSND (attr);
9a619af0 5138
2e276125 5139 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 5140 comp_dir, abfd, cu);
2e276125 5141 }
debd256d 5142 do_cleanups (back_to);
5fb290d7
DJ
5143}
5144
348e048f
DE
5145/* For TUs we want to skip the first top level sibling if it's not the
5146 actual type being defined by this TU. In this case the first top
5147 level sibling is there to provide context only. */
5148
5149static void
5150read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5151{
5152 struct objfile *objfile = cu->objfile;
5153 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5154 CORE_ADDR lowpc;
5155 struct attribute *attr;
5156 char *name = NULL;
5157 char *comp_dir = NULL;
5158 struct die_info *child_die;
5159 bfd *abfd = objfile->obfd;
348e048f
DE
5160
5161 /* start_symtab needs a low pc, but we don't really have one.
5162 Do what read_file_scope would do in the absence of such info. */
5163 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5164
5165 /* Find the filename. Do not use dwarf2_name here, since the filename
5166 is not a source language identifier. */
5167 attr = dwarf2_attr (die, DW_AT_name, cu);
5168 if (attr)
5169 name = DW_STRING (attr);
5170
5171 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5172 if (attr)
5173 comp_dir = DW_STRING (attr);
5174 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5175 {
5176 comp_dir = ldirname (name);
5177 if (comp_dir != NULL)
5178 make_cleanup (xfree, comp_dir);
5179 }
5180
5181 if (name == NULL)
5182 name = "<unknown>";
5183
5184 attr = dwarf2_attr (die, DW_AT_language, cu);
5185 if (attr)
5186 set_cu_language (DW_UNSND (attr), cu);
5187
5188 /* This isn't technically needed today. It is done for symmetry
5189 with read_file_scope. */
5190 attr = dwarf2_attr (die, DW_AT_producer, cu);
6e70227d 5191 if (attr)
348e048f
DE
5192 cu->producer = DW_STRING (attr);
5193
5194 /* We assume that we're processing GCC output. */
5195 processing_gcc_compilation = 2;
5196
5197 processing_has_namespace_info = 0;
5198
5199 start_symtab (name, comp_dir, lowpc);
5200 record_debugformat ("DWARF 2");
5201 record_producer (cu->producer);
5202
5203 /* Process the dies in the type unit. */
5204 if (die->child == NULL)
5205 {
5206 dump_die_for_error (die);
5207 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5208 bfd_get_filename (abfd));
5209 }
5210
5211 child_die = die->child;
5212
5213 while (child_die && child_die->tag)
5214 {
5215 process_die (child_die, cu);
5216
5217 child_die = sibling_die (child_die);
5218 }
5219
5220 do_cleanups (back_to);
5221}
5222
5fb290d7 5223static void
e142c38c
DJ
5224add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5225 struct dwarf2_cu *cu)
5fb290d7
DJ
5226{
5227 struct function_range *thisfn;
5228
5229 thisfn = (struct function_range *)
7b5a2f43 5230 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
5231 thisfn->name = name;
5232 thisfn->lowpc = lowpc;
5233 thisfn->highpc = highpc;
5234 thisfn->seen_line = 0;
5235 thisfn->next = NULL;
5236
e142c38c
DJ
5237 if (cu->last_fn == NULL)
5238 cu->first_fn = thisfn;
5fb290d7 5239 else
e142c38c 5240 cu->last_fn->next = thisfn;
5fb290d7 5241
e142c38c 5242 cu->last_fn = thisfn;
c906108c
SS
5243}
5244
d389af10
JK
5245/* qsort helper for inherit_abstract_dies. */
5246
5247static int
5248unsigned_int_compar (const void *ap, const void *bp)
5249{
5250 unsigned int a = *(unsigned int *) ap;
5251 unsigned int b = *(unsigned int *) bp;
5252
5253 return (a > b) - (b > a);
5254}
5255
5256/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5257 Inherit only the children of the DW_AT_abstract_origin DIE not being already
5258 referenced by DW_AT_abstract_origin from the children of the current DIE. */
5259
5260static void
5261inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5262{
5263 struct die_info *child_die;
5264 unsigned die_children_count;
5265 /* CU offsets which were referenced by children of the current DIE. */
5266 unsigned *offsets;
5267 unsigned *offsets_end, *offsetp;
5268 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5269 struct die_info *origin_die;
5270 /* Iterator of the ORIGIN_DIE children. */
5271 struct die_info *origin_child_die;
5272 struct cleanup *cleanups;
5273 struct attribute *attr;
cd02d79d
PA
5274 struct dwarf2_cu *origin_cu;
5275 struct pending **origin_previous_list_in_scope;
d389af10
JK
5276
5277 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5278 if (!attr)
5279 return;
5280
cd02d79d
PA
5281 /* Note that following die references may follow to a die in a
5282 different cu. */
5283
5284 origin_cu = cu;
5285 origin_die = follow_die_ref (die, attr, &origin_cu);
5286
5287 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5288 symbols in. */
5289 origin_previous_list_in_scope = origin_cu->list_in_scope;
5290 origin_cu->list_in_scope = cu->list_in_scope;
5291
edb3359d
DJ
5292 if (die->tag != origin_die->tag
5293 && !(die->tag == DW_TAG_inlined_subroutine
5294 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
5295 complaint (&symfile_complaints,
5296 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5297 die->offset, origin_die->offset);
5298
5299 child_die = die->child;
5300 die_children_count = 0;
5301 while (child_die && child_die->tag)
5302 {
5303 child_die = sibling_die (child_die);
5304 die_children_count++;
5305 }
5306 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5307 cleanups = make_cleanup (xfree, offsets);
5308
5309 offsets_end = offsets;
5310 child_die = die->child;
5311 while (child_die && child_die->tag)
5312 {
c38f313d
DJ
5313 /* For each CHILD_DIE, find the corresponding child of
5314 ORIGIN_DIE. If there is more than one layer of
5315 DW_AT_abstract_origin, follow them all; there shouldn't be,
5316 but GCC versions at least through 4.4 generate this (GCC PR
5317 40573). */
5318 struct die_info *child_origin_die = child_die;
cd02d79d 5319 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 5320
c38f313d
DJ
5321 while (1)
5322 {
cd02d79d
PA
5323 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5324 child_origin_cu);
c38f313d
DJ
5325 if (attr == NULL)
5326 break;
cd02d79d
PA
5327 child_origin_die = follow_die_ref (child_origin_die, attr,
5328 &child_origin_cu);
c38f313d
DJ
5329 }
5330
d389af10
JK
5331 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5332 counterpart may exist. */
c38f313d 5333 if (child_origin_die != child_die)
d389af10 5334 {
edb3359d
DJ
5335 if (child_die->tag != child_origin_die->tag
5336 && !(child_die->tag == DW_TAG_inlined_subroutine
5337 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
5338 complaint (&symfile_complaints,
5339 _("Child DIE 0x%x and its abstract origin 0x%x have "
5340 "different tags"), child_die->offset,
5341 child_origin_die->offset);
c38f313d
DJ
5342 if (child_origin_die->parent != origin_die)
5343 complaint (&symfile_complaints,
5344 _("Child DIE 0x%x and its abstract origin 0x%x have "
5345 "different parents"), child_die->offset,
5346 child_origin_die->offset);
5347 else
5348 *offsets_end++ = child_origin_die->offset;
d389af10
JK
5349 }
5350 child_die = sibling_die (child_die);
5351 }
5352 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5353 unsigned_int_compar);
5354 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5355 if (offsetp[-1] == *offsetp)
5356 complaint (&symfile_complaints, _("Multiple children of DIE 0x%x refer "
5357 "to DIE 0x%x as their abstract origin"),
5358 die->offset, *offsetp);
5359
5360 offsetp = offsets;
5361 origin_child_die = origin_die->child;
5362 while (origin_child_die && origin_child_die->tag)
5363 {
5364 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5365 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5366 offsetp++;
5367 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5368 {
5369 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
cd02d79d 5370 process_die (origin_child_die, origin_cu);
d389af10
JK
5371 }
5372 origin_child_die = sibling_die (origin_child_die);
5373 }
cd02d79d 5374 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
5375
5376 do_cleanups (cleanups);
5377}
5378
c906108c 5379static void
e7c27a73 5380read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5381{
e7c27a73 5382 struct objfile *objfile = cu->objfile;
52f0bd74 5383 struct context_stack *new;
c906108c
SS
5384 CORE_ADDR lowpc;
5385 CORE_ADDR highpc;
5386 struct die_info *child_die;
edb3359d 5387 struct attribute *attr, *call_line, *call_file;
c906108c 5388 char *name;
e142c38c 5389 CORE_ADDR baseaddr;
801e3a5b 5390 struct block *block;
edb3359d 5391 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
5392 VEC (symbolp) *template_args = NULL;
5393 struct template_symbol *templ_func = NULL;
edb3359d
DJ
5394
5395 if (inlined_func)
5396 {
5397 /* If we do not have call site information, we can't show the
5398 caller of this inlined function. That's too confusing, so
5399 only use the scope for local variables. */
5400 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5401 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5402 if (call_line == NULL || call_file == NULL)
5403 {
5404 read_lexical_block_scope (die, cu);
5405 return;
5406 }
5407 }
c906108c 5408
e142c38c
DJ
5409 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5410
94af9270 5411 name = dwarf2_name (die, cu);
c906108c 5412
e8d05480
JB
5413 /* Ignore functions with missing or empty names. These are actually
5414 illegal according to the DWARF standard. */
5415 if (name == NULL)
5416 {
5417 complaint (&symfile_complaints,
5418 _("missing name for subprogram DIE at %d"), die->offset);
5419 return;
5420 }
5421
5422 /* Ignore functions with missing or invalid low and high pc attributes. */
5423 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5424 {
ae4d0c03
PM
5425 attr = dwarf2_attr (die, DW_AT_external, cu);
5426 if (!attr || !DW_UNSND (attr))
5427 complaint (&symfile_complaints,
5428 _("cannot get low and high bounds for subprogram DIE at %d"),
5429 die->offset);
e8d05480
JB
5430 return;
5431 }
c906108c
SS
5432
5433 lowpc += baseaddr;
5434 highpc += baseaddr;
5435
5fb290d7 5436 /* Record the function range for dwarf_decode_lines. */
e142c38c 5437 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 5438
34eaf542
TT
5439 /* If we have any template arguments, then we must allocate a
5440 different sort of symbol. */
5441 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5442 {
5443 if (child_die->tag == DW_TAG_template_type_param
5444 || child_die->tag == DW_TAG_template_value_param)
5445 {
5446 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5447 struct template_symbol);
5448 templ_func->base.is_cplus_template_function = 1;
5449 break;
5450 }
5451 }
5452
c906108c 5453 new = push_context (0, lowpc);
34eaf542
TT
5454 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5455 (struct symbol *) templ_func);
4c2df51b 5456
4cecd739
DJ
5457 /* If there is a location expression for DW_AT_frame_base, record
5458 it. */
e142c38c 5459 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 5460 if (attr)
c034e007
AC
5461 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5462 expression is being recorded directly in the function's symbol
5463 and not in a separate frame-base object. I guess this hack is
5464 to avoid adding some sort of frame-base adjunct/annex to the
5465 function's symbol :-(. The problem with doing this is that it
5466 results in a function symbol with a location expression that
5467 has nothing to do with the location of the function, ouch! The
5468 relationship should be: a function's symbol has-a frame base; a
5469 frame-base has-a location expression. */
e7c27a73 5470 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 5471
e142c38c 5472 cu->list_in_scope = &local_symbols;
c906108c 5473
639d11d3 5474 if (die->child != NULL)
c906108c 5475 {
639d11d3 5476 child_die = die->child;
c906108c
SS
5477 while (child_die && child_die->tag)
5478 {
34eaf542
TT
5479 if (child_die->tag == DW_TAG_template_type_param
5480 || child_die->tag == DW_TAG_template_value_param)
5481 {
5482 struct symbol *arg = new_symbol (child_die, NULL, cu);
5483
f1078f66
DJ
5484 if (arg != NULL)
5485 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
5486 }
5487 else
5488 process_die (child_die, cu);
c906108c
SS
5489 child_die = sibling_die (child_die);
5490 }
5491 }
5492
d389af10
JK
5493 inherit_abstract_dies (die, cu);
5494
4a811a97
UW
5495 /* If we have a DW_AT_specification, we might need to import using
5496 directives from the context of the specification DIE. See the
5497 comment in determine_prefix. */
5498 if (cu->language == language_cplus
5499 && dwarf2_attr (die, DW_AT_specification, cu))
5500 {
5501 struct dwarf2_cu *spec_cu = cu;
5502 struct die_info *spec_die = die_specification (die, &spec_cu);
5503
5504 while (spec_die)
5505 {
5506 child_die = spec_die->child;
5507 while (child_die && child_die->tag)
5508 {
5509 if (child_die->tag == DW_TAG_imported_module)
5510 process_die (child_die, spec_cu);
5511 child_die = sibling_die (child_die);
5512 }
5513
5514 /* In some cases, GCC generates specification DIEs that
5515 themselves contain DW_AT_specification attributes. */
5516 spec_die = die_specification (spec_die, &spec_cu);
5517 }
5518 }
5519
c906108c
SS
5520 new = pop_context ();
5521 /* Make a block for the local symbols within. */
801e3a5b
JB
5522 block = finish_block (new->name, &local_symbols, new->old_blocks,
5523 lowpc, highpc, objfile);
5524
df8a16a1 5525 /* For C++, set the block's scope. */
f55ee35c 5526 if (cu->language == language_cplus || cu->language == language_fortran)
df8a16a1 5527 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
0114d602 5528 determine_prefix (die, cu),
df8a16a1
DJ
5529 processing_has_namespace_info);
5530
801e3a5b
JB
5531 /* If we have address ranges, record them. */
5532 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 5533
34eaf542
TT
5534 /* Attach template arguments to function. */
5535 if (! VEC_empty (symbolp, template_args))
5536 {
5537 gdb_assert (templ_func != NULL);
5538
5539 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
5540 templ_func->template_arguments
5541 = obstack_alloc (&objfile->objfile_obstack,
5542 (templ_func->n_template_arguments
5543 * sizeof (struct symbol *)));
5544 memcpy (templ_func->template_arguments,
5545 VEC_address (symbolp, template_args),
5546 (templ_func->n_template_arguments * sizeof (struct symbol *)));
5547 VEC_free (symbolp, template_args);
5548 }
5549
208d8187
JB
5550 /* In C++, we can have functions nested inside functions (e.g., when
5551 a function declares a class that has methods). This means that
5552 when we finish processing a function scope, we may need to go
5553 back to building a containing block's symbol lists. */
5554 local_symbols = new->locals;
5555 param_symbols = new->params;
27aa8d6a 5556 using_directives = new->using_directives;
208d8187 5557
921e78cf
JB
5558 /* If we've finished processing a top-level function, subsequent
5559 symbols go in the file symbol list. */
5560 if (outermost_context_p ())
e142c38c 5561 cu->list_in_scope = &file_symbols;
c906108c
SS
5562}
5563
5564/* Process all the DIES contained within a lexical block scope. Start
5565 a new scope, process the dies, and then close the scope. */
5566
5567static void
e7c27a73 5568read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5569{
e7c27a73 5570 struct objfile *objfile = cu->objfile;
52f0bd74 5571 struct context_stack *new;
c906108c
SS
5572 CORE_ADDR lowpc, highpc;
5573 struct die_info *child_die;
e142c38c
DJ
5574 CORE_ADDR baseaddr;
5575
5576 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
5577
5578 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
5579 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
5580 as multiple lexical blocks? Handling children in a sane way would
6e70227d 5581 be nasty. Might be easier to properly extend generic blocks to
af34e669 5582 describe ranges. */
d85a05f0 5583 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
5584 return;
5585 lowpc += baseaddr;
5586 highpc += baseaddr;
5587
5588 push_context (0, lowpc);
639d11d3 5589 if (die->child != NULL)
c906108c 5590 {
639d11d3 5591 child_die = die->child;
c906108c
SS
5592 while (child_die && child_die->tag)
5593 {
e7c27a73 5594 process_die (child_die, cu);
c906108c
SS
5595 child_die = sibling_die (child_die);
5596 }
5597 }
5598 new = pop_context ();
5599
8540c487 5600 if (local_symbols != NULL || using_directives != NULL)
c906108c 5601 {
801e3a5b
JB
5602 struct block *block
5603 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
5604 highpc, objfile);
5605
5606 /* Note that recording ranges after traversing children, as we
5607 do here, means that recording a parent's ranges entails
5608 walking across all its children's ranges as they appear in
5609 the address map, which is quadratic behavior.
5610
5611 It would be nicer to record the parent's ranges before
5612 traversing its children, simply overriding whatever you find
5613 there. But since we don't even decide whether to create a
5614 block until after we've traversed its children, that's hard
5615 to do. */
5616 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
5617 }
5618 local_symbols = new->locals;
27aa8d6a 5619 using_directives = new->using_directives;
c906108c
SS
5620}
5621
43039443 5622/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
5623 Return 1 if the attributes are present and valid, otherwise, return 0.
5624 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
5625
5626static int
5627dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
5628 CORE_ADDR *high_return, struct dwarf2_cu *cu,
5629 struct partial_symtab *ranges_pst)
43039443
JK
5630{
5631 struct objfile *objfile = cu->objfile;
5632 struct comp_unit_head *cu_header = &cu->header;
5633 bfd *obfd = objfile->obfd;
5634 unsigned int addr_size = cu_header->addr_size;
5635 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5636 /* Base address selection entry. */
5637 CORE_ADDR base;
5638 int found_base;
5639 unsigned int dummy;
5640 gdb_byte *buffer;
5641 CORE_ADDR marker;
5642 int low_set;
5643 CORE_ADDR low = 0;
5644 CORE_ADDR high = 0;
ff013f42 5645 CORE_ADDR baseaddr;
43039443 5646
d00adf39
DE
5647 found_base = cu->base_known;
5648 base = cu->base_address;
43039443 5649
be391dca 5650 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 5651 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
5652 {
5653 complaint (&symfile_complaints,
5654 _("Offset %d out of bounds for DW_AT_ranges attribute"),
5655 offset);
5656 return 0;
5657 }
dce234bc 5658 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
5659
5660 /* Read in the largest possible address. */
5661 marker = read_address (obfd, buffer, cu, &dummy);
5662 if ((marker & mask) == mask)
5663 {
5664 /* If we found the largest possible address, then
5665 read the base address. */
5666 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5667 buffer += 2 * addr_size;
5668 offset += 2 * addr_size;
5669 found_base = 1;
5670 }
5671
5672 low_set = 0;
5673
e7030f15 5674 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 5675
43039443
JK
5676 while (1)
5677 {
5678 CORE_ADDR range_beginning, range_end;
5679
5680 range_beginning = read_address (obfd, buffer, cu, &dummy);
5681 buffer += addr_size;
5682 range_end = read_address (obfd, buffer, cu, &dummy);
5683 buffer += addr_size;
5684 offset += 2 * addr_size;
5685
5686 /* An end of list marker is a pair of zero addresses. */
5687 if (range_beginning == 0 && range_end == 0)
5688 /* Found the end of list entry. */
5689 break;
5690
5691 /* Each base address selection entry is a pair of 2 values.
5692 The first is the largest possible address, the second is
5693 the base address. Check for a base address here. */
5694 if ((range_beginning & mask) == mask)
5695 {
5696 /* If we found the largest possible address, then
5697 read the base address. */
5698 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5699 found_base = 1;
5700 continue;
5701 }
5702
5703 if (!found_base)
5704 {
5705 /* We have no valid base address for the ranges
5706 data. */
5707 complaint (&symfile_complaints,
5708 _("Invalid .debug_ranges data (no base address)"));
5709 return 0;
5710 }
5711
5712 range_beginning += base;
5713 range_end += base;
5714
ff013f42
JK
5715 if (ranges_pst != NULL && range_beginning < range_end)
5716 addrmap_set_empty (objfile->psymtabs_addrmap,
5717 range_beginning + baseaddr, range_end - 1 + baseaddr,
5718 ranges_pst);
5719
43039443
JK
5720 /* FIXME: This is recording everything as a low-high
5721 segment of consecutive addresses. We should have a
5722 data structure for discontiguous block ranges
5723 instead. */
5724 if (! low_set)
5725 {
5726 low = range_beginning;
5727 high = range_end;
5728 low_set = 1;
5729 }
5730 else
5731 {
5732 if (range_beginning < low)
5733 low = range_beginning;
5734 if (range_end > high)
5735 high = range_end;
5736 }
5737 }
5738
5739 if (! low_set)
5740 /* If the first entry is an end-of-list marker, the range
5741 describes an empty scope, i.e. no instructions. */
5742 return 0;
5743
5744 if (low_return)
5745 *low_return = low;
5746 if (high_return)
5747 *high_return = high;
5748 return 1;
5749}
5750
af34e669
DJ
5751/* Get low and high pc attributes from a die. Return 1 if the attributes
5752 are present and valid, otherwise, return 0. Return -1 if the range is
5753 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 5754static int
af34e669 5755dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
5756 CORE_ADDR *highpc, struct dwarf2_cu *cu,
5757 struct partial_symtab *pst)
c906108c
SS
5758{
5759 struct attribute *attr;
af34e669
DJ
5760 CORE_ADDR low = 0;
5761 CORE_ADDR high = 0;
5762 int ret = 0;
c906108c 5763
e142c38c 5764 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 5765 if (attr)
af34e669
DJ
5766 {
5767 high = DW_ADDR (attr);
e142c38c 5768 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
5769 if (attr)
5770 low = DW_ADDR (attr);
5771 else
5772 /* Found high w/o low attribute. */
5773 return 0;
5774
5775 /* Found consecutive range of addresses. */
5776 ret = 1;
5777 }
c906108c 5778 else
af34e669 5779 {
e142c38c 5780 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
5781 if (attr != NULL)
5782 {
af34e669 5783 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 5784 .debug_ranges section. */
d85a05f0 5785 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
af34e669 5786 return 0;
43039443 5787 /* Found discontinuous range of addresses. */
af34e669
DJ
5788 ret = -1;
5789 }
5790 }
c906108c
SS
5791
5792 if (high < low)
5793 return 0;
5794
5795 /* When using the GNU linker, .gnu.linkonce. sections are used to
5796 eliminate duplicate copies of functions and vtables and such.
5797 The linker will arbitrarily choose one and discard the others.
5798 The AT_*_pc values for such functions refer to local labels in
5799 these sections. If the section from that file was discarded, the
5800 labels are not in the output, so the relocs get a value of 0.
5801 If this is a discarded function, mark the pc bounds as invalid,
5802 so that GDB will ignore it. */
72dca2f5 5803 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
5804 return 0;
5805
5806 *lowpc = low;
5807 *highpc = high;
af34e669 5808 return ret;
c906108c
SS
5809}
5810
b084d499
JB
5811/* Assuming that DIE represents a subprogram DIE or a lexical block, get
5812 its low and high PC addresses. Do nothing if these addresses could not
5813 be determined. Otherwise, set LOWPC to the low address if it is smaller,
5814 and HIGHPC to the high address if greater than HIGHPC. */
5815
5816static void
5817dwarf2_get_subprogram_pc_bounds (struct die_info *die,
5818 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5819 struct dwarf2_cu *cu)
5820{
5821 CORE_ADDR low, high;
5822 struct die_info *child = die->child;
5823
d85a05f0 5824 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
5825 {
5826 *lowpc = min (*lowpc, low);
5827 *highpc = max (*highpc, high);
5828 }
5829
5830 /* If the language does not allow nested subprograms (either inside
5831 subprograms or lexical blocks), we're done. */
5832 if (cu->language != language_ada)
5833 return;
6e70227d 5834
b084d499
JB
5835 /* Check all the children of the given DIE. If it contains nested
5836 subprograms, then check their pc bounds. Likewise, we need to
5837 check lexical blocks as well, as they may also contain subprogram
5838 definitions. */
5839 while (child && child->tag)
5840 {
5841 if (child->tag == DW_TAG_subprogram
5842 || child->tag == DW_TAG_lexical_block)
5843 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
5844 child = sibling_die (child);
5845 }
5846}
5847
fae299cd
DC
5848/* Get the low and high pc's represented by the scope DIE, and store
5849 them in *LOWPC and *HIGHPC. If the correct values can't be
5850 determined, set *LOWPC to -1 and *HIGHPC to 0. */
5851
5852static void
5853get_scope_pc_bounds (struct die_info *die,
5854 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5855 struct dwarf2_cu *cu)
5856{
5857 CORE_ADDR best_low = (CORE_ADDR) -1;
5858 CORE_ADDR best_high = (CORE_ADDR) 0;
5859 CORE_ADDR current_low, current_high;
5860
d85a05f0 5861 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
5862 {
5863 best_low = current_low;
5864 best_high = current_high;
5865 }
5866 else
5867 {
5868 struct die_info *child = die->child;
5869
5870 while (child && child->tag)
5871 {
5872 switch (child->tag) {
5873 case DW_TAG_subprogram:
b084d499 5874 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
5875 break;
5876 case DW_TAG_namespace:
f55ee35c 5877 case DW_TAG_module:
fae299cd
DC
5878 /* FIXME: carlton/2004-01-16: Should we do this for
5879 DW_TAG_class_type/DW_TAG_structure_type, too? I think
5880 that current GCC's always emit the DIEs corresponding
5881 to definitions of methods of classes as children of a
5882 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
5883 the DIEs giving the declarations, which could be
5884 anywhere). But I don't see any reason why the
5885 standards says that they have to be there. */
5886 get_scope_pc_bounds (child, &current_low, &current_high, cu);
5887
5888 if (current_low != ((CORE_ADDR) -1))
5889 {
5890 best_low = min (best_low, current_low);
5891 best_high = max (best_high, current_high);
5892 }
5893 break;
5894 default:
5895 /* Ignore. */
5896 break;
5897 }
5898
5899 child = sibling_die (child);
5900 }
5901 }
5902
5903 *lowpc = best_low;
5904 *highpc = best_high;
5905}
5906
801e3a5b
JB
5907/* Record the address ranges for BLOCK, offset by BASEADDR, as given
5908 in DIE. */
5909static void
5910dwarf2_record_block_ranges (struct die_info *die, struct block *block,
5911 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
5912{
5913 struct attribute *attr;
5914
5915 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5916 if (attr)
5917 {
5918 CORE_ADDR high = DW_ADDR (attr);
9a619af0 5919
801e3a5b
JB
5920 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5921 if (attr)
5922 {
5923 CORE_ADDR low = DW_ADDR (attr);
9a619af0 5924
801e3a5b
JB
5925 record_block_range (block, baseaddr + low, baseaddr + high - 1);
5926 }
5927 }
5928
5929 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5930 if (attr)
5931 {
5932 bfd *obfd = cu->objfile->obfd;
5933
5934 /* The value of the DW_AT_ranges attribute is the offset of the
5935 address range list in the .debug_ranges section. */
5936 unsigned long offset = DW_UNSND (attr);
dce234bc 5937 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
5938
5939 /* For some target architectures, but not others, the
5940 read_address function sign-extends the addresses it returns.
5941 To recognize base address selection entries, we need a
5942 mask. */
5943 unsigned int addr_size = cu->header.addr_size;
5944 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5945
5946 /* The base address, to which the next pair is relative. Note
5947 that this 'base' is a DWARF concept: most entries in a range
5948 list are relative, to reduce the number of relocs against the
5949 debugging information. This is separate from this function's
5950 'baseaddr' argument, which GDB uses to relocate debugging
5951 information from a shared library based on the address at
5952 which the library was loaded. */
d00adf39
DE
5953 CORE_ADDR base = cu->base_address;
5954 int base_known = cu->base_known;
801e3a5b 5955
be391dca 5956 gdb_assert (dwarf2_per_objfile->ranges.readin);
dce234bc 5957 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
5958 {
5959 complaint (&symfile_complaints,
5960 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
5961 offset);
5962 return;
5963 }
5964
5965 for (;;)
5966 {
5967 unsigned int bytes_read;
5968 CORE_ADDR start, end;
5969
5970 start = read_address (obfd, buffer, cu, &bytes_read);
5971 buffer += bytes_read;
5972 end = read_address (obfd, buffer, cu, &bytes_read);
5973 buffer += bytes_read;
5974
5975 /* Did we find the end of the range list? */
5976 if (start == 0 && end == 0)
5977 break;
5978
5979 /* Did we find a base address selection entry? */
5980 else if ((start & base_select_mask) == base_select_mask)
5981 {
5982 base = end;
5983 base_known = 1;
5984 }
5985
5986 /* We found an ordinary address range. */
5987 else
5988 {
5989 if (!base_known)
5990 {
5991 complaint (&symfile_complaints,
5992 _("Invalid .debug_ranges data (no base address)"));
5993 return;
5994 }
5995
6e70227d
DE
5996 record_block_range (block,
5997 baseaddr + base + start,
801e3a5b
JB
5998 baseaddr + base + end - 1);
5999 }
6000 }
6001 }
6002}
6003
c906108c
SS
6004/* Add an aggregate field to the field list. */
6005
6006static void
107d2387 6007dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 6008 struct dwarf2_cu *cu)
6e70227d 6009{
e7c27a73 6010 struct objfile *objfile = cu->objfile;
5e2b427d 6011 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
6012 struct nextfield *new_field;
6013 struct attribute *attr;
6014 struct field *fp;
6015 char *fieldname = "";
6016
6017 /* Allocate a new field list entry and link it in. */
6018 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 6019 make_cleanup (xfree, new_field);
c906108c 6020 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
6021
6022 if (die->tag == DW_TAG_inheritance)
6023 {
6024 new_field->next = fip->baseclasses;
6025 fip->baseclasses = new_field;
6026 }
6027 else
6028 {
6029 new_field->next = fip->fields;
6030 fip->fields = new_field;
6031 }
c906108c
SS
6032 fip->nfields++;
6033
6034 /* Handle accessibility and virtuality of field.
6035 The default accessibility for members is public, the default
6036 accessibility for inheritance is private. */
6037 if (die->tag != DW_TAG_inheritance)
6038 new_field->accessibility = DW_ACCESS_public;
6039 else
6040 new_field->accessibility = DW_ACCESS_private;
6041 new_field->virtuality = DW_VIRTUALITY_none;
6042
e142c38c 6043 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
6044 if (attr)
6045 new_field->accessibility = DW_UNSND (attr);
6046 if (new_field->accessibility != DW_ACCESS_public)
6047 fip->non_public_fields = 1;
e142c38c 6048 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
6049 if (attr)
6050 new_field->virtuality = DW_UNSND (attr);
6051
6052 fp = &new_field->field;
a9a9bd0f 6053
e142c38c 6054 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 6055 {
a9a9bd0f 6056 /* Data member other than a C++ static data member. */
6e70227d 6057
c906108c 6058 /* Get type of field. */
e7c27a73 6059 fp->type = die_type (die, cu);
c906108c 6060
d6a843b5 6061 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 6062
c906108c 6063 /* Get bit size of field (zero if none). */
e142c38c 6064 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
6065 if (attr)
6066 {
6067 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6068 }
6069 else
6070 {
6071 FIELD_BITSIZE (*fp) = 0;
6072 }
6073
6074 /* Get bit offset of field. */
e142c38c 6075 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
6076 if (attr)
6077 {
d4b96c9a 6078 int byte_offset = 0;
c6a0999f 6079
3690dd37 6080 if (attr_form_is_section_offset (attr))
d4b96c9a 6081 dwarf2_complex_location_expr_complaint ();
3690dd37 6082 else if (attr_form_is_constant (attr))
c6a0999f 6083 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
d4b96c9a 6084 else if (attr_form_is_block (attr))
c6a0999f 6085 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
d4b96c9a
JK
6086 else
6087 dwarf2_complex_location_expr_complaint ();
c6a0999f 6088
d6a843b5 6089 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
c906108c 6090 }
e142c38c 6091 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
6092 if (attr)
6093 {
5e2b427d 6094 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
6095 {
6096 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
6097 additional bit offset from the MSB of the containing
6098 anonymous object to the MSB of the field. We don't
6099 have to do anything special since we don't need to
6100 know the size of the anonymous object. */
c906108c
SS
6101 FIELD_BITPOS (*fp) += DW_UNSND (attr);
6102 }
6103 else
6104 {
6105 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
6106 MSB of the anonymous object, subtract off the number of
6107 bits from the MSB of the field to the MSB of the
6108 object, and then subtract off the number of bits of
6109 the field itself. The result is the bit offset of
6110 the LSB of the field. */
c906108c
SS
6111 int anonymous_size;
6112 int bit_offset = DW_UNSND (attr);
6113
e142c38c 6114 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
6115 if (attr)
6116 {
6117 /* The size of the anonymous object containing
6118 the bit field is explicit, so use the
6119 indicated size (in bytes). */
6120 anonymous_size = DW_UNSND (attr);
6121 }
6122 else
6123 {
6124 /* The size of the anonymous object containing
6125 the bit field must be inferred from the type
6126 attribute of the data member containing the
6127 bit field. */
6128 anonymous_size = TYPE_LENGTH (fp->type);
6129 }
6130 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
6131 - bit_offset - FIELD_BITSIZE (*fp);
6132 }
6133 }
6134
6135 /* Get name of field. */
39cbfefa
DJ
6136 fieldname = dwarf2_name (die, cu);
6137 if (fieldname == NULL)
6138 fieldname = "";
d8151005
DJ
6139
6140 /* The name is already allocated along with this objfile, so we don't
6141 need to duplicate it for the type. */
6142 fp->name = fieldname;
c906108c
SS
6143
6144 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 6145 pointer or virtual base class pointer) to private. */
e142c38c 6146 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 6147 {
d48cc9dd 6148 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
6149 new_field->accessibility = DW_ACCESS_private;
6150 fip->non_public_fields = 1;
6151 }
6152 }
a9a9bd0f 6153 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 6154 {
a9a9bd0f
DC
6155 /* C++ static member. */
6156
6157 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
6158 is a declaration, but all versions of G++ as of this writing
6159 (so through at least 3.2.1) incorrectly generate
6160 DW_TAG_variable tags. */
6e70227d 6161
c906108c 6162 char *physname;
c906108c 6163
a9a9bd0f 6164 /* Get name of field. */
39cbfefa
DJ
6165 fieldname = dwarf2_name (die, cu);
6166 if (fieldname == NULL)
c906108c
SS
6167 return;
6168
254e6b9e 6169 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
6170 if (attr
6171 /* Only create a symbol if this is an external value.
6172 new_symbol checks this and puts the value in the global symbol
6173 table, which we want. If it is not external, new_symbol
6174 will try to put the value in cu->list_in_scope which is wrong. */
6175 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
6176 {
6177 /* A static const member, not much different than an enum as far as
6178 we're concerned, except that we can support more types. */
6179 new_symbol (die, NULL, cu);
6180 }
6181
2df3850c 6182 /* Get physical name. */
94af9270 6183 physname = (char *) dwarf2_physname (fieldname, die, cu);
c906108c 6184
d8151005
DJ
6185 /* The name is already allocated along with this objfile, so we don't
6186 need to duplicate it for the type. */
6187 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 6188 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 6189 FIELD_NAME (*fp) = fieldname;
c906108c
SS
6190 }
6191 else if (die->tag == DW_TAG_inheritance)
6192 {
6193 /* C++ base class field. */
e142c38c 6194 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 6195 if (attr)
d4b96c9a
JK
6196 {
6197 int byte_offset = 0;
6198
6199 if (attr_form_is_section_offset (attr))
6200 dwarf2_complex_location_expr_complaint ();
6201 else if (attr_form_is_constant (attr))
6202 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6203 else if (attr_form_is_block (attr))
6204 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6205 else
6206 dwarf2_complex_location_expr_complaint ();
6207
6208 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6209 }
c906108c 6210 FIELD_BITSIZE (*fp) = 0;
e7c27a73 6211 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
6212 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
6213 fip->nbaseclasses++;
6214 }
6215}
6216
98751a41
JK
6217/* Add a typedef defined in the scope of the FIP's class. */
6218
6219static void
6220dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
6221 struct dwarf2_cu *cu)
6e70227d 6222{
98751a41
JK
6223 struct objfile *objfile = cu->objfile;
6224 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6225 struct typedef_field_list *new_field;
6226 struct attribute *attr;
6227 struct typedef_field *fp;
6228 char *fieldname = "";
6229
6230 /* Allocate a new field list entry and link it in. */
6231 new_field = xzalloc (sizeof (*new_field));
6232 make_cleanup (xfree, new_field);
6233
6234 gdb_assert (die->tag == DW_TAG_typedef);
6235
6236 fp = &new_field->field;
6237
6238 /* Get name of field. */
6239 fp->name = dwarf2_name (die, cu);
6240 if (fp->name == NULL)
6241 return;
6242
6243 fp->type = read_type_die (die, cu);
6244
6245 new_field->next = fip->typedef_field_list;
6246 fip->typedef_field_list = new_field;
6247 fip->typedef_field_list_count++;
6248}
6249
c906108c
SS
6250/* Create the vector of fields, and attach it to the type. */
6251
6252static void
fba45db2 6253dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 6254 struct dwarf2_cu *cu)
c906108c
SS
6255{
6256 int nfields = fip->nfields;
6257
6258 /* Record the field count, allocate space for the array of fields,
6259 and create blank accessibility bitfields if necessary. */
6260 TYPE_NFIELDS (type) = nfields;
6261 TYPE_FIELDS (type) = (struct field *)
6262 TYPE_ALLOC (type, sizeof (struct field) * nfields);
6263 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
6264
b4ba55a1 6265 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
6266 {
6267 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6268
6269 TYPE_FIELD_PRIVATE_BITS (type) =
6270 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6271 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
6272
6273 TYPE_FIELD_PROTECTED_BITS (type) =
6274 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6275 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
6276
774b6a14
TT
6277 TYPE_FIELD_IGNORE_BITS (type) =
6278 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6279 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
6280 }
6281
6282 /* If the type has baseclasses, allocate and clear a bit vector for
6283 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 6284 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
6285 {
6286 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 6287 unsigned char *pointer;
c906108c
SS
6288
6289 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
6290 pointer = TYPE_ALLOC (type, num_bytes);
6291 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
6292 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
6293 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
6294 }
6295
6296 /* Copy the saved-up fields into the field vector. Start from the head
6297 of the list, adding to the tail of the field array, so that they end
6298 up in the same order in the array in which they were added to the list. */
6299 while (nfields-- > 0)
6300 {
7d0ccb61
DJ
6301 struct nextfield *fieldp;
6302
6303 if (fip->fields)
6304 {
6305 fieldp = fip->fields;
6306 fip->fields = fieldp->next;
6307 }
6308 else
6309 {
6310 fieldp = fip->baseclasses;
6311 fip->baseclasses = fieldp->next;
6312 }
6313
6314 TYPE_FIELD (type, nfields) = fieldp->field;
6315 switch (fieldp->accessibility)
c906108c 6316 {
c5aa993b 6317 case DW_ACCESS_private:
b4ba55a1
JB
6318 if (cu->language != language_ada)
6319 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 6320 break;
c906108c 6321
c5aa993b 6322 case DW_ACCESS_protected:
b4ba55a1
JB
6323 if (cu->language != language_ada)
6324 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 6325 break;
c906108c 6326
c5aa993b
JM
6327 case DW_ACCESS_public:
6328 break;
c906108c 6329
c5aa993b
JM
6330 default:
6331 /* Unknown accessibility. Complain and treat it as public. */
6332 {
e2e0b3e5 6333 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 6334 fieldp->accessibility);
c5aa993b
JM
6335 }
6336 break;
c906108c
SS
6337 }
6338 if (nfields < fip->nbaseclasses)
6339 {
7d0ccb61 6340 switch (fieldp->virtuality)
c906108c 6341 {
c5aa993b
JM
6342 case DW_VIRTUALITY_virtual:
6343 case DW_VIRTUALITY_pure_virtual:
b4ba55a1
JB
6344 if (cu->language == language_ada)
6345 error ("unexpected virtuality in component of Ada type");
c5aa993b
JM
6346 SET_TYPE_FIELD_VIRTUAL (type, nfields);
6347 break;
c906108c
SS
6348 }
6349 }
c906108c
SS
6350 }
6351}
6352
c906108c
SS
6353/* Add a member function to the proper fieldlist. */
6354
6355static void
107d2387 6356dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 6357 struct type *type, struct dwarf2_cu *cu)
c906108c 6358{
e7c27a73 6359 struct objfile *objfile = cu->objfile;
c906108c
SS
6360 struct attribute *attr;
6361 struct fnfieldlist *flp;
6362 int i;
6363 struct fn_field *fnp;
6364 char *fieldname;
c906108c 6365 struct nextfnfield *new_fnfield;
f792889a 6366 struct type *this_type;
c906108c 6367
b4ba55a1
JB
6368 if (cu->language == language_ada)
6369 error ("unexpected member function in Ada type");
6370
2df3850c 6371 /* Get name of member function. */
39cbfefa
DJ
6372 fieldname = dwarf2_name (die, cu);
6373 if (fieldname == NULL)
2df3850c 6374 return;
c906108c 6375
c906108c
SS
6376 /* Look up member function name in fieldlist. */
6377 for (i = 0; i < fip->nfnfields; i++)
6378 {
27bfe10e 6379 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
6380 break;
6381 }
6382
6383 /* Create new list element if necessary. */
6384 if (i < fip->nfnfields)
6385 flp = &fip->fnfieldlists[i];
6386 else
6387 {
6388 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
6389 {
6390 fip->fnfieldlists = (struct fnfieldlist *)
6391 xrealloc (fip->fnfieldlists,
6392 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 6393 * sizeof (struct fnfieldlist));
c906108c 6394 if (fip->nfnfields == 0)
c13c43fd 6395 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
6396 }
6397 flp = &fip->fnfieldlists[fip->nfnfields];
6398 flp->name = fieldname;
6399 flp->length = 0;
6400 flp->head = NULL;
3da10d80 6401 i = fip->nfnfields++;
c906108c
SS
6402 }
6403
6404 /* Create a new member function field and chain it to the field list
6405 entry. */
6406 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 6407 make_cleanup (xfree, new_fnfield);
c906108c
SS
6408 memset (new_fnfield, 0, sizeof (struct nextfnfield));
6409 new_fnfield->next = flp->head;
6410 flp->head = new_fnfield;
6411 flp->length++;
6412
6413 /* Fill in the member function field info. */
6414 fnp = &new_fnfield->fnfield;
3da10d80
KS
6415
6416 /* Delay processing of the physname until later. */
6417 if (cu->language == language_cplus || cu->language == language_java)
6418 {
6419 add_to_method_list (type, i, flp->length - 1, fieldname,
6420 die, cu);
6421 }
6422 else
6423 {
6424 char *physname = (char *) dwarf2_physname (fieldname, die, cu);
6425 fnp->physname = physname ? physname : "";
6426 }
6427
c906108c 6428 fnp->type = alloc_type (objfile);
f792889a
DJ
6429 this_type = read_type_die (die, cu);
6430 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 6431 {
f792889a 6432 int nparams = TYPE_NFIELDS (this_type);
c906108c 6433
f792889a 6434 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
6435 of the method itself (TYPE_CODE_METHOD). */
6436 smash_to_method_type (fnp->type, type,
f792889a
DJ
6437 TYPE_TARGET_TYPE (this_type),
6438 TYPE_FIELDS (this_type),
6439 TYPE_NFIELDS (this_type),
6440 TYPE_VARARGS (this_type));
c906108c
SS
6441
6442 /* Handle static member functions.
c5aa993b
JM
6443 Dwarf2 has no clean way to discern C++ static and non-static
6444 member functions. G++ helps GDB by marking the first
6445 parameter for non-static member functions (which is the
6446 this pointer) as artificial. We obtain this information
6447 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 6448 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
6449 fnp->voffset = VOFFSET_STATIC;
6450 }
6451 else
e2e0b3e5 6452 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 6453 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
6454
6455 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 6456 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 6457 fnp->fcontext = die_containing_type (die, cu);
c906108c
SS
6458
6459 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
6460 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
6461
6462 /* Get accessibility. */
e142c38c 6463 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
6464 if (attr)
6465 {
6466 switch (DW_UNSND (attr))
6467 {
c5aa993b
JM
6468 case DW_ACCESS_private:
6469 fnp->is_private = 1;
6470 break;
6471 case DW_ACCESS_protected:
6472 fnp->is_protected = 1;
6473 break;
c906108c
SS
6474 }
6475 }
6476
b02dede2 6477 /* Check for artificial methods. */
e142c38c 6478 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
6479 if (attr && DW_UNSND (attr) != 0)
6480 fnp->is_artificial = 1;
6481
0d564a31 6482 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
6483 function. For older versions of GCC, this is an offset in the
6484 appropriate virtual table, as specified by DW_AT_containing_type.
6485 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
6486 to the object address. */
6487
e142c38c 6488 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 6489 if (attr)
8e19ed76 6490 {
aec5aa8b 6491 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 6492 {
aec5aa8b
TT
6493 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
6494 {
6495 /* Old-style GCC. */
6496 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
6497 }
6498 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
6499 || (DW_BLOCK (attr)->size > 1
6500 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
6501 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
6502 {
6503 struct dwarf_block blk;
6504 int offset;
6505
6506 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
6507 ? 1 : 2);
6508 blk.size = DW_BLOCK (attr)->size - offset;
6509 blk.data = DW_BLOCK (attr)->data + offset;
6510 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
6511 if ((fnp->voffset % cu->header.addr_size) != 0)
6512 dwarf2_complex_location_expr_complaint ();
6513 else
6514 fnp->voffset /= cu->header.addr_size;
6515 fnp->voffset += 2;
6516 }
6517 else
6518 dwarf2_complex_location_expr_complaint ();
6519
6520 if (!fnp->fcontext)
6521 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
6522 }
3690dd37 6523 else if (attr_form_is_section_offset (attr))
8e19ed76 6524 {
4d3c2250 6525 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
6526 }
6527 else
6528 {
4d3c2250
KB
6529 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
6530 fieldname);
8e19ed76 6531 }
0d564a31 6532 }
d48cc9dd
DJ
6533 else
6534 {
6535 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6536 if (attr && DW_UNSND (attr))
6537 {
6538 /* GCC does this, as of 2008-08-25; PR debug/37237. */
6539 complaint (&symfile_complaints,
6540 _("Member function \"%s\" (offset %d) is virtual but the vtable offset is not specified"),
6541 fieldname, die->offset);
9655fd1a 6542 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
6543 TYPE_CPLUS_DYNAMIC (type) = 1;
6544 }
6545 }
c906108c
SS
6546}
6547
6548/* Create the vector of member function fields, and attach it to the type. */
6549
6550static void
fba45db2 6551dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 6552 struct dwarf2_cu *cu)
c906108c
SS
6553{
6554 struct fnfieldlist *flp;
6555 int total_length = 0;
6556 int i;
6557
b4ba55a1
JB
6558 if (cu->language == language_ada)
6559 error ("unexpected member functions in Ada type");
6560
c906108c
SS
6561 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6562 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
6563 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
6564
6565 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
6566 {
6567 struct nextfnfield *nfp = flp->head;
6568 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
6569 int k;
6570
6571 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
6572 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
6573 fn_flp->fn_fields = (struct fn_field *)
6574 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
6575 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 6576 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
6577
6578 total_length += flp->length;
6579 }
6580
6581 TYPE_NFN_FIELDS (type) = fip->nfnfields;
6582 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
6583}
6584
1168df01
JB
6585/* Returns non-zero if NAME is the name of a vtable member in CU's
6586 language, zero otherwise. */
6587static int
6588is_vtable_name (const char *name, struct dwarf2_cu *cu)
6589{
6590 static const char vptr[] = "_vptr";
987504bb 6591 static const char vtable[] = "vtable";
1168df01 6592
987504bb
JJ
6593 /* Look for the C++ and Java forms of the vtable. */
6594 if ((cu->language == language_java
6595 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
6596 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
6597 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
6598 return 1;
6599
6600 return 0;
6601}
6602
c0dd20ea 6603/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
6604 functions, with the ABI-specified layout. If TYPE describes
6605 such a structure, smash it into a member function type.
61049d3b
DJ
6606
6607 GCC shouldn't do this; it should just output pointer to member DIEs.
6608 This is GCC PR debug/28767. */
c0dd20ea 6609
0b92b5bb
TT
6610static void
6611quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 6612{
0b92b5bb 6613 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
6614
6615 /* Check for a structure with no name and two children. */
0b92b5bb
TT
6616 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
6617 return;
c0dd20ea
DJ
6618
6619 /* Check for __pfn and __delta members. */
0b92b5bb
TT
6620 if (TYPE_FIELD_NAME (type, 0) == NULL
6621 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
6622 || TYPE_FIELD_NAME (type, 1) == NULL
6623 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
6624 return;
c0dd20ea
DJ
6625
6626 /* Find the type of the method. */
0b92b5bb 6627 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
6628 if (pfn_type == NULL
6629 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
6630 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 6631 return;
c0dd20ea
DJ
6632
6633 /* Look for the "this" argument. */
6634 pfn_type = TYPE_TARGET_TYPE (pfn_type);
6635 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 6636 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 6637 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 6638 return;
c0dd20ea
DJ
6639
6640 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
6641 new_type = alloc_type (objfile);
6642 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
6643 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
6644 TYPE_VARARGS (pfn_type));
0b92b5bb 6645 smash_to_methodptr_type (type, new_type);
c0dd20ea 6646}
1168df01 6647
c906108c 6648/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
6649 (definition) to create a type for the structure or union. Fill in
6650 the type's name and general properties; the members will not be
6651 processed until process_structure_type.
c906108c 6652
c767944b
DJ
6653 NOTE: we need to call these functions regardless of whether or not the
6654 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c
SS
6655 structure or union. This gets the type entered into our set of
6656 user defined types.
6657
6658 However, if the structure is incomplete (an opaque struct/union)
6659 then suppress creating a symbol table entry for it since gdb only
6660 wants to find the one with the complete definition. Note that if
6661 it is complete, we just call new_symbol, which does it's own
6662 checking about whether the struct/union is anonymous or not (and
6663 suppresses creating a symbol table entry itself). */
6664
f792889a 6665static struct type *
134d01f1 6666read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6667{
e7c27a73 6668 struct objfile *objfile = cu->objfile;
c906108c
SS
6669 struct type *type;
6670 struct attribute *attr;
39cbfefa 6671 char *name;
c906108c 6672
348e048f
DE
6673 /* If the definition of this type lives in .debug_types, read that type.
6674 Don't follow DW_AT_specification though, that will take us back up
6675 the chain and we want to go down. */
6676 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6677 if (attr)
6678 {
6679 struct dwarf2_cu *type_cu = cu;
6680 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 6681
348e048f
DE
6682 /* We could just recurse on read_structure_type, but we need to call
6683 get_die_type to ensure only one type for this DIE is created.
6684 This is important, for example, because for c++ classes we need
6685 TYPE_NAME set which is only done by new_symbol. Blech. */
6686 type = read_type_die (type_die, type_cu);
9dc481d3
DE
6687
6688 /* TYPE_CU may not be the same as CU.
6689 Ensure TYPE is recorded in CU's type_hash table. */
348e048f
DE
6690 return set_die_type (die, type, cu);
6691 }
6692
c0dd20ea 6693 type = alloc_type (objfile);
c906108c 6694 INIT_CPLUS_SPECIFIC (type);
93311388 6695
39cbfefa
DJ
6696 name = dwarf2_name (die, cu);
6697 if (name != NULL)
c906108c 6698 {
987504bb
JJ
6699 if (cu->language == language_cplus
6700 || cu->language == language_java)
63d06c5c 6701 {
3da10d80
KS
6702 char *full_name = (char *) dwarf2_full_name (name, die, cu);
6703
6704 /* dwarf2_full_name might have already finished building the DIE's
6705 type. If so, there is no need to continue. */
6706 if (get_die_type (die, cu) != NULL)
6707 return get_die_type (die, cu);
6708
6709 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
6710 if (die->tag == DW_TAG_structure_type
6711 || die->tag == DW_TAG_class_type)
6712 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
6713 }
6714 else
6715 {
d8151005
DJ
6716 /* The name is already allocated along with this objfile, so
6717 we don't need to duplicate it for the type. */
94af9270
KS
6718 TYPE_TAG_NAME (type) = (char *) name;
6719 if (die->tag == DW_TAG_class_type)
6720 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 6721 }
c906108c
SS
6722 }
6723
6724 if (die->tag == DW_TAG_structure_type)
6725 {
6726 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6727 }
6728 else if (die->tag == DW_TAG_union_type)
6729 {
6730 TYPE_CODE (type) = TYPE_CODE_UNION;
6731 }
6732 else
6733 {
c906108c
SS
6734 TYPE_CODE (type) = TYPE_CODE_CLASS;
6735 }
6736
0cc2414c
TT
6737 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
6738 TYPE_DECLARED_CLASS (type) = 1;
6739
e142c38c 6740 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
6741 if (attr)
6742 {
6743 TYPE_LENGTH (type) = DW_UNSND (attr);
6744 }
6745 else
6746 {
6747 TYPE_LENGTH (type) = 0;
6748 }
6749
876cecd0 6750 TYPE_STUB_SUPPORTED (type) = 1;
dc718098 6751 if (die_is_declaration (die, cu))
876cecd0 6752 TYPE_STUB (type) = 1;
a6c727b2
DJ
6753 else if (attr == NULL && die->child == NULL
6754 && producer_is_realview (cu->producer))
6755 /* RealView does not output the required DW_AT_declaration
6756 on incomplete types. */
6757 TYPE_STUB (type) = 1;
dc718098 6758
c906108c
SS
6759 /* We need to add the type field to the die immediately so we don't
6760 infinitely recurse when dealing with pointers to the structure
6761 type within the structure itself. */
1c379e20 6762 set_die_type (die, type, cu);
c906108c 6763
7e314c57
JK
6764 /* set_die_type should be already done. */
6765 set_descriptive_type (type, die, cu);
6766
c767944b
DJ
6767 return type;
6768}
6769
6770/* Finish creating a structure or union type, including filling in
6771 its members and creating a symbol for it. */
6772
6773static void
6774process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
6775{
6776 struct objfile *objfile = cu->objfile;
6777 struct die_info *child_die = die->child;
6778 struct type *type;
6779
6780 type = get_die_type (die, cu);
6781 if (type == NULL)
6782 type = read_structure_type (die, cu);
6783
e142c38c 6784 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
6785 {
6786 struct field_info fi;
6787 struct die_info *child_die;
34eaf542 6788 VEC (symbolp) *template_args = NULL;
c767944b 6789 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
6790
6791 memset (&fi, 0, sizeof (struct field_info));
6792
639d11d3 6793 child_die = die->child;
c906108c
SS
6794
6795 while (child_die && child_die->tag)
6796 {
a9a9bd0f
DC
6797 if (child_die->tag == DW_TAG_member
6798 || child_die->tag == DW_TAG_variable)
c906108c 6799 {
a9a9bd0f
DC
6800 /* NOTE: carlton/2002-11-05: A C++ static data member
6801 should be a DW_TAG_member that is a declaration, but
6802 all versions of G++ as of this writing (so through at
6803 least 3.2.1) incorrectly generate DW_TAG_variable
6804 tags for them instead. */
e7c27a73 6805 dwarf2_add_field (&fi, child_die, cu);
c906108c 6806 }
8713b1b1 6807 else if (child_die->tag == DW_TAG_subprogram)
c906108c
SS
6808 {
6809 /* C++ member function. */
e7c27a73 6810 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
6811 }
6812 else if (child_die->tag == DW_TAG_inheritance)
6813 {
6814 /* C++ base class field. */
e7c27a73 6815 dwarf2_add_field (&fi, child_die, cu);
c906108c 6816 }
98751a41
JK
6817 else if (child_die->tag == DW_TAG_typedef)
6818 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
6819 else if (child_die->tag == DW_TAG_template_type_param
6820 || child_die->tag == DW_TAG_template_value_param)
6821 {
6822 struct symbol *arg = new_symbol (child_die, NULL, cu);
6823
f1078f66
DJ
6824 if (arg != NULL)
6825 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
6826 }
6827
c906108c
SS
6828 child_die = sibling_die (child_die);
6829 }
6830
34eaf542
TT
6831 /* Attach template arguments to type. */
6832 if (! VEC_empty (symbolp, template_args))
6833 {
6834 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6835 TYPE_N_TEMPLATE_ARGUMENTS (type)
6836 = VEC_length (symbolp, template_args);
6837 TYPE_TEMPLATE_ARGUMENTS (type)
6838 = obstack_alloc (&objfile->objfile_obstack,
6839 (TYPE_N_TEMPLATE_ARGUMENTS (type)
6840 * sizeof (struct symbol *)));
6841 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
6842 VEC_address (symbolp, template_args),
6843 (TYPE_N_TEMPLATE_ARGUMENTS (type)
6844 * sizeof (struct symbol *)));
6845 VEC_free (symbolp, template_args);
6846 }
6847
c906108c
SS
6848 /* Attach fields and member functions to the type. */
6849 if (fi.nfields)
e7c27a73 6850 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
6851 if (fi.nfnfields)
6852 {
e7c27a73 6853 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 6854
c5aa993b 6855 /* Get the type which refers to the base class (possibly this
c906108c 6856 class itself) which contains the vtable pointer for the current
0d564a31
DJ
6857 class from the DW_AT_containing_type attribute. This use of
6858 DW_AT_containing_type is a GNU extension. */
c906108c 6859
e142c38c 6860 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 6861 {
e7c27a73 6862 struct type *t = die_containing_type (die, cu);
c906108c
SS
6863
6864 TYPE_VPTR_BASETYPE (type) = t;
6865 if (type == t)
6866 {
c906108c
SS
6867 int i;
6868
6869 /* Our own class provides vtbl ptr. */
6870 for (i = TYPE_NFIELDS (t) - 1;
6871 i >= TYPE_N_BASECLASSES (t);
6872 --i)
6873 {
6874 char *fieldname = TYPE_FIELD_NAME (t, i);
6875
1168df01 6876 if (is_vtable_name (fieldname, cu))
c906108c
SS
6877 {
6878 TYPE_VPTR_FIELDNO (type) = i;
6879 break;
6880 }
6881 }
6882
6883 /* Complain if virtual function table field not found. */
6884 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 6885 complaint (&symfile_complaints,
e2e0b3e5 6886 _("virtual function table pointer not found when defining class '%s'"),
4d3c2250
KB
6887 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
6888 "");
c906108c
SS
6889 }
6890 else
6891 {
6892 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
6893 }
6894 }
f6235d4c
EZ
6895 else if (cu->producer
6896 && strncmp (cu->producer,
6897 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
6898 {
6899 /* The IBM XLC compiler does not provide direct indication
6900 of the containing type, but the vtable pointer is
6901 always named __vfp. */
6902
6903 int i;
6904
6905 for (i = TYPE_NFIELDS (type) - 1;
6906 i >= TYPE_N_BASECLASSES (type);
6907 --i)
6908 {
6909 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
6910 {
6911 TYPE_VPTR_FIELDNO (type) = i;
6912 TYPE_VPTR_BASETYPE (type) = type;
6913 break;
6914 }
6915 }
6916 }
c906108c 6917 }
98751a41
JK
6918
6919 /* Copy fi.typedef_field_list linked list elements content into the
6920 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
6921 if (fi.typedef_field_list)
6922 {
6923 int i = fi.typedef_field_list_count;
6924
a0d7a4ff 6925 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
6926 TYPE_TYPEDEF_FIELD_ARRAY (type)
6927 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
6928 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
6929
6930 /* Reverse the list order to keep the debug info elements order. */
6931 while (--i >= 0)
6932 {
6933 struct typedef_field *dest, *src;
6e70227d 6934
98751a41
JK
6935 dest = &TYPE_TYPEDEF_FIELD (type, i);
6936 src = &fi.typedef_field_list->field;
6937 fi.typedef_field_list = fi.typedef_field_list->next;
6938 *dest = *src;
6939 }
6940 }
c767944b
DJ
6941
6942 do_cleanups (back_to);
c906108c 6943 }
63d06c5c 6944
0b92b5bb
TT
6945 quirk_gcc_member_function_pointer (type, cu->objfile);
6946
90aeadfc
DC
6947 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
6948 snapshots) has been known to create a die giving a declaration
6949 for a class that has, as a child, a die giving a definition for a
6950 nested class. So we have to process our children even if the
6951 current die is a declaration. Normally, of course, a declaration
6952 won't have any children at all. */
134d01f1 6953
90aeadfc
DC
6954 while (child_die != NULL && child_die->tag)
6955 {
6956 if (child_die->tag == DW_TAG_member
6957 || child_die->tag == DW_TAG_variable
34eaf542
TT
6958 || child_die->tag == DW_TAG_inheritance
6959 || child_die->tag == DW_TAG_template_value_param
6960 || child_die->tag == DW_TAG_template_type_param)
134d01f1 6961 {
90aeadfc 6962 /* Do nothing. */
134d01f1 6963 }
90aeadfc
DC
6964 else
6965 process_die (child_die, cu);
134d01f1 6966
90aeadfc 6967 child_die = sibling_die (child_die);
134d01f1
DJ
6968 }
6969
fa4028e9
JB
6970 /* Do not consider external references. According to the DWARF standard,
6971 these DIEs are identified by the fact that they have no byte_size
6972 attribute, and a declaration attribute. */
6973 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
6974 || !die_is_declaration (die, cu))
c767944b 6975 new_symbol (die, type, cu);
134d01f1
DJ
6976}
6977
6978/* Given a DW_AT_enumeration_type die, set its type. We do not
6979 complete the type's fields yet, or create any symbols. */
c906108c 6980
f792889a 6981static struct type *
134d01f1 6982read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6983{
e7c27a73 6984 struct objfile *objfile = cu->objfile;
c906108c 6985 struct type *type;
c906108c 6986 struct attribute *attr;
0114d602 6987 const char *name;
134d01f1 6988
348e048f
DE
6989 /* If the definition of this type lives in .debug_types, read that type.
6990 Don't follow DW_AT_specification though, that will take us back up
6991 the chain and we want to go down. */
6992 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6993 if (attr)
6994 {
6995 struct dwarf2_cu *type_cu = cu;
6996 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 6997
348e048f 6998 type = read_type_die (type_die, type_cu);
9dc481d3
DE
6999
7000 /* TYPE_CU may not be the same as CU.
7001 Ensure TYPE is recorded in CU's type_hash table. */
348e048f
DE
7002 return set_die_type (die, type, cu);
7003 }
7004
c906108c
SS
7005 type = alloc_type (objfile);
7006
7007 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 7008 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 7009 if (name != NULL)
0114d602 7010 TYPE_TAG_NAME (type) = (char *) name;
c906108c 7011
e142c38c 7012 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
7013 if (attr)
7014 {
7015 TYPE_LENGTH (type) = DW_UNSND (attr);
7016 }
7017 else
7018 {
7019 TYPE_LENGTH (type) = 0;
7020 }
7021
137033e9
JB
7022 /* The enumeration DIE can be incomplete. In Ada, any type can be
7023 declared as private in the package spec, and then defined only
7024 inside the package body. Such types are known as Taft Amendment
7025 Types. When another package uses such a type, an incomplete DIE
7026 may be generated by the compiler. */
02eb380e 7027 if (die_is_declaration (die, cu))
876cecd0 7028 TYPE_STUB (type) = 1;
02eb380e 7029
f792889a 7030 return set_die_type (die, type, cu);
134d01f1
DJ
7031}
7032
7033/* Given a pointer to a die which begins an enumeration, process all
7034 the dies that define the members of the enumeration, and create the
7035 symbol for the enumeration type.
7036
7037 NOTE: We reverse the order of the element list. */
7038
7039static void
7040process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7041{
f792889a 7042 struct type *this_type;
134d01f1 7043
f792889a
DJ
7044 this_type = get_die_type (die, cu);
7045 if (this_type == NULL)
7046 this_type = read_enumeration_type (die, cu);
9dc481d3 7047
639d11d3 7048 if (die->child != NULL)
c906108c 7049 {
9dc481d3
DE
7050 struct die_info *child_die;
7051 struct symbol *sym;
7052 struct field *fields = NULL;
7053 int num_fields = 0;
7054 int unsigned_enum = 1;
7055 char *name;
7056
639d11d3 7057 child_die = die->child;
c906108c
SS
7058 while (child_die && child_die->tag)
7059 {
7060 if (child_die->tag != DW_TAG_enumerator)
7061 {
e7c27a73 7062 process_die (child_die, cu);
c906108c
SS
7063 }
7064 else
7065 {
39cbfefa
DJ
7066 name = dwarf2_name (child_die, cu);
7067 if (name)
c906108c 7068 {
f792889a 7069 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
7070 if (SYMBOL_VALUE (sym) < 0)
7071 unsigned_enum = 0;
7072
7073 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7074 {
7075 fields = (struct field *)
7076 xrealloc (fields,
7077 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 7078 * sizeof (struct field));
c906108c
SS
7079 }
7080
3567439c 7081 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 7082 FIELD_TYPE (fields[num_fields]) = NULL;
d6a843b5 7083 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
7084 FIELD_BITSIZE (fields[num_fields]) = 0;
7085
7086 num_fields++;
7087 }
7088 }
7089
7090 child_die = sibling_die (child_die);
7091 }
7092
7093 if (num_fields)
7094 {
f792889a
DJ
7095 TYPE_NFIELDS (this_type) = num_fields;
7096 TYPE_FIELDS (this_type) = (struct field *)
7097 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
7098 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 7099 sizeof (struct field) * num_fields);
b8c9b27d 7100 xfree (fields);
c906108c
SS
7101 }
7102 if (unsigned_enum)
876cecd0 7103 TYPE_UNSIGNED (this_type) = 1;
c906108c 7104 }
134d01f1 7105
f792889a 7106 new_symbol (die, this_type, cu);
c906108c
SS
7107}
7108
7109/* Extract all information from a DW_TAG_array_type DIE and put it in
7110 the DIE's type field. For now, this only handles one dimensional
7111 arrays. */
7112
f792889a 7113static struct type *
e7c27a73 7114read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7115{
e7c27a73 7116 struct objfile *objfile = cu->objfile;
c906108c 7117 struct die_info *child_die;
7e314c57 7118 struct type *type;
c906108c
SS
7119 struct type *element_type, *range_type, *index_type;
7120 struct type **range_types = NULL;
7121 struct attribute *attr;
7122 int ndim = 0;
7123 struct cleanup *back_to;
39cbfefa 7124 char *name;
c906108c 7125
e7c27a73 7126 element_type = die_type (die, cu);
c906108c 7127
7e314c57
JK
7128 /* The die_type call above may have already set the type for this DIE. */
7129 type = get_die_type (die, cu);
7130 if (type)
7131 return type;
7132
c906108c
SS
7133 /* Irix 6.2 native cc creates array types without children for
7134 arrays with unspecified length. */
639d11d3 7135 if (die->child == NULL)
c906108c 7136 {
46bf5051 7137 index_type = objfile_type (objfile)->builtin_int;
c906108c 7138 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
7139 type = create_array_type (NULL, element_type, range_type);
7140 return set_die_type (die, type, cu);
c906108c
SS
7141 }
7142
7143 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 7144 child_die = die->child;
c906108c
SS
7145 while (child_die && child_die->tag)
7146 {
7147 if (child_die->tag == DW_TAG_subrange_type)
7148 {
f792889a 7149 struct type *child_type = read_type_die (child_die, cu);
9a619af0 7150
f792889a 7151 if (child_type != NULL)
a02abb62
JB
7152 {
7153 /* The range type was succesfully read. Save it for
7154 the array type creation. */
7155 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
7156 {
7157 range_types = (struct type **)
7158 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
7159 * sizeof (struct type *));
7160 if (ndim == 0)
7161 make_cleanup (free_current_contents, &range_types);
7162 }
f792889a 7163 range_types[ndim++] = child_type;
a02abb62 7164 }
c906108c
SS
7165 }
7166 child_die = sibling_die (child_die);
7167 }
7168
7169 /* Dwarf2 dimensions are output from left to right, create the
7170 necessary array types in backwards order. */
7ca2d3a3 7171
c906108c 7172 type = element_type;
7ca2d3a3
DL
7173
7174 if (read_array_order (die, cu) == DW_ORD_col_major)
7175 {
7176 int i = 0;
9a619af0 7177
7ca2d3a3
DL
7178 while (i < ndim)
7179 type = create_array_type (NULL, type, range_types[i++]);
7180 }
7181 else
7182 {
7183 while (ndim-- > 0)
7184 type = create_array_type (NULL, type, range_types[ndim]);
7185 }
c906108c 7186
f5f8a009
EZ
7187 /* Understand Dwarf2 support for vector types (like they occur on
7188 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
7189 array type. This is not part of the Dwarf2/3 standard yet, but a
7190 custom vendor extension. The main difference between a regular
7191 array and the vector variant is that vectors are passed by value
7192 to functions. */
e142c38c 7193 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 7194 if (attr)
ea37ba09 7195 make_vector_type (type);
f5f8a009 7196
39cbfefa
DJ
7197 name = dwarf2_name (die, cu);
7198 if (name)
7199 TYPE_NAME (type) = name;
6e70227d 7200
7e314c57
JK
7201 /* Install the type in the die. */
7202 set_die_type (die, type, cu);
7203
7204 /* set_die_type should be already done. */
b4ba55a1
JB
7205 set_descriptive_type (type, die, cu);
7206
c906108c
SS
7207 do_cleanups (back_to);
7208
7e314c57 7209 return type;
c906108c
SS
7210}
7211
7ca2d3a3 7212static enum dwarf_array_dim_ordering
6e70227d 7213read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
7214{
7215 struct attribute *attr;
7216
7217 attr = dwarf2_attr (die, DW_AT_ordering, cu);
7218
7219 if (attr) return DW_SND (attr);
7220
7221 /*
7222 GNU F77 is a special case, as at 08/2004 array type info is the
6e70227d 7223 opposite order to the dwarf2 specification, but data is still
7ca2d3a3
DL
7224 laid out as per normal fortran.
7225
6e70227d 7226 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
7ca2d3a3
DL
7227 version checking.
7228 */
7229
905e0470
PM
7230 if (cu->language == language_fortran
7231 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
7232 {
7233 return DW_ORD_row_major;
7234 }
7235
6e70227d 7236 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
7237 {
7238 case array_column_major:
7239 return DW_ORD_col_major;
7240 case array_row_major:
7241 default:
7242 return DW_ORD_row_major;
7243 };
7244}
7245
72019c9c
GM
7246/* Extract all information from a DW_TAG_set_type DIE and put it in
7247 the DIE's type field. */
7248
f792889a 7249static struct type *
72019c9c
GM
7250read_set_type (struct die_info *die, struct dwarf2_cu *cu)
7251{
7e314c57
JK
7252 struct type *domain_type, *set_type;
7253 struct attribute *attr;
f792889a 7254
7e314c57
JK
7255 domain_type = die_type (die, cu);
7256
7257 /* The die_type call above may have already set the type for this DIE. */
7258 set_type = get_die_type (die, cu);
7259 if (set_type)
7260 return set_type;
7261
7262 set_type = create_set_type (NULL, domain_type);
7263
7264 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
7265 if (attr)
7266 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 7267
f792889a 7268 return set_die_type (die, set_type, cu);
72019c9c 7269}
7ca2d3a3 7270
c906108c
SS
7271/* First cut: install each common block member as a global variable. */
7272
7273static void
e7c27a73 7274read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7275{
7276 struct die_info *child_die;
7277 struct attribute *attr;
7278 struct symbol *sym;
7279 CORE_ADDR base = (CORE_ADDR) 0;
7280
e142c38c 7281 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7282 if (attr)
7283 {
8e19ed76
PS
7284 /* Support the .debug_loc offsets */
7285 if (attr_form_is_block (attr))
7286 {
e7c27a73 7287 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76 7288 }
3690dd37 7289 else if (attr_form_is_section_offset (attr))
8e19ed76 7290 {
4d3c2250 7291 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
7292 }
7293 else
7294 {
4d3c2250
KB
7295 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7296 "common block member");
8e19ed76 7297 }
c906108c 7298 }
639d11d3 7299 if (die->child != NULL)
c906108c 7300 {
639d11d3 7301 child_die = die->child;
c906108c
SS
7302 while (child_die && child_die->tag)
7303 {
e7c27a73 7304 sym = new_symbol (child_die, NULL, cu);
e142c38c 7305 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
f1078f66 7306 if (sym != NULL && attr != NULL)
c906108c 7307 {
d4b96c9a
JK
7308 CORE_ADDR byte_offset = 0;
7309
7310 if (attr_form_is_section_offset (attr))
7311 dwarf2_complex_location_expr_complaint ();
7312 else if (attr_form_is_constant (attr))
7313 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
7314 else if (attr_form_is_block (attr))
7315 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
7316 else
7317 dwarf2_complex_location_expr_complaint ();
7318
7319 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
c906108c
SS
7320 add_symbol_to_list (sym, &global_symbols);
7321 }
7322 child_die = sibling_die (child_die);
7323 }
7324 }
7325}
7326
0114d602 7327/* Create a type for a C++ namespace. */
d9fa45fe 7328
0114d602
DJ
7329static struct type *
7330read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 7331{
e7c27a73 7332 struct objfile *objfile = cu->objfile;
0114d602 7333 const char *previous_prefix, *name;
9219021c 7334 int is_anonymous;
0114d602
DJ
7335 struct type *type;
7336
7337 /* For extensions, reuse the type of the original namespace. */
7338 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
7339 {
7340 struct die_info *ext_die;
7341 struct dwarf2_cu *ext_cu = cu;
9a619af0 7342
0114d602
DJ
7343 ext_die = dwarf2_extension (die, &ext_cu);
7344 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
7345
7346 /* EXT_CU may not be the same as CU.
7347 Ensure TYPE is recorded in CU's type_hash table. */
0114d602
DJ
7348 return set_die_type (die, type, cu);
7349 }
9219021c 7350
e142c38c 7351 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
7352
7353 /* Now build the name of the current namespace. */
7354
0114d602
DJ
7355 previous_prefix = determine_prefix (die, cu);
7356 if (previous_prefix[0] != '\0')
7357 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 7358 previous_prefix, name, 0, cu);
0114d602
DJ
7359
7360 /* Create the type. */
7361 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
7362 objfile);
7363 TYPE_NAME (type) = (char *) name;
7364 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7365
60531b24 7366 return set_die_type (die, type, cu);
0114d602
DJ
7367}
7368
7369/* Read a C++ namespace. */
7370
7371static void
7372read_namespace (struct die_info *die, struct dwarf2_cu *cu)
7373{
7374 struct objfile *objfile = cu->objfile;
7375 const char *name;
7376 int is_anonymous;
9219021c 7377
5c4e30ca
DC
7378 /* Add a symbol associated to this if we haven't seen the namespace
7379 before. Also, add a using directive if it's an anonymous
7380 namespace. */
9219021c 7381
f2f0e013 7382 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
7383 {
7384 struct type *type;
7385
0114d602 7386 type = read_type_die (die, cu);
e7c27a73 7387 new_symbol (die, type, cu);
5c4e30ca 7388
0114d602 7389 name = namespace_name (die, &is_anonymous, cu);
5c4e30ca 7390 if (is_anonymous)
0114d602
DJ
7391 {
7392 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 7393
c0cc3a76 7394 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13387711 7395 NULL, &objfile->objfile_obstack);
0114d602 7396 }
5c4e30ca 7397 }
9219021c 7398
639d11d3 7399 if (die->child != NULL)
d9fa45fe 7400 {
639d11d3 7401 struct die_info *child_die = die->child;
6e70227d 7402
d9fa45fe
DC
7403 while (child_die && child_die->tag)
7404 {
e7c27a73 7405 process_die (child_die, cu);
d9fa45fe
DC
7406 child_die = sibling_die (child_die);
7407 }
7408 }
38d518c9
EZ
7409}
7410
f55ee35c
JK
7411/* Read a Fortran module as type. This DIE can be only a declaration used for
7412 imported module. Still we need that type as local Fortran "use ... only"
7413 declaration imports depend on the created type in determine_prefix. */
7414
7415static struct type *
7416read_module_type (struct die_info *die, struct dwarf2_cu *cu)
7417{
7418 struct objfile *objfile = cu->objfile;
7419 char *module_name;
7420 struct type *type;
7421
7422 module_name = dwarf2_name (die, cu);
7423 if (!module_name)
7424 complaint (&symfile_complaints, _("DW_TAG_module has no name, offset 0x%x"),
7425 die->offset);
7426 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
7427
7428 /* determine_prefix uses TYPE_TAG_NAME. */
7429 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7430
7431 return set_die_type (die, type, cu);
7432}
7433
5d7cb8df
JK
7434/* Read a Fortran module. */
7435
7436static void
7437read_module (struct die_info *die, struct dwarf2_cu *cu)
7438{
7439 struct die_info *child_die = die->child;
7440
5d7cb8df
JK
7441 while (child_die && child_die->tag)
7442 {
7443 process_die (child_die, cu);
7444 child_die = sibling_die (child_die);
7445 }
7446}
7447
38d518c9
EZ
7448/* Return the name of the namespace represented by DIE. Set
7449 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
7450 namespace. */
7451
7452static const char *
e142c38c 7453namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
7454{
7455 struct die_info *current_die;
7456 const char *name = NULL;
7457
7458 /* Loop through the extensions until we find a name. */
7459
7460 for (current_die = die;
7461 current_die != NULL;
f2f0e013 7462 current_die = dwarf2_extension (die, &cu))
38d518c9 7463 {
e142c38c 7464 name = dwarf2_name (current_die, cu);
38d518c9
EZ
7465 if (name != NULL)
7466 break;
7467 }
7468
7469 /* Is it an anonymous namespace? */
7470
7471 *is_anonymous = (name == NULL);
7472 if (*is_anonymous)
7473 name = "(anonymous namespace)";
7474
7475 return name;
d9fa45fe
DC
7476}
7477
c906108c
SS
7478/* Extract all information from a DW_TAG_pointer_type DIE and add to
7479 the user defined type vector. */
7480
f792889a 7481static struct type *
e7c27a73 7482read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7483{
5e2b427d 7484 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 7485 struct comp_unit_head *cu_header = &cu->header;
c906108c 7486 struct type *type;
8b2dbe47
KB
7487 struct attribute *attr_byte_size;
7488 struct attribute *attr_address_class;
7489 int byte_size, addr_class;
7e314c57
JK
7490 struct type *target_type;
7491
7492 target_type = die_type (die, cu);
c906108c 7493
7e314c57
JK
7494 /* The die_type call above may have already set the type for this DIE. */
7495 type = get_die_type (die, cu);
7496 if (type)
7497 return type;
7498
7499 type = lookup_pointer_type (target_type);
8b2dbe47 7500
e142c38c 7501 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
7502 if (attr_byte_size)
7503 byte_size = DW_UNSND (attr_byte_size);
c906108c 7504 else
8b2dbe47
KB
7505 byte_size = cu_header->addr_size;
7506
e142c38c 7507 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
7508 if (attr_address_class)
7509 addr_class = DW_UNSND (attr_address_class);
7510 else
7511 addr_class = DW_ADDR_none;
7512
7513 /* If the pointer size or address class is different than the
7514 default, create a type variant marked as such and set the
7515 length accordingly. */
7516 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 7517 {
5e2b427d 7518 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
7519 {
7520 int type_flags;
7521
849957d9 7522 type_flags = gdbarch_address_class_type_flags
5e2b427d 7523 (gdbarch, byte_size, addr_class);
876cecd0
TT
7524 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
7525 == 0);
8b2dbe47
KB
7526 type = make_type_with_address_space (type, type_flags);
7527 }
7528 else if (TYPE_LENGTH (type) != byte_size)
7529 {
e2e0b3e5 7530 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
8b2dbe47 7531 }
6e70227d 7532 else
9a619af0
MS
7533 {
7534 /* Should we also complain about unhandled address classes? */
7535 }
c906108c 7536 }
8b2dbe47
KB
7537
7538 TYPE_LENGTH (type) = byte_size;
f792889a 7539 return set_die_type (die, type, cu);
c906108c
SS
7540}
7541
7542/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
7543 the user defined type vector. */
7544
f792889a 7545static struct type *
e7c27a73 7546read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7547{
7548 struct type *type;
7549 struct type *to_type;
7550 struct type *domain;
7551
e7c27a73
DJ
7552 to_type = die_type (die, cu);
7553 domain = die_containing_type (die, cu);
0d5de010 7554
7e314c57
JK
7555 /* The calls above may have already set the type for this DIE. */
7556 type = get_die_type (die, cu);
7557 if (type)
7558 return type;
7559
0d5de010
DJ
7560 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
7561 type = lookup_methodptr_type (to_type);
7562 else
7563 type = lookup_memberptr_type (to_type, domain);
c906108c 7564
f792889a 7565 return set_die_type (die, type, cu);
c906108c
SS
7566}
7567
7568/* Extract all information from a DW_TAG_reference_type DIE and add to
7569 the user defined type vector. */
7570
f792889a 7571static struct type *
e7c27a73 7572read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7573{
e7c27a73 7574 struct comp_unit_head *cu_header = &cu->header;
7e314c57 7575 struct type *type, *target_type;
c906108c
SS
7576 struct attribute *attr;
7577
7e314c57
JK
7578 target_type = die_type (die, cu);
7579
7580 /* The die_type call above may have already set the type for this DIE. */
7581 type = get_die_type (die, cu);
7582 if (type)
7583 return type;
7584
7585 type = lookup_reference_type (target_type);
e142c38c 7586 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
7587 if (attr)
7588 {
7589 TYPE_LENGTH (type) = DW_UNSND (attr);
7590 }
7591 else
7592 {
107d2387 7593 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 7594 }
f792889a 7595 return set_die_type (die, type, cu);
c906108c
SS
7596}
7597
f792889a 7598static struct type *
e7c27a73 7599read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7600{
f792889a 7601 struct type *base_type, *cv_type;
c906108c 7602
e7c27a73 7603 base_type = die_type (die, cu);
7e314c57
JK
7604
7605 /* The die_type call above may have already set the type for this DIE. */
7606 cv_type = get_die_type (die, cu);
7607 if (cv_type)
7608 return cv_type;
7609
2f608a3a
KW
7610 /* In case the const qualifier is applied to an array type, the element type
7611 is so qualified, not the array type (section 6.7.3 of C99). */
7612 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
7613 {
7614 struct type *el_type, *inner_array;
7615
7616 base_type = copy_type (base_type);
7617 inner_array = base_type;
7618
7619 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
7620 {
7621 TYPE_TARGET_TYPE (inner_array) =
7622 copy_type (TYPE_TARGET_TYPE (inner_array));
7623 inner_array = TYPE_TARGET_TYPE (inner_array);
7624 }
7625
7626 el_type = TYPE_TARGET_TYPE (inner_array);
7627 TYPE_TARGET_TYPE (inner_array) =
7628 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
7629
7630 return set_die_type (die, base_type, cu);
7631 }
7632
f792889a
DJ
7633 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
7634 return set_die_type (die, cv_type, cu);
c906108c
SS
7635}
7636
f792889a 7637static struct type *
e7c27a73 7638read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7639{
f792889a 7640 struct type *base_type, *cv_type;
c906108c 7641
e7c27a73 7642 base_type = die_type (die, cu);
7e314c57
JK
7643
7644 /* The die_type call above may have already set the type for this DIE. */
7645 cv_type = get_die_type (die, cu);
7646 if (cv_type)
7647 return cv_type;
7648
f792889a
DJ
7649 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
7650 return set_die_type (die, cv_type, cu);
c906108c
SS
7651}
7652
7653/* Extract all information from a DW_TAG_string_type DIE and add to
7654 the user defined type vector. It isn't really a user defined type,
7655 but it behaves like one, with other DIE's using an AT_user_def_type
7656 attribute to reference it. */
7657
f792889a 7658static struct type *
e7c27a73 7659read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7660{
e7c27a73 7661 struct objfile *objfile = cu->objfile;
3b7538c0 7662 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
7663 struct type *type, *range_type, *index_type, *char_type;
7664 struct attribute *attr;
7665 unsigned int length;
7666
e142c38c 7667 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
7668 if (attr)
7669 {
7670 length = DW_UNSND (attr);
7671 }
7672 else
7673 {
b21b22e0 7674 /* check for the DW_AT_byte_size attribute */
e142c38c 7675 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
7676 if (attr)
7677 {
7678 length = DW_UNSND (attr);
7679 }
7680 else
7681 {
7682 length = 1;
7683 }
c906108c 7684 }
6ccb9162 7685
46bf5051 7686 index_type = objfile_type (objfile)->builtin_int;
c906108c 7687 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
7688 char_type = language_string_char_type (cu->language_defn, gdbarch);
7689 type = create_string_type (NULL, char_type, range_type);
6ccb9162 7690
f792889a 7691 return set_die_type (die, type, cu);
c906108c
SS
7692}
7693
7694/* Handle DIES due to C code like:
7695
7696 struct foo
c5aa993b
JM
7697 {
7698 int (*funcp)(int a, long l);
7699 int b;
7700 };
c906108c
SS
7701
7702 ('funcp' generates a DW_TAG_subroutine_type DIE)
c5aa993b 7703 */
c906108c 7704
f792889a 7705static struct type *
e7c27a73 7706read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7707{
7708 struct type *type; /* Type that this function returns */
7709 struct type *ftype; /* Function that returns above type */
7710 struct attribute *attr;
7711
e7c27a73 7712 type = die_type (die, cu);
7e314c57
JK
7713
7714 /* The die_type call above may have already set the type for this DIE. */
7715 ftype = get_die_type (die, cu);
7716 if (ftype)
7717 return ftype;
7718
0c8b41f1 7719 ftype = lookup_function_type (type);
c906108c 7720
5b8101ae 7721 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 7722 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 7723 if ((attr && (DW_UNSND (attr) != 0))
987504bb 7724 || cu->language == language_cplus
5b8101ae
PM
7725 || cu->language == language_java
7726 || cu->language == language_pascal)
876cecd0 7727 TYPE_PROTOTYPED (ftype) = 1;
a6c727b2
DJ
7728 else if (producer_is_realview (cu->producer))
7729 /* RealView does not emit DW_AT_prototyped. We can not
7730 distinguish prototyped and unprototyped functions; default to
7731 prototyped, since that is more common in modern code (and
7732 RealView warns about unprototyped functions). */
7733 TYPE_PROTOTYPED (ftype) = 1;
c906108c 7734
c055b101
CV
7735 /* Store the calling convention in the type if it's available in
7736 the subroutine die. Otherwise set the calling convention to
7737 the default value DW_CC_normal. */
7738 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
7739 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
76c10ea2
GM
7740
7741 /* We need to add the subroutine type to the die immediately so
7742 we don't infinitely recurse when dealing with parameters
7743 declared as the same subroutine type. */
7744 set_die_type (die, ftype, cu);
6e70227d 7745
639d11d3 7746 if (die->child != NULL)
c906108c 7747 {
8072405b 7748 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
c906108c 7749 struct die_info *child_die;
8072405b 7750 int nparams, iparams;
c906108c
SS
7751
7752 /* Count the number of parameters.
7753 FIXME: GDB currently ignores vararg functions, but knows about
7754 vararg member functions. */
8072405b 7755 nparams = 0;
639d11d3 7756 child_die = die->child;
c906108c
SS
7757 while (child_die && child_die->tag)
7758 {
7759 if (child_die->tag == DW_TAG_formal_parameter)
7760 nparams++;
7761 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 7762 TYPE_VARARGS (ftype) = 1;
c906108c
SS
7763 child_die = sibling_die (child_die);
7764 }
7765
7766 /* Allocate storage for parameters and fill them in. */
7767 TYPE_NFIELDS (ftype) = nparams;
7768 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 7769 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 7770
8072405b
JK
7771 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
7772 even if we error out during the parameters reading below. */
7773 for (iparams = 0; iparams < nparams; iparams++)
7774 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
7775
7776 iparams = 0;
639d11d3 7777 child_die = die->child;
c906108c
SS
7778 while (child_die && child_die->tag)
7779 {
7780 if (child_die->tag == DW_TAG_formal_parameter)
7781 {
3ce3b1ba
PA
7782 struct type *arg_type;
7783
7784 /* DWARF version 2 has no clean way to discern C++
7785 static and non-static member functions. G++ helps
7786 GDB by marking the first parameter for non-static
7787 member functions (which is the this pointer) as
7788 artificial. We pass this information to
7789 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
7790
7791 DWARF version 3 added DW_AT_object_pointer, which GCC
7792 4.5 does not yet generate. */
e142c38c 7793 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
7794 if (attr)
7795 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
7796 else
418835cc
KS
7797 {
7798 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
7799
7800 /* GCC/43521: In java, the formal parameter
7801 "this" is sometimes not marked with DW_AT_artificial. */
7802 if (cu->language == language_java)
7803 {
7804 const char *name = dwarf2_name (child_die, cu);
9a619af0 7805
418835cc
KS
7806 if (name && !strcmp (name, "this"))
7807 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
7808 }
7809 }
3ce3b1ba
PA
7810 arg_type = die_type (child_die, cu);
7811
7812 /* RealView does not mark THIS as const, which the testsuite
7813 expects. GCC marks THIS as const in method definitions,
7814 but not in the class specifications (GCC PR 43053). */
7815 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
7816 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
7817 {
7818 int is_this = 0;
7819 struct dwarf2_cu *arg_cu = cu;
7820 const char *name = dwarf2_name (child_die, cu);
7821
7822 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
7823 if (attr)
7824 {
7825 /* If the compiler emits this, use it. */
7826 if (follow_die_ref (die, attr, &arg_cu) == child_die)
7827 is_this = 1;
7828 }
7829 else if (name && strcmp (name, "this") == 0)
7830 /* Function definitions will have the argument names. */
7831 is_this = 1;
7832 else if (name == NULL && iparams == 0)
7833 /* Declarations may not have the names, so like
7834 elsewhere in GDB, assume an artificial first
7835 argument is "this". */
7836 is_this = 1;
7837
7838 if (is_this)
7839 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
7840 arg_type, 0);
7841 }
7842
7843 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
7844 iparams++;
7845 }
7846 child_die = sibling_die (child_die);
7847 }
7848 }
7849
76c10ea2 7850 return ftype;
c906108c
SS
7851}
7852
f792889a 7853static struct type *
e7c27a73 7854read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7855{
e7c27a73 7856 struct objfile *objfile = cu->objfile;
0114d602 7857 const char *name = NULL;
f792889a 7858 struct type *this_type;
c906108c 7859
94af9270 7860 name = dwarf2_full_name (NULL, die, cu);
f792889a 7861 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602
DJ
7862 TYPE_FLAG_TARGET_STUB, NULL, objfile);
7863 TYPE_NAME (this_type) = (char *) name;
f792889a
DJ
7864 set_die_type (die, this_type, cu);
7865 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
7866 return this_type;
c906108c
SS
7867}
7868
7869/* Find a representation of a given base type and install
7870 it in the TYPE field of the die. */
7871
f792889a 7872static struct type *
e7c27a73 7873read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7874{
e7c27a73 7875 struct objfile *objfile = cu->objfile;
c906108c
SS
7876 struct type *type;
7877 struct attribute *attr;
7878 int encoding = 0, size = 0;
39cbfefa 7879 char *name;
6ccb9162
UW
7880 enum type_code code = TYPE_CODE_INT;
7881 int type_flags = 0;
7882 struct type *target_type = NULL;
c906108c 7883
e142c38c 7884 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
7885 if (attr)
7886 {
7887 encoding = DW_UNSND (attr);
7888 }
e142c38c 7889 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
7890 if (attr)
7891 {
7892 size = DW_UNSND (attr);
7893 }
39cbfefa 7894 name = dwarf2_name (die, cu);
6ccb9162 7895 if (!name)
c906108c 7896 {
6ccb9162
UW
7897 complaint (&symfile_complaints,
7898 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 7899 }
6ccb9162
UW
7900
7901 switch (encoding)
c906108c 7902 {
6ccb9162
UW
7903 case DW_ATE_address:
7904 /* Turn DW_ATE_address into a void * pointer. */
7905 code = TYPE_CODE_PTR;
7906 type_flags |= TYPE_FLAG_UNSIGNED;
7907 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
7908 break;
7909 case DW_ATE_boolean:
7910 code = TYPE_CODE_BOOL;
7911 type_flags |= TYPE_FLAG_UNSIGNED;
7912 break;
7913 case DW_ATE_complex_float:
7914 code = TYPE_CODE_COMPLEX;
7915 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
7916 break;
7917 case DW_ATE_decimal_float:
7918 code = TYPE_CODE_DECFLOAT;
7919 break;
7920 case DW_ATE_float:
7921 code = TYPE_CODE_FLT;
7922 break;
7923 case DW_ATE_signed:
7924 break;
7925 case DW_ATE_unsigned:
7926 type_flags |= TYPE_FLAG_UNSIGNED;
7927 break;
7928 case DW_ATE_signed_char:
6e70227d 7929 if (cu->language == language_ada || cu->language == language_m2
868a0084 7930 || cu->language == language_pascal)
6ccb9162
UW
7931 code = TYPE_CODE_CHAR;
7932 break;
7933 case DW_ATE_unsigned_char:
868a0084
PM
7934 if (cu->language == language_ada || cu->language == language_m2
7935 || cu->language == language_pascal)
6ccb9162
UW
7936 code = TYPE_CODE_CHAR;
7937 type_flags |= TYPE_FLAG_UNSIGNED;
7938 break;
75079b2b
TT
7939 case DW_ATE_UTF:
7940 /* We just treat this as an integer and then recognize the
7941 type by name elsewhere. */
7942 break;
7943
6ccb9162
UW
7944 default:
7945 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
7946 dwarf_type_encoding_name (encoding));
7947 break;
c906108c 7948 }
6ccb9162 7949
0114d602
DJ
7950 type = init_type (code, size, type_flags, NULL, objfile);
7951 TYPE_NAME (type) = name;
6ccb9162
UW
7952 TYPE_TARGET_TYPE (type) = target_type;
7953
0114d602 7954 if (name && strcmp (name, "char") == 0)
876cecd0 7955 TYPE_NOSIGN (type) = 1;
0114d602 7956
f792889a 7957 return set_die_type (die, type, cu);
c906108c
SS
7958}
7959
a02abb62
JB
7960/* Read the given DW_AT_subrange DIE. */
7961
f792889a 7962static struct type *
a02abb62
JB
7963read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
7964{
5e2b427d 7965 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
a02abb62
JB
7966 struct type *base_type;
7967 struct type *range_type;
7968 struct attribute *attr;
43bbcdc2
PH
7969 LONGEST low = 0;
7970 LONGEST high = -1;
39cbfefa 7971 char *name;
43bbcdc2 7972 LONGEST negative_mask;
e77813c8 7973
a02abb62 7974 base_type = die_type (die, cu);
953ac07e
JK
7975 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
7976 check_typedef (base_type);
a02abb62 7977
7e314c57
JK
7978 /* The die_type call above may have already set the type for this DIE. */
7979 range_type = get_die_type (die, cu);
7980 if (range_type)
7981 return range_type;
7982
e142c38c 7983 if (cu->language == language_fortran)
6e70227d 7984 {
a02abb62
JB
7985 /* FORTRAN implies a lower bound of 1, if not given. */
7986 low = 1;
7987 }
7988
dd5e6932
DJ
7989 /* FIXME: For variable sized arrays either of these could be
7990 a variable rather than a constant value. We'll allow it,
7991 but we don't know how to handle it. */
e142c38c 7992 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
7993 if (attr)
7994 low = dwarf2_get_attr_constant_value (attr, 0);
7995
e142c38c 7996 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 7997 if (attr)
6e70227d 7998 {
e77813c8 7999 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
a02abb62
JB
8000 {
8001 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 8002 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
8003 FIXME: GDB does not yet know how to handle dynamic
8004 arrays properly, treat them as arrays with unspecified
8005 length for now.
8006
8007 FIXME: jimb/2003-09-22: GDB does not really know
8008 how to handle arrays of unspecified length
8009 either; we just represent them as zero-length
8010 arrays. Choose an appropriate upper bound given
8011 the lower bound we've computed above. */
8012 high = low - 1;
8013 }
8014 else
8015 high = dwarf2_get_attr_constant_value (attr, 1);
8016 }
e77813c8
PM
8017 else
8018 {
8019 attr = dwarf2_attr (die, DW_AT_count, cu);
8020 if (attr)
8021 {
8022 int count = dwarf2_get_attr_constant_value (attr, 1);
8023 high = low + count - 1;
8024 }
8025 }
8026
8027 /* Dwarf-2 specifications explicitly allows to create subrange types
8028 without specifying a base type.
8029 In that case, the base type must be set to the type of
8030 the lower bound, upper bound or count, in that order, if any of these
8031 three attributes references an object that has a type.
8032 If no base type is found, the Dwarf-2 specifications say that
8033 a signed integer type of size equal to the size of an address should
8034 be used.
8035 For the following C code: `extern char gdb_int [];'
8036 GCC produces an empty range DIE.
8037 FIXME: muller/2010-05-28: Possible references to object for low bound,
8038 high bound or count are not yet handled by this code.
8039 */
8040 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
8041 {
8042 struct objfile *objfile = cu->objfile;
8043 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8044 int addr_size = gdbarch_addr_bit (gdbarch) /8;
8045 struct type *int_type = objfile_type (objfile)->builtin_int;
8046
8047 /* Test "int", "long int", and "long long int" objfile types,
8048 and select the first one having a size above or equal to the
8049 architecture address size. */
8050 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8051 base_type = int_type;
8052 else
8053 {
8054 int_type = objfile_type (objfile)->builtin_long;
8055 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8056 base_type = int_type;
8057 else
8058 {
8059 int_type = objfile_type (objfile)->builtin_long_long;
8060 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8061 base_type = int_type;
8062 }
8063 }
8064 }
a02abb62 8065
6e70227d 8066 negative_mask =
43bbcdc2
PH
8067 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
8068 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
8069 low |= negative_mask;
8070 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
8071 high |= negative_mask;
8072
a02abb62
JB
8073 range_type = create_range_type (NULL, base_type, low, high);
8074
bbb0eef6
JK
8075 /* Mark arrays with dynamic length at least as an array of unspecified
8076 length. GDB could check the boundary but before it gets implemented at
8077 least allow accessing the array elements. */
8078 if (attr && attr->form == DW_FORM_block1)
8079 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8080
39cbfefa
DJ
8081 name = dwarf2_name (die, cu);
8082 if (name)
8083 TYPE_NAME (range_type) = name;
6e70227d 8084
e142c38c 8085 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
8086 if (attr)
8087 TYPE_LENGTH (range_type) = DW_UNSND (attr);
8088
7e314c57
JK
8089 set_die_type (die, range_type, cu);
8090
8091 /* set_die_type should be already done. */
b4ba55a1
JB
8092 set_descriptive_type (range_type, die, cu);
8093
7e314c57 8094 return range_type;
a02abb62 8095}
6e70227d 8096
f792889a 8097static struct type *
81a17f79
JB
8098read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
8099{
8100 struct type *type;
81a17f79 8101
81a17f79
JB
8102 /* For now, we only support the C meaning of an unspecified type: void. */
8103
0114d602
DJ
8104 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
8105 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 8106
f792889a 8107 return set_die_type (die, type, cu);
81a17f79 8108}
a02abb62 8109
51545339
DJ
8110/* Trivial hash function for die_info: the hash value of a DIE
8111 is its offset in .debug_info for this objfile. */
8112
8113static hashval_t
8114die_hash (const void *item)
8115{
8116 const struct die_info *die = item;
9a619af0 8117
51545339
DJ
8118 return die->offset;
8119}
8120
8121/* Trivial comparison function for die_info structures: two DIEs
8122 are equal if they have the same offset. */
8123
8124static int
8125die_eq (const void *item_lhs, const void *item_rhs)
8126{
8127 const struct die_info *die_lhs = item_lhs;
8128 const struct die_info *die_rhs = item_rhs;
9a619af0 8129
51545339
DJ
8130 return die_lhs->offset == die_rhs->offset;
8131}
8132
c906108c
SS
8133/* Read a whole compilation unit into a linked list of dies. */
8134
f9aca02d 8135static struct die_info *
93311388 8136read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 8137{
93311388 8138 struct die_reader_specs reader_specs;
98bfdba5 8139 int read_abbrevs = 0;
1d9ec526 8140 struct cleanup *back_to = NULL;
98bfdba5
PA
8141 struct die_info *die;
8142
8143 if (cu->dwarf2_abbrevs == NULL)
8144 {
8145 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
8146 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
8147 read_abbrevs = 1;
8148 }
93311388 8149
348e048f 8150 gdb_assert (cu->die_hash == NULL);
51545339
DJ
8151 cu->die_hash
8152 = htab_create_alloc_ex (cu->header.length / 12,
8153 die_hash,
8154 die_eq,
8155 NULL,
8156 &cu->comp_unit_obstack,
8157 hashtab_obstack_allocate,
8158 dummy_obstack_deallocate);
8159
93311388
DE
8160 init_cu_die_reader (&reader_specs, cu);
8161
98bfdba5
PA
8162 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
8163
8164 if (read_abbrevs)
8165 do_cleanups (back_to);
8166
8167 return die;
639d11d3
DC
8168}
8169
d97bc12b
DE
8170/* Main entry point for reading a DIE and all children.
8171 Read the DIE and dump it if requested. */
8172
8173static struct die_info *
93311388
DE
8174read_die_and_children (const struct die_reader_specs *reader,
8175 gdb_byte *info_ptr,
d97bc12b
DE
8176 gdb_byte **new_info_ptr,
8177 struct die_info *parent)
8178{
93311388 8179 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
d97bc12b
DE
8180 new_info_ptr, parent);
8181
8182 if (dwarf2_die_debug)
8183 {
348e048f
DE
8184 fprintf_unfiltered (gdb_stdlog,
8185 "\nRead die from %s of %s:\n",
8186 reader->buffer == dwarf2_per_objfile->info.buffer
8187 ? ".debug_info"
8188 : reader->buffer == dwarf2_per_objfile->types.buffer
8189 ? ".debug_types"
8190 : "unknown section",
8191 reader->abfd->filename);
d97bc12b
DE
8192 dump_die (result, dwarf2_die_debug);
8193 }
8194
8195 return result;
8196}
8197
639d11d3
DC
8198/* Read a single die and all its descendents. Set the die's sibling
8199 field to NULL; set other fields in the die correctly, and set all
8200 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
8201 location of the info_ptr after reading all of those dies. PARENT
8202 is the parent of the die in question. */
8203
8204static struct die_info *
93311388
DE
8205read_die_and_children_1 (const struct die_reader_specs *reader,
8206 gdb_byte *info_ptr,
d97bc12b
DE
8207 gdb_byte **new_info_ptr,
8208 struct die_info *parent)
639d11d3
DC
8209{
8210 struct die_info *die;
fe1b8b76 8211 gdb_byte *cur_ptr;
639d11d3
DC
8212 int has_children;
8213
93311388 8214 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
1d325ec1
DJ
8215 if (die == NULL)
8216 {
8217 *new_info_ptr = cur_ptr;
8218 return NULL;
8219 }
93311388 8220 store_in_ref_table (die, reader->cu);
639d11d3
DC
8221
8222 if (has_children)
348e048f 8223 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
8224 else
8225 {
8226 die->child = NULL;
8227 *new_info_ptr = cur_ptr;
8228 }
8229
8230 die->sibling = NULL;
8231 die->parent = parent;
8232 return die;
8233}
8234
8235/* Read a die, all of its descendents, and all of its siblings; set
8236 all of the fields of all of the dies correctly. Arguments are as
8237 in read_die_and_children. */
8238
8239static struct die_info *
93311388
DE
8240read_die_and_siblings (const struct die_reader_specs *reader,
8241 gdb_byte *info_ptr,
fe1b8b76 8242 gdb_byte **new_info_ptr,
639d11d3
DC
8243 struct die_info *parent)
8244{
8245 struct die_info *first_die, *last_sibling;
fe1b8b76 8246 gdb_byte *cur_ptr;
639d11d3 8247
c906108c 8248 cur_ptr = info_ptr;
639d11d3
DC
8249 first_die = last_sibling = NULL;
8250
8251 while (1)
c906108c 8252 {
639d11d3 8253 struct die_info *die
93311388 8254 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
639d11d3 8255
1d325ec1 8256 if (die == NULL)
c906108c 8257 {
639d11d3
DC
8258 *new_info_ptr = cur_ptr;
8259 return first_die;
c906108c 8260 }
1d325ec1
DJ
8261
8262 if (!first_die)
8263 first_die = die;
c906108c 8264 else
1d325ec1
DJ
8265 last_sibling->sibling = die;
8266
8267 last_sibling = die;
c906108c 8268 }
c906108c
SS
8269}
8270
93311388
DE
8271/* Read the die from the .debug_info section buffer. Set DIEP to
8272 point to a newly allocated die with its information, except for its
8273 child, sibling, and parent fields. Set HAS_CHILDREN to tell
8274 whether the die has children or not. */
8275
8276static gdb_byte *
8277read_full_die (const struct die_reader_specs *reader,
8278 struct die_info **diep, gdb_byte *info_ptr,
8279 int *has_children)
8280{
8281 unsigned int abbrev_number, bytes_read, i, offset;
8282 struct abbrev_info *abbrev;
8283 struct die_info *die;
8284 struct dwarf2_cu *cu = reader->cu;
8285 bfd *abfd = reader->abfd;
8286
8287 offset = info_ptr - reader->buffer;
8288 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8289 info_ptr += bytes_read;
8290 if (!abbrev_number)
8291 {
8292 *diep = NULL;
8293 *has_children = 0;
8294 return info_ptr;
8295 }
8296
8297 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
8298 if (!abbrev)
348e048f
DE
8299 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
8300 abbrev_number,
8301 bfd_get_filename (abfd));
8302
93311388
DE
8303 die = dwarf_alloc_die (cu, abbrev->num_attrs);
8304 die->offset = offset;
8305 die->tag = abbrev->tag;
8306 die->abbrev = abbrev_number;
8307
8308 die->num_attrs = abbrev->num_attrs;
8309
8310 for (i = 0; i < abbrev->num_attrs; ++i)
8311 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
8312 abfd, info_ptr, cu);
8313
8314 *diep = die;
8315 *has_children = abbrev->has_children;
8316 return info_ptr;
8317}
8318
c906108c
SS
8319/* In DWARF version 2, the description of the debugging information is
8320 stored in a separate .debug_abbrev section. Before we read any
8321 dies from a section we read in all abbreviations and install them
72bf9492
DJ
8322 in a hash table. This function also sets flags in CU describing
8323 the data found in the abbrev table. */
c906108c
SS
8324
8325static void
e7c27a73 8326dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 8327{
e7c27a73 8328 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 8329 gdb_byte *abbrev_ptr;
c906108c
SS
8330 struct abbrev_info *cur_abbrev;
8331 unsigned int abbrev_number, bytes_read, abbrev_name;
8332 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
8333 struct attr_abbrev *cur_attrs;
8334 unsigned int allocated_attrs;
c906108c 8335
57349743 8336 /* Initialize dwarf2 abbrevs */
f3dd6933
DJ
8337 obstack_init (&cu->abbrev_obstack);
8338 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
8339 (ABBREV_HASH_SIZE
8340 * sizeof (struct abbrev_info *)));
8341 memset (cu->dwarf2_abbrevs, 0,
8342 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 8343
be391dca
TT
8344 dwarf2_read_section (dwarf2_per_objfile->objfile,
8345 &dwarf2_per_objfile->abbrev);
dce234bc 8346 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
c906108c
SS
8347 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8348 abbrev_ptr += bytes_read;
8349
f3dd6933
DJ
8350 allocated_attrs = ATTR_ALLOC_CHUNK;
8351 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 8352
c906108c
SS
8353 /* loop until we reach an abbrev number of 0 */
8354 while (abbrev_number)
8355 {
f3dd6933 8356 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
8357
8358 /* read in abbrev header */
8359 cur_abbrev->number = abbrev_number;
8360 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8361 abbrev_ptr += bytes_read;
8362 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
8363 abbrev_ptr += 1;
8364
72bf9492
DJ
8365 if (cur_abbrev->tag == DW_TAG_namespace)
8366 cu->has_namespace_info = 1;
8367
c906108c
SS
8368 /* now read in declarations */
8369 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8370 abbrev_ptr += bytes_read;
8371 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8372 abbrev_ptr += bytes_read;
8373 while (abbrev_name)
8374 {
f3dd6933 8375 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 8376 {
f3dd6933
DJ
8377 allocated_attrs += ATTR_ALLOC_CHUNK;
8378 cur_attrs
8379 = xrealloc (cur_attrs, (allocated_attrs
8380 * sizeof (struct attr_abbrev)));
c906108c 8381 }
ae038cb0
DJ
8382
8383 /* Record whether this compilation unit might have
8384 inter-compilation-unit references. If we don't know what form
8385 this attribute will have, then it might potentially be a
8386 DW_FORM_ref_addr, so we conservatively expect inter-CU
8387 references. */
8388
8389 if (abbrev_form == DW_FORM_ref_addr
8390 || abbrev_form == DW_FORM_indirect)
8391 cu->has_form_ref_addr = 1;
8392
f3dd6933
DJ
8393 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
8394 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
8395 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8396 abbrev_ptr += bytes_read;
8397 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8398 abbrev_ptr += bytes_read;
8399 }
8400
f3dd6933
DJ
8401 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
8402 (cur_abbrev->num_attrs
8403 * sizeof (struct attr_abbrev)));
8404 memcpy (cur_abbrev->attrs, cur_attrs,
8405 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
8406
c906108c 8407 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
8408 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
8409 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
8410
8411 /* Get next abbreviation.
8412 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
8413 always properly terminated with an abbrev number of 0.
8414 Exit loop if we encounter an abbreviation which we have
8415 already read (which means we are about to read the abbreviations
8416 for the next compile unit) or if the end of the abbreviation
8417 table is reached. */
dce234bc
PP
8418 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
8419 >= dwarf2_per_objfile->abbrev.size)
c906108c
SS
8420 break;
8421 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8422 abbrev_ptr += bytes_read;
e7c27a73 8423 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
8424 break;
8425 }
f3dd6933
DJ
8426
8427 xfree (cur_attrs);
c906108c
SS
8428}
8429
f3dd6933 8430/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 8431
c906108c 8432static void
f3dd6933 8433dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 8434{
f3dd6933 8435 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 8436
f3dd6933
DJ
8437 obstack_free (&cu->abbrev_obstack, NULL);
8438 cu->dwarf2_abbrevs = NULL;
c906108c
SS
8439}
8440
8441/* Lookup an abbrev_info structure in the abbrev hash table. */
8442
8443static struct abbrev_info *
e7c27a73 8444dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
8445{
8446 unsigned int hash_number;
8447 struct abbrev_info *abbrev;
8448
8449 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 8450 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
8451
8452 while (abbrev)
8453 {
8454 if (abbrev->number == number)
8455 return abbrev;
8456 else
8457 abbrev = abbrev->next;
8458 }
8459 return NULL;
8460}
8461
72bf9492
DJ
8462/* Returns nonzero if TAG represents a type that we might generate a partial
8463 symbol for. */
8464
8465static int
8466is_type_tag_for_partial (int tag)
8467{
8468 switch (tag)
8469 {
8470#if 0
8471 /* Some types that would be reasonable to generate partial symbols for,
8472 that we don't at present. */
8473 case DW_TAG_array_type:
8474 case DW_TAG_file_type:
8475 case DW_TAG_ptr_to_member_type:
8476 case DW_TAG_set_type:
8477 case DW_TAG_string_type:
8478 case DW_TAG_subroutine_type:
8479#endif
8480 case DW_TAG_base_type:
8481 case DW_TAG_class_type:
680b30c7 8482 case DW_TAG_interface_type:
72bf9492
DJ
8483 case DW_TAG_enumeration_type:
8484 case DW_TAG_structure_type:
8485 case DW_TAG_subrange_type:
8486 case DW_TAG_typedef:
8487 case DW_TAG_union_type:
8488 return 1;
8489 default:
8490 return 0;
8491 }
8492}
8493
8494/* Load all DIEs that are interesting for partial symbols into memory. */
8495
8496static struct partial_die_info *
93311388
DE
8497load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
8498 int building_psymtab, struct dwarf2_cu *cu)
72bf9492
DJ
8499{
8500 struct partial_die_info *part_die;
8501 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
8502 struct abbrev_info *abbrev;
8503 unsigned int bytes_read;
5afb4e99 8504 unsigned int load_all = 0;
72bf9492
DJ
8505
8506 int nesting_level = 1;
8507
8508 parent_die = NULL;
8509 last_die = NULL;
8510
5afb4e99
DJ
8511 if (cu->per_cu && cu->per_cu->load_all_dies)
8512 load_all = 1;
8513
72bf9492
DJ
8514 cu->partial_dies
8515 = htab_create_alloc_ex (cu->header.length / 12,
8516 partial_die_hash,
8517 partial_die_eq,
8518 NULL,
8519 &cu->comp_unit_obstack,
8520 hashtab_obstack_allocate,
8521 dummy_obstack_deallocate);
8522
8523 part_die = obstack_alloc (&cu->comp_unit_obstack,
8524 sizeof (struct partial_die_info));
8525
8526 while (1)
8527 {
8528 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8529
8530 /* A NULL abbrev means the end of a series of children. */
8531 if (abbrev == NULL)
8532 {
8533 if (--nesting_level == 0)
8534 {
8535 /* PART_DIE was probably the last thing allocated on the
8536 comp_unit_obstack, so we could call obstack_free
8537 here. We don't do that because the waste is small,
8538 and will be cleaned up when we're done with this
8539 compilation unit. This way, we're also more robust
8540 against other users of the comp_unit_obstack. */
8541 return first_die;
8542 }
8543 info_ptr += bytes_read;
8544 last_die = parent_die;
8545 parent_die = parent_die->die_parent;
8546 continue;
8547 }
8548
98bfdba5
PA
8549 /* Check for template arguments. We never save these; if
8550 they're seen, we just mark the parent, and go on our way. */
8551 if (parent_die != NULL
8552 && cu->language == language_cplus
8553 && (abbrev->tag == DW_TAG_template_type_param
8554 || abbrev->tag == DW_TAG_template_value_param))
8555 {
8556 parent_die->has_template_arguments = 1;
8557
8558 if (!load_all)
8559 {
8560 /* We don't need a partial DIE for the template argument. */
8561 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
8562 cu);
8563 continue;
8564 }
8565 }
8566
8567 /* We only recurse into subprograms looking for template arguments.
8568 Skip their other children. */
8569 if (!load_all
8570 && cu->language == language_cplus
8571 && parent_die != NULL
8572 && parent_die->tag == DW_TAG_subprogram)
8573 {
8574 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8575 continue;
8576 }
8577
5afb4e99
DJ
8578 /* Check whether this DIE is interesting enough to save. Normally
8579 we would not be interested in members here, but there may be
8580 later variables referencing them via DW_AT_specification (for
8581 static members). */
8582 if (!load_all
8583 && !is_type_tag_for_partial (abbrev->tag)
72929c62 8584 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
8585 && abbrev->tag != DW_TAG_enumerator
8586 && abbrev->tag != DW_TAG_subprogram
bc30ff58 8587 && abbrev->tag != DW_TAG_lexical_block
72bf9492 8588 && abbrev->tag != DW_TAG_variable
5afb4e99 8589 && abbrev->tag != DW_TAG_namespace
f55ee35c 8590 && abbrev->tag != DW_TAG_module
5afb4e99 8591 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
8592 {
8593 /* Otherwise we skip to the next sibling, if any. */
93311388 8594 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
72bf9492
DJ
8595 continue;
8596 }
8597
93311388
DE
8598 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
8599 buffer, info_ptr, cu);
72bf9492
DJ
8600
8601 /* This two-pass algorithm for processing partial symbols has a
8602 high cost in cache pressure. Thus, handle some simple cases
8603 here which cover the majority of C partial symbols. DIEs
8604 which neither have specification tags in them, nor could have
8605 specification tags elsewhere pointing at them, can simply be
8606 processed and discarded.
8607
8608 This segment is also optional; scan_partial_symbols and
8609 add_partial_symbol will handle these DIEs if we chain
8610 them in normally. When compilers which do not emit large
8611 quantities of duplicate debug information are more common,
8612 this code can probably be removed. */
8613
8614 /* Any complete simple types at the top level (pretty much all
8615 of them, for a language without namespaces), can be processed
8616 directly. */
8617 if (parent_die == NULL
8618 && part_die->has_specification == 0
8619 && part_die->is_declaration == 0
8620 && (part_die->tag == DW_TAG_typedef
8621 || part_die->tag == DW_TAG_base_type
8622 || part_die->tag == DW_TAG_subrange_type))
8623 {
8624 if (building_psymtab && part_die->name != NULL)
04a679b8 8625 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492
DJ
8626 VAR_DOMAIN, LOC_TYPEDEF,
8627 &cu->objfile->static_psymbols,
8628 0, (CORE_ADDR) 0, cu->language, cu->objfile);
93311388 8629 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
8630 continue;
8631 }
8632
8633 /* If we're at the second level, and we're an enumerator, and
8634 our parent has no specification (meaning possibly lives in a
8635 namespace elsewhere), then we can add the partial symbol now
8636 instead of queueing it. */
8637 if (part_die->tag == DW_TAG_enumerator
8638 && parent_die != NULL
8639 && parent_die->die_parent == NULL
8640 && parent_die->tag == DW_TAG_enumeration_type
8641 && parent_die->has_specification == 0)
8642 {
8643 if (part_die->name == NULL)
e2e0b3e5 8644 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
72bf9492 8645 else if (building_psymtab)
04a679b8 8646 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 8647 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
8648 (cu->language == language_cplus
8649 || cu->language == language_java)
72bf9492
DJ
8650 ? &cu->objfile->global_psymbols
8651 : &cu->objfile->static_psymbols,
8652 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8653
93311388 8654 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
8655 continue;
8656 }
8657
8658 /* We'll save this DIE so link it in. */
8659 part_die->die_parent = parent_die;
8660 part_die->die_sibling = NULL;
8661 part_die->die_child = NULL;
8662
8663 if (last_die && last_die == parent_die)
8664 last_die->die_child = part_die;
8665 else if (last_die)
8666 last_die->die_sibling = part_die;
8667
8668 last_die = part_die;
8669
8670 if (first_die == NULL)
8671 first_die = part_die;
8672
8673 /* Maybe add the DIE to the hash table. Not all DIEs that we
8674 find interesting need to be in the hash table, because we
8675 also have the parent/sibling/child chains; only those that we
8676 might refer to by offset later during partial symbol reading.
8677
8678 For now this means things that might have be the target of a
8679 DW_AT_specification, DW_AT_abstract_origin, or
8680 DW_AT_extension. DW_AT_extension will refer only to
8681 namespaces; DW_AT_abstract_origin refers to functions (and
8682 many things under the function DIE, but we do not recurse
8683 into function DIEs during partial symbol reading) and
8684 possibly variables as well; DW_AT_specification refers to
8685 declarations. Declarations ought to have the DW_AT_declaration
8686 flag. It happens that GCC forgets to put it in sometimes, but
8687 only for functions, not for types.
8688
8689 Adding more things than necessary to the hash table is harmless
8690 except for the performance cost. Adding too few will result in
5afb4e99
DJ
8691 wasted time in find_partial_die, when we reread the compilation
8692 unit with load_all_dies set. */
72bf9492 8693
5afb4e99 8694 if (load_all
72929c62 8695 || abbrev->tag == DW_TAG_constant
5afb4e99 8696 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
8697 || abbrev->tag == DW_TAG_variable
8698 || abbrev->tag == DW_TAG_namespace
8699 || part_die->is_declaration)
8700 {
8701 void **slot;
8702
8703 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
8704 part_die->offset, INSERT);
8705 *slot = part_die;
8706 }
8707
8708 part_die = obstack_alloc (&cu->comp_unit_obstack,
8709 sizeof (struct partial_die_info));
8710
8711 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 8712 we have no reason to follow the children of structures; for other
98bfdba5
PA
8713 languages we have to, so that we can get at method physnames
8714 to infer fully qualified class names, for DW_AT_specification,
8715 and for C++ template arguments. For C++, we also look one level
8716 inside functions to find template arguments (if the name of the
8717 function does not already contain the template arguments).
bc30ff58
JB
8718
8719 For Ada, we need to scan the children of subprograms and lexical
8720 blocks as well because Ada allows the definition of nested
8721 entities that could be interesting for the debugger, such as
8722 nested subprograms for instance. */
72bf9492 8723 if (last_die->has_children
5afb4e99
DJ
8724 && (load_all
8725 || last_die->tag == DW_TAG_namespace
f55ee35c 8726 || last_die->tag == DW_TAG_module
72bf9492 8727 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
8728 || (cu->language == language_cplus
8729 && last_die->tag == DW_TAG_subprogram
8730 && (last_die->name == NULL
8731 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
8732 || (cu->language != language_c
8733 && (last_die->tag == DW_TAG_class_type
680b30c7 8734 || last_die->tag == DW_TAG_interface_type
72bf9492 8735 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
8736 || last_die->tag == DW_TAG_union_type))
8737 || (cu->language == language_ada
8738 && (last_die->tag == DW_TAG_subprogram
8739 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
8740 {
8741 nesting_level++;
8742 parent_die = last_die;
8743 continue;
8744 }
8745
8746 /* Otherwise we skip to the next sibling, if any. */
93311388 8747 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
8748
8749 /* Back to the top, do it again. */
8750 }
8751}
8752
c906108c
SS
8753/* Read a minimal amount of information into the minimal die structure. */
8754
fe1b8b76 8755static gdb_byte *
72bf9492
DJ
8756read_partial_die (struct partial_die_info *part_die,
8757 struct abbrev_info *abbrev,
8758 unsigned int abbrev_len, bfd *abfd,
93311388
DE
8759 gdb_byte *buffer, gdb_byte *info_ptr,
8760 struct dwarf2_cu *cu)
c906108c 8761{
fa238c03 8762 unsigned int i;
c906108c 8763 struct attribute attr;
c5aa993b 8764 int has_low_pc_attr = 0;
c906108c
SS
8765 int has_high_pc_attr = 0;
8766
72bf9492 8767 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 8768
93311388 8769 part_die->offset = info_ptr - buffer;
72bf9492
DJ
8770
8771 info_ptr += abbrev_len;
8772
8773 if (abbrev == NULL)
8774 return info_ptr;
8775
c906108c
SS
8776 part_die->tag = abbrev->tag;
8777 part_die->has_children = abbrev->has_children;
c906108c
SS
8778
8779 for (i = 0; i < abbrev->num_attrs; ++i)
8780 {
e7c27a73 8781 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
8782
8783 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 8784 partial symbol table. */
c906108c
SS
8785 switch (attr.name)
8786 {
8787 case DW_AT_name:
71c25dea
TT
8788 switch (part_die->tag)
8789 {
8790 case DW_TAG_compile_unit:
348e048f 8791 case DW_TAG_type_unit:
71c25dea
TT
8792 /* Compilation units have a DW_AT_name that is a filename, not
8793 a source language identifier. */
8794 case DW_TAG_enumeration_type:
8795 case DW_TAG_enumerator:
8796 /* These tags always have simple identifiers already; no need
8797 to canonicalize them. */
8798 part_die->name = DW_STRING (&attr);
8799 break;
8800 default:
8801 part_die->name
8802 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
95519e0e 8803 &cu->objfile->objfile_obstack);
71c25dea
TT
8804 break;
8805 }
c906108c 8806 break;
31ef98ae 8807 case DW_AT_linkage_name:
c906108c 8808 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
8809 /* Note that both forms of linkage name might appear. We
8810 assume they will be the same, and we only store the last
8811 one we see. */
94af9270
KS
8812 if (cu->language == language_ada)
8813 part_die->name = DW_STRING (&attr);
abc72ce4 8814 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
8815 break;
8816 case DW_AT_low_pc:
8817 has_low_pc_attr = 1;
8818 part_die->lowpc = DW_ADDR (&attr);
8819 break;
8820 case DW_AT_high_pc:
8821 has_high_pc_attr = 1;
8822 part_die->highpc = DW_ADDR (&attr);
8823 break;
8824 case DW_AT_location:
8e19ed76
PS
8825 /* Support the .debug_loc offsets */
8826 if (attr_form_is_block (&attr))
8827 {
8828 part_die->locdesc = DW_BLOCK (&attr);
8829 }
3690dd37 8830 else if (attr_form_is_section_offset (&attr))
8e19ed76 8831 {
4d3c2250 8832 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
8833 }
8834 else
8835 {
4d3c2250
KB
8836 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
8837 "partial symbol information");
8e19ed76 8838 }
c906108c 8839 break;
c906108c
SS
8840 case DW_AT_external:
8841 part_die->is_external = DW_UNSND (&attr);
8842 break;
8843 case DW_AT_declaration:
8844 part_die->is_declaration = DW_UNSND (&attr);
8845 break;
8846 case DW_AT_type:
8847 part_die->has_type = 1;
8848 break;
8849 case DW_AT_abstract_origin:
8850 case DW_AT_specification:
72bf9492
DJ
8851 case DW_AT_extension:
8852 part_die->has_specification = 1;
c764a876 8853 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
c906108c
SS
8854 break;
8855 case DW_AT_sibling:
8856 /* Ignore absolute siblings, they might point outside of
8857 the current compile unit. */
8858 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 8859 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
c906108c 8860 else
93311388 8861 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
c906108c 8862 break;
fa4028e9
JB
8863 case DW_AT_byte_size:
8864 part_die->has_byte_size = 1;
8865 break;
68511cec
CES
8866 case DW_AT_calling_convention:
8867 /* DWARF doesn't provide a way to identify a program's source-level
8868 entry point. DW_AT_calling_convention attributes are only meant
8869 to describe functions' calling conventions.
8870
8871 However, because it's a necessary piece of information in
8872 Fortran, and because DW_CC_program is the only piece of debugging
8873 information whose definition refers to a 'main program' at all,
8874 several compilers have begun marking Fortran main programs with
8875 DW_CC_program --- even when those functions use the standard
8876 calling conventions.
8877
8878 So until DWARF specifies a way to provide this information and
8879 compilers pick up the new representation, we'll support this
8880 practice. */
8881 if (DW_UNSND (&attr) == DW_CC_program
8882 && cu->language == language_fortran)
8883 set_main_name (part_die->name);
8884 break;
c906108c
SS
8885 default:
8886 break;
8887 }
8888 }
8889
c906108c
SS
8890 /* When using the GNU linker, .gnu.linkonce. sections are used to
8891 eliminate duplicate copies of functions and vtables and such.
8892 The linker will arbitrarily choose one and discard the others.
8893 The AT_*_pc values for such functions refer to local labels in
8894 these sections. If the section from that file was discarded, the
8895 labels are not in the output, so the relocs get a value of 0.
8896 If this is a discarded function, mark the pc bounds as invalid,
8897 so that GDB will ignore it. */
8898 if (has_low_pc_attr && has_high_pc_attr
8899 && part_die->lowpc < part_die->highpc
8900 && (part_die->lowpc != 0
72dca2f5 8901 || dwarf2_per_objfile->has_section_at_zero))
0b010bcc 8902 part_die->has_pc_info = 1;
85cbf3d3 8903
c906108c
SS
8904 return info_ptr;
8905}
8906
72bf9492
DJ
8907/* Find a cached partial DIE at OFFSET in CU. */
8908
8909static struct partial_die_info *
c764a876 8910find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
72bf9492
DJ
8911{
8912 struct partial_die_info *lookup_die = NULL;
8913 struct partial_die_info part_die;
8914
8915 part_die.offset = offset;
8916 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
8917
72bf9492
DJ
8918 return lookup_die;
8919}
8920
348e048f
DE
8921/* Find a partial DIE at OFFSET, which may or may not be in CU,
8922 except in the case of .debug_types DIEs which do not reference
8923 outside their CU (they do however referencing other types via
8924 DW_FORM_sig8). */
72bf9492
DJ
8925
8926static struct partial_die_info *
c764a876 8927find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
72bf9492 8928{
5afb4e99
DJ
8929 struct dwarf2_per_cu_data *per_cu = NULL;
8930 struct partial_die_info *pd = NULL;
72bf9492 8931
348e048f
DE
8932 if (cu->per_cu->from_debug_types)
8933 {
8934 pd = find_partial_die_in_comp_unit (offset, cu);
8935 if (pd != NULL)
8936 return pd;
8937 goto not_found;
8938 }
8939
45452591 8940 if (offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
8941 {
8942 pd = find_partial_die_in_comp_unit (offset, cu);
8943 if (pd != NULL)
8944 return pd;
8945 }
72bf9492 8946
ae038cb0
DJ
8947 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
8948
98bfdba5
PA
8949 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
8950 load_partial_comp_unit (per_cu, cu->objfile);
ae038cb0
DJ
8951
8952 per_cu->cu->last_used = 0;
5afb4e99
DJ
8953 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
8954
8955 if (pd == NULL && per_cu->load_all_dies == 0)
8956 {
8957 struct cleanup *back_to;
8958 struct partial_die_info comp_unit_die;
8959 struct abbrev_info *abbrev;
8960 unsigned int bytes_read;
8961 char *info_ptr;
8962
8963 per_cu->load_all_dies = 1;
8964
8965 /* Re-read the DIEs. */
8966 back_to = make_cleanup (null_cleanup, 0);
8967 if (per_cu->cu->dwarf2_abbrevs == NULL)
8968 {
8969 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
53d72f98 8970 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5afb4e99 8971 }
dce234bc 8972 info_ptr = (dwarf2_per_objfile->info.buffer
d00adf39
DE
8973 + per_cu->cu->header.offset
8974 + per_cu->cu->header.first_die_offset);
5afb4e99
DJ
8975 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
8976 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
93311388
DE
8977 per_cu->cu->objfile->obfd,
8978 dwarf2_per_objfile->info.buffer, info_ptr,
5afb4e99
DJ
8979 per_cu->cu);
8980 if (comp_unit_die.has_children)
93311388
DE
8981 load_partial_dies (per_cu->cu->objfile->obfd,
8982 dwarf2_per_objfile->info.buffer, info_ptr,
8983 0, per_cu->cu);
5afb4e99
DJ
8984 do_cleanups (back_to);
8985
8986 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
8987 }
8988
348e048f
DE
8989 not_found:
8990
5afb4e99
DJ
8991 if (pd == NULL)
8992 internal_error (__FILE__, __LINE__,
c764a876 8993 _("could not find partial DIE 0x%x in cache [from module %s]\n"),
5afb4e99
DJ
8994 offset, bfd_get_filename (cu->objfile->obfd));
8995 return pd;
72bf9492
DJ
8996}
8997
abc72ce4
DE
8998/* See if we can figure out if the class lives in a namespace. We do
8999 this by looking for a member function; its demangled name will
9000 contain namespace info, if there is any. */
9001
9002static void
9003guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
9004 struct dwarf2_cu *cu)
9005{
9006 /* NOTE: carlton/2003-10-07: Getting the info this way changes
9007 what template types look like, because the demangler
9008 frequently doesn't give the same name as the debug info. We
9009 could fix this by only using the demangled name to get the
9010 prefix (but see comment in read_structure_type). */
9011
9012 struct partial_die_info *real_pdi;
9013 struct partial_die_info *child_pdi;
9014
9015 /* If this DIE (this DIE's specification, if any) has a parent, then
9016 we should not do this. We'll prepend the parent's fully qualified
9017 name when we create the partial symbol. */
9018
9019 real_pdi = struct_pdi;
9020 while (real_pdi->has_specification)
9021 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
9022
9023 if (real_pdi->die_parent != NULL)
9024 return;
9025
9026 for (child_pdi = struct_pdi->die_child;
9027 child_pdi != NULL;
9028 child_pdi = child_pdi->die_sibling)
9029 {
9030 if (child_pdi->tag == DW_TAG_subprogram
9031 && child_pdi->linkage_name != NULL)
9032 {
9033 char *actual_class_name
9034 = language_class_name_from_physname (cu->language_defn,
9035 child_pdi->linkage_name);
9036 if (actual_class_name != NULL)
9037 {
9038 struct_pdi->name
9039 = obsavestring (actual_class_name,
9040 strlen (actual_class_name),
9041 &cu->objfile->objfile_obstack);
9042 xfree (actual_class_name);
9043 }
9044 break;
9045 }
9046 }
9047}
9048
72bf9492
DJ
9049/* Adjust PART_DIE before generating a symbol for it. This function
9050 may set the is_external flag or change the DIE's name. */
9051
9052static void
9053fixup_partial_die (struct partial_die_info *part_die,
9054 struct dwarf2_cu *cu)
9055{
abc72ce4
DE
9056 /* Once we've fixed up a die, there's no point in doing so again.
9057 This also avoids a memory leak if we were to call
9058 guess_partial_die_structure_name multiple times. */
9059 if (part_die->fixup_called)
9060 return;
9061
72bf9492
DJ
9062 /* If we found a reference attribute and the DIE has no name, try
9063 to find a name in the referred to DIE. */
9064
9065 if (part_die->name == NULL && part_die->has_specification)
9066 {
9067 struct partial_die_info *spec_die;
72bf9492 9068
10b3939b 9069 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 9070
10b3939b 9071 fixup_partial_die (spec_die, cu);
72bf9492
DJ
9072
9073 if (spec_die->name)
9074 {
9075 part_die->name = spec_die->name;
9076
9077 /* Copy DW_AT_external attribute if it is set. */
9078 if (spec_die->is_external)
9079 part_die->is_external = spec_die->is_external;
9080 }
9081 }
9082
9083 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
9084
9085 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
9086 part_die->name = "(anonymous namespace)";
9087
abc72ce4
DE
9088 /* If there is no parent die to provide a namespace, and there are
9089 children, see if we can determine the namespace from their linkage
9090 name.
9091 NOTE: We need to do this even if cu->has_namespace_info != 0.
9092 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
9093 if (cu->language == language_cplus
9094 && dwarf2_per_objfile->types.asection != NULL
9095 && part_die->die_parent == NULL
9096 && part_die->has_children
9097 && (part_die->tag == DW_TAG_class_type
9098 || part_die->tag == DW_TAG_structure_type
9099 || part_die->tag == DW_TAG_union_type))
9100 guess_partial_die_structure_name (part_die, cu);
9101
9102 part_die->fixup_called = 1;
72bf9492
DJ
9103}
9104
a8329558 9105/* Read an attribute value described by an attribute form. */
c906108c 9106
fe1b8b76 9107static gdb_byte *
a8329558 9108read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 9109 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 9110 struct dwarf2_cu *cu)
c906108c 9111{
e7c27a73 9112 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
9113 unsigned int bytes_read;
9114 struct dwarf_block *blk;
9115
a8329558
KW
9116 attr->form = form;
9117 switch (form)
c906108c 9118 {
c906108c 9119 case DW_FORM_ref_addr:
ae411497
TT
9120 if (cu->header.version == 2)
9121 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9122 else
9123 DW_ADDR (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9124 info_ptr += bytes_read;
9125 break;
9126 case DW_FORM_addr:
e7c27a73 9127 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 9128 info_ptr += bytes_read;
c906108c
SS
9129 break;
9130 case DW_FORM_block2:
7b5a2f43 9131 blk = dwarf_alloc_block (cu);
c906108c
SS
9132 blk->size = read_2_bytes (abfd, info_ptr);
9133 info_ptr += 2;
9134 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9135 info_ptr += blk->size;
9136 DW_BLOCK (attr) = blk;
9137 break;
9138 case DW_FORM_block4:
7b5a2f43 9139 blk = dwarf_alloc_block (cu);
c906108c
SS
9140 blk->size = read_4_bytes (abfd, info_ptr);
9141 info_ptr += 4;
9142 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9143 info_ptr += blk->size;
9144 DW_BLOCK (attr) = blk;
9145 break;
9146 case DW_FORM_data2:
9147 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
9148 info_ptr += 2;
9149 break;
9150 case DW_FORM_data4:
9151 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
9152 info_ptr += 4;
9153 break;
9154 case DW_FORM_data8:
9155 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
9156 info_ptr += 8;
9157 break;
2dc7f7b3
TT
9158 case DW_FORM_sec_offset:
9159 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9160 info_ptr += bytes_read;
9161 break;
c906108c 9162 case DW_FORM_string:
9b1c24c8 9163 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 9164 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
9165 info_ptr += bytes_read;
9166 break;
4bdf3d34
JJ
9167 case DW_FORM_strp:
9168 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
9169 &bytes_read);
8285870a 9170 DW_STRING_IS_CANONICAL (attr) = 0;
4bdf3d34
JJ
9171 info_ptr += bytes_read;
9172 break;
2dc7f7b3 9173 case DW_FORM_exprloc:
c906108c 9174 case DW_FORM_block:
7b5a2f43 9175 blk = dwarf_alloc_block (cu);
c906108c
SS
9176 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9177 info_ptr += bytes_read;
9178 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9179 info_ptr += blk->size;
9180 DW_BLOCK (attr) = blk;
9181 break;
9182 case DW_FORM_block1:
7b5a2f43 9183 blk = dwarf_alloc_block (cu);
c906108c
SS
9184 blk->size = read_1_byte (abfd, info_ptr);
9185 info_ptr += 1;
9186 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9187 info_ptr += blk->size;
9188 DW_BLOCK (attr) = blk;
9189 break;
9190 case DW_FORM_data1:
9191 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9192 info_ptr += 1;
9193 break;
9194 case DW_FORM_flag:
9195 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9196 info_ptr += 1;
9197 break;
2dc7f7b3
TT
9198 case DW_FORM_flag_present:
9199 DW_UNSND (attr) = 1;
9200 break;
c906108c
SS
9201 case DW_FORM_sdata:
9202 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
9203 info_ptr += bytes_read;
9204 break;
9205 case DW_FORM_udata:
9206 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9207 info_ptr += bytes_read;
9208 break;
9209 case DW_FORM_ref1:
10b3939b 9210 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
9211 info_ptr += 1;
9212 break;
9213 case DW_FORM_ref2:
10b3939b 9214 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
9215 info_ptr += 2;
9216 break;
9217 case DW_FORM_ref4:
10b3939b 9218 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
9219 info_ptr += 4;
9220 break;
613e1657 9221 case DW_FORM_ref8:
10b3939b 9222 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
9223 info_ptr += 8;
9224 break;
348e048f
DE
9225 case DW_FORM_sig8:
9226 /* Convert the signature to something we can record in DW_UNSND
9227 for later lookup.
9228 NOTE: This is NULL if the type wasn't found. */
9229 DW_SIGNATURED_TYPE (attr) =
9230 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
9231 info_ptr += 8;
9232 break;
c906108c 9233 case DW_FORM_ref_udata:
10b3939b
DJ
9234 DW_ADDR (attr) = (cu->header.offset
9235 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
9236 info_ptr += bytes_read;
9237 break;
c906108c 9238 case DW_FORM_indirect:
a8329558
KW
9239 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9240 info_ptr += bytes_read;
e7c27a73 9241 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 9242 break;
c906108c 9243 default:
8a3fe4f8 9244 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
9245 dwarf_form_name (form),
9246 bfd_get_filename (abfd));
c906108c 9247 }
28e94949
JB
9248
9249 /* We have seen instances where the compiler tried to emit a byte
9250 size attribute of -1 which ended up being encoded as an unsigned
9251 0xffffffff. Although 0xffffffff is technically a valid size value,
9252 an object of this size seems pretty unlikely so we can relatively
9253 safely treat these cases as if the size attribute was invalid and
9254 treat them as zero by default. */
9255 if (attr->name == DW_AT_byte_size
9256 && form == DW_FORM_data4
9257 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
9258 {
9259 complaint
9260 (&symfile_complaints,
43bbcdc2
PH
9261 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
9262 hex_string (DW_UNSND (attr)));
01c66ae6
JB
9263 DW_UNSND (attr) = 0;
9264 }
28e94949 9265
c906108c
SS
9266 return info_ptr;
9267}
9268
a8329558
KW
9269/* Read an attribute described by an abbreviated attribute. */
9270
fe1b8b76 9271static gdb_byte *
a8329558 9272read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 9273 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
9274{
9275 attr->name = abbrev->name;
e7c27a73 9276 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
9277}
9278
c906108c
SS
9279/* read dwarf information from a buffer */
9280
9281static unsigned int
fe1b8b76 9282read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 9283{
fe1b8b76 9284 return bfd_get_8 (abfd, buf);
c906108c
SS
9285}
9286
9287static int
fe1b8b76 9288read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 9289{
fe1b8b76 9290 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
9291}
9292
9293static unsigned int
fe1b8b76 9294read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9295{
fe1b8b76 9296 return bfd_get_16 (abfd, buf);
c906108c
SS
9297}
9298
9299static int
fe1b8b76 9300read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9301{
fe1b8b76 9302 return bfd_get_signed_16 (abfd, buf);
c906108c
SS
9303}
9304
9305static unsigned int
fe1b8b76 9306read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9307{
fe1b8b76 9308 return bfd_get_32 (abfd, buf);
c906108c
SS
9309}
9310
9311static int
fe1b8b76 9312read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9313{
fe1b8b76 9314 return bfd_get_signed_32 (abfd, buf);
c906108c
SS
9315}
9316
93311388 9317static ULONGEST
fe1b8b76 9318read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9319{
fe1b8b76 9320 return bfd_get_64 (abfd, buf);
c906108c
SS
9321}
9322
9323static CORE_ADDR
fe1b8b76 9324read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 9325 unsigned int *bytes_read)
c906108c 9326{
e7c27a73 9327 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
9328 CORE_ADDR retval = 0;
9329
107d2387 9330 if (cu_header->signed_addr_p)
c906108c 9331 {
107d2387
AC
9332 switch (cu_header->addr_size)
9333 {
9334 case 2:
fe1b8b76 9335 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
9336 break;
9337 case 4:
fe1b8b76 9338 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
9339 break;
9340 case 8:
fe1b8b76 9341 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
9342 break;
9343 default:
8e65ff28 9344 internal_error (__FILE__, __LINE__,
e2e0b3e5 9345 _("read_address: bad switch, signed [in module %s]"),
659b0389 9346 bfd_get_filename (abfd));
107d2387
AC
9347 }
9348 }
9349 else
9350 {
9351 switch (cu_header->addr_size)
9352 {
9353 case 2:
fe1b8b76 9354 retval = bfd_get_16 (abfd, buf);
107d2387
AC
9355 break;
9356 case 4:
fe1b8b76 9357 retval = bfd_get_32 (abfd, buf);
107d2387
AC
9358 break;
9359 case 8:
fe1b8b76 9360 retval = bfd_get_64 (abfd, buf);
107d2387
AC
9361 break;
9362 default:
8e65ff28 9363 internal_error (__FILE__, __LINE__,
e2e0b3e5 9364 _("read_address: bad switch, unsigned [in module %s]"),
659b0389 9365 bfd_get_filename (abfd));
107d2387 9366 }
c906108c 9367 }
64367e0a 9368
107d2387
AC
9369 *bytes_read = cu_header->addr_size;
9370 return retval;
c906108c
SS
9371}
9372
f7ef9339 9373/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
9374 specification allows the initial length to take up either 4 bytes
9375 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
9376 bytes describe the length and all offsets will be 8 bytes in length
9377 instead of 4.
9378
f7ef9339
KB
9379 An older, non-standard 64-bit format is also handled by this
9380 function. The older format in question stores the initial length
9381 as an 8-byte quantity without an escape value. Lengths greater
9382 than 2^32 aren't very common which means that the initial 4 bytes
9383 is almost always zero. Since a length value of zero doesn't make
9384 sense for the 32-bit format, this initial zero can be considered to
9385 be an escape value which indicates the presence of the older 64-bit
9386 format. As written, the code can't detect (old format) lengths
917c78fc
MK
9387 greater than 4GB. If it becomes necessary to handle lengths
9388 somewhat larger than 4GB, we could allow other small values (such
9389 as the non-sensical values of 1, 2, and 3) to also be used as
9390 escape values indicating the presence of the old format.
f7ef9339 9391
917c78fc
MK
9392 The value returned via bytes_read should be used to increment the
9393 relevant pointer after calling read_initial_length().
c764a876 9394
613e1657
KB
9395 [ Note: read_initial_length() and read_offset() are based on the
9396 document entitled "DWARF Debugging Information Format", revision
f7ef9339 9397 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
9398 from:
9399
f7ef9339 9400 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 9401
613e1657
KB
9402 This document is only a draft and is subject to change. (So beware.)
9403
f7ef9339 9404 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
9405 determined empirically by examining 64-bit ELF files produced by
9406 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
9407
9408 - Kevin, July 16, 2002
613e1657
KB
9409 ] */
9410
9411static LONGEST
c764a876 9412read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
613e1657 9413{
fe1b8b76 9414 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 9415
dd373385 9416 if (length == 0xffffffff)
613e1657 9417 {
fe1b8b76 9418 length = bfd_get_64 (abfd, buf + 4);
613e1657 9419 *bytes_read = 12;
613e1657 9420 }
dd373385 9421 else if (length == 0)
f7ef9339 9422 {
dd373385 9423 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 9424 length = bfd_get_64 (abfd, buf);
f7ef9339 9425 *bytes_read = 8;
f7ef9339 9426 }
613e1657
KB
9427 else
9428 {
9429 *bytes_read = 4;
613e1657
KB
9430 }
9431
c764a876
DE
9432 return length;
9433}
dd373385 9434
c764a876
DE
9435/* Cover function for read_initial_length.
9436 Returns the length of the object at BUF, and stores the size of the
9437 initial length in *BYTES_READ and stores the size that offsets will be in
9438 *OFFSET_SIZE.
9439 If the initial length size is not equivalent to that specified in
9440 CU_HEADER then issue a complaint.
9441 This is useful when reading non-comp-unit headers. */
dd373385 9442
c764a876
DE
9443static LONGEST
9444read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
9445 const struct comp_unit_head *cu_header,
9446 unsigned int *bytes_read,
9447 unsigned int *offset_size)
9448{
9449 LONGEST length = read_initial_length (abfd, buf, bytes_read);
9450
9451 gdb_assert (cu_header->initial_length_size == 4
9452 || cu_header->initial_length_size == 8
9453 || cu_header->initial_length_size == 12);
9454
9455 if (cu_header->initial_length_size != *bytes_read)
9456 complaint (&symfile_complaints,
9457 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 9458
c764a876 9459 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 9460 return length;
613e1657
KB
9461}
9462
9463/* Read an offset from the data stream. The size of the offset is
917c78fc 9464 given by cu_header->offset_size. */
613e1657
KB
9465
9466static LONGEST
fe1b8b76 9467read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 9468 unsigned int *bytes_read)
c764a876
DE
9469{
9470 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 9471
c764a876
DE
9472 *bytes_read = cu_header->offset_size;
9473 return offset;
9474}
9475
9476/* Read an offset from the data stream. */
9477
9478static LONGEST
9479read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
613e1657
KB
9480{
9481 LONGEST retval = 0;
9482
c764a876 9483 switch (offset_size)
613e1657
KB
9484 {
9485 case 4:
fe1b8b76 9486 retval = bfd_get_32 (abfd, buf);
613e1657
KB
9487 break;
9488 case 8:
fe1b8b76 9489 retval = bfd_get_64 (abfd, buf);
613e1657
KB
9490 break;
9491 default:
8e65ff28 9492 internal_error (__FILE__, __LINE__,
c764a876 9493 _("read_offset_1: bad switch [in module %s]"),
659b0389 9494 bfd_get_filename (abfd));
613e1657
KB
9495 }
9496
917c78fc 9497 return retval;
613e1657
KB
9498}
9499
fe1b8b76
JB
9500static gdb_byte *
9501read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
9502{
9503 /* If the size of a host char is 8 bits, we can return a pointer
9504 to the buffer, otherwise we have to copy the data to a buffer
9505 allocated on the temporary obstack. */
4bdf3d34 9506 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 9507 return buf;
c906108c
SS
9508}
9509
9510static char *
9b1c24c8 9511read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
9512{
9513 /* If the size of a host char is 8 bits, we can return a pointer
9514 to the string, otherwise we have to copy the string to a buffer
9515 allocated on the temporary obstack. */
4bdf3d34 9516 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
9517 if (*buf == '\0')
9518 {
9519 *bytes_read_ptr = 1;
9520 return NULL;
9521 }
fe1b8b76
JB
9522 *bytes_read_ptr = strlen ((char *) buf) + 1;
9523 return (char *) buf;
4bdf3d34
JJ
9524}
9525
9526static char *
fe1b8b76 9527read_indirect_string (bfd *abfd, gdb_byte *buf,
4bdf3d34
JJ
9528 const struct comp_unit_head *cu_header,
9529 unsigned int *bytes_read_ptr)
9530{
c764a876 9531 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
c906108c 9532
be391dca 9533 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 9534 if (dwarf2_per_objfile->str.buffer == NULL)
c906108c 9535 {
8a3fe4f8 9536 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 9537 bfd_get_filename (abfd));
4bdf3d34 9538 return NULL;
c906108c 9539 }
dce234bc 9540 if (str_offset >= dwarf2_per_objfile->str.size)
c906108c 9541 {
8a3fe4f8 9542 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
659b0389 9543 bfd_get_filename (abfd));
c906108c
SS
9544 return NULL;
9545 }
4bdf3d34 9546 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 9547 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 9548 return NULL;
dce234bc 9549 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
9550}
9551
ce5d95e1 9552static unsigned long
fe1b8b76 9553read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 9554{
ce5d95e1
JB
9555 unsigned long result;
9556 unsigned int num_read;
c906108c
SS
9557 int i, shift;
9558 unsigned char byte;
9559
9560 result = 0;
9561 shift = 0;
9562 num_read = 0;
9563 i = 0;
9564 while (1)
9565 {
fe1b8b76 9566 byte = bfd_get_8 (abfd, buf);
c906108c
SS
9567 buf++;
9568 num_read++;
ce5d95e1 9569 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
9570 if ((byte & 128) == 0)
9571 {
9572 break;
9573 }
9574 shift += 7;
9575 }
9576 *bytes_read_ptr = num_read;
9577 return result;
9578}
9579
ce5d95e1 9580static long
fe1b8b76 9581read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 9582{
ce5d95e1 9583 long result;
77e0b926 9584 int i, shift, num_read;
c906108c
SS
9585 unsigned char byte;
9586
9587 result = 0;
9588 shift = 0;
c906108c
SS
9589 num_read = 0;
9590 i = 0;
9591 while (1)
9592 {
fe1b8b76 9593 byte = bfd_get_8 (abfd, buf);
c906108c
SS
9594 buf++;
9595 num_read++;
ce5d95e1 9596 result |= ((long)(byte & 127) << shift);
c906108c
SS
9597 shift += 7;
9598 if ((byte & 128) == 0)
9599 {
9600 break;
9601 }
9602 }
77e0b926
DJ
9603 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
9604 result |= -(((long)1) << shift);
c906108c
SS
9605 *bytes_read_ptr = num_read;
9606 return result;
9607}
9608
4bb7a0a7
DJ
9609/* Return a pointer to just past the end of an LEB128 number in BUF. */
9610
fe1b8b76
JB
9611static gdb_byte *
9612skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
9613{
9614 int byte;
9615
9616 while (1)
9617 {
fe1b8b76 9618 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
9619 buf++;
9620 if ((byte & 128) == 0)
9621 return buf;
9622 }
9623}
9624
c906108c 9625static void
e142c38c 9626set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
9627{
9628 switch (lang)
9629 {
9630 case DW_LANG_C89:
76bee0cc 9631 case DW_LANG_C99:
c906108c 9632 case DW_LANG_C:
e142c38c 9633 cu->language = language_c;
c906108c
SS
9634 break;
9635 case DW_LANG_C_plus_plus:
e142c38c 9636 cu->language = language_cplus;
c906108c 9637 break;
6aecb9c2
JB
9638 case DW_LANG_D:
9639 cu->language = language_d;
9640 break;
c906108c
SS
9641 case DW_LANG_Fortran77:
9642 case DW_LANG_Fortran90:
b21b22e0 9643 case DW_LANG_Fortran95:
e142c38c 9644 cu->language = language_fortran;
c906108c
SS
9645 break;
9646 case DW_LANG_Mips_Assembler:
e142c38c 9647 cu->language = language_asm;
c906108c 9648 break;
bebd888e 9649 case DW_LANG_Java:
e142c38c 9650 cu->language = language_java;
bebd888e 9651 break;
c906108c 9652 case DW_LANG_Ada83:
8aaf0b47 9653 case DW_LANG_Ada95:
bc5f45f8
JB
9654 cu->language = language_ada;
9655 break;
72019c9c
GM
9656 case DW_LANG_Modula2:
9657 cu->language = language_m2;
9658 break;
fe8e67fd
PM
9659 case DW_LANG_Pascal83:
9660 cu->language = language_pascal;
9661 break;
22566fbd
DJ
9662 case DW_LANG_ObjC:
9663 cu->language = language_objc;
9664 break;
c906108c
SS
9665 case DW_LANG_Cobol74:
9666 case DW_LANG_Cobol85:
c906108c 9667 default:
e142c38c 9668 cu->language = language_minimal;
c906108c
SS
9669 break;
9670 }
e142c38c 9671 cu->language_defn = language_def (cu->language);
c906108c
SS
9672}
9673
9674/* Return the named attribute or NULL if not there. */
9675
9676static struct attribute *
e142c38c 9677dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
9678{
9679 unsigned int i;
9680 struct attribute *spec = NULL;
9681
9682 for (i = 0; i < die->num_attrs; ++i)
9683 {
9684 if (die->attrs[i].name == name)
10b3939b 9685 return &die->attrs[i];
c906108c
SS
9686 if (die->attrs[i].name == DW_AT_specification
9687 || die->attrs[i].name == DW_AT_abstract_origin)
9688 spec = &die->attrs[i];
9689 }
c906108c 9690
10b3939b 9691 if (spec)
f2f0e013
DJ
9692 {
9693 die = follow_die_ref (die, spec, &cu);
9694 return dwarf2_attr (die, name, cu);
9695 }
c5aa993b 9696
c906108c
SS
9697 return NULL;
9698}
9699
348e048f
DE
9700/* Return the named attribute or NULL if not there,
9701 but do not follow DW_AT_specification, etc.
9702 This is for use in contexts where we're reading .debug_types dies.
9703 Following DW_AT_specification, DW_AT_abstract_origin will take us
9704 back up the chain, and we want to go down. */
9705
9706static struct attribute *
9707dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
9708 struct dwarf2_cu *cu)
9709{
9710 unsigned int i;
9711
9712 for (i = 0; i < die->num_attrs; ++i)
9713 if (die->attrs[i].name == name)
9714 return &die->attrs[i];
9715
9716 return NULL;
9717}
9718
05cf31d1
JB
9719/* Return non-zero iff the attribute NAME is defined for the given DIE,
9720 and holds a non-zero value. This function should only be used for
2dc7f7b3 9721 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
9722
9723static int
9724dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
9725{
9726 struct attribute *attr = dwarf2_attr (die, name, cu);
9727
9728 return (attr && DW_UNSND (attr));
9729}
9730
3ca72b44 9731static int
e142c38c 9732die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 9733{
05cf31d1
JB
9734 /* A DIE is a declaration if it has a DW_AT_declaration attribute
9735 which value is non-zero. However, we have to be careful with
9736 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
9737 (via dwarf2_flag_true_p) follows this attribute. So we may
9738 end up accidently finding a declaration attribute that belongs
9739 to a different DIE referenced by the specification attribute,
9740 even though the given DIE does not have a declaration attribute. */
9741 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
9742 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
9743}
9744
63d06c5c 9745/* Return the die giving the specification for DIE, if there is
f2f0e013 9746 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
9747 containing the return value on output. If there is no
9748 specification, but there is an abstract origin, that is
9749 returned. */
63d06c5c
DC
9750
9751static struct die_info *
f2f0e013 9752die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 9753{
f2f0e013
DJ
9754 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
9755 *spec_cu);
63d06c5c 9756
edb3359d
DJ
9757 if (spec_attr == NULL)
9758 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
9759
63d06c5c
DC
9760 if (spec_attr == NULL)
9761 return NULL;
9762 else
f2f0e013 9763 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 9764}
c906108c 9765
debd256d
JB
9766/* Free the line_header structure *LH, and any arrays and strings it
9767 refers to. */
9768static void
9769free_line_header (struct line_header *lh)
9770{
9771 if (lh->standard_opcode_lengths)
a8bc7b56 9772 xfree (lh->standard_opcode_lengths);
debd256d
JB
9773
9774 /* Remember that all the lh->file_names[i].name pointers are
9775 pointers into debug_line_buffer, and don't need to be freed. */
9776 if (lh->file_names)
a8bc7b56 9777 xfree (lh->file_names);
debd256d
JB
9778
9779 /* Similarly for the include directory names. */
9780 if (lh->include_dirs)
a8bc7b56 9781 xfree (lh->include_dirs);
debd256d 9782
a8bc7b56 9783 xfree (lh);
debd256d
JB
9784}
9785
9786
9787/* Add an entry to LH's include directory table. */
9788static void
9789add_include_dir (struct line_header *lh, char *include_dir)
c906108c 9790{
debd256d
JB
9791 /* Grow the array if necessary. */
9792 if (lh->include_dirs_size == 0)
c5aa993b 9793 {
debd256d
JB
9794 lh->include_dirs_size = 1; /* for testing */
9795 lh->include_dirs = xmalloc (lh->include_dirs_size
9796 * sizeof (*lh->include_dirs));
9797 }
9798 else if (lh->num_include_dirs >= lh->include_dirs_size)
9799 {
9800 lh->include_dirs_size *= 2;
9801 lh->include_dirs = xrealloc (lh->include_dirs,
9802 (lh->include_dirs_size
9803 * sizeof (*lh->include_dirs)));
c5aa993b 9804 }
c906108c 9805
debd256d
JB
9806 lh->include_dirs[lh->num_include_dirs++] = include_dir;
9807}
6e70227d 9808
debd256d
JB
9809
9810/* Add an entry to LH's file name table. */
9811static void
9812add_file_name (struct line_header *lh,
9813 char *name,
9814 unsigned int dir_index,
9815 unsigned int mod_time,
9816 unsigned int length)
9817{
9818 struct file_entry *fe;
9819
9820 /* Grow the array if necessary. */
9821 if (lh->file_names_size == 0)
9822 {
9823 lh->file_names_size = 1; /* for testing */
9824 lh->file_names = xmalloc (lh->file_names_size
9825 * sizeof (*lh->file_names));
9826 }
9827 else if (lh->num_file_names >= lh->file_names_size)
9828 {
9829 lh->file_names_size *= 2;
9830 lh->file_names = xrealloc (lh->file_names,
9831 (lh->file_names_size
9832 * sizeof (*lh->file_names)));
9833 }
9834
9835 fe = &lh->file_names[lh->num_file_names++];
9836 fe->name = name;
9837 fe->dir_index = dir_index;
9838 fe->mod_time = mod_time;
9839 fe->length = length;
aaa75496 9840 fe->included_p = 0;
cb1df416 9841 fe->symtab = NULL;
debd256d 9842}
6e70227d 9843
debd256d
JB
9844
9845/* Read the statement program header starting at OFFSET in
6502dd73
DJ
9846 .debug_line, according to the endianness of ABFD. Return a pointer
9847 to a struct line_header, allocated using xmalloc.
debd256d
JB
9848
9849 NOTE: the strings in the include directory and file name tables of
9850 the returned object point into debug_line_buffer, and must not be
9851 freed. */
9852static struct line_header *
9853dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 9854 struct dwarf2_cu *cu)
debd256d
JB
9855{
9856 struct cleanup *back_to;
9857 struct line_header *lh;
fe1b8b76 9858 gdb_byte *line_ptr;
c764a876 9859 unsigned int bytes_read, offset_size;
debd256d
JB
9860 int i;
9861 char *cur_dir, *cur_file;
9862
be391dca 9863 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
dce234bc 9864 if (dwarf2_per_objfile->line.buffer == NULL)
debd256d 9865 {
e2e0b3e5 9866 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
9867 return 0;
9868 }
9869
a738430d
MK
9870 /* Make sure that at least there's room for the total_length field.
9871 That could be 12 bytes long, but we're just going to fudge that. */
dce234bc 9872 if (offset + 4 >= dwarf2_per_objfile->line.size)
debd256d 9873 {
4d3c2250 9874 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
9875 return 0;
9876 }
9877
9878 lh = xmalloc (sizeof (*lh));
9879 memset (lh, 0, sizeof (*lh));
9880 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
9881 (void *) lh);
9882
dce234bc 9883 line_ptr = dwarf2_per_objfile->line.buffer + offset;
debd256d 9884
a738430d 9885 /* Read in the header. */
6e70227d 9886 lh->total_length =
c764a876
DE
9887 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
9888 &bytes_read, &offset_size);
debd256d 9889 line_ptr += bytes_read;
dce234bc
PP
9890 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
9891 + dwarf2_per_objfile->line.size))
debd256d 9892 {
4d3c2250 9893 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
9894 return 0;
9895 }
9896 lh->statement_program_end = line_ptr + lh->total_length;
9897 lh->version = read_2_bytes (abfd, line_ptr);
9898 line_ptr += 2;
c764a876
DE
9899 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
9900 line_ptr += offset_size;
debd256d
JB
9901 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
9902 line_ptr += 1;
2dc7f7b3
TT
9903 if (lh->version >= 4)
9904 {
9905 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
9906 line_ptr += 1;
9907 }
9908 else
9909 lh->maximum_ops_per_instruction = 1;
9910
9911 if (lh->maximum_ops_per_instruction == 0)
9912 {
9913 lh->maximum_ops_per_instruction = 1;
9914 complaint (&symfile_complaints,
9915 _("invalid maximum_ops_per_instruction in `.debug_line' section"));
9916 }
9917
debd256d
JB
9918 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
9919 line_ptr += 1;
9920 lh->line_base = read_1_signed_byte (abfd, line_ptr);
9921 line_ptr += 1;
9922 lh->line_range = read_1_byte (abfd, line_ptr);
9923 line_ptr += 1;
9924 lh->opcode_base = read_1_byte (abfd, line_ptr);
9925 line_ptr += 1;
9926 lh->standard_opcode_lengths
fe1b8b76 9927 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
9928
9929 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
9930 for (i = 1; i < lh->opcode_base; ++i)
9931 {
9932 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
9933 line_ptr += 1;
9934 }
9935
a738430d 9936 /* Read directory table. */
9b1c24c8 9937 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
9938 {
9939 line_ptr += bytes_read;
9940 add_include_dir (lh, cur_dir);
9941 }
9942 line_ptr += bytes_read;
9943
a738430d 9944 /* Read file name table. */
9b1c24c8 9945 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
9946 {
9947 unsigned int dir_index, mod_time, length;
9948
9949 line_ptr += bytes_read;
9950 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9951 line_ptr += bytes_read;
9952 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9953 line_ptr += bytes_read;
9954 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9955 line_ptr += bytes_read;
9956
9957 add_file_name (lh, cur_file, dir_index, mod_time, length);
9958 }
9959 line_ptr += bytes_read;
6e70227d 9960 lh->statement_program_start = line_ptr;
debd256d 9961
dce234bc
PP
9962 if (line_ptr > (dwarf2_per_objfile->line.buffer
9963 + dwarf2_per_objfile->line.size))
4d3c2250 9964 complaint (&symfile_complaints,
e2e0b3e5 9965 _("line number info header doesn't fit in `.debug_line' section"));
debd256d
JB
9966
9967 discard_cleanups (back_to);
9968 return lh;
9969}
c906108c 9970
5fb290d7
DJ
9971/* This function exists to work around a bug in certain compilers
9972 (particularly GCC 2.95), in which the first line number marker of a
9973 function does not show up until after the prologue, right before
9974 the second line number marker. This function shifts ADDRESS down
9975 to the beginning of the function if necessary, and is called on
9976 addresses passed to record_line. */
9977
9978static CORE_ADDR
e142c38c 9979check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
9980{
9981 struct function_range *fn;
9982
9983 /* Find the function_range containing address. */
e142c38c 9984 if (!cu->first_fn)
5fb290d7
DJ
9985 return address;
9986
e142c38c
DJ
9987 if (!cu->cached_fn)
9988 cu->cached_fn = cu->first_fn;
5fb290d7 9989
e142c38c 9990 fn = cu->cached_fn;
5fb290d7
DJ
9991 while (fn)
9992 if (fn->lowpc <= address && fn->highpc > address)
9993 goto found;
9994 else
9995 fn = fn->next;
9996
e142c38c
DJ
9997 fn = cu->first_fn;
9998 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
9999 if (fn->lowpc <= address && fn->highpc > address)
10000 goto found;
10001 else
10002 fn = fn->next;
10003
10004 return address;
10005
10006 found:
10007 if (fn->seen_line)
10008 return address;
10009 if (address != fn->lowpc)
4d3c2250 10010 complaint (&symfile_complaints,
e2e0b3e5 10011 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 10012 (unsigned long) address, fn->name);
5fb290d7
DJ
10013 fn->seen_line = 1;
10014 return fn->lowpc;
10015}
10016
c6da4cef
DE
10017/* Subroutine of dwarf_decode_lines to simplify it.
10018 Return the file name of the psymtab for included file FILE_INDEX
10019 in line header LH of PST.
10020 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10021 If space for the result is malloc'd, it will be freed by a cleanup.
10022 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
10023
10024static char *
10025psymtab_include_file_name (const struct line_header *lh, int file_index,
10026 const struct partial_symtab *pst,
10027 const char *comp_dir)
10028{
10029 const struct file_entry fe = lh->file_names [file_index];
10030 char *include_name = fe.name;
10031 char *include_name_to_compare = include_name;
10032 char *dir_name = NULL;
72b9f47f
TT
10033 const char *pst_filename;
10034 char *copied_name = NULL;
c6da4cef
DE
10035 int file_is_pst;
10036
10037 if (fe.dir_index)
10038 dir_name = lh->include_dirs[fe.dir_index - 1];
10039
10040 if (!IS_ABSOLUTE_PATH (include_name)
10041 && (dir_name != NULL || comp_dir != NULL))
10042 {
10043 /* Avoid creating a duplicate psymtab for PST.
10044 We do this by comparing INCLUDE_NAME and PST_FILENAME.
10045 Before we do the comparison, however, we need to account
10046 for DIR_NAME and COMP_DIR.
10047 First prepend dir_name (if non-NULL). If we still don't
10048 have an absolute path prepend comp_dir (if non-NULL).
10049 However, the directory we record in the include-file's
10050 psymtab does not contain COMP_DIR (to match the
10051 corresponding symtab(s)).
10052
10053 Example:
10054
10055 bash$ cd /tmp
10056 bash$ gcc -g ./hello.c
10057 include_name = "hello.c"
10058 dir_name = "."
10059 DW_AT_comp_dir = comp_dir = "/tmp"
10060 DW_AT_name = "./hello.c" */
10061
10062 if (dir_name != NULL)
10063 {
10064 include_name = concat (dir_name, SLASH_STRING,
10065 include_name, (char *)NULL);
10066 include_name_to_compare = include_name;
10067 make_cleanup (xfree, include_name);
10068 }
10069 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
10070 {
10071 include_name_to_compare = concat (comp_dir, SLASH_STRING,
10072 include_name, (char *)NULL);
10073 }
10074 }
10075
10076 pst_filename = pst->filename;
10077 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
10078 {
72b9f47f
TT
10079 copied_name = concat (pst->dirname, SLASH_STRING,
10080 pst_filename, (char *)NULL);
10081 pst_filename = copied_name;
c6da4cef
DE
10082 }
10083
10084 file_is_pst = strcmp (include_name_to_compare, pst_filename) == 0;
10085
10086 if (include_name_to_compare != include_name)
10087 xfree (include_name_to_compare);
72b9f47f
TT
10088 if (copied_name != NULL)
10089 xfree (copied_name);
c6da4cef
DE
10090
10091 if (file_is_pst)
10092 return NULL;
10093 return include_name;
10094}
10095
aaa75496
JB
10096/* Decode the Line Number Program (LNP) for the given line_header
10097 structure and CU. The actual information extracted and the type
10098 of structures created from the LNP depends on the value of PST.
10099
10100 1. If PST is NULL, then this procedure uses the data from the program
10101 to create all necessary symbol tables, and their linetables.
6e70227d 10102
aaa75496
JB
10103 2. If PST is not NULL, this procedure reads the program to determine
10104 the list of files included by the unit represented by PST, and
c6da4cef
DE
10105 builds all the associated partial symbol tables.
10106
10107 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10108 It is used for relative paths in the line table.
10109 NOTE: When processing partial symtabs (pst != NULL),
10110 comp_dir == pst->dirname.
10111
10112 NOTE: It is important that psymtabs have the same file name (via strcmp)
10113 as the corresponding symtab. Since COMP_DIR is not used in the name of the
10114 symtab we don't use it in the name of the psymtabs we create.
10115 E.g. expand_line_sal requires this when finding psymtabs to expand.
10116 A good testcase for this is mb-inline.exp. */
debd256d 10117
c906108c 10118static void
72b9f47f 10119dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
aaa75496 10120 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 10121{
a8c50c1f 10122 gdb_byte *line_ptr, *extended_end;
fe1b8b76 10123 gdb_byte *line_end;
a8c50c1f 10124 unsigned int bytes_read, extended_len;
c906108c 10125 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
10126 CORE_ADDR baseaddr;
10127 struct objfile *objfile = cu->objfile;
fbf65064 10128 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 10129 const int decode_for_pst_p = (pst != NULL);
cb1df416 10130 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
e142c38c
DJ
10131
10132 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 10133
debd256d
JB
10134 line_ptr = lh->statement_program_start;
10135 line_end = lh->statement_program_end;
c906108c
SS
10136
10137 /* Read the statement sequences until there's nothing left. */
10138 while (line_ptr < line_end)
10139 {
10140 /* state machine registers */
10141 CORE_ADDR address = 0;
10142 unsigned int file = 1;
10143 unsigned int line = 1;
10144 unsigned int column = 0;
debd256d 10145 int is_stmt = lh->default_is_stmt;
c906108c
SS
10146 int basic_block = 0;
10147 int end_sequence = 0;
fbf65064 10148 CORE_ADDR addr;
2dc7f7b3 10149 unsigned char op_index = 0;
c906108c 10150
aaa75496 10151 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 10152 {
aaa75496 10153 /* Start a subfile for the current file of the state machine. */
debd256d
JB
10154 /* lh->include_dirs and lh->file_names are 0-based, but the
10155 directory and file name numbers in the statement program
10156 are 1-based. */
10157 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 10158 char *dir = NULL;
a738430d 10159
debd256d
JB
10160 if (fe->dir_index)
10161 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
10162
10163 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
10164 }
10165
a738430d 10166 /* Decode the table. */
c5aa993b 10167 while (!end_sequence)
c906108c
SS
10168 {
10169 op_code = read_1_byte (abfd, line_ptr);
10170 line_ptr += 1;
59205f5a
JB
10171 if (line_ptr > line_end)
10172 {
10173 dwarf2_debug_line_missing_end_sequence_complaint ();
10174 break;
10175 }
9aa1fe7e 10176
debd256d 10177 if (op_code >= lh->opcode_base)
6e70227d 10178 {
a738430d 10179 /* Special operand. */
debd256d 10180 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
10181 address += (((op_index + (adj_opcode / lh->line_range))
10182 / lh->maximum_ops_per_instruction)
10183 * lh->minimum_instruction_length);
10184 op_index = ((op_index + (adj_opcode / lh->line_range))
10185 % lh->maximum_ops_per_instruction);
debd256d 10186 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 10187 if (lh->num_file_names < file || file == 0)
25e43795 10188 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
10189 /* For now we ignore lines not starting on an
10190 instruction boundary. */
10191 else if (op_index == 0)
25e43795
DJ
10192 {
10193 lh->file_names[file - 1].included_p = 1;
ca5f395d 10194 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
10195 {
10196 if (last_subfile != current_subfile)
10197 {
10198 addr = gdbarch_addr_bits_remove (gdbarch, address);
10199 if (last_subfile)
10200 record_line (last_subfile, 0, addr);
10201 last_subfile = current_subfile;
10202 }
25e43795 10203 /* Append row to matrix using current values. */
fbf65064
UW
10204 addr = check_cu_functions (address, cu);
10205 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10206 record_line (current_subfile, line, addr);
366da635 10207 }
25e43795 10208 }
ca5f395d 10209 basic_block = 0;
9aa1fe7e
GK
10210 }
10211 else switch (op_code)
c906108c
SS
10212 {
10213 case DW_LNS_extended_op:
a8c50c1f 10214 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
473b7be6 10215 line_ptr += bytes_read;
a8c50c1f 10216 extended_end = line_ptr + extended_len;
c906108c
SS
10217 extended_op = read_1_byte (abfd, line_ptr);
10218 line_ptr += 1;
10219 switch (extended_op)
10220 {
10221 case DW_LNE_end_sequence:
10222 end_sequence = 1;
c906108c
SS
10223 break;
10224 case DW_LNE_set_address:
e7c27a73 10225 address = read_address (abfd, line_ptr, cu, &bytes_read);
2dc7f7b3 10226 op_index = 0;
107d2387
AC
10227 line_ptr += bytes_read;
10228 address += baseaddr;
c906108c
SS
10229 break;
10230 case DW_LNE_define_file:
debd256d
JB
10231 {
10232 char *cur_file;
10233 unsigned int dir_index, mod_time, length;
6e70227d 10234
9b1c24c8 10235 cur_file = read_direct_string (abfd, line_ptr, &bytes_read);
debd256d
JB
10236 line_ptr += bytes_read;
10237 dir_index =
10238 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10239 line_ptr += bytes_read;
10240 mod_time =
10241 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10242 line_ptr += bytes_read;
10243 length =
10244 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10245 line_ptr += bytes_read;
10246 add_file_name (lh, cur_file, dir_index, mod_time, length);
10247 }
c906108c 10248 break;
d0c6ba3d
CC
10249 case DW_LNE_set_discriminator:
10250 /* The discriminator is not interesting to the debugger;
10251 just ignore it. */
10252 line_ptr = extended_end;
10253 break;
c906108c 10254 default:
4d3c2250 10255 complaint (&symfile_complaints,
e2e0b3e5 10256 _("mangled .debug_line section"));
debd256d 10257 return;
c906108c 10258 }
a8c50c1f
DJ
10259 /* Make sure that we parsed the extended op correctly. If e.g.
10260 we expected a different address size than the producer used,
10261 we may have read the wrong number of bytes. */
10262 if (line_ptr != extended_end)
10263 {
10264 complaint (&symfile_complaints,
10265 _("mangled .debug_line section"));
10266 return;
10267 }
c906108c
SS
10268 break;
10269 case DW_LNS_copy:
59205f5a 10270 if (lh->num_file_names < file || file == 0)
25e43795
DJ
10271 dwarf2_debug_line_missing_file_complaint ();
10272 else
366da635 10273 {
25e43795 10274 lh->file_names[file - 1].included_p = 1;
ca5f395d 10275 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
10276 {
10277 if (last_subfile != current_subfile)
10278 {
10279 addr = gdbarch_addr_bits_remove (gdbarch, address);
10280 if (last_subfile)
10281 record_line (last_subfile, 0, addr);
10282 last_subfile = current_subfile;
10283 }
10284 addr = check_cu_functions (address, cu);
10285 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10286 record_line (current_subfile, line, addr);
10287 }
366da635 10288 }
c906108c
SS
10289 basic_block = 0;
10290 break;
10291 case DW_LNS_advance_pc:
2dc7f7b3
TT
10292 {
10293 CORE_ADDR adjust
10294 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10295
10296 address += (((op_index + adjust)
10297 / lh->maximum_ops_per_instruction)
10298 * lh->minimum_instruction_length);
10299 op_index = ((op_index + adjust)
10300 % lh->maximum_ops_per_instruction);
10301 line_ptr += bytes_read;
10302 }
c906108c
SS
10303 break;
10304 case DW_LNS_advance_line:
10305 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
10306 line_ptr += bytes_read;
10307 break;
10308 case DW_LNS_set_file:
debd256d 10309 {
a738430d
MK
10310 /* The arrays lh->include_dirs and lh->file_names are
10311 0-based, but the directory and file name numbers in
10312 the statement program are 1-based. */
debd256d 10313 struct file_entry *fe;
4f1520fb 10314 char *dir = NULL;
a738430d 10315
debd256d
JB
10316 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10317 line_ptr += bytes_read;
59205f5a 10318 if (lh->num_file_names < file || file == 0)
25e43795
DJ
10319 dwarf2_debug_line_missing_file_complaint ();
10320 else
10321 {
10322 fe = &lh->file_names[file - 1];
10323 if (fe->dir_index)
10324 dir = lh->include_dirs[fe->dir_index - 1];
10325 if (!decode_for_pst_p)
10326 {
10327 last_subfile = current_subfile;
10328 dwarf2_start_subfile (fe->name, dir, comp_dir);
10329 }
10330 }
debd256d 10331 }
c906108c
SS
10332 break;
10333 case DW_LNS_set_column:
10334 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10335 line_ptr += bytes_read;
10336 break;
10337 case DW_LNS_negate_stmt:
10338 is_stmt = (!is_stmt);
10339 break;
10340 case DW_LNS_set_basic_block:
10341 basic_block = 1;
10342 break;
c2c6d25f
JM
10343 /* Add to the address register of the state machine the
10344 address increment value corresponding to special opcode
a738430d
MK
10345 255. I.e., this value is scaled by the minimum
10346 instruction length since special opcode 255 would have
10347 scaled the the increment. */
c906108c 10348 case DW_LNS_const_add_pc:
2dc7f7b3
TT
10349 {
10350 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
10351
10352 address += (((op_index + adjust)
10353 / lh->maximum_ops_per_instruction)
10354 * lh->minimum_instruction_length);
10355 op_index = ((op_index + adjust)
10356 % lh->maximum_ops_per_instruction);
10357 }
c906108c
SS
10358 break;
10359 case DW_LNS_fixed_advance_pc:
10360 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 10361 op_index = 0;
c906108c
SS
10362 line_ptr += 2;
10363 break;
9aa1fe7e 10364 default:
a738430d
MK
10365 {
10366 /* Unknown standard opcode, ignore it. */
9aa1fe7e 10367 int i;
a738430d 10368
debd256d 10369 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
10370 {
10371 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10372 line_ptr += bytes_read;
10373 }
10374 }
c906108c
SS
10375 }
10376 }
59205f5a
JB
10377 if (lh->num_file_names < file || file == 0)
10378 dwarf2_debug_line_missing_file_complaint ();
10379 else
10380 {
10381 lh->file_names[file - 1].included_p = 1;
10382 if (!decode_for_pst_p)
fbf65064
UW
10383 {
10384 addr = gdbarch_addr_bits_remove (gdbarch, address);
10385 record_line (current_subfile, 0, addr);
10386 }
59205f5a 10387 }
c906108c 10388 }
aaa75496
JB
10389
10390 if (decode_for_pst_p)
10391 {
10392 int file_index;
10393
10394 /* Now that we're done scanning the Line Header Program, we can
10395 create the psymtab of each included file. */
10396 for (file_index = 0; file_index < lh->num_file_names; file_index++)
10397 if (lh->file_names[file_index].included_p == 1)
10398 {
c6da4cef
DE
10399 char *include_name =
10400 psymtab_include_file_name (lh, file_index, pst, comp_dir);
10401 if (include_name != NULL)
aaa75496
JB
10402 dwarf2_create_include_psymtab (include_name, pst, objfile);
10403 }
10404 }
cb1df416
DJ
10405 else
10406 {
10407 /* Make sure a symtab is created for every file, even files
10408 which contain only variables (i.e. no code with associated
10409 line numbers). */
10410
10411 int i;
10412 struct file_entry *fe;
10413
10414 for (i = 0; i < lh->num_file_names; i++)
10415 {
10416 char *dir = NULL;
9a619af0 10417
cb1df416
DJ
10418 fe = &lh->file_names[i];
10419 if (fe->dir_index)
10420 dir = lh->include_dirs[fe->dir_index - 1];
10421 dwarf2_start_subfile (fe->name, dir, comp_dir);
10422
10423 /* Skip the main file; we don't need it, and it must be
10424 allocated last, so that it will show up before the
10425 non-primary symtabs in the objfile's symtab list. */
10426 if (current_subfile == first_subfile)
10427 continue;
10428
10429 if (current_subfile->symtab == NULL)
10430 current_subfile->symtab = allocate_symtab (current_subfile->name,
10431 cu->objfile);
10432 fe->symtab = current_subfile->symtab;
10433 }
10434 }
c906108c
SS
10435}
10436
10437/* Start a subfile for DWARF. FILENAME is the name of the file and
10438 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
10439 or NULL if not known. COMP_DIR is the compilation directory for the
10440 linetable's compilation unit or NULL if not known.
c906108c
SS
10441 This routine tries to keep line numbers from identical absolute and
10442 relative file names in a common subfile.
10443
10444 Using the `list' example from the GDB testsuite, which resides in
10445 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
10446 of /srcdir/list0.c yields the following debugging information for list0.c:
10447
c5aa993b
JM
10448 DW_AT_name: /srcdir/list0.c
10449 DW_AT_comp_dir: /compdir
357e46e7 10450 files.files[0].name: list0.h
c5aa993b 10451 files.files[0].dir: /srcdir
357e46e7 10452 files.files[1].name: list0.c
c5aa993b 10453 files.files[1].dir: /srcdir
c906108c
SS
10454
10455 The line number information for list0.c has to end up in a single
4f1520fb
FR
10456 subfile, so that `break /srcdir/list0.c:1' works as expected.
10457 start_subfile will ensure that this happens provided that we pass the
10458 concatenation of files.files[1].dir and files.files[1].name as the
10459 subfile's name. */
c906108c
SS
10460
10461static void
72b9f47f 10462dwarf2_start_subfile (char *filename, const char *dirname, const char *comp_dir)
c906108c 10463{
4f1520fb
FR
10464 char *fullname;
10465
10466 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
10467 `start_symtab' will always pass the contents of DW_AT_comp_dir as
10468 second argument to start_subfile. To be consistent, we do the
10469 same here. In order not to lose the line information directory,
10470 we concatenate it to the filename when it makes sense.
10471 Note that the Dwarf3 standard says (speaking of filenames in line
10472 information): ``The directory index is ignored for file names
10473 that represent full path names''. Thus ignoring dirname in the
10474 `else' branch below isn't an issue. */
c906108c 10475
d5166ae1 10476 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
10477 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
10478 else
10479 fullname = filename;
c906108c 10480
4f1520fb
FR
10481 start_subfile (fullname, comp_dir);
10482
10483 if (fullname != filename)
10484 xfree (fullname);
c906108c
SS
10485}
10486
4c2df51b
DJ
10487static void
10488var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 10489 struct dwarf2_cu *cu)
4c2df51b 10490{
e7c27a73
DJ
10491 struct objfile *objfile = cu->objfile;
10492 struct comp_unit_head *cu_header = &cu->header;
10493
4c2df51b
DJ
10494 /* NOTE drow/2003-01-30: There used to be a comment and some special
10495 code here to turn a symbol with DW_AT_external and a
10496 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
10497 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
10498 with some versions of binutils) where shared libraries could have
10499 relocations against symbols in their debug information - the
10500 minimal symbol would have the right address, but the debug info
10501 would not. It's no longer necessary, because we will explicitly
10502 apply relocations when we read in the debug information now. */
10503
10504 /* A DW_AT_location attribute with no contents indicates that a
10505 variable has been optimized away. */
10506 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
10507 {
10508 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10509 return;
10510 }
10511
10512 /* Handle one degenerate form of location expression specially, to
10513 preserve GDB's previous behavior when section offsets are
10514 specified. If this is just a DW_OP_addr then mark this symbol
10515 as LOC_STATIC. */
10516
10517 if (attr_form_is_block (attr)
10518 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
10519 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
10520 {
891d2f0b 10521 unsigned int dummy;
4c2df51b
DJ
10522
10523 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 10524 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
907fc202 10525 SYMBOL_CLASS (sym) = LOC_STATIC;
4c2df51b
DJ
10526 fixup_symbol_section (sym, objfile);
10527 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
10528 SYMBOL_SECTION (sym));
4c2df51b
DJ
10529 return;
10530 }
10531
10532 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
10533 expression evaluator, and use LOC_COMPUTED only when necessary
10534 (i.e. when the value of a register or memory location is
10535 referenced, or a thread-local block, etc.). Then again, it might
10536 not be worthwhile. I'm assuming that it isn't unless performance
10537 or memory numbers show me otherwise. */
10538
e7c27a73 10539 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
10540 SYMBOL_CLASS (sym) = LOC_COMPUTED;
10541}
10542
c906108c
SS
10543/* Given a pointer to a DWARF information entry, figure out if we need
10544 to make a symbol table entry for it, and if so, create a new entry
10545 and return a pointer to it.
10546 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
10547 used the passed type.
10548 If SPACE is not NULL, use it to hold the new symbol. If it is
10549 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
10550
10551static struct symbol *
34eaf542
TT
10552new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
10553 struct symbol *space)
c906108c 10554{
e7c27a73 10555 struct objfile *objfile = cu->objfile;
c906108c
SS
10556 struct symbol *sym = NULL;
10557 char *name;
10558 struct attribute *attr = NULL;
10559 struct attribute *attr2 = NULL;
e142c38c 10560 CORE_ADDR baseaddr;
e37fd15a
SW
10561 struct pending **list_to_add = NULL;
10562
edb3359d 10563 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
10564
10565 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 10566
94af9270 10567 name = dwarf2_name (die, cu);
c906108c
SS
10568 if (name)
10569 {
94af9270 10570 const char *linkagename;
34eaf542 10571 int suppress_add = 0;
94af9270 10572
34eaf542
TT
10573 if (space)
10574 sym = space;
10575 else
10576 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
c906108c 10577 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
10578
10579 /* Cache this symbol's name and the name's demangled form (if any). */
33e5013e 10580 SYMBOL_SET_LANGUAGE (sym, cu->language);
94af9270
KS
10581 linkagename = dwarf2_physname (name, die, cu);
10582 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 10583
f55ee35c
JK
10584 /* Fortran does not have mangling standard and the mangling does differ
10585 between gfortran, iFort etc. */
10586 if (cu->language == language_fortran
b250c185 10587 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d
SW
10588 symbol_set_demangled_name (&(sym->ginfo),
10589 (char *) dwarf2_full_name (name, die, cu),
10590 NULL);
f55ee35c 10591
c906108c 10592 /* Default assumptions.
c5aa993b 10593 Use the passed type or decode it from the die. */
176620f1 10594 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 10595 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
10596 if (type != NULL)
10597 SYMBOL_TYPE (sym) = type;
10598 else
e7c27a73 10599 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
10600 attr = dwarf2_attr (die,
10601 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
10602 cu);
c906108c
SS
10603 if (attr)
10604 {
10605 SYMBOL_LINE (sym) = DW_UNSND (attr);
10606 }
cb1df416 10607
edb3359d
DJ
10608 attr = dwarf2_attr (die,
10609 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
10610 cu);
cb1df416
DJ
10611 if (attr)
10612 {
10613 int file_index = DW_UNSND (attr);
9a619af0 10614
cb1df416
DJ
10615 if (cu->line_header == NULL
10616 || file_index > cu->line_header->num_file_names)
10617 complaint (&symfile_complaints,
10618 _("file index out of range"));
1c3d648d 10619 else if (file_index > 0)
cb1df416
DJ
10620 {
10621 struct file_entry *fe;
9a619af0 10622
cb1df416
DJ
10623 fe = &cu->line_header->file_names[file_index - 1];
10624 SYMBOL_SYMTAB (sym) = fe->symtab;
10625 }
10626 }
10627
c906108c
SS
10628 switch (die->tag)
10629 {
10630 case DW_TAG_label:
e142c38c 10631 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
10632 if (attr)
10633 {
10634 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
10635 }
0f5238ed
TT
10636 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
10637 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
c906108c 10638 SYMBOL_CLASS (sym) = LOC_LABEL;
0f5238ed 10639 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
10640 break;
10641 case DW_TAG_subprogram:
10642 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10643 finish_block. */
10644 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 10645 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
10646 if ((attr2 && (DW_UNSND (attr2) != 0))
10647 || cu->language == language_ada)
c906108c 10648 {
2cfa0c8d
JB
10649 /* Subprograms marked external are stored as a global symbol.
10650 Ada subprograms, whether marked external or not, are always
10651 stored as a global symbol, because we want to be able to
10652 access them globally. For instance, we want to be able
10653 to break on a nested subprogram without having to
10654 specify the context. */
e37fd15a 10655 list_to_add = &global_symbols;
c906108c
SS
10656 }
10657 else
10658 {
e37fd15a 10659 list_to_add = cu->list_in_scope;
c906108c
SS
10660 }
10661 break;
edb3359d
DJ
10662 case DW_TAG_inlined_subroutine:
10663 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10664 finish_block. */
10665 SYMBOL_CLASS (sym) = LOC_BLOCK;
10666 SYMBOL_INLINED (sym) = 1;
10667 /* Do not add the symbol to any lists. It will be found via
10668 BLOCK_FUNCTION from the blockvector. */
10669 break;
34eaf542
TT
10670 case DW_TAG_template_value_param:
10671 suppress_add = 1;
10672 /* Fall through. */
72929c62 10673 case DW_TAG_constant:
c906108c 10674 case DW_TAG_variable:
254e6b9e 10675 case DW_TAG_member:
c906108c
SS
10676 /* Compilation with minimal debug info may result in variables
10677 with missing type entries. Change the misleading `void' type
10678 to something sensible. */
10679 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 10680 SYMBOL_TYPE (sym)
46bf5051 10681 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 10682
e142c38c 10683 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
10684 /* In the case of DW_TAG_member, we should only be called for
10685 static const members. */
10686 if (die->tag == DW_TAG_member)
10687 {
3863f96c
DE
10688 /* dwarf2_add_field uses die_is_declaration,
10689 so we do the same. */
254e6b9e
DE
10690 gdb_assert (die_is_declaration (die, cu));
10691 gdb_assert (attr);
10692 }
c906108c
SS
10693 if (attr)
10694 {
e7c27a73 10695 dwarf2_const_value (attr, sym, cu);
e142c38c 10696 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 10697 if (!suppress_add)
34eaf542
TT
10698 {
10699 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 10700 list_to_add = &global_symbols;
34eaf542 10701 else
e37fd15a 10702 list_to_add = cu->list_in_scope;
34eaf542 10703 }
c906108c
SS
10704 break;
10705 }
e142c38c 10706 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
10707 if (attr)
10708 {
e7c27a73 10709 var_decode_location (attr, sym, cu);
e142c38c 10710 attr2 = dwarf2_attr (die, DW_AT_external, cu);
caac4577
JG
10711 if (SYMBOL_CLASS (sym) == LOC_STATIC
10712 && SYMBOL_VALUE_ADDRESS (sym) == 0
10713 && !dwarf2_per_objfile->has_section_at_zero)
10714 {
10715 /* When a static variable is eliminated by the linker,
10716 the corresponding debug information is not stripped
10717 out, but the variable address is set to null;
10718 do not add such variables into symbol table. */
10719 }
10720 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 10721 {
f55ee35c
JK
10722 /* Workaround gfortran PR debug/40040 - it uses
10723 DW_AT_location for variables in -fPIC libraries which may
10724 get overriden by other libraries/executable and get
10725 a different address. Resolve it by the minimal symbol
10726 which may come from inferior's executable using copy
10727 relocation. Make this workaround only for gfortran as for
10728 other compilers GDB cannot guess the minimal symbol
10729 Fortran mangling kind. */
10730 if (cu->language == language_fortran && die->parent
10731 && die->parent->tag == DW_TAG_module
10732 && cu->producer
10733 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
10734 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10735
1c809c68
TT
10736 /* A variable with DW_AT_external is never static,
10737 but it may be block-scoped. */
10738 list_to_add = (cu->list_in_scope == &file_symbols
10739 ? &global_symbols : cu->list_in_scope);
1c809c68 10740 }
c906108c 10741 else
e37fd15a 10742 list_to_add = cu->list_in_scope;
c906108c
SS
10743 }
10744 else
10745 {
10746 /* We do not know the address of this symbol.
c5aa993b
JM
10747 If it is an external symbol and we have type information
10748 for it, enter the symbol as a LOC_UNRESOLVED symbol.
10749 The address of the variable will then be determined from
10750 the minimal symbol table whenever the variable is
10751 referenced. */
e142c38c 10752 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 10753 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 10754 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 10755 {
0fe7935b
DJ
10756 /* A variable with DW_AT_external is never static, but it
10757 may be block-scoped. */
10758 list_to_add = (cu->list_in_scope == &file_symbols
10759 ? &global_symbols : cu->list_in_scope);
10760
c906108c 10761 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
c906108c 10762 }
442ddf59
JK
10763 else if (!die_is_declaration (die, cu))
10764 {
10765 /* Use the default LOC_OPTIMIZED_OUT class. */
10766 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
10767 if (!suppress_add)
10768 list_to_add = cu->list_in_scope;
442ddf59 10769 }
c906108c
SS
10770 }
10771 break;
10772 case DW_TAG_formal_parameter:
edb3359d
DJ
10773 /* If we are inside a function, mark this as an argument. If
10774 not, we might be looking at an argument to an inlined function
10775 when we do not have enough information to show inlined frames;
10776 pretend it's a local variable in that case so that the user can
10777 still see it. */
10778 if (context_stack_depth > 0
10779 && context_stack[context_stack_depth - 1].name != NULL)
10780 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 10781 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
10782 if (attr)
10783 {
e7c27a73 10784 var_decode_location (attr, sym, cu);
c906108c 10785 }
e142c38c 10786 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
10787 if (attr)
10788 {
e7c27a73 10789 dwarf2_const_value (attr, sym, cu);
c906108c 10790 }
f346a30d
PM
10791 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
10792 if (attr && DW_UNSND (attr))
10793 {
10794 struct type *ref_type;
10795
10796 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
10797 SYMBOL_TYPE (sym) = ref_type;
10798 }
10799
e37fd15a 10800 list_to_add = cu->list_in_scope;
c906108c
SS
10801 break;
10802 case DW_TAG_unspecified_parameters:
10803 /* From varargs functions; gdb doesn't seem to have any
10804 interest in this information, so just ignore it for now.
10805 (FIXME?) */
10806 break;
34eaf542
TT
10807 case DW_TAG_template_type_param:
10808 suppress_add = 1;
10809 /* Fall through. */
c906108c 10810 case DW_TAG_class_type:
680b30c7 10811 case DW_TAG_interface_type:
c906108c
SS
10812 case DW_TAG_structure_type:
10813 case DW_TAG_union_type:
72019c9c 10814 case DW_TAG_set_type:
c906108c
SS
10815 case DW_TAG_enumeration_type:
10816 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 10817 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 10818
63d06c5c 10819 {
987504bb 10820 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
10821 really ever be static objects: otherwise, if you try
10822 to, say, break of a class's method and you're in a file
10823 which doesn't mention that class, it won't work unless
10824 the check for all static symbols in lookup_symbol_aux
10825 saves you. See the OtherFileClass tests in
10826 gdb.c++/namespace.exp. */
10827
e37fd15a 10828 if (!suppress_add)
34eaf542 10829 {
34eaf542
TT
10830 list_to_add = (cu->list_in_scope == &file_symbols
10831 && (cu->language == language_cplus
10832 || cu->language == language_java)
10833 ? &global_symbols : cu->list_in_scope);
63d06c5c 10834
64382290
TT
10835 /* The semantics of C++ state that "struct foo {
10836 ... }" also defines a typedef for "foo". A Java
10837 class declaration also defines a typedef for the
10838 class. */
10839 if (cu->language == language_cplus
10840 || cu->language == language_java
10841 || cu->language == language_ada)
10842 {
10843 /* The symbol's name is already allocated along
10844 with this objfile, so we don't need to
10845 duplicate it for the type. */
10846 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
10847 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
10848 }
63d06c5c
DC
10849 }
10850 }
c906108c
SS
10851 break;
10852 case DW_TAG_typedef:
63d06c5c
DC
10853 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10854 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 10855 list_to_add = cu->list_in_scope;
63d06c5c 10856 break;
c906108c 10857 case DW_TAG_base_type:
a02abb62 10858 case DW_TAG_subrange_type:
c906108c 10859 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 10860 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 10861 list_to_add = cu->list_in_scope;
c906108c
SS
10862 break;
10863 case DW_TAG_enumerator:
e142c38c 10864 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
10865 if (attr)
10866 {
e7c27a73 10867 dwarf2_const_value (attr, sym, cu);
c906108c 10868 }
63d06c5c
DC
10869 {
10870 /* NOTE: carlton/2003-11-10: See comment above in the
10871 DW_TAG_class_type, etc. block. */
10872
e142c38c 10873 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
10874 && (cu->language == language_cplus
10875 || cu->language == language_java)
e142c38c 10876 ? &global_symbols : cu->list_in_scope);
63d06c5c 10877 }
c906108c 10878 break;
5c4e30ca
DC
10879 case DW_TAG_namespace:
10880 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
e37fd15a 10881 list_to_add = &global_symbols;
5c4e30ca 10882 break;
c906108c
SS
10883 default:
10884 /* Not a tag we recognize. Hopefully we aren't processing
10885 trash data, but since we must specifically ignore things
10886 we don't recognize, there is nothing else we should do at
10887 this point. */
e2e0b3e5 10888 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 10889 dwarf_tag_name (die->tag));
c906108c
SS
10890 break;
10891 }
df8a16a1 10892
e37fd15a
SW
10893 if (suppress_add)
10894 {
10895 sym->hash_next = objfile->template_symbols;
10896 objfile->template_symbols = sym;
10897 list_to_add = NULL;
10898 }
10899
10900 if (list_to_add != NULL)
10901 add_symbol_to_list (sym, list_to_add);
10902
df8a16a1
DJ
10903 /* For the benefit of old versions of GCC, check for anonymous
10904 namespaces based on the demangled name. */
10905 if (!processing_has_namespace_info
94af9270 10906 && cu->language == language_cplus)
df8a16a1 10907 cp_scan_for_anonymous_namespaces (sym);
c906108c
SS
10908 }
10909 return (sym);
10910}
10911
34eaf542
TT
10912/* A wrapper for new_symbol_full that always allocates a new symbol. */
10913
10914static struct symbol *
10915new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
10916{
10917 return new_symbol_full (die, type, cu, NULL);
10918}
10919
98bfdba5
PA
10920/* Given an attr with a DW_FORM_dataN value in host byte order,
10921 zero-extend it as appropriate for the symbol's type. The DWARF
10922 standard (v4) is not entirely clear about the meaning of using
10923 DW_FORM_dataN for a constant with a signed type, where the type is
10924 wider than the data. The conclusion of a discussion on the DWARF
10925 list was that this is unspecified. We choose to always zero-extend
10926 because that is the interpretation long in use by GCC. */
c906108c 10927
98bfdba5
PA
10928static gdb_byte *
10929dwarf2_const_value_data (struct attribute *attr, struct type *type,
10930 const char *name, struct obstack *obstack,
10931 struct dwarf2_cu *cu, long *value, int bits)
c906108c 10932{
e7c27a73 10933 struct objfile *objfile = cu->objfile;
e17a4113
UW
10934 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
10935 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
10936 LONGEST l = DW_UNSND (attr);
10937
10938 if (bits < sizeof (*value) * 8)
10939 {
10940 l &= ((LONGEST) 1 << bits) - 1;
10941 *value = l;
10942 }
10943 else if (bits == sizeof (*value) * 8)
10944 *value = l;
10945 else
10946 {
10947 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
10948 store_unsigned_integer (bytes, bits / 8, byte_order, l);
10949 return bytes;
10950 }
10951
10952 return NULL;
10953}
10954
10955/* Read a constant value from an attribute. Either set *VALUE, or if
10956 the value does not fit in *VALUE, set *BYTES - either already
10957 allocated on the objfile obstack, or newly allocated on OBSTACK,
10958 or, set *BATON, if we translated the constant to a location
10959 expression. */
10960
10961static void
10962dwarf2_const_value_attr (struct attribute *attr, struct type *type,
10963 const char *name, struct obstack *obstack,
10964 struct dwarf2_cu *cu,
10965 long *value, gdb_byte **bytes,
10966 struct dwarf2_locexpr_baton **baton)
10967{
10968 struct objfile *objfile = cu->objfile;
10969 struct comp_unit_head *cu_header = &cu->header;
c906108c 10970 struct dwarf_block *blk;
98bfdba5
PA
10971 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
10972 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
10973
10974 *value = 0;
10975 *bytes = NULL;
10976 *baton = NULL;
c906108c
SS
10977
10978 switch (attr->form)
10979 {
10980 case DW_FORM_addr:
ac56253d 10981 {
ac56253d
TT
10982 gdb_byte *data;
10983
98bfdba5
PA
10984 if (TYPE_LENGTH (type) != cu_header->addr_size)
10985 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 10986 cu_header->addr_size,
98bfdba5 10987 TYPE_LENGTH (type));
ac56253d
TT
10988 /* Symbols of this form are reasonably rare, so we just
10989 piggyback on the existing location code rather than writing
10990 a new implementation of symbol_computed_ops. */
98bfdba5
PA
10991 *baton = obstack_alloc (&objfile->objfile_obstack,
10992 sizeof (struct dwarf2_locexpr_baton));
10993 (*baton)->per_cu = cu->per_cu;
10994 gdb_assert ((*baton)->per_cu);
ac56253d 10995
98bfdba5
PA
10996 (*baton)->size = 2 + cu_header->addr_size;
10997 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
10998 (*baton)->data = data;
ac56253d
TT
10999
11000 data[0] = DW_OP_addr;
11001 store_unsigned_integer (&data[1], cu_header->addr_size,
11002 byte_order, DW_ADDR (attr));
11003 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 11004 }
c906108c 11005 break;
4ac36638 11006 case DW_FORM_string:
93b5768b 11007 case DW_FORM_strp:
98bfdba5
PA
11008 /* DW_STRING is already allocated on the objfile obstack, point
11009 directly to it. */
11010 *bytes = (gdb_byte *) DW_STRING (attr);
93b5768b 11011 break;
c906108c
SS
11012 case DW_FORM_block1:
11013 case DW_FORM_block2:
11014 case DW_FORM_block4:
11015 case DW_FORM_block:
2dc7f7b3 11016 case DW_FORM_exprloc:
c906108c 11017 blk = DW_BLOCK (attr);
98bfdba5
PA
11018 if (TYPE_LENGTH (type) != blk->size)
11019 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
11020 TYPE_LENGTH (type));
11021 *bytes = blk->data;
c906108c 11022 break;
2df3850c
JM
11023
11024 /* The DW_AT_const_value attributes are supposed to carry the
11025 symbol's value "represented as it would be on the target
11026 architecture." By the time we get here, it's already been
11027 converted to host endianness, so we just need to sign- or
11028 zero-extend it as appropriate. */
11029 case DW_FORM_data1:
98bfdba5 11030 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 8);
2df3850c 11031 break;
c906108c 11032 case DW_FORM_data2:
98bfdba5 11033 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 16);
2df3850c 11034 break;
c906108c 11035 case DW_FORM_data4:
98bfdba5 11036 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 32);
2df3850c 11037 break;
c906108c 11038 case DW_FORM_data8:
98bfdba5 11039 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 64);
2df3850c
JM
11040 break;
11041
c906108c 11042 case DW_FORM_sdata:
98bfdba5 11043 *value = DW_SND (attr);
2df3850c
JM
11044 break;
11045
c906108c 11046 case DW_FORM_udata:
98bfdba5 11047 *value = DW_UNSND (attr);
c906108c 11048 break;
2df3850c 11049
c906108c 11050 default:
4d3c2250 11051 complaint (&symfile_complaints,
e2e0b3e5 11052 _("unsupported const value attribute form: '%s'"),
4d3c2250 11053 dwarf_form_name (attr->form));
98bfdba5 11054 *value = 0;
c906108c
SS
11055 break;
11056 }
11057}
11058
2df3850c 11059
98bfdba5
PA
11060/* Copy constant value from an attribute to a symbol. */
11061
2df3850c 11062static void
98bfdba5
PA
11063dwarf2_const_value (struct attribute *attr, struct symbol *sym,
11064 struct dwarf2_cu *cu)
2df3850c 11065{
98bfdba5
PA
11066 struct objfile *objfile = cu->objfile;
11067 struct comp_unit_head *cu_header = &cu->header;
11068 long value;
11069 gdb_byte *bytes;
11070 struct dwarf2_locexpr_baton *baton;
2df3850c 11071
98bfdba5
PA
11072 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
11073 SYMBOL_PRINT_NAME (sym),
11074 &objfile->objfile_obstack, cu,
11075 &value, &bytes, &baton);
2df3850c 11076
98bfdba5
PA
11077 if (baton != NULL)
11078 {
11079 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11080 SYMBOL_LOCATION_BATON (sym) = baton;
11081 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11082 }
11083 else if (bytes != NULL)
11084 {
11085 SYMBOL_VALUE_BYTES (sym) = bytes;
11086 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
11087 }
11088 else
11089 {
11090 SYMBOL_VALUE (sym) = value;
11091 SYMBOL_CLASS (sym) = LOC_CONST;
11092 }
2df3850c
JM
11093}
11094
c906108c
SS
11095/* Return the type of the die in question using its DW_AT_type attribute. */
11096
11097static struct type *
e7c27a73 11098die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11099{
c906108c 11100 struct attribute *type_attr;
c906108c 11101
e142c38c 11102 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
11103 if (!type_attr)
11104 {
11105 /* A missing DW_AT_type represents a void type. */
46bf5051 11106 return objfile_type (cu->objfile)->builtin_void;
c906108c 11107 }
348e048f 11108
673bfd45 11109 return lookup_die_type (die, type_attr, cu);
c906108c
SS
11110}
11111
b4ba55a1
JB
11112/* True iff CU's producer generates GNAT Ada auxiliary information
11113 that allows to find parallel types through that information instead
11114 of having to do expensive parallel lookups by type name. */
11115
11116static int
11117need_gnat_info (struct dwarf2_cu *cu)
11118{
11119 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
11120 of GNAT produces this auxiliary information, without any indication
11121 that it is produced. Part of enhancing the FSF version of GNAT
11122 to produce that information will be to put in place an indicator
11123 that we can use in order to determine whether the descriptive type
11124 info is available or not. One suggestion that has been made is
11125 to use a new attribute, attached to the CU die. For now, assume
11126 that the descriptive type info is not available. */
11127 return 0;
11128}
11129
b4ba55a1
JB
11130/* Return the auxiliary type of the die in question using its
11131 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
11132 attribute is not present. */
11133
11134static struct type *
11135die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
11136{
b4ba55a1 11137 struct attribute *type_attr;
b4ba55a1
JB
11138
11139 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
11140 if (!type_attr)
11141 return NULL;
11142
673bfd45 11143 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
11144}
11145
11146/* If DIE has a descriptive_type attribute, then set the TYPE's
11147 descriptive type accordingly. */
11148
11149static void
11150set_descriptive_type (struct type *type, struct die_info *die,
11151 struct dwarf2_cu *cu)
11152{
11153 struct type *descriptive_type = die_descriptive_type (die, cu);
11154
11155 if (descriptive_type)
11156 {
11157 ALLOCATE_GNAT_AUX_TYPE (type);
11158 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
11159 }
11160}
11161
c906108c
SS
11162/* Return the containing type of the die in question using its
11163 DW_AT_containing_type attribute. */
11164
11165static struct type *
e7c27a73 11166die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11167{
c906108c 11168 struct attribute *type_attr;
c906108c 11169
e142c38c 11170 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
11171 if (!type_attr)
11172 error (_("Dwarf Error: Problem turning containing type into gdb type "
11173 "[in module %s]"), cu->objfile->name);
11174
673bfd45 11175 return lookup_die_type (die, type_attr, cu);
c906108c
SS
11176}
11177
673bfd45
DE
11178/* Look up the type of DIE in CU using its type attribute ATTR.
11179 If there is no type substitute an error marker. */
11180
c906108c 11181static struct type *
673bfd45
DE
11182lookup_die_type (struct die_info *die, struct attribute *attr,
11183 struct dwarf2_cu *cu)
c906108c 11184{
f792889a
DJ
11185 struct type *this_type;
11186
673bfd45
DE
11187 /* First see if we have it cached. */
11188
11189 if (is_ref_attr (attr))
11190 {
11191 unsigned int offset = dwarf2_get_ref_die_offset (attr);
11192
11193 this_type = get_die_type_at_offset (offset, cu->per_cu);
11194 }
11195 else if (attr->form == DW_FORM_sig8)
11196 {
11197 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11198 struct dwarf2_cu *sig_cu;
11199 unsigned int offset;
11200
11201 /* sig_type will be NULL if the signatured type is missing from
11202 the debug info. */
11203 if (sig_type == NULL)
11204 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
11205 "at 0x%x [in module %s]"),
11206 die->offset, cu->objfile->name);
11207
11208 gdb_assert (sig_type->per_cu.from_debug_types);
11209 offset = sig_type->offset + sig_type->type_offset;
11210 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
11211 }
11212 else
11213 {
11214 dump_die_for_error (die);
11215 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
11216 dwarf_attr_name (attr->name), cu->objfile->name);
11217 }
11218
11219 /* If not cached we need to read it in. */
11220
11221 if (this_type == NULL)
11222 {
11223 struct die_info *type_die;
11224 struct dwarf2_cu *type_cu = cu;
11225
11226 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11227 /* If the type is cached, we should have found it above. */
11228 gdb_assert (get_die_type (type_die, type_cu) == NULL);
11229 this_type = read_type_die_1 (type_die, type_cu);
11230 }
11231
11232 /* If we still don't have a type use an error marker. */
11233
11234 if (this_type == NULL)
c906108c 11235 {
b00fdb78
TT
11236 char *message, *saved;
11237
11238 /* read_type_die already issued a complaint. */
11239 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
11240 cu->objfile->name,
11241 cu->header.offset,
11242 die->offset);
11243 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
11244 message, strlen (message));
11245 xfree (message);
11246
11247 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
c906108c 11248 }
673bfd45 11249
f792889a 11250 return this_type;
c906108c
SS
11251}
11252
673bfd45
DE
11253/* Return the type in DIE, CU.
11254 Returns NULL for invalid types.
11255
11256 This first does a lookup in the appropriate type_hash table,
11257 and only reads the die in if necessary.
11258
11259 NOTE: This can be called when reading in partial or full symbols. */
11260
f792889a 11261static struct type *
e7c27a73 11262read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11263{
f792889a
DJ
11264 struct type *this_type;
11265
11266 this_type = get_die_type (die, cu);
11267 if (this_type)
11268 return this_type;
11269
673bfd45
DE
11270 return read_type_die_1 (die, cu);
11271}
11272
11273/* Read the type in DIE, CU.
11274 Returns NULL for invalid types. */
11275
11276static struct type *
11277read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
11278{
11279 struct type *this_type = NULL;
11280
c906108c
SS
11281 switch (die->tag)
11282 {
11283 case DW_TAG_class_type:
680b30c7 11284 case DW_TAG_interface_type:
c906108c
SS
11285 case DW_TAG_structure_type:
11286 case DW_TAG_union_type:
f792889a 11287 this_type = read_structure_type (die, cu);
c906108c
SS
11288 break;
11289 case DW_TAG_enumeration_type:
f792889a 11290 this_type = read_enumeration_type (die, cu);
c906108c
SS
11291 break;
11292 case DW_TAG_subprogram:
11293 case DW_TAG_subroutine_type:
edb3359d 11294 case DW_TAG_inlined_subroutine:
f792889a 11295 this_type = read_subroutine_type (die, cu);
c906108c
SS
11296 break;
11297 case DW_TAG_array_type:
f792889a 11298 this_type = read_array_type (die, cu);
c906108c 11299 break;
72019c9c 11300 case DW_TAG_set_type:
f792889a 11301 this_type = read_set_type (die, cu);
72019c9c 11302 break;
c906108c 11303 case DW_TAG_pointer_type:
f792889a 11304 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
11305 break;
11306 case DW_TAG_ptr_to_member_type:
f792889a 11307 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
11308 break;
11309 case DW_TAG_reference_type:
f792889a 11310 this_type = read_tag_reference_type (die, cu);
c906108c
SS
11311 break;
11312 case DW_TAG_const_type:
f792889a 11313 this_type = read_tag_const_type (die, cu);
c906108c
SS
11314 break;
11315 case DW_TAG_volatile_type:
f792889a 11316 this_type = read_tag_volatile_type (die, cu);
c906108c
SS
11317 break;
11318 case DW_TAG_string_type:
f792889a 11319 this_type = read_tag_string_type (die, cu);
c906108c
SS
11320 break;
11321 case DW_TAG_typedef:
f792889a 11322 this_type = read_typedef (die, cu);
c906108c 11323 break;
a02abb62 11324 case DW_TAG_subrange_type:
f792889a 11325 this_type = read_subrange_type (die, cu);
a02abb62 11326 break;
c906108c 11327 case DW_TAG_base_type:
f792889a 11328 this_type = read_base_type (die, cu);
c906108c 11329 break;
81a17f79 11330 case DW_TAG_unspecified_type:
f792889a 11331 this_type = read_unspecified_type (die, cu);
81a17f79 11332 break;
0114d602
DJ
11333 case DW_TAG_namespace:
11334 this_type = read_namespace_type (die, cu);
11335 break;
f55ee35c
JK
11336 case DW_TAG_module:
11337 this_type = read_module_type (die, cu);
11338 break;
c906108c 11339 default:
a1f5b845 11340 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
4d3c2250 11341 dwarf_tag_name (die->tag));
c906108c
SS
11342 break;
11343 }
63d06c5c 11344
f792889a 11345 return this_type;
63d06c5c
DC
11346}
11347
abc72ce4
DE
11348/* See if we can figure out if the class lives in a namespace. We do
11349 this by looking for a member function; its demangled name will
11350 contain namespace info, if there is any.
11351 Return the computed name or NULL.
11352 Space for the result is allocated on the objfile's obstack.
11353 This is the full-die version of guess_partial_die_structure_name.
11354 In this case we know DIE has no useful parent. */
11355
11356static char *
11357guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
11358{
11359 struct die_info *spec_die;
11360 struct dwarf2_cu *spec_cu;
11361 struct die_info *child;
11362
11363 spec_cu = cu;
11364 spec_die = die_specification (die, &spec_cu);
11365 if (spec_die != NULL)
11366 {
11367 die = spec_die;
11368 cu = spec_cu;
11369 }
11370
11371 for (child = die->child;
11372 child != NULL;
11373 child = child->sibling)
11374 {
11375 if (child->tag == DW_TAG_subprogram)
11376 {
11377 struct attribute *attr;
11378
11379 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
11380 if (attr == NULL)
11381 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
11382 if (attr != NULL)
11383 {
11384 char *actual_name
11385 = language_class_name_from_physname (cu->language_defn,
11386 DW_STRING (attr));
11387 char *name = NULL;
11388
11389 if (actual_name != NULL)
11390 {
11391 char *die_name = dwarf2_name (die, cu);
11392
11393 if (die_name != NULL
11394 && strcmp (die_name, actual_name) != 0)
11395 {
11396 /* Strip off the class name from the full name.
11397 We want the prefix. */
11398 int die_name_len = strlen (die_name);
11399 int actual_name_len = strlen (actual_name);
11400
11401 /* Test for '::' as a sanity check. */
11402 if (actual_name_len > die_name_len + 2
11403 && actual_name[actual_name_len - die_name_len - 1] == ':')
11404 name =
11405 obsavestring (actual_name,
11406 actual_name_len - die_name_len - 2,
11407 &cu->objfile->objfile_obstack);
11408 }
11409 }
11410 xfree (actual_name);
11411 return name;
11412 }
11413 }
11414 }
11415
11416 return NULL;
11417}
11418
fdde2d81 11419/* Return the name of the namespace/class that DIE is defined within,
0114d602 11420 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 11421
0114d602
DJ
11422 For example, if we're within the method foo() in the following
11423 code:
11424
11425 namespace N {
11426 class C {
11427 void foo () {
11428 }
11429 };
11430 }
11431
11432 then determine_prefix on foo's die will return "N::C". */
fdde2d81
DC
11433
11434static char *
e142c38c 11435determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 11436{
0114d602
DJ
11437 struct die_info *parent, *spec_die;
11438 struct dwarf2_cu *spec_cu;
11439 struct type *parent_type;
63d06c5c 11440
f55ee35c
JK
11441 if (cu->language != language_cplus && cu->language != language_java
11442 && cu->language != language_fortran)
0114d602
DJ
11443 return "";
11444
11445 /* We have to be careful in the presence of DW_AT_specification.
11446 For example, with GCC 3.4, given the code
11447
11448 namespace N {
11449 void foo() {
11450 // Definition of N::foo.
11451 }
11452 }
11453
11454 then we'll have a tree of DIEs like this:
11455
11456 1: DW_TAG_compile_unit
11457 2: DW_TAG_namespace // N
11458 3: DW_TAG_subprogram // declaration of N::foo
11459 4: DW_TAG_subprogram // definition of N::foo
11460 DW_AT_specification // refers to die #3
11461
11462 Thus, when processing die #4, we have to pretend that we're in
11463 the context of its DW_AT_specification, namely the contex of die
11464 #3. */
11465 spec_cu = cu;
11466 spec_die = die_specification (die, &spec_cu);
11467 if (spec_die == NULL)
11468 parent = die->parent;
11469 else
63d06c5c 11470 {
0114d602
DJ
11471 parent = spec_die->parent;
11472 cu = spec_cu;
63d06c5c 11473 }
0114d602
DJ
11474
11475 if (parent == NULL)
11476 return "";
98bfdba5
PA
11477 else if (parent->building_fullname)
11478 {
11479 const char *name;
11480 const char *parent_name;
11481
11482 /* It has been seen on RealView 2.2 built binaries,
11483 DW_TAG_template_type_param types actually _defined_ as
11484 children of the parent class:
11485
11486 enum E {};
11487 template class <class Enum> Class{};
11488 Class<enum E> class_e;
11489
11490 1: DW_TAG_class_type (Class)
11491 2: DW_TAG_enumeration_type (E)
11492 3: DW_TAG_enumerator (enum1:0)
11493 3: DW_TAG_enumerator (enum2:1)
11494 ...
11495 2: DW_TAG_template_type_param
11496 DW_AT_type DW_FORM_ref_udata (E)
11497
11498 Besides being broken debug info, it can put GDB into an
11499 infinite loop. Consider:
11500
11501 When we're building the full name for Class<E>, we'll start
11502 at Class, and go look over its template type parameters,
11503 finding E. We'll then try to build the full name of E, and
11504 reach here. We're now trying to build the full name of E,
11505 and look over the parent DIE for containing scope. In the
11506 broken case, if we followed the parent DIE of E, we'd again
11507 find Class, and once again go look at its template type
11508 arguments, etc., etc. Simply don't consider such parent die
11509 as source-level parent of this die (it can't be, the language
11510 doesn't allow it), and break the loop here. */
11511 name = dwarf2_name (die, cu);
11512 parent_name = dwarf2_name (parent, cu);
11513 complaint (&symfile_complaints,
11514 _("template param type '%s' defined within parent '%s'"),
11515 name ? name : "<unknown>",
11516 parent_name ? parent_name : "<unknown>");
11517 return "";
11518 }
63d06c5c 11519 else
0114d602
DJ
11520 switch (parent->tag)
11521 {
63d06c5c 11522 case DW_TAG_namespace:
0114d602 11523 parent_type = read_type_die (parent, cu);
acebe513
UW
11524 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
11525 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
11526 Work around this problem here. */
11527 if (cu->language == language_cplus
11528 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
11529 return "";
0114d602
DJ
11530 /* We give a name to even anonymous namespaces. */
11531 return TYPE_TAG_NAME (parent_type);
63d06c5c 11532 case DW_TAG_class_type:
680b30c7 11533 case DW_TAG_interface_type:
63d06c5c 11534 case DW_TAG_structure_type:
0114d602 11535 case DW_TAG_union_type:
f55ee35c 11536 case DW_TAG_module:
0114d602
DJ
11537 parent_type = read_type_die (parent, cu);
11538 if (TYPE_TAG_NAME (parent_type) != NULL)
11539 return TYPE_TAG_NAME (parent_type);
11540 else
11541 /* An anonymous structure is only allowed non-static data
11542 members; no typedefs, no member functions, et cetera.
11543 So it does not need a prefix. */
11544 return "";
abc72ce4
DE
11545 case DW_TAG_compile_unit:
11546 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
11547 if (cu->language == language_cplus
11548 && dwarf2_per_objfile->types.asection != NULL
11549 && die->child != NULL
11550 && (die->tag == DW_TAG_class_type
11551 || die->tag == DW_TAG_structure_type
11552 || die->tag == DW_TAG_union_type))
11553 {
11554 char *name = guess_full_die_structure_name (die, cu);
11555 if (name != NULL)
11556 return name;
11557 }
11558 return "";
63d06c5c 11559 default:
8176b9b8 11560 return determine_prefix (parent, cu);
63d06c5c 11561 }
63d06c5c
DC
11562}
11563
987504bb
JJ
11564/* Return a newly-allocated string formed by concatenating PREFIX and
11565 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
11566 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
11567 perform an obconcat, otherwise allocate storage for the result. The CU argument
11568 is used to determine the language and hence, the appropriate separator. */
11569
f55ee35c 11570#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
11571
11572static char *
f55ee35c
JK
11573typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
11574 int physname, struct dwarf2_cu *cu)
63d06c5c 11575{
f55ee35c 11576 const char *lead = "";
5c315b68 11577 const char *sep;
63d06c5c 11578
987504bb
JJ
11579 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
11580 sep = "";
11581 else if (cu->language == language_java)
11582 sep = ".";
f55ee35c
JK
11583 else if (cu->language == language_fortran && physname)
11584 {
11585 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
11586 DW_AT_MIPS_linkage_name is preferred and used instead. */
11587
11588 lead = "__";
11589 sep = "_MOD_";
11590 }
987504bb
JJ
11591 else
11592 sep = "::";
63d06c5c 11593
6dd47d34
DE
11594 if (prefix == NULL)
11595 prefix = "";
11596 if (suffix == NULL)
11597 suffix = "";
11598
987504bb
JJ
11599 if (obs == NULL)
11600 {
11601 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 11602
f55ee35c
JK
11603 strcpy (retval, lead);
11604 strcat (retval, prefix);
6dd47d34
DE
11605 strcat (retval, sep);
11606 strcat (retval, suffix);
63d06c5c
DC
11607 return retval;
11608 }
987504bb
JJ
11609 else
11610 {
11611 /* We have an obstack. */
f55ee35c 11612 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 11613 }
63d06c5c
DC
11614}
11615
c906108c
SS
11616/* Return sibling of die, NULL if no sibling. */
11617
f9aca02d 11618static struct die_info *
fba45db2 11619sibling_die (struct die_info *die)
c906108c 11620{
639d11d3 11621 return die->sibling;
c906108c
SS
11622}
11623
71c25dea
TT
11624/* Get name of a die, return NULL if not found. */
11625
11626static char *
11627dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
11628 struct obstack *obstack)
11629{
11630 if (name && cu->language == language_cplus)
11631 {
11632 char *canon_name = cp_canonicalize_string (name);
11633
11634 if (canon_name != NULL)
11635 {
11636 if (strcmp (canon_name, name) != 0)
11637 name = obsavestring (canon_name, strlen (canon_name),
11638 obstack);
11639 xfree (canon_name);
11640 }
11641 }
11642
11643 return name;
c906108c
SS
11644}
11645
9219021c
DC
11646/* Get name of a die, return NULL if not found. */
11647
11648static char *
e142c38c 11649dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
11650{
11651 struct attribute *attr;
11652
e142c38c 11653 attr = dwarf2_attr (die, DW_AT_name, cu);
71c25dea
TT
11654 if (!attr || !DW_STRING (attr))
11655 return NULL;
11656
11657 switch (die->tag)
11658 {
11659 case DW_TAG_compile_unit:
11660 /* Compilation units have a DW_AT_name that is a filename, not
11661 a source language identifier. */
11662 case DW_TAG_enumeration_type:
11663 case DW_TAG_enumerator:
11664 /* These tags always have simple identifiers already; no need
11665 to canonicalize them. */
11666 return DW_STRING (attr);
907af001 11667
418835cc
KS
11668 case DW_TAG_subprogram:
11669 /* Java constructors will all be named "<init>", so return
11670 the class name when we see this special case. */
11671 if (cu->language == language_java
11672 && DW_STRING (attr) != NULL
11673 && strcmp (DW_STRING (attr), "<init>") == 0)
11674 {
11675 struct dwarf2_cu *spec_cu = cu;
11676 struct die_info *spec_die;
11677
11678 /* GCJ will output '<init>' for Java constructor names.
11679 For this special case, return the name of the parent class. */
11680
11681 /* GCJ may output suprogram DIEs with AT_specification set.
11682 If so, use the name of the specified DIE. */
11683 spec_die = die_specification (die, &spec_cu);
11684 if (spec_die != NULL)
11685 return dwarf2_name (spec_die, spec_cu);
11686
11687 do
11688 {
11689 die = die->parent;
11690 if (die->tag == DW_TAG_class_type)
11691 return dwarf2_name (die, cu);
11692 }
11693 while (die->tag != DW_TAG_compile_unit);
11694 }
907af001
UW
11695 break;
11696
11697 case DW_TAG_class_type:
11698 case DW_TAG_interface_type:
11699 case DW_TAG_structure_type:
11700 case DW_TAG_union_type:
11701 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
11702 structures or unions. These were of the form "._%d" in GCC 4.1,
11703 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
11704 and GCC 4.4. We work around this problem by ignoring these. */
11705 if (strncmp (DW_STRING (attr), "._", 2) == 0
11706 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
11707 return NULL;
11708 break;
11709
71c25dea 11710 default:
907af001
UW
11711 break;
11712 }
11713
11714 if (!DW_STRING_IS_CANONICAL (attr))
11715 {
11716 DW_STRING (attr)
11717 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
11718 &cu->objfile->objfile_obstack);
11719 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 11720 }
907af001 11721 return DW_STRING (attr);
9219021c
DC
11722}
11723
11724/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
11725 is none. *EXT_CU is the CU containing DIE on input, and the CU
11726 containing the return value on output. */
9219021c
DC
11727
11728static struct die_info *
f2f0e013 11729dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
11730{
11731 struct attribute *attr;
9219021c 11732
f2f0e013 11733 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
11734 if (attr == NULL)
11735 return NULL;
11736
f2f0e013 11737 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
11738}
11739
c906108c
SS
11740/* Convert a DIE tag into its string name. */
11741
11742static char *
aa1ee363 11743dwarf_tag_name (unsigned tag)
c906108c
SS
11744{
11745 switch (tag)
11746 {
11747 case DW_TAG_padding:
11748 return "DW_TAG_padding";
11749 case DW_TAG_array_type:
11750 return "DW_TAG_array_type";
11751 case DW_TAG_class_type:
11752 return "DW_TAG_class_type";
11753 case DW_TAG_entry_point:
11754 return "DW_TAG_entry_point";
11755 case DW_TAG_enumeration_type:
11756 return "DW_TAG_enumeration_type";
11757 case DW_TAG_formal_parameter:
11758 return "DW_TAG_formal_parameter";
11759 case DW_TAG_imported_declaration:
11760 return "DW_TAG_imported_declaration";
11761 case DW_TAG_label:
11762 return "DW_TAG_label";
11763 case DW_TAG_lexical_block:
11764 return "DW_TAG_lexical_block";
11765 case DW_TAG_member:
11766 return "DW_TAG_member";
11767 case DW_TAG_pointer_type:
11768 return "DW_TAG_pointer_type";
11769 case DW_TAG_reference_type:
11770 return "DW_TAG_reference_type";
11771 case DW_TAG_compile_unit:
11772 return "DW_TAG_compile_unit";
11773 case DW_TAG_string_type:
11774 return "DW_TAG_string_type";
11775 case DW_TAG_structure_type:
11776 return "DW_TAG_structure_type";
11777 case DW_TAG_subroutine_type:
11778 return "DW_TAG_subroutine_type";
11779 case DW_TAG_typedef:
11780 return "DW_TAG_typedef";
11781 case DW_TAG_union_type:
11782 return "DW_TAG_union_type";
11783 case DW_TAG_unspecified_parameters:
11784 return "DW_TAG_unspecified_parameters";
11785 case DW_TAG_variant:
11786 return "DW_TAG_variant";
11787 case DW_TAG_common_block:
11788 return "DW_TAG_common_block";
11789 case DW_TAG_common_inclusion:
11790 return "DW_TAG_common_inclusion";
11791 case DW_TAG_inheritance:
11792 return "DW_TAG_inheritance";
11793 case DW_TAG_inlined_subroutine:
11794 return "DW_TAG_inlined_subroutine";
11795 case DW_TAG_module:
11796 return "DW_TAG_module";
11797 case DW_TAG_ptr_to_member_type:
11798 return "DW_TAG_ptr_to_member_type";
11799 case DW_TAG_set_type:
11800 return "DW_TAG_set_type";
11801 case DW_TAG_subrange_type:
11802 return "DW_TAG_subrange_type";
11803 case DW_TAG_with_stmt:
11804 return "DW_TAG_with_stmt";
11805 case DW_TAG_access_declaration:
11806 return "DW_TAG_access_declaration";
11807 case DW_TAG_base_type:
11808 return "DW_TAG_base_type";
11809 case DW_TAG_catch_block:
11810 return "DW_TAG_catch_block";
11811 case DW_TAG_const_type:
11812 return "DW_TAG_const_type";
11813 case DW_TAG_constant:
11814 return "DW_TAG_constant";
11815 case DW_TAG_enumerator:
11816 return "DW_TAG_enumerator";
11817 case DW_TAG_file_type:
11818 return "DW_TAG_file_type";
11819 case DW_TAG_friend:
11820 return "DW_TAG_friend";
11821 case DW_TAG_namelist:
11822 return "DW_TAG_namelist";
11823 case DW_TAG_namelist_item:
11824 return "DW_TAG_namelist_item";
11825 case DW_TAG_packed_type:
11826 return "DW_TAG_packed_type";
11827 case DW_TAG_subprogram:
11828 return "DW_TAG_subprogram";
11829 case DW_TAG_template_type_param:
11830 return "DW_TAG_template_type_param";
11831 case DW_TAG_template_value_param:
11832 return "DW_TAG_template_value_param";
11833 case DW_TAG_thrown_type:
11834 return "DW_TAG_thrown_type";
11835 case DW_TAG_try_block:
11836 return "DW_TAG_try_block";
11837 case DW_TAG_variant_part:
11838 return "DW_TAG_variant_part";
11839 case DW_TAG_variable:
11840 return "DW_TAG_variable";
11841 case DW_TAG_volatile_type:
11842 return "DW_TAG_volatile_type";
d9fa45fe
DC
11843 case DW_TAG_dwarf_procedure:
11844 return "DW_TAG_dwarf_procedure";
11845 case DW_TAG_restrict_type:
11846 return "DW_TAG_restrict_type";
11847 case DW_TAG_interface_type:
11848 return "DW_TAG_interface_type";
11849 case DW_TAG_namespace:
11850 return "DW_TAG_namespace";
11851 case DW_TAG_imported_module:
11852 return "DW_TAG_imported_module";
11853 case DW_TAG_unspecified_type:
11854 return "DW_TAG_unspecified_type";
11855 case DW_TAG_partial_unit:
11856 return "DW_TAG_partial_unit";
11857 case DW_TAG_imported_unit:
11858 return "DW_TAG_imported_unit";
b7619582
GF
11859 case DW_TAG_condition:
11860 return "DW_TAG_condition";
11861 case DW_TAG_shared_type:
11862 return "DW_TAG_shared_type";
348e048f
DE
11863 case DW_TAG_type_unit:
11864 return "DW_TAG_type_unit";
c906108c
SS
11865 case DW_TAG_MIPS_loop:
11866 return "DW_TAG_MIPS_loop";
b7619582
GF
11867 case DW_TAG_HP_array_descriptor:
11868 return "DW_TAG_HP_array_descriptor";
c906108c
SS
11869 case DW_TAG_format_label:
11870 return "DW_TAG_format_label";
11871 case DW_TAG_function_template:
11872 return "DW_TAG_function_template";
11873 case DW_TAG_class_template:
11874 return "DW_TAG_class_template";
b7619582
GF
11875 case DW_TAG_GNU_BINCL:
11876 return "DW_TAG_GNU_BINCL";
11877 case DW_TAG_GNU_EINCL:
11878 return "DW_TAG_GNU_EINCL";
11879 case DW_TAG_upc_shared_type:
11880 return "DW_TAG_upc_shared_type";
11881 case DW_TAG_upc_strict_type:
11882 return "DW_TAG_upc_strict_type";
11883 case DW_TAG_upc_relaxed_type:
11884 return "DW_TAG_upc_relaxed_type";
11885 case DW_TAG_PGI_kanji_type:
11886 return "DW_TAG_PGI_kanji_type";
11887 case DW_TAG_PGI_interface_block:
11888 return "DW_TAG_PGI_interface_block";
c906108c
SS
11889 default:
11890 return "DW_TAG_<unknown>";
11891 }
11892}
11893
11894/* Convert a DWARF attribute code into its string name. */
11895
11896static char *
aa1ee363 11897dwarf_attr_name (unsigned attr)
c906108c
SS
11898{
11899 switch (attr)
11900 {
11901 case DW_AT_sibling:
11902 return "DW_AT_sibling";
11903 case DW_AT_location:
11904 return "DW_AT_location";
11905 case DW_AT_name:
11906 return "DW_AT_name";
11907 case DW_AT_ordering:
11908 return "DW_AT_ordering";
11909 case DW_AT_subscr_data:
11910 return "DW_AT_subscr_data";
11911 case DW_AT_byte_size:
11912 return "DW_AT_byte_size";
11913 case DW_AT_bit_offset:
11914 return "DW_AT_bit_offset";
11915 case DW_AT_bit_size:
11916 return "DW_AT_bit_size";
11917 case DW_AT_element_list:
11918 return "DW_AT_element_list";
11919 case DW_AT_stmt_list:
11920 return "DW_AT_stmt_list";
11921 case DW_AT_low_pc:
11922 return "DW_AT_low_pc";
11923 case DW_AT_high_pc:
11924 return "DW_AT_high_pc";
11925 case DW_AT_language:
11926 return "DW_AT_language";
11927 case DW_AT_member:
11928 return "DW_AT_member";
11929 case DW_AT_discr:
11930 return "DW_AT_discr";
11931 case DW_AT_discr_value:
11932 return "DW_AT_discr_value";
11933 case DW_AT_visibility:
11934 return "DW_AT_visibility";
11935 case DW_AT_import:
11936 return "DW_AT_import";
11937 case DW_AT_string_length:
11938 return "DW_AT_string_length";
11939 case DW_AT_common_reference:
11940 return "DW_AT_common_reference";
11941 case DW_AT_comp_dir:
11942 return "DW_AT_comp_dir";
11943 case DW_AT_const_value:
11944 return "DW_AT_const_value";
11945 case DW_AT_containing_type:
11946 return "DW_AT_containing_type";
11947 case DW_AT_default_value:
11948 return "DW_AT_default_value";
11949 case DW_AT_inline:
11950 return "DW_AT_inline";
11951 case DW_AT_is_optional:
11952 return "DW_AT_is_optional";
11953 case DW_AT_lower_bound:
11954 return "DW_AT_lower_bound";
11955 case DW_AT_producer:
11956 return "DW_AT_producer";
11957 case DW_AT_prototyped:
11958 return "DW_AT_prototyped";
11959 case DW_AT_return_addr:
11960 return "DW_AT_return_addr";
11961 case DW_AT_start_scope:
11962 return "DW_AT_start_scope";
09fa0d7c
JK
11963 case DW_AT_bit_stride:
11964 return "DW_AT_bit_stride";
c906108c
SS
11965 case DW_AT_upper_bound:
11966 return "DW_AT_upper_bound";
11967 case DW_AT_abstract_origin:
11968 return "DW_AT_abstract_origin";
11969 case DW_AT_accessibility:
11970 return "DW_AT_accessibility";
11971 case DW_AT_address_class:
11972 return "DW_AT_address_class";
11973 case DW_AT_artificial:
11974 return "DW_AT_artificial";
11975 case DW_AT_base_types:
11976 return "DW_AT_base_types";
11977 case DW_AT_calling_convention:
11978 return "DW_AT_calling_convention";
11979 case DW_AT_count:
11980 return "DW_AT_count";
11981 case DW_AT_data_member_location:
11982 return "DW_AT_data_member_location";
11983 case DW_AT_decl_column:
11984 return "DW_AT_decl_column";
11985 case DW_AT_decl_file:
11986 return "DW_AT_decl_file";
11987 case DW_AT_decl_line:
11988 return "DW_AT_decl_line";
11989 case DW_AT_declaration:
11990 return "DW_AT_declaration";
11991 case DW_AT_discr_list:
11992 return "DW_AT_discr_list";
11993 case DW_AT_encoding:
11994 return "DW_AT_encoding";
11995 case DW_AT_external:
11996 return "DW_AT_external";
11997 case DW_AT_frame_base:
11998 return "DW_AT_frame_base";
11999 case DW_AT_friend:
12000 return "DW_AT_friend";
12001 case DW_AT_identifier_case:
12002 return "DW_AT_identifier_case";
12003 case DW_AT_macro_info:
12004 return "DW_AT_macro_info";
12005 case DW_AT_namelist_items:
12006 return "DW_AT_namelist_items";
12007 case DW_AT_priority:
12008 return "DW_AT_priority";
12009 case DW_AT_segment:
12010 return "DW_AT_segment";
12011 case DW_AT_specification:
12012 return "DW_AT_specification";
12013 case DW_AT_static_link:
12014 return "DW_AT_static_link";
12015 case DW_AT_type:
12016 return "DW_AT_type";
12017 case DW_AT_use_location:
12018 return "DW_AT_use_location";
12019 case DW_AT_variable_parameter:
12020 return "DW_AT_variable_parameter";
12021 case DW_AT_virtuality:
12022 return "DW_AT_virtuality";
12023 case DW_AT_vtable_elem_location:
12024 return "DW_AT_vtable_elem_location";
b7619582 12025 /* DWARF 3 values. */
d9fa45fe
DC
12026 case DW_AT_allocated:
12027 return "DW_AT_allocated";
12028 case DW_AT_associated:
12029 return "DW_AT_associated";
12030 case DW_AT_data_location:
12031 return "DW_AT_data_location";
09fa0d7c
JK
12032 case DW_AT_byte_stride:
12033 return "DW_AT_byte_stride";
d9fa45fe
DC
12034 case DW_AT_entry_pc:
12035 return "DW_AT_entry_pc";
12036 case DW_AT_use_UTF8:
12037 return "DW_AT_use_UTF8";
12038 case DW_AT_extension:
12039 return "DW_AT_extension";
12040 case DW_AT_ranges:
12041 return "DW_AT_ranges";
12042 case DW_AT_trampoline:
12043 return "DW_AT_trampoline";
12044 case DW_AT_call_column:
12045 return "DW_AT_call_column";
12046 case DW_AT_call_file:
12047 return "DW_AT_call_file";
12048 case DW_AT_call_line:
12049 return "DW_AT_call_line";
b7619582
GF
12050 case DW_AT_description:
12051 return "DW_AT_description";
12052 case DW_AT_binary_scale:
12053 return "DW_AT_binary_scale";
12054 case DW_AT_decimal_scale:
12055 return "DW_AT_decimal_scale";
12056 case DW_AT_small:
12057 return "DW_AT_small";
12058 case DW_AT_decimal_sign:
12059 return "DW_AT_decimal_sign";
12060 case DW_AT_digit_count:
12061 return "DW_AT_digit_count";
12062 case DW_AT_picture_string:
12063 return "DW_AT_picture_string";
12064 case DW_AT_mutable:
12065 return "DW_AT_mutable";
12066 case DW_AT_threads_scaled:
12067 return "DW_AT_threads_scaled";
12068 case DW_AT_explicit:
12069 return "DW_AT_explicit";
12070 case DW_AT_object_pointer:
12071 return "DW_AT_object_pointer";
12072 case DW_AT_endianity:
12073 return "DW_AT_endianity";
12074 case DW_AT_elemental:
12075 return "DW_AT_elemental";
12076 case DW_AT_pure:
12077 return "DW_AT_pure";
12078 case DW_AT_recursive:
12079 return "DW_AT_recursive";
348e048f
DE
12080 /* DWARF 4 values. */
12081 case DW_AT_signature:
12082 return "DW_AT_signature";
31ef98ae
TT
12083 case DW_AT_linkage_name:
12084 return "DW_AT_linkage_name";
b7619582 12085 /* SGI/MIPS extensions. */
c764a876 12086#ifdef MIPS /* collides with DW_AT_HP_block_index */
c906108c
SS
12087 case DW_AT_MIPS_fde:
12088 return "DW_AT_MIPS_fde";
c764a876 12089#endif
c906108c
SS
12090 case DW_AT_MIPS_loop_begin:
12091 return "DW_AT_MIPS_loop_begin";
12092 case DW_AT_MIPS_tail_loop_begin:
12093 return "DW_AT_MIPS_tail_loop_begin";
12094 case DW_AT_MIPS_epilog_begin:
12095 return "DW_AT_MIPS_epilog_begin";
12096 case DW_AT_MIPS_loop_unroll_factor:
12097 return "DW_AT_MIPS_loop_unroll_factor";
12098 case DW_AT_MIPS_software_pipeline_depth:
12099 return "DW_AT_MIPS_software_pipeline_depth";
12100 case DW_AT_MIPS_linkage_name:
12101 return "DW_AT_MIPS_linkage_name";
b7619582
GF
12102 case DW_AT_MIPS_stride:
12103 return "DW_AT_MIPS_stride";
12104 case DW_AT_MIPS_abstract_name:
12105 return "DW_AT_MIPS_abstract_name";
12106 case DW_AT_MIPS_clone_origin:
12107 return "DW_AT_MIPS_clone_origin";
12108 case DW_AT_MIPS_has_inlines:
12109 return "DW_AT_MIPS_has_inlines";
b7619582 12110 /* HP extensions. */
c764a876 12111#ifndef MIPS /* collides with DW_AT_MIPS_fde */
b7619582
GF
12112 case DW_AT_HP_block_index:
12113 return "DW_AT_HP_block_index";
c764a876 12114#endif
b7619582
GF
12115 case DW_AT_HP_unmodifiable:
12116 return "DW_AT_HP_unmodifiable";
12117 case DW_AT_HP_actuals_stmt_list:
12118 return "DW_AT_HP_actuals_stmt_list";
12119 case DW_AT_HP_proc_per_section:
12120 return "DW_AT_HP_proc_per_section";
12121 case DW_AT_HP_raw_data_ptr:
12122 return "DW_AT_HP_raw_data_ptr";
12123 case DW_AT_HP_pass_by_reference:
12124 return "DW_AT_HP_pass_by_reference";
12125 case DW_AT_HP_opt_level:
12126 return "DW_AT_HP_opt_level";
12127 case DW_AT_HP_prof_version_id:
12128 return "DW_AT_HP_prof_version_id";
12129 case DW_AT_HP_opt_flags:
12130 return "DW_AT_HP_opt_flags";
12131 case DW_AT_HP_cold_region_low_pc:
12132 return "DW_AT_HP_cold_region_low_pc";
12133 case DW_AT_HP_cold_region_high_pc:
12134 return "DW_AT_HP_cold_region_high_pc";
12135 case DW_AT_HP_all_variables_modifiable:
12136 return "DW_AT_HP_all_variables_modifiable";
12137 case DW_AT_HP_linkage_name:
12138 return "DW_AT_HP_linkage_name";
12139 case DW_AT_HP_prof_flags:
12140 return "DW_AT_HP_prof_flags";
12141 /* GNU extensions. */
c906108c
SS
12142 case DW_AT_sf_names:
12143 return "DW_AT_sf_names";
12144 case DW_AT_src_info:
12145 return "DW_AT_src_info";
12146 case DW_AT_mac_info:
12147 return "DW_AT_mac_info";
12148 case DW_AT_src_coords:
12149 return "DW_AT_src_coords";
12150 case DW_AT_body_begin:
12151 return "DW_AT_body_begin";
12152 case DW_AT_body_end:
12153 return "DW_AT_body_end";
f5f8a009
EZ
12154 case DW_AT_GNU_vector:
12155 return "DW_AT_GNU_vector";
2de00c64
DE
12156 case DW_AT_GNU_odr_signature:
12157 return "DW_AT_GNU_odr_signature";
b7619582
GF
12158 /* VMS extensions. */
12159 case DW_AT_VMS_rtnbeg_pd_address:
12160 return "DW_AT_VMS_rtnbeg_pd_address";
12161 /* UPC extension. */
12162 case DW_AT_upc_threads_scaled:
12163 return "DW_AT_upc_threads_scaled";
12164 /* PGI (STMicroelectronics) extensions. */
12165 case DW_AT_PGI_lbase:
12166 return "DW_AT_PGI_lbase";
12167 case DW_AT_PGI_soffset:
12168 return "DW_AT_PGI_soffset";
12169 case DW_AT_PGI_lstride:
12170 return "DW_AT_PGI_lstride";
c906108c
SS
12171 default:
12172 return "DW_AT_<unknown>";
12173 }
12174}
12175
12176/* Convert a DWARF value form code into its string name. */
12177
12178static char *
aa1ee363 12179dwarf_form_name (unsigned form)
c906108c
SS
12180{
12181 switch (form)
12182 {
12183 case DW_FORM_addr:
12184 return "DW_FORM_addr";
12185 case DW_FORM_block2:
12186 return "DW_FORM_block2";
12187 case DW_FORM_block4:
12188 return "DW_FORM_block4";
12189 case DW_FORM_data2:
12190 return "DW_FORM_data2";
12191 case DW_FORM_data4:
12192 return "DW_FORM_data4";
12193 case DW_FORM_data8:
12194 return "DW_FORM_data8";
12195 case DW_FORM_string:
12196 return "DW_FORM_string";
12197 case DW_FORM_block:
12198 return "DW_FORM_block";
12199 case DW_FORM_block1:
12200 return "DW_FORM_block1";
12201 case DW_FORM_data1:
12202 return "DW_FORM_data1";
12203 case DW_FORM_flag:
12204 return "DW_FORM_flag";
12205 case DW_FORM_sdata:
12206 return "DW_FORM_sdata";
12207 case DW_FORM_strp:
12208 return "DW_FORM_strp";
12209 case DW_FORM_udata:
12210 return "DW_FORM_udata";
12211 case DW_FORM_ref_addr:
12212 return "DW_FORM_ref_addr";
12213 case DW_FORM_ref1:
12214 return "DW_FORM_ref1";
12215 case DW_FORM_ref2:
12216 return "DW_FORM_ref2";
12217 case DW_FORM_ref4:
12218 return "DW_FORM_ref4";
12219 case DW_FORM_ref8:
12220 return "DW_FORM_ref8";
12221 case DW_FORM_ref_udata:
12222 return "DW_FORM_ref_udata";
12223 case DW_FORM_indirect:
12224 return "DW_FORM_indirect";
348e048f
DE
12225 case DW_FORM_sec_offset:
12226 return "DW_FORM_sec_offset";
12227 case DW_FORM_exprloc:
12228 return "DW_FORM_exprloc";
12229 case DW_FORM_flag_present:
12230 return "DW_FORM_flag_present";
12231 case DW_FORM_sig8:
12232 return "DW_FORM_sig8";
c906108c
SS
12233 default:
12234 return "DW_FORM_<unknown>";
12235 }
12236}
12237
12238/* Convert a DWARF stack opcode into its string name. */
12239
9eae7c52
TT
12240const char *
12241dwarf_stack_op_name (unsigned op, int def)
c906108c
SS
12242{
12243 switch (op)
12244 {
12245 case DW_OP_addr:
12246 return "DW_OP_addr";
12247 case DW_OP_deref:
12248 return "DW_OP_deref";
12249 case DW_OP_const1u:
12250 return "DW_OP_const1u";
12251 case DW_OP_const1s:
12252 return "DW_OP_const1s";
12253 case DW_OP_const2u:
12254 return "DW_OP_const2u";
12255 case DW_OP_const2s:
12256 return "DW_OP_const2s";
12257 case DW_OP_const4u:
12258 return "DW_OP_const4u";
12259 case DW_OP_const4s:
12260 return "DW_OP_const4s";
12261 case DW_OP_const8u:
12262 return "DW_OP_const8u";
12263 case DW_OP_const8s:
12264 return "DW_OP_const8s";
12265 case DW_OP_constu:
12266 return "DW_OP_constu";
12267 case DW_OP_consts:
12268 return "DW_OP_consts";
12269 case DW_OP_dup:
12270 return "DW_OP_dup";
12271 case DW_OP_drop:
12272 return "DW_OP_drop";
12273 case DW_OP_over:
12274 return "DW_OP_over";
12275 case DW_OP_pick:
12276 return "DW_OP_pick";
12277 case DW_OP_swap:
12278 return "DW_OP_swap";
12279 case DW_OP_rot:
12280 return "DW_OP_rot";
12281 case DW_OP_xderef:
12282 return "DW_OP_xderef";
12283 case DW_OP_abs:
12284 return "DW_OP_abs";
12285 case DW_OP_and:
12286 return "DW_OP_and";
12287 case DW_OP_div:
12288 return "DW_OP_div";
12289 case DW_OP_minus:
12290 return "DW_OP_minus";
12291 case DW_OP_mod:
12292 return "DW_OP_mod";
12293 case DW_OP_mul:
12294 return "DW_OP_mul";
12295 case DW_OP_neg:
12296 return "DW_OP_neg";
12297 case DW_OP_not:
12298 return "DW_OP_not";
12299 case DW_OP_or:
12300 return "DW_OP_or";
12301 case DW_OP_plus:
12302 return "DW_OP_plus";
12303 case DW_OP_plus_uconst:
12304 return "DW_OP_plus_uconst";
12305 case DW_OP_shl:
12306 return "DW_OP_shl";
12307 case DW_OP_shr:
12308 return "DW_OP_shr";
12309 case DW_OP_shra:
12310 return "DW_OP_shra";
12311 case DW_OP_xor:
12312 return "DW_OP_xor";
12313 case DW_OP_bra:
12314 return "DW_OP_bra";
12315 case DW_OP_eq:
12316 return "DW_OP_eq";
12317 case DW_OP_ge:
12318 return "DW_OP_ge";
12319 case DW_OP_gt:
12320 return "DW_OP_gt";
12321 case DW_OP_le:
12322 return "DW_OP_le";
12323 case DW_OP_lt:
12324 return "DW_OP_lt";
12325 case DW_OP_ne:
12326 return "DW_OP_ne";
12327 case DW_OP_skip:
12328 return "DW_OP_skip";
12329 case DW_OP_lit0:
12330 return "DW_OP_lit0";
12331 case DW_OP_lit1:
12332 return "DW_OP_lit1";
12333 case DW_OP_lit2:
12334 return "DW_OP_lit2";
12335 case DW_OP_lit3:
12336 return "DW_OP_lit3";
12337 case DW_OP_lit4:
12338 return "DW_OP_lit4";
12339 case DW_OP_lit5:
12340 return "DW_OP_lit5";
12341 case DW_OP_lit6:
12342 return "DW_OP_lit6";
12343 case DW_OP_lit7:
12344 return "DW_OP_lit7";
12345 case DW_OP_lit8:
12346 return "DW_OP_lit8";
12347 case DW_OP_lit9:
12348 return "DW_OP_lit9";
12349 case DW_OP_lit10:
12350 return "DW_OP_lit10";
12351 case DW_OP_lit11:
12352 return "DW_OP_lit11";
12353 case DW_OP_lit12:
12354 return "DW_OP_lit12";
12355 case DW_OP_lit13:
12356 return "DW_OP_lit13";
12357 case DW_OP_lit14:
12358 return "DW_OP_lit14";
12359 case DW_OP_lit15:
12360 return "DW_OP_lit15";
12361 case DW_OP_lit16:
12362 return "DW_OP_lit16";
12363 case DW_OP_lit17:
12364 return "DW_OP_lit17";
12365 case DW_OP_lit18:
12366 return "DW_OP_lit18";
12367 case DW_OP_lit19:
12368 return "DW_OP_lit19";
12369 case DW_OP_lit20:
12370 return "DW_OP_lit20";
12371 case DW_OP_lit21:
12372 return "DW_OP_lit21";
12373 case DW_OP_lit22:
12374 return "DW_OP_lit22";
12375 case DW_OP_lit23:
12376 return "DW_OP_lit23";
12377 case DW_OP_lit24:
12378 return "DW_OP_lit24";
12379 case DW_OP_lit25:
12380 return "DW_OP_lit25";
12381 case DW_OP_lit26:
12382 return "DW_OP_lit26";
12383 case DW_OP_lit27:
12384 return "DW_OP_lit27";
12385 case DW_OP_lit28:
12386 return "DW_OP_lit28";
12387 case DW_OP_lit29:
12388 return "DW_OP_lit29";
12389 case DW_OP_lit30:
12390 return "DW_OP_lit30";
12391 case DW_OP_lit31:
12392 return "DW_OP_lit31";
12393 case DW_OP_reg0:
12394 return "DW_OP_reg0";
12395 case DW_OP_reg1:
12396 return "DW_OP_reg1";
12397 case DW_OP_reg2:
12398 return "DW_OP_reg2";
12399 case DW_OP_reg3:
12400 return "DW_OP_reg3";
12401 case DW_OP_reg4:
12402 return "DW_OP_reg4";
12403 case DW_OP_reg5:
12404 return "DW_OP_reg5";
12405 case DW_OP_reg6:
12406 return "DW_OP_reg6";
12407 case DW_OP_reg7:
12408 return "DW_OP_reg7";
12409 case DW_OP_reg8:
12410 return "DW_OP_reg8";
12411 case DW_OP_reg9:
12412 return "DW_OP_reg9";
12413 case DW_OP_reg10:
12414 return "DW_OP_reg10";
12415 case DW_OP_reg11:
12416 return "DW_OP_reg11";
12417 case DW_OP_reg12:
12418 return "DW_OP_reg12";
12419 case DW_OP_reg13:
12420 return "DW_OP_reg13";
12421 case DW_OP_reg14:
12422 return "DW_OP_reg14";
12423 case DW_OP_reg15:
12424 return "DW_OP_reg15";
12425 case DW_OP_reg16:
12426 return "DW_OP_reg16";
12427 case DW_OP_reg17:
12428 return "DW_OP_reg17";
12429 case DW_OP_reg18:
12430 return "DW_OP_reg18";
12431 case DW_OP_reg19:
12432 return "DW_OP_reg19";
12433 case DW_OP_reg20:
12434 return "DW_OP_reg20";
12435 case DW_OP_reg21:
12436 return "DW_OP_reg21";
12437 case DW_OP_reg22:
12438 return "DW_OP_reg22";
12439 case DW_OP_reg23:
12440 return "DW_OP_reg23";
12441 case DW_OP_reg24:
12442 return "DW_OP_reg24";
12443 case DW_OP_reg25:
12444 return "DW_OP_reg25";
12445 case DW_OP_reg26:
12446 return "DW_OP_reg26";
12447 case DW_OP_reg27:
12448 return "DW_OP_reg27";
12449 case DW_OP_reg28:
12450 return "DW_OP_reg28";
12451 case DW_OP_reg29:
12452 return "DW_OP_reg29";
12453 case DW_OP_reg30:
12454 return "DW_OP_reg30";
12455 case DW_OP_reg31:
12456 return "DW_OP_reg31";
12457 case DW_OP_breg0:
12458 return "DW_OP_breg0";
12459 case DW_OP_breg1:
12460 return "DW_OP_breg1";
12461 case DW_OP_breg2:
12462 return "DW_OP_breg2";
12463 case DW_OP_breg3:
12464 return "DW_OP_breg3";
12465 case DW_OP_breg4:
12466 return "DW_OP_breg4";
12467 case DW_OP_breg5:
12468 return "DW_OP_breg5";
12469 case DW_OP_breg6:
12470 return "DW_OP_breg6";
12471 case DW_OP_breg7:
12472 return "DW_OP_breg7";
12473 case DW_OP_breg8:
12474 return "DW_OP_breg8";
12475 case DW_OP_breg9:
12476 return "DW_OP_breg9";
12477 case DW_OP_breg10:
12478 return "DW_OP_breg10";
12479 case DW_OP_breg11:
12480 return "DW_OP_breg11";
12481 case DW_OP_breg12:
12482 return "DW_OP_breg12";
12483 case DW_OP_breg13:
12484 return "DW_OP_breg13";
12485 case DW_OP_breg14:
12486 return "DW_OP_breg14";
12487 case DW_OP_breg15:
12488 return "DW_OP_breg15";
12489 case DW_OP_breg16:
12490 return "DW_OP_breg16";
12491 case DW_OP_breg17:
12492 return "DW_OP_breg17";
12493 case DW_OP_breg18:
12494 return "DW_OP_breg18";
12495 case DW_OP_breg19:
12496 return "DW_OP_breg19";
12497 case DW_OP_breg20:
12498 return "DW_OP_breg20";
12499 case DW_OP_breg21:
12500 return "DW_OP_breg21";
12501 case DW_OP_breg22:
12502 return "DW_OP_breg22";
12503 case DW_OP_breg23:
12504 return "DW_OP_breg23";
12505 case DW_OP_breg24:
12506 return "DW_OP_breg24";
12507 case DW_OP_breg25:
12508 return "DW_OP_breg25";
12509 case DW_OP_breg26:
12510 return "DW_OP_breg26";
12511 case DW_OP_breg27:
12512 return "DW_OP_breg27";
12513 case DW_OP_breg28:
12514 return "DW_OP_breg28";
12515 case DW_OP_breg29:
12516 return "DW_OP_breg29";
12517 case DW_OP_breg30:
12518 return "DW_OP_breg30";
12519 case DW_OP_breg31:
12520 return "DW_OP_breg31";
12521 case DW_OP_regx:
12522 return "DW_OP_regx";
12523 case DW_OP_fbreg:
12524 return "DW_OP_fbreg";
12525 case DW_OP_bregx:
12526 return "DW_OP_bregx";
12527 case DW_OP_piece:
12528 return "DW_OP_piece";
12529 case DW_OP_deref_size:
12530 return "DW_OP_deref_size";
12531 case DW_OP_xderef_size:
12532 return "DW_OP_xderef_size";
12533 case DW_OP_nop:
12534 return "DW_OP_nop";
b7619582 12535 /* DWARF 3 extensions. */
ed348acc
EZ
12536 case DW_OP_push_object_address:
12537 return "DW_OP_push_object_address";
12538 case DW_OP_call2:
12539 return "DW_OP_call2";
12540 case DW_OP_call4:
12541 return "DW_OP_call4";
12542 case DW_OP_call_ref:
12543 return "DW_OP_call_ref";
b7619582
GF
12544 case DW_OP_form_tls_address:
12545 return "DW_OP_form_tls_address";
12546 case DW_OP_call_frame_cfa:
12547 return "DW_OP_call_frame_cfa";
12548 case DW_OP_bit_piece:
12549 return "DW_OP_bit_piece";
9eae7c52
TT
12550 /* DWARF 4 extensions. */
12551 case DW_OP_implicit_value:
12552 return "DW_OP_implicit_value";
12553 case DW_OP_stack_value:
12554 return "DW_OP_stack_value";
12555 /* GNU extensions. */
ed348acc
EZ
12556 case DW_OP_GNU_push_tls_address:
12557 return "DW_OP_GNU_push_tls_address";
42be36b3
CT
12558 case DW_OP_GNU_uninit:
12559 return "DW_OP_GNU_uninit";
c906108c 12560 default:
9eae7c52 12561 return def ? "OP_<unknown>" : NULL;
c906108c
SS
12562 }
12563}
12564
12565static char *
fba45db2 12566dwarf_bool_name (unsigned mybool)
c906108c
SS
12567{
12568 if (mybool)
12569 return "TRUE";
12570 else
12571 return "FALSE";
12572}
12573
12574/* Convert a DWARF type code into its string name. */
12575
12576static char *
aa1ee363 12577dwarf_type_encoding_name (unsigned enc)
c906108c
SS
12578{
12579 switch (enc)
12580 {
b7619582
GF
12581 case DW_ATE_void:
12582 return "DW_ATE_void";
c906108c
SS
12583 case DW_ATE_address:
12584 return "DW_ATE_address";
12585 case DW_ATE_boolean:
12586 return "DW_ATE_boolean";
12587 case DW_ATE_complex_float:
12588 return "DW_ATE_complex_float";
12589 case DW_ATE_float:
12590 return "DW_ATE_float";
12591 case DW_ATE_signed:
12592 return "DW_ATE_signed";
12593 case DW_ATE_signed_char:
12594 return "DW_ATE_signed_char";
12595 case DW_ATE_unsigned:
12596 return "DW_ATE_unsigned";
12597 case DW_ATE_unsigned_char:
12598 return "DW_ATE_unsigned_char";
b7619582 12599 /* DWARF 3. */
d9fa45fe
DC
12600 case DW_ATE_imaginary_float:
12601 return "DW_ATE_imaginary_float";
b7619582
GF
12602 case DW_ATE_packed_decimal:
12603 return "DW_ATE_packed_decimal";
12604 case DW_ATE_numeric_string:
12605 return "DW_ATE_numeric_string";
12606 case DW_ATE_edited:
12607 return "DW_ATE_edited";
12608 case DW_ATE_signed_fixed:
12609 return "DW_ATE_signed_fixed";
12610 case DW_ATE_unsigned_fixed:
12611 return "DW_ATE_unsigned_fixed";
12612 case DW_ATE_decimal_float:
12613 return "DW_ATE_decimal_float";
75079b2b
TT
12614 /* DWARF 4. */
12615 case DW_ATE_UTF:
12616 return "DW_ATE_UTF";
b7619582
GF
12617 /* HP extensions. */
12618 case DW_ATE_HP_float80:
12619 return "DW_ATE_HP_float80";
12620 case DW_ATE_HP_complex_float80:
12621 return "DW_ATE_HP_complex_float80";
12622 case DW_ATE_HP_float128:
12623 return "DW_ATE_HP_float128";
12624 case DW_ATE_HP_complex_float128:
12625 return "DW_ATE_HP_complex_float128";
12626 case DW_ATE_HP_floathpintel:
12627 return "DW_ATE_HP_floathpintel";
12628 case DW_ATE_HP_imaginary_float80:
12629 return "DW_ATE_HP_imaginary_float80";
12630 case DW_ATE_HP_imaginary_float128:
12631 return "DW_ATE_HP_imaginary_float128";
c906108c
SS
12632 default:
12633 return "DW_ATE_<unknown>";
12634 }
12635}
12636
12637/* Convert a DWARF call frame info operation to its string name. */
12638
12639#if 0
12640static char *
aa1ee363 12641dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
12642{
12643 switch (cfi_opc)
12644 {
12645 case DW_CFA_advance_loc:
12646 return "DW_CFA_advance_loc";
12647 case DW_CFA_offset:
12648 return "DW_CFA_offset";
12649 case DW_CFA_restore:
12650 return "DW_CFA_restore";
12651 case DW_CFA_nop:
12652 return "DW_CFA_nop";
12653 case DW_CFA_set_loc:
12654 return "DW_CFA_set_loc";
12655 case DW_CFA_advance_loc1:
12656 return "DW_CFA_advance_loc1";
12657 case DW_CFA_advance_loc2:
12658 return "DW_CFA_advance_loc2";
12659 case DW_CFA_advance_loc4:
12660 return "DW_CFA_advance_loc4";
12661 case DW_CFA_offset_extended:
12662 return "DW_CFA_offset_extended";
12663 case DW_CFA_restore_extended:
12664 return "DW_CFA_restore_extended";
12665 case DW_CFA_undefined:
12666 return "DW_CFA_undefined";
12667 case DW_CFA_same_value:
12668 return "DW_CFA_same_value";
12669 case DW_CFA_register:
12670 return "DW_CFA_register";
12671 case DW_CFA_remember_state:
12672 return "DW_CFA_remember_state";
12673 case DW_CFA_restore_state:
12674 return "DW_CFA_restore_state";
12675 case DW_CFA_def_cfa:
12676 return "DW_CFA_def_cfa";
12677 case DW_CFA_def_cfa_register:
12678 return "DW_CFA_def_cfa_register";
12679 case DW_CFA_def_cfa_offset:
12680 return "DW_CFA_def_cfa_offset";
b7619582 12681 /* DWARF 3. */
985cb1a3
JM
12682 case DW_CFA_def_cfa_expression:
12683 return "DW_CFA_def_cfa_expression";
12684 case DW_CFA_expression:
12685 return "DW_CFA_expression";
12686 case DW_CFA_offset_extended_sf:
12687 return "DW_CFA_offset_extended_sf";
12688 case DW_CFA_def_cfa_sf:
12689 return "DW_CFA_def_cfa_sf";
12690 case DW_CFA_def_cfa_offset_sf:
12691 return "DW_CFA_def_cfa_offset_sf";
b7619582
GF
12692 case DW_CFA_val_offset:
12693 return "DW_CFA_val_offset";
12694 case DW_CFA_val_offset_sf:
12695 return "DW_CFA_val_offset_sf";
12696 case DW_CFA_val_expression:
12697 return "DW_CFA_val_expression";
12698 /* SGI/MIPS specific. */
c906108c
SS
12699 case DW_CFA_MIPS_advance_loc8:
12700 return "DW_CFA_MIPS_advance_loc8";
b7619582 12701 /* GNU extensions. */
985cb1a3
JM
12702 case DW_CFA_GNU_window_save:
12703 return "DW_CFA_GNU_window_save";
12704 case DW_CFA_GNU_args_size:
12705 return "DW_CFA_GNU_args_size";
12706 case DW_CFA_GNU_negative_offset_extended:
12707 return "DW_CFA_GNU_negative_offset_extended";
c906108c
SS
12708 default:
12709 return "DW_CFA_<unknown>";
12710 }
12711}
12712#endif
12713
f9aca02d 12714static void
d97bc12b 12715dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
12716{
12717 unsigned int i;
12718
d97bc12b
DE
12719 print_spaces (indent, f);
12720 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
c906108c 12721 dwarf_tag_name (die->tag), die->abbrev, die->offset);
d97bc12b
DE
12722
12723 if (die->parent != NULL)
12724 {
12725 print_spaces (indent, f);
12726 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
12727 die->parent->offset);
12728 }
12729
12730 print_spaces (indent, f);
12731 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 12732 dwarf_bool_name (die->child != NULL));
c906108c 12733
d97bc12b
DE
12734 print_spaces (indent, f);
12735 fprintf_unfiltered (f, " attributes:\n");
12736
c906108c
SS
12737 for (i = 0; i < die->num_attrs; ++i)
12738 {
d97bc12b
DE
12739 print_spaces (indent, f);
12740 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
12741 dwarf_attr_name (die->attrs[i].name),
12742 dwarf_form_name (die->attrs[i].form));
d97bc12b 12743
c906108c
SS
12744 switch (die->attrs[i].form)
12745 {
12746 case DW_FORM_ref_addr:
12747 case DW_FORM_addr:
d97bc12b 12748 fprintf_unfiltered (f, "address: ");
5af949e3 12749 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
12750 break;
12751 case DW_FORM_block2:
12752 case DW_FORM_block4:
12753 case DW_FORM_block:
12754 case DW_FORM_block1:
d97bc12b 12755 fprintf_unfiltered (f, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
c906108c 12756 break;
2dc7f7b3
TT
12757 case DW_FORM_exprloc:
12758 fprintf_unfiltered (f, "expression: size %u",
12759 DW_BLOCK (&die->attrs[i])->size);
12760 break;
10b3939b
DJ
12761 case DW_FORM_ref1:
12762 case DW_FORM_ref2:
12763 case DW_FORM_ref4:
d97bc12b 12764 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
10b3939b
DJ
12765 (long) (DW_ADDR (&die->attrs[i])));
12766 break;
c906108c
SS
12767 case DW_FORM_data1:
12768 case DW_FORM_data2:
12769 case DW_FORM_data4:
ce5d95e1 12770 case DW_FORM_data8:
c906108c
SS
12771 case DW_FORM_udata:
12772 case DW_FORM_sdata:
43bbcdc2
PH
12773 fprintf_unfiltered (f, "constant: %s",
12774 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 12775 break;
2dc7f7b3
TT
12776 case DW_FORM_sec_offset:
12777 fprintf_unfiltered (f, "section offset: %s",
12778 pulongest (DW_UNSND (&die->attrs[i])));
12779 break;
348e048f
DE
12780 case DW_FORM_sig8:
12781 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
12782 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
12783 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
12784 else
12785 fprintf_unfiltered (f, "signatured type, offset: unknown");
12786 break;
c906108c 12787 case DW_FORM_string:
4bdf3d34 12788 case DW_FORM_strp:
8285870a 12789 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 12790 DW_STRING (&die->attrs[i])
8285870a
JK
12791 ? DW_STRING (&die->attrs[i]) : "",
12792 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
12793 break;
12794 case DW_FORM_flag:
12795 if (DW_UNSND (&die->attrs[i]))
d97bc12b 12796 fprintf_unfiltered (f, "flag: TRUE");
c906108c 12797 else
d97bc12b 12798 fprintf_unfiltered (f, "flag: FALSE");
c906108c 12799 break;
2dc7f7b3
TT
12800 case DW_FORM_flag_present:
12801 fprintf_unfiltered (f, "flag: TRUE");
12802 break;
a8329558
KW
12803 case DW_FORM_indirect:
12804 /* the reader will have reduced the indirect form to
12805 the "base form" so this form should not occur */
d97bc12b 12806 fprintf_unfiltered (f, "unexpected attribute form: DW_FORM_indirect");
a8329558 12807 break;
c906108c 12808 default:
d97bc12b 12809 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 12810 die->attrs[i].form);
d97bc12b 12811 break;
c906108c 12812 }
d97bc12b 12813 fprintf_unfiltered (f, "\n");
c906108c
SS
12814 }
12815}
12816
f9aca02d 12817static void
d97bc12b 12818dump_die_for_error (struct die_info *die)
c906108c 12819{
d97bc12b
DE
12820 dump_die_shallow (gdb_stderr, 0, die);
12821}
12822
12823static void
12824dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
12825{
12826 int indent = level * 4;
12827
12828 gdb_assert (die != NULL);
12829
12830 if (level >= max_level)
12831 return;
12832
12833 dump_die_shallow (f, indent, die);
12834
12835 if (die->child != NULL)
c906108c 12836 {
d97bc12b
DE
12837 print_spaces (indent, f);
12838 fprintf_unfiltered (f, " Children:");
12839 if (level + 1 < max_level)
12840 {
12841 fprintf_unfiltered (f, "\n");
12842 dump_die_1 (f, level + 1, max_level, die->child);
12843 }
12844 else
12845 {
12846 fprintf_unfiltered (f, " [not printed, max nesting level reached]\n");
12847 }
12848 }
12849
12850 if (die->sibling != NULL && level > 0)
12851 {
12852 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
12853 }
12854}
12855
d97bc12b
DE
12856/* This is called from the pdie macro in gdbinit.in.
12857 It's not static so gcc will keep a copy callable from gdb. */
12858
12859void
12860dump_die (struct die_info *die, int max_level)
12861{
12862 dump_die_1 (gdb_stdlog, 0, max_level, die);
12863}
12864
f9aca02d 12865static void
51545339 12866store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12867{
51545339 12868 void **slot;
c906108c 12869
51545339
DJ
12870 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
12871
12872 *slot = die;
c906108c
SS
12873}
12874
93311388
DE
12875static int
12876is_ref_attr (struct attribute *attr)
c906108c 12877{
c906108c
SS
12878 switch (attr->form)
12879 {
12880 case DW_FORM_ref_addr:
c906108c
SS
12881 case DW_FORM_ref1:
12882 case DW_FORM_ref2:
12883 case DW_FORM_ref4:
613e1657 12884 case DW_FORM_ref8:
c906108c 12885 case DW_FORM_ref_udata:
93311388 12886 return 1;
c906108c 12887 default:
93311388 12888 return 0;
c906108c 12889 }
93311388
DE
12890}
12891
12892static unsigned int
12893dwarf2_get_ref_die_offset (struct attribute *attr)
12894{
12895 if (is_ref_attr (attr))
12896 return DW_ADDR (attr);
12897
12898 complaint (&symfile_complaints,
12899 _("unsupported die ref attribute form: '%s'"),
12900 dwarf_form_name (attr->form));
12901 return 0;
c906108c
SS
12902}
12903
43bbcdc2
PH
12904/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
12905 * the value held by the attribute is not constant. */
a02abb62 12906
43bbcdc2 12907static LONGEST
a02abb62
JB
12908dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
12909{
12910 if (attr->form == DW_FORM_sdata)
12911 return DW_SND (attr);
12912 else if (attr->form == DW_FORM_udata
12913 || attr->form == DW_FORM_data1
12914 || attr->form == DW_FORM_data2
12915 || attr->form == DW_FORM_data4
12916 || attr->form == DW_FORM_data8)
12917 return DW_UNSND (attr);
12918 else
12919 {
e2e0b3e5 12920 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
a02abb62
JB
12921 dwarf_form_name (attr->form));
12922 return default_value;
12923 }
12924}
12925
03dd20cc 12926/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
348e048f
DE
12927 unit and add it to our queue.
12928 The result is non-zero if PER_CU was queued, otherwise the result is zero
12929 meaning either PER_CU is already queued or it is already loaded. */
03dd20cc 12930
348e048f 12931static int
03dd20cc
DJ
12932maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
12933 struct dwarf2_per_cu_data *per_cu)
12934{
98bfdba5
PA
12935 /* We may arrive here during partial symbol reading, if we need full
12936 DIEs to process an unusual case (e.g. template arguments). Do
12937 not queue PER_CU, just tell our caller to load its DIEs. */
12938 if (dwarf2_per_objfile->reading_partial_symbols)
12939 {
12940 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
12941 return 1;
12942 return 0;
12943 }
12944
03dd20cc
DJ
12945 /* Mark the dependence relation so that we don't flush PER_CU
12946 too early. */
12947 dwarf2_add_dependence (this_cu, per_cu);
12948
12949 /* If it's already on the queue, we have nothing to do. */
12950 if (per_cu->queued)
348e048f 12951 return 0;
03dd20cc
DJ
12952
12953 /* If the compilation unit is already loaded, just mark it as
12954 used. */
12955 if (per_cu->cu != NULL)
12956 {
12957 per_cu->cu->last_used = 0;
348e048f 12958 return 0;
03dd20cc
DJ
12959 }
12960
12961 /* Add it to the queue. */
12962 queue_comp_unit (per_cu, this_cu->objfile);
348e048f
DE
12963
12964 return 1;
12965}
12966
12967/* Follow reference or signature attribute ATTR of SRC_DIE.
12968 On entry *REF_CU is the CU of SRC_DIE.
12969 On exit *REF_CU is the CU of the result. */
12970
12971static struct die_info *
12972follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
12973 struct dwarf2_cu **ref_cu)
12974{
12975 struct die_info *die;
12976
12977 if (is_ref_attr (attr))
12978 die = follow_die_ref (src_die, attr, ref_cu);
12979 else if (attr->form == DW_FORM_sig8)
12980 die = follow_die_sig (src_die, attr, ref_cu);
12981 else
12982 {
12983 dump_die_for_error (src_die);
12984 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
12985 (*ref_cu)->objfile->name);
12986 }
12987
12988 return die;
03dd20cc
DJ
12989}
12990
5c631832 12991/* Follow reference OFFSET.
673bfd45
DE
12992 On entry *REF_CU is the CU of the source die referencing OFFSET.
12993 On exit *REF_CU is the CU of the result.
12994 Returns NULL if OFFSET is invalid. */
f504f079 12995
f9aca02d 12996static struct die_info *
5c631832 12997follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
c906108c 12998{
10b3939b 12999 struct die_info temp_die;
f2f0e013 13000 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 13001
348e048f
DE
13002 gdb_assert (cu->per_cu != NULL);
13003
98bfdba5
PA
13004 target_cu = cu;
13005
348e048f
DE
13006 if (cu->per_cu->from_debug_types)
13007 {
13008 /* .debug_types CUs cannot reference anything outside their CU.
13009 If they need to, they have to reference a signatured type via
13010 DW_FORM_sig8. */
13011 if (! offset_in_cu_p (&cu->header, offset))
5c631832 13012 return NULL;
348e048f
DE
13013 }
13014 else if (! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
13015 {
13016 struct dwarf2_per_cu_data *per_cu;
9a619af0 13017
45452591 13018 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
03dd20cc
DJ
13019
13020 /* If necessary, add it to the queue and load its DIEs. */
348e048f
DE
13021 if (maybe_queue_comp_unit (cu, per_cu))
13022 load_full_comp_unit (per_cu, cu->objfile);
03dd20cc 13023
10b3939b
DJ
13024 target_cu = per_cu->cu;
13025 }
98bfdba5
PA
13026 else if (cu->dies == NULL)
13027 {
13028 /* We're loading full DIEs during partial symbol reading. */
13029 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
13030 load_full_comp_unit (cu->per_cu, cu->objfile);
13031 }
c906108c 13032
f2f0e013 13033 *ref_cu = target_cu;
51545339 13034 temp_die.offset = offset;
5c631832
JK
13035 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
13036}
10b3939b 13037
5c631832
JK
13038/* Follow reference attribute ATTR of SRC_DIE.
13039 On entry *REF_CU is the CU of SRC_DIE.
13040 On exit *REF_CU is the CU of the result. */
13041
13042static struct die_info *
13043follow_die_ref (struct die_info *src_die, struct attribute *attr,
13044 struct dwarf2_cu **ref_cu)
13045{
13046 unsigned int offset = dwarf2_get_ref_die_offset (attr);
13047 struct dwarf2_cu *cu = *ref_cu;
13048 struct die_info *die;
13049
13050 die = follow_die_offset (offset, ref_cu);
13051 if (!die)
13052 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
13053 "at 0x%x [in module %s]"),
13054 offset, src_die->offset, cu->objfile->name);
348e048f 13055
5c631832
JK
13056 return die;
13057}
13058
13059/* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
13060 value is intended for DW_OP_call*. */
13061
13062struct dwarf2_locexpr_baton
13063dwarf2_fetch_die_location_block (unsigned int offset,
13064 struct dwarf2_per_cu_data *per_cu)
13065{
13066 struct dwarf2_cu *cu = per_cu->cu;
13067 struct die_info *die;
13068 struct attribute *attr;
13069 struct dwarf2_locexpr_baton retval;
13070
13071 die = follow_die_offset (offset, &cu);
13072 if (!die)
13073 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
13074 offset, per_cu->cu->objfile->name);
13075
13076 attr = dwarf2_attr (die, DW_AT_location, cu);
13077 if (!attr)
13078 {
13079 /* DWARF: "If there is no such attribute, then there is no effect.". */
13080
13081 retval.data = NULL;
13082 retval.size = 0;
13083 }
13084 else
13085 {
13086 if (!attr_form_is_block (attr))
13087 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
13088 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
13089 offset, per_cu->cu->objfile->name);
13090
13091 retval.data = DW_BLOCK (attr)->data;
13092 retval.size = DW_BLOCK (attr)->size;
13093 }
13094 retval.per_cu = cu->per_cu;
13095 return retval;
348e048f
DE
13096}
13097
13098/* Follow the signature attribute ATTR in SRC_DIE.
13099 On entry *REF_CU is the CU of SRC_DIE.
13100 On exit *REF_CU is the CU of the result. */
13101
13102static struct die_info *
13103follow_die_sig (struct die_info *src_die, struct attribute *attr,
13104 struct dwarf2_cu **ref_cu)
13105{
13106 struct objfile *objfile = (*ref_cu)->objfile;
13107 struct die_info temp_die;
13108 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
13109 struct dwarf2_cu *sig_cu;
13110 struct die_info *die;
13111
13112 /* sig_type will be NULL if the signatured type is missing from
13113 the debug info. */
13114 if (sig_type == NULL)
13115 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
13116 "at 0x%x [in module %s]"),
13117 src_die->offset, objfile->name);
13118
13119 /* If necessary, add it to the queue and load its DIEs. */
13120
13121 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
13122 read_signatured_type (objfile, sig_type);
13123
13124 gdb_assert (sig_type->per_cu.cu != NULL);
13125
13126 sig_cu = sig_type->per_cu.cu;
13127 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
13128 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
13129 if (die)
13130 {
13131 *ref_cu = sig_cu;
13132 return die;
13133 }
13134
13135 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced from DIE "
13136 "at 0x%x [in module %s]"),
13137 sig_type->type_offset, src_die->offset, objfile->name);
13138}
13139
13140/* Given an offset of a signatured type, return its signatured_type. */
13141
13142static struct signatured_type *
13143lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
13144{
13145 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
13146 unsigned int length, initial_length_size;
13147 unsigned int sig_offset;
13148 struct signatured_type find_entry, *type_sig;
13149
13150 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
13151 sig_offset = (initial_length_size
13152 + 2 /*version*/
13153 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
13154 + 1 /*address_size*/);
13155 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
13156 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
13157
13158 /* This is only used to lookup previously recorded types.
13159 If we didn't find it, it's our bug. */
13160 gdb_assert (type_sig != NULL);
13161 gdb_assert (offset == type_sig->offset);
13162
13163 return type_sig;
13164}
13165
13166/* Read in signatured type at OFFSET and build its CU and die(s). */
13167
13168static void
13169read_signatured_type_at_offset (struct objfile *objfile,
13170 unsigned int offset)
13171{
13172 struct signatured_type *type_sig;
13173
be391dca
TT
13174 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13175
348e048f
DE
13176 /* We have the section offset, but we need the signature to do the
13177 hash table lookup. */
13178 type_sig = lookup_signatured_type_at_offset (objfile, offset);
13179
13180 gdb_assert (type_sig->per_cu.cu == NULL);
13181
13182 read_signatured_type (objfile, type_sig);
13183
13184 gdb_assert (type_sig->per_cu.cu != NULL);
13185}
13186
13187/* Read in a signatured type and build its CU and DIEs. */
13188
13189static void
13190read_signatured_type (struct objfile *objfile,
13191 struct signatured_type *type_sig)
13192{
1fd400ff 13193 gdb_byte *types_ptr;
348e048f
DE
13194 struct die_reader_specs reader_specs;
13195 struct dwarf2_cu *cu;
13196 ULONGEST signature;
13197 struct cleanup *back_to, *free_cu_cleanup;
13198 struct attribute *attr;
13199
1fd400ff
TT
13200 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13201 types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
13202
348e048f
DE
13203 gdb_assert (type_sig->per_cu.cu == NULL);
13204
13205 cu = xmalloc (sizeof (struct dwarf2_cu));
13206 memset (cu, 0, sizeof (struct dwarf2_cu));
13207 obstack_init (&cu->comp_unit_obstack);
13208 cu->objfile = objfile;
13209 type_sig->per_cu.cu = cu;
13210 cu->per_cu = &type_sig->per_cu;
13211
13212 /* If an error occurs while loading, release our storage. */
13213 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
13214
13215 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
13216 types_ptr, objfile->obfd);
13217 gdb_assert (signature == type_sig->signature);
13218
13219 cu->die_hash
13220 = htab_create_alloc_ex (cu->header.length / 12,
13221 die_hash,
13222 die_eq,
13223 NULL,
13224 &cu->comp_unit_obstack,
13225 hashtab_obstack_allocate,
13226 dummy_obstack_deallocate);
13227
13228 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
13229 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
13230
13231 init_cu_die_reader (&reader_specs, cu);
13232
13233 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
13234 NULL /*parent*/);
13235
13236 /* We try not to read any attributes in this function, because not
13237 all objfiles needed for references have been loaded yet, and symbol
13238 table processing isn't initialized. But we have to set the CU language,
13239 or we won't be able to build types correctly. */
13240 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
13241 if (attr)
13242 set_cu_language (DW_UNSND (attr), cu);
13243 else
13244 set_cu_language (language_minimal, cu);
13245
13246 do_cleanups (back_to);
13247
13248 /* We've successfully allocated this compilation unit. Let our caller
13249 clean it up when finished with it. */
13250 discard_cleanups (free_cu_cleanup);
13251
13252 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
13253 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
c906108c
SS
13254}
13255
c906108c
SS
13256/* Decode simple location descriptions.
13257 Given a pointer to a dwarf block that defines a location, compute
13258 the location and return the value.
13259
4cecd739
DJ
13260 NOTE drow/2003-11-18: This function is called in two situations
13261 now: for the address of static or global variables (partial symbols
13262 only) and for offsets into structures which are expected to be
13263 (more or less) constant. The partial symbol case should go away,
13264 and only the constant case should remain. That will let this
13265 function complain more accurately. A few special modes are allowed
13266 without complaint for global variables (for instance, global
13267 register values and thread-local values).
c906108c
SS
13268
13269 A location description containing no operations indicates that the
4cecd739 13270 object is optimized out. The return value is 0 for that case.
6b992462
DJ
13271 FIXME drow/2003-11-16: No callers check for this case any more; soon all
13272 callers will only want a very basic result and this can become a
13273 complaint.
c906108c 13274
c906108c
SS
13275 Note that stack[0] is unused except as a default error return.
13276 Note that stack overflow is not yet handled. */
13277
13278static CORE_ADDR
e7c27a73 13279decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 13280{
e7c27a73 13281 struct objfile *objfile = cu->objfile;
c906108c
SS
13282 int i;
13283 int size = blk->size;
fe1b8b76 13284 gdb_byte *data = blk->data;
c906108c
SS
13285 CORE_ADDR stack[64];
13286 int stacki;
13287 unsigned int bytes_read, unsnd;
fe1b8b76 13288 gdb_byte op;
c906108c
SS
13289
13290 i = 0;
13291 stacki = 0;
13292 stack[stacki] = 0;
c906108c
SS
13293
13294 while (i < size)
13295 {
c906108c
SS
13296 op = data[i++];
13297 switch (op)
13298 {
f1bea926
JM
13299 case DW_OP_lit0:
13300 case DW_OP_lit1:
13301 case DW_OP_lit2:
13302 case DW_OP_lit3:
13303 case DW_OP_lit4:
13304 case DW_OP_lit5:
13305 case DW_OP_lit6:
13306 case DW_OP_lit7:
13307 case DW_OP_lit8:
13308 case DW_OP_lit9:
13309 case DW_OP_lit10:
13310 case DW_OP_lit11:
13311 case DW_OP_lit12:
13312 case DW_OP_lit13:
13313 case DW_OP_lit14:
13314 case DW_OP_lit15:
13315 case DW_OP_lit16:
13316 case DW_OP_lit17:
13317 case DW_OP_lit18:
13318 case DW_OP_lit19:
13319 case DW_OP_lit20:
13320 case DW_OP_lit21:
13321 case DW_OP_lit22:
13322 case DW_OP_lit23:
13323 case DW_OP_lit24:
13324 case DW_OP_lit25:
13325 case DW_OP_lit26:
13326 case DW_OP_lit27:
13327 case DW_OP_lit28:
13328 case DW_OP_lit29:
13329 case DW_OP_lit30:
13330 case DW_OP_lit31:
13331 stack[++stacki] = op - DW_OP_lit0;
13332 break;
13333
c906108c
SS
13334 case DW_OP_reg0:
13335 case DW_OP_reg1:
13336 case DW_OP_reg2:
13337 case DW_OP_reg3:
13338 case DW_OP_reg4:
13339 case DW_OP_reg5:
13340 case DW_OP_reg6:
13341 case DW_OP_reg7:
13342 case DW_OP_reg8:
13343 case DW_OP_reg9:
13344 case DW_OP_reg10:
13345 case DW_OP_reg11:
13346 case DW_OP_reg12:
13347 case DW_OP_reg13:
13348 case DW_OP_reg14:
13349 case DW_OP_reg15:
13350 case DW_OP_reg16:
13351 case DW_OP_reg17:
13352 case DW_OP_reg18:
13353 case DW_OP_reg19:
13354 case DW_OP_reg20:
13355 case DW_OP_reg21:
13356 case DW_OP_reg22:
13357 case DW_OP_reg23:
13358 case DW_OP_reg24:
13359 case DW_OP_reg25:
13360 case DW_OP_reg26:
13361 case DW_OP_reg27:
13362 case DW_OP_reg28:
13363 case DW_OP_reg29:
13364 case DW_OP_reg30:
13365 case DW_OP_reg31:
c906108c 13366 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
13367 if (i < size)
13368 dwarf2_complex_location_expr_complaint ();
c906108c
SS
13369 break;
13370
13371 case DW_OP_regx:
c906108c
SS
13372 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13373 i += bytes_read;
c906108c 13374 stack[++stacki] = unsnd;
4cecd739
DJ
13375 if (i < size)
13376 dwarf2_complex_location_expr_complaint ();
c906108c
SS
13377 break;
13378
13379 case DW_OP_addr:
107d2387 13380 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 13381 cu, &bytes_read);
107d2387 13382 i += bytes_read;
c906108c
SS
13383 break;
13384
13385 case DW_OP_const1u:
13386 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
13387 i += 1;
13388 break;
13389
13390 case DW_OP_const1s:
13391 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
13392 i += 1;
13393 break;
13394
13395 case DW_OP_const2u:
13396 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
13397 i += 2;
13398 break;
13399
13400 case DW_OP_const2s:
13401 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
13402 i += 2;
13403 break;
13404
13405 case DW_OP_const4u:
13406 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
13407 i += 4;
13408 break;
13409
13410 case DW_OP_const4s:
13411 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
13412 i += 4;
13413 break;
13414
13415 case DW_OP_constu:
13416 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 13417 &bytes_read);
c906108c
SS
13418 i += bytes_read;
13419 break;
13420
13421 case DW_OP_consts:
13422 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
13423 i += bytes_read;
13424 break;
13425
f1bea926
JM
13426 case DW_OP_dup:
13427 stack[stacki + 1] = stack[stacki];
13428 stacki++;
13429 break;
13430
c906108c
SS
13431 case DW_OP_plus:
13432 stack[stacki - 1] += stack[stacki];
13433 stacki--;
13434 break;
13435
13436 case DW_OP_plus_uconst:
13437 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13438 i += bytes_read;
13439 break;
13440
13441 case DW_OP_minus:
f1bea926 13442 stack[stacki - 1] -= stack[stacki];
c906108c
SS
13443 stacki--;
13444 break;
13445
7a292a7a 13446 case DW_OP_deref:
7a292a7a 13447 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
13448 this using GDB's address_class enum. This is valid for partial
13449 global symbols, although the variable's address will be bogus
13450 in the psymtab. */
7a292a7a 13451 if (i < size)
4d3c2250 13452 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
13453 break;
13454
9d774e44 13455 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
13456 /* The top of the stack has the offset from the beginning
13457 of the thread control block at which the variable is located. */
13458 /* Nothing should follow this operator, so the top of stack would
13459 be returned. */
4cecd739
DJ
13460 /* This is valid for partial global symbols, but the variable's
13461 address will be bogus in the psymtab. */
9d774e44 13462 if (i < size)
4d3c2250 13463 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
13464 break;
13465
42be36b3
CT
13466 case DW_OP_GNU_uninit:
13467 break;
13468
c906108c 13469 default:
e2e0b3e5 13470 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
9eae7c52 13471 dwarf_stack_op_name (op, 1));
c906108c
SS
13472 return (stack[stacki]);
13473 }
13474 }
13475 return (stack[stacki]);
13476}
13477
13478/* memory allocation interface */
13479
c906108c 13480static struct dwarf_block *
7b5a2f43 13481dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
13482{
13483 struct dwarf_block *blk;
13484
13485 blk = (struct dwarf_block *)
7b5a2f43 13486 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
13487 return (blk);
13488}
13489
13490static struct abbrev_info *
f3dd6933 13491dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
13492{
13493 struct abbrev_info *abbrev;
13494
f3dd6933
DJ
13495 abbrev = (struct abbrev_info *)
13496 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
13497 memset (abbrev, 0, sizeof (struct abbrev_info));
13498 return (abbrev);
13499}
13500
13501static struct die_info *
b60c80d6 13502dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
13503{
13504 struct die_info *die;
b60c80d6
DJ
13505 size_t size = sizeof (struct die_info);
13506
13507 if (num_attrs > 1)
13508 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 13509
b60c80d6 13510 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
13511 memset (die, 0, sizeof (struct die_info));
13512 return (die);
13513}
2e276125
JB
13514
13515\f
13516/* Macro support. */
13517
13518
13519/* Return the full name of file number I in *LH's file name table.
13520 Use COMP_DIR as the name of the current directory of the
13521 compilation. The result is allocated using xmalloc; the caller is
13522 responsible for freeing it. */
13523static char *
13524file_full_name (int file, struct line_header *lh, const char *comp_dir)
13525{
6a83a1e6
EZ
13526 /* Is the file number a valid index into the line header's file name
13527 table? Remember that file numbers start with one, not zero. */
13528 if (1 <= file && file <= lh->num_file_names)
13529 {
13530 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 13531
6a83a1e6
EZ
13532 if (IS_ABSOLUTE_PATH (fe->name))
13533 return xstrdup (fe->name);
13534 else
13535 {
13536 const char *dir;
13537 int dir_len;
13538 char *full_name;
13539
13540 if (fe->dir_index)
13541 dir = lh->include_dirs[fe->dir_index - 1];
13542 else
13543 dir = comp_dir;
13544
13545 if (dir)
13546 {
13547 dir_len = strlen (dir);
13548 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
13549 strcpy (full_name, dir);
13550 full_name[dir_len] = '/';
13551 strcpy (full_name + dir_len + 1, fe->name);
13552 return full_name;
13553 }
13554 else
13555 return xstrdup (fe->name);
13556 }
13557 }
2e276125
JB
13558 else
13559 {
6a83a1e6
EZ
13560 /* The compiler produced a bogus file number. We can at least
13561 record the macro definitions made in the file, even if we
13562 won't be able to find the file by name. */
13563 char fake_name[80];
9a619af0 13564
6a83a1e6 13565 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 13566
6e70227d 13567 complaint (&symfile_complaints,
6a83a1e6
EZ
13568 _("bad file number in macro information (%d)"),
13569 file);
2e276125 13570
6a83a1e6 13571 return xstrdup (fake_name);
2e276125
JB
13572 }
13573}
13574
13575
13576static struct macro_source_file *
13577macro_start_file (int file, int line,
13578 struct macro_source_file *current_file,
13579 const char *comp_dir,
13580 struct line_header *lh, struct objfile *objfile)
13581{
13582 /* The full name of this source file. */
13583 char *full_name = file_full_name (file, lh, comp_dir);
13584
13585 /* We don't create a macro table for this compilation unit
13586 at all until we actually get a filename. */
13587 if (! pending_macros)
4a146b47 13588 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 13589 objfile->macro_cache);
2e276125
JB
13590
13591 if (! current_file)
13592 /* If we have no current file, then this must be the start_file
13593 directive for the compilation unit's main source file. */
13594 current_file = macro_set_main (pending_macros, full_name);
13595 else
13596 current_file = macro_include (current_file, line, full_name);
13597
13598 xfree (full_name);
6e70227d 13599
2e276125
JB
13600 return current_file;
13601}
13602
13603
13604/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
13605 followed by a null byte. */
13606static char *
13607copy_string (const char *buf, int len)
13608{
13609 char *s = xmalloc (len + 1);
9a619af0 13610
2e276125
JB
13611 memcpy (s, buf, len);
13612 s[len] = '\0';
2e276125
JB
13613 return s;
13614}
13615
13616
13617static const char *
13618consume_improper_spaces (const char *p, const char *body)
13619{
13620 if (*p == ' ')
13621 {
4d3c2250 13622 complaint (&symfile_complaints,
e2e0b3e5 13623 _("macro definition contains spaces in formal argument list:\n`%s'"),
4d3c2250 13624 body);
2e276125
JB
13625
13626 while (*p == ' ')
13627 p++;
13628 }
13629
13630 return p;
13631}
13632
13633
13634static void
13635parse_macro_definition (struct macro_source_file *file, int line,
13636 const char *body)
13637{
13638 const char *p;
13639
13640 /* The body string takes one of two forms. For object-like macro
13641 definitions, it should be:
13642
13643 <macro name> " " <definition>
13644
13645 For function-like macro definitions, it should be:
13646
13647 <macro name> "() " <definition>
13648 or
13649 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
13650
13651 Spaces may appear only where explicitly indicated, and in the
13652 <definition>.
13653
13654 The Dwarf 2 spec says that an object-like macro's name is always
13655 followed by a space, but versions of GCC around March 2002 omit
6e70227d 13656 the space when the macro's definition is the empty string.
2e276125
JB
13657
13658 The Dwarf 2 spec says that there should be no spaces between the
13659 formal arguments in a function-like macro's formal argument list,
13660 but versions of GCC around March 2002 include spaces after the
13661 commas. */
13662
13663
13664 /* Find the extent of the macro name. The macro name is terminated
13665 by either a space or null character (for an object-like macro) or
13666 an opening paren (for a function-like macro). */
13667 for (p = body; *p; p++)
13668 if (*p == ' ' || *p == '(')
13669 break;
13670
13671 if (*p == ' ' || *p == '\0')
13672 {
13673 /* It's an object-like macro. */
13674 int name_len = p - body;
13675 char *name = copy_string (body, name_len);
13676 const char *replacement;
13677
13678 if (*p == ' ')
13679 replacement = body + name_len + 1;
13680 else
13681 {
4d3c2250 13682 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
13683 replacement = body + name_len;
13684 }
6e70227d 13685
2e276125
JB
13686 macro_define_object (file, line, name, replacement);
13687
13688 xfree (name);
13689 }
13690 else if (*p == '(')
13691 {
13692 /* It's a function-like macro. */
13693 char *name = copy_string (body, p - body);
13694 int argc = 0;
13695 int argv_size = 1;
13696 char **argv = xmalloc (argv_size * sizeof (*argv));
13697
13698 p++;
13699
13700 p = consume_improper_spaces (p, body);
13701
13702 /* Parse the formal argument list. */
13703 while (*p && *p != ')')
13704 {
13705 /* Find the extent of the current argument name. */
13706 const char *arg_start = p;
13707
13708 while (*p && *p != ',' && *p != ')' && *p != ' ')
13709 p++;
13710
13711 if (! *p || p == arg_start)
4d3c2250 13712 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
13713 else
13714 {
13715 /* Make sure argv has room for the new argument. */
13716 if (argc >= argv_size)
13717 {
13718 argv_size *= 2;
13719 argv = xrealloc (argv, argv_size * sizeof (*argv));
13720 }
13721
13722 argv[argc++] = copy_string (arg_start, p - arg_start);
13723 }
13724
13725 p = consume_improper_spaces (p, body);
13726
13727 /* Consume the comma, if present. */
13728 if (*p == ',')
13729 {
13730 p++;
13731
13732 p = consume_improper_spaces (p, body);
13733 }
13734 }
13735
13736 if (*p == ')')
13737 {
13738 p++;
13739
13740 if (*p == ' ')
13741 /* Perfectly formed definition, no complaints. */
13742 macro_define_function (file, line, name,
6e70227d 13743 argc, (const char **) argv,
2e276125
JB
13744 p + 1);
13745 else if (*p == '\0')
13746 {
13747 /* Complain, but do define it. */
4d3c2250 13748 dwarf2_macro_malformed_definition_complaint (body);
2e276125 13749 macro_define_function (file, line, name,
6e70227d 13750 argc, (const char **) argv,
2e276125
JB
13751 p);
13752 }
13753 else
13754 /* Just complain. */
4d3c2250 13755 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
13756 }
13757 else
13758 /* Just complain. */
4d3c2250 13759 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
13760
13761 xfree (name);
13762 {
13763 int i;
13764
13765 for (i = 0; i < argc; i++)
13766 xfree (argv[i]);
13767 }
13768 xfree (argv);
13769 }
13770 else
4d3c2250 13771 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
13772}
13773
13774
13775static void
13776dwarf_decode_macros (struct line_header *lh, unsigned int offset,
13777 char *comp_dir, bfd *abfd,
e7c27a73 13778 struct dwarf2_cu *cu)
2e276125 13779{
fe1b8b76 13780 gdb_byte *mac_ptr, *mac_end;
2e276125 13781 struct macro_source_file *current_file = 0;
757a13d0
JK
13782 enum dwarf_macinfo_record_type macinfo_type;
13783 int at_commandline;
2e276125 13784
be391dca
TT
13785 dwarf2_read_section (dwarf2_per_objfile->objfile,
13786 &dwarf2_per_objfile->macinfo);
dce234bc 13787 if (dwarf2_per_objfile->macinfo.buffer == NULL)
2e276125 13788 {
e2e0b3e5 13789 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
13790 return;
13791 }
13792
757a13d0
JK
13793 /* First pass: Find the name of the base filename.
13794 This filename is needed in order to process all macros whose definition
13795 (or undefinition) comes from the command line. These macros are defined
13796 before the first DW_MACINFO_start_file entry, and yet still need to be
13797 associated to the base file.
13798
13799 To determine the base file name, we scan the macro definitions until we
13800 reach the first DW_MACINFO_start_file entry. We then initialize
13801 CURRENT_FILE accordingly so that any macro definition found before the
13802 first DW_MACINFO_start_file can still be associated to the base file. */
13803
dce234bc
PP
13804 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
13805 mac_end = dwarf2_per_objfile->macinfo.buffer
13806 + dwarf2_per_objfile->macinfo.size;
2e276125 13807
757a13d0 13808 do
2e276125 13809 {
2e276125
JB
13810 /* Do we at least have room for a macinfo type byte? */
13811 if (mac_ptr >= mac_end)
13812 {
757a13d0
JK
13813 /* Complaint is printed during the second pass as GDB will probably
13814 stop the first pass earlier upon finding DW_MACINFO_start_file. */
13815 break;
2e276125
JB
13816 }
13817
13818 macinfo_type = read_1_byte (abfd, mac_ptr);
13819 mac_ptr++;
13820
13821 switch (macinfo_type)
13822 {
13823 /* A zero macinfo type indicates the end of the macro
13824 information. */
13825 case 0:
757a13d0
JK
13826 break;
13827
13828 case DW_MACINFO_define:
13829 case DW_MACINFO_undef:
13830 /* Only skip the data by MAC_PTR. */
13831 {
13832 unsigned int bytes_read;
13833
13834 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13835 mac_ptr += bytes_read;
9b1c24c8 13836 read_direct_string (abfd, mac_ptr, &bytes_read);
757a13d0
JK
13837 mac_ptr += bytes_read;
13838 }
13839 break;
13840
13841 case DW_MACINFO_start_file:
13842 {
13843 unsigned int bytes_read;
13844 int line, file;
13845
13846 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13847 mac_ptr += bytes_read;
13848 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13849 mac_ptr += bytes_read;
13850
13851 current_file = macro_start_file (file, line, current_file, comp_dir,
13852 lh, cu->objfile);
13853 }
13854 break;
13855
13856 case DW_MACINFO_end_file:
13857 /* No data to skip by MAC_PTR. */
13858 break;
13859
13860 case DW_MACINFO_vendor_ext:
13861 /* Only skip the data by MAC_PTR. */
13862 {
13863 unsigned int bytes_read;
13864
13865 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13866 mac_ptr += bytes_read;
9b1c24c8 13867 read_direct_string (abfd, mac_ptr, &bytes_read);
757a13d0
JK
13868 mac_ptr += bytes_read;
13869 }
13870 break;
13871
13872 default:
13873 break;
13874 }
13875 } while (macinfo_type != 0 && current_file == NULL);
13876
13877 /* Second pass: Process all entries.
13878
13879 Use the AT_COMMAND_LINE flag to determine whether we are still processing
13880 command-line macro definitions/undefinitions. This flag is unset when we
13881 reach the first DW_MACINFO_start_file entry. */
13882
dce234bc 13883 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
757a13d0
JK
13884
13885 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
13886 GDB is still reading the definitions from command line. First
13887 DW_MACINFO_start_file will need to be ignored as it was already executed
13888 to create CURRENT_FILE for the main source holding also the command line
13889 definitions. On first met DW_MACINFO_start_file this flag is reset to
13890 normally execute all the remaining DW_MACINFO_start_file macinfos. */
13891
13892 at_commandline = 1;
13893
13894 do
13895 {
13896 /* Do we at least have room for a macinfo type byte? */
13897 if (mac_ptr >= mac_end)
13898 {
13899 dwarf2_macros_too_long_complaint ();
13900 break;
13901 }
13902
13903 macinfo_type = read_1_byte (abfd, mac_ptr);
13904 mac_ptr++;
13905
13906 switch (macinfo_type)
13907 {
13908 /* A zero macinfo type indicates the end of the macro
13909 information. */
13910 case 0:
13911 break;
2e276125
JB
13912
13913 case DW_MACINFO_define:
13914 case DW_MACINFO_undef:
13915 {
891d2f0b 13916 unsigned int bytes_read;
2e276125
JB
13917 int line;
13918 char *body;
13919
13920 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13921 mac_ptr += bytes_read;
9b1c24c8 13922 body = read_direct_string (abfd, mac_ptr, &bytes_read);
2e276125
JB
13923 mac_ptr += bytes_read;
13924
13925 if (! current_file)
757a13d0
JK
13926 {
13927 /* DWARF violation as no main source is present. */
13928 complaint (&symfile_complaints,
13929 _("debug info with no main source gives macro %s "
13930 "on line %d: %s"),
6e70227d
DE
13931 macinfo_type == DW_MACINFO_define ?
13932 _("definition") :
905e0470
PM
13933 macinfo_type == DW_MACINFO_undef ?
13934 _("undefinition") :
13935 _("something-or-other"), line, body);
757a13d0
JK
13936 break;
13937 }
13938 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
4d3c2250 13939 complaint (&symfile_complaints,
757a13d0
JK
13940 _("debug info gives %s macro %s with %s line %d: %s"),
13941 at_commandline ? _("command-line") : _("in-file"),
905e0470 13942 macinfo_type == DW_MACINFO_define ?
6e70227d 13943 _("definition") :
905e0470
PM
13944 macinfo_type == DW_MACINFO_undef ?
13945 _("undefinition") :
13946 _("something-or-other"),
757a13d0
JK
13947 line == 0 ? _("zero") : _("non-zero"), line, body);
13948
13949 if (macinfo_type == DW_MACINFO_define)
13950 parse_macro_definition (current_file, line, body);
13951 else if (macinfo_type == DW_MACINFO_undef)
13952 macro_undef (current_file, line, body);
2e276125
JB
13953 }
13954 break;
13955
13956 case DW_MACINFO_start_file:
13957 {
891d2f0b 13958 unsigned int bytes_read;
2e276125
JB
13959 int line, file;
13960
13961 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13962 mac_ptr += bytes_read;
13963 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13964 mac_ptr += bytes_read;
13965
757a13d0
JK
13966 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
13967 complaint (&symfile_complaints,
13968 _("debug info gives source %d included "
13969 "from %s at %s line %d"),
13970 file, at_commandline ? _("command-line") : _("file"),
13971 line == 0 ? _("zero") : _("non-zero"), line);
13972
13973 if (at_commandline)
13974 {
13975 /* This DW_MACINFO_start_file was executed in the pass one. */
13976 at_commandline = 0;
13977 }
13978 else
13979 current_file = macro_start_file (file, line,
13980 current_file, comp_dir,
13981 lh, cu->objfile);
2e276125
JB
13982 }
13983 break;
13984
13985 case DW_MACINFO_end_file:
13986 if (! current_file)
4d3c2250 13987 complaint (&symfile_complaints,
e2e0b3e5 13988 _("macro debug info has an unmatched `close_file' directive"));
2e276125
JB
13989 else
13990 {
13991 current_file = current_file->included_by;
13992 if (! current_file)
13993 {
13994 enum dwarf_macinfo_record_type next_type;
13995
13996 /* GCC circa March 2002 doesn't produce the zero
13997 type byte marking the end of the compilation
13998 unit. Complain if it's not there, but exit no
13999 matter what. */
14000
14001 /* Do we at least have room for a macinfo type byte? */
14002 if (mac_ptr >= mac_end)
14003 {
4d3c2250 14004 dwarf2_macros_too_long_complaint ();
2e276125
JB
14005 return;
14006 }
14007
14008 /* We don't increment mac_ptr here, so this is just
14009 a look-ahead. */
14010 next_type = read_1_byte (abfd, mac_ptr);
14011 if (next_type != 0)
4d3c2250 14012 complaint (&symfile_complaints,
e2e0b3e5 14013 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
2e276125
JB
14014
14015 return;
14016 }
14017 }
14018 break;
14019
14020 case DW_MACINFO_vendor_ext:
14021 {
891d2f0b 14022 unsigned int bytes_read;
2e276125
JB
14023 int constant;
14024 char *string;
14025
14026 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14027 mac_ptr += bytes_read;
9b1c24c8 14028 string = read_direct_string (abfd, mac_ptr, &bytes_read);
2e276125
JB
14029 mac_ptr += bytes_read;
14030
14031 /* We don't recognize any vendor extensions. */
14032 }
14033 break;
14034 }
757a13d0 14035 } while (macinfo_type != 0);
2e276125 14036}
8e19ed76
PS
14037
14038/* Check if the attribute's form is a DW_FORM_block*
14039 if so return true else false. */
14040static int
14041attr_form_is_block (struct attribute *attr)
14042{
14043 return (attr == NULL ? 0 :
14044 attr->form == DW_FORM_block1
14045 || attr->form == DW_FORM_block2
14046 || attr->form == DW_FORM_block4
2dc7f7b3
TT
14047 || attr->form == DW_FORM_block
14048 || attr->form == DW_FORM_exprloc);
8e19ed76 14049}
4c2df51b 14050
c6a0999f
JB
14051/* Return non-zero if ATTR's value is a section offset --- classes
14052 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
14053 You may use DW_UNSND (attr) to retrieve such offsets.
14054
14055 Section 7.5.4, "Attribute Encodings", explains that no attribute
14056 may have a value that belongs to more than one of these classes; it
14057 would be ambiguous if we did, because we use the same forms for all
14058 of them. */
3690dd37
JB
14059static int
14060attr_form_is_section_offset (struct attribute *attr)
14061{
14062 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
14063 || attr->form == DW_FORM_data8
14064 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
14065}
14066
14067
14068/* Return non-zero if ATTR's value falls in the 'constant' class, or
14069 zero otherwise. When this function returns true, you can apply
14070 dwarf2_get_attr_constant_value to it.
14071
14072 However, note that for some attributes you must check
14073 attr_form_is_section_offset before using this test. DW_FORM_data4
14074 and DW_FORM_data8 are members of both the constant class, and of
14075 the classes that contain offsets into other debug sections
14076 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
14077 that, if an attribute's can be either a constant or one of the
14078 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
14079 taken as section offsets, not constants. */
14080static int
14081attr_form_is_constant (struct attribute *attr)
14082{
14083 switch (attr->form)
14084 {
14085 case DW_FORM_sdata:
14086 case DW_FORM_udata:
14087 case DW_FORM_data1:
14088 case DW_FORM_data2:
14089 case DW_FORM_data4:
14090 case DW_FORM_data8:
14091 return 1;
14092 default:
14093 return 0;
14094 }
14095}
14096
4c2df51b
DJ
14097static void
14098dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 14099 struct dwarf2_cu *cu)
4c2df51b 14100{
3690dd37 14101 if (attr_form_is_section_offset (attr)
99bcc461
DJ
14102 /* ".debug_loc" may not exist at all, or the offset may be outside
14103 the section. If so, fall through to the complaint in the
14104 other branch. */
dce234bc 14105 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
4c2df51b 14106 {
0d53c4c4 14107 struct dwarf2_loclist_baton *baton;
4c2df51b 14108
4a146b47 14109 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 14110 sizeof (struct dwarf2_loclist_baton));
ae0d2f24
UW
14111 baton->per_cu = cu->per_cu;
14112 gdb_assert (baton->per_cu);
4c2df51b 14113
be391dca
TT
14114 dwarf2_read_section (dwarf2_per_objfile->objfile,
14115 &dwarf2_per_objfile->loc);
14116
0d53c4c4
DJ
14117 /* We don't know how long the location list is, but make sure we
14118 don't run off the edge of the section. */
dce234bc
PP
14119 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
14120 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
d00adf39
DE
14121 baton->base_address = cu->base_address;
14122 if (cu->base_known == 0)
0d53c4c4 14123 complaint (&symfile_complaints,
e2e0b3e5 14124 _("Location list used without specifying the CU base address."));
4c2df51b 14125
768a979c 14126 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
14127 SYMBOL_LOCATION_BATON (sym) = baton;
14128 }
14129 else
14130 {
14131 struct dwarf2_locexpr_baton *baton;
14132
4a146b47 14133 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 14134 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
14135 baton->per_cu = cu->per_cu;
14136 gdb_assert (baton->per_cu);
0d53c4c4
DJ
14137
14138 if (attr_form_is_block (attr))
14139 {
14140 /* Note that we're just copying the block's data pointer
14141 here, not the actual data. We're still pointing into the
6502dd73
DJ
14142 info_buffer for SYM's objfile; right now we never release
14143 that buffer, but when we do clean up properly this may
14144 need to change. */
0d53c4c4
DJ
14145 baton->size = DW_BLOCK (attr)->size;
14146 baton->data = DW_BLOCK (attr)->data;
14147 }
14148 else
14149 {
14150 dwarf2_invalid_attrib_class_complaint ("location description",
14151 SYMBOL_NATURAL_NAME (sym));
14152 baton->size = 0;
14153 baton->data = NULL;
14154 }
6e70227d 14155
768a979c 14156 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
14157 SYMBOL_LOCATION_BATON (sym) = baton;
14158 }
4c2df51b 14159}
6502dd73 14160
9aa1f1e3
TT
14161/* Return the OBJFILE associated with the compilation unit CU. If CU
14162 came from a separate debuginfo file, then the master objfile is
14163 returned. */
ae0d2f24
UW
14164
14165struct objfile *
14166dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
14167{
9291a0cd 14168 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
14169
14170 /* Return the master objfile, so that we can report and look up the
14171 correct file containing this variable. */
14172 if (objfile->separate_debug_objfile_backlink)
14173 objfile = objfile->separate_debug_objfile_backlink;
14174
14175 return objfile;
14176}
14177
14178/* Return the address size given in the compilation unit header for CU. */
14179
14180CORE_ADDR
14181dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
14182{
14183 if (per_cu->cu)
14184 return per_cu->cu->header.addr_size;
14185 else
14186 {
14187 /* If the CU is not currently read in, we re-read its header. */
9291a0cd 14188 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
14189 struct dwarf2_per_objfile *per_objfile
14190 = objfile_data (objfile, dwarf2_objfile_data_key);
dce234bc 14191 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
ae0d2f24 14192 struct comp_unit_head cu_header;
9a619af0 14193
ae0d2f24
UW
14194 memset (&cu_header, 0, sizeof cu_header);
14195 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14196 return cu_header.addr_size;
14197 }
14198}
14199
9eae7c52
TT
14200/* Return the offset size given in the compilation unit header for CU. */
14201
14202int
14203dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
14204{
14205 if (per_cu->cu)
14206 return per_cu->cu->header.offset_size;
14207 else
14208 {
14209 /* If the CU is not currently read in, we re-read its header. */
9291a0cd 14210 struct objfile *objfile = per_cu->objfile;
9eae7c52
TT
14211 struct dwarf2_per_objfile *per_objfile
14212 = objfile_data (objfile, dwarf2_objfile_data_key);
14213 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14214 struct comp_unit_head cu_header;
14215
14216 memset (&cu_header, 0, sizeof cu_header);
14217 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14218 return cu_header.offset_size;
14219 }
14220}
14221
9aa1f1e3
TT
14222/* Return the text offset of the CU. The returned offset comes from
14223 this CU's objfile. If this objfile came from a separate debuginfo
14224 file, then the offset may be different from the corresponding
14225 offset in the parent objfile. */
14226
14227CORE_ADDR
14228dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
14229{
bb3fa9d0 14230 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
14231
14232 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14233}
14234
348e048f
DE
14235/* Locate the .debug_info compilation unit from CU's objfile which contains
14236 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
14237
14238static struct dwarf2_per_cu_data *
c764a876 14239dwarf2_find_containing_comp_unit (unsigned int offset,
ae038cb0
DJ
14240 struct objfile *objfile)
14241{
14242 struct dwarf2_per_cu_data *this_cu;
14243 int low, high;
14244
ae038cb0
DJ
14245 low = 0;
14246 high = dwarf2_per_objfile->n_comp_units - 1;
14247 while (high > low)
14248 {
14249 int mid = low + (high - low) / 2;
9a619af0 14250
ae038cb0
DJ
14251 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
14252 high = mid;
14253 else
14254 low = mid + 1;
14255 }
14256 gdb_assert (low == high);
14257 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
14258 {
10b3939b 14259 if (low == 0)
8a3fe4f8
AC
14260 error (_("Dwarf Error: could not find partial DIE containing "
14261 "offset 0x%lx [in module %s]"),
10b3939b
DJ
14262 (long) offset, bfd_get_filename (objfile->obfd));
14263
ae038cb0
DJ
14264 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
14265 return dwarf2_per_objfile->all_comp_units[low-1];
14266 }
14267 else
14268 {
14269 this_cu = dwarf2_per_objfile->all_comp_units[low];
14270 if (low == dwarf2_per_objfile->n_comp_units - 1
14271 && offset >= this_cu->offset + this_cu->length)
c764a876 14272 error (_("invalid dwarf2 offset %u"), offset);
ae038cb0
DJ
14273 gdb_assert (offset < this_cu->offset + this_cu->length);
14274 return this_cu;
14275 }
14276}
14277
10b3939b
DJ
14278/* Locate the compilation unit from OBJFILE which is located at exactly
14279 OFFSET. Raises an error on failure. */
14280
ae038cb0 14281static struct dwarf2_per_cu_data *
c764a876 14282dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
ae038cb0
DJ
14283{
14284 struct dwarf2_per_cu_data *this_cu;
9a619af0 14285
ae038cb0
DJ
14286 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
14287 if (this_cu->offset != offset)
c764a876 14288 error (_("no compilation unit with offset %u."), offset);
ae038cb0
DJ
14289 return this_cu;
14290}
14291
93311388
DE
14292/* Malloc space for a dwarf2_cu for OBJFILE and initialize it. */
14293
14294static struct dwarf2_cu *
14295alloc_one_comp_unit (struct objfile *objfile)
14296{
14297 struct dwarf2_cu *cu = xcalloc (1, sizeof (struct dwarf2_cu));
14298 cu->objfile = objfile;
14299 obstack_init (&cu->comp_unit_obstack);
14300 return cu;
14301}
14302
ae038cb0
DJ
14303/* Release one cached compilation unit, CU. We unlink it from the tree
14304 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
14305 the caller is responsible for that.
14306 NOTE: DATA is a void * because this function is also used as a
14307 cleanup routine. */
ae038cb0
DJ
14308
14309static void
14310free_one_comp_unit (void *data)
14311{
14312 struct dwarf2_cu *cu = data;
14313
14314 if (cu->per_cu != NULL)
14315 cu->per_cu->cu = NULL;
14316 cu->per_cu = NULL;
14317
14318 obstack_free (&cu->comp_unit_obstack, NULL);
14319
14320 xfree (cu);
14321}
14322
72bf9492 14323/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
14324 when we're finished with it. We can't free the pointer itself, but be
14325 sure to unlink it from the cache. Also release any associated storage
14326 and perform cache maintenance.
72bf9492
DJ
14327
14328 Only used during partial symbol parsing. */
14329
14330static void
14331free_stack_comp_unit (void *data)
14332{
14333 struct dwarf2_cu *cu = data;
14334
14335 obstack_free (&cu->comp_unit_obstack, NULL);
14336 cu->partial_dies = NULL;
ae038cb0
DJ
14337
14338 if (cu->per_cu != NULL)
14339 {
14340 /* This compilation unit is on the stack in our caller, so we
14341 should not xfree it. Just unlink it. */
14342 cu->per_cu->cu = NULL;
14343 cu->per_cu = NULL;
14344
14345 /* If we had a per-cu pointer, then we may have other compilation
14346 units loaded, so age them now. */
14347 age_cached_comp_units ();
14348 }
14349}
14350
14351/* Free all cached compilation units. */
14352
14353static void
14354free_cached_comp_units (void *data)
14355{
14356 struct dwarf2_per_cu_data *per_cu, **last_chain;
14357
14358 per_cu = dwarf2_per_objfile->read_in_chain;
14359 last_chain = &dwarf2_per_objfile->read_in_chain;
14360 while (per_cu != NULL)
14361 {
14362 struct dwarf2_per_cu_data *next_cu;
14363
14364 next_cu = per_cu->cu->read_in_chain;
14365
14366 free_one_comp_unit (per_cu->cu);
14367 *last_chain = next_cu;
14368
14369 per_cu = next_cu;
14370 }
14371}
14372
14373/* Increase the age counter on each cached compilation unit, and free
14374 any that are too old. */
14375
14376static void
14377age_cached_comp_units (void)
14378{
14379 struct dwarf2_per_cu_data *per_cu, **last_chain;
14380
14381 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
14382 per_cu = dwarf2_per_objfile->read_in_chain;
14383 while (per_cu != NULL)
14384 {
14385 per_cu->cu->last_used ++;
14386 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
14387 dwarf2_mark (per_cu->cu);
14388 per_cu = per_cu->cu->read_in_chain;
14389 }
14390
14391 per_cu = dwarf2_per_objfile->read_in_chain;
14392 last_chain = &dwarf2_per_objfile->read_in_chain;
14393 while (per_cu != NULL)
14394 {
14395 struct dwarf2_per_cu_data *next_cu;
14396
14397 next_cu = per_cu->cu->read_in_chain;
14398
14399 if (!per_cu->cu->mark)
14400 {
14401 free_one_comp_unit (per_cu->cu);
14402 *last_chain = next_cu;
14403 }
14404 else
14405 last_chain = &per_cu->cu->read_in_chain;
14406
14407 per_cu = next_cu;
14408 }
14409}
14410
14411/* Remove a single compilation unit from the cache. */
14412
14413static void
14414free_one_cached_comp_unit (void *target_cu)
14415{
14416 struct dwarf2_per_cu_data *per_cu, **last_chain;
14417
14418 per_cu = dwarf2_per_objfile->read_in_chain;
14419 last_chain = &dwarf2_per_objfile->read_in_chain;
14420 while (per_cu != NULL)
14421 {
14422 struct dwarf2_per_cu_data *next_cu;
14423
14424 next_cu = per_cu->cu->read_in_chain;
14425
14426 if (per_cu->cu == target_cu)
14427 {
14428 free_one_comp_unit (per_cu->cu);
14429 *last_chain = next_cu;
14430 break;
14431 }
14432 else
14433 last_chain = &per_cu->cu->read_in_chain;
14434
14435 per_cu = next_cu;
14436 }
14437}
14438
fe3e1990
DJ
14439/* Release all extra memory associated with OBJFILE. */
14440
14441void
14442dwarf2_free_objfile (struct objfile *objfile)
14443{
14444 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
14445
14446 if (dwarf2_per_objfile == NULL)
14447 return;
14448
14449 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
14450 free_cached_comp_units (NULL);
14451
9291a0cd
TT
14452 if (dwarf2_per_objfile->using_index)
14453 {
14454 int i;
14455
14456 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
14457 {
14458 int j;
e254ef6a
DE
14459 struct dwarf2_per_cu_data *per_cu =
14460 dwarf2_per_objfile->all_comp_units[i];
9291a0cd 14461
e254ef6a 14462 if (!per_cu->v.quick->lines)
9291a0cd
TT
14463 continue;
14464
e254ef6a 14465 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
9291a0cd 14466 {
e254ef6a
DE
14467 if (per_cu->v.quick->file_names)
14468 xfree ((void *) per_cu->v.quick->file_names[j]);
14469 if (per_cu->v.quick->full_names)
14470 xfree ((void *) per_cu->v.quick->full_names[j]);
9291a0cd
TT
14471 }
14472
e254ef6a 14473 free_line_header (per_cu->v.quick->lines);
9291a0cd
TT
14474 }
14475 }
14476
fe3e1990
DJ
14477 /* Everything else should be on the objfile obstack. */
14478}
14479
1c379e20
DJ
14480/* A pair of DIE offset and GDB type pointer. We store these
14481 in a hash table separate from the DIEs, and preserve them
14482 when the DIEs are flushed out of cache. */
14483
14484struct dwarf2_offset_and_type
14485{
14486 unsigned int offset;
14487 struct type *type;
14488};
14489
14490/* Hash function for a dwarf2_offset_and_type. */
14491
14492static hashval_t
14493offset_and_type_hash (const void *item)
14494{
14495 const struct dwarf2_offset_and_type *ofs = item;
9a619af0 14496
1c379e20
DJ
14497 return ofs->offset;
14498}
14499
14500/* Equality function for a dwarf2_offset_and_type. */
14501
14502static int
14503offset_and_type_eq (const void *item_lhs, const void *item_rhs)
14504{
14505 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
14506 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9a619af0 14507
1c379e20
DJ
14508 return ofs_lhs->offset == ofs_rhs->offset;
14509}
14510
14511/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
14512 table if necessary. For convenience, return TYPE.
14513
14514 The DIEs reading must have careful ordering to:
14515 * Not cause infite loops trying to read in DIEs as a prerequisite for
14516 reading current DIE.
14517 * Not trying to dereference contents of still incompletely read in types
14518 while reading in other DIEs.
14519 * Enable referencing still incompletely read in types just by a pointer to
14520 the type without accessing its fields.
14521
14522 Therefore caller should follow these rules:
14523 * Try to fetch any prerequisite types we may need to build this DIE type
14524 before building the type and calling set_die_type.
e71ec853 14525 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
14526 possible before fetching more types to complete the current type.
14527 * Make the type as complete as possible before fetching more types. */
1c379e20 14528
f792889a 14529static struct type *
1c379e20
DJ
14530set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
14531{
14532 struct dwarf2_offset_and_type **slot, ofs;
673bfd45
DE
14533 struct objfile *objfile = cu->objfile;
14534 htab_t *type_hash_ptr;
1c379e20 14535
b4ba55a1
JB
14536 /* For Ada types, make sure that the gnat-specific data is always
14537 initialized (if not already set). There are a few types where
14538 we should not be doing so, because the type-specific area is
14539 already used to hold some other piece of info (eg: TYPE_CODE_FLT
14540 where the type-specific area is used to store the floatformat).
14541 But this is not a problem, because the gnat-specific information
14542 is actually not needed for these types. */
14543 if (need_gnat_info (cu)
14544 && TYPE_CODE (type) != TYPE_CODE_FUNC
14545 && TYPE_CODE (type) != TYPE_CODE_FLT
14546 && !HAVE_GNAT_AUX_INFO (type))
14547 INIT_GNAT_SPECIFIC (type);
14548
673bfd45
DE
14549 if (cu->per_cu->from_debug_types)
14550 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
14551 else
14552 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
14553
14554 if (*type_hash_ptr == NULL)
f792889a 14555 {
673bfd45
DE
14556 *type_hash_ptr
14557 = htab_create_alloc_ex (127,
f792889a
DJ
14558 offset_and_type_hash,
14559 offset_and_type_eq,
14560 NULL,
673bfd45 14561 &objfile->objfile_obstack,
f792889a
DJ
14562 hashtab_obstack_allocate,
14563 dummy_obstack_deallocate);
f792889a 14564 }
1c379e20
DJ
14565
14566 ofs.offset = die->offset;
14567 ofs.type = type;
14568 slot = (struct dwarf2_offset_and_type **)
673bfd45 14569 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
7e314c57
JK
14570 if (*slot)
14571 complaint (&symfile_complaints,
14572 _("A problem internal to GDB: DIE 0x%x has type already set"),
14573 die->offset);
673bfd45 14574 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 14575 **slot = ofs;
f792889a 14576 return type;
1c379e20
DJ
14577}
14578
673bfd45
DE
14579/* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
14580 table, or return NULL if the die does not have a saved type. */
1c379e20
DJ
14581
14582static struct type *
673bfd45
DE
14583get_die_type_at_offset (unsigned int offset,
14584 struct dwarf2_per_cu_data *per_cu)
1c379e20
DJ
14585{
14586 struct dwarf2_offset_and_type *slot, ofs;
673bfd45 14587 htab_t type_hash;
f792889a 14588
673bfd45
DE
14589 if (per_cu->from_debug_types)
14590 type_hash = dwarf2_per_objfile->debug_types_type_hash;
14591 else
14592 type_hash = dwarf2_per_objfile->debug_info_type_hash;
f792889a
DJ
14593 if (type_hash == NULL)
14594 return NULL;
1c379e20 14595
673bfd45 14596 ofs.offset = offset;
1c379e20
DJ
14597 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
14598 if (slot)
14599 return slot->type;
14600 else
14601 return NULL;
14602}
14603
673bfd45
DE
14604/* Look up the type for DIE in the appropriate type_hash table,
14605 or return NULL if DIE does not have a saved type. */
14606
14607static struct type *
14608get_die_type (struct die_info *die, struct dwarf2_cu *cu)
14609{
14610 return get_die_type_at_offset (die->offset, cu->per_cu);
14611}
14612
10b3939b
DJ
14613/* Add a dependence relationship from CU to REF_PER_CU. */
14614
14615static void
14616dwarf2_add_dependence (struct dwarf2_cu *cu,
14617 struct dwarf2_per_cu_data *ref_per_cu)
14618{
14619 void **slot;
14620
14621 if (cu->dependencies == NULL)
14622 cu->dependencies
14623 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
14624 NULL, &cu->comp_unit_obstack,
14625 hashtab_obstack_allocate,
14626 dummy_obstack_deallocate);
14627
14628 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
14629 if (*slot == NULL)
14630 *slot = ref_per_cu;
14631}
1c379e20 14632
f504f079
DE
14633/* Subroutine of dwarf2_mark to pass to htab_traverse.
14634 Set the mark field in every compilation unit in the
ae038cb0
DJ
14635 cache that we must keep because we are keeping CU. */
14636
10b3939b
DJ
14637static int
14638dwarf2_mark_helper (void **slot, void *data)
14639{
14640 struct dwarf2_per_cu_data *per_cu;
14641
14642 per_cu = (struct dwarf2_per_cu_data *) *slot;
14643 if (per_cu->cu->mark)
14644 return 1;
14645 per_cu->cu->mark = 1;
14646
14647 if (per_cu->cu->dependencies != NULL)
14648 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
14649
14650 return 1;
14651}
14652
f504f079
DE
14653/* Set the mark field in CU and in every other compilation unit in the
14654 cache that we must keep because we are keeping CU. */
14655
ae038cb0
DJ
14656static void
14657dwarf2_mark (struct dwarf2_cu *cu)
14658{
14659 if (cu->mark)
14660 return;
14661 cu->mark = 1;
10b3939b
DJ
14662 if (cu->dependencies != NULL)
14663 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
14664}
14665
14666static void
14667dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
14668{
14669 while (per_cu)
14670 {
14671 per_cu->cu->mark = 0;
14672 per_cu = per_cu->cu->read_in_chain;
14673 }
72bf9492
DJ
14674}
14675
72bf9492
DJ
14676/* Trivial hash function for partial_die_info: the hash value of a DIE
14677 is its offset in .debug_info for this objfile. */
14678
14679static hashval_t
14680partial_die_hash (const void *item)
14681{
14682 const struct partial_die_info *part_die = item;
9a619af0 14683
72bf9492
DJ
14684 return part_die->offset;
14685}
14686
14687/* Trivial comparison function for partial_die_info structures: two DIEs
14688 are equal if they have the same offset. */
14689
14690static int
14691partial_die_eq (const void *item_lhs, const void *item_rhs)
14692{
14693 const struct partial_die_info *part_die_lhs = item_lhs;
14694 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 14695
72bf9492
DJ
14696 return part_die_lhs->offset == part_die_rhs->offset;
14697}
14698
ae038cb0
DJ
14699static struct cmd_list_element *set_dwarf2_cmdlist;
14700static struct cmd_list_element *show_dwarf2_cmdlist;
14701
14702static void
14703set_dwarf2_cmd (char *args, int from_tty)
14704{
14705 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
14706}
14707
14708static void
14709show_dwarf2_cmd (char *args, int from_tty)
6e70227d 14710{
ae038cb0
DJ
14711 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
14712}
14713
dce234bc
PP
14714/* If section described by INFO was mmapped, munmap it now. */
14715
14716static void
14717munmap_section_buffer (struct dwarf2_section_info *info)
14718{
14719 if (info->was_mmapped)
14720 {
14721#ifdef HAVE_MMAP
14722 intptr_t begin = (intptr_t) info->buffer;
14723 intptr_t map_begin = begin & ~(pagesize - 1);
14724 size_t map_length = info->size + begin - map_begin;
9a619af0 14725
dce234bc
PP
14726 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
14727#else
14728 /* Without HAVE_MMAP, we should never be here to begin with. */
f3574227 14729 gdb_assert_not_reached ("no mmap support");
dce234bc
PP
14730#endif
14731 }
14732}
14733
14734/* munmap debug sections for OBJFILE, if necessary. */
14735
14736static void
c1bd65d0 14737dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
14738{
14739 struct dwarf2_per_objfile *data = d;
9a619af0 14740
16be1145
DE
14741 /* This is sorted according to the order they're defined in to make it easier
14742 to keep in sync. */
dce234bc
PP
14743 munmap_section_buffer (&data->info);
14744 munmap_section_buffer (&data->abbrev);
14745 munmap_section_buffer (&data->line);
16be1145 14746 munmap_section_buffer (&data->loc);
dce234bc 14747 munmap_section_buffer (&data->macinfo);
16be1145 14748 munmap_section_buffer (&data->str);
dce234bc 14749 munmap_section_buffer (&data->ranges);
16be1145 14750 munmap_section_buffer (&data->types);
dce234bc
PP
14751 munmap_section_buffer (&data->frame);
14752 munmap_section_buffer (&data->eh_frame);
9291a0cd
TT
14753 munmap_section_buffer (&data->gdb_index);
14754}
14755
14756\f
14757
14758/* The contents of the hash table we create when building the string
14759 table. */
14760struct strtab_entry
14761{
14762 offset_type offset;
14763 const char *str;
14764};
14765
14766/* Hash function for a strtab_entry. */
b89be57b 14767
9291a0cd
TT
14768static hashval_t
14769hash_strtab_entry (const void *e)
14770{
14771 const struct strtab_entry *entry = e;
14772 return mapped_index_string_hash (entry->str);
14773}
14774
14775/* Equality function for a strtab_entry. */
b89be57b 14776
9291a0cd
TT
14777static int
14778eq_strtab_entry (const void *a, const void *b)
14779{
14780 const struct strtab_entry *ea = a;
14781 const struct strtab_entry *eb = b;
14782 return !strcmp (ea->str, eb->str);
14783}
14784
14785/* Create a strtab_entry hash table. */
b89be57b 14786
9291a0cd
TT
14787static htab_t
14788create_strtab (void)
14789{
14790 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
14791 xfree, xcalloc, xfree);
14792}
14793
14794/* Add a string to the constant pool. Return the string's offset in
14795 host order. */
b89be57b 14796
9291a0cd
TT
14797static offset_type
14798add_string (htab_t table, struct obstack *cpool, const char *str)
14799{
14800 void **slot;
14801 struct strtab_entry entry;
14802 struct strtab_entry *result;
14803
14804 entry.str = str;
14805 slot = htab_find_slot (table, &entry, INSERT);
14806 if (*slot)
14807 result = *slot;
14808 else
14809 {
14810 result = XNEW (struct strtab_entry);
14811 result->offset = obstack_object_size (cpool);
14812 result->str = str;
14813 obstack_grow_str0 (cpool, str);
14814 *slot = result;
14815 }
14816 return result->offset;
14817}
14818
14819/* An entry in the symbol table. */
14820struct symtab_index_entry
14821{
14822 /* The name of the symbol. */
14823 const char *name;
14824 /* The offset of the name in the constant pool. */
14825 offset_type index_offset;
14826 /* A sorted vector of the indices of all the CUs that hold an object
14827 of this name. */
14828 VEC (offset_type) *cu_indices;
14829};
14830
14831/* The symbol table. This is a power-of-2-sized hash table. */
14832struct mapped_symtab
14833{
14834 offset_type n_elements;
14835 offset_type size;
14836 struct symtab_index_entry **data;
14837};
14838
14839/* Hash function for a symtab_index_entry. */
b89be57b 14840
9291a0cd
TT
14841static hashval_t
14842hash_symtab_entry (const void *e)
14843{
14844 const struct symtab_index_entry *entry = e;
14845 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
14846 sizeof (offset_type) * VEC_length (offset_type,
14847 entry->cu_indices),
14848 0);
14849}
14850
14851/* Equality function for a symtab_index_entry. */
b89be57b 14852
9291a0cd
TT
14853static int
14854eq_symtab_entry (const void *a, const void *b)
14855{
14856 const struct symtab_index_entry *ea = a;
14857 const struct symtab_index_entry *eb = b;
14858 int len = VEC_length (offset_type, ea->cu_indices);
14859 if (len != VEC_length (offset_type, eb->cu_indices))
14860 return 0;
14861 return !memcmp (VEC_address (offset_type, ea->cu_indices),
14862 VEC_address (offset_type, eb->cu_indices),
14863 sizeof (offset_type) * len);
14864}
14865
14866/* Destroy a symtab_index_entry. */
b89be57b 14867
9291a0cd
TT
14868static void
14869delete_symtab_entry (void *p)
14870{
14871 struct symtab_index_entry *entry = p;
14872 VEC_free (offset_type, entry->cu_indices);
14873 xfree (entry);
14874}
14875
14876/* Create a hash table holding symtab_index_entry objects. */
b89be57b 14877
9291a0cd 14878static htab_t
3876f04e 14879create_symbol_hash_table (void)
9291a0cd
TT
14880{
14881 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
14882 delete_symtab_entry, xcalloc, xfree);
14883}
14884
14885/* Create a new mapped symtab object. */
b89be57b 14886
9291a0cd
TT
14887static struct mapped_symtab *
14888create_mapped_symtab (void)
14889{
14890 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
14891 symtab->n_elements = 0;
14892 symtab->size = 1024;
14893 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
14894 return symtab;
14895}
14896
14897/* Destroy a mapped_symtab. */
b89be57b 14898
9291a0cd
TT
14899static void
14900cleanup_mapped_symtab (void *p)
14901{
14902 struct mapped_symtab *symtab = p;
14903 /* The contents of the array are freed when the other hash table is
14904 destroyed. */
14905 xfree (symtab->data);
14906 xfree (symtab);
14907}
14908
14909/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
14910 the slot. */
b89be57b 14911
9291a0cd
TT
14912static struct symtab_index_entry **
14913find_slot (struct mapped_symtab *symtab, const char *name)
14914{
14915 offset_type index, step, hash = mapped_index_string_hash (name);
14916
14917 index = hash & (symtab->size - 1);
14918 step = ((hash * 17) & (symtab->size - 1)) | 1;
14919
14920 for (;;)
14921 {
14922 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
14923 return &symtab->data[index];
14924 index = (index + step) & (symtab->size - 1);
14925 }
14926}
14927
14928/* Expand SYMTAB's hash table. */
b89be57b 14929
9291a0cd
TT
14930static void
14931hash_expand (struct mapped_symtab *symtab)
14932{
14933 offset_type old_size = symtab->size;
14934 offset_type i;
14935 struct symtab_index_entry **old_entries = symtab->data;
14936
14937 symtab->size *= 2;
14938 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
14939
14940 for (i = 0; i < old_size; ++i)
14941 {
14942 if (old_entries[i])
14943 {
14944 struct symtab_index_entry **slot = find_slot (symtab,
14945 old_entries[i]->name);
14946 *slot = old_entries[i];
14947 }
14948 }
14949
14950 xfree (old_entries);
14951}
14952
14953/* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
14954 is the index of the CU in which the symbol appears. */
b89be57b 14955
9291a0cd
TT
14956static void
14957add_index_entry (struct mapped_symtab *symtab, const char *name,
14958 offset_type cu_index)
14959{
14960 struct symtab_index_entry **slot;
14961
14962 ++symtab->n_elements;
14963 if (4 * symtab->n_elements / 3 >= symtab->size)
14964 hash_expand (symtab);
14965
14966 slot = find_slot (symtab, name);
14967 if (!*slot)
14968 {
14969 *slot = XNEW (struct symtab_index_entry);
14970 (*slot)->name = name;
14971 (*slot)->cu_indices = NULL;
14972 }
14973 /* Don't push an index twice. Due to how we add entries we only
14974 have to check the last one. */
14975 if (VEC_empty (offset_type, (*slot)->cu_indices)
14976 || VEC_length (offset_type, (*slot)->cu_indices) != cu_index)
14977 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
14978}
14979
14980/* Add a vector of indices to the constant pool. */
b89be57b 14981
9291a0cd 14982static offset_type
3876f04e 14983add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
14984 struct symtab_index_entry *entry)
14985{
14986 void **slot;
14987
3876f04e 14988 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
14989 if (!*slot)
14990 {
14991 offset_type len = VEC_length (offset_type, entry->cu_indices);
14992 offset_type val = MAYBE_SWAP (len);
14993 offset_type iter;
14994 int i;
14995
14996 *slot = entry;
14997 entry->index_offset = obstack_object_size (cpool);
14998
14999 obstack_grow (cpool, &val, sizeof (val));
15000 for (i = 0;
15001 VEC_iterate (offset_type, entry->cu_indices, i, iter);
15002 ++i)
15003 {
15004 val = MAYBE_SWAP (iter);
15005 obstack_grow (cpool, &val, sizeof (val));
15006 }
15007 }
15008 else
15009 {
15010 struct symtab_index_entry *old_entry = *slot;
15011 entry->index_offset = old_entry->index_offset;
15012 entry = old_entry;
15013 }
15014 return entry->index_offset;
15015}
15016
15017/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
15018 constant pool entries going into the obstack CPOOL. */
b89be57b 15019
9291a0cd
TT
15020static void
15021write_hash_table (struct mapped_symtab *symtab,
15022 struct obstack *output, struct obstack *cpool)
15023{
15024 offset_type i;
3876f04e 15025 htab_t symbol_hash_table;
9291a0cd
TT
15026 htab_t str_table;
15027
3876f04e 15028 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 15029 str_table = create_strtab ();
3876f04e 15030
9291a0cd
TT
15031 /* We add all the index vectors to the constant pool first, to
15032 ensure alignment is ok. */
15033 for (i = 0; i < symtab->size; ++i)
15034 {
15035 if (symtab->data[i])
3876f04e 15036 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
15037 }
15038
15039 /* Now write out the hash table. */
15040 for (i = 0; i < symtab->size; ++i)
15041 {
15042 offset_type str_off, vec_off;
15043
15044 if (symtab->data[i])
15045 {
15046 str_off = add_string (str_table, cpool, symtab->data[i]->name);
15047 vec_off = symtab->data[i]->index_offset;
15048 }
15049 else
15050 {
15051 /* While 0 is a valid constant pool index, it is not valid
15052 to have 0 for both offsets. */
15053 str_off = 0;
15054 vec_off = 0;
15055 }
15056
15057 str_off = MAYBE_SWAP (str_off);
15058 vec_off = MAYBE_SWAP (vec_off);
15059
15060 obstack_grow (output, &str_off, sizeof (str_off));
15061 obstack_grow (output, &vec_off, sizeof (vec_off));
15062 }
15063
15064 htab_delete (str_table);
3876f04e 15065 htab_delete (symbol_hash_table);
9291a0cd
TT
15066}
15067
15068/* Write an address entry to ADDR_OBSTACK. The addresses are taken
15069 from PST; CU_INDEX is the index of the CU in the vector of all
15070 CUs. */
b89be57b 15071
9291a0cd
TT
15072static void
15073add_address_entry (struct objfile *objfile,
15074 struct obstack *addr_obstack, struct partial_symtab *pst,
15075 unsigned int cu_index)
15076{
15077 offset_type offset;
15078 char addr[8];
15079 CORE_ADDR baseaddr;
15080
1fd400ff
TT
15081 /* Don't bother recording empty ranges. */
15082 if (pst->textlow == pst->texthigh)
15083 return;
15084
9291a0cd
TT
15085 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15086
15087 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, pst->textlow - baseaddr);
15088 obstack_grow (addr_obstack, addr, 8);
15089 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, pst->texthigh - baseaddr);
15090 obstack_grow (addr_obstack, addr, 8);
15091 offset = MAYBE_SWAP (cu_index);
15092 obstack_grow (addr_obstack, &offset, sizeof (offset_type));
15093}
15094
15095/* Add a list of partial symbols to SYMTAB. */
b89be57b 15096
9291a0cd
TT
15097static void
15098write_psymbols (struct mapped_symtab *symtab,
987d643c 15099 htab_t psyms_seen,
9291a0cd
TT
15100 struct partial_symbol **psymp,
15101 int count,
987d643c
TT
15102 offset_type cu_index,
15103 int is_static)
9291a0cd
TT
15104{
15105 for (; count-- > 0; ++psymp)
15106 {
987d643c
TT
15107 void **slot, *lookup;
15108
9291a0cd
TT
15109 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
15110 error (_("Ada is not currently supported by the index"));
987d643c
TT
15111
15112 /* We only want to add a given psymbol once. However, we also
15113 want to account for whether it is global or static. So, we
15114 may add it twice, using slightly different values. */
15115 if (is_static)
15116 {
15117 uintptr_t val = 1 | (uintptr_t) *psymp;
15118
15119 lookup = (void *) val;
15120 }
15121 else
15122 lookup = *psymp;
15123
15124 /* Only add a given psymbol once. */
15125 slot = htab_find_slot (psyms_seen, lookup, INSERT);
15126 if (!*slot)
15127 {
15128 *slot = lookup;
15129 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
15130 }
9291a0cd
TT
15131 }
15132}
15133
15134/* Write the contents of an ("unfinished") obstack to FILE. Throw an
15135 exception if there is an error. */
b89be57b 15136
9291a0cd
TT
15137static void
15138write_obstack (FILE *file, struct obstack *obstack)
15139{
15140 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
15141 file)
15142 != obstack_object_size (obstack))
15143 error (_("couldn't data write to file"));
15144}
15145
15146/* Unlink a file if the argument is not NULL. */
b89be57b 15147
9291a0cd
TT
15148static void
15149unlink_if_set (void *p)
15150{
15151 char **filename = p;
15152 if (*filename)
15153 unlink (*filename);
15154}
15155
1fd400ff
TT
15156/* A helper struct used when iterating over debug_types. */
15157struct signatured_type_index_data
15158{
15159 struct objfile *objfile;
15160 struct mapped_symtab *symtab;
15161 struct obstack *types_list;
987d643c 15162 htab_t psyms_seen;
1fd400ff
TT
15163 int cu_index;
15164};
15165
15166/* A helper function that writes a single signatured_type to an
15167 obstack. */
b89be57b 15168
1fd400ff
TT
15169static int
15170write_one_signatured_type (void **slot, void *d)
15171{
15172 struct signatured_type_index_data *info = d;
15173 struct signatured_type *entry = (struct signatured_type *) *slot;
e254ef6a
DE
15174 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
15175 struct partial_symtab *psymtab = per_cu->v.psymtab;
1fd400ff
TT
15176 gdb_byte val[8];
15177
15178 write_psymbols (info->symtab,
987d643c 15179 info->psyms_seen,
1fd400ff 15180 info->objfile->global_psymbols.list + psymtab->globals_offset,
987d643c
TT
15181 psymtab->n_global_syms, info->cu_index,
15182 0);
1fd400ff 15183 write_psymbols (info->symtab,
987d643c 15184 info->psyms_seen,
1fd400ff 15185 info->objfile->static_psymbols.list + psymtab->statics_offset,
987d643c
TT
15186 psymtab->n_static_syms, info->cu_index,
15187 1);
1fd400ff
TT
15188
15189 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->offset);
15190 obstack_grow (info->types_list, val, 8);
15191 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
15192 obstack_grow (info->types_list, val, 8);
15193 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
15194 obstack_grow (info->types_list, val, 8);
15195
15196 ++info->cu_index;
15197
15198 return 1;
15199}
15200
987d643c
TT
15201/* A cleanup function for an htab_t. */
15202
15203static void
15204cleanup_htab (void *arg)
15205{
15206 htab_delete (arg);
15207}
15208
9291a0cd 15209/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 15210
9291a0cd
TT
15211static void
15212write_psymtabs_to_index (struct objfile *objfile, const char *dir)
15213{
15214 struct cleanup *cleanup;
15215 char *filename, *cleanup_filename;
1fd400ff
TT
15216 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
15217 struct obstack cu_list, types_cu_list;
9291a0cd
TT
15218 int i;
15219 FILE *out_file;
15220 struct mapped_symtab *symtab;
15221 offset_type val, size_of_contents, total_len;
15222 struct stat st;
15223 char buf[8];
987d643c 15224 htab_t psyms_seen;
9291a0cd
TT
15225
15226 if (!objfile->psymtabs)
15227 return;
15228 if (dwarf2_per_objfile->using_index)
15229 error (_("Cannot use an index to create the index"));
15230
15231 if (stat (objfile->name, &st) < 0)
15232 perror_with_name (_("Could not stat"));
15233
15234 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
15235 INDEX_SUFFIX, (char *) NULL);
15236 cleanup = make_cleanup (xfree, filename);
15237
15238 out_file = fopen (filename, "wb");
15239 if (!out_file)
15240 error (_("Can't open `%s' for writing"), filename);
15241
15242 cleanup_filename = filename;
15243 make_cleanup (unlink_if_set, &cleanup_filename);
15244
15245 symtab = create_mapped_symtab ();
15246 make_cleanup (cleanup_mapped_symtab, symtab);
15247
15248 obstack_init (&addr_obstack);
15249 make_cleanup_obstack_free (&addr_obstack);
15250
15251 obstack_init (&cu_list);
15252 make_cleanup_obstack_free (&cu_list);
15253
1fd400ff
TT
15254 obstack_init (&types_cu_list);
15255 make_cleanup_obstack_free (&types_cu_list);
15256
987d643c
TT
15257 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
15258 NULL, xcalloc, xfree);
15259 make_cleanup (cleanup_htab, psyms_seen);
15260
1fd400ff
TT
15261 /* The list is already sorted, so we don't need to do additional
15262 work here. Also, the debug_types entries do not appear in
15263 all_comp_units, but only in their own hash table. */
9291a0cd
TT
15264 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
15265 {
e254ef6a
DE
15266 struct dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->all_comp_units[i];
15267 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd
TT
15268 gdb_byte val[8];
15269
15270 write_psymbols (symtab,
987d643c 15271 psyms_seen,
9291a0cd 15272 objfile->global_psymbols.list + psymtab->globals_offset,
987d643c
TT
15273 psymtab->n_global_syms, i,
15274 0);
9291a0cd 15275 write_psymbols (symtab,
987d643c 15276 psyms_seen,
9291a0cd 15277 objfile->static_psymbols.list + psymtab->statics_offset,
987d643c
TT
15278 psymtab->n_static_syms, i,
15279 1);
9291a0cd
TT
15280
15281 add_address_entry (objfile, &addr_obstack, psymtab, i);
15282
e254ef6a 15283 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
9291a0cd 15284 obstack_grow (&cu_list, val, 8);
e254ef6a 15285 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
15286 obstack_grow (&cu_list, val, 8);
15287 }
15288
1fd400ff
TT
15289 /* Write out the .debug_type entries, if any. */
15290 if (dwarf2_per_objfile->signatured_types)
15291 {
15292 struct signatured_type_index_data sig_data;
15293
15294 sig_data.objfile = objfile;
15295 sig_data.symtab = symtab;
15296 sig_data.types_list = &types_cu_list;
987d643c 15297 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
15298 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
15299 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
15300 write_one_signatured_type, &sig_data);
15301 }
15302
9291a0cd
TT
15303 obstack_init (&constant_pool);
15304 make_cleanup_obstack_free (&constant_pool);
15305 obstack_init (&symtab_obstack);
15306 make_cleanup_obstack_free (&symtab_obstack);
15307 write_hash_table (symtab, &symtab_obstack, &constant_pool);
15308
15309 obstack_init (&contents);
15310 make_cleanup_obstack_free (&contents);
1fd400ff 15311 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
15312 total_len = size_of_contents;
15313
15314 /* The version number. */
987d643c 15315 val = MAYBE_SWAP (3);
9291a0cd
TT
15316 obstack_grow (&contents, &val, sizeof (val));
15317
15318 /* The offset of the CU list from the start of the file. */
15319 val = MAYBE_SWAP (total_len);
15320 obstack_grow (&contents, &val, sizeof (val));
15321 total_len += obstack_object_size (&cu_list);
15322
1fd400ff
TT
15323 /* The offset of the types CU list from the start of the file. */
15324 val = MAYBE_SWAP (total_len);
15325 obstack_grow (&contents, &val, sizeof (val));
15326 total_len += obstack_object_size (&types_cu_list);
15327
9291a0cd
TT
15328 /* The offset of the address table from the start of the file. */
15329 val = MAYBE_SWAP (total_len);
15330 obstack_grow (&contents, &val, sizeof (val));
15331 total_len += obstack_object_size (&addr_obstack);
15332
15333 /* The offset of the symbol table from the start of the file. */
15334 val = MAYBE_SWAP (total_len);
15335 obstack_grow (&contents, &val, sizeof (val));
15336 total_len += obstack_object_size (&symtab_obstack);
15337
15338 /* The offset of the constant pool from the start of the file. */
15339 val = MAYBE_SWAP (total_len);
15340 obstack_grow (&contents, &val, sizeof (val));
15341 total_len += obstack_object_size (&constant_pool);
15342
15343 gdb_assert (obstack_object_size (&contents) == size_of_contents);
15344
15345 write_obstack (out_file, &contents);
15346 write_obstack (out_file, &cu_list);
1fd400ff 15347 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
15348 write_obstack (out_file, &addr_obstack);
15349 write_obstack (out_file, &symtab_obstack);
15350 write_obstack (out_file, &constant_pool);
15351
15352 fclose (out_file);
15353
15354 /* We want to keep the file, so we set cleanup_filename to NULL
15355 here. See unlink_if_set. */
15356 cleanup_filename = NULL;
15357
15358 do_cleanups (cleanup);
15359}
15360
15361/* The mapped index file format is designed to be directly mmap()able
15362 on any architecture. In most cases, a datum is represented using a
15363 little-endian 32-bit integer value, called an offset_type. Big
15364 endian machines must byte-swap the values before using them.
15365 Exceptions to this rule are noted. The data is laid out such that
15366 alignment is always respected.
15367
15368 A mapped index consists of several sections.
15369
15370 1. The file header. This is a sequence of values, of offset_type
15371 unless otherwise noted:
987d643c
TT
15372
15373 [0] The version number, currently 3. Versions 1 and 2 are
15374 obsolete.
9291a0cd 15375 [1] The offset, from the start of the file, of the CU list.
987d643c
TT
15376 [2] The offset, from the start of the file, of the types CU list.
15377 Note that this section can be empty, in which case this offset will
15378 be equal to the next offset.
15379 [3] The offset, from the start of the file, of the address section.
15380 [4] The offset, from the start of the file, of the symbol table.
15381 [5] The offset, from the start of the file, of the constant pool.
9291a0cd
TT
15382
15383 2. The CU list. This is a sequence of pairs of 64-bit
1fd400ff
TT
15384 little-endian values, sorted by the CU offset. The first element
15385 in each pair is the offset of a CU in the .debug_info section. The
15386 second element in each pair is the length of that CU. References
15387 to a CU elsewhere in the map are done using a CU index, which is
15388 just the 0-based index into this table. Note that if there are
15389 type CUs, then conceptually CUs and type CUs form a single list for
15390 the purposes of CU indices.
15391
987d643c
TT
15392 3. The types CU list. This is a sequence of triplets of 64-bit
15393 little-endian values. In a triplet, the first value is the CU
15394 offset, the second value is the type offset in the CU, and the
15395 third value is the type signature. The types CU list is not
15396 sorted.
9291a0cd 15397
987d643c 15398 4. The address section. The address section consists of a sequence
9291a0cd
TT
15399 of address entries. Each address entry has three elements.
15400 [0] The low address. This is a 64-bit little-endian value.
15401 [1] The high address. This is a 64-bit little-endian value.
15402 [2] The CU index. This is an offset_type value.
15403
987d643c 15404 5. The symbol table. This is a hash table. The size of the hash
9291a0cd
TT
15405 table is always a power of 2. The initial hash and the step are
15406 currently defined by the `find_slot' function.
15407
15408 Each slot in the hash table consists of a pair of offset_type
15409 values. The first value is the offset of the symbol's name in the
15410 constant pool. The second value is the offset of the CU vector in
15411 the constant pool.
15412
15413 If both values are 0, then this slot in the hash table is empty.
15414 This is ok because while 0 is a valid constant pool index, it
15415 cannot be a valid index for both a string and a CU vector.
15416
15417 A string in the constant pool is stored as a \0-terminated string,
15418 as you'd expect.
15419
15420 A CU vector in the constant pool is a sequence of offset_type
15421 values. The first value is the number of CU indices in the vector.
15422 Each subsequent value is the index of a CU in the CU list. This
15423 element in the hash table is used to indicate which CUs define the
15424 symbol.
15425
987d643c 15426 6. The constant pool. This is simply a bunch of bytes. It is
9291a0cd
TT
15427 organized so that alignment is correct: CU vectors are stored
15428 first, followed by strings. */
11570e71 15429
9291a0cd
TT
15430static void
15431save_gdb_index_command (char *arg, int from_tty)
15432{
15433 struct objfile *objfile;
15434
15435 if (!arg || !*arg)
96d19272 15436 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
15437
15438 ALL_OBJFILES (objfile)
15439 {
15440 struct stat st;
15441
15442 /* If the objfile does not correspond to an actual file, skip it. */
15443 if (stat (objfile->name, &st) < 0)
15444 continue;
15445
15446 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15447 if (dwarf2_per_objfile)
15448 {
15449 volatile struct gdb_exception except;
15450
15451 TRY_CATCH (except, RETURN_MASK_ERROR)
15452 {
15453 write_psymtabs_to_index (objfile, arg);
15454 }
15455 if (except.reason < 0)
15456 exception_fprintf (gdb_stderr, except,
15457 _("Error while writing index for `%s': "),
15458 objfile->name);
15459 }
15460 }
dce234bc
PP
15461}
15462
9291a0cd
TT
15463\f
15464
9eae7c52
TT
15465int dwarf2_always_disassemble;
15466
15467static void
15468show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
15469 struct cmd_list_element *c, const char *value)
15470{
15471 fprintf_filtered (file, _("\
15472Whether to always disassemble DWARF expressions is %s.\n"),
15473 value);
15474}
15475
6502dd73
DJ
15476void _initialize_dwarf2_read (void);
15477
15478void
15479_initialize_dwarf2_read (void)
15480{
96d19272
JK
15481 struct cmd_list_element *c;
15482
dce234bc 15483 dwarf2_objfile_data_key
c1bd65d0 15484 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 15485
1bedd215
AC
15486 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
15487Set DWARF 2 specific variables.\n\
15488Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
15489 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
15490 0/*allow-unknown*/, &maintenance_set_cmdlist);
15491
1bedd215
AC
15492 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
15493Show DWARF 2 specific variables\n\
15494Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
15495 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
15496 0/*allow-unknown*/, &maintenance_show_cmdlist);
15497
15498 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
15499 &dwarf2_max_cache_age, _("\
15500Set the upper bound on the age of cached dwarf2 compilation units."), _("\
15501Show the upper bound on the age of cached dwarf2 compilation units."), _("\
15502A higher limit means that cached compilation units will be stored\n\
15503in memory longer, and more total memory will be used. Zero disables\n\
15504caching, which can slow down startup."),
2c5b56ce 15505 NULL,
920d2a44 15506 show_dwarf2_max_cache_age,
2c5b56ce 15507 &set_dwarf2_cmdlist,
ae038cb0 15508 &show_dwarf2_cmdlist);
d97bc12b 15509
9eae7c52
TT
15510 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
15511 &dwarf2_always_disassemble, _("\
15512Set whether `info address' always disassembles DWARF expressions."), _("\
15513Show whether `info address' always disassembles DWARF expressions."), _("\
15514When enabled, DWARF expressions are always printed in an assembly-like\n\
15515syntax. When disabled, expressions will be printed in a more\n\
15516conversational style, when possible."),
15517 NULL,
15518 show_dwarf2_always_disassemble,
15519 &set_dwarf2_cmdlist,
15520 &show_dwarf2_cmdlist);
15521
d97bc12b
DE
15522 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
15523Set debugging of the dwarf2 DIE reader."), _("\
15524Show debugging of the dwarf2 DIE reader."), _("\
15525When enabled (non-zero), DIEs are dumped after they are read in.\n\
15526The value is the maximum depth to print."),
15527 NULL,
15528 NULL,
15529 &setdebuglist, &showdebuglist);
9291a0cd 15530
96d19272 15531 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71
DE
15532 _("\
15533Save a .gdb-index file.\n\
15534Usage: save gdb-index DIRECTORY"),
96d19272
JK
15535 &save_cmdlist);
15536 set_cmd_completer (c, filename_completer);
6502dd73 15537}
This page took 2.146398 seconds and 4 git commands to generate.